Hole Number: L60-11-03 Units: METRIC

Project Name:	Rock Tech Lithium	Primary Coordinates Grid: L	JTM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	001	North: 5477289.68		North:	Collar Az:	105.00
Location:	Line 60	East: 426215.65		East:	Length:	203.00
		Elev: 384.24		Elev:	Start Depth:	0.00
Date Started:	Nov 26, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	203.00
Date Completed:	Nov 28, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: claim number TB67175, logged by Jonathan Musicco

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	53.00	61.33	8.33	1.0875	631.2125	36.4543	24.8667	123.4874
WEIGHTED	59.33	61.33	2.00	1.4317	516.5000	38.8000	37.5000	181.5000
WEIGHTED	64.33	67.33	3.00	0.9401	701.0000	45.5000	40.9667	121.0000

Survey Data

D	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
	14.00	100.10	-61.50	Reflex	OK	mag 57750	101.00	103.60	-62.60	Reflex	OK	mag 57570
	200.00	104.00	-63.60	Reflex	ОК	mag 57630						

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	2.15	OB, overburden									

Feb 22, 2012 DETAILED LOG Page 2 of 8

Detailed L	ithology				Assay [Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Ве_р	pm
2.15	51.85	M SCH, mica schist	884496	50.85	51.85	1.0	0 0.20	293.0	00 57.	80 3	3.20	5.0
		MSCH - Metasediment, grey to charcoal colour, massive, mg to cg qtz-fsp-biotite. Scattered at all angles to CA, qtz/carb veinlets exibiting bleaching(altn) of light green to cream colour within core up to 4mm. Disking is weak to moderate from 44 to 45.10m along high angle tca veinlets. weak to strong epidote altn with trace cubic py along joint fractures in and out of core. Two QFM dyklets up to 1cm at low angle to ca from 20.2 to 22.85m Lower contact is sharp at 52 deg tca.										
		Alteration										
		4.40 - 4.50 :E Epidote, Fract-Cont Fracture-Controlled, Moderate										
		41.40 - 42.05 :E Epidote, Fract-Cont Fracture-Controlled, Moderate low angle jointing										
		RQD										
		2.15 - 5.00 : 87.00 % RQD 100.00 % Core										
		5.00 - 8.00: 99.00 % RQD 97.00 % Core										
		8.00 - 11.00: 100.00 % RQD 100.00 % Core										
		11.00 - 14.00: 98.00 % RQD 100.00 % Core										
		14.00 - 17.00: 91.00 % RQD 100.00 % Core										
		17.00 - 20.00: 100.00 % RQD 100.00 % Core										
		20.00 - 23.00: 92.00 % RQD 100.00 % Core										
		23.00 - 26.00: 100.00 % RQD 98.00 % Core										
		26.00 - 29.00: 98.00 % RQD 98.00 % Core										
		29.00 - 32.00: 96.00 % RQD 99.00 % Core										
		32.00 - 35.00: 96.00 % RQD 100.00 % Core										
		35.00 - 38.00: 85.00 % RQD 100.00 % Core										
		38.00 - 41.00: 85.00 % RQD 100.00 % Core										
		41.00 - 44.00: 82.00 % RQD 100.00 % Core										
		44.00 - 47.00: 94.00 % RQD 100.00 % Core										
		47.00 - 50.00: 98.00 % RQD 100.00 % Core										
		50.00 - 53.00: 85.00 % RQD 100.00 % Core										

Detailed Li	thology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
51.85	55.98	APL, aplite	884497	51.85	53.00	1.15	0.01	673.0	0 23.4	10 26.0	00 62.0
		Well-developed aplite. light green, grey, cream colour with black	884498	53.00	54.00	1.00	0.93	510.0	0 23.2	20 21.	50 97.0
		flecks(colombite) at trace amounts. Well dev. sugary textured aplite with minor	884499	54.00	55.00	1.00	0.93	675.C	0 30.0	00 21.	
		silvery mica up to 2-3mm. A few scattered large Kspar xstals up to 15cm, light orange to pink, good tiger strip appearance starting at 53.97m. Thin grey qtz	880501	55.00	56.33	3 1.33	1.36	600.0	0 30.8	30 28.0	00 105.0
		veining at low angle tca from 53.2 to 53.63m. Trace to 1% minerals trains of deep orange to brick red (spessartine?) grains scattered in core. Trace amounts of black barrel shaped minerals, 1mm in core (mineral?) Bands of aplite variations from colour to texture are in and out of core and change mineralogy from <1cm up to 40 cm in core length. Zones of spodumene as thin short <4-5mm needles from 53.63 for 10cm. Lower contact is noted by the coarser grained sized of K-fsp and appearance of spodumene xtals. Mineralization 53.63 - 53.73 : SPOD Spodumene, INT Interstitial, 25.00% RQD 53.00 - 56.00 : 98.00 % RQD 98.00 % Core									
FF 00	/7.75		880502	56.33	57.33	3 1.00	1.01	746.0	0 38.4	15.9	20 04 6
55.98	67.75	SPD PEG, spodumene pegmatite		57.33							
		Spodumene Pegmatite - light to dark green, grey, cream to white. Pegmatitic with occasional cream coloured fsp up to 8cm visible in core. Interesting looking	880503 880504	58.33	58.33 59.33						
		core as its appearance is that of a leopard's fur with interstitial grey qtz grains up	880505	59.33	60.33						
		to 3 to 4mm scattered in a green-grey matrix of bands of aplite rich to	880506	59.33	60.33						
		spodumene rich core. Spodumene xstals are small and thin needles for the most	880507	60.33	61.33						
		part with the occasional large 1cm spod xtal scattered in core. These occur as	880508	61.33	62.33						
		bands from a few cm up to 40cm of rich fresh green spod in these short zones. Silvery to light green mica is in core in varying amounts. Scattered as in the	880509	62.33	63.33					_	
		aplite zone above, but larger, deep orange, to brick red minerals at trace to 1%.	880511	63.33	64.33						
		Spessartine?. Overall estimate of spodumene is 10-15%.	880512	64.33	65.33						
		Mineralization	880513	65.33	66.33	3 1.00	0.71	839.0	0 58.0	00 59.	10 91.0
		65.25 - 65.48 : SPOD Spodumene, INT Interstitial, 35.00%	880514	66.33	67.33	3 1.00	1.08	638.0	0 39.5	50 40.2	20 181.0
		slightly larger xtals up to 1cm with interstial orange brick red anhedral graines	880515	67.33	67.75	0.42	0.04	424.0	0 40.2	20 50.	70 119.0
		55.98 - 67.60 : SPOD Spodumene, INT Interstitial, 15.00% 57.35 - 57.70 : SPOD Spodumene, INT Interstitial, 40.00% fresh green needles 60.26 - 60.54 : SPOD Spodumene, INT Interstitial, 40.00% fresh green needles RQD 56.00 - 59.00 : 95.00 % RQD 97.00 % Core 59.00 - 62.00 : 94.00 % RQD 98.00 % Core 62.00 - 65.00 : 94.00 % RQD 98.00 % Core 65.00 - 68.00 : 100.00 % RQD 98.00 % Core									

Feb 22, 2012 DETAILED LOG Page 4 of 8

Detailed Li	thology				Assay D	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
67.75	69.90	M SCH, mica schist	880516	67.75	69.00						
		MSCH - Metasediment, grey to charcoal colour, massive, mg to cg qtz-fsp-biotite. two, <3cm qfm dykelets with albite on contacts to MSCH. Lower contact is sharp at 25 deg tca	880517	69.00	69.90	0.9	0 0.32	957.0	280.0	0 17.	70 40.
		RQD 68.00 - 71.00: 62.00 % RQD 80.00 % Core									
69.90	72.93	SPD PEG, spodumene pegmatite	880518	69.90	70.90				00 43.1	0 41.	30 185.
		SPD PEG - spodumene pegmatite, light green to green, light yellow to cream.	880519	70.90	71.90						
		Scattered euhedral spod xtals at random orientation and varying grain size up to 2cm. Sugary textured, light green - yellow aplite dominates this unit with minor fresh spodumene xtals in and out of core. 1-2% interstitial qtz grey qtz grains up to 3-4mm in zones of pegmatitic core. Mica as yellow to silver flakes occurs as patches within the pegmtitic zone. Estimated at 10% spodumene Lower contact is sharp at 85 deg tca	880521	71.90	72.93	3 1.0	3 0.39	946.0	00 65.4	0 42.	80 <u>130.</u> .
		Mineralization 69.90 - 72.93 : SPOD Spodumene, INT Interstitial, 10.00% RQD 71.00 - 74.00 : 82.00 % RQD 100.00 % Core									
72.93	96.56	M SCH, mica schist	880522	72.93	73.93	1.0	0.20	303.0	00 129.0	0.	90 7.
		MSCH - Metasediment, grey to charcoal colour, massive, to weakly foliated at high angle tca. Mg to cg qtz-fsp-biotite. Bleached zone(chl-mica-pink mineral?) of core from 81.95 for 18 cm. Lower contact is sharp at 75 deg tca. RQD 74.00 - 77.00 : 94.00 % RQD 96.00 % Core 77.00 - 80.00 : 100.00 % RQD 100.00 % Core 80.00 - 83.00 : 52.00 % RQD 94.00 % Core 83.00 - 86.00 : 100.00 % RQD 98.00 % Core 86.00 - 89.00 : 100.00 % RQD 100.00 % Core 89.00 - 92.00 : 85.00 % RQD 98.00 % Core 92.00 - 95.00 : 100.00 % RQD 100.00 % Core 95.00 - 98.00 : 95.00 % RQD 98.00 % Core									
96.56		APL, aplite APLITE - yellow to light green aplite with 10cm zone of coarse grained fsp and qtz from 96.81 for 15 cm. no fresh visible spodumene. Lower contact is sharp at 90 deg tca									

Feb 22, 2012 DETAILED LOG Page 5 of 8

Detailed Lit	hology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
97.26	129.72	M SCH, mica schist MSCH - Metasediment, grey to charcoal colour, massive, mg to cg qtz-fsp-biotite. Increase in frequency of qfm dyklets with albite on contacts in core starting from 106.70m to the end of this unit. dykelets range from <1cm up to cm. This unit has an increase in qtz/carb fractures(bleaching) at high to low angle tca starting from 112m to 123.5m. Lower contact is sharp at 63 deg tca. RQD 98.00 - 101.00 : 98.00 % RQD 98.00 % Core 101.00 - 104.00 : 97.00 % RQD 100.00 % Core 104.00 - 107.00 : 99.00 % RQD 100.00 % Core 107.00 - 110.00 : 94.00 % RQD 100.00 % Core 110.00 - 113.00 : 92.00 % RQD 100.00 % Core 113.00 - 116.00 : 82.00 % RQD 100.00 % Core 116.00 - 119.00 : 95.00 % RQD 100.00 % Core 119.00 - 122.00 : 95.00 % RQD 100.00 % Core 122.00 - 125.00 : 97.00 % RQD 96.00 % Core 125.00 - 128.00 : 97.00 % RQD 98.00 % Core	880523	128.72	129.7	2 1.00	0 0.1	3 269.	00 89	.30	1.20 7.
129.72	130.55	APL, aplite APLITE - yellow to light green aplite. qtz fsp silvery mica. lower contact is appearent by the increase in grain size and mineralogy change	880524	129.72	130.5	0.83	3 0.0	1 445.	00 19	.10 1	5.20 21.
130.55	138.27	QFM PEG, quartz-feldspar-muscovite pegmatite QFM-Off white to cream, light green to medium green. Cream coloured euhedral fsp up to 10cm. Very cg pegmatitie with minor light green to yellow altered mica at 2%. Unit is dominated by large 4-5 cm smokey coloured qtz and fsp xstals. Mica occurs as thin short silver and dark green books along boundries of larger xtals. Aplite patches trend in and out of core up to 12 cm in size. Lower contact is sharp to massive aplite at 70 deg tca. RQD 131.00 - 134.00 : 100.00 % RQD 100.00 % Core 134.00 - 137.00 : 100.00 % RQD 96.00 % Core 137.00 - 140.00 : 98.00 % RQD 98.00 % Core	880525 880526 880527 880528 880529 880531 880532 880533	130.55 130.55 131.00 132.00 133.00 134.00 135.00 136.00	131.0 132.0 133.0 134.0 135.0 136.0 137.0	0 0.4! 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00	5	1 445. 4 560. 4 697. 1 753. 1 754. 1 657. 1 506.	00 23 00 26 00 30 00 28 00 30 00 26 00 25	.50 2 .60 1 .60 .40 .20 .20 .70 2	4.70 21. 5.50 38. 3.60 22. 9.20 21. 5.20 11. 9.10 46. 9.20 89. 5.10 191. 8.90 71.
138.27	139.10	APL, aplite APLITE - yellow to light green, sugary texture with fsp-qtz and silvery mica. Deep grey qtz patches in core. lower contact is noted by larger grain size.	880535	138.27	139.1	0 0.83	3 0.0	562.	00 45	.40 5	0.10 94.

Page 6 of 8 DETAILED LOG

Detailed Li	thology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
139.10	141.75	QFM PEG, quartz-feldspar-muscovite pegmatite	880536	139.10	140.10	1.00	0.0	1 974.0	00 84.7	0 13.	10 52.0
		QFM - Same as described from 130.55 to 138.10 with approx 1% spodumene.	880537	140.10	141.10	1.00	0.0	771.0	00 68.3	0 55.	10 86.0
		lower contact is sharp at 45 deg tca to MSCH block for 85cm.	880538	141.10	141.75	0.65	0.0	2 547.0	00 27.2	0 18	20 14.0
		RQD									
		140.00 - 143.00 : 100.00 % RQD 100.00 % Core									
141.75	142.60	M SCH, mica schist	880539	141.75	142.60	0.85	0.1	7 797.0	00 180.0	0 3.	60 16.0
		MSCH - Metasediment, grey to charcoal colour, massive, mg to cg qtz-fsp-biotite. lower contact is sharp at 40 deg tca.									
142.60	147.27	APL, aplite	880541	142.60	143.60	1.00	0.0	1 373.0	20.5	0 13.	20 13.0
		APLITE - light green to pale yellow, massive fg to mg with small black fleckes of	880542	143.60	144.60	1.00	0.0	6 494.0	00 27.2	0 6.	00 14.0
		Na-Ta oxides? at 1%.	880543	144.60	145.60	1.00	0.0	6 656.0	00 40.7	0 9.	90 22.0
		Unit has mg to cg qtz-fsp and mica as patches in core for short 25 cm lengths.	880544	145.60	146.60	1.00	0.0	1 288.0	00 16.3	0 17.	10 55.0
		lower contact is sharp at 80 deg tca.	880545	146.60	147.27	0.67	0.0	1 340.0	00 15.4	0 10.	40 47.0
		RQD	880546	146.60	147.27	0.67	0.0	1 336.0	00 15.20	0 10.	30 80.0
		143.00 - 146.00 : 100.00 % RQD 100.00 % Core									
		146.00 - 149.00: 100.00 % RQD 100.00 % Core									

Hole Number: L60-11-03 Units: METRIC

	hology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
From 147.27			880547	From 147.27	To 148.27					l	Be_ppm 0.90
202.99	000.00	197.00 - 200.00 : 100.00 % RQD 100.00 % Core 200.00 - 203.00 : 100.00 % RQD 100.00 % Core EOH, end of hole									

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884496	50.85	51.85	0.2583	293.0000	57.8000	3.2000	5.0000
884497	51.85	53.00	0.0108	673.0000	23.4000	26.0000	62.0000
884498	53.00	54.00	0.9257	510.0000	23.2000	21.5000	97.0000
884499	54.00	55.00	0.9257	675.0000	30.0000	21.5000	79.0000
880501	55.00	56.33	1.3563	600.0000	30.8000	28.0000	105.0000
880502	56.33	57.33	1.0118	746.0000	38.4000	15.9000	96.0000
880503	57.33	58.33	1.0764	846.0000	52.8000	14.7000	115.0000
880504	58.33	59.33	0.4521	650.0000	40.7000	21.3000	139.0000
880505	59.33	60.33	1.4424	539.0000	39.3000	26.8000	189.0000

Hole Number: L60-11-03 Units: METRIC

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
880507	60.33	61.33	1.4209	494.0000	38.3000	48.2000	174.0000
880508	61.33	62.33	0.2799	1070.0000	50.8000	32.0000	103.0000
880509	62.33	63.33	0.4306	618.0000	43.9000	24.6000	149.0000
880511	63.33	64.33	0.2368	1660.0000	75.8000	16.8000	54.0000
880512	64.33	65.33	1.0334	626.0000	39.0000	23.6000	91.0000
880513	65.33	66.33	0.7104	839.0000	58.0000	59.1000	91.0000
880514	66.33	67.33	1.0764	638.0000	39.5000	40.2000	181.0000
880515	67.33	67.75	0.0431	424.0000	40.2000	50.7000	119.0000
880516	67.75	69.00	0.3445	733.0000	348.0000	9.7000	18.0000
880517	69.00	69.90	0.3229	957.0000	280.0000	17.7000	40.0000
880518	69.90	70.90	0.4952	610.0000	43.1000	41.3000	185.0000
880519	70.90	71.90	0.7320	775.0000	42.7000	87.3000	150.0000
880521	71.90	72.93	0.3875	946.0000	65.4000	42.8000	130.0000
880522	72.93	73.93	0.2583	303.0000	129.0000	0.9000	7.0000
880523	128.72	129.72	0.1292	269.0000	89.3000	1.2000	7.0000
880524	129.72	130.55	0.0108	445.0000	19.1000	15.2000	21.0000
880525	130.55	131.00	0.0108	435.0000	21.5000	24.7000	21.0000
880527	131.00	132.00	0.0431	560.0000	26.6000	13.6000	22.0000
880528	132.00	133.00	0.0431	697.0000	30.6000	9.2000	21.0000
880529	133.00	134.00	0.0108	753.0000	28.4000	6.2000	11.0000
880531	134.00	135.00	0.0108	754.0000	30.2000	9.1000	46.0000
880532	135.00	136.00	0.0108	657.0000	26.2000	9.2000	89.0000
880533	136.00	137.00	0.0108	506.0000	25.7000	25.1000	191.0000
880534	137.00	138.27	0.0431	448.0000	26.3000	8.9000	71.0000
880535	138.27	139.10	0.0108	562.0000	45.4000	50.1000	94.0000
880536	139.10	140.10	0.0108	974.0000	84.7000	13.1000	52.0000
880537	140.10	141.10	0.0108	771.0000	68.3000	55.1000	86.0000
880538	141.10	141.75	0.0215	547.0000	27.2000	18.2000	14.0000
880539	141.75	142.60	0.1722	797.0000	180.0000	3.6000	16.0000
880541	142.60	143.60	0.0108	373.0000	20.5000	13.2000	13.0000
880542	143.60	144.60	0.0646	494.0000	27.2000	6.0000	14.0000
880543	144.60	145.60	0.0646	656.0000	40.7000	9.9000	22.0000
880544	145.60	146.60	0.0108	288.0000	16.3000	17.1000	55.0000
880545	146.60	147.27	0.0108	340.0000	15.4000	10.4000	47.0000
880547	147.27	148.27	0.1292	143.0000	42.8000	0.9000	4.0000
Sample Type CDUP							
880506	59.33	60.33	1.5285	506.0000	35.1000	18.6000	196.0000
880526	130.55	131.00	0.0108	445.0000	23.5000	25.5000	38.0000
880546	146.60	147.27	0.0108	336.0000	15.2000	10.3000	80.0000

Jun 04, 2012 DETAILED LOG

Hole Number: L60-11-04 Units: METRIC

Project Name:	Georgia Lake	Primary Coordinates Grid: U	JTM:	Destination Coordinates Grid: UTM:	Collar Dip:	-46.00
Project Number:	001	North: 5477225.72		North:	Collar Az:	104.00
Location:	Line 60	East: 426189.06		East:	Length:	203.00
		Elev: 389.49		Elev:	Start Depth:	0.00
Date Started:	Nov 29, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	203.00
Date Completed:	Dec 01, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: claim number TB67175, logged by Jonathan Musicco

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	80.00	83.00	3.00	1.4539	697.2833	46.1617	33.5717	99.7833
WEIGHTED	80.00	87.00	7.00	1.1213	781.6929	51.2836	35.9736	114.0500
WEIGHTED	89.00	91.00	2.00	1.1195	628.0000	41.0500	14.2000	110.0000

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
14.00	102.10	-46.50	Reflex	ОК	mag 57600	113.00	103.70	-47.40	Reflex	OK	mag 57480
203.00	105.40	-48.30	Reflex	ОК	mag 57440						

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	3.00	CAS, Casing									

Detailed L	ithology				Assay	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Ве_рр	m.
3.00	79.00	M SCH, mica schist	880548	78.00	79.0	0 1.00	0.2	26 320.	00 70	.00 (0.70	
From	То	Lithology	· ·		То	Length					<u> </u>	
		32.00 - 35.00: 100.00 % RQD 98.00 % Core										
		35.00 - 38.00 : 100.00 % RQD 99.00 % Core										
		38.00 - 41.00 : 96.00 % RQD 100.00 % Core										
		41.00 - 44.00 : 100.00 % RQD 100.00 % Core 44.00 - 47.00 : 100.00 % RQD 100.00 % Core										
		44.00 - 47.00 : 100.00 % RQD 100.00 % Core 47.00 - 50.00 : 94.00 % RQD 100.00 % Core										
		50.00 - 53.00 : 97.00 % RQD 100.00 % Core										
		53.00 - 56.00: 97.00 % RQD 98.00 % Core										
		56.00 - 59.00 : 100.00 % RQD 97.00 % Core										
		59.00 - 62.00: 100.00 % RQD 99.00 % Core										
		62.00 - 65.00 : 99.00 % RQD 99.00 % Core										
		65.00 - 68.00 : 87.00 % RQD 100.00 % Core										
		68.00 - 71.00: 92.00 % RQD 98.00 % Core										

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 71.00 - 74.00: 71.00 % RQD 100.00 % Core 74.00 - 77.00: 72.00 % RQD 100.00 % Core 77.00 - 80.00: 71.00 % RQD 100.00 % Core									
79.00	81.15	APL, aplite	880549	79.0	0.08	00 1.0	0 0.4	3 654.	00 29	.20 42	2.80 73
		APLITE - sugary textured aplite composed of qtz-fsp-silvery to light green mica. thin bands up to 5cm of grey qtz veinlets in core. Scattered deep orange, to brick red minerals(Garnets?) 1-to 2mm, rare, up to 5mm at trace to 1%. Spessartine?. trace spodumene. Lower unit is noted by larger xtals and lack of pervasive aplite. RQD 80.00 - 83.00: 94.00 % RQD 100.00 % Core	880551	80.0	0 81.1	5 1.1	5 1.7	70 579.	00 37	.60 42	2.30 113
81.15	92.45	SPD PEG, spodumene pegmatite	880552	81.1	5 82.0	0.8	5 1.1	8 880.	00 57	.70 16	5.20 84.
01.13	72.43	SPD PEG - Spodumene pegmatite. Pale yellow to light green, cream to silver,	880553	82.0	+						3.30 98.
		dark green flecks. vcg fsp, light pink up to 6cm in core.	880554	83.0							2.20 94.
		This unit is domintated by bands of well developed aplite with patches of silver	880555	84.0							2.20 97.
		mica, alternating from high to moderate percentages of fresh light green	880556	85.0		_					0.10 149.
		spodumene-fsp and qtz for very short core lengths. See min tab for intervals.	880557	86.0		_			_		0.60 159.
		Unit is estimated at 3% fresh spodumene. Lower contact is noted by pervasive, sugary textured, pale yellow aplite.	880558	87.0	+				_	_	0.80 147.
			880559	88.0	0 89.0	00 1.0			00 51	.20 12	2.60 80.
		Texture	880561	89.0	90.0	00 1.0	0 1.2	27 543.	00 42	.20 15	5.70 98.
		81.15 - 92.45 : PEG Pegmatitic	880562	90.0	91.0	00 1.0	0 0.9	713.	00 39	.90 12	2.70 122.
		Mineralization	880563	91.0	92.0	00 1.0	0 0.1	9 1080.	00 63	.30 43	3.20 195.
		81.15 - 81.40 : SPOD Spodumene, INT Interstitial, 5.00%	880564	92.0	93.0	00 1.0	0 0.2	24 678.	00 44	.90 39	0.00 155.
		81.55 - 81.73 : SPOD Spodumene, INT Interstitial, 30.00% 83.28 - 83.49 : SPOD Spodumene, INT Interstitial, 20.00% 86.26 - 86.48 : SPOD Spodumene, INT Interstitial, 8.00% 86.80 - 87.30 : SPOD Spodumene, INT Interstitial, 10.00% 89.75 - 90.05 : SPOD Spodumene, INT Interstitial, 30.00% 90.20 - 90.35 : SPOD Spodumene, INT Interstitial, 8.00% RQD 83.00 - 86.00 : 91.00 % RQD 98.00 % Core 86.00 - 89.00 : 94.00 % RQD 99.00 % Core									
		89.00 - 92.00: 94.00 % RQD 100.00 % Core									
		92.00 - 95.00: 91.00 % RQD 100.00 % Core									
92.45	95.70	APL, aplite	880565	93.0	94.0	00 1.0	0.0	940.	00 50	.60 38	3.70 151.
		APLITE - sugary textured aplite composed of qtz-fsp-silvery to light green mica.	880566	93.0	94.0	00 1.0				.80 27	'.50 148.
		qtz bands up to 1-3cm thick in core.	880567	94.0	94.7	75 0.7	5 0.0	723.	00 43	.50 41	.20 166.
		RQD	880568	94.7	95.7	0.9	5 0.0	1 459.	00 21	.60 14	.00 122.
		95.00 - 98.00: 68.00 % RQD 100.00 % Core									

Jun 04, 2012 DETAILED LOG

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
95.70	126.08	M SCH, mica schist Metasediment - MSCH; qtz, fsp, biotite schist, mg, grey, massive to weakly foliated at different angles tca. Unit is very simular to above mentioned M SCH with qtz/carb veinlets cutting lithology at mulitpule depths. Lower contact is sharp at 80 deg tca.	880569	95.70	96.7	0 1.0	00 0.1	7 242.	00 65.	90 1	.60
		Structure 108.90 - 109.00 : FZ Fault Zone, 30.00 Deg to CA fault gouge-fragments up to 5mm. RQD 98.00 - 101.00 : 82.00 % RQD 98.00 % Core 101.00 - 104.00 : 80.00 % RQD 100.00 % Core									
		104.00 - 107.00 : 66.00 % RQD 100.00 % Core 107.00 - 110.00 : 36.00 % RQD 100.00 % Core 110.00 - 113.00 : 64.00 % RQD 100.00 % Core									
		113.00 - 116.00 : 62.00 % RQD 100.00 % Core 116.00 - 119.00 : 62.00 % RQD 100.00 % Core 119.00 - 122.00 : 67.00 % RQD 98.00 % Core 122.00 - 125.00 : 88.00 % RQD 100.00 % Core									
126.08	126.56	125.00 - 128.00 : 94.00 % RQD 95.00 % Core QFM PEG, quartz-feldspar-muscovite pegmatite QFM- white to cream, grey, light green to silver, pale yellow. qtz-fsp-mica pegmatitie for short 12cm portion within this unit, bound by well dev. sugary textured pale yellow aplite, up and down hole. No fresh spodumene. Lower contact is sharp at 75 deg tca.									
126.56	130.90	M SCH, mica schist MSCH - tz-fsp-biotite schist, cg, grey with strong schistosity at low angle tca accompanied by cg biotite. Lower contact is sharp at 35 deg tca. RQD 128.00 - 131.00 : 100.00 % RQD 100.00 % Core									
130.90	131.27	QFM PEG, quartz-feldspar-muscovite pegmatite QFM - Off white to cream, grey, dark to light green, silver. trace amounts of aqua blue(apatite), and soft light brown to pale orange minerals? Trace amounts of spodumene, mica as silver flakes with aplite as patches. Perthitic fsp up to 2cm, 40-50% qtz. Lower contact is undulating and sharp at ~25 deg tca. RQD 131.00 - 134.00: 97.00 % RQD 100.00 % Core									

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
131.27	141.36	M SCH, mica schist MSCH - qtz-fsp-biotite schist, massive in appearance exibiting a few scattered hairline qtz/carb veinlets at random angles tca. Lower contact is sharp at 45 deg tca. RQD 134.00 - 137.00: 98.00 % RQD 97.00 % Core 137.00 - 140.00: 100.00 % RQD 100.00 % Core 140.00 - 143.00: 99.00 % RQD 94.00 % Core									
141.36	142.07	QFM PEG, quartz-feldspar-muscovite pegmatite QFM-qtz-fsp-mica pegmatite; white to cream, silver to grey, light to medium green. Unit has no fresh spodumene present, but mica as patches and thin lines. Bull qtz for 27cm in middle of this unit having 1-2% mica as dark green books or thin silver flakes and foliated 45 deg tca. aplite at top and bottom of contacts as patches. Lower contact is sharp at 45 deg tca.									
142.07	168.80	M SCH, mica schist MSCH - qtz-fsp biotite schist. grey, mg to cg, massive, weak to moderate foliation(schistosity) ranging from 50 to 65 deg tca in and out of core. Many qtz-carb veinlets trend in and out of core at various depths and angles tca. «See structure tab» Lower contact is sharp at 40 deg tca. Structure 147.21 - 147.55 qtz with mica up to 10%, sericite? trace. trace PY 147.83 - 148.08 qtz vein mica up to 10%, sericite? RQD 143.00 - 146.00 : 100.00 % RQD 100.00 % Core 146.00 - 149.00 : 98.00 % RQD 100.00 % Core 149.00 - 152.00 : 100.00 % RQD 100.00 % Core 152.00 - 155.00 : 97.00 % RQD 100.00 % Core 155.00 - 158.00 : 100.00 % RQD 100.00 % Core 158.00 - 161.00 : 84.00 % RQD 100.00 % Core 161.00 - 164.00 : 81.00 % RQD 100.00 % Core 164.00 - 167.00 : 92.00 % RQD 100.00 % Core 167.00 - 170.00 : 78.00 % RQD 97.00 % Core	880571	168.00	168.8	3.0 0.8	30 0.3	28 477.	00 107	.00 1	.40 23

Jun 04, 2012 DETAILED LOG

Detailed Li	thology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
168.80	171.35	SPD PEG, spodumene pegmatite	880572	168.80	169.80	0 1.00	0.5	4 677.	00 36.	10 23	.30 114.0
		SPD PEG - spodumene pegmatite, cream to white, grey, light green to medium	880573	169.80	170.80	0 1.00	0.1	9 789.	00 40.	40 15	.10 99.0
		green, silver, pale yellow.	880574	170.80	171.3	5 0.55	0.9	5 465.	00 32.	80 23	.30 107.0
		Scattered euhedral spod xtals at random orientation and varying grain size up to 1cm. (see MIN tab for locations). Sugary textured, light green, yellow aplite dominates this unit with minor fresh spodumene xtals. Mica as yellow to silver flakes occurs as patches within this unit. Estimated at 2-3% spodumene content. Large 8cm perthitic fsp xstals. Lower contact is sharp at 60 deg tca.									
		Mineralization									
		169.55 - 169.85 : SPOD Spodumene, INT Interstitial, 3.00% fresh spodumene									
		170.95 - 171.15 : SPOD Spodumene, INT Interstitial, 3.00% fresh spodumene									
		RQD 170.00 - 173.00: 91.00 % RQD 100.00 % Core									
171.35	170.04		880582	171.35	172.35	5 1.00	0.2	4 294.	00 91.	40 0	.80 5.0
171.33	179.04	MSCH - qtz-fsp-biotite schist. grey, mg, massive with minor hairline qtz/carb	880575	171.33	172.3	_					.30 8.0
		veinlets at 45 deg tca. Lower contact is sharp at 60 deg tca. RQD	000070	170.04	177.0	η 1.00	0.2	o <u>j 302.</u>	00 100	<u> </u>	.50
		173.00 - 176.00: 95.00 % RQD 99.00 % Core									
		176.00 - 179.00 : 95.00 % RQD 98.00 % Core									
		179.00 - 182.00 : 94.00 % RQD 94.00 % Core									
179.04	183.27	SPD PEG, spodumene pegmatite	880576	179.04	100.0	1 1 00	0.2	4 022	00 51	00 21	90 124 6
177.04	103.27	SPD PEG, spodumene pegmatite, cream to white, grey, light green to medium	880577	180.04	180.04 181.04						.80 134.0 .70 134.0
		green, silver, pale yellow.	880578	181.04	182.04						.50 110.0
		This unit is dominated by QFM with patches or zones of aplite in and out of core	880579	182.04	183.27						.30 133.0
		up to 25cm. This unit carries less fresh	[000077	.02.0	.00.2	,	, 0.0		00,	00	.00
		spodumene then the prior SPD PEG estimated at 2%. Trace garnets and apatite. black colour flecks at 0.5 to 1%(coloumbite?).									
		Lower contact is sharp at 55 deg tca.									
		Mineralization									
		179.95 - 180.25 : SPOD Spodumene, INT Interstitial, 2.00% fresh green spodumene									
		RQD									
		182.00 - 185.00: 62.00 % RQD 94.00 % Core									

Hole Number: L60-11-04 Units: METRIC

Detailed Lithology				Assay	Data						
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_p	pm
183.27 202.99	M SCH, mica schist MSCH - As described from 171.35 to 179.04, including strong foliated core at 40 deg tca from 188.65 to 189.45m. OFM dykes cutting wtih sharp contacts at different depths. See structure tab Structure 190.08 - 190.24 OFM 193.95 - 194.19 OFM - lower contact at 60 deg, upper- broken contact. weak hematite altn 201.61 - 201.71 OFM	880581	183.27		L	-	_	<u> </u>	L .).10 1.10	5.¢
	202.51 - 202.61 QFM RQD 185.00 - 188.00 : 89.00 % RQD 100.00 % Core 188.00 - 191.00 : 85.00 % RQD 100.00 % Core 191.00 - 194.00 : 58.00 % RQD 100.00 % Core 194.00 - 197.00 : 61.00 % RQD 100.00 % Core 197.00 - 200.00 : 97.00 % RQD 100.00 % Core 200.00 - 203.00 : 95.00 % RQD 99.00 % Core EOH, end of hole										

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
880548	78.00	79.00	0.2583	320.0000	70.0000	0.7000	6.0000
880549	79.00	80.00	0.4306	654.0000	29.2000	42.8000	73.0000
880551	80.00	81.15	1.7007	579.0000	37.6000	42.3000	113.0000
880552	81.15	82.00	1.1841	880.0000	57.7000	16.2000	84.0000
880553	82.00	83.00	1.3993	678.0000	46.2000	38.3000	98.0000
880554	83.00	84.00	0.8396	685.0000	43.3000	22.2000	94.0000
880555	84.00	85.00	0.7320	1210.0000	70.2000	42.2000	97.0000
880556	85.00	86.00	0.5382	743.0000	44.6000	46.1000	149.0000
880557	86.00	87.00	1.3778	742.0000	62.4000	40.6000	159.0000
880558	87.00	88.00	0.5167	836.0000	57.7000	39.8000	147.0000
880559	88.00	89.00	0.4952	481.0000	51.2000	12.6000	80.0000
880561	89.00	90.00	1.2702	543.0000	42.2000	15.7000	98.0000
880562	90.00	91.00	0.9688	713.0000	39.9000	12.7000	122.0000
880563	91.00	92.00	0.1938	1080.0000	63.3000	43.2000	195.0000
880564	92.00	93.00	0.2368	678.0000	44.9000	39.0000	155.0000
880565	93.00	94.00	0.0215	940.0000	50.6000	38.7000	151.0000

Hole Number: L60-11-04 Units: METRIC

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
880567	94.00	94.75	0.0108	723.0000	43.5000	41.2000	166.0000
880568	94.75	95.70	0.0108	459.0000	21.6000	14.0000	122.0000
880569	95.70	96.70	0.1722	242.0000	65.9000	1.6000	9.0000
880571	168.00	168.80	0.2799	477.0000	107.0000	1.4000	23.0000
880572	168.80	169.80	0.5382	677.0000	36.1000	23.3000	114.0000
880573	169.80	170.80	0.1938	789.0000	40.4000	15.1000	99.0000
880574	170.80	171.35	0.9472	465.0000	32.8000	23.3000	107.0000
880582	171.35	172.35	0.2368	294.0000	91.4000	0.8000	5.0000
880575	178.04	179.04	0.2799	362.0000	136.0000	1.3000	8.0000
880576	179.04	180.04	0.2368	833.0000	51.0000	31.8000	134.0000
880577	180.04	181.04	0.0108	956.0000	50.3000	32.7000	134.0000
880578	181.04	182.04	0.0108	659.0000	34.6000	30.5000	110.0000
880579	182.04	183.27	0.0108	669.0000	37.3000	33.3000	133.0000
880581	183.27	184.27	0.1507	232.0000	67.1000	0.1000	5.0000
Sample Type CDUP							
880566	93.00	94.00	0.0215	962.0000	53.8000	27.5000	148.0000

Feb 22, 2012 DETAILED LOG Page 1 of 9

Hole Number: L60-11-05 Units: METRIC

Project Name:	Rock Tech Lithium	Primary Coordinates Grid: L	JTM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	001	North: 5477383.74		North:	Collar Az:	110.00
Location:	Line 60	East: 426321.04		East:	Length:	116.00
		Elev: 373.28		Elev:	Start Depth:	0.00
Date Started:	Dec 02, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	116.00
Date Completed:	Dec 03, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Project Site		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: Hole logged by Andrea Dixon. Hole initially called L6-11-05. claim number TB67174

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
WEIGHTED	95.92	97.92	2.00	0.7858	842.0000	57.4000	28.8000	146.5000	

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
8.00	110.10	-56.90	Reflex	ОК	mag field: 5766	116.00	115.90	-61.30	Reflex	OK	mag field: 5758

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	5.50	OB, overburden									
		Overburden									
5.50	12.08	M SCH, mica schist	880583	11.08	12.0	8 1.0	0 0.1	9 202.	00 81.	70 0	80 4.0
		Mica schist. Light to dark gray and fine grained. Light gray schist is slightly coarser grained than the dark gray schist and has nodules of relatively unmetamorphosed dark gray metasediment inside of it. Light gray schist only has localized occurrences near the top of the unit. Quartz-biotite-feldspar plus muscovite in the light gray patches. There is some weak, patchy silicification that gives the core some shine and a slick feel in addition to disrupting the foliation. Fractures in the upper part of the unit are stained bright rusty orange but loses most of it by meter 9. Lower fractures have trace pyrite on them. RQD 5.50 - 8.00 : 52.00 % RQD 98.00 % Core 8.00 - 11.00 : 87.00 % RQD 100.00 % Core 11.00 - 14.00 : 76.00 % RQD 96.00 % Core									

Detailed Li	thology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
12.08	13.67	SPD PEG, spodumene pegmatite	880584	12.08	13.00				00 84.3	30 24	120.
		Spodumene aplite/pegmatite. Creamy white and pale canned-pea-green in color.	880585	13.00	13.67	0.67	0.65	932.0	00 70.0	00 29	0.80 116.
		Mostly fine grained with a couple of small (up to 6 cm) sections of pegmatite.	880586	13.00	13.67	0.67	0.71	1 687.0	00 56.1	10 24	142.
		Ouartz-feldspar-muscovite-spodumene with trace scattered small grains (up to 3 mm) of blue-green apatite and a couple of small grains (up to 1 mm) of a medium-hardness bright blue mineral that is probably apatite. Feldspar in the pegmatitic sections is white and has thin lamellae, could be twinning rather than perthitic texture. Spodumene is found in a coarse grained section and in a medium grained section, 13-13.14 and 13.35-13.54 meters, respectively. Spodumene is white to pale green with crystals oriented randomly and up to 3 cm long. Contacts are oriented 90 (upper) and 65 (lower) to the core axis. Orange staining on the bottom contact extending up into the dike for about 4 cm. Mineralization 12.08 - 13.67: SPOD Spodumene, PAT Patch, 0.50% Spodumene is found in a coarse grained section and in a medium grained section, 13-13.14 and 13.35-13.54 meters, respectively. Spodumene is white									
13.67		to pale green with crystals oriented randomly and up to 3 cm long. Mineralization is less than 1% M SCH, mica schist	880587	13.67	14.67	1.00	0.24	4 155.0	00 38.6	<u>sd c</u>	0.70 3.
13.07		Mica schist. Very fine grained to fine grained and medium to dark gray in color.	880588	16.63	17.63						0.50 2.
		Quartz-biotite-feldspar with trace pyrite and calcite on fracture planes. A few of the fracture planes also show orange iron-staining. Cut by a few quartz veinlets (up to 1 cm thick) that appear to be associated with small, very localized patches of silicification. RQD 14.00 - 17.00: 92.00 % RQD 98.00 % Core 17.00 - 20.00: 88.00 % RQD 99.00 % Core									
17.63		SPD PEG, spodumene pegmatite	880589	17.63	18.63	1.00	0.45	1190.0	00 54.7	70 24	107.
17.03		Spodumene pegmatite/aplite. Pale creamy brown-green and fine to coarse	880591	18.63	19.63						5.10 173.
		grained. Quartz-feldspar-muscovite-spodumene with trace Nb-Ta oxides. There is		19.63	20.63						3.20 150.
		some orange iron staining on fracture planes between 20.7 and 21 meters.	880593	20.63	21.50						'.90 102.
		There are a few scattered, large (up to 10 cm) white feldspar phenocrysts with a	880594	21.50	21.84						0.10 130.
		tartan-like texture. Spodumene seems to only be in the coarse to medium grained section that is between 18.6 and 19.55 meters (10-15% spd). Feldspar in this section takes on a slightly pink hue. Spodumene is white to very pale green with crystals that are oriented randomly and up to 3 cm long. Contacts are oriented 80 (upper) and 60 (lower) degrees to the core axis. Mineralization 17.63 - 21.84: SPOD Spodumene, PAT Patch, 2.00% Spodumene seems to only be in the coarse to medium grained section that is between 18.6 and 19.55 meters (10-15% spd). Spodumene is white to very pale green with crystals that are oriented randomly and up to 3 cm long. RQD 20.00 - 23.00: 79.00 % RQD 97.00 % Core									

Feb 22, 2012 DETAILED LOG Page 3 of 9

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
21.84		M SCH, mica schist Mica schist. Very fine grained to fine grained and medium gray in color. Quartz-biotite-feldspar with cordierite in localized, patchy areas of silicification. Fracture planes contain chlorite with trace pyrite and calcite. Altered areas disrupt foliation in the schist. Cut by some dikes, most of them are thin and quartz-dominant and appear to contain trace phosphate minerals (lithiophilite and triphylite). The thickest dikes are listed below. Structure 23.05 - 23.13: DYKE, 25.00 Deg to CA White and translucent brown QPHOS dikelet 25.40 - 25.60: DYKE, 20.00 Deg to CA Pale creamy brown gray QFM aplite dike RQD 23.00 - 26.00: 79.00 % RQD 99.00 % Core 26.00 - 29.00: 66.00 % RQD 94.00 % Core	880595	21.84	22.8	4 1.0	0 0.1	1 160.	00 85.	80 0	.70 7.
28.85	29.35	QPHOS, quartz-phosphate pegmatite Quartz-phosphate dike. White to very pale brown with spots of orange and medium grained. Quartz-lithiophilite? with accessory green triphylite? and trace silver to gold colored sulfides. Sulfides most abundant near contacts. As is usual with these dikes, it wanders through the core and the unit that is marked off is approximately 15 to 25% metasediment. Orientation of the unit at the beginning and end is 15 degrees (upper) and 30 degrees (lower) to the core axis. RQD 29.00 - 32.00: 93.00 % RQD 100.00 % Core									
29.35	35.40	M SCH, mica schist Mica schist. Very fine grained to fine grained and medium gray. Quartz-biotite-feldspar with trace pyrite and calcite on fracture planes. Cut by a few thin white quartz veinlets (up to 2 mm thick and oriented about 30 degrees to the core axis) and quartz-phosphate dikes likely related to the unit above. Structure 29.69 - 29.87: DYKE, 70.00 Deg to CA Similar to dike between 28.85-29.35 RQD 32.00 - 35.00: 79.00 % RQD 97.00 % Core 35.00 - 38.00: 61.00 % RQD 100.00 % Core									

Page 4 of 9 DETAILED LOG

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
35.40		QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite aplite/pegmatite. Creamy pale gold-green in color and fine to coarse grained. Appears to host a small faultis very blocky and a couple of blocks exhibit either slickensides or perhaps parallel growth of muscovite books. Has trace pink garnets, green-blue apatite, and Nb-Ta oxides. Trace calcite on fracture planes. Mostly composed of aplitethere are 2 coarse grained sections located at 35.6-36.4 and 38.9-37.6 meters. The coarse sections contain yellow muscovite that appears to be a pseudomorph after spodumene. Contacts are lost in rubble. Structure 35.40 - 38.20 Probably a small faultseems too blocky to be a normal fracture or joint pattern. Made up of blocky pieces 1 to 18 cm long with one or 2 showing evidence of what might be slickensides or parallel growth plates of muscovite. RQD 38.00 - 41.00: 37.00 % RQD 83.00 % Core									

Feb 22, 2012 DETAILED LOG Page 5 of 9

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
38.20	73.15	M SCH, mica schist Mica schist. Medium gray and fine grained. Quartz-biotite-feldspar with trace calcite, chlorite, and pyrite on fracture planes. First meter or so of the unit contains the small fault that was started in the dike above. Contains small, localized areas of porphyroblastic texture (biotite poryphyroblasts) and silicification (as with other mica schist units, disrupts the foliation). Cut by some fractures, dikelets (largest listed below) and very thin white quartz veinlets.									
		Structure 38.20 - 39.30 Fault continuing from the above unit. Blocky pieces 1 to 13 cm long 41.00 - 41.15: DYKE, 40.00 Deg to CA Medium gray and medium grained QFM pegmatite dikelet. 42.00 - 42.25: FR Fractured, 20.00 Deg to CA Fracture area consists of angular blocks about 6 cm long 44.00 - 45.20: FR Fractured, 5.00 Deg to CA Fracture area consists of long angular blocks 8 to 20 cm long. 57.70 - 57.82: DYKE, 40.00 Deg to CA White and gray zoned QFM aplite dikelet with trace garnet and white, 1 cm thick borderzones. 58.77 - 58.90: DYKE, 30.00 Deg to CA Gray, spotted with black and white QFM aplite dikelet. 66.60 - 67.20: FR Fractured, 55.00 Deg to CA Series of parallel hairline fractures about .5 cm apart. Has fractured completely through in a few areas. RQD 41.00 - 44.00: 81.00 % RQD 98.00 % Core 44.00 - 50.00: 92.00 % RQD 98.00 % Core 50.00 - 53.00: 93.00 % RQD 100.00 % Core									
		53.00 - 56.00 : 85.00 % RQD 98.00 % Core 56.00 - 59.00 : 96.00 % RQD 99.00 % Core 59.00 - 62.00 : 100.00 % RQD 100.00 % Core									
		62.00 - 65.00: 96.00 % RQD 99.00 % Core 65.00 - 68.00: 83.00 % RQD 97.00 % Core 68.00 - 71.00: 94.00 % RQD 100.00 % Core 71.00 - 74.00: 76.00 % RQD 88.00 % Core									

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
73.15	77.00	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite aplite/pegmatite. Coloration, textures, trace mineralization and blocky character very similar to the dike between 35.4 and 38.2 meters. Biggest difference is the dike is slightly pink in color due to what appears to be a hematite stain and does not appear to have any muscovite crystals that are pseudomorphs after spodumene. Small fault runs through the unitminor amounts of fault gouge cement some of the blocks together and a few of the blocks exhibit slickensides. Upper contact oriented 65 degrees to the core axis and the lower contact is lost in rubble. Structure 74.00 - 77.00 Appears to be a fault. Minor amounts of fault gouge loosely cement blocks together and a few blocks exhibit slickensides. Blocks 1 to 20 cm long. RQD 74.00 - 77.00: 19.00 % RQD 90.00 % Core									
77.00	93.92	M SCH, mica schist Mica schist. Medium gray and fine grained with strong porphyroblastic texure (biotite porphyroblasts up to 2 mm across. Extremely rare quartz porphyroblasts up to 0.5 cm). Quartz-biotite-felddspar with trace pyrite and calcite on fracture planes. Small localized patches of silicification. Cut by some small fractures and dikelets (the thickest are listed below). Structure 79.08 - 79.17: DYKE, 70.00 Deg to CA Pale pinky-brown quartz-dominant dikelet. 81.32 - 81.47: DYKE, 40.00 Deg to CA Pale brown QPHOS dikelet (accessory lithiophilite? and trace triphylite?) 84.50 - 85.25: DYKE, 30.00 Deg to CA Pale brown snake-like QPHOS dikelet (about 3 cm thick) with accessory feldspar?, triphylite?, and lithiophilite? RQD 77.00 - 80.00: 81.00 % RQD 97.00 % Core 80.00 - 83.00: 91.00 % RQD 99.00 % Core 83.00 - 86.00: 89.00 % RQD 98.00 % Core 86.00 - 89.00: 89.00 % RQD 98.00 % Core 89.00 - 92.00: 97.00 % RQD 98.00 % Core	880596	92.92	93.9	2 1.0	00 0.	19 194.	00 161.	00 1	.20 12

Feb 22, 2012 Page 7 of 9

Detailed L	ithology				Assay D	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
93.92	100.13	SPD PEG, spodumene pegmatite	880597	93.92	94.92				00 30.00	12.	
		Spodumene aplite/pegmatite. Medium pea soup gray-green and fine to coarse	880598	94.92	95.92			617.0			
		grained. Quartz-feldspar-muscovite-spodumene with trace dark red garnet and	880599	95.92	96.92						
		Nb-Ta oxides. Oxides are mostly seen in the last 40 cm. There are a few	880601	96.92	97.92			-			
		scattered phenocrysts of feldspar that have a perthitic texture and are gray to white to pale pinkpink coloration might be due to a slight hematite stain or	880602	97.92	98.92						
		original coloring. Spodumene is fresh pale green or gray to altered black with	880603	98.92	99.50						
		crystals oriented randomly and up to 3 cm long. Fresh spodumene is	880604	99.50	100.13	0.63	0.01	366.0	23.60	12.	40 151.0
		concentrated in the coarse grained sections located at 96.25-96.54 and 96.69-96.95 m. Contacts are oriented 50 (upper) and 70 (lower) degrees to the core axis.									
		Mineralization 93.92 - 100.13 : SPOD Spodumene, PAT Patch, 0.50% Spodumene is fresh pale green or gray to altered black with crystals oriented randomly and up to 3 cm long. Fresh spodumene is concentrated in the coarse grained sections located at 96.25-96.54 and 96.69-96.95 m. RQD									
		95.00 - 98.00: 88.00 % RQD 99.00 % Core									ļ
		98.00 - 101.00 : 84.00 % RQD 99.00 % Core									
100.13		M SCH, mica schist	880605	100.13	101.13	3 1.00	0.15	972.0	00 214.00	12.	20 26.0
		Mica schist. Medium gray and fine grained with a strong porphyroblastic texture.	880606	100.13	101.13						
		Quartz-biotite-feldspar with trace pyrite on a fracture plane. Cut by one very small dikelet oriented 20 degrees to the core axis that extends from to the dike above.				-			•		
100.53	101.04	APL, aplite									
		Aplite. Creamy pale yellow-white and fine grained with medium grained, roughly 7 cm thick borderzones. Quartz-feldspar-muscovite with very small grained accessory Nb-Ta oxides that are most abundant in the central portion of the dike. Contacts are oriented 30 (upper) and 50 (lower) degrees to the core axis.									
		RQD 101.00 - 104.00: 93.00 % RQD 100.00 % Core									
101.04	101.42	M SCH, mica schist									
		Mica schist. Medium gray and medium grained with a strong porphyroblastic texture (biotite porphyroblasts). Quartz-biotite-feldspar.									
101.42	102.55	APL, aplite									
		Aplite. Creamy pale gray-gold and fine grained with thin, medium grained bands. Quartz-feldspar-muscovite with accessory very fine grained black Nb-Ta oxides and some trace amounts of hematite that seems to be associated with some of the hairline fractures in the dike. Quartz is either a nearly opaque white or transparent smokey gray-brown. Feldspar is creamy white. Muscovite is silvery white to silvery pale yellow-green. Contacts are oriented 30 (upper) and 50 (lower) degrees to the core axis.									

Hole Number: L60-11-05

Units: METRIC

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
102.55	107.35	M SCH, mica schist Mica schist. Medium gray and nearly medium grained with a strong porphyroblastic texture (biotite porphyroblasts). Quartz-biotite-feldspar with trace calcite and pyrite on fracture planes. Cut by a small fracture with fragments of a small dikelet in the lower portion of the unit. Structure 106.15 - 106.36: FR Fractured, 50.00 Deg to CA Fracture area consists of blocks 3 to 6 cm long. RQD 104.00 - 107.00: 95.00 % RQD 100.00 % Core 107.00 - 110.00: 98.00 % RQD 98.00 % Core									
107.35	109.10	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. Medium to nearly coarse grained (with a couple of scattered aplite bands) and white to pale golden-yellow-green in color. Has trace, very dark red garnets (nearly black) and black Nb-Ta oxides. Both are very small grained (up to 2 mm diameter). Quartz is pale brown, feldspar is creamy white, and muscovite is silvery yellow-green-gold. Contacts are oriented 35 (upper) and 30 (lower) degrees to the core axis.									
109.10	115.99	M SCH, mica schist Mica schist. Medium grained and medium gray with a strong porphyroblastic texture (biotite porphyroblasts). Quartz-biotite-feldspar with trace pyrite and calcite on fracture planes. Like the other metasediment units, there are a few small, localized patches of silicification. Cut by a few very small dikelets. RQD 110.00 - 113.00: 93.00 % RQD 99.00 % Core 113.00 - 116.00: 94.00 % RQD 99.00 % Core									
115.99	116.00	EOH, end of hole									

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
880583	11.08	12.08	0.1938	202.0000	81.7000	0.8000	4.0000
880584	12.08	13.00	0.5597	994.0000	84.3000	24.1000	120.0000
880585	13.00	13.67	0.6458	932.0000	70.0000	29.8000	116.0000
880587	13.67	14.67	0.2368	155.0000	38.6000	0.7000	3.0000
880588	16.63	17.63	0.2153	187.0000	103.0000	0.5000	2.0000
880589	17.63	18.63	0.4521	1190.0000	54.7000	24.8000	107.0000
880591	18.63	19.63	2.1098	903.0000	58.1000	35.1000	173.0000
880592	19.63	20.63	0.2583	568.0000	44.8000	28.2000	150.0000
880593	20.63	21.50	0.0215	604.0000	43.4000	67.9000	102.0000
880594	21.50	21.84	0.0108	550.0000	39.7000	16.1000	130.0000
880595	21.84	22.84	0.1076	160.0000	85.8000	0.7000	7.0000

Hole Number: L60-11-05 Units: METRIC

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
880596	92.92	93.92	0.1938	194.0000	161.0000	1.2000	12.0000
880597	93.92	94.92	0.0108	687.0000	30.0000	12.0000	16.0000
880598	94.92	95.92	0.0108	617.0000	27.3000	10.6000	56.0000
880599	95.92	96.92	0.7965	844.0000	55.6000	25.4000	139.0000
880601	96.92	97.92	0.7750	840.0000	59.2000	32.2000	154.0000
880602	97.92	98.92	0.0108	712.0000	34.6000	26.3000	110.0000
880603	98.92	99.50	0.0108	437.0000	21.9000	21.3000	38.0000
880604	99.50	100.13	0.0108	366.0000	23.6000	12.4000	151.0000
880605	100.13	101.13	0.1507	972.0000	214.0000	12.2000	26.0000
Sample Type CDUP							
880586	13.00	13.67	0.7104	687.0000	56.1000	24.7000	142.0000
880606	100.13	101.13	0.1292	913.0000	201.0000	14.9000	45.0000

Hole Number: NC-11-15 Units: METRIC

Project Name:	Nama Creek	Primary Coordinates Grid: U	TM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	01	North: 5477716.63		North:	Collar Az:	145.00
Location:	Nama Creek	East: 424589.31		East:	Length:	260.00
		Elev: 375.60		Elev:	Start Depth:	0.00
Date Started:	Sep 15, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	260.00
Date Completed:	Sep 18, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Pulled			

Comments: Hole Logged by Andrea Dixon; claim number TB67137

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
WEIGHTED	135.52	140.54	5.02	1.4004	706.6255	49.4155	29.7163	177.5657	
WEIGHTED	162.50	166.41	3.91	0.9480	762.7289	85.0455	64.6276	142.4246	
WEIGHTED	163.50	164.76	1.26	1.3494	809.6984	60.7698	65.2857	201.8571	
WEIGHTED	229.03	236.03	7.00	0.9442	756.0000	56.9000	26.4714	161.4286	
WEIGHTED	232.03	234.03	2.00	1.5070	940.5000	70.9500	32.3000	174.0000	

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
9.00	147.10	-60.10	Reflex	OK	mag field: 57080	101.00	151.50	-59.90	Reflex	OK	mag field: 56370
191.00	145.50	-60.10	Reflex	ОК	mag field: 57860						

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00		OVB, Casing Overburden									

From To				Assay I	Data						
	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	ı
disseminated py some reach 15 oveinlets are ories shows bedding degrees to core wide. There is a erosional contact slightly coarser noticeable chan Mineralization 5.70 - 68 Pyrite is less that Structure 5.85 - 6 Appears to be fit 13.30 - 13 Appears to be fit 13.76 - 14 Appears to be fit 13.76 - 14 Appears to be fit 14.40 - 15 Fault zone. Plant 24.37 - 24 Appears to be fit 14.40 - 15 Fault zone. Plant 24.37 - 24 Appears to be fit 14.40 - 15 Fault zone. Plant 24.37 - 24 Appears to be fit 14.40 - 15 Fault zone. Plant 24.37 - 24 Appears to be fit 14.40 - 15 Fault zone. Plant 25.70 - 37 Appears to be fit 15.70 - 37 Appears	Medium gray, fine grained, quartz-biotite-feldspar and firite. Cut by white quartz veinlets that are usually 2mm cm wide (the largest vein has banding similar to agate), need between 30 and 90 degrees to the core axis. Occa with most beds between 2 and 3 cm thick oriented aboraxis. Sometimes cut by QFM pegmatites no larger than sharp but irregular contact at 63.44 m, perhaps could the within the metasediment beds. Upper side of the contage in hardness across the contact. 1.4.3 1.1.4.3 1.1.9 of the metasediment 1.25 : FR Fractured, 10.00 Deg to CA factured 1.30 : FR Fractured, 20.00 Deg to CA factured 1.30 : FZ Fault Zone, 30.00 Deg to CA factured 1.30 : FZ Fault Zone, 30.00 Deg to CA factured and does not appear to have a dominant fractured and does not appear to have a dominant fractured. 1.6 : DYKE, 45.00 Deg to CA factured and does not appear to have a dominant fractured. 1.32 : DYKE, 10.00 Deg to CA factured and a medium hard black mineral with black streak in orange radiation halos. 1.32 : DYKE, 10.00 Deg to CA factured and a medium hard black mineral with black streak in orange radiation halos. 1.37 : FR Fractured, 40.00 Deg to CA factured 1.39 : FR Fractured, 50.00 Deg to CA factured 1.30 : FR Fractured, 50.00 Deg to CA factured 1.31 : FR Fractured, 50.00 Deg to CA factured 1.32 : TR Fractured, 50.00 Deg to CA factured 1.33 : FR Fractured, 50.00 Deg to CA factured 1.34 : FR Fractured, 50.00 Deg to CA factured 1.35 : FR Fractured, 50.00 Deg to CA factured 1.36 : FR Fractured, 50.00 Deg to CA factured 1.37 : FR Fractured, 50.00 Deg to CA factured 1.39 : FR Fractured, 50.00 Deg to CA factured 1.30 : FR Fractured, 50.00 Deg to CA factured 1.31 : FR Fractured, 50.00 Deg to CA factured	inely in size but . Most asionally ut 70 a 8 cm be an tact is . No	From 67.43		Length	-			1	Be_ppm	2.0

Feb 24, 2012 Page 3 of 24

Detailed Lit	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 5.70 - 9.80 : 91.46 % RQD 97.56 % Core 9.80 - 14.00 : 84.52 % RQD 98.33 % Core 14.00 - 18.23 : 77.07 % RQD 96.22 % Core 18.23 - 22.70 : 86.58 % RQD 98.43 % Core 22.70 - 26.88 : 92.34 % RQD 99.28 % Core 26.88 - 31.28 : 95.68 % RQD 98.86 % Core 31.28 - 35.52 : 92.69 % RQD 100.00 % Core Recovery should be 100.47% 35.52 - 39.73 : 68.40 % RQD 95.96 % Core 39.73 - 44.00 : 96.72 % RQD 100.00 % Core Recovery should be 101.87% 44.00 - 48.47 : 90.60 % RQD 97.53 % Core 48.47 - 52.77 : 79.53 % RQD 100.00 % Core 52.77 - 56.93 : 93.75 % RQD 98.56 % Core 56.93 - 61.12 : 73.75 % RQD 99.28 % Core 61.12 - 65.53 : 97.96 % RQD 100.00 % Core Recovery should be 100.45% 65.53 - 69.73 : 87.14 % RQD 97.62 % Core									
68.43	68.59	SPD PEG, spodumene pegmatite Spodumene pegmatite. Quartz-mica-spodumene. Overall white in color with grain sizes about 1 to 2 cm long. Spodumene is extremely altered and is white to dark gray in color. Mineralization 68.43 - 68.59: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is very altered and ranges from white to dark gray in color. Crystals are mostly oriented subparallel to contacts and about 1.5 cm long	884002	68.43	3 68.5	59 0.1	6 0.0	01 34.	00 5.	70 0	20 0

Feb 24, 2012 Page 4 of 24

Detailed Lit	hology				Assay [Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Ве_р	pm
68.59	87.37	M SCH, mica schist	884003	68.59	69.59						.50	1.
		Metasediment. Medium gray, fine grained, quartz-biotite-feldspar and finely	884004	86.37	87.37	7 1.0	0.06	99.	00 22.	10 0	0.60	3.
		disseminated pyrite. Cut by white quartz veinlets that are usually 2mm in size but some reach 2 cm wide. Most veinlets are oriented between 10 and 90 degrees to the core axis. Occasionally shows bedding with most beds between 8 and 10 cm thick oriented subperpendicular to the core axis Sometimes cut by QFM pegmatites no larger than 5 cm wide. Mineralization 68.59 - 82.89 Pyrite is less than 1% Structure 78.03 - 78.06 QFM pegmatite, qtz-fsp-musc, modal mineralogy appears to be evenly distributed. 0.5 to 1 cm grains. 78.49 - 78.54 QFM pegmatite, qtz-fsp-musc, very quartz dominant. Grains greater than or equal to 1 cm long. RQD 69.73 - 74.14: 98.19 % RQD 99.77 % Core 74.14 - 78.60: 97.53 % RQD 99.55 % Core 78.60 - 82.89: 70.16 % RQD 96.97 % Core 82.89 - 87.14: 55.53 % RQD 100.00 % Core 87.14 - 91.49: 97.24 % RQD 100.00 % Core		00.37	07.51	1.0	y 0.00					3.
		Recovery should be 100.23%										
87.37		SPD PEG, spodumene pegmatite	884005	87.37	87.53						0.05	0.
		Spodumene pegmatite. Quartz-mica-feldspar-spodumene. Is mostly comprised of quartz and is overall white in color. There is what appears to be graphite (very soft, sliver in color with a black streak) on some of the contact edges. Spodumene is white to gray in color and is generally oriented subparallel to contacts (about 85 degrees to the core axis).	884006	87.37	87.53	3 0.1	6 0.02	2 41.	υυ 9.	80 0).10	0.
		Mineralization 87.37 - 87.53 : SPOD Spodumene, PERV Pervasive, 1.00% Spodumene is white to dark gray in color. Crystals are about 2 cm long and oriented subparallel to contacts.										
87.53	93.53	M SCH, mica schist	884007	87.53	88.53						.50	2.
		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar. Cut by a few white quartz veinlets oriented between 10 and 50 degrees to the core axis, no more than 3 mm thick. RQD	884008	92.53	93.53	3 1.0	0.09	205.	00 99.	40 C	0.50	3.
		91.49 - 95.81: 97.22 % RQD 99.07 % Core										

Feb 24, 2012 Page 5 of 24

Detailed L	ithology					Assay D)ata					
From	То	Lithology	Sample Number	From	-	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
93.53	93.95	SPD PEG, spodumene pegmatite Spodumene pegmatite, highly altered. Quartz-feldspar-muscovite-spodumene. Some of the feldspar appears to be cleavelandite. Almost all of the spodumene is altered to pale yellow-green muscovite but a few crystals are altered to dark gray. The muscovite pseudomorphs are about 2 cm long and oriented randomly. Mineralization 93.53 - 93.95: SPOD Spodumene, PERV Pervasive, 0.50% Spodumene is almost entirely altered to muscovite mica. The pseudomorphs are about 2 cm long oriented randomly. Current spodumene content is far less than 1%	884009	93.	53	93.95	0.42	0.0	1 328.	00 27.	90 179	.00 105
93.95		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar. Finely disseminated pyrite throughout. Cut by a few with quartz veinlets no more than 3 cm thick, generally oriented between 30 and 40 degrees to the core axis. Mineralization 93.95 - 122.66: PY Pyrite, DISS Disseminated, 1.00% Pyrite mineralization is slightly less than 1% Structure 105.45 - 105.65 Appears to be a fault. Pyrite makes a very thin coating on the slip plane which appears to be subparallel to the core axis. There is fracturing 30 degrees to the core axis. 107.43 - 107.56: FR Fractured, 60.00 Deg to CA Appears to be fractured. Pyrite concentration increases on fracture planes. 108.85 - 109.14: FR Fractured, 60.00 Deg to CA Appears to be a fracture zone. Pyrite concentration increases on fracture planes 119.19 - 119.64: FR Fractured, 80.00 Deg to CA Appears to be a fracture zone. Pyrite content is slightly increased. RQD 95.81 - 100.22: 99.54 % RQD 99.54 % Core 100.22 - 104.48: 87.32 % RQD 99.54 % Core 100.22 - 104.48: 87.32 % RQD 97.36 % Core 104.48 - 108.65: 81.77 % RQD 97.36 % Core 108.65 - 112.73: 84.07 % RQD 100.00 % Core 112.73 - 117.12: 92.71 % RQD 98.18 % Core 117.12 - 121.29: 82.73 % RQD 98.80 % Core 121.29 - 125.65: 82.34 % RQD 99.31 % Core QFM PEG, quartz-feldspar-muscovite pegmatite OFM pegmatite. Quartz-feldspar-muscovite generally white in color with silver	884011	93.	95	94.95	1.00	0.1	1 242.	00 80.	30 0	.90 2
		QFM pegmatite. Quartz-feldspar-muscovite. Generally white in color with silver white to pale yellow-green muscovite. Accessory minerals include pyrite grains no larger than 2 mm and trace amounts of dark green apatite about 1 mm in diameter.										

