Report

On

Prospecting

Wish-Ore Project

Batchawana Greenstone Belt

Ontario

April 12, 2015

M.A. Tremblay

Table of Contents

Introduction	pg	1
Location & Access		1
Previous Work		2
General Geology		3
Prospecting Program		4
Results & Recommendations		4
Certificate	after pg	5

List of figures	
Location Map	1
Claim Map	2
Sample Location Map	Back Folder
Prospecting Sketches	appendix A
Assay Certificates	appendix B
Daily Log	Appendix C

Introduction

The Wish-Ore project consists of nine claim blocks (112 units) located in Wishart and Palmer Townships, Sault Ste. Marie Mining Division Ontario.

The claims cover several significant shear structures, as well as, a number of historical and under-explored gold showings, in the south-west part of the Batchawana Greenstone Belt, sixty kilometers north of Sault Ste. Marie, Ontario.

Location & Access

The property is located 60 km north of Sault Ste. Marie, Ontario, east of the Batchawana River in the eastern part of Palmer township and the western part of Wishart Township.

Access to the project is very good via numerous secondary logging roads off of the Mile 38 and Mile 41 roads on Highway 17 North, 60 and 64km north of Sault Ste. Marie Ontario, respectively.

Previous Work

Very little work has been filed on this area considering the prospectivity of 'greenstone belts' in Ontario. Local prospectors D. Fleming and Y. Desjardins discovered a several gold showings in the western part of the project, north of Kerwin Lake in the 1980s, with values assaying as high as 23g/t Au. In partnership with Loydex Resources they optioned their project to both Lacana and Inco in the 1980s. Submitted work consisted of line-cutting, geological mapping, powerstripping, and ground geophysics.

Inco Exploration drilled a fence of two short holes in 1989 to intersect an IP target proximal to the gold showings. The logs indicated mostly fine-grained altered sediments with mainly calcite stringers and breccia cement. Numerous anomalous intersections were reported with the highest assay being 1.15g/t over 0.70m. No claim activity has been recorded in the area since that time.

General Geology

The project area lies within the Western Volcanic Subdomain of the Batchawana Greenstone Belt. Previous mapping indicates that the area is underlain by Archean sequences of tholeiitic, mafic metavolcanic flows with an eastward progression of more intercalated metasediment and felsic tuffaceous horizons, including iron formations.

The largest shear structure on the property is the Carp River Fault which transects the property at 070-090 degrees AZ.

Prospecting Program

Several new shear zones were discovered in 2013 outside of the area previously explored by Inco and others. The most promising of these was a new silicified shear zone in mafic volcanics south of the Carp River Fault which had six samples which ran 1.2, 2.57, 8.8, 13.13, 13.73 and 25.57g/t Au. The shear zone is at least 30m wide, runs 090AZ and consists of silica, ankerite and sericite alteration. The best gold values were from a quartz-ankerite-pyrite +/- chalcopyrite vein that is at least 1m wide.

A 1m wide quartz feldspar porphyry dike located just south of the CRF and north of the INCO drill sites, with quartzankerite-pyrite stringers ran 1.53g/t gold.

In the spring of 2014 several blocks of claims were added to better cover the strike and down dip of the new vein. Recent logging operations exposed several carbonatized shear zones west of Upper Tilley Lake. Three of these zones are noted on the field sketches. Several samples were anomalous with a high value of 2.87g/t Au. The widest of these shears is a least 30m wide and is exposed intermittently over 125m strike length. The shears are hosted in mafic to intermediate volcanics and are oriented at 035-040 AZ. Again the best values fall outside of the INCO grid area.

Results & Recommendations

The results of the 2013-14 prospecting program indicate very promising potential for economic gold mineralization in this part of the Batchawana Greenstone belt.

Anomalous to high-grade gold values were located in 6 six locations four of which were new occurences.

Due to the fact that the area is under-explored, initial follow-up work should include prospecting and sampling, as well as, hydraulic washing of shears exposed during recent logging operations. Power-stripping of the new high-grade vein is strongly recommended.

Respectfully submitted,

Mike Tremblay

April 12, 2015

Certificate

I, Michael A. Tremblay, of the City of Sault Ste. Marie, Ontario, do hereby certify that:

- 1. I am a graduate of the Geological Engineering Technician Program Sault College A.A.T (1983);
- 2. That I have been engaged steadily and professionally in mineral exploration since graduation;
- 3. That I did attend to and carried out the exploration activities herein described;
- 4. That this report is based on my observations and the study of all materials available to me on the subject property; and
- 5. That I own a 100% interest in the subject property.

