REPORT ON DIAMOND DRILLING ST PAUL BAY AREA FAIRLIE, BAIRD AND HEYSON TOWNSHIPS RED LAKE M.D. ONTARIO FOR RAINBOW RESOURCES INC.

Signing Date: May 8, 2012

Revised Figures, June 13, 2013

G.A. Harron & Associates Inc.# 501, 133 Richmond Street W.Toronto, Ontario, Canada, M5H 2L3

Tel.: 416 865-1060

Table of Contents

	page
1.0 Summary	3
2.0 Property Description & Location	4
3.0 Accessibility Climate, Infrastructure and Local Resources	9
4.0 History	11
5.0 Geological Setting & Regional Geology	13
6.0 Property Geology & Mineralization	16
7.0 Diamond Drilling	20
7-1 DDH # SPR10-01	23
7.2 DDH # SPR10-02	25
7.3 DDH # Spr10-03	27
7.4 DDH # Spr10-03a	27
7.5 DDH # SPR10-04	30
7.6 DDH # SPR10-05	32
7.7 DDH # SPR10-06	34
7.8 DDH # SPR10-07	35
7.9 DDH # SPR10-08	38
8.0 Sampling Method & QA/QC	40
8.1 Results of Blank Sampling	40
8.2 Results of Standard Sampling	41
9.0 Sample Preparation, Analysis & Security	43
10.0 Conclusions & Recommendations	43
11.0 References	45
12.0 Date and Signature Page	46
13.0 Appendix 1 Diamond Drill Logs	47
14.0 Appendix 2 Assay Certificates	75
List of Figures	
Figure 2-1 General Location Map	5
Figure 2-2 St Paul Bay Project Regional Location Map	6
Figure 2-3 Property Map, Meunier Option	
Figure 3-1 Access Map	10

Rainbow Res., St Paul Bay

Figure 5-1 Regional Geology Map	15
Figure 6-1 Airborne Magnetic Map	18
Figure 6-2a Property Geology	19
Figure 6-2b Legend For Property Geology	20
Figure 7-1 Compilation (Plan View of Diamond Drill Hole Collars)	22
Figure 7-2 Cross Section DDH # SPR10-01	24
Figure 7-3 Cross Section DDH # SPR10-2	26
Figure 7-4 Cross Section DDH # SPR10-03 & 03A	29
Figure 7-5 Cross SectionDDH # SPR10-04	31
Figure 7-6 Cross Section DDH # SPR10-05`	33
Figure 7-7 Cross Section DDH # SPR10-06	35
Figure 7-8 Cross Section DDH # SPR10-07	37
Figure 7-9 Cross Section DDH # SPR10-08	39
List of Tables	
	naaa
Table 2-1 List of Mining Claims	page 7
Table 2-1 List of Mining Claims Table 7-1 Summary Log of DDH SPR10-01	7
Table 7-1 Summary Log of DDH SPR10-01	7 23
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02	23 25
Table 7-1 Summary Log of DDH SPR10-01	23 25 27
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03	232527
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03 Table 7-4 Summary Log of DDH SPR10-03A	23252727
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03 Table 7-4 Summary Log of DDH SPR10-03A Table 7-5 Mineralized Intercept, DDH SPR10-03A	2325272727
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03 Table 7-4 Summary Log of DDH SPR10-03A Table 7-5 Mineralized Intercept, DDH SPR10-03A Table 7-6 Summary Log of DDH SPR10-04	
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03 Table 7-4 Summary Log of DDH SPR10-03A Table 7-5 Mineralized Intercept, DDH SPR10-03A Table 7-6 Summary Log of DDH SPR10-04 Table 7-7 Summary Log of DDH SPR10-05	
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03 Table 7-4 Summary Log of DDH SPR10-03A Table 7-5 Mineralized Intercept, DDH SPR10-03A Table 7-6 Summary Log of DDH SPR10-04 Table 7-7 Summary Log of DDH SPR10-05 Table 7-8 Summary Log of DDH SPR10-06	
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03 Table 7-4 Summary Log of DDH SPR10-03A Table 7-5 Mineralized Intercept, DDH SPR10-03A Table 7-6 Summary Log of DDH SPR10-04 Table 7-7 Summary Log of DDH SPR10-05 Table 7-8 Summary Log of DDH SPR10-06 Table 7-9 Mineralized Intercept, DDH SPR10-06	
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03 Table 7-4 Summary Log of DDH SPR10-03A Table 7-5 Mineralized Intercept, DDH SPR10-03A Table 7-6 Summary Log of DDH SPR10-04 Table 7-7 Summary Log of DDH SPR10-05 Table 7-8 Summary Log of DDH SPR10-06 Table 7-9 Mineralized Intercept, DDH SPR10-06 Table 7-10 Summary Log of DDH SPR10-07	
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03 Table 7-4 Summary Log of DDH SPR10-03A Table 7-5 Mineralized Intercept, DDH SPR10-03A Table 7-6 Summary Log of DDH SPR10-04 Table 7-7 Summary Log of DDH SPR10-05 Table 7-8 Summary Log of DDH SPR10-06 Table 7-9 Mineralized Intercept, DDH SPR10-06 Table 7-10 Summary Log of DDH SPR10-07 Table 7-11 Summary Log of DDH SPR10-08	
Table 7-1 Summary Log of DDH SPR10-01 Table 7-2 Summary Log of DDH SPR10-02 Table 7-3 Summary Log of DDH SPR10-03 Table 7-4 Summary Log of DDH SPR10-03A Table 7-5 Mineralized Intercept, DDH SPR10-03A Table 7-6 Summary Log of DDH SPR10-04 Table 7-7 Summary Log of DDH SPR10-05 Table 7-8 Summary Log of DDH SPR10-06 Table 7-9 Mineralized Intercept, DDH SPR10-06 Table 7-10 Summary Log of DDH SPR10-07 Table 7-11 Summary Log of DDH SPR10-08 Table 7-12 Mineralized Intercept, DDH SPR10-08	

1.0 SUMMARY

The optioned St. Paul Bay Property consists of 12 contiguous unpatented claims covering approximately 192 hectares in the common corner of Fairlie, Heyson and Baird townships, Red Lake Mining Division, Ontario.

The mafic to ultramafic volcanic rocks of the favorable Balmer assemblage and the southwestern margin of the Dome Stock underlie the property. Both lithologies host high grade gold deposits in the Red Lake greenstone belt. The potential of the project area is enhanced by the presence of the Pipestone Bay-St. Paul Bay Deformation Zone, which hosts gold mineralization elsewhere in the Red Lake area.

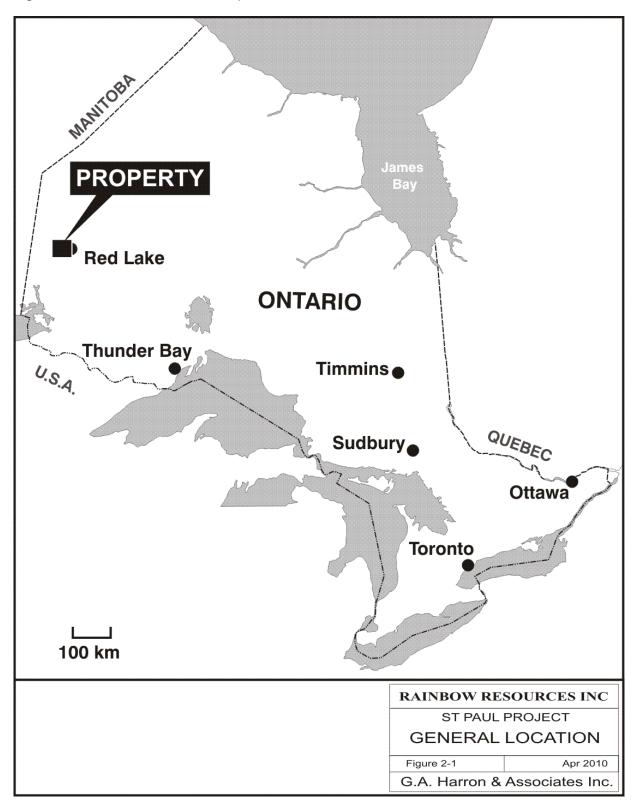
The St Paul Bay area has been the scene of exploration since the 1920,s. Teck Cominco Limited ("Teck") optioned the property in 2003. Diamond drill hole locations were chosen using an interpretation of structure, alteration and lithology. Five diamond drill holes were completed, of which two intersected significant gold mineralization (9.2 g/t Au over 0.3 m, and 1.1 g/t Au over 3.1 m) in silicified and sheared structures developed in mafic volcanic rocks proximal to altered ultramafic rocks.

The property was optioned by Rainbow Resources Inc. in 2009. Geophysical surveys conducted on the project area consisted of magnetic, pole-dipole induced polarization / resistivity, bathymetry and moving loop TDEM surveys. These surveys were carried out in the period February 24 to March 13, 2010 by JVX Ltd. Most of the surveyed area is under the waters of St. Paul Bay. Results of this work delineated two zones of enhanced chargeability associated with hydrothermally altered and sheared Balmer assemblage ultramafic / mafic volcanic rocks. The chargeability horizons have not been completely tested by this or other previous operators.

Initial work began in early January 2011 with the plowing and flooding of a 3 km long ice road from public boat launch at St. Paul Bay Landing to the property. This work was performed by Diamond B Backhoe from Souris Manitoba. Once the eight ice pads were thick enough drilling began February 12, 2011 and finished March 8, 2011. During this time nine drill holes totaling 2001 m of NQ size core were completed using one diamond drill rig contracted from Hy-Tech Diamond Drilling of Smithers B.C.

Drilling was oriented towards expanding a small but high grade gold occurrence (9.2 g/t Au over 0.3 m) intersected in the Teck 2002, diamond drill hole ("DDH") SPB -03-1.

The first target area to be drilled was a follow-up hole to Teck 's DDH SPB -03-1 and was started with DDH SPR10-04 due to the fact that this ice pad was the first one to have sufficiently thick ice. This was followed up with DDH SPR10-03 (a short hole that ended at 66 m due to dip deviation) and drilled down dip of the Teck DDH SPB 03-01. DDH SPR10-03A (the re-collared hole of DDH SPR10-03), and DDH SPR10-05 were drilled east of Teck DDH SPB 03-1.


Within this target area only DDH SPR10-03A had anomalous gold values at a peridotite/mafic volcanic contact. DDH SPR10-08 was drilled next and targeted a strong IP zone along the Dome Stock contact. Anomalous gold values were found in this hole. DDH SPR10-06 and DDH SPR10-07 were drilled due north from the southwest shore of St. Paul Bay and were follow-up holes to Teck's DDH SPB 03-3. Anomalous gold values were found in DDH SPR10-06. The program finished drilling with DDHs SPR10-01 and SPR10-02, with both holes targeting IP /RES zones identified from the JVX survey. Strong regional structures were found in the drill cores, but no accompanying anomalous gold values.

All of the core was placed on pallets and is securely stored on the property located at UTM grid coordinates (Zone 15 NAD83): 436517E and 5652899N. Also stored at this location are the pulp and reject samples from the assaying process. This location is only accessible by boat in the summer months.

2.0 PROPERTY DESCRIPTION & LOCATION

The general location of the property is illustrated in Figure 2-1., which is in turn approximately 450 km northwest of Thunder Bay and 1,350 km northwest of Toronto, Ontario. The claims are 5 to 7 km west of the Town of Red Lake (Figure 2-2). The past producing Howey and Hasaga gold mines are located approximately 5 to 6 km east of the property, and the producing Red Lake Mine / Campbell mines (Goldcorp Inc.) are located approximately 12 km northeast of the property.

Figure 2-1 General Location Map

Dome Heyson G.A. Harron & Associates Inc. Apr 2010 RAINBOW RESOURCES INC REGIONAL LOCATION MAP Figure 2-2

Figure 2-2 St Paul Bay Project Regional Location Map

The twelve contiguous unpatented claims covering approximately 192 hectares in the common corner of Fairlie, Heyson and Baird townships, Red Lake Mining Division, Ontario, Table 2-1, and Figure 2-3.

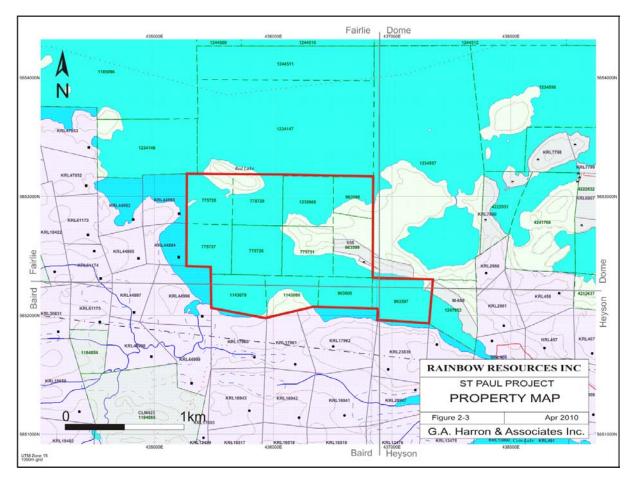


Figure 2-3 Property Map, Meunier Option

Terms of the option agreement entered into on November 13, 2009 included periodic cash payments, a work commitment, over a 5 year term and a 2.5% Net Smelter Royalty payment. An advance royalty commencing in the 6th year was also included.

\$ Work \$ Work Claim Id 1 Units Township Due Date yy/mm/dd Required Reserve 1143079 1 14/09/24 400 22,308 Baird 1143080 1 Baird 14/09/24 400 4,798 1235866 1 Fairlie 13/12/31 400 512 775725 1 Fairlie 14/02/20 400 0 775726 Fairlie 14/02/20 400 0

Table 2-1 List of Mining Claims with Details

Rainbow Res., St Paul Bay

775727	1	Fairlie	14/02/20	400	0
775728	1	Fairlie	14/02/20	400	0
775731	1	Fairlie	14/02/27	400	9,846
963597	1	Heyson	13/12/03	400	10,272
963598	1	Fairlie	13/12/03	400	239
963599 ²	1	Fairlie	13/12/03	400	8,331
963600	1	Baird	13/12/03	400	23,437
	12			4,800	79,743

Note 1: all titles exclude a 122 m (400') surface rights reservation around all lakes and rivers.

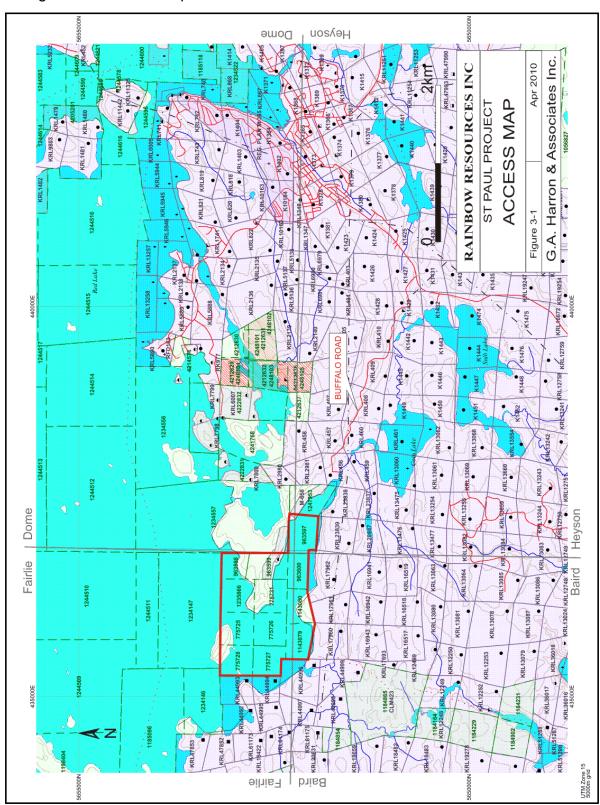
Note 2: title excludes patented summer resort locations.

Note 3 Amounts of \$ Work in reserve are prior to the application of credits generated in this work submission.

All of the claims are in good standing and require an aggregate annual expenditure of \$4,800 to maintain tenure. Banked assessment credits in reserve and additional credits generated by the work described in this report are sufficient to maintain tenure for at least 10 years.

3.0 ACCESSIBILITY CLIMATE, INFRASTRUCTURE AND LOCAL RESOURCES

The claims are readily accessible by the Buffalo Gold road, an all weather gravel road which departs north westward from Highway 618 approximately3 km south of Red Lake (Figure 3-1). This road can be followed north westward to the eastern part of the property. Cottage lots have been granted along the St Paul Bay shore line at this location. Access to the central and western parts of the property is best achieved by utilizing a boat positioned on St Paul Bay.


Red Lake is serviced by a scheduled commercial airline connecting with Winnipeg Manitoba, and Thunder Bay Ontario. Truck transportation provides bulk freight services to and from southern areas of Canada.

Climatic conditions are typical of the northern boreal forest, with moderately cold winter conditions from November until March including 0.6 to 2 m of snowfall. Summer conditions include a moderate amount of precipitation and warm temperatures in the upper 20s and low 30s persisting for several months. Experience indicates that most preliminary exploration activities can be executed year round, except geological and surface geochemical surveys, which are best executed in the summer months.

Drainage on the property is represented by the waters of St. Paul Bay, a part of Red Lake. Water covers approximately 75% of the property. Bedrock outcroppings are common along the shore line of the bay and additional geological data from drill cores, geophysical surveys allow a reasonable geological interpretation of the area.

Local resources on the property consist of an abundance of fresh water, and mixed deciduous and coniferous trees. Both wireless and data telecommunications services as well as electrical power are present in the local area. The Town of Red Lake offers all types of social amenities, and is a source of skilled exploration and mining personnel, as well as mine related services.

Figure 3-1 Access Map

4.0 HISTORY

In 1971 Cochenour Willans explored the concept of discovering a large bulk tonnage copper-gold deposit on a group of 30 claims, which included only one current claim (963597) located at the head of St. Paul Bay. An IP/RES survey using a dipole-dipole configuration did not produce definitive responses. In 1972 DDHs K-72-1 and K-72-2 (195 m) were drilled by Mr Kostynuk into the sulphide showing from which grab samples assayed 0.58% Ni and 0.41% Cu. Analytical results indicated that the copper content in the core samples was too low and the intercepts were too short to be of further interest. However DDH # K-72-2 did intersect a large amount of sulphides associated with silicification and carbonatization. Apparently the core was not sampled for gold (Cooke, 1991).

In 1973 Kostynuk returned to St Paul Bay and completed 1 DDH (# K73-1), 32 m (105 ft) in St Paul Bay testing the sulphide showing again. Assay results documented weak Ni and Cu mineralization.

The Ontario Government in 1978 contracted an AMAG and AEM (INPUT®) survey over the entire Red Lake area. Specifications of the survey are flight lines oriented North-south with a line spacing of 200 m with a mean ground clearance of 60 m. One strong conductor and one medium conductor are present on the property. The medium strength conductor has been drilled by Cochenour Willans in 1972 and Kostynuk in 1973, revealing low grade copper and nickel values. The strong conductor resides partly on current claim 775731 in the southwest corner of the property, but has been drilled by Teck in 2003. The causative source was identified as being stringer and disseminated base metal sulphides, and pyrite.

Goldfields Mining Corporation optioned a 109 claim property that includes the current claims in 1981. The 1981-82 program consisted of MAG and VLF-EM surveys over the entire property with grid lines spaced 122 m apart. Follow-up surveys were confined to the western part of the optioned property.

Also in 1981 Mr. Kostynuk completed # K81-1 diamond drill hole (123 m) in St Paul Bay. This was another test of the base metal showing situated on the south shore of St. Paul Bay.

Selco in 1980-81 completed 3 DDHs for 318 m, testing AEM and AMAG targets for their base metal content.

Homestake Mineral Development Company. optioned a 87 claim property that includes the current claims from Mr. Dave Meunier in 1984 and conducted a helicopter based AMAG, and AVLF-EM survey over the water covered claims including St Paul Bay. Follow-up MAG and VLF-EM surveys were confined to the western part of the optioned property and did not cover St Paul Bay.

In 1986 Chevron Minerals Limited optioned a 28 claim property that includes the current claims from Mr. Dave Meunier that includes the current claims and focused their initial attention to the western part of the property. In 1987 reconnaissance geology and rock sampling (516 samples) was conducted over the land portions of the property, including the St Paul Bay area. The results are unknown.

In 1990 Aur Resources Inc. commenced a field and office compilation of a group of 59 claims. The compilation led to a focus on the economic potential of claims in St Paul Bay. Drilling by Aur Resources (AFRI # 52N04SW0007) demonstrated that St Paul Bay is a deformation zone (DDH 25202-2) represented by 17 m of talc-chlorite schist containing a silicified zone that assays 1.5 g/t Au. The other 2 DDHs by Aur Resources returned values less than 1 g/t Au.

A 1991 program by Aur Resoures consisted of a MAG survey and 677 m of diamond drilling at 3 sites testing HLEM responses delineated but not tested by Selco in 1980. The best assay was 1.5 g/t Au over 1 m, obtained from a silicified zone within a talc – chlorite schist. This intercept demonstrates that a large potentially auriferous and hydrothermally altered shear zone is present in St Paul Bay (AFRI# 52N04SW0007).

In 2002 Wolfden Resources Inc. acquired an option to earn a 100% in the 12 St Paul Bay claims from Mr. Meunier and Freewest Resources Canada. Work on the property included a detailed MAG survey and soil sampling for pathfinder elements Au and As.

In 2002 Teck acquired an option to earn a 51% interest in the 12 claim property from Wolfden Resources Inc. In early 2003 Mtec Geophysics Inc. established a 23.15 km survey grid and conducted a MAG survey using a station spacing of 5 m. The survey data was interpreted to show two areas of "magnetite destruction" alteration within mafic-ultramafic volcanic rocks. Five diamond drill holes (1,125 m) tested structures defined by magnetite destruction (hydrothermal alteration) where these structures cut the mafic-ultramafic volcanic contact. DDH SPB-03-1 intersected 9.2 g/t Au over 0.3 m in a weakly altered ultramafic unit. This was the

highest assay in the drill campaign. DDH SPB-03-3 intersected anomalous gold enrichment, (1.1 g/t Au over 3.1 m) with elevated arsenic within sheared mafic volcanic rocks at the mafic-ultramafic rock contact.