Detailed Lit	thology				Ass	say Da	ta							
From	То	Lithology	Sample Number	From	То	l	_ength	Li2O_per	Rb_	ppm	Cs_ppm	Ta_ppm	Be_	_ppm
122.79	134.30	M SCH, mica schist	884012	133.3	5 13	34.30	0.95	5 0	.15	185.00	42	10	4.90	5.0
		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with finely disseminated pyrite throughout. Cut by white quartz veinlets no more than 3 mm thick and are generally oriented about 20 to 30 degrees to the core axis. Also cut by a few QFM aplites and pegmatites that have a maximum thickness of 6 cm. Mineralization 122.79 - 134.30 : PY Pyrite, DISS Disseminated, 1.00% Pyrite content is roughly 1% Structure 128.00 - 128.02 : DYKE , 35.00 Deg to CA QFM aplite. Zoned with contacts being mostly white feldspar and gray quartz (2mm) and the core being dark gray to black quartz and biotite. Some pyrite. 128.56 - 128.59 : DYKE , 30.00 Deg to CA QFM aplite. Same as above. 129.71 - 129.76 : DYKE , 35.00 Deg to CA QFM pegmatite. Zoning not as strong but same as above. Core appears to contain some cleavelandite. Grains are about 0.5 to 1 cm long. 130.71 - 130.74 : DYKE , 15.00 Deg to CA QF pegmatite. Zoned with contacts being composed of gray-brown quartz and white feldspar exhibiting comb structure (7 mm) with a gray-brown quartz core. No noticeable mica 131.78 - 131.80 : DYKE , 30.00 Deg to CA QFM aplite. Same as above QFM aplites 132.13 - 132.98 : FR Fractured, 5.00 Deg to CA Very long fracture. 132.13 - 133.22 : FR Fractured, 5.00 Deg to CA Very long fracture. RQD 125.65 - 129.99 : 97.93 % RQD 99.77 % Core 129.99 - 134.21 : 67.30 % RQD 99.53 % Core 134.21 - 138.67 : 96.86 % RQD 98.65 % Core												
134.30	134.80	SPD PEG, spodumene pegmatite	884013	134.3	0 13	34.80	0.50	0	.02	454.00	51.	.10 1:	33.00	211.0
		Spodumene pegmatite. Quartz-felspar-muscovite-spodumene. Quartz is gray brown and feldspar is dark gray to white in color. Almost all of the spodumene is altered to pale yellow-green muscovite or is dark green in color. Spodumene crystals are short, about 1 cm long, and randomly oriented. Accesory minerals include pyrite and pink altered garnets. Contacts with the metasediment exhibit some metasomatism and are oriented about 45 degrees to the core axis Mineralization 134.30 - 134.80: SPOD Spodumene, PERV Pervasive, 1.00% Spodumene crystals are highly altered to either dark green or pale yellow green muscovite. Crystals about 1 cm long oriented randomly.												
134.80	135.52	M SCH, mica schist	884014	134.8	0 13	35.52	0.72	2 0	.22	258.00	79.	.90	4.30	9.0
		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar. Cut by a few white quartz veinlets about 3 mm thick oriented between 30 and 40 degrees.				•						,	,	

Detailed L	ithology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
135.52	140.82	SPD PEG, spodumene pegmatite	884015	135.52	136.54	1.02	2 1.66	613.	00 43	.30 33	.80 169.
		Spodumene pegmatite. White in color and coarse grained.	884016	136.54	137.54	1.00	1.3	957.	00 62	.30 36	.10 155.
		Quartz-feldspar-muscovite-spodumene. Quartz is gray-brown and feldspar is gray	884017	137.54	138.54	1.00	1.66	687.	00 46	.40 32	1.90 156.
		to white and muscovite is silver white to pale yellow-green in color. Spodumene	884018	138.54	139.54						.80 187.
		is white to pale apple green in color and crystals are up to 6 cm long oriented about 45 degrees to the core axis. It appears that about 25% of the spodumene	884019	139.54	140.54						3.90 221.
		crystals are a dark altered green. Accessory minerals include pyrite and pink garnets. Contacts are oriented about 50 degrees to the core axis.	884021	140.54	140.82	0.28	3 0.1 ⁻	1 483.	00 53	.30 96	199.
		Mineralization 135.52 - 140.82 : SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is generally pale green in color with some alteration to dark									
		green. Crystals are up to 1 cm long and are oriented about 45 degrees to the core axis.									
		RQD									
140.00	141.04	138.67 - 143.00 : 90.53 % RQD 99.31 % Core	884022	140.00	141 04	0.4	2 0.24	1 202	00 142	00	.50 14.
140.82		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with finely disseminated pyrite. Cut by one spodumene pegmatite dikelet at 141.06 that is 1 cm thick and oriented 20 degrees to the core axis.	884022	140.82	141.24	0.42	2 0.24	1 392.	00 142	.00 2	50 14.
		Mineralization									
		140.82 - 141.24 : PY Pyrite, DISS Disseminated, 1.00% Pyrite content is slightly less than 1%									
		Structure									
		141.06 - 141.07 : DYKE , 20.00 Deg to CA Spodumene pegmatite. Quartz-feldspar-muscovite-spodumene. Crystals are about 0.5 cm long and spodumene content is about 10%									
141.24	141.50	SPD PEG, spodumene pegmatite	884023	141.24	141.50	0.20	5 1.12	2 323.	00 41	.20 150	0.00 168.
		Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene. Spodumene is white to pale green with some altered to dark green/black. Crystals are 2 cm long and are oriented subperpendicular to contacts. Contacts are oriented at 80 degrees to the core axis.									
		Mineralization 141.24 - 141.50 : SPOD Spodumene, PERV Pervasive, 15.00% Spodumene is generally white to pale green in color with some altered to dark green. Crystals are about 2 cm long and are oriented subperpendicular to contacts.									
141.50	142.34	M SCH, mica schist	884024	141.50	142.34	0.84	4 0.28	3 260.	00 110	.00 3	.40 8.
		Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pryrite throughout. Cut by a few quartz/feldspar veinlets up to 7 mm thick oriented randomly.		,			,	,	,	,	
		Mineralization 141.50 - 142.34 : PY Pyrite, DISS Disseminated, 1.00% Pyrite content is slightly less than 1%									

Feb 24, 2012 Page 8 of 24

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
142.34	142.54	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene. Pale green spodumene crystals are about	884025 884026	142.34 142.34							
		3 cm long and oriented subperpendicular to contacts. Some altereation to dark green and to pale yellow-green muscovite. Contacts about 70 degrees to core axis.									
		Mineralization 142.34 - 142.54 : SPOD Spodumene, PERV Pervasive, 15.00% Spodumene is pale green with some alteration to dark green and to pale yellow-green muscovite. Crystals 3 cm long and oriente subperpendicular to contacts									
142.54	145.52	M SCH, mica schist	884027	142.54	143.5	4 1.00	0.2	2 225.	00 159.0	00 12.	60 13
		Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pryrite throughout. Cut by a few quartz feldspar dikelets about 1.5 cm thick.									
		Mineralization									
		142.54 - 145.52 : PY Pyrite, DISS Disseminated, 1.00% Pyrite content is less than 1%									
		Structure									
		142.64 - 142.73									
		A series of 4 interesecting quartz-feldspar dikelets with thicknesses of 2, 3, 10 and 20 mm thick. Orientations are at (from small to big) 50, 30, 20, and 45									
		degrees to the core axis. 143.49 - 143.50 : DYKE , 40.00 Deg to CA									
		Quartz-feldspar dike.									
		144.20 - 144.22 : DYKE , 40.00 Deg to CA Quartz-feldspar dike. Appears to have incorporated some of the metasediment.									
		RQD									
		143.00 - 147.24 : 72.70 % RQD 97.88 % Core									
145.52	145.59	QFM PEG, quartz-feldspar-muscovite pegmatite									
		QFM pegmatite. Gray-white in color and relatively fine grainednearly aplitic. Zoned with a 0.5 cm thick quartz-feldspar hanging wall, about 4 cm quartz-feldspar-muscovite core, 1 cm quartz-rich aplite, and 1 cm thick feldspar-rich aplite on the footwall.									
145.59	146.63	M SCH, mica schist	884028	145.68	146.6	3 0.95	0.2	2 311.	00 111.0	00 10.	20 14
		Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pryrite throughout. Cut by a QFM pegmatite.		'							
		Mineralization 145.59 - 146.63									
		Pyrite concentration much less than 1%									
		Structure 146.05 146.10 : DVKE 55.00 Dog to CA									
		146.05 - 146.10 : DYKE , 55.00 Deg to CA QFM pegmatite dike. White to dark gray in color with grain sizes about 0.5 cm long.									

Feb 24, 2012 Page 9 of 24

Detailed L	ithology		Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
146.63	146.90	SPD PEG, spodumene pegmatite	884029	146.63	146.90	0.2	7 0.06	969.0	0 69.2	0 211.	00 119.0	
		Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene. Most of the spodumene is altered to dark green/black. Crystals are up to 3 cm long and oriented about 25 degrees to the core axis. Contacts are oriented at 50 degrees to the core axis. Offset by 1 cm by a "left-lateral" fault oriented subparallel the to the core axis. Fault "starts" at 146.71 and contines through the lower metasediment and gets abruptly cut off by the next pegmatite at 147.34										
		Mineralization 146.63 - 146.90: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is mostly dark green/black in color. Crystals are up to 3 cm long oriented about 25 degrees to the core axis.										
146.90		M SCH, mica schist	884031	146.90	147.34	0.4	4 0.17	314.0	0 62.9	0 11.	80 11.0	
		Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pryrite throughout.										
		Mineralization 146.90 - 147.34 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1%										
		Structure 146.90 - 147.34 Fault is subparallel to the core axis and starts in the upper pegmatite (see pegmatite description)										
		RQD 147.24 - 151.50: 85.21 % RQD 97.65 % Core										
147.34	147.70	SPD PEG, spodumene pegmatite	884032	147.34	147.70	0.30	0.06	917.0	0 72.4	0 185.	00 164.0	
		Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene. Spodumene is mostly altered to dark green and black but a few pale green crystals remain. Crystals are oriented randomly and are up to 3 cm long. 3 cm aplite core centered in the pegmatite with the same compostion but the spodumene does not show alteration. Contacts oriented 60 degrees to the core axis.										
		Mineralization 147.34 - 147.70 : SPOD Spodumene, PERV Pervasive, 10.00% Spodumene is mostly dark black to green in color. Crystals up to 3 cm long oriented randomly. Mostly concentrated above the aplite core.										

Page 10 of 24 DETAILED LOG

Detailed Li	ithology		Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Ве_ррі	m
147.70	157.48	M SCH, mica schist	884033	147.70	148.70	1.0	0 0.1	9 141.0	00 42.	50 1	.90	3.0
		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite throughout. Cut by a some white quartz veinlets oriented about 30 degrees to the core axis and one small aplite dike. There is one visible bed.										
		Mineralization 147.70 - 151.50 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1%										
		Structure 149.54 - 149.55 : DYKE , 90.00 Deg to CA Aplite dike composed of quartz and feldspar with accessory dark blue-green apatite.										
		 149.75 - 149.88 : FR Fractured, 20.00 Deg to CA Appears to be fractured. 149.88 - 149.89 : BD Bedding, 90.00 Deg to CA A single, white-gray-brown bed. 										
		RQD 151.50 - 155.79: 87.41 % RQD 98.14 % Core										
		155.79 - 159.80: 61.35 % RQD 99.00 % Core										
157.48		SPD PEG, spodumene pegmatite Spodumene pegmatite. Gray-white and coarse grained. Quartz-feldspar-muscovite-spodumene. Soft, black accessory mineral with grains about 1 mm in diameter. Most of the spodumene has altered to pale yellow-green muscovite, a few dark green spodumene crystal remain. Length is about 2 cm and oriented subperpendicular to the core axis. Contacts are oriented at 35 degrees to the core axis. Slight metasomatism at the upper contact. Mineralization 157.48 - 157.75: SPOD Spodumene, PERV Pervasive, 1.00% Spodumene is mostly altered to pale yellow-green muscovite with a few dark green altered crystals. Crystals are up to 2 cm long and oriented subperpedicular to the core axis.										

Detailed Lithology			Assay Data									
From	То	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_pp	om
157.75	162.50	M SCH, mica schist	884034	161.50	162.5	50 1.0	0 0.2	4 335.0	00 101.	.00	1.00	5.0
157.75		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite throughout. Cut by some white quartz veinlets oriented between 30 and 40 degrees to the core axis. Also cut by a few quartz-feldspar aplite dikelets and a small altered spodumene pegmatite dike. Mineralization 157.75 - 162.50: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1% Structure 158.03 - 158.05: DYKE, 50.00 Deg to CA White QFM aplite with accessory dark green and black minerals, perhaps small inclusions of the metasediment. 158.23 - 158.24: DYKE, 15.00 Deg to CA Same as above. 159.30 - 159.33: DYKE, 60.00 Deg to CA White QFM aplite with extremely small accessory black minerals somewhat rectangular in shape (schorl?) 159.36 - 159.93: FR Fractured, 10.00 Deg to CA Appears to be fractured. Pyrite concentration increases on fracture planes. 160.24 - 160.28: DYKE, 25.00 Deg to CA QFM aplite same as the one at 159.30 161.40 - 161.47: DYKE, 65.00 Deg to CA Spodumene pegmatite. White and coarse grained. Most of the spodumene is altered to pale yellow-green muscovite. Spodumene content would have been about 1% had it not been altered. 161.76 - 162.43 Very jagged fracture zone with the fracturing being oriented between 20	884034	161.50	J 162.	<u>1.0</u>	OJ 0.2	4 335.(30 TO 1.	.00	1.00	5.0
		degrees and subparallel to the core axis. RQD										
		159.80 - 164.00: 60.71 % RQD 97.38 % Core										
162.50	164.76	SPD PEG, spodumene pegmatite	884035	162.50	163.5						5.20	173.0
		Spodumene pegmatite. Pale gray-green to white in color and coarse grained.	884036	163.50							5.90	200.0
		Ouartz-feldspar-muscovite-spodumene. Feldsar is very pale pink to white in color and some of it appears to be cleavelandite. Quartz is pale gray-brown and muscovite is silver-white to pale yellow green. Spodumene is pale green to very dark green in color with crystals oriented 50 degrees to the core axis and up to 3 cm long. Spodumene is more concetrated in the outer edges (50 cm from the hanging wall and 134 cm from the footwall). Contacts oriented about 70 degrees to the core axis. Mineralization 162.50 - 164.76: SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is pale green to very dark green in color. Crystals are up to 3 cm long and are oriented about 50 degrees to the core axis. RQD 164.00 - 168.35: 91.72 % RQD 94.25 % Core	884037	164.50	164.	76 0.2	6 1.5	7 997.(00 94.	.50 136	5.00	209.0

Feb 24, 2012 Page 12 of 24

Detailed Lit	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
164.76	165.72	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite throughout. Mineralization 164.76 - 165.72: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1%	884038	164.76	165.7	2 0.96	5 0.2	268.	00 125.0	00 5	.40 7.0
165.72	166.41	SPD PEG, spodumene pegmatite Spodumene pegmatite. Very pale green to white in color with a mixture of coarse grains and aplite bands. Overall compostion is quartz-feldspar-muscovite-spodumene with some accessory pink garnets. Aplite bands range in size from 0.5 to 3 cm thick and are generally the same compostion and modal mineralogy of the pegmatite bands (3-8 cm in thickness), however the smallest bands are mostly quartz-feldspar. Aplite bands are oriented about 40 degrees to the core axis (subparallel to the pegmatite contacts). All minerals grow subperpendicular to the aplite bands. Spodumene is very pale green to very dark green in color with some of it altered to pale yellow-green muscovite. Crystals are about 1 cm long. Mineralization 165.72 - 166.41: SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is very pale green to very dark green. Crystals are about 1 cm long and oriented subperpendicular to the aplite bands.	884039	165.72	166.4	1 0.64	9.0	93 833.	00 88.2	20 145	.00 178.0
166.41	166.93	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite throughout. Mineralization 166.41 - 166.93: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is much less than 1%	884041	166.41	166.9	3 0.52	2 0.2	28 685.	00 276.0	00 6	.20 13.0
166.93	167.04	SPD PEG, spodumene pegmatite Spodumene pegmatited. White and coarse grained. Quartz-feldspar-muscovite-spodumene with a few accessory blue-green apatite grains. Most of the spodumene is altered to dark green. Crystals are oriented randomly and are about 1 cm long. Contacts are oriented about 30 degrees to the core axis. Mineralization 166.93 - 167.04: SPOD Spodumene, PERV Pervasive, 1.00% Spodumene is altered to dark green in color. Crystals are up to 1 cm long and are oriented randomly.	884042	166.93	167.0	4 0.1	0.1	5 525.	00 141.0	00 41	.30 79.0

Feb 24, 2012 Page 13 of 24

Detailed Li	thology				Assay I	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
167.04		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with finely disseminated pyrite throughout. Mineralization 167.04 - 167.97 : PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is very low. Structure 167.34 - 167.83 Fractured with 2 dominant fracture angles oriented at 10 and 60 degrees to the core axis.	884043	167.04	167.9	7 0.9	0.2	2 488.	00 190	.00	.90 11
167.97		SPD PEG, spodumene pegmatite Spodumene pegmatite. Gray white and medium grainednearly aplitic. Quartz-feldspar-muscovite-spodumene. About 50% of the spodumene is altered to dark gray and the other is altered to pale yellow-green muscovite. Crystals oriented perpendicular to contacts (dark gray) and parallel to contacts (muscovite pseudomorphs) and are about 1 cm long. Contacts are oriented 25 degrees to the core axis. Mineralization 167.97 - 168.09: SPOD Spodumene, PERV Pervasive, 2.00% Spodumene is altered to dark gray or to pale yellow green muscovite. Muscovite pseudomorphs oriented parallel to contacts and dark gray xtls are oriented perpendicular to contacts. Xtls about 1 cm long.	884044	167.97	168.0	9 0.1	2 0.0	2 237.	00 42	.80 260	.00 233
168.09		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Cut by an aplite dikelet. Structure 168.18 - 168.20: DYKE, 70.00 Deg to CA White quartz-feldspar-muscovite aplite dikelet.	884045 884046	168.09 168.09	168.6 168.6				_		3.60 37 .60 51
168.29		QFM PEG, quartz-feldspar-muscovite pegmatite QFM pegmatite. White and medium grainednearly aplitic. Quartz-feldspar-muscovite. Muscovite might have once been spodumene but has since completely altered to pale yellow-green muscovite. Contacts oriented about 40 degrees to the core axis RQD 168.35 - 172.70: 74.02 % RQD 93.56 % Core									
168.41		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite. Mineralization 168.41 - 168.66: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration slightly less than 1%									

Feb 24, 2012 Page 14 of 24

Detailed Li	ithology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
168.66		SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained.	884047	168.66	169.66	5 1.0	0 1.1	2 678.	00 67.8	30 69	.90 215.
		Quartz-feldspar-muscovite-spodumene. Spodumene is pale green to very dark green in color with crystals about 4 cm long and oriented about 30 degrees to the core axis (appear to be subperpendicular to contacts). Contacts oriented about 85 degrees to the core axis.									
		Mineralization 168.66 - 169.66: SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is pale green to very dark green in color. Crystals are up to 4 cm long and are oriented about 30 degrees to the core axis.									
169.66		M SCH, mica schist	884048	169.66	169.85	0.1	9 0.3	2 1420.	00 420.0	00 3	.80 22.
		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with accessory muscovite (likely the result of metasomatism) and disseminated pyrite.									
		Mineralization									
		169.66 - 169.85 : PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is much less than 1%									
169.85	169.94	SPD PEG, spodumene pegmatite	884049	169.85	169.94	4 0.0	9 0.1	1 576.	00 149.0	00 146	.00 168.
		Spodumene pegmatite. White and medium grainednearly aplitic. Quartz-feldspar-muscovite-spodumene. Spodumene green to dark green in color with crystals up to 1 cm long oriented subperpendicular to contacts. Contacts oriented 60 degrees to the core axis.									
		Mineralization									
		169.85 - 169.94 : SPOD Spodumene, PERV Pervasive, 1.00% Spodumene is green to dark green in color with crystals up to 1 cm long									
169.94		oriented subperpendicular to contacts. M SCH, mica schist	884051	169.94	170.76	6 0.8	2 0.2	2 383.	00 170.0	70 7	.70 22.
107.71		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with accessory muscovite (likely the result of metasomatism) and disseminated pyrite. Cut twice by aplite dikelets.	001001	107.74	170.70	<u> </u>	2 0.2	<u> 2</u> 300.	170.0	<u>, , , , , , , , , , , , , , , , , , , </u>	.70 22.
		Mineralization									
		169.94 - 170.76 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration slightly less than 1%									
		Structure									
		170.55 - 170.56 : DYKE , 50.00 Deg to CA White quartz-feldspar aplite dikelet with what appears to be small inclusions of the metasediment									
		170.66 - 170.67 : DYKE , 50.00 Deg to CA Same as above.									

Feb 24, 2012 Page 15 of 24

Detailed Lith	ology				Assay	Data					
From	Го	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
170.76	170.99	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and medium grainednearly aplitic. Quartz-feldspar-muscovite-spodumene. Almost all of the spodumene is altered to pale yellow-green muscovite. A few medium green spodumene crystals remain about 1 cm long oriented randomly. Mineralization	884052	170.76	170.9	0.2	3 0.0	6 566.	00 112.	00 73	135.
		170.76 - 170.99 : SPOD Spodumene, PERV Pervasive, 0.10% Spodumene is medium green but almost all is altered to muscovite. Xtls oriented randomly and are up to 1 cm long.									
170.99	184.35	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. Cut by 2 small aplite dikes. From 182.97 to 183.77, there are concentric ellipsoid rings on the surface of the corepossibly bedding but difficult to determine how it would have changed orientation from subperpendicular to the core axis to apparently subparallel to the core axis in the space of 26 cm of smooth, uninteresting core. (There is a "normal" bedding contact at 182.71.) The ellipsoids are outlined with pyrite and dikelets/veinlets. Mineralization 170.99 - 184.35: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1 percent, except in the ellipsoid area the concentration is between 1 and 2% Structure 173.36 - 173.44: DYKE, 50.00 Deg to CA White quartz-feldspar-muscovite aplite with what appears to be very small inclusions of the metasediment. 174.35 - 174.37: DYKE, 70.00 Deg to CA Zoned quartz-feldspar-muscovite aplite. Extending 0.5 cm from contacts is white feldspar with the core being white and gray quartz, feldspar, and muscovite. 174.78 - 180.70: JO Joint, 20.00 Deg to CA Many joints. Blocks within this highly jointed area range in size from less than 1 cm to 20 cm long. Slight increase in pyrite concentration. RQD 172.70 - 176.28: 48.04 % RQD 98.32 % Core 176.28 - 180.30: 30.85 % RQD 81.09 % Core 180.30 - 184.40: 57.80 % RQD 94.15 % Core	884053	170.99	171.9	1.0	0 0.1	7 175.	00 65.	40 2	7.40 7.

Detailed Litho	logy			Assay	Data					
From T	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	DIAB, diabase Diabase. Medium gray and fine grainedgrains slightly larger than that of the metasediment. Occasionally, there are spots where the grain size reaches 0.5 cm. Appears to be composed of feldspar, amphibole/pyroxene, quartz. Accessor minerals include biotite and pyrite. It is slightly chloritized and slightly carbonatized. Chlorite will sometimes form platy olive green crystals in fractures It is also slightly magneticespecially in comparison with the metasediment. Upper contact shows a chilled margin about 0.5 cm thick. Lower contact is full o hairline fractures and heavily carbonatized. Structure 188.11 - 188.38 : F Fault, 30.00 Deg to CA Appears to be faulted. Made up of blocky pieces about 4 cm long with a few exhibiting faint slickensides. 191.00 - 191.17 : FR Fractured, 90.00 Deg to CA Appears to be fractured. Made up of subangular pebbles to 3 cm angular blocks. Could be that the drillers had a slight problem encountering what was probably a thick quartz vein. Quartz has a slight yellow-green tinge. 191.91 - 192.08 : FR Fractured, 60.00 Deg to CA Fractured in a serpentine/chlorite rich area. Blocky pieces are about 4 cm long. 202.20 - 202.37 : FR Fractured, 40.00 Deg to CA Same as above 202.77 - 203.10 : FR Fractured, 90.00 Deg to CA Same as above ROD 184.40 - 188.74 : 87.33 % RQD 94.93 % Core 188.74 - 192.58 : 47.66 % RQD 99.22 % Core 192.58 - 197.00 : 69.00 % RQD 96.61 % Core 197.00 - 201.17 : 59.95 % RQD 98.32 % Core 201.17 - 204.82 : 41.92 % RQD 82.74 % Core	f								
203.88 2	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite. Mineralization 203.88 - 204.96 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is about 1% Structure 204.34 - 204.82 : F Fault, 30.00 Deg to CA Faulted. Blocky pieces are between 2 and 7 cm in length with some of them exhibiting slicken lines. RQD 204.82 - 209.00 : 68.18 % RQD 99.04 % Core	884054	203.96	204.9	6 1.0	0 0.1	7 193.0	00 48.	30 0	.60 9.0

Page 17 of 24 DETAILED LOG

Detailed L	ithology				Assay I	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
204.96	207.03	SPD PEG, spodumene pegmatite	884055	204.96	205.9	6 1.00	0.0	2 486.0	00 16.5	50 27.	50 152.0
		Spodumene pegmatite. Very pale pink to white and coarse grained. Pink coloration due to feldspar. Quartz-feldspar-muscovite-spodumene with a few accessory 1 mm diameter blue-green apatite grains. 2 cm thick quartz-feldspar-muscovite aplite band on the foot wall. Spodumene crystals are concentrated in the center of the pegmatite, roughly 38 cm from the hanging wall and extending for 58 cm. Spodumene crystals are pale green to dark green in color. Crystals are up to 5 cm long and are found in fan-like patterns with the axis of the fan oriented about 20 degrees to the core axis. The wide end of the fan points to the footwall. Contacts are oriented about 25 degrees to the core axis. Mineralization 204.96 - 207.03: SPOD Spodumene, PERV Pervasive, 10.00%	884056	205.96	207.0	3 1.0	7 O.C	1 1210.	00 66.0	00 64.	10 128.0
		Spodumene crystals are pale green to dark green in color. Crystals are oriented about 20 degrees to the core axis and are up to 5 cm long.									

From To Lithology Sample Number From To Length Li2O_per Rb_ppm Cs_ppm Ta_ 207.03 229.03 M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite. Hosts several spodumene pegmatite dikelets. Some of the dikelets form "swarms" with a series of small dikes intruding the same 30 cm or so of metasediment in the upper part of the unit. The lower part of the unit is cut by a few QFM aplite dikelets. The metasediment is also cut by a few white quartz veinlets up to 0.5 cm in thickness with orientations between 20 and 90 degrees to the core axis.	9.90 1.20	e_ppm 11 4
Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite. Hosts several spodumene pegmatite dikelets. Some of the dikelets form "swarms" with a series of small dikes intruding the same 30 cm or so of metasediment in the upper part of the unit. The lower part of the unit is cut by a few QFM aplite dikelets. The metasediment is also cut by a few white quartz veinlets up to 0.5 cm in thickness with orientations between 20 and 90 degrees		
disseminated pyrite. Hosts several spodumene pegmatite dikelets. Some of the dikelets form "swarms" with a series of small dikes intruding the same 30 cm or so of metasediment in the upper part of the unit. The lower part of the unit is cut by a few QFM aplite dikelets. The metasediment is also cut by a few white quartz veinlets up to 0.5 cm in thickness with orientations between 20 and 90 degrees	1.20	4
Mineralization 207.03 - 229.03 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is roughly 1% and generally increases slightly on some fracture planes. Structure 207.94 - 207.98 Quartz vein with about 5% pyrite. 208.14 - 208.23 : DYKE, 70.00 Deg to CA Spodumene dike composed almost entirely of quartz and spodumene (about 40% spod, xlts are green to dark green in color, oriented randomly). A few accessory brown garnets—in retrospect, probably triphyfite and lithiophilite, not spodumene and garnet. 208.65 - 208.93 Spodumene alice "swarm." Composition same as above. Seems to contain 5 dikes, ranging in thicknesses from 0.5 to 5 cm. The first 3 dikes are ring shaped and appear to be oriented perpendicular to the core axis. The other 2 dikes are criented 60 degrees to a core as a shape. 209.91 - 209.02 DYKE, 45.00 Deg to CA Single spod. dike, otherwise same as above. Contains 4 dikes with the 2nd being a "ring" dike. Thicknesses range from 1 to 3 cm and orientations range from subperpendicular to 50 degrees to core axis. 209.63 - 209.65 : SHZ Shear Zone, 30.00 Deg to CA Appears to be a small shear zonethin pale center with dark hairline s-shaped fractures intersecting the pale line. Dark fractures oriented subperpendicular to the core axis. 210.03 - 210.06 : SHZ Shear Zone, 40.00 Deg to CA Same as above. 210.58 - 210.62 : DYKE, 90.00 Deg to CA Spodumene dike with the same composition as above minus accessory garnets. (In retrospect, probably not spot, but triphyfite)		

Detailed Litholo	эу			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	Structure 213.62 - 213.66 : DYKE , 70.00 Deg to CA A white-colored quartz-feldspar-muscovite aplite. Contacts show about 0.3 cm of metasomatism evidenced by muscovite in the metasediment 213.73 - 213.76 : DYKE , 60.00 Deg to CA Same as above except is wedge-shaped. It does not go all the way through the core. 215.00 - 223.37 : BD Bedding, 40.00 Deg to CA Faint, thin bedding. Each bed is about 0.5 to 2 cm thick. The largest visible bed at the end of the sequence is about 55 cm thick. Beds are visible due to slight variations of brown coloring. 223.37 - 223.40 : DYKE , 55.00 Deg to CA White colored quartz-feldspar-muscovite medium grained pegmatitenearly aplitic. 223.46 - 223.50 : DYKE , 70.00 Deg to CA Same as above. 224.55 - 224.58 : BD Bedding, 90.00 Deg to CA A single bed that is pale brown-gray in color compared to the surrounding rock. Due to the abrupt change in dip from the last sequence of bedding, it could be that the beds are more the influence of fluids moving through the system or crossbedding. RQD 209.00 - 213.47 : 70.47 % RQD 93.74 % Core 213.47 - 217.75 : 73.13 % RQD 99.30 % Core 217.75 - 221.89 : 81.88 % RQD 100.00 % Core Recovery should actually be 101.93% 221.89 - 226.32 : 86.23 % RQD 97.07 % Core 226.32 - 230.64 : 83.33 % RQD 97.45 % Core									
229.03 236.	39 SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained.	884059 884061	229.03							.90 187. .10 132.
	Quartz-feldspar-muscovite-spodumene. Spodumene is pale green to altered very	884062	231.03	3 232.0	03 1.0	00 0.2	942.	00 65	.30 32	.40 94.
	dark green. Crystals are oriented between 10 and 40 degrees to the core axis	884063	232.03	3 233.0	03 1.0					.30 192.
	(increasing angle size down the hole) and are up to 7 cm long. There is a	884064	233.03	3 234.0	03 1.0	00 1.5	57 611.			.30 156.
	metasediment xenolith at 231.93 that is about 4 cm thick. It appears to have a feldspar-quartz core located at 230.9 m extending for about 20 cm down the	884065	234.03	3 235.0	03 1.0	00 0.7	78 561.	00 40	.20 24	.50 205.
	hole.	884066	234.03			00 0.7	78 533.	00 42	.90 24	.60 272.
	Mineralization	884067	235.03	3 236.0	03 1.0	00 1.1	14 467.	00 33	.00 11	.80 164.
	229.03 - 236.37 : SPOD Spodumene, PERV Pervasive, 25.00%	884068	236.03	3 236.3	39 0.3	36 0.0	341.	00 29	.90 39	.20 415.
	Spodumene is pale green to altered very dark green. Crystals are oriented between 10 and 40 degrees to the core axis (increasing angle size down the hole) and are up to 7 cm long RQD 230.64 - 234.97 : 91.45 % RQD 97.69 % Core 234.97 - 239.22 : 86.59 % RQD 99.53 % Core									

Page 20 of 24 DETAILED LOG

Detailed Li	thology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
236.39	245.10	M SCH, mica schist	884069	236.39	237.39	1.00	0.2	2 151.0	00 75.9	90 0	.50 4.0
		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with a little bit of disseminated pyrite. Cut by some quartz veinlets that are up to 0.3 cm thick oriented between 45 and 85 degrees to the core axis. Cut by a few QFM aplites as well.									
		Mineralization 236.39 - 245.10 : PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is very low, perhaps even less than 0.5%									
		Structure 240.80 - 240.91 : DYKE , 40.00 Deg to CA White quartz-feldspar-muscovite pegmatite. It may have been a spodumene pegmatite as the muscovite books are pale yellow and have a spodumene-like habit. 242.75 - 242.81 : DYKE , 70.00 Deg to CA White quartz-feldspar-muscovite aplite. The hanging wall is of the same compostion but is pegmatitic and extends for 2 cm down. 242.81 - 243.57 : BD Bedding, 90.00 Deg to CA Faint concentric ellipsoid bedding, very similar to that described further up the hole except not as distinct or with as much pyrite. RQD 239.22 - 243.53 : 88.17 % RQD 97.91 % Core 243.53 - 247.90 : 86.96 % RQD 99.31 % Core									
245.10	245.77	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with accessory medium soft dark mineral grains with a diameter up to 4 mm found in the core of the pegmatite. White and coarse grained with 7 cm thick bands of aplite on the footwall (each band is about 1.5 cm thick and vary by amount of pale yellow muscovite content. It might have been a spodumene pegmatite at one point as the muscovite takes on the general shape of spodumene crystals. However, there does not appear to be any spodumene left.									

Feb 24, 2012 Page 21 of 24

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
245.77	251.78	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite. It is is cut by a few small aplites/pegmatites and some quartz veins no more than 3 mm thick, oriented between 20 degrees and subparallel to the core axis. At meter 250.34 and extending to 251.51, the core is roughly half metasediment and half pegmatite with an irregular and somewhat gradual contact running approximately along the core axis. The contact is highly metasomatized with strings of the metasediment (roughly parallel to the contact) within the pegmatite. The pegmatite is mostly gray-brown quartz with some pinky-orange feldspar and something dark green and hard that forms strings like the metasediment contained in the pegmatitecould just be highly altered metasediment. The metasediment shows an increase in pyrite and muscovite along this section. Mineralization 245.77 - 251.78: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is roughly 1% Structure 247.50 - 247.53: DYKE, 30.00 Deg to CA White quartz-feldspar-muscovite aplite. Extending about 0.5 cm from the hanging wall is a band of mostly feldspar crystals with some quartz. 247.56 - 247.69: DYKE, 60.00 Deg to CA white quartz-feldspar-muscovite aplite with large grains, nearly pegmatitic. The metasediment between this aplite and the one above may actually be a xenolith as it is highly metasomatized. 249.50 - 249.54: DYKE, 50.00 Deg to CA A pegmatite with the same composition as above. RQD 247.90 - 252.12: 88.86 % RQD 100.00 % Core									
251.78	252.17	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and medium grained. Has some accessory soft, dark green mineral grains with a maximum diameter of 2 mm. RQD 252.12 - 256.55: 90.07 % RQD 100.00 % Core									

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
252.17		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite. Cut by a few quartz veins up to 0.5 cm thick with orientations between 40 and 90 degrees to the core axis. A few beds are visible. Mineralization 252.17 - 259.99: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1%. Structure 256.27 - 259.99: BDTK Bedding, Thick, 90.00 Deg to CA The first bed in this sequence is 6 cm thick, pale brown, and feels gritty and is somewhat more porous than the rest of the rock. The next bed is 2.67 m thick and is "normal" metasediment. The last bed starts at meter 259 is like the 1st but not as porous RQD 256.55 - 260.00: 79.42 % RQD 98.55 % Core									
259.99	260.00	EOH, end of hole									

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884001	67.43	68.43	0.0431	98.0000	36.4000	0.5000	2.0000
884002	68.43	68.59	0.0108	34.0000	5.7000	0.2000	0.5000
884003	68.59	69.59	0.0215	78.0000	9.6000	0.5000	1.0000
884004	86.37	87.37	0.0646	99.0000	22.1000	0.6000	3.0000
884005	87.37	87.53	0.0108	35.0000	4.3000	0.0500	0.5000
884007	87.53	88.53	0.0861	87.0000	13.4000	0.5000	2.0000
884008	92.53	93.53	0.0861	205.0000	99.4000	0.5000	3.0000
884009	93.53	93.95	0.0108	328.0000	27.9000	179.0000	105.0000
884011	93.95	94.95	0.1076	242.0000	80.3000	0.9000	2.0000
884012	133.35	134.30	0.1507	185.0000	42.1000	4.9000	5.0000
884013	134.30	134.80	0.0215	454.0000	51.1000	133.0000	211.0000
884014	134.80	135.52	0.2153	258.0000	79.9000	4.3000	9.0000
884015	135.52	136.54	1.6577	613.0000	43.3000	33.8000	169.0000
884016	136.54	137.54	1.3132	957.0000	62.3000	36.1000	155.0000
884017	137.54	138.54	1.6577	687.0000	46.4000	32.9000	156.0000
884018	138.54	139.54	1.1195	719.0000	50.8000	26.8000	187.0000
884019	139.54	140.54	1.2486	559.0000	44.4000	18.9000	221.0000
884021	140.54	140.82	0.1076	483.0000	53.3000	96.6000	199.0000
884022	140.82	141.24	0.2368	392.0000	142.0000	4.5000	14.0000
884023	141.24	141.50	1.1195	323.0000	41.2000	150.0000	168.0000
884024	141.50	142.34	0.2799	260.0000	110.0000	3.4000	8.0000

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884025	142.34	142.54	1.0118	286.0000	51.2000	170.0000	207.0000
884027	142.54	143.54	0.2153	225.0000	159.0000	12.6000	13.0000
884028	145.68	146.63	0.2153	311.0000	111.0000	10.2000	14.0000
884029	146.63	146.90	0.0646	969.0000	69.2000	211.0000	119.0000
884031	146.90	147.34	0.1722	314.0000	62.9000	11.8000	11.0000
884032	147.34	147.70	0.0646	917.0000	72.4000	185.0000	164.0000
884033	147.70	148.70	0.1938	141.0000	42.5000	1.9000	3.0000
884034	161.50	162.50	0.2368	335.0000	101.0000	1.0000	5.0000
884035	162.50	163.50	1.1195	1130.0000	75.1000	65.2000	173.0000
884036	163.50	164.50	1.2917	761.0000	52.0000	46.9000	200.0000
884037	164.50	164.76	1.5716	997.0000	94.5000	136.0000	209.0000
884038	164.76	165.72	0.2583	268.0000	125.0000	5.4000	7.0000
884039	165.72	166.41	0.9257	833.0000	88.2000	145.0000	178.0000
884041	166.41	166.93	0.2799	685.0000	276.0000	6.2000	13.0000
884042	166.93	167.04	0.1507	525.0000	141.0000	41.3000	79.0000
884043	167.04	167.97	0.2153	488.0000	190.0000	6.9000	11.0000
884044	167.97	168.09	0.0215	237.0000	42.8000	260.0000	233.0000
884045	168.09	168.66	0.2153	675.0000	243.0000	18.6000	37.0000
884047	168.66	169.66	1.1195	678.0000	67.8000	69.9000	215.0000
884048	169.66	169.85	0.3229	1420.0000	420.0000	3.8000	22.0000
884049	169.85	169.94	0.1076	576.0000	149.0000	146.0000	168.0000
884051	169.94	170.76	0.2153	383.0000	170.0000	7.7000	22.0000
884052	170.76	170.99	0.0646	566.0000	112.0000	73.7000	135.0000
884053	170.99	171.99	0.1722	175.0000	65.4000	2.4000	7.0000
884054	203.96	204.96	0.1722	193.0000	48.3000	0.6000	9.0000
884055	204.96	205.96	0.0215	486.0000	16.5000	27.5000	152.0000
884056	205.96	207.03	0.0108	1210.0000	66.0000	64.1000	128.0000
884057	207.03	208.03	0.1722	296.0000	148.0000	9.9000	11.0000
884058	228.03	229.03	0.1938	149.0000	52.1000	1.2000	4.0000
884059	229.03	230.03	0.7965	635.0000	59.9000	40.9000	187.0000
884061	230.03	231.03	0.6674	806.0000	58.0000	11.1000	132.0000
884062	231.03	232.03	0.2153	942.0000	65.3000	32.4000	94.0000
884063	232.03	233.03	1.4424	1270.0000	85.4000	28.3000	192.0000
884064	233.03	234.03	1.5716	611.0000	56.5000	36.3000	156.0000
884065	234.03	235.03	0.7750	561.0000	40.2000	24.5000	205.0000
884067	235.03	236.03	1.1410	467.0000	33.0000	11.8000	164.0000
884068	236.03	236.39	0.0431	341.0000	29.9000	39.2000	415.0000
884069	236.39	237.39	0.2153	151.0000	75.9000	0.5000	4.0000

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type CDUP							
884006	87.37	87.53	0.0215	41.0000	9.8000	0.1000	0.5000
884026	142.34	142.54	0.7965	387.0000	63.6000	162.0000	215.0000
884046	168.09	168.66	0.1722	500.0000	170.0000	21.6000	51.0000
884066	234.03	235.03	0.7750	533.0000	42.9000	24.6000	272.0000

Project Name:	Nama Creek	Primary Coordinates Grid:	UTM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	01	North: 5477750.63		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424556.56		East:	Length:	359.00
		Elev: 374.62		Elev:	Start Depth:	0.00
Date Started:	Sep 19, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	359.00
Date Completed:	Sep 23, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: Hole logged by Andrea Dixon; claim number TB67137

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	199.33	202.33	3.00	0.7750	629.6667	51.0000	42.7667	144.0000
WEIGHTED	212.76	215.08	2.32	1.4747	569.7931	54.9603	85.2655	195.1034
WEIGHTED	219.21	220.72	1.51	0.7834	1510.0662	98.6768	70.4841	166.0530
WEIGHTED	225.55	227.56	2.01	1.7009	682.3682	71.5597	88.8507	230.5224
WEIGHTED	225.55	230.38	4.83	1.0539	692.5901	148.3437	68.3907	168.3188
WEIGHTED	254.66	255.97	1.31	1.4331	597.3359	50.6130	98.8580	218.3206
WEIGHTED	266.94	268.43	1.49	0.8750	518.4564	40.9906	54.8597	159.6510
WEIGHTED	285.63	288.47	2.84	0.8277	831.1127	54.6437	26.4972	196.9859

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
11.00	137.20	-59.50	Reflex	OK	mag field: 57620	59.00	139.90	-59.80	Reflex	OK	mag field: 56810
101.00	139.30	-59.80	Reflex	ОК	mag field: 57200	152.00	141.80	-59.80	Reflex	OK	mag field: 57030
200.00	142.20	-60.40	Reflex	ОК	mag field: 57030	251.00	144.10	-60.70	Reflex	OK	mag field: 57050
302.00	143.80	-61.00	Reflex	OK	mag field: 57070	356.00	146.00	-60.90	Reflex	OK	mag field: 57140

Detailed L	ithology	Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00		OVB, Casing Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar. Pyrite is sometimes found on fracture planes but is over all not very significant to this portion of metasedment. Occasionally the metasedminet is cut by white quartz veinlets that are up to 7 mm thick with most being 2 mm thick. The veins are oriented between 20 and 90 degrees to the core axis with most being oriented between 20 and 50 degrees. It is also cut by a few small aplite and pegamite dikes.									

Detailed Li	thology	/			Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
2.98	102.78	M SCH, mica schist Alteration 95.60 - 95.83 :SI Silica, Fract-Cont Fracture-Controlled, Weak Metasediment is a pale gray here and is slightly harder than the surrounding rock. There is a spiderweb like network of dark, hairline fractures in this area. Structure 2.98 - 4.28 Fractured metasediment at the top of the hole appears to be weathered. There is some dirt mixed in too. This section is most likely bouldery overburden. There is not a dominant angle of fracture. 5.17 - 5.31 : VNLT Veinlets, 60.00 Deg to CA A series of "thick" white quartz veinlets. Vein thickness is between 0.5 and 0.7 mm with spaces of 1 to 2 cm between each vein. 19.73 - 19.80 A blobby, light gray, fine grained metasediment within larger grained, darker gray and slightly coarser grained metasediment. Perhaps is a boundary between erosional surfaces 28.10 - 28.45 : FR Fractured, 10.00 Deg to CA A long jagged fracture with abundant platy-looking pyrite on the fracture surface. 36.60 - 36.80 : FR Fractured, 30.00 Deg to CA Fracture zone made up of blocky, angular pieces up to 8 cm long. 44.79 - 44.85 : DYKE, 50.00 Deg to CA OFM white aplite dikelet 45.78 - 45.83 : DYKE, 50.00 Deg to CA OFP pale brown-gray pegmatite dikelet. Predominantly composed of quartz. 48.60 - 48.61 : DYKE, 50.00 Deg to CA OFM white aplite dikelet 48.61 - 49.34 : FR Fractured, 10.00 Deg to CA OFM white aplite dikelet 48.61 - 49.34 : FR Fractured, 10.00 Deg to CA OFM white aplite dikelet showing some zoning. Hangingwall and footwall show about 0.5 cm of coarser grains of the same composition. 54.64 - 54.69 : DYKE, 85.00 Deg to CA OF pale brown-gray pegmatite dikelet. Predominantly composed of quartz. 61.20 - 61.67 : FR Fractured, 15.00 Deg to CA OF pale brown-gray pegmatite dikelet. Predominantly composed of quartz. 61.20 - 61.67 : FR Fractured, 15.00 Deg to CA OF pale brown-gray pegmatite dikelet. Predominantly composed of quartz. 68.57 - 68.58 : DYKE, 30.00 Deg to CA OF pale brown-gray pegmatite dikelet. Predominantly composed of quartz. 68.57 - 68.58 : DYKE, 30.00 Deg									

Detailed L	ithology	,			Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
102.78	102.94	QFM PEG, quartz-feldspar-muscovite pegmatite QFM pegmatite. White in color and coarse grained. Quartz-feldspar-muscovite. Contacts are oriented about 55 degrees to the core axis. The metasediment shows evidence of metasomatism (increased grain size and muscovite) up to 0.5 cm away from contact edges.									
102.94	107.89	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Cut by a few white quartz veinlets between 2 and 3 mm thick with orientations between 50 and 60 degrees to the core axis. Also cut by 2 small aplite dikelets. Structure 105.13 - 105.17: DYKE, 85.00 Deg to CA White QFM aplite dikelet. Muscovite is concentrated in a band that is 3 mm down from the hanging wall and is 1 cm thick. 107.14 - 107.15: DYKE, 60.00 Deg to CA White QF aplite dikelet. RQD 103.70 - 108.00: 77.91 % RQD 96.05 % Core									
107.89	132.41	DIAB, diabase Diabase. Medium gray and medium grained with a few coarse grained areas. Composed of feldspar, pyroxene/ampibole, and quartz with extremely trace amounts of pyrite. Slightly more magnetic than the metasediment. Cut by a few cream to beige colored feldspar-carbonate veinlets between 2 mm and 7 cm. These veinlets have very irregular, green tinted edges. One of the veins has a reddish tint beyond the green. The larger the vein, the larger the carbonate content appears to be. The veins have orientations between 0 and 80 degrees to the core axis. The bottom contact with the metasediment is sharp and is oriented 60 degrees to the core axis. (The upper contact was lost in a very small fractured area.) RQD 108.00 - 112.35 : 91.49 % RQD 99.54 % Core 112.35 - 116.60 : 82.59 % RQD 99.53 % Core 116.60 - 120.87 : 83.37 % RQD 98.13 % Core 120.87 - 124.18 : 79.81 % RQD 96.98 % Core 125.18 - 129.60 : 77.83 % RQD 93.43 % Core 129.60 - 133.73 : 80.87 % RQD 100.00 % Core Recovery should be 102.18%									

Detailed Lit	thology		Assay Data								
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
132.41		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with finely disseminated pyrite. Pyrite is slightly more abundant on fracture planes. Metasediment is cut by a few white quartz veinlets oriented between 30 and 60 degrees to the core axis. It is also cut by several aplite and pegmatite dikelets. There is a fault zone at 145.60 and extending to 150.03 m. Numerous veins within the fault zone are spiderweby in orientation, up to 2 mm thick, and are filled with a carbonate. Metasediment roughly between 151 and 161 feels gritty and is probably more porous than normal metasediment—it's taken nearly 6 hours for this section of core to dry off after being rained on early this morning. Mineralization 132.41 - 166.48: PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is less than 1% but is greater than trace amounts. Alteration 158.65 - 159.30: CA Carbonate, Pervasive , Weak Could be associated with the QF pegmatite (the one with odd accessory minerals) found roughly in the center of the carbonatized area. Or not. See below. 159.61 - 161.97: CA Carbonate, VEIN-Cont Vein/Veinlet Controlled, Weak Thin white veinlets (no more than 2mm thick) usually filled with quartz are carbonate filled in this section. Structure 135.08 - 135.09: DYKE , 50.00 Deg to CA White QFa pilte dikelet 135.20 - 135.26: DYKE , 70.00 Deg to CA White OFA pegmatite dikelet. Nearly aplitic in grain size. 135.39 - 135.85: FR Fractured, 70.00 Deg to CA Gray OFM zoned aplite. White QF bands 0.5 cm thick line the outside of a gray colored QFM core. 139.64 - 139.81 OFM aplite (50 degrees tca) same as above, cutting through a QF pegmatite (40 degrees tca) where quartz is predominant and contains metasediment xenoliths. Surrounding metasediment is coarser grained and contains muscovite. 140.57 - 140.89: DYKE , 40.00 Deg to CA OFA pegmatite composed predominantly of quartz and contain numerous metasediment xenoliths. Surrounding metasediment is metasomatized. 144.80 - 144.86: DYKE , 80.00 Deg to CA									

Detailed L	_ithology	,			Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		Structure 145.60 - 150.03 : FZ Fault Zone, 30.00 Deg to CA Fault zone is made up of blocky pieces 1 to 20 cm long with some of the blocks exhibiting faint slickensides. 150.20 - 150.54 Fractured rock that could be related to the fault zone but does not show any slickensides. 2 dominant fractures oriented 70 degrees and subparallel to the core axis. Blocks between 3 and 7 cm long 151.64 - 151.80 : FR Fractured, 30.00 Deg to CA Fractured rock made up of blocks between 3 and 8 cm long. 153.83 - 153.95 : DYKE , 40.00 Deg to CA OF pegmatite predominantly composed of quartz. 158.93 - 158.96 : DYKE , 20.00 Deg to CA OF pegmatite with a medium soft, opaque pale yellow mineral and a metallic black-blue medium hard, non-magnetic mineral (bornite?) as accessory minerals 165.00 - 165.05 : DYKE , 40.00 Deg to CA White OFM aplite dikelet. 169.20 - 169.22 : DYKE , 40.00 Deg to CA White OFM aplite dikelet. 171.26 - 171.66 : FR Fractured, 70.00 Deg to CA Fractured. Pieces between 1 and 5 cm long 177.27 - 177.85 : FR Fractured, 40.00 Deg to CA Fractured. Angular pieces between 1 and 5 cm long. 179.50 - 190.35 : SCHS Schistose, 60.00 Deg to CA The metasediment is much more schistose in this area with fracturing happening along the foliation lines which are angled 60 degrees to the core axis. ROD 133.73 - 137.94 : 83.84 % RQD 93.11 % Core 137.94 - 142.30 : 88.53 % RQD 97.94 % Core 142.30 - 146.50 : 65.48 % RQD 91.90 % Core 146.50 - 149.60 : 20.32 % RQD 96.77 % Core				3					
		149.60 - 153.61 : 56.61 % RQD 93.52 % Core 153.61 - 157.90 : 59.44 % RQD 96.50 % Core									
		157.90 - 162.20 : 71.86 % RQD 97.21 % Core									
		162.20 - 166.48: 78.27 % RQD 99.30 % Core									
		166.48 - 170.72 : 67.69 % RQD 91.98 % Core									
		170.72 - 175.11: 71.53 % RQD 96.13 % Core									
		175.11 - 179.00: 59.38 % RQD 91.26 % Core									
		179.00 - 183.38 : 57.99 % RQD 97.72 % Core									
		183.38 - 187.69: 70.30 % RQD 100.00 % Core									
		Recovery should be 100.46%									
		187.69 - 191.98: 63.17 % RQD 94.87 % Core									

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
190.35	191.21	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-muscovite-feldspar pegmatite. White in color and generally coarse grained, except for the aplite band 8 cm in color. Accessory mineral is pink altered garnets (altered to a carbonate mineral). Composition is the roughly the same throughout, except the aplite band lacks garnets. Contacts are oriented at approximately 60 degrees. Upper contact is fractured and vuggy.									
191.21	195.14	M SCH, mica schist Metasediment. Medium gray and fine grained showing slight schistosity. Quartz-feldspar-biotite with some disseminated pyrite. Fractures occur along the foliation planes which are generally oriented about 80 degrees to the core axis. Mineralization 191.21 - 195.14: PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is less than 1%. Concentration increases along fractures not following the foliation. Structure 192.22 - 192.41: FR Fractured, 30.00 Deg to CA Fractured. Fracture does not follow foliation. Pieces are angular and between 1 and 3 cm long. 192.42 - 192.48: DYKE, 50.00 Deg to CA Gray QFM pegmatite showing some zoning. White feldspar is the main constituent on the contact zones extending about 0.5 cm into the center from the hanging wall and footwall. 192.48 - 192.86: FR Fractured, 40.00 Deg to CA Fractured. Fracturing appears to be somewhat controlled by the foliation. Angular pieces are 1-5 cm long. RQD 191.98 - 195.94: 73.99 % RQD 97.98 % Core									
195.14	195.65	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with a thick (10 cm) band of aplite located 7 cm up from the footwall. White to pale yellow-green in color and coarse grained when not in the aplite band. Crystals are oriented perpendicular to contacts. Contacts are oriented at about 50 degrees.									
195.65		M SCH, mica schist Metasediment. Medium gray and fine grained. Has the same schistosity as the metasediment above. Lower contact with the QFM Pegmatite shows metasomatism 15 cm up from the contact. The metasomatized area is coarse grained (mica up to 4 mm long), contains biotite and muscovite, and disrupts the general angle of foliation by "bending" it into a curve with one end point oriented at 90 degrees and the other endpoint to about 0 degrees to the core axis. RQD 195.94 - 200.21: 62.53 % RQD 99.29 % Core									
196.60	196.80	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldsdpar-muscovite pegmatite. White and coarse grained. May have once contained spodumene as the muscovite crystals are pale-yellow green with roughly the same habit as spodumene. Contacts oriented subperpendicular to the core axis.									

Feb 24, 2012 Page 8 of 24

Detailed Li	ithology				Assay I	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
196.80		M SCH, mica schist Metasedimentbiotite schist. Medium gray and fine grained, perhaps up to 50% bitotite. Biotite-quartz-feldspar. Foliation is subparallel to the core axis. Structure 198.71 - 198.80: DYKE, 75.00 Deg to CA Quartz-feldspar-muscovite. White and coarse grained. Crystals oriented perpendicular to contacts. May have once contained spodumene as the muscovite crystals are pale yellow-green and show a similar habit to spodumene crystals.	884071	198.33	199.3	3 1.0	0 0.30	723.	00 299.0	00 18	3.20 40
199.33		SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Spodumene is pale to altered dark green in color with crystals oriented 55 degrees to the core axis and up to 5 cm long. Also contains a few pink-red garnet grains about 1 mm in diameter. Hanging wall consists of a 20 cm long quartz crystal. There is a 20 cm long gray-white feldspar crystal located at 200.93, could be the core zone of the pegmatite. The last 60 cm of the pegmatite consists mainly of aplites of varying compositions (quartz-feldspar-muscovite +/- spodumene, with spodumene content decreasing down the hole). Contacts oriented at 70 degrees to the core axis. Mineralization 199.33 - 202.84: SPOD Spodumene, PERV Pervasive, 15.00% Spodumene is pale to altered dark green in color with crystals oriented 55 degrees to the core axis and up to 5 cm long. RQD 200.21 - 204.60: 87.70 % RQD 97.49 % Core	884072 884073 884074 884075	199.33 200.33 201.33 202.33	200.3 201.3 202.3 202.8	3 1.0 3 1.0	0 0.90 0 0.79	682.4 6 638.4	00 51.3 00 54.5	30 33 50 79	79 3.40 169 3.30 184 3.90 277
202.84		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with very trace amounts of pyrite. Structure 205.95 - 205.96 : DYKE , 30.00 Deg to CA White QF zoned aplite. 0.3 cm gray quartz core bordered with white feldspar. 208.78 - 208.87 : DYKE , 45.00 Deg to CA Same as above, except on a larger scale. 211.10 - 211.13 : DYKE , 45.00 Deg to CA QF aplite with a lot of metasediment incorporated into it. 211.62 - 211.63 Pale brown-gray quartz vein. 212.41 - 212.53 : DYKE , 60.00 Deg to CA QFM aplite with a few pingk-red garnets. RQD 204.60 - 209.00 : 96.14 % RQD 100.00 % Core 209.00 - 213.49 : 95.99 % RQD 98.89 % Core	884076 884077	202.84 211.76	203.8 212.7						.20 14 .00 36

Page 9 of 24 DETAILED LOG

Detailed Li	ithology				Assay I	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
212.76	215.08	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained.	884078 884079	212.76 213.76	214.7	6 1.00	1.66	627.0	00 51.	80 92.	70 178.0
		Quartz-feldspar-muscovite-spodumene with a few scattered-pink-red garnets. Spodumene is pale green with very little alteration with crystals oriented at 70 degrees to the core axis unless near an aplite band, then oriented perpendicular to the aplite band. Crystals up to 6 cm long. Aplite bands are thin (about 2 cm thick) and have an orientation of 40 degrees to the core axis. There is a large, gray-brown quartz crystal oriented at 30 degrees to the core axis occupying all of the space between 213.04 and 213.14 edged with silvery muscovite. Upper contact oriented at 40 degrees and lower contact at 60 degrees to the core axis. Mineralization	884081	214.76	215.0	8 0.3.	2 0.67	7 756.0	00 61.	90 91.	30 202.0
		212.76 - 215.08 : SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is pale green with very little alteration with crystals oriented at 70 degrees to the core axis unless near an aplite band, then oriented perpendicular to the aplite band. Crystals up to 6 cm long. RQD 213.49 - 217.80 : 86.08 % RQD 100.00 % Core									
215.08	218.66	M SCH, mica schist	884082	215.08							90 9.0
		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with trace amounts of pyrite. Pyrite concentration increases on fracture planes and near a small, very fine grained, dark gray, mafic dike. Structure 216.89 - 216.99: DYKE, 25.00 Deg to CA Mafic dike, probably with the composition of a diabase but is too fine grained to determine composition. Exhibits 1 cm green and black chilled margins. Green color can probably be attributed to chlorite as the margins are soft and waxy. 218.25 - 218.38: DYKE, 50.00 Deg to CA White QF aplite with a few small pink-red garnets. RQD 217.80 - 222.18: 88.36 % RQD 97.27 % Core	884083	218.21	219.2	1 1.00	0.43	648.0	00 290.	00 31.	10 69.0
218.66	218.86	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace pink-red garnet. Zoned with 2 cm quartz-feldspar aplite on the hanging wall and the foot wall. Spodumene is white to very pale green with crystals oriented subperpendicular to contacts and up to 3 cm long. Mineralization 218.66 - 218.86: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is white to very pale green with crystals oriented subperpendicular to contacts and up to 3 cm long.									

Feb 24, 2012 Page 10 of 24

Detailed L	ithology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
218.86	219.21	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite. Mineralization 218.86 - 219.21 : PY Pyrite, DISS Disseminated, 2.00% Pyrite concentration is between 1% and 2%, closer to 2%.									
219.21	220.72	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Feldspar-quartz-spodumene-muscovite. Feldspar is the dominant mineral and is gray-white in color with a perthitic texture. A few scattered pink-red garnet grains are present. Spodumene is pale green with very little altered to dark green. Crystals are oriented about 50 degrees to the core axis and are about 4 cm long. Mineralization 219.21 - 220.72: SPOD Spodumene, PERV Pervasive, 10.00% Spodumene is pale green with very little altered to dark green. Crystals are oriented about 50 degrees to the core axis and are about 4 cm long.	884084 884085 884086	219.21 220.21 220.21	220.2' 220.7' 220.7'	0.51	0.9	7 1020.	90.	20 98	.40 162.¢ .10 174.¢ .10 166.¢
220.72	224.64	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-bitotite with disseminated pyrite. From 222.32 to 222.60 the metasediment has curvy lines oriented at 30 degrees to the core axis with a slightly different mineralogy. Unsure if it is related to bedding or some sort of alteration. The mineral that makes this section different is black, needle shaped, medium hard and up to 3 mm long oriented subperpendicular to the curvy bands. Mineralization 220.72 - 224.64: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1% Structure 221.09 - 221.15: DYKE, 85.00 Deg to CA White QFM zoned aplite with trace garnets. Hanging wall is about 2 cm of mostly white feldspar. RQD 222.18 - 226.56: 91.32 % RQD 97.94 % Core	884088 884088	220.72 224.55	221.72 225.59						.80 19.0 .50 83.0
224.64	225.10	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and medium to coarse grained. There is a metasediment xenolith between 224.71 and 224.74 showing heavy metasomatism. Aplite band with the same composition between 222.88 and 222.93.									

Detailed L	ithology				Assay D	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
225.10	225.55	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Structure 225.52 - 225.54: DYKE, 50.00 Deg to CA Mafic dike, probably with the composition of a diabase but is too fine grained to determine composition. Exhibits 0.5 cm green and black chilled margins. Green color can probably be attributed to chlorite as the margins are soft and waxy.									
225.55	228.27	SPD PEG, spodumene pegmatite	884089	225.55	226.56	1.0	1 1.7	74 656.	00 83	.50 129	.00 235
		Spodumene pegmatite. White and coarse grained.	884091	226.56	227.56			56 709.	00 59	.50 48	.30 226
		Quartz-feldspar-muscovite-spodumene with trace, scattered, pink-red garnets. Spodumene is white to pale green with very little alteration to dark green. Crystals are oriented about 45 degrees to the core axis and are up to 5 cm long. Contacts oriented about 60 degrees to the core axis. The little mafic dike above it appeared to have no effect on the quality of the spodumene. There is a small (3 cm), white, felsic (QFM), aplite-like xenolith with gray, aplite QFM mineralization extending from it for 0.5 cm near meter 228. Mineralization 225.55 - 226.56: SPOD Spodumene, PERV Pervasive, 18.00% Spodumene is white to pale green with very little alteration to dark green. Crystals are oriented about 45 degrees to the core axis and are up to 5 cm long. RQD 226.56 - 230.99: 92.55 % RQD 99.10 % Core	884092	227.56	228.27	0.7	1 0.5	50 640.·	00 57	.50 72	.60 193
228.27	228 53	M SCH, mica schist	884093	228.27	229.38	3 1.1	1 0.4	15 775.	00 424	00 18	.10 60
220:21		Metasediment. Medium gray and slightly coarser grained than usual. Quartz-feldspar-biotite. Increase in grain size is likely caused by metasomatismit could be a xenolith. Structure 228.37 - 228.39: DYKE, 30.00 Deg to CA QFM aplite dikelet. The mica appears to be biotite, rather than muscovite. Perhaps the biotite is an influence of the metasediment.	004073	220.27	227.30	1 1 1	1 0	773.	30 <u>4</u> 424	.00	.10 00
228.53	228.70	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with a few scattered garnets. Shows some zoning, with aplites on the hanging wall (QF, extending 1 cm) and on the the footwall (QFM, extending 2 cm with the upper cm with muscovite and the lower cm with a soft, black mineral, probably biotite). Spodumene is white to pale green in color with crystals oriented perpendicular to contacts and are up to 1.5 cm long. Upper contact oriented at 50 degrees and lower contact is oriented 60 degrees to the core axis. Mineralization 228.53 - 228.70: SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is white to pale green in color with crystals oriented perpendicular to contacts and are up to 1.5 cm long.									

