ASSESSMENT REPORT ON THE WEEBIGEE PROJECT, SANDY LAKE, ONTARIO, CANADA 2013 GEOLOGICAL MAPPING/SAMPLING

Prepared by:

David R. Jamieson, B.Sc

Senior Technical Advisor, Goldeye Explorations Limited

June 11, 2015

Peterborough, Ontario

2013 Summer Fall Mapping/Sampling

Northwest Arm Gold Showings

TABLE OF CONTENTS

INTRODUCTION	I AND GENERAL INFORMATION	pg 2				
PROPERTY LOCA	ATION, ACCESS, DESCRIPTION AND OWNERSHIP	pg 4				
PREVIOUS WOF	LOCATION, ACCESS, DESCRIPTION AND OWNERSHIP WORK pi Mapping and Sampling N OF RESULTS ENTIAL OF THE SANDY LAKE GREENSTONE BELT DNS NDATIONS Pi E OF QUALIFICATIONS Pi Location map for Weebigee Project Goldeye Claim Block Regional Geology Geology Northwest Arm Area					
GEOLOGY		pg 6				
Geological Map	pping and Sampling	pg 8				
DISCUSSION OF	pg 12					
GOLD POTENTIA	pg 15					
CONCLUSIONS	pg 16					
RECOMMENDA	pg 17					
REFERENCES	pg 18					
CERTIFICATE OF	pg 21					
<u>APPENDICES</u>						
Appendix i – Fig	gures	after pg 21				
Figure 1	Location map for Weebigee Project					
Figure 2	Goldeye Claim Block					
Figure 3	Regional Geology					
Figure 4	Geology Northwest Arm Area					
Figure 5	Historic Sampling Northwest Arm Area					

Appendix ii – Assay Certificates

Appendix iii – Geochemical Data

Appendix iv- Sample Location Sketch Maps

Showing Maps	after Appendix iv
Map Area Key 1:10000	
Knoll Area (North half) Mapping and Channel Sampling Results	1:50
Knoll Area (South half) Mapping and Channel Sampling Results	1:50
Bernadette North Mapping and Channel Sampling Results	1:50
Bernadette South Mapping and Channel Sampling Results	1:50
RvG4 Mapping and Channel Sampling Results	1:50
Peninsula Island Mapping and Channel Sampling Results	1:50
Wavano Area(East half) Mapping and Channel Sampling Results	1:50
Wavano Area (West half) Mapping and Channel Sampling Results	1:50
Sandborn Area (North half) Mapping and Channel Sampling Results	1:50
Sandhorn Area(South half) Manning and Channel Sampling Results	1.50

SUMMARY

Goldeye Explorations Limited ("Goldeye") owns 100% of 225 contiguous claims north of Red Lake, Ontario near the First Nation community of Sandy Lake (See Fig. 1). The project area, known as *Weebigee*, covers nearly 6000 ha., including the majority of the known gold showings within the Sandy Lake greenstone belt. The Sandy Lake greenstone belt is located within the North Caribou Terrane of the northwestern Superior Province. Despite the fact that the highly prolific Red Lake gold camp and the Musselwhite gold mine are located within the same geological terrane, the Sandy Lake greenstone belt (and other greenstone belts of the northern parts of the North Caribou Terrane) has seen very little exploration.

The focus of Goldeye's initial exploration effort at Weebigee has been on an area referred to as the Northwest Arm. Here, hydrothermal events within a sequence of highly strained felsic pyroclastics, ultramafic sills and iron formation, have produced carbonate-rich shear zones, broad areas of biotitization, discordant zones of silicification /sodium depletion, and the deposition of gold within zones of quartz veining, quartz-tourmaline veining and silica-carbonate-biotite(sericite, chlorite)-sulphide alteration.

In July 2013, a channel sampling and detailed mapping program was initiated by Goldeye to evaluate known showings in the Northwest Arm area. Many of the showings were documented from prospecting programs carried out in the 1930's and 40's. Sporadic work by Goldeye from 1986 to 2003 had resulted in several new showings being located, based on grab and limited chip sampling.

The 2013 channel sampling produced significant high-grade gold values from the Knoll, Bernadette, RvG4 and Wavano showings. Most of the sampling was done during the summer months, with additional channel cuts completed as follow-up in November 2014 to take advantage of lower water levels and the ability to use lake ice as a platform to cut vertical shoreline exposures. The RvG4 showing was sampled at this time.

Diamond drilling of the Knoll, Bernadette and RvG4 showing areas was recommended, with a drilling program completed during the winter of 2014. This resulted in a number of significant gold intersections. A number of other gold showings remain to be drill tested, including Wavano, Sandborn and Tully. These showings can be explored to some degree by handstripping, powerstripping, detailed mapping and channel sampling and this work should be a high priority during the summer months.

A program of prospecting, stripping and detailed mapping of areas peripheral to known mineralization, followed by drill testing of new and existing showings is likely to locate new gold zones within the belt. As well, modern geochemical and geophysical techniques can now help "expose" large areas of highly prospective geology within the Sandy Lake greenstone belt that are obscured by clay cover.

INTRODUCTION AND GENERAL INFORMATION

Goldeye Explorations Limited owns 100% of 225 contiguous claims north of Red Lake, Ontario near the First Nation community of Sandy Lake (See Fig. 1). The project area has been named Weebigee, the Oji-Cree name for a whitefish common to this area and is known as Goldeneye or Goldeye. The project area covers nearly 6000 ha. including many of the known gold showings within the Sandy Lake Greenstone belt, as well as a number of base metal showings on the south portion of the claim block. This report documents the systematic channel sampling of high grade gold showings within an area known as the Northwest Arm at the northwest end of the claim block (claim block is shown in Figure 2 and the Northwest Arm Group of claims is shown in Figure 3).

The area was initially staked in 1986 and the majority of claims were transferred to Goldeye Exploration Limited in 1988. Little exploration was carried out, due to a lack of an exploration agreement between Goldeye and Sandy Lake First Nation. Despite several periods of

negotiations, it was not until 2013, that a renewed effort by both sides resulted in ratification of the current Exploration Agreement. In June of 2013, an initial phase of exploration began, included prospecting, channel sampling, geological mapping, line cutting, and surface geophysics in preparation for a winter drilling program. This was the first modern, comprehensive exploration program completed within the Sandy Lake Greenstone belt since the 1940's.

This report covers the channel sampling and geological mapping aspects of the 2013 exploration program. Assessment reports were filed in 2014 for the line cutting and surface geophysics. As well, in January 2014, a 2219 metre diamond drilling program was completed to follow-up on the 2013 channel sampling results. This work was also filed for assessment credit in 2014. The main objective of the drill program was to test for depth and strike extensions of three gold showings, Knoll, Bernadette, and RvG4, located on the north shore of the Northwest Arm of Sandy Lake (See Fig. 4). The main showing targeted was the Knoll Zone, which was tested with 15 drill holes. A discrete, coherent zone of gold mineralization was outlined over a strike length of 100 metres and to a depth of 100 metres. The zone remains open in all directions. Gold mineralization is associated with strong, multi-stage silicification and quartz veining along a north-northwest trending, sub vertical high strain zone. Bernadette and RvG4 zones appear to occur within the hanging wall and footwall of Knoll, consisting of gold-bearing quartz-tourmaline veining within broad zones of carbonate-sericite alteration.

Significant drill core intercepts were returned from all three showing areas, confirming the surface channel cut results from 2013. Diamond drilling results included 12.86 g/t over 6.85 metres(Bernadette), 12.17 g/t over 6.2 metres(Knoll), 8.59 g/t over 6.83 metres(Knoll), 23.15 g/t over 3.97 metres(RvG4) and 10.89 g/t over 3.86 metres(Bernadette).

PROPERTY LOCATION, ACCESS, CLIMATE AND OWNERSHIP

The Weebigee project is located in the Granite Bay, Kakapitam Lake, and Rathouse Bay Areas, of the Red Lake Mining Division, Ontario. The area is 225 kilometers north of Red Lake, northwestern Ontario, and is accessible by daily scheduled flights (1 hour) to Sandy Lake from Winnipeg (Perimeter Airlines) and Red Lake (Wasaya Airlines), as well as by winter road from Pikangikum, 90 kilometers north of Red Lake (See Fig 1). A second winter road extends to the community of Kee-way-win on the south shore of Sandy Lake from an all weather gravel road 80 km to the east at Windigo Lake (Northern Ontario Resource Trail 808 linking to hwy 599 at Pickle Lake). All weather roads through the community and west through the Northwest Arm area provide excellent year-round access to the work area. Accommodations, some supplies and services are available from the 3000 person community of Sandy Lake. Travel time by boat or vehicle from the community of Sandy Lake to the work areas on the Northwest Arm is between 10 and 15 minutes.

The claims at the time the 2013 geological mapping and channel sampling program was done were 100% owned by Goldeye subject to NSR royalties and totalled 363 units in 225 claims, with an overall areal extent of approximately 6000 ha (See Fig 2).

This area of northwestern Ontario is typified by extensive spruce bush mixed with some poplar, jack pine and other species. The latest glaciations have created a mosaic of numerous lakes, swamp and muskeg, with numerous creeks incising a generally flat to slightly rolling clay plain. Much of the property is covered by 5 to 10 metres of glaciolaucustrine clays, with very little evidence of glaciofluvial or till deposits in the immediate project area.

The climate is typical of northern boreal forest, with sub-zero temperatures between November and April, and hot, dry summers between June and September. The summer and early fall periods are generally the most favourable times to undertake field work. Diamond drilling can be done year round. Winter road access to Red Lake reduces costs associated with exploration between January and April.

PREVIOUS WORK

The following list briefly outlines the history of known mapping and exploration work in the Northwest Arm area of the Sandy Lake Greenstone belt.

M.E. Hurst 1928 – Ontario Department of Mines reconnaissance mapping of the Sandy Lake.

J. Satterly 1939 - Ontario Department of Mines comprehensive geological mapping Sandy Lake.

Prospectors Airways 1937 – Examination of Bernadette (Dubeau-Dussault) gold showing; limited diamond drilling.

Berens River Mines 1937-1945 – Examination of Bernadette and several other gold showings; limited diamond drilling at Bernadette, Canoxy and Fishtail Bay areas.

Noranda Mines 1962 – Examination of Northwest Arm area; limited geophysical surveys.

Michael Ogden/Wavano Explorations 1977-1983 - Examination of Tully-Burton and Wavano gold showings; limited diamond drilling at Tully-Burton and Wavano.

Goldeye/Freewest 1986–1988 - Examination of Northwest Arm area with reconnaissance sampling of shoreline showings, veins and alteration zones (See Fig 9); extensive geophysical surveying; three drill holes at Bernadette showing.

Thurston, 1986-1987 - Ontario Geological Survey reconnaissance examination of the Sandy Lake Greenstone belt; included stratigraphic analysis and structural interpretation of the belt in general.

Goldeye 2013 - Examination of Northwest Arm area showings; detailed mapping of six gold showings with 200 channel samples cut; limited line cutting and geophysics.

Goldeye 2014 - Diamond drilling program; 23 holes totaling 2219 metres.

GEOLOGY

The Sandy Lake greenstone belt is over 70 kilometers long and up to seven kilometers wide. The waters of Sandy Lake core the greenstone belt and cover much of it (See Fig 3). The greenstone belt is one of several in the North Caribou Terrane of the Archaean Superior Province. Gold occurrences are common within these greenstone belts. Prolific gold productions from the Red Lake gold camp on the south margin of the North Caribou Terrane, as well as from the Musselwhite gold mine further to the north, are notable examples. The Sandy Lake greenstone belt was mapped in 1937 by Satterly (1939) of the Ontario Department of Mines and selectively remapped by the Ontario Geological Survey in 1987 (Thurston et al. 1987).

Evaluation of the Sandy Lake greenstone belt by Thurston determined that several discrete sequences of rock units compose the Sandy Lake Greenstone belt. The Northwest Arm area is underlain by the North Shore Sequence, a Mesoarchean, 2945 Ma aged volcanic arc consisting of a southward facing succession of bi-modal mafic and felsic volcanics that have undergone greenschist to amphibolites facies metamorphism.

The main area of current exploration is in the Northwest Arm of Sandy Lake (See Fig 4). The North Shore Sequence in this area is dominated by a northwest striking, sub vertical dipping felsic package consisting of quartz phyric crystal tuff, ash flow to lapilli-bomb tuffs and rare sediment interbeds. Moderate to highly magnetic iron formation and an ultramafic sill occur at the lower contact and toward the upper contact, respectively, of the felsic package. A major synclinal fold, is obvious from the magnetic pattern in the area.

The southwest shore of the lake consists of gneissic and granitic rocks that have been separated from the North Shore Sequence by the Northwest Arm Shear Zone.. A strong penetrative planar foliation related to these major structures as well as the axial plane of the synclinal fold generally parallels both the lithological trend and the topography of the northwest trending Northwest Arm of Sandy Lake (See Fig 5). Penetrative cleavage within the felsic pyroclastics commonly strikes

between 110 and 130 degrees with subvertical dips. The larger shear zones and fault zones are noted to be concordant to this penetrative cleavage, with chlorite, chlorite-carbonate, or carbonate being the dominant minerals, with localized silica-biotite alteration.

Structures that are discordant to the main penetrative cleavage appear to be either splays or extensional features that have been affected by hydrothermal events resulting in carbonatization, biotitization, silicification, sericitization, quartz/quartz tourmaline veining, pyrite-pyrrhotite-chalcopyrite mineralization and gold mineralization. These discordant features tend to dip sub vertically and strike between 145 and 180 degrees. Local drag folds are evident within quartz tourmaline veins that appear to be caused by continued accommodation of strain along the extensional structures, with offsets of veins locally caused by the continued accommodation of strain along 110 to 130 striking penetrative cleavage.

Hydrothermal alteration within the sill like body of ultramafic volcanics has led to serpentinization, talc-chlorite alteration, carbonatization and hematization.

The overall structural fabric of the area, as well as the hydrothermal alteration and mineralization patterns are assumed to be the result of movement along major fault features such as the Northwest Arm Shear Zone and the Central Sandy Lake Shear Zone. With further work in the Sandy Lake Greenstone belt, important controls on gold mineralization as they relate to these major structures can be worked out. The Central Sandy Lake Shear Zone may represent a major crustal suture within the North Caribou Terrane that juxtaposes the North Shore sequence with the Sandborn Bay sequence to the south.

Glaciolacustrine clay sediments cover much of the bedrock surrounding Sandy Lake. Outcrop exposure is generally poor. Ridges of mafic volcanics, iron formation, granite and gabbroic rocks exist locally. Exposures of felsic volcanics are generally only located along the shores Sandy Lake where wave action has exposed flat-lying outcrops and reefs.

GEOLOGICAL MAPPING AND SAMPLING PROGRAM

Initial examination of showings began a few days after flying in to Sandy Lake on July 27, 2013.

Initial showing examination and subsequent detailed mapping and sample layouts were performed by David Jamieson P.Geo, Peterborough, Ontario. Assistance in program implementation was provided by Nick Bain, Lindsay, Ontario. The overall program was managed by David Jamieson P.Geo.

A number of Sandy Lake FN community members were hired to hand strip outcrops, run the channels saw and chip out samples. The program is indebted to the hard work of Curtis Linklater, David Fiddler, Brendan Sawanas, and Elvis Harper,.

Much of the sampling and mapping was done in August of 2013, with a second phase of channel sampling completed in October 2013. All assay results were received by December 31 2013.

The showings were handstripped of moss and overburden if necessary and washed with a Honda pump. Samples were laid out with spray paint on the outcrop by David Jamieson after initial mapping. Detailed mapping and supervision of the cutting and sampling were done concurrently to ensure accurate and consistent results. Two Stihl cut-off saws with diamond blades (12" and 14") were used to cut parallel grooves 4 to 5 cms apart and 5 to 7 cms deep. Each sample was crosscut at suitable contacts, generally between 0.3 and 0.7 metres in length, and the channels were generally laid out orthogonal to the dominant structure and veining fabric. Each sample was carefully chipped and individually placed in heavy plastic sample bags along with a premarked sample tag. A heavy aluminum tag was marked with the equivalent sample number and wedged into the rock cuts corresponding to the sample. The channel cuts and geological features of the outcrops were mapped in using 50 metre nylon tape measures and oriented using standard compass to form a GPS anchored temporary grid. Samples were then shipped out in sealed rice bags by Wasaya to Red Lake, where they were picked up by Activation

Labs courier for gold fire assay and selective multi-element assaying at Activation Labs in Thunder Bay.

Geological maps showing the channel cuts and basic geological features are included following appendix iv. The gold values are included as labels on each of the channels for the mapped areas. Appendix iv contains sketch maps showing the same channels cuts from the mapped areas as well as other areas and are labeled with the sample numbers.

All of the showings are hosted by quartz to feldspar phyric quartz-eye tuff. In many cases, the tuff contains variably strained blue quartz eyes, with feldspars replaced by sericite, biotite, and carbonate alteration. Silicification tends to be patchy, localized and pervasive. Crack and seal type quartz and quartz tourmaline veins range from fine irregular stringers to more discrete 10 to 30 cm wide veins. Rocks within the main axial planar strain zones (110 to 140 trend) show carbonate-sericite-biotite alteration, however generally contain minor silicification and quartz stringers. More discordant structures that trend 150 to 180 degrees exhibit stronger alteration in terms of silica, sericite and biotite, with generally larger and more quartz to quartz tourmaline veining. Mafic dykes tend to exploit the 150 to 180 degree structures and appear to late syn- to post mineralization.

At Knoll, gold mineralization is associated with strong, multi-stage silicification and quartz veining along a north-northwest trending, sub vertical zone. An earlier alteration event appears as a pervasive carbonate-sericite-silica-biotite mineral assemblage between 20 and 30 metres thick. Subsequent quartz veining, quartz-tourmaline veining and silica flooding overprint the earlier alteration and is the main gold mineralizing event. A mafic to ultramafic biotite-rich dyke, several metres thick, intrudes the high strain zone and although marginally mineralized, having intruded during extension of the structural zone, is a post mineralization intrusive. Non-mineralized extensional calcitic fractures within the dyke indicate that dilation within the zone continued post dyke.

The other gold showings mapped during summer 2013 program are known as Bernadette, Wavano, Sandborn and Peninsula Island. RvG4 area was not visited until the November 2013 follow-up visit. See Figure 4 for locations of the showings locations within the Northwest Arm area. The Bernadette showing shows evidence of an earlier alteration event similar to the Knoll, however alteration is not as pervasive, and may be to some degree more of a coalescing of alteration haloes related to the quartz tourmaline veining. Coarse visible gold within the quartz-tourmaline veins was has been noted by past workers. At RvG4, Two patches of irregular quartz veining and silicification occur within a carbonate-rich shear zone which trends approximately 140 degrees and dips subvertically.

Mapping and sampling of the Peninsula Island showing followed up on a quartz vein along the shore line that had returned anomalous gold values from sampling done in the 1980's.

Handstripping traced the vein inland, where it is highly folded and had been intruded by a mafic dyke. Channel cuts returned weakly anomalous gold values.

The Wavano showing shows various degrees of alteration and interesting structure. Much of the alteration returned anomalous gold values, however significant gold values were only returned from sampling done proximal to a zone of quartz-tourmaline veining and sheared mafic dyking.

The Sandborn showing was similar to Wavano, but small, with a lower tenor of gold mineralization. Further stripping is possible at Sandborn and a large excavator could easily access the area. Additional stripping and sampling could upgrade this showing, as a relatively wide but highly anomalous alteration zone with little quartz tourmaline veining was located at the north west (inland) end of the hand stripped area.

Brief descriptions of rock types encountered during the geological mapping program are presented below:

FELSIC VOLCANICS

Felsic volcanics were by far the most common rock type encountered by the mapping and sampling program. These were massive to strongly foliated, fine-grained, quartz phyric to locally

quartz feldspar phyric. Satterly had described these rocks as dacite porphyries. The quartz phyric units in most cases showed some degree of biotite alteration and strain. Quartz phenocrysts ranged from pale grey to pale blue to sky blue. The blue colour is likely a combined strain/hydrothermal effect. Strain was indicated by slight stretching of the quartz phenocrysts to form eyes, and the presence of biotite-rich foliation lamellae. Thus the field name for the host of many of the gold showings in the Northwest Arm was Blue Quartz Eye Tuff (BQET). Felsic units on fresh surface would vary between dark grey to brown black, depending on the amount of fine-grained biotite in the matrix. Degree of penetrative strain was not always obvious due to the fine-grained nature of the biotite, however a distinct foliation fabric could be observed under magnification. Pyrite, pyrrhotite, and chalcopyrite are often present as very fine to fine grained disseminations and as coarser patchy aggregates. The felsic volcanics have been termed ignimbrites by Thurston, and the pyroclastic nature of the unit can be observed in outcrop scale as interbedded finer-grained (siltstone-wackes) and coarser grained lapilli and bomb-rich horizons.

VOLCANICLASTIC SEDIMENTS

Minor wacke and argillaceous sediments occur within the felsic volcanic package. These units are very fine-grained to fine-grained, massive to poorly bedded and show sharp contacts with felsic pyroclastic units. Peperite textures were observed in one instance, with small blocks of felsic pyroclastics situated within a dominantly sedimentary matrix.

MAFIC DYKES

This intrusive unit is dark grey to black, massive, fine to coarse grained, Chlorite or actinolite or biotite-rich, generally equigranular with local sections being porphyritic with elongated black phenocrysts of amphibole (hornblende?) up to 15%. The dykes are generally weakly to moderately calcitic, except at the margins, slightly soft, non-magnetic to very weakly magnetic with primary constituents consisting of feldspar, chlorite, actinolite, biotite and hornblende.

Extensional, evenly spaced fine veinlets of pale green chlorite-carbonate generally parallel dyke contacts at the Knoll zone. The dyke and mineralized zone at Knoll appear to be concordant with

each other. Other similar dykes have been mapped in the Northwest Arm area and generally appear to trend north northwest or east-west. These dykes have been noted at Wavano and Sandborn showings, adjacent to silica-carbonate-sericite alteration and quartz-tourmaline veins. The dykes and hydrothermal fluids have taken advantage of zones of extension (low pressure) within the strain regime that developed in the Northwest Arm area.

DISCUSSION OF RESULTS

The summer 2013 mapping/sampling program was designed to begin systematically testing several of the gold showings known to occur in the Northwest Arm area of the Sandy Lake greenstone belt. The program identified six areas requiring further evaluation: Bernadette, Knoll, RvG4, Sandborn, Tully and Wavano. Three of the areas, Bernadette, Knoll, and RvG4 returned a number of gold values in channels samples of greater than 10 g/t and locally greater than 40 g/t. Due to this strong tenor of gold mineralization and the associated strong alteration zones, these three showings were selected to be drilled during the winter 2014. All three showings are within 500 metres of each other, with RvG4 appearing to be on strike with Knoll and Bernadette, indicating the potential for one large system.

KNOLL ZONE

The Knoll zone shows a relatively wide halo of anomalous gold values associated with a complex discordant dilational zone trending north northwest. The showing is unique in the degree of pervasive intense silicification, which has created a large rounded a resistive knob or "knoll" along the shoreline. The host rocks are highly altered quartz crystal tuffs intruded by a mafic dyke. The dyke is several metres thick and intrudes along the hanging wall of the altered structure (shear zone). This shear zone is highly discordant to the regional foliation. The regional foliation was observed in various shoreline exposures, generally expressed as relatively consistent 110 to 130

striking schistosity within wide zones of carbonate-chlorite alteration. The Knoll structure consists of a 10's of metres thick silica, carbonate and sericite alteration, which appears to overprint a broader biotite dominant alteration. The core of the zone is intensely silicified and quartz veined. There may also be a second, relatively later biotite alteration event related to quartz, quartz tourmaline veining and gold mineralization. Higher grade gold values are associated with quartz tourmaline veining and local silica flooding as smokey grey, mottled to porcelain lustre patches or zones. Sulphides can be disseminated, streaky or blebby. Pyrite, pyrrhotite and chalcopyrite are the dominant sulphides, visually estimated up to 5% but generally less than 2% of the rock volume, with the sulphides often intergrowing or overprinting each other. Quartz veining is multi-phase, with an earlier set of grey quartz veins having diffuse contacts and that are broken, folded and dismembered (boudinage). Quartz tourmaline veining overprints the dismembered grey quartz veins. Tourmaline occurs as trace to 5 % very fine grained needles within quartz veins, or as an amorphous mixture with biotite along crack-and-seal fractures. Veins are generally less than 30 cm in width, although composite/stockwork zones of quartz veining can be several metres wide. Grey, to smoky grey, mottled quartz flooding appears to be contemporaneous with quartz tourmaline veining. Minor very fine to fine- grained arsenopyrite is relatively rare, but where observed in core, occurs as needles or granular crystals. Arsenopyrite can occasionally be associated with very high grade gold values, although the correlation of arsenic with gold has not been determined.