Rainbow Resources Inc. acquired an option on the Meunier property in November,2009 and proceeded with a compilation of historical data followed by ground geophysical surveys in February – March 2010 to take advantage of the lake ice which covers approximately 80% of the project area. The survey grid was approximately 23 line-km with lines oriented 20° Ground surveys included Induced Polarization / Resistivity (IP/RES) surveys with a pole-dipole array measuring n=1,6. A magnetic survey with 12.5m stations was also completed over the grid. Four lines of a moving 50 m coincident loop electromagnetic survey (terraTEM) was also completed.

Standard interpretation of the IP/RES data produced drill targets which could be interpreted as disseminated sulphide mineralization. Magnetic data suggests linear carbonate altered zones traversing the property parallel to the Dome Stock / Balmer volcanic rocks contact.

In the period February 12 –March 8 2011, Rainbow executed a 9,001 m diamond drill program testing various IP/RES targets and known gold showings. The core size recovered was NQ.

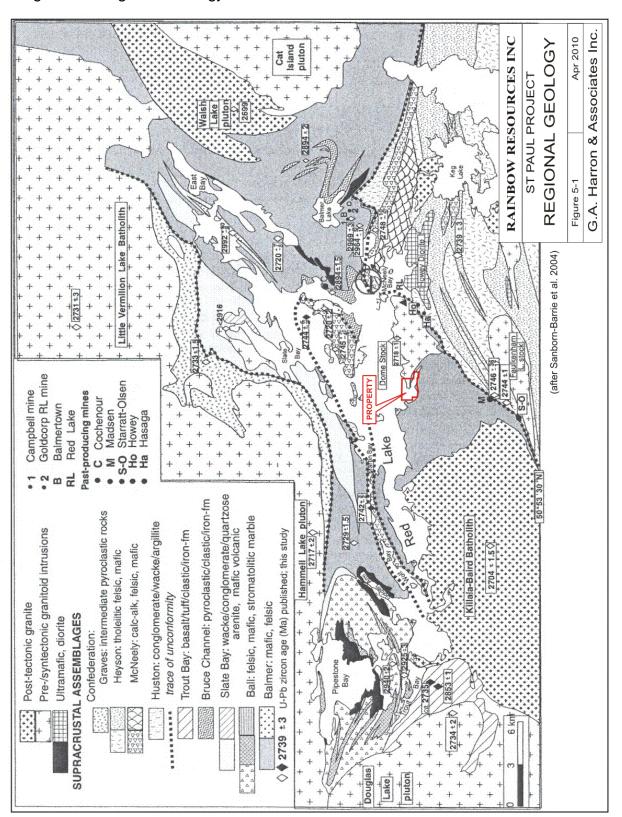
Rainbow resources Inc. returned the property to the vendor in December 2011.

5.0 GEOLOGICAL SETTING & REGIONAL GEOLOGY

The Red Lake Greenstone Belt (RLGB) is one of Canada's top gold-producing districts, with over 20 million ounces of gold produced since mining commenced 1930. There is currently two producing gold mines operated by one company in the Red Lake camp. The Campbell Complex has been in operation since 1949, and the smaller Red Lake Complex has been in operation since 1948. The camp is famous for high-grade gold mineralization (> 0.5 ounce per ton Au), as is currently being extracted from both the Red Lake and the Campbell complexes

The Red Lake Greenstone Belt ("RLGB") is approximately 50 km east-west by 75 km north-south, and situated on the southern margin of the North Caribou Terrain. The oldest volcanic rocks are tholeitic and komatiitic basalts of the Balmer assemblage, host to Red Lake's major lode gold deposits. This extensive mafic / ultramafic lithology has a U/Pb age of approximately 2.9 Ga and underlies

the central and eastern parts of the greenstone belt (Sanborn-Barrie et al, 2004). Plutonic rocks of Mesoarchean age intruding the Balmer assemblage are typically mafic to ultramafic in composition (Figure 5-1).


Post volcanic granitoid plutonic rocks record three episodes of felsic plutonism. The oldest event is represented by the 2.73 Ga Graves plutonic suite, followed by a 2.72 Ga event represented by the gold-deposit hosting McKenzie Island and Dome stocks and the Abino granodiorite. The youngest plutonic event (2.70 Ga) is represented by the K-feldspar megacrystic granodiorite Killala-Baird batholith, the Cat Island dyke and post-ore dykes at the Madsen Mine.

The RLGB displays evidence of two major episodes of deformation, interpreted to be closely linked with extensive hydrothermal activity and gold mineralization. Early non-penetrative deformation appears to have involved overturning (recumbent folding) of the 2.99 Ga Balmer assemblage prior to the onset of Neoarchean volcanism. The main stages of penetrative deformation were imposed after circa 2.74 Ga volcanism (Confederation assemblage). The first major fabric forming event (D₁) resulted in the formation of northerly-trending, south plunging F_1 folds and associated lineation fabrics. Superimposed on D_1 structures are east to northeast-trending D_2 structures in the western and central parts of the belt and southeast-trending folds (F_2) and fabrics that plunge 45-65° to the southwest in the eastern part of the belt.

Hydrothermal alteration in the RLGB is distributed in regional, zoned alteration envelopes that show a spatial relationship to gold deposits. Calcite carbonatization and weak potassic (incipient chlorite and sericite) is widespread and distal to the gold deposits. Alteration proximal to gold deposits is characterized by ferroan-dolomite alteration, and potassic alteration (sericite, muscovite, fuchsite, amphibole and plagioclase destruction). Proximal alteration zones metamorphosed to amphibolite facies may contain variable amounts of aluminosilicate minerals such as andalusite, staurolite and cordierite as well as garnet, chloritoid, cummingtonite and anthophyllite.

Silicification with associated gold and sulphide mineralization (arsenopyrite, pyrite, pyrrhotite) post dates most ferroan-dolomite and potassic alteration zones. Also proximal alteration zones are typically barren of gold unless they have been silicified. Silicification is manifest as extension and fault fill quartz veins and breccias, and the filling of primary features such as vesicles and interpillow spaces.

Figure 5-1 Regional Geology

The Red Lake Greenstone Belt (RLGB) is one of Canada's top gold-producing districts, with over 20 million ounces of gold produced since mining commenced 1930. There is currently two producing gold mines operated by one company in the Red Lake camp. The Campbell Complex has been in operation since 1949, and the smaller Red Lake Complex has been in operation since 1948. The camp is famous for high-grade gold mineralization (> 0.5 ounce per ton Au), as is currently being extracted from both the Red Lake and the Campbell complexes. The largest and highest grade deposits are located in the Balmer assemblage and hosted in the middle tholeiitic basalt sequence and associated serpentinized peridotite and talc schist rocks. However gold was also produced from deposits hosted in the granodioritic McKenzie Island and Dome stocks. Common to all modes of gold mineralization is structural control related to D₂ deformation.

6.0 PROPERTY GEOLOGY & MINERALIZATION

The south half of the property is underlain by east-west trending, strongly magnetic ultramafic flows defined by MAG surveys, diamond drill intercepts and a few outcrops (Figure 6-1). Fresh rock is black, medium to coarse grained hard and massive. The contacts of the ultramafic flows are strongly sheared and talc-carbonate altered. South of the ultramafic stratigraphy the property is underlain by Balmer assemblage mafic volcanic rocks with intercalated intermediate and felsic units and rare sedimentary rocks (Figures 6-2 a and b). The mafic volcanic rocks are massive, fine grained and generally homogenous. In the northern part of the property the ultramafic volcanic rocks are in contact with the granodioritic Dome stock, dated at 2718 Ma, which is synchronous with D₂ deformation (Sanborn-Barrie et al 2004).

Contacts between mafic and ultramafic lithologies are generally sheared and altered, obscuring original contact relationships. The southern contact of the ultramafic rocks dips steeply to the north at the west end of the property. The northern contact of the ultramafic lithology with the Dome stock dips steeply north in the central part of the property and rolls to become moderately south on the adjacent My-Ritt property.

A major crustal structure, termed the Pipestone Bay-St. Paul Bay deformation zone was proposed by Andrews et al (1986) to traverse the property in a southeastern direction. Elsewhere in the Red Lake Camp these large crustal scale deformation zones are the host to the significant gold deposits in the area.

Rainbow Res., St Paul Bay

On the south shore of St Paul Bay (current claim 1143080) a sulphide zone containing approximately10- 20% pyrrhotite with minor chalcopyrite and pyrite occurs in a narrow rhyodacite lapilli tuff between two ultramafic flows. Assay of samples from this sulphide occurrence yielded values of 0.58 % Ni, up to 0.41% Cu and trace amounts of Au and Ag. Approximately 600 m to the southeast minor amounts of pyrite, chalcopyrite and molybdenite occur in narrow alteration zones developed in the Dome Stock (Riley, 1975).

Approximately 2 km to the west on claims owned by Humlin Mines a gold showing was discovered in lithologies that extend eastward onto Rainbow claims. The showing was trenched by Howey Gold Mines and subsequently drilled in 1941 (Ferguson, 1965). The results are unknown.

Figure 6-1 Total Field Magnetics

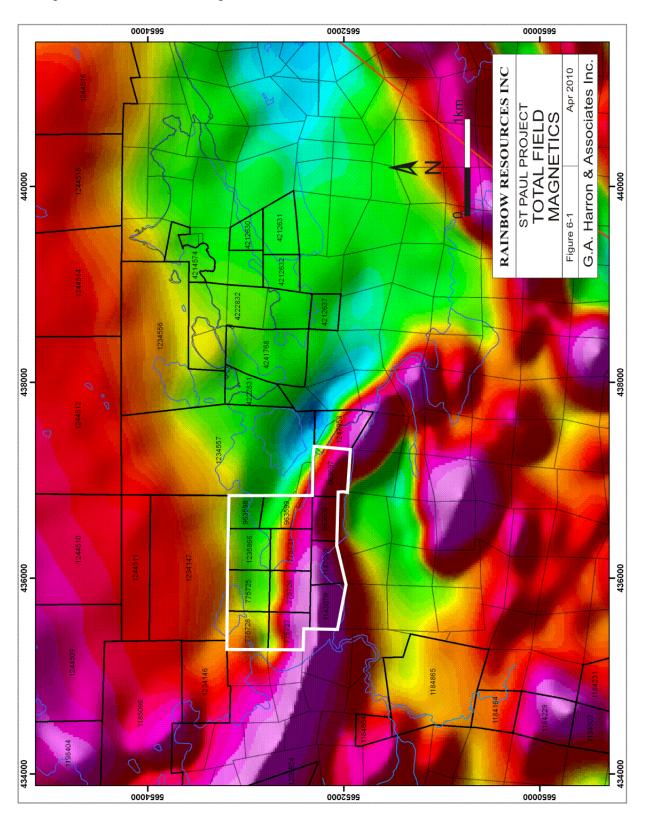


Figure 6-2a Properties Geology

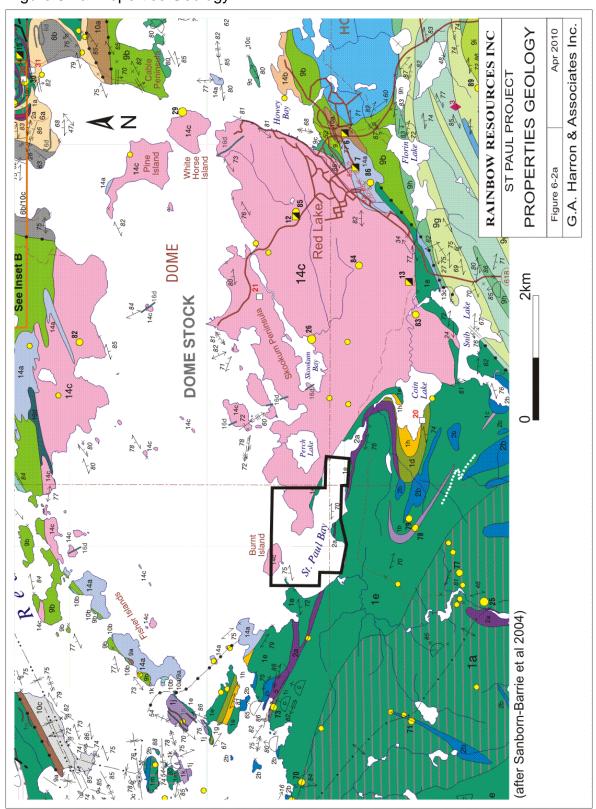


Figure 6-2b Properties Geology Legend

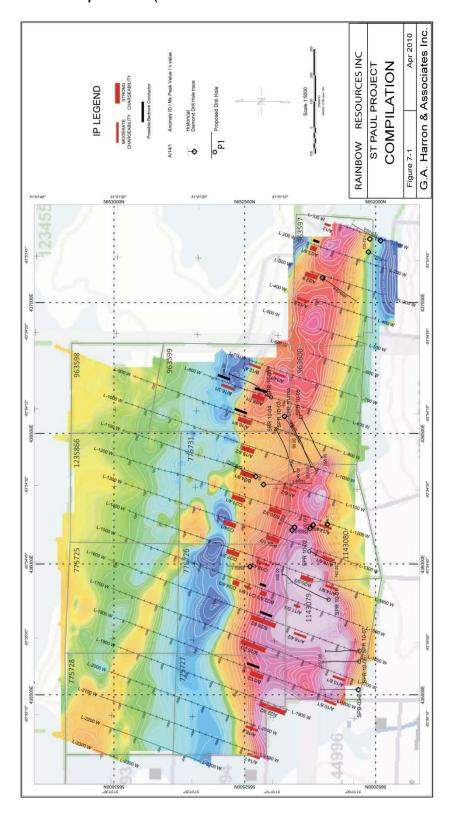
Legend (for Figure 6-2a)

14c	Granodiorite: variable foliated and recrystallized biotite, locally quartz-porphyritic granodiorite±monzogranite±quartz monzonite, commonly with megacrysts of K-feldspar	mmonly with megacrysts of K-feldspar	
13b	Gabbro±leucogabbro±diorite and associated hornblende amphibolite		
96	Diorite±quartz diorite, syenodiorite; commonly plagioclase porphyritic with tholeiitic affinity	Lineament	
	Heyson Sequence (ca. 2739 Ma; dominantly tholeiitic affinity)	Mesoarchean-Neoarchean angular unconformity	
i6	Intermediate volcanic rocks of cal-alkaline affinity; andesitic to dacitic flows	Mesoarchean unconformity	
9h	Mafic volcanic rocks of tholeiitic affinity including massive to pillowed, high TiO ₂ basalt	Bedding, top unknown (inclined, vertical)	ž,
96	Felsic volcanic rocks consisting of rhyolitic flows that may be quartz-phyric, spherulitic, and locally exhibit primary lobate structure	Bedding, top (arrow) from grain gradation (inclined, vertical, overturned)	X X
96	Mafic volcanic rocks of calc-alkaline affinity including pillowed and massive basalt, local hyaloclastite; with low TiO ₂	Bedding, facing known (scours) (inclined, vertical, overturned)	× 5 × × × × × × × × × × × × × × × × × ×
q6	Intermediate volcanic rocks of calc-alkaline affinity, dacitic to andesitic±rhyodacitic pyroclastic±epiclastic rocks	rounging in voicinals, criteria orner transplinows (inclined, vertical, overturned) Pillow lava flow, top (arrow) from shape and packing ⁴⁶ K. K. K. K.	
99	Biotite schist, paragneiss; amphibolite facies metasedimentary rocks	(inclined, vertical, overturned)	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
q9	Wacke, siltstone, argillite iron formation	Younging based on pillow shape compiled from previous workers.	us workers.
6a	Intermediate to felsic calc-alkaline pyroclastic rocks dominated by well-bedded, poorly graded tuff and lapilli tuff	Brecciated	□
	Balmer Plutonic Suite	First foliation (S ₂) or sole foliation where only one planar (inclined, vertical, overturned)	nar 75.7 X
2b	Gabbro±diorite±leucogabbro intrusive into Balmer assemblage	Second foliation (S_2) (inclined, vertical)	× × ×
1h	Felsic volcanic rocks; quartz-phyric and sericitic flows and tuffs	Third foliation (S ₃) (inclined)	45
1e	Middle tholeiitic basaltic flows and associated gabbroic rocks	First cleavage (inclined)	8 1
14	Intermediate flows: andesite±basaltic andesitic flows	Second cleavage (inclined, vertical) .	× 2
1c	Lower komatiitic basalt flows, locally pillowed and variolitic		
1b	Lower komatiite flows, locally pillowed		
1a	Lower pillowed and massice tholeiitic basalt and associated gabbro		
(after S	(after Sanborn-Barrie et al 2004)		

RAINBOW RESOURCES INC
ST PAUL PROJECT
PROPERTIES GEOLOGY
LEGEND
Figure 6-2b Apr 2010
G.A. Harron & Associates Inc.

7.0 DIAMOND DRILLING

This section provides summary logs of the nine diamond drill cores (HQ size) and significant mineralized intercepts. Diamond drilling occurred on lake ice on four claims, as indicated in the following table


Claim ID	DDHs	Drilling (m) on Claim
963599	03, 03A, 04, 08	849
963600	05	258
1143079	01, 06, 07	732
1143080	02	162
Totals 4		2001

The following is a common geology legend for Figures 7-2 through 7-9:

fv felsic volcanic
gd granodiorite
md mafic dyke
mv mafic volcanic
um ultramafic volcanic
p peridotite
saz Alteration Zone
taz Alteration Zone
fz Fault/Shear Zone

The location of some historical DDHs and the Rianbow Resources DDHs in relation to drainage and magnetic features is shown in Figure 7-1.

Figure 7-1 Compilation (Plan View of Diamond Drill Hole Collars)

7-1 DDH # SPR10-01

DDH SPR10-01 was collared on L15+00W and 5+75S and drilled grid north at a -48° dip targeting a strong IP zone. The hole collared into mafic volcanic rocks, but changed to massive ultramafic peridotite that is highly magnetic. Strong fracture and shear zone with broken core was intercepted half way down the hole and could be interpreted as the St. Paul Deformation Zone. The hole ended in ultramafic peridotite that had a very strong magnetic signature.

Table 7-1 Summary Log of DDH SPR10-01

Hole ID	From (m)	To (m)	Rock Type
SPR10-01	0	37.5	Casing
SPR10-01	37.5	51.5	Mafic Volcanic
SPR10-01	51.5	100.3	Ultramafic
SPR10-01	100.3	101.0	Silica Alteration
SPR10-01	101.0	136.5	Ultramafic
SPR10-01	136.5	144.0	Fault Zone
SPR10-01	144	194.6	Peridotite
SPR10-01	194.6	196.6	Talc Ultramafic
SPR10-01	196.6	235.2	Peridotite
SPR10-01	235.2	237.0	Shear Zone
SPR10-01	237.0	300.0	Peridotite
SPR10-01	300.0	300.0	EOH

No anomalous gold values over 1 gram per tonne were found in the sampling.

SECTION SPR 10-01 SPR 10-01 300.00 N+5652200.00 8 N+5652250.00 N+5652300.00 N+5652350.00 E+435900.00 SPR 10-01 350.00 350.00 % 300.00 300.00 LEGEND - HOLE-ID 250.00 250.00 200.00 200.00 M RAINBOW **RESOURCES INC** 150.00 ST PAUL BAY PROJECT 50m **DDH SECTION** 300.00 SPR 10-01 Figure 7-2 Apr 2010 G.A. Harron & Associates Inc. Note: Assay values < 1g/t Au not shown

Figure 7-2 Cross Section DDH SPR10-01

7.2 DDH # SPR10-02

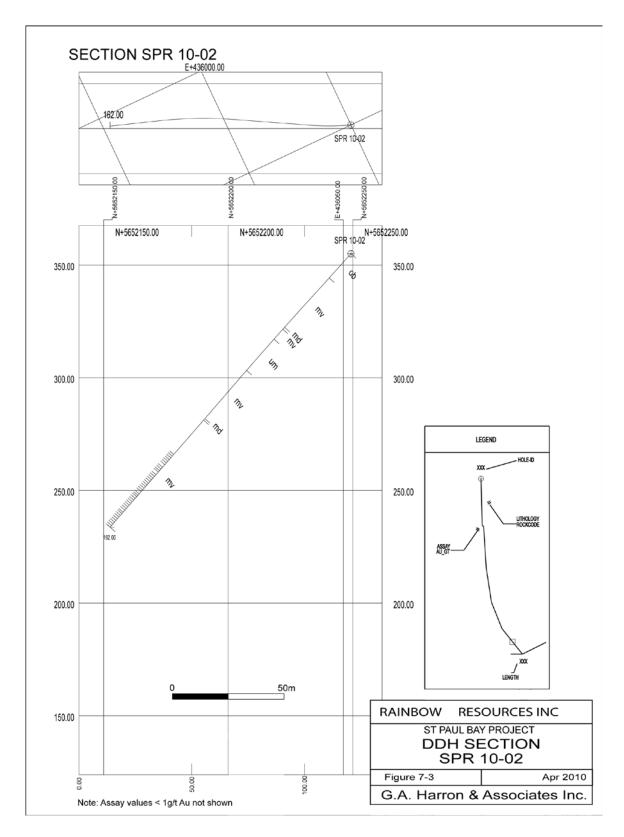

DDH SPR10-02 was collared on L14+00W and approximately 4+00S drilling grid south at 020 azimuth and -48° inclination. This drill collar was changed from the original plan in order for the pad to be on the lake ice. The hole had 14.5 m of overburden and collared into mafic volcanic rocks that have minor intervals of mafic dykes. One minor interval of magnetic peridotite was intercepted mid-way down the hole. An increase in mineralization was noted in the last 40 m of the hole with percentages up to 2-3% pyrite and pyrrhotite.

Table 7-2 Summary Log of DDH SPR10-02

Hole ID	From (m)	To (m)	Rock Type
SPR10-02	0	14.5	Casing
SPR10-02	14.5	44.0	Mafic Volcanic
SPR10-02	44.0	45.2	Mafic Dyke
SPR10-02	45.2	51.1	Mafic Volcanic
SPR10-02	51.1	69.6	Peridotite
SPR10-02	69.6	97.9	Mafic Volcanic
SPR10-02	97.9	98.8	Mafic Dyke
SPR10-02	98.8	162.0	Mafic Volcanic

No anomalous gold values over one gram per tonne were found in the sampling.

Figure 7-3 Cross Section DDH SPR10-02

7.3 DDH # SPR10-03

SPR10-03 was collared on line 8+75W and 3+40S and drilled in order to duplicate Teck's DDH # 03-1 which has a grid south azimuth at 240° degrees. The inclination of the hole was to be -45°, but due to deviation when setting the casing the first reflex reading came back -36.2°. This inclination was too shallow and therefore the hole was stopped at 66 m and re-collared in the same location with it being re-named SPR10-03A. The hole collared in magnetic peridotite with a minor shear zone from 55-59 m. The lithology at the end of the hole was peridotite. No sampling was done on this hole.