Feb 24, 2012 Page 12 of 24

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
228.70	229.38	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with finely disseminated pyrite. Mineralization 228.70 - 229.38: PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is less than 1% Structure 228.82 - 228.83: DYKE, 85.00 Deg to CA White QFM aplite dikelet.									
229.38	230.63	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Feldspar-quartz-muscovite-spodumene with a few scattered garnets. A small amount of the feldspar appears to be cleavelandite. Spodumene is mostly pale green with some alteration to medium green. There is an altered medium green section located at 230.10 and extending to 230.22. The spodumene immediately up the hole from this section is pale green. Crystals are oriented at about 50 degrees to the core axis and are up to 4 cm long. Contacts are oriented at 60 degrees (upper) and 80 degrees (lower) to the core axis. Mineralization 229.38 - 230.63: SPOD Spodumene, PERV Pervasive, 10.00% Spodumene is mostly pale green with some alteration to medium green. There is an altered medium green section located at 230.10 and extending to 230.22. The spodumene immediately up the hole from this section is pale green. Crystals are oriented at about 50 degrees to the core axis and are up to 4 cm long.	884095 884095	229.38 230.38	230.3 230.6					_	0.10 144 1.40 136
230.63	236.25	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with very trace amounts of pyrite. Structure 231.74 - 231.76: DYKE, 10.00 Deg to CA White QFM aplite dikelet. Mica appears to be biotite 234.96 - 234.99: DYKE, 10.00 Deg to CA Same as above. Intersects with another dikelet just beneath it. 235.05 - 235.07: DYKE, 10.00 Deg to CA Same as above. Intersects with the dikelet just above it. RQD 230.99 - 235.31: 96.99 % RQD 100.00 % Core Recovery should be 101.39% 235.31 - 239.70: 96.13 % RQD 99.32 % Core	884096	230.63	231.6	3 1.C	0.2	26 206.	00 127	00 3	3.30 10

Feb 24, 2012 Page 13 of 24

Detailed L	ithology				Assay I	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Ве_ррг	m
236.25	236.46	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and semi-coarse grained. Quartz-feldspar-muscovite-spodumene. An aplite QF (with trace garnet) matrix seems to host larger crystals of feldspar, quartz, and spodumene/muscovite. Nearly all of the spodumene is altered to muscovite or a dark yellow-green. Crystals are 1.5 cm long and are oriented perpedicular to contacts. Contacts are oriented at 70 degrees (upper) and at 80 degrees (lower). Mineralization 236.25 - 236.46: SPOD Spodumene, PERV Pervasive, 1.00% Nearly all of the spodumene is altered to muscovite or a dark yellow-green. Crystals are 1.5 cm long and are oriented perpedicular to contacts	884097	236.35	237.3	5 1.0	0 0.2	6 406.0	00 127.	00 31	.70	33.0
236.46	237.35	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace disseminated pyrite.										
237.35	238.35	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Feldspar-quartz-spodumene-muscovite with trace, scattered amounts of garnet and blue-green apatite grains. There is a about 5 cm thick aplite band on the hanging wall and on the footwall. The band is further divided into relatively thick white QF bands alternating with thinner QFM bands. Spodumene is pale to dark altered green with alteration increasing down the hole. Crystals are oriented about 50 degrees to the core axis and are up to 3 cm long. Contacts are oriented 75 degrees (upper) and 60 degrees to the core axis. Mineralization 237.35 - 238.35: SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is pale to dark altered green with alteration increasing down the hole. Crystals are oriented about 50 degrees to the core axis and are up to 3 cm long.	884098	237.35	238.3	5 1.0	0 1.2	7 831.	00 68.		9.90	151.
238.35	241.52	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace amounts of disseminated pyrite. Cut by a few thin (up to 2 mm), white quartz veins oriented about 50 degrees to the core axis. It is also cut by 2 very long and thin QF aplite dikelets oriented about 5 degrees to the core axis. The first is 3 mm thick and extends from 238.51 m to 239.21 m. The second is 3 mm thich and extends from 240.18 m to 241.50 m. Structure 240.10 - 240.18: DYKE, 60.00 Deg to CA White QFM aplite dikelet. RQD 239.70 - 244.10: 97.50 % RQD 99.55 % Core	884099	238.35	239.3	5 1.0	0 0.2	4 <u>187.</u>	00 116.	00 4	1.20	8.

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
241.52		SPD PEG, spodumene pegmatite Spodumene pegmatite. White and medium grainednearly aplitic. Quartz-felspar-muscovite-spodumene with small scattered garnets. Spoudmene is almost entirely altered to yellow-green muscovite. The unaltered spodumene is pale green with crystals oriented perpendicular to contacts and up to 1 cm long. Contacts oriented 50 degrees (upper) and 40 degrees (lower) to the core axis. Mineralization 241.52 - 241.88: SPOD Spodumene, PERV Pervasive, 1.00% poudmene is almost entirely altered to yellow-green muscovite. The unaltered spodumene is pale green with crystals oriented perpendicular to contacts and up to 1 cm long.									
241.88	243.00	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Cut by a few small dikes and another one of those long, thin dikelets. This thin dikelet is 2 mm wide, oriented 4 degrees to the core axis and extends from 243.60 m to 244.39 m. Structure 242.59 - 242.62: DYKE, 55.00 Deg to CA White QFM aplite with accessory garnets.									
243.00	243.27	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and coarse grained. There are trace garnets in the footwall QF aplite band (0.5 cm thick). Upper contact shows a little bit of metasomatism in the host metasediment. Contacts are oriented at 55 degrees (upper) and 65 degrees (lower).									
243.27	254.66	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Cut by a few white quartz veinlets oriented between 50 and 70 degrees to the core axis. Structure 247.50 - 247.53: DYKE, 35.00 Deg to CA White QF aplite dikelet with a hard, black accessory mineral. Shows slight zoning with a thin gray center. 249.61 - 249.73: DYKE, 40.00 Deg to CA Gray QFM pegmatite with trace pyrite grains. Shows zoning with pale brown-gray quartz extending about 2 cm from the hanging wall and foot wall 253.27 - 253.30: DYKE, 55.00 Deg to CA Gray QFM aplite dikelet. Shows zoning in bands. 1st band is 2mm thick and white, 2nd is 4 mm thick and pale brown, 3rd is 8 mm thick and gray, 4th is 4 mm thick and white, 5th is 2 mm thick and brown, 6th is 2mm thick and white. RQD 244.10 - 248.43: 94.23 % RQD 99.77 % Core 248.43 - 252.74: 99.30 % RQD 99.77 % Core 252.74 - 257.17: 98.65 % RQD 98.65 % Core	884101	253.66	254.6	66 1.0	0 0.3	30 154.	00 83.	10 1	.50 4

Feb 24, 2012 Page 15 of 24

Detailed L	ithology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
254.66	255.97	SPD PEG, spodumene pegmatite	884102	254.66	255.66	1.0	1.7	4 590.	00 50.	40 99	.00 224
		Spodumene pegmatite. White and coarse grained. Quartz-feldspar-spodumene-muscovite with trace garnets. Spodumene is pale green with a few crystals altered to gray. Crystals are oriented 35 degrees to the core axis and are up to 6 cm long. Contacts are oriented 65 degrees (upper) and 75 degrees (lower). Mineralization 254.66 - 255.97 : SPOD Spodumene, PERV Pervasive, 20.00%	884103	255.66	255.97	0.3	1 0.4	3 621.	00 51	30 98	.40 200
		Spodumene is pale green with a few crystals altered to gray. Crystals are oriented 35 degrees to the core axis and are up to 6 cm long.									
255.97	266.94	M SCH, mica schist	884104	255.97	256.97	1.0	0.2	6 152.	00 55.		.70 2
		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar. Cut by a	884105	265.94	266.94	1.0	0.1	9 123.	00 34.		.50 2
		few dikelets.	884106	265.94	266.94	1.0	0.1	9 126.	00 34.	70 C	.50 2
266.94		Structure 257.00 - 257.02 : DYKE , 40.00 Deg to CA White QF aplite dikelet with accessory garnets and trace pyrite. 260.43 - 260.47 : DYKE , 40.00 Deg to CA Gray QF aplite dikelet showing zoning. Hanging wall and foot wall are white and are 0.5 cm thick. Center is dark gray with trace pyrite and yellow-green muscovite. 261.83 - 261.93 : DYKE , 65.00 Deg to CA Same as above. 262.31 - 262.40 : DYKE , 10.00 Deg to CA White QFM pegmatite. The mica appears to be botite. 263.20 - 263.23 : DYKE , 40.00 Deg to CA Same as gray QF aplite above. 265.27 - 265.28 : DYKE , 50.00 Deg to CA White QF aplite with feldspar making up the hanging wall and the foot wall and quartz making up the core. RQD 257.17 - 261.58 : 97.73 % RQD 100.00 % Core 261.58 - 266.00 : 98.42 % RQD 100.00 % Core 266.00 - 270.36 : 96.79 % RQD 99.31 % Core SPD PEG, spodumene pegmatite	884107	266.94	267.94	1.0	0.8	4 650.	00 45	20 56	.80 134
		Spodumene pegmatite. White and coarse grained. Feldspar-quartz-muscovite-spodumene with trace, scattered garnets and trace blue-green apatite in the few thin aplite bands. Spodumene is pale green to altered dark gray. Crystals are oriented about 45 degrees to the core axis and are up to 3 cm long. Contacts are oriented at 65 degrees to the core axis (upper) and 90 degrees to the core axis. Mineralization 266.94 - 268.43: SPOD Spodumene, PERV Pervasive, 7.00% Spodumene is pale green to altered dark gray. Crystals are oriented about 45	884108	267.94	268.43						.90 212

Feb 24, 2012 Page 16 of 24

Detailed Li	ithology				Assay D	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_pp	m
268.43		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with very trace amounts of pyrite. There is some faint bedding visible with beds oriented about 90 degrees to the core axis. Structure 268.96 - 268.99: DYKE, 70.00 Deg to CA White QF aplite. 269.30 - 269.33: DYKE, 50.00 Deg to CA Gray QF aplite with metasediment xenoliths. RQD 270.36 - 274.77: 95.92 % RQD 100.00 % Core	884109	268.43	269.43	1.0	0 0.2	4 239.	00 104.	00	3.30	15.0
271.27		QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with trace garnets. Gray-white and medium grainednearly aplitic. The color, dark yellow-green, and the habit of the muscovite crystals, this pegmatite may have once been a spodumene pegmatite. There is a 4 cm thick aplite band on the footwall. Contacts are oriented about 60 degrees to the core axis.										
271.66		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace disseminated pyrite. Structure 279.97 - 280.06: DYKE, 40.00 Deg to CA Gray QFM pegmatite dikelet. RQD 274.77 - 279.08: 89.33 % RQD 98.84 % Core 279.08 - 283.49: 92.97 % RQD 99.32 % Core 283.49 - 287.86: 96.15 % RQD 98.64 % Core	884111	284.63	285.63	1.0	0 0.1	7 258.	00 220.	900	5.40	19.0

Feb 24, 2012 Page 17 of 24

Detailed Li	thology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
285.63	288.47	SPD PEG, spodumene pegmatite	884112	285.63	286.63	1.00	0.65	700.0	00 57.5		
		Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite	884113	286.63	287.63						
			884114	287.63	288.47	0.84	0.65	679.0	00 45.7	70 17.	80 166.0
		It has a 1.5 cm thick QFM aplite tail extending 42 cm up into the metasediment from the hangingwall contact. There is a 4 cm thick pink garnet band oriented at									
		50 degrees to the core axis located at 286.63 m. There are alternating pegmatite									
		and aplite bands at 287.70 extending to 287.93 m Spodumene is pale green with									
		slight dark green alteration around its edges to almost black. Alteration increases down the hole. Crystals are oriented about 45 degrees to the core axis and are									
		up to 6 cm long. Upper contact is oriented about 43 degrees to the core axis and are									
		contact is lost in rubble.									
		Mineralization									
		285.63 - 288.47 : SPOD Spodumene, PERV Pervasive, 10.00%									
		Spodumene is pale green with slight dark green alteration around its edges to almost black. Alteration increases down the hole. Crystals are oriented about									
		45 degrees to the core axis and are up to 6 cm long.									
		RQD									
		287.86 - 291.81: 70.38 % RQD 97.47 % Core									
288.47	291.90	M SCH, mica schist	884115	288.47	289.47	1.00	0.24	197.0	00 81.4	10 0.	60 6.0
		Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with trace disseminated pyrite.									
		Structure									
		288.47 - 289.50									
		Fractured in an area displaying increased schistosity. Blocky pieces are 1-5 cm long. There does not appear to be a dominant angle of fracture.									
		RQD									
		291.81 - 296.33: 96.46 % RQD 96.46 % Core									
291.90	292.26	QFM PEG, quartz-feldspar-muscovite pegmatite									
		Quartz-feldspar-muscovite pegmatite. White and coarse grained. The muscovite									
		is yellow-green in color and some of the crystals seem to take on the shape of									
		spodumene crystals. May have been a spodumene pegmatite at one point. There is a 0.5 cm thick QF aplite band with trace garnets extending from the									
		hanging wall and the footwall. Contacts are oriented at 80 degrees (upper) and									
		60 degrees (lower).									

Feb 24, 2012 Page 18 of 24

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
292.26	300.02	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace disseminated pyrite. Cut by a few white quartz veinlets with orientations between 60 and 70 degrees to the core axis. Also cut by a few dikelets. Structure 294.10 - 294.13: DYKE, 50.00 Deg to CA White and dark gray zoned QF aplite with trace garnets in the 0.5 cm thick white bands on the foot wall and hanging wall. 294.43 - 294.52: DYKE, 85.00 Deg to CA White QFM pegmatite with trace garnets with a 6 cm thick tail extending 11 cm down into the metasediment. 295.88 - 295.90: DYKE, 50.00 Deg to CA Pale brown and white QF pegmatite. Zoned with the upper portion consisting of gray-brown quartz. 298.32 - 298.34: DYKE, 60.00 Deg to CA White QFM aplite dikelet. 298.52 - 298.57: DYKE, 70.00 Deg to CA Gray and white QF aplite. Zoned with white feldspar crystals 1 cm thick on the hanging wall and foot wall. 299.84 - 299.89: DYKE, 70.00 Deg to CA Same as above RQD 296.33 - 300.79: 93.72 % RQD 99.10 % Core									
300.02	300.17	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with trace scattered garnets. White and coarse grained on the edges. There is a 10 cm thick aplite band in the center. Contacts oriented subperpendicular to the core axis.									
300.17		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite. Mineralization 300.17 - 300.39 : PY Pyrite, DISS Disseminated, 1.00% Pyrite content is slightly less than 1%									
300.39	300.68	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with accessory scattered garnets. White to yellow-green in color and mostly consists of aplite. Aplite is banded with QF bands and QFM bands. Garnet grains are up to 0.5 cm in diameter and correlate slightly with the QFM aplite bands. Contacts are oriented about 75 degrees to the core axis.									

Feb 24, 2012 Page 19 of 24

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
300.68	318.86	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. Cut by several dikelets. The section of metasediment between 302 and 305 m is schistose.									
		Mineralization 300.68 - 318.86 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1%									
		Structure 302.06 - 302.17 : DYKE , 85.00 Deg to CA Light gray QF aplite with accessory garnet. Appears to have a microfault that is subparallel to the core axis and displacing the dike about 1 cm with "right-lateral" slip. 302.46 - 302.52 : DYKE , 50.00 Deg to CA White and dark gray zoned, coarse grained QF aplite dikelet. White QF bands about 0.5 cm thick line the hanging wall and the footwall with trace garnets. 304.52 - 304.58 : DYKE , 60.00 Deg to CA OFM pegmatite zoned like the above aplite. 307.20 - 307.23 : DYKE , 40.00 Deg to CA OF aplite colored and zoned like the above. 309.82 - 309.85 : DYKE , 25.00 Deg to CA White, very fine grained, QF aplite. 310.64 - 310.66 : DYKE , 75.00 Deg to CA White QF aplite. 313.26 - 313.33 : DYKE , 70.00 Deg to CA Gray QF pegmatite with large metasediment xenoliths. 313.85 - 315.10 : FZ Fault Zone, 40.00 Deg to CA Fault zone. Pieces are 1 to 10 cm long with some exhibiting slickensides and feel smooth and waxy. Minor amounts of fault gouge present. 318.55 - 318.60 : DYKE , 55.00 Deg to CA									
		Gray, very fine grained, QF aplite. RQD 300.79 - 305.23: 91.67 % RQD 99.10 % Core									
		305.23 - 309.69 : 93.95 % RQD 100.00 % Core 309.69 - 314.09 : 88.18 % RQD 97.27 % Core 314.09 - 318.28 : 64.92 % RQD 96.42 % Core 318.28 - 322.70 : 97.06 % RQD 99.32 % Core									
318.86	319.00	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and coarse grained except for the last 4 cm which is aplite. Contacts are oriented at 80 degrees to the core axis.									

Page 20 of 24 DETAILED LOG

Detailed Lithology		Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
319.00		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. Cut by several small dikelets. Mineralization 319.00 - 327.44 : PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is less than 1% Structure 319.31 - 319.33 : DYKE , 15.00 Deg to CA White, coarse grained, QF aplite. 320.80 - 320.89 : DYKE , 65.00 Deg to CA White QFM pegmatite with the last 6 cm consisting of QF aplite with trace garnets. 322.16 - 322.26 : BD Bedding, 90.00 Deg to CA A single light gray bed that appears to fine upwards in the hole. 322.50 - 322.56 : DYKE , 30.00 Deg to CA White QFM pegmatite with most of the muscovite concentrated in the middle. 323.07 - 323.19 : DYKE , 60.00 Deg to CA Pale brown QF pegmatite (predominantly composed of quartz) containing a very large metasediment xenolith. Metasomatism in the xenolith and surrounding metasediment is strong. 326.67 - 326.70 : DYKE , 65.00 Deg to CA Gray and white QF aplite dikelet. RQD 322.70 - 327.09 : 97.95 % RQD 97.95 % Core 327.09 - 331.58 : 99.77 % RQD 99.77 % Core									
327.44	327.67	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with trace, scattered garnets. White and coarse grained except in the aplite bands. There is a 2 cm QF aplite band on the hanging wall and a 10 cm QFM aplite band with trace garnet on the footwall. Contacts are oriented 80 degrees to the core axis.									

Feb 24, 2012 Page 21 of 24

Detailed Lithology			Assay Data								
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
327.67	n To Lithology :										
341.00	341.23	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with small grains of a hard black mineral as an accessory (Nb-Ta oxides?) White and mostly coarse grained. Larger grains appear to be hosted in a QF aplite matrix. Contacts are oriented at 50 degrees (upper) and 60 degrees (lower)									

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
341.23	352.40	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with very trace amounts of disseminated pyrite. Hosts several small aplite dikes. Cut by a few 1mm thick white quartz veins with orientations between 5 and 35 degrees. Structure 341.90 - 341.97 : DYKE , 70.00 Deg to CA White QF aplite dikelet with a soft, black, needle shaped accessory mineral 342.10 - 342.13 : DYKE , 80.00 Deg to CA White QF aplite dikelet with grainsize decreasing down the hole. 342.93 - 343.00 : DYKE , 20.00 Deg to CA White QF aplite dikelet with a pale brown-gray quartz core. Hanging wall and foot wall are white QF in composition and about 1 cm thick 343.63 - 343.98 White QF aplite dikelet that appears to have just had its edge intersected by the drill core. It is roughly oriented subparallel to the core axis and has 3 ellipsoid sections with 2 of the 3 ellipsoids having metasediment "eyes." 344.29 - 344.30 : DYKE , 65.00 Deg to CA Pale gray-brown QF pegmatite dikelet. 349.19 - 349.29 : DYKE , 75.00 Deg to CA White QFM pegmatite dikelet with scattered pink accessory garnets. RQD 344.68 - 349.19 : 96.45 % RQD 98.45 % Core 349.19 - 353.49 : 96.05 % RQD 99.53 % Core				-					
352.40	352.63	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with pink garnets as an accessory mineral in the 8 cm thick aplite band on the footwall. White in colore and is coarse grained except for the aplite. Contacts are oriented at 65 degrees to the core axis. Intersected by a QFM aplite dike on the lower contact.									
352.63 353.87		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Intersected at on its upper contact by a QFM aplite dikelet. Structure 352.65 - 352.67 : DYKE , 65.00 Deg to CA Gray QFM aplite dikelet. Intersects the contact of the QFM pegmatite and the metasediment. RQD 353.49 - 357.83 : 97.00 % RQD 100.00 % Core Recovery should be 100.23% QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and coarse grained. Some of the									
		feldspar appears to be cleavelandite. Scattered, accessory garnet grains. Lower half of the pegmatite has a QF matrix that hosts larger crystals of quartz and muscovite. Contacts oriented at 70 degrees (upper) and 65 degrees (lower).									

Detailed Lithology			Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
354.63	From To Lithology		Sample Mulliber	riviii		Lengill	.і.го_реі	ко_ррп	С5_ррп1	та_ррп1	ъе_ррп1	
		RQD 357.83 - 359.00: 76.92 % RQD 99.14 % Core										
358.99	359.00	EOH, end of hole										

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884071	198.33	199.33	0.3014	723.0000	299.0000	18.2000	40.0000
884072	199.33	200.33	0.6674	569.0000	47.2000	15.6000	79.0000
884073	200.33	201.33	0.9042	682.0000	51.3000	33.4000	169.0000
884074	201.33	202.33	0.7535	638.0000	54.5000	79.3000	184.0000
884075	202.33	202.84	0.1076	567.0000	43.6000	22.9000	277.0000
884076	202.84	203.84	0.3014	478.0000	306.0000	1.2000	14.0000
884077	211.76	212.76	0.2799	570.0000	274.0000	26.0000	36.0000
884078	212.76	213.76	1.5500	453.0000	55.9000	75.9000	210.0000
884079	213.76	214.76	1.6577	627.0000	51.8000	92.7000	178.0000
884081	214.76	215.08	0.6674	756.0000	61.9000	91.3000	202.0000
884082	215.08	216.08	0.3229	368.0000	198.0000	5.9000	9.0000
884083	218.21	219.21	0.4306	648.0000	290.0000	31.1000	69.0000
884084	219.21	220.21	0.6889	1760.0000	103.0000	56.4000	162.0000
884085	220.21	220.72	0.9688	1020.0000	90.2000	98.1000	174.0000
884087	220.72	221.72	0.3014	428.0000	247.0000	21.8000	19.0000
884088	224.55	225.55	0.2583	1050.0000	437.0000	61.5000	83.0000
884089	225.55	226.56	1.7438	656.0000	83.5000	129.0000	235.0000

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884091	226.56	227.56	1.6577	709.0000	59.5000	48.3000	226.0000
884092	227.56	228.27	0.4952	640.0000	57.5000	72.6000	193.0000
884093	228.27	229.38	0.4521	775.0000	424.0000	18.1000	60.0000
884094	229.38	230.38	0.8181	659.0000	61.2000	80.1000	146.0000
884095	230.38	230.63	0.1076	271.0000	28.9000	51.4000	130.0000
884096	230.63	231.63	0.2583	206.0000	127.0000	3.3000	10.0000
884097	236.35	237.35	0.2583	406.0000	127.0000	31.7000	33.0000
884098	237.35	238.35	1.2702	831.0000	68.1000	59.9000	151.0000
884099	238.35	239.35	0.2368	187.0000	116.0000	4.2000	8.0000
884101	253.66	254.66	0.3014	154.0000	83.1000	1.5000	4.0000
884102	254.66	255.66	1.7438	590.0000	50.4000	99.0000	224.0000
884103	255.66	255.97	0.4306	621.0000	51.3000	98.4000	200.0000
884104	255.97	256.97	0.2583	152.0000	55.0000	0.7000	2.0000
884105	265.94	266.94	0.1938	123.0000	34.1000	0.5000	2.0000
884107	266.94	267.94	0.8396	650.0000	45.2000	56.8000	134.0000
884108	267.94	268.43	0.9472	250.0000	32.4000	50.9000	212.0000
884109	268.43	269.43	0.2368	239.0000	104.0000	8.3000	15.0000
884111	284.63	285.63	0.1722	258.0000	220.0000	5.4000	19.0000
884112	285.63	286.63	0.6458	700.0000	57.5000	45.8000	206.0000
884113	286.63	287.63	1.1625	1090.0000	59.3000	14.5000	214.0000
884114	287.63	288.47	0.6458	679.0000	45.7000	17.8000	166.0000
884115	288.47	289.47	0.2368	197.0000	81.4000	0.6000	6.0000
Sample Type CDUP		<u> </u>					<u> </u>
884086	220.21	220.72	0.5813	1530.0000	103.0000	88.1000	166.0000
884106	265.94	266.94	0.1938	126.0000	34.7000	0.5000	2.0000

Project Name:	Nama Creek	Primary Coordinates Grid: L	JTM:	Destination Coordinates Grid: UTM:	Collar Dip:	-79.00
Project Number:	01	North: 5477616.90		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424415.48		East:	Length:	440.00
		Elev: 370.45		Elev:	Start Depth:	0.00
Date Started:	Sep 23, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	440.00
Date Completed:	Sep 30, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: Hole logged by Andrea Dixon; claim number TB67136

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	188.54	191.54	3.00	0.9114	584.3333	45.5667	42.0000	160.6667
WEIGHTED	212.00	213.98	1.98	0.8918	524.0404	41.7384	47.8788	125.5354

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
14.00				ОК	mag field: 56820	F2 00			71	OK	mag field: 56820
14.00	135.00	-78.90	Reflex	UK	may neid. 50020	53.00	136.40	-78.40	Reliex	OK	may neid. 30020
100.00	132.90	-78.50	Reflex	OK	mag field: 57030	148.00	132.30	-77.90	Reflex	OK	mag field: 57360
200.00	133.70	-77.90	Reflex	ОК	mag field: 57250	251.00	131.20	-78.50	Reflex	OK	mag field: 57160
302.00	132.80	-78.10	Reflex	ОК	mag field: 57470	350.00	134.00	-78.10	Reflex	OK	mag field: 59690
401.00	130.70	-78.70	Reflex	OK	mag field: 58040	440.00	132.10	-78.60	Reflex	OK	mag field: 58850

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-biotite-feldspar with disseminated pyrite. There is a bright orange iron stain in some of the fractured areas. Mineralization 0.00 - 4.80: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is roughly 1% and shows an increase in abundance on fracture planes. RQD 2.00 - 6.22: 61.37 % RQD 81.52 % Core									
4.80		DIAB, diabase Mafic dike, most likely related to the diabase dikes in the area. Aphanitic and medium gray in color. Strongly magnetic compared to the metasediment. Exhibits light gray 0.5 cm wide chilled margins. Fractures in the dike have a waxy feel and are tinged slightly green, probably from the presence of chlorite. Rarely are there pyrite crystals in the fracture planes.									

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
6.22		M SCH, mica schist Metasediment. Medium gray with a slight red tint and fine grained. Quartz-feldspar-biotite with disseminated pyrite. Highly fractured and whole pieces of core are relatively rare, with the longest run being about 4 m length. The fracture planes of the metasediment are stained bright red and contain a carbonate. Rarely, there is a bright green staining also accompanied by a carbonate. Staining could be the result of different oxidation states of iron. Staining decreases in quantity down the hole. Pyrite content increases down the hole. Fracturing is most likely the result of faulting. Evidence for faulting is a brecciated zone from 29 m to 30.50 m. Here some of the core is held together with a matrix of gray mud sized particles, quartz, and carbonate veins. The clasts are highly angular and appear to be shifted away from where they came from and slickensides found throughout the fractured area. Alteration 44.14 - 48.60 :SI Silica, Patchy , Moderate Silicified areas are paler gray and are slightly harder than the surrounding metasediment usually with irregular boundaries. Structure 6.22 - 33.80 Fault zone. Slickensides present throughout the zone. Cohesive fault breccia from 29 m to 30.50 m. Here some of the core is held together with a matrix of gray mud sized particles, quartz, and carbonate veins. The clasts are highly angular. 34.72 - 35.49 : FR Fractured, 50.00 Deg to CA Fractured rock. Made up of blocky pieces 2-8 cm long.Pyrite is in greater abundance along the fracture planes. 36.17 - 36.27 Quartz vein with red stain striations. 39.13 - 40.44 : FR Fractured, 35.00 Deg to CA Fractured rock made up of blocky angular pieces 1 to 10 cm long 44.33 - 44.43 Same as the quartz vein above. 44.46 - 44.90 Same as the quartz vein above. 44.86 - 44.90 Same as the quartz vein above. 44.86 - 47.90 Same as the quartz vein above. 47.75 - 47.92 : FR Fractured, 20.00 Deg to CA Fractured rock made up of blocks 1 to 12 cm long. 46.87 - 47.12 Quartz vein with some red k-spar oriente									

Feb 24, 2012 Page 3 of 24

Detailed Litho	logy				Assay	Data					
From T)	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		Structure 49.56 - 49.76: FR Fractured, 40.00 Deg to CA Fractured rock made up of angular blocks 2 to 4 cm long. 50.85 - 51.05: FR Fractured, 20.00 Deg to CA Fractured rock made up of thin angular blocks 1 to 12 cm long. RQD 6.22 - 10.00: 56.61 % RQD 84.13 % Core 10.00 - 13.55: 30.14 % RQD 85.35 % Core 13.55 - 17.35: 44.21 % RQD 88.68 % Core 17.35 - 20.66: 9.97 % RQD 71.90 % Core 20.66 - 24.00: 29.34 % RQD 85.63 % Core 24.00 - 26.70: 18.15 % RQD 74.07 % Core 26.70 - 30.00: 4.24 % RQD 74.54 % Core 33.80 - 38.80: 15.79 % RQD 84.47 % Core 33.80 - 38.00: 20.95 % RQD 77.62 % Core 41.55 - 44.86: 35.06 % RQD 96.98 % Core 44.86 - 48.60: 33.69 % RQD 94.92 % Core 48.60 - 52.19: 38.72 % RQD 96.38 % Core									

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
81.18	83.00	M SCH, mica schist Metasediment. Medium gray and fine grained. Lacks the pink tinge of the rock above it. The contact between the unknown rock and the metasediment is faint, which suggests the unknown rock is really a light colored metasediment. Composed of quartz, feldspar, and biotite with trace disseminated pyrite throughout. Shows slight foliation.									
		Structure 81.18 - 83.00 : FR Fractured, 80.00 Deg to CA Entire metasediment section is fractured but into large pieces, smallest piece is about 4 cm long, the largest is 23 cm long.									
83.00	83.25	GR, granite Red Granite. Coarse grained (grain sizes about 7mm in diameter) Modal mineralogy is approximately 60% red k-spar, 25% gray-white to translucent quartz, and 15% white to pale pink plagioclase. Contains numerous metasediment xenoliths and is highly fractured.									
		Structure 83.00 - 83.25 Highly fractured with most pieces about 2 cm long with a few up to 4 cm long. Fracturing is slightly controlled by the cleavages of its component minerals. No master fracture angle.									
83.25	83.45	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Shows slight foliation. Probably a large xenolith found in the red granite. Structure									
		83.25 - 83.45 : FR Fractured, 50.00 Deg to CA Fractured metasediment made up of blocks about 3 cm long. Fracturing is slightly controlled by the foliation in the metasediment.									
83.45	85.00	GR, granite Red granite, same as above, mixed with metasediment, same as above. Probably the edge of the granite body. Disseminated pyrite throughout the unit, shows a slight preference for crystallizing on the granite.									
		Mineralization 83.45 - 85.00 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1%									
		Structure 83.45 - 85.00 Fractured throughout the unit. There is not a dominant fracture angle but it appears to be slightly controlled by the cleavages of the constituent minerals. RQD 83.75 - 86.20: 0.00 % RQD 71.02 % Core									

Feb 24, 2012 Page 6 of 24

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
85.00		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace disseminated pyrite. Heavily fractured in most places. Structure 85.00 - 94.69 Fracture zone, possibly the edge of a fault zone as some pieces have smooth sides with faint slickensides. Blocky pieces less than 1 cm to as large as 19 cm 95.70 - 100.40 Fault zone. Does not appear to have a dominant angle of slip. Pieces clay sized to brecciated cohesive blocks up to 16 cm long. RQD 86.20 - 89.70: 20.29 % RQD 77.43 % Core 89.70 - 92.80: 5.16 % RQD 90.32 % Core 92.80 - 96.00: 27.82 % RQD 95.63 % Core							33_16.00		
		96.00 - 99.20: 5.00 % RQD 70.00 % Core 99.20 - 103.50: 11.39 % RQD 58.14 % Core									
100.40	100.58	GR, granite Red Granite. Coarse grained (grain sizes about 7mm in diameter) Modal mineralogy is approximately 60% red k-spar, 25% gray-white to translucent quartz, and 15% white to pale pink plagioclase. Highly fractured due to its inclusion in the fault zone. Structure 100.40 - 100.58 Continuation of the above fault zone. Blocky pieces are 2 to 5 cm long and are littered with hairline fractures.									

Feb 24, 2012 Page 8 of 24

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
126.00	161.63	DIAB, diabase Diabase. Medium gray and fine to medium grained. Grains are randomly oriented. General composition is feldspar-amphibole/pyroxene with fractures filled with the red stain, pyrite, carbonate, quartz, and a waxy and greasy mineral that ranges in color from white to gray and green. Slightly more magnetic than the metasediment. Initially, the diabase is almost pink with stain, highly fractured, and vuggy. Down the unit, all of those characteristics decrease, until the fractures only have a slight pink color and there are much more solid runs of core.									
		Mineralization 126.00 - 128.00 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is roughly 1%. Increases in abundance on the fracture planesnot on the slip planes. Structure 135.98 - 136.12 A large vein of the red stain, carbonate (probably calcite) and pyrite. Contains a large vug with small but beautifully formed calcite and pyrite crystals									
		RQD 128.00 - 132.23 : 68.09 % RQD 89.13 % Core 132.23 - 136.50 : 54.57 % RQD 95.08 % Core 136.50 - 140.56 : 48.03 % RQD 94.58 % Core 140.56 - 144.75 : 39.38 % RQD 94.03 % Core 144.75 - 149.00 : 52.94 % RQD 93.88 % Core 149.00 - 153.25 : 66.12 % RQD 96.25 % Core 153.25 - 157.53 : 60.98 % RQD 98.13 % Core 157.53 - 161.77 : 40.09 % RQD 94.34 % Core									

Feb 24, 2012 Page 9 of 24

Page 10 of 24 DETAILED LOG

Detailed Lit	thology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
187.54	192.74	SPD PEG, spodumene pegmatite	884117	187.54	188.54	1.00	0.09	624.	00 42.	90 84	1.10 221.0
		Spodumene pegmatite. White and mostly coarse grained.	884118	188.54	189.54	1.00			00 51.		2.00 196.0
		Quartz-feldspar-muscovite-spodumene with scattlered, trace garnets. Some of	884119	189.54	190.54	1.00		658.	00 46.		2.80 113.0
		the feldspar appears to be cleavelandite. The first 95 cm is an aplite matrix hosting larger crystals. Most of the spodumene in this section is altered to	884121	190.54	191.54	1.00					1.20 173.0
		yellow-green muscovite but some of it is altered to very dark green. Immediately	884122	191.54	192.54	1.00					3.30 84.0
		following this section at 188.49, there is a strongly metasomatized metasediment xenolith that extends for 15 cm down the hole. The rest of the pegmatite is coarse to very coarse grained after this point. In general, spodumene is pale gray to very dark green with about 10% altered to yellow-green muscovite. Crystals are oriented randomly and are up to 4 cm long.	884123	192.54	192.74	0.20	0.06	6 606.	<u>00 </u> 75.	00 83	3.70 165.0
		Mineralization 187.54 - 192.74: SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is pale gray to very dark green with about 10% altered to yellow-green muscovite. Crystals are oriented randomly and are up to 4 cm long. RQD 190.39 - 194.75: 78.67 % RQD 94.95 % Core									
192.74	193.50	M SCH, mica schist	884124	192.74	193.50	0.76	0.22	978.	00 294.	00 38	3.20 74.0
		Metasediment. Medium gray and fine to coarse grainedstrongly metasomatized on its upper and lower contacts (which are lost in rubble). Quartz-feldspar-biotite with trace amounts of disseminated pyrite.									
193.50		SPD PEG, spodumene pegmatite	884125	193.50	194.36	0.86	0.11	857.	00 175.		1.00 158.0
		Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene. Spodumene is gray to altered yellow-green muscovite. Crystals are oriented 50 degrees to the core axis and are up to 1 cm long. Lower contact of the pegmatite is oriented subperpedicular to the core axis and there is strong metasomatism present in the metasediment below it, extending for about 10 cm. Mineralization 193.50 - 194.36: SPOD Spodumene, PERV Pervasive, 1.00% Spodumene is gray to altered yellow-green muscovite. Crystals are oriented 50 degrees to the core axis and are up to 1 cm long.	884126	193.50	194.36	0.86	0.09	726.	00 151.	00 99	∂.80 145.€
194.36	200.50	M SCH, mica schist	884127	194.36	195.36	1.00	0.22	886.	00 404.	00 13	39.0
		Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Structure 194.75 - 194.82 : DYKE , 90.00 Deg to CA Gray QFM pegmatite dikelet. 197.14 - 198.07 Fracture area with 2 angles of fracture at 35 degrees and subparallel to the core axis. Made up of blocky pieces 3 to 14 cm long. RQD 194.75 - 198.90 : 55.42 % RQD 94.93 % Core 198.90 - 203.15 : 70.35 % RQD 96.74 % Core									

Feb 24, 2012 Page 11 of 24

Detailed Lit	thology				Assay	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	1
200.50		SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Feldspar-quartz-muscovite-spodumene. Some of the feldspar appears to be cleavelandite. Spodumene is gray to dark green with about 50% of it altered to yellow-green muscovite. Crystals are oriented about 50 degrees to the core axis and up to 4 cm long. Contacts are oriented 70 degrees to the core axis. Mineralization 200.50 - 201.00: SPOD Spodumene, PERV Pervasive, 10.00% Spodumene is gray to dark green with about 50% of it altered to yellow-green muscovite. Crystals are oriented about 50 degrees to the core axis and up to 4 cm long.										
201.00	212.00	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Appears to fracture along the slight foliation present. Cut by a few quartz veins oriented about 35 degrees to the core axis and a few carbonate mineral veins oriented subparallel to the core axis. Cut by a few dikelets as well. Structure 203.35 - 203.37 : DYKE , 60.00 Deg to CA White QFM pegmatite dikelet. 206.67 - 206.68 : DYKE , 50.00 Deg to CA White QF aplite dikelet. 207.31 - 207.32 : DYKE , 60.00 Deg to CA White QF aplite dikelet. 209.67 - 209.69 : DYKE , 40.00 Deg to CA Pale brown-gray, quartz dominant QF pegmatite with accessory pyrite. 210.18 - 210.20 : DYKE , 40.00 Deg to CA Same as above except with inclusions of metasediment and without pyrite. 210.71 - 210.75 : DYKE , 30.00 Deg to CA Same as above. The carbonate veinlet intersecting it contains pyrite and a bright, young-grass-green, fine grained mineral. 211.80 - 211.82 : DYKE , 90.00 Deg to CA Same as above. RQD 203.15 - 207.51 : 84.17 % RQD 99.54 % Core	884128	211.00	212.0	00 1.0	00 0.1	5 425.	00 208.	00 0	.90	11.0

Feb 24, 2012 Page 12 of 24

Detailed L	ithology.				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
212.00	213.98	SPD PEG, spodumene pegmatite	884129	212.00	213.0	0 1.00	0.7	3 479.	00 45.	50 70	.30 129.0
		Spodumene pegmatite. White and mostly coarse grained. Quartz-feldspar-muscovite-spodumene with trace, scattered garnet. The first 40 cm are aplite. Spodumene is white to pale green to very dark altered green. Crystals are oriented about 40 degrees to the core axis and are up to 3 cm long. Contacts with the metasediment above and diabase below are lost. Despite being on top of a diabase dike, the amount of alteration stays roughly constant in the spodumene. Mineralization 212.00 - 213.98: SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is white to pale green to very dark altered green. Crystals are oriented about 40 degrees to the core axis and are up to 3 cm long. RQD	884131	213.00	213.9	8 0.98	1.0	5 570.	00 37.	90 25	.00 122.0
		212.00 - 216.40 : 90.23 % RQD 98.63 % Core									
213.98	216.40	DIAB, diabase Diabase. Medium to dark gray and fine to medium grained. Feldspar-amphibole/pyroxene. The diabase feels slightly waxy and is slightly magnetic. Lower contact is slightly chilled and is slightly darker in colore than the metasediment below it.	884132	213.98	214.9	8 1.00	0.0	4 44.	00 10.	80 0	.70 2.0
216.40	224.05	M SCH, mica schist									
210.40	224.03	Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. Pyrite increases in abundance on fracture planes and is sometimes found with a silvery-colored sulfide with the same habits.									
		Mineralization 216.40 - 224.05 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1% Structure 218.64 - 219.27 Fractured area has 2 angles of fracture oriented at 40 degrees and subparallel to the core axis. Blocks are about 10 to 17 cm long. This fractured area hosts the most pyrite and silver sulfide. 222.00 - 222.56 : FR Fractured, 10.00 Deg to CA Fractured area is made up of long, thin, blocks 8 to 16 cm long. 223.21 - 223.57 : FR Fractured, 10.00 Deg to CA Same as above. RQD 216.40 - 220.60 : 74.52 % RQD 95.95 % Core 220.60 - 224.72 : 72.57 % RQD 98.06 % Core									

Feb 24, 2012 Page 13 of 24

Detailed L	ithology.				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
224.05	227.19	DIAB, diabase Diabase, or related mafic dike. Dark gray and very fine grained to fine grained. Too fine grained to discern compostion. Contacts are sharp and slightly irregular, oriented around 60 degrees (upper) and 90 degrees (lower) to the core axis. Margins are chilled and are accompanied by a waxy green mineral, likely chlorite. Slightly magnetic, especially compared to the metasediment. Has some black polka dots that might have once been phenocrysts but do not contain any recognizeable minerals now. RQD 224.72 - 229.23: 71.39 % RQD 94.68 % Core									
227.19	227.73	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite.									
227.73	228.30	DIAB, diabase Diabase, or related mafic dike. Much the same as above, except medium gray in color and contacts not nearly as distinct. Contacts oriented 50 degrees (upper) and 35 degrees (lower).									
228.30	228.70	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Shows some metasomatism from the dikes above and below it by having a few splotches near the contacts that are darker gray and finer grained.									
228.70	234.24	DIAB, diabase Diabase, or related mafic dike. Same as above, except for slightly coarser grainedenough to see that the compostion is feldspar-amphibole/pyroxene. Upper contact oriented 50 degrees to the core axis and the lower contact is oriented 70 degrees to the core axis. Structure 231.55 - 232.90 : FR Fractured, 10.00 Deg to CA Fractured area is made up of blocks 2 to 13 cm long. The main fracture plane has a thick (0.5 cm) coating of platy chlorite. RQD 229.23 - 233.49 : 67.37 % RQD 98.12 % Core 233.49 - 237.60 : 27.01 % RQD 93.19 % Core									

Feb 24, 2012 Page 14 of 24

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
234.24	238.19	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. The metasediment also has a pale gray polka dot pattern vaguely reminiscent of reduction spots. In areas of stronger foliation, these spots are stretched along the foliation plane. Mineralization 234.24 - 238.19: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly greater than 1% Structure 234.28 - 234.38: DYKE, 20.00 Deg to CA A long white QF aplite dike that is about 2 cm thick. 237.78 - 238.19: DYKE, 50.00 Deg to CA A squiggly, white, quartz-dominant pegmatite with inclusions of metasomatized metasediment with accessory pyrite crystals. RQD									
238.19	242.73	237.60 - 241.84 : 62.26 % RQD 95.75 % Core DIAB, diabase Diabase. Medium gray and fine to medium grained. Feldspar-amphibole/pyroxene with trace pyrite. Slightly magnetic compared to the metasediment. Fractures have a light coating of a waxy, white to pale green mineral (probably chlorite). Contacts are oriented 50 degrees (upper) and 60 degrees (lower) to the core axis. RQD									
		241.84 - 246.13: 78.09 % RQD 97.20 % Core									

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	To 255.85	Lithology M SCH, mica schist Metasediment. Medium gray and fine grained and shows slight foliation. Quartz-feldspar-biotite with disseminated pyrite. Pyrite crystals are concentrated on fracture planes. Mineralization 242.73 - 255.85: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1% Structure 243.09 - 243.12: DYKE, 80.00 Deg to CA White quartz-dominant pegmatite dikelet. In a fracture running through it, it is mineralized with pyrite and a silver colored sulfide. 243.50 - 244.13 Same as above but with large (10 cm) inclusions of metasomatized metasediment. 247.10 - 247.13: DYKE, 50.00 Deg to CA White quartz-dominant pegmatite dikelet with small inclusions of metasediment. 248.70 - 248.72: DYKE, 10.00 Deg to CA White QF aplite dikelet. 249.44 - 249.45: DYKE, 30.00 Deg to CA Same as above. 250.19 - 250.71 Same as above. The core must have intersected the edge of dikelet sheet as it has 2 ellipsoid metasediment eyes. Dike is about 2 cm thick and is oriented roughly subparallel to the core axis. 252.41 - 252.73: DYKE, 30.00 Deg to CA A series of thin QF aplite dikelets becoming more quartz dominant and with increased metasediment xenoliths down the hole. 253.95 - 254.00 A pale brown-gray quartz and pyrite vein.	Sample Number	From	· -		Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 246.13 - 250.40: 97.89 % RQD 99.30 % Core									
		250.40 - 254.60 : 79.52 % RQD 97.86 % Core 254.60 - 258.81 : 86.70 % RQD 97.14 % Core									
255.85	256.05	DIAB, diabase									
		Diabase, or related mafic dike. Dark gray and very fine grained. It appears to have a slightly porphyritic texture with phenocrysts being much softer than the background. Slightly magnetic and has a slightly waxy feel compared to the metasediment. Contacts are sharp, oriented 50 degrees (upper) and 75 degrees (lower) to the core axis.									

Feb 24, 2012 Page 16 of 24

Detailed L	ithology				Assay	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_pp	om.
256.05		M SCH, mica schist Metasediment. Medium gray and fine grained. Ouartz-feldspar-biotite. Slight foliation is oriented about 90 degrees to the core axis. Cut by numerous white quartz veinlets, no more than 2 mm thick oriented between 30 and 40 degrees to the core axis. Also cut by numerous small dikelets. Structure 258.35 - 258.39: DYKE, 30.00 Deg to CA White QF aplite dikelet 258.47 - 258.49: DYKE, 50.00 Deg to CA Same as above. Connected by aplite strings to the dike below it. 258.53 - 258.61: DYKE, 40.00 Deg to CA White QF aplite dikelet 259.42 - 259.43: DYKE, 85.00 Deg to CA White, quartz-dominant pegmatite dikelet. 259.58 - 259.60: DYKE, 20.00 Deg to CA White QF aplite dikelet. 259.83 - 259.84: DYKE, 45.00 Deg to CA Same as above.	884133	264.80		<u> </u>	<u> </u>				.20	6.¢
265.80	267.44	RQD 258.81 - 263.08 : 90.16 % RQD 96.96 % Core 263.08 - 267.44 : 94.72 % RQD 99.31 % Core SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene. The center of the pegmatite is barren in spodumene. There is about a 2 cm thick zone of quartz aplite extending down from the hanging wall. Spodumene is gray-green in color with crystals oriented about 40 degrees to the core axis and are up to 3 cm long. Contacts are oriented 45 degrees (upper) and 90 degrees (lower) to the core axis. Mineralization 265.80 - 267.44 : SPOD Spodumene, PAT Patch, 7.00% Spodumene is gray-green in color with crystals oriented about 40 degrees to	884134 884135	265.80 266.80							2.90	105.0 195.0
267.44	268.80	the core axis and are up to 3 cm long. M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Cut by numerous spiderwebbing, white quartz veinlets up to 2 mm wide. RQD 267.44 - 271.89 : 88.54 % RQD 97.30 % Core	884136	267.44	268.4	14 1.0	0 0.0	9 164.0	00 34	.00 19	9.50	70.0
268.80	269.00	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and partially coarse grained. The lower 15 cm is comprised of aplitic bands, roughly 5 cm thick, alternating in composition between QF and QFM. Contacts are oriented 30 degrees (upper) and 50 degrees (lower) to the core axis.										

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
269.00	309.41	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. Occasionally, a few faint beds can be seen and the foliation is slightly stronger than normal. Cut by numerous dikelets. Mineralization 269.00 - 309.41 : PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is much less than 1%. Increased abundance on fracture planes. Structure 278.39 - 278.49 : DYKE , 55.00 Deg to CA White quartz-dominant pegmatite dikelet with small inclusions of metasediment. 281.00 - 283.70 Faint bedding, with beds subperpendicular to the core axis. Beds are 1 to 8 cm thick and can be told apart by slight variations in color and grain size. 283.70 - 283.77 : DYKE , 40.00 Deg to CA White QFM apilite dikelet 286.75 - 287.05 : DYKE , 30.00 Deg to CA White, meandering, quartz-dominant pegmatite dikelet. 286.75 - 287.87 : FOL Foliated, 90.00 Deg to CA Foliation is particularly strong in this section of core. 289.42 - 289.46 : DYKE , 80.00 Deg to CA White QFM apilite dikelet. 299.01 - 291.08 : DYKE , 50.00 Deg to CA White QFM apilite dikelet. 291.00 - 291.08 : DYKE , 50.00 Deg to CA White QFM apilite dikelet. 291.58 - 299.60 Same as the bedding above. 295.27 - 295.31 : DYKE , 70.00 Deg to CA White QF apilite dikelet. 300.69 - 300.71 : DYKE , 70.00 Deg to CA Pale pink quartz dominant QF pegmatite. Contains inclusions of metasediment. 300.74 - 300.80 : DYKE , 70.00 Deg to CA Pale pink quartz dominant QF pegmatite. Contains inclusions of metasediment. 301.40 - 301.47 : DYKE , 70.00 Deg to CA Gray QF apilite dikelet. 307.47 - 307.58 : DYKE , 70.00 Deg to CA Gray QF apilite dikelet. 307.47 - 307.58 : DYKE , 70.00 Deg to CA Gray QFM pegmatite dikelet. 307.47 - 307.58 : DYKE , 70.00 Deg to CA Fractured area is made up of blocks 5 to 9 cm long. Some of the fracture planes are coated with a white to robin egg's blue, very soft, waxy mineral.									

Detailed Lit	thology	,			Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 271.89 - 276.25 : 90.83 % RQD 98.39 % Core 276.25 - 280.55 : 85.12 % RQD 98.84 % Core 280.55 - 284.85 : 83.26 % RQD 99.53 % Core 284.85 - 289.06 : 75.77 % RQD 97.62 % Core 289.06 - 293.31 : 84.00 % RQD 99.06 % Core 293.31 - 297.72 : 94.56 % RQD 98.87 % Core 297.72 - 302.11 : 96.36 % RQD 98.41 % Core 302.11 - 306.61 : 89.78 % RQD 98.67 % Core 306.61 - 310.92 : 77.78 % RQD 93.50 % Core									
309.41	309.86	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White with larger crystals hosted in an aplite groundmass. Some of the muscovite is dark green in color and is shaped roughly like spodumene crystals. Contacts oriented 30 degrees to the core axis.									
309.86	323.21	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. Contains a few small visible beds. Cut by a few dikelets. Structure 310.45 - 310.51 : DYKE , 60.00 Deg to CA White QF aplite dikelet. 312.64 - 312.69 : DYKE , 30.00 Deg to CA Same as above. 315.95 - 316.33 : FR Fractured, 15.00 Deg to CA Fracture area made out of thin angular blocks 1 to 14 cm long. 319.76 - 320.00 : FR Fractured, 60.00 Deg to CA Fracture area made out of angular blocks 2-5 cm long. 320.96 - 321.08 : FR Fractured, 50.00 Deg to CA Fractured area made out of blocks about 4 cm long. 321.94 - 323.00 : FR Fractured, 70.00 Deg to CA Fractured area made out of blocks 2 to 8 cm long. RQD 310.92 - 314.95 : 84.37 % RQD 98.51 % Core 314.95 - 319.16 : 72.92 % RQD 97.86 % Core 319.16 - 323.21 : 37.53 % RQD 94.32 % Core									

Detailed L	ithology				Assay D	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
323.21	439.99	GB, Gabbro	884137	327.22	328.22	1.00)				
		Gabbro. Medium gray to dark gray and fine to coarse grained (crystals up to 7	884138	328.22	329.22	1.00)				
			884139	329.22	330.22	1.00)				
		mineralogy is roughly 60% pyroxene/hornblende, 35% feldspar, 5% olivine.	884141	330.22	331.22						
		From 331.60 to 333.90, the ratio changes to 50% pyroxene/hornblende, 45%	884142	331.22	331.60						
		feldspar, and 5% olivine. From 333.90 to 341, 50% pyroxene/hornblende, 40%	884143	362.00	363.00						
		feldspar and 10% olivine. From 341 to 357.50, 45% pyroxene/hornblende, 45%	884144	363.00	364.00						
		feldspar, 10% olivine. From 357.50 to 362, 50% pyroxene/hornblende, 40%									
		feldspar and 10% olivine. From 362 to 374, 50% feldspar, 40%	884145	364.00	365.00						
			884146	364.00	365.00						
		pyroxene/hornblende alternate very frequently usually between 40% and 50%	884147	365.00	366.00						
		with a fairly constant amount of olivine, about 10%, extremely rarely going as	884148	366.00	367.00	1.00)				
		low as 5% or as high as 15%. From 391 to 404, 55-60% feldspar, 30-35%	884149	367.00	368.00	1.00)				
		pyroxene/hornblende, 10% olivine. From 404 to 412.8, 50% feldspar, 30% pyroxene/hornblende, 20% olivine. From 412.8 to 419, 40%	884151	368.00	369.00	1.00)				
		pyroxene/hornblende, 30% olivine, 30% feldspar. From 419 to 440 the	884152	369.00	370.00	1.00)				
		quantities of feldspar and pyroxene/hornblende shift very frequently, 50-60%	884153	370.00	370.56						
		feldspar, 30-40% pyroxene/hornblende, 10% olivine. Grain size increases down	001.00	0,0.00	0,0,00	1 0.00	1				
		the hole initially and then starts to decrease in grainsize. From about 323.21 to									
		326 grains are fine, 326 to 330 grains are medium, 330 to 347 grains are coarse,									
		from 347 to 371 grains are medium, from 371 to 428 grains are slightly smaller									
		than medium grained, and from 428 to 440 grains are medium. Chlorite is									
		present on fracture planes mostly as a waxy green sheen. Trace amounts of									
		pyrite can be found on fracture planes as well. Contact with metasediment is									
		indistinct due to the fine grain size and same color. Initially discernable only in									
		fractured areas by the chlorite content and magnetic properties. Magnetism									
		appears to increase down the hole (qualitative assessment conducted by magnet									
		only, did not take any susceptibility readings). Visible magnetite crystals									
		sometimes make up about 1% of the core. There are 3 types of internal									
		structures that seem to be original to the gabbro, yet resemble dikes. Internal									
		structure Type I is a thin band of coarse grained feldspar on edges, inside of that									
		is a coarse grained mafic band with a massive chlorite/quartz/feldspar center,									
		inside of the mafic bands is a core of nearly pegmatitic gabbro. Composition of									
		the mafic core varies without a noticeable pattern. Internal structure Inverse of									
		Type I has thin bands of nearly pegmatitic gabbro with a slight increase in									
		feldspar with a single dark mafic band in the center and it the mafic band's core									
		is the massive chlorite/quartz/feldspar. Both versions of Type I are listed as									
		phaneritic textures. Internal structure Type II is pegmatitic gabbro, generally									
		with higher feldspar content and less olivine than the surrounding gabbro.									
		Texture									
		323.21 - 326.00 : FG Fine Grained									
		Fine grained.									
		326.00 - 330.00 : MG Medium Grained									
		Medium grained.									
		330.00 - 347.00 : CG Coarse Grained									
		Coarse grained									
		347.00 - 371.00 : MG Medium Grained									
		Medium grained									

Detailed Lithology				Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
To 3 in 5 in 5 in 5 in 6 in 6 in 6 in 6 in 6	Eithology exture 71.00 - 428.00 : FG/MG FG to MG rain size is between fine and medium grained 58.00 - 358.11 : PHAN phaneritic ype I structure (see main comment), oriented 30 degrees to the core axis 63.00 - 363.30 : PHAN phaneritic ype I, oriented 30 degrees to the core axis 63.54 - 363.55 : PEG Pegmatitic ype II (see main comment), oriented 30 degrees to the core axis 63.93 - 364.00 : PHAN phaneritic nverse Type I (see main comment), oriented 50 degrees to the core axis. 64.34 - 364.51 : PEG Pegmatitic ype II, oriented 75 degrees to the core axis. 64.72 - 364.75 : PEG Pegmatitic ype II, oriented 65 degrees to the core axis 70.30 - 370.64 : PEG Pegmatitic ype II, oriented 45 degrees to the core axis 71.25 - 371.45 : PEG Pegmatitic ype II, oriented 75 degrees to the core axis 74.64 - 374.74 : PEG Pegmatitic ype II, oriented 70 degrees to the core axis 74.64 - 374.74 : PEG Pegmatitic ype II, oriented 70 degrees to the core axis 92.64 - 392.66 : PHAN phaneritic ype I, oriented 40 degrees to the core axis 92.64 - 314.72 : PHAN phaneritic hverse Type I, oriented 60 degrees to the core axis 14.70 - 414.72 : PHAN phaneritic hverse Type I, oriented 50 degrees to the core axis 15.87 - 416.64 : PHAN phaneritic hverse Type I, oriented 30 degrees to the core axis 15.87 - 416.64 : PHAN phaneritic hverse Type I structure oriented subparallel to the core axis, about 5 m thick. 28.00 - 439.99 : MG Medium Grained ledium grained 30.91 - 430.95 : PHAN phaneritic hverse Type I, finer grained than usual, oriented 30 degrees to the core axis. 33.50 - 433.53 : PHAN phaneritic hverse Type I, finer grained than usual, oriented 30 degrees to the core axis. 34.37 - 434.41 : PHAN phaneritic hverse Type I, finer grained than usual, oriented 30 degrees to the core axis. 34.37 - 436.69 : PHAN phaneritic hverse Type I, finer grained than usual, oriented 30 degrees to the core axis. 34.37 - 436.69 : PHAN phaneritic	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm

Detailed Litholog	у			Assay	Data					
From To	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	Structure 323.21 - 323.66: FR Fractured, 30.00 Deg to CA Fractured area is made up of blocks 4 to 8 cm long. 324.01 - 324.65: FR Fractured, 25.00 Deg to CA Fractured area is made up blocks 1 to 8 cm long. 325.08 - 325.48: FR Fractured, 20.00 Deg to CA Fractured area is made up of blocks 4 to 10 cm long. 327.40 - 327.41 Narrow vein that is chlorite rich with scattered rectangular sulfides 327.96 - 327.96 Same as above 357.74 - 357.94: FR Fractured, 35.00 Deg to CA Fractured area is made up of blocks 1 to 5 cm long 367.90 - 368.00: FR Fractured, 30.00 Deg to CA Fractured area made up of blocks 1 to 8 cm long. 368.46 - 370.34: FR Fractured, 20.00 Deg to CA Fractured area made up of "square" blocks and bow shaped blocks 1 to 20 cm long. 369.55 - 369.75 Vein filled with pyrrhotite/pyrite, quartz, calcite, and a beautifully formed crystals of an unknown mineral, hardness 3.5 to 4.5, translucent, vaguely rhombohedral/cuboidal but with 7-sided kite-shaped and trapezoidal faces on each rectangular face. 369.65 - 369.95: DYKE, 5.00 Deg to CA Gray-pink dike paralleling the above vein. Medium grainednearly pegmatitic of feldspars and mafic minerals 372.86 - 372.96: FR Fractured, 85.00 Deg to CA Fractured area is made up of blocks 2 to 4 cm long 380.70 - 380.90: FR Fractured, 35.00 Deg to CA Fractured area made up of jagged blocks about 4 cm long cut by many hairline fractures. 381.29 - 384.98 Same as above except fractures are oriented subparallel, 60, and 80 degrees to the core axis. Largest block is 17 cm long 385.30 - 386.00: FR Fractured, 20.00 Deg to CA Fractured area made up of long, angled blocks about 10 cm long with fracture planes coated with a thick layer of platy chlorite. 383.30 - 388.90: FR Fractured, 5.00 Deg to CA Fractured area made up of blocks 2 to 10 cm long. 389.36 - 390.15: FR Fractured, 5.00 Deg to CA Fractured area made up of blocks 3 to 5 cm long. 389.36 - 390.15: FR Fractured, 5.00 Deg to CA Fractured area made up of blocks about 3 cm long. 391.16 - 415.32: FR Fractured, 5.00 Deg to CA Fractured									

Detailed L	_ithology				Assay	Data					
From	To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Ве_рр
		Structure		<u>'</u>							
		425.89 - 426.23 : FR Fractured, 70.00 Deg to CA									
		Fractured area made up of blocks about 4 cm long.									
		434.43 - 434.44 Vein filled with a white zeolite that grows in radiating, spherical clusters of									
		transparent, thin, pismatic, brittle crystals. Hardness difficult to determine as									
		the crystals are more likely to snap off than scratch.									
		434.86 - 435.06 : FR Fractured, 20.00 Deg to CA Fractured area made up of angular blocks 3 to 9 cm long.									
		rractured area made up or angular blocks 5 to 9 cm long.									
		RQD									
		323.21 - 327.22: 45.39 % RQD 94.51 % Core									
		327.22 - 331.60: 79.91 % RQD 94.06 % Core									
		331.60 - 335.92 : 74.77 % RQD 92.36 % Core									
		335.92 - 340.25 : 70.44 % RQD 93.53 % Core									
		340.25 - 344.47 : 94.31 % RQD 99.76 % Core									
		344.47 - 348.81 : 72.81 % RQD 98.61 % Core									
		348.81 - 353.24 : 84.20 % RQD 96.16 % Core									
		353.24 - 357.50: 72.77 % RQD 99.53 % Core									
		357.50 - 362.00 : 57.33 % RQD 92.22 % Core									
		362.00 - 366.21: 47.50 % RQD 98.10 % Core									
		366.21 - 370.56: 27.36 % RQD 90.34 % Core									
		370.56 - 374.54: 60.30 % RQD 97.73 % Core									
		374.54 - 378.85 : 69.60 % RQD 95.59 % Core									
		378.85 - 382.85 : 80.75 % RQD 90.25 % Core									
		382.85 - 387.09: 24.76 % RQD 86.79 % Core									
		387.09 - 391.17: 48.43 % RQD 82.67 % Core									
		391.17 - 395.13: 68.94 % RQD 96.46 % Core									
		395.13 - 399.46: 94.23 % RQD 97.23 % Core									
		399.46 - 403.92: 91.26 % RQD 99.10 % Core									
		403.92 - 408.38: 85.20 % RQD 95.74 % Core									
		408.38 - 412.81 : 89.39 % RQD 100.00 % Core									
		Recovery should be 100.45%									
		412.81 - 416.96 : 59.36 % RQD 90.60 % Core									
		416.96 - 421.26 : 79.53 % RQD 100.00 % Core Recovery should be 100.23%									
		421.26 - 425.64 : 86.99 % RQD 96.80 % Core									
		425.64 - 430.05 : 71.43 % RQD 96.37 % Core									
		70.07 70 0010									

Detailed I	_ithology		Assay Data										
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm		
		RQD 430.05 - 434.43 : 70.09 % RQD 96.80 % Core 434.43 - 438.47 : 77.23 % RQD 100.00 % Core Recovery should be 101.73% 438.47 - 440.00 : 88.89 % RQD 95.42 % Core											
439.99		EOH, end of hole Texture 439.99 - 440.00 : MG Medium Grained Medium grained											

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884116	186.54	187.54	0.1076	308.0000	164.0000	7.8000	13.0000
884117	187.54	188.54	0.0861	624.0000	42.9000	84.1000	221.0000
884118	188.54	189.54	0.8827	612.0000	51.5000	72.0000	196.0000
884119	189.54	190.54	0.5382	658.0000	46.1000	32.8000	113.0000
884121	190.54	191.54	1.3132	483.0000	39.1000	21.2000	173.0000
884122	191.54	192.54	0.1507	438.0000	29.3000	63.3000	84.0000
884123	192.54	192.74	0.0646	606.0000	75.0000	83.7000	165.0000
884124	192.74	193.50	0.2153	978.0000	294.0000	38.2000	74.0000
884125	193.50	194.36	0.1076	857.0000	175.0000	104.0000	158.0000
884127	194.36	195.36	0.2153	886.0000	404.0000	13.5000	39.0000
884128	211.00	212.00	0.1507	425.0000	208.0000	0.9000	11.0000
884129	212.00	213.00	0.7320	479.0000	45.5000	70.3000	129.0000
884131	213.00	213.98	1.0549	570.0000	37.9000	25.0000	122.0000
884132	213.98	214.98	0.0431	44.0000	10.8000	0.7000	2.0000
884133	264.80	265.80	0.1076	452.0000	387.0000	1.2000	6.0000
884134	265.80	266.80	0.0108	506.0000	38.8000	72.9000	105.0000
884135	266.80	267.44	0.0108	422.0000	29.4000	99.3000	195.0000
884136	267.44	268.44	0.0861	164.0000	34.0000	19.5000	70.0000
884137	327.22	328.22					
884138	328.22	329.22					
884139	329.22	330.22					
884141	330.22	331.22					
884142	331.22	331.60					
884143	362.00	363.00					
884144	363.00	364.00					
884145	364.00	365.00					
884147	365.00	366.00					

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884148	366.00	367.00					
884149	367.00	368.00					
884151	368.00	369.00					
884152	369.00	370.00					
884153	370.00	370.56					
Sample Type CDUP							
884126	193.50	194.36	0.0861	726.0000	151.0000	99.8000	145.0000
884146	364.00	365.00					

Page 1 of 10 DETAILED LOG

Hole Number: NC-11-18 Units: METRIC

5477493.55			· · · ·	A	
			North:	Collar Az:	140.00
424430.44			East:	Length:	119.00
367.53			Elev:	Start Depth:	0.00
Survey: N P	Plugged: N	N	Contractor: Cobra Drilling	Final Depth:	119.00
not Survey: Y	Hole Size: N	NQ	Core Storage: Beardmore ON		
EM Survey: N C	Casing: F	Pulled			
1	367.53 Survey: N ot Survey: Y	367.53 Survey: N Plugged: ot Survey: Y Hole Size:	367.53 Survey: N Plugged: N ot Survey: Y Hole Size: NQ	367.53 Elev: Survey: N Plugged: N Contractor: Cobra Drilling ot Survey: Y Hole Size: NQ Core Storage: Beardmore ON	367.53 Elev: Start Depth: Survey: N Plugged: N Contractor: Cobra Drilling Final Depth: ot Survey: Y Hole Size: NQ Core Storage: Beardmore ON

Comments: Hole logged by Andrea Dixon; claim number TB67136

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
WEIGHTED	86.85	95.51	8.66	1.2525	562.2055	42.1764	34.7695	176.4919	İ
WEIGHTED	87.85	90.85	3.00	1.6218	581.6667	43.7333	36.8333	179.0000	ĺ

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
17.00	134.30	-57.30	Reflex	ОК	mag field: 57300	53.00	135.40	-57.70	Reflex	OK	mag field: 57140
119.00	135.10	-57.50	Reflex	ОК	mag field: 57380						

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	6.00	OVB, Casing									
		Overburden									

Feb 24, 2012 Page 2 of 10

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
6.00		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Shows slight foliation. About 30% of the fractures shows the same bright red iron stain found in NC-11-17. In some areas, it can show a coating up to 1 mm thick. Sometimes pyrite, a white-gray waxy mineral, and a pale grass-green mineral (epidote?) can be found accompanying it. With exception of the pyrite in the fracture fillers, the minerals are massive and individual crystals cannot be picked out. From 22.1 to 24.1, there are scattered, small chunks of red stained granite (60% red k-spar, 25% gray-white to translucent quartz, and 15% white to pale pink plagioclase). Most of the chunks also contain metasediment. Structure 6.00 - 24.10: FZ Fault Zone, 40.00 Deg to CA Fault zone is made up of blocky core from <1 cm to about 20 cm. 15.35 - 15.36: DYKE, 35.00 Deg to CA Pink-stained QF aplite. RQD 6.00 - 10.30: 3.02 % RQD 69.77 % Core 10.30 - 14.00: 3.24 % RQD 58.11 % Core 14.00 - 18.00: 26.75 % RQD 78.50 % Core 18.00 - 22.20: 13.33 % RQD 69.05 % Core 22.20 - 26.10: 0.00 % RQD 53.84 % Core									
24.10		LC, Lost Core Lost core. Drillers substituted in sticks and blocks that say "Fault Zone." Structure 24.10 - 26.00 Lost core (drillers substituted sticks) within the fault zone. M SCH, mica schist									
		Metasediment. Medium gray and very fine grained. Quartz-feldspar-biotite. Shows only a slight red stain. Structure 26.00 - 26.10: FZ Fault Zone, 50.00 Deg to CA This section of the fault zone consists of 2 blocks, 1 about 6 cm long, the other about 4 cm long exhibiting faint slickensides.									