A mafic dyke occurs within the main gold mineralized section of the Knoll zone, concordant to the zone, and for the most part is a post mineralization dyke. Anomalous gold values do commonly occur along dyke margins and less commonly within the dyke itself. The dyke appears to have been subjected to some strain and chlorite-biotite alteration, however does not appear to be silicified, carbonatized (other than late extensional calcite veinlets) or sericitized. Pale green epidote or green mica is observed as part of the chilled marginal dyke contact locally. The key interpretive point is that the dyke represents a phase in the extension of the Knoll structure, at or toward the end of the main gold mineralization event. Active extension over time permitted high

hydrothermal fluid flux over several phases of active dilation and deformation, as well as created preferable areas for dyke emplacement.

A limited multielement assaying program using a four acid digestion of samples taken from surface exploration at Knoll (channel samples) has revealed alteration patterns that generally fit field mapping observations. Moderate to strong sodic depletion is common and appears to be associated with the addition of iron and potassium (biotite). Intense silicification is a more restricted alteration event, but causes an apparent depletion in most major and many minor elements, including relatively immobile elements. Higher gold values tend to occur within the intense silica alteration zones. In summary, there appears to be real metasomatic additions of silica, iron and potassium, along with depletion of sodium. The limited data also seem to show multi-stage additions and depletions of iron, potassium, silica and sodium, depending on the visual alteration stage assigned to each sample. Early alteration is typified by a pervasive weak to moderate silica-biotite-carbonate-sericite, with local increases in silica-biotite alteration. The intense silicification event related to high grade gold mineralization is associated with apparent decreases in all major oxides and trace elements except for gold, silver, antimony, arsenic, copper, and nickel.

BERNADETTE AND RvG4

Gold values at Bernadette and RvG4 are associated with discrete quartz tourmaline veining, hosted by variably altered quartz crystal tuff. Bleached alteration haloes around the veins host weakly to highly anomalous gold values. Veins are relatively narrow (0.1 to 0.5 metres), however multiple vein sets are common. Sulphides at Bernadette are generally less than 5% and are dominantly pyrite and pyrrhotite with local chalcopyrite. Pyrite is the dominant sulphide mineral at RvG4, with only traces of pyrrhotite.

WAVANO AND SANBORN

Although the tenor of gold mineralization at both Sandborn and Wavano are lower, both showings share some of the key features of Knoll, Bernadette, and RvG4. The similar structural orientation,

presence of mafic dykes along the zones, quartz-tourmaline, patch silica alteration are positive features that indicate additional work should be done to test these showings for areas of improved gold grades.

GOLD POTENTIAL OF THE SANDY LAKE GREENSTONE BELT: REGIONAL PERSPECTIVE

The Sandy Lake Greenstone belt is located within the North Caribou Terrane of the Superior Province. The North Caribou Terrane hosts the highly prolific Red Lake gold camp, as well as the Musselwhite gold mine (2013 production: 1.39M tonnes grading 5.92 g/tonne totaling 256,300 oz gold; Current Proven/Probable Reserves: 1.85M ounces; Goldcorp website).

Lode gold deposits throughout the world show very distinct clustering along major lineaments and deformation zones which tend to be crustal scale, terrane bounding features. Kerrich and Feng (1992) summarize: "The giant quartz vein systems with lateral extents of tens of kilometers and up to 3 kilometers in depth are hosted in brittle-ductile shear zones and are restricted to terrane boundaries. These are regional structures that cut through the lithosphere, but are usually recognized at strike-slip fault, duplexes and second and third order splays at mid-crustal levels."

Fyon et al. (1992) and Thurston et al. (1992) have interpreted the Central Sandy Lake Shear Zone as a terrane boundary, aged between 2950 and 2970 Ma., developed as part of the interaction between the north and southern units of the North Caribou Terrane. Portions of the Bear Lake Fault and the North Caribou – Totogan Lake Shear Zone are interpreted as late faults (post cratonization), however the locations of these structures may have been controlled by earlier tectonic boundaries.

Fyon et al. (1992) have also attributed most of the gold deposits in the Superior Province of Ontario to structural and hydrothermal events related to the Kenoran Orogeny (2.7 to 2.66 Ma) within Neoarchean volcanic assemblages. This of course included the prolific gold deposits along the Cadillac-Larder and Porcupine-Destor deformation zones as well as other major "breaks"

within the Superior Province, often demarcated regionally by younger (2.69-2.59 Ma)

Temiskaming style sediments occupying deformed pull apart sub-basins. However, age relations worked out for a number of deposits in the North Caribou Terrane, notably in the Pickle Lake camp, Uchi Subprovince and North Caribou greenstone belt, suggest an older gold mineralizing event, pre- or syn- 2741 Ma (Fyon et al. 1992).

Of interest to the current project is the age of the Musselwhite gold deposit. The emplacement of the North Caribou batholith (2860 Ma) is likely contemporaneous with an early orogenic event that produced axial planar cleavage and folding in the Musselwhite area which at least partly controls gold mineralization in the area. Stott and Biczok (2010), after a review of structural mapping in the North Caribou greenstone belt, indicate that the gold mineralization at Musselwhite is likely temporally and structurally related to the 2860 Ma emplacement of the North Caribou batholith. Thus, older, pre-Kenoran gold deposits are likely key features of the northwestern part of the Superior Province, forming during the construction or accretion of volcanic arcs (Fyon et al. 1992). The impingement of granitic intrusions which surround the structural deformed rocks (volcanic arc/collapsed caldera) of the Northwest Arm of Sandy Lake may also be related to the same pre-Kenoran orogeny. This, along with the implications that the Sandy Lake Shear Zone is an extensive deep-seated structure, pre-dating the Kenoran orogeny, indicates that a favourable tectonic environment for developing a camp scale gold deposit system exists at Sandy Lake.

CONCLUSIONS

The channel sampling results from the summer 2013 program were encouraging. Knoll,

Bernadette and RvG4 all returned gold values exceeding 40 g/t.from channels samples within

zones of intense silicification or quartz tourmaline veining. The local controls on gold mineralization within the Northwest Arm area appear to be related to dilational north northwest trending structures within relatively brittle felsic volcanics. Knoll, Bernadette, RvG4, Wavano and Sandborn are all north northwest to northwest trending structures, although Knoll appears to be more northerly (between 345 and 360). Mafic dykes, either in tact or dismembered are also associated with all these zones/showings, reinforcing the idea of significant periodic dilation and strain occurring along these features. The RvG4 zone mineralization may have more of an axial planar shear zone component than Knoll and Bernadette, however more detailed mapping/drilling is required to determine this.

Quartz tourmaline veining hosts the bulk of gold values at all of the showings listed above, however at Knoll, a more pervasive, high grade gold associated, silicification event is evident as well. Knoll has a much larger and stronger alteration footprint, both in terms of widespread biotitization and more focused carbonate-silica-sericite alteration than any of the showings examined thus far at Sandy Lake.

RECOMMENDATIONS

A diamond drilling program was recommended and completed at the Knoll, Bernadette and RvG4 showings, with favourable results. Continued drilling is needed to determine the potential for each of these zones.

A number of other showings remain to be drill tested, including Wavano, Sandborn and Tully.

These showings can be explored to some degree by handstripping, powerstripping, detailed mapping and channel sampling and this work should be a high priority.

Structural mapping, lithogeochemical assaying and alteration studies in the Northwest Arm area should be ongoing in order to help locate additional mineralized structures. Oriented drill core is also recommended to aid in working out the structural controls on mineralization. Multielement

geochemical assaying of bedrock and drill core is an important tool to help characterize individual vein systems and the potential for locating higher grade gold values within these systems. Gold is often is own best pathfinder, however enrichments of copper, silver, antimony and arsenic, iron and potassium along with strong sodium depletion show potential as pathfinders and can help focus attention to larger and stronger alteration systems.

Detailed orientation studies should be initiated in various geophysical and geochemical methodologies over the known mineralized zones, especially where clay cover thickens. It is suggested that detailed magnetics, soil gas hydrocarbon surveys, partial leach soil geochemistry and systematic sampling of black spruce bark may provide tools to locate additional gold mineralized structures beneath clay cover.

In summary, the geological mapping and channel sampling provided enough encouragement to enable Goldeye to finance a modest drill program. The success of the drill program validated the initial mapping/sampling results. Thin to moderately thick (3 to 10 metres) clay cover over much of the belt means that many areas of highly prospective geology have not received any exploration attention. Goldeye can use the work to done to date to begin developing a toolbox of modern geochemical and geophysical techniques that will help "prospect" these large areas for gold and other metal enrichments. These unexplored areas offer real potential to outline a number of significant gold zones along the Northwest Arm Shear Zone.

REFERENCES

Fischer, Peter, 1997: Goldeye Sandy Lake Project, 1988 Drilling. Stereomicroscope re-logging of core, (Goldeye files).

Fyon, J.A., et al., 1992, Metallogeny of Metallic Mineral Deposits in the Superior Province of Ontario; *in* Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 2 p. 1091 – 1178.

Kerrich, R., and Feng, R., 1992, Archaean Geodynamics and the Abitibi-Pontiac Collision – Implications for Advection of Fluids at Transpressive Collisional Boundaries and the Origin of Giant Quartz Veins Systems: Earth-Science Reviews,v.32 p.33-60.

Sandborn-Barrie, M., Skulski, T., and Parker, J., 2004. Geology, Red Lake Greenstone Belt, western Superior Province, Ontario. Geological Survey of Canada, Open File 4594.

Satterly, J., 1939, Geology of the Sandy Lake Area Volume 47, Part II, Ontario Department of Mines Annual Report, p. 1-43 including map #47F.

Stott, G.M. and Biczok, J., 201 0, Project Unit 03-011, North Caribou Greenstone Belt: Gold and Its Possible Relation to the North Caribou Pluton Emplacement – A Belt-wide Contact-strain Aureole? Ontario Geological Survey, Open File Report 6260.22.

Thurston, P.C., et al., 1987, A Reconnaissance Reevaluation of a Number of Northwestern Greenstone Belts; Evidence for an Early Archean Sialic Crust, Ontario Geological Survey, Misc. Paper 137, Summary of Field Work and Other Activites p. 4-25.

Thurston, P.C., et al.,1992, Northwestern Superior Province: Review and Terrane Analysis; *in* Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1 p. 81 – 144.

Von Guttenberg, R.,2003, Technical Report Sandy Lake Gold-Base Metal Property Northwestern Ontario for Goldeye Explorations Limited.

Webster, B., and Guttenberg, R., 1988, Report on Field Work, Summer 1988, Sandy Lake Property, Red Lake Mining District, Northwestern Ontario for Freewest Resources Inc., Montreal, Quebec, (OGS Assessment Files)

Webster, B., and Guttenberg, R., 1988b, Report on Ground Geophysical Surveys and Diamond Drilling Conducted at Sandy Lake, Red Lake Mining District, Northwestern Ontario for Freewest Resources Inc., Montreal, Quebec, (OGS Assessment Files)

Winter, L.D.S., 1990, Report on the Sandy Lake Property, Patricia Portion, District of Kenora, Northwestern Ontario, NTS 53F/3 and C/14 for: Sandy Lake Explorations Ltd, (Goldeye Files)

CERTIFICATE OF QUALIFICATIONS

David R. Jamieson is a professional geoscientist (APGO practicing member 1843) in Ontario, and has provided geological consulting services to the mineral exploration industry for over 30 years. He has specialized in diamond drill program management, alluvial and glacial sediment sampling design/implementation, geological mapping, geological compilation, and design/supervision of multi-phase mineral exploration programs for gold, base metals, and diamonds.

Upon graduation with a B.Sc. from the University of Waterloo, in Ontario, Canada in 1984, David worked on a contract basis with UMEX (base metals), Silver Lake Resources (gold, silver), Stewart Lake Resources (graphite), Geological Survey of Canada (zinc), Hardrock Extension/Roxmark Ltd. (gold) and spent several years working on gold exploration programs in the Northwest Territories, Canada for Aber Resources, Sikaman Gold, Borealis Exploration, and Stratabound Resources.

From 1991 to 1999, David provided geological consulting services to the Agnico Group of companies through Hubacheck Consulting, mainly in the Abitibi Greenstone Belt in Ontario and Quebec, Canada. Work here ranged from project generation (diamonds) to underground development of the Victoria Creek Gold Project and underground drilling at the Goldex Project in Kirkland Lake, Ontario and Val D'Or Quebec respectively.

From 1999 to the present, David has continued to consult as a surface and underground exploration geologist for D.R. Jamieson Geological Consulting Ltd. Clients have included the Hubacheck Group, Intrepid Mines, Platinex Inc., Patricia Mining, Goldeye Explorations Ltd., as well as a number of other junior mining companies.

David has been a member of the Prospectors and Developers Association for 30 years and has been a member of the CIMM, the Ontario Prospectors Association and the Southern Ontario Prospectors Association.

David Jamieson currently resides at 555 Maniece Ave. Peterborough, Ontario, Canada K9L 0C1.

I certify that the above statements of qualifications are accurate and true.

Signed	
"David Jamieson"	
David Jamieson P Geo	

This page intentionally left blank

FIGURE 1 - LOCATION MAP

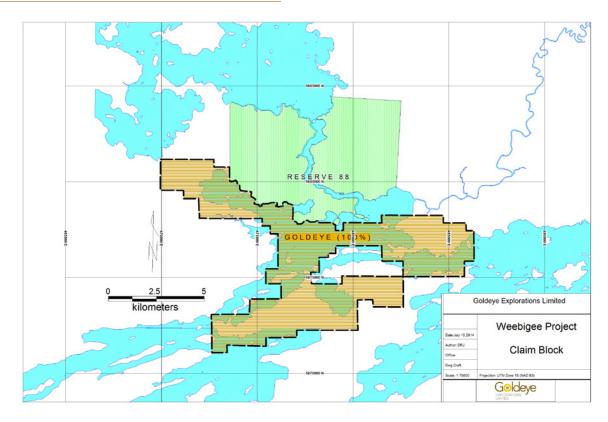


FIGURE 2 - GOLDEYE CLAIM BLOCK

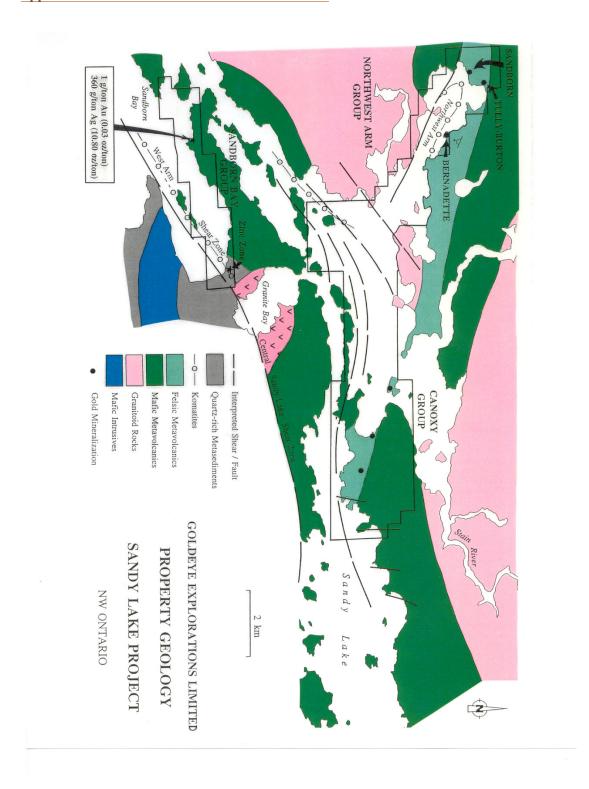


FIGURE 3 - GEOLOGY GOLDEYE CLAIM BLOCK

FIGURE 4 - GEOLOGY NORTHWEST ARM AREA

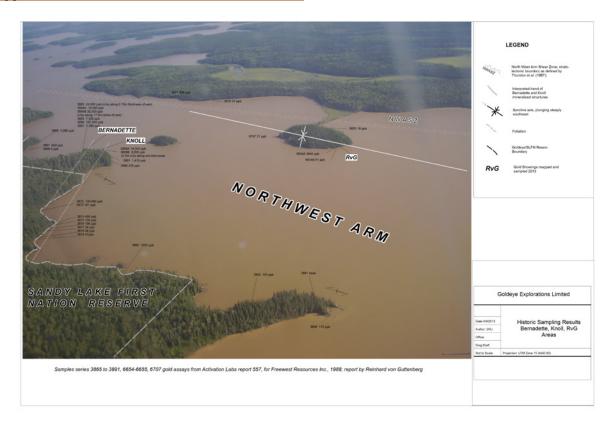


FIGURE 5 - HISTORICAL SAMPLING OF EAST PORTION NORTHWEST ARM; NOTE THAT RVG4 IS LOCATED ON THE WEST SIDE OF THE PHOTO WHERE SAMPLES 3872 AND 3873 ARE LOCATED

Appendix ii – Assay Certificates

Quality Analysis ...

Innovative Technologies

Date Submitted: 15-Nov-13

Invoice No.: A13-13790

Invoice Date: 28-Nov-13

Your Reference: Weebigee

Goldeye Explorations Limited

Richmond Hill ON L4B 1M6 Unit 22, 60 Wilmont St.

ATTN: David Jamieson

CERTIFICATE OF ANALYSIS

35 Rock samples were submitted for analysis

The following analytical packages were requested: Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay

Tbay)

REPORT

A13-13790

Code 1A4-1000 (100mesh)-Tbay Au-Fire Assay-Metallic Screen-

Code 1EX-Tbay Total Digestion ICP/MS

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3 Any values for Au are for informational purposes and should be checked by fire assay code 1A2

CERTIFIED BY:

Quality Control Emmanuel Eseme, Ph.D.

ACTIVATION LABORATORIES LTD.

							Α	ctivati	on Lab	Repo	ort:	A13-13790												
Analyte Symbol	Au	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight	Ag	Al	As	Au	Ва	Ве	Bi	Ca	Cd	Ce	Co	Cu	Fe	Hf	La	Li
Unit Symbol	ppb		g/mt	g/mt	g/mt	g	g	g	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Detection Limit	5	0.07	0.07	0.07	0.07				0.1	0.01	1	100	1	1	0.1	0.01	0.1	1	0.2	0.1	0.01	0.1	0.1	0.1
Analysis Method	FA-AA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
109901	> 3000								1.1	4.73	8	1500	261	< 1	0.2	1.41	< 0.1	40	6.8	33.5	1.67	1.7	19.3	10.2
109902	> 3000								1.9	2.58	14	> 2000	164	< 1	0.2	1.41	< 0.1	27	6.6	83.7	1.79	0.9	13.1	6.6
109903	874								0.5	5.94	20	1200	204	< 1	0.4	1.48	< 0.1	69	11.8	16.8	3.07	2.4	33.0	15.4
109904	2800								0.2	5.75	14	700	285	< 1	0.4	2.45	< 0.1	59	12.7	5.1	2.64	2.2	29.0	12.8
109905	> 3000								5.7	3.85	11	> 2000	208	< 1	0.5	1.35	0.1	37	8.9	19.9	2.03	1.4	16.8	11.0
109906	> 3000								0.8	7.10	19	1500	164	< 1	0.9	3.17	< 0.1	120	20.9	43.9	4.96	3.7	58.5	19.2
109907	234								0.3	7.30	10	200	341	< 1	0.7	3.77	< 0.1	136	15.2	61.5	4.12	3.0	59.7	13.5
109908	293								0.6	7.27	9	400	227	< 1	0.7	4.31	< 0.1	141	16.8	44.8	4.15	3.0	60.7	14.8
109909	262								0.1	6.88	5	< 100	315	< 1	0.5	2.27	< 0.1	114	7.7	8.3	2.58	2.6	49.9	15.7
109910	368								0.1	6.06	5	< 100	341	< 1	0.4	1.63	< 0.1	92	6.7	9.5	1.87	2.5	38.6	14.3
109911	15								0.1	7.55	2	< 100	776	< 1	< 0.1	0.69	< 0.1	73	10.0	16.3	1.75	2.5	35.6	12.8
109912	327								0.2	4.13	3	< 100	412	< 1	0.1	0.46	< 0.1	76	2.9	11.8	1.31	0.4	48.1	7.9
109913	20								< 0.1	4.94	2	< 100	288	< 1	< 0.1	1.23	< 0.1	89	3.4	6.2	1.70	< 0.1	58.0	12.0
109914	441								0.1	4.32	4	< 100	308	< 1	0.5	3.25	< 0.1	57	16.5	59.4	2.64	1.3	31.0	14.4
109915		151	36.5	37.2	38.9	15.59	850.80	866.39	27.4	1.23	591	> 2000	106	< 1	0.2	0.28	< 0.1	16	11.6	294	2.67	0.4	7.8	5.0
109916	2900								40.5	1.01	188	700	87	< 1	0.6	2.20	0.2	17	21.7	741	3.31	0.3	7.7	3.9
109917	> 3000								32.7	0.68	1040	> 2000	54	< 1	0.4	0.17	< 0.1	7	5.5	210	1.11	0.2	3.6	3.2
109918	> 3000								18.8	1.04	64	300	61	< 1	0.2	0.38	< 0.1	9	2.4	47.8	0.87	0.3	4.7	5.3
109919	93								1.0	8.64	9	< 100	702	< 1	0.3	2.27	< 0.1	85	7.1	115	2.11	2.7	40.6	13.0
109920	154								1.5	5.12	9	< 100	582	< 1	0.3	1.90	< 0.1	47	10.9	204	2.28	2.5	17.7	12.1
109921	78								3.6	8.67	6	< 100	542	< 1	1.4	3.50	0.2	80	14.1	404	2.80	2.3	38.3	13.1
109922	157								5.6	8.01	6	< 100	457	1	3.2	3.48	0.2	76	17.4	612	2.99	2.2	36.3	13.2
109923	1180								1.1	5.86	33	200	226	< 1	0.4	2.33	< 0.1	59	24.6	54.0	2.38	1.7	29.0	7.9
109924	> 3000								1.5	7.28	9	> 2000	375	< 1	< 0.1	2.87	< 0.1	67	8.8	50.3	1.97	2.1	32.0	8.4
109925	19								0.2	8.49	6	< 100	381	< 1	< 0.1	2.70	< 0.1	71	6.3	20.2	2.05	2.3	34.6	11.1
109926	42								0.7	8.14	8	< 100	337	< 1	< 0.1	3.16	< 0.1	61	9.9	69.6	2.26	2.2	28.7	8.9
109927	110								0.5	7.78	16	< 100	302	< 1	0.2	3.19	< 0.1	77	15.5	44.3	2.28	2.2	36.6	8.9
109928	31								0.4	8.39	10	< 100	404	< 1	< 0.1	2.83	< 0.1	76	8.4	52.3	1.84	2.3	35.9	8.3
109929	> 3000								3.3	5.78	101	500	217	< 1	2.4	1.85	0.1	68	55.7	167	3.51	1.8	33.0	5.7
109930	> 3000								2.6	4.30	57	400	204	< 1	0.8	1.13	< 0.1	54	17.3	40.4	1.65	1.3	26.0	5.3
109931	154								0.6	7.26	28	< 100	312	< 1	0.4	1.60	< 0.1	80	23.0	59.9	2.11	2.4	38.3	10.0
109932	> 3000								2.3	2.80	14	> 2000	65	< 1	0.6	1.25	0.1	22	16.1	21.3	2.67	1.0	10.8	14.3
109933	29								0.3	8.06	2	100	179	< 1	1.5	0.37	< 0.1	42	18.2	15.5	2.76	2.5	17.5	18.1
109934	240								0.3	7.16	8	< 100	309	< 1	0.1	3.32	< 0.1	60	5.4	12.1	2.30	2.2	28.2	12.3
109935	> 3000								0.9	7.49	28	1900	365	< 1	0.3	1.93	< 0.1	99	19.7	41.3	1.95	2.1	49.8	8.7