Table 7-3 Summary Log of DDH SPR10-03

Hole ID	From (m)	To (m)	Rock Type
SPR10-03	0	38.0	Casing
SPR10-03	38.0	55.0	Peridotite
SPR10-03	55.0	59.0	Shear Zone
SPR10-03	59.0	66.0	Peridotite
SPR10-03	66.0	66.0	EOH

(See Figure 7-4 Cross Section SPR10-03A)

7.4 DDH # SPR10-03A

DDH SPR10-03A was collared at a 240° azimuth and at -48° degrees inclination. The lithologies intercepted in this hole were very similar to what was discovered from the Teck drilling in 2002. Most of the core is strongly magnetic peridotite with intervals of mafic volcanic, felsic volcanics, and talc ultramafic. The hole ended in magnetic peridotite. Strong shearing/faulting was found in the top 100 m of the hole.

Table 7-4 Summary Log of DDH SPR10-3A

Hole ID	From (m)	To (m)	Rock Type
SPR10-03A	0	36.0	Casing
SPR10-03A	36.0	43.2	Peridotite
SPR10-03A	43.2	45.0	Shear Zone
SPR10-03A	45.0	68.8	Peridotite
SPR10-03A	68.8	69.8	Fault Zone
SPR10-03A	69.8	103.8	Peridotite
SPR10-03A	103.8	107.8	Mafic Volcanic

SPR10-03A	107.8	176.4	Felsic Volcanic
SPR10-03A	176.4	179.9	Mafic Volcanic
SPR10-03A	179.9	183.9	Peridotite
SPR10-03A	183.9	186.5	Talc Ultramafic
SPR10-03A	186.5	189.1	Mafic Dyke
SPR10-03A	189.1	198.0	Talc Ultramafic
SPR10-03A	198.0	231.8	Peridotite
SPR10-03A	231.8	232.5	Mafic Volcanic
SPR10-03A	232.5	270.0	Peridotite
SPR10-03A	270.0	270.0	EOH

Anomalous gold values were intercepted from 179.9 to 182.0 m grading 1.3 g/t. This intercept was at a lithologic contact between peridotite and a mafic volcanic.

Table 7-5 Mineralized Intercept in DDH SPR10-3A

Hole ID	From (m)	To (m)	Interval (m)	Grade	Explanation
SPR10-03A	179.9	182.0	2.1	1.3 (g/t Au)	Lithologic contact between mafic volcanic and peridotite

SECTION SPR 10-03A & SPR 10-03 E+436450 E+436500.00 E+436550.00 66.00 270.00 SPR 10-03 SPR 10-03A N+5652250.00 N+5652300.00 SPR 10-03 350.00 350.00 SPR 10-03A 66.00 300.00 300.00 LEGEND HOLE-ID 250.00 250.00 LITHOLOGY ROCKCODE r ASSAY AU_GT 200.00 200.00 RAINBOW **RESOURCES INC** 150.00 ST PAUL BAY PROJECT 270.00 50m **DDH SECTION** SPR 10-03A & SPR 10-03 Figure 7-4 Apr 2010 100.00 G.A. Harron & Associates Inc. Note: Assay values < 1g/t Au not shown

Figure 7-4 Cross Section DDH SPR10-3 &SPR10-3A

7.5 DDH # SPR10-04

DDH SPR10-04 was collared on line 9+00W and 3+00S at an azimuth of 243 degrees. This hole was targeting 50 m west of SPR10-03A along the structure strike. The hole collared into 34 m of overburden followed by 59 m of mafic volcanic with minor shearing and carbonate brecciation. The reminder of the hole is predominately peridotite with varying degrees of magnetism. This unit of peridotite is intercalated with minor intervals of mafic dykes and talc ultramafic with some intervals having very strong talc alteration.

Table 7-6 Summary Log of DDH SPR10-04

Hole ID	From (m)	To (m)	Rock Type
SPR10-04	0	34.0	Casing
SPR10-04	34.0	43.0	Mafic Volcanic
SPR10-04	43.0	57.7	Peridotite
SPR10-04	57.7	59.0	Mafic Volcanic
SPR10-04	59.0	146.2	Peridotite
SPR10-04	146.2	228.0	Talc Ultramafic
SPR10-04	228.0	233.5	Peridotite
SPR10-04	233.5	236.6	Talc Ultramafic
SPR10-04	236.6	249.0	Peridotite
SPR10-04	249.0	249.0	EOH

No anomalous gold values over 1 gram per tonne were found in this hole.

SECTION SPR 10-04 E+436450.00 E+436500.00 249.00 SPR 10-04 N+5652250.00 N+5652300.00 E+436450.00 350.00 350.00 SPR 10-04 D 300.00 300.00 LEGEND - HOLE-ID 250.00 250.00 200.00 200.00 No lin **RAINBOW RESOURCES INC** 150.00 ST PAUL BAY PROJECT DDH SECTION 50m SPR 10-04 Figure 7-5 Apr 2010 G.A. Harron & Associates Inc. Note: Assay values < 1g/t Au not shown

Figure 7-5 Cross Section DDH SPR10-04

7.6 DDH # SPR10-05

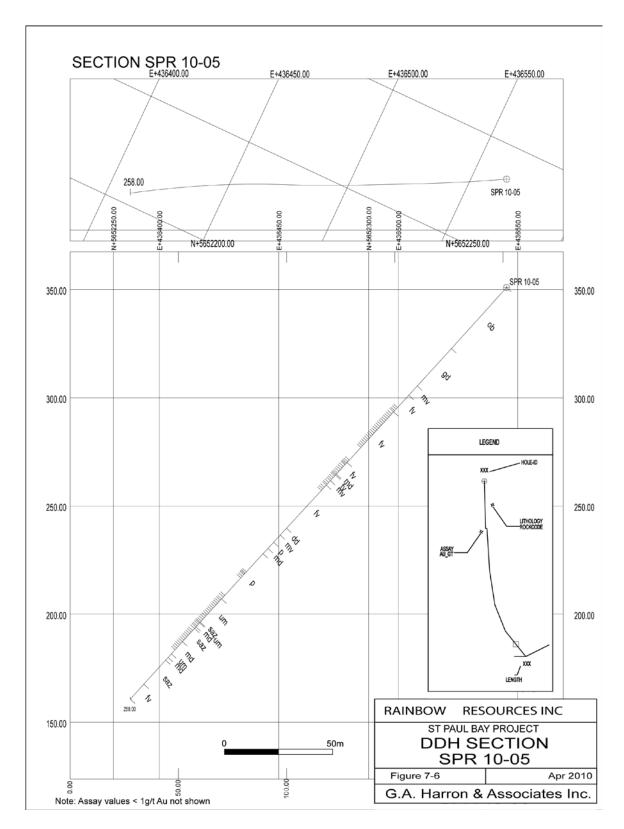

DDH SPR10-05 was collared on line 8+35W and 3+75S at an azimuth of 240° and an inclination of -47°. This hole was targeting 50 m east of DDH SPR10-03A along the regional structure. The hole collared into 38 m of overburden and then into 61 m of intrusive granodiorite of the Dome Stock. From 61 m to 150 m the lithology is predominately felsic volcanic with minor intervals of mafic volcanic rocks and mafic dykes. The reminder of the hole after 150 m is peridotite with minor intervals of talc –altered ultramafic rocks, mafic dykes, and felsic volcanicrocks. Close to the bottom of the hole there is an increase in silica and talc alteration.

Table 7-7 Summary Log of DDH SPR10-05

Hole ID	From (m)	To (m)	Rock Type	
SPR10-05	0		Casing	
SPR10-05	38.1	61.5	Granodiorite	
SPR10-05	61.5	67.3	Mafic volcanic	
SPR10-05	67.3	116.8	Felsic volcanic	
SPR10-05	116.8	117.4	Mafic Dyke	
SPR10-05	117.4	120.9	Felsic volcanic	
SPR10-05	120.9	123.7	Silicified Mafic Volcanic	
SPR10-05	123.7	150.8	Felsic volcanic	
SPR10-05	150.8	155.1	Diabase dyke	
SPR10-05	155.1	159.6	Mafic Volcanic	
SPR10-05	159.6	163.5	Peridotite	
SPR10-05	163.5	166.8	Mafic Dyke	
SPR10-05	166.8	195.2	Peridotite	
SPR10-05	195.2	213.7	Talc Ultramafic	
SPR10-05	213.7	248.6	Silica altered ultramafic	
SPR10-05	248.6	258.0	Felsic Volcanic	
SPR10-05	258.0	258.0	EOH	

No anomalous gold values over 1 gram per tonne were found in this hole.

Figure 7-6 Cross Section DDH SPR10-05

7.7 DDH # SPR10-06

DDH SPR10-06 was collared on the southwest shore of St. Paul Bay on line 17+25W and 9+25S at an azimuth of 360°and an inclination of -55°. This hole was targeting pervious drilling by Teck in 2002 that had anomalous values of gold. The hole collared into 30 m of overburden and then 93 m of mafic volcanic rocks with 12 m above the lower contact having strong silica alteration. After 99.5 m the hole is predominantly peridotite with minor intervals of talc-altered ultramafic rocks. From 150.5 to 159.0 m there is a zone of strong fracturing and broken core within the peridotite.

Table 7-8 Summary Log of DDH SPR10-06

Hole ID	From (m)	To (m)	Rock Type
SPR10-06	0.0	30.2	Casing
SPR10-06	30.2	81.6	Mafic Volcanic
SPR10-06	81.6	93.3	Silica Alteration
SPR10-06	93.3	99.5	Talc Ultramafic
SPR10-06	99.5	105.0	Peridotite
SPR10-06	105.0	107.3	Talc Ultramafic
SPR10-06	107.3	150.5	Peridotite
SPR10-06	105.5	159.0	Fracture Zone
SPR10-06	159.0	237.0	Peridotite
SPR10-06	237.0	237.0	EOH

The only anomalous value of gold over 1000 ppb was found from 58.4 to 59.9 m and graded 1.14 g/t.

This gold value is associated with a narrow interval of silica alteration within the mafic volcanic.

Table 7-9 Mineralized Intersection, DDH SPR10-06

Hole ID	From (m)	To (m)	Interval (m)	Grade	Explanation
SPR10-06	58.4	59.9	0.5	1.14 (g/t Au)	Weak silica alteration within the mafic volcanic

SECTION SPR 10-06 SPR 10-06 237.00 E+435647.01 E+435649.39 N+5652050.00 SPR 10-06 N+5652200.00 N+5652150.00 N+5652100.00 350.00 350.00 300.00 300.00 HOLE-ID 250.00 250.00 200.00 200.00 237.00 RAINBOW RESOURCES INC ST PAUL BAY PROJECT 150.00 **DDH SECTION** 50m SPR 10-06 Figure 7-7 Apr 2010 G.A. Harron & Associates Inc. 100

Figure 7-7 Cross Section DDH SPR10-06

7.8 DDH # SPR10-07

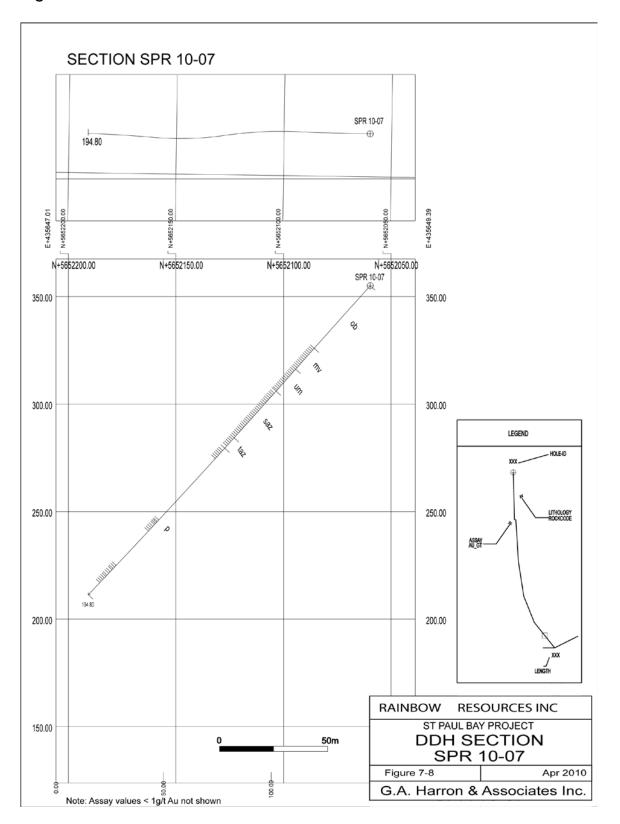

DDH SPR10-07 was collared approximately 50 m east of SPR10-06 and was drilled as a step out hole. This hole was also drilled due north at 360° with an inclination of -48°. The hole collared into 39 m of overburden and then an interval of 52 m of mafic volcanic rocks with moderate chlorite alteration. The lithology then changed to an ultramafic intrusive followed by a 10 m interval of silicified mafic volcanic. This changed to talc-bearing ultramafic rocks from 95 to 101.5 m. The reminder of the hole from 101.5 to 194.8 m was magnetic peridotite.

Table 7-10 Summary Log of DDH SPR10-07

Hole ID	From (m)	To (m)	Rock Type
SPR10-07	0	39.0	Casing
SPR10-07	39.0	52.0	Mafic Volcanic
SPR10-07	52.0	65.7	Ultramafic Intrusive
SPR10-07	65.7	95.0	Silicified Mafic Volcanic
SPR10-07	95.0	101.5	Talc Ultramafic
SPR10-07	101.5	194.8	Peridotite
SPR10-07	194.8	194.8	EOH

No anomalous gold values were found in the sampling of this hole.

Figure 7-8 Cross Section DDH SPR10-07

7.9 DDH # SPR10-08

DDH SPR10-08 was collared on line 7+00W and 2+50S and drilled grid north at 020° at an inclination of -47°. This hole was targeting an IP anomaly along the contact with the Dome Stock. The hole collared into 24.5 m of overburden and then had a lithology of peridotite down to 116 m. Within this peridotite there were two strong fault zones from 76.7 to 78.0 m and 111.2 to 116.0 m. From 116.0 m to the end of hole was intrusive granodiorite.

Table 7-11 Summary Log of DDH SPR10-08

Hole ID	From (m)	To (m)	Rock Type
SPR10-08	0	24.5	Casing
SPR10-08	24.5	76.7	Peridotite
SPR10-08	76.7	78.0	Fault Zone
SPR10-08	78.0	111.2	Peridotite
SPR10-08	111.2	116.0	Fault Zone
SPR10-08	116.0	264.0	Granodiorite
SPR10-08	264.0	264.0	EOH

One anomalous gold intercept was found from 197.0 to 198.0 m grading 1.15 g/t. This value is associated with mineralized quartz-carbonate stringers within the granodiorite.

Table 7-12 Mineralized Intersection, DDH SPR10-08

Hole ID	From (m)	To (m)	Interval (m)	Grade	Explanation
SPR10-08	197.0	198.0	1.0	1.15 (g/t Au)	Mineralized quartz-carbonate stringers within the granodiorite

SECTION SPR 10-08 E+438650.00 SPR 10-08 264.00 N+5652400.00 N+5652450.00 N+5652500.00 N+5652550.00 SPR 10-08 350.00 350.00 300.00 300.00 250.00 250.00 LEGEND 200.00 200.00 264.00 RAINBOW **RESOURCES INC** ST PAUL BAY PROJECT 150.00 DDH SECTION 50m SPR 10-08 Apr 2010 Figure 7-9 G.A. Harron & Associates Inc. Note: Assay values < 1g/t Au not shown

Figure 7-9 Cross Section DDH SPR10-08

8.0 Sampling Method & QA/QC

Drill core was delivered to a secure core handling facility in the Town of Red Lake by the drill contractor's personnel twice a day. As a first step, the length of core is measured and compared to the position of depth markers placed in the core boxes by the drill contractor's personnel. This activity is to check for misplaced markers and for lost core.

All cores were logged by Matt Long, P. Geo. of 42.2k Geological Consulting Inc. Red Lake, Ontario in a formal core logging facility, with adequate security, lighting, temporary core storage and a core sawing work area. All logging information was recorded directly into an excel worksheet on a laptop computer.

The core was selectively sampled with sample intervals marked up on the core by the geologist. Individual sample lengths are adjusted to accommodate lithological and alteration changes, and the presence of quartz veins and sulphides. In general, the sample length for this drill program was one metre. Half cores are sawn from only one side of a sampling line and bagged with the first part of a three-part assay tag bearing a unique identifier number. The other half of the core is archived with the second part of the three part assay tag bearing an identical unique identifier number fastened to the core box at the beginning of the sample interval.

Records of the sampled intervals and sample numbers are recorded in the logs, on a sampling sheet and on the third part of a three part assay tags bearing an identical identifier number as the other two parts of the assay tag. The sampler also completes an assay requisition sheet listing the sample numbers, and requested assay and preparation procedures for inclusion with each batch of 100 samples shipped to SGS Laboratories Ltd. in Red Lake, Ontario.

Quality assurance and quality control was done for this drill program following the industry best practices guidelines. This included the use of a blank and a standard sample inserted every 25th sample.

8.1 Results of Blank Sampling

The blank material used was certified blank material from CDN Resources Laboratories Ltd. Vancouver, B.C.

Assay results from the insertion of 26 blank samples are listed in Table 8-1, after excluding a 50 ppb Au statistical outlier not supported by adjacent samples. The detection limit of the laboratory is 5 ppb and 23 samples returned 5 or< 5ppb Au (88.5%). This is an acceptable outcome for assays in close proximity to the lower detection limit. The results indicate that sample contamination is not an issue at this laboratory.

Table 8-1 Results of Blank Sampling

DDH # with inserted	Sample # assigned	Reported assay
blank sample	to blank sample	value (ppb) Au
SPR10-04	26075	<5
SPR10-04	26099	<5
SPR10-04	26125	<5
SPR10-04	26149	<5
SPR10-03A	26174	<5
SPR10-03A	26200	5
SPR10-03A	26224	<5
SPR10-03A	26249	<5
SPR10-05	26274	<5
SPR10-05	26299	<5
SPR10-05	26324	<5
SPR10-08	26349	5
SPR10-08	26374	5
SPR10-08	26399	<5
SPR10-08	26424	<5
SPR10-06	26449	<5
SPR10-06	26474	<5
SPR10-06	26499	<5
SPR10-06	26531	<5
SPR10-07	26549	<5
SPR10-07	26574	15
SPR10-07	26599	<5
SPR10-07	26624	5
SPR10-01	26649	10
SPR10-01	26674	<5
SPR10-01	26699	10
SPR10-02	26724	<5

8.2 Results of Standard Sampling

One certified standard sample was purchased from CDN Laboratories, Vancouver, BC. This standard was CDN-GS-6B that has a certified Au assay of 6.45 +/- 300 ppb. The returned average assay for the 27 CDN-GS-6B standards

was 6.42 g/t Au, which represents a 0.4% deviation from the certified assay value and is within the reported standard deviation. The results in Table 8-2 indicates that the laboratory has a high degree of analytical precision and the assay results are robust and fit for purpose

Table 8-2 Results of Standard Sample Assays

DDH with inserted	Sample # assigned to	Reported assay value (ppb
standard sample	standard sample	Au)
SPR10-04	26076	6640
SPR10-04	26100	6405
SPR10-04	26126	6500
SPR10-04	26150	6150
SPR10-03A	26175	6520
SPR10-03A	26199	6360
SPR10-03A	26225	6210
SPR10-03A	26250	6530
SPR10-05	26275	6480
SPR10-05	26300	6460
SPR10-05	26325	6620
SPR10-08	26350	6420
SPR10-08	26375	6595
SPR10-08	26400	6650
SPR10-08	26425	6650
SPR10-06	26450	6495
SPR10-06	26475	6415
SPR10-06	26500	6390
SPR10-06	26532	6390
SPR10-07	26550	6245
SPR10-07	26575	6285
SPR10-07	26600	6405
SPR10-07	26625	6400
SPR10-01	26650	6195
SPR10-01	26675	6130
SPR10-01	26698	6420
SPR10-02	26725	6430
		Average 6422

9.0 Sample Preparation, Analysis & Security

The intervals of core to be analyzed are marked on the core and cut loose with a rock saw, then placed in a plastic bag along with a tag displaying a unique serial number. A tag bearing the same unique identifier serial number is fastened to the core box for archiving purposes. The unique serial number is recorded both on the drill log and on a requisition form.

Blank and standard samples are inserted into the sample stream at this time, at a rate of 1 standard and 1 blank per 25 samples.

When sufficient samples were accumulated they were transported to the SGS assay laboratory in Red Lake, where the samples are logged into the SGS sample management system.

Analyses for Au was carried out using the standard fire assay technique on a 30 g sample. A total of 694 core samples were analyzed.

Security of the samples awaiting assay is not a problem as no unauthorized persons were allowed in the storage areas.

10.0 Conclusions & Recommendations

Results from ground geophysical surveys (IP/RES and MAG) indicate the location of the sheared contact of Balmer assemblage mafic / ultramafic volcanic rocks and the granodioritic Dome Stock. Drill targets were a mix of verification holes in an attempt to expand the two known gold occurrences noted in the Teck drilling (Baxter, 2003), and also to test the gold potential of IP/RES responses. DDHs SPR10-3A and SPR10-06 were successful in intersecting the historical gold occurrences located by Teck in 2002. While the auriferous veins were extended by approximately 50 m locally, the veins remained weakly mineralized over narrow widths. Most notably the gold occurrences in the southwest corner of the property are approximately 1 km west south west of the gold occurrences known in the L 9+00 W /400 S area suggesting that the potential to discover additional gold mineralization over this distance has not been completely tested.

The weak gold mineralization discovered in DDH SPR10-8 is significant, in that the mineralization is hosted by the Dome Stock, similar to gold occurrences on the adjacent Mega Precious Metals Inc. The presence of this mineralization also suggests that potentially economic mineralization can be discovered in this area.

Rainbow Res., St Paul Bay

This type of gold mineralization has not been seriously looked for on the Meunier option property.

A further attempt to define the location of broad shear zones on the property is warranted, as these structures on the adjacent Mega Precious Metals Inc. property carry potentially economic gold mineralization.