Feb 24, 2012 Page 3 of 10

Detailed Litholo	ЭУ			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	DIABA, diabase Diabase. Medium gray and very fine grained to medium grained-grain size initally increases down the hole and then decreases past the middle section of the dike. Feldspar-amphibole/pyroxene with finely disseminated pyrite. About 10% of its fractured surfaces show the bright red iron stain, decreasing down the hole. Some of its fractures are filled with a white carbonate mineral (probably calcite). It is only slightly more magnetic than the metasediment. The lower contact with the metasediment is chilled (extremely fine grained) irregular but sharp and is oriented roughly 45 degrees to the core axis. The blocky character of the rock due to its relation to the fault zone also decreases down the hole. Around meter 68 (the assumed end of the fault zone), the core is still highly fractured, but continuous runs of core without interruptions by small fragments are much more common. Mineralization 26.10 - 72.40: PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is less than 1% Structure 26.10 - 68.00: FZ Fault Zone, 40.00 Deg to CA Appear to be nearing the edge of the fault zone as blocks are becoming longer, 2 to 15 cm long. But fracture planes are extremely chlorite rich and occasionally exhibit faint slickensides 71.53 - 72.23: F Fault, 25.00 Deg to CA Fault is probably a remnant of the fault zone. Blocky pieces 5 to 9 cm long show faint slickensides and are very chlorite rich. RQD 26.10 - 30.20: 11.46 % RQD 83.90 % Core 33.70 - 37.25: 10.42 % RQD 85.92 % Core 37.25 - 41.30: 16.54 % RQD 71.11 % Core 41.30 - 46.10: 18.96 % RQD 61.46 % Core 46.10 - 50.80: 11.91 % RQD 65.10 % Core 50.80 - 55.20: 36.82 % RQD 94.55 % Core 55.20 - 58.65: 25.22 % RQD 94.55 % Core 55.20 - 58.65: 25.22 % RQD 94.55 % Core 55.20 - 58.65: 25.22 % RQD 94.55 % Core 65.80 - 69.32: 34.94 % RQD 97.44 % Core 66.80 - 69.32: 34.94 % RQD 97.44 % Core 66.80 - 73.30: 63.06 % RQD 97.44 % Core				Edigiii			СЭДР	го_рргп	БС_РРП

Feb 24, 2012 Page 4 of 10

Detailed Lithology				Assay D	ata						
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_p	pm
	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Cut by numerous hairline fractures that appear to be filled with a carbonate mineral. Those fractures are oriented subparallel to 75 degrees to the core axis. The metasediment is also cut by numerous small dikes that are initially stained salmon pink but lose the stain down the hole. The iron stain seems to be completely gone from the core by 80 m. Structure 72.85 - 72.89: DYKE , 55.00 Deg to CA Pink stained QF aplite with accessory trace pyrite. 73.30 - 73.50: FR Fractured, 10.00 Deg to CA Fracture area made up of small blocky pieces 1 to 5 cm long. 73.80 - 74.09: FR Fractured, 40.00 Deg to CA Fracture area made up of small blocky pieces 1 to 3 cm long. 74.33 - 74.35: DYKE , 70.00 Deg to CA Pink stained quartz dominant pegmatite dikelet with the contacting metasediment showing slight metasomatism. 75.54 - 75.59: DYKE , 60.00 Deg to CA Very pale pink stained GF aplite dikelet 75.71 - 75.80: DYKE , 45.00 Deg to CA Very pale pink stained QF aplite dikelet. 75.97 - 75.98: DYKE , 70.00 Deg to CA Very pale pink stained quartz dominant pegmatite dikelet. 77.01 - 77.03: DYKE , 70.00 Deg to CA Very pale pink stained QF aplite dikelet with a soft black accessory mineral 78.36 - 78.45: DYKE , 30.00 Deg to CA Very pale pink stained QF aplite dikelet with a soft black accessory mineral 78.36 - 78.45: DYKE , 70.00 Deg to CA Very pale pink stained QF aplite dikelet with a soft black accessory mineral 78.30 - 78.01: DYKE , 70.00 Deg to CA Very pale pink stained QF aplite dikelet with a soft black accessory mineral 78.30 - 78.45: DYKE , 40.00 Deg to CA Very pale pink stained openatite dikelet. 80.71 - 80.82: DYKE , 40.00 Deg to CA White OFM pegmatite. Might have once been a spodumene pegmatite as the muscovite crystals fill in a shape very simillar to spodumene. RQD 73.30 - 77.00: 49.73 % RQD 100.00 % Core Recovery should be 102.43% 77.00 - 81.00: 53.25 % RQD 94.50 % Core	884154	80.00	81.00		1		<u> </u>		2.00	23.0

Feb 24, 2012 Page 5 of 10

Detailed Litholo	gy			Assay I	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
81.00 82	22 SPD PEG, spodumene pegmatite	884155	81.00	82.0						
	Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace amounts of pyrite and a rusty brown mineral that could be garnet. The first 48 cm and the last 42 host small amounts of altered spodumene. Unaltered spodumene is found in the center of the dike between 2 bands of unaltered spodumene aplite, with the upper being about 7 cm thick and the lower about 6 cm. thick. The unaltered spodumene pegmatite band in the center is about 15 cm thick. This relatively unaltered center also contains light pink garnets. Throughout, spodumene is pale green and pale gray green to very dark green oriented about 30 degrees to the core axis and up to 4 cm long. The upper contact with the metasediment is lost and the lower contact is oriented 40 degrees to the core axis. Mineralization 81.00 - 82.22: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green and pale gray green to very dark green oriented about 30 degrees to the core axis and up to 4 cm long. RQD 81.00 - 85.05: 56.05 % RQD 96.30 % Core	884156	82.00	82.2	2 0.22	2 0.0	1 390.	00 27.	40 14	90 107.0
82.22 86	85 M SCH, mica schist	884157	82.22	83.2	2 1.00	0.1	5 511.0	00 210.	00 4	50 16.0
	Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. Cut by some dikes, 3 of them apparently composed of a felsic, aplitic groundmass (75%) hosting a beautifully formed acicular and prismatic, hard, dark green mineral (25%, probably tourmaline). Or it could be a band of gneissic foliation. Listed under structures as light gray unusual dikes. Mineralization 82.22 - 86.85: PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is less than 1%. Structure 83.60 - 83.72: DYKE, 50.00 Deg to CA Light gray unusual dike with the compostion described in the description. Contacts are somewhat gradualperhaps as a result of metasomatism. 84.36 - 84.42: DYKE, 40.00 Deg to CA Same as above. 86.03 - 86.13: DYKE, 90.00 Deg to CA Same as above. RQD 85.05 - 89.25: 78.09 % RQD 98.81 % Core	884158	85.85	86.8						10 6.0

Page 6 of 10 DETAILED LOG

Detailed Li	ithology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
86.85	95.51	SPD PEG, spodumene pegmatite	884159	86.85	87.85	1.00	1.12	2 369.0	32.70	28.2	20 179.0
		Spodumene pegmatite. White and coarse grained.	884161	87.85	88.85	1.00	1.53	694.0	00 49.00	33.9	90 203.0
		Quartz-feldspar-muscovite-spodumene with trace amounts of pink to dark red	884162	88.85	89.85	1.00	1.92	526.0	00 40.50	36.	70 184.0
		garnets. Feldspar appears as phenocrysts and comes in two colorswhite and	884163	89.85	90.85	1.00	1.42	2 525.0	00 41.70	39.9	90 150.0
		pink. White feldspar appears to be microcline while the pink feldspar shows a	884164	90.85	91.85	1.00	1.10	580.0	00 41.80	20.	10 135.0
		patchy perthitic texture. There appears to be a gray-white quartz "core" located at 93.48 m and extending to 93.90 m edged with muscovite. The pegmatite has	884165	91.85	92.85	1.00	1.70	450.0	00 35.30	36.0	00 191.0
		several spodumene aplite bands/pods that are randomly spaced. Pegmatitic	884166	91.85	92.85	1.00	1.46	5 547.0	39.80	36.0	60 187.0
		spodumene crystals tend to grow normal to the aplite, while those inside the	884167	92.85	93.85	1.00	0.62	2 491.0	00 30.10	21.8	80 129.0
		aplite show a slight preference to be perpendicularly oriented to the edges of the		93.85	94.85	1.00	1.10	742.0	00 56.00	51.9	90 234.0
		aplite as well. In general, spodumene is pale green with some crystals altered to	884169	94.85	95.51	0.66	0.52	2 745.0	57.80	49.4	40 187.0
95.51		dark green and is oriented about 40 degrees to the core axis with crystals up to 7 cm long. Both contacts are oriented about 50 degrees to the core axis. Mineralization 86.85 - 95.51 : SPOD Spodumene, PERV Pervasive, 25.00% Spodumene is pale green with some crystals altered to dark green and is oriented about 40 degrees to the core axis with crystals up to 7 cm long RQD 89.25 - 93.70 : 90.34 % RQD 97.75 % Core 93.70 - 98.00 : 53.49 % RQD 96.51 % Core	884171	95.51	96.51	1.00	0.15	5 530.0	00 187.00	o) 37.:	10 84.0
95.51		M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite.	884171	95.51	90.51	1.00) U.13	530.0	00 187.00	J 37.	10 84.0
95.89		QFM PEG, quartz-feldspar-muscovite pegmatite									
		Quartz-feldspar-muscovite pegmatite with trace altered pink-brown garnets. White and coarse grained. Might have once been a spodumene pegmatite as the muscovite is pale green and fills prismatic shapes. Contacts oriented 40 degrees (upper) and 50 degrees (lower) to the core axis.									

Page 8 of 10 DETAILED LOG

Detailed Li	ithology		Assay Data											
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm			
		RQD 102.05 - 105.88: 38.64 % RQD 96.08 % Core								•				
103.35		QPHOS, quartz-phosphate pegmatite Quartz dominant pegmatite, with accessory muscovite and even less feldspar. White and coarse grained. Has a grouping of minerals in its coreone is hard, pale green, and its interior is grainy without any clear fracture or cleavage plainspossibly triphylite. The other mineral, nested inside of the green one is rusty brown, shows one prefect cleavage/parting plane, vitreous in luster, and is hardpossibly lithiophilite. Neither appears to have a distinct shape, other than vaguely rectangular or maybe hexagonal prism. Upper contact is lost in rubble, lower contact is oriented about 60 degrees to the core axis.	884391	103.35	103.5	0.1	8 0.0	01 35.	00 5	.60 1	.90 3.0			

Detailed L	ithology		Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
		RQD										
		118.40 - 119.00: 98.33 % RQD 98.33 % Core										
118.99	119.00	EOH, end of hole										

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884154	80.00	81.00	0.0861	229.0000	96.3000	2.0000	23.0000
884155	81.00	82.00	0.4952	494.0000	36.9000	39.2000	137.0000
884156	82.00	82.22	0.0108	390.0000	27.4000	14.9000	107.0000
884157	82.22	83.22	0.1507	511.0000	210.0000	4.5000	16.0000
884158	85.85	86.85	0.1292	250.0000	131.0000	2.1000	6.0000
884159	86.85	87.85	1.1195	369.0000	32.7000	28.2000	179.0000
884161	87.85	88.85	1.5285	694.0000	49.0000	33.9000	203.0000
884162	88.85	89.85	1.9160	526.0000	40.5000	36.7000	184.0000
884163	89.85	90.85	1.4209	525.0000	41.7000	39.9000	150.0000
884164	90.85	91.85	1.0979	580.0000	41.8000	20.1000	135.0000
884165	91.85	92.85	1.7007	450.0000	35.3000	36.0000	191.0000
884167	92.85	93.85	0.6243	491.0000	30.1000	21.8000	129.0000
884168	93.85	94.85	1.0979	742.0000	56.0000	51.9000	234.0000
884169	94.85	95.51	0.5167	745.0000	57.8000	49.4000	187.0000
884171	95.51	96.51	0.1507	530.0000	187.0000	37.1000	84.0000
884389	102.35	103.35	0.1076	371.0000	99.5000	85.1000	34.0000
884391	103.35	103.53	0.0108	35.0000	5.6000	1.9000	3.0000
884392	103.53	104.53	0.1076	134.0000	36.9000	0.6000	3.0000
Sample Type CDUP							
884166	91.85	92.85	1.4639	547.0000	39.8000	36.6000	187.0000

Feb 24, 2012 DETAILED LOG

Hole Number: NC-11-19 Units: METRIC

Project Name:	Nama Creek	Primary Coordinates Grid: U	JTM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	01	North: 5477537.48		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424399.76		East:	Length:	173.00
		Elev: 369.39		Elev:	Start Depth:	0.00
Date Started:	Oct 05, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	173.00
Date Completed:	Oct 07, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: Hole logged by Andrea Dixon; claim number TB67136

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	148.77	155.46	6.69	1.1463	704.8296	42.1061	18.4085	164.8879
WEIGHTED	151.77	153.77	2.00	1.5608	741.0000	45.2500	18.8000	133.0000
WEIGHTED	155.70	157.55	1.85	0.9810	754.1081	52.4541	55.7676	174.8378

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
17.00	138.60	-58.60	Reflex	OK	mag field: 57460	50.00	137.70	-57.90	Reflex	OK	mag field: 56950
101.00	138.10	-57.20	Reflex	ОК	mag field: 57050	173.00	139.70	-57.40	Reflex	OK	mag field measurement not recorded

Detailed	Lithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	4.30	OVB, Casing									
		Overburden.									
4.30	6.60	DIAB, diabase									
		Diabase, or related mafic rock. Medium gray, massive, and aphanitic. Grain sizes too small to visibly determine composition. Slightly more magnetic than the metasediment. It is heavily fractured and some of the fracture planes show faint slickensidesprobably the edge of a fault zone. The fractures tend to be slightly enriched in chlorite. In a few of the pebbly areas, there is metasediment. It is difficult to determine if the metasediment pebbles are fragments of xenoliths, moved there through faulting action, or if this section is really a series of small mafic dikes. Some of the metasediment pebbles show an orange stain or have a fine crust of a green mineral (epidote?).									
		Structure 4.30 - 6.60 : FZ Fault Zone, 30.00 Deg to CA Fault zone appears to be made up of blocks ranging in size from < 1 cm to 20 cm long. RQD									
		4.30 - 7.00: 28.89 % RQD 92.59 % Core									

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
6.60	9.40	M SCH, mica schist Metasediment. Medium gray, fine grained and slightly foliated. Quartz-feldspar-biotite with trace amounts of pyrite. Highly fractured and some of the fractured planes exhibit slickensides. Some of the fracture/fault planes have orange to red iron stains and can have a slight crust of a green mineral, probably epidote. Structure 6.60 - 9.40: FZ Fault Zone, 40.00 Deg to CA Fault zone consists of block pieces <1 cm to 13 cm long with minor amounts of fault gouge. Some pieces show slickensides. RQD 7.00 - 10.10: 18.39 % RQD 88.06 % Core									
9.40	9.50	DIAB, diabase Diabase, or related mafic dike. Dark gray and aphanitic with indications of light gray chilled margins. Slightly more magnetic than the metasediment. Too fine grained to visibly identifiy compostion. The contacts of the dike are lost in rubble. Near the edge of the bottom chill margin, is a pale red-gray band speckled with black. Unsure if it is original or if it is an alteration product. Fracture planes have patches of pyrite crusts. Structure 9.40 - 9.50 Fault zone continues past the little dike. The main portion of the dike is about 8 cm long with the remainder of it in very small pebbles.									

Detailed Lit	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
9.50	51.00	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. Less fractured than the core above it but still very blocky. The few slickensides present tend to be very faint. Fracture planes in the upper half of the unit sometimes show extremely thin crusts of epidote (in vuggy areas, the epidote makes fine crystals, less than 1 mm big) with some of the red iron stain (probably hematite). In about the same proportion as found in the upper unit, the hematite crust/stain is found in the lower part of the unit. The metasediment is cut by several quartz and carbonate veinlets (less than 0.5 cm thick), a dike, and some strange quartz veins that have a granitoid character (see the unit below). In a few places, the metasediment shows slight epidotization accompanied with slight hematization. Mineralization 9.50 - 51.00: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration slightly less than 1% Alteration 13.80 - 13.90: E Epidote, Patchy , Moderate Patches of bright pale-green extremely fine grained epidote and bright red extremely fine grained hematite. Seems to be controlled by soft, dark gray "strings" that have a very similar character to the diabase, could be small dikelets 18.66 - 18.81: E Epidote, Patchy , Moderate Same as above but doesn't seem to be controlled by dikelets. It does have a definite orientation (50 degrees to the core axis) and so might be controlled by fractures that are too small to see. Structure 9.50 - 9.60 Quartz vein nearly obscured by fine-grained epidote that forms undulating bands parallel to its contacts through it. Perpendicular to the contacts and also undulating is the red stain/hematite crust. 9.50 - 13.65 The heavy fracturing is no doubt related to it being near the edge of the fault zone. 13.70 - 13.71 Pink graintoid veinlet. Contacts are sharp but it tends to wander through the metasediment while maintaining about a 35 degree angle to the core axis. 15.61 - 16.90: F Fault, 50.00 Deg to CA Fractured area cons	Sample Number	FIOIII		Lengin	LIZO_per	ко_ррпп	CS_ppiii	та_ррпі	ве_рріп

Detailed Lithology	/			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	Structure 23.80 - 24.61 : FR Fractured, 50.00 Deg to CA Fractured area consists of blocks 1 to 5 cm long. 24.30 - 24.36 : DYKE, 30.00 Deg to CA Pink granite dike. Roughly 70% k-spar, 20% quartz, 10% plagioclase. 25.90 - 29.60 : FR Fractured, 35.00 Deg to CA Fractured area consists of blocks 1 to 16 cm long. 30.78 - 31.28 : FR Fractured, 50.00 Deg to CA Fractured area consists of blocks 1 to 3 cm long. 33.35 - 33.61 : FR Fractured, 45.00 Deg to CA Fractured area consists of blocks 1 to 5 cm long 33.84 - 34.60 : FR Fractured, 25.00 Deg to CA Fractured area consists of blocks 2 to 5 cm long 33.84 - 34.60 : FR Fractured, 25.00 Deg to CA Fractured area consists of blocks 2 to 10 cm long 36.21 - 36.39 : FR Fractured, 55.00 Deg to CA Fractured area consists of angular blocks 1 to 8 cm long but up to 20 cm. 36.21 - 36.37 : FR Fractured, 55.00 Deg to CA Fractured area consists of angular blocks 1 to 8 cm long 36.48 - 37.10 Strange quartz veins with a pegmatoid character. They are 1 to 3 cm thick and meander through the metasediment with orientations between 40 and 80 degrees toa. Appear to be comprised of quartz and k-spar and have gradual contacts with the metasediment 37.58 - 37.83 Same as above, except with a steadier orientation around 30 degrees to the core axis. 38.35 - 39.52 : FR Fractured, 30.00 Deg to CA Fractured area consists of blocks 2 to 10 cm long. 40.70 - 40.79 Strange quartz vein, as above, oriented roughly 50 degrees to the core axis as it meanders through the metasediment. 41.00 - 45.90 : F Fault, 60.00 Deg to CA Appears to be faulted as some of the blocks (1 to 10 cm long) show slickensides. 46.57 - 46.64 Strange quartz vein, same as above. 46.70 - 47.00 : FR Fractured, 50.00 Deg to CA Fractured area consists of blocks 1 to 4 cm long. 50.70 - 50.90 : FR Fractured, 50.00 Deg to CA Fractured area consists of blocks 1 to 4 cm long. 50.70 - 50.90 : FR Fractured, 50.00 Deg to CA Fractured area consists of blocks 1 to 4 cm long. 50.70 - 50.90 : FR Fractured, 50.00 Deg to CA Fractured							30_pp		

Detailed Lit	hology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 24.00 - 28.00 : 23.00 % RQD 82.25 % Core 28.00 - 31.64 : 41.76 % RQD 85.16 % Core 31.64 - 35.60 : 47.47 % RQD 86.87 % Core 35.60 - 39.20 : 27.22 % RQD 97.78 % Core 39.20 - 42.70 : 13.43 % RQD 85.71 % Core 42.70 - 46.70 : 18.75 % RQD 75.50 % Core 46.70 - 49.60 : 21.38 % RQD 94.48 % Core 49.60 - 52.50 : 46.55 % RQD 99.66 % Core									
51.00	52.10	QV, Quartz Vein Quartz and k-spar vein. White with pink patches of k-spar and black threads of metasediment. It meanders seemingly at random through the metasediment. It is difficult to determine if it is a single vein busily snaking around or with multiple inclusions of the host rock, multiple closely spaced veins, or if it is a pegmatite dike filled with xenoliths. It doesn't appear like the veins typically found in the metasediment since those are usually white to pale brown to pale gray quartz and don't wander. Nor does it appear to be a typical quartz-dominant pegmatite dike as those are usually white to pale brown with minor amounts of white feldspar and strongly metasomatized metasediment (medium grained with muscovite). The metasediment within the vein is slightly pink in color probably due to the influence of the k-spar and is finer grained.									

Feb 24, 2012 DETAILED LOG

Detailed Lithology	,			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	RQD 95.50 - 98.30 : 0.00 % RQD 75.00 % Core 98.30 - 101.85 : 12.96 % RQD 77.18 % Core 101.85 - 105.00 : 37.14 % RQD 94.92 % Core									
103.23 142.28	DIAB, diabase Diabase, or other related mafic dike. Medium gray and fine to medium grained. Feldspar-amphibole/pryoxene with disseminated pyrite. Slightly more magnetic than the metasediment, except near contacts. Seems to lack magnetic properties near the contacts. The upper contact is lost in rubble and initially, the only way to tell apart the diabase from the metasediment is by its slightly waxy feel from the chlorite. The lower contact is chilledvery fine grained, sharp, and irregular. It is oriented approximately 35 degrees to the core axis. There is a small metasediment xenolith, about 7 cm in diameter located roughly 3 cm from the bottom contact. The diabase is cut by numerous fractures (oriented generally between 10 and 40 degrees to the core axis) that decrease in quantity down the hole. Initially, those fractures are filled with calcite with minor amounts of chlorite, quartz, and hematite (red stain). Chlorite becomes the main fracture filling mineral around meter 113. Mineralization 103.23 - 142.28: PY Pyrite, DISS Disseminated, 1.50% Pyrite concentration is between 1 and 2% Structure 103.23 - 107.00 The fault zone is at its end. Made up of blocky pieces 1 to 20 cm long with very few pieces showing faint slickensides RQD 105.00 - 108.54: 3.76 % RQD 93.22 % Core 108.54 - 112.90: 80.73 % RQD 97.02 % Core 112.90 - 116.55: 56.71 % RQD 97.26 % Core 112.90 - 116.55: 56.71 % RQD 97.26 % Core 112.90 - 124.50: 75.64 % RQD 94.36 % Core 124.50 - 128.00: 59.14 % RQD 94.28 % Core 128.00 - 132.00: 71.75 % RQD 95.75 % Core 132.00 - 135.80: 32.10 % RQD 95.79 % Core 135.80 - 139.90: 83.41 % RQD 98.05 % Core 139.90 - 143.95: 82.72 % RQD 98.27 % Core									

Detailed L	ithology				Assay	/ Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Ве_р	pm
142.28	148.77	M SCH, mica schist	884172	147.77	148.	77 1.0	0 0.1	1 126.	00 89	.00 3	3.20	21.0
		Metasediment. Medium gray, fine grained, and faintly foliated. Quartz-feldspar-biotite with disseminated pyrite. Cut by a few hairline fractures that have bleached the surrounding metasediment and increased the hardness slightlyprobably silicification. These fractures are oriented between 15 and 60 degrees to the core axis. It is also cut by a few small, quartz-dominant dikelets. Mineralization 142.28 - 147.96 : PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is roughly 1% Alteration 142.28 - 147.96 :SI Silica, Fract-Cont Fracture-Controlled, Weak Hairline fractures are responsible for the bleached lines cutting through the metasediment. Bleached areas are only slightly harder than the surrounding metasediment. Structure 142.55 - 142.56 : DYKE , 40.00 Deg to CA White and pale pink quartz-dominated medium grained pegmatite dikelet. Feldspar is responsible for the slight pink color. 143.93 - 143.94 : DYKE , 90.00 Deg to CA White QF aplite dikelet. Quartz slightly greater in abundance than feldspar 145.68 - 145.73 : DYKE , 70.00 Deg to CA Gray-white quartz-dominant, medium grained, pegmatite dikelet with a fine grained, medium hard, pale green mineral and fine grained, medium hard, yellow mineral. Trace feldspar and small metasomatized metasediment xenoliths. 147.18 - 147.20 : DYKE , 40.00 Deg to CA Same as above. RQD 143.95 - 147.96 : 65.34 % RQD 95.51 % Core 147.96 - 152.00 : 84.16 % RQD 98.76 % Core										
148.77	149.00	SPD PEG, spodumene pegmatite	884173	148.77	149.	77 1.0	0 0.5	487.	00 30	.10 29	9.30	157.0
		Spodumene pegmatite. White-green and fine to medium grainedmostly consists of a spodumene aplite. Quartz-feldspar-muscovite-spodumene. The spodumene within the aplite is very pale green, with crystals oriented randomly and up to 3 mm long. The spodumene within the pegmatite is pale gray to black, with crystals oriented normal to contacts and about 1 cm long. Upper contact is oriented about 50 degrees to the core axis. Lower contact to the diabase intrusion below is oriented 30 degrees to the core axis. It is assumed that this spodumene pegmatite is part of the lower spodumene pegmatite. Mineralization 148.77 - 149.00: SPOD Spodumene, PERV Pervasive, 3.00% The spodumene within the aplite is very pale green, with crystals oriented randomly and up to 3 mm long. The spodumene within the pegmatite is pale gray to black, with crystals oriented normal to contacts and about 1 cm long.										

Page 9 of 12 DETAILED LOG

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
149.00	149.15	DIAB, diabase Diabase, or other related mafic dike. Medium gray with light gray chilled margins and very fine grainedtoo fine grained to determine composition, other than it is chlorite rich (has a waxy feel). It has trace disseminated pyrite through it. Contacts oriented 30 degrees to the core axis. Mineralization 149.00 - 149.15: PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is much less than 1%									
149.15	133.40	SPD PEG, spodumene pegmatite Spodumene pegmatite. White, tinged with green and pink, and is coarse grained. Quartz-feldspar-muscovite-spodumene. Cut by a few thinno thicker than 0.5 cm, quartz veins with bright red hematite. These veins are oriented between 10 and 20 degrees to the core axis. Thin (3 to 4 cm thick) irregular bands and pods of spodumene aplite are scattered through the pegmatite. Feldspar is white tinged with pink and sometimes patches of pink. The white feldspar appears to	884174 884175 884176 884177 884178 884179	149.77 150.77 151.77 152.77 153.77 154.77	151.7 152.7 153.7 154.7	7 1.00 7 1.00 7 1.00 7 1.00	0.8 0 1.3 0 1.3 0 1.7	30 707. 36 865. 77 617. 14 924.	00 40. 00 46. 00 43. 00 52.	90 10 80 8 70 28 00 14	.80 169.0 .90 103.0 .70 163.0
		tinged with pink and sometimes patches of pink. The white feldspar appears to be microcline while the pink occassionally shows patches of perthitic texture. Spodumene is mostly pale green but can be nearly altered to black in color. Pale green crystals with a black, altered rim are much more common 2 meters below the diabase intrusionalteration can be found throughout the pegmatite. Spodumene crystals are generally oriented about 45 degrees to the core axis and can be up to 7 cm long. Upper contact to the intrusion is oriented 30 degrees to the core axis.									
		Mineralization 149.15 - 155.46: SPOD Spodumene, PERV Pervasive, 30.00% Spodumene is mostly pale green but can be nearly altered to black in color. Crystals are generally oriented about 45 degrees to the core axis and can be up to 7 cm long. RQD 152.00 - 155.90: 77.90 % RQD 80.04 % Core									
155.46	155.70	LC, Lost Core This section of core is not lostit doesn't exist. The drillers outlined this section with blocks that read "cave." It could be a miarolitic cavity or an oddly large fracture. The fragments within the cave section consist of small, subangular metasediment pebbles, about 1 cm in diameter, some with crusts of epidote or hematite. There does not appear to be any pegmatite fragments in it whatsoever within this section, and the ends of the pegmatite adjoining it do not show any unique features.									

Feb 24, 2012 Page 10 of 12

Detailed L	ithology				Assay I	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
155.70	157.55	SPD PEG, spodumene pegmatite	884181	155.70		_					
		Spodumene pegmatite. White tinged with green-gray and pink and coarse grained. Quartz-feldspar-muscovite-spodumene. Thin (3 to 4 cm thick) irregular bands and pods of aplite are scattered through the pegmatite, with the last 30 consisting almost entirely of QFM aplite with trace altered pink garnets. Feldspar is white tinged with pink and sometimes patches of pink. The white feldspar appears to be microcline while the pink occassionally shows patches of perthitic texture. Spodumene is gray, pale green, and altered to very dark green in color. Crystals are oriented about 50 degrees to the core axis and are up to 4 cm long with most being about 2 cm long. Lower contact is oriented 65 degrees to the core axis.	884182	156.70	157.5	5 0.85	5 0.3	9 786.	00 52.	40 72.	20 157.0
		Mineralization 155.70 - 157.55 : SPOD Spodumene, PERV Pervasive, 30.00% Spodumene is gray, pale green, and altered to very dark green in color. Crystals are oriented about 50 degrees to the core axis and are up to 4 cm long with most being about 2 cm long. RQD 155.90 - 160.15 : 78.96 % RQD 99.76 % Core									

Detailed Litholo	ду			Assay D	Data						
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	n .
157.55 172	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace disseminated pyrite. Cut by a few hairline fractures that are surrounded by bleached metasedimentprobably silicification. These fractures are oriented between 15 and 45 degrees. The metasediment is also cut by a few dikelets. Structure 158.04 - 158.07: DYKE, 50.00 Deg to CA White QFM aplite dikelet. 158.74 - 158.76: DYKE, 60.00 Deg to CA White OF aplite dikelet with a soft black accessory mineral. 159.74 - 159.82: DYKE, 60.00 Deg to CA Pale gray QFM medium grained pegmatite dikelet. 164.39 - 164.43: DYKE, 50.00 Deg to CA White and gray zoned QFM aplite dikelet. Borders are 0.5 cm thick and white surrounding a gray core with trace garnet. 166.10 - 166.12: DYKE, 60.00 Deg to CA White QF aplite dikelet with trace pyrite. 166.36 - 166.38: DYKE, 55.00 Deg to CA White QF aplite dikelet with a soft black accessory mineral 166.94 - 166.96: DYKE, 75.00 Deg to CA White QFM aplite dikelet with trace garnet and showing slight zoning with white borders and gray core. 168.05 - 168.15: DYKE, 60.00 Deg to CA White QFM pegmatite dikelet. 170.46 - 170.47: DYKE, 40.00 Deg to CA Pale yellow QF aplite dikelet. 172.75 - 172.76: DYKE, 40.00 Deg to CA Pale brown gray quartz-dominant pegmatite dikelet. RQD 160.15 - 164.43: 85.33 % RQD 97.74 % Core 164.43 - 168.85: 89.59 % RQD 98.87 % Core 168.85 - 173.00: 83.75 % RQD 100.00 % Core	884183	157.55	158.55						.50	7.0

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884172	147.77	148.77	0.1076	126.0000	89.0000	3.2000	21.0000
884173	148.77	149.77	0.5167	487.0000	30.1000	29.3000	157.0000
884174	149.77	150.77	1.0979	633.0000	39.9000	21.6000	199.0000
884175	150.77	151.77	0.7965	707.0000	40.9000	10.8000	169.0000
884176	151.77	152.77	1.3563	865.0000	46.8000	8.9000	103.0000
884177	152.77	153.77	1.7653	617.0000	43.7000	28.7000	163.0000
884178	153.77	154.77	1.1410	924.0000	52.0000	14.4000	181.0000

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884179	154.77	155.46	1.4424	699.0000	41.0000	13.7000	190.0000
884181	155.70	156.70	1.4855	727.0000	52.5000	41.8000	190.0000
884182	156.70	157.55	0.3875	786.0000	52.4000	72.2000	157.0000
884183	157.55	158.55	0.1292	173.0000	95.8000	1.5000	7.0000

Page 1 of 11 DETAILED LOG

Hole Number: NC-11-20 Units: METRIC

Project Name:	Nama Creek	Primary Coordinates Grid: U7	ΓM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	01	North: 5477595.50		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424369.15		East:	Length:	260.00
		Elev: 368.65		Elev:	Start Depth:	0.00
Date Started:	Oct 07, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	260.00
Date Completed:	Oct 11, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: Hole logged by Andrea Dixon and Jonathan Musicco; claim number TB67136

Sample Averages

Survey Data

Depth	Azimuth	Dip	Test	Flag	Comments	Depth	Azimuth	Dip	Test	Flag	Comments
	Decimal	Decimal	Type				Decimal	Decimal	Type		
17.00	141.10	-58.90	Reflex	OK	mag field: 57640	50.00	141.10	-58.70	Reflex	OK	mag field: 57030
101.00	142.10	-57.60	Reflex	ОК	mag field: 57730	147.00	142.50	-57.50	Reflex	OK	mag field: 57100
203.00	144.30	-57.40	Reflex	OK	mag field: 57110	260.00	145.40	-57.20	Reflex	OK	mag field: 57440

Detailed I	Lithology		Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
0.00	3.00	OVB, Casing										

Detailed Lithology				Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	Structure 25.78 - 30.15 : FR Fractured, 60.00 Deg to CA Fractured area consists of blocks 1 to 25 cm long. 32.51 - 32.53 : DYKE, 60.00 Deg to CA White OF apilite dikelet with trace garnet. 35.48 - 35.88 Fractured area consists of blocks 2 to 10 cm long. Two main fracture angles are oriented at 10 and at 70 degrees to the core axis. 36.79 - 38.40 : FR Fractured, 40.00 Deg to CA Fractured area generally consists of thin blocks 3 to 10 cm long. 41.28 - 41.35 : DYKE, 40.00 Deg to CA White and black zoned tourmaline apilite dikelet (referred to as unusual gray dikelet in other holes). The central cm is white, mostly free of tourmaline. The rest is black, mostly free of white apilite. Entire apilite consists of very thin alternating bands 41.78 - 41.99 : FR Fractured, 30.00 Deg to CA Fractured area consists of blocks about 3 cm long. 42.21 - 42.29 : DYKE, 60.00 Deg to CA White feldspar dominant OF pegmatite dikelet. 42.68 - 43.35 : FR Fractured, 60.00 Deg to CA Fractured area consists of blocks 1 to 7 cm long. 44.29 - 44.64 : FR Fractured, 80.00 Deg to CA Fractured area consists of blocks 2 to 6 cm long. 44.58 - 44.59 : DYKE, 65.00 Deg to CA White OF pegmatite dikelet. 46.42 - 46.45 : DYKE, 65.00 Deg to CA Same as above. 50.19 - 50.65 : FR Fractured, 40.00 Deg to CA Fractured area consists of blocks 3 to 7 cm long. Several of the blocks are composed of white OF pegmatite. 52.39 - 52.40 : DYKE, 70.00 Deg to CA Zoned white OF apilite dikelet. 53.59 - 53.68 : DYKE, 70.00 Deg to CA White OF pegmatite dikelet. 53.59 - 53.68 : DYKE, 70.00 Deg to CA White OF pegmatite dikelet. 55.07 - 55.35 : FR Fractured, 25.00 Deg to CA White and pink zoned OF apilite dikelet. White OF borders a pink F core. 55.07 - 55.35 : FR Fractured, 25.00 Deg to CA Fractured area consists of blocks 1 to 12 cm long. 55.84 - 56.00 Fractured area consists of blocks about 3 cm long and 2 fracture angles oriented at 30 and 75 degrees to the core axis. 56.47 - 57.17 : FR Fractured, 80.00 Deg to CA Fractured area consists of blocks about							33_pp		

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		Structure 57.47 - 58.45 : FR Fractured, 40.00 Deg to CA Fractured area consists of blocks 4 to 16 cm long. 61.33 - 62.00 : FR Fractured, 60.00 Deg to CA Fractured area consists of blocks 1 to 4 cm long. RQD 3.00 - 6.88 : 67.53 % RQD 96.65 % Core 6.88 - 11.00 : 71.84 % RQD 98.30 % Core 11.00 - 14.55 : 27.60 % RQD 87.60 % Core 14.55 - 18.40 : 82.34 % RQD 99.74 % Core 18.40 - 22.30 : 66.41 % RQD 93.08 % Core 22.30 - 25.88 : 19.83 % RQD 90.50 % Core 25.88 - 29.15 : 27.83 % RQD 93.27 % Core 29.15 - 32.89 : 50.81 % RQD 90.11 % Core 32.89 - 36.62 : 63.81 % RQD 100.00 % Core 32.89 - 36.62 : 63.81 % RQD 96.72 % Core 40.34 - 44.00 : 52.73 % RQD 96.72 % Core 44.00 - 48.20 : 63.09 % RQD 98.81 % Core 48.20 - 51.90 : 36.76 % RQD 96.22 % Core 51.90 - 56.00 : 74.39 % RQD 99.27 % Core 56.00 - 59.82 : 28.53 % RQD 91.10 % Core									
		59.82 - 63.35 : 28.33 % RQD 95.75 % Core									
62.00	63.40	DIAB, diabase Diabase, or other related mafic dike. Medium gray slightly tinged brown and very fine grainedtoo fine grained to determine composition. Fracture edges are chlorite rich and is strongly magnetic in comparison to the metasediment. Both contacts are lost in rubble. Structure 62.00 - 63.40: FR Fractured, 30.00 Deg to CA Fractured area consists of blocks 1 to 10 cm long. RQD 63.35 - 66.75: 7.35 % RQD 88.24 % Core									

Detailed Litholog	уу			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
63.40 111.	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. The core is heavily fractured and blocky. It is cut by numerous hairline fractures (oriented between 10 and 60 degrees) that have bleached the surrounding metasedimentprobably silicification. In the upper part of the unit (especially the first 6 meters), it is not uncommon for these bleached areas to show a pink tinge and find that the fracture itself is bright red, probably from hematization. The metasediment is also cut by a few small dikelets. Mineralization 63.40 - 76.15: PY Pyrite, DISS Disseminated, 1.00% Pyrite concentration is slightly less than 1% Alteration 63.40 - 111.58: SI Silica, Fract-Cont Fracture-Controlled, Weak Hairline fractures are surrounded by bleached metasediment that can be slightly harder than unbleached metasediment. The first 6 meters of the unit also show hematization. Structure 63.40 - 68.00: FR Fractured, 60.00 Deg to CA Fracture area consists of blocks 1 to 13 cm long. 69.40 - 69.73: FR Fractured, 65.00 Deg to CA Fracture area consists of blocks 1 to 7 cm long. 70.54 - 75.59: FR Fractured, 60.00 Deg to CA Fracture area consists of blocks 1 to 8 cm long. There are several chunks of white QF pegmatite diklet. Some of them appear to belong to different dikes but due to the scattered pieces within the fractured area, actual locations cannot be determined. 76.75 - 83.00: FR Fractured, 60.00 Deg to CA Fracture area consists of blocks 1 to 14 cm long. At meter 77.44, 77.57, and 79.29, core is interrupted by a mixture of very fine sand and clay that is very pale browndoes not appear to be derived from metasediment, possibly transported by ground H2O 88.47 - 89.70: FR Fractured, 50.00 Deg to CA Fracture area consists of blocks 1 to 10 cm long. 93.85 - 95.10: FR Fractured, 70.00 Deg to CA Fracture area consists of blocks 1 to 10 cm long. 94.27 - 94.29: DYKE, 30.00 Deg to CA Fracture area consists of blocks 1 to 10 cm long. 96.79 - 96.81: DYKE, 30.00 Deg to CA Fracture are									

Detailed Lithology	у			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
111.58 113.47	Structure 99.98 - 100.00 : DYKE , 40.00 Deg to CA Gray QF-tourmaline aplite dikelet (refered to as an unusual dike in other holes). 100.11 - 100.16 : DYKE , 40.00 Deg to CA Same as above. 100.29 - 100.63 : FR Fractured, 70.00 Deg to CA Fracture area consists of blocks 2 to 13 cm long 100.32 - 100.37 : DYKE , 40.00 Deg to CA White quartz-dominant pegmatite dikelet. 103.40 - 104.19 : FR Fractured, 40.00 Deg to CA Fracture area consists of blocks 4 to 9 cm long. 103.54 - 103.62 : DYKE , 40.00 Deg to CA White QF aplite dikelet. 110.00 - 110.05 : DYKE , 30.00 Deg to CA White quartz-dominant pegmatite dikelet. 111.23 - 111.58 : FR Fractured, 85.00 Deg to CA Fracture area consists of blocks 2 to 5 cm long. RQD 66.75 - 70.00 : 32.62 % RQD 95.38 % Core 70.00 - 72.90 : 13.79 % RQD 100.00 % Core 72.90 - 76.15 : 15.38 % RQD 94.46 % Core 76.15 - 78.50 : 25.96 % RQD 100.00 % Core Recovery should be 151.49%. Drillers corrected block placement after forgetting to put any blocks into box 5. 78.50 - 81.70 : 11.56 % RQD 99.06 % Core 81.70 - 85.68 : 39.19 % RQD 90.96.98 % Core 85.68 - 89.40 : 16.83 % RQD 92.21 % Core 89.40 - 93.44 : 49.01 % RQD 100.00 % Core 93.44 - 97.00 : 32.30 % RQD 96.35 % Core 100.44 - 104.47 : 52.36 % RQD 95.38 % Core 100.47 - 108.75 : 70.09 % RQD 96.35 % Core 104.47 - 108.75 : 70.09 % RQD 96.83 % Core 104.47 - 108.75 : 70.09 % RQD 96.12 % Core									
	Quartz-feldspar-muscovite aplite with trace red to pink garnet. Very pale pink and fine to medium grained. Pale pink color could be attributed to stainingcut by a few, thin white and red veins, probably quartz and hematite. These veins are oriented about 50 degrees to the core axis. Contacts oriented 90 degrees (upper) and 60 degrees (lower) to the core axis.									
	RQD 112.62 - 116.55: 67.18 % RQD 98.98 % Core									

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
113.47	175.47	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with disseminated pyrite. The core is heavily fractured and blocky, becoming more so down the hole. The core seems to enter a fault zone starting around 118. A few blocks have slickensides and there is minor amounts of fault gouge present. Longer sections of core after meter 118 tend to mostly be brecciated and then cemented together again with fine grained quartz that can sometimes have small vugs filled with quartz points. The main, competent, brecciated core section that is cemented with quartz is between meters 129 and 138. Any other fractures outside this zone tend to be filled with fine-grained quartz. Roughly the first 8.5 meters of the unit or so is cut by hairline fractures surrounded by bleached metasediment (possibly silicification). Multiple small dikes, usually white OF pegmatite dikelets with trace muscovite and quartz-dominant pegmatite dikelets, also cut the metasediment but due to the faulting and fracturing, it is difficult to determine where they are supposed to be located and at what angle they intersect with the core axis. Dikes that are the most easily located are listed below. The number of dikelets seems to increase down the hole starting around meter 146. Lower contact is brecciated and healed for 28cm before becoming gravel into fault unit. Mineralization 113.47 - 156.38 : PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is much less than 1%. Rarely increases in abundance on fracture planes. Alteration 113.47 - 122.00 :SI Silica, Fract-Cont Fracture-Controlled, Weak Hairline fractures are surrounded by bleached metasediment that can be slightly harder than unbleached metasediment. 174.30 - 174.61 :HEM Hematite, Pervasive , Moderate hematite altn within orange granite Structure 118.00 - 156.38 A few blocks have slickensides and there is minor amounts of fault gouge present. Longer sections of core after meter 118 tend to mostly be brecciated and then cemented together again with fine									

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		Structure 152.64 - 152.67 : DYKE , 50.00 Deg to CA White QF pegmatite dikelet. 152.85 - 152.92 Same as above. 172.75 - 174.30									
		FAULT ZONE - Rubbly ground mass having angular fragments up to 2cm with whispy carbonate fractures scatteredd in core. Upper contact has a 35cm healed bx apperance(nelled fault?) before reducing to broken core.									
]		RQD									
		116.55 - 120.10 : 30.14 % RQD 98.59 % Core 120.10 - 123.80 : 24.86 % RQD 90.27 % Core									
		123.80 - 126.70 : 12.76 % RQD 96.55 % Core									
		126.70 - 129.85 : 4.44 % RQD 96.51 % Core									
		129.85 - 133.93 : 50.00 % RQD 95.58 % Core									
		133.93 - 137.94: 34.41 % RQD 97.26 % Core									
		137.94 - 141.20: 6.44 % RQD 86.81 % Core									
		141.20 - 143.80: 11.54 % RQD 92.31 % Core									
		143.80 - 147.40: 8.06 % RQD 82.78 % Core									
		147.40 - 150.50: 12.26 % RQD 88.06 % Core									
		150.50 - 153.40: 14.48 % RQD 89.66 % Core									
		153.40 - 156.38: 17.45 % RQD 92.28 % Core									
		156.38 - 159.60: 18.47 % RQD 92.33 % Core									
		159.60 - 162.34 : 15.88 % RQD 88.87 % Core									
		162.34 - 164.70: 21.78 % RQD 91.28 % Core									
		165.32 - 168.45 : 19.58 % RQD 85.25 % Core									
		168.45 - 171.40 : 8.25 % RQD 82.00 % Core									
		FAULT ZONE									
		171.40 - 174.30 : 12.35 % RQD 83.56 % Core									
175 47	170.10	174.30 - 178.00 : 21.11 % RQD 91.36 % Core	1								
175.47	178.10	QF PEG, quartz-feldspar pegmatite Granite - med orange to cream in colour, med to course grained granite. estimated at 40% plag, 30% qtz, 30% feldspar. Lower contact is broken to DIA.									
1		RQD									
		178.00 - 181.30 : 18.25 % RQD 88.26 % Core									

Feb 24, 2012 Page 9 of 11

Detailed L	ithology				Assay I	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_p	pm
178.10	231.60	DIAB, diabase	884184	230.60	231.6	0 1.0	0.0	4 59.	00 5	.10 ().70	6.0
176.10	231.00	DIABASE DYKE - well dev. dia base dyke with crystaline structure, charcoal in colour having thin CHL hairline fractures scattered in core with no preferred orientation. Diss. sulphides in core in trace amounts, possibly PY. Chl. and carb. altn on joint planes and fractures trends in and out of core. Lower contact to Spodumene dyke is sharp at 30 deg tca. RQD 181.30 - 184.30: 34.88 % RQD 94.36 % Core 184.30 - 187.85: 0.00 % RQD 91.28 % Core 187.85 - 191.75: 48.64 % RQD 89.32 % Core 191.75 - 195.40: 49.89 % RQD 94.18 % Core 195.40 - 198.70: 38.47 % RQD 96.12 % Core 198.70 - 202.20: 52.98 % RQD 94.39 % Core 202.20 - 206.35: 76.97 % RQD 96.88 % Core 206.35 - 210.75: 100.00 % RQD 100.00 % Core 210.75 - 214.00: 78.84 % RQD 94.15 % Core 214.00 - 218.40: 82.68 % RQD 100.00 % Core 222.65: 91.78 % RQD 100.00 % Core	004104	230.00	231.0	y 1.0	oj 0.0	4 39.	00J 5	.10		0.4
		227.15 - 231.35 : 84.89 % RQD 100.00 % Core										
221 (0	222.20	231.35 - 235.35 : 79.87 % RQD 100.00 % Core	004105	221 (0	222.2	0 0 (0.0	207	00 10	(0 1-	7 10	115.0
231.60	232.28	SPD PEG, spodumene pegmatite SPODUMENE DYKE - Dark green to cream in colour, white with orange rimming on feldspars crystals up to 4 cm in size. Perthitic textures (tiger stripes) are apparent. orientation of spod is generally at 50 deg tca., euhedral, up to 4cm, at about 10-15% volume, mainly dark green to med green. no mica in core. Lower contact is sharp at 35 deg tca.	884185 884186	231.60 231.60	232.2 232.2						7.10	115.¢
		Mineralization 231.60 - 232.28 : SPOD Spodumene, INT Interstitial, 12.00% dark green colour										
232.28	233.00	DIAB, diabase Same as discribed from 178.1 to 231.6m. This short unit is chilled and has no magnetic sign., vfg and charcol in colour. Lower contact is sharp at 25 deg tca. soft chl altn on joint planes and hairline fractures.	884187	232.28	233.0	0 0.7	2 0.0	2 72.	00 11	.60 1	1.60	24.0

Page 10 of 11 Page 10 of 11

Detailed Lit	thology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
233.00	237.93	SPD PEG, spodumene pegmatite	884188	233.0	234.00	1.0	0 0.01	1 617.	00 17.4	10 19.	.30 155.0
		Spodumene dyke - med. green to light green, white, off white to cream, light	884189	234.0	235.00			1 386.	00 13.1	10 23.	.30 167.0
		orange, black flecks with large, up to 15 cm perthitic textured crystals with	884191	235.0				2 442.			.40 116.0
		orange thin altn on tiger stripes.	884192	236.0	+				_		.20 208.0
		Spod xtals are partially altered to medium green of fringes of xtals, with fresher spod in center, xtals are at generally 65 deg tca	884193	237.0	237.9	3 0.9	3 0.17	574.	00 40.7	70 84.	.40 129.0
		mica occurs in small 10 to 15 cm patches and is approx 3%. No aplite noticed in									
		core.									
		trace garnets.									
		Lower contact is sharp at 68 deg tca.									
		Mineralization									
		233.00 - 237.93 : SPOD Spodumene, INT Interstitial, 10.00%									
		RQD 235.35 - 239.35: 84.00 % RQD 96.00 % Core									
237.93		M SCH, mica schist	884194	237.9	3 239.50	1.5	7 0.11	1 147.	00 75.1	10 7	.40 23.0
237.73		light grey to grey MSCH with hairline carb fractures, chl-epidote altn in patches	004174	237.7	237.30	J 1.3	7 0.1	1 147.	00 75.	10 7.	.40 25.0
		up to 5mm.									
		lower contact is sharp at 70 deg tca.									
		RQD									
		239.35 - 243.60: 76.00 % RQD 98.00 % Core									
239.50	240.52	SPD PEG, spodumene pegmatite	884195	239.5	240.52	2 1.0	2 0.34	4 675.	00 66.9	90 115.	.00 198.0
		SPOD DYKE - as discribed in 233.00 to 237.93m; also, approx 3% spod xtals,									
		partial alter to dark									
		green with mica. patches of aplite up to 3cm at top of contact starting at 239.61m.									
		«Lower contact is sharp at 78 deg tca.									
		Mineralization									
		239.50 - 240.52 : SPOD Spodumene, INT Interstitial, 3.00%									
240.52	245.83	M SCH, mica schist	884196	240.5	2 241.52	2 1.0	0 0.13	325.	00 171.0	00 15.	.10 21.0
		MSCH - As described in 63.40-111.58m, also strong epidote altn on joint planes									
		and patches with quartz veining.									
		carbonate hairline fractures scattered in core. Trace py.									
		RQD									
245.02		243.60 - 248.83 : 79.00 % RQD 98.00 % Core									
245.83	246.30	QCV, Quartz Carb Vein									
		quartz carb vein having moderate epidote altn on contacts of wall rock and as patches. 1% py									
		lower irregular contacts.									

Detailed Lithology				Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	M SCH, mica schist MSCH - As described in 240.52 to 245.83m; including aplite zone starting at 247.87 for 34 cm and aplite zone for 28 cm starting at 251.16. Small epidote altered quartz veins up to 5cm and as patches trend in and out of core to EOH. Alteration 252.33 - 256.90 :HEM Hematite, Pervasive , Weak RQD 248.83 - 251.75 : 94.00 % RQD 100.00 % Core 251.75 - 256.20 : 98.00 % RQD 100.00 % Core 256.20 - 260.00 : 86.00 % RQD 96.00 % Core									
259.99 260.00	EOH, end of hole									

Samples

Sample Number	From	To	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884184	230.60	231.60	0.0431	59.0000	5.1000	0.7000	6.0000
884185	231.60	232.28	0.0215	397.0000	13.6000	17.1000	115.0000
884187	232.28	233.00	0.0215	72.0000	11.6000	1.6000	24.0000
884188	233.00	234.00	0.0108	617.0000	17.4000	19.3000	155.0000
884189	234.00	235.00	0.0108	386.0000	13.1000	23.3000	167.0000
884191	235.00	236.00	0.0215	442.0000	17.6000	8.4000	116.0000
884192	236.00	237.00	0.1507	396.0000	21.5000	8.2000	208.0000
884193	237.00	237.93	0.1722	574.0000	40.7000	84.4000	129.0000
884194	237.93	239.50	0.1076	147.0000	75.1000	7.4000	23.0000
884195	239.50	240.52	0.3445	675.0000	66.9000	115.0000	198.0000
884196	240.52	241.52	0.1292	325.0000	171.0000	15.1000	21.0000
Sample Type CDUP							
884186	231.60	232.28	0.0108	315.0000	10.2000	8.3000	120.0000

- I H	ole Number: NC-11-21	Units: METRIC

Project Name:	Nama Creek	Primary Coordinates Grid: U	ГМ:	Destination Coordinates Grid: UTM:	Collar Dip:	-52.00
Project Number:	01	North: 5477447.84		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424392.38		East:	Length:	101.00
		Elev: 366.76		Elev:	Start Depth:	0.00
Date Started:	Oct 11, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	101.00
Date Completed:	Oct 13, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Pulled			

Comments: very broken core from top to bottom of hole, with short portions of core not broken
In RQD tab, core recovery was entered as 100% assuming that
all core was recovered as it could not be measured with accuracy due to very poor core condition.
No samples aquired; claim number TB67135

Sample Averages

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
20.00	139.90	-52.30	Reflex	OK	mag field 57140	53.00	142.10	-52.40	Reflex	OK	mag field 56960
101.00	142.40	-52.50	Reflex	OK	mag field 56970						

Detailed L	ithology		Assay Data										
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm		
0.00		OVB, Casing pulled casing											
		RQD 0.00 - 6.20: 0.00 % RQD 100.00 % Core very broken ground and poor RQD for entire hole											

Detailed Li	thology				Assay	Data					
From	To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
6.20	100.99	M SCH, mica schist MSCH - light grey to grey metasediment with varying amounts of mica/biotite up to 15% possibly. Otz/carb hairline fractures scattered in core. Moderate epidote and hematite altri along joint planes trending in and out of core up to 44metres. Small granitic dyke at <10cm in core starting at 71m, broken contacts. weak hematization of core from 79 to 82m, trends in and out of core in small zones up to 15cm. Fractures carrying diss. cubic py in trace amounts. Sulphides occure as small <1mb blebs. Very broken angular core from top of hole to 101m (EOH). more competant core from 49m to 59m, still having poor RQD, but not rubble. Mineralization 6.20 - 42.00 : PY Pyrite, FRA Along/Near Fractures, 1.00% Alteration 6.20 - 42.00 : E Epidote, Fract-Cont Fracture-Controlled, Moderate in and out of core 6.20 - 42.00 : HEM Hematite, Fract-Cont Fracture-Controlled, Weak in and out of core Structure 6.20 - 100.99 very broken core top to bottom of hole 66.00 - 69.10 Gouge with lithic fragments up to 1.5cm. plastic core RQD 6.20 - 8.00 : 0.00 % RQD 100.00 % Core core recovery is presumed at 100% as the core is unmeasureable due to very poor RQD conditions. 8.00 - 11.00 : 15.00 % RQD 100.00 % Core 11.00 - 14.00 : 5.00 % RQD 100.00 % Core 11.00 - 20.00 : 15.00 % RQD 100.00 % Core 11.00 - 20.00 : 15.00 % RQD 100.00 % Core 23.00 - 23.00 : 0.00 % RQD 100.00 % Core 24.00 - 32.00 : 0.00 % RQD 100.00 % Core 25.00 - 32.00 : 0.00 % RQD 100.00 % Core 26.00 - 29.00 : 0.00 % RQD 100.00 % Core 27.00 - 32.00 : 0.00 % RQD 100.00 % Core 28.00 - 35.00 : 0.00 % RQD 100.00 % Core 29.00 - 32.00 : 0.00 % RQD 100.00 % Core 29.00 - 32.00 : 0.00 % RQD 100.00 % Core 20.00 - 36.00 : 0.00 % RQD 100.00 % Core 20.00 - 37.00 : 0.00 % RQD 100.00 % Core 20.00 - 37.00 : 0.00 % RQD 100.00 % Core 20.00 - 37.00 : 0.00 % RQD 100.00 % Core 20.00 - 37.00 : 0.00 % RQD 100.00 % Core 20.00 - 38.00 : 0.00 % RQD 100.00 % Core 20.00 - 30.00 : 0.00 % RQD 100.00 % Core 20.00 - 30.00 : 0.00 % RQD 100.00 % Core 20.00 - 30.00 :	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm

Feb 24, 2012 Page 3 of 3

From To Length Li2O_per Rb_ppm Cs_ppm Ta_ppm RQD 50.00 - 53.00: 15.00 % RQD 100.00 % Core 53.00 - 56.00: 20.00 % RQD 100.00 % Core 56.00 - 59.00: 35.00 % RQD 100.00 % Core	
50.00 - 53.00 : 15.00 % RQD 100.00 % Core 53.00 - 56.00 : 20.00 % RQD 100.00 % Core	m Be_ppm
59.00 - 62.00: 10.00 % RQD 100.00 % Core 62.00 - 65.00: 0.00 % RQD 100.00 % Core 65.00 - 68.00: 0.00 % RQD 100.00 % Core 68.00 - 71.00: 0.00 % RQD 100.00 % Core 71.00 - 74.00: 0.00 % RQD 100.00 % Core 77.00 - 80.00: 10.00 % RQD 100.00 % Core 77.00 - 80.00: 10.00 % RQD 100.00 % Core 80.00 - 83.00: 10.00 % RQD 100.00 % Core 83.00 - 86.00: 0.00 % RQD 100.00 % Core 86.00 - 89.00: 0.00 % RQD 100.00 % Core 89.00 - 92.00: 0.00 % RQD 100.00 % Core 92.00 - 95.00: 0.00 % RQD 100.00 % Core 98.00 - 101.00 & RQD 100.00 % Core 98.00 - 101.00 & RQD 100.00 % Core	

Page 1 of 12 DETAILED LOG

Hole Number: NC-11-22 Units: METRIC

Project Name:	Nama Creek	Primary Coordinates Grid: U	TM:	Destination Coordinates Grid: UTM:	Collar Dip:	-70.00
Project Number:	01	North: 5477657.68		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424485.33		East:	Length:	314.06
		Elev: 368.67		Elev:	Start Depth:	0.00
Date Started:	Oct 13, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	314.06
Date Completed:	Oct 17, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: logged by Jonathan Musicco; claim number TB67136

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	147.70	150.57	2.87	0.8137	728.4843	55.9530	37.7645	165.1115
WEIGHTED	174.90	179.90	5.00	1.2702	770.6000	53.1600	36.5000	156.8000
WEIGHTED	264.55	269.55	5.00	1.6146	700.6000	54.0000	34.7400	178.6000
WEIGHTED	265.55	267.55	2.00	2.0560	675.5000	56.7000	27.1000	181.0000
WEIGHTED	278.77	282.22	3.45	1.1922	854.6667	67.7464	28.6319	159.7826
WEIGHTED	280.77	282.22	1.45	1.5300	733.5172	58.7069	31.6414	174.6552

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
	Decimal	Decimal	rype				Decimal	Decimal	Type		
14.00	141.20	-69.60	Reflex	ОК	mag 57110	50.00	142.90	-69.60	Reflex	OK	mag 56940
100.00	147.20	-69.40	Reflex	OK	mag 56760	149.00	147.90	-69.50	Reflex	OK	mag 57025
200.00	147.00	-69.80	Reflex	ОК	mag 57740	251.00	147.00	-69.50	Reflex	OK	mag 57680
302.00	148.20	-69.60	Reflex	ОК	mag 57740						

Detailed Lithology				Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00 3.00	OVB, Casing casing in hole RQD 2.00 - 5.00: 35.00 % RQD 88.00 % Core									

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
3.00	132.00	M SCH, mica schist MSCH - Metesediments, fine grained, medium grey, feldspar quartz biotite, weakly foliated to massive, occasional white to light grey qtz/carb. veins at 25 to 70 degrees to core axes, most of the veins are small 1mm up to 8 cm, but a few are over 20 cm as listed in structure tab with spodumene/lepidolite, green silver mica as very thin, low angle dykes. Lower contact is sharp at 45 deg tca Texture 3.00 - 99.00 : FG/MG FG to MG Mineralization 3.77 - 93.91 : SPOD Spodumene, INT Interstitial, 2.00% spod mostly replaced by dark green mica. spodumene at 2%. 84.38 - 84.59 : SPOD Spodumene, INT Interstitial, 2.00% spod with partial replacement of mica, lepidolite @ 0.5% associated with spodumene. spod at ~2%, light green to medium green. no orientation to xtals, sub paralle tca. 3.00 - 99.00 : PY Pyrite, FRA Along/Near Fractures, 1.00% trace Alteration 99.40 - 103.60 :CA Carbonate, Fract-Cont Fracture-Controlled, Moderate qtz carb veinlets. Zone of altn. Structure 11.77 - 11.97 38.75 - 39.10 sharp contact: sericite+chl altn 67.00 - 67.38 sharp contact: sericite+chl altn 67.00 - 67.38 sharp contact: sericite+chl altn 67.00 - 67.38 sharp contact: sericite+chl altn 67.00 - 101.00 : FR Fractured, 0 Deg to CA two bx short zones up to 35 cm each. angular fragments located in alterd MSCH. RQD 5.00 - 8.00 : 86.00 % RQD 100.00 % Core 11.00 - 14.00 : 100.00 % RQD 100.00 % Core 11.00 - 14.00 : 100.00 % RQD 100.00 % Core 20.00 - 23.00 : 98.00 % RQD 100.00 % Core 21.00 - 20.00 : 95.00 % RQD 100.00 % Core 22.00 - 29.00 : 99.00 % RQD 100.00 % Core 23.00 - 26.00 : 95.00 % RQD 100.00 % Core 24.00 - 29.00 : 99.00 % RQD 100.00 % Core	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm

Page 4 of 12 DETAILED LOG

Detailed Lit	hology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
132.00		QF PEG, quartz-feldspar pegmatite QFM - silver to light green, cream to white, grey in colour. totally replaced spodumene to mica. no visable spodumene in dyke. trace black columbite flecks. three aplite zones in unit range from 1 to 3 cm each at low angle tca. lower contact at 48 deg tca									
132.65	147.70	M SCH, mica schist MSCH - same as described from 3 to 132.0m. lower contact to spod dyke is broken. Mineralization 143.00 - 145.55 : GAR Garnet, INT Interstitial, 2.00% 1mm garnets as patches of garnets in and out of core RQD 134.00 - 137.00 : 85.00 % RQD 100.00 % Core 137.00 - 140.00 : 95.00 % RQD 100.00 % Core 140.00 - 143.00 : 91.00 % RQD 100.00 % Core 143.00 - 146.00 : 94.00 % RQD 100.00 % Core	884197	146.70	147.7	0 1.0	0 0.1	7 372.0	00 173.	00 26	.80 24.0
		146.00 - 149.00: 72.00 % RQD 100.00 % Core									
147.70		SPD PEG, spodumene pegmatite Spodumene Pegmatite - light green, green, white grey feldspar to 7cm, grey quartz to 1.5 cm, pale greenish spodumene crystals to 2.5 cm long, muscovite is silvery white to yellowish, the spodumene crystals are oriented at 55 deg. tca, up to 15%, the crystals are fresh with some replacement nearest the contacts, or patches in and out of darker green altn of muscovite. There are two small aplites up to 3cm thick in unit. lower contact is sharp at 44 deg tca. Mineralization 147.70 - 150.57: SPOD Spodumene, INT Interstitial, 15.00% RQD 149.00 - 152.00: 91.00 % RQD 100.00 % Core		147.70 148.70 149.60	149.6 150.5	0 0.9	0 0.6 7 1.1	2 634.4 6 495.0	00 57. 00 47.	90 21 50 56	.70 144.¢ .30 96.¢ .20 251.¢
150.57	151.80	M SCH, mica schist MSCH - same as from 3 to 132.0m lower contact is sharp at 54 deg tca.	884202	150.57	151.5	7 1.0	0 0.2	6 239.0	00 105.	00 5	.60 8.0
151.80	152.20	QF PEG, quartz-feldspar pegmatite QFM - altered to dark green muscovite with no visable fresh spodumene present. some alplite in thin zones. lower contact is sharp at 65 deg tca. RQD 152.00 - 155.00: 100.00 % RQD 92.00 % Core									

Feb 24, 2012 Page 5 of 12

Detailed Li	ithology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
152.20	170.49	M SCH, mica schist MSCH - same as from 3 to 132.0m. including short QFM dyke with no fresh spodumene starting at 154.5 for 31cm. 25% aplite in this unit. sharp upper and lower contacts at 70 deg tca. RQD 155.00 - 158.00 : 94.00 % RQD 100.00 % Core 158.00 - 161.00 : 100.00 % RQD 95.00 % Core 161.00 - 164.00 : 100.00 % RQD 100.00 % Core 164.00 - 167.00 : 100.00 % RQD 97.00 % Core 167.00 - 170.00 : 98.00 % RQD 100.00 % Core	884203	169.49							1.80 11.
170.49	171.73	170.00 - 173.00 : 89.00 % RQD 100.00 % Core SPD PEG, spodumene pegmatite SPD - white to cream, light green to medium green, silver to grey in colour. this unit has approx. 15 to 20% aplite ranging from 25 to 50 deg tca as thin altn. zones ranging in thicknessess up to 24cm. Spod is somewhat fresh with short stubby xtals up to 2cm at 45 deg tca, up to 15%. partial replaced by silver/green mica in and out of core. Lower contact is sharp at 35 deg tca. Mineralization 170.49 - 171.73 : SPOD Spodumene, INT Interstitial, 15.00%	884204	170.49	171.7;	3 1.24	4 0.7	8 595.	00 67.	70 105	5.00 174.
171.73		M SCH, mica schist MSCH	884205 884206	171.73 171.73							5.80 39. 3.40 39.
172.33	172.70	SPD PEG, spodumene pegmatite SPD - 10-12% fresh spodumene with dark green to silver mica replaced of fringes of spod xtals. trace garnets. no aplite present. Mineralization 172.33 - 172.70 : SPOD Spodumene, INT Interstitial, 10.00%	884207	171.73	172.70	0 0.3	7 1.0				1.00 250.
172.70		M SCH, mica schist MSCH - Thin QFM dyke starting at 173.22m with sharp upper and lower contacts at 78 deg tca. Lower contact to pay zone is sharp at 53 deg tca RQD 173.00 - 176.00: 94.00 % RQD 99.00 % Core	884208 884209	172.70 173.70				_			3.40 26. 1.90 5.