							Activation Laboratories Ltd.							rt:	A13-13	3790								
Analyte Symbol	Na	Nb	Ni	Р	Pb	Rb	S	Mg	Mn	Мо	Sb	Sc	Sn	Sr	Та	Th	Ti	TI	U	V	W	Υ	Zn	Zr
Unit Symbol	%	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm						
Detection Limit	0.001	0.1	0.1	0.001	0.1	0.1	0.01	0.01	1	0.1	0.1	1	0.1	1	0.1	0.1	0.001	0.05	0.1	4	0.1	0.1	1	0.1
Analysis Method	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS						
109901	0.484	2.0	12.5	0.036	5.2	37.3	0.67	0.59	253	0.9	0.5	3	0.6	58	0.7	3.9	0.115	0.19	1.1	28	4.6	4.8	11	54.1
109902	0.223	1.0	9.8	0.022	4.1	26.3	0.93	0.75	412	0.5	0.6	2	0.4	35	0.7	2.2	0.061	0.16	0.7	15	1.9	3.6	14	29.1
109903	0.393	2.7	18.9	0.073	7.6	69.1	1.42	1.14	429	2.8	0.6	6	0.6	77	0.8	6.5	0.202	0.39	1.8	50	6.1	7.6	22	81.5
109904	0.584	2.6	21.9	0.062	5.6	54.4	1.37	1.05	432	0.9	0.6	4	0.7	92	0.7	5.7	0.172	0.32	1.8	42	8.9	7.3	21	73.9
109905	0.350	1.7	14.1	0.055	47.4	36.2	1.00	0.78	362	0.6	0.5	3	0.4	42	0.8	3.8	0.112	0.20	1.2	31	4.0	4.4	38	49.2
109906	0.487	4.2	29.2	0.126	20.2	65.5	3.05	1.27	569	1.4	0.8	9	0.9	108	0.9	10.4	0.360	0.45	2.6	92	16.9	12.7	36	124
109907	0.559	2.8	22.2	0.183	7.9	77.6	1.57	1.25	746	0.6	0.6	10	0.7	115	0.7	9.6	0.308	0.57	2.5	120	19.3	11.9	36	99.4
109908	0.568	2.9	19.7	0.193	6.9	73.8	1.59	1.46	879	0.6	0.7	10	0.7	121	1.4	9.6	0.320	0.61	2.6	129	22.0	12.4	40	104
109909	0.378	2.5	15.4	0.156	6.5	65.7	1.06	0.95	485	0.5	0.5	9	0.6	75	0.5	8.9	0.266	0.40	2.1	100	15.3	10.4	24	91.0
109910	0.348	2.7	12.2	0.137	5.2	54.5	0.78	0.61	300	0.9	0.5	6	0.7	61	1.0	7.7	0.241	0.30	2.0	73	21.6	9.8	14	91.0
109911	0.169	3.2	27.0	0.078	2.3	85.7	0.13	0.55	196	0.3	1.2	5	0.9	24	0.7	6.9	0.238	0.33	1.6	54	8.3	6.2	12	94.1
109912	0.138	1.0	20.1	0.040	2.3	46.4	0.07	0.45	150	4.7	1.4	2	0.5	20	0.4	3.4	0.118	0.18	1.0	32	3.3	3.3	12	24.4
109913	0.424	0.5	31.1	0.047	2.1	55.6	< 0.01	0.78	276	2.4	0.8	3	0.2	50	0.4	3.8	0.136	0.26	1.3	31	1.0	4.6	22	4.1
109914	0.255	1.7	54.4	0.041	2.4	52.9	0.33	1.25	486	2.4	2.2	4	0.6	54	1.0	3.6	0.123	0.25	0.9	34	10.1	6.5	27	51.0
109915	0.047	0.4	33.8	0.010	2.7	10.9	0.99	0.18	120	1.1	5.3	< 1	0.4	26	0.6	1.1	0.032	0.06	0.4	12	1.4	1.5	8	15.8
109916	0.044	0.3	64.9	0.016	3.6	8.2	1.37	0.79	634	0.7	7.5	2	0.4	31	0.4	0.9	0.027	< 0.05	0.4	13	2.4	9.2	22	11.3
109917	0.018	< 0.1	18.2	0.003	4.4	6.6	0.44	0.13	64	1.2	6.2	< 1	0.2	9	0.5	0.5	0.016	< 0.05	0.2	6	0.2	0.6	8	7.9
109918	0.047	0.1	13.7	0.006	3.9	8.7	0.06	0.16	102	1.3	4.6	< 1	0.3	23	0.7	8.0	0.025	< 0.05	0.2	8	0.2	0.9	8	12.1
109919	0.257	3.6	12.3	0.071	5.5	66.0	0.29	0.89	266	4.1	1.6	5	0.8	89	0.7	8.2	0.240	0.28	2.2	50	4.4	7.5	13	94.2
109920	0.253	3.5	14.6	0.060	4.5	35.1	0.43	0.75	280	8.0	1.8	4	0.8	70	0.8	4.1	0.230	0.28	1.6	49	3.9	4.8	14	92.4
109921	0.612	3.5	17.0	0.079	6.9	82.6	0.52	1.35	595	8.6	1.2	6	0.7	136	0.7	7.2	0.233	0.51	1.8	56	1.7	8.3	35	85.0
109922	0.619	3.4	20.0	0.073	7.6	84.7	0.57	1.33	609	7.5	1.3	5	0.8	133	1.4	6.7	0.225	0.50	1.9	53	2.7	8.2	38	82.6
109923	0.516	2.3	30.0	0.058	11.5	56.6	0.74	0.92	522	0.7	1.0	4	0.5	58	0.7	4.9	0.160	0.38	1.5	40	7.9	5.8	31	64.3
109924	0.515	1.2	16.4	0.066	14.7	60.4	0.21	1.02	641	0.4	0.8	5	0.6	67	0.7	6.2	0.193	0.45	1.5	49	122	6.2	36	79.7
109925	0.488	2.9	25.3	0.075	11.0	60.9	0.14	1.10	645	0.3	0.6	6	0.7	61	0.7	7.2	0.225	0.48	1.6	53	6.6	6.3	37	89.9
109926	0.539	2.7	14.1	0.074	14.8	65.8	0.24	1.11	702	0.4	0.6	6	0.7	66	0.8	6.6	0.216	0.49	1.6	51	5.2	7.7	38	85.8
109927	0.632	3.1	25.4	0.073	13.1	69.8	0.40	1.15	675	0.2	0.8	5	0.6	71	1.3	6.4	0.218	0.48	1.6	51	8.0	7.5	39	84.2
109928	0.583	2.3	14.9	0.074	13.9	71.2	0.21	0.88	544	1.2	0.7	6	0.6	64	0.4	6.8	0.231	0.44	1.8	59	4.8	7.3	28	91.1
109929	0.434	2.5	29.8	0.046	11.9	53.2	2.13	0.73	442	2.4	1.5	4	0.6	48	0.6	5.2	0.159	0.35	1.5	41	8.2	8.0	32	68.8
109930	0.279	2.0	16.9	0.044	7.6	41.1	0.54	0.45	280	1.2	2.3	3	0.5	29	0.6	4.1	0.122	0.24	1.1	31	8.4	5.8	16	48.0
109931	0.464	3.2	39.5	0.072	8.2	62.4	0.78	0.73	378	0.7	1.0	5	0.6	43	0.8	6.8	0.214	0.41	1.8	51	7.6	6.6	22	88.5
109932	0.127	1.1	18.3	0.045	20.7	41.3	1.28	1.03	440	1.0	0.4	2	0.4	29	0.6	2.3	0.070	0.25	1.1	23	1.9	3.9	47	36.3
109933	0.232	3.4	17.5	0.114	26.0	65.9	1.52	0.43	180	1.6	0.4	7	8.0	30	0.8	6.9	0.271	0.20	2.0	80	2.5	7.3	13	89.8
109934	0.498	1.7	18.5	0.069	10.3	65.8	0.10	1.15	702	8.0	0.4	5	0.6	76	0.8	6.9	0.206	0.47	1.5	50	1.1	6.5	51	83.3
109935	0.517	3.3	31.2	0.071	10.8	59.8	0.50	0.71	406	0.7	1.0	5	0.8	52	0.8	6.6	0.210	0.38	2.0	54	11.0	7.1	22	81.9

Activation	Laboratories Ltd.	Report:	A13-13790

Analyte Symbol Unit Symbol Detection Limit Analysis Method FA-4 109901 109902 109903 109904 109905 109906 109907
Detection Limit Analysis Method FA-1 109901 109902 109903 109904 109905 109906
Analysis Method FA-1 109901 109902 109903 109904 109905 109906
109901 109902 109903 109904 109905 109906
109902 109903 109904 109905 109906
109903 109904 109905 109906
109904 109905 109906
109905 109906
109906
109908
109909
109910
109911
109912
109913
109914
109915
109916
109917
109918
109919
109920
109921
109922
109923
109924
109925
109926
109927
109928
109928 109929
109928 109929 109930
109928 109929 109930 109931
109928 109929 109930 109931 109932
109928 109929 109930 109931 109932 109933
109928 109929 109930 109931 109932

							Activation Laboratories Ltd.		Repo	rt:	A13-13	3790												
Quality Contro																								
Analyte Symbol	Au	Total Au	+ 100 mesh	Total Weight	Ag	Al	As	Au	Ba	Ве	Bi	Ca	Cd	Се	Co	Cu	Fe	Hf	La	Li	Na	Nb	Ni	Р
Unit Symbol	ppb	g/mt	g	g	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Detection Limit	5	0.07			0.1	0.01	1	100	1	1	0.1	0.01	0.1	1	0.2	0.1	0.01	0.1	0.1	0.1	0.001	0.1	0.1	0.001
Analysis Method	FA-AA	FA-MeT	FA-MeT	FA-MeT	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
GXR-1 Meas					31.3	1.80	400	1700	646	< 1	1520	0.79	2.5	14	7.6	1110	25.2	0.5	7.2	7.7	0.045	0.6	37.0	0.053
GXR-1 Cert					31.0	3.52	427	3300	750	1.22	1380	0.960	3.30	17.0	8.20	1110	23.6	0.960	7.50	8.20	0.0520	0.800	41.0	0.0650
GXR-4 Meas					3.5	6.27	93	100	98	2	19.6	0.96	0.2	103	14.3	6390	3.12	1.2	54.6	11.6	0.621	8.5	38.1	0.126
GXR-4 Cert					4.00	7.20	98.0	470	1640	1.90	19.0	1.01	0.860	102	14.6	6520	3.09	6.30	64.5	11.1	0.564	10.0	42.0	0.120
SDC-1 Meas					< 0.1	7.77	< 1		618	3	0.3	0.97	< 0.1	85	17.0	32.7	4.71	0.6	40.1	37.0	1.74	< 0.1	32.4	0.052
SDC-1 Cert					0.0410	8.34	0.220		630	3.00	2.60	1.00	0.0800	93.00	18.0	30.00	4.82	8.30	42.00	34.00	1.52	21.00	38.0	0.0690
GXR-6 Meas					0.3		210	< 100	1230	1	0.2	0.16	< 0.1	30	13.2	64.6	5.57	1.8	11.3	37.9	0.109	0.2	23.2	0.029
GXR-6 Cert					1.30		330	95.0	1300	1.40	0.290	0.180	1.00	36.0	13.8	66.0	5.58	4.30	13.9	32.0	0.104	7.50	27.0	0.0350
SAR-M (U.S.G.S.) Meas					3.4	6.12	27		775	3	2.5	0.56	4.9	121	10.6	313	3.15		58.6	31.0	1.37	8.4	39.5	0.060
SAR-M (U.S.G.S.) Cert					3.64	6.30	38.8		801	2.20	1.94	0.61	5.27	122.0	10.70	331	2.99		57.4	27.4	1.140	29.9	41.5	0.07
DNC-1a Meas									106						57.2	94.7			3.7	5.1			259	
DNC-1a Cert									118						57.0	100.0			3.6	5.20			247	
OREAS 13b (4-Acid) Meas					0.9		50								77.8	2260							2270	
OREAS 13b (4-Acid) Cert					0.86		57								75	2327.0000						2	247.0000	
OXN92 Meas																								
OXN92 Cert																								
OREAS 203 Meas	908																							
OREAS 203 Cert	871.000																							
OREAS 203 Meas	800																							
OREAS 203 Cert	871.000																							
OREAS 204 Meas	1040																							
OREAS 204 Cert	1043.000																							
SBC-1 Meas							23		767	3	0.7		0.3	95	22.0	28.2		3.4	44.7	183		13.9	81.9	
SBC-1 Cert							25.7		788.0	3.20	0.70		0.40	108.0	22.7	31.0		3.7	52.5	163.0		15.3	82.8	
OxK110 Meas																								
OxK110 Cert																								
109910 Orig	372																							
109910 Dup	363																							
109913 Orig					< 0.1	4.91	2	< 100	288	< 1	0.1	1.24	< 0.1	91	3.3	8.6	1.70	< 0.1	58.7	12.0	0.422	0.5	30.8	0.047
109913 Dup					< 0.1	4.96	2	< 100	288	< 1	< 0.1	1.22	< 0.1	88	3.4	3.8	1.70	< 0.1	57.3	12.0	0.425	0.6	31.4	0.047
109917 Orig																								
109917 Dup 109927 Orig					0.5	7.95	16	< 100	307	< 1	0.2	3.21	< 0.1	78	15.7	44.8	2.32	2.2	37.3	9.0	0.636	3.1	25.6	0.074
109927 Ong 109927 Dup					0.5	7.93	16	< 100	297	< 1	0.2	3.17	< 0.1	76	15.7	43.8	2.32	2.2	36.0	8.9	0.627	3.1	25.0	0.074
109927 Dup 109930 Orig	> 3000				2.6	4.30	57	400	204	< 1	0.1	1.13	< 0.1	54	17.3	40.4	1.65	1.3	26.0	5.3	0.027	2.0	16.9	0.044
109930 Ong 109930 Split	> 3000				2.8	4.73	59	400	211	< 1	0.7	1.17	< 0.1	54	18.2	48.2	1.73	1.4	25.8	6.1	0.289	2.1	18.2	0.044
109933 Orig	27					5																		
109933 Dup	31																							
Method Blank					< 0.1	< 0.01	< 1	< 100	< 1	< 1	< 0.1	< 0.01	< 0.1	< 1	< 0.2	< 0.1	< 0.01	< 0.1	< 0.1	< 0.1	< 0.001	< 0.1	< 0.1	< 0.001
Method Blank	< 5																							
Method Blank	< 5																							
Method Blank		< 0.07	30.00	30.000																				
Method Blank	< 5																							

Method Blank

							Α	ctivatio	on Lab	orato	ries Lt	d.	Repo	ort:	A13-13	3790						
Quality Control																						
Analyte Symbol	Pb	Rb	s	Mg	Mn	Мо	Sb	Sc	Sn	Sr	Та	Th	Ti	TI	U	V	W	Υ	Zn	Zr	Au	
Unit Symbol	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g/tonne	
Detection Limit	0.1	0.1	0.01	0.01	1	0.1	0.1	1	0.1	1	0.1	0.1	0.001	0.05	0.1	4	0.1	0.1	1	0.1	0.03	
Analysis Method	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	FA-GRA	
GXR-1 Meas	667	2.7	0.26	0.18	833	17.8	55.4	1	30.0	302	1.8	2.4		0.41	32.0	77	142	29.9	785	21.0		
GXR-1 Cert	730	14.0	0.257	0.217	852	18.0	122	1.58	54.0	275	0.175	2.44		0.390	34.9	80.0	164	32.0	760	38.0		
GXR-4 Meas	41.3	143	1.73	1.60	141	320	4.1	7	6.8	215	1.2	19.1		3.42	5.4	86	31.7	13.3	80	39.9		
GXR-4 Cert	52.0	160	1.77	1.66	155	310	4.80	7.70	5.60	221	0.790	22.5		3.20	6.20	87.0	30.8	14.0	73.0	186		
SDC-1 Meas	20.9	119	0.09	0.92	781	< 0.1	< 0.1	14	0.2	172	1.6	11.5	0.063	0.67	2.6	28	< 0.1	32.3	105	23.4		
SDC-1 Cert	25.00	127.00	0.0650	1.02	880.00	0.250	0.54	17.00	3.00	180.00	1.20	12.00	0.606	0.70	3.10	102.00	0.800	40.0	103.00	290.00		
GXR-6 Meas	90.2	73.7	0.01	0.54	990	0.4	0.4	23	0.6	36	1.7	4.6		2.37	1.4	109	< 0.1	11.1	130	65.1		
GXR-6 Cert	101	90.0	0.0160	0.609	1010	2.40	3.60	27.6	1.70	35.0	0.485	5.30		2.20	1.54	186	1.90	14.0	118	110		
SAR-M (U.S.G.S.) Meas	837	129		0.45	4930	4.7	3.2	8	2.6	149		18.4	0.217	2.85	4.1	45	2.2	32.6	941			
SAR-M (U.S.G.S.) Cert	982	146		0.50	5220	13.1	6.0	7.83	2.76	151		17.2	0.38	2.7	3.57	67.2	9.78	28.00	930.0			
DNC-1a Meas							0.7	29		143						147		16.5	66	36.4		
DNC-1a Cert							0.96	31		144.0						148.00		18.0	70.0	38.000		
OREAS 13b (4-Acid) Meas			1.29			9.3													138			
OREAS 13b (4-Acid) Cert			1.2			9.0													133			
OXN92 Meas																					7.69	
OXN92 Cert																					7.64	
OREAS 203 Meas																						
OREAS 203 Cert																						
OREAS 203 Meas																						
OREAS 203 Cert																						
OREAS 204 Meas																						
OREAS 204 Cert																						
SBC-1 Meas	32.2	126				1.9	0.9	17	3.4	174	2.2	13.4		0.95	5.5	208	1.3	30.2	188	119		
SBC-1 Cert	35.0	147				2.40	1.01	20.0	3.3	178.0	1.10	15.8		0.89	5.76	220.0	1.60	36.5	186.0	134.0		
0xK110 Meas																					3.50	
DxK110 Cert																					3.602	
109910 Orig																						
109910 Dup																						
109913 Orig	2.1	55.6	< 0.01	0.77	276	2.5	0.7	3	0.2	49	0.4	3.8	0.136	0.25	1.3	31	0.8	4.7	22	4.4		
09913 Dup	2.1	55.7	< 0.01	0.79	275	2.3	0.8	3	0.2	50	0.4	3.7	0.136	0.26	1.3	31	1.2	4.6	22	3.9		
109917 Orig																					50.9	
109917 Dup																					56.7	
109927 Orig	13.3	72.8	0.40	1.17	681	0.2	0.8	5	0.6	73	0.9	6.4	0.220	0.49	1.6	52	8.2	7.7	39	84.7		
109927 Dup	13.0	66.9	0.39	1.13	670	0.2	0.8	5	0.6	70	1.7	6.3	0.215	0.48	1.6	51	7.8	7.3	39	83.6		
09930 Orig	7.6	41.1	0.54	0.45	280	1.2	2.3	3	0.5	29	0.6	4.1	0.122	0.24	1.1	31	8.4	5.8	16	48.0	3.27	
09930 Split	7.9	42.3	0.57	0.47	262	1.3	2.3	3	0.6	31	1.1	4.1	0.128	0.23	1.1	34	9.1	6.2	16	52.5	3.19	
109933 Orig																						
109933 Dup																						
Method Blank	< 0.1	< 0.1	< 0.01	< 0.01	< 1	< 0.1	< 0.1	< 1	< 0.1	< 1	< 0.1	< 0.1	< 0.001	< 0.05	< 0.1	< 4	< 0.1	< 0.1	< 1	< 0.1		
Method Blank																						
Method Blank																						
Method Blank																						
Method Blank																						
Method Blank																					< 0.03	

Quality Analysis ...

Innovative Technologies

Date Submitted: 13-Aug-13

Invoice No.: A13-09591

Invoice Date: Your Reference: Sandy Lake 29-Aug-13

Goldeye Explorations Limited

Richmond Hill ON L4B 1M6 Unit 22, 60 Wilmont St.

ATTN: David Jamieson

CERTIFICATE OF ANALYSIS

7 Pulp samples and 162 Rock samples were submitted for analysis.

The following analytical packages were requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)
Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay

Tbay)

REPORT

A13-09591

1000g Code 1A4-1000 (100mesh)-Tbay Au-Fire Assay-Metallic Screen-

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Quality Control

Activation Laboratories Ltd. Report: A13-09591

Analyte Symbol	Au	Au + 100	Au - 100	Au - 100	Total Au	+ 100	- 100 mesh	Total	Au
		mesh	mesh (A)	mesh (B)		mesh		Weight	
Unit Symbol	ppb	g/mt	g/mt	g/mt	g/mt	g	g	g	g/tonne
Detection Limit	5	0.07	0.07	0.07	0.07				0.03
Analysis Method	FA-AA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	⊦A-GRA
586251	28								
586252	28								
586253	1050								
586254	24								
586255	12								
586256	< 5								
586257	11								
586258	73								
586259	61								
580001	1000								
586260	31								
586261	14								
586262	25								
586263	31								
586264	100								
586265	73								
586266	28								
586267	1730								
586268	2540								
580002	6								
586269		67.1	18.0	15.8	17.5	12.57	995.30	1007.9	
586270	> 3000								8.59
586271	182								
586272	225								
586273	> 3000								3.95
586274	37								
586275	484								
586276	282								
586277	862								
586278	303								
586279	609								
580003	> 3000								3.44
586280	148								
586281	321								
586282	1460								
586283	376								
586284	140								
586285	75								
586286	32								
586287	55								
586288	40								
586289	34								
580004	< 5								
586290	> 3000								5.62
586291	44								
586292	13								
586293	11								
586294	78								
586295	331								
586296	1350								
586297	1240								

Activation Laboratories Ltd. Report: A13-09591

Analyte Symbol	Au	Au + 100	Au - 100	Au - 100	Total Au	+ 100 -	100 mesh	Total	Au		
		mesh	mesh (A)	mesh (B)		mesh		Weight			
Unit Symbol	ppb	g/mt	g/mt	g/mt	g/mt	g	g	g	g/tonne		
Detection Limit	5	0.07	0.07	0.07	0.07				0.03		
Analysis Method	FA-AA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-GRA	 	
586298	30										
580005	> 3000								8.93		
586299	7										
586300	2230										
586301	59										
586302	< 5										
586303	740										
586304	60										
586305	1080										
586306	447										
586307	861										
586308	117										
580006	< 5										
586309	60										
586310	2750										
586311	54										
586312	43										
586313	110										
586314	> 3000								4.79		
586315	1160										
586316	370										
586317	> 3000								20.9		
586318	> 3000								22.0		
586319	129										
580007	> 3000								8.99		
586320	85										
586321	2300										
586322	853										
586323	2180										
586324	1050										
586325	> 3000								8.17		
586326	2390										
586327	1630										
586328	> 3000								18.3		
586329	87										
580008	8										
586330	2920										
586331	1410										
586332	1250										
586333	800										
586334	316										
586335	895										
586336	98										
586337	328										
586338	> 3000								3.46		
580009	> 3000								3.23		
586339	207										
586340	94										
586341	> 3000								16.1		
586342	> 3000								7.80		
586343	170										

Activation Laboratories Ltd.	Report:	A13-09591
/ tott vation =apolatonico =tai		,

Analyte Symbol	Au	Au + 100	Au - 100	Au - 100	Total Au	+ 100 -	- 100 mesh	Total	Au
Unit Symbol	ppb	mesh g/mt	mesh (A) g/mt	mesh (B) g/mt		mesh g	g	Weight g	g/tonne
Detection Limit	5		0.07	0.07		9	9	9	0.03
Analysis Method	FA-AA					FA-MeT	FA-MeT	FA-MeT	
586344	18								
586345	723								
586346	36								
586347	42								
586348	626								
580010	< 5								
586349	> 3000								43.5
586350	163								
586351	35								
586352	75								
586353	93								
586354	15								
586355	53								
586356	70								
586357	174								
586358	28								
580011	1030								
586359	34								
586360	32								
586361	128								
586362	164								
586363	565								
586364	925								
586365	194								
586366	141								
586367	88								
580012	11								
586368	35								
586369	64 342								
586370 586371	342 226								
586371 586372	169								
586372 586373	344								
586374	344 56								
586375	172								
586376	235								
586377	356								
580013	1130								
586378	20								
586379	24								
586380	40								
586381	82								
586382	220								
586383	65								
586384	153								
586385	1770								
586386	> 3000								34.1
586387	1300								
586388	791								
586389	2460								
580014	< 5								

Activation Laboratories Ltd. Report: A13-0	-09591
--	--------

Analyte Symbol	Au	Au + 100		Au - 100	Total Au		- 100 mesh	Total	Au
			mesh (A)			mesh		Weight	
Unit Symbol	ppb	g/mt	g/mt	g/mt	g/mt	g	g	g	g/tonne
Detection Limit	5	0.07	0.07	0.07	0.07				0.03
Analysis Method	FA-AA	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-GRA
586390	175								
586391	84								
586392	1280								
586393	1230								
586394	789								
586395	9								
586396	78								
586397	515								
586398	42								
586399	> 3000								3.08
586400	497								
586401	17								
586402	> 3000								11.7
586403	916								
586404	> 3000								7.43
586405	> 3000								8.78

Activation Laboratories Ltd. Report: A13-09591

Quality Control				
	Au	Total Au	Au	
Analyte Symbol		g/mt	g/tonne	
Unit Symbol	ppb 5	0.07	0.03	
Detection Limit	FA-AA	FA-MeT		
Analysis Method	FA-AA			
OXK94 Meas		3.58	3.45	
OXK94 Cert		3.56	3.56	
OXN92 Meas OXN92 Cert			7.65 7.64	
OxD108 Meas	446		7.04	
OxD108 Cert	414.000			
OxD108 Meas	451			
OxD108 Cert	414.000			
OxD108 Meas	419			
OxD108 Cert OxD108 Meas	414.000 441			
OxD108 Meas OxD108 Cert	414.000			
OxD108 Meas	477			
OxD108 Cert	414.000			
SF67 Meas	881			
SF67 Cert	835.000			
SF67 Meas SF67 Cert	881 835.000			
SF67 Meas	777			
SF67 Cert	835.000			
SF67 Meas	872			
SF67 Cert	835.000			
SF67 Meas	881			
SF67 Cert	835.000			
SF67 Meas SF67 Cert	884 835.000			
586260 Orig	28			
586260 Dup	34			
586268 Orig	2790			
586268 Dup	2290			
586278 Orig	303 303			
586278 Split 586279 Orig	600			
586279 Dup	619			
586291 Orig	42			
586291 Dup	45			
586296 Orig	1350			
586296 Split	1320			
586305 Orig 586305 Split	1080 946			
586321 Orig	2190			
586321 Dup	2400			
586325 Orig			7.81	
586325 Dup			8.52	
586330 Orig	2970			
586330 Dup	2860			
586332 Orig 586332 Split	1250 1360			
586339 Orig	186			
586339 Dup	228			
586341 Orig	> 3000		16.1	
586341 Split	> 3000		13.2	
580010 Orig	< 5			
580010 Dup 586351 Orig	< 5 35			
586351 Dup	35			
586359 Orig	34			
J				

	Activation	Laboratories Ltd.	Report:	A13-09591
--	------------	-------------------	---------	-----------

Quality Control			
Analyte Symbol	Au	Total Au	Au
Unit Symbol	ppb	g/mt	g/tonne
Detection Limit	5	0.07	0.03
Analysis Method	FA-AA	FA-MeT	FA-GRA
586359 Split	10		
586382 Orig	236		
586382 Dup	204		
586387 Orig	1300		
586387 Split	1420		
586391 Orig 586391 Dup	86 81		
Method Blank	< 5		
Method Blank	< 5		
Method Blank	< 5		
Method Blank	< 5		
Method Blank	< 5		
Method Blank	< 5		
Method Blank	< 5		
Method Blank	< 5		
Method Blank Method Blank	< 5 < 5		
Method Blank	< 3		< 0.03

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

ALS Canada Ltd.