It is recommended that additional modeling of magnetic and IP/RES data should be undertaken prior to a drill campaign focused on gold mineralization hosted in shears.

11.0 References

Baxter, P., 2003, Summary Report on the St Paul Bay Property, Fairlie, Baird and Heyson Townships, Red Lake Area, Ontario, NTS 52N04, for Teck Cominco Ltd.

Campbell, T, 2003, Ground Magnetic Geophysical Survey, St Paul Bay Property, Fairlie, Baird and Heyson Townships, Red Lake Area, Ontario, NTS 52N04, AFRI # 52N04SW2052

Chastko, L. C., 1972, report on the Mineral Exploration of the Coin Lake Group, Dome – Heyson Townships of Red Lake, Ontario for Cochenour Willans Gold Mines Ltd., AFRI # 52N04SW0080.

Cooke, C.M., 1991, Report on the 1991 Winter Work Program, Meunier Property, Project 25202, Aur Resources Company Report AFRI # 52N04SW0007

Dube, B., Williamson, K. and Malo, M., 2002, Geology of the Goldcorp Inc. High Grade Zone, Red Lake Mine, Ontario, an Update, in Current Research, Part C, Geol, Surv. Can. Paper #2002-C26, p. 1-13.

Ferguson, S.A., 1965, Geology of the Eastern Part of Baird Township, Ont. Dept. Mines, Geological Report 39, 45 p., Map 2072, scale 1:12,000

Ferguson, S.A., 1966, Geology of Dome Township, Ont. Dept. Mines, Geological Report 45, 98 p., Map 2074, scale 1:12,000

Horwood, H. C., 1945, Geology and Mineral Deposits of the Red Lake Area, Ont. Dept. Mines, Vol. 49, pt 2, 1940, 219 p.

Parker, J.R., 2000, Gold Mineralization and Wall Rock Alteration in the Red Lake Greenstone Belt: A Regional Perspective; in Summary of Field Work and Other Activities, Ont. Geol, Surv, Open File Report 6032 p. 22-1 to 22-28

Riley, R.A., 1975, Fairlie Township, District of Kenora (Patricia Portion), Ont. Div. Mines, Prelim Map P.1053, Scale 1:12,000.

Seyler, R., and Cooke, C.M., 1990, Geological Compilation Report, Meunier Property, Project 25202, Aur Resources Company Report, AFRI # 52N04SW9961

12.0 The Date And Signature Page

This report titled "Report On Diamond Drilling St Paul Bay Area Fairlie, Baird and Heyson Townships, Red Lake M.D. Ontario, for Rainbow Resources Inc., and dated May 8, 2012. Core logging and sampling was completed by Mr. Matt Long under the supervision of the senior author. Text for the report was partially supplied by Mr. Matt Long, and figures were prepared under the supervision of G.A. Harron & Associates Inc.

Dated at Toronto, Ontario, May 8, 2012

"Signed and Sealed"

Gerald A. Harron P.Eng.

G.A. Harron & Associates Inc.133 Richmond St. West, Suite 501Toronto, Ontario, Canada.M5H 2L3

Tel.: 416-865-1060

E-mail: gaharron@bellnet.ca.

RAINBOW RESOURCES INC.

DIAMOND DRILL LOG

SPR10-01 **DDH Number** Project St. Paul Bay Length 300m Mar. 4, 2011 Started Completed Mar. 6, 2011 435865 Easting Northing 5652180 Elevation 355

	Reflex Te	st					
Depth	Azimuth	Dip	Mag	Depth	Azimuth	Dip	Mag
0	20	-48		252	49.4	-46.1	61307
51	24.5	-47.6	58344	300	16.3	-45.4	56614
102	28	-47.8	54568				
153	24.8	-46	58489				
201	29.2	-46.6	54213				

Page	1 or3
Logged By	Matt Long
Grid Coor'd	5+75S/L15+00W
Claim No.	1143079
Target(s)	IP zone defined from JVX Survey
Contractor	Hy-Tech Diamond Drilling
Comments	

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
0.0	37.5		Overburden/casing	26629	37.5	39.0				<0.01	
37.5	51.5		Mafic Volcanic: Light grey/green; fine grained; massive; strongly silicified through out the interval with associated 1-2% stringers	26630	39.0	40.0	T			<0.01	
			of pyrite; strong light green chlorite alteration from 49-51.5m; sharp lower contact with the ultramafic at 85 degrees; breccia	26631	40.0	41.0				<0.01	L
			fracture at 39.5m at low angle and strong mineralization; 41-41.3m breccia fracture with broken core	26632	41.0	42.0				<0.01	
51.5	100.3		Ultramafic: dark grey/black; fine grained; massive; strongly magnetic; Strongly broken core throughout the interval with a low	26633	42.0	43.0				<0.01	
			RQD; 5% re-healed green fractures with strong talc-chlorite alteration	26634	43.0	44.0	I		I	<0.01	
				26635	44.0	45.0	T			0.01	[]
100.3	101.0		Silica Alteration Zone: Ulramafic that has been bleached by intense silica alteration to pale yellow/grey; Sharp upper and lower	26636	45.0	46.0			T	0.02	
			contacts with weak brecciation at the lower contact; late 2% black fractures x-cutting the core	26637	46.0	47.0	1			<0.01	[
101.0	136.5		Ultramafic: massive; dark grey/black; fine grained but changing to coarser grained after 109m; more intrusive in texture; strong	26638	47.0	48.0	T			<0.01	[
	T		magnetics; very low RQD due to broken core from 115.5-120m; lower contact with fault zone cannot be observed due to broken	26639	48.0	49.0			T	0.03	
			core	26640	49.0	50.0	1			0.03	[
136.5	144.0		Fault Zone: Strong faulting with breccia/soft gouge and broken core from 136.5-138m and 141.8-144m; remainder of interval is	26641	50.0	51.5			T	0.13	
	1		coarsed grained ultramafic; Orange staining throughout the interval due to iron carbonate and hematite; Possible St. Paul Bay	26642	51.5	53.0			1	0.02	1
			Deformation zone	26643	53.0	54.0	1			<0.01	ſ
144.0	194.6		Ultramafic/Peridotite: Dark green/grey; coarse grained; massive; 5% late tension fractures x-cutting randomly; most of the	26644	54.0	55.0				<0.01	
			fractures are altered dark green by chlorite alteration; Low RQD and strongly broken core from 148-177m; lower contact with the	26645	55.0	56.0				<0.01	[
			talc altered unit is within broken core	26646	56.0	57.0	1			<0.01	ſ
194.6	196.6		Talc Altered Ultramafic: light grey/green; talc/chlorite shear zone with weak silica alteration; minor red hematite staining;	26647	98.0	99.0				<0.01	ı i
			gradational and undefined lower contact; strong foliation/shearing at 55 degrees	26648	99.0	100.3	†			<0.01	[
196.6	235.2		Peridotite/Ultramafic: dark grey; coarse grained with 30% rounded clusters of olivine/pyroxene up to 2cm in size and lighter grey	26651	100.3	101.0	†		 	<0.01	
	1		in colour, strongly magnetic; 2% late tension fractures that are altered dark green and randomly x-cut the core	26652	101.0	102.0			1	<0.01	
235.2	237.0		Shear Zone: Dark green chlorite breccia at upper contact from 235.2-236m; remaining light grey/white strongly sheared; strong	26653	102.0	103.0	†			<0.01	r i
	†		talc alteration; sharp lower contact at 60 degrees	26654	103.0	104.0			†	<0.01	ı
	 		1	26655	104.0	105.0	 		†	<0.01	1

DDH Number SPR10-01	Page	2	of	3

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
237.0	300.0		Peridotite/Ultramafic: Dark grey/black; massive; medium to coarse grained; 2-3% late fractures altered with talc/chlorite randomly	26656	128.0	129.0				<0.01	
			x-cutting the core; strongly magnetic with very strong magnetism in the last 10m within black magnetite stringers; 276-282.5m and	26657	129.0	130.0				<0.01	
			285.3-286.1m light green coarse grained olivine alteration; EOH @300m	26658	130.0	131.0				<0.01	
				26659	131.0	132.0				<0.01	
				26660	132.0	133.0				<0.01	[]
				26661	133.0	134.0				0.02	
				26662	134.0	135.0				<0.01	
				26663	135.0	136.5				<0.01	
				26664	136.5	138.0				<0.01	[
				26665	138.0	139.0	[I	<0.01	7
				26666	139.0	140.0				<0.01	j j
				26667	140.0	141.0				<0.01	
				26668	141.0	142.0	[I	<0.01	7
				26669	142.0	143.0				<0.01	[]
				26670	143.0	144.0				<0.01	
				26671	144.0	145.0				<0.01	
				26672	145.0	146.0				<0.01	[]
				26673	146.0	147.0				0.02	
				26676	147.0	148.0				0.02	
				26677	148.0	149.0				<0.01	
				26678	149.0	150.0				<0.01	
				26679	190.0	191.0				<0.01	[
				26680	191.0	192.0				<0.01	
				26681	192.0	193.0				<0.01	
				26682	193.0	194.0				<0.01	[]
				26683	194.0	194.6				<0.01	
				26684	194.6	195.6				<0.01	
				26685	195.6	196.6				<0.01	
				26686	196.6	198.0			1	<0.01	[
				26687	198.0	199.0				<0.01	[
				26688	199.0	200.0				<0.01	
				26689	200.0	201.0			 	<0.01	

DDH Number SPR10-01	Page _	3	of	3
---------------------	--------	---	----	---

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26690	231.0	232.0				<0.01	
				26691	232.0	233.0				<0.01]
				26692	233.0	234.0				<0.01	
L			L	26693	234.0	235.2	L		l	<0.01	
1				26694	235.2	236.0	l	L		0.01	
L			L	26695	236.0	237.0	L		l	<0.01	
				26696	237.0	238.0		L		<0.01	
				26697	238.0	239.0		L		<0.01	L
				26700	239.0	240.0				<0.01	
											L
								[i
								[i – – – i
[T	T			[
F						T	T			[
								T			
							T				
											.
							t				
											 I
							t				
							t				
											.
											
						 	 	 		 	
h			<u> </u>			t	t				
											i
			<u> </u>			 	t			 	
 		 				 	 	 	 	 	
									l		

RAINBOW RESOURCES INC.

DIAMOND DRILL LOG

SPR10-02 **DDH Number** Project St. Paul Bay Length 162m Mar. 6, 2011 Started Completed Mar. 7, 2011 436050 Easting Northing 5652250 Elevation 355m

				-			
	Reflex Te	st					
Depth	Azimuth	Dip	Mag	Depth	Azimuth	Dip	Mag
0	200	-48					
27	209.5	-47.6	57146				
78	209.5	-49.2	55825				
129	199	-48.6	56704				

 Page
 1
 of
 2

 Logged By
 Matt Long

 Grid Coor'd
 7+00S/L13+00W

 Claim No.
 1143080

 Target(s)
 IP zone target from JVX survey

 Contractor
 Hy-Tech Diamond Drilling

Comments

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
0.0	14.5		Overburden/casing	26701	119.0	120.0				0.03	
14.5	44.0		Mafic Volcanic: Light green/grey; massive; fine grained; 29.6-29.9m and 41.5-42.1m re-healed qtz-carb breccia; sharp lower	26702	120.0	121.0	I			0.05	
	T		contact with the dyke at 60 degrees	26703	121.0	122.0			I	<0.01	
44.0	45.2		Mafic Dyke: Dark grey; massive; medium grained; gradational contact	26704	122.0	123.0				<0.01	
				26705	123.0	124.0			I = I = I	<0.01	
45.2	51.1		Mafic Volcanic: Light green; massive but with minor intervals of very weak foliation at 45 degrees; very minor <1% late white qtz-	26706	124.0	125.0				0.04	
			carb stringers and veinlets; faulted/breccia lower contact with the ultramafic at 40 degrees; non-magnetic	26707	125.0	126.6				0.02	
51.1	69.6		Ultramafic/Peridotite: Dark grey with mottled/streaky minor purple; fine grained; massive; strongly magnetic; re-healed	26708	126.6	127.6			I	<0.01	
[brecciated lower contact over 0.5m before contact	26709	127.6	128.6	I			0.04	
69.6	97.9		Mafic Volcanic: Light grey; very weak foliation at 40 degrees; almost no veining; fine grained from 69.6-78m changing to	26710	128.6	129.4	I			<0.01	
	T		medium to coarse grained due to weak silica alteration and recyrstallizaiton; broken core from 96.3-97m	26711	129.4	131.0			I	0.02	
				26712	131.0	132.0				0.03	
97.9	98.8		Mafic Dyke: Dark brown/grey, medium grained; massive; sharp upper contact at 65 degrees and lower contact at 80 degree	26713	132.0	133.0			I	<0.01	
	T			26714	133.0	134.0			I	0.26	1
98.8	162.0		Mafic Volcanic: Light grey/green; very weak foliation at 45 degrees; strong recyrstallization producing coarser grained intervals;	26715	134.0	135.0	I			<0.01	
	I		little to no qtz-carb veining; 126.6-129.4m 2-3% pyrite and pyrrhotite mineralization as stringers and threads; 142.6m	26716	135.0	136.0			T	<0.01	
			mineralized fault with 5-8% pyrite min. and minor qtz-carb veining; 142.3-153.2m 1-2% stringers of pyrite and pyrrhotite	26717	136.0	137.0	I			0.04	
[throughout the interval; 153.2-162m <1% pyrite stringers; EOH @162m	26718	137.0	138.0	I			<0.01	
				26719	138.0	139.0			I	<0.01	1
Γ				26720	139.0	140.0	I			<0.01	
				26721	140.0	141.0	I			0.06	
				26722	141.0	142.3				<0.01	
				26723	142.3	143.2	T			0.06	
	T]	26726	143.2	144.0			T	0.04	
				26727	144.0	145.0	l		T	0.03	

DDH Number SPR10-02	Page 2 of	2

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26729	146.0	147.0				0.01	
				26730	147.0	148.0	T			<0.01	
				26731	148.0	149.0		[<0.01	
				26732	149.0	150.0				0.02	
				26733	150.0	151.0	[0.03	I
				26734	151.0	152.0				0.04	
				26735	152.0	153.2	T			0.01	
				26736	153.2	154.0				0.06	
				26737	154.0	155.0		[<0.01	i '
				26738	155.0	156.0	T			0.03	
				26739	156.0	157.0		T		0.01	i
				26740	157.0	158.0	T			<0.01	
				26741	158.0	159.0	T			0.06	
				26742	159.0	160.0		[<0.01	i – – – –
				26743	160.0	161.0	T			<0.01	
				26744	161.0	162.0				<0.01	
								T			i
											
							T				
											í – – – –
							†				
				!			†				
											i
							 				·
							 			 	
						†	t			t	
											[
						+	 			 	_[
				 		 	 	 	 	 	
											_

RAINBOW RESOURCES INC.

DIAMOND DRILL LOG

SPR10-03 **DDH Number** Project St. Paul Bay Length 66.0m Feb. 17, 2011 Started Completed Feb. 18, 2011 Easting 436535 Northing 5652323 Elevation 351m

	Reflex Te	st					
Depth	Azimuth	Dip	Mag	Depth	Azimuth	Dip	Mag
51	238.6	-36.2	57204				
57	240.6	-36.3	57380				

Page	1 of
Logged By	Matt Long
Grid Coor'd	3+40S / L8+75W
Claim No.	963599
Target(s)	under 03-1
Contractor	Hy-Tech Diamond Drilling
Comments	Hole stopped early due to shallow dip at collar

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
0.0	38.0		Overburden and water								
38.0	55.0		Peridotite: Dark green, fine to medium grained with strong chlorite alteration and minor talc alteration within late fissures and cracks. Coarser grained at lower contact with shear zone. Strongly broken core from 44 to 50.5 m.]				
55.0	59.0		Shear zone: light red shear/deformation zone overprinting the peridotite. Broken core with fault gouge. Similar to zone logged in the top of SPR10-04.				† †				T
59.0	66.0		Peridotite: Light/dark green; 1-2% white qtz-carb veinlets. Talc/chlorite alteration along fracture planes.			1			1		[
66.0	66.0		ЕОН								
							‡				
						[Ţ	[[
									 		{
							1			1	
							 			 -	
							 			 	
							<u> </u>		 		[
					 	 		ļ	ļ	 	
									 		
					 		<u> </u>				
				 	ļ	 	 	 	 	 	{

RAINBOW RESOURCES INC.

DIAMOND DRILL LOG

DDH Number SPR10-03A Project St. Paul Bay Length 270m Feb. 19, 2011 Started Completed Feb. 21, 2011 Easting 436535 Northing 5652323 Elevation 351m

	Reflex Te	st					
Depth	Azimuth	Dip	Mag	Depth	Azimuth	Dip	Mag
48	234.8	-47.9	55331	255	249.9	-49	58412
51	244.4	-47.8	57046				
102	238.7	-48	58209				
153	254.5	-48.3	54830				
204	242.5	-48.5	57980				

Page	1 of4
Logged By	Matt Long
Grid Coor'd	3+40S/L8+75W
Claim No.	963599
Target(s)	under 03-1
Contractor	Hy-Tech Diamond Drilling
Comments	

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
0.0	36.0		Overburden	26156	39.0	40.0				0.01	
36.0	43.2		Peridotite: light green, fine grained with strong chlorite alteration. Core is highly broken with 2% vuggy quartz-carbonate veins <5	26157	40.0	41.0	I			<0.01	
			mm in width. Broken lower contact with fault zone.	26158	41.0	42.0			T	0.06	
43.2	45.0		Fault Zone: dark red with strong iron-carbonate staining; red due to surface groundwater. Highly broken and fragmented core.	26159	42.0	43.2				0.02	
			Lower contact is undefined due to broken core.	26160	43.2	44.0				0.04	
45.0	68.8		Peridotite: Light and dark green with strong mag. Weak chlorite alteration throughout. 1-2% white random quartz-carbonate	26161	44.0	45.0			I	<0.01	
			stringers. Massive no foliation	26162	45.0	46.0	I			0.01	i
68.8	69.8		Fault Zone: Light red staining due to iron-carbonate. Strong faulting with gouge and loose clay/breccia from 69.2-69.6m	26163	46.0	47.0			T	<0.01	ı – – – 1
69.8	103.8		Peridotite: Mottle dark and light green; massive; fine grained; strong magnetics and strong chlorite alteration throughout. Strong	26164	47.0	48.0	I	[<0.01	i
[faulting with breccia gouge from 90.1-90.2m at 45 degrees to core axis.	26165	48.0	49.0	I	[<0.01	i 1
103.8	107.8		Mafic Volcanic: light green/grey; no mag; massive and fine grained. Difficult to distingush from the peridotite.	26166	49.0	50.0			T	0.08	1
107.8	113.6		Rhyolite/felsic volcanic: Light grey with dark grey tension fissures re-healed; very strong silica; sharp lower contact with	26167	50.0	51.0	I			0.03	i
			ultramafic.	26168	51.0	52.0			T	0.03	ı – – – 1
113.6	115.3		Sheared Ultramafic: light green; moderately soft with strong chlorite and carbonate alteration. Sharp lower contact with the	26169	52.0	53.0			T	0.06	ı 1
[rhyolite.	26170	53.0	54.0	I	[0.06	i 1
115.3	176.4		Rhyolite/Felsic volcanic: Light grey, fine grained; massive with no veining. No mag. Gradational lower contact with mafic volc.	26171	63.0	64.0			T	<0.01	ı – – – 1
			Numerous intervals of broken core due to brittle nature of lithology; Faulting at 157.5m and 158m	26172	64.0	65.0	T			<0.01	i
176.4	179.9		Mafic Volcanic: light green/grey; no mag; massive and fine grained. Difficult to distingush from the peridotite.	26173	65.0	66.0	I	[<0.01	i
179.9	183.9		Peridotite: Dark grey; massive; strong mag; fine grained; very weak pervasive talc alteration; gradational lower contact	26176	66.0	67.0			T	0.07	ı – – – 1
183.9	186.5		Talc Ultramafic: light grey/white; strong talc alteration; very soft core; massive with no foliation; medium to coarse grained.	26177	67.0	68.0	I	[0.04	i 1
186.5	189.1		Mafic lamp. Dyke: grey, medium grained; massive; sharp upper and lower contact both at 30 degrees to core axis	26178	68.0	68.8				0.01	
189.1	198.0		Talc Ultramafic: light grey/white; strong talc alteration; very soft core; massive with no foliation; medium to coarse grained; very	26179	68.8	69.8			T	0.07	ı
[gradational and undefined lower contact.	26180	69.8	71.0	T			<0.01	i
198.0	231.8		Peridotite: Dark grey; massive; very strong mag.; coarse grained	26181	71.0	72.0			T	0.03	ı
231.8	232.5		Mafic Volcanic: very narrow unit; light green; massive; strongly broken core	26182	72.0	73.0	l		T	0.03	1

DDH Number SPR10-03A	Page _	2	of	4	_
----------------------	--------	---	----	---	---

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
232.5	270.0		Peridotite: dark grey; massive; coarse grained; strong magnetics; 244-246.2m strong talc alteration; EOH @270m	26183	73.0	74.0				<0.01	
				26184	74.0	75.0	t			0.1	[
				26185	75.0	76.0				0.1	[
				26186	76.0	77.0				0.07	[
		1		26187	77.0	78.0	t			0.07	
	†			26188	78.0	79.0				0.3	T — — — —
		1		26189	79.0	80.0	t			0.5	
		 		26190	80.0	81.0	†			0.09	
				26191	107.8	109.0				0.07	
				26192	109.0	110.0				0.02	
				26193	110.0	111.0				0.02	
				26194	111.0	112.0				<0.01	r
		 	<u> </u>	26195	112.0	113.0	t			<0.01	
	+			26196	113.0	113.6		 		<0.01	r
		 	 	26197	113.6	114.3	 		 		
		 	 	26198	114.3	115.3	+			<0.01	
				26201	115.3	116.0		 		<0.01	h — — — -
		+		26202	116.0	117.0				<0.01	
				26203	117.0	118.0		 		<0.01	
	+			26204	174.0	175.0				0.03	h
		 		26204	175.0	176.4	+		 	<0.01	
								 		<0.01	+
		 		26206	176.4	177.0	 		 	<0.01	
				26207	177.0	178.0	 -			<0.01	
	 			26208	178.0	179.0		 		<0.01	
		 		26209	179.0	179.9				0.16	
	 			26210	179.9	181.0				1.26	 -
	ļ	ļ		26211	181.0	182.0	ļ	ļ	ļ	1.37	
		1	L	26212	182.0	183.0	 		 	0.03	
	 	L		26213	183.0	183.9		L		<0.01	ļ
	<u> </u>	1	L	26214	183.9	185.0	L		l	0.03	
	<u> </u>	l	LL	26215	185.0	186.5	L	:	l	0.27	l
				26216	186.5	188.0		1		< 0.01	1