Feb 24, 2012 Page 6 of 12

Detailed L	ithology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
174.90	181.05	SPD PEG, spodumene pegmatite	884211	174.90	175.90	1.00	0.86	1030.0	0 78.80	102.00	126.0
		SPD PEG - well developed spodumene pegmatite dyke, light to dark green, silver	884212	175.90	176.90	1.00	1.21	858.0	0 53.50	22.90	143.0
		to white, grey with black flecks.	884213	176.90	177.90	1.00	1.81	557.0	0 42.20	18.20	159.0
		very course grained white perthitic texture fsp up to 7cm.	884214	177.90	178.90						
		Spodumene xtals are sub-paralle tca at ~45 deg, short and stubby, with different variations of replacment mica within this unit. Very little mica altn as	004213	178.90	179.90					l	
		estimated at 5-8%.	884216	179.90	181.05	1.15	0.47	954.0	0 72.90	113.00	184.0
		From the upper contact, downhole for 55cm, spod xtals are near replaced to mica, fresh spodumene remains at $\sim 3\%$. This unit is aplite free except for the lower 25cm to the bottom contact to the MSCH. Higher concentrations of spod xtals zones are listed in Mineralization tab. Lower contact to DIA is broken									
		Texture 174.90 - 181.05 : CG Coarse Grained									
		Mineralization 179.10 - 179.75: SPOD Spodumene, INT Interstitial, 20.00% higher concentration of fresh spd xtals 177.65 - 178.20: SPOD Spodumene, INT Interstitial, 20.00% higher concentration of fresh spd xtals 174.90 - 181.05: SPOD Spodumene, INT Interstitial, 12.00% RQD 176.00 - 179.00: 100.00 % RQD 100.00 % Core 179.00 - 182.00: 96.00 % RQD 94.00 % Core									
181.05		M SCH, mica schist	884217	181.05	182.05					-	
		MSCH - as described from 3.0 to 132.0m. slight incease with 5cm thin QFM veins at 45 deg tca. lower contact to DIA is broken and detected by magnetism. RQD 182.00 - 185.00: 94.00 % RQD 100.00 % Core 185.00 - 188.00: 99.00 % RQD 100.00 % Core 188.00 - 191.00: 38.00 % RQD 94.00 % Core	884218	182.05	183.05	1.00	0.22	237.0	0 80.40	0.70	9.6

Feb 24, 2012 DETAILED LOG

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
190.00		DIAB, diabase Diabase, dark grey to black, medium grained, equigranular, weakly magnetic in and out of core, holocrystaline, pyroxene, feldspar with minor olivine, chl on joint planes. ophitic texture. Lower contact with metasediment is sharp at 45 deg tca having 1.75 metre chill margin. RQD 191.00 - 194.00: 84.00 % RQD 100.00 % Core 194.00 - 197.00: 78.00 % RQD 100.00 % Core 197.00 - 200.00: 82.00 % RQD 96.00 % Core 200.00 - 203.00: 97.00 % RQD 100.00 % Core 203.00 - 206.00: 100.00 % RQD 100.00 % Core 206.00 - 209.00: 97.00 % RQD 100.00 % Core									

Page 8 of 12 DETAILED LOG

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppn
208.39	258.35	M SCH, mica schist MSCH - As described from 3.0 to 132.0m, including, increase an in QFM low lying veining from 210-221m up to 10cm in thickness; and from 239.1 downhole to end of this unit. Foliation trends in and out of core at high angle tca for entire unit. Lower contact is 42 deg tca Structure 234.10 - 234.38 weak epidote altn 257.10 - 257.19 QFM RQD 209.00 - 212.00: 95.00 % RQD 100.00 % Core 212.00 - 215.00: 99.00 % RQD 100.00 % Core 215.00 - 218.00: 100.00 % RQD 100.00 % Core 218.00 - 221.00: 100.00 % RQD 100.00 % Core 221.00 - 224.00: 92.00 % RQD 100.00 % Core 224.00 - 227.00: 98.00 % RQD 100.00 % Core 227.00 - 230.00: 95.00 % RQD 100.00 % Core 230.00 - 233.00: 61.00 % RQD 100.00 % Core 233.00 - 236.00: 26.00 % RQD 100.00 % Core 236.00 - 239.00: 100.00 % RQD 100.00 % Core 239.00 - 242.00: 100.00 % RQD 100.00 % Core 239.00 - 242.00: 100.00 % RQD 100.00 % Core 245.00 - 248.00: 100.00 % RQD 100.00 % Core	·	From	10	Lengin	Li2O_per	ко_ррт	Cs_ppm	та_ррт	ве_рр
258.35	259.35	251.00 - 254.00: 94.00 % RQD 100.00 % Core 254.00 - 257.00: 93.00 % RQD 100.00 % Core 257.00 - 260.00: 73.00 % RQD 100.00 % Core QF PEG, quartz-feldspar pegmatite QFM- is interuped by MSCH in middle of this zone for 27cm. large perthitic fsp xtals up to 8cm. No fresh visable spodumene in core. Both short units carry silvery green muscovite.									
259.35		lower contact is sharp at 45 deg tca. M SCH, mica schist MSCH - As described from 3 to 132.0m. Lower contact sharp at 52 deg tca. RQD									
		260.00 - 263.00 : 55.00 % RQD 100.00 % Core									

Page 9 of 12 DETAILED LOG

Detailed L	ithology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
262.55	272.27	SPD PEG, spodumene pegmatite	884219	262.55	263.5	1.00	0.28	886.0	00 49.20	33.9	00 137.0
		Spodumene Dyke - silver to white, off white, dark green to green, cream with	884221	263.55	264.5	1.00	0.11	1340.0	00 58.10	14.0	00 134.0
		black flecs, trace garnets up to 1cm.	884222	264.55	265.5		0.71	986.0	0 54.30	24.0	00 157.0
		Course grained dyke with zones of dark green alterd mica in and out of core for	884223	265.55	266.5				0 47.50		
		entire unit up to 7-10%. Less mica percentage in zones that are mentioned in Mineralization tab(check for	884224	266.55	267.5						
		metreages) where spodumene is increasing in percent.	884225	267.55	268.5						
		Increased fresh spodumene xtals, stubby, randomly scattered up to 3cm	884226	267.55	268.5						
		Overall percentage over enitre unit is estimated at 15%, with zones of fresh spod	884227	268.55	269.5						
		xtals up to 30%.	884228	269.55	270.5					-	
		From 270.4m to end of this unit, aplite increases as patches and bands up to	884229	270.55	271.5						
		12cm near lower contact. Lower contact is sharp at 57 deg tca with abudant epidote alt at contact, trace	884231	271.55	272.2	0.72	0.43	724.0	00 47.00	51.6	50 176.0
		py.									
		Texture									
		262.55 - 272.27 : CG Coarse Grained									
		Mineralization									
		268.10 - 269.57 : SPOD Spodumene, INT Interstitial, 30.00%									
		above and below this metreage, spod xstals are less occuring and increasing in dark green mica outside of this interval.									
		265.75 - 267.48 : SPOD Spodumene, INT Interstitial, 30.00%									
		above and below this metreage, spod xstals are less occuring and increasing									
		in dark green mica outside of this interval.									
		RQD									
		263.00 - 266.00: 64.00 % RQD 100.00 % Core									
		266.00 - 269.00: 94.00 % RQD 100.00 % Core									
		269.00 - 272.00: 95.00 % RQD 100.00 % Core									
		272.00 - 275.00 : 100.00 % RQD 100.00 % Core									
272.27	278.77	M SCH, mica schist	884232	272.27	273.2			263.0			
		MSCH - four seperate QFM dykes, up to 11cm, void of spodumene, contacts	884233	273.27	274.27	7 1.00	0.17	156.0	00 56.00	12.3	30 16.0
		range from low(25 deg tca) to high angle(65 deg tca).	884234	274.27	275.27	7 1.00	0.22	260.0	103.00	2.2	20 13.0
		Increase in mica content for last 2m of unit.	884235	275.27	276.27	7 1.00	0.19	167.0	00 65.00	1.5	
		Lower contact to spod is sharp at 52 deg tca.	884236	276.27	277.47	7 1.20	0.17	181.0	0 50.50	8.2	20 15.0
			884237	277.47	278.7	7 1.30	0.19	183.0	52.60	1.9	6.0

Feb 24, 2012 Page 10 of 12

Detailed Li	ithology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
278.77	282.22	SPD PEG, spodumene pegmatite	884238	278.77	279.7			615.	00 61.	50 37.	60 207.0
		SPOD Dyke - white to off white, cream, light to dark green with black flecks.	884239	279.77	280.7					50 37. 10 15. 20 29. 50 36.	
		Well dev. spod peg dyke with course perthitic fsp up to 8cm. spod is fresh and	884241	280.77	281.7			727.			
		sub-paralle to at ~45 deg.	884242	281.77	282.22	0.45	1.49	748.	00 66.	36.	40 125.0
		Dark green and silver mica is in and out of core at 8-10%. Spod is and well distributed over the entire unit at 20 -25%. pinhead garnets form as patches at 280.18. MSCH inclusion for 9cm starting at 281.68 Lower contact is sharp at 47 deg tca. Mineralization 278.77 - 282.22 : SPOD Spodumene, INT Interstitial, 20.00%									
282.22		M SCH, mica schist	884243	282.22	283.28	3 1.06	0.24	349.	00 138.0	00 2.	10 7.0
202.22		MSCH inclusion? lower contact is sharp at 50 deg tca.		1							'
283.28		SPD PEG, spodumene pegmatite	884244	283.28	284.28	1.00	0.52	680.	00 101.0	57.0	00 158.0
		SPOD - Well dev. dyke with large perthitic fsp xtals up to 6cm. spod is in and out of this unit at 2-3%. some fresh xtals with partial mica replacement as dark green or silvery flakes. minor aplite as bands up tpo 3cm at upper contact. MSCH inclusion starting at 283.55 for 18cm. Lower contact is sharp at 25 deg tca. Mineralization 283.28 - 284.28 : SPOD Spodumene, INT Interstitial, 2.00% interupted by 15cm MSCH inclusion.									

Detailed Li	ithology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
284.28	314.05	M SCH, mica schist	884246	284.28	285.28	3 1.0	0 0.3	4 576.	00 217.0	0 16.8	80 59.0
		MSCH - unit is interuped by QFM dykes having abundant aplite starting at:	884245	284.28	285.28	1.0	0 0.2	6 550.	00 200.0	0 12.8	80 49.0
		286.20 for 16cm; 286.50 for 24cm, (1-2% spodumene, sampled); 287.41 for	884247	285.28	286.48	1.2	0.2	4 244.	00 85.2	J 5.	50 16.0
		45cm; 288.83 for 10cm; 313.89 for 14cm.	884248	286.48	286.74	0.2	6 0.3	907.	00 84.3	0 121.0	00 90.0
314.05	314.06	EOH, end of hole									

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884197	146.70	147.70	0.1722	372.0000	173.0000	26.8000	24.0000
884198	147.70	148.70	0.6458	1040.0000	62.4000	34.7000	144.0000
884199	148.70	149.60	0.6243	634.0000	57.9000	21.3000	96.0000
884201	149.60	150.57	1.1625	495.0000	47.5000	56.2000	251.0000
884202	150.57	151.57	0.2583	239.0000	105.0000	5.6000	8.0000
884203	169.49	170.49	0.3014	520.0000	461.0000	4.8000	11.0000
884204	170.49	171.73	0.7750	595.0000	67.7000	105.0000	174.0000
884205	171.73	172.33	0.2583	837.0000	417.0000	25.8000	39.0000
884207	172.33	172.70	1.0549	419.0000	70.1000	224.0000	250.0000
884208	172.70	173.70	0.3014	408.0000	449.0000	18.4000	26.0000
884209	173.70	174.90	0.2583	308.0000	251.0000	1.9000	5.0000
884211	174.90	175.90	0.8611	1030.0000	78.8000	102.0000	126.0000
884212	175.90	176.90	1.2056	858.0000	53.5000	22.9000	143.0000
884213	176.90	177.90	1.8084	557.0000	42.2000	18.2000	159.0000
884214	177.90	178.90	1.3132	717.0000	47.4000	7.8000	160.0000
884215	178.90	179.90	1.1625	691.0000	43.9000	31.6000	196.0000
884216	179.90	181.05	0.4736	954.0000	72.9000	113.0000	184.0000
884217	181.05	182.05	0.2153	429.0000	232.0000	3.0000	15.0000
884218	182.05	183.05	0.2153	237.0000	80.4000	0.7000	9.0000
884219	262.55	263.55	0.2799	886.0000	49.2000	33.9000	137.0000
884221	263.55	264.55	0.1076	1340.0000	58.1000	14.0000	134.0000
884222	264.55	265.55	0.7104	986.0000	54.3000	24.0000	157.0000
884223	265.55	266.55	2.1959	533.0000	47.5000	19.2000	182.0000
884224	266.55	267.55	1.9160	818.0000	65.9000	35.0000	180.0000
884225	267.55	268.55	1.3348	449.0000	43.7000	53.4000	176.0000
884227	268.55	269.55	1.9160	717.0000	58.6000	42.1000	198.0000
884228	269.55	270.55	0.4306	492.0000	34.7000	45.5000	239.0000
884229	270.55	271.55	0.2368	726.0000	44.0000	58.4000	222.0000
884231	271.55	272.27	0.4306	724.0000	47.0000	51.6000	176.0000
884232	272.27	273.27	0.2368	263.0000	68.9000	20.1000	14.0000

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884233	273.27	274.27	0.1722	156.0000	56.0000	12.3000	16.0000
884234	274.27	275.27	0.2153	260.0000	103.0000	2.2000	13.0000
884235	275.27	276.27	0.1938	167.0000	65.0000	1.5000	9.0000
884236	276.27	277.47	0.1722	181.0000	50.5000	8.2000	15.0000
884237	277.47	278.77	0.1938	183.0000	52.6000	1.9000	6.0000
884238	278.77	279.77	1.2271	615.0000	61.5000	37.6000	207.0000
884239	279.77	280.77	0.6674	1270.0000	87.1000	15.3000	91.0000
884241	280.77	281.77	1.5500	727.0000	55.2000	29.5000	197.0000
884242	281.77	282.22	1.4855	748.0000	66.5000	36.4000	125.0000
884243	282.22	283.28	0.2368	349.0000	138.0000	2.1000	7.0000
884244	283.28	284.28	0.5167	680.0000	101.0000	57.0000	158.0000
884245	284.28	285.28	0.2583	550.0000	200.0000	12.8000	49.0000
884247	285.28	286.48	0.2368	244.0000	85.2000	5.5000	16.0000
884248	286.48	286.74	0.3014	907.0000	84.3000	121.0000	90.0000
Sample Type CDUP							
884206	171.73	172.33	0.2799	830.0000	469.0000	18.4000	39.0000
884226	267.55	268.55	1.3132	530.0000	47.3000	191.0000	143.0000
884246	284.28	285.28	0.3445	576.0000	217.0000	16.8000	59.0000

Page 1 of 10 DETAILED LOG

Hole Number: NC-11-23 Units: METRIC

Project Name:	Nama Creek	Primary Coordinates Grid: U	TM:	Destination Coordinates Grid: UTM:	Collar Dip:	-70.00
Project Number:	01	North: 5477611.79		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424419.16		East:	Length:	278.11
		Elev: 371.36		Elev:	Start Depth:	0.00
Date Started:	Oct 18, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	278.11
Date Completed:	Oct 20, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: Logged by Jonathan Musicco; claim number TB67136

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	147.90	151.00	3.10	1.1056	614.4516	38.1581	34.0677	152.9032
WEIGHTED	252.16	261.00	8.84	1.2046	803.2579	46.0217	35.7222	147.4072

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
15.00	139.30	-69.10	Reflex	ОК	mag 57800	50.00	140.60	-68.80	Reflex	OK	no mag
101.00	142.80	-68.10	Reflex	ОК	mag 57740	152.00	142.30	-68.70	Reflex	OK	mag 57780
200.00	149.30	-69.10	Reflex	ОК	mag 57850	251.00	149.80	-69.30	Reflex	OK	mag 57970
278.00	146.20	-69.50	Reflex	ОК	mag 57540						

Detailed L	_ithology		Assay Data								
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	3.00	OVB, Casing									
		left in hole									

Detailed Lit	:hology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppr
		RQD									
		26.00 - 29.00: 38.00 % RQD 100.00 % Core									
		29.00 - 32.00: 21.00 % RQD 100.00 % Core									
		32.00 - 35.00: 18.00 % RQD 100.00 % Core									
		35.00 - 38.00: 5.00 % RQD 100.00 % Core									
		38.00 - 41.00: 4.00 % RQD 100.00 % Core									
		41.00 - 44.00: 22.00 % RQD 100.00 % Core									
		44.00 - 47.00: 34.00 % RQD 100.00 % Core									
		47.00 - 50.00: 0.00 % RQD 100.00 % Core									
		50.00 - 53.00: 0.00 % RQD 100.00 % Core									
		53.00 - 56.00: 0.00 % RQD 100.00 % Core									
		56.00 - 59.00: 0.00 % RQD 100.00 % Core									
		59.00 - 62.00: 0.00 % RQD 100.00 % Core									
		62.00 - 65.00: 0.00 % RQD 100.00 % Core									
		65.00 - 68.00: 35.00 % RQD 100.00 % Core									
		68.00 - 71.00: 0.00 % RQD 100.00 % Core									
		71.00 - 74.00: 0.00 % RQD 100.00 % Core									
		74.00 - 77.00: 0.00 % RQD 100.00 % Core									
		77.00 - 80.00: 0.00 % RQD 100.00 % Core									
		80.00 - 83.00: 24.00 % RQD 100.00 % Core									
		83.00 - 86.00: 25.00 % RQD 100.00 % Core									
		86.00 - 89.00: 15.00 % RQD 100.00 % Core									
		89.00 - 92.00 : 55.00 % RQD 100.00 % Core									
		92.00 - 95.00: 81.00 % RQD 100.00 % Core									
		95.00 - 98.00: 62.00 % RQD 100.00 % Core									
		98.00 - 101.00 : 72.00 % RQD 100.00 % Core									
		101.00 - 104.00: 66.00 % RQD 100.00 % Core									
		104.00 - 107.00 : 51.00 % RQD 100.00 % Core									
		107.00 - 110.00: 38.00 % RQD 100.00 % Core									
		110.00 - 113.00: 21.00 % RQD 100.00 % Core									
		113.00 - 116.00: 19.00 % RQD 100.00 % Core									
		116.00 - 119.00: 25.00 % RQD 100.00 % Core									
		119.00 - 122.00: 21.00 % RQD 100.00 % Core									
		122.00 - 125.00: 81.00 % RQD 100.00 % Core									
		125.00 - 128.00: 98.00 % RQD 100.00 % Core									
		128.00 - 131.00: 78.00 % RQD 96.00 % Core									
		131.00 - 134.00: 44.00 % RQD 100.00 % Core									
		134.00 - 137.00: 50.00 % RQD 100.00 % Core									

Feb 24, 2012 Page 4 of 10

Detailed L	ithology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 137.00 - 140.00 : 54.00 % RQD 100.00 % Core 140.00 - 143.00 : 66.00 % RQD 100.00 % Core 143.00 - 146.00 : 54.00 % RQD 100.00 % Core 146.00 - 149.00 : 100.00 % RQD 100.00 % Core		·							
146.90	151.00	SPD PEG, spodumene pegmatite SPD - light green to green, white, off white, to cream, grey. very course grained pegmatite having perthitic fsp up to 9cm exibiting well dev. cream colour tiger stripes. spdoumene is fresh and orientated at 60 deg tca up to 3cm long. minor dark green mica on edge of fresh spod xtals at <2%. fresh spod is estimated at 15% over entire unit. From top of contact to 147.80m, altered spod to green to silver mica. fresh spodumene downhole from this point to 150.45m. from 150.45 to end of this unit, spodumene is altered and less in volume with appreicating aplite up to for 15cm. Lower contact is sharp at 25 deg tca. Mineralization 146.90 - 151.00: SPOD Spodumene, INT Interstitial, 15.00% RQD 149.00 - 152.00: 96.00 % RQD 100.00 % Core	884251 884252 884253 884254	146.90 147.90 148.90 149.90	147.9(148.9(149.9(151.0(1.00	0 1.6	68 623. 5 646.	00 38 00 42	.70 32	2.00 172.0 2.00 169.0 0.50 162.0 0.10 130.0
151.00	152.68	M SCH, mica schist MSCH - as described from 3 to 146.9m. lower contact is sharp at 60 deg tca. Texture 151.00 - 152.68: MG Medium Grained RQD 152.00 - 155.00: 58.00 % RQD 100.00 % Core	884255 884256	151.00 151.75	151.79 152.68			_		_	0.60 4.0 3.40 10.0
152.68	155.00	SPD PEG, spodumene pegmatite SPD - white to cream, dark green with minor fresh apple green spod xtals. very coarse grained pegmatite, except for the upper part of the unit (first meter) which is a mixture of aplite and medium grained pegmatite. this unit is dominated by dark green to silver mica with minor fresh spod xtals remaining. fresh spodumene is estimated at 8-10%. trace garnets lower contact is broken. Mineralization 152.68 - 155.00: SPOD Spodumene, INT Interstitial, 8.00% mostly altered spod xtals	884257 884258	152.68 153.68	153.66 155.00						7.00 97.0 7.00 174.0

Feb 24, 2012 Page 5 of 10

Detailed Li	thology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
155.00	158.05	M SCH, mica schist	884259	155.00	156.00	1.00	0.17	7 519.0	00 298.0	00 11.	30 10.0
		MSCH - as described from 3 to 146.9m.	884261	156.00	157.00	1.00	0.15	217.0	00 127.0	00 2.	20 8.0
		sampled through this waste unit.	884262	157.00	158.05	1.05	0.32	183.0	98. <i>6</i>	0 6.	90 10.0
		lower contact is sharp at 47 deg tca.									
		Texture									
		155.00 - 158.05 : MG Medium Grained									
		RQD									
		155.00 - 158.00: 41.00 % RQD 100.00 % Core									
		158.00 - 161.00: 65.00 % RQD 100.00 % Core									
158.05	159.07	SPD PEG, spodumene pegmatite	884263	158.05	159.07	1.02	0.0	1 463.0	00 39.3	147.	00 159.0
		SPD dyke - grey to cream with silver flakes, minor dark grey patches. unit starts with aplite for first 10 cm. spod xtals mostly altered to light green to silver flakes of mica with only minor fresh spod xtals remaining. no orientation in xtals noticed in core. 1-2% fresh spodumene xtals over entire unit. Iower contact is sharp at 40 deg tca.									
		Mineralization 158.05 - 159.07 : SPOD Spodumene, INT Interstitial, 2.00%									
		mostly altered to mica									
159.07	172.00	M SCH, mica schist	884264	159.07	160.07				_		80 8.0
		MSCH - same as described from 3 to 146.90m.	884265	171.00	172.00						80 13.0
		including porphyroblastic stauralite or cordierite phenocrysts up to 1.2cm in and out of core up to 1%	884266	171.00	172.00	1.00	0.22	428.0	00 226.0	00 3.	30 12.0
		from 165.35 down hole to 169.60m. require thin section to determine xtals. lower contact is irregular and not measurable.									
		Texture									
		159.07 - 172.00 : MG Medium Grained									
		RQD									
		161.00 - 164.00: 89.00 % RQD 100.00 % Core									
		164.00 - 167.00: 91.00 % RQD 100.00 % Core									
		167.00 - 170.00: 100.00 % RQD 100.00 % Core									
		170.00 - 173.00: 92.00 % RQD 100.00 % Core									

Page 6 of 10 DETAILED LOG

Detailed L	ithology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
172.00	175.09	SPD PEG, spodumene pegmatite	884267	172.00	173.00	1.00	0.50	582.0	00 42.0	0 47.3	0 201.0
		SPD - this unit is very simular to the above mentioned unit from 158.05 to	884268	173.00	174.00	1.00	0.82	2 1040.0	00 63.8	0 10.5	0 164.0
		159.07m.	884269	174.00	175.0	9 1.09	0.0	1 604.0	00 33.4	0 95.7	0 147.0
		dark green to silver mica flakes are dominant with very little fresh spod xtals remaining at <1%. weak xtal orientation at 65 deg tca. perthitic fsp with tiger stripes are dark grey and not cream like usual. lower contact is sharp at 35 deg tca.									
		Mineralization 172.00 - 175.09 : SPOD Spodumene, INT Interstitial, 1.00% mostly altered to dark green mica. RQD									
		173.00 - 176.00: 65.00 % RQD 100.00 % Core									

Feb 24, 2012 Page 7 of 10

Detailed L	ithology				Assay D	ata						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppi	m (Cs_ppm Ta_	ppm E	Be_ppm
175.09	252.16	M SCH, mica schist	884271	175.09	176.09	1.00	0.2	22 2	273.00	132.00	0.60	5
		MSCH - As described from 3 to 146.90m. See Structure tab for other intrusions	884272	251.16	252.16	1.00	0.2	24 3	351.00	124.00	0.90	7
		within this unit Lower contact is sharp at 45 deg tca.										
		Texture										
		175.09 - 242.00 : CG Coarse Grained										
		Structure										
		188.40 - 189.20										
		Anastomosing qtz vein; sericite+chl on outer edges, appears to be lithiophilite										
		in the center. Likely a quartz-dominant pegmatite. 194.95 - 195.09										
		chl atln										
		207.40 - 207.68										
		weak chl atln with 2% py as blebs, trace garnets										
		210.16 - 210.48 QFM dyke, no fresh spodumene										
		218.00 - 218.26										
		QFM dyke, no fresh spodumene										
		230.82 - 231.00										
		QFM dyke, no fresh spodumene RQD										
		176.00 - 179.00 : 95.00 % RQD 100.00 % Core										
		179.00 - 182.00 : 100.00 % RQD 100.00 % Core										
		182.00 - 185.00 : 100.00 % RQD 100.00 % Core										
		185.00 - 188.00 : 98.00 % RQD 100.00 % Core										
		188.00 - 191.00 : 60.00 % RQD 100.00 % Core										
		191.00 - 194.00 : 85.00 % RQD 100.00 % Core										
		194.00 - 197.00 : 95.00 % RQD 96.00 % Core										
		197.00 - 200.00 : 100.00 % RQD 98.00 % Core										
		200.00 - 203.00: 98.00 % RQD 100.00 % Core										
		203.00 - 206.00 : 100.00 % RQD 99.00 % Core										
		206.00 - 209.00: 97.00 % RQD 100.00 % Core										
		209.00 - 212.00: 98.00 % RQD 100.00 % Core										
		212.00 - 215.00 : 56.00 % RQD 100.00 % Core										
		215.00 - 218.00 : 76.00 % RQD 100.00 % Core										
		218.00 - 221.00: 92.00 % RQD 100.00 % Core										
		221.00 - 224.00: 98.00 % RQD 100.00 % Core										
		224.00 - 227.00: 80.00 % RQD 100.00 % Core										
		227.00 - 230.00: 97.00 % RQD 100.00 % Core										
		230.00 - 233.00 : 88.00 % RQD 100.00 % Core										
		233.00 - 236.00 : 100.00 % RQD 98.00 % Core										
		70.00 /0 00.00										

Feb 24, 2012 Page 8 of 10

Detailed L	ithology				Assay [Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 236.00 - 239.00 : 94.00 % RQD 100.00 % Core 239.00 - 242.00 : 92.00 % RQD 100.00 % Core 242.00 - 245.00 : 94.00 % RQD 100.00 % Core 245.00 - 248.00 : 100.00 % RQD 98.00 % Core 248.00 - 251.00 : 98.00 % RQD 100.00 % Core 251.00 - 254.00 : 100.00 % RQD 98.00 % Core									
252.16	264.05	SPD PEG, spodumene pegmatite	884273	252.16	253.00	0 0.84	4 0.9	9 495.0	00 44.8	30 82	.60 137.0
		SPD pegmatite dyke; qtz-fsp-spod-mica dyke with <1% aplite.	884274	253.00	254.00	0 1.00	1.5	698.0	00 50.4	40 52	.90 178.0
		white to off white, light to medium green, cream with black flecks. very cg	884275	254.00	255.00	0 1.00	1.0	18 797.0	00 34.8	30	.80 81.0
		perthitic fsp up to 13cm.	884276	255.00	256.00	0 1.00	3.0	1370.0	00 60.2	20 11	.30 151.0
		altered spod to mica for first 55cm from upper contact downhole. Apple green, fresh spod xtals range from 45 to 65 deg tca. euhedral in nature.	884277	256.00							
		From 260.95mto end of this unit, ~3.0 metres, spodumene is olive green mostly	884278	257.00			-	1			
		with minor fresh spod at 3-5%. core has a medium green hue and is not fresh	884279	258.00							.20 155.0
		looking due to diabase dyke intruding below, magnesium altn?.	884281	259.00							
		trace garnets.	884282	260.00					_		
		lower contact is sharp at 45 deg tca.	884283	261.00							
		Texture	884284	262.00							
		252.16 - 264.05 : CG Coarse Grained	884285	263.00							.60 219.0
		VCG Mineralization 252.70 - 260.95 : SPOD Spodumene, INT Interstitial, 25.00%	884286	263.00	264.0	5 1.0	5 0.0)2 224.0	00 10.!	50 32	.70 225.0
		Fresh spod within this range. RQD 254.00 - 257.00 : 100.00 % RQD 100.00 % Core									
		257.00 - 260.00 : 100.00 % RQD 100.00 % Core									
		260.00 - 263.00 : 100.00 % RQD 100.00 % Core									
0/4.05	0/5 53	263.00 - 266.00 : 96.00 % RQD 100.00 % Core	00,4007		04:-	a					0.0
264.05	265.57	DIAB, diabase	884287	264.05	264.80						.00 3.0
		Diabase - vfg, black with fg white flecks(plag?) weakly magnetic in one location. blebs of pyrite along joint planes lower contact is sharp at 45 deg tca.	884288	264.80	265.5	7 0.7	7 0.0	14 25.0	00 16.8	BU 0	.70 2.0

Detailed Litho	ology				Assay [Data						
From T	Го	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	1
265.57		UNK, Unknown Porphyritic diorite(Afzaal recommendation) - very course grained diorite? up to 6cm perthitic fsp. hematite altn as patches and stringer veinlets. Possible altered spodumene pegmatite dyke with hematite overprint? Spodumene up to 1cm, olive green with darker rimming of altn. -40% fsp, 30% qtz, 10% spod, 5%pyroxene. sampled lower contact is chilled over 10cm to lower gabbro Alteration 265.57 - 266.45 :HEM Hematite, Patchy , Moderate RQD 266.00 - 269.00 : 94.00 % RQD 99.00 % Core	884289	265.57	266.4	5 0.8	3 0.0	2 129.	00 3.	60 30	90	152.0
266.45		GB, Gabbro Gabbro - well dev. gabbro, course grained. 35% plag, 30% pyroxene, 25% olivine, 1-2% magnetite, crystaline in apperance weakly magnetic in and out of core. Texture 266.45 - 278.00 : CG Coarse Grained Structure 275.89 - 276.06 : F Fault, 0 Deg to CA soft plastic deformed core. RQD 269.00 - 272.00 : 96.00 % RQD 100.00 % Core 272.00 - 275.00 : 99.00 % RQD 100.00 % Core 275.00 - 278.00 : 91.00 % RQD 100.00 % Core	884291	266.45	267.4	5 1.00	0.0	2 42.	00 7.	80 2	.60	5.0
278.10	278.11	EOH, end of hole										

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884249	145.90	146.90	0.1076	165.0000	96.6000	1.0000	3.0000
884251	146.90	147.90	0.3875	541.0000	33.8000	12.0000	172.0000
884252	147.90	148.90	1.6792	623.0000	38.7000	32.0000	169.0000
884253	148.90	149.90	0.7535	646.0000	42.3000	40.5000	162.0000
884254	149.90	151.00	0.9042	578.0000	33.9000	30.1000	130.0000
884255	151.00	151.75	0.3660	187.0000	112.0000	0.6000	4.0000
884256	151.75	152.68	0.2583	192.0000	139.0000	3.4000	10.0000
884257	152.68	153.68	0.1507	576.0000	34.2000	101.0000	97.0000
884258	153.68	155.00	0.3445	614.0000	46.1000	107.0000	174.0000
884259	155.00	156.00	0.1722	519.0000	298.0000	11.3000	10.0000
884261	156.00	157.00	0.1507	217.0000	127.0000	2.2000	8.0000
884262	157.00	158.05	0.3229	183.0000	98.6000	6.9000	10.0000

Samples

Sample Number	From	To	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884263	158.05	159.07	0.0108	463.0000	39.3000	147.0000	159.0000
884264	159.07	160.07	0.1722	289.0000	202.0000	2.8000	8.0000
884265	171.00	172.00	0.2153	450.0000	228.0000	4.8000	13.0000
884267	172.00	173.00	0.4952	582.0000	42.0000	47.3000	201.0000
884268	173.00	174.00	0.8181	1040.0000	63.8000	10.5000	164.0000
884269	174.00	175.09	0.0108	604.0000	33.4000	95.7000	147.0000
884271	175.09	176.09	0.2153	273.0000	132.0000	0.6000	5.0000
884272	251.16	252.16	0.2368	351.0000	124.0000	0.9000	7.0000
884273	252.16	253.00	0.9903	495.0000	44.8000	82.6000	137.0000
884274	253.00	254.00	1.5500	698.0000	50.4000	52.9000	178.0000
884275	254.00	255.00	1.0764	797.0000	34.8000	3.8000	81.0000
884276	255.00	256.00	0.7965	1370.0000	60.2000	11.3000	151.0000
884277	256.00	257.00	1.2702	853.0000	50.9000	44.5000	178.0000
884278	257.00	258.00	0.7750	903.0000	50.9000	60.7000	138.0000
884279	258.00	259.00	1.3778	800.0000	44.0000	12.2000	155.0000
884281	259.00	260.00	1.0979	746.0000	38.2000	16.9000	134.0000
884282	260.00	261.00	1.8730	518.0000	39.8000	44.1000	173.0000
884283	261.00	262.00	0.2368	825.0000	38.6000	19.9000	135.0000
884284	262.00	263.00	0.2583	591.0000	35.1000	47.1000	215.0000
884285	263.00	264.05	0.0215	226.0000	11.2000	35.6000	219.0000
884287	264.05	264.80	0.0431	52.0000	15.7000	1.0000	3.0000
884288	264.80	265.57	0.0431	25.0000	16.8000	0.7000	2.0000
884289	265.57	266.45	0.0215	129.0000	3.6000	30.9000	152.0000
884291	266.45	267.45	0.0215	42.0000	7.8000	2.6000	5.0000
Sample Type CDUP							
884266	171.00	172.00	0.2153	428.0000	226.0000	3.3000	12.0000
884286	263.00	264.05	0.0215	224.0000	10.5000	32.7000	225.0000

Project Name:	Nama Creek	Primary Coordinates Grid: UTM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	01	North: 5477662.34	North:	Collar Az:	140.00
Location:	Nama Creek	East: 424489.47	East:	Length:	266.00
		Elev: 368.02	Elev:	Start Depth:	0.00
Date Started:	Oct 21, 2011	Collar Survey: N Plugged: N	Contractor: Cobra Drilling	Final Depth:	266.00
Date Completed:	Nov 22, 2011	Multishot Survey: Y Hole Size: N	Core Storage: Beardmore ON		
		Pulse EM Survey: N Casing: Le	n Hole		

Comments: Logged by Andrea Dixon down to 197.0 m; claim number TB67137

Hole was deepened from 197.0 down to 266.0m from Nov 20 to 22/11. logging completed by J.Musicco for the hole deepening portion.

Sample Averages

	Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
ſ	WEIGHTED	132.27	134.27	2.00	0.7858	761.0000	58.2500	27.7000	139.0000
	WEIGHTED	153.26	155.26	2.00	1.3348	706.0000	46.5500	20.8500	143.5000
	WEIGHTED	159.30	162.00	2.70	0.8061	946.1852	350.5889	72.0741	130.4815
	WEIGHTED	233.16	237.73	4.57	1.4393	454.7046	39.6004	25.6101	166.3698
- [WEIGHTED	234.00	237.00	3.00	1.7438	404.6667	30.1333	12.5667	168.0000

Survey Data

Dept	th	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
	6.00	136.80	-58.40	Reflex	ОК	mag 58180	52.00	138.40	-59.20	Reflex	OK	mag 57600
10	1.00	142.10	-59.70	Reflex	ОК	mag 57580	158.00	147.70	-60.00	Reflex	OK	mag 57680
19	7.00	150.20	-60.10	Reflex	ОК	mag 57710	212.00	150.30	-59.90	Reflex	OK	mag 57690
26	6.00	149.30	-60.10	Reflex	ОК	mag 57860						

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	5.65	OVB, Casing									•
		Overburden									

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
5.65	97.45	M SCH, mica schist Metasediment. Medium gray and fine grained. Weakly to strongly foliated. Quartz-feldspar-biotite. Cut by a few dikes and multiple quartz veinlets up to 1 cm thick. In the lower part of the unit, the metasediment is cut by numerous hairline fractures. The rock surrounding these fractures is bleached up to 2 mm away from the fracture. Occasionally the bleached areas fizz lightly in acid, suggesting carbonatization. Pyrite can be found on fracture planes but is found in only trace amounts as part of the metasediment. Between 34.5 m and 35.25, there are spots of muscovite about 0.5 to 1 cm in diameter, occassionally with a biotite center-reminiscent of reduction spots sometimes found in shales and sandstones. Alteration 82.00 - 88.75 :CA Carbonate, Fract-Cont Fracture-Controlled, Weak Hair line fractures have bleached metasediment around them. The bleached areas fizz slightly in acid. Fractures mostly oriented between 40 and 60 degrees to the core axis. Structure 6.37 - 6.46 : DYKE , 70.00 Deg to CA White quartz-dominant pegmatite dikelet. Contains a small xenolith of metasomatized metasediment 6.84 - 6.88 : DYKE , 85.00 Deg to CA White quartz-dominant pegmatite dikelet. Has a fine grained, medium hard, pale yellow accessory mineral. 7.03 - 7.13 : DYKE , 75.00 Deg to CA White quartz-dominant pegmatite dikelet with small metasediment xenoliths. 7.85 - 7.89 : DYKE , 50.00 Deg to CA White quartz-dominant pegmatite dikelet. Has a fine grained, medium hard, pale yellow accessory mineral. 10.60 - 10.67 A series of white quartz-dominant pegmatite dikelet. Has a fine grained, medium hard, pale yellow accessory mineral. 10.60 - 10.67 A series of white quartz-dominant pegmatite dikelet. Has a fine grained, medium hard, pale yellow accessory mineral. 10.60 - 10.67 A series of white quartz-dominant pegmatite dikelet. Has a fine grained, medium hard, pale yellow accessory mineral. 10.60 - 10.67 A series of white quartz-dominant pegmatite dikelet. Has a fine grained, medium hard, pale yellow accessory minera									

etailed Lithology	/			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	Structure									
	22.65 - 23.00 : FOL Foliated, 60.00 Deg to CA									
	Area of strong foliation.									
	33.30 - 33.60 : DYKE , 60.00 Deg to CA									
	Medium gray quartz-feldspar-black tourmaline aplite dike with trace 1 mm									
	diameter garnets. Garnets extend into metasediment about 6 cm on either									
	side of the dike.									
	37.55 - 37.75 : DYKE , 40.00 Deg to CA White quartz dominant pegmatite dikelet. Has a fine grained, medium hard,									
	pale yellow accessory mineral. Also has heavily metasomatized metasediment									
	xenoliths with trace pyrite.									
	51.46 - 51.47 : DYKE , 60.00 Deg to CA									
	White quartz-dominant pegmatite dikelet. Has a fine grained, medium hard,									
	pale yellow accessory mineral.									
	57.50 - 57.54 : DYKE , 10.00 Deg to CA									
	Same as above									
	59.28 - 69.10 : FOL Foliated, 5.00 Deg to CA									
	Very strong foliation. Resembles wood grain.									
	67.05 - 67.07 : DYKE , 20.00 Deg to CA									
	White quartz-dominant pegmatite dikelet.									
	69.30 - 69.31 : DYKE , 5.00 Deg to CA									
	White QFM aplite dikelet with accessory pyrite and a very soft black mineral									
	with a waxy feel (chlorite?)									
	72.71 - 72.72 : DYKE , 60.00 Deg to CA									
	White zoned QF aplite. A very fine grained white band lies 2 mm from the top									
	and 4 mm from the bottom.									
	77.25 - 77.29: DYKE, 80.00 Deg to CA White quartz-dominant pegmatite dikelet. Has a fine grained, medium hard,									
	pale yellow accessory mineral. Also has small xenoliths of heavily									
	metasomatized metasediment.									
	80.59 - 80.62 : DYKE , 60.00 Deg to CA									
	Yellow gray zoned QFM aplite dikelet. Core is gray with a white wall zone and									
	a yellow border zone. Accessory pyrite. Trace garnets in metasomatized									
	metasediment below.									
	86.70 - 87.90 : FR Fractured, 50.00 Deg to CA									
	Fracture area made up of blocks 2 to 12 cm long.									
	88.75 - 89.00 : FR Fractured, 30.00 Deg to CA									
	Fracture area made up of blocks 1 to 6 cm long									
	89.21 - 89.29 : DYKE , 70.00 Deg to CA									
	White quartz dominant pegmatite dikelet.									
	90.51 - 90.57 : DYKE , 60.00 Deg to CA									
	White QFM aplite dikelet									
	96.26 - 97.45									
	Fracture area made up of blocks 1 to 8 cm long. Appears to be 2 dominant									
	fracture angles oriented at 30 and 70 degrees to the core axis.									
	RQD									
	5.65 - 8.00: 95.00 % RQD 97.00 % Core									

Detailed Litholog	у			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
From To	RQD 8.00 - 11.00 : 82.00 % RQD 98.00 % Core 11.00 - 14.00 : 92.00 % RQD 100.00 % Core 14.00 - 17.00 : 52.00 % RQD 94.00 % Core 17.00 - 20.00 : 76.00 % RQD 98.00 % Core 20.00 - 23.00 : 94.00 % RQD 100.00 % Core 23.00 - 26.00 : 91.00 % RQD 100.00 % Core 26.00 - 29.00 : 97.00 % RQD 100.00 % Core 29.00 - 32.00 : 97.00 % RQD 100.00 % Core 23.00 - 35.00 : 72.00 % RQD 99.00 % Core 33.00 - 38.00 : 88.00 % RQD 97.00 % Core 41.00 : 100.00 % RQD 100.00 % Core 41.00 - 44.00 : 92.00 % RQD 98.00 % Core 44.00 - 47.00 : 88.00 % RQD 98.00 % Core 47.00 - 50.00 : 91.00 % RQD 100.00 % Core 50.00 - 53.00 : 91.00 % RQD 100.00 % Core 53.00 - 56.00 : 91.00 % RQD 100.00 % Core 55.00 - 59.00 : 91.00 % RQD 97.00 % Core 66.00 - 59.00 : 91.00 % RQD 97.00 % Core 66.00 - 65.00 : 91.00 % RQD 90.00 % Core 67.00 - 68.00 : 83.00 % RQD 99.00 % Core 68.00 - 71.00 : 75.00 % RQD 99.00 % Core 71.00 - 74.00 : 81.00 % RQD 98.00 % Core 77.00 - 80.00 : 90.00 % RQD 98.00 % Core 80.00 - 83.00 : 61.00 % RQD 98.00 % Core 80.00 - 83.00 : 61.00 % RQD 98.00 % Core 80.00 - 89.00 : 43.00 % RQD 98.00 % Core 80.00 - 89.00 : 43.00 % RQD 98.00 % Core 80.00 - 92.00 : 71.00 % RQD 98.00 % Core 80.00 - 92.00 : 71.00 % RQD 98.00 % Core 92.00 - 95.00 : 94.00 % RQD 98.00 % Core	Sample Number	From	10	Length	LI2O_per	ко_ррм	Cs_ppm	Ta_ppm	Be_ppm
97.45 97.6	OF PEG, quartz-feldspar pegmatite Quartz-dominant pegmatite. White to very pale brown in color and coarse grained. Quartz-feldspar with accessory pale orange and pale green to dark green and dark yellow medium hard minerals that tend to be fine grained (phosphate minerals?). Metasomatism in the lower metasediment is shown by randomly oriented, 1 mm long, white to light yellow, soft, rectangular crystals (similar in appearance to a porphyritic volcanic rock with feldspar phenocrysts) that can sometimes have a darkened centerperhaps zoning. Contacts oriented at 50 degrees (upper) and 80 degrees (lower) to the core axis.									

Feb 24, 2012 Page 5 of 18

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
97.60	103.35	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Small amounts of pyrite mineralization on fracture planes. Cut by multiple hairline fractures surrounded in bleached metasediment that fizz slightly in acidvery weak carbonatization. Cut by a few dikelets as well. Structure 98.00 - 98.03: DYKE, 90.00 Deg to CA White quartz-dominant pegmatite dikelet. Some hairline fractures are stained bright red, probably hematite 98.47 - 98.60: FR Fractured, 50.00 Deg to CA Fracture area is made up of blocky pieces 2 to 4 cm long. 101.56 - 101.57: DYKE, 20.00 Deg to CA White QF aplite dikelet.									
		98.00 - 101.00 : 77.00 % RQD 97.00 % Core 101.00 - 104.00 : 85.00 % RQD 97.00 % Core									
103.35	103.55	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz dominant pegmatite. White and coarse grained. Quartz, with minor amounts of muscovite and even less feldspar. Metallic yellow and copper colored sulfides as trace accessory minerals. Contacts oriented 15 degrees (upper) and 10 degrees (lower) to the core axis.									

Feb 24, 2012 Page 6 of 18

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
103.55		M SCH, mica schist Metasediment. Medium gray, fine grained, massive to weakly foliated. Ouartz-feldspar-biotite. Trace pyrite along fracture planes. Cut by a few quartz veinlets (up to 2 mm thick and oriented between 30 and 50 degrees to the core axis) and dikelets. Structure 116.26 - 116.28: DYKE, 50.00 Deg to CA Pale yellow-green to brown quartz-dominant pegmatite dikelet with a hard, fine-grained, pale yellow-green accessory mineral 116.53 - 116.55: DYKE, 40.00 Deg to CA Same as above. 122.79 - 122.84: DYKE, 50.00 Deg to CA White and dark gray zoned QFM aplite dikelet. Border zones are about 0.5 cm thick, white, and QF in composition. Core is dark gray and QFM in				20.9			35 <u>-</u> pp	.5_pp	55_pp
		composition. RQD 104.00 - 107.00: 99.00 % RQD 100.00 % Core Core recovery should be 102% 107.00 - 110.00: 95.00 % RQD 100.00 % Core 110.00 - 113.00: 100.00 % RQD 100.00 % Core 113.00 - 116.00: 81.00 % RQD 100.00 % Core Core recovery should be 101% 116.00 - 119.00: 89.00 % RQD 99.00 % Core 119.00 - 122.00: 96.00 % RQD 96.00 % Core									
123.10	123.70	122.00 - 125.00: 73.00 % RQD 100.00 % Core APL, aplite Quartz-feldspar-muscovite aplite dike. White and fine to medium grained. Contains trace garnets and hard black mineral (Nb-Ta oxides? Tourmaline?) grains with circular cross sections. Contains a strongly metasomatized metasediment 2 cm wide xenolith in the center. Contacts oriented 50 degrees (upper) and 45 degrees (lower) to the core axis.									

Feb 24, 2012 DETAILED LOG Page 7 of 18

Lithology M SCH, mica schist Metasediment. Medium gray and fine grained. Weakly to moderately foliated. Quartz-feldspar-biotite with trace disseminated pyrite. Pyrite increases in abundance on fracture planes. There is a small fault between 124.27 and 124.40 m with small amounts of fault gouge. The larger pieces exhibit slickensides. Directly below the fault, extending to 124.83 meters, the metasediment takes on a greenish hue and is softer than usualpossibly chloritized. The metasediment is also cut by a few fractures, thin quartz veinlets, and dikelets.	Sample Number 884292	131.27	To 132.27	Length 1.00	Li2O_per 0.09	Rb_ppm 584.00	Cs_ppm 110.0	Ta_ppm 0 120.	Be_ppm 00 158.0
Metasediment. Medium gray and fine grained. Weakly to moderately foliated. Quartz-feldspar-biotite with trace disseminated pyrite. Pyrite increases in abundance on fracture planes. There is a small fault between 124.27 and 124.40 m with small amounts of fault gouge. The larger pieces exhibit slickensides. Directly below the fault, extending to 124.83 meters, the metasediment takes on a greenish hue and is softer than usualpossibly chloritized. The metasediment is also cut by a few fractures, thin quartz veinlets, and dikelets.		131.27	132.27	1.00	0.09	584.00	110.0	0 120.	00 158.
Structure 124.27 - 124.40 : F Fault, 60.00 Deg to CA Small fault with small amounts of fault gouge. The larger pieces exhibit slickensides. Larger blocks are 2 to 4 cm long. 126.36 - 126.37 : DYKE , 20.00 Deg to CA White QF aplite dikelet. 127.33 - 127.95 : FR Fractured, 20.00 Deg to CA Fracture area made up of blocky pieces 3 to 12 cm long. 129.54 - 129.58 : DYKE , 70.00 Deg to CA Medium gray QFM pegmatite dikelet. 129.90 - 130.00 : FR Fractured, 25.00 Deg to CA Fracture area made up of blocky pieces about 3 cm long. RQD 125.00 - 128.00 : 56.00 % RQD 97.00 % Core 128.00 - 131.00 : 67.00 % RQD 89.00 % Core									
DEM PEG, quartz-feldspar-muscovite pegmatite Duartz-feldspar-muscovite pegmatite. White to pale gray and coarse grained. There is a strongly metasomatized metasediment xenolith located between meters 130.38 and 130.45. About 30% of it appears to be replaced by muscovite. The border zones are about 3 mm thick and are very fine grained. Contacts are sharp and are oriented 40 degrees (upper) and 15 degrees (lower) of the core axis. M SCH, mica schist									
120 Wh 127 Me 129 129 129 Du Thome Me	6.36 - 126.37: DYKE, 20.00 Deg to CA hite QF aplite dikelet. 7.33 - 127.95: FR Fractured, 20.00 Deg to CA hite QF aplite dikelet. 7.33 - 129.58: DYKE, 70.00 Deg to CA hite QF aplite dikelet. 7.34 - 129.58: DYKE, 70.00 Deg to CA hite GF applied dikelet. 7.39 - 130.00: FR Fractured, 25.00 Deg to CA hite Horizon area made up of blocky pieces about 3 cm long. 7.50 - 130.00: FR Fractured, 25.00 Deg to CA hite Horizon area made up of blocky pieces about 3 cm long. 7.50 - 128.00: 56.00 % RQD 97.00 % Core 7.50 - 131.00: 67.00 % RQD 89.00 % Core 7.50 - 134.00: 83.00 % RQD 100.00 % Core 7.50 - 134.00: 83.00 % RQD 100.00 % Core 7.50 - 134.00: 83.00 % RQD 100.00 % Core 7.50 - 134.00: 83.00 % RQD 100.00 % Core 7.50 - 134.00: 83.00 % RQD 100.00 % Core 7.50 - 134.00: 83.00 % RQD 100.00 % Core 7.50 - 134.00: 83.00 % RQD 100.00 % Core 7.50 - 134.00: 83.00 % RQD 100.00 % Core 7.50 - 134.00: 83.00 % RQD 100.00 % Core 8.50 - 136.00 % RQD 100.00 %	itle QF aplite dikelet. 7.33 - 127.95 : FR Fractured, 20.00 Deg to CA cuture area made up of blocky pieces 3 to 12 cm long. 9.54 - 129.58 : DYKE , 70.00 Deg to CA didium gray QFM pegmatite dikelet. 9.90 - 130.00 : FR Fractured, 25.00 Deg to CA cuture area made up of blocky pieces about 3 cm long. 9.50 - 128.00 : 56.00 % RQD 97.00 % Core 1.00 - 131.00 : 67.00 % RQD 89.00 % Core 1.00 - 134.00 : 83.00 % RQD 100.00 % Core M PEG, quartz-feldspar-muscovite pegmatite artz-feldspar-muscovite pegmatite. White to pale gray and coarse grained. ere is a strongly metasomatized metasediment xenolith located between eters 130.38 and 130.45. About 30% of it appears to be replaced by scovite. The border zones are about 3 mm thick and are very fine grained. Intacts are sharp and are oriented 40 degrees (upper) and 15 degrees (lower) the core axis. SCH, mica schist	itle QF aplite dikelet. 7.33 - 127.95 : FR Fractured, 20.00 Deg to CA interest area made up of blocky pieces 3 to 12 cm long. 9.54 - 129.58 : DYKE , 70.00 Deg to CA interest area made up of blocky pieces 3 to 12 cm long. 9.90 - 130.00 : FR Fractured, 25.00 Deg to CA interest area made up of blocky pieces about 3 cm long. 9.00 - 128.00 : 56.00 % RQD 97.00 % Core 8.00 - 131.00 : 67.00 % RQD 89.00 % Core 1.00 - 134.00 : 83.00 % RQD 100.00 % Core M PEG, quartz-feldspar-muscovite pegmatite artz-feldspar-muscovite pegmatite. White to pale gray and coarse grained. ere is a strongly metasomatized metasediment xenolith located between ters 130.38 and 130.45. About 30% of it appears to be replaced by issovite. The border zones are about 3 mm thick and are very fine grained. Intacts are sharp and are oriented 40 degrees (upper) and 15 degrees (lower) the core axis. SCH, mica schist tasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace	ite QF aplite dikelet. 7.33 - 127.95 : FR Fractured, 20.00 Deg to CA icture area made up of blocky pieces 3 to 12 cm long. 9.54 - 129.58 : DYKE , 70.00 Deg to CA dium gray QFM pegmatite dikelet. 9.90 - 130.00 : FR Fractured, 25.00 Deg to CA icture area made up of blocky pieces about 3 cm long. 20 5.00 - 128.00 : 56.00 % RQD 97.00 % Core 3.00 - 131.00 : 67.00 % RQD 89.00 % Core 1.00 - 134.00 : 83.00 % RQD 100.00 % Core M PEG, quartz-feldspar-muscovite pegmatite artz-feldspar-muscovite pegmatite. White to pale gray and coarse grained. artz-feldspar-muscovite pediment xenolith located between iters 130.38 and 130.45. About 30% of it appears to be replaced by scovite. The border zones are about 3 mm thick and are very fine grained. Intacts are sharp and are oriented 40 degrees (upper) and 15 degrees (lower) the core axis. SCH, mica schist tasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace	ite QF aplite dikelet. 7.33 - 127.95 : FR Fractured, 20.00 Deg to CA cture area made up of blocky pieces 3 to 12 cm long. 9.54 - 129.58 : DYKE , 70.00 Deg to CA dium gray OFM pegmatite dikelet. 9.90 - 130.00 : FR Fractured, 25.00 Deg to CA cture area made up of blocky pieces about 3 cm long. 9.50 - 128.00 : 56.00 % RQD 97.00 % Core 8.00 - 131.00 : 67.00 % RQD 89.00 % Core 1.00 - 134.00 : 83.00 % RQD 100.00 % Core M PEG, quartz-feldspar-muscovite pegmatite artz-feldspar-muscovite pegmatite with to pale gray and coarse grained. ere is a strongly metasomatized metasediment xenolith located between ters 130.38 and 130.45. About 30% of it appears to be replaced by scovite. The border zones are about 3 mm thick and are very fine grained. httacts are sharp and are oriented 40 degrees (upper) and 15 degrees (lower) the core axis. SCH, mica schist tasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace	ite QF aplite dikelet. 7.33 - 127.95 : FR Fractured, 20.00 Deg to CA cture area made up of blocky pieces 3 to 12 cm long. 9.54 - 129.58 : DYKE , 70.00 Deg to CA dium gray QFM pegmatite dikelet. 9.90 - 130.00 : FR Fractured, 25.00 Deg to CA cture area made up of blocky pieces about 3 cm long. 9.00 - 130.00 : FR Fractured, 25.00 Deg to CA cture area made up of blocky pieces about 3 cm long. 9.00 - 128.00 : 56.00 % RQD 97.00 % Core 8.00 - 131.00 : 67.00 % RQD 89.00 % Core 1.00 - 134.00 : 83.00 % RQD 100.00 % Core M PEG, quartz-feldspar-muscovite pegmatite artz-feldspar-muscovite pegmatite. White to pale gray and coarse grained. ere is a strongly metasomatized metasediment xenolith located between ters 130.38 and 130.45. About 30% of it appears to be replaced by scovite. The border zones are about 3 mm thick and are very fine grained. https://dx.dia.org/	ite OF aplite dikelet. 7.33 - 127.95 : FR Fractured, 20.00 Deg to CA icture area made up of blocky pieces 3 to 12 cm long. 9.54 - 129.58 : DYKE, 70.00 Deg to CA icture area made up of blocky pieces 3 to 12 cm long. 9.90 - 130.00 : FR Fractured, 25.00 Deg to CA icture area made up of blocky pieces about 3 cm long. 9.90 - 130.00 : FR Fractured, 25.00 Deg to CA icture area made up of blocky pieces about 3 cm long. 100 - 128.00 : 56.00 % RQD 97.00 % Core 1.00 - 131.00 : 67.00 % RQD 89.00 % Core 1.00 - 134.00 : 83.00 % RQD 100.00 % Core M PEG, quartz-feldspar-muscovite pegmatite artz-feldspar-muscovite pegmatite. White to pale gray and coarse grained. ere is a strongly metasomatized metasediment xenolith located between iters 130.38 and 130.45. About 30% of it appears to be replaced by scovite. The border zones are about 3 mm thick and are very fine grained. ntacts are sharp and are oriented 40 degrees (upper) and 15 degrees (lower) the core axis. SCH, mica schist tasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace	5.36 - 126.37 : DYKE , 20.00 Deg to CA itile QF aplite dikelet. 7.33 - 127.95 : FR Fractured, 20.00 Deg to CA cture area made up of blocky pieces 3 to 12 cm long. 7.34 - 129.58 : DYKE , 70.00 Deg to CA dium gray OFM pegmatite dikelet. 7.99 - 130.00 : FR Fractured, 25.00 Deg to CA cture area made up of blocky pieces about 3 cm long. 7.00 - 130.00 : FR Fractured, 25.00 Deg to CA cture area made up of blocky pieces about 3 cm long. 7.00 - 128.00 : 56.00 % RQD 97.00 % Core 7.00 - 131.00 : 67.00 % RQD 89.00 % Core 7.00 - 134.00 : 83.00 % RQD 100.00 % Core M PEG, quartz-feldspar-muscovite pegmatite artz-feldspar-muscovite pegmatite. White to pale gray and coarse grained, are is a strongly metasomatized metasediment xenolith located between ters 130.38 and 130.45. About 30% of it appears to be replaced by scovite. The border zones are about 3 mm thick and are very fine grained. ntacts are sharp and are oriented 40 degrees (upper) and 15 degrees (lower) the core axis. SCH, mica schist tasediment. Medium gray and fine grained. Ouartz-feldspar-biotite with trace	5.36 - 126.37 : DYKE , 20.00 Deg to CA itle QF aplite dikelet. 7.33 - 127.95 : FR Fractured, 20.00 Deg to CA cture area made up of blocky pieces 3 to 12 cm long. 7.45 - 129.58 : DYKE , 70.00 Deg to CA dium gray OFM pegmatite dikelet. 7.90 - 130.00 : FR Fractured, 25.00 Deg to CA cture area made up of blocky pieces about 3 cm long. 7.50 - 128.00 : 56.00 % RQD 97.00 % Core 8.00 - 131.00 : 67.00 % RQD 89.00 % Core 8.00 - 131.00 : 83.00 % RQD 100.00 % Core M PEG, quartz-feldspar-muscovite pegmatite artz-feldspar-muscovite pegmatite white to pale gray and coarse grained. 8.00 ere is a strongly metasomatized metasediment xenolith located between ters 130.38 and 130.45. About 30% of it appears to be replaced by scovite. The border zones are about 3 mm thick and are very fine grained. 8.01 ere of a skinst 8.02 ere of a skinst 8.03 ere of a skinst 8.04 ere of a skinst 8.05 ere of a skinst 8.07 ere of a ski

Feb 24, 2012 Page 8 of 18

Detailed L	ithology				Assay D	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
132.27	135.53	SPD PEG, spodumene pegmatite	884293	132.27	133.27	1.0	0 1.0	651.	.00 47.:	30 15	.50 138
		Spodumene pegmatite. White and coarse grained.	884294	133.27	134.27						.90 140
		Quartz-feldspar-muscovite-spodumene with accessory garnets. There are a few	884295	134.27	135.27						
		garnet clusters near meter 135.28. There are aplite bands at 134.78m (3 cm thick), 134.82 m (7 cm thick), and thin alternating bands of QFM aplite and QFM	884296	135.27	135.53	0.2	6 0.02	635.	.00 50.	70 183	.00 193
		pegmatite (muscovite appears to be altered spodumene in the pegmatite layers)									
		starting at 135.35 m and ending on the lower contact. Spodumene is pale green									
		and pale gray-green to altered dark olive green. About 75% of the spodumene is altered to dark green. Crystals are up to 4 cm long and are oriented about 40									
		degrees to the core axis. Contacts oriented at 70 degrees (upper) and 40									
		degrees (lower) to the core axis.									
		Mineralization									
		132.27 - 135.53 : SPOD Spodumene, PERV Pervasive, 20.00%									
		Spodumene is pale green and pale gray-green to altered dark olive green. About 75% of the spodumene is altered to dark green. Crystals are up to 4									
		cm long and are oriented about 40 degrees to the core axis									
		RQD									
		134.00 - 137.00: 90.00 % RQD 99.00 % Core									
135.53	142.10	M SCH, mica schist	884297	135.53	136.53	1.0	0.19	183.	.00 75.	10 3	.20 5.
		Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite. Cut by a									
		few thin quartz veinlets (oriented between 30 and 70 degrees to the core axis), a few bleached hair line fractures oriented between 20 and 30 degrees (bleaching									
		appears to be weak silicification), and a few dikelets. Trace pyrite mineralization									
		on fracture planes.									
		Structure									
		139.39 - 139.42 : DYKE , 70.00 Deg to CA Medium gray QFM pegmatite dikelet.									
		141.24 - 141.27 : DYKE , 70.00 Deg to CA									
		White and gray zoned QFM pegmatite dikelet. White border zones extend									
		about 0.5 cm into gray core.									
		RQD									
		137.00 - 140.00 : 88.00 % RQD 100.00 % Core									
		140.00 - 143.00 : 77.00 % RQD 97.00 % Core									
142.10	142.56	APL, aplite									
		Quartz-feldspar-muscovite aplite. White and fine to medium grained. Feldspar is white, quartz white to light brown, and muscovite silvery to pale yellow-green.									
		Trace accessory dark blue apatite. Contacts are oriented 85 degrees (upper) and									
		70 degrees (lower) to the core axis.									