To: GOLDEYE EXPLORATIONS LTD.
100 WEST BEAVER STREET
RICHMOND HILL ON L4B 1H4

Finalized Date: 19-DEC-2013
This copy reported on 28-JAN-2014
Account: BXGOLD

CERTIFICATE TB13221753

Project: WEBIGEE

P.O. No.:

This report is for 9 Crushed Rock samples submitted to our lab in Thunder Bay, ON, Canada on 10-DEC-2013.

The following have access to data associated with this certificate:

ALS CODE DESCRIPTION WEI-21 Received Sample Weight PUL-QC LOG-21 Sample logging - ClientBarCode PUL-31 SPL-21 Split sample - riffle splitter	ANAI YTICAI PROCEDURES	
DE DES Rec Pul Sar Pul Spi		
DE DES	Split sample - riffle splitter	SPL-21
DE DES Rec Pul Sar	Pulverize split to 85% < 75 um	PUL-31
DE DES Rec Pul	Sample logging - ClientBarCode	LOG-21
)DE DE	Pulverizing QC Test	PUL-QC
DE	Received Sample Weight	WEI-21
SAMPLE PREPARATION	DESCRIPTION	ALS CODE
	SAMPLE PREPARATION	

	ANALY LICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Aq-OG62	Ore Grade Ag - Four Acid	VARIABLE
ME-OG62	Ore Grade Elements - Four Acid	ICP-AES
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM
ME-MS61	48 element four acid ICP-MS	

To: GOLDEYE EXPLORATIONS LTD.
ATTN: DAVID JAMIESON
100 WEST BEAVER STREET
RICHMOND HILL ON L4B 1H4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: Fax: 604 984 0218 www.alsglobal.com

ALS Canada Ltd.

TO: GOLDEYE EXPLORATIONS LTD.
100 WEST BEAVER STREET **RICHMOND HILL ON L4B 1H4**

Page: 2 - A
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 19-DEC-2013

Account: BXGOLD

Project: WEBIGEE

586399	586366	586364	586363	586326	586325	586273	Sample Description	8		Minerals
				1 1921			LOR	Analyte	Method	N
0.84	1.90	1.08	0.96	1.39	0.63	0.47	0.02	ka wc.	WEI-21	
3.75	1.95	1.01 2.14	1.15	22.5	×100	0.75	0.01	mag 2	ME-MS61	
0.62	5.37	5.82 5.72	4.23	1.17	0.58	2.21	0.01	* ?	ME-MS61	
96.6	13.8	19.5 5	9.7	61.3	206	4.1 75.9	0.2	ppm .	ME-MS61	
90	620	1090 600	2010	40	20	330 140	10	ppm	ME-MS61	
0.11	0.56	0.34	0.44	0.16	0.09	1.15 0.23	0.05	ppm	ME-MS61	
0.09	0.04	0.08	0.04	0.23	1.23	0.75 0.10	0.01	ppm	ME-MS61 Bi	
1.46	1.59	2.60	0.21	0.72	0.09	1.7 4 0.08	0.01	*	ME-MS61 Ca	<u>Ω</u>
0.03	0.03	0.02	<0.02	0.19	0.88	0.07 <0.02	0.02	ppm	ME-MS61 Cd	CERTIFICATE
13.45	64.2	69.9	40.5	10.95	4.04	36.4 8.75	0.01	ppm	ME-MS61 Ce	ATE OF
2.9	4.4	7.9	2.6	4.4	5.1	5 5 5 0	0.1	ppm	ME-MS61 Co	F ANALYSIS
On	<u> </u>	28	27	30	33	859 17	_	ppm	ME-MS61 Cr	YSIS
0.26	1.14	1.73	0.33	0.53	0.10	0.35	0.05	ppm	ME-MS61 Cs	TB132
21.2	98.8	90.9	27.8	228	1640	74.5	0.2	ppm	ME-MS61 Cu	TB13221753
0.60	1.36	1.94	0.70	7.05	2.61	0.70	0.01) } *	ME-MS61 Fe	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: ALS Canada Ltd. Fax: 604 984 0218 www.alsglobal.com

TO: GOLDEYE EXPLORATIONS LTD. 100 WEST BEAVER STREET RICHMOND HILL ON L4B 1H4

Page: 2 - B
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 19-DEC-2013 Account: BXGOLD

Project: WEBIGEE CERTIFICATE OF ANALYSIS

TB13221753

586364 586366 586399	586326 586363	586325	586273	Sample Description	****	
				LOR	Method Analyte	
7.12 14.70 14.25 1.58	3.44 11.90	1.54	7.09	ppm 0.05	Ga	are Mega
0.14 0.14 0.08	0.06	0.29	0.11	ppm 0,05	Ge	ME_MSS1
0.9 1.7 0.2	1.3	0.2	0.4	0.1	H	MF-MS61
0.008 0.016 0.015 0.005	0.014	0.022	0.017	0.005	5	ME-MS61
1.24 1.97 0.23	2.17	0.26	0.75 0.71	0,01	2 7	ME-MS61
6.2 6.2 7	19.4	1.9 5.1	18.8 3.9	0.5	La	ME~MS61
13.7 12.8 2.4	8.8	5.7 6.8	3.6 6	0.2		ME-MS61
0.24 1.27 0.79 0.51	0.25	0.07 0.36	0.56 0.10	0.01		ME-MS61
266 185	8 8	37 195	265 38	5		ME-MS61
1.97 1.97 1.17	1.87	2.38 2.52	19.20 1.28	0.05		M
0.31 0.20 0.02	0.06	0.01	0.14	0.01	_% Z	<u>s</u>
2.8 0.2	2.0	0.5	0.7	0.1	ndd dN	⊴
47.2 52.7 16.2	13.6	24.2	106.5	0.2	ppm N	<u>x</u>
660 610	p=		5 210			ME
.1. co co co			3 <u>→</u> ‡		ppm	<u></u>

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

TO: GOLDEYE EXPLORATIONS LTD. 100 WEST BEAVER STREET RICHMOND HILL ON L4B 1H4

Page: 2 - C
Total # Pages: 2 (A - D)
Plus Appendix Pages
Finalized Date: 19-DEC-2013

Account: BXGOLD

Project: WEBIGEE CERTIFICATE OF ANALYSIS

TB13221753

586365 586366 586399	586364	586273 586314 586325 586326 586363	Sample Description
			Method Analyte Units LOR
7.9 7.9	24.2	16.6 15.6 6.3 19.1 39.8	ME-MS61 Rb ppm 0.1
40,002 40,002 20,002	<0.002	0.002 <0.002 <0.002 <0.002 <0.002	ME-MS61 Re ppm 0.002
0.09 0.09 5	0.10	0.14 0.20 2.49 0.60 0.04	ME-MS61 S % 0.01
2.49 3.86	2.28	0.75 4.98 331 56.9 3.05	ME-MS61 Sb ppm 0.05
1.1	2.4	7.1 1.1 0.3 1.0 3.4	ME-MS61 Sc ppm 0.1
<u>^</u>	7	7 - 10 7 7	ME-MS61 Se ppm 1
0.9 0.2	0.3	0.2 0.2 0.4	ME-MS61 Sn ppm 0.2
155.0 102.0 21.4	40.7	6.8 3.5 3.7	ME-MS61 Sr ppm 0,2
0.24 0.05 0.05	0.09	0.05 0.05 <0.05 0.18	ME-MS61 Ta ppm 0.05
0.15	<0.05	0.40 0.10 0.06 <0.05	ME-MS61 Te ppm 0.05
0.7 0.7	i w	1.3	ME-MS61 Th ppm 0.2
0.158 0.018 0.018	0.079	0.040 0.013 0.029 0.119	ME-MS61 Ti % 0.005
0.02 0.05	0.07	0.07 0.03 0.12 0.12	ME-MS61 TI ppm 0.02
2.3.4	2 C	0.0.2	ME-MS61 U ppm 0.1
ω <u>4.</u> ξ	ີ່ ຜູ້	3 4 4 7 8 8 8	ME-MS61 V ppm 1

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 ALS Canada Ltd.

TO: GOLDEYE EXPLORATIONS LTD.
100 WEST BEAVER STREET
RICHMOND HILL ON L4B 1H4

Page: 2 - D
Total # Pages: 2 (A - D)
Plus Appendix Pages
alized Date: 19-DEC-2013

nt: BXGOLD

TB13221753	CERTIFICATE OF ANALYSIS TB13221753		
	Project: WEBIGEE		
Finalized Date: 19-L Account	-	4 984 0218 www.alsglobal.com	4 984 0218
Topoda con	RICHMOND HILL ON L4B 174		

Method WE-MS61 Sample Description LOR 586325 586363 586364 586366 586366 586369 11.9 586399 11.5.0	Tinerals
ME-MS61 N Ppm 0.1 1.5 0.4 1.4 1.3 3.2 6.8 5.8 1.3	
ME-WS61 Zn ppm 2 13 <2 18 10 6	
ME-MS61 Zr ppm 0.5 14.6 19.7 5.2 11.5 49.9 38.0 62.7 6.2.7 6.2	
Ag-OG62 Ag ppm 1	
Au-GRA21 Au ppm 0.05 4.61 3.31 15.80 3.01 0.85 0.10 0.13 3.45	
	CERTIFICATE OF ANALYSIS TB13221753

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com ALS Canada Ltd.

TO: GOLDEYE EXPLORATIONS LTD.
100 WEST BEAVER STREET
RICHMOND HILL ON L4B 1H4

Page: Appendix 1
Total # Appendix Pages: 1
Finalized Date: 19-DEC-2013
Account: BXGOLD

Applies to Method:	Applies to Method:	Applies to Method:		(ALS) Minerals
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Ag-OG62 Au-GRA21 ME-MS61 ME-MS61	LABORATORY ADDRESSES Processed at ALS Thunder Bay located at 1160 Commerce Street, Thunder Bay, ON, Canada. LOG-21 PUL-31 PUL-QC SPL-21 WEI-21	ANALYTICAL COMMENTS REE's may not be totally soluble in this method. ME-MS61	CERTIFICATE COMMENTS	Project: WEBIGEE CERTIFICATE OF ANALYSIS TB13221753

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: ALS Canada Ltd. Fax: 604 984 0218 www.alsglobal.com

To: GOLDEYE EXPLORATIONS LTD. **RICHMOND HILL ON L4B 1H4 100 WEST BEAVER STREET**

Page: 1 Finalized Date: 20-DEC-2013 This copy reported on 28-JAN-2014

Account: BXGOLD

CERTIFICATE TB13221752

Project: WEBIGEE

Canada on 10-DEC-2013. This report is for 11 Crushed Rock samples submitted to our lab in Thunder Bay, ON,

The following have access to data associated with this certificate: DAVID JAMIESON

	DESCRIPTION
ANALYTICAL PROCEDURES	A
Pulverize Split -Dup 85% < 75um	PUL-32d Pu
Sample logging - ClientBarCode Dup	LOG-21d Sai
Pulp Login - Rcd w/o Barcode	LOG-24 Pu
Screen to -100 to 106 um	SCR-21 Sci
Received Sample Weight	WEI-21 Re
DESCRIPTION	ALS CODE DE
SAMPLE PREPARATION	

	ANALY HOAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
Au-GRA21	Au 30g FA-GRAV finish	WST-SIM
Au-SCR21	Au Screen Fire Assay - 100 to 106 um	WST-SIM
Au-AA25	Ore Grade Au 30g FA AA finish	AAS
Au-AA25D	Ore Grade Au 30g FA AA Dup	AAS

٦ : **RICHMOND HILL ON L4B 1H4** ATTN: DAVID JAMIESON GOLDEYE EXPLORATIONS LTD. 100 WEST BEAVER STREET

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com ALS Canada Ltd.

To: GOLDEYE EXPLORATIONS LTD.
100 WEST BEAVER STREET
RICHMOND HILL ON L4B 1H4

Page: 2 - A
Total # Pages: 2 (A)
Plus Appendix Pages
Finalized Date: 20-DEC-2013 Account: BXGOLD

Project: WEBIGEE

Metion University of the Control of	Method Analyte Units light on Lors
109901	0.38 2.04
109906	0.53 0.61
109916	0.79
109917	0.75
109923	0.56 0.40
109935	0.44

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

TO: GOLDEYE EXPLORATIONS LTD.
100 WEST BEAVER STREET
RICHMOND HILL ON L4B 1H4

Finalized Date: 20-DEC-2013
Account: BXGOLD

Project: WEBIGEE

CERTIFICATE OF ANALYSIS TB13221752

CERTIFICATE COMMENTS

Method	
L0G-21d	Processed at ALS Thunder Bay located at 1160 Commerce Street, Thunder Bay, ON, Canada.
LOG-24	Processed at ALS Thunder Bay located at 1160 Commerce Street, Thunder Bay, ON, Canada.
PUL-32d	Processed at ALS Thunder Bay located at 1160 Commerce Street, Thunder Bay, ON, Canada.
SCR-21	Processed at ALS Thunder Bay located at 1160 Commerce Street, Thunder Bay, ON, Canada.
WEI-21	Processed at ALS Thunder Bay located at 1160 Commerce Street, Thunder Bay, ON, Canada.
Au-AA25	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.
Au-AA25D	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.
Au-GRA21	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.
Au-SCR21	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.

Appendix iii – Geochemistry Data

Sample #	Claim	Project	Prospect	Sampler	Date	Easting	Northing	Elev (m)	Sample Type	Trench	DDH#	From (m)	To (m)	Length (m)	Sample #	Au (ppb)
109901	977005	Weebigee	RvG 4 Ounce			474042.12	5879838.09		Channel					0.37	109901	> 3000
109902	977005	Weebigee	RvG 4 Ounce			474041.83	5879837.80		Channel					0.37	109902	> 3000
109903	977005	Weebigee	RvG 4 Ounce			474041.55	5879837.51		Channel					0.41	109903	874
109904	977005	Weebigee	RvG 4 Ounce			474042.41	5879838.40		Channel					0.43	109904	2800
109905	977005	Weebigee	RvG 4 Ounce			474039.83	5879840.25		Channel					0.42	109905	> 3000
109906	977005	Weebigee	RvG 4 Ounce			474040.25	5879840.37		Channel					0.44	109906	> 3000
109907	977005	Weebigee	RvG 4 Ounce			474038.07	5879842.59		Channel					0.41	109907	234
109908	977005	Weebigee	RvG 4 Ounce			474037.74	5879842.37		Channel					0.40	109908	293
109909	977005	Weebigee	RvG 4 Ounce			474037.40	5879842.16		Channel					0.43	109909	262
109910	977005	Weebigee	RvG 4 Ounce			474036.58	5879843.14		Channel					0.50	109910	368
109911	977009	Weebigee	Recce			474070.32	5879451.66		Channel					0.48	109911	15
109912	977009	Weebigee	Recce			474074.59	5879451.42		Channel					0.45	109912	327
109913	977009	Weebigee	Recce			474074.22	5879451.20		Channel					0.38	109913	20
109914	977009	Weebigee	Recce			474070.32	5879454.66		Channel					0.56	109914	441
109915	977009	Weebigee	Knoll			474148.90	5879352.55		Channel					0.22	109915	
109916	977009	Weebigee	Knoll			474148.39	5879351.47		Channel					0.35	109916	2900
109917	977009	Weebigee	Knoll			474148.02	5879351.24		Channel					0.35	109917	> 3000
109918	977009	Weebigee	Knoll			474147.69	5879351.31		Channel					0.30	109918	> 3000
109919	977009	Weebigee	Knoll			474129.21	5879372.88		Channel					0.32	109919	93
109920	977009	Weebigee	Knoll			474128.99	5879372.79		Channel					0.25	109920	154
109921	977009	Weebigee	Knoll			474205.61	5879360.80		Channel					0.65	109921	78
109922	977009	Weebigee	Knoll			474205.23	5879360.38		Channel					0.80	109922	157
109923	977009	Weebigee	Bernadette			474257.20	5879364.67		Channel					0.35	109923	1180
109924	977009	Weebigee	Bernadette			474256.58	5879363.88		Channel					0.38	109924	> 3000
109925	977009	Weebigee	Bernadette			474256.77	5879364.16		Channel					0.34	109925	19
109926	977009	Weebigee	Bernadette			474256.47	5879364.72		Channel					0.23	109926	42
109927	977009	Weebigee	Bernadette			474256.66	5879365.10		Channel					0.37	109927	110
109928	977009	Weebigee	Bernadette			474256.73	5879365.83		Channel					0.25	109928	31
109929	977009	Weebigee	Bernadette			474256.88	5879365.89		Channel					0.25	109929	> 3000
109930	977009	Weebigee	Bernadette			474256.93	5879366.05		Channel					0.10	109930	> 3000
109931	977009	Weebigee	Bernadette			474256.78	5879366.54		Channel					0.25	109931	154
109932	977005	Weebigee	RvG 4 Ounce			474039.74	5879840.81		Grab					0.1_0	109932	> 3000
109933	977009	Weebigee	Recce			473930.00	5879870.00		Grab						109933	29
109934	977009	Weebigee	Bernadette			474255.20	5879390.70		Grab						109934	240
109935 586251	977009 977277	Weebigee Weebigee	Bernadette Wavano			474256.61 472683.71	5879364.85 5880345.80		Grab Channel					0.27	109935 586251	> 3000
586252	977277	Ū	Wavano			472683.71	5880345.95		Channel					0.27	586252	28
586252	977277	Weebigee Weebigee	Wavano			472683.98	5880345.95		Channel					0.30	586253	1050
586254	977277		Wavano Wavano			472684.25			Channel					0.30	586253	24
586254	977277	Weebigee				472684.49	5880346.26 5880340.61		Channel					0.30	586254 586255	12
-	977277	Weebigee	Wavano Wavano			472683.10			Channel					0.40	586255	< 5
586256	977277	Weebigee					5880340.73							0.40	586256	< 5 11
586257		Weebigee	Wavano			472683.79	5880340.82		Channel							
586258	977277 977277	Weebigee	Wayana			472684.10	5880340.91		Channel					0.40	586258	73 61
586259		Weebigee	Wavano			472684.41	5880341.01		Channel						586259	
586260	977277	Weebigee	Wavano			472684.63	5880341.08		Channel					0.23	586260	31
586261	977277	Weebigee	Wavano			472684.87	5880341.17		Channel					0.30	586261	14
586262	977277	Weebigee	Wavano			472683.22	5880340.25		Channel					0.55	586262	25
586263	977277	Weebigee	Wavano			472684.40	5880344.21		Channel					0.25	586263	31
586264	977277	Weebigee	Wavano	<u> </u>		472684.68	5880344.37		Channel					0.45	586264	100

Sample #	Claim	Project	Prospect	Sampler	Date	Easting	Northing	Elev (m)	Sample Type	Trench	DDH#	From (m)	To (m)	Length (m)	Sample #	Au (ppb)
586265	977277	Weebigee	Wavano			472685.13	5880344.58		Channel					0.60	586265	73
586266	977277	Weebigee	Wavano			472685.53	5880344.77		Channel					0.30	586266	28
586267	977277	Weebigee	Wavano			472681.22	5880336.52		Channel					0.25	586267	1730
586268	977277	Weebigee	Wavano			472680.80	5880336.52		Channel					0.55	586268	2540
586269	977277	Weebigee	Wavano			472680.71	5880335.64		Channel					0.40	586269	
586270	977277	Weebigee	Wavano			472680.35	5880335.38		Channel					0.50	586270	> 3000
586271	977277	Weebigee	Wavano			472679.98	5880335.09		Channel					0.45	586271	182
586272	977277	Weebigee	Wavano			472680.83	5880337.79		Channel					0.45	586272	225
586273	977277	Weebigee	Wavano			472680.55	5880337.60		Channel					0.25	586273	> 3000
586274	977277	Weebigee	Wavano			472680.31	5880337.40		Channel					0.35	586274	37
586275	977277	Weebigee	Wavano			472679.64	5880334.86		Channel					0.40	586275	484
586276	977277	Weebigee	Wavano			472679.30	5880334.66		Channel					0.40	586276	282
586277	977277	Weebigee	Wavano			472679.89	5880337.33		Channel					0.40	586277	862
586278	977277	Weebigee	Wavano			472679.13	5880336.66		Channel					0.50	586278	303
586279	977277	Weebigee	Wavano			472679.53	5880337.02		Channel					0.55	586279	609
586280	977020	Weebigee	Sandborn			472175.92	5880071.10		Channel					0.35	586280	148
586281	977020	Weebigee	Sandborn			472176.21	5880071.51		Channel					0.65	586281	321
586282	977020	Weebigee	Sandborn			472176.62	5880071.95		Channel					0.55	586282	1460
586283	977020	Weebigee	Sandborn			472177.06	5880072.38		Channel					0.60	586283	376
586284	977020	Weebigee	Sandborn			472177.43	5880072.76		Channel					0.40	586284	140
586285	977020	Weebigee	Sandborn			472177.71	5880073.02		Channel					0.35	586285	75
586286	977020	Weebigee	Sandborn			472176.48	5880069.10		Channel					0.22	586286	32
586287	977020	Weebigee	Sandborn			472176.69	5880069.22		Channel					0.25	586287	55
586288	977020	Weebigee	Sandborn			472176.98	5880069.17		Channel					0.30	586288	40
586289	977020	Weebigee	Sandborn			472184.52	5880059.19		Channel					0.20	586289	34
586290	977020	Weebigee	Sandborn			472184.74	5880059.33		Channel					0.30	586290	> 3000
586291	977020	Weebigee	Sandborn			472185.12	5880059.57		Channel					0.60	586291	44
586292	977020	Weebigee	Sandborn			472185.56	5880059.85		Channel					0.45	586292	13
586293	977020	Weebigee	Sandborn			472183.82	5880059.38		Channel					0.40	586293	11
586294	977020	Weebigee	Sandborn			472184.15	5880059.60		Channel					0.35	586294	78
586295	977009	Weebigee	Knoll			474155.96	5879360.23		Channel					0.37	586295	331
586296	977009	Weebigee	Knoll			474156.34	5879360.23		Channel					0.40	586296	1350
586297	977009	Weebigee	Knoll			474156.72	5879360.22		Channel					0.37	586297	1240
586298	977009	Weebigee	Knoll			474157.13	5879360.71		Channel					0.30	586298	30
586299	977009	Weebigee	Knoll			474157.48	5879360.86		Channel					0.35	586299	7
586300	977009	Weebigee	Knoll			474158.27	5879360.80		Channel					0.40	586300	2230
586301	977027	Weebigee	Island Recce			473509.92	5879253.46		Channel					0.75	586301	< 5
586302	977027	Weebigee	Island Recce			473510.63	5879253.82		Channel					0.80	586302	740
586303	977020	Weebigee	Sandborn			472177.79	5880070.16		Grab						586303	59
586304	977009	Weebigee	Knoll			474159.11	5879360.45		Channel					0.40	586304	60
586305	977009	Weebigee	Knoll			474159.84	5879361.23		Channel					0.30	586305	1080
586306	977009	Weebigee	Knoll			474160.09	5879361.23		Channel					0.25	586306	447
586307	977009	Weebigee	Knoll			474160.36	5879361.23		Channel					0.20	586307	861
586308	977009	Weebigee	Knoll			474160.99	5879360.84		Channel					0.30	586308	117
586309	977009	Weebigee	Knoll			474161.32	5879360.87		Channel					0.30	586309	60
586310	977009	Weebigee	Knoll			474159.62	5879360.35		Channel					0.40	586310	2750
586311	977009	Weebigee	Knoll			474161.28	5879360.53		Channel					0.25	586311	54
586312	977009	Weebigee	Knoll			474161.56	5879360.57		Channel					0.25	586312	43