DDH Number SPR10-03A

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26217	188.0	189.1				<0.01	
				26218	189.1	190.0				<0.01	
				26219	190.0	191.0				<0.01	
				26220	191.0	192.0	I			<0.01	
				26221	192.0	193.0	l	l		<0.01	
L				26222	193.0	194.0	L		l	<0.01	
				26223	194.0	195.0				<0.01	
				26226	195.0	196.0				0.01	
				26227	196.0	197.0	L			0.04	
				26228	197.0	198.0				<0.01	
				26229	198.0	199.0				<0.01	
L				26230	199.0	200.0	L			<0.01	
				26231	200.0	201.0	l	l		<0.01	
L				26232	201.0	202.0	L		l	0.06	
L				26233	236.0	237.0	L		l	<0.01	
				26234	237.0	238.0				<0.01	
				26235	238.0	239.0	L			<0.01	
				26236	239.0	240.0				<0.01	
				26237	240.0	241.0				<0.01	
L				26238	241.0	242.0	L		l	0.03	ı J
				26239	242.0	243.0	l			<0.01]
				26240	243.0	244.0	L			<0.01	ı J
L				26241	244.0	245.0	L		l	<0.01	ı J
				26242	245.0	246.2	ļ			<0.01	L
				26243	246.2	247.0	L			<0.01	
				26244	247.0	248.0				<0.01	<u> </u>
				26245	248.0	249.0				0.02	
L				26246	249.0	250.0	L			<0.01	ı _
				26247	250.0	251.0		L		<0.01	
L				26248	251.0	252.0	L		l	<0.01	ı J
				26251	252.0	253.0	<u> </u>			0.03	
				26252	253.0	254.0				<0.01	ı

Page ____3 ___ of ___4___

DDH Number SPR10-03A	Page _	4	of	4
----------------------	--------	---	----	---

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26253	254.0	255.0				<0.01	
				26254	255.0	256.0				<0.01	
L		l					L				
							L				
		ļ					ļ				
							L				
											
											
											
											4
											
							 -				
											,
							 				
						:	 				
											r – – – - ¦
							 				r
		 								 	
			L				 			 	,
											ا ا
			L				 				,
	ļ	ļ	L	ļ			 	ļ	<u> </u>	 	

Rainbow Resources Inc. DIAMOND DRILL LOG

SPR10-04 **DDH Number** Project St. Paul Bay Length 249 m Feb. 14, 2011 Started Completed Feb. 16, 2011 436517 Easting Northing 5652380 Elevation 350m

	Reflex Te	st					
Depth	Azimuth	Dip	Mag	Depth	Azimuth	Dip	Mag
48	243.2	-44.2	55895				
99	245.7	-44.5	55484				
150	255.1	-45	56042				
174	248.9	-45	55391				
225	247.5	-45.1	55091				

Page	1 or4
Logged By	Matt Long
Grid Coor'd	3+00S/L9+00W
Claim No.	963599
Target(s)	West of 03-1
Contractor	Hy-Tech Diamond Drilling
Comments	· · · · · · · · · · · · · · · · · · ·

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
0.0	34.0		Overburden	26051	38.0	39.0				<0.01	
34.0	40.0		dark grey/green, fine grained mafic volcanic. 2-3% white quartz-carbonate tension veinlets. Weak red staining due to iron carbonate.	26052 26053	39.0 40.0	40.0 41.0				<0.01 <0.01	
40.0	43.0		Mafic volcanic with strong shearing and minor breccia gouge. Overprinted with light red iron-carbonate staining.	26054	41.0	42.0	1			<0.01	
43.0	57.7		Dark grey/green, medium to coarse grained peridotite. Medium talc/chlorite alteration overprinting the orginal texture but very strong in quartz-carbonate stringers and veinlets. Carbonate vug @45.6m	26055 26056	42.0 43.0	43.0 44.0				<0.01 <0.01	
57.7	59.0		Mafic volcanic with 30% white/green carbonate breccia. Weak red iron-carbonate staining	26057	44.0	45.0	†			<0.01	
59.0	146.2			26058	45.0	46.0				<0.01	
			Dark green, fine grained peridotite with moderate chlorite alteration throughout the interval. Very little quartz-carbonate veining <0.5%. Strong shear zone with broken core from 67-68m. 78.9-79m quartz-carbonate breccia with 5% threads of pyrite. 89.3-	26059 26060	46.0 47.0	47.0 48.0				<0.01	
			89.5m fault zone with broken core/fault gouge. Broken core not drill related 112.4-112.8m. Sharp lower contact with mafic dyke at 70 degrees to core axis	26061	52.0	53.0	 			<0.01	
				26062	53.0	54.0			.	<0.01	!
146.2	146.8		Dark grey, massive, medium grained mafic dyke. Sharp lower contact with mafic volcanic at 60 degrees.	26063	54.0	55.0			.	<0.01	!
146.8	148.4		Light grey, fine grained peridotite. Increase in talc/chlorite alteration towards the lower contact with the ultramafic. Very gradational and undefined lower contact with the ultramafic. Weak mag	26064 26065	55.0 56.0	56.0 57.0	 			< <u>0.01</u> <0.01	ſ
148.4	154.3		Light grey to white, medium to coarse grained talc/chlorite ultramafic. Very strong talc/carbonate alteration. Strong foliation 20	26066	57.0	58.0	ļ			<0.01	
4540	404.0		degrees to core axis. Very gradational lower contact.	26067	58.0	59.0	 			<0.01	
154.0	161.0		Fine grained, massive, dark green/grey, ultramafic/peridotite. Moderate mag. Difficult to distingush from mafic volcanic. <1% white carbonate tension stringers throughout the interval.	26068 26069	59.0 60.0	60.0 61.0			 	0.01	
161.0	211.0		Coarse grained, massive, dark green peridotite. Moderate magnetism. 1-2% criss-crossing white carbonate veins. Weak to	26070	61.0	62.0	 			0.03	
			moderate pervasive talc/chlorite aleration. More massive and finer grained after 196m. Gradational and undefined lower contact.	26071	62.0	63.0				<0.01	
244.0	220.0			26072	75.5	76.5	 			<0.01	
211.0	228.0		Serpenitite/talc ultramafic, light green/white, coarse grained. Very strong foliation/shearing at low 15 degrees to core axis.	26073 26074	76.5 78.5	_ <u>77.5</u> _ 78.5			 	<0.01 <0.01	
	†		1	26077	78.5	79.3	†	 	 	0.05	

DDH Number SPR10-04	Page	2	of	4

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
228.0	233.5		Peridotite - dark green/grey, massive, fine grained. Strong chlorite alteration with talc alteration in carbonate stringers and	26078	79.3	80.0	L			<0.01	
			veinlets. Very gradational and undefined lower contact with the talc ulramafic	26079	80.0	81.0				<0.01	
233.5	236.6		Serpentinite/ talc ultramafic: light green/white, coarse grained. Strong talc alteration. Broken core within fault zone from 235.5-	26080	81.0	82.0				<0.01	
			236m. Very gradational and undefined lower contact.	26081	141.0	142.0				0.06	<u>[</u>
236.6	242.8		Peridotite - dark green/grey, massive, fine grained. Sharp lower contact with carbonate breccia veining containing trace pyrite and	26082	142.0	143.0				0.01	'
			sphalerite (red)	26083	143.0	144.0				0.02	
242.8	249.0		Peridotite with 30% intercalated talc ultramafic. 247.7-248.4m Strong quartz carbonate breccia veining with red iron carbonate	26084	144.0	145.0				0.15	C
			staining and trace % pyrite	26085	145.0	146.2				<0.01	
				26086	146.2	146.8				<0.01	
249.0	249.0		EOH	26087	146.8	147.6	F			<0.01	
				26088	147.6	148.4				<0.01	
				26089	148.4	149.0				<0.01	
				26090	149.0	150.0	F			0.02	
	T I			26091	150.0	151.0	1	I		<0.01	
				26092	151.0	152.0				0.03	,
				26093	152.0	153.0	F			<0.01	
	1			26094	153.0	154.3		1		<0.01	
				26095	154.3	155.0				0.03	
	1			26096	155.0	156.0		1		<0.01	
				26097	156.0	157.0	1			<0.01	
				26098	157.0	158.0				<0.01	
	1			26101	158.0	159.0		1		0.02	
				26102	159.0	160.0				0.04	J
				26103	160.0	161.0				<0.01	
	† <u>-</u>		1	26104	201.0	202.0				<0.01	1
				26105	202.0	203.0				<0.01	
				26106	203.0	204.0				0.64	
	İ			26107	204.0	205.0	†	l	 	0.01	
			<u> </u>	26108	205.0	206.0				0.03	
				26109	206.0	207.0				0.06	
				26110	207.0	208.0			1	<0.01	
	 			26111	208.0	209.0	†	 	 	0.02	,

DDH Number <u>SPR10-04</u> Page <u>3</u> of <u>4</u>

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26112	209.0	210.0				<0.01	
				26113	210.0	211.0				0.06	
				26114	211.0	212.0				0.02	
				26115	212.0	213.0				<0.01	
				26116	213.0	214.0	T			0.17	
				26117	214.0	215.0				0.02	
				26118	215.0	216.0	T			0.02	
				26119	216.0	217.0				0.48	
				26120	217.0	218.0				<0.01	
				26121	218.0	219.0	T			<0.01	
				26122	219.0	220.0	1			0.03	
				26123	220.0	221.0	 			0.04	
				26124	221.0	222.0	t			0.07	
				26127	222.0	223.0				0.06	
				26128	223.0	224.0	t			0.01	
				26129	224.0	225.0	t			0.01	
				26130	225.0	226.0				<0.01	
				26131	226.0	227.0	t			0.02	
				26132	227.0	228.0				0.19	
				26133	228.0	229.0				0.11	
				26134	229.0	230.0	t			0.09	
				26135	230.0	231.0				0.57	
				26136	231.0	232.0	t			0.29	
				26137	232.0	233.5	t			0.21	
				26138	233.5	235.0				0.09	
				26139	235.0	236.6	†			0.03	
				26140	236.6	237.0				<0.01	
				26141	237.0	238.0				0.03	
				26142	238.0	239.0	†			<0.01	
				26143	239.0	240.0				<0.01	
				26144	240.0	241.0	t			<0.01	
				26145	241.0	242.0	 	 		<0.01	

Rainbow Resources, St Paul Bay

DDH Number <u>SPR10-04</u> Page <u>4</u> of <u>4</u>	Page <u>4</u> of <u>4</u>	4 of4
--	---------------------------	-------

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26146	242.0	242.8	L			0.1	
	1			26147	242.8	244.0		L'		0.09	
				26148	244.0	245.0				0.08	
				26151	245.0	245.8	I			0.12	
	1	L		26152	245.8	247.0	l	L '		<0.01	
L		1		26153	247.0	247.7	L	l	l	0.11	
		1		26154	247.7	248.4	L		l	0.02	
				262155	248.4	249.0				0.02	
								7			
	T							[
[I – – – –				[T	[[
	T							[
		1					T				
		1					T				
	1										
	†										
											
		1					t				
	†							i !			
							t				
		1					t				
	†										
	+										
	 	 				 	 	 		 	
						 :	 	1			
	 							t ¹			. – – – –
							 				
		 				 	 	 	 	 	
<u></u>	1									l	

RAINBOW RESOURCES INC.

DIAMOND DRILL LOG

SPR10-05 **DDH Number** Project St. Paul Bay Length 258m Feb. 22, 2011 Started Completed Feb. 24, 2011 Easting 436565 Northing 5652285 Elevation 351

	Reflex Te	st					
Depth	Azimuth	Dip	Mag	Depth	Azimuth	Dip	Mag
51	243.3	-47.6	56131				
102	243.7	-47.4	55873				
153	246.9	-47.3	56588				
204	241.6	-47.5	56866				
255	237.3	-47.6	54755				

Page	1 of3
Logged By	Matt Long
Grid Coor'd	3+75S / L8+35W
Claim No.	963600
Target(s)	East of 03-1
Contractor	Hy-Tech Diamond Drilling
Comments	

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
0.0	38.1		Overburden	26255	75.0	76.0				<0.01	
38.1	61.5		Granodiorite (Dome stock): medium to coarse grained; massive; strong feldspar causing pink colour; reminder light grey with	26256	76.0	77.0				<0.01	
	I		black specks; sharp lower contact at 50 degrees. Low RQD	26257	77.0	77.7			I	<0.01	[]
61.5	67.3		Mafic volcanic: Strong silica alteration due to intrusive contact; massive; light grey	26258	77.7	79.0				<0.01	
67.3	77.7		Felsic Volcanic/Rhyolite: light grey; massive; very fine grained; strong silica percentage. Numerous narrow intervals of broken	26259	79.0	80.0			I = I = I	<0.01	
			core. Sharp lower contact 75 degrees to core axis; no mag.	26260	80.0	81.0				<0.01	
77.7	109.5		Felsic Volcanic/Rhyolite: dark grey; fine grained; 20% 2-5 mm size dark grey fragments from possible flow. Very strong silica	26261	81.0	82.0				0.02	i
			content. Different texture than the perivous rhyolite and less massive. Re-healed quartz-carbonate breccia fault at 96.1m 65	26262	82.0	83.0			T	<0.01	[]
			degrees to core axis. Very gradational lower contact.	26263	83.0	84.0				<0.01	
109.5	116.8		Felsic Volcanic/Rhyolite: Mottle light and dark grey; massive with no foliation; 110.4-110.9m low angle qtz-carb vein with 10-15%	26264	84.0	85.0				<0.01	[]
			py+po approx 5 cm in true width	26265	85.0	86.0			T	<0.01	
116.8	117.4		Mafic Dyke: mod grey; massive lamp dyke; medium grained; sharp upper and lower contacts both at 40 degrees	26266	86.0	87.0				0.04	i
117.4	120.9		Felsic Volcanic/Rhyolite: Similar to interval described from 109.5-116.8m; Very gradational and undefined lower contact with	26267	87.0	88.0			T	<0.01	i 1
	T		silicified zone.	26268	88.0	89.0			T	<0.01	ı
120.9	123.7		Silicified Zone of Mafic Volc.: zone within felsic volc of strong silicification; 35% remanent fragments of unaltered protolith	26269	89.0	90.0				0.02	[]
			including white carbonate fragments. Weak chlorite alteration within fragments	26270	90.0	91.0			T	<0.01	
123.7	150.8		Felsic Volcanic: light grey; massive with no foliation; minor intervals with dark grey spots related to possible alteration; sharp	26271	91.0	92.0				<0.01	i 1
			lower contact at 50 degrees to core axis	26272	92.0	93.0				<0.01	i 1
150.8	155.1		Diabase dyke: dark grey to black with 60% 1mm white plag crystals; massive but with numerous x-cutting qtz-carb veinlets of 1-	26273	93.0	94.0			T	<0.01	i 1
			2%; very gradational and undefined lower contact; 152-153.6m felsic volc	26276	94.0	95.0	[<u>-</u>			<0.01	i 1
155.1	159.6		Mafic Volcanic: Dark green; massive; fine grained; sharp lower contact with ultramafic at 70 degrees to core axis	26277	95.0	96.0			T	<0.01	
159.6	163.5		Peridotite: dark grey to black; massive; strong mag; medium to coarse grained; sharp lower contact with mafic dyke; <1% late	26278	96.0	97.0			T	<0.01	1
			tension veinlets that have strong dark green talc/chlorite alteration	26279	97.0	98.0				<0.01	i i
163.5	166.8		Mafic Dyke: lighter grey than the peridotite; massive; fine to medium grained; mod mag; upper contact undefined and lower	26280	98.0	99.0			T	<0.01	i 1
			contact is not known due to broken core	26281	99.0	100.0			T	<0.01	i 1

DDH Number SPR10-05	Page	2	of	3

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
166.8	195.2		Peridotite: dark grey/black; massive with no foliation; possible gabbro but lacks olivine; discrete patches of red hematite staining	26282	108.0	109.0				<0.01	
			but also concentrated along fracture planes; minor 1-2% qtz-carb tension veinlets with strong talc/chlorite alteration. 179.7-179.8m	26283	109.0	109.8				<0.01	
			strong talc/chlorite breccia fault with 2-3% py stringers at 65 degrees to core axis	26284	109.8	110.4				<0.01	
195.2	209.8		Talc Ultramafic: mottle light grey/white; very strong talc alteration; no mag; strong shearing/faulting and broken core from 199.9-	26285	110.4	110.9				0.39	
			201m, 203-204.4m and 206-207m; sharp lower contact with dyke at 30 degrees	26286	110.9	112.0	T			0.04	
209.8	210.2		Mafic Dyke: black; fine grained; massive; sharp lower contact at 40 degrees	26287	112.0	113.0				<0.01	
210.2	212.7		Talc Ultramafic: similar to unit above with weaker talc alteration and better RQD; sharp lower contact at 60 degrees to core	26288	113.0	114.0	T		[<0.01	
212.7	213.7		Mafic Dyke: black; fine grained; massive; sharp lower contact at 50 degrees	26289	114.0	115.0				<0.01	
213.7	222.0		Silica Altered Ultramafic: Mottle dark green and grey; fine grained; no mag; mod silica alteration overprinting chlorite and weaker	26290	115.0	116.0				<0.01	
			talc alteration; undefined foliation; sharp lower contact at 45 degrees	26291	116.0	116.8				<0.01	
222.0	229.6		Mafic dyke: light green; massive; medium grained with distinct x-cutting qtz-carb stringers	26292	116.8	117.4				<0.01	
229.6	231.9		Silica Altered Ultramafic: similar to unit above with distinct relict altered breccia fragments	26293	117.4	118.0				<0.01	
231.9	233.6		Mafic dyke: light green; massive; medium grained with distinct x-cutting gtz-carb stringers	26294	118.0	119.0	T			<0.01	
233.6	248.6		Silica Altered zone: interval of very strong silification that almost completely replaces the original rock. Protolith is possible	26295	119.0	120.0				<0.01	
			ultramafic. 15% unaltered breccia fragments. Lower contact with felsic volc undefined and very gradational	26296	120.0	120.9	† I			<0.01	
248.6	258.0		Felsic Volcanic: light grey; very fine grained; massive but with dark grey x-cutting stringers; <1% white gtz-carb stringers; EOH at	26297	120.9	122.0	t			<0.01	
			258m	26298	122.0	123.0				<0.01	
				26301	123.0	123.7				0.02	
				26302	123.7	125.0				<0.01	
				26303	125.0	126.0	 			<0.01	
			<u> </u>	26304	126.0	127.0	† I			<0.01	1
				26305	178.2	179.0				0.01	
			<u> </u>	26306	179.0	179.5	t			<0.01	
			<u> </u>	26307	179.5	180.0	 			<0.01	
				26308	180.0	181.0				0.02	
			<u> </u>	26309	181.0	182.0	 			<0.01	
				26310	193.0	194.0				<0.01	
				26311	194.0	195.2	 		 	<0.01	
			<u> </u>	26312	195.2	196.0	+		 	<0.01	
				26313	196.0	197.0				<0.01	
			<u> </u>	26314	197.0	198.0	t			<0.01	
	 	 		26315	198.0	199.0	 		 	<0.01	
				20313	130.0	133.0			l	<0.01	

DDH Number SPR10-05	Page _	3	of	3

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26316	199.0	200.0				0.03	
				26317	200.0	201.0	T			0.08	
				26318	201.0	202.0		T		0.07	
				26319	202.0	203.0				0.08	
11				26320	203.0	204.0		<u> </u>		0.02	
L]			26321	204.0	205.0	L		l	0.02	
				26322	205.0	206.0		L		0.01	
				26323	206.0	207.0		<u> </u>		<0.01	
				26326	207.0	208.0	L			0.12	
				26327	208.0	209.0		L		0.32	
				26328	209.0	209.8				0.02	
				26329	209.8	210.3	I			0.2	
11				26330	210.3	211.0		L		0.06	
L]			26331	211.0	212.0	L		l	0.29	
L]			26332	212.0	212.7	L		l	0.07	
				26333	212.7	213.7		<u> </u>		0.03	
				26334	213.7	215.0	L			0.03	
				26335	215.0	216.0				0.03	
				26336	216.0	217.0				0.01	
L				26337	217.0	218.0	L		l	<0.01	
11				26338	218.0	219.0		<u> </u>		0.01	
L				26339	219.0	220.0	L		l	0.03	
L				26340	220.0	221.0	L		l	<0.01	
				26341	221.0	222.0		<u> </u>		0.01	
				26342	222.0	223.0	L			<0.01	
				26343	223.0	224.0		L		<0.01	
				26344	224.0	225.0		L		0.01	
L]			26345	225.0	226.0	1		l	0.07	
1				26346	226.0	227.0	l	<u> </u>		<0.01	
L	1			l			L		l	L	
L]							<u> </u>	L	<u></u>]	
1 T	-										_

RAINBOW RESOURCES INC.