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
142.56	148.35	M SCH, mica schist Metasediment. Medium gray, fine grained, and massive. Quartz-feldspar-biotite with trace pyrite on fracture planes. Cut by a few thin quartz veinlets and a few dikelets. Structure 142.82 - 142.87: DYKE, 40.00 Deg to CA White and gray zoned QFM pegmatite dikelet with trace accessory garnet. White border zones are about 0.5 cm thick 144.27 - 144.29: DYKE, 30.00 Deg to CA Same as above, except no garnet 147.04 - 147.10: DYKE, 80.00 Deg to CA White QFM aplite dikelet. Has 2, 1.5 cm long ellipsoid clusters of bright yellow, fine grained muscovite 147.57 - 147.59: DYKE, 35.00 Deg to CA Yellow and pink zoned QFM aplite dike. Yellow border zones about 0.5 cm thick. Pink core appears to be the result of a red stain. RQD 143.00 - 146.00: 55.00 % RQD 98.00 % Core 146.00 - 149.00: 85.00 % RQD 97.00 % Core									
148.35	148.53	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. Medium gray and coarse grained. Feldspar is white and dark gray, quartz is white to translucent pale brown, and muscovite is silvery white. Border zones are white and are composed of feldspar and quartz. Contacts are oriented 40 degrees to the core axis.									
148.53	150.24	M SCH, mica schist Metasediment. Medium gray, fine grained, and weakly foliated. Quartz-feldspar-biotite with trace pyrite on fracture planes. Cut by 2 very thin quartz veinlets and a few hairline fractures surrounded by bleached metasediment. RQD 149.00 - 152.00: 85.00 % RQD 100.00 % Core Core recovery should be 102%									
150.24	150.66	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained except for the 3 cm of fine grained aplite making up the lower border zone. Quartz-feldspar-muscovite-spodumene with trace pink garnet. Spodumene is gray to very dark green (nearly black) and is almost entirely altered to muscovite. Crystals are oriented about 70 degrees to the core axis and are up to 1 cm long. Contacts are oriented 50 degrees to the core axis. Mineralization 150.24 - 150.66: SPOD Spodumene, PAT Patch, 2.00% podumene is gray to very dark green (nearly black) and is almost entirely altered to muscovite. Crystals are oriented about 70 degrees to the core axis and are up to 1 cm long.									

Feb 24, 2012 Page 10 of 18

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
150.66	152.77	M SCH, mica schist Metasediment. Medium gray, fine grained, and is massive to weakly foliated. Quartz-feldspar-biotite with trace pyrite on fracture planes. Cut by one medium gray dikelet. Structure 151.41 - 151.43: DYKE, 90.00 Deg to CA Medium gray QF aplite dikelet. RQD 152.00 - 155.00: 64.00 % RQD 94.00 % Core	884298	152.26	153.2	6 1.0	0 0.1	9 466.	00 167	00 29	0.00 56.
152.77	153.08	APL, aplite Quartz-feldspar-muscovite aplite with trace pink garnet. White and fine to medium grained. Quartz is white to brown, feldspar is white to gray and the muscovite is silvery white to silvery yellow. Contacts are oriented 50 degrees (upper) and 60 degrees (lower) to the core axis.									
153.08	153.26	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with accessory muscovite, probably as a result of being sandwiched by 2 felsic dikes.									
153.26	155.71	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with very trace amounts of blue apatite. A minor amount of the feldspar appears to be cleavelandite. Between meters 155.19 and 155.22, it appears that the quartz and feldspar are graphically intergrown. There are thin aplite bands at 154.85 m and 154.97 m. In the lower half of the unit (starting near 154.7), spodumene content drops dramatically. Spodumene is white to pale green-gray. Most crystals have a very thin dark altered rind. Crystals are oriented 60 degrees to the core axis and are up to 4 cm long. Contacts are oriented 40 degrees (upper) and 30 degrees (lower) to the core axis. Mineralization 153.26 - 155.71: SPOD Spodumene, PERV Pervasive, 15.00% Spodumene is white to pale green-gray. Most crystals have a very thin dark altered rind. Crystals are oriented 60 degrees to the core axis and are up to 4 cm long. In the lower half of the unit (starting near 154.7), spodumene content drops dramatically.		153.26 154.26 155.26	154.2 155.2 155.7	6 1.0	0.0	877.	00 46	.50 17	1.50 170. 7.20 117. 1.40 159.

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
155.71	157.69	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace pyrite on fracture planes. Cut by a few bleached hairline fractures, a few quartz veinlets, and a few dikelets. Structure 156.32 - 156.33 Pale brown quartz vein 156.46 - 156.50 Pale brown quartz-dominant pegmatite dikelet in the shape of a blob, more than an actual dike.	884303	155.71	156.7	1 1.0	0 0.3	0 349.	00 283.	00 8	.50 13
157.69	158.26	APL, aplite Quartz-feldspar-muscovite aplite. White and fine to medium grained. Feldspar is white, quartz is pale translucent brown, muscovite is silvery white and silvery yellow. Contains two very large, strongly metasomatized metasediment xenoliths, located at 157.98 (extends 7 cm down the hole) and at 158.11 (extends 11 cm down the hole). RQD 158.00 - 161.00: 84.00 % RQD 97.00 % Core									
158.26	159.30	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace pyrite on the fracture planes. Cut by a few very thin quartz veinlets oriented between 25 and 70 degrees to the core axis and two dikelets. Structure 158.48 - 158.48 : DYKE , 60.00 Deg to CA White QFM aplite dikelet. 158.65 - 158.72 : DYKE , 90.00 Deg to CA White QFM pegmatite dikelet. Metasediment is metasomatized for about 2 cm above and 1 cm below the dikelet	884304	158.30	159.3	80 1.0	0 0.3	4 908.	00 459.	00 17	.30 40
159.30	161.00	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace pink garnets. There is a ~3 cm diameter metasediment xenolith located at 159.75 m. There is a large quartz crystal that takes up almost the entire core between 160.09 and 160.22 m. The center (159.80 to 160.65) of the dike is nearly barren of spodumene. The few crystals that are there tend to be altered. The rest of the spodumene is fresh, pale green with crystals up to 6 cm long oriented about 40 degrees to the core axis. Contacts are oriented about 70 degrees (upper) and 40 degrees (lower) to the core axis. Mineralization 159.30 - 161.00: SPOD Spodumene, PAT Patch, 10.00% Spodumene is fresh, pale green with crystals up to 6 cm long oriented about 40 degrees to the core axis. The center (159.80 to 160.65) of the dike is nearly barren of spodumene. The few crystals that are there tend to be altered.	884305 884306 884307	159.30 159.30 160.30	160.3	30 1.0	0 1.1	4 405.	00 47.	30 58	.00 213 .40 199 .00 159

Feb 24, 2012 Page 12 of 18

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
161.00		M SCH, mica schist Metasediment. Medium gray, fine to medium grained, and moderately foliated. Quartz-feldspar-biotite with trace pyrite on the fracture planes. Upper 25 cm are medium grained, possibly an influence of the pegmatite above it. Cut by two, very thin quartz-feldspar dikelets located at 161.73 and 161.86. RQD 161.00 - 164.00: 75.00 % RQD 100.00 % Core	884308	161.00	162.0	0 1.0	0 0.5	6 1720.	00 856.	00 23	90 28.0
161.90	162.06	APL, aplite Quartz-feldspar-muscovite aplite. White and fine to medium grained. There is a 3 cm thick metasomatized metasediment xenolith just above the 0.5 cm thick bottom border zone. Contacts are oriented 70 degrees (upper) and 45 degrees (lower) to the core axis.									

Detailed Lit	thology				Assay	Data					
From	To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
162.06		M SCH, mica schist Metasediment. Medium gray, fine grained and massive to strongly foliated in localized areas. Quartz-feldspar-biotite with trace pyrite on fracture planes. Cut by some bleached hairline fractures oriented between 20 and 80 degrees to the core axis, a few quartz veinlets oriented between 10 and 60 degrees to the core axis, and a few dikelets. Mineralization 164.30 - 164.31 Same as above 163.95 - 163.96 Thin band of scattlered, 1 mm diameter pink garnets Structure 162.56 - 162.57 : DYKE , 60.00 Deg to CA Pale brown quartz-dominant pegmatite dikelet with pale green, medium hard, and fine grained mineral (lithophyllite? triphillite?) 162.68 - 162.70 : DYKE , 70.00 Deg to CA Same as above. 162.90 - 162.91 : DYKE , 70.00 Deg to CA Same as above. 162.91 - 162.99 : FOL Foliated, 70.00 Deg to CA Area of strong foliation 163.70 - 163.72 : DYKE , 70.00 Deg to CA Pale translucent brown quartz-dominant pegmatite 164.66 - 164.75 : DYKE , 60.00 Deg to CA Area of strong foliation cut by numerous, very thin, quartz veinlets and dikelets. 164.66 - 164.75 : DYKE , 60.00 Deg to CA Pale translucent brown, creamy white, and gray quartz-dominant pegmatite dikelet. There is a stringy creamy white, and gray quartz-dominant pegmatite dikelet. There is a stringy creamy white feldspar core located at 164.67 and is 2 cm thick, followed by a 2 cm wall zone of quartz, then a 3 cm metasediment xenolith. Rest is quartz 166.40 - 166.58 : FOL Foliated, 60.00 Deg to CA Area of strong foliation 166.53 - 166.89 : FOL Foliated, 40.00 Deg to CA Area of strong foliation bounded by 2 quartz veinlets and cut by a 3rd. 167.58 - 167.62 : DYKE , 70.00 Deg to CA Medium gray and very fine grained aplite dikelet. Nearly indistinguishable from the metasediment except there are 1 mm pink garnets outlining the borders. 167.58 - 168.90 : FOL Foliated, 70.00 Deg to CA Area of strong foliation 168.14 - 168.30 : DYKE , 30.00 Deg to CA									

Feb 24, 2012 Page 14 of 18

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		Structure 176.35 - 176.43 : DYKE , 70.00 Deg to CA White and gray zoned QFM aplite dikelet. White border zone about 0.5 cm thick. 178.30 - 178.31 : DYKE , 40.00 Deg to CA White QF aplite dikelet. 179.89 - 179.90 : DYKE , 60.00 Deg to CA Same as above. 186.25 - 186.26 : DYKE , 50.00 Deg to CA Same as above. RQD 164.00 - 167.00 : 65.00 % RQD 98.00 % Core 167.00 - 170.00 : 95.00 % RQD 100.00 % Core 170.00 - 173.00 : 83.00 % RQD 100.00 % Core Core recovery should be 101% 173.00 - 176.00 : 89.00 % RQD 98.00 % Core 176.00 - 179.00 : 93.00 % RQD 96.00 % Core 179.00 - 182.00 : 99.00 % RQD 100.00 % Core Core recovery should be 102% 182.00 - 185.00 : 85.00 % RQD 97.00 % Core 185.00 - 188.00 : 81.00 % RQD 96.00 % Core									
187.04	188.06	QF PEG, quartz-feldspar pegmatite Quartz-dominant pegmatite. Gray and coarse grained. Quartz with minor amounts of feldspar and accessory pale yellow to pale green, fine grained, medium hard mineral (phosphate mineral?) Contains numerous metasomatized metasediment xenoliths, especially in the upper portionupper contact is gradual, while the lower contact is sharp. The amount of metasediment included makes the pegmatite look snake-like. Lower contact is oriented about 20 degrees to the core axis. Structure 187.90 - 188.00 Fracture area made up of small, angular blocky pieces about 2 cm long. Unable to determine fracture angle as the fractured edges are irregular and jagged. RQD 188.00 - 191.00: 88.00 % RQD 100.00 % Core									
188.06	188.99	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace pyrite on the fracture planes. Cut by some very thin (up to 2 mm) white quartz veinlets.									

Feb 24, 2012 Page 15 of 18

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
188.99		QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with trace pink altered garnets. White and coarse grained. Quartz is white to pale translucent brown, feldspar is white to pale gray, muscovite is pale silvery yellow in color. Contacts are oriented 80 degrees (upper) and 30 degrees (lower) to the core axis.									
189.43	226.55	M SCH, mica schist	884477	225.55	226.5	5 1.00	0.2	.e. 653.	00 232.	00 7	.70 29.
		Metasediment. Medium gray, fine grained, and weakly foliated. Quartz-feldspar-biotite with trace pyrite on the fracture planes. Cut by some bleached (possibly silicification) hairline fractures oriented between 10 and 30 degrees to the core axis and two quartz veinlets.									
		Structure 190.55 - 190.56 White quartz vein 190.84 - 190.86 White quartz vein RQD									
		191.00 - 194.00: 88.00 % RQD 100.00 % Core									
		194.00 - 197.00: 83.00 % RQD 99.00 % Core									
		197.00 - 200.00: 96.00 % RQD 100.00 % Core									
		200.00 - 203.00: 95.00 % RQD 100.00 % Core									
		203.00 - 206.00: 94.00 % RQD 100.00 % Core									
		206.00 - 209.00: 97.00 % RQD 100.00 % Core									
		209.00 - 212.00: 84.00 % RQD 100.00 % Core									
		212.00 - 215.00 : 62.00 % RQD 100.00 % Core									
		215.00 - 218.00: 84.00 % RQD 96.00 % Core									
		218.00 - 221.00: 68.00 % RQD 100.00 % Core									
		221.00 - 224.00: 85.00 % RQD 98.00 % Core									
		224.00 - 227.00: 54.00 % RQD 95.00 % Core									
226.55	228.03	SPD PEG, spodumene pegmatite	884478	226.55	227.0	3 0.48	3 0.4	5 1260.	00 315.	00 71	.60 130.
		SPD PEG - short intruted spodumene dyke having two short 20 cm MSCH blocks	884479	227.03	228.0	3 1.00	0.4	539.	00 66.	90 40	.20 151.
		within the low volume spodumene esitmated at 2% of fresh spodumene crystals having apple green colour, euhedral. Very patchy and stubby fresh crystals in this unit, where the remainder of the xstals have been altered to dark green or silvery mica. lower contact is sharp at 55 deg tca. RQD									
		227.00 - 230.00 : 62.00 % RQD 100.00 % Core									
228.03	229.70	M SCH, mica schist	884481	228.03	228.7	8 0.75	5 0.2	26 152.	00 63.	00 0	0.60 5.0
220.03	227.10	MSCH - qtz-fsp-biotite, massive, fg, grey. Block of MSCH within the SPD	884482	228.78							0.80 13.0
		intrusion.	33.102	220.70	227.1	S ₁ 0.72		.5 524.	100.	<u> </u>	.55

Feb 24, 2012 Page 16 of 18

etailed L	ithology				Assay I	Data					
From	To	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
229.70	232.00	SPD PEG, spodumene pegmatite	884483	229.70	230.7	0 1.00	0.7	8 561	.00 42	.00 39	.60 16
		SPD PEG - white, off white, dark to light apple green, silver colour. very coarse, pegmatitic with fsp up to 8 cm. This unit is dominated by dark green spodumene xtals with only minor short waves of fresh apple green spodumene as indicated in the MIN tab. fresh xtals range from 30 to 45 deg tca, and are short and stubby. short aplite section of core for 17 cm at end of this unit. Lower contact is broken. Mineralization	884484	230.70	232.0	0 1.30	0.6	0 589	.00 40	70 33	.40 21
		230.52 - 230.62 : SPOD Spodumene, INT Interstitial, 20.00% 230.20 - 230.38 : SPOD Spodumene, INT Interstitial, 30.00% fresh spodumene RQD 230.00 - 233.00 : 46.00 % RQD 98.00 % Core									
232.00	233.16	M SCH, mica schist	884485	232.00	233.1	6 1.16	0.2	6 328	.00 155	.00 3	.20 2:
		MSCH - qtz-fsp-biotite, massive, fg, grey. Block of MSCH within the SPD intrusion.	884486	232.00	233.1	6 1.16	0.2	6 334	.00 163	00 1	.80 1
		RQD 233.00 - 236.00: 97.00 % RQD 100.00 % Core									
233.16	237.73	SPD PEG, spodumene pegmatite	884487	233.16	234.0	0.84					.00 16
		SPD PEG - white to off white, light green to grey in colour. Euhedral spodumene	884488	234.00					_		.70 16
		crystals range from short and stubby up to two cm, to larger 5 cm xtals ranging	884489	235.00					_		.60 19
		from 30 to 50 deg tca. Spodumene is estimated at 25% fresh spod. First 65 cm of this unit has no spodumene present and is dominated by fsp and quartz with	884491	236.00							.40 14
		minor aplite and silvery mica. remainder of this unit carries a uniform distribution of fresh spod xtals. minor dark green to silvery mica at 1-2 within this lithology. trace garnets. Aplite patches trend in and out of core up to 3cm. Lower contact is sharp at 65 deg tca	884492	237.00	237.7	3 0.73	3 1.0	18 576	.00 75	40 54	.60 16
		Mineralization 233.16 - 237.73 : SPOD Spodumene, INT Interstitial, 25.00% fresh spodumene RQD									
		236.00 - 239.00: 78.00 % RQD 100.00 % Core									
237.73	238.33	M SCH, mica schist	884493	237.73	238.3	0.60	0.2	320	.00 145	.00 1	.00
		MSCH - qtz-fsp-biotite, massive, fg, grey. Block of MSCH within the SPD intrusion. lower contact is sharp at 65 deg tca.									
238.33	238.90	SPD PEG, spodumene pegmatite	884494	238.33	238.9	0.57	0.5	6 577	.00 48	.30 78	.80 13
		SPD PEG - starting from 238.52m for 12 cm, fresh, euhedral xtals at 55 deg tca, 30% volume. remainder of this unit has dark green altered mica, with minor aplite patches in and out of core. lower contact is broken.									
		Mineralization 238.52 - 238.64 : SPOD Spodumene, INT Interstitial, 30.00% fresh spodumene									

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
238.90	242.00	M SCH, mica schist	884495	238.90	239.9	00 1.0	00 0.1	17 200.	00 61.	50 25	.00 23.0
		MSCH - qtz-fsp-biotite, massive, fg, grey. minor qfm intrusions at low angle tca intrude the MSCH having trace PY and garnets. Lower contact is sharp at 45 deg tca									
		RQD									
		239.00 - 242.00: 72.00 % RQD 100.00 % Core									
242.00	265.99	DIAB, diabase									
		Diabase, dark grey to black, medium grained, equigranular, weakly magnetic in and out of core, holocrystaline, pyroxene, feldspar with minor olivine, chl/talc on joint planes. ophitic texture. Gouge with angular fragments up to 1.5 cm, talc/chl like texture, for 9cm starting at 263.3m.									
		RQD									
		242.00 - 245.00 : 64.00 % RQD 100.00 % Core									
		245.00 - 248.00 : 66.00 % RQD 100.00 % Core									
		248.00 - 251.00 : 95.00 % RQD 100.00 % Core									
		251.00 - 254.00 : 91.00 % RQD 100.00 % Core									
		254.00 - 257.00: 98.00 % RQD 100.00 % Core									
		257.00 - 260.00 : 81.00 % RQD 100.00 % Core									
		260.00 - 263.00: 48.00 % RQD 100.00 % Core									
		263.00 - 266.00: 74.00 % RQD 100.00 % Core									
265.99	266.00	EOH, end of hole									

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884292	131.27	132.27	0.0861	584.0000	110.0000	120.0000	158.0000
884293	132.27	133.27	1.0118	651.0000	47.3000	15.5000	138.0000
884294	133.27	134.27	0.5597	871.0000	69.2000	39.9000	140.0000
884295	134.27	135.27	0.0646	976.0000	58.2000	11.4000	132.0000
884296	135.27	135.53	0.0215	635.0000	50.7000	183.0000	193.0000
884297	135.53	136.53	0.1938	183.0000	75.1000	3.2000	5.0000
884298	152.26	153.26	0.1938	466.0000	167.0000	29.0000	56.0000
884299	153.26	154.26	1.7868	535.0000	46.6000	24.5000	170.0000
884301	154.26	155.26	0.8827	877.0000	46.5000	17.2000	117.0000
884302	155.26	155.71	0.0431	828.0000	45.0000	4.4000	159.0000
884303	155.71	156.71	0.3014	349.0000	283.0000	8.5000	13.0000
884304	158.30	159.30	0.3445	908.0000	459.0000	17.3000	40.0000
884305	159.30	160.30	1.2702	421.0000	48.8000	72.0000	213.0000
884307	160.30	161.00	0.4952	591.0000	59.7000	141.0000	159.0000

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884308	161.00	162.00	0.5597	1720.0000	856.0000	23.9000	28.0000
884477	225.55	226.55	0.2799	653.0000	232.0000	7.7000	29.0000
884478	226.55	227.03	0.4521	1260.0000	315.0000	71.6000	130.0000
884479	227.03	228.03	0.4090	539.0000	66.9000	40.2000	151.0000
884481	228.03	228.78	0.2583	152.0000	63.0000	0.6000	5.0000
884482	228.78	229.70	0.2583	324.0000	130.0000	9.8000	13.0000
884483	229.70	230.70	0.7750	561.0000	42.0000	39.6000	162.0000
884484	230.70	232.00	0.6028	589.0000	40.7000	33.4000	212.0000
884485	232.00	233.16	0.2583	328.0000	155.0000	3.2000	23.0000
884487	233.16	234.00	0.6674	528.0000	42.3000	47.0000	160.0000
884488	234.00	235.00	1.7007	494.0000	32.1000	3.7000	165.0000
884489	235.00	236.00	1.6792	454.0000	34.3000	26.6000	191.0000
884491	236.00	237.00	1.8514	266.0000	24.0000	7.4000	148.0000
884492	237.00	237.73	1.0764	576.0000	75.4000	54.6000	167.0000
884493	237.73	238.33	0.2368	320.0000	145.0000	1.0000	8.0000
884494	238.33	238.90	0.5597	577.0000	48.3000	78.8000	139.0000
884495	238.90	239.90	0.1722	200.0000	61.5000	25.0000	23.0000
Sample Type CDUP		<u></u>					
884306	159.30	160.30	1.1410	405.0000	47.3000	58.4000	199.0000
884486	232.00	233.16	0.2583	334.0000	163.0000	1.8000	13.0000

Page 1 of 29 DETAILED LOG

Hole Number: NC-11-25 Units: METRIC

Project Name:	Nama Creek	Primary Coordinates Grid: U	JTM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	01	North: 5477805.97		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424594.07		East:	Length:	329.00
		Elev: 372.32		Elev:	Start Depth:	0.00
Date Started:	Oct 23, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	329.00
Date Completed:	Nov 04, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: Hole logged by Andrea Dixon; claim number TB67167

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	242.01	245.15	3.14	1.1050	626.8790	45.3459	30.5229	168.0764
WEIGHTED	248.28	254.11	5.83	1.4405	826.7890	87.0899	43.3696	189.5437
WEIGHTED	250.00	253.00	3.00	1.7653	836.6667	61.2333	42.8000	217.0000
WEIGHTED	285.62	287.20	1.58	0.7034	732.8608	54.2430	44.4772	195.2532

Survey Data

Depth	Azimuth	Dip	Test	Flag	Comments	Depth	Azimuth	Dip	Test	Flag	Comments
	Decimal	Decimal	Type				Decimal	Decimal	Type		
17.00	142.20	-59.20	Reflex	OK	mag field: 57750	50.00	142.90	-59.60	Reflex	OK	mag field: 57270
101.00	145.50	-59.60	Reflex	OK	mag field: 57650	152.00	147.30	-60.20	Reflex	OK	mag field: 57650
200.00	151.00	-60.00	Reflex	OK	mag field: 57590	251.00	153.30	-60.00	Reflex	OK	mag field: 57540
329.00	148.70	-60.00	Reflex	OK	mag field: 57700; the azimuth is more likely to be 158.7 as that						

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00		OVB, Casing Overburden									

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
2.45		M SCH, mica schist Metasediment. Medium gray, fine grained, and massive to weakly foliated. Quartz-feldspar-biotite with some pyrite and carbonate (probably calcite) mineralization on fracture planes. Cut by some quartz veinlets (up to 4 mm thick, oriented between 30 and 70 degrees), multiple bleached hairline fractures (generally oriented between 10 and 60 degrees), several dikelets, and a few fractures. Mineralization 16.21 - 16.24 1 mm diameter pink garnets lightly scattered in a 3 cm thick band. Structure 7.67 - 7.68: DYKE, 90.00 Deg to CA White OF aplite dikelet with accessory garnet and a medium soft pale green mineral. 10.20 - 10.24 White OF aplite dikelet with very irregular contacts. 13.15 - 13.18: DYKE, 80.00 Deg to CA White OF aplite dikelet with a medium hard, pale green accessory mineral. 16.47 - 16.72: FR Fractured, 80.00 Deg to CA Fracture area consists of blocks 3 to 8 cm long. 18.96 - 19.02: DYKE, 90.00 Deg to CA Medium gray, very fine grained aplite dikelet with scattered 1 mm diameter pink garnets in the central portion. 19.80 - 20.03: FR Fractured, 80.00 Deg to CA Fracture area consists of blocks 1 to 4 cm long. 24.15 - 24.17: DYKE, 60.00 Deg to CA White OF aplite dikelet 27.56 - 27.58: DYKE, 70.00 Deg to CA White OF aplite dikelet White OF aplite dikelet 30.30 - 30.56: BD Bedding, 45.00 Deg to CA White of aplite dikelet 30.30 - 30.56: BD Bedding, 45.00 Deg to CA White OF aplite dikelet 30.30 - 30.56: BD Bedding, 45.00 Deg to CA White OF aplite dikelet 30.30 - 31.50: FR Fractured, 70.00 Deg to CA White OF aplite dikelet 30.30 - 30.56: BD Bedding, 45.00 Deg to CA White OF aplite dikelet with a pale green, medium soft accessory minera 28.72 - 28.73: DYKE, 40.00 Deg to CA White OF aplite dikelet with a pale green of CA White OF aplite dikelet with a pale green of CA Same as above 29.51 - 29.52: DYKE, 40.00 Deg to CA White OF aplite dikelet with accessory biotite. 30.30 - 30.56: BD Bedding, 45.00 Deg to CA White OF aplite dikelet with accessory biotite.									

Detailed Lithology				Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
From 10	Structure 41.12 - 41.52: DYKE, 80.00 Deg to CA A series of closely spaced white OF aplite dikelets. Appears to be 7 of them. A few contain small metasediment xenoliths 41.54 - 41.73 White OF aplite dikelet that only intrudes halfway through the core 41.90 - 41.93: DYKE, 80.00 Deg to CA White OF aplite dikelet that only intrude halfway through the core. Has a very soft pale olive green accessory mineral (talc?) 57.77 - 57.78: DYKE, 60.00 Deg to CA White quartz-dominant pegmatite dikelet 57.92 - 57.99 White quartz-dominant pegmatite dikelet that only intrudes halfway through the core. 58.48 - 58.52: DYKE, 50.00 Deg to CA Pale-brown quartz-dominant pegmatite dikelet with a 2 cm metasediment xenolith in the middle of it. 61.40 - 61.41: DYKE, 75.00 Deg to CA White QF pegmatite dikelet 62.72 - 63.40: FR Fractured, 70.00 Deg to CA Fracture area consists of blocks 1 to 6 cm long ROD 2.45 - 5.00: 82.00 % RQD 94.00 % Core 5.00 - 8.00: 94.00 % RQD 94.00 % Core 5.00 - 8.00: 94.00 % RQD 94.00 % Core 11.00 - 14.00: 86.00 % RQD 94.00 % Core 11.00 - 14.00: 86.00 % RQD 94.00 % Core 2.00 - 23.00: 81.00 % RQD 100.00 % Core 2.00 - 23.00: 81.00 % RQD 100.00 % Core 2.00 - 23.00: 87.00 % RQD 100.00 % Core 2.00 - 32.00: 70.00 % RQD 100.00 % Core 2.00 - 35.00: 79.00 % RQD 100.00 % Core 2.00 - 35.00: 79.00 % RQD 100.00 % Core 2.00 - 35.00: 79.00 % RQD 100.00 % Core 2.00 - 35.00: 79.00 % RQD 90.00 % Core 2.00 - 35.00: 79.00 % RQD 90.00 % Core 2.00 - 38.00: 84.00 % RQD 90.00 % Core 2.00 - 38.00: 84.00 % RQD 90.00 % Core 2.00 - 38.00: 84.00 % RQD 90.00 % Core 2.00 - 38.00: 84.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00 % RQD 90.00 % Core 2.00 - 38.00: 94.00	Sample Number	From		Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	

Feb 24, 2012 Page 4 of 29

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 50.00 - 53.00 : 97.00 % RQD 100.00 % Core Core recovery should be 102% 53.00 - 56.00 : 88.00 % RQD 97.00 % Core 56.00 - 59.00 : 78.00 % RQD 100.00 % Core 59.00 - 62.00 : 87.00 % RQD 99.00 % Core 62.00 - 65.00 : 63.00 % RQD 98.00 % Core									
63.40		DIAB, diabase Diabase, or related mafic dike. Dark gray, fine grained with a few black, hard, glassy, irregularly shaped phenocrysts (probably amphibole/pyroxene). Too fine grained to determine composition. Slightly magnetic. Some chlorite and pyrite mineralization on fracture planes. Contacts are slightly chilleddiabase is nearly black. Contacts oriented 50 degrees (upper) and 20 degrees (lower) to the core axis.									

ailed Lithology				Assay	Data					
om To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
rom To 63.80 107.28		Sample Number	From		т т	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_pp

Feb 24, 2012 Page 6 of 29

Feb 24, 2012 DETAILED LOG

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
107.28	124.68	DI AB, diabase Diabase dike. Medium to dark gray, very fine grained to medium grained, with splotches of coarse grained areas. Feldspar-pyroxene-hornblende. Very fine grained areas are found at the beginning and end of the dike, from 107.28 to 109 m and 124.28 to 124.68 m, respectively. The rest of the dike is medium grained, with the above mentioned coarse grained splotches (splotches are irregularly shaped and up to 10 cm across. Crystals in the splotch may reach 1 cm long.) and coarse grained "veins." These veins are brown in color and appear to be composed of altered pyroxene? crystals (similar shape but soft). Magnetic, especially in comparison to the metasediment. Fracture planes sometimes contain chlorite mineralization. Contacts are chilledvery fine grained and nearly black in color. Contacts are oriented 40 degrees (upper) and 60 degrees (lower) to the core axis. RQD 110.00 - 113.00: 99.00 % RQD 99.00 % Core 113.00 - 116.00: 90.00 % RQD 100.00 % Core Core recovery should be 103% 116.00 - 119.00: 95.00 % RQD 99.00 % Core 119.00 - 122.00: 98.00 % RQD 100.00 % Core				<u> </u>				••	
124.68		M SCH, mica schist Metasediment. Medium gray, fine grained, and massive. Quartz-feldspar-biotite with very trace pyrite mineralization on fracture planes. Cut by a few bleached hairline factures and a couple of dikes. Structure 125.23 - 125.28: DYKE, 40.00 Deg to CA Pale brown quartz dominant pegmatite dikelet. 128.56 - 128.67: DYKE, 40.00 Deg to CA Pale gray QFM pegmatite dikelet. RQD 125.00 - 128.00: 92.00 % RQD 99.00 % Core 128.00 - 131.00: 97.00 % RQD 99.00 % Core DI AB, diabase Diabase, or related mafic intrusion. Dark gray, massive, and very fine grained.									
		Fracture planes are waxy, probably due to the presence of chlorite. Slightly magnetic. Contacts oriented 50 degrees (upper) and 60 degrees (lower) to the core axis.									

Feb 24, 2012 Page 8 of 29

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
130.69		M SCH, mica schist Metasediment. Medium gray, massive, and fine grained. Quartz-feldspar-biotite. Trace amounts of pyrite and chlorite on fracture planes. Cut by a couple of thin dikes and criss-crossed by a network of hairline fractures. Some of the fracture network shows bleaching along the fractures and in discrete spots that are up to 2 mm in diameter. Non-bleached fractures are filled with a white mineral that is fairly soft but does not react in acid. Structure 132.22 - 132.23: DYKE, 10.00 Deg to CA White QF aplite dikelet RQD 131.00 - 134.00: 93.00 % RQD 98.00 % Core									
132.73	138.45	DIAB, diabase Diabase. Medium gray, massive, fine to medium grained. Feldspar-pyroxene-hornblende. Fractures are filled with minor amounts of chlorite. Moderately magnetic. Contains a couple of "veins" as described in the diabase between 107.28 and 124.68 m. Fine grained sections extend from chilled margins at the contacts and are located 132.73 to 134 m and 137.90 to 138.45. Contacts are oriented 25 degrees (upper) and 30 degrees (lower) to the core axis. RQD 134.00 - 137.00: 98.00 % RQD 100.00 % Core 137.00 - 140.00: 86.00 % RQD 99.00 % Core									

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
138.45	172.15	M SCH, mica schist Metasediment. Medium grained, massive, and fine grained. Quartz-feldspar-biotite. Fractures have trace pyrite and chloritepyrite concentration dramatically increases in the small fault zone intersecting the core from 148.57 to 157.65 m. A few of the blocks of core within the fault zone exhibit faint slickensides. There are some soild runs of core within this small fault zone that below, I have divided the fault zone up into "individual" faults. Other than being cut by the fault zone, the core is cut by a couple of thin dikelets, a few quartz veinlets (up to 2 mm thick) with orientations between 40 and 60 degrees to the core axis, and a couple of bleached hairline fractures with orientations between 5 and 20 degrees to the core axis. In the lower part of the unit, the core has actually split along the hairline fractures resulting in large, jagged pieces of core. Mineralization 148.57 - 157.65: PY Pyrite, DISS Disseminated, 1.00% Pyrite is not within the core so much as only on the fault and fracture planes. Alteration 167.16 - 167.30: SI Silica, Pervasive , Strong Quartz with accessory pyrite swirled through strongly foliated metasediment. Structure 140.88 - 140.91: DYKE , 50.00 Deg to CA White and pale gray zoned QFM aplite dikelet. Border zones are white and are QF in composition. Core is gray. 148.57 - 149.33: F Fault, 20.00 Deg to CA Faulted area consists of blocks 1 to 10 cm long with some blocks exhibiting faint slickensides. Very minor amount of fault gouge present filling in one of the slip planes 152.00 - 152.40: F Fault, 20.00 Deg to CA Faulted area consists of blocks 2 to 8 cm long with a few exhibiting very faint slickensides. 152.00 - 152.40: F Fault, 10.00 Deg to CA Faulted area consists of blocks 2 to 5 cm long with a few exhibiting faint slickensides. 154.37 - 156.43: F Fault, 10.00 Deg to CA Faulted area consists of long, thin blocks mostly between 10 and 20 cm long with a couple showing very faint slickensides. 155.70 - 156.43: F Fault, 10.00 Deg to CA Faul									

Detailed	Lithology		Assay Data								
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		Structure 170.94 - 172.15 : FOL Foliated, 60.00 Deg to CA Area of strong foliation. 171.69 - 171.72 : DYKE , 70.00 Deg to CA White QFM aplite dikelet. 172.00 - 172.15 : FR Fractured, 70.00 Deg to CA Fracture area consists of thin disks up to 2 cm thick RQD 140.00 - 143.00 : 89.00 % RQD 97.00 % Core 143.00 - 146.00 : 92.00 % RQD 100.00 % Core 146.00 - 149.00 : 77.00 % RQD 98.00 % Core 149.00 - 152.00 : 62.00 % RQD 97.00 % Core 152.00 - 155.00 : 55.00 % RQD 97.00 % Core 155.00 - 158.00 : 38.00 % RQD 96.00 % Core 158.00 - 161.00 : 79.00 % RQD 97.00 % Core 161.00 - 164.00 : 71.00 % RQD 84.00 % Core 161.00 - 167.00 : 94.00 % RQD 100.00 % Core 167.00 - 170.00 : 62.00 % RQD 99.00 % Core									
172.15	172.45	QF PEG, quartz-feldspar pegmatite Quartz-feldspar pegmatitequartz-dominant. White and coarse grained. Quartz with minor amounts of feldspar and a pale green and peach medium soft accessory mineral (triphylite and lithiophilite?) There is trace amounts of red iron stain on some of the fractures. There is a 5 cm long metasediment xenolith 3 cm up from the bottom contact and shows weak metasomatism. Contacts with the pegmatite also show weak metasomatism. Contacts oriented 20 degrees (upper) and 55 degrees (lower) to the core axis.									

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
172.45	193.10	M SCH, mica schist Metasediment. Medium gray, moderately foliated and very fine grained from the upper contact with the pegmatite to roughly 185this is where the metasediment is easily classified as medium gray, massive to weakly foliated, and fine grained. Quartz-feldspar-biotite with trace pyrite on fracture planes. The foliation is oriented between 70 and 60 degrees to the core axis. The metasediment is cut by numerous dikelets, multiple fractures, several very thin quartz veinlets (about 1 mm thick, with some reaching 2 mm thick) oriented between 10 and 75 degrees to the core axis, and a few bleached hairline fractures. Alteration 185.96 - 186.12 :CA Carbonate, Pervasive , Strong This section of metasediment looks the same as usual except for the color. It is dark green with white and peachy to red patches. It fizzes in acid and is oriented 55 degrees to the core axis. Perhaps it is an odd vein or dike Structure 172.46 - 172.58 : FR Fractured, 60.00 Deg to CA Fracture area consists of blocks 1 to 4 cm long that seem to have fractured along the foliation. 172.64 - 172.68 : DYKE , 50.00 Deg to CA White quartz dominant pegmatite dikelet with a medium hard, medium green accessory mineral (triphylite?) 172.83 - 172.89 : DYKE , 60.00 Deg to CA same as above 173.00 - 173.07 : DYKE , 60.00 Deg to CA Same as above 174.98 - 175.01 : DYKE , 60.00 Deg to CA White QFM aplite dikelet. 176.91 - 176.96 : DYKE , 80.00 Deg to CA White QFM aplite dikelet. 178.73 - 178.78 : DYKE , 70.00 Deg to CA White QF pegmatite dikelet. 178.73 - 183.49 : DYKE , 70.00 Deg to CA White QFM aplite dikelet. 178.30 - 183.40 : FR Fractured, 70.00 Deg to CA White QFM aplite dikelet. 178.60 - 184.40 : FR Fractured, 70.00 Deg to CA White QFM aplite dikelet. 186.08 - 186.40 : FR Fractured, 60.00 Deg to CA Fracture area consists of thin disks and blocks 1 to 5 cm long. 187.00 - 187.49 : FR Fractured, 60.00 Deg to CA Fracture area consists of blocks 3 to 4 cm long. 187.54 - 187.61 : DYKE , 55.00 Deg to CA									

Feb 24, 2012 Page 12 of 29

Detailed	_ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 173.00 - 176.00 : 73.00 % RQD 97.00 % Core 176.00 - 179.00 : 87.00 % RQD 98.00 % Core 179.00 - 182.00 : 84.00 % RQD 98.00 % Core 182.00 - 185.00 : 49.00 % RQD 97.00 % Core 185.00 - 188.00 : 22.00 % RQD 90.00 % Core 188.00 - 191.00 : 47.00 % RQD 100.00 % Core 191.00 - 194.00 : 61.00 % RQD 98.00 % Core									
193.10	193.31	DIAB, diabase Diabase, or related mafic dike. Very dark gray, massive, and very fine grained. Too fine grained to determine composition. Fractures are coated with green chlorite with trace pyrite and a carbonate mineral, probably calcite. Slightly magnetic when compared to the metasediment. Contacts are oriented 60 degrees (upper) and 70 degrees (lower) to the core axis.									

Feb 24, 2012 Page 13 of 29

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
193.31	218.11	M SCH, mica schist	884309	217.11	218.1	1.00	0.1	5 151.	00 86.	80 (0.60 3
	218.11	M SCH, mica schist Metasediment. Medium gray, weakly to moderately foliated (grading very gradually into each other), and fine to medium grained. Quartz-feldspar-biotite with trace pyrite on fracture planes. The metasediment is cut by numerous diklets (some very thin, less than 1 cm thick), numerous bleached hairline fractures with orientations between 10 and 30 degrees to the core axis, and some thin white quartz veinlets (up to 2 mm thick) with orientations between 50 and 75 degrees to the core axis. Structure 193.63 - 193.70: DYKE , 40.00 Deg to CA Pale gray QF pegmatite dikelet 194.53 - 194.59: DYKE , 40.00 Deg to CA Medium green QFM pegmatite dikelet 195.10 - 195.30: FR Fractured, 45.00 Deg to CA Fracture area consists of blocks 2 to 7 cm long. 195.73 - 195.89: FR Fractured, 30.00 Deg to CA Fracture area consists of blocks 1 to 5 cm long 198.82 - 198.85: DYKE , 80.00 Deg to CA White quartz-dominant aplite dikelet with minor feldspar 199.15 - 199.20: DYKE , 50.00 Deg to CA White and green "marbled"QF aplite with accessory black and dark green tourmaline 200.62 - 200.66: DYKE , 50.00 Deg to CA Same as above 201.20 - 201.24: DYKE , 40.00 Deg to CA Same as above 205.40 - 205.48: DYKE , 50.00 Deg to CA Same as above 209.55 - 209.58: DYKE , 50.00 Deg to CA White OF aplite dikelet 210.18 - 210.36: FR Fractured, 60.00 Deg to CA Same as above 209.55 - 209.58: DYKE , 60.00 Deg to CA More area consists of blocks 1 to 6 cm long. 211.64 - 212.95: BD Bedding, 90.00 Deg to CA A single light gray bed. ROD 194.00 - 197.00: 64.00 % RQD 100.00 % Core 200.00 - 203.00: 77.00 % RQD 100.00 % Core 200.00 - 203.00: 77.00 % RQD 100.00 % Core 200.00 - 203.00: 77.00 % RQD 100.00 % Core 200.00 - 200.00: 80.00 % RQD 95.00 % Core 200.00 - 200.00: 99.00 % RQD 100.00 % Core				<u> </u>	-		<u> </u>		
		209.00 - 212.00 : 93.00 % RQD 100.00 % Core									
		212.00 - 215.00 : 88.00 % RQD 99.00 % Core 215.00 - 218.00 : 98.00 % RQD 100.00 % Core									
		218.00 - 221.00: 83.00 % RQD 100.00 % Core									

Detailed L	ithology.				Assa	y Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
218.11	219.19	SPD PEG, spodumene pegmatite Spodumene pegmatite. White, massive, and coarse grained. Quartz-feldspar-muscovite-spodumene with trace blue apatite and dark pink garnet. Some of the feldspar has a perthitic texture and very small amount appears to be cleavelandite. Small, scattered pods of QFM aplite throughout. Spodumene is almost entirely dark green-gray to black in color. One or 2 crystals has a pale green unaltered interior. Crystals are about 4 cm long and are oriented about 60 degrees to the core axis. Contacts are oriented 50 degrees (upper) and 55 degrees (lower) to the core axis. Mineralization 218.11 - 219.19: SPOD Spodumene, PAT Patch, 1.00% Spodumene is almost entirely dark green-gray to black in color. One or 2 crystals has a pale green unaltered interior. Crystals are about 4 cm long and are oriented about 60 degrees to the core axis.	884311	218.11	219	19 1.0	8 0.4	7 785.	00 44.1	0 14	.60 122
219.19	229.76	M SCH, mica schist Metasediment. Medium gray, massive, and fine grained. Quartz-feldspar-biotite with trace pyrite, chlorite, and a carbonate mineral (probably calcite) on fracture planes. There is some patchy epidotization and carbonatization giving the metasediment a green and bleached appearances, respectively. Cut by numerous bleached hairline fractures with orientations between 10 and 40 degrees to the core axis. The metasediment is also cut by a few dikelets. Alteration 20.19 - 220.82 :E Epidote, Patchy , Weak Core has a pale green appearance. 223.44 - 223.65 :E Epidote, Fract-Cont Fracture-Controlled, Moderate Core has a pale green appearance around hairline fractures 224.19 - 224.34 :E Epidote, Fract-Cont Fracture-Controlled, Moderate Same as above 227.87 - 228.34 :E Epidote, Pervasive , Weak Core has a pale green appearance. 228.47 - 228.69 :E Epidote, Pervasive , Moderate Core has a pale green appearance and is veined with calcite Structure 223.44 - 223.46 : DYKE , 60.00 Deg to CA Pale green and white QF aplite dikelet 224.34 - 224.38 : DYKE , 45.00 Deg to CA Very pale green and white QF aplite dikelet. RQD 221.00 - 224.00 : 69.00 % RQD 98.00 % Core 224.00 - 227.00 : 89.00 % RQD 99.00 % Core	884312	219.19	220	19 1.0	0 0.1	5 123.	00 57.4	0 0	.70 12

Feb 24, 2012 Page 15 of 29

Detailed L	ithology				Assay	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_pp	om
229.76	229.93	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and zoned with aplite. Border zones are composed of white QFM aplite with trace garnets and are about 3 cm thick. Overall, the core is pale gray and coarse grained and is composed of pale brown quartz, white and gray feldspar, and yellow-green muscovite. Contacts are oriented 75 degrees (upper) and 70 degrees (lower) to the core axis.										
229.93	232.76	M SCH, mica schist	884313	231.76	232.7	6 1.0	0 0.1	9 124.0	00 42.8	30 0	.50	2.0
		Metasediment. Medium gray, massive, and fine grained. Quartz-feldspar-biotite with trace pyrite on fracture planes. Cut by numerous bleached hairline fractures with orientations between 30 and 50 degrees to the core axis. RQD 230.00 - 233.00: 87.00 % RQD 98.00 % Core										
232.76	234.60	SPD PEG, spodumene pegmatite	884314	232.76	233.7	6 1.0	0 0.3	4 716.0	00 41.2	20 36	.90	127.0
202.70	201.00	Spodumene pegmatite. White and coarse grained, except where interrupted by	884315	233.76					_	_	.90	194.0
		small bands and pods of aplite. Quartz-feldspar-muscovite-spodumene with trace accessory red garnet. In general, the aplite bands and pods have the same composition as the pegmatite except without garnet and only trace amounts of spodumene. Some of the feldspar has perthitic texture and a few crystals appear to be cleavelandite. Spodumene is pale green with only a couple scattered altered gray crystals. Crystals are up to 5 cm long and oriented roughly perpendicular to the contacts. Contacts are oriented 50 degrees (upper) and 70 degrees (lower) to the core axis. Mineralization 232.76 - 234.60: SPOD Spodumene, PAT Patch, 5.00% Spodumene is pale green with only a couple scattered altered gray crystals. Crystals are up to 5 cm long and oriented roughly perpendicular to the contacts. RQD 233.00 - 236.00: 99.00 % RQD 99.00 % Core										
234.60	235.04	M SCH, mica schist	884316	234.60	235.0	4 0.4	4 0.2	6 336.0	00 140.0	00 1	.30	4.0
		Metasediment. Medium gray, massive, and fine grained. Quartz-feldspar-biotite with trace disseminated muscovite and pyrite.										
235.04	236.00	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace garnets. A few feldspar crystals have a perthitic texture. Spodumene is pale green with about 2/3 of it altered to dark yellow-green muscovite. 1% of it is fresh. Fresh crystals are 3 cm long and oriented subperpendicular to contacts. Contacts are oriented 65 degrees (upper) and 70 degrees (lower) to the core axis. Mineralization 235.04 - 236.00: SPOD Spodumene, PERV Pervasive, 1.00% Spodumene is pale green with about 2/3 of it altered to dark yellow-green muscovite. 1% of it is fresh. Fresh crystals are 3 cm long and oriented subperpendicular to contacts.	884317	235.04	236.0	0 0.9	6 0.4	3 907.0	00 67.C	00 111	.00	207.0

Page 16 of 29 DETAILED LOG

Detailed Li	ithology				Assay I	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
236.00	242.01	M SCH, mica schist	884318	236.00	237.0	0 1.00	0.2	2 154.	00 60.	70 0	.80 3.0
		Metasediment. Medium gray, weakly to moderately foliated, and fine grained. Quartz-feldspar-biotite with trace pyrite and carbonate (probably calcite) on fracture planes. Cut by a couple of dikes and few scattered hairline fractures, some of which are surrounded in bleached metasediment. Orientations of hairline fractures are between 20 and 70 degrees.	884319	241.01	242.0	1 1.00	0.2	6 157.	00 72.	70 0	.70 2.0
		Structure 240.19 - 240.23: DYKE, 30.00 Deg to CA White QFM aplite dikelet. Contacts with metasediment show an abundance of muscovite, likely the result of metasomatism. 240.33 - 240.40: DYKE, 40.00 Deg to CA White QFM aplite dikelet with accessory garnet. RQD 236.00 - 239.00: 100.00 % RQD 100.00 % Core Recovery should be 104%; RQD 102% 239.00 - 242.00: 89.00 % RQD 98.00 % Core 242.00 - 245.00: 91.00 % RQD 100.00 % Core Recovery should be 103%									
242.01	245 15	SPD PEG, spodumene pegmatite	884321	242.01	243.0	1 1.00	1.1	514.	00 37.	60 25	.80 173.0
242.01	243.13	Spodumene pegmatite. White to cream, massive, and coarse grained.	884322	243.01	244.0						.20 145.0
		Quartz-feldspar-muscovite-spodumene with accessory red garnet. Contains a	884323	244.01	245.1						.30 184.0
		couple of small QFM aplite pods and a thin band of spodumene aplite. About 25% of the feldspar has a perthitic texture and a couple of crystals might be cleavelandite. Spodumene is pale green to dark altered greena little more than 50% of the spodumene is fresh. Spodumene is slightly more abundant in the center of the dike, while the edges are more barren. Crystals are up to 5 cm long and are generally oriented subperpendicular to the contacts (about 50 degrees to the core axis). Contacts are oriented about 55 degrees to the core axis. Mineralization 242.01 - 245.15: SPOD Spodumene, PERV Pervasive, 15.00% Spodumene is pale green to dark altered greena little more than 50% of the spodumene is fresh. Spodumene is slightly more abundant in the center of the dike, while the edges are more barren. Crystals are up to 5 cm long and are generally oriented subperpendicular to the contacts (about 50 degrees to the core axis). RQD 245.00 - 248.00: 99.00 % RQD 99.00 % Core									

Feb 24, 2012 Page 17 of 29

Detailed Lit	thology				Assay D	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
245.15	246.45	M SCH, mica schist	884324	245.15	246.15	1.00	0.30	186.0	75.6	0.0	30 3.
		Metasediment. Medium gray, weakly foliated, and fine grained.	884325	246.15	246.45	0.30	0.34	572.0	210.0	0.0	50 6.
		Quartz-feldspar-biotite with abundant pyrite and trace chlorite on fracture planes.	884326	246.15	246.45	0.30	0.30	462.0	00 197.0	0.0	50 4.
		Cut by a small dikelet and a few thin quartz veinlets (up to 2 mm thick) oriented about 40 degrees to the core axis.									
		Structure 245.34 - 245.36 : DYKE , 40.00 Deg to CA Pale brown quartz-dominant aplite dikelet with an accessory green mineral (triphylite?).									
246.45	247.60	SPD PEG, spodumene pegmatite	884327	246.45	247.45	1.00	0.09	630.0	00 54.5	0 60.9	50 287.0
		Spodumene pegmatite. White, massive, and coarse grained.	884328	247.45	247.60	0.15	0.19	659.0	59.6	0 61.2	20 115.0
		Quartz-feldspar-muscovite-spodumene with trace garnet and extremely trace silver-colored sulfides. A few of the feldspar crystals exhibit a perthitic texture. Dark yellow-green muscovite replaces most of the spodumene. Might have originally been 5% fresh spodumene but is now less than 1% fresh. Spodumene ranges in color from pale gray-green to black. Crystals are thin, up to 3 cm long and oriented about 40 degrees to the core axis. Contacts are oriented about 55 degrees (upper) and 40 degrees (lower) to the core axis. Mineralization 246.45 - 247.60: SPOD Spodumene, PERV Pervasive, 5.00% Dark yellow-green muscovite replaces most of the spodumene. Might have originally been 5% fresh spodumene but is now less than 1% fresh. Spodumene ranges in color from pale gray-green to black. Crystals are thin, up to 3 cm long and oriented about 40 degrees to the core axis.									
247.60		M SCH, mica schist Metasediment. Medium gray, weakly foliated, fine grained. Quartz-feldspar-biotite. RQD 248.00 - 251.00: 100.00 % RQD 100.00 % Core	884329	247.60	248.28	3 0.68	3 0.32	369.0	00 <u>218.C</u>	0 3.9	5.0 5.0
248.28		SPD PEG, spodumene pegmatite	884331	248.28	248.52	0.24	1.51	478.0	00 56.6	0 101.0	00 96.0
		Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene. Spodumene is mostly fresh, pale green with a couple of crystals altered to a silvery gray or black. Crystals are oriented subperpendicular to contacts and are up to 5 cm long, perhaps longer. Contacts are oriented 45 degrees (upper) and 40 degrees (lower) to the core axis. Mineralization 248.28 - 248.52 : SPOD Spodumene, PERV Pervasive, 5.00%			2.2.02	,	,	,	300	.,	
		Spodumene is mostly fresh, pale green with a couple of crystals altered to a silvery gray or black.									
248.52	249.00	M SCH, mica schist	884332	248.52	249.00	0.48	0.34	692.0	348.0	0 5.5	50 12.
		Metasediment. Same as the metasediment unit above.									

Page 18 of 29 DETAILED LOG

Detailed L	ithology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
249.00	254.11	SPD PEG, spodumene pegmatite	884333	249.00	250.00	1.00	1.36	498.0	00 53.50	40.4	0 221.0
		Spodumene pegmatite. White and coarse grained.	884334	250.00	251.00			485.0	35.00	21.9	0 309.0
		Quartz-feldspar-muscovite-spodumene with trace pink garnet and cerulean blue	884335	251.00	252.00						
		apatite. Interrupted by a large pale brown quartz vein/crystal oriented about 20 degrees to the core axis at 249.40 m and has an apparent thickness of 10 cm	884336	252.00	253.00				-		1
		(actual thickness about 4 cm). Slightly over half of the feldspar has a perthitic	884337	253.00	254.11	1.11	1.10	1230.0	00 81.00	51.5	0 184.0
		texture. Spodumene is pale green to altered blackalteration is patchy. About 5									
		to 10% is altered. Crystals are thin, up to 5 cm long and oriented about 30 degrees to the core axis. Contacts are oriented about 55 degrees (upper) and 90									
		degrees (lower) to the core axis.									
		Mineralization									
		249.00 - 254.11 : SPOD Spodumene, PERV Pervasive, 25.00%									
		Spodumene is pale green to altered blackalteration is patchy. About 5 to 10% is altered. Crystals are thin, up to 5 cm long and oriented about 30									
		degrees to the core axis.									
		RQD									
		251.00 - 254.00: 95.00 % RQD 99.00 % Core									
		254.00 - 257.00: 98.00 % RQD 100.00 % Core									
254.11	257.71	M SCH, mica schist	884338	254.11	255.11	1.00	0.28	478.0	221.00	6.9	0 20.0
		Metasediment. Medium gray, weakly to moderately foliated (foliation gradually)									
		increasing strength down the unit), and fine grained. Quartz-feldspar-biotite. Cut by a few dikelets and several white guartz veinlets (up to 2 mm thick) oriented									
		between 35 and 40 degrees to the core axis.									
		Structure									
		254.77 - 254.84 : DYKE , 80.00 Deg to CA									
		White, medium grained QFM pegmatite dikelet with trace garnets.									
		257.36 - 257.39 : DYKE , 60.00 Deg to CA White QF aplite dikelet with trace garnets.									
		257.48 - 257.55 : DYKE , 85.00 Deg to CA									
		Pale gray, weakly zoned, medium grained QFM pegmatite dikelet. Border									
		zones are white and about 0.5 cm thick.									
		RQD									
		257.00 - 260.00 : 100.00 % RQD 100.00 % Core									
		Recovery should be 102%									

Detailed L	ithology				Assay	Data						
From	To	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	1
257.71	258.08	SPD PEG, spodumene pegmatite Spodumene pegmatite. Pale gray and aplitic to medium grained. Quartz-feldspar-muscovite-spodumene with trace garnet. Aplite is abundant and forms a groundmass for the lower half of the unit. Exhibits white, 1 cm thick, QFM with trace garnet border zones. Spodumene is pale green when fresh but most of it appears to be altered to dark yellow-green muscovite. Crystals are 1 to 2 cm long and oriented subperpendicular to contacts. Contacts are oriented 60 degrees (upper) and 70 degrees (lower) to the core axis. Mineralization 257.71 - 258.08: SPOD Spodumene, PAT Patch, 1.00% Spodumene is pale green when fresh but most of it appears to be altered to dark yellow-green muscovite. Crystals are 1 to 2 cm long and oriented subperpendicular to contacts.										
258.08	264.81	M SCH, mica schist Metasediment. Medium gray, moderately to strongly foliated, and fine grained. Quartz-biotite-feldspar with ellipsoid clusters of biotite in the lower half of the unit (except the last 1.5 m) that are up to 2 mm thick on the long axis. The lower half also happens to be the strongly foliated section (foliation oriented about 30 degrees to the core axis. The clusters perhaps could be considered porphyroblasts. The metasediment is cut by numerous thin, white aplite dikelets, the thickest of which are listed below. Structure 259.21 - 259.23: DYKE, 60.00 Deg to CA White QFM aplite dikelet with trace garnets. 260.04 - 260.07: DYKE, 70.00 Deg to CA Roughly zoned, white and gray QFM aplite dikelet with trace garnet. Borderzones are white and variable in thickness. 261.30 - 261.33: DYKE, 60.00 Deg to CA White QFM aplite dikelet with trace garnets. 261.39 - 261.41: DYKE, 80.00 Deg to CA Same as above. RQD 260.00 - 263.00: 99.00 % RQD 99.00 % Core 263.00 - 266.00: 83.00 % RQD 99.00 % Core	884339	263.8	264.8	31 1.0	0 0.2	28 425.	00 181.	00 2	.80	7.
264.81	265.50	SPD PEG, spodumene pegmatite Spodumene pegmatite. White to pale gray and coarse grained. Quartz-feldspar-muscovite-spodumene with trace garnet, blue apatite, and extremely trace silver-colored sulfide. Last 24 cm are aplitic with a few scattered phenocrysts of spodumene and feldspar. Spodumene is pale gray-green to blackgreater than 75% is altered. Crystals are up to 4 cm long and oriented about 50 degrees to the core axis. Contacts are oriented 70 degrees (upper) and 30 degrees (lower) to the core axis. Mineralization 264.81 - 265.50: SPOD Spodumene, PERV Pervasive, 3.00% Spodumene is pale gray-green to blackgreater than 75% is altered. Crystals are up to 4 cm long and oriented about 50 degrees to the core axis.	884341	264.8	265.	50 0.6	9 0.2	590.	00 48.	70 41	.40 2	241.