Sample #	Claim	Project	Prospect	Sampler	Date	Easting	Northing	Elev (m)	Sample Type	Trench	DDH#	From (m)	To (m)	Length (m)	Sample #	Au (ppb)
586313	977009	Weebigee	Knoll			474164.34	5879366.85		Channel					0.25	586313	110
586314	977009	Weebigee	Knoll			474164.55	5879366.47		Channel					0.30	586314	> 3000
586315	977009	Weebigee	Knoll			474164.04	5879366.62		Channel					0.30	586315	1160
586316	977009	Weebigee	Knoll			474163.74	5879366.71		Channel					0.32	586316	370
586317	977009	Weebigee	Knoll			474165.43	5879366.34		Channel					0.25	586317	> 3000
586318	977009	Weebigee	Knoll			474164.83	5879366.39		Channel					0.30	586318	> 3000
586319	977009	Weebigee	Knoll			474163.42	5879366.80		Channel					0.35	586319	129
586320	977009	Weebigee	Knoll			474163.15	5879366.89		Channel					0.20	586320	85
586321	977009	Weebigee	Knoll			474164.18	5879365.26		Channel					0.28	586321	2300
586322	977009	Weebigee	Knoll			474163.89	5879365.25		Channel					0.30	586322	853
586323	977009	Weebigee	Knoll			474163.59	5879365.24		Channel					0.28	586323	2180
586324	977009	Weebigee	Knoll			474163.63	5879363.35		Channel					0.25	586324	1050
586325	977009	Weebigee	Knoll			474163.47	5879363.32		Channel					0.10	586325	> 3000
586326	977009	Weebigee	Knoll			474163.43	5879362.92		Channel					0.25	586326	2390
586327	977009	Weebigee	Knoll			474163.41	5879362.60		Channel					0.30	586327	1630
586328	977009	Weebigee	Knoll			474164.87	5879366.63		Channel					0.25	586328	> 3000
586329	977009	Weebigee	Knoll			474163.72	5879361.72		Channel					0.20	586329	87
586330	977009	Weebigee	Knoll			474163.89	5879361.77		Channel					0.15	586330	2920
586331	977009	Weebigee	Knoll			474163.49	5879361.66		Channel					0.28	586331	1410
586332	977009	Weebigee	Knoll			474163.18	5879361.59		Channel					0.35	586332	1250
586333	977009	Weebigee	Knoll			474162.82	5879361.51		Channel					0.40	586333	800
586334	977009	Weebigee	Knoll			474162.27	5879361.41		Channel					0.35	586334	316
586335	977009	Weebigee	Knoll			474162.06	5879361.35		Channel					0.45	586335	895
586336	977009	Weebigee	Knoll			474158.58	5879360.97		Channel					0.30	586336	98
586337	977009	Weebigee	Knoll			474157.89	5879360.68		Channel					0.35	586337	328
586338	977009	Weebigee	Knoll			474170.23	5879375.21		Channel					0.20	586338	> 3000
586339	977009	Weebigee	Bernadette			474241.62	5879372.48		Channel					0.27	586339	207
586340	977009	Weebigee	Bernadette			474241.90	5879372.48		Channel					0.27	586340	94
586341	977009	Weebigee	Bernadette			474241.15	5879372.04		Channel					0.28	586341	> 3000
586342	977009	Weebigee	Bernadette			474240.90	5879372.14		Channel					0.20	586342	> 3000
586343	977009	Weebigee	Bernadette			474241.33	5879372.25		Channel					0.25	586343	170
586344	977009	Weebigee	Bernadette			474245.66	5879358.41		Channel					0.40	586344	18
586345	977009	Weebigee	Bernadette			474248.60	5879358.37		Channel					0.35	586345	723
586346	977009	Weebigee	Bernadette			474248.93	5879358.49		Channel					0.35	586346	36
586347	977009	Weebigee	Bernadette			474249.24	5879358.57		Channel					0.25	586347	42
586348	977009	Weebigee	Bernadette			474249.53	5879358.80		Channel					0.40	586348	626
586349	977009	Weebigee	Bernadette			474249.84	5879358.94		Channel					0.28	586349	> 3000
586350	977009	Weebigee	Bernadette			474250.08	5879359.05		Channel					0.23	586350	163
586351	977027	Weebigee	Peninsula Island			473369.28	5879265.13		Channel					0.25	586351	35
586352	977027	Weebigee	Peninsula Island			473369.53	5879265.31		Channel					0.40	586352	75
586353	977027	Weebigee	Peninsula Island			473369.84	5879265.50		Channel					0.35	586353	93
586354	977027	Weebigee	Peninsula Island			473370.09	5879265.67		Channel					0.25	586354	15
586355	977027	Weebigee	Peninsula Island			473369.81	5879268.58		Channel					0.35	586355	53
586356	977027	Weebigee	Peninsula Island			473369.99	5879268.87		Channel					0.32	586356	70
586357	977027	Weebigee	Peninsula Island			473369.69	5879269.49		Channel					0.22	586357	174
586358	977027	Weebigee	Peninsula Island			473369.78	5879269.77		Channel					0.35	586358	28
586359	977027	Weebigee	Peninsula Island			473369.59	5879265.89		Channel					0.60	586359	34
586360	977027	Weebigee	Peninsula Island			473369.98	5879266.26		Channel					0.35	586360	32

Sample #	Claim	Project	Prospect	Sampler	Date	Easting	Northing	Elev (m)	Sample Type	Trench	DDH#	From (m)	To (m)	Length (m)	Sample #	Au (ppb)
586361	977027	Weebigee	Peninsula Island			473366.87	5879270.93		Channel					0.45	586361	128
586362	977027	Weebigee	Peninsula Island			473366.97	5879271.14		Channel					0.25	586362	164
586363	977009	Weebigee	Knoll			474167.03	5879376.17		Channel					0.25	586363	565
586364	977009	Weebigee	Knoll			474166.78	5879376.12		Channel					0.25	586364	925
586365	977009	Weebigee	Knoll			474166.19	5879376.10		Channel					0.35	586365	194
586366	977009	Weebigee	Knoll			474165.86	5879376.05		Channel					0.30	586366	141
586367	977009	Weebigee	Knoll			474165.59	5879375.99		Channel					0.25	586367	88
586368	977009	Weebigee	Knoll			474165.41	5879375.59		Channel					0.35	586368	35
586369	977009	Weebigee	Knoll			474165.04	5879375.50		Channel					0.35	586369	64
586370	977009	Weebigee	Knoll			474164.74	5879375.43		Channel					0.25	586370	342
586371	977009	Weebigee	Knoll			474164.48	5879375.37		Channel					0.30	586371	226
586372	977009	Weebigee	Knoll			474164.29	5879374.69		Channel					0.35	586372	169
586373	977009	Weebigee	Knoll			474164.01	5879374.50		Channel					0.35	586373	344
586374	977009	Weebigee	Knoll			474163.59	5879374.40		Channel					0.50	586374	56
586375	977009	Weebigee	Knoll			474162.28	5879372.65		Channel					0.25	586375	172
586376	977009	Weebigee	Knoll			474162.44	5879372.43		Channel					0.30	586376	235
586377	977009	Weebigee	Knoll			474162.52	5879372.31		Channel					0.30	586377	356
586378	977009	Weebigee	Knoll			474162.86	5879372.13		Channel					0.40	586378	20
586379	977009	Weebigee	Knoll			474163.17	5879372.25		Channel					0.30	586379	24
586380	977009	Weebigee	Knoll			474163.30	5879372.29		Channel					0.40	586380	40
586381	977009	Weebigee	Knoll			474163.67	5879372.41		Channel					0.40	586381	82
586382	977009	Weebigee	Knoll			474164.04	5879372.53		Channel					0.40	586382	220
586383	977009	Weebigee	Knoll			474164.43	5879372.68		Channel					0.45	586383	65
586384	977009	Weebigee	Knoll			474165.08	5879372.91		Channel					0.50	586384	153
586385	977009	Weebigee	Knoll			474166.52	5879376.02		Channel					0.35	586385	1770
586386	977009	Weebigee	Knoll			474165.20	5879366.65		Channel					0.35	586386	> 3000
586387	977009	Weebigee	Knoll			474177.93	5879373.21		Channel					0.22	586387	1300
586388	977009	Weebigee	Knoll			474177.90	5879373.44		Channel					0.25	586388	791
586389	977009	Weebigee	Knoll			474177.74	5879373.63		Channel					0.20	586389	2460
586390	977009	Weebigee	Knoll			474178.11	5879373.73		Channel					0.30	586390	175
586391	977009	Weebigee	Knoll			474178.13	5879374.13		Channel					0.18	586391	84
586392	977009	Weebigee	Knoll			474177.61	5879373.79		Channel					0.30	586392	1280
586393	977009	Weebigee	Knoll			474177.79	5879374.19		Channel					0.27	586393	1230
586394	977009	Weebigee	Knoll			474177.85	5879374.47		Channel					0.28	586394	789
586395	977009	Weebigee	Knoll			474177.98	5879374.72		Channel					0.31	586395	9
586396	977009	Weebigee	Knoll			474169.00	5879374.74		Channel					0.25	586396	78
586397	977009	Weebigee	Knoll			474169.23	5879375.00		Channel					0.30	586397	515
586398	977009	Weebigee	Knoll			474169.65	5879374.81		Channel					0.30	586398	42
586399	977009	Weebigee	Knoll			474169.93	5879374.85		Channel					0.25	586399	> 3000
586400	977009	Weebigee	Knoll			474170.19	5879374.85		Channel					0.30	586400	497
586401	977009	Weebigee	Bernadette			474250.40	5879359.09		Channel					0.32	586401	17
586402	977009	Weebigee	Bernadette			474246.22	5879365.38		Channel					0.38	586402	> 3000
586403	977009	Weebigee	Knoll			474161.70	5879361.27		Channel					0.25	586403	916
586404	977009	Weebigee	Bernadette			474257.03	5879365.84		Channel					0.27	586404	> 3000
586405	977009	Weebigee	Bernadette			474257.03	5879365.57		Channel					0.28	586405	> 3000

Sample #	Au (g/t)	Check Au (g/t)	Au + 100 mesh (g/mt)	Au - 100 mesh (A) (g/mt)	Au - 100 mesh (B) (g/mt)	Total Au (g/mt)	"+ 100 mesh(g)"	"- 100 mesh(g)"	Total Weight (g)	Ag (g/t)
109901	16.900	17.000								1.10
109902	25.200									1.90
109903	0.874									0.50
109904	2.800	2.770	7.700	2.630	2.410	2.770	49.740	981.300		0.20
109905	41.100	39.500	137.000	33.600	35.400	6.593	48.210	944.900		5.70
109906	3.060									0.80
109907	0.234									0.30
109908	0.293									0.60
109909	0.262									0.10
109910	0.368									0.10
109911	0.015									0.10
109912	0.327									0.20
109913	0.020									0.05
109914	0.441	0.560								0.10
109915	38.900		151.000	36.500	37.200	38.900	15.590	850.800	866.390	27.40
109916	2.900	3.030	9.130	2.820	2.410	3.030	50.300	738.100		40.50
109917	53.800	50.300	330.000	33.800	36.500	42.800	26.060	971.700		32.70
109918	5.420	5.880	37.700	5.610	5.560	5.880	6.730	723.400		18.80
109919	0.093									1.00
109920	0.154									1.50
109921	0.078									3.60
109922	0.157									5.60
109923	1.180	1.530								1.10
109924	18.300									1.50
109925	0.019									0.20
109926	0.042									0.70
109927	0.110									0.50
109928	0.031									0.40
109929	5.170	5.720								3.30
109930	3.270									2.60
109931	0.154									0.60
109932	24.900									2.30
109933	0.029									0.30
109934 109935	0.240 4.330	4.050								0.30 0.90
586251	0.028	4.050								0.50
586252	0.028								1	+
586253	1.050								1	+
586254	0.024								1	+
586255	0.012									+
586256	0.002								1	+
586257	0.011								1	+
586258	0.073									+
586259	0.061								1	+
586260	0.031									+
586261	0.031									+
586262	0.025									
586263	0.023									
586264	0.100									+
586264	0.100									

Sample #	Au (g/t)	Check Au (g/t)	Au + 100 mesh (g/mt)	Au - 100 mesh (A) (g/mt)	Au - 100 mesh (B) (g/mt)	Total Au (g/mt)	"+ 100 mesh(g)"	"- 100 mesh(g)"	Total Weight (g)	Ag (g/t)
586265	0.073									
586266	0.028									
586267	1.730									
586268	2.540									
586269	17.500		67.100	18.000	15.800	17.500	12.570	995.300	1007.900	
586270	8.590									
586271	0.182									
586272	0.225									
586273	3.950									0.75
586274	0.037									
586275	0.484									
586276	0.282									
586277	0.862									
586278	0.303									
586279	0.609									
586280	0.148									
586281	0.321									
586282	1.460									
586283	0.376									
586284	0.140									
586285	0.075									
586286	0.032									
586287	0.055									
586288	0.040									
586289	0.034									
586290	5.620									
586291	0.044									
586292	0.013									
586293	0.011									
586294	0.078									
586295	0.331									
586296	1.350									
586297	1.240									
586298	0.030									
586299	0.007									
586300	2.230							1		<u> </u>
586301	0.002									
586302	0.740									<u> </u>
586303	0.059							1		<u> </u>
586304	0.060							1		<u> </u>
586305	1.080									
586306	0.447							1		<u> </u>
586307	0.861							1		<u> </u>
586308	0.117							1		<u> </u>
586309	0.060									<u> </u>
586310	2.750									
586311	0.054							1		<u> </u>
586312	0.043									

Sample #	Au (g/t)	Check Au (g/t)	Au + 100 mesh (g/mt)	Au - 100 mesh (A) (g/mt)	Au - 100 mesh (B) (g/mt)	Total Au (g/mt)	"+ 100 mesh(g)"	"- 100 mesh(g)"	Total Weight (g)	Ag (g/t)
586313	0.110				_					
586314	4.790									1.72
586315	1.160									
586316	0.370									
586317	20.900									
586318	22.000									
586319	0.129									
586320	0.085									
586321	2.300									
586322	0.853									
586323	2.180									
586324	1.050									
586325	8.170									151.00
586326	2.390									22.50
586327	1.630									
586328	18.300									
586329	0.087									
586330	2.920									
586331	1.410									
586332	1.250									
586333	0.800									
586334	0.316									
586335	0.895									
586336	0.098									
586337	0.328									
586338	3.460									
586339	0.207									
586340	0.094									
586341	16.100									
586342	7.800									
586343	0.170									
586344	0.018									
586345	0.723									
586346	0.036									
586347	0.042									
586348	0.626									
586349	43.500									
586350	0.163									
586351	0.035									
586352	0.075									
586353	0.093									
586354	0.015									
586355	0.053									
586356	0.070									
586357	0.174									
586358	0.028									
586359	0.034									
586360	0.032									

Sample #	Au (g/t)	Check Au (g/t)	Au + 100 mesh (g/mt)	Au - 100 mesh (A) (g/mt)	Au - 100 mesh (B) (g/mt)	Total Au (g/mt)	"+ 100 mesh(g)"	"- 100 mesh(g)"	Total Weight (g)	Ag (g/t)
586361	0.128									
586362	0.164									
586363	0.565									1.15
586364	0.925									1.01
586365	0.194									2.14
586366	0.141									1.95
586367	0.088									
586368	0.035									
586369	0.064									
586370	0.342									
586371	0.226									
586372	0.169									
586373	0.344									
586374	0.056									
586375	0.172									
586376	0.235									
586377	0.356									
586378	0.020									
586379	0.024									
586380	0.040									
586381	0.082									
586382	0.220									
586383	0.065									
586384	0.153									
586385	1.770									
586386	34.100									
586387	1.300									
586388	0.791									
586389	2.460									
586390	0.175									
586391	0.084									
586392	1.280									
586393	1.230									
586394	0.789							1		
586395	0.009							1		
586396	0.078							1		
586397	0.515							1		
586398	0.042									\vdash
586399	3.080									3.75
586400	0.497									3.13
586401	0.497									\vdash
586402	11.700									
586403	0.916									
586404	7.430							 		
586405	8.780									
300403	0.700									
						l .	l			

Sample #	Al (%)	As (ppm)	Ba (ppm)	Be (ppm)	Bi (ppm)	Ca (%)	Cd (ppm)	Ce (ppm)	Co (ppm)	Cr (ppm)	Cs (ppm)	Cu (ppm)	Fe (%)	Ga (ppm)	Ge (ppm)	Hf (ppm)	In (ppm)	K (%)
109901	4.73	8.0	261	0.50	0.20	1.41	0.05	40.0	6.8			33.5	1.67		**	1.7		` ′
109902	2.58	14.0	164	0.50	0.20	1.41	0.05	27.0	6.6			83.7	1.79			0.9		
109903	5.94	20.0	204	0.50	0.40	1.48	0.05	69.0	11.8			16.8	3.07			2.4		
109904	5.75	14.0	285	0.50	0.40	2.45	0.05	59.0	12.7			5.1	2.64			2.2		
109905	3.85	11.0	208	0.50	0.50	1.35	0.10	37.0	8.9			19.9	2.03			1.4		
109906	7.10	19.0	164	0.50	0.90	3.17	0.05	120.0	20.9			43.9	4.96			3.7		
109907	7.30	10.0	341	0.50	0.70	3.77	0.05	136.0	15.2			61.5	4.12			3.0		
109908	7.27	9.0	227	0.50	0.70	4.31	0.05	141.0	16.8			44.8	4.15			3.0		
109909	6.88	5.0	315	0.50	0.50	2.27	0.05	114.0	7.7			8.3	2.58			2.6		
109910	6.06	5.0	341	0.50	0.40	1.63	0.05	92.0	6.7			9.5	1.87			2.5		
109911	7.55	2.0	776	0.50	0.05	0.69	0.05	73.0	10.0			16.3	1.75			2.5		
109912	4.13	3.0	412	0.50	0.10	0.46	0.05	76.0	2.9			11.8	1.31			0.4		
109913	4.94	2.0	288	0.50	0.05	1.23	0.05	89.0	3.4			6.2	1.70			0.1		
109914	4.32	4.0	308	0.50	0.50	3.25	0.05	57.0	16.5			59.4	2.64			1.3		
109915	1.23	591.0	106	0.50	0.20	0.28	0.05	16.0	11.6			294.0	2.67			0.4		
109916	1.01	188.0	87	0.50	0.60	2.20	0.20	17.0	21.7			741.0	3.31			0.3		
109917	0.68	1040.0	54	0.50	0.40	0.17	0.05	7.0	5.5			210.0	1.11			0.2		
109918	1.04	64.0	61	0.50	0.20	0.38	0.05	9.0	2.4			47.8	0.87			0.3		
109919	8.64	9.0	702	0.50	0.30	2.27	0.05	85.0	7.1			115.0	2.11			2.7		
109920	5.12	9.0	582	0.50	0.30	1.90	0.05	47.0	10.9			204.0	2.28			2.5		
109921	8.67	6.0	542	0.50	1.40	3.50	0.20	80.0	14.1			404.0	2.80			2.3		
109922	8.01	6.0	457	1.00	3.20	3.48	0.20	76.0	17.4			612.0	2.99			2.2		
109923	5.86	33.0	226	0.50	0.40	2.33	0.05	59.0	24.6			54.0	2.38			1.7		
109924	7.28	9.0	375	0.50	0.05	2.87	0.05	67.0	8.8			50.3	1.97			2.1		
109925	8.49	6.0	381	0.50	0.05	2.70	0.05	71.0	6.3			20.2	2.05			2.3		
109926	8.14	8.0	337	0.50	0.05	3.16	0.05	61.0	9.9			69.6	2.26			2.2		
109927	7.78	16.0	302	0.50	0.20	3.19	0.05	77.0	15.5			44.3	2.28			2.2		
109928	8.39	10.0	404	0.50	0.05	2.83	0.05	76.0	8.4			52.3	1.84			2.3		
109929	5.78	101.0	217	0.50	2.40	1.85	0.10	68.0	55.7			167.0	3.51			1.8		
109930	4.30	57.0	204	0.50	0.80	1.13	0.05	54.0	17.3			40.4	1.65			1.3		
109931	7.26	28.0	312	0.50	0.40	1.60	0.05	80.0	23.0			59.9	2.11			2.4		
109932 109933	2.80 8.06	14.0 2.0	65 179	0.50 0.50	0.60 1.50	1.25 0.37	0.10 0.05	22.0 42.0	16.1 18.2			21.3 15.5	2.67 2.76			1.0 2.5		
109934	7.16	8.0	309	0.50	0.10	3.32	0.05	60.0	5.4			12.1	2.70			2.2		
109935	7.49	28.0	365	0.50	0.30	1.93	0.05	99.0	19.7			41.3	1.95			2.1		
586251																		
586252																		
586253																		
586254																		
586255																		
586256																		
586257																		
586258																		
586259																		
586260																		
586261																		
586262																		
586263																		
586264																		

Sample #	Al (%)	As (ppm)	Ba (ppm)	Be (ppm)	Bi (ppm)	Ca (%)	Cd (ppm)	Ce (ppm)	Co (ppm)	Cr (ppm)	Cs (ppm)	Cu (ppm)	Fe (%)	Ga (ppm)	Ge (ppm)	Hf (ppm)	In (ppm)	K (%)
586265	A1 (/0)	As (ppiii)	ва (ррш)	De (ppin)	Di (ppili)	Ca (/0)	Cu (ppin)	се (ррш)	Co (ppin)	Ci (ppiii)	Cs (ppiii)	Cu (ppin)	FC (/0)	Са (ррш)	Ge (ppin)	III (ppiii)	ти (ррш)	K (/0)
586266																		
586267																		
586268																		
586269 586270																		-
586271 586272																		
586273	2.21	4.1	330	1.15	0.75	1.74	0.07	36.4	6.0	859	0.35	19.6	1.29	7.09	0.11	0.4	0.017	0.75
586274	2.21	4.1	330	1.13	0.73	1.74	0.07	30.4	0.0	839	0.33	19.0	1.29	7.09	0.11	0.4	0.017	0.73
586275																		
586276																		
586277																		
586278																		
586279																		
586280																		
586281																		
586282																		
586283																		
586284																		
586285																		
586286																		
586287																		
586288																		
586289																		
586290																		
586291																		
586292																		
586293																		
586294																		
586295																		
586296																		
586297																		
586298																		
586299																		
586300																		
586301																		
586302																		
586303																		
586304																		
586305																		
586306																		
586307																		
586308																		
586309																		
586310																		
586311																		
586312																		