DIAMOND DRILL LOG

SPR10-06 **DDH Number** Project St. Paul Bay Length 237m Feb. 27, 2011 Started Completed Mar. 1, 2011 Easting 435628 Northing 5652062 Elevation 355

	Reflex Te	st					
Depth	Azimuth	Dip	Mag	Depth	Azimuth	Dip	Mag
0	360	-55		237	2.3	-53.4	54645
45	358.4	-55.1	57571				
99	2.3	-53.6	53452				
150	1.9	-53.3	52654				
201	351.8	-53.6	53522				

Page	
Logged By	Matt Long
Grid Coor'd	9+25S/L17+25W
Claim No.	1143079
Target(s)	under 03-3
Contractor	Hy-Tech Diamond Drilling
Comments	under tech hole 03-3 from 2003

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
0.0	30.2		Overburden/casing	26431	32.0	33.0				<0.01	
30.2	81.6		Mafic Volcanic: Light grey; fine grained; very weak foliation at 40 degrees; weak pervasive silica alteration but stronger in	26432	33.0	34.0	T			0.24	
			discrete narrow patches from 48.5-49.6 and 58.4-58.9m; 61-67m <1% dissminated fine grained pyrite; 80-81m 2% fine grained	26433	34.0	35.0				1.08	
			disseminated pyrite at contact with silica alteration. Broken core in first 20m	26434	35.0	36.0				0.01	
81.6	93.3		Silica Alteration: Mafic volcanic with very strong silica alteration and strong foliation at 50 degrees; Very strong 10%	26435	36.0	37.0	L		1	<0.01	
			mineralization throughout the interval of pyrite but stronger 15-20% stringers of pyrite from 88-89m; Increase in shearing in last	26436	37.0	38.0	1			<0.01	
			2m before lower contact which is breccia at the lower contact with the ultramafic at 40 degrees	26437	38.0	39.0			1	0.01	
93.3	99.5		Talc/carbonate ultramafic: Light grey/white; soft; strongly sheared with a foliation at 40 degrees; medium to coarse grained;	26438	39.0	40.0	1			0.02	
			sharp lower contact with unaltered ultramafic at 20 degrees	26439	40.0	41.0	1			<0.01	
99.5	105.0		Peridotite: Dark grey; massive; fine grained; 1-2% qtz-carb stringers that have been altered dark green by talc/chlorite; very	26440	41.0	42.0	<u> </u>		1	<0.01	
			gradational and undefined contact; strong mag	26441	42.0	43.0	1			0.02	
105.0	107.3		Talc/carbonate Ultramafic: Minor interval of talc ultramafic of weak to moderate talc alteration; weak to moderate foliation; 2-3%	26442	43.0	44.0			1	<0.01	
			white/green qtz-carb stringers that x-cut the core and have been weakly talc altered	26443	44.0	45.0	<u> </u>		1	<0.01]
107.3	150.5		Peridotite: Dark grey/green; massive; fine grained; minor patches of coarser grained hornblende/pyroxene; 1-2% late tension	26444	45.0	46.0	1			<0.01	
			qtz-carb stringers and veinlets that are altered dark green by chlorite; stringers are random in orientation	26445	46.0	47.0	L		1	<0.01]
150.5	159.0		Fracture Zone: Peridotite that has numerous low angle fractures and faults producing strongly broken core; fractures are qtz-carb	26446	47.0	48.5	1			0.01	
			infilled breccia; brown iron staining along fracture from 157.4-158.3m	26447	48.5	49.6	I			<0.01	
159.0	237.0		Peridotite: Dark grey/green; fine grained; massive; similar to unit described above; strong mag; 161.8-162.2m white qtz-carb	26448	49.6	50.0	<u></u>			<0.01	
			breccia vein within a fracture with 5% stringers of pyrite and possible red sphalerite; 192.5-192.7m white qtz-carb re-healed	26451	50.0	51.0	1	L		0.01	
			breccia fracture; Strong black magnetite within some of the white unaltered qtz-carb veinlets; EOH at 237m	26452	51.0	52.0			L	0.06	
				26453	52.0	53.0				<0.01	
				26454	53.0	54.0				<0.01	
	L]		1	26455	54.0	55.0			1	<0.01]
			L	26456	55.0	56.0				<0.01]
				26457	56.0	57.0			1	< 0.01	

DDH Number SPR10-06	Page _	2	of _	4
---------------------	--------	---	------	---

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26458	57.0	58.4				0.11	
				26459	58.4	58.9				1.14	
				26460	58.9	60.0				0.03	
				26461	60.0	61.0				0.03]
				26462	61.0	62.0				0.06	
				26463	62.0	63.0				<0.01	
				26464	63.0	64.0				<0.01	
				26465	64.0	65.0				<0.01	1
				26466	65.0	66.0				0.09	1
				26467	66.0	67.0				1.5	
I I				26468	67.0	68.0				0.13	1
				26469	68.0	69.0				<0.01	
				26470	69.0	70.0				<0.01	
I I				26471	70.0	71.0				<0.01	. – – – –
				26472	71.0	72.0				<0.01	
				26473	72.0	73.0				<0.01	
				26476	73.0	74.0				0.01	. – – – –
				26477	74.0	75.0				0.03	
				26478	75.0	76.0				0.06	
				26479	76.0	77.0				0.03	
				26480	77.0	78.0				<0.01	
				26481	78.0	79.0				<0.01	
				26482	79.0	80.0				<0.01	
				26483	80.0	81.0				<0.01	
				26484	81.0	81.6				0.11	. – – – –
				26485	81.6	83.0				0.12	
				26486	83.0	84.0				0.07	
				26487	84.0	85.0				0.41	
				26488	85.0	86.0				0.29	
				26489	86.0	87.0				<0.01	 I
				26490	87.0	88.0				<0.01	
				26491	88.0	89.0				0.01	

DDH Number SPR10-06	Page	3	of	4
---------------------	------	---	----	---

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26492	89.0	90.0				<0.01	
				26493	90.0	91.0				<0.01	
				26494	91.0	92.0				0.03	
				26495	92.0	93.3				0.03]
				26496	93.3	94.0]			0.04	
L				26497	94.0	95.0	L			0.04	
				26498	95.0	96.0				<0.01	
				26501	96.0	97.0				<0.01	
				26502	97.0	98.0				<0.01	
				26503	98.0	99.5				<0.01	
				26504	99.5	101.0				<0.01	
				26505	101.0	102.0				<0.01	
				26506	102.0	103.0				<0.01	
				26507	103.0	104.0				<0.01	
				26508	104.0	105.0				<0.01	
				26509	105.0	106.0	[<0.01	
				26510	106.0	107.3				0.03	
				26511	107.3	108.0				<0.01	
				26512	108.0	109.0				<0.01	
				26513	147.0	148.0				<0.01	
				26514	148.0	149.0				<0.01	
				26515	149.0	150.5				<0.01	
				26516	150.5	151.3				<0.01	
				26517	151.3	152.0				<0.01	
				26518	152.0	153.0				<0.01	
				26519	153.0	154.0				<0.01	
				26520	154.0	155.0				<0.01	
				26521	155.0	155.8				0.02	
				26522	155.8	157.0	[]			<0.01	
				26523	157.0	158.0	[<0.01	
				26524	158.0	159.0	[0.02	
				26525	159.0	160.0				<0.01	

			RAINBOW RESOURCES INC. DIAMOND BRILL EGG								
DDI	H Number	SPR10-06					Page	4	of	4	
From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26526	160.0	161.0				0.02	
				26527	161.0	161.7				<0.01	
				26528	161.7	162.2				<0.01	
				26529	162.2	163.0				<0.01	
				26530	163.0	164.0				<0.01	
				26533	164.0	165.0				0.07	
+					104.0	100.0				0.0/	
	 										
L							L		 		
	 										
L							L		l	L	
L						L	L		l	L	
	[
											
	 										
+						 	+		 		
+						+	+		 		
	 										
							 		 		
	 										
	 									<u> </u>	
L							L		l	L	
	L					l	l		L	J	
							T				
 	 					 	 			 	

Rainbow Resources, St Paul Bay

DDH Number
Project
Length
Started
Completed
Easting

Northing

Elevation

SPR10-07 St. Paul Bay 194.8m Mar. 1, 2011 Mar. 3, 2011 435670 5652060

355

DIAMOND DRILL LOG

	Reflex Te	st					
Depth	Azimuth	Dip	Mag	Depth	Azimuth	Dip	Mag
0	360	-48					
51	1.6	-48.4	57594				
102	351	-47.5	54783				
150	4.1	-46.9	56303				
195	1.3	-46.3	54312				

Page 1 of 3

Matt Long
9+25S/L16+80W
1143079
50m East of 03-3
Hy-Tech Diamond Drilling

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
0.0	39.0		Overburden	26534	39.0	40.0				<0.01	
39.0	52.0		Mafic Volcanic: dark green; strongly foliated at 50 degrees; moderate chlorite alteration throughout the interval. Very gradational	26535	40.0	41.0				<0.01	
			and undefined lower contact with the ultramafic intrusive	26536	41.0	42.0	[<u> </u>			<0.01	
52.0	65.7		Ultramafic Intrusive: Dark green; coarse grained; 5% flattened dark grained biotite grains orientated parallel to the foliation; 63-	26537	42.0	43.0	I 1			<0.01	
			64.2m mafic volcanic; very gradational and undefined lower contact with the silicified mafic volcanic	26538	43.0	44.0	[]			0.02	L
65.7	95.0		Silicified Mafic Volcanic: Light grey; very fine grained; moderate silicification throughout with strong silica alteration from 68.5-	26539	44.0	45.0	[0.02	 I
			81m and 89-95m; moderate mineralization of 2-3% stringers of pyrite within these strongly silicified zones; highly broken core	26540	45.0	46.0				0.02	
			from 92.3-93m and 94.8-95.5m at lower contact with ultramafic	26541	46.0	47.0	I			0.02	 I
95.0	101.5		Talc Ultramafic: Mottle light grey/green and white; coarse grained; moderate mag; 15% qtz-carb veinlets that are altered dark	26542	47.0	48.0				<0.01	
			green by talc/chlorite alteration; very sharp lower contact with massive peridotite at 50 degrees	26543	48.0	49.0				<0.01	L
101.5	194.8		Peridotite: Dark grey/green; fine grained; massive ultramafic; strong mag; 1-2% late tension qtz-carb veinlets/stringers that have	26544	49.0	50.0				<0.01	i
			been altered dark green by talc/chlorite; 148.5-149.9m strong silica alteration with very sharp contacts; 171.8-171.9m talc infilled	26545	50.0	51.0				<0.01	I
			fracture; 178.8-182.2m zone with strong red hematite staining and minor qtz-carb breccia	26546	51.0	52.0	I 1			0.03	ı
			EOH @194.8m	26547	52.0	53.0	I			0.02	 I
				26548	53.0	54.0				<0.01	
				26551	54.0	55.0	I			0.01	
				26552	55.0	56.0	I			<0.01	i
				26553	56.0	57.0	I 1			<0.01	I
				26554	57.0	58.0	I			0.02	 I
				26555	58.0	59.0				0.02	
				26556	59.0	60.0				0.01	
				26557	60.0	61.0	T			0.03	I
				26558	61.0	62.0				0.09	·
				26559	62.0	63.0	T			0.02	 I
				26560	63.0	64.0	1			0.01	

DDH Number SPR10-07	Page	2	of	3

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26561	64.0	65.0				<0.01	
				26562	65.0	65.7				0.02	
				26563	65.7	67.0				0.02	
				26564	67.0	68.0				0.03	
				26565	68.0	69.0				0.04	
L				26566	69.0	70.0	L		l	0.08	
				26567	70.0	71.0				0.04	
				26568	71.0	72.0				0.38	
				26569	72.0	73.0				0.02	
				26570	73.0	74.0				0.03	
				26571	74.0	75.0				0.02	
				26572	75.0	76.0				0.07	
				26573	76.0	77.0				0.12	
				26576	77.0	78.0	L		l	0.11	
				26577	78.0	79.0				0.04	
				26578	79.0	80.0				0.03	
				26579	80.0	81.0				0.04	
				26580	81.0	82.0				0.03	
				26581	82.0	83.0				0.02	
				26582	83.0	84.0				0.08	
				26583	84.0	85.0				0.02	
L				26584	85.0	86.0	L		l	0.04	
L				26585	86.0	87.0	L		l	0.02	
				26586	87.0	88.0				0.03	
				26587	88.0	89.0				0.03	
				26588	89.0	90.0				<0.01	
				26589	90.0	91.0				0.03	
				26590	91.0	92.0				0.01	
				26591	92.0	93.0				0.02	
L]				26592	93.0	94.0	L		l	<0.01	
L		_ [26593	94.0	95.0	L -		l	0.02	 -
				26594	95.0	96.0				<0.01	

DDH Number <u>SPR10-07</u> Page <u>3</u> of <u>3</u>

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26595	96.0	97.0				<0.01	
				26596	97.0	98.0				<0.01	
				26597	98.0	99.0				<0.01	
		l		26598	99.0	100.0	L		l	<0.01	
				26601	100.0	101.5				<0.01	
				26602	101.5	103.0	L			<0.01	
				26603	103.0	104.0				<0.01	
				26604	104.0	105.0				<0.01	
				26605	105.0	106.0	L	[_ _		<0.01	
				26606	106.0	107.0				<0.01	
				26607	107.0	108.0		[<0.01	
				26608	147.0	148.0				<0.01	
				26609	148.0	148.5				<0.01	
				26610	148.5	149.2		[<0.01	
				26611	149.2	149.9	T			<0.01	
				26612	149.9	151.0	T			<0.01	
				26613	151.0	152.0		[<0.01	
				26614	152.0	153.0	T			<0.01	
				26615	153.0	154.0		T		<0.01	
				26616	176.0	177.0				<0.01	
				26617	177.0	178.0	T			<0.01	
				26618	178.0	178.8		[<0.01	
				26619	178.8	180.0	T		I	<0.01	
				26620	180.0	181.0	T			<0.01	
				26621	181.0	182.2		T		<0.01	
				26622	182.2	183.0				<0.01	
				26623	183.0	184.0				<0.01	
				26626	184.0	185.0	T			0.04	
				26627	185.0	186.0	Γ		I	0.02	
				26628	186.0	187.0	1	T		<0.01	
				† I			T			T	
				tt			T			<u> </u>	

RAINBOW RESOURCES INC.

DIAMOND DRILL LOG

SPR10-08 **DDH Number** Project St. Paul Bay Length 264m Feb. 25, 2011 Started Completed Feb. 27, 2011 Easting 436640 Northing 5652400 Elevation 355m

	Reflex Te	st					
Depth	Azimuth	Dip	Mag	Depth	Azimuth	Dip	Mag
0	20	-47		195	21.7	-43.8	56267
36	41.2	-45.5	49488	243	23.3	-43.6	56350
87	48.9	-45.9	52713				
93	35.9	-45.9	51922				
144	22.3	-44.7	55614				

Page	1 of3
Logged By	Matt Long
Grid Coor'd	2+50S/L7+00W
Claim No.	963599
Target(s)	Strong IF Zone
Contractor	Hy-Tech Diamond Drilling
Comments	

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
0.0	24.5		Overburden: first box is rubble and sediment	26347	65.0	66.0	1			<0.01	
24.5	76.7		Peridotite: Dark green; massive; very strong mag; <1% light green talc/chlorite tension veinlets criss-crossing stringers; Strong	26348	66.0	67.0				0.01	
			dark red hematite staining after 66m; 70.5m strong low angle fault at 15 degrees; strong white qtz-carb breccia veining before	26351	67.0	68.0				0.05	
			fault contact	26352	68.0	69.0	L			0.02	
76.7	78.0		Fault Zone: Light orange to light grey; strong talc and hematite alteration; 77.5-77.9m highly broken core with fault gouge; lower	26353	69.0	70.0			 	0.01	
			contact not visible due to broken core	26354	70.0	71.0	 			<0.01	
78.0	111.2		Peridotite: Dark green; massive; very strong mag; <1% light green talc/chlorite tension veinlets criss-crossing stringers; 90-	26355	71.0	72.0			.	0.01	
			90.5m Fault at 65 degrees with carbonate breccia and very weak min of <1% py; 93.2-94m broken core; 96.8-97m Fault with	26356	72.0	73.0	↓			0.02	
			soft gouge at 80 degrees	26357	73.0	74.0	 			0.03	
				26358	74.0	75.0				<0.01	
111.2	116.0		Fault/Shear Zone: Light grey, strongly foliated peridotite that has been sheared and altered; broken core from 113.7-115m; last	26359	75.0	76.0	 			<0.01	
			2m highly sheared at contact with granodiorite; lower contact is undefined and very gradational	26360	76.0	76.7			.	<0.01	
116.0	264.0		Granodiorite: Light grey with alternating 50% intervals of pink feldspar; coarse grained; equigranular; massive with almost no qtz-		76.7	77.5			.	<0.01	
			carb stringers; 125.4-126.3m <1% very fine grained disseminated pyrite; 190.8-191.3m and 197m trace% disseminated pyrite	26362	77.5	78.0	 			<0.01	
			associated with very narrow qtz-carb stringers; 220.4m 0.05m wide white qtz vein with <1% fine grained pyrite both within the vein and 0.5 m in the wall rock on either side of the vein; weak silica alteration associated with this vein; EOH @264m	26363	78.0	79.0				<0.01	
			veil and 0.5 in in the wall lock off either side of the veilt, weak silica alteration associated with this veilt, LOTT @204iii	26364	79.0	80.0	 			<0.01	
				26365	80.0	81.0	 			<0.01	
				26366	81.0	82.0				<0.01	
			L	26367	82.0	83.0	 			0.03	
				26368	83.0	84.0	 		ļ	0.04	
				26369	105.0	106.0				<0.01	
			L	26370	106.0	107.0	 			<0.01	
			 	26371	107.0	108.0			 	<0.01	
ļ	 	L	<u> </u>	26372	108.0	109.0	 	 	 	<0.01	
				26373	109.0	110.0				< 0.01	

RAINBOW RESOURCES INC. DIAMOND DRILL LOG

DDH Number SPR10-08	Page _	2	of _	3
---------------------	--------	---	------	---

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26376	110.0	111.0				0.01	
				26377	111.0	112.0				0.01	L
				26378	112.0	113.0				<0.01	
				26379	113.0	114.0				0.03	
				26380	114.0	115.0				0.06	L l
				26381	115.0	116.0			l	<0.01	
				26382	116.0	117.0				<0.01	L
				26383	117.0	118.0				0.07	L
				26384	118.0	119.0				<0.01	
				26385	119.0	120.0				0.01	
				26386	120.0	121.0				<0.01	
				26387	121.0	122.0				<0.01	
				26388	122.0	123.0				<0.01	
				26389	123.0	124.0				0.01	
				26390	124.0	125.4				0.01	
				26391	125.4	126.3				0.21	
I I				26392	126.3	127.0				<0.01	[
				26393	127.0	128.0				<0.01	
				26394	128.0	129.0				<0.01	[
				26395	129.0	130.0				<0.01	
				26396	130.0	131.0				0.01	
				26397	131.0	132.0				0.02	
				26398	186.0	187.0				<0.01	
				26401	187.0	188.0				0.04	
				26402	188.0	189.0				<0.01	
				26403	189.0	190.0				<0.01	
				26404	190.0	190.8				<0.01	
				26405	190.8	191.3				<0.01	
				26406	191.3	192.0				<0.01	
				26407	192.0	193.0				0.02	Ī
				26408	193.0	194.0				0.03	
				26409	194.0	195.0				<0.01	

RAINBOW RESOURCES INC. DIAMOND DRILL LOG

DDH Number SPR10-08	Page _	3	of	3_	_
---------------------	--------	---	----	----	---

From	То	Code	Description	Sample Number	From	То	Interval	Cu %	Mo %	Au g/t	Ag g/t
				26410	195.0	196.0				0.02	
	<u> </u>			26411	196.0	197.0				0.01	
	<u> </u>			26412	197.0	198.0				1.15	
	<u> _ </u>	l	L	26413	198.0	199.0				0.07	
	1 [!]			26414	199.0	200.0				0.03	
	<u> _ </u>	l	L	26415	200.0	201.0				0.02	
	<u> </u>	ļ		26416	215.0	216.0				0.05	
	↓			26417	216.0	217.0				0.23	
	l J	.	L	26418	217.0	218.0				0.02	
	<u> </u>			26419	218.0	219.0				0.45	
	<u> </u>			26420	219.0	220.0				0.16	
	<u> J</u>	l	L	26421	220.0	220.6				0.96	
	1 !	L		26422	220.6	221.2				0.03	
L	<u> </u>	1	L	26423	221.2	222.0	L			0.02	
L	<u> </u>	1	L	26426	222.0	223.0	L			0.08	
	1			26427	223.0	224.0				0.04	
				26428	224.0	225.0				<0.01	
	<u> </u>			26429	225.0	226.0				<0.01	
				26430	226.0	227.0				<0.01	
	1 !	L									
		I		[[.	[
		I – – – –		[[
	[
	[
				l							
		1									
		l									
	+	1									
		 									
-											

14.0 Appendix 2 Assay Certificates

Certificate of Analysis Work Order: RL1100526

To: ACCOUNTS PAYABLE COD SGS MINERALS C/O P.O. Box 439 Whiffen Head Road ARNOLD COVE NF A0B 1A0

Date: Mar 04, 2011

P.O. No.

: RAINBOW RESOURCES INC

Project No. No. Of Samples

Date Submitted Report Comprises Feb 23, 2011 Pages 1 to 3

(Inclusive of Cover Sheet)

Cortified Press		

Report Footer:

L.N.R. = Listed not received

I.S. = Insufficient Sample

= Not applicable n.a.