Page 20 of 29 DETAILED LOG

Detailed L	ithology				Assay	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
265.50	265.80	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace pyrite and chlorite on fracture planes.	884342	265.50	266.5	0 1.0	0 0.1	7 413.0	00 142.	00 20	.30 2	23.0
265.80		QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and medium grained. Muscovite is a very minor constituent. Has trace grains of a silver-colored sulfide. A couple of the feldspar cyrstals has a perthitic texture. Contacts are oriented 60 degrees (upper) and 50 degrees (lower) to the core axis. RQD 266.00 - 269.00: 84.00 % RQD 99.00 % Core										
266.02	273.57	M SCH, mica schist Metasediment. Medium gray, fine grained, and moderately foliated. Quartz-feldspar-biotite with trace pyrite and chlorite on fracture planes. Cut by a few white quartz veinlets (up to 3 mm thick) with orientations between 30 and 70 degrees to the core axis and a couple of dikelets. Structure 266.28 - 266.60: DYKE, 10.00 Deg to CA Long, thin, wandering, roughly zoned, green and white aplite dikelet. Green makes up the wall zone and could be triphylite? with trace pyrite. The border zone is medium gray and appears to contain some black tourmaline. Core is white with lithiophilite? 269.36 - 269.40: DYKE, 30.00 Deg to CA White QF aplite dikelet 272.90 - 273.02: DYKE, 50.00 Deg to CA White QFM aplite dikelet. RQD 269.00 - 272.00: 98.00 % RQD 100.00 % Core 272.00 - 275.00: 100.00 % RQD 100.00 % Core										
273.57	274.05	SPD PEG, spodumene pegmatite Spodumene pegmatite. White to pale gray and coarse grained. Quartz-feldspar-muscovite-spodumene with trace pyrite. Spodumene is pale gray to black in colorvery altered. It appears that only a few crystals altered to yellow green muscovite. Crystals up to 4 cm long and oriented subperpendicular to contacts. Contacts are oriented 40 degrees (upper) and 30 degrees (lower) to the core axis. Mineralization 273.57 - 274.05: SPOD Spodumene, PERV Pervasive, 1.00% podumene is pale gray to black in colorvery altered. It appears that only a few crystals altered to yellow green muscovite. Crystals up to 4 cm long and oriented subperpendicular to contacts										

Detailed L	ithology				Assay	Data						
From	То	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Ве_рр	m
274.05	277.10	M SCH, mica schist Metasediment. Medium gray, massive, and fine grained. Quartz-feldspar-biotite with trace pyrite and chlorite on fracture planes. Cut by a few dikelets and several hairline fractures (oriented about 80 degrees to the core axis). Structure 274.21 - 274.23: DYKE, 70.00 Deg to CA Very pale yellow QF aplite dikelet. 274.96 - 274.98: DYKE, 20.00 Deg to CA White QF aplite dikelet. 277.00 - 277.04: DYKE, 60.00 Deg to CA White QFM aplite dikelet. RQD 275.00 - 278.00: 95.00 % RQD 100.00 % Core	884343	276.10	277.1	0 1.0	0 0.2	2 274.	00 139	9.00	9.60	20.0
277.10	278.32	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace red garnet and dark blue-green apatite. There are a couple small pods and bands of QFM aplite with trace spodumene. Spodumene is pale green when fresh and silver-gray-green to black or dark yellow-green when altered (about 10 to 20% is altered). Crystals are up to 3 cm long and are oriented about 60 degrees to the core axis. Contacts are oriented 70 degrees (upper) and 60 degrees (lower) to the core axis. Mineralization 277.10 - 278.32: SPOD Spodumene, PERV Pervasive, 10.00% Spodumene is pale green when fresh and silver-gray-green to black or dark yellow-green when altered (about 10 to 20% is altered). Crystals are up to 3 cm long and are oriented about 60 degrees to the core axis. RQD 278.00 - 281.00: 97.00 % RQD 100.00 % Core	884344 884345 884346	277.10 278.10 278.10	278.1 278.3 278.3	2 0.2	2 0.1	7 339.	00 33	3.60 34	1.50 4.70 7.60	230.¢ 210.¢ 242.¢
278.32	282.07	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace pyrite, chlorite, and epidote on the fracture planes. Portions of the metasediment are sporadically bleached. Some of the bleaching is attributable to hairline fractures with orientations between 20 and 50 degrees. Cut by a few dikelets and white, thin, wandering quartz veinlets. Structure 279.60 - 279.64: DYKE, 60.00 Deg to CA White QFM aplite dikelet 280.14 - 280.17: DYKE, 60.00 Deg to CA Very pale gray QF aplite dikelet 281.87 - 281.99: FR Fractured, 70.00 Deg to CA Fracture area consists of blocks 1 to 4 cm long. RQD 281.00 - 284.00: 82.00 % RQD 98.00 % Core	884347	278.32	279.3	2 1.0	0 0.2	2 244.	00 154	.00	1.50	5.0

Feb 24, 2012 Page 22 of 29

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
282.07	282.99	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. Pale gray and medium grainedcould almost be considered aplitic. Has some trace black minerals that could be Nb-Ta oxides. The orientation and vaguely prismatic shape of the muscovite suggests this may have been a spodumene pegmatite at one point. Contacts are oriented 50 degrees (upper) and 40 degrees (lower) to the core axis.									
282.99	285.62	M SCH, mica schist Metasediment. Very similar to the above described metasediment unit. Structure 283.06 - 283.08 : DYKE , 30.00 Deg to CA White QF aplite dikelet RQD 284.00 - 287.00 : 99.00 % RQD 100.00 % Core	884348	284.62	285.6	2 1.00	0.1	7 271.	00 113.0	00 2.	40 8.1
285.62	287.20	SPD PEG, spodumene pegmatite Spodumene pegmatite. Mostly pale gray with some white and coarse grained. Quartz-feldspar-muscovite-spodumene with trace blue apatite and pink garnet. A few of the larger feldspar crystals have a perthitic texture. There are a few scattered pods and bands of aplite, some of which contain spodumene. Spodumene in the aplite is fresh and pale green. Spodumene within the pegmatite is pale gray to dark grayalmost entirely altered. Crystals are oriented randomly and are up to 4 cm long. There is a thin (0.5 cm) white border zone on each side of the pegmatite. Contacts are oriented 70 degrees (upper) and 80 degrees (lower) to the core axis. Mineralization 285.62 - 287.20: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene within the pegmatite is pale gray to dark grayalmost entirely altered. Crystals are oriented randomly and are up to 4 cm long. RQD 287.00 - 290.00: 94.00 % RQD 99.00 % Core	884349 884351	285.62 286.62	286.6 287.2				_		
287.20	289.13	M SCH, mica schist Metasediment. Very similar to the above metasediment unit.	884352 884353	287.20 288.20	288.2 289.1		-				20 14.0 60 4.0

Page 23 of 29 DETAILED LOG

Detailed Litl	hology				Assay I	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
289.13		SPD PEG, spodumene pegmatite Spodumene pegmatite. Pale gray and coarse grained. Quartz-feldspar-muscovite-spodumene with accessory garnet. There is a 3 cm garnet cluster located at 289.54 m. The last 45 cm has a groundmass of QF aplite and scattered, larger phenocrysts of quartz, muscovite, and altered spodumene. Spodumene is medium green-gray to dark gray (altered). Crystals are up to 4 cm long and oriented about 40 degrees to the core axis. Contacts are oriented 50 degrees (upper) and 40 degrees (lower) to the core axis. Mineralization 289.13 - 290.22: SPOD Spodumene, PERV Pervasive, 2.00% Spodumene is medium green-gray to dark gray (altered). Crystals are up to 4 cm long and oriented about 40 degrees to the core axis. RQD 290.00 - 293.00: 85.00 % RQD 100.00 % Core Recovery should be 101%	884354	289.13	290.2	2 1.0	9 0.2	28 554.	00 47.	80 46	70 192.0

Lithology M SCH, mica schist	Sample Number	_		1					
M SCH, mica schist		From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Metasediment. Medium gray, fine grained, and weakly to moderately foliated. Quartz-feldspar-biotite with trace pyrite, chlorite, and carbonate (probably calcite) on fracture and slip planes. Cut by a few dikelets, a couple of bleached hairline fractures, couple of thin quartz veinlets, and a small fault starting at 299 m and extending to 300.16 m. The pieces making up the fault are jagged and around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293.94 - 294.01: DYKE , 40.00 Deg to CA White QFM aplite dikelet. 295.34 - 295.36: DYKE , 50.00 Deg to CA White QF aplite dikelet 295.38 - 295.43: DYKE , 50.00 Deg to CA Same as above 296.51 - 296.53: DYKE , 60.00 Deg to CA Same as above 297.69 - 298.00: FR Fractured, 20.00 Deg to CA Fracture area consists of jagged pieces about 15 cm long. Could be related to the fault below it. 299.00 - 300.16: F Fault, 20.00 Deg to CA The pieces making up the fault are jagged and around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. 300.20 - 300.26: DYKE , 80.00 Deg to CA White quartz-dominant pegmatite dikelet with accessory lithiophilite? and triphylite? 300.88 - 300.98: DYKE , 20.00 Deg to CA Same as above. RQD 293.00 - 296.00: 85.00 % RQD 100.00 % Core 296.00 - 299.00: 73.00 % RQD 99.00 % Core	884355	290.22	291.2	1.0	0 0.1	7 172.0	00 88.3	20 0	.90
sericite and pyrite. Contains some very small, heavily metasomatized metasediment xenoliths. Contacts oriented 70 degrees (upper) and 60 degrees (lower) to the core axis. RQD 302.00 - 305.00: 98.00 % RQD 100.00 % Core M SCH, mica schist									
	around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293.94 - 294.01: DYKE , 40.00 Deg to CA White QFM aplite dikelet. 295.34 - 295.36: DYKE , 50.00 Deg to CA White QF aplite dikelet 295.38 - 295.43: DYKE , 50.00 Deg to CA Same as above 296.51 - 296.53: DYKE , 60.00 Deg to CA Same as above 297.69 - 298.00: FR Fractured, 20.00 Deg to CA Fracture area consists of jagged pieces about 15 cm long. Could be related to the fault below it. 299.00 - 300.16: F Fault, 20.00 Deg to CA The pieces making up the fault are jagged and around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. 300.20 - 300.26: DYKE , 80.00 Deg to CA White quartz-dominant pegmatite dikelet with accessory lithiophilite? and triphylite? 300.88 - 300.98: DYKE , 20.00 Deg to CA Same as above. RQD 293.00 - 296.00: 85.00 % RQD 100.00 % Core 299.00 - 302.00: 56.00 % RQD 99.00 % Core 299.00 - 302.00: 56.00 % RQD 100.00 % Core QF PEG, quartz-feldspar pegmatite Quartz-dominant pegmatite. White and coarse grained. Quartz, with very minor amounts of feldspar, accessory lithiophilite? and triphylite?, and trace amounts of sericite and pyrite. Contains some very small, heavily metasomatized metasediment xenoliths. Contacts oriented 70 degrees (upper) and 60 degrees (lower) to the core axis. RQD 302.00 - 305.00: 98.00 % RQD 100.00 % Core	around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293.94 - 294.01 : DYKE , 40.00 Deg to CA White QFM aplite dikelet. 295.34 - 295.36 : DYKE , 50.00 Deg to CA White QF aplite dikelet 295.38 - 295.43 : DYKE , 50.00 Deg to CA Same as above 295.53 - 296.53 : DYKE , 60.00 Deg to CA Same as above 297.69 - 298.00 : FR Fractured, 20.00 Deg to CA Fracture area consists of jagged pieces about 15 cm long. Could be related to the fault below it. 299.00 - 300.16 : F Fault, 20.00 Deg to CA The pieces making up the fault are jagged and around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. 300.20 - 300.26 : DYKE , 80.00 Deg to CA White quartz-dominant pegmatite dikelet with accessory lithiophilite? and triphylite? 300.88 - 300.98 : DYKE , 20.00 Deg to CA Same as above. ROD 293.00 - 296.00 : 85.00 % ROD 100.00 % Core 296.00 - 299.00 : 73.00 % ROD 99.00 % Core 299.00 - 302.00 : 56.00 % ROD 100.00 % Core GF PEG, quartz-feldspar pegmatite. White and coarse grained. Quartz, with very minor amounts of feldspar, accessory lithiophilite? and triphylite?, and trace amounts of sericite and pyrite. Contains some very small, heavily metasomatized metasediment xenoliths. Contacts oriented 70 degrees (upper) and 60 degrees (lower) to the core axis. ROD 302.00 - 305.00 : 98.00 % ROD 100.00 % Core M SCH, mica schist Metasediment. Medium gray, fine grained, and slightly metasomatized.	around 299-75 To 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293-94 - 294.01 · DYKE , 40.00 Deg to CA White OFM aplite dikelet. 295.38 - 295.36 · DYKE , 50.00 Deg to CA White OFM aplite dikelet 295.38 - 295.43 · DYKE , 50.00 Deg to CA Same as above 296.51 - 296.53 · DYKE , 60.00 Deg to CA Same as above 297.69 - 298.00 · FR Fractured, 20.00 Deg to CA Fracture area consists of jagged pieces about 15 cm long. Could be related to the fault below it. 299.00 - 300.16 · F Fault, 20.00 Deg to CA The pieces making up the fault are jagged and around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. 300.20 - 300.26 · DYKE , 80.00 Deg to CA White quartz-dominant pegmatite dikelet with accessory lithiophilite? and triphylite? 300.88 - 300.98 · DYKE , 20.00 Deg to CA Same as above. RQD 293.00 - 296.00 · 85.00 % RQD 100.00 % Core 299.00 - 302.00 · 56.00 % RQD 100.00 % Core 299.00 - 302.00 · 56.00 % RQD 100.00 % Core QF PEG, quartz-feldspar pegmatite Quartz-dominant pegmatite. White and coarse grained. Quartz, with very minor amounts of feldspar, accessory lithiophilite? and triphylite?, and trace amounts of sericite and pyrite. Contains some very small, heavily metasomatized metasediment xenoliths. Contacts oriented 70 degrees (upper) and 60 degrees (upper)	around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293.94 - 294.01 : DYKE , 40.00 Deg to CA White OFM aplite dikelet. 295.34 - 295.36 : DYKE , 50.00 Deg to CA White OFM aplite dikelet 295.38 - 295.43 : DYKE , 50.00 Deg to CA Same as above 296.51 - 296.53 : DYKE , 60.00 Deg to CA Same as above 296.51 - 296.53 : DYKE , 60.00 Deg to CA Same as above 296.51 - 298.00 : FR Fractured, 20.00 Deg to CA Fracture area consists of jagged pieces about 15 cm long. Could be related to the fault below it. 299.00 - 300.16 : F Fault, 20.00 Deg to CA The pieces making up the fault are jagged and around 299.75 to 300 m, the fault so annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. 300.20 - 300.26 : DYKE , 80.00 Deg to CA White quartz-dominant pegmatite dikelet with accessory lithiophilite? and triphylite? 300.88 - 300.98 : DYKE , 20.00 Deg to CA Same as above. RCD 293.00 - 296.00 : 85.00 % RQD 100.00 % Core 296.00 - 299.00 : 73.00 % RQD 99.00 % Core 299.00 - 302.00 : 56.00 % RQD 100.00 % Core QF PEG, quartz-feldspar pegmatite Ouartz-dominant pegmatite. White and coarse grained. Ouartz, with very minor amounts of fedspar, accessory lithiophilite? and triphylite?, and trace amounts of sericite and pyrite. Contains some very small, heavily metasomatized metasediment xenoliths. Contacts oriented 70 degrees (upper) and 60 degrees (lower) to the core axis. RQD 302.00 - 305.00 : 98.00 % RQD 100.00 % Core M SCH, mica schist M Edesdement. Medium gray, fine grained, and slightly metasomatized.	around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293.94 - 294.01 : DYKE , 40.00 Deg to CA White OFM apilite dikelet. 295.38 - 295.36 : DYKE , 50.00 Deg to CA White OF apilite dikelet. 295.38 - 295.36 : DYKE , 50.00 Deg to CA Same as above. 296.51 - 296.53 : DYKE , 60.00 Deg to CA Same as above. 297.69 - 298.00 : FR Fractured, 20.00 Deg to CA Same as above. 297.69 - 298.00 : FR Fractured, 20.00 Deg to CA Fracture area consists of jagged pieces about 15 cm long. Could be related to the fault below it. 299.00 - 300.16 : F Fault, 20.00 Deg to CA The pieces making up the fault are jagged and around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. 300.20 - 300.26 : DYKE , 80.00 Deg to CA White quart-zdominant pegmatite dikelet with accessory lithiphilite? and triphylite? 300.88 - 300.98 : DYKE , 20.00 Deg to CA Same as above. RQD 293.00 - 296.00 : 85.00 % RQD 100.00 % Core 299.00 - 302.00 : 56.00 % RQD 100.00 % Core 299.00 - 302.00 : 56.00 % RQD 100.00 % Core 299.00 - 302.00 : 56.00 % RQD 100.00 % Core 299.00 - 302.00 : 80.00 % RQD 100.00 % Core 299.00 - 302.00 : 80.00 % RQD 100.00 % Core 299.00 - 305.00 : 98.00 % RQD 100.00 % Core M SCH, mica schist Metasediment. Medium gray, fine grained, and slightly metasomatized.	around 299,75 to 300 m, the fault is annealed and pieces very strongly sillefilled. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293,94 - 294.01 : DYKE , 40.00 Deg to CA White DFM apilite dikelet. 295,33 - 295,33 - 19KE , 50.00 Deg to CA White DFA apilite dikelet. 295,38 - 295,31 : DYKE , 50.00 Deg to CA Same as above 297.69 - 298.00 : FR Fractured, 20.00 Deg to CA Same as above 297.69 - 298.00 : FR Fractured, 20.00 Deg to CA Fracture area consists of jagged pieces about 15 cm long. Could be related to the fault below it. 299.00 - 301.6 : F Fault, 20.00 Deg to CA The pieces making up the fault are jagged and around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. 300.20 - 300.26 : DYKE , 800.00 Deg to CA White quartz-dominant pegmatite dikelet with accessory lithiophilite? and triphyllite? 300.88 - 300.98 : DYKE , 20.00 Deg to CA Same as above. RCD 293.00 - 296.00 : 85.00 % RCD 100.00 % Core 296.00 - 299.00 : 73.00 % RCD 100.00 % Core 299.00 - 302.00 : 56.00 % RCD 100.00 % Core 299.00 - 302.00 : 56.00 % RCD 100.00 % Core 299.00 - 302.00 : 50.00 % RCD 100.00 % Core 299.00 - 305.00 : 80.00 % RCD 100.00 % Core WFEG, quartz-feldspar pegmatite Cuartz-dominant pegmatite Mite and coarse grained. Quartz, with very minor amounts of feldspar, accessory lithiophilite? and triphyllite?, and trace amounts of sericle and pyrite. Contains some very small, heavily metasornatized RCD 302.00 - 305.00 : 80.00 % RCD 100.00 % Core MSCH, mica schist Metasediment. Medium gray, fine grained. and slightly metasornatized.	around 299.75 to 300 m, the fault is annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293.94 - 294.01 : DYKE , 40.00 Deg to CA White OFM apilite dikelet 293.95 st - 295.36 : DYKE , 50.00 Deg to CA White OFF apilite dikelet 295.38 - 295.43 : DYKE , 50.00 Deg to CA Same as above 296.51 - 296.53 : DYKE , 60.00 Deg to CA Same as above 297.69 - 298.00 : FR Fractured, 20.00 Deg to CA Same as above 297.69 - 298.00 : FR Fractured, 20.00 Deg to CA Fracture area consists of jagged pieces about 15 cm long. Could be related to the fault below it. 299.00 - 300.16 : F Fault, 20.00 Deg to CA Fracture area consists of language present throughout but is mostly concentrated from 300.16 in annealed and pieces very strongly silicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300.16 m. 300.20 - 300.26 : DYKE , 80.00 Deg to CA White quartz-chominant pegmatite dikelet with accessory lithiophilite? and triphytile? 300.88 - 300.98 : DYKE , 20.00 Deg to CA Same as above. ROD 293.00 - 296.00 : 85.00 % ROD 100.00 % Core 296.00 - 299.00 : 73.00 % ROD 99.00 % Core 299.00 - 300.00 5.00 % ROD 100.00 % Core 299.00 - 300.00 5.00 % ROD 100.00 % Core 209.00 : 73.00 % ROD 100.00 % Core 209.00 signal of the properties	around 299.75 to 300 m, the fault is annealed and pieces very strongly slicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293.94 - 294.01 : DYKE , 40.00 Deg to CA White CPA piller disklet. 295.34 - 295.36 : DYKE , 50.00 Deg to CA White CPA piller disklet. 295.34 - 295.36 : DYKE , 50.00 Deg to CA Same as above 296.51 - 296.53 : DYKE , 60.00 Deg to CA Same as above 297.69 - 298.00 : FR Fractured; 20.00 Deg to CA Same as above 197.00 in the CPA piller disklet to the fault below it. The pieces making up the fault are jagged and around 299.75 to 300 m, the fault is annealed and pieces very strongly slicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. 300.20 - 300.26 : DYKE, 80.00 Deg to CA Same as above. 200.20 : DYKE, 80.00 Deg to CA Same as above. 200.20 : DYKE, 80.00 Deg to CA Same as above. 200.20 : Society of the soc	around 297.75 to 300 m. the fault is annealed and pieces very strongly sillicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. Structure 293.34 - 294.01 : DVKE, 40.00 Deg to CA White CPM spill diselet. 295.34 - 295.36 : DVKE, 50.00 Deg to CA White CPM spill diselet. 295.34 - 295.36 : DVKE, 50.00 Deg to CA Seams as above 295.55 - 295.31 : DVKE, 60.00 Deg to CA Seams as above 297.99 - 298.00 : FR Fractured, 20.00 Deg to CA Seams as above P. 297.99 - 298.00 : FR Fractured, 20.00 Deg to CA Seams as above P. 297.99 - 298.00 : FR Fractured, 20.00 Deg to CA Seams as above P. 297.90 - 200.00 : Fractured and consists of sagged pieces about 15 cm long. Could be related to the fault below it. 290.00 - 300.16 : F Fault, 2000 Deg to CA Seams as above P. 297.90 - 200.00 : So.00 : Fractured and consists of sagged pieces about 15 cm long. Could be related to the fault below it. 2000 Deg to CA Seams as above P. 2000 : Fractured and pieces were strongly sillicified. Minor amounts of fault gouge present throughout but is mostly concentrated from 300 to 300.16 m. 300.20 - 300.26 : DVKE, 800.00 Deg to CA Seams as above. 2000 D

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
302.30		QF PEG, quartz-feldspar pegmatite Quartz-dominant pegmatite. White and coarse grained. No noticeable feldspar. Accessory sericite and triphylite? and trace lithiophilite? Contacts are irregular and sharp. Oriented roughly 50 degrees to the core axis.									
302.46		M SCH, mica schist Metasediment. Much the same as described as above but with a few quartz-dominant pegmatite dikeletsonly the largest is mentioned below. Structure 303.06 - 303.09 : DYKE , 30.00 Deg to CA White quartz-dominant pegmatite dikelet. Trace pyrite with it.									
303.30	303.65	QF PEG, quartz-feldspar pegmatite Quartz-dominant pegmatite. White and medium gray and coarse grained. Quartz with trace feldspar, pyrite, and triphylite? Contains numerous xenoliths, with the largest ones located between 303.40 to 303.45 and 303.58 to 303.62 m. Contacts are sharp and irregular, oriented roughly 50 degrees to the core axis.									
303.65		M SCH, mica schist Metasediment. Very similar to the unit above. Only the thickest quartz-dominant pegmatite is listed below. Structure 303.90 - 303.92 : DYKE , 90.00 Deg to CA White quartz-dominant pegmatite dikelet.									
303.98	304.24	QF PEG, quartz-feldspar pegmatite Quartz-dominant pegmatite. White and coarse grained. Quartz with accessory feldspar, sericite, lithiophilite?, and triphylite?. There is a large metasediment xenolith located between 304.04 to 304.07 m. Contacts are sharp and irregular, roughly oriented 40 degrees (upper) and 90 degrees (lower) to the core axis.									
304.24	307.85	M SCH, mica schist Metasediment. Medium gray, moderately foliated, and fine grained. Quartz-feldspar-biotite with trace chlorite and pyrite on fracture planes. Cut by a couple of dikelets. Structure 304.80 - 304.89 Wandering, white quartz-dominant pegmatite dikelet with accessory lithiophilite? and triphylite?. 305.09 - 305.14 : DYKE , 70.00 Deg to CA White QFM pegmatite dikelet. RQD 305.00 - 308.00 : 89.00 % RQD 100.00 % Core									
307.85	308.00	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and medium grained. Last 4 cm are aplitic and contain trace garnet. Contacts oriented 60 degrees (upper) and 50 degrees (lower) to the core axis.									

Feb 24, 2012 Page 26 of 29

Detailed Li	thology				Assay	Data					
From	To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
308.00		M SCH, mica schist Metasediment. Very similar to the unit above, except not cut by any dikelets. It is cut by a few bleached hairline fractures oriented about 70 degrees to the core axis. RQD 308.00 - 311.00: 99.00 % RQD 100.00 % Core									
309.49		QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. Pale gray grading to white and medium grained. Gray feldspar and quartz dominant the upper half of the unit while the lower half is composed mostly of white feldspar and pale brown quartz. It has white, fine grained border zones of the same mineralogical composition. Fractures contain a little bit of epidote and trace pyrite. Contacts are oriented 30 degrees to the core axis.									
309.76		M SCH, mica schist Metasediment. Very similar to the metasediment between 304.24 to 307.85 and 308 to 309.49. Structure 313.14 - 313.16: DYKE, 50.00 Deg to CA White QFM aplite dikelet. RQD 311.00 - 314.00: 88.00 % RQD 99.00 % Core 314.00 - 317.00: 98.00 % RQD 99.00 % Core									
314.26		QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and medium to coarse grained. Feldspar is white and a few crystals have a perthitic texture. Quartz is pale brown and muscovite is a dark, silvery-yellow-green. Contains trace pink garnet grains. Contacts are oriented 50 degrees to the core axis.									
314.80		M SCH, mica schist Metasediment. Medium gray, fine grained, and weakly to moderately foliated. Cut by a couple of dikelets. Structure 315.78 - 315.80 : DYKE , 60.00 Deg to CA White QF aplite dikelet. 315.98 - 316.00 : DYKE , 40.00 Deg to CA Same as above									
316.48		APL, aplite Aplite. White and fine grained. Quartz-feldspar-muscovite with accessory garnet. Upper 3 cm are medium grained. Contacts oriented 50 degrees to the core axis.									

Feb 24, 2012 Page 27 of 29

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
316.66		M SCH, mica schist Metasediment. Very similar to the above unit (314.80-316.48 m). Also cut by a couple of thin white quartz veinlets about 2 mm thick. Structure 317.38 - 317.41 : DYKE , 80.00 Deg to CA White and gray zoned QFM aplite dikelet. Border zone are about 1 cm thick and are white. 318.48 - 318.54 : DYKE , 85.00 Deg to CA White QFM aplite dikelet. RQD 317.00 - 320.00 : 100.00 % RQD 100.00 % Core Recovery and RQD should be 101%									
319.21		QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and medium to coarse grained. Feldspar is white to pale gray, quartz is pale brown and muscovite is dark yellow-green. Contains grains of an accessory dark mineral, could be Nb-Ta oxides. Contacts are oriented 70 degrees (upper) and 60 degrees (lower) to the core axis.									

From To Length Li2O_per Rb_ppm Cs_ppm Be_ppm 319.42 328.99 M SCH, mica schist Metasediment, Light to medium gray, fine grained, and weakly foliated. Ouartz feldspar bottle with trace chlorite, a massive, translucent, soft white mineral that does not fizz in acid-probably still is some form of carbonate, and trace pyrite on the fracture planes, outly bye a few very thin quartz veinlets, a few bleached hairline fractures, multiple small dikelets, and a fracture. Structure 319.96 - 319.98 : DYKE, 70.00 Deg to CA White OF apille dikelet with trace gamet. 321.10 - 321.25 : RB Fractured, 40,00 Deg to CA Fracture area consists of blocks 11 of a cm long, 326.62 - 326.67 : DYKE, 70.00 Deg to CA White OFM pegmatite dikelet with trace gamet 327.06 - 327.12 : DYKE, 70.00 Deg to CA White OFM pegmatite dikelet with trace gamet 328.05 - 328.05 : DYKE, 70.00 Deg to CA White OFM pegmatite dikelet with trace gamet 328.05 - 328.05 : DYKE, 50.00 Deg to CA Same as above 328.06 - 328.72 : DYKE, 60.00 Deg to CA Same as above except with irregular contacts and a slight zoning of the quartz to the outer edges. ROD 320.00 - 323.00 : 89.00 % ROD 98.00 % Core 323.00 - 323.00 : 99.00 % ROD 99.00 % Core	Detailed Lithology				Assay	Data					
Metasediment. Light to medium gray, fine grained, and weakly foliated. Quartz-feldspar-biotite with trace chlorite, a massive, translucent, soft white mineral that does not fizz in acid-probably still is some form of carbonate, and trace pyrite on the fracture planes. cuty bye a few very thin quartz veinlets, a few bleached hairline fractures, multiple small dikelets, and a fracture. Structure 319.96 - 319.98 : DYKE, 30.00 Deg to CA White OF apilite dikelet 320.71 - 320.73 : DYKE, 70.00 Deg to CA White OF apilite dikelet with trace garnet. 321.10 - 321.25 : FR Fractured, 40.00 Deg to CA Fracture area consists of blocks to 4 cm long. 326.62 - 326.67 : DYKE, 70.00 Deg to CA White OFM apilite dikelet with trace garnet 327.06 - 327.12 : DYKE, 50.00 Deg to CA White OFM apilite dikelet with trace garnet 328.05 - 328.05 : DYKE, 70.00 Deg to CA White OFM apilite dikelet 328.17 : DYKE, 50.00 Deg to CA Same as above except with irregular contacts and a slight zoning of the quartz to the outer edges. RCD 320.00 - 323.00 : 89.00 % RQD 98.00 % Core	From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
326.00 - 329.00 : 95.00 % RQD 100.00 % Core Recovery should be 101%		M SCH, mica schist Metasediment. Light to medium gray, fine grained, and weakly foliated. Quartz-feldspar-biotite with trace chlorite, a massive, translucent, soft white mineral that does not fizz in acidprobably still is some form of carbonate, and trace pyrite on the fracture planes. cuty bye a few very thin quartz veinlets, a few bleached hairline fractures, multiple small dikelets, and a fracture. Structure 319.96 - 319.98 : DYKE , 30.00 Deg to CA White QF aplite dikelet 320.71 - 320.73 : DYKE , 70.00 Deg to CA White QF aplite dikelet with trace garnet. 321.10 - 321.25 : FR Fractured, 40.00 Deg to CA Fracture area consists of blocks 1 to 4 cm long. 326.62 - 326.67 : DYKE , 70.00 Deg to CA White QFM aplite dikelet 327.06 - 327.12 : DYKE , 50.00 Deg to CA White QFM pegmatite dikelet with trace garnet 328.05 - 328.08 : DYKE , 70.00 Deg to CA White QFM aplite dikelet 328.12 - 328.17 : DYKE , 50.00 Deg to CA Same as above 328.69 - 328.72 : DYKE , 60.00 Deg to CA Same as above except with irregular contacts and a slight zoning of the quartz to the outer edges. RQD 320.00 - 323.00 : 89.00 % RQD 98.00 % Core 323.00 - 326.00 : 99.00 % RQD 99.00 % Core 326.00 - 329.00 : 95.00 % RQD 99.00 % Core									

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884309	217.11	218.11	0.1507	151.0000	86.8000	0.6000	3.0000
884311	218.11	219.19	0.4736	785.0000	44.1000	14.6000	122.0000
884312	219.19	220.19	0.1507	123.0000	57.4000	0.7000	12.0000
884313	231.76	232.76	0.1938	124.0000	42.8000	0.5000	2.0000
884314	232.76	233.76	0.3445	716.0000	41.2000	36.9000	127.0000
884315	233.76	234.60	1.5285	553.0000	38.0000	32.9000	194.0000
884316	234.60	235.04	0.2583	336.0000	140.0000	1.3000	4.0000
884317	235.04	236.00	0.4306	907.0000	67.0000	111.0000	207.0000
884318	236.00	237.00	0.2153	154.0000	60.7000	0.8000	3.0000

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884319	241.01	242.01	0.2583	157.0000	72.7000	0.7000	2.0000
884321	242.01	243.01	1.0979	514.0000	37.6000	25.8000	173.0000
884322	243.01	244.01	1.4639	702.0000	53.6000	41.2000	145.0000
884323	244.01	245.15	0.7965	660.0000	44.9000	25.3000	184.0000
884324	245.15	246.15	0.3014	186.0000	75.6000	0.8000	3.0000
884325	246.15	246.45	0.3445	572.0000	210.0000	0.5000	6.0000
884327	246.45	247.45	0.0861	630.0000	54.5000	60.5000	287.0000
884328	247.45	247.60	0.1938	659.0000	59.6000	61.2000	115.0000
884329	247.60	248.28	0.3229	369.0000	218.0000	3.5000	5.0000
884331	248.28	248.52	1.5070	478.0000	56.6000	101.0000	96.0000
884332	248.52	249.00	0.3445	692.0000	348.0000	5.5000	12.0000
884333	249.00	250.00	1.3563	498.0000	53.5000	40.4000	221.0000
884334	250.00	251.00	1.8945	485.0000	35.0000	21.9000	309.0000
884335	251.00	252.00	1.3563	1140.0000	73.8000	42.7000	151.0000
884336	252.00	253.00	2.0452	885.0000	74.9000	63.8000	191.0000
884337	253.00	254.11	1.0979	1230.0000	81.0000	51.5000	184.0000
884338	254.11	255.11	0.2799	478.0000	221.0000	6.9000	20.0000
884339	263.81	264.81	0.2799	425.0000	181.0000	2.8000	7.0000
884341	264.81	265.50	0.2368	590.0000	48.7000	41.4000	241.0000
884342	265.50	266.50	0.1722	413.0000	142.0000	20.3000	23.0000
884343	276.10	277.10	0.2153	274.0000	139.0000	9.6000	20.0000
884344	277.10	278.10	1.7007	424.0000	41.7000	61.5000	230.0000
884345	278.10	278.32	0.1722	339.0000	33.6000	34.7000	210.0000
884347	278.32	279.32	0.2153	244.0000	154.0000	1.5000	5.0000
884348	284.62	285.62	0.1722	271.0000	113.0000	2.4000	8.0000
884349	285.62	286.62	0.6243	738.0000	54.5000	38.2000	207.0000
884351	286.62	287.20	0.8396	724.0000	53.8000	55.3000	175.0000
884352	287.20	288.20	0.2368	380.0000	283.0000	7.2000	14.0000
884353	288.20	289.13	0.1507	154.0000	63.1000	1.6000	4.0000
884354	289.13	290.22	0.2799	554.0000	47.8000	46.7000	192.0000
884355	290.22	291.22	0.1722	172.0000	88.2000	0.9000	3.0000
Sample Type CDUP							
884326	246.15	246.45	0.3014	462.0000	197.0000	0.6000	4.0000
884346	278.10	278.32	0.4952	552.0000	51.8000	27.6000	242.0000

Page 1 of 15 DETAILED LOG

Hole Number: NC-11-26 Units: METRIC

Project Name:	Nama Creek	Primary Coordinates Grid: U	JTM:		Destination Coordinates Grid: UTM:	Collar Dip:	-62.00
Project Number:	01	North: 5477802.16			North:	Collar Az:	140.00
Location:	Nama Creek	East: 424684.40			East:	Length:	251.00
		Elev: 371.91			Elev:	Start Depth:	0.00
Date Started:	Nov 05, 2011	Collar Survey: N	Plugged:	N	Contractor: Cobra Drilling	Final Depth:	251.00
Date Completed:	Nov 07, 2011	Multishot Survey: Y	Hole Size:	NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing:	Left in Hole			

Comments: Hole logged by Andrea Dixon; claim number TB67167

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	210.04	211.30	1.26	1.1635	570.0952	51.1429	70.2238	163.9524
WEIGHTED	230.56	233.09	2.53	0.7890	471.2530	34.9668	16.8166	225.4743

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
17.00	138.80	-58.80	Reflex	OK	mag field: 5780	101.00	144.50	-59.30	Reflex	OK	mag field: 5756
227.00	154.40	-58.70	Reflex	OK	mag field: 5748	251.00	156.90	-58.40	Reflex	OK	mag field: 5754

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	5.70	OVB, Casing			•						
		Overburden									

Feb 24, 2012 Page 2 of 15

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
5.70		M SCH, mica schist Metasediment. Medium gray, fine grained, and weakly to moderately foliated. Quartz-feldspar-biotite with trace chlorite and pyrite on fracture planes. Metasediment is cut by numerous bleached hairline fractures, especially in the interval 14 to 15 m. It is also cut by a couple of larger fracture areas, a few thin dikelets (1 to 2 cm), and a few thin quartz veins (up to 2 mm). Mineralization 16.70 - 16.83: PY Pyrite, DISS Disseminated, 10.00% Very small blebs (1 to 2 mm diameter) of pyrite or other brassy-gold colored sulfide. Structure 6.63 - 6.75: FR Fractured, 60.00 Deg to CA Fracture area consists of blocks about 4 cm long 13.50 - 13.65: FR Fractured, 60.00 Deg to CA Fracture area consists of angular fragments 1 to 2 cm long. 17.38 - 17.45: DYKE, 90.00 Deg to CA A series of small, quartz-dominant dikelets 3 to 5 mm thick spaced with metasediment that is also 3 to 5 mm thick. RQD 5.70 - 8.00: 84.00 % RQD 97.00 % Core 8.00 - 11.00: 86.00 % RQD 99.00 % Core 11.00 - 14.00: 78.00 % RQD 99.00 % Core 14.00 - 17.00: 92.00 % RQD 99.00 % Core 17.00 - 20.00: 99.00 % RQD 99.00 % Core									
19.33		QPHOS, quartz-phosphate pegmatite Quartz-phosphate pegmatite. White and medium grained. Quartz, with a variety of accessory minerals: a hard, creamy pale brown, thin, slightly curving, lath-shaped mineral with a vitreous luster (feldspar?); a pale blue-green, massive, medium hard mineral; a pale green, medium hard mineral (triphylite?); sericite; assorted fine grained sulfides (brassy/copper, gold, silver) where it contacts with the metasediment. Metasediment also has trace muscovite and is slightly larger grained at contacts. There is a 1 cm thick metasediment xenolith located near 19.39 m. Contacts are irregular, generally sharp, and oriented roughly 85 degrees to the core axis.									

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
19.85		M SCH, mica schist Metasediment. Medium gray, fine-grained, and weakly to strongly foliated. Quartz-feldspar-biotitie with trace pyrite, chlorite, epidote, and quartz on fracture planes. Cut by a few white quartz veinlets (up to 2 mm thick, oriented 15 to 60 degrees), a few bleached hairline fractures (oriented about 30 degrees), a couple of larger fractured areas, and numerous little dikelets. The thickest dikelets, 5 to 15 cm thick, are listed below. Mineralization 68.32 - 68.89: PY Pyrite, DISS Disseminated, 5.00% Blebs and clumps of pyrite appear to be related to the quartz-dominant pegmatites that outline the area. 71.50 - 71.65 Flecks of pyrite scattered in this section of core. Also contains garnets and appears to have been altered 71.50 - 71.65 Pale pink 2 mm diameter garnets scattered in the core. Section of core also has pyrite and has been altered Alteration 71.50 - 71.65: UNK Unknown, Patchy , Moderate White, medium hard, "stringy", massive mineral throughout this section and seems to have influenced the growth of garnets and pyrite. Structure 24.14 - 24.26: FR Fractured, 60.00 Deg to CA Fractured area consists of blocks about 3 cm long. 24.82 - 24.90: DYKE , 70.00 Deg to CA White quartz-dominant pegmatite with about 50% of it is metasediment. Has a pale yellow, medium hard accessory mineral (phosphate mineral?) 33.53 - 35.15: FOL Foliated, 45.00 Deg to CA Mite quartz-dominant pegmatite with about 50% of it is metasediment. Has a pale yellow, medium hard accessory mineral (phosphate mineral?) 37.32 - 37.75: FR Fractured, 70.00 Deg to CA An area of strong foliation. 37.43 - 37.52: DYKE , 70.00 Deg to CA An area of strong foliation. There is a series (from 41.15 to 41.50 m) of thin (1 cm) white quartz-dominant pegmatite dikelet with a white 0.5 cm thick bottom border zone 40.85 - 41.70: FOL Foliated, 40.00 Deg to CA Pale pary QFM pegmatite dikelet with a white 0.5 cm thick bottom border zone 40.85 - 41.70: FOL Foliated, 40.00 Deg to CA Pale brown QF dike. Thick quartz core w									

Feb 24, 2012 Page 4 of 15

Detailed Lithology				Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Struction 51.75 Similar musco 59.00 An are 68.32 Pale graminera 68.71 Similar 82.48 White RQD 20.00 23.00 24.00 29.00 32.00 35.00 35.00 38.00 41.00	Citure 5 - 51.82 : DYKE , 45.00 Deg to CA ar as above with some of the quartz being gray and with trace covite. 9 - 62.00 10 - 62.00 11 - 68.41 12 gray quartz-dominant pemgatite dike with accessory phosphate? 11 - 68.77 : DYKE , 30.00 Deg to CA 12 - 68.41 13 - 82.54 : DYKE , 30.00 Deg to CA 14 - 68.77 : DYKE , 30.00 Deg to CA 15 - 82.54 : DYKE , 30.00 Deg to CA 16 - 82.50 : P3.00 % RQD 100.00 % Core 17 - 23.00 : P3.00 % RQD 100.00 % Core 18 - 24.00 : P3.00 % RQD 95.00 % Core 19 - 26.00 : P3.00 % RQD 95.00 % Core 10 - 29.00 : P3.00 % RQD 100.00 % Core 10 - 32.00 : P3.00 % RQD 100.00 % Core 10 - 35.00 : P3.00 % RQD 100.00 % Core 10 - 31.00 : P3.00 % RQD 100.00 % Core 10 - 31.00 : P3.00 % RQD 100.00 % Core 10 - 41.00 : P3.00 % RQD 100.00 % Core 10 - 41.00 : P3.00 % RQD 100.00 % Core 10 - 47.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 50.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 65.00 : P3.00 % RQD 99.00 % Core 10 - 71.00 : P3.00 % RQD 99.00 % Core 10 - 71.00 : P3.00 % RQD 99.00 % Core 10 - 71.00 : P3.00 % RQD 99.00 % Core 10 - 71.00 : P3.00 % RQD 99.00 % Core 10 - 71.00 : P3.00 % RQD 99.00 % Core 10 - 71.00 : P3.00 % RQD 99.00 % Core	Sample Number	From	10	Length	LI2O_per	ко_ррм	Cs_ppm	Ta_ppm	Be_ppm

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
82.80	83.06	QPHOS, quartz-phosphate pegmatite Quartz-phosphate pemgatite. White-gray and medium grained. Has accessory pyrite, and triphylite with a trace pink mineral (medium hard and fine grained). Contains multiple metasediment xenoliths of varying sizes giving the dike a wandering and wobbly appearance. Contacts are very irregular and sharp. Orientations of contacts are roughly 10 degrees (upper) and 20 degrees (lower) to the core axis. RQD 83.00 - 86.00: 77.00 % RQD 98.00 % Core									
83.06	83.97	M SCH, mica schist Metasediment. Medium gray and fine grained. Quartz-feldspar-biotite with trace disseminated pyrite, becoming more abundant on fracture planes. Trace quantities of chlorite and epidote can also be found on fracture planes. Cut by a few quartz-dominant pegmatite dikelets very similar to the larger ones above and below the unit. Structure 83.18 - 83.31 Very similar to the dike described between 82.80 and 83.06, except without the trace pink mineral 83.81 - 83.89 Similar to the above.									
83.97	84.44	QPHOS, quartz-phosphate pegmatite Quartz-phosphate pegmatite. Very similar to the dike described between 82.80 and 83.06, except does not have the trace pink mineral. Contacts are oriented roughly 60 degrees (upper) and 40 degrees (lower) to the core axis.									
84.44	84.82	M SCH, mica schist Metasediment. Very similar to the metasediment between 83.06 and 83.97, except does not contain any natural fracture planes and is slightly coarser grained.									
84.82	85.17	QPHOS, quartz-phosphate pegmatite Quartz-phosphate pegmatite. Very similar to the dike described between 83.97 and 84.44 m. Contacts are oriented roughly 30 degrees (upper) and 60 degrees (lower) to the core axis.									

Detailed Lithology	,			Assay	Data					
From To	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
116.05 135.82	M SCH, mica schist Metasediment. Medium gray, fine grained, and starting out schistose and losing strength in foliation until the end of the unit is only moderately foliated. Quartz-feldspar-biotite with trace pyrite, carbonate, chlorite, and epidote on fracture planes. Pyrite and other sulfides can sometimes be found around the contacts with the dikelets. Cut by numerous dikelets (the thickest, 5 to 30 cm, are listed below), a couple white quartz veinlets, and multiple bleached hairline fractures with orientations between 10 and 50 degrees to the core axis. Shows one light gray-brown bed and a few areas of epidote alteration. The epidote alteration seems to be associated with a subangular breccia and calcite veining, could be a healed fault.									
	Alteration 120.21 - 120.31 :E Epidote, Pervasive , Weak Band of epidote alteration with an orientation of 60 degrees to the core axis. Gives the metasediment a greenish hue. 123.20 - 123.52 :E Epidote, Patchy , Strong Band of epidote alteration seeming to be related to a breccia made out of subangular clasts, perhaps a healed fault. The clasts seem to be either green with epidote or white with silica, while the matrix is black or veined with calcite. 127.50 - 127.62 :E Epidote, Patchy , Moderate Similar to above Structure 116.10 - 116.26 : DYKE , 35.00 Deg to CA Mafic dike, likely related to diabase. Extremely fine grained and dark gray with lighter gray chilled margins. Calcite phenocrysts in the center of the dike. Silver colored sulfide veining in the chilled margins 118.14 - 118.31 : BD Bedding, 90.00 Deg to CA Pale brown gray bed 124.53 - 124.67 : DYKE , 50.00 Deg to CA White QFM aplite dikelet with the upper part of the unit having a slightly yellow-green cast due to the muscovite. Has thin white border zones that are slightly coarser grained than the rest. 127.80 - 128.10 : DYKE , 50.00 Deg to CA White QFM aplite dikelet with a medium grained core. 132.47 - 132.54 : DYKE , 40.00 Deg to CA Medium gray QFM aplite dikelet with accessory pyrite. RQD 119.00 - 122.00 : 87.00 % RQD 95.00 % Core 122.00 - 125.00 : 63.00 % RQD 95.00 % Core 125.00 - 128.00 : 69.00 % RQD 98.00 % Core 128.00 - 131.00 : 85.00 % RQD 98.00 % Core 131.00 - 134.00 : 100.00 % RQD 98.00 % Core									

Feb 24, 2012 Page 8 of 15

Detailed Lit	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
135.82		QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with trace pyrite. Pale gray and yellow green in color and coarse grained. Was definitely a spodumene pegmatite dike at one point. Yellow-green muscovite perfectly fills the shape and characteristics of spodumene, even delineating the cleavage planes of the original crystals. Quartz is pale brown and feldspar is white and gray. Contacts are oriented 60degrees and 75 degrees to the core axis.									

Feb 24, 2012 Page 9 of 15

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
136.74		M SCH, mica schist Metasediment. Light to medium gray, fine grained, moderately to weakly foliated. Ouartz-feldspar-biotite with trace pyrite within the core and trace pyrite, carbonate, and chlorite on fracture planes. The strength of the foliation decreases down the hole and the quantity of pyrite slightly increases down the hole. Cut by numerous dikelets (thickest listed below), multiple thin quartz veinlets with orientations between 20 and 85 degrees, and several bleached hairline fractures with orientations between 20 and 30 degrees to the core axis. Between meters 146.54 and 145.78, there seems to be a metaconglomerate in the core. Clasts are white, stretched slightly in the direction of the foliation, similar composition to the rest of the unit but with less biotite, fining down the hole, and matrix supported (matrix is normal light gray metasediment). Alteration 152.94 - 152.99 :E Epidote, VEIN-Cont Vein/Veinlet Controlled, Moderate Epidote alteration is pale green and seems to be controlled by 2, 4mm thick chlorite and calcite veinlets Structure 140.45 - 140.50 : DYKE , 90.00 Deg to CA	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		Pale brown QPHOS aplite dikelet 141.06 - 141.13: DYKE, 45.00 Deg to CA Pale gray QFM aplite dikelet 144.31 - 144.41: DYKE, 40.00 Deg to CA Pale gray QFM medium grained pegmatite dikelet 151.05 - 151.17: DYKE, 40.00 Deg to CA White QFM aplite dikelet. 153.80 - 154.79: FR Fractured, 10.00 Deg to CA Long fracture or joint. 162.68 - 162.78: DYKE, 40.00 Deg to CA Pale brown QPHOS pegmatite dikelet. RQD 137.00 - 140.00: 93.00 % RQD 99.00 % Core 140.00 - 143.00: 96.00 % RQD 100.00 % Core 143.00 - 146.00: 98.00 % RQD 98.00 % Core 146.00 - 149.00: 98.00 % RQD 98.00 % Core 149.00 - 152.00: 98.00 % RQD 100.00 % Core									
		152.00 - 155.00: 63.00 % RQD 98.00 % Core 155.00 - 158.00: 99.00 % RQD 99.00 % Core 158.00 - 161.00: 96.00 % RQD 99.00 % Core 161.00 - 164.00: 71.00 % RQD 97.00 % Core 164.00 - 167.00: 94.00 % RQD 99.00 % Core 167.00 - 170.00: 78.00 % RQD 97.00 % Core 170.00 - 173.00: 98.00 % RQD 100.00 % Core									

Feb 24, 2012 Page 10 of 15

Detailed Lit	hology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
171.69		DIAB, diabase Diabase. Medium gray and fine to mostly medium grained with nearly coarse grained splotches and viens like those found in hole NC-11-25, meters 107.28 to 124.68. Feldspar-hornblende-pyroxene with about 1% of its crystals altered to calcite and trace chlorite. Chlorite is abundant on fracture planes. Magnetic. Fine grained sections extend from contacts. Contacts are chilled and nearly black. From upper contact (oriented 60 degrees to the core axis and is sharp), fine grained texture extends down about 1.6 meters. From the lower contact	884356	197.74	198.7	4 1.0	0.0	06 83	00 35.	20 1	.50
		(oriented 20 degrees to the core axis and is sharp), fine grained texture extends up about 2.7 meters with trace calcite phenocrysts. RQD 173.00 - 176.00 : 90.00 % RQD 99.00 % Core 176.00 - 179.00 : 95.00 % RQD 100.00 % Core 179.00 - 182.00 : 98.00 % RQD 98.00 % Core 182.00 - 185.00 : 86.00 % RQD 99.00 % Core 185.00 - 188.00 : 87.00 % RQD 97.00 % Core 188.00 - 191.00 : 68.00 % RQD 94.00 % Core 191.00 - 194.00 : 73.00 % RQD 100.00 % Core 194.00 - 197.00 : 99.00 % RQD 100.00 % Core									
198.60		197.00 - 200.00: 97.00 % RQD 100.00 % Core M SCH, mica schist Metasediment. Medium gray, fine grained, weakly foliated. Quartz-feldspar-biotite.									
198.74		SPD PEG, spodumene pegmatite	884357	198.74	199.7	4 1.0	0.0)2 857	.00 40	.00 81	1.90 14
		Spodumene pegmatite. White and medium to coarse grained.	884358	199.74	200.7						5.30 15
		Quartz-feldspar-muscovite-spodumene with trace pink garnets. There is an 8 cm thick, pale green band of of QFM aplite in the upper 3rd of the pegmatite. In general, quartz is pale brown and medium grained, feldspar is pale gray to white and creamy white (some of the grayish crystals show a perthitic texture and the largest of the creamy-white feldspar shows a tartan twinning pattern) and large grained, and muscovite is silvery and fine grained. Spodumene fresh pale green to altered olive green. Crystals are oriented subperpendicular to contacts and are up to 4 cm long. More than half is altered. Contacts are oriented 60 degrees (upper) and 70 degrees (lower) to the core axis. Mineralization 198.74 - 201.02: SPOD Spodumene, PERV Pervasive, 15.00% Spodumene fresh pale green to altered olive green. Crystals are oriented subperpendicular to contacts and are up to 4 cm long. More than half is altered. RQD 200.00 - 203.00: 83.00 % RQD 95.00 % Core	884359	200.74	201.0	2 0.2	28 0.0	o1 510	00 33	10 50).80 <u> </u> 16

Feb 24, 2012 Page 11 of 15

Detailed L	ithology				Assay D	ata						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppn	n
201.02	205.71	M SCH, mica schist	884361	201.02	202.02	1.00	0.1	5 204.	00 90	.20 5	5.60	17.0
		Quartz-feldspar-biotite with trace pyrite. Cut by a few very thin quartz veinlets with orientations between 40 and 80 degrees to the core axis, a few bleached hairline fractures with orientations between 30 and 40 degrees to the core axis and a couple of thin, aplite dikelets with orienations between 70 and 90 degrees to the core axis.	884362	204.71	205.71	1.00	0.1	5 228.	00 94	.10 1	1.00	16.0
		RQD 203.00 - 206.00: 87.00 % RQD 100.00 % Core										
205.71	207.38	SPD PEG, spodumene pegmatite	884363	205.71	206.71	1.00	0.1	3 985.	00 72	.40 6	1.80	264.0
		Spodumene pegmatite. White and medium to coarse grained.	884364	206.71	207.38						3.30	99.0
		Quartz-feldspar-muscovite-spodumene with trace blue apatite. Accessory pyrite, hematite, and sericite appears to have been introduced with a period of fracturing; fractures are abundant throughout but are now solid being completely filled with feldspar, minor quartz and the above mentioned accessory minerals. Fractures are mostly random but with a slight trend of 60 degrees to the core axis. There is a creamy white QF aplite band about 9 cm thick in the upper 3rd of the pegmatite. There is a large (8 cm thick) metasediment xenolith located 8 cm up from the bottom contact. Spodumene is altered dark green with a few crystals altered to pale yellow-green muscovite. Crystals are oriented randomly and are up to 5 cm long. Contacts are oriented 60 degrees (upper) and 50 degrees (lower) to the core axis. Mineralization 205.71 - 207.38: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is altered dark green with a few crystals altered to pale yellow-green muscovite, very few fresh crystals. Crystals are oriented randomly and are up to 5 cm long. RQD 206.00 - 209.00: 73.00 % RQD 97.00 % Core		007.00							- 50	
207.38			884365	207.38	208.38				_		5.50	7.0
			884366	207.38	208.38						5.10	6.0
			884367	209.04	210.04	1.00	0.1	9 289.	00 143	.00]	3.80	6.0

Feb 24, 2012 Page 12 of 15

Detailed Lithology				Assay I	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
210.04 211.30	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and medium grained.	884368 884369	210.04 211.00	211.0					_	
	Quartz-feldspar-muscovite-spodumene with trace pink garnet and blue apatite. A couple of the feldspar crystals show a faint perthitic texture. Spodumene is pale green-gray, with about 1/3 of the crystals altered to nearly black. Crystals are oriented 50 degrees to the core axis and are up to 2 cm long. Contacts are oriented 65 degrees (upper) and 70 degrees (lower) to the core axis. Mineralization 210.04 - 211.30: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green-gray, with about 1/3 of the crystals altered to nearly black. Crystals are oriented 50 degrees to the core axis and are up to 2 cm long.		211.009	211.0	s, 5.55	J	1 020.	000	<u> </u>	
211.30 223.18	M SCH, mica schist	884371	211.30	212.3						60 2.0
	Metasediment. Medium gray, fine grained, and moderately foliated. Quartz-feldspar-biotite with trace pyrite, calcite, and chlorite on fracture planes. Has a couple of silicified patches with cordierite?, trace garnet, and phosphate? minerals. Cut by a few dikelets, the thickest are listed below. Also cut by multiple bleached hairline fractures near the bottom of the unit with an orientation of about 30 degrees to the core axis. Alteration 215.22 - 215.28:SI Silica, Patchy , Moderate Core has white (with a hint of green), hard patches with a dark green, long, thin, vitreous luster mineral (tourmaline? coridierite?) and trace garnet. 217.12 - 217.20:SI Silica, Pervasive , Strong Similar to above but with visible quartz. 218.45 - 218.51:SI Silica, Pervasive , Weak Core has white (with a hint of green), hard bands and the mystery mineral as above. Structure 213.50 - 213.71: DYKE , 60.00 Deg to CA White QFM pegmatite (upper half) and aplite (lower half). Has one, very altered spodumene crystal in the upper half. 214.69 - 214.78: DYKE , 50.00 Deg to CA Pale brown quartz dominant pegmatite. RQD 212.00 - 215.00: 87.00 % RQD 98.00 % Core 215.00 - 218.00: 91.00 % RQD 100.00 % Core 215.00 - 224.00: 70.00 % RQD 98.00 % Core	884372	222.18	223.1	8 1.00	0.1	3 168.	00 76.2	20 2.	40 6.0

Feb 24, 2012 Page 13 of 15

Detailed Li	ithology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
223.18		34 SPD PEG, spodumene pegmatite	884373 884374	223.18 224.18	224.18 225.00						3.30 145.0 '.60 269.0
		Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace pink garnets and a trace bright yellow medium hard mineral in the upper contact (amblygonite?). The last 0.48 m are pale yellow-green and creamy white aplite bands with feldspar phenocrysts and pale yellow-green muscovite clusters that may have once been spodumene. Spodumene is pale green to dark altered green. Crystals are oriented subperpendicular to contacts and are up to 3 cm long. Contacts are oriented 40 degrees (upper) and 60 degrees (lower) to the core axis. Mineralization 223.18 - 225.34: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green to dark altered green. Crystals are oriented subperpendicular to contacts and are up to 3 cm long. RQD 224.00 - 227.00: 80.00 % RQD 99.00 % Core	884374 884375	224.18	225.34 225.34						.60 269.0 5.40 162.0
225.34	226.75	M SCH, mica schist Metasediment. Medium gray, fine grained, and moderately foliated. Quartz-feldspar-biotite with trace pyrite, calcite, and chlorite on fracture planes. Cut by one thin dikelet, a couple of very thin quartz veinlets, and a very small silicified spot.	884376 884377	225.34 226.00	226.00 226.75						2.70 8.0 .00 3.0
226.75		SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace dark blue green apatite, pink garnets, and pyrite. There is a large (10 cm thick) metasediment xenolith located about 35 cm above the bottom contact. Has 2 bands of aplite, the upper one is 4cm down the hole from the upper contact and is 8 cm thick. The lower aplite band is located about 5 cm up from the xenolith and is about 5 cm thick. Both are pale gray with a QFM composition. Spodumene is pale gray-green to black (very altered). Crystals are oriented subperpendicular to contacts and are up to 4 cm long. Contacts are oriented 60 degrees (upper) and 70 degrees (lower) to the core axis. Mineralization 226.75 - 228.00: SPOD Spodumene, PERV Pervasive, 3.00% Spodumene is pale gray-green to black (very altered). Crystals are oriented subperpendicular to contacts and are up to 4 cm long. RQD 227.00 - 230.00: 92.00 % RQD 99.00 % Core		226.75 227.50	227.50 228.00						.80 182.0 0.10 160.0
228.00		M SCH, mica schist Metasediment. Medium gray, fine grained, and weakly foliated. Quartz-felspar-biotite with trace pyrite and chlorite on fracture planes. Cut by 2 small dikelets (orientations of 75 degrees and 85 degrees) and a few bleached hairline fractures (orientation about 35 degrees)	884381 884382	228.00 229.00	229.00 229.56						0.20 14.0 0.60 3.0

Feb 24, 2012 Page 14 of 15

Detailed Lith	hology				Assay Da	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
229.56		SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with scattered accessory garnets and trace blue-green apatite. Upper 1.2 meters, almost all of the spodumene is altered to yellow-green muscovite. Spodumene is pale unaltered green to dark altered green. Crystals are oriented 40 degrees to the core axis and are up to at least 6 cm long. Contacts are oriented 60 degrees (upper) and 70 degrees	884383 884384 884385 884386 884387	229.56 230.56 231.56 231.56 232.56	230.56 231.56 232.56 232.56 233.09	1.00 1.00 1.00	0.62 1.10 1.18	629.0 373.0 427.0	39.10 30 32.30 30 32.70) 11.) 16.) 17.	50 226.0 10 204.0 30 187.0
		(lower) to the core axis. Mineralization 229.56 - 233.09: SPOD Spodumene, PAT Patch, 7.00% Spodumene is pale unaltered green to dark altered green. Crystals are oriented 40 degrees to the core axis and are up to at least 6 cm long. RQD 230.00 - 233.00: 81.00 % RQD 94.00 % Core 233.00 - 236.00: 75.00 % RQD 100.00 % Core									
233.09		M SCH, mica schist	884388	233.09	234.09	1.00	0.13	266.0	75.40	14.	80 74.0
250.00		Metasediment. Light to medium gray, fine grained, and weakly to moderately foliated. Quartz-feldspar-biotite with trace chlorite, calcite, and pyrite on fracture planes. There are a few silicified patches. Cut by numerous dikelets (the thickest are listed below) and a few bleached hairline fractures with orientations between 15 and 60 degrees to the core axis. Alteration 238.44 - 238.55 :SI Silica, Pervasive , Strong Hard, cream colored patch of core streaked with pale green and dotted with extremely pale orange. 239.16 - 239.22 :SI Silica, Pervasive , Moderate Hard, cream colored patch of core streaked with green and abundant growth of the mystery mineral described earlier between 215.22 to 215.28 Structure 242.33 - 242.39 : DYKE , 70.00 Deg to CA Very pale gray QFM aplite dikelet. 242.86 - 242.91 : DYKE , 65.00 Deg to CA White and gray QFM zoned aplite dikelet. Border zones are about 0.5 cm thick, white, and with accessory garnet. Core is gray. RQD 236.00 - 239.00 : 92.00 % RQD 99.00 % Core 239.00 - 242.00 : 91.00 % RQD 100.00 % Core 242.00 - 245.00 : 91.00 % RQD 100.00 % Core 245.00 - 248.00 : 81.00 % RQD 100.00 % Core 248.00 - 251.00 : 92.00 % RQD 97.00 % Core									
250.99	251.00	EOH, end of hole									

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884356	197.74	198.74	0.0646	83.0000	35.2000	1.5000	3.0000
884357	198.74	199.74	0.0215	857.0000	40.0000	81.9000	143.0000
884358	199.74	200.74	0.0215	437.0000	26.9000	46.3000	159.0000
884359	200.74	201.02	0.0108	510.0000	33.1000	50.8000	161.0000
884361	201.02	202.02	0.1507	204.0000	90.2000	5.6000	17.0000
884362	204.71	205.71	0.1507	228.0000	94.1000	11.0000	16.0000
884363	205.71	206.71	0.1292	985.0000	72.4000	61.8000	264.0000
884364	206.71	207.38	0.0431	637.0000	37.9000	73.3000	99.0000
884365	207.38	208.38	0.1722	175.0000	40.3000	5.5000	7.0000
884367	209.04	210.04	0.1938	289.0000	143.0000	3.8000	6.0000
884368	210.04	211.00	1.3993	552.0000	50.0000	73.7000	153.0000
884369	211.00	211.30	0.4090	628.0000	54.8000	59.1000	199.0000
884371	211.30	212.30	0.1507	116.0000	36.5000	0.6000	2.0000
884372	222.18	223.18	0.1292	168.0000	76.2000	2.4000	6.0000
884373	223.18	224.18	0.6458	918.0000	70.4000	58.3000	145.0000
884374	224.18	225.00	0.6028	485.0000	42.2000	47.6000	269.0000
884375	225.00	225.34	0.0861	551.0000	35.3000	46.4000	162.0000
884376	225.34	226.00	0.1722	294.0000	95.0000	2.7000	8.0000
884377	226.00	226.75	0.1722	166.0000	45.3000	1.0000	3.0000
884378	226.75	227.50	0.7104	632.0000	38.2000	31.8000	182.0000
884379	227.50	228.00	0.1722	1040.0000	58.7000	20.1000	160.0000
884381	228.00	229.00	0.1722	158.0000	52.5000	9.2000	14.0000
884382	229.00	229.56	0.1507	227.0000	78.6000	0.6000	3.0000
884383	229.56	230.56	0.4306	547.0000	44.2000	42.2000	181.0000
884384	230.56	231.56	0.6243	629.0000	39.1000	11.5000	226.0000
884385	231.56	232.56	1.0979	373.0000	32.3000	16.1000	204.0000
884387	232.56	233.09	0.5167	359.0000	32.2000	28.2000	265.0000
884388	233.09	234.09	0.1292	266.0000	75.4000	14.8000	74.0000
Sample Type CDUP							
884366	207.38	208.38	0.1722	173.0000	49.4000	5.1000	6.0000
884386	231.56	232.56	1.1841	427.0000	32.7000	17.3000	187.0000

Project Name:	Nama Creek	Primary Coordinates Grid: U	TM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	01	North: 5477852.24		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424706.34		East:	Length:	359.00
		Elev: 373.49		Elev:	Start Depth:	0.00
Date Started:	Nov 07, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	359.00
Date Completed:	Nov 12, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: Hole logged by Andrea Dixon; claim number TB67167

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	234.92	240.69	5.77	1.2246	799.4281	99.4497	36.0950	180.9099
WEIGHTED	237.92	239.37	1.45	1.6458	528.0690	50.6931	37.0483	181.5517

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
14.00	130.10	-58.50	Reflex	OK	mag field: 5795	101.00	135.70	-59.60	Reflex	OK	mag field: 5747
200.00	142.90	-60.10	Reflex	ОК	mag field: 5754	302.00	153.20	-59.70	Reflex		mag field: 5754
359.00	157.00	-59.40	Reflex		mag field: 5743						

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	2.40	OVB, Casing									

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
2.40		M SCH, mica schist Metasediment. Medium to dark gray, fine grained, and weakly to moderately foliated. Quartz-feldspar-biotite with trace disseminated pyrite in the core and slightly more abundant pyrite (typically takes on a disk-shaped habit and rarely dendritic forms), trace chlorite, and trace calcite on fracture planes. The core can show a slight porphyroblastic texture made up of clusters of biotite, especially in the first 20 meters. The metasediment is cut by a few fractured areas, numerous dikelets from less than 1 cm thick to just over 30 cm thick (the thickest are listed below), thin quartz veinlets up to 2 mm wide, and bleached hairline fractures that in a few local areas, can be so numerous as to bleach small sections of metasediment. There are other small localized patches of alteration, that are white with hints of green, probably silicification and shows the growth of what appears to be cordierite. Mineralization 158.51 - 160.51 : PY Pyrite, DISS Disseminated, 2.00% Pyrite and other sulfides accompany a plethora of quartz veinlets. Structure 17.43 - 17.51 : DYKE , 60.00 Deg to CA White QFM aplite dikelet. 22.00 - 22.10 : DYKE , 30.00 Deg to CA White OPHOS aplite dikeletappears to have accessory triphylite 22.32 - 22.39 : DYKE , 90.00 Deg to CA Similar to above 27.81 - 27.90 : DYKE , 90.00 Deg to CA Similar to above 48.58 - 48.69 : DYKE , 90.00 Deg to CA Similar to above 48.59 - 48.69 : DYKE , 90.00 Deg to CA Core is fractured into thick disks (about 4 cm) and thin fragments. Could be related to a section of strong foliation (foliation is subparallel to the fracturing. 59.78 - 59.85 : DYKE , 60.00 Deg to CA White QFM medium grained pegmatite dikelet 60.24 - 60.33 : DYKE , 60.00 Deg to CA Similar to above 63.83 - 64.04 : DYKE , 30.00 Deg to CA White OFM medium grained pegmatite dikelet. About 2 cm of QFM border zone surrounds large pale brown quartz core. 68.58 - 68.76 : DYKE , 70.00 Deg to CA White OFM pegmatite dikelet with trace red garnets. 69.70 - 70.06 : DYKE , 70									

Detailed Litholog	ду			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_pp
	Structure		·							
	103.20 - 103.30 : DYKE , 25.00 Deg to CA Pale brown quartz-dominant pegmatite dikelet with accessory silvery gray									
	mica									
	104.86 - 104.94 : DYKE , 40.00 Deg to CA									
	Pale brown and gray QFM medium grained pegmatite dikelet.									
	106.41 - 106.49 : DYKE , 80.00 Deg to CA Similar to above									
	115.05 - 115.27 : DYKE , 40.00 Deg to CA									
	White QFM aplite dikelet.									
	122.20 - 122.53 : DYKE , 60.00 Deg to CA Pale brown, zoned QFM pegmatite dikelet. 1.5 cm thick QFM border zones									
	surrounding large quartz core.									
	130.27 - 130.32 : DYKE , 50.00 Deg to CA									
	White and gray zoned QFM aplite dikelet. Border zones are about 1 cm thick									
	and are white with a trace, pale yellow, medium soft mineral. 158.51 - 160.51									
	Mulitiple, 1 cm thick anastomosing white quartz veins accompanied by pyrite									
	and other sulfides									
	162.66 - 162.72 : DYKE , 35.00 Deg to CA Pale gray QFM aplite dikelet									
	RQD									
	2.40 - 5.00 : 92.00 % RQD 100.00 % Core									
	5.00 - 8.00 : 100.00 % RQD 100.00 % Core									
	8.00 - 11.00 : 100.00 % RQD 100.00 % Core									
	11.00 - 14.00: 99.00 % RQD 99.00 % Core									
	14.00 - 17.00: 80.00 % RQD 98.00 % Core									
	17.00 - 20.00: 95.00 % RQD 97.00 % Core									
	20.00 - 23.00: 87.00 % RQD 99.00 % Core									
	23.00 - 26.00: 87.00 % RQD 99.00 % Core									
	26.00 - 29.00: 86.00 % RQD 98.00 % Core									
	29.00 - 32.00: 83.00 % RQD 100.00 % Core									
	32.00 - 35.00: 82.00 % RQD 100.00 % Core									
	35.00 - 38.00: 85.00 % RQD 99.00 % Core									
	38.00 - 41.00: 93.00 % RQD 100.00 % Core									
	41.00 - 44.00: 70.00 % RQD 98.00 % Core									
	44.00 - 47.00 : 94.00 % RQD 100.00 % Core									
	47.00 - 50.00 : 75.00 % RQD 99.00 % Core									
	50.00 - 53.00 : 25.00 % RQD 100.00 % Core									
	53.00 - 56.00 : 73.00 % RQD 99.00 % Core									
	56.00 - 59.00 : 77.00 % RQD 100.00 % Core									
	59.00 - 62.00: 85.00 % RQD 98.00 % Core									

Detailed Lith	ology				Assay	Data					
	<u> </u>	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD									
		62.00 - 65.00: 86.00 % RQD 100.00 % Core									
		65.00 - 68.00: 78.00 % RQD 97.00 % Core									
		68.00 - 71.00: 97.00 % RQD 99.00 % Core									
		71.00 - 74.00: 87.00 % RQD 99.00 % Core									
		74.00 - 77.00: 68.00 % RQD 96.00 % Core									
		77.00 - 80.00: 97.00 % RQD 100.00 % Core									
		80.00 - 83.00: 83.00 % RQD 96.00 % Core									
		83.00 - 86.00: 74.00 % RQD 100.00 % Core									
		86.00 - 89.00: 93.00 % RQD 100.00 % Core									
		89.00 - 92.00: 89.00 % RQD 98.00 % Core									
		92.00 - 95.00: 94.00 % RQD 98.00 % Core									
		95.00 - 98.00: 93.00 % RQD 100.00 % Core									
		98.00 - 101.00: 87.00 % RQD 100.00 % Core									
		101.00 - 104.00: 91.00 % RQD 99.00 % Core									
		104.00 - 107.00 : 100.00 % RQD 100.00 % Core									
		107.00 - 110.00: 98.00 % RQD 98.00 % Core									
		110.00 - 113.00: 95.00 % RQD 100.00 % Core									
		113.00 - 116.00 : 83.00 % RQD 98.00 % Core									
		116.00 - 119.00 : 95.00 % RQD 100.00 % Core									
		119.00 - 122.00 : 94.00 % RQD 100.00 % Core									
		122.00 - 125.00 : 92.00 % RQD 98.00 % Core									
		125.00 - 128.00 : 97.00 % RQD 100.00 % Core									
		128.00 - 131.00 : 82.00 % RQD 98.00 % Core									
		131.00 - 134.00 : 94.00 % RQD 100.00 % Core									
		134.00 - 137.00 : 87.00 % RQD 100.00 % Core 137.00 - 140.00 : 84.00 % RQD 100.00 % Core									
		140.00 - 143.00 : 92.00 % RQD 99.00 % Core									
		143.00 - 146.00 : 82.00 % RQD 100.00 % Core									
		146.00 - 149.00 : 75.00 % RQD 100.00 % Core									
		149.00 - 152.00 : 84.00 % RQD 100.00 % Core									
		152.00 - 155.00 : 97.00 % RQD 100.00 % Core									
		155.00 - 158.00 : 99.00 % RQD 99.00 % Core									
		158.00 - 161.00 : 95.00 % RQD 97.00 % Core									
		161.00 - 164.00 : 95.00 % RQD 100.00 % Core									
		164.00 - 167.00 : 96.00 % RQD 100.00 % Core									

Feb 24, 2012 Page 5 of 17

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
165.31	187.32	DI AB, diabase Diabase. Medium gray and fine to medium grained (coarsening towards the center of the dike). Feldspar-hornblende-pyroxene with some alteration to calcite and chlorite. Chlorite is abundant on fracture planes. Magnetic. Cut by a few scatttered calcite veins (mostly in the in the lower half) with orientations of 20 and 40 degrees to the core axis. Contacts are sharp, regular, and so fine grained it nearly appears black. Upper contact is oriented about 45 degrees to the core axis and the lower contact is oriented about 50 degrees to the core axis and the lower contact is oriented about 50 degrees to the core axis. The fine grained texture extends down the hole from the upper contact for about 2 meters and up from the lower contact about 1 meter. RQD 167.00 - 170.00: 94.00 % RQD 98.00 % Core 170.00 - 176.00: 88.00 % RQD 100.00 % Core 176.00 - 179.00: 76.00 % RQD 100.00 % Core 179.00 - 182.00: 78.00 % RQD 100.00 % Core 182.00 - 185.00: 69.00 % RQD 99.00 % Core 185.00 - 188.00: 100.00 % RQD 97.00 % Core				J					
187.32 195.05		M SCH, mica schist Metasediment. Medium gray, fine grained, and massive with a slight porphyroblastic texture caused by slightly larger than usual clumps of biotite. Quartz-feldspar-biotite with trace disseminated pyrite in the core and trace pyrite and chlorite on fracture planes. Cut by numerous, thin quartz veinlets (up to 3 mm thick) oriented 20 and 30 degrees to the core axis. RQD 188.00 - 191.00: 92.00 % RQD 96.00 % Core 191.00 - 194.00: 91.00 % RQD 93.00 % Core 194.00 - 197.00: 80.00 % RQD 98.00 % Core APL, aplite Aplite. Pale yellow-green and fine to medium grained. Quartz-feldspar-muscovite with trace Nb-Ta oxides? (Small diameter grains that are black and hard). Quartz is pale brown, feldspar is white and gray, and muscovite is pale yellow with a hint of green. Contacts oriented 40 degrees (upper) and 60 degrees (lower) to the core axis.									