Sample #	Al (%)	As (ppm)	Ba (ppm)	Be (ppm)	Bi (ppm)	Ca (%)	Cd (ppm)	Ce (ppm)	Co (ppm)	Cr (nnm)	Cs (ppm)	Cu (nnm)	Fe (%)	Ga (ppm)	Ge (ppm)	Hf (ppm)	In (ppm)	K (%)
586313	AI (70)	As (ppiii)	Ба (ррш)	DC (ppin)	Di (ppiii)	Ca (70)	Cu (ppin)	сс (ррш)	Co (ppin)	Ci (ppiii)	Cs (ppin)	Cu (ppin)	FC (/0)	Ой (ррш)	ос (ррш)	III (ppiii)	ти (ррш)	IX (70)
586314	1.48	75.9	140	0.23	0.10	0.08	0.01	8.8	5.5	17	0.15	74.5	0.70	4.18	0.07	0.5	0.007	0.71
586314	1.48	75.9	140	0.23	0.10	0.08	0.01	8.8	3.3	17	0.15	74.5	0.70	4.18	0.07	0.5	0.007	0.71
586316																		
586317																		
586318																		
586319																		
586320																		
586321																		
586322																		
586323																		
586324																		
586325	0.58	206.0	20	0.09	1.23	0.09	0.88	4.0	5.1	33	0.10	1640.0	2.61	1.54	0.29	0.2	0.022	0.26
586326	1.17	61.3	40	0.16	0.23	0.72	0.19	11.0	4.4	30	0.53	228.0	1.05	3.44	0.06	0.3	0.009	0.57
586327	1.17	01.5	40	0.10	0.23	0.72	0.17	11.0	7.7	50	0.55	220.0	1.05	5.44	0.00	0.5	0.007	0.57
586328																		
586329																		
586330																		
586331																		
586332																		
586333																		
586334																		
586335																		
586336																		
586337																		
586338																		
586339																		
586340																		
586341																		
586342																		
586343																		
586344																		
586345																		
586346																		
586347																		
586348																		
586349																		
586350																		
586351																		
586352																		
586353																		
586354																		
586355																		
586356																		
586357																		
586358																		
586359																		
586360																		

Sample #	Al (%)	As (ppm)	Ba (ppm)	Be (ppm)	Bi (ppm)	Ca (%)	Cd (ppm)	Ce (ppm)	Co (ppm)	Cr (ppm)	Cs (ppm)	Cu (ppm)	Fe (%)	Ga (ppm)	Ge (ppm)	Hf (ppm)	In (ppm)	K (%)
586361																		
586362																		
586363	4.23	9.7	2010	0.44	0.04	0.21	0.01	40.5	2.6	27	0.33	27.8	0.81	11.90	0.11	1.3	0.014	2.17
586364	2.82	13.5	1090	0.34	0.08	0.37	0.02	40.8	5.5	65	0.24	46.3	0.72	7.12	0.11	0.9	0.008	1.24
586365	5.72	16.5	600	0.71	0.10	2.60	0.03	69.9	7.9	28	1.73	90.9	1.94	14.70	0.14	1.7	0.010	1.97
586366	5.37	13.8	620	0.56	0.04	1.59	0.03	64.2	4.4	31	1.14	98.8	1.36	14.25	0.13	1.7	0.015	2.27
586367																		
586368																		
586369																		
586370																		
586371																		
586372																		
586373																		
586374																		
586375																		
586376																		
586377																		
586378																		
586379																		
586380																		
586381																		
586382																		
586383																		
586384																		
586385																		
586386																		
586387																		
586388																		
586389																		
586390																		
586391																		
586392																		
586393																		
586394																		
586395																		
586396																		
586397																		
586398																		
586399	0.62	96.6	90	0.11	0.09	1.46	0.03	13.5	2.9	5	0.26	21.2	0.67	1.58	0.06	0.2	0.005	0.23
586400																		
586401																		
586402																		
586403																		
586404																		
586405																		

Sample #	La (ppm)	Li (ppm)	Mg (%)	Mn (ppm)	Mo (ppm)	Na (%)	Nb (ppm)	Ni (ppm)	P (%)	Pb (ppm)	Rb (ppm)	Re (ppm)	S (%)	Sb (ppm)	Sc (ppm)	Se (ppm(Sn (ppm)	Sr (ppm)
109901	19.3	10.2	0.59	253	0.9	0.484	2.0	12.5	0.036	5.2	37.3	***	0.67	0.50	3.0		0.6	58.0
109902	13.1	6.6	0.75	412	0.5	0.223	1.0	9.8	0.022	4.1	26.3		0.93	0.60	2.0		0.4	35.0
109903	33.0	15.4	1.14	429	2.8	0.393	2.7	18.9	0.073	7.6	69.1		1.42	0.60	6.0		0.6	77.0
109904	29.0	12.8	1.05	432	0.9	0.584	2.6	21.9	0.062	5.6	54.4		1.37	0.60	4.0		0.7	92.0
109905	16.8	11.0	0.78	362	0.6	0.350	1.7	14.1	0.055	47.4	36.2		1.00	0.50	3.0		0.4	42.0
109906	58.5	19.2	1.27	569	1.4	0.487	4.2	29.2	0.126	20.2	65.5		3.05	0.80	9.0		0.9	108.0
109907	59.7	13.5	1.25	746	0.6	0.559	2.8	22.2	0.183	7.9	77.6		1.57	0.60	10.0		0.7	115.0
109908	60.7	14.8	1.46	879	0.6	0.568	2.9	19.7	0.193	6.9	73.8		1.59	0.70	10.0		0.7	121.0
109909	49.9	15.7	0.95	485	0.5	0.378	2.5	15.4	0.156	6.5	65.7		1.06	0.50	9.0		0.6	75.0
109910	38.6	14.3	0.61	300	0.9	0.348	2.7	12.2	0.137	5.2	54.5		0.78	0.50	6.0		0.7	61.0
109911	35.6	12.8	0.55	196	0.3	0.169	3.2	27.0	0.078	2.3	85.7		0.13	1.20	5.0		0.9	24.0
109912	48.1	7.9	0.45	150	4.7	0.138	1.0	20.1	0.040	2.3	46.4		0.07	1.40	2.0		0.5	20.0
109913	58.0	12.0	0.78	276	2.4	0.424	0.5	31.1	0.047	2.1	55.6		< 0.01	0.80	3.0		0.2	50.0
109914	31.0	14.4	1.25	486	2.4	0.255	1.7	54.4	0.041	2.4	52.9		0.33	2.20	4.0		0.6	54.0
109915	7.8	5.0	0.18	120	1.1	0.047	0.4	33.8	0.010	2.7	10.9		0.99	5.30	0.5		0.4	26.0
109916	7.7	3.9	0.79	634	0.7	0.044	0.3	64.9	0.016	3.6	8.2		1.37	7.50	2.0		0.4	31.0
109917	3.6	3.2	0.13	64	1.2	0.018	0.1	18.2	0.003	4.4	6.6		0.44	6.20	0.5		0.2	9.0
109918	4.7	5.3	0.16	102	1.3	0.047	0.1	13.7	0.006	3.9	8.7		0.06	4.60	0.5		0.3	23.0
109919	40.6	13.0	0.89	266	4.1	0.257	3.6	12.3	0.071	5.5	66.0		0.29	1.60	5.0		0.8	89.0
109920	17.7	12.1	0.75	280	8.0	0.253	3.5	14.6	0.060	4.5	35.1		0.43	1.80	4.0		0.8	70.0
109921	38.3	13.1	1.35	595	8.6	0.612	3.5	17.0	0.079	6.9	82.6		0.52	1.20	6.0		0.7	136.0
109922	36.3	13.2	1.33	609	7.5	0.619	3.4	20.0	0.073	7.6	84.7		0.57	1.30	5.0		0.8	133.0
109923	29.0	7.9	0.92	522	0.7	0.516	2.3	30.0	0.058	11.5	56.6		0.74	1.00	4.0		0.5	58.0
109924	32.0	8.4	1.02	641	0.4	0.515	1.2	16.4	0.066	14.7	60.4		0.21	0.80	5.0		0.6	67.0
109925	34.6	11.1	1.10	645	0.3	0.488	2.9	25.3	0.075	11.0	60.9		0.14	0.60	6.0		0.7	61.0
109926	28.7	8.9	1.11	702	0.4	0.539	2.7	14.1	0.074	14.8	65.8		0.24	0.60	6.0		0.7	66.0
109927	36.6	8.9	1.15	675	0.2	0.632	3.1	25.4	0.073	13.1	69.8		0.40	0.80	5.0		0.6	71.0
109928	35.9	8.3	0.88	544	1.2	0.583	2.3	14.9	0.074	13.9	71.2		0.21	0.70	6.0		0.6	64.0
109929	33.0	5.7	0.73	442	2.4	0.434	2.5	29.8	0.046	11.9	53.2		2.13	1.50	4.0		0.6	48.0
109930	26.0	5.3	0.45	280	1.2	0.279	2.0	16.9	0.044	7.6	41.1		0.54	2.30	3.0		0.5	29.0
109931	38.3	10.0	0.73	378	0.7	0.464	3.2	39.5	0.072	8.2	62.4		0.78	1.00	5.0		0.6	43.0
109932	10.8	14.3	1.03	440	1.0	0.127	1.1	18.3	0.045	20.7	41.3		1.28	0.40	2.0		0.4	29.0
109933 109934	17.5 28.2	18.1 12.3	0.43 1.15	180 702	1.6 0.8	0.232 0.498	3.4 1.7	17.5 18.5	0.114	26.0 10.3	65.9 65.8		1.52 0.10	0.40	7.0 5.0		0.8	30.0 76.0
109935	49.8	8.7	0.71	406	0.7	0.517	3.3	31.2	0.071	10.8	59.8		0.50	1.00	5.0		0.8	52.0
586251																		
586252																		
586253																		
586254																		
586255																		
586256																		
586257																		
586258																		
586259																		
586260																		
586261																		
586262																		
586263																		
586264																		

Sample #	La (nnm)	Li (nnm)	Ma (%)	Mn (nnm)	Mo (ppm)	No (%)	Nb (ppm)	Ni (nnm)	D (0/.)	Ph (nnm)	Ph (nnm)	Pa (nnm)	S (%)	Sb (ppm)	So (nnm)	So (ppm)	Sn (nnm)	Sr (nnm)
	La (ppm)	Li (ppm)	Mg (%)	Mn (ppm)	MO (ppin)	Na (%)	No (ppiii)	Ni (ppm)	P (%)	Pb (ppm)	Rb (ppm)	Re (ppm)	3 (70)	SD (PPIII)	Sc (ppm)	Se (ppm(Sn (ppm)	Sr (ppm)
586265																		
586266																		
586267																		
586268																		
586269																		
586270																		
586271																		
586272	10.0		0.55	265	10.0	0.140	0.7	70.0	210.000	4.5	1.5.5	0.002	0.14	0.77		0.05	0.2	60.0
586273	18.8	5.6	0.56	265	19.2	0.140	0.7	70.0	210.000	4.5	16.6	0.002	0.14	0.75	7.1	0.05	0.3	68.9
586274																		<u> </u>
586275																		<u> </u>
586276																		<u> </u>
586277																		\vdash
586278																		
586279																		
586280																		
586281																		
586282																		
586283																		
586284																		
586285																		
586286																		
586287																		
586288																		
586289																		
586290																		
586291																		
586292																		
586293																		
586294																		
586295																		\vdash
586296																		
586297																		
586298																		\vdash
586299				 	 						 			 				\vdash
586300				 	 						-			-				\vdash
586301																		\vdash
586302																		
586303																		\vdash
586304				-	-						-			-				\vdash
586305				-	-						-			-				\vdash
586306																		\vdash
586307																		\vdash
586308																		—
586309																		
586310																		
586311																		
586312				<u> </u>	<u> </u>						<u> </u>			<u> </u>				

Sample #	Lo (nnm)	I : (nnm)	Ma (9/)	Mn (nnm)	Mo (ppm)	Na (%)	Mb (nnm)	Ni (nnm)	P (%)	Ph (nnm)	Dh (nnm)	Do (nnm)	S (%)	Ch (nnm)	Co (nnm)	Co (npm)	Sn (ppm)	Cu (ppm)
-	La (ppm)	Li (ppm)	Mg (%)	Mn (ppm)	Mo (ppm)	Na (%)	Nb (ppm)	Ni (ppm)	P (%)	Pb (ppm)	Rb (ppm)	Re (ppm)	5 (%)	Sb (ppm)	Sc (ppm)	Se (ppm(Sn (ppm)	Sr (ppm)
586313																		
586314	3.9	3.6	0.10	38	1.3	0.020	0.6	106.5	210.000	1.5	15.6	0.001	0.20	4.98	1.1	0.05	0.2	6.8
586315																		\vdash
586316																		
586317																		\vdash
586318																		
586319																		-
586320																		-
586321																		\vdash
586322																		
586323																		
586324	1.0	2.7	0.07	27	2.4	0.010	0.2	16.6	60.000	12.0	6.2	0.001	2.40	221.00	0.2	2.00	0.0	3.5
586325	1.9 5.1	2.7 6.8	0.07	37 195	2.4 2.5	0.010	0.2	16.6 24.2	200.000	13.2 6.4	6.3 19.1	0.001	2.49 0.60	331.00 56.90	0.3 1.0	2.00 1.00	0.0	8.5
586326	5.1	6.8	0.36	195	2.5	0.030	0.5	24.2	200.000	6.4	19.1	0.001	0.60	56.90	1.0	1.00	0.2	8.5
586327																		
586328																		—
586329 586330																		
586331																		
586332																		\vdash
																		\vdash
586333																		
586334																		\vdash
586335 586336																		
586337																		\vdash
586338																		
586339																		
586340																		
586341																		
586342																		
586343																		
586344																		
586345																		
586346																		
586347																		
586348																		
586349				<u> </u>	<u> </u>				<u> </u>				<u> </u>	<u> </u>			<u> </u>	
586350																		
586351									<u> </u>				<u> </u>					
586352				<u> </u>	<u> </u>				<u> </u>				<u> </u>	<u> </u>			<u> </u>	
586353																		
586354																		
586355				<u> </u>	<u> </u>				<u> </u>				<u> </u>	<u> </u>			<u> </u>	
586356				<u> </u>	<u> </u>				<u> </u>				<u> </u>	<u> </u>			<u> </u>	
586357				<u> </u>	<u> </u>				<u> </u>				<u> </u>	<u> </u>			<u> </u>	
586358																		
586359																		
586360				<u> </u>	<u> </u>				<u> </u>				<u> </u>	<u> </u>			<u> </u>	
200300		1	1	1	1		ı		1	1	1	I	1	1	I	1		

Sample #	La (ppm)	Li (ppm)	Mg (%)	Mn (ppm)	Mo (ppm)	Na (%)	Nb (ppm)	Ni (ppm)	P (%)	Pb (ppm)	Rb (ppm)	Re (ppm)	S (%)	Sb (ppm)	Sc (ppm)	Se (ppm(Sn (ppm)	Sr (ppm)
586361																		
586362																		
586363	19.4	8.8	0.25	63	1.9	0.060	2.0	13.6	340.000	1.7	39.8	0.001	0.04	3.05	3.4	0.05	0.4	31.7
586364	19.5	6.0	0.22	58	2.8	0.060	1.2	36.7	300.000	2.0	24.2	0.001	0.10	2.28	2.4	0.05	0.3	40.7
586365	33.1	13.7	1.21	437	1.6	0.310	2.7	47.2	660.000	4.9	66.3	0.001	0.24	2.49	7.0	1.00	0.6	155.0
586366	30.2	12.8	0.79	266	2.0	0.200	2.8	52.7	610.000	3.8	58.6	0.001	0.09	2.08	5.1	1.00	0.9	102.0
586367	30.2	12.0	0.77	200	2.0	0.200	2.0	32.7	010.000	5.0	30.0	0.001	0.07	2.00	3.1	1.00	0.7	102.0
586368																		
586369																		
586370																		
586371																		
586372																		
586373																		
586374																		
586375																		
586376																		
586377																		
586378																		
586379																		
586380																		
586381																		
586382																		
586383																		
586384																		
586385																		
586386																		
586387																		
586388																		
586389																		
586390																		
586391																		
586392																		
586393																		
586394																		
586395																		
586396																		
586397																		
586398																		
586399	6.2	2.4	0.51	185	1.2	0.020	0.2	16.2	100.000	1.8	7.9	0.001	0.05	3.86	1.1	0.05	0.2	21.4
586400	0.2	2.4	0.51	103	1.2	0.020	0.2	10.2	100.000	1.0	1.7	0.001	0.03	3.00	1.1	0.03	0.2	∠1.4
586401																		
586402																		
586403																		
586404																		
586404																		
360403																		
	l .		l .					l .		<u> </u>	<u> </u>	l .	1	<u> </u>	I .	l		1

Sample #	Ta (ppm)	Te (ppm)	Th (ppm)	Ti (%)	Tl (ppm)	U (ppm)	V (ppm)	W (ppm)	Y (ppm)	Zn (ppm)	Zr (ppm)	Lab 1	Date Received At Lab	Cert#	Package	Lab 2
109901	0.70		3.9	0.115	0.19	1.1	28	4.6	4.8	11	54.1	Act Labs	15-Nov-13	A13-13790	1A2/1EX	ALS
109902	0.70		2.2	0.061	0.16	0.7	15	1.9	3.6	14	29.1	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109903	0.80		6.5	0.202	0.39	1.8	50	6.1	7.6	22	81.5	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109904	0.70		5.7	0.172	0.32	1.8	42	8.9	7.3	21	73.9	Act Labs	15-Nov-13	A13-13790	1A2/1EX	ALS
109905	0.80		3.8	0.112	0.20	1.2	31	4.0	4.4	38	49.2	Act Labs	15-Nov-13	A13-13790	1A2/1EX	ALS
109906	0.90		10.4	0.360	0.45	2.6	92	16.9	12.7	36	124.0	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109907	0.70		9.6	0.308	0.57	2.5	120	19.3	11.9	36	99.4	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109908	1.40		9.6	0.320	0.61	2.6	129	22.0	12.4	40	104.0	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109909	0.50		8.9	0.266	0.40	2.1	100	15.3	10.4	24	91.0	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109910	1.00		7.7	0.241	0.30	2.0	73	21.6	9.8	14	91.0	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109911	0.70		6.9	0.238	0.33	1.6	54	8.3	6.2	12	94.1	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109912	0.40		3.4	0.118	0.18	1.0	32	3.3	3.3	12	24.4	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109913	0.40		3.8	0.136	0.26	1.3	31	1.0	4.6	22	4.1	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109914	1.00		3.6	0.123	0.25	0.9	34	10.1	6.5	27	51.0	Act Labs	15-Nov-13	A13-13790	1A2/1EX	ALS
109915	0.60		1.1	0.032	0.06	0.4	12	1.4	1.5	8	15.8	Act Labs	15-Nov-13	A13-13790	1A4/1EX	ALS
109915	0.40		0.9	0.032	0.00	0.4	13	2.4	9.2	22	11.3	Act Labs	15-Nov-13	A13-13790	1A4/1EX 1A2/1EX	ALS
109917	0.50		0.5	0.016	0.02	0.2	6	0.2	0.6	8	7.9	Act Labs	15-Nov-13	A13-13790	1A2/1EX 1A2/1EX	ALS
109918	0.70		0.8	0.025	0.02	0.2	8	0.2	0.9	8	12.1	Act Labs	15-Nov-13	A13-13790	1A2/1EX 1A2/1EX	ALS
109919	0.70		8.2	0.240	0.02	2.2	50	4.4	7.5	13	94.2	Act Labs	15-Nov-13	A13-13790	1A2/1EX 1A2/1EX	ALS
109919	0.80		4.1	0.240	0.28	1.6	49	3.9	4.8	14	92.4	Act Labs	15-Nov-13	A13-13790	1A2/1EX 1A2/1EX	
109920	0.70		7.2	0.233	0.28	1.8	56	1.7	8.3	35	85.0	Act Labs	15-Nov-13	A13-13790 A13-13790	1A2/1EX 1A2/1EX	
109921	1.40		6.7	0.235	0.51	1.9	53	2.7	8.2	38	82.6		15-Nov-13	A13-13790 A13-13790	1A2/1EX 1A2/1EX	
109922					0.30			7.9				Act Labs				AT C
	0.70		4.9	0.160		1.5	40		5.8	31	64.3	Act Labs	15-Nov-13	A13-13790	1A2/1EX	ALS
109924	0.70		6.2	0.193	0.45	1.5	49	122.0	6.2	36	79.7	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109925	0.70		7.2	0.225	0.48	1.6	53	6.6	6.3	37	89.9	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109926	0.80		6.6	0.216	0.49	1.6	51	5.2	7.7 7.5	38	85.8	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109927	1.30		6.4	0.218	0.48	1.6	51	8.0		39	84.2	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109928	0.40		6.8	0.231	0.44	1.8	59	4.8	7.3	28	91.1	Act Labs	15-Nov-13	A13-13790	1A2/1EX	17.0
109929	0.60		5.2	0.159	0.35	1.5	41	8.2	8.0	32	68.8	Act Labs	15-Nov-13	A13-13790	1A2/1EX	ALS
109930	0.60		4.1	0.122	0.24	1.1	31	8.4	5.8	16	48.0	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109931 109932	0.80		6.8 2.3	0.214	0.41	1.8	51 23	7.6 1.9	6.6 3.9	22 47	88.5 36.3	Act Labs Act Labs	15-Nov-13 15-Nov-13	A13-13790 A13-13790	1A2/1EX 1A2/1EX	
109933	0.80		6.9	0.070	0.20	2.0	80	2.5	7.3	13	89.8	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109934	0.80		6.9	0.206	0.47	1.5	50	1.1	6.5	51	83.3	Act Labs	15-Nov-13	A13-13790	1A2/1EX	
109935	0.80		6.6	0.210	0.38	2.0	54	11.0	7.1	22	81.9	Act Labs	15-Nov-13	A13-13790	1A2/1EX	ALS
586251												Act Labs	13-Aug-13	A13-09591	1A2	1
586252												Act Labs	13-Aug-13	A13-09591	1A2	,
586253												Act Labs	13-Aug-13	A13-09591	1A2	,
586254												Act Labs	13-Aug-13	A13-09591	1A2	1
586255												Act Labs	13-Aug-13	A13-09591	1A2	
586256												Act Labs	13-Aug-13	A13-09591	1A2	
586257												Act Labs	13-Aug-13	A13-09591	1A2	
586258												Act Labs	13-Aug-13	A13-09591	1A2	
586259												Act Labs	13-Aug-13	A13-09591	1A2	
586260												Act Labs	13-Aug-13	A13-09591	1A2	
586261												Act Labs	13-Aug-13	A13-09591	1A2	
586262												Act Labs	13-Aug-13	A13-09591	1A2	
586263												Act Labs	13-Aug-13	A13-09591	1A2	
586264												Act Labs	13-Aug-13	A13-09591	1A2	