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/lerms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or sources from which the sample(s) islare said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is uniswful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100526 Order: RAINBOW RESOURCES INC

Page 2 of 3

Element Method	FAA313	FAA313	FAA313	WtKg WGH79
Det.Lim.	5	0.01	0.001	0,01
Units	ppb	g/t	oz/t	kg
26051	<5	<0.01	<0.001	2.00
26052	<5	<0.01	<0.001	1.90
26053	<5	<0.01	< 0.001	1,90
26054	<5	<0.01	<0.001	3.20
26055	<5	<0.01	< 0.001	2.30
26056	<5	< 0.01	<0.001	2.20
26057	<5	<0.01	<0.001	2.00
26058	<5	< 0.01	<0.001	1.80
26059	<5	<0.01	<0.001	2.30
26060	25	0.02	< 0.001	2.10
26061	<5	<0.01	<0.001	1.80
26062	<5	<0.01	< 0.001	1.90
26063	<5	<0.01	< 0.001	1,90
26064	<5	< 0.01	< 0.001	2.00
26065	<5	<0.01	< 0.001	2.20
26066	<5	<0.01	<0.001	2.00
26067	<5	< 0.01	< 0.001	2.00
26068	10	0.01	< 0.001	2.10
26069	35	0.03	0.001	2.20
26070	15	0.02	< 0.001	1.80
26071	<5	< 0.01	< 0.001	2.20
26072	<5	< 0.01	< 0.001	2.20
26073	<5	<0.01	< 0.001	2.10
26074	<5	< 0.01	< 0.001	2.00
26075	<5	<0.01	< 0.001	0.05
26076	6640	6.64	0.194	0.05
26077	55	0.05	0.002	1.40
26078	<5	< 0.01	< 0.001	1.80
26079	<5	< 0.01	< 0.001	1.30
26080	<5	< 0.01	< 0.001	1.80
26081	60	0.06	0.002	2.30
26082	15	0.01	< 0.001	1,90
26083	20	0.02	< 0.001	1.90
26084	155	0.15	0.004	1.80
26085	<5	< 0.01	< 0.001	2.60
26086	<5	< 0.01	<0.001	1.20
26087	<5	<0.01	<0.001	1,80
26088	<5	< 0.01	<0.001	1.60
26089	<5	<0.01	<0.001	1.20
26090	20	0.02	<0.001	2.60
26091	<5	<0.01	<0.001	2.20
26092	35	0.03	<0.001	2.20
26093	5	<0.01	<0.001	2.10

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement, purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100526 Order: RAINBOW RESOURCES INC

Page 3 of 3

Element Method Det.Lim. Units	FAA313 5 ppb	Au FAA313 0.01 g/t	Au FAA313 0.001 oz/t	WtKg WGH79 0.01
26094	<5	<0.01		kg
26095	30	0.03	<0.001	2.90
26096	<5	<0.01	<0.001	0.90
26097	<5	<0.01	<0.001	2.00
26098	<5	<0.01	<0.001	2.00
26099	<5	<0.01	<0.001	2.00
26100	6405	6.40	<0.001	0.06
26101	20	0.02	0.187	0.06
26102	45	0.02	<0.001	2,10
26103	<5	<0.01	0.001	1.90
26104	<5	<0.01	<0.001	2.20
26105	<5	<0.01	<0.001	2.30
26106	635	0.64	<0.001	2.10
26107	10	0.04	0.019	2.00
26108	30	0.01	<0.001	2.20
26109	65	0.06	- Control of the Cont	2.30
26110	<5	<0.01	0.002	2.00
26111	25	0.02	<0.001	2.20
26112	<5	<0.01	<0.001	2.10
26113	60	0.06	<0.001	2.00
26114	15	0.02	0.002	2.20
26115	<5	<0.01	<0.001	2.40
26116	170	0.17		2.00
26117	20	0.02	<0.005	2.40
26118	25	0.02		2.10
26119	485	0.48	<0.001	2.20
26120	<5	<0.01	<0.001	2.20
26121	<5	<0.01		2.30
26122	25	0.03	<0.001	2.20
26123	40	0.03	<0.001	2.10
26124	70	0.07	0.001	2.10
Dup 26051	<5	<0.01	0.002	2.30
Dup 26075	<5	<0.01	<0.001	
Dup 26099	<5	<0.01	<0.001	
Dup 26123	50	0.05	<0.001 0.001	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/lerms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by at third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Work Order: RL1100527

To: ACCOUNTS PAYABLE COD SGS MINERALS

C/O P.O. Box 439 Whiffen Head Road ARNOLD COVE NF A0B 1A0

Date: Mar 04, 2011

P.O. No.

: RAINBOW RESOURCES INC

Project No. No. Of Samples

: 81

Date Submitted

: Feb 23, 2011 Report Comprises : Pages 1 to 3

(Inclusive of Cover Sheet)

Certified By : ___

Report Footer:

L.N.R. = Listed not received = Not applicable

n.a.

I.S. = Insufficient Sample

= No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_end_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein

WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement, purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100527 Order: RAINBOW RESOURCES INC

Page 2 of 3

Element Method Det.Lim.	Au FAA313 5	Au FAA313 0.01	Au FAA313 0.001	WtKg WGH79 0.01
Units	ppb	g/t	oz/t	kg
26125	<5	<0.01	< 0.001	0.05
26126	6500	6.50	0.190	0.06
26127	65	0.06	0.002	2.40
26128	10	0.01	< 0.001	2.10
26129	10	0.01	< 0.001	2.30
26130	<5	< 0.01	<0.001	2.20
26131	25	0.02	< 0.001	2.10
26132	195	0.19	0.006	2.50
26133	105	0.11	0.003	2.20
26134	90	0.09	0.003	2.30
26135	565	0.57	0.017	2.30
26136	295	0.29	0.009	2.30
26137	210	0.21	0.006	3.40
26138	90	0.09	0.003	3.30
26139	30	0.03	<0.001	3.40
26140	<5	< 0.01	<0.001	0.90
26141	25	0.03	<0.001	2.40
26142	<5	<0.01	<0.001	2.10
26143	<5	< 0.01	<0.001	2.20
26144	<5	<0.01	<0.001	2.20
26145	<5	<0.01	<0.001	2.10
26146	100	0.10	0.003	1.80
26147	85	0.09	0.002	2.60
26148	80	0.08	0.002	2.20
26149	<5	<0.01	<0.001	0.06
26150	6150	6.15	0.179	0.06
26151	120	0.12	0.003	1.90
26152	10	< 0.01	<0.001	2.60
26153	110	0.11	0.003	1.70
26154	25	0.02	<0.001	1.40
26155	20	0.02	<0.001	1.30
26156	15	0.01	<0.001	
26157	<5	<0.01	<0.001	2.00
26158	55	0.06	0.002	1.90
26159	20	0.00	< 0.002	1.70
26160	35	0.02		1.80
26161	<5	<0.04	0.001	1.90
26162	15	0.01	<0.001	1.20
26163	<5	<0.01	<0.001	1,90
26164	<5 <5		<0.001	2.00
26165	<5	<0.01	<0.001	2.60
26166		<0.01	<0.001	2.00
26167	85	0.08	0.002	1.80
	30	0.03	< 0.001	2.30

This document is issued by the Company under its General Conditions of Service accessible at http://www.sqs.com/terms_end_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial estitlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100527 Order: RAINBOW RESOURCES INC

Page 3 of 3

Element Method	Au FAA313	Au FAA313	Au FAA313	WtKg WGH79
Det.Lim.	5	0.01	0.001	0.01
Units	ppb	g/t	oz/t	kg
26168	30	0.03	<0.001	2.10
26169	65	0,06	0.002	2.00
26170	60	0.06	0.002	2.00
26171	<5	< 0.01	< 0.001	2.10
26172	<5	< 0.01	< 0.001	1.90
26173	<5	<0.01	<0.001	2.20
26174	<5	<0.01	< 0.001	0.06
26175	6520	6.52	0.190	0.06
26176	75	0.07	0.002	2.10
26177	40	0.04	0.001	2.20
26178	15	0,01	<0.001	1,60
26179	65	0.07	0.002	2.60
26180	10	<0.01	<0.001	2,40
26181	30	0.03	< 0.001	2.10
26182	30	0.03	<0.001	2.30
26183	10	<0.01	<0.001	2.10
26184	100	0.10	0.003	2.50
26185	95	0.10	0.003	2.10
26186	75	0.07	0.002	2.40
26187	70	0.07	0.002	2.60
26188	300	0.30	0.009	2.40
26189	500	0.50	0.015	2.40
26190	85	0.09	0.003	2.40
26191	75	0,07	0.002	2.50
26192	15	0.02	<0.001	2.20
26193	20	0.02	< 0.001	2.20
26194	<5	<0.01	< 0.001	2.40
26195	<5	<0.01	< 0.001	1.70
26196	<5	< 0.01	< 0.001	1.40
26197	<5	< 0.01	< 0.001	1.50
26198	<5	< 0.01	< 0.001	1.80
26199	6360	6.38	0.186	0.06
26200	50	0.05	0.001	0.08
26201	<5	<0.01	< 0.001	1.20
26202	<5	<0.01	< 0.001	2.50
26203	30	0.03	< 0.001	1.70
26204	<5	<0.01	< 0.001	2.10
26205	<5	<0.01	< 0.001	3.10
Dup 26125	<5	<0.01	<0.001	
Dup 26149	<5	<0.01	< 0.001	
Dup 26173	<5	< 0.01	<0.001	-
Dup 26197	<5	< 0.01	<0.001	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Work Order: RL1100596

Date: Mar 11, 2011

To: ACCOUNTS PAYABLE COD SGS MINERALS C/O P.O. Box 439 Whiffen Head Road ARNOLD COVE

NF A0B 1A0

P.O. No.

: RAINBOW RES-ST. PAULS

Project No. No. Of Samples

: 74

Date Submitted

: Feb 28, 2011

Report Comprises : Pages 1 to 3

(Inclusive of Cover Sheet)

Certified By : __

L.N.R. = Listed not received n.a. = Not applicable

I.S. = Insufficient Sample

= No result

*INF = Composition of this sample makes detection impossible by this method ${\it M}^{}$ after a result denotes ppb to ppm conversion, % denotes ppm to % conversion Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_snd_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100596 Order: RAINBOW RES-ST. PAULS

Page 2 of 3

Element Method Det.Lim. Units	Au FAA313 5 ppb	Au FAA313 0.01 g/t	Au FAA313 0.001 oz/t	WtKs WGH7s 0.01
26206	<5	< 0.01	<0.001	1.00
26207	<5	<0.01	<0.001	2.30
26208	<5	<0.01	<0.001	2.20
26209	165	0.16	0.005	2.20
26210	1260	1.26	0.037	3.10
26211	1370	1.37	0.040	2.30
26212	30	0.03	<0.001	2.10
26213	5	<0.01	<0.001	1.80
26214	30	0.03	<0.001	2.30
26215	265	0.27	0.008	3.50
26216	5	<0.01	<0.001	3.40
26217	<5	<0.01	<0.001	2.50
26218	<5	<0.01	<0.001	1.90
26219	<5	<0.01	<0.001	2.20
26220	<5	<0.01	<0.001	2.50
26221	<5	<0.01	<0.001	2.40
26222	<5	<0.01	<0.001	2.40
26223	5	<0.01	<0.001	2.40
26224	<5	<0.01	<0.001	0.08
26225	6210	6.21	0.181	0.05
26226	10	0.01	<0.001	2.30
26227	35	0.04	0.001	2.20
26228	5	<0.01	<0.001	1.90
26229	<5	<0.01	<0.001	2.10
26230	<5	<0.01	<0.001	2.60
26231	<5	<0.01	<0.001	1,90
26232	55	0.06	0.002	2.00
26233	<5	<0.01	<0.002	2.10
26234	<5	<0.01	<0.001	2.00
26235	<5	<0.01	<0.001	2.30
26236	<5	<0.01	<0.001	2.30
26237	<5	<0.01	<0.001	
26238	30	0.03	<0.001	2.10
26239	<5	<0.01	<0.001	2.30
26240	<5	<0.01		2.30
26241	<5	<0.01	<0.001	2.30
26242	<5	<0.01	<0.001	2.20
26243	<5		<0.001	2.70
26244	<5	<0.01	<0.001	1,90
26245	20	-	<0.001	2.30
26246	<5	0.02	<0.001	2.00
26247	<5	<0.01	<0.001	2.10
26248	<5	<0.01	<0.001	2.00

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms.and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law,

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100596 Order: RAINBOW RES-ST, PAULS

Page 3 of 3

Element Method Det.Lim.	Au FAA313 5	Au FAA313 0.01	Au FAA313 0,001	WtKg WGH79 0.01
Units	ppb	g/t	oz/t	kg
26249	<5	<0.01	<0.001	0.05
26250	6530	6.53	0.190	0.06
26251	30	0.03	<0.001	2.20
26252	<5	<0.01	< 0.001	2.10
26253	<5	<0.01	< 0.001	2.20
26254	<5	< 0.01	< 0.001	2.20
26255	<5	<0.01	< 0.001	2.30
26256	<5	<0.01	<0.001	2.20
26257	<5	< 0.01	< 0.001	1.60
26258	<5	<0.01	< 0.001	2.70
26259	<5	< 0.01	< 0.001	2.30
26260	<5	< 0.01	< 0.001	1.80
26261	25	0.02	< 0.001	2.40
26262	<5	< 0.01	< 0.001	2.30
26263	<5	< 0.01	< 0.001	1.90
26264	<5	<0.01	< 0.001	2.10
26265	<5	<0.01	<0.001	2.30
26266	35	0.04	0.001	2.00
26267	<5	< 0.01	< 0.001	2.20
26268	<5	< 0.01	<0.001	2.20
26269	20	0.02	<0.001	2.30
26270	<5	<0.01	<0.001	1.30
26271	<5	<0.01	<0.001	2.20
26272	<5	<0.01	<0.001	2.90
26273	<5	<0.01	<0.001	2.40
26274	<5	< 0.01	<0.001	0.06
26275	6480	6.48	0.189	0.06
26276	<5	<0.01	<0.001	2.40
26277	<5	<0.01	<0.001	2.00
26278	<5	<0.01	<0.001	2.30
26279	<5	<0.01	<0.001	2.30
*Dup 26208	<5	<0.01	<0.001	2.50
*Dup 26230	<5	<0.01	<0.001	
*Dup 26254	20	0.02	< 0.001	-
*Dup 26278	20	0.02	<0.001	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Work Order: RL1100597

Date: Mar 12, 2011

To: ACCOUNTS PAYABLE COD SGS MINERALS C/O P.O. Box 439 Whiffen Head Road ARNOLD COVE NF A0B 1A0

P.O. No.

: RAINOW RES - ST. PAULS

Project No. No. Of Samples

: 56

Date Submitted

: Feb 28, 2011 Report Comprises : Pages 1 to 3

(Inclusive of Cover Sheet)

Report Footer:

L.N.R. = Listed not received

= Insufficient Sample

= Not applicable

= No result

= Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and I or provided by the Client or by a third party acting at the Client's WARNING: I no sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100597 Order: RAINOW RES - ST. PAULS

Page 2 of 3

Element Method Det.Lim.	Au FAA313	Au FAA313	Au FAA313	WtKg WGH79
Units	5 ppb	0.01	0.001	0.01
26280	×5	g/t	oz/t	kg
26281	<5	<0.01	<0.001	2.30
26282		<0.01	<0.001	2.40
26283	<5	<0.01	<0.001	2.60
26284	<5	<0.01	<0.001	3.00
26285	<5	<0.01	<0.001	1.20
26286	385	0.39	0.011	1.30
26287	40	0.04	0.001	2.20
26288	<5	<0.01	<0.001	2.50
26289	<5	<0.01	<0.001	2.10
26290	<5	<0.01	<0.001	2.10
26291	<5	<0.01	< 0.001	2.20
26292	<5	<0.01	< 0.001	1.90
26293	<5	<0.01	<0.001	1.20
26294	<5	<0.01	<0.001	1.50
26295	<5	<0.01	<0.001	2,10
26296	<5	<0.01	<0.001	2.30
26297	<5	< 0.01	< 0.001	2.00
26298	5	<0.01	<0.001	2.50
26299	<5	< 0.01	< 0.001	2.20
26300	<5	<0.01	< 0.001	0.05
26301	6460	6.46	0.188	0.05
26302	20	0.02	<0.001	1,90
26303	<5	< 0.01	< 0.001	2.90
	<5	< 0.01	<0.001	2.20
26304 26305	<5	<0.01	<0.001	2.40
	20	0.02	<0.001	1.70
26306	<5	<0.01	<0.001	1.40
26307	<5	<0.01	<0.001	1.10
26308	20	0.02	< 0.001	2.20
26309	<5	< 0.01	< 0.001	2.10
26310	<5	< 0.01	< 0.001	2.20
26311	<5	<0.01	<0.001	2.70
26312	<5	<0.01	< 0.001	1.80
26313	5	<0.01	< 0.001	2.20
26314	<5	<0.01	<0.001	2.10
26315	10	< 0.01	< 0.001	2.20
26316	30	0.03	< 0.001	2.20
26317	85	0.08	0.002	0.70
26318	75	0.07	0.002	2.20
26319	80	0.08	0.002	2.10
26320	25	0.02	< 0.001	1.40
26321	20	0.02	<0.001	2.10
26322	10	0.01	<0.001	1.30

This document is issued by the Company under its General Conditions of Service accessible at http://www.sos.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100597 Order: RAINOW RES - ST. PAULS

Page 3 of 3

Element Method	Au FAA313	Au FAA313	Au FAA313	WtKg WGH79
Det.Lim.	5	0.01	0.001	0.01
Units	ppb	g/t	oz/t	kg
26323	10	< 0.01	< 0.001	0.90
26324	<5	<0.01	< 0.001	0.05
26325	6620	6.62	0.193	0.05
26326	120	0.12	0.003	2.20
26327	325	0.32	0.009	2.40
26328	25	0.02	<0.001	1.80
26329	200	0.20	0.008	1.30
26330	60	0.06	0.002	1.70
26331	285	0.29	0.008	2.20
26332	70	0.07	0.002	1.40
26333	30	0.03	< 0.001	2.40
26334	30	0.03	< 0.001	2.80
26335	30	0.03	< 0.001	1.90
Dup 26280	20	0.02	< 0.001	
'Dup 26304	20	0.02	< 0.001	
'Dup 26328	45	0.05	0.001	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sqs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law,

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Work Order: RL1100676

To: GERALD HARRON

RAINBOW RESOURCES INC.

SUITE 1500 330 BAY STREET TORONTO ONTARIO M5H 2S8 Date: Mar 17, 2011

P.O. No.

: ST. PAULS

Project No. No. Of

: 95

Samples

: Mar 04, 2011 : Pages 1 to 4

Date

(Inclusive of Cover Sheet)

Certified By : _____

Report Foot

L.N. = Listed not

.S = Insufficient

. received

. Sample

*INF = Composition of this sample makes detection impossible b

M after a result denotes ppb to ppm conversion, % denotes ppm to

Methods marked with an asterisk (e.g. *NAA08V) were

subcontracted

This document is issued by the Company under its General Conditions of Service accessible at http://www.sqs.com/lerms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Canada Inc | Mineral Services 16A Young Street Red Lake t(807) 727-2939

Final: RL1100676 Order: S1, PAULS

Page 2 of 4

Element	Au	Au	Au	WtKg WGH79	
Method	FAA31	FAA31	FAA31		
Det.Lim.	3	3	3	0.01	
26336	10	0.01	< 0.001	2.10	
26337	10	< 0.01	<0.001	2.20	
26338	10	0.01	<0.001	2.50	
26339	35	0.03	< 0.001	2.30	
26340	5	< 0.01	< 0.001	2.20	
26341	10	0.01	< 0.001	2.20	
26342	10	< 0.01	< 0.001	2.20	
26343	<5	< 0.01	< 0.001	2.20	
26344	15	0.01	<0.001	2.30	
26345	75	0.07	0.002	2.40	
26346	<5	< 0.01	< 0.001	2.30	
26347	5	< 0.01	< 0.001	2.10	
26348	10	0.01	< 0.001	1.90	
26349	5	< 0.01	< 0.001	0.06	
26350	6420	6.42	0.187	0.05	
26351	55	0.05	0.002	2.30	
26352	20	0.02	< 0.001	2.00	
26353	10	0.01	< 0.001	2.00	
26354	10	< 0.01	< 0.001	2.00	
26355	10	0.01	< 0.001	1.90	
26356	15	0.02	< 0.001	1.50	
26357	25	0.03	< 0.001	2.00	
26358	5	<0.01	< 0.001	1.90	
26359	5	<0.01	< 0.001	2.10	
26360	<5	<0.01	<0.001	1.20	
26361	<5	<0.01	< 0.001	1,60	
26362	<5	< 0.01	< 0.001	1.30	
26363	<5	< 0.01	< 0.001	2.40	
26364	<5	< 0.01	< 0.001	2.00	
26365	<5	< 0.01	< 0.001	1.50	
26366	<5	< 0.01	< 0.001	2.00	
26367	30	0.03	< 0.001	2.20	
26368	35	0.04	0.001	2.00	
26369	5	< 0.01	< 0.001	2.10	
26370	5	<0.01	< 0.001	1.90	
26371	<5	< 0.01	< 0.001	2.20	
26372	<5	< 0.01	< 0.001	2.20	
26373	10	< 0.01	<0.001	2.00	
26374	5	< 0.01	< 0.001	0.05	
26375	6595	6.60	0.192	0.06	
26376	15	0.01	<0.001	2.00	
26377	15	0.01	<0.001	2.10	
26378	10	<0.01	<0.001	1.90	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sos.com/lerms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Canada Inc | Mineral Services 16A Young Street Red Lake t(807) 727-2939

Final: RL1100676 Order: ST. PAULS

Page 3 of 4

Element	Au	Au	Au FAA31	WtKg WGH79
Method	FAA31	FAA31		
Det.Lim.	3	3	3	0.01
26379	30	0.03	<0.001	2.30
26380	60	0.06	0.002	1.90
26381	<5	< 0.01	< 0.001	2.30
26382	5	< 0.01	<0.001	2.10
26383	70	0.07	0.002	2.20
26384	10	< 0.01	<0.001	2.30
26385	15	0.01	< 0.001	2.10
26386	<5	< 0.01	< 0.001	2.10
26387	<5	< 0.01	< 0.001	2.10
26388	<5	< 0.01	<0.001	2.20
26389	10	0.01	<0.001	2.00
26390	10	0.01	<0.001	2.90
26391	205	0.21	0,008	1.90
26392	5	< 0.01	< 0.001	1.50
26393	<5	< 0.01	< 0.001	2.20
26394	<5	< 0.01	< 0.001	2.10
26395	5	<0.01	<0.001	2.40
26396	10	0.01	< 0.001	2.00
26397	15	0.02	< 0.001	2.40
26398	<5	< 0.01	< 0.001	2.40
26399	<5	< 0.01	< 0.001	0.05
26400	6650	6.65	0.194	0.05
26401	35	0.04	0.001	2.20
26402	<5	<0.01	< 0.001	2.10
26403	<5	<0.01	< 0.001	2.20
26404	<5	< 0.01	<0.001	1.80
26405	10	< 0.01	< 0.001	1.20
26406	<5	< 0.01	< 0.001	1.50
26407	20	0.02	< 0.001	2.20
26408	30	0.03	< 0.001	2.20
28409	10	< 0.01	< 0.001	2.10
26410	15	0.02	< 0.001	2.20
26411	10	0.01	<0.001	2.20
26412	1145	1.15	0.033	2.10
26413	75	0.07	0.002	2.20
26414	30	0.03	< 0.001	2.10
26415	20	0.02	<0.001	2.10
26416	50	0.05	0.001	2.00
26417	230	0.23	0.007	2.20
26418	20	0.02	<0.001	2.10
26419	445	0.45	0.013	2.00
26420	160	0.16	0.005	2.10
26421	960	0.96	0.028	1.30

This document is issued by the Company under its General Conditions of Service accessible at http://www.ses.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Canada Inc Mineral Services 16A Young Street Red Lake t(807) 727-2939

Final: RL1100676 Order: S1. PAULS

	-		4.70	10.20	4
- 4	Pag	0	4	nif.	Л

Element Method	Au FAA31	Au FAA31	Au FAA31	WtKg WGH79
Det.Lim.	3	3	3	0.01
26422	30	0.03	< 0.001	1,30
26423	25	0.02	< 0.001	1.80
26424	<5	<0.01	< 0.001	0.06
26425	6650	6.65	0.194	0.06
26426	75	0.08	0.002	2.00
26427	45	0.04	0.001	2.00
26428	5	< 0.01	< 0.001	2.20
26429	5	< 0.01	< 0.001	2.20
26430	<5	<0.01	< 0.001	2.20
*Dup 26336	15	0.01	< 0.001	
*Dup 26360	5	<0.01	< 0.001	
*Dup 26384	20	0.02	< 0.001	
*Dup 26408	30	0.03	<0.001	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sps.com/terms.and.conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Canada Inc | Mineral Services 16A Young Street Red Lake t(807) 727-2939

Work Order: RL1100718

Date: Mar 20, 2011

To: GERALD HARRON RAINBOW RESOURCES INC. SUITE 1500

330 BAY STREET TORONTO ONTARIO M5H 2S8

P.O. No.