Michael A. Tremblay

April 12, 2015

Appendix B

Sample	Easting	Northin	Description	WDO-Au
		g		g/t
5378960	16- 693952	520984 3	sh'd 1a ank .5-1mm fol par QAS 1-2% py	0.12
5378961	693952	520984 3	QAS 1% py.	0.2
5378962	693888	520982 9	QAV +/-py	1.2
5378963	693888	520982 9	sil 1a(?) ank tr py (BX)	0.07
5378964	693888	520982 9	QAV 3-5% cpy	8.8
5378965	693896	520982 9	fg lam 1a ank/sil banding 2% py3	0.13
5378966	693878	520981 8	QA-CH +PY+CPY	25.57
5378967	693878	520981 8	QACH VEINING WITH 1CM xcut qas	2.57
5378968	693878	520981 8	mineralised wallrock with 10% cpy	13.13
5378969	693878	520981 8	same	13.73
5378970	691995	520941 4	1a/UM(?)tr py w/ fol par QS	0.13
5378971	692051	520945 5	QAS w/ ser/ch/ank envelope, tr py	0.002
5378972	692050	520945 3	3-4cm s-foldd QAS + py + cpy in chl 1a	0.002
5378973	692050	520945 4	2-4cm QAS py to 1%	0.002
5378974	692075	520944 0	1m wide QFP(?) w/ QAS+V 2% pyd	1.53
5378975	692070	520944 2	sil QFP + vns 5% pyd to .5mm	0.002
5378976	692309	520911 4	gossan from Fleming Tr. 20% py/po in 1a	0.67
5378977	693824	520984 5	QV in mafic volcanic tr. Py	0.13
5378978	693882	520980 9	rusty qs in 1a	0.002
5378979	693882	520980 9	rusty qs in 1a tr py	0.002
5378980	693664	520972 5	bull white flat qv	0.002
5378981	693664	520972 5	qv in 1a	0.002
5378982	693645	520972 6	bull white qc nw oriented	0.002
5378983	693645	520972	white qv	0.07

1		6		
		6	600645	
0.002	white qv	520972	693645	5378984
0.002	white av	520972	693645	5378885
		6		
0.13	mafic volc. Ank/sil 5% py	520969 7	693537	5378610
0.13	Q-ank stringer w 1% cpy/py	520969 7	693537	5378611
0.27	2.5cm QAS in sheared 1a	521075 5	696764	5378612
0.13	carb sheared 1a w/ 1cm qas	521075 5	696764	5378613
2.87	sheared/sil 1a 5% py, 10%	521075 5	696764	5378614
0.002	sil/shrd 1a 3%py, 5% qas	521125 1	696679	5378615
0.002	10cm qav in QFP 1%py	521125 1	696679	5378616
0.002	shrd QFP w/ sugary qas, tr py	521125 1	696679	5378617
0.13	sil QFP 20% qas to 2cm, 5%	521125 1	696679	5378618
0.08	QFP 2% py	521125 1	696679	5378619
0.07	QFP 1% py	521125 1	696679	5378620
0.08	1a 5%py, 10% qas	521125 1	696679	5378621
0.67	1a 20%QAS, 5% py	521075 5	696764	5378622
0.13	Q-ank bx 1% py	521075 5	696764	5378623
0.53	1a ank-py 5mm qas	520969 7	693537	5378710
0.08	qv (float) with gf/mo	520969 7	693537	5378711
0.07	QAS to 1cm w/ py in 1a	520969 7	693537	5378712
0.16	1a sil/ank 5%py, qas to 5mm	520969 7	693537	5378713
0.04	1a cc 5% pyd	520969 7	693537	5378714
0.002	1a w/ qas and qfp stringer to 2cm	520969 7	693537	5378715
0.002	1a w/ q boudins, 2% py	520969 7	693537	5378716
0.002	1a ank, 5%py, 10% qas+py	520969 7	693537	5378717
0.07	5-15 q boudin in sericitic int/fel V	520971 1	693544	5378718

5378719	693544	520971	ser int/felV tr py 5% qas	0.07
		1		
5378720	693573	520972	chip (2ft) of bullwhite qv	0.08
		1		
5378721	693581	520971	chip 3-4ft QV w/ rusty seams	0.07
		4		
5378722	693578	520971	1a ser/sil 1% py + qas	0.002
		8		

EAGLE MINE

Sample Typ	e:Cus	tom Assay	Reporte By:	d	Rene	Couvrette	Date:24-May-13
2 Custom A	ssays	s @18.00 Each + Taxe	s				
Mike Tremb	olay			Au		Chk	
Sample Number			g/t				
	1	E.5378960		0.12			
	2	E.5378961		0.20			