Detailed Li	thology				Assay I	Data							
From	То	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppr	m Ta_	_ppm	Ве_рр	m
195.55		M SCH, mica schist Metasediment. Medium gray, fine grained, and massive. Quartz-feldspar-biotite with trace pyrite, calcite, epidote, and chlorite on fracture planes. Core is bleached and epidotized (accompanied by calcite and some pyrite) in a few places, especially where bleached hairline fractures are locally very numerous (especially towards the bottom of the unit)bleached hairline fractures are very common in this unit and are randomly oriented. The metasediment is also cut by multiple dikelets (the thickest are listed below). Mineralization 228.50 - 233.90 : PY Pyrite, DISS Disseminated, 0.50% Pyrite concentration is less than 1% Alteration 228.50 - 230.73 :E Epidote, Fract-Cont Fracture-Controlled, Weak Epidote alteration is strongest around hairline fractures that normally bleach the core white but in this area are tinged green. 231.10 - 233.90 :E Epidote, Fract-Cont Fracture-Controlled, Weak Similar to the weak area as described above. 230.73 - 231.10 :E Epidote, Fract-Cont Fracture-Controlled, Strong Epidote alteration is strong here due to the abundance of fractures and a thick (3 cm) calcite vein. Could be a healed fault, as there are "clasts" that seem to be selectively filled with epidote while others are more calcite rich and threaded through with a black matrix. Structure 207.80 - 207.86 : DYKE , 90.00 Deg to CA Pale green and brown OPHOS? aplite. Quartz banded with green tryphilite? 210.47 - 210.52 : DYKE , 80.00 Deg to CA Pale prown OPHOS? pegmatite dikelet. Quartz with accessory triphylite? and multiple small inclusions of metasediment. 210.90 - 219.24 : DYKE , 40.00 Deg to CA Pale pinky brown quartz-dominant pegmatite dikelet with trace triphylite? and a trace, soft mineralvery fine grained muscovite? 230.97 - 231.23 : FR Fractured, 60.00 Deg to CA Pale pinky brown quartz-dominant pegmatite dikelet with trace triphylite? and inthiophilite? Green mineral might be epidote, related to the epidotization of the area. ROD 197.00 - 200.00 : 78.00 % RQD 97.00 % Core 200.00 - 203.0	884393	233.92	234.9	<u> </u>				88.30	3.0		4.0

Feb 24, 2012 Page 7 of 17

Detailed Lith	ology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 206.00 - 209.00 : 89.00 % RQD 98.00 % Core 209.00 - 212.00 : 87.00 % RQD 95.00 % Core 212.00 - 215.00 : 88.00 % RQD 97.00 % Core 215.00 - 218.00 : 85.00 % RQD 97.00 % Core 218.00 - 221.00 : 79.00 % RQD 95.00 % Core 221.00 - 224.00 : 85.00 % RQD 95.00 % Core 224.00 - 227.00 : 96.00 % RQD 96.00 % Core 227.00 - 230.00 : 83.00 % RQD 97.00 % Core 233.00 - 236.00 : 79.00 % RQD 98.00 % Core 233.00 - 236.00 : 79.00 % RQD 98.00 % Core									
234.92	239.37	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with accessory pink garnets and trace Nb-Ta oxides in a few of the aplitic bands, especially in the upper part of the unit. Spodumene is mostly fresh pale green with a few of the crystals altered to dark green. Crystals are up to 6 cm long (before leaving the core) and are oriented about 45 degrees to the core axis. Contacts are oriented 75 degrees (upper) and 50 degrees (lower) to the core axis. Mineralization 234.92 - 239.37 : SPOD Spodumene, PERV Pervasive, 20.00% Spodumene is mostly fresh pale green with a few of the crystals altered to dark green. Crystals are up to 6 cm long (before leaving the core) and are oriented about 45 degrees to the core axis. RQD 236.00 - 239.00 : 60.00 % RQD 96.00 % Core 239.00 - 242.00 : 86.00 % RQD 100.00 % Core	884394 884395 884396 884397 884398	234.92 235.92 236.92 237.92 238.92	2 236.9 2 237.9 2 238.9	2 1.0 2 1.0 2 1.0	0 1.1 0 0.9 0 1.4	6 1240.0 93 715.0 99 502.0	00 92 00 61 00 47	.30 34 .90 38	.30 196.0 .90 170.0 .60 180.0
239.37	239.69	M SCH, mica schist Metasediment. Medium gray, fine grained, and moderately foliated. Quartz-feldspar-biotite. Might be a xenolith, but it does not appear to be metasomatized. It is cut by few thin dikelets, the thickest is listed below. Structure 239.56 - 239.61: DYKE, 70.00 Deg to CA Spodumene pegmatite dikelet.	884399	239.3	7 239.6	9 0.3	2 0.5	1450.(00 676	00 18	.90 80.0

Page 8 of 17 DETAILED LOG

Detailed L	ithology				Assay [Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppn	n
239.69	240.87	SPD PEG, spodumene pegmatite	884401	239.69	240.69	9 1.00	1.3	8 749.	00 70	.80 33	3.70	200.0
		Spodumene pegmatite. White and coarse grained.	884402	240.69	240.87	0.18	0.1	5 681.	00 80	.00 38	3.10	204.0
		Quartz-feldspar-muscovite-spodumene with trace accessory garnets. A quartz vein, located at 240.60 seems to host some hematite and a dark gray mica. Spodumene surrounding the vein and extending down to the lower contact is altered to a dark olive green and and yellow-green muscovite. Spodumene in the upper 70 cm is pale green and fresh. Crystals are oriented subperpendicular to contacts and are up to 3 cm long. Contacts are oriented about 80 degrees (upper) and 50 degrees (lower) to the core axis. Mineralization 239.69 - 240.87 : SPOD Spodumene, PERV Pervasive, 10.00% Spodumene in the upper 70 cm is pale green and fresh. Crystals are oriented subperpendicular to contacts and are up to 3 cm long.										
240.87	2/13/08	M SCH, mica schist	884403	240.87	241.87	7 1.00	0.2	6 504.	00 235	00 6	5.20	25.0
240.67	243.00	Metasediment. Medium gray, fine grained, moderately foliated.	884404	240.87	243.08						.10	2.0
		Quartz-feldspar-biotite. Cut by a single dikelet and scattered, bleached hairline fractures. Structure 241.37 - 241.44: DYKE, 70.00 Deg to CA White QFM medium grained pegmatite dikelet with accessory, very altered spodumene. RQD 242.00 - 245.00: 85.00 % RQD 96.00 % Core		2 12139	2.000			g 133.				
243.08	244.04	SPD PEG, spodumene pegmatite	884405	243.08	244.04	1 0.96	0.7	3 371.	00 48	.20 43	3.60	178.0
		Spodumene pegmatite. Pale gray and coarse grained. Quartz-feldspar-muscovite-spodumene with trace pink garnets and trace hematite that is probably associated with a fracture at the lower contact, rather than the pegmatite itself. Spodumene is concentrated in the upper half of the dike and the spodumene in the lower half of the dike is altered to dark green. Upper-half spodumene is pale gray-green with a few of the crystals altered to dark green. Crystals are oriented subperpendicular to contacts and are up to 4 cm long before leaving the core. Contacts are oriented about 60 degrees to the core axis. Mineralization 243.08 - 244.04: SPOD Spodumene, PAT Patch, 5.00% Spodumene is concentrated in the upper half of the dike and the spodumene in the lower half of the dike is altered to dark green. Upper-half spodumene is pale gray-green with a few of the crystals altered to dark green. Crystals are oriented subperpendicular to contacts and are up to 4 cm long before leaving the core.	884406	243.08	244.04							205.0
244.04	244.47	M SCH, mica schist	884418	244.04	245.04	1.00	0.1	9 773.	00 233	.00 16	5.00	81.0
		Metasediment. Medium gray, fine grained, and moderately foliated. Quartz-feldspar-biotite with trace pyrite and calcite on fracture planes.										

Page 9 of 17 DETAILED LOG

Detailed L	ithology	,			Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
244.47	244.85	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with accessory trace garnet. Pale gray and coarse grained except for the last 8 cm which are aplitic. It appears to have once been a spodumene pegmatite as the muscovite is yellow in color and clusters take the shape of spodumene crystals. Contacts are oriented 80 degrees (upper) and 70 degrees (lower) to the core axis.									
244.85	247.91	M SCH, mica schist Metasediment. Medium gray, fine grained, and moderately foliated. Quartz-feldspar-biotite with trace pyrite on fracture planes and cordierite surrounding the edges of small, scattered silicified areas. Cut by a few quartz veinlets oriented between 30 and 70 degrees to the core axis. RQD 245.00 - 248.00: 90.00 % RQD 100.00 % Core									
247.91	248.63	APL, aplite Aplite. Pale gray-yellow and fine grained. Quartz-feldspar-muscovite with trace pink garnets. Its lower contact cuts across a QPHOS? banded aplitemistaken to be part of the QFM unit. The last 15 cm of the QFM aplite is actually a QPHOS? aplite. The QFM aplite dike has contacts oriented 70 degrees to the core axis. The contacts for the QPHOS? unit are disturbed by the QFM aplite and a fractured area. The QPHOS? aplite is quartz banded with a creamy, pale orange mineral (lithiophilite?) and has streaks of a hard dark, green-blue mineral (does not appear to be apatite). Has accessory pyrite and feldspar. Contains xenoliths of metasediment. RQD 248.00 - 251.00: 88.00 % RQD 100.00 % Core									
248.63	251.12	M SCH, mica schist Metasediment. Medium gray, fine grained, and weakly foliated. Quartz-feldspar-biotite. Cut by a couple of dikelets. Structure 249.76 - 249.81: DYKE, 85.00 Deg to CA Pale gray QFM aplite dikelet with accessory pink garnets and freckles of a black/dark mineraltoo small to determine what it is and what its properties are. 250.68 - 250.77: DYKE, 50.00 Deg to CA Similar to above RQD 251.00 - 254.00: 95.00 % RQD 100.00 % Core									

Feb 24, 2012 Page 10 of 17

Detailed Litholo	зу			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
251.12 251.	SPD PEG, spodumene pegmatite Spodumene pegmatite. Banded white and pale, creamy yellow-brownwhite corresponds to pegmatite bands and the yellow-brown to aplite bands. Ouartz-feldspar-muscovite-spodumene with accessory pink garnet and trace blue-green apatite. Pegmatite bands are about 5 cm thick and aplite bands are 1 to 3 cm thick. Banding oriented parallel to contacts. Spodumene only found in pegmatite bands. Spodumene is very pale greennearly white, with crystals oriented perpendicular to contacts and are up to 4 cm long. Contacts are oriented 45 degrees (upper) and 50 degrees (lower) to the core axis. Mineralization 251.12 - 251.60: SPOD Spodumene, PAT Patch, 5.00% Spodumene only found in pegmatite bands. Spodumene is very pale greennearly white, with crystals oriented perpendicular to contacts and are up to 4 cm long.									
251.60 253.	M SCH, mica schist Metasediment. Medium gray, fine grained, and massive. Quartz-feldspar-biotite.	884407	252.15	253.1	15 1.0	0.2	28 212.	00 83	.20 1	.20 4.0
253.15 256.	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with accessory garnet. There are 2 large patches of quartz crystals that exclude all other minerals, located from 254.15-254.55 and 255-255.20. Spodumene is pale gray-green and dark altered green. About 1/3 of the spodumene is altered. Crystals are oriented subperpendicular to contacts and are up to 6 cm long before leaving the core. Upper contact is oriented 40 degrees to the core axis and the lower contact is lost in rubble. Mineralization 253.15 - 256.32 : SPOD Spodumene, PAT Patch, 10.00% Spodumene is pale gray-green and dark altered green. About 1/3 of the spodumene is altered. Crystals are oriented subperpendicular to contacts and are up to 6 cm long before leaving the core. RQD 254.00 - 257.00 : 63.00 % RQD 89.00 % Core	884408 884409 884411 884412	253.15 254.15 255.15 256.00	254.7 255.7 256.0 256.0	15 1.0 00 0.8	00 0.3 35 0.4	30 395. 41 799.	00 36 00 64	.30 18 .70 37	.10 174.0 .50 111.0 .50 165.0 .00 163.0

Feb 24, 2012 Page 11 of 17

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
256.32	263.82	M SCH, mica schist	884413	256.32	257.3	2 1.0	0 0.1	7 493.	00 181.0	00 23	.00 40.0
-			<u>'</u>			Ļ	-				
		long. 258.87 - 258.96 2 white QFM aplites oriented so that they are subperpendicular to one another and form an "x" in the core. Each one is 3 cm thick 258.99 - 259.08 : DYKE , 60.00 Deg to CA White QFM aplite dikelet 259.98 - 260.20 : DYKE , 60.00 Deg to CA White QFM medium grained pegmatite dikelet with trace garnets. 261.17 - 261.27 : DYKE , 60.00 Deg to CA White QFM aplite dikelet 262.70 - 262.76 : DYKE , 50.00 Deg to CA Similar to above RQD 257.00 - 260.00 : 82.00 % RQD 100.00 % Core 260.00 - 263.00 : 97.00 % RQD 100.00 % Core 263.00 - 266.00 : 88.00 % RQD 100.00 % Core									

Feb 24, 2012 Page 12 of 17

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
263.82	264.13	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with trace pink garnet and trace pyrite in fracture planes. White and medium grained. Upper contact oriented 50 degrees to the core axis and the lower contact is lost in rubble.									
264.13	269.93	M SCH, mica schist Metasediment. Medium gray, fine grained, and moderately to strongly foliatedsmall sections of strong foliation sometimes have a porphyroblastic texture. Quartz-feldspar-biotite with trace chlorite and pyrite on fracture planes. Trace cordierite near a couple of small, localized areas of strong silicification. The metasediment is cut by a couple of dikelets. Structure 266.42 - 266.50: DYKE, 90.00 Deg to CA White QFM medium grained pegmatite dikelet with the last 2 cm being fine grained aplite. 269.02 - 269.08: DYKE, 55.00 Deg to CA Pale gray QFM medium grained pegmatite dikelet. RQD 266.00 - 269.00: 90.00 % RQD 98.00 % Core 269.00 - 272.00: 85.00 % RQD 95.00 % Core	884414	268.93	269.9	3 1.0	0 0.2	22 298.	00 129	00 5	.60 13.0
269.93	272.00	SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace pink and red garnets and blue green apatite. A few crystals of feldspar have a perthitic texture. Has a large patch of quartz crystals that prevent any other mineralization between 271 and 275.25. The last 40 cm are nearly aplitic. Spodumene is most abundant near the center of the dike but can be found through out. Spodumene crystals are pale green with about 1/4 of them altered to dark green. Crystals are oriented 50 degrees to the core axis and up to 3 cm long. Upper contact lost in a fracture, lower contact oriented about 60 degrees to the core axis. Mineralization 269.93 - 272.00: SPOD Spodumene, PERV Pervasive, 5.00% podumene is most abundant near the center of the dike but can be found through out. Spodumene crystals are pale green with about 1/4 of them altered to dark green. Crystals are oriented 50 degrees to the core axis and up to 3 cm long. Structure 270.26 - 270.49 Fractured area is made up of fragments 1 to 5 cm long.	884415 884416	269.93 270.93							.80 161.0 .40 178.0

Detailed L	ithology				Assay	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
272.00	283.15	M SCH, mica schist Metasediment. Medium gray, fine grained, and moderately foliated. Quartz-feldspar-biotite with trace chlorite, pyrite, and epidote on the fracture planes. Cut by a few thin dikelets and a few very thin (up to 2 mm) very scattered white quartz veinlets. Structure 272.10 - 272.25 : FR Fractured, 60.00 Deg to CA Fracture area made up of thin disks less than a cm wide to 4 cm thick RQD 272.00 - 275.00 : 84.00 % RQD 99.00 % Core 275.00 - 278.00 : 93.00 % RQD 100.00 % Core 278.00 - 281.00 : 97.00 % RQD 99.00 % Core	884417	272.00	273.0	D 1.C	0 0.1	9 153.		90 1	1.20	5.
283.15	286.26	281.00 - 284.00 : 93.00 % RQD 98.00 % Core QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with trace blue apatite and pink garnet. Pale green-gray and coarse grained with gray and white aplite groundmass. Appears to have once been a spodumene dike, given the orientation and shape of the yellow-green muscovite clusters. Metasomatized metasediment xenolith located between 284.53 and 248.85 meters. Contacts are oriented 50 degrees (upper) and 60 degrees (lower) to the core axis. RQD 284.00 - 287.00 : 97.00 % RQD 100.00 % Core										
286.26	300.15	M SCH, mica schist Metasediment. Medium gray, fine grained, and moderately foliated to schistosethe strong to schistose areas have biotite porphyroblasts. Quartz-feldspar-biotite. Cut by a few dikelets ranging in size from less than 1 cm to about 25 cm. Structure 288.50 - 288.72 : DYKE , 50.00 Deg to CA White QFM pegmatite dikelet with border zones composed of aplite. Upper border zone is 1 cm thick and lower border zone is 3 cm thick 295.90 - 296.78 : SCHS Schistose, 55.00 Deg to CA Schistose area with a couple of fractures following the foliation 296.00 - 296.10 : DYKE , 70.00 Deg to CA Very pale brown and orange and green splotched QPHOS aplite dikelet. RQD 287.00 - 290.00 : 96.00 % RQD 100.00 % Core 290.00 - 293.00 : 92.00 % RQD 99.00 % Core 293.00 - 296.00 : 98.00 % RQD 99.00 % Core 296.00 - 299.00 : 95.00 % RQD 99.00 % Core 299.00 - 302.00 : 97.00 % RQD 99.00 % Core										

Feb 24, 2012 Page 14 of 17

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
300.15		QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with accessory garnets. Pale gray and coarse grained. Feldspar is white and gray with a perthitic texture. Garnets are scattered throughout but tend to form small (2 cm) clumps in the lower half of the unit. Border zones are about 0.5 cm wide, white, and appear to be composed entirely of feldspar. Contacts are oriented 45 degrees to the core axis.									

Detailed Lit	thology				Assay	Data					
From	To	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
301.40		M SCH, mica schist Metasediment. Medium gray, fine grained, and moderately to strongly foliatedwill sometimes show a porphyroblastic texture in the areas of strongest foliation. Quartz-feldspar-biotite with trace pyrite, chlorite, and calcite on fracture planes. Abundant cordierite in localized, silicified areas. Cut by abundant dikelets (1 to 25 cm thick) and quartz veinlets (up to 0.5 cm, oriented between 40 and 85 degrees) Alteration 308.60 - 312.70:SI Silica, Patchy , Strong Small, scattered patches of hard, dark green core with a white halo and abundant cordierite. Nearly resembles dikes but is much more splotchy and inconsistent. 314.37 - 314.85:SI Silica, Patchy , Strong Similar to the above 332.69 - 335.00:SI Silica, Patchy , Strong Similar to the above 345.84 - 346.50:SI Silica, Patchy , Moderate Similar to the above Structure 312.52 - 312.59: DYKE , 90.00 Deg to CA Medium gray and pale brown QPHOS dikelet. First 4 cm are heavily filled with small metasediment fragments. 316.60 - 316.67: DYKE , 60.00 Deg to CA Pale brown OF dikelet. 318.94 - 318.99: DYKE , 70.00 Deg to CA White and gray zoned QFM aplite dikelet. Border zones are white and 1 cm thick 320.85 - 320.91: DYKE , 50.00 Deg to CA White OFM aplite dikelet 332.28 - 323.52: DYKE , 50.00 Deg to CA White OFM aplite dikelet flecked with a very small, dark accessory mineral. 329.59 - 329.66: DYKE , 70.00 Deg to CA White OFM aplite dikelet flecked with a very small, dark accessory mineral. 329.59 - 329.66: DYKE , 70.00 Deg to CA White OFM aplite dikelet. 330.25 - 331.00: FR Fractured, 20.00 Deg to CA White OFM aplite dikelet. 352.40 - 352.60: FR Fractured, 20.00 Deg to CA Fractured area consists of large, angled blocks, 5 to 18 cm long. 343.57 - 343.64: DYKE , 70.00 Deg to CA Fractured area consists of blocks 1 to 10 cm long. ROD 302.00 - 305.00: 99.00 % ROD 100.00 % Core 305.00 - 308.00: 99.00 % ROD 100.00 % Core 311.00 - 314.00: 97.00 % ROD 100.00 % Core 311.00 - 317.00: 98.00 % ROD 100.00 % Core				Lengin		по_ррш	СЗ_РРП	та_ррпі	рс_ррпі

Detailed Li	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 317.00 - 320.00 : 97.00 % RQD 100.00 % Core 320.00 - 323.00 : 90.00 % RQD 100.00 % Core 323.00 - 326.00 : 96.00 % RQD 98.00 % Core 326.00 - 329.00 : 94.00 % RQD 98.00 % Core 329.00 - 332.00 : 79.00 % RQD 100.00 % Core 332.00 - 335.00 : 92.00 % RQD 99.00 % Core 335.00 - 338.00 : 89.00 % RQD 100.00 % Core 338.00 - 341.00 : 93.00 % RQD 100.00 % Core 341.00 - 344.00 : 100.00 % RQD 100.00 % Core 344.00 - 347.00 : 98.00 % RQD 100.00 % Core 347.00 - 350.00 : 100.00 % RQD 100.00 % Core				<u> </u>	•				
352.60	354.44	350.00 - 353.00 : 83.00 % RQD 99.00 % Core QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite with trace molybdenite. White and "marbled" with dark green muscovite and very coarse grained. There are especially large smokey brown quartz crystals 34 cm from the upper contact and extending down for 55 cm. Feldspar has a perthitic texture and is banded with peach colored stripes that cut across subperpendicular to the perthitic texture. Upper contact is lost in rubble, lower contact is oriented 20 degrees to the core axis. RQD 353.00 - 356.00 : 87.00 % RQD 97.00 % Core									
354.44	358.99	M SCH, mica schist Metasediment. Medium gray, fine grained, and massive to weakly foliated. Quartz-feldspar-biotite with trace pyrite, chlorite, and calcite on fracture planes and abundant cordierite in silicified patches. Silicification is patchy and localized between meters 355.3 and 357. Cut by a few thin quartz veinlets, up to 0.5 cm wide and cut by one dikelet. Alteration 355.30 - 357.00 :SI Silica, Patchy , Moderate Hardened, bleached core is full of dark green swirls and abundant cordierite crystals Structure 357.48 - 357.70 : DYKE , 55.00 Deg to CA White, coarse grained. QFM pegmaite dikelet. A tiny bit of metasomatism on contacts. RQD 356.00 - 359.00 : 90.00 % RQD 98.00 % Core									
358.99	359.00	EOH, end of hole									

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884393	233.92	234.92	0.2799	264.0000	88.3000	0.8000	4.0000
884394	234.92	235.92	1.0549	679.0000	59.6000	44.6000	189.0000
884395	235.92	236.92	1.1625	1240.0000	92.3000	35.3000	196.0000
884396	236.92	237.92	0.9257	715.0000	61.3000	34.9000	170.0000
884397	237.92	238.92	1.4855	502.0000	47.9000	38.6000	180.0000
884398	238.92	239.37	2.0021	586.0000	56.9000	33.6000	185.0000
884399	239.37	239.69	0.4952	1450.0000	676.0000	18.9000	80.0000
884401	239.69	240.69	1.3778	749.0000	70.8000	33.7000	200.0000
884402	240.69	240.87	0.1507	681.0000	80.0000	38.1000	204.0000
884403	240.87	241.87	0.2583	504.0000	235.0000	6.2000	25.0000
884404	242.08	243.08	0.2583	163.0000	101.0000	1.1000	2.0000
884405	243.08	244.04	0.7320	371.0000	48.2000	43.6000	178.0000
884418	244.04	245.04	0.1938	773.0000	233.0000	16.0000	81.0000
884407	252.15	253.15	0.2799	212.0000	83.2000	1.2000	4.0000
884408	253.15	254.15	1.2486	580.0000	59.7000	21.1000	174.0000
884409	254.15	255.15	0.3014	395.0000	36.3000	18.5000	111.0000
884411	255.15	256.00	0.4090	799.0000	64.7000	37.5000	165.0000
884412	256.00	256.32	0.0108	628.0000	42.6000	114.0000	163.0000
884413	256.32	257.32	0.1722	493.0000	181.0000	23.0000	40.0000
884414	268.93	269.93	0.2153	298.0000	129.0000	5.6000	13.0000
884415	269.93	270.93	0.5597	838.0000	58.9000	30.8000	161.0000
884416	270.93	272.00	0.1722	576.0000	40.7000	30.4000	178.0000
884417	272.00	273.00	0.1938	153.0000	33.9000	1.2000	5.0000
Sample Type CDUP							
884406	243.08	244.04	0.6674	414.0000	54.1000	36.1000	205.0000

Page 1 of 17 DETAILED LOG

Hole Number: NC-11-28 Units: METRIC

Project Name: Nama Creek	Primary Coordinates Grid: UTM:	Destination Coordinates Grid: UTM:	Collar Dip:	-62.00
Project Number: 01	North: 5477890.49	North:	Collar Az:	140.00
Location: Nama Creek	East: 424768.77	East:	Length:	323.00
	Elev: 373.06	Elev:	Start Depth:	0.00
Date Started: Nov 13, 2011	Collar Survey: N Plugged: N	Contractor: Cobra Drilling	Final Depth:	323.00
Date Completed: Nov 16, 2011	Multishot Survey: Y Hole Size: NQ	Core Storage: Beardmore ON		
	Pulse EM Survey: N Casing: Pulled			

Comments: Hole logged by Andrea Dixon; claim number TB67167

Sample Averages

Average Type	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	263.44	264.51	1.07	1.5018	647.0374	44.9841	34.5869	163.8598
WEIGHTED	264.98	266.56	1.58	1.4481	633.0380	43.6177	17.4785	155.2785
WEIGHTED	279.47	281.47	2.00	1.3025	797.0000	66.2500	27.8500	158.5000

Survey Data

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
14.00	129.10	-62.00	Reflex	ОК	mag field: 5777	101.00	131.70	-62.50	Reflex	OK	mag field: 5745
200.00	143.30	-62.70	Reflex	ОК	mag field: 5747	305.00	151.00	-61.50	Reflex	OK	mag field: 5754

Detailed L	ithology		Assay Data									
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm	
0.00		OVB, Casing										

Detailed Lithology				Assay	Data				_	
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
2.85 77.56	M SCH, mica schist Metasediment. Medium gray, fine grained, and massive to schistose. Quartz-biotite-feldspar with trace amounts of pyrite, calcite, and chlorite on fracture planes. The first 17 meters are moderately fractured (blocks are long, as fracture angles are oriented between 50 degrees and subparallel to the core axis), probably reflecting weathering and Jointing from being near the surface. Cut by some dikelets, bleached hairline fractures (orientations around 40 degrees, and some thin quartz veinlets (up to 2 mm wide) oriented roughly subperpendicular to the core axis. There are some small, localized silicified/bleached areas of the core that contains a little bit of cordierite as well. Structure 35.00 - 51.00: SCHS Schistose, 60.00 Deg to CA Biotite schist. 38.61 - 42.00: FR Fractured, 40.00 Deg to CA Biotite schist. 38.61 - 51.24: DYKE, 70.00 Deg to CA Fracture area consists of blocks 3 to 25 cm long 51.16 - 51.24: DYKE, 70.00 Deg to CA Upper 4 cm pale brown quartz dominant aplite dikelet with trace phosphate? minerals, lower 4 cm white QFM pegmatite dikelet. 64.23 - 64.50: DYKE, 30.00 Deg to CA White QFM pegmatite dikelet. 75.11 - 75.20: DYKE, 70.00 Deg to CA Pale gray QFM aplite dikelet 75.11 - 75.20: FR Fractured, 70.00 Deg to CA Fracture area consists of blocks 1 to 3 cm long. RQD 2.85 - 5.00: 83.00 % RQD 98.00 % Core 5.00 - 8.00: 90.00 % RQD 100.00 % Core 11.00 - 14.00: 30.00 % RQD 100.00 % Core 11.00 - 17.00: 64.00 % RQD 98.00 % Core 11.00 - 17.00: 64.00 % RQD 100.00 % Core 20.00 - 23.00: 93.00 % RQD 100.00 % Core 20.00 - 35.00: 95.00 % RQD 100.00 % Core 20.00 - 35.00: 95.00 % RQD 100.00 % Core 32.00 - 36.00: 90.00 % RQD 100.00 % Core 32.00 - 36.00: 90.00 % RQD 90.00 % Core 32.00 - 37.00: 85.00 % RQD 90.00 % Core 32.00 - 38.00: 69.00 % RQD 90.00 % Core 32.00 - 30.00: 85.00 % RQD 90.00 % Core 32.00 - 30.00: 90.00 % RQD 90.00 % Core 32.00 - 30.00: 90.00 % RQD 90.00 % Core 33.00 - 41.00: 44.00 % RQD 90.00 % Core 34.00 - 47.00: 84.00 % RQD 90.00 % Core 35.00 -	Sample Number	FIOM		Lengin	LI2O_per	ко_ррт	CS_ppm	та_ррт	Be_bbu

Feb 24, 2012 Page 3 of 17

Detailed L	_ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 56.00 - 59.00 : 94.00 % RQD 99.00 % Core 59.00 - 62.00 : 90.00 % RQD 99.00 % Core 62.00 - 65.00 : 98.00 % RQD 100.00 % Core 65.00 - 68.00 : 89.00 % RQD 100.00 % Core 68.00 - 71.00 : 100.00 % RQD 100.00 % Core 71.00 - 74.00 : 97.00 % RQD 98.00 % Core 74.00 - 77.00 : 92.00 % RQD 99.00 % Core 77.00 - 80.00 : 93.00 % RQD 100.00 % Core									
77.56	78.82	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. Pale gray and coarse grained. Has a trace bright yellow mineral that is softperhaps a very fine grained muscovite, as the muscovite in the pegmatite is yellow with a hint of green. Feldspar is mostly gray with some white crystals and occasionally exhibits a perthitic texture. Quartz is translucent brown. Contacts are oriented 40 degrees (upper) and 20 degrees (lower) to the core axis.									

Detailed Lit	hology				Assay	/ Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
78.82		M SCH, mica schist Metasediment. Medium gray, fine grained, and massive to strongly foliated. Quartz-feldspar-biotite with trace pyrite and chlorite on fracture planes and trace cordierite and garnet in small, localized silicified areas. In moderately foliated areas, the metasediment sometimes exhibits a slight porphyroblastic texture with clumps of biotite making up the porphyroblasts. Cut by a few dikelets, bleached hairline fractures, and thin quartz veinlets. Mineralization 150.00 - 151.20 Cordierite seems to be associated with silicification 155.20 - 155.75 Same as above 157.80 - 158.00 Same as above 157.80 - 151.20. SI Silica, Patchy , Weak Silicification. Alteration 150.00 - 151.20 :SI Silica, Patchy , Weak Silicified patches are white and dark green with the dark green color being attibuted to abundant cordierite. 155.20 - 155.75 :SI Silica, Patchy , Weak Similar to above. 157.65 - 158.00 :SI Silica, Patchy , Weak Similar to above except has trace garnets. Structure 84.19 - 84.38 : DYKE , 30.00 Deg to CA Pale brown quartz dominant pegmatite with accessory feldspar? (white, opaqe, hard, no texture). Contains multiple small inclusions of metasediment near contacts. 89.00 - 89.10 : DYKE , 70.00 Deg to CA Very similar to the one between 84.18-84.38 97.57 - 97.83 : FR Fractured, 70.00 Deg to CA Pale gray, medium grained OFM pegmatite dikelet. 101.09 - 101.20 : DYKE , 60.00 Deg to CA Pale brown and orange/green medium grained OPHOS? pegmatite dikelet. Orange = lithiophilite? Green = triphylite? 131.91 - 135.00 : DYKE , 60.00 Deg to CA White quartz dominant pegmatite dikelet with a small, heavily metasomatized metasediment xenolith in the center.									

Detailed Lit	hology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		Structure 161.00 - 175.00 Area of strong foliation. Porphyroblastic texture and a wood-grain like appearance increase down the unit. RQD 80.00 - 83.00 : 97.00 % RQD 98.00 % Core 83.00 - 86.00 : 93.00 % RQD 100.00 % Core 86.00 - 89.00 : 100.00 % RQD 100.00 % Core 89.00 - 92.00 : 99.00 % RQD 100.00 % Core 92.00 - 95.00 : 99.00 % RQD 100.00 % Core 95.00 - 98.00 : 73.00 % RQD 98.00 % Core 98.00 - 101.00 : 98.00 % RQD 100.00 % Core 101.00 - 104.00 : 90.00 % RQD 100.00 % Core 104.00 - 107.00 : 98.00 % RQD 100.00 % Core 107.00 - 113.00 : 80.00 % RQD 100.00 % Core 113.00 - 116.00 : 93.00 % RQD 97.00 % Core 116.00 - 119.00 : 98.00 % RQD 100.00 % Core 119.00 - 122.00 : 98.00 % RQD 97.00 % Core 122.00 - 125.00 : 94.00 % RQD 99.00 % Core 125.00 - 131.00 : 95.00 % RQD 99.00 % Core 131.00 - 134.00 : 94.00 % RQD 99.00 % Core 131.00 - 134.00 : 94.00 % RQD 98.00 % Core 131.00 - 134.00 : 94.00 % RQD 98.00 % Core 131.00 - 134.00 : 94.00 % RQD 98.00 % Core 131.00 - 134.00 : 94.00 % RQD 98.00 % Core 131.00 - 134.00 : 94.00 % RQD 98.00 % Core 131.00 - 140.00 : 97.00 % RQD 98.00 % Core 131.00 - 140.00 : 97.00 % RQD 98.00 % Core 131.00 - 140.00 : 97.00 % RQD 98.00 % Core 131.00 - 140.00 : 97.00 % RQD 98.00 % Core 131.00 - 140.00 : 97.00 % RQD 98.00 % Core 140.00 - 143.00 : 99.00 % RQD 99.00 % Core 140.00 - 143.00 : 99.00 % RQD 99.00 % Core 140.00 - 143.00 : 98.00 % RQD 99.00 % Core 140.00 - 140.00 : 98.00 % RQD 99.00 % Core 140.00 - 140.00 : 98.00 % RQD 99.00 % Core 140.00 - 140.00 : 98.00 % RQD 99.00 % Core 140.00 - 140.00 : 98.00 % RQD 99.00 % Core 140.00 - 140.00 : 98.00 % RQD 99.00 % Core 140.00 - 140.00 : 98.00 % RQD 99.00 % Core 140.00 - 140.00 : 98.00 % RQD 99.00 % Core 140.00 - 140.00 : 98.00 % RQD 99.00 % Core 140.00 - 140.00 : 98.00 % RQD 99.00 % Core 140.00 - 150.00 : 90.00 % RQD 99.00 % Core 140.00 - 150.00 : 90.00 % RQD 90.00 % Core 140.00 - 150.00 : 90.0	Sample Number	From	1		Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		155.00 - 158.00 : 88.00 % RQD 100.00 % Core 158.00 - 161.00 : 100.00 % RQD 100.00 % Core 161.00 - 164.00 : 96.00 % RQD 100.00 % Core 164.00 - 167.00 : 98.00 % RQD 100.00 % Core 167.00 - 170.00 : 85.00 % RQD 99.00 % Core									
		170.00 - 173.00 : 87.00 % RQD 99.00 % Core 173.00 - 176.00 : 88.00 % RQD 100.00 % Core									

Page 6 of 17 DETAILED LOG

Detailed Li	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
175.00		DIAB, diabase Diabase. Medium gray and fine to medium grained. Feldspar-hornblende-pyroxene with trace biotite (alteration product?) and some alteration to calcite. Abundant chlorite on fracture planes. Magnetic. Small (3 cm thick) metasediment xenolith 9 cm down from upper contact. Fine grained texture extends into the unit from the contacts. Down from upper contact, 0.75 m is fine grained. Up from lower contact, 1.2 m is fine grained. Contacts are oriented 50 degrees to the core axis and have up to 0.5 cm thick, black chilled margins. RQD 176.00 - 179.00: 94.00 % RQD 98.00 % Core 179.00 - 182.00: 93.00 % RQD 100.00 % Core 182.00 - 185.00: 85.00 % RQD 98.00 % Core 185.00 - 188.00: 97.00 % RQD 100.00 % Core 188.00 - 191.00: 93.00 % RQD 97.00 % Core									

Detailed Lit	thology				Assay	Data					
From	To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
193.29	225.51	M SCH, mica schist Metasediment. Medium gray, fine grained, and massive to schistose with a porphyroblastic texture from slightly oversized clumps of biotite in the sections that are moderately to strongly foliated. Quartz-feldspar-biotite with trace pyrite, epidote, hematite, and calcite on fracture planes. Epidote and hematite are more prevalent in a section of core that appears to be a partially healed fault zone—core is highly fragmented with sections of core that are metasediment breccias. There are some faint slickensides on a few blocks but no fault gouge. The fault zone appears to extend from 206 m to 215 m. The metasediment is also cut by some dikelets, thin white quartz veinlets (up to 2 mm thick, oriented between 10 and 60 degrees to the core axis), and some bleached hairline fractures (especially prominent in the lower part of the unit, oriented between 10 and 30 degrees to the core axis). Structure 202.60 - 202.89: DYKE , 40.00 Deg to CA White QFM pegmatite dike with accessory garnet that has been altered to black. 205.77 - 205.95: DYKE , 40.00 Deg to CA Pale green-gray apilte dike with 0.5 cm thick white border zones. The upper 4 cm are gray QFM pegmatite. 206.00 - 215.00: FZ Fault Zone, 30.00 Deg to CA Fault zone consists of small fragments and large blocks. Some of the large blocks appear to be breccias made up of metasediment and cemented together with quartz and calcite. Blocks 1 to 50 cm long. 206.09 - 206.18: DYKE , 60.00 Deg to CA Pale gray QFM apilte dikelet with some hematite staining (probably from the proximity to the fault zone) Has 0.5 cm wide border zones that are white, except the lower one has either a yellow mineral in it or it is stained yellow. 215.87 - 216.00: FR Fractured, 40.00 Deg to CA Fracture area consists of blocks 1 to 4 cm long. Could be related to the fault zone above or to the strong foliation in the metasediment in that area. 216.00 - 222.00: SCHS Schistose, 60.00 Deg to CA Biotite schist. Area is also bleached by an abundance of hairline fractures. Slight p	Sample Number	FIOIII		Leriguri	.п.г.	ко_ррпі	CS_ppiii	та_ррпп	ве_ррііі

Feb 24, 2012 Page 8 of 17

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 224.00 - 227.00: 100.00 % RQD 100.00 % Core									
225.51		APL, aplite Aplite. Fine to medium grained, pale gray and pale yellow in color. Quartz-feldspar-muscovite with a dark green, soft, small (up to 3 mm in diameter) accessory mineral. Quartz is translucent pale brown-gray, feldspar is white and medium gray, and muscovite is silvery yellow. Contacts are oriented 40 degrees to the core axis.									

Detailed Li	thology				Assay	Data							
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_pp	om C	Cs_ppm -	Ta_ppm	Be_p	opm
226.08		M SCH, mica schist Metasediment. Medium gray, fine grained to nearly medium grained, and moderately to strongly foliated. Quartz-feldspar-biotite with trace pyrite and chlorite on fracture planes, and trace disseminated pyrite, garnet, and cordierite near silicified areas. Cut by a few dikelets, some thin white quartz veinlets (up to 2 mm thick and oriented about 60 degrees to the core axis), and a cpuple of bleached hairline fractures (oriented between 20 and 50 degrees to the core axis.) Mineralization 243.80 - 244.12 Very fine grained, trace disseminated pyrite, probably related to the alteration. 247.37 - 247.44 Very light pink to light pink from less than 1 mm to 2 mm in diameter, likely related to the alteration set at a constant of the alteration area. 243.80 - 243.95 Very light pink, 1 mm diameter, trace garnet grains scattered in the altered area. 244.77 - 244.86 Pyrite as described above 249.57 - 249.60 Light pink, 2 mm garnet grains in a thin band at a portion of the strongest alteration. 244.77 - 244.86 Garnet as described above 227.09 - 227.50 Trace pyrite likely related to the alteration 236.94 - 237.30 Similar to the above, but less concentrated. 249.54 - 249.74 Cordierite as described above 247.37 - 244.86 Cordierite as described above 247.37 - 247.44 Cordierite as described above 247.37 - 247.41 Cordierite as described above 247.37 - 247.44 Cordierite as described above 247.37 - 247.44 Cordierite as described above 247.37 - 247.41 Cordierite as described above	884419	252.54	253.5	<u> </u>			284.00	192.00		2.30	8.0

Feb 24, 2012 Page 10 of 17

Detailed Litholog	у			Assay	Data					
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	Alteration 227.26 - 227.32 :SI Silica, Pervasive , Strong From the center outward, banded peach and translucent quartz?, white feldspar and dark green cordierite? and fine disseminated pyrite. Core is harder than usual. 236.90 - 237.30 :SI Silica, Patchy , Moderate Dark green and white swirling patches of cordierite, quartz, and feldspar with trace light pink garnets. 243.80 - 244.12 :SI Silica, Patchy , Moderate Similar to the above alteration but with trace disseminated pyrite. 244.77 - 244.86 :SI Silica, Pervasive , Moderate Similar to the above alteration 247.37 - 247.44 :SI Silica, Pervasive , Moderate Similar to the above alteration but without the pyrite 249.54 - 249.74 :SI Silica, Patchy , Weak Similar to the above alteration between 247.37 and 247.44									
	Structure 229.35 - 229.42 : DYKE , 60.00 Deg to CA White QFM aplite dikelet with trace garnet and the dark mineral described in the aplite between 225.51 to 226.08 230.40 - 230.49 : DYKE , 80.00 Deg to CA Very pale gray QFM aplite dikelet with 0.5 cm wide white border zones. 242.67 - 242.73 : DYKE , 40.00 Deg to CA Light gray QFM aplite dikelet with thin white border zones. 251.54 - 251.59 : DYKE , 75.00 Deg to CA Pale brown quartz dominant aplite dikelet. RQD 227.00 - 230.00 : 92.00 % RQD 100.00 % Core 230.00 - 233.00 : 89.00 % RQD 100.00 % Core 233.00 - 236.00 : 92.00 % RQD 99.00 % Core 236.00 - 239.00 : 94.00 % RQD 100.00 % Core 239.00 - 242.00 : 96.00 % RQD 99.00 % Core 242.00 - 245.00 : 98.00 % RQD 99.00 % Core 245.00 - 248.00 : 87.00 % RQD 99.00 % Core 248.00 - 251.00 : 94.00 % RQD 99.00 % Core									

Feb 24, 2012 Page 11 of 17

Detailed Lit	thology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
253.54	255.35	SPD PEG, spodumene pegmatite	884421	253.54	254.54					_	
		Spodumene pegmatite. White to pale gray and medium grained. Quartz-feldspar-muscovite-spodumene with trace pink garnets. Almost all of the spodumene is altered to yellow-green muscovite. There is a 10 cm band of fresh spodumene in the center of the pegmatite dike. Fresh spodumene is pale green-gray, with crystals oriented 55 degrees to the core axis and up to 1.5 cm long. Contacts are oriented 40 degrees (upper) and 20 degrees (lower) to the core axis. Mineralization 253.54 - 255.35: SPOD Spodumene, PAT Patch, 1.00% Fresh spodumene is pale green-gray, with crystals oriented 55 degrees to the core axis and up to 1.5 cm long. Fresh spodumene mineralization is less than 1% RQD 254.00 - 257.00: 89.00 % RQD 100.00 % Core	884422	254.54	255.35	0.8	1 0.13	3 633.0	00 40.0	0 20.0	00 184.0
255.35	261.03	M SCH, mica schist	884423	255.35	256.35	1.00	0.24	4 437.0	00 133.0	0 5.9	90 36.0
		Metasediment. Medium gray, fine grained, and moderately foliated. Quartz-feldspar-biotite with trace pyrite and chlorite on fracture planes. Cut by a few dikelets, listed below. Structure 255.60 - 255.70: DYKE, 70.00 Deg to CA Pale gray QFM pegmatite dikelet 257.12 - 257.30: DYKE, 40.00 Deg to CA Similar to above. 258.23 - 258.53: DYKE, 50.00 Deg to CA White QFM aplite with trace garnets. RQD 257.00 - 260.00: 95.00 % RQD 99.00 % Core 260.00 - 263.00: 96.00 % RQD 98.00 % Core	884424	260.03	261.03	1.00	0.24	4 <u>380.</u> 6	00 <u>163.0</u>	0 2.0	00 8.0
261.03		SPD PEG, spodumene pegmatite	884425	261.03	262.03						
		Spodumene pegmatite. White and coarse grained.	884426	261.03	262.03						
		Quartz-feldspar-muscovite-spodumene with trace pink-red garnets and an even more scarce medium hard, mustard yellow mineral, and dark green apatite. Spodumene is pale green to altered dark olive green. Crystals are oriented subperpendicular to contacts and are up to 6 cm long. Contacts are oriented 50 degrees (upper) and 70 degrees (lower) to the core axis. Mineralization 261.03 - 263.11: SPOD Spodumene, PERV Pervasive, 2.00% Spodumene is pale green to altered dark olive green. Crystals are oriented subperpendicular to contacts and are up to 6 cm long. RQD 263.00 - 266.00: 95.00 % RQD 100.00 % Core	884427	262.03	263.11	1.08	3 0.65	5 604.0	00 40.7	0 51.9	90 175.C
263.11		M SCH, mica schist	884428	263.11	263.44	0.33	3 0.24	4 438.0	00 190.0	0 2.0	00 11.0
		Metasediment. Medium gray, fine grained, and massive. Quartz-feldspar-biotite.									

Feb 24, 2012 Page 12 of 17

Detailed L	ithology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
263.44		SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace pinky-red garnets and blue-green apatite. Dark green band of aplite at the top (10 cm) and the bottom (5 cm) of the pegmatite that is QFM-garnet in composition with accessory spodumene. Spodumene is pale green and fresh. Crystals are oriented subperpendicular to the aplite bands (oriented 30 and 80 degrees) and are up to 4 cm long. Contacts are oriented 80 degrees (upper) and 60 degrees (lower) to the core axis. Mineralization 263.44 - 264.51: SPOD Spodumene, PERV Pervasive, 2.00% Spodumene is pale green and fresh. Crystals are oriented subperpendicular to the aplite bands (oriented 30 and 80 degrees) and are up to 4 cm long.	884429 884431	263.44 264.00	264.00 264.51		l				.50 161.0 .80 167.0
264.51		M SCH, mica schist Metasediment. Medium gray, fine grained, and massive. Quartz-feldspar-biotite with trace pyrite and chlorite on fracture planes. Cut by a few bleached hairline fractures oriented 35 degrees to the core axis.	884432	264.51	264.98	0.47	0.30	348.0	00 113.0	00 1	.60 13.0
264.98		SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with accessory garnet and trace blue green apatite. Most of the large white feldspar crystals have a perthitic texture while one of the crystals has tartan twinning. There are a few scattered pods of dark green aplite (QFM with trace spodumene). Spodumene is mostly fresh pale green with a few of the crystals altered to black. Crystals are oriented 50 degrees to the core axis and are up to 7 cm long. Contacts are oriented 70 degrees to the core axis. Mineralization 264.98 - 266.56: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is mostly fresh pale green with a few of the crystals altered to black. Crystals are oriented 50 degrees to the core axis and are up to 7 cm long. RQD 266.00 - 269.00: 95.00 % RQD 99.00 % Core	884434	264.98 265.98	265.98 266.56					_	.90 145.0 .20 173.0

Feb 24, 2012 Page 13 of 17

Lithology M SCH, mica schist Metasediment. Medium gray, fine grained, and massive. Quartz-feldspar-biotite with trace pyrite, chlorite, and epidote on fracture planes. In small localized altered areas, there is trace cordierite. Cut by a few bleached hairline fractures (orientations between 50 and 70 degrees to the core axis), and a few thin dikelets (the thickest are listed below). Structure 277.11 - 277.21: DYKE, 40.00 Deg to CA White QFM aplite dikelet with accessory garnets. 279.20 - 279.25: DYKE, 40.00 Deg to CA	Sample Number 884435 884436	From 266.56 278.47	To 267.56						Be_ppm 50 2.0 10 19.0
Metasediment. Medium gray, fine grained, and massive. Quartz-feldspar-biotite with trace pyrite, chlorite, and epidote on fracture planes. In small localized altered areas, there is trace cordierite. Cut by a few bleached hairline fractures (orientations between 50 and 70 degrees to the core axis), and a few thin dikelets (the thickest are listed below). Structure 277.11 - 277.21: DYKE, 40.00 Deg to CA White QFM aplite dikelet with accessory garnets. 279.20 - 279.25: DYKE, 40.00 Deg to CA									
with trace pyrite, chlorite, and epidote on fracture planes. In small localized altered areas, there is trace cordierite. Cut by a few bleached hairline fractures (orientations between 50 and 70 degrees to the core axis), and a few thin dikelets (the thickest are listed below). Structure 277.11 - 277.21: DYKE, 40.00 Deg to CA White QFM aplite dikelet with accessory garnets. 279.20 - 279.25: DYKE, 40.00 Deg to CA	884436	278.47	279.47	7 1.00	0.3	2 450.0	00 272.0	00 4.	10 19.0
277.11 - 277.21 : DYKE , 40.00 Deg to CA White QFM aplite dikelet with accessory garnets. 279.20 - 279.25 : DYKE , 40.00 Deg to CA									
White QFM aplite dikelet RQD 269.00 - 272.00 : 97.00 % RQD 100.00 % Core 272.00 - 275.00 : 98.00 % RQD 100.00 % Core 275.00 - 278.00 : 97.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core									
80 SPD PEG, spodumene pegmatite	884437	279.47	280.47	7 1.00	1.2	3 997.0	00 84.5	50 35.	50 146.0
· · · · · · · · · · · · · · · · · · ·									
There are scattered aplite bands throughout but the thickest are near the									
cm thick. The largest white feldspar crystals have a perthitic texture. The lower section of the pegmatite is brecciated and "healed" with dark green sericite. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 60 degrees to the core axis and the lower one is lost in rubble.									
279.47 - 282.80 : SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : F Fault, 30.00 Deg to CA Small fault zone that extends into the metasediment below. A couple of the blocks are made out of breccias and others exhibit faint slickensides. Blocks 1 to 9 cm long.									
	RQD 269.00 - 272.00: 97.00 % RQD 100.00 % Core 272.00 - 275.00: 98.00 % RQD 100.00 % Core 275.00 - 278.00: 97.00 % RQD 100.00 % Core 278.00 - 281.00: 95.00 % RQD 100.00 % Core 278.00 - 281.00: 95.00 % RQD 100.00 % Core 80 SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace garnets and blue green apatite. There are scattered aplite bands throughout but the thickest are near the contacts. The upper aplite band is about 12 cm thick and the lower is about 40 cm thick. The largest white feldspar crystals have a perthitic texture. The lower section of the pegmatite is brecciated and "healed" with dark green sericite. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 60 degrees to the core axis and the lower one is lost in rubble. Mineralization 279.47 - 282.80: SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80: F Fault, 30.00 Deg to CA Small fault zone that extends into the metasediment below. A couple of the blocks are made out of breccias and others exhibit faint slickensides. Blocks 1 to 9 cm long.	RQD 269.00 - 272.00 : 97.00 % RQD 100.00 % Core 272.00 - 275.00 : 98.00 % RQD 100.00 % Core 275.00 - 278.00 : 97.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core 80 SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace garnets and blue green apatite. There are scattered aplite bands throughout but the thickest are near the contacts. The upper aplite band is about 12 cm thick and the lower is about 40 cm thick. The largest white feldspar crystals have a perthitic texture. The lower section of the pegmatite is brecciated and "healed" with dark green sericite. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 60 degrees to the core axis and the lower one is lost in rubble. Mineralization 279.47 - 282.80 : SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : F Fault, 30.00 Deg to CA Small fault zone that extends into the metasediment below. A couple of the blocks are made out of breccias and others exhibit faint slickensides. Blocks 1 to 9 cm long. RQD	ROD 269.00 - 272.00 : 97.00 % RQD 100.00 % Core 275.00 - 278.00 : 97.00 % RQD 100.00 % Core 275.00 - 278.00 : 97.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core 80 SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace garnets and blue green apatite. There are scattered aplite bands throughout but the thickest are near the contacts. The upper aplite band is about 12 cm thick and the lower is about 40 cm thick. The largest white feldspar crystals have a perthitic texture. The lower section of the pegmatite is brecciated and "healed" with dark green sericite. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 60 degrees to the core axis and the lower one is lost in rubble. Mineralization 279.47 - 282.80 : SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : F Fault, 30.00 Deg to CA Small fault zone that extends into the metasediment below. A couple of the blocks are made out of breccias and others exhibit faint slickensides. Blocks 1 to 9 cm long. RQD	RQD 269.00 - 272.00 : 97.00 % RQD 100.00 % Core 275.00 - 278.00 : 98.00 % RQD 100.00 % Core 275.00 - 281.00 : 95.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core 80 SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace garnets and blue green apatite. There are scattered aplite bands throughout but the thickest are near the contacts. The upper aplite band is about 12 cm thick and the lower is about 40 cm thick. The largest white feldspar crystals have a perthitic texture. The lower section of the pegmatite is brecciated and "healed" with dark green sericite. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 60 degrees to the core axis and the lower one is lost in rubble. Mineralization 279.47 - 282.80 : SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : F Fault, 30.00 Deg to CA Small fault zone that extends into the metasediment below. A couple of the blocks are made out of breccias and others exhibit faint slickensides. Blocks 1 to 9 cm long. RQD	RQD 269.00 - 272.00 : 97.00 % RQD 100.00 % Core 272.00 - 275.00 : 98.00 % RQD 100.00 % Core 275.00 - 278.00 : 97.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Ouartz-feldspar-muscovite-spodumene with trace garnets and blue green apatite. There are scattered aplite bands throughout but the thickest are near the contacts. The upper aplite band is about 12 cm thick and the lower is about 40 cm thick. The largest white feldspar crystals have a perthitic texture. The lower section of the pegmatite is brecciated and "healed" with dark green sericite. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 60 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : F Fault, 30.00 Deg to CA Small fault zone that extends into the metasediment below. A couple of the blocks are made out of breccias and others exhibit faint slickensides. Blocks 1 to 9 cm long. RQD	RQD 269.00 - 272.00 : 97.00 % RQD 100.00 % Core 272.00 - 275.00 : 98.00 % RQD 100.00 % Core 275.00 - 278.00 : 97.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core 880 SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace garnets and blue green apatite. There are scattered aplite bands throughout but the thickest are near the contacts. The upper aplite band is about 12 cm thick and the lower is about 40 cm thick. The largest white feldspar crystals have a perthitic texture. The lower section of the pegmatite is brecciated and "healed" with dark green sericite. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 60 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : FPault, 30.00 Deg to CA Small fault zone that extends into the metasediment below. A couple of the blocks are made out of breccias and others exhibit faint slickensides. Blocks 1 to 9 cm long. RQD	RQD 269,00 - 272,00 : 97.00 % RQD 100.00 % Core 275.00 - 278,00 : 98.00 % RQD 100.00 % Core 275.00 - 278,00 : 97.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core 80 SPD PEG, spodumene pegmatite Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite-spodumene with trace garnets and blue green apatite. There are scattered apilite bands throughout but the thickest are near the contacts. The upper apilite band is about 12 cm thick and the lower is about 40 cm thick. The largest white feldspar crystals have a perthitic texture. The lower section of the pegmatite is brecciated and "healed" with dark green sericite. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 60 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 40 degrees to the core axis and are up to 4 cm long. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : F Fault, 30.00 Deg to CA Small fault zone that extends into the metasediment below. A couple of the blocks are made out of breccias and others exhibit faint slickensides. Blocks 1 to 9 cm long.	RQD 269.00 - 272.00 : 97.00 % RQD 100.00 % Core 272.00 - 278.00 : 98.00 % RQD 100.00 % Core 275.00 - 278.00 : 97.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core 278.00 - 281.00 : 95.00 % RQD 100.00 % Core 80 SPD PEG, spodumene pegmatite Spodumene pegmatite White and coarse grained. Ouartz-feldspar-muscovite-spodumene with trace garnets and blue green apatite. There are scattered aplite bands throughout but the thickest are near the contacts. The upper aplite band is about 12 cm thick and the lower is about 40 cm thick. The largest white feldspar crystals have a perthitic texture. The lower section of the pegmatite is breciated and "healed" with dark green sericite. Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 40 degrees to the core axis and are up to 4 cm long. Upper contact is oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : SPOD Spodumene, PERV Pervasive, 5.00% Spodumene is pale green to altered black (especially in the last 80 cm). Crystals are oriented 40 degrees to the core axis and are up to 4 cm long. Structure 282.00 - 282.80 : F Fault, 30.00 Deg to CA Small fault zone that extends into the metasediment below. A couple of the blocks are made out of breccias and others exhibit faint slickensides. Blocks 1 to 9 cm long. RQD	ROD 269.00 - 2778.00 : 97.00 % ROD 100.00 % Core 2778.00 : 97.00 % ROD 100.00 % Core 278.00 : 97.00 % ROD 100.00 % Core 278.00 : 98.00 % ROD 100.00 % Core 279.47 202.80 % ROD 100.00 % Core 279.47 202.80 % ROD 100.00 % ROD 100.00 % ROD 100.00 % Core 279.47 202.80 % ROD 100.00 %

Feb 24, 2012 Page 14 of 17

Detailed L	ithology				Assay I	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
282.80	285.83	M SCH, mica schist	884442	282.80	283.8	0 1.00			00 220.0	00 6	30 15.0
		Metasediment. Medium gray, fine grained, and weakly foliated. Quartz-feldspar-biotite with trace pyrite, epidote, and chlorite on fracture planes. The small fault from the pegmatite above continues into this unit. The unit is moderately fractured over all. Cut by a couple of dikelets and some bleached hairline fractures that carry epidote with them, oriented roughly subperpendicular to the core axis.	884443	284.83	285.8	3 1.00	0 0.2	<u>2</u> 271.	00 123.0	<u>00</u>	90 6.0
		Structure 282.80 - 284.80 : F Fault, 30.00 Deg to CA Small fault consists of blocks 1 to 12 cm long with some showing slickensides. 284.00 - 284.08 : DYKE , 80.00 Deg to CA White QFM aplite dikelet									
		RQD 284.00 - 287.00: 58.00 % RQD 100.00 % Core									
285.83	286.91	SPD PEG, spodumene pegmatite Spodumene pegmatite that is mostly barren aplite. White and fine to medium grained. Quartz-feldspar-muscovite with accessory spodumene and trace garnet. The unit is moderately fractured. Spodumene is pale green-gray to altered black. Crystals are up to 1 cm long and oriented randomly. Contacts are oriented 60 degrees (upper) and 55 degrees (lower) to the core axis.	884444	285.83	286.9	1 1.08	3 0.0	6 525.	00 35.´	10 54	40 141.0
		Mineralization 285.83 - 286.91 : SPOD Spodumene, PAT Patch, 1.00% Spodumene is pale green-gray to altered black. Crystals are up to 1 cm long and oriented randomly. Contains less than 1% spodumene.									

Feb 24, 2012 Page 15 of 17

Detailed Li	thology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
286.91	303.31	M SCH, mica schist	884445	286.91	287.91	1.0	0 0.15	163.0	00 64.6	0.	
		Metasediment. Medium gray, fine grained, and weakly foliated.	884446	286.91	287.91	1.0					
		Quartz-feldspar-biotite with trace epidote, pyrite, calcite and chlorite on fracture planes. Cut by a fracture in the upper part of the unit, a few dikelets, and bleached hairline fractures (a few of which carry some epidote; oriented between 25 and 60 degrees to the core axis). There are a few localized, small, silicified areas.	884447	302.31	303.31	1.0	0 0.13	3 146.0	00 47.8	30 1.	70 7.0
		Structure 289.58 - 290.20 : FR Fractured, 70