: ST PAUL

Project No.

No. Of Samples : 74
Date Submitted : Mar 08, 2011

Report Comprises : Pages 1 to 3

(Inclusive of Cover Sheet)

Certified By : ___

Report Footer:

L.N.R. = Listed not received n.a. Not applicable

I.S. = Insufficient Sample

= No result

= Composition of this sample makes detection impossible by this method

 ${\it M}$ after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_end_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's of sources from which the sample(s) is a large and to be extracted. The findings of representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100718 Order: ST PAUL

Page 2 of 3

Element	Au	Au	Au	WtKg
Method Det.Lim.	FAA313	FAA313 0.01	FAA313	WGH79
Units	ppb	Mg.	0.001 oz/t	0.01 kg
26431	<5	<0.01	<0.001	3.10
26432	240	0.24	0.007	2.20
26433	1080	1.08	0.032	2.50
26434	10	0.01	< 0.001	2.00
26435	5	< 0.01	< 0.001	1.10
26436	<5	< 0.01	< 0.001	1,80
26437	10	0.01	< 0.001	1,50
26438	25	0.02	< 0.001	2.30
26439	<5	< 0.01	<0.001	1,90
26440	<5	< 0.01	< 0.001	2.60
26441	20	0.02	< 0.001	2.30
26442	<5	< 0.01	< 0.001	1.80
26443	<5	< 0.01	< 0.001	2.00
26444	<5	<0.01	<0.001	2.00
26445	<5	< 0.01	< 0.001	2.00
26446	15	0.01	< 0.001	2.60
26447	<5	< 0.01	<0.001	1.90
26448	<5	<0.01	<0.001	1.60
26449	<5	<0.01	<0.001	0.06
26450	6495	6.49	0.189	0.06
26451	15	0.01	< 0.001	2.20
26452	60	0.06	0.002	2.20
26453	<5	<0.01	< 0.001	1.70
26454	<5	<0.01	<0.001	1.80
28455	<5	<0.01	< 0.001	2.10
26456	<5	< 0.01	< 0.001	2.30
26457	<5	<0.01	<0.001	2.20
26458	115	0.11	0.003	3.10
26459	1135	1.14	0.033	1.00
26460	25	0.03	< 0.001	2.20
26461	30	0.03	< 0.001	1.80
26462	60	0.06	0.002	1.90
26463	5	<0.01	<0.001	2.58
26464	<5	< 0.01	< 0.001	2.30
26465	<5	< 0.01	<0.001	2.70
26466	85	0.09	0.002	2.20
26467	1505	1.50	0.044	2.40
26468	125	0.13	0.004	2.60
26469	<5	<0.01	< 0.001	2.00
28470	<5	<0.01	<0.001	2.00
26471	<5	<0.01	<0.001	2.80
26472	<5	<0.01	<0.001	2.00
26473	10	<0.01	<0.001	2.50

This document is issued by the Company under its General Conditions of Service accessible at http://www.sqs.com/terms and conditions htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100718 Order: ST PAUL

Page 3 of 3

Element Method Det.Lim. Units	Au FAA313 5 ppb	Au FAA313 0.01 g/t	Au FAA313 0.001 oz/t	WKg WGH79 0.01
26474	×5			kg
26475	6415	< 0.01	<0.001	0.05
26476	10	6.41	0.187	0.06
26477	35	0.01	<0.001	2.30
26478	55	0.03	0.001	2.90
26479	30	0.06	0.002	2.50
26480	<5	0.03	<0.001	2.20
26481	<5 <5	<0.01	<0.001	2.20
26482		<0.01	<0.001	2.10
26483	<5	<0.01	<0.001	2.40
26484	10	<0.01	<0.001	2.20
26485	110	0.11	0.003	1.30
26486	120	0.12	0.003	2.70
26487	75	0.07	0,002	2.50
26488	410	0.41	0.012	1.80
26489	290	0.29	0.008	2.20
26490	10	<0.01	<0.001	2.80
26491	10	<0.01	<0.001	2.50
26492	10	0.01	<0.001	2.40
26493	5	<0.01	<0.001	2,32
26494	<5	<0.01	<0.001	2.10
26495	30	0,03	<0.001	2.30
26496	30	0.03	<0.001	2.70
26497	40	0.04	0.001	1.40
26498	35	0.04	0.001	2.20
26499	<5	<0.01	< 0.001	1.70
-11/22	<5	<0.01	<0.001	0.05
26500 26501	6390	6,39	0.186	0.05
	10	<0.01	< 0.001	2.30
26502	<5	< 0.01	<0.001	2.10
26503	<5	< 0.01	< 0.001	3.30
28504	<5	<0.01	<0.001	3.30
*Dup 26431	<5	<0.01	<0.001	-
*Dup 26455	15	0.01	< 0.001	
*Dup 26479	30	0.03	<0.001	-
*Dup 26503	<5	< 0.01	< 0.001	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unsufficient and are not intended for commercial or contractual settlement.

SGS Canada Inc. | Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Work Order: RL1100719

To: GERALD HARRON

RAINBOW RESOURCES INC.

SUITE 1500 330 BAY STREET TORONTO ONTARIO M5H 2S8 Date: Mar 18, 2011

P.O. No.

: ST PAUL

Project No.

: 36

No. Of Samples Date Submitted

: Mar 08, 2011

Report Comprises : Pages 1 to 2

(Inclusive of Cover Sheet)

Certified By : ____

Report Footer:

L.N.R. = Listed not received

I.S. = Insufficient Sample

= Insumicier
 = No result

n.a. = Not applicable

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms-end-conditions.htm. Attention is drawn to the limitation of

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100719 Order: ST PAUL

Page 2 of 2

Element Method Det.Lim. Units	Au FAA313 5 ppb	Au FAA313 0.01 g/t	Au FAA313 0.001 oz/t	WtKg WGH7s 0.01
26505	<5	< 0.01	<0.001	2.00
26506	<5	< 0.01	<0.001	2.10
26507	<5	< 0.01	< 0.001	2.00
26508	<5	< 0.01	< 0.001	2.20
26509	<5	< 0.01	< 0.001	2.30
26510	25	0.03	< 0.001	3.20
26511	<5	< 0.01	< 0.001	1.50
26512	<5	<0.01	<0.001	1.30
26513	<5	< 0.01	<0.001	2.10
26514	<5	< 0.01	<0.001	2.30
26515	<5	<0.01	< 0.001	3.10
26516	<5	< 0.01	<0.001	2.20
26517	<5	< 0.01	<0.001	1.50
26518	<5	< 0.01	< 0.001	2.00
26519	<5	< 0.01	< 0.001	2.00
26520	<5	<0.01	<0.001	2.50
26521	25	0.02	< 0.001	1.70
26522	<5	< 0.01	< 0.001	2.30
26523	<5	< 0.01	< 0.001	1.90
26524	15	0.02	< 0.001	2.10
28525	<5	< 0.01	< 0.001	2.00
26526	20	0.02	< 0.001	2.00
26527	<5	< 0.01	<0.001	1.70
26528	<5	< 0.01	<0.001	1.10
26529	<5	< 0.01	< 0.001	2.00
26530	<5	< 0.01	< 0.001	2.20
26531	<5	< 0.01	< 0.001	0.06
26532	6390	6.39	0.186	0.09
26533	75	0.07	0.002	1,90
26534	<5	< 0.01	< 0.001	2.30
26535	<5	<0.01	< 0.001	1.60
26536	<5	<0.01	<0.001	2.00
26537	10	< 0.01	< 0.001	2.20
26538	25	0.02	< 0.001	2.20
26539	20	0.02	< 0.001	2.10
26540	25	0.02	< 0.001	2.20
Dup 26505	<5	<0.01	<0.001	2.20
Dup 26529	35	0.04	0.001	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sos.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Work Order: RL1100808

Date: Mar 25, 2011

To: GERALD HARRON RAINBOW RESOURCES INC.

SUITE 1500 330 BAY STREET TORONTO ONTARIO M5H 2S8

P.O. No.

: ST. PAUL

Project No.

No. Of Samples : 100
Date Submitted : Mar 10, 2011

Report Comprises : Pages 1 to 4

(Inclusive of Cover Sheet)

Certified By : ___

Report Footer:

L.N.R. = Listed not received

n.a.

= Not applicable

= Insufficient Sample I.S.

= No result

*INE = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is large said to be extracted. The findings report on the samples provided by the client and are not intended for commercial settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100808 Order: ST. PAUL

Page 2 of 4

Element Method	Au FAA313	Au FAA313	Au FAA313	WtKg WGH79
Det.Lim.	5	0.01	0.001	0.01
Units	ppb	g/t	oz/t	kg
26541	15	0.02	< 0.001	2.20
26542	<5	<0.01	< 0.001	2.10
26543	5	< 0.01	< 0.001	2.20
26544	10	<0.01	< 0.001	2.20
28545	5	< 0.01	< 0.001	2.20
26546	25	0.03	< 0.001	2.20
26547	20	0.02	< 0.001	2.40
26548	5	< 0.01	<0.001	2.20
26549	<5	< 0.01	<0.001	0.05
26550	6245	6.25	0.182	0.06
26551	10	0.01	< 0.001	2.20
26552	10	< 0.01	< 0.001	2.40
26553	10	<0.01	< 0.001	2.50
26554	25	0.02	< 0.001	2.30
26555	15	0.02	< 0.001	2.40
26556	15	0.01	< 0.001	2.30
26557	25	0.03	< 0.001	2.30
26558	85	0.09	0.002	2.20
26559	25	0.02	< 0.001	2.30
26560	15	0.01	< 0.001	2.30
26561	<5	< 0.01	<0.001	2.40
26562	25	0.02	< 0.001	1.60
26563	20	0.02	< 0.001	3.00
26564	25	0.03	<0.001	2.20
26565	35	0.04	0.001	2.30
26566	85	0.08	0.002	2.30
26567	35	0.04	0.001	1.50
26568	380	0.38	0.011	2,30
26569	15	0.02	<0.001	2.30
26570	25	0.03	<0.001	2.40
26571	20	0.02	<0.001	2.20
26572	70	0.07	0.002	2.20
26573	120	0.12	0.004	2.30
26574	15	0.01	<0.001	0.06
26575	6285	6.28	0.183	0.06
26576	110	0.11	0.003	
26577	40	0.04		2.30
26578	30	0.03	<0.001	2.40
26579	40			2.30
26580	30	0.04	0.001	1.90
26581	20	0.03	<0.001	2.10
26582		0.02	<0.001	2.10
26583	80	0.08	0.002	2.10
EVEV.	25	0.02	<0.001	2.10

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100808 Order: ST. PAUL

Page 3 of 4

Element Method	Au FAA313	Au FAA313	Au FAA313	WtKg WGH79
Det.Lim.	5	0.01	0.001	0.01
Units	ppb	g/t	oz/t	kg
26584	40	0.04	0.001	2.10
26585	25	0.02	<0.001	2.90
26586	35	0.03	0.001	2.00
26587	35	0.03	<0.001	2.00
26588	<5	< 0.01	< 0.001	2.00
26589	35	0.03	<0.001	2,20
26590	10	0.01	< 0.001	2.20
26591	20	0.02	< 0.001	1.40
26592	10	< 0.01	< 0.001	2.30
26593	15	0.02	<0.001	2.00
26594	<5	<0.01	< 0.001	2.70
26595	5	<0.01	< 0.001	2.10
26596	<5	< 0.01	< 0.001	2.00
26597	<5	<0.01	< 0.001	2.30
26598	<5	< 0.01	< 0.001	2.20
26599	<5	< 0.01	< 0.001	0.06
26600	6405	6.40	0.187	0.08
26601	<5	<0.01	<0.001	3.30
26602	<5	< 0.01	< 0.001	3.20
26603	<5	< 0.01	< 0.001	2.30
26604	<5	< 0.01	< 0.001	2.30
26605	<5	< 0.01	< 0.001	1.80
26606	<5	< 0.01	<0.001	2.20
26607	<5	<0.01	<0.001	1.90
26608	<5	< 0.01	< 0.001	2.10
26609	<5	<0.01	<0.001	1.10
26610	<5	<0.01	<0.001	1.90
26611	<5	<0.01	<0.001	1.10
26612	<5	<0.01	<0.001	2.10
26613	<5	<0.01	<0.001	2.30
26614	<5	<0.01	<0.001	1.70
26615	<5	<0.01	<0.001	1.90
26616	<5	<0.01	<0.001	2.50
26617		-		
26618	5	<0.01	<0.001	2.20
77.77		<0.01	<0.001	1.70
26619	<5	<0.01	<0.001	1.70
26620	<5	<0.01	<0.001	2,10
26621	<5	<0.01	<0.001	3.30
26622	<5	<0.01	<0.001	1.50
26623	10	<0.01	<0.001	1.90
26624	5	<0.01	<0.001	0.05
26625	6400	6.40	0.187	0.06
26626	40	0.04	0.001	2.50

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) islare said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unleavful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100808 Order: ST. PAUL

Page 4 of 4

Element	Au	Au	Au	WtKo
Method	FAA313	FAA313	FAA313	WGH79
Det.Lim.	5	0.01	0.001	0.01
Units	ppb	g/t	oz/t	kg
26627	20	0.02	< 0.001	2.00
26628	<5	< 0.01	< 0.001	3.70
26629	<5	< 0.01	< 0.001	1.10
26630	<5	< 0.01	< 0.001	2.70
26631	<5	< 0.01	< 0.001	1.40
26632	<5	< 0.01	< 0.001	1.60
26633	<5	< 0.01	< 0.001	2.10
26634	<5	< 0.01	< 0.001	2.10
26635	15	0.01	< 0.001	2.90
26636	15	0.02	<0.001	2.10
26637	<5	< 0.01	< 0.001	1.80
26638	<5	< 0.01	<0.001	2.70
26639	25	0.03	< 0.001	1.90
26640	30	0.03	< 0.001	2.30
*Dup 26541	20	0.02	< 0.001	
*Dup 26565	30	0.03	< 0.001	
*Dup 26589	25	0.03	< 0.001	
*Dup 26613	<5	<0.01	< 0.001	
*Dup 26637	<5	<0.01	< 0.001	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is lare said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Work Order: RL1100856

Date: Mar 25, 2011

To: GERALD HARRON RAINBOW RESOURCES INC.

SUITE 1500 330 BAY STREET TORONTO ONTARIO M5H 2S8

P.O. No.

: ST PAUL

Project No.

: 104

No. Of Samples Date Submitted

: Mar 14, 2011

Report Comprises : Pages 1 to 4

(Inclusive of Cover Sheet)

Certified By			

Report Footer:

L.N.R. = Listed not received n.a.

= Insufficient Sample

= Not applicable

= No result

= Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's clirection. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100856 Order: ST PAUL

Page 2 of 4

Element Method	Au FAA313	Au FAA313	Au FAA313	WtKg WGH79
Det.Lim.	5	0.01	0.001	0.01
Units	ppb	g/t	oz/t	kg
26641	130	0.13	0.004	3.90
28842	15	0.02	<0.001	2.10
26643	<5	<0.01	< 0.001	2.50
26644	<5	< 0.01	< 0.001	2.10
26645	<5	<0.01	<0.001	2.00
26646	<	< 0.01	<0.001	1.90
26647	<5	< 0.01	< 0.001	2.00
26648	<5	< 0.01	<0.001	2.90
26649	10	< 0.01	< 0.001	0.05
26650	6195	6.20	0.181	0.06
26651	<5	<0.01	< 0.001	1.60
26652	<5	< 0.01	< 0.001	2.30
26653	<5	<0.01	< 0.001	1.90
26654	<5	< 0.01	< 0.001	1.90
26655	<5	< 0.01	<0.001	2.10
26656	<5	<0.01	< 0.001	2.00
26657	<5	< 0.01	< 0.001	2.30
26658	<5	< 0.01	< 0.001	2.10
26659	<5	< 0.01	< 0.001	2.00
26660	<5	< 0.01	< 0.001	2.10
26661	20	0.02	< 0.001	2.10
26662	<5	< 0.01	< 0.001	2.10
26663	<5	< 0.01	< 0.001	3.20
26664	<5	< 0.01	< 0.001	2.90
26665	<5	< 0.01	<0.001	2.20
26666	<5	< 0.01	<0.001	1.80
28687	<5	<0.01	< 0.001	2.00
26668	<5	<0.01	<0.001	2.20
26669	<5	<0.01	<0.001	2.00
26670	<5	<0.01	<0.001	1.40
26671	<5	<0.01	<0.001	2.00
26672	<5	<0.01	<0.001	2.20
26673	15	0.02	<0.001	2.00
26674	<5	<0.01	<0.001	0.06
26675	6130	6.13	0.179	0.05
26676	25	0.02	<0.001	
26677	<5	<0.01	<0.001	2.40
26678	<5	<0.01		2.10
26679	<5	-	<0.001	1.50
26680		<0.01	<0.001	1.90
26681	<5	<0.01	<0.001	2,30
26682	5	<0.01	<0.001	2.30
26683	<5	<0.01	<0.001	1.90
20003	<5	<0.01	< 0.001	1.20

This document is issued by the Company under its General Conditions of Service accessible at http://www.sps.com/terms-and-conditions-htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100856 Order: ST PAUL

Page 3 of 4

Element Method	Au FAA313	Au FAA313	Au FAA313	WtK WGH7
Det.Lim.	5	0.01	0.001	0.0
Units	ppb	g/t	oz/t	kı
26684	<5	< 0.01	< 0.001	1.90
26685	<5	< 0.01	< 0.001	2.60
26686	5	< 0.01	< 0.001	3.70
26687	<5	< 0.01	< 0.001	2.30
26688	<5	< 0.01	< 0.001	1.90
26689	<5	< 0.01	<0.001	2.20
26690	<5	< 0.01	<0.001	2.50
26691	<5	<0.01	<0.001	2.50
26692	<5	<0.01	<0.001	
26693	<5	<0.01	<0.001	1.90
26694	10	0.01	<0.001	3.70
26695	<5	<0.01	<0.001	1.20
26696	<5	<0.01	The State of	2.10
26697	<5	<0.01	<0.001	2.20
26698	6420	6.42	<0.001	1.10
26699	10	<0.01	0.187	0.06
26700	<5	<0.01	<0.001	0.06
26701	25	0.03	<0.001	1.80
26702	50	-	<0.001	2.40
26703	<5	0.05	0.001	2.10
26704	5	<0.01	<0.001	2.30
28705	<5	<0.01	<0.001	2.20
26706	45	<0.01	<0.001	2.00
26707	20	0.04	0.001	3,70
26708	5	0.02	<0.001	1.90
26709	40	<0.01	<0.001	2.60
26710		0.04	0.001	2.40
26711	5	<0.01	<0.001	1.60
26712	15	0.02	<0.001	3.20
26713	35	0.03	<0.001	2.50
26714		<0.01	<0.001	2.10
26715	265	0.26	800.0	2.30
26716	<5	<0.01	< 0.001	2.00
26717	5	<0.01	<0.001	2.20
26718	40	0.04	0.001	2.20
26719	<5	<0.01	<0.001	2.10
26720	<5	< 0.01	< 0.001	2.00
26721	<5	< 0.01	<0.001	2.40
THE PARTY OF THE P	60	0.06	0.002	2.30
26722	5	<0.01	< 0.001	2.70
26723	60	0.06	0.002	2.10
26724	<5	<0.01	<0.001	0.06
26725	6430	6.43	0.188	0.05
26726	40	0.04	0.001	1.90

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) islaine said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law,

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Final: RL1100856 Order: ST PAUL

Page 4 of 4

Element Method Det.Lim. Units	FAA313 5 ppb	Au FAA313 0.01 g/t	Au FAA313 0.001 02/1	WtKg WGH79 0.01
26727	25	0.03	<0.001	2.40
26728	40	0.04	0.001	2.20
28729	10	0.01	<0.001	
26730	<5	<0.01	<0.001	2.00
26731	10	<0.01	<0.001	2.20
26732	25	0.02	<0.001	2.30
26733	30	0.03	<0.001	2.30
26734	40	0.04	0.001	2.30
26735	15	0.01	<0.001	2.40
26736	65	0.06		2.40
26737	10	<0.01	0.002	1.60
26738	35	0.03	<0.001	2.30
26739	10	0.03	<0.001	2.40
26740	5	<0.01	<0.001	2.30
26741	60	-	<0.001	2.20
26742	5	0.06	0.002	2.40
26743	<5	<0.01	<0.001	2.20
26744		<0.01	< 0.001	2.00
*Dup 26641	<5 155	<0.01	<0.001	2.50
Dup 26665		0.16	0.005	-
Dup 26689	<5	<0.01	<0.001	-
Dup 26713	10	< 0.01	<0.001	-
Dup 26737	10	0.01	<0.001	-
Sale For Ot	5	<0.01	<0.001	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by at third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unsuthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Work Order: RL1100526

Date: Mar 04, 2011

To: ACCOUNTS PAYABLE COD SGS MINERALS C/O P.O. Box 439 Whiffen Head Road ARNOLD COVE NF A0B 1A0

P.O. No.

: RAINBOW RESOURCES INC

Project No.

: 74

No. Of Samples Date Submitted Report Comprises

: Feb 23, 2011 : Pages 1 to 3

(Inclusive of Cover Sheet)

Report Footer:

L.N.R. = Listed not received = Not applicable n.a.

I.S. = Insufficient Sample

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Methods marked with the @ symbol (e.g. @AAS21E) denote accredited tests

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms-and-conditions.htm, Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and f or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) sizes asid to be extracted. The findings report on the samples provide by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. | Mineral Services 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