Sample #	Ta (ppm)	Te (ppm)	Th (ppm)	Ti (%)	Tl (ppm)	U (ppm)	V (ppm)	W (ppm)	Y (ppm)	Zn (ppm)	Zr (ppm)	Lab 1	Date Received At Lab	Cert#	Package	Lab 2
586265												Act Labs	13-Aug-13	A13-09591	1A2	
586266												Act Labs	13-Aug-13	A13-09591	1A2	
586267												Act Labs	13-Aug-13	A13-09591	1A2	
586268												Act Labs	13-Aug-13	A13-09591	1A2	
586269												Act Labs	13-Aug-13	A13-09591	1A4	
586270												Act Labs	13-Aug-13	A13-09591	1A2	
586271												Act Labs	13-Aug-13	A13-09591	1A2	
586272												Act Labs	13-Aug-13	A13-09591	1A2	
586273	0.05	0.21	1.2	0.084	0.07	0.5	47	3.4	3.1	56	14.6	Act Labs	13-Aug-13	A13-09591	1A2	ALS
586274												Act Labs	13-Aug-13	A13-09591	1A2	
586275												Act Labs	13-Aug-13	A13-09591	1A2	
586276												Act Labs	13-Aug-13	A13-09591	1A2	
586277												Act Labs	13-Aug-13	A13-09591	1A2	
586278												Act Labs	13-Aug-13	A13-09591	1A2	
586279												Act Labs	13-Aug-13	A13-09591	1A2	
586280												Act Labs	13-Aug-13	A13-09591	1A2	
586281												Act Labs	13-Aug-13	A13-09591	1A2	
586282												Act Labs	13-Aug-13	A13-09591	1A2	
586283												Act Labs	13-Aug-13	A13-09591	1A2	
586284												Act Labs	13-Aug-13	A13-09591	1A2	
586285												Act Labs	13-Aug-13	A13-09591	1A2	
586286												Act Labs	13-Aug-13	A13-09591	1A2	
586287												Act Labs	13-Aug-13	A13-09591	1A2	
586288												Act Labs	13-Aug-13	A13-09591	1A2	
586289												Act Labs	13-Aug-13	A13-09591	1A2	
586290												Act Labs	13-Aug-13	A13-09591	1A2	
586291												Act Labs	13-Aug-13	A13-09591	1A2	
586292												Act Labs	13-Aug-13	A13-09591	1A2	
586293												Act Labs	13-Aug-13	A13-09591	1A2	
586294												Act Labs	13-Aug-13	A13-09591	1A2	
586295												Act Labs	13-Aug-13	A13-09591	1A2	
586296												Act Labs	13-Aug-13	A13-09591	1A2	
586297												Act Labs	13-Aug-13	A13-09591	1A2	
586298												Act Labs	13-Aug-13	A13-09591	1A2	
586299												Act Labs	13-Aug-13	A13-09591	1A2	
586300												Act Labs	13-Aug-13	A13-09591	1A2	
586300												Act Labs	13-Aug-13	A13-09591	1A2	
586302				<u> </u>	<u> </u>							Act Labs	13-Aug-13	A13-09591	1A2	
586303												Act Labs	13-Aug-13	A13-09591	1A2	
586304												Act Labs	13-Aug-13	A13-09591	1A2	
586305												Act Labs	13-Aug-13	A13-09591	1A2	
586306												Act Labs	13-Aug-13	A13-09591	1A2	
586307												Act Labs	13-Aug-13	A13-09591	1A2	
586308												Act Labs	13-Aug-13	A13-09591	1A2	
586309												Act Labs	13-Aug-13	A13-09591	1A2	
586310												Act Labs	13-Aug-13	A13-09591	1A2	
586311												Act Labs	13-Aug-13	A13-09591	1A2	
586312												Act Labs	13-Aug-13	A13-09591	1A2	
300312	1	l	l	1			I.	I.	l .	l		ACI LAUS	13-Aug-13	M13-03331	1712	

Sample #	Ta (ppm)	Te (ppm)	Th (ppm)	Ti (%)	Tl (ppm)	U (ppm)	V (ppm)	W (ppm)	Y (ppm)	Zn (ppm)	Zr (ppm)	Lab 1	Date Received At Lab	Cert #	Package	Lab 2
586313												Act Labs	13-Aug-13	A13-09591	1A2	
586314	0.05	0.40	1.3	0.040	0.07	0.4	14	10.9	1.5	1	19.7	Act Labs	13-Aug-13	A13-09591	1A2	ALS
586315												Act Labs	13-Aug-13	A13-09591	1A2	
586316												Act Labs	13-Aug-13	A13-09591	1A2	
586317												Act Labs	13-Aug-13	A13-09591	1A2	
586318												Act Labs	13-Aug-13	A13-09591	1A2	
586319												Act Labs	13-Aug-13	A13-09591	1A2	
586320												Act Labs	13-Aug-13	A13-09591	1A2	
586321												Act Labs	13-Aug-13	A13-09591	1A2	
586322												Act Labs	13-Aug-13	A13-09591	1A2	
586323												Act Labs	13-Aug-13	A13-09591	1A2	
586324												Act Labs	13-Aug-13	A13-09591	1A2	
586325	0.02	0.10	0.4	0.013	0.03	0.1	4	0.9	0.4	44	5.2	Act Labs	13-Aug-13	A13-09591	1A2	ALS
586326	0.02	0.06	1.0	0.029	0.12	0.3	10	2.3	1.4	13	11.5	Act Labs	13-Aug-13	A13-09591	1A2	ALS
586327												Act Labs	13-Aug-13	A13-09591	1A2	
586328												Act Labs	13-Aug-13	A13-09591	1A2	
586329												Act Labs	13-Aug-13	A13-09591	1A2	
586330												Act Labs	13-Aug-13	A13-09591	1A2	
586331												Act Labs	13-Aug-13	A13-09591	1A2	
586332												Act Labs	13-Aug-13	A13-09591	1A2	
586333												Act Labs	13-Aug-13	A13-09591	1A2	
586334												Act Labs	13-Aug-13	A13-09591	1A2	
586335												Act Labs	13-Aug-13	A13-09591	1A2	
586336												Act Labs	13-Aug-13	A13-09591	1A2	
586337												Act Labs	13-Aug-13	A13-09591	1A2	
586338												Act Labs	13-Aug-13	A13-09591	1A2	
586339												Act Labs	13-Aug-13	A13-09591	1A2	
586340												Act Labs	13-Aug-13	A13-09591	1A2	
586341												Act Labs	13-Aug-13	A13-09591	1A2	
586342												Act Labs	13-Aug-13	A13-09591	1A2	
586343												Act Labs	13-Aug-13	A13-09591	1A2	
586344												Act Labs	13-Aug-13	A13-09591	1A2	
586345												Act Labs	13-Aug-13	A13-09591	1A2	
586346												Act Labs	13-Aug-13	A13-09591	1A2	
586347												Act Labs	13-Aug-13	A13-09591	1A2	
586348												Act Labs	13-Aug-13	A13-09591	1A2	
586349												Act Labs	13-Aug-13	A13-09591	1A2	
586350												Act Labs	13-Aug-13	A13-09591	1A2	
586351												Act Labs	13-Aug-13	A13-09591	1A2	
586352												Act Labs	13-Aug-13	A13-09591	1A2	
586353												Act Labs	13-Aug-13	A13-09591	1A2	
586354												Act Labs	13-Aug-13	A13-09591	1A2	
586355												Act Labs	13-Aug-13	A13-09591	1A2	
586356												Act Labs	13-Aug-13	A13-09591	1A2	
586357												Act Labs	13-Aug-13	A13-09591	1A2	
586358												Act Labs	13-Aug-13	A13-09591	1A2	
586359												Act Labs	13-Aug-13	A13-09591	1A2	
586360												Act Labs	13-Aug-13	A13-09591	1A2	

Sample #	Ta (ppm)	Te (ppm)	Th (ppm)	Ti (%)	Tl (ppm)	U (ppm)	V (ppm)	W (ppm)	Y (ppm)	Zn (ppm)	Zr (ppm)	Lab 1	Date Received At Lab	Cert #	Package	Lab 2
586361												Act Labs	13-Aug-13	A13-09591	1A2	
586362												Act Labs	13-Aug-13	A13-09591	1A2	
586363	0.18	0.02	4.1	0.119	0.12	0.6	38	8.0	3.3	1	49.9	Act Labs	13-Aug-13	A13-09591	1A2	ALS
586364	0.09	0.02	3.2	0.079	0.07	0.9	33	13.9	3.2	1	38.0	Act Labs	13-Aug-13	A13-09591	1A2	ALS
586365	0.24	0.02	5.6	0.161	0.32	1.4	43	9.8	6.8	18	68.0	Act Labs	13-Aug-13	A13-09591	1A2	ALS
586366	0.24	0.02	5.3	0.158	0.24	1.3	41	9.9	5.8	10	62.7	Act Labs	13-Aug-13	A13-09591	1A2	ALS
586367												Act Labs	13-Aug-13	A13-09591	1A2	
586368												Act Labs	13-Aug-13	A13-09591	1A2	
586369												Act Labs	13-Aug-13	A13-09591	1A2	
586370												Act Labs	13-Aug-13	A13-09591	1A2	
586371												Act Labs	13-Aug-13	A13-09591	1A2	
586372												Act Labs	13-Aug-13	A13-09591	1A2	
586373												Act Labs	13-Aug-13	A13-09591	1A2	
586374												Act Labs	13-Aug-13	A13-09591	1A2	
586375												Act Labs	13-Aug-13	A13-09591	1A2	
586376												Act Labs	13-Aug-13	A13-09591	1A2	
586377												Act Labs	13-Aug-13	A13-09591	1A2	
586378												Act Labs	13-Aug-13	A13-09591	1A2	
586379												Act Labs	13-Aug-13	A13-09591	1A2	
586380												Act Labs	13-Aug-13	A13-09591	1A2	
586381												Act Labs	13-Aug-13	A13-09591	1A2	
586382												Act Labs	13-Aug-13	A13-09591	1A2	
586383												Act Labs	13-Aug-13	A13-09591	1A2	
586384												Act Labs	13-Aug-13	A13-09591	1A2	
586385												Act Labs	13-Aug-13	A13-09591	1A2	
586386												Act Labs	13-Aug-13	A13-09591	1A2	
586387												Act Labs	13-Aug-13	A13-09591	1A2	
586388												Act Labs	13-Aug-13	A13-09591	1A2	
586389												Act Labs	13-Aug-13	A13-09591	1A2	
586390												Act Labs	13-Aug-13	A13-09591	1A2	
586391												Act Labs	13-Aug-13	A13-09591	1A2	
586392												Act Labs	13-Aug-13	A13-09591	1A2	
586393												Act Labs	13-Aug-13	A13-09591	1A2	
586394												Act Labs	13-Aug-13	A13-09591	1A2	
586394												Act Labs	13-Aug-13	A13-09591	1A2	
586396												Act Labs	13-Aug-13	A13-09591	1A2	
586397												Act Labs	13-Aug-13	A13-09591	1A2	
586398												Act Labs	13-Aug-13	A13-09591	1A2	
586399	0.02	0.15	0.7	0.018	0.05	0.2	8	115.0	1.3	6	6.2	Act Labs	_	A13-09591	1A2	ALS
586400	0.02	0.13	0.7	0.016	0.03	0.2	0	113.0	1.3	U	0.2	Act Labs	13-Aug-13 13-Aug-13	A13-09591 A13-09591	1A2	ALO
586401												Act Labs	13-Aug-13 13-Aug-13	A13-09591 A13-09591	1A2	
586402												Act Labs	_	A13-09591 A13-09591	1A2 1A2	
												Act Labs	13-Aug-13 13-Aug-13	A13-09591 A13-09591	1A2 1A2	
586403 586404												Act Labs	_	A13-09591 A13-09591	1A2	
586404													13-Aug-13		1A2 1A2	
380403												Act Labs	13-Aug-13	A13-09591	1A2	
L					<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	l .		l .		

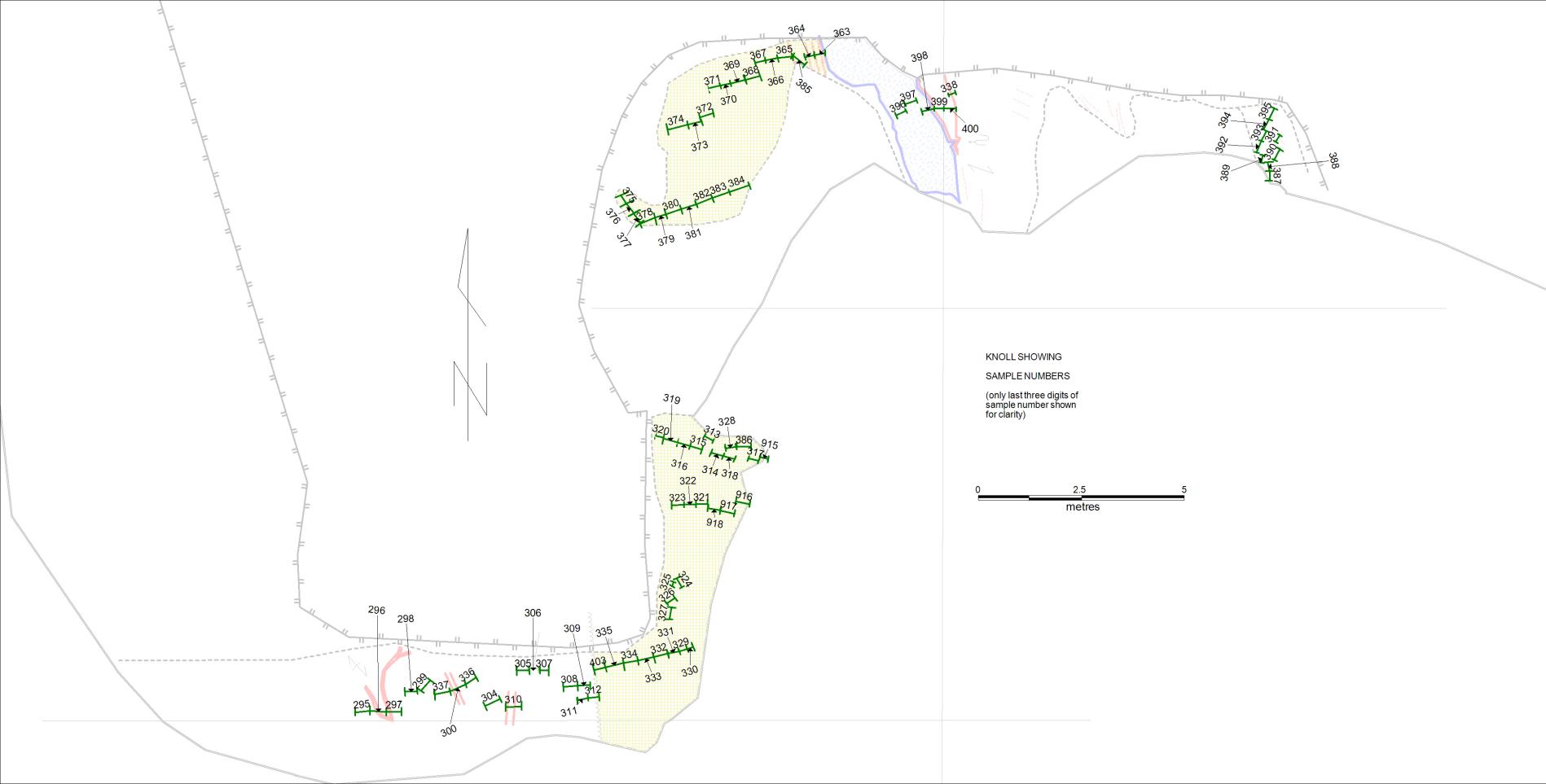
Sample #	Date Received At Lab	Cert #	Package
			_
109901	10-Dec-13	TB13221752	Au-GRA21
109902			
109903	10 D 12	TD 12221752	A GCD21
109904	10-Dec-13	TB13221752	Au-SCR21
109905	10-Dec-13	TB13221752	Au-SCR21
109906			
109907			
109908			
109910 109911			
109911			
109912			
109913	10 Dec 12	TB13221752	An CDA21
109914	10-Dec-13	1B13221732	Au-GRA21
109913	10-Dec-13	TB13221752	Au-SCR21
109917	10-Dec-13	TB13221752	Au-SCR21
109917	10-Dec-13	TB13221752	Au-SCR21
109919	10-Dec-13	1B13221732	Au-SCR21
109919			
109920			
109921			
109922	10-Dec-13	TB13221752	Au-GRA21
109923	10-Dec-13	1B13221732	Au-OKA21
109924			
109926			
109927			
109928			
109929	10-Dec-13	TB13221752	Au-GRA21
109930	10 200 13	1513221,02	THE OTHER
109931			
109932			
109933			
109934	10-Dec-13	TB13221752	Au-GRA21
109935 586251	10-Dec-15	1B13221732	Au-GRA21
586252			
586253			
586254			
586255			
586256			
586257			
586258			
586259			
586260			
586261			
586262			
586263			
586264			
200204		l	l .

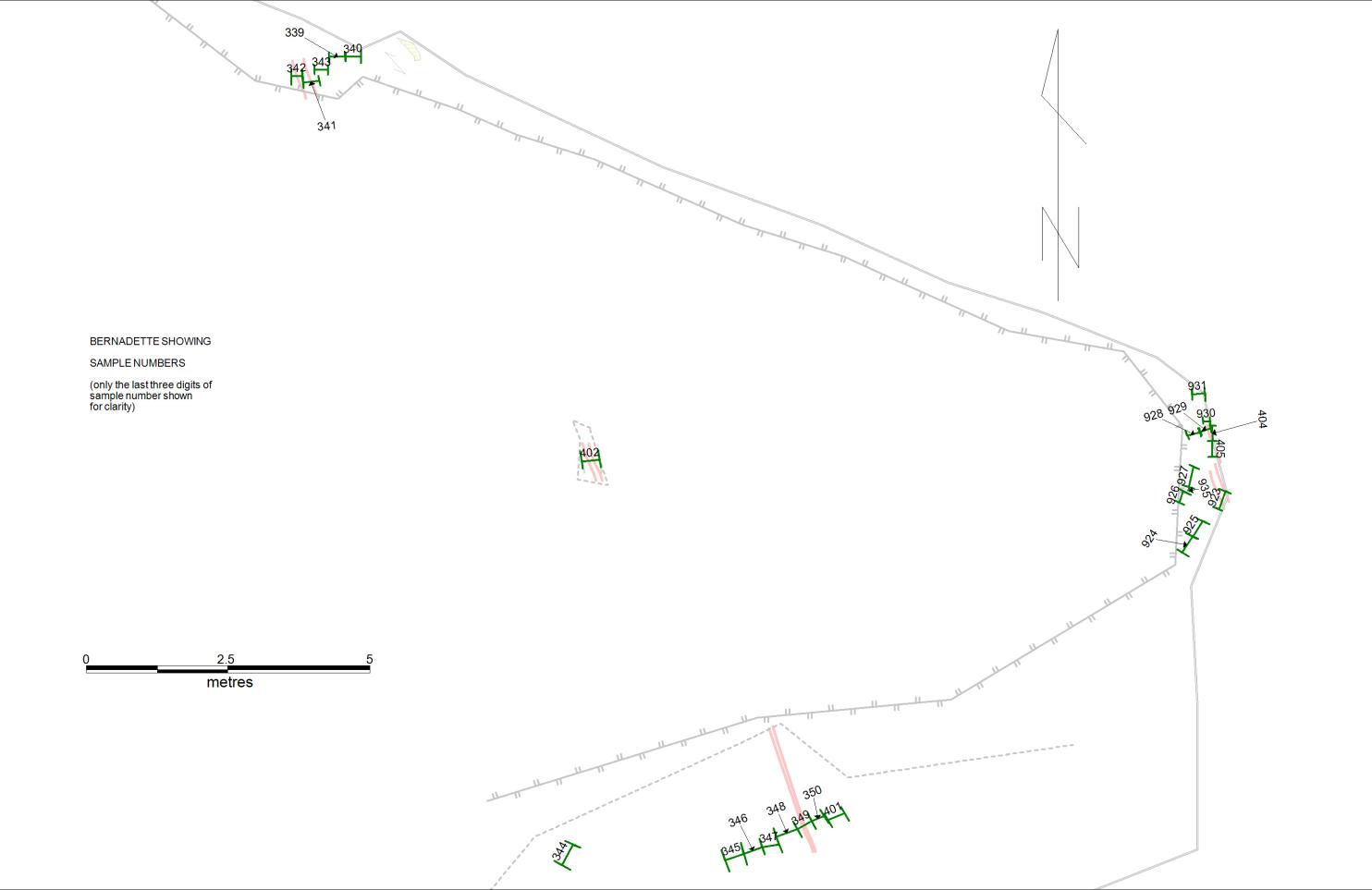
Sample #	Date Received At Lab	Cert #	Package
586265			ng
586266			
586267			
586268			
586269			
586270			
586271			
586272			
586273	10-Dec-13	TB13221753	Au-GRA21,ME-MS61
586274			
586275			
586276			
586277			
586278			
586279			
586280			
586281			
586282			
586283			
586284			
586285			
586286			
586287			
586288			
586289			
586290			
586291			
586292			
586293			
586294			
586295			
586296			
586297			
586298			
586299			
586300			
586301			
586302			
586303			
586304			
586305			
586306			
586307			
586308			
586309			
586310			
586311			
586312			

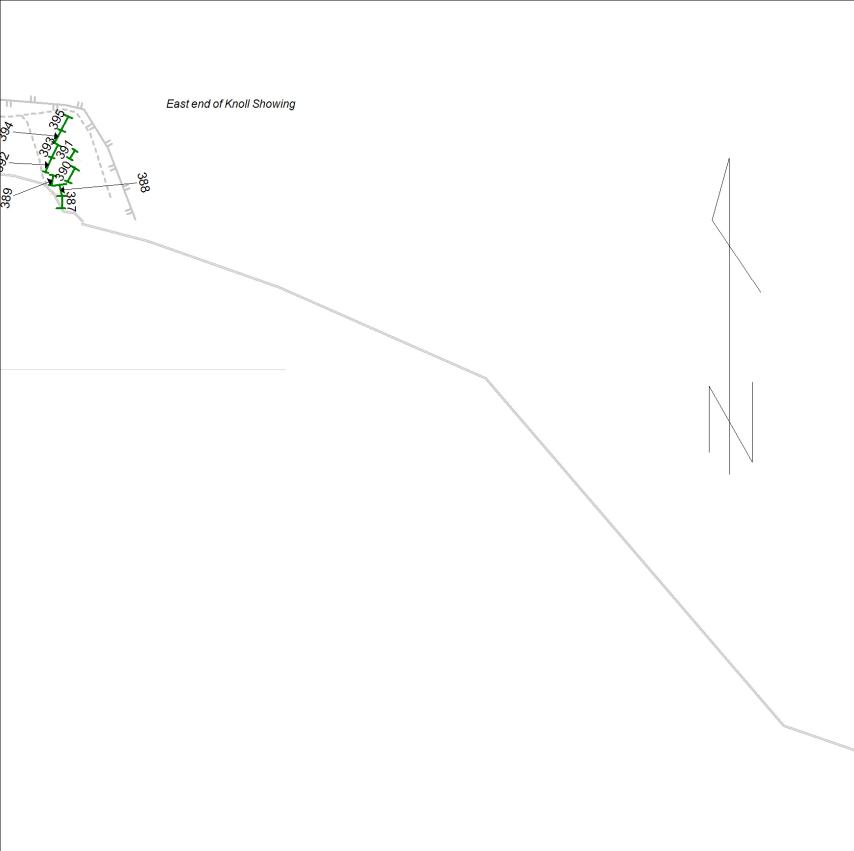
			_
Sample #	Date Received At Lab	Cert #	Package
586313			
586314	10-Dec-13	TB13221753	Au-GRA21,ME-MS61
586315			
586316			
586317			
586318			
586319			
586320			
586321			
586322			
586323			
586324			
586325	10-Dec-13	TB13221753	Au-GRA21,ME-MS61
586326	10-Dec-13	TB13221753	Au-GRA21,ME-MS61
586327			,
586328			
586329			
586330			
586331			
586332			
586333			
586334			
586335			
586336			
586337			
586338			
586339			
586340			
586341			
586342			
586343			
586344			
586345			
586346 586347			
586348			
586349			
586350			
586351			
586352			
586353			
586354			
586355			
586356			
586357			
586358			
586359			
586360			

Sample #	Date Received At Lab	Cert #	Package
	Date Received At Lab	Cert#	Раскаде
586361			
586362			
586363	10-Dec-13	TB13221753	Au-GRA21,ME-MS61
586364	10-Dec-13	TB13221753	Au-GRA21,ME-MS61
586365	10-Dec-13	TB13221753	Au-GRA21,ME-MS61
586366	10-Dec-13	TB13221753	Au-GRA21,ME-MS61
586367			
586368			
586369			
586370			
586371			
586372			
586373			
586374			
586375			
586376			
586377			
586378			
586379			
586380			
586381			
586382			
586383			
586384			
586385			
586386			
586387			
586388			
586389			
586390			
586391			
586392			
586393			
586394			
586395			
586396			
586397			
586398			
586399	10-Dec-13	TB13221753	Au-GRA21,ME-MS61
586400			
586401			
586402			
586403			
586404			
586405			

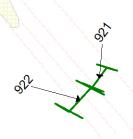
Sample #	Comments	QAQC Con	<mark>m</mark> ents
109901	strong, banded silicification; 5-10% disrupted seams of biotite; host is felsic but no blue qtz eyes; 1% v.f.g. pyrite as disseminations and along banding		
109902	broken, folded sugary qtz veinlet material with pale pistachio green chlorite-epidoete banding; muddy brown wisps of pyrite/bio/tourm?; 1-2% patchy vfg to fg pyrite		
109903	broken, folded boudinaged sugary qtz veinlets in silicified and pseudolayered host; 2-4% pyrite along veinlet margins, layers and disseminations; weak pervasive bio?		
109904	banding defined by bleached (silica-carb-ser?) and black(bio-tourm-py?); also broken angular qtz vein fragments; v.f.g pyrite in qtz frags.		
109905	mainly broken angular to rounded qtz veinlet fragments with interstitial biotite rich material; some bleached layers; 5% layered to diss. F.g. pyrite; local coarse euhedral py		
109906	chloritic, pyritic, black-green with small subround qtz fragments or veinlets locally; 5% f.g to m.g. pyrite		
109907	laminated/sheared with silica-felspar alternating with chloritic biotite-pyrite layers; qtz eyes are stretched along shear planes; 2-3% f.g. py as laminations; no qtz veinlets		
109908	moderately strained blue qtz eye tuff; dark, chloritic with 1-2% fine laminations of biotite-silica; 0.5-1% patchy m.g. pyrite		
109909	alternating cm scale laminations of pale creamy grey carbonate-silcia with more chloritic biotite-silica; 2-3% f.g to m.g. py appears to overprint laminations; pock marked on weathering		
109910	qtz eye tuff with cm scale alternating bleached bands and biotite-rich bands; minor fragments of qtz veinlets; 1-2% pyrite mainly as disseminations along bands; folded qtz veinlets on o/c		
109911	qtz-eve tuff, minor diss py		
109912	quartz-tournaline vein, alternating bands of qtz and black tournaline; minor vfg py along fracs		
109913	folded qtz veinlets with biotite-chlorite-tourmaline selvedges; trace to 0.5% extremely f.g. sulphides in selvedge material		
109914	quartz veining locally broken or folded with chlorite-tourmaline selvedges; 1% vfg to f.g py in selvedges and minor vfg in qtz		
109915	intense alteration; massive pervasive silica flooding with mior bio along fracs; 1-2% v.f.g. frac controlled and diss Brown py, tr cp; one speck VG		
109916	strong silica alteration with minor iron carb and chlorite; minor biotitic laminations; 1-2% patch to diss brown py		
109917	intense alteration; massive pervasive silica flooding; minor carb-bio; 1-2% vfg-fg diss and frac controlled py; possible, minor v.f.g asp needles		
109918	intense alteration; massive pervasive silica flooding; minor carb; 0.5-1%% vfg-fg diss and frac controlled py		
109919	blue qtz eve tuff, patchy moderate bleaching (carb-silica); minor euhedral f.g. py		
109920	blue qtz eye tuff, patchy moderate bleaching (carb-silica); 1-2% f.g. py mainly along carb-silica patches/veinlets		
109921	dark grey to black (biotite alteration?) blue qtz eye tuff; 0.5-2% py		
109922	dark grey to black (biotite alteration?) blue qtz eye tuff; 0.5-2% py		
109923	folded qtz veinlets in biotite-silica altered qtz eye tuff; folds in vertical plane show tight folds with Z symmetry and significant thickening of hinges; 2-3% f.g. py		
109924	mottled bleached (silica-bio-carb) bands in blue qtz eye tuff; qtz veinlets locally tightly folded; 0.5% vfg frac controlled py		
109925	mottled bleached (silica-bio-carb) bands in blue qtz eye tuff; 0.5 % diss f.g m.g. py		
109926	mottled bleached (silica-bio-carb) bands in blue qtz eye tuff; 0.5 % diss f.g m.g. py		
109927	mottled bleached (silica-bio-carb) bands in blue qtz eye tuff; 0.5-1% diss vf.g f.g py; minor qtz veinlets parallel to bleached bands & locally broken		
109928	mottled bleached (silica-bio-carb) bands in blue qtz eye tuff; minor diss f.g. py		
109929	strong silica-biotite-carb alteration with pyritic bands and parallel qtz-carb veinlet; 3-4% py overall		
109930	strong silica-biotite-carb alteration; qtz-carb vein with 2% v.f.gf.g diss and frac controlled py		
109931	mottled bleached (silica-bio-carb)bands in blue qtz eye tuff; 1% f.g. py along discordant fractures		
109932	mainly broken angular to rounded qtz veinlet fragments with interstitial biotite rich material; some bleached layers; 5% layered to diss. F.g. pyrite; local coarse euhedral py		
109933	rusty, sheared felsics, platey, bleached (carb +/- silica); 1-2% pyrite		
109934	quartz stringer in blue qtz eye tuff; minor v.f.g to f.g pyrite along stringer margins		
109935			
586251			
586252	strongly altered; bands of silica and bio; 1% f.g m.g. pyrite; blue qtz eyes nearly only remnant from original felsic volcanic		
586253	intensely altered; silicified with q.v. material; bands of bio+chl; 0.1-0.5% f.g. pyrite; blue qtz eyes only remnant from felsic volcanic		
586254	moderately altered; bands or mottles of bleaching (sil-carb-ser); local bio; blue qtz eyes; 0.1-0.5% f.g-m.g. pyrite		
586255	dismembered qtz veinlets; minor py burns		
586256			
586257			
586258	5 cm q.v. with dextral dilation jog		
586259			
586260			
586261	moderate to strong alteration; patchy silica-bio, locally strong; no veining; 0.1-0.5 v.f.g-f.g pyrite		
586262	boudinaged quartz veinlet, minor py burns		
586263			
586264	strong alteration; silica-bio with 20% quartz veining; 0.5-1% py, traces tourmaline		

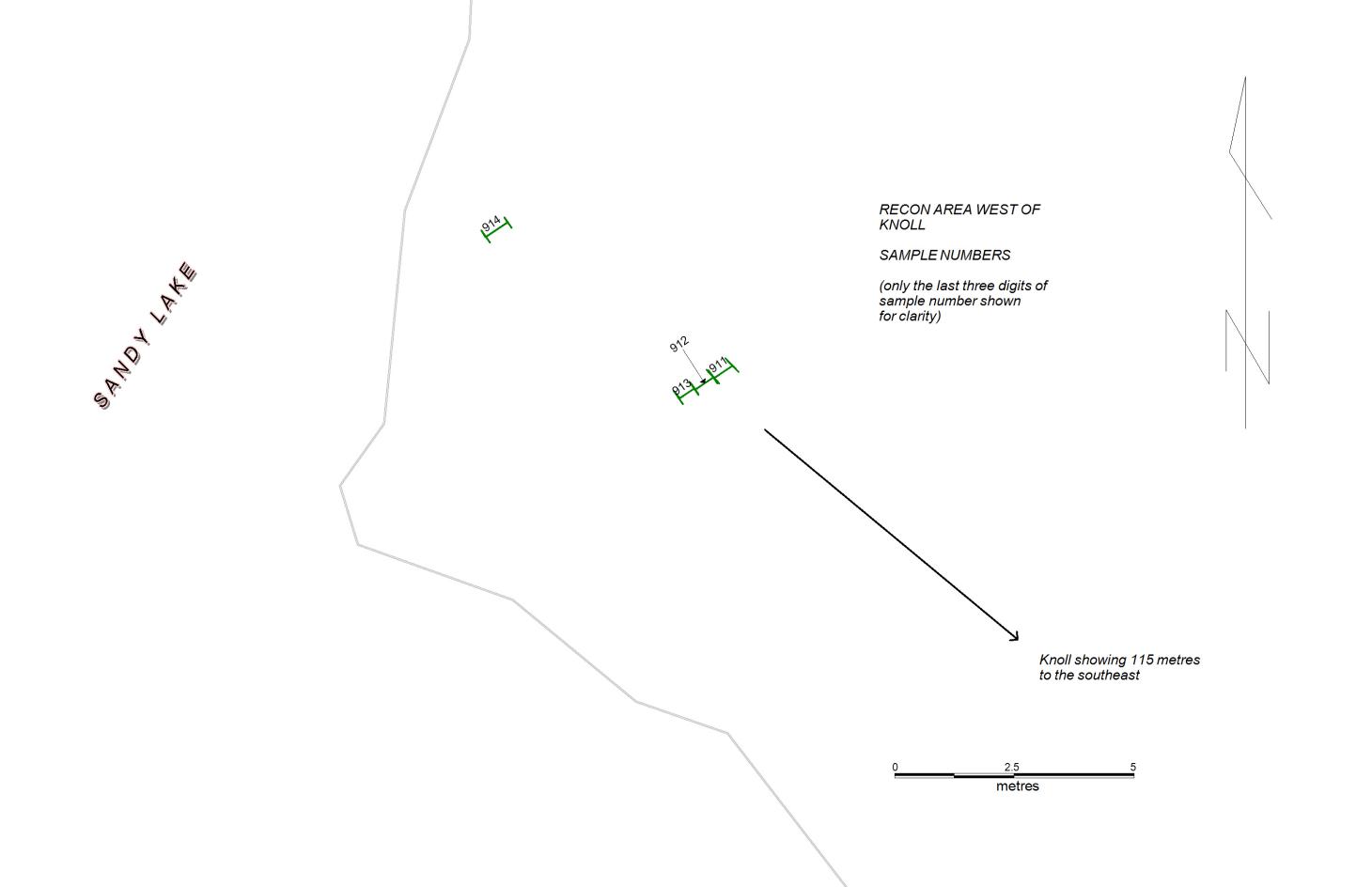

Sample #	Comments	QAQC Com	ments
586265			
586266			
586267			
586268	folded, laminated 5-15 cm qtz vein; tourm-biotite, local minor fuchsite		
586269	V.G. as mm scale clouds of 5-10 specks; laminated q.v. with v. fine chl-tourm laminations; minor f.g. cp+py as disseminations; strongly sil qtz eye felsic w bio bands		
586270	strong silica-bio alteration adjacent quartz vein		
586271	moderate silicification		
586272			
586273	15 cm qtz vein with minor fuchsite along margin of chlorite schist		
586274			
586275	6 cm q.v. in strongly altered qtz eye felsic; bio-ser pervasive alteration; yellow-green sericite (chlorite?) laminations		
586276	biotite-rich moderate silicification of blue qtz eye tuff; 1% py		
586277	strongly silicifed blue qtz eye tuff with 10-15% dismemebered qtz veins and stringers		
586278	strongly silicifed blue qtz eye tuff with 10-15% dismemebered qtz veins and stringers		
586279	strongly silicifed blue qtz eye tuff with 10-15% dismemebered qtz veins and stringers		
586280	15 cm qtz vein on margin of mafic dyke		
586281	strongly silica-bio altered, chloritized tuff or diorite? Pervasive and veinlet silica; patchy carb; up to 1% patchy/streaky pyrite		
586282	strongly silica-bio altered, chloritized tuff or diorite? Pervasive and veinlet silica; patchy carb; up to 1% patchy/streaky pyrite		
586283	strongly silica-bio altered, chloritized tuff or diorite? Pervasive and veinlet silica; patchy carb; up to 1% patchy/streaky pyrite		
586284	strongly silica-bio altered, chloritized tuff or diorite? Pervasive and veinlet silica; patchy carb; up to 1% patchy/streaky pyrite		
586285	strongly silica-bio altered, chloritized tuff or diorite? Pervasive and veinlet silica; patchy carb; up to 1% patchy/streaky pyrite		
586286	mafic volcanic or dyke, chlorite; shoulder adjacent vein		
586287	fold in 15cm qtz vein		
586288	fold in 15 cm qtz vein		
586289	strongly altered; vertical laminations parallel to veining; strong alteration; silica-chl-bio with minor f.gm.g pyrite; blue qtz eyes still evident		
586290	q.v., glassy to milky white with fuchsite and grey-green chl-bio laminations		
586291	mafic or ultramafic dyke; soft with network of fine carb veinlets; 10-15% py band adjacent to q.v.; 1-2% diss py in rest of sample		
586292	folded qtz vein in contact with mafic dyke		
586293	strongly silicified felsic tuff		
586294	strongly silicified felsic tuff; strike extension of quartz vein		
586295	strong alteration; pervasive sil-bio; 5% folded and broken q.v.; 0.5%py, 0.1%cp; blue qtz eyes		
586296	strong alteration; pervasive sil-bio; 5% folded and broken q.v.; 0.5%py, 0.1%cp; blue qtz eyes		
586297	strong alteration; pervasive sil-bio; 5% folded and broken q.v.; 0.5%py, 0.1%cp; blue qtz eyes		
586298			
586299			1
586300	10-15% q.v. in strongly silica-bio altered blue qtz eye tuff; 0.5% py in veins		1
586301	moderate to strongly silicifed qtz eye tuff; trace py, cp		
586302	moderate to strongly silicifed qtz eye tuff; trace py, cp		
586303			
586304			
586305	strong silica-bio alteration; 20% q.v.		
586306	strong silica-bio alteration; 20% q.v.		
586307	strong silica-bio alteration; 20% q.v.		
586308	strong silica-bio alteration; 20% q.v.		
586309	strong silica-bio alteration; 20% q.v.		
586310	q.v. in strongly silica-bio altered blue qtz eye tuff		
586311	strongly silica-bio altered qtz eye tuff; 10% q.v.		
586312	strongly silica-bio altered qtz eye tuff; 10% q.v.		


Sample #	Comments	QAQC Com	ments
586313	intense silica alteration; 1-2% py		
586314	intense silica alteration; 1-2% py		
586315	intense silica alteration; 1-2% py		
586316	intense silica alteration; 1-2% py		
586317	intense silica alteration; 1-2% py		
586318	intense silica alteration; 1-2% py		
586319	intense silica alteration;		
586320	intense silica alteration;		
586321	intense silica alteration;		
586322	intense silica alteration;		
586323	intense silica alteration;		
586324	strong silica-bio alteration; blue qtz eye tuff; cm scale qtz veinlets; 1% py, 1% cp		
586325	strong silica-bio alteration; blue qtz eye tuff; cm scale qtz veinlets; 1% py, 1% cp		
586326	strong silica-bio alteration; blue qtz eye tuff; cm scale qtz veinlets; 1% py, 1% cp		
586327	strong silica-bio alteration; blue qtz eye tuff; cm scale qtz veinlets; 1% py, 1% cp		
586328	intense silica alteration; 1-2% py		
586329	intense silica alteration		
586330	intense silica alteration		
586331	intense silica alteration		
586332	intense silica alteration		
586333	intense silica alteration		
586334	intense silica alteration		
586335	strong silica-bio alteration; blue qtz eye tuff; cm scale qtz veinlets; 1% py, 1% cp in veins; slight reaction to HCl		
586336			
586337	strong silica-bio alteration; blue qtz eye tuff; cm scale qtz veinlets; 2% m.g. py in veins; appears to be v.f.g diss py associated with alteration		
586338	contact between 50 cm wide qtz vein and felsic tuff; shows dip of vein 75 degrees west		
586339	moderate silica-bio alteration; 0.5-1% py		
586340	moderate silica-bio alteration; 0.5-1% py		
586341	Bernadette vein; trace fuchsite		
586342	Bernadette vein; trace fuchsite		
586343	moderate silica-bio alteration; 2% py		
586344	weakly altered tuff with local siliceous bands		
586345			
586346			
586347			
586348			
586349	Bernadette vein; bio-tourm laminated qtz with up to 5% cp		
586350	2% quartz veinlets in moderately altered blue qtz eye tuff		
586351	folded dismemebered q.v. in carbonate-chlorite altered felsic tuff		
586352			
586353			
586354			
586355	folded glassy to milky white quartz vein in chloritic schist (deformed mafic dyke?)		
586356	folded glassy to milky white quartz vein in chloritic schist (deformed mafic dyke?)		
586357	folded glassy to milky white quartz vein in chloritic schist (deformed mafic dyke?)		
586358	folded glassy to milky white quartz vein in chloritic schist (deformed mafic dyke?)		
586359			
586360			

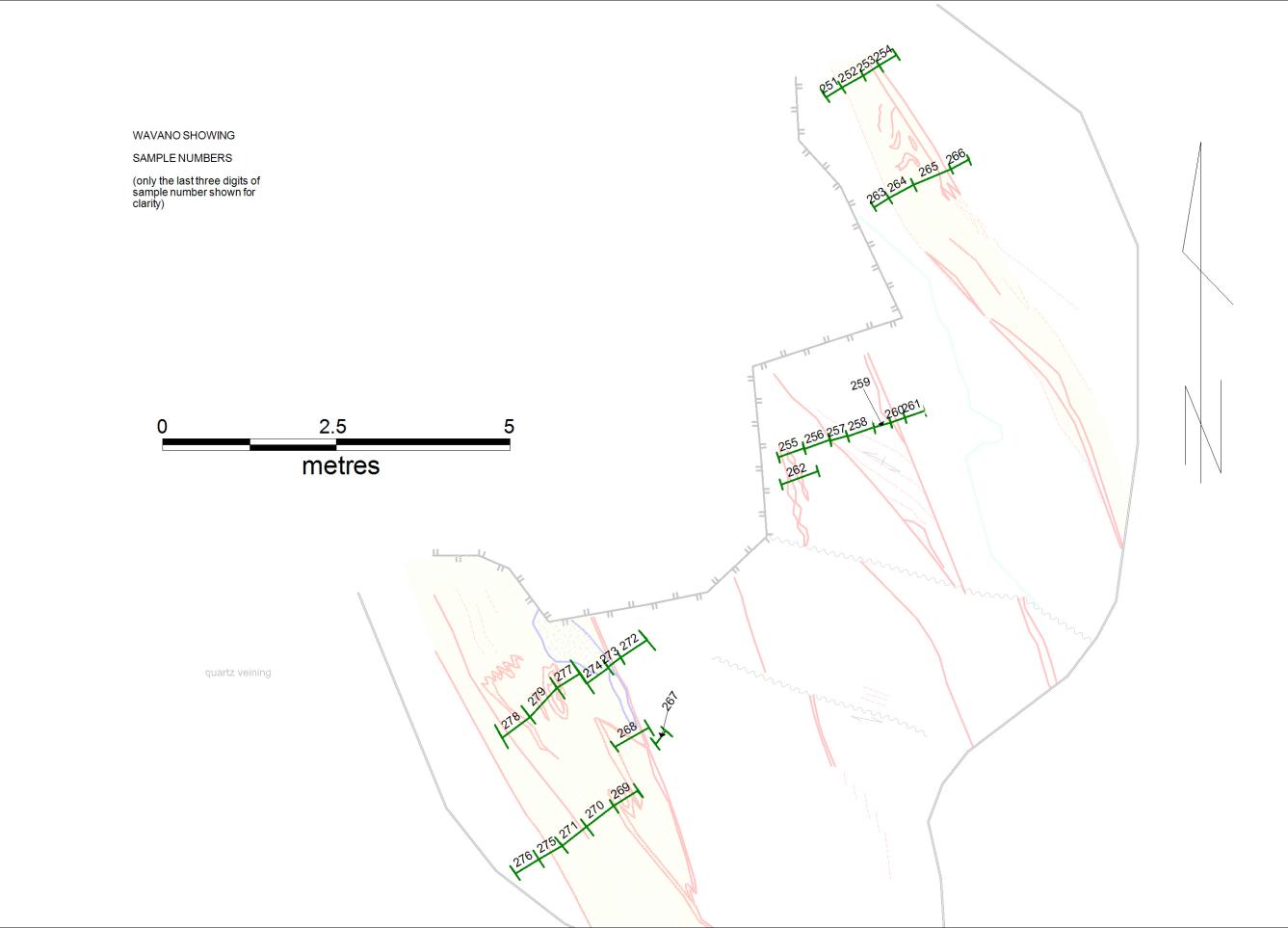

Sample #	Comments	QAQC Com	nents
586361	Milky white to glassy q.v. sampled by Reinhardt, minor suphides		
586362	Milky white to glassy q.v. sampled by Reinhardt, minor suphides		
586363	folded, laminated, q.v.; 0.1%py, trace cp;		
586364	folded, laminated, q.v.; 0.1%py, trace cp; no VG but has the look		
586365	laminated qtz-tourm veinlets in silica-bio altered tuff; 1-2% py; minor cp; laminations dip steeply east		
586366	laminated qtz-tourm veinlets in silica-bio altered tuff; 1-2% py; minor cp;		
586367	laminated qtz-tourm veinlets in silica-bio altered tuff; 1-2% py; minor cp;		
586368			
586369	strong alteration; silica-bio; 5-10% folded 0.5 cm qtz veinlets with 1% f.g. py and 0.1% f.g. cp		
586370	strong alteration; silica-bio; 5-10% folded 0.5 cm qtz veinlets with 1% f.g. py and 0.1% f.g. cp		
586371	strong alteration; silica-bio; 5-10% folded 0.5 cm qtz veinlets with 1% f.g. py and 0.1% f.g. cp		
586372	sacrage anomation, since a cost of the second cost and the residence of the cost of the co		
586373			
586374	silica-bio alteration; blue qtz eye tuff; 5% mm scale folded qtz veinlets; 0.5% py, minor cp		
586375	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586376	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586377	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586378	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586379	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586380	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586381	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586382	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586383	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586384	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586385	intense silica alteration; 5-10% biotite; 5-10% qtz veins (early?)		
586386	intense silica alteration; 1-2% py		
586387	moderate alteration of felsic tuff/diorite??; up to 30% biotite;		
586388	moderate alteration of felsic tuff/diorite??; up to 30% biotite;		
586389	moderate alteration of felsic tuff/diorite??; up to 30% biotite; 2% cp		
586390	moderate alteration of felsic tuff/diorite??; up to 30% biotite;		
586391	moderate alteration of felsic tuff/diorite; up to 30% biotite;		
586392	moderate alteration of felsic tuff diorite??; up to 30% biotite; 1% cp		
586393	moderate alteration of felsic tuff/diorite??; up to 30% biotite; 5% cp		
586394	moderate alteration of felsic tuff/diorite??; up to 30% biotite; 1% cp		
586395			
586396	mafic dyke with fine network/boxwork of carb veinlets		
586397	mafic dyke with fine network/boxwork of carb veinlets		
586398	mafic dyke with fine network/boxwork of carb veinlets		
586399	q.v. with patchy rust, vuggy		
586400	q.v. with patchy rust, vuggy		
586401	shoulder sample; grey, weakly silicified tuff		
586402	Bernadette vein; bio-tourm laminated qtz vein; 1-2 % py and cp		
586403	white pervasive silicification or vein with streaks of chlorite-tourm; 0.5% v.f.g. py-cp as dissemination; possible very fine VG?		
586404	quartz vein and quartz stringers, rusty with 1-2% py in veining; patch silica-bio alteration in felsic host; local py clots up to 10%; trace cp		
586405	quartz vein and quartz stringers, rusty with 1-2% py in veining; patch silica-bio alteration in felsic host; local py clots up to 10%; trace cp		
	There is a section of the section of		

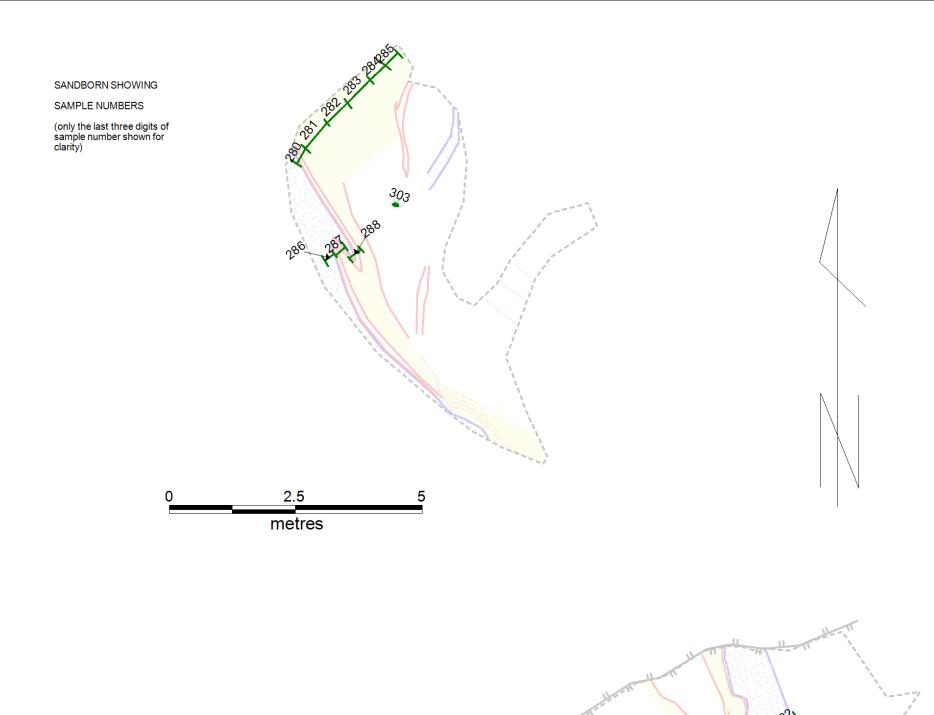
Appendix iv – Sample Location Sketches




AREA BETWEEN KNOLL AND BERNADETTE

SAMPLE NUMBERS


(only the last three digits of sample number shown for clarity)


0 2.5 5 metres

RvG4 SHOWING SAMPLE NUMBERS (only last three digits of sample number shown for clarity) metres

SANDY LAKE

A TON SON

ISLAND RECCE

SAMPLE NUMBERS

(only the last three digits of sample number shown for clarity)