EAGLE MINE

Sample Type:Cus	stom Assay	Reported By: Scott	Carruthers	Date: 09-June-14
9 Custom Assay	s @18.50 Each + Ta	xes = \$166.50 <mark>(No C</mark> ł	narge)	
Mike Tremblay		Au	Chk	
Sample Number		g/t		
1	E5378610	0.13		
2	E5378611	0.13		
3	E5378612	0.27		
4	E5378613	0.13		
5	E5378614	2.87		
6	E5378615	0.002		
7	E5378616	0.002		

0.20

0.13

8

9

E5378617

E5378618

Scott Carruthers Wesdome Gold Mines Assay Lab Superintendant

EAGLE MINE

Sample Type:Custom Assay	Reported By: Scott	Carruthers	Date:9- June-13
AGAT			
Mike Tremblay	Au	Chk	
Sample Number	g		

1	E5378962	1.20	1.13
2	E5378963	0.07	0.07
3	E5378964	8.80	8.67
4	E5378965	0.13	0.13
5	E5378966	25.47	25.67
6	E5378967	2.53	2.60
7	E5378968	13.13	13.40
8	E5378969	13.73	13.87
9	E5378970	0.13	0.13
10	E5378971	0.002	0.002
11	E5378972	0.002	0.002
12	E5378973	0.002	0.002
13	E5378974	1.53	1.47
14	E5378975	0.002	0.002
15	E5378976	0.67	0.67
16	E5378977	0.13	0.13
17	E5378978	0.002	0.002

18	E5378979	0.002	0.002
19	E5378980	0.002	0.002
20	E5378981	0.002	0.002
21	E5378982	0.002	0.002
22	E5378983	0.07	0.07
23	E5378984	0.002	0.002
24	E5378985	0.002	0.002

EAGLE MINE

Sample Type:Custom Assay		Reporte	Reported By: Scott Carruthers			Date: 20-June-14	
5 Custom	Assay	s @18.50 Each +	Taxes = \$16	6.50 <mark>(No</mark>	Charge)		
Mike Trem	blay			Au	Chk		
Sample Nu	mber			g/t			
	1	E5378619		0.08			
	2	E5378620		0.07			
	3	E5378621		0.08			

0.67

0.13

E5378622

E5378623

4

5

Scott Carruthers

Wesdome Gold Mines

Assay Lab Superintendant

EAGLE MINE

Sample Type:Custom Assay	Reported By: Scott Carruthers	Date: 15-Aug-14
13 Custom Assays @18.50 Each	+ Taxes = \$240.50 <mark>(No Charge)</mark>	
Mike Tremblay	Au Chk	
Sample Number	g/t	

1	E5378710	0.53
2	E5378711	0.08
3	E5378712	0.07
4	E5378713	0.16
5	E5378714	0.04
6	E5378715	0.002
7	E5378716	0.002
8	E5378717	0.002
9	E5378718	0.07
10	E5378719	0.07
11	E5378720	0.08
12	E5378721	0.07
13	E5378722	0.002

Scott Carruthers Wesdome Gold Mines Assay Lab Superintendant

Appendix C

Date	Activities	Truck	Bike	MikeT	Ass't	Geol.	
13-May-13	Prospecting/sampling	150km	х	х	x		
14-May-13	Prospecting/sampling	150	х	x	x		
04-Jun-13	Prospecting/sampling	150	х	x	x		
05-Jun-13	Prospecting/sampling	150	x	x	x		
06-Jun-13	Prospecting/sampling	150	x	x	x		
07-Jun-13	Prospecting/sampling	150	x	x	x		
09-Jun-13	Prospect, sampling, prep and deliver samples to Lab	380	x	x	x		
26-Jun-13	Prospecting, sampling geological evaluation	300	3	x	x	x	
28-Aug-13	Prospect/sampling show for OGS	300	3	x	x	x	
18-Sep-13	Propsect, show to RLB geol. Evalution	300	3	x	x	x	
18-Jun-14	Prospecting/sampling	150	x	x	x		
19-Jun-14	Prospect/sampling show for OGS	150	x	x	x		
19-Jun-14	Prospecting/sampling	300	3	х	x	x	
14-Aug-14	Prospecting/sampling	150	х	х	x		
15-Aug-14	Prospecting	150	х	x	x		
16-Sep-14	Prospecting/sampling	150	х	х	x		
		3230km					
Total		\$1,357	\$1,800	\$8,000	\$6,400	\$2,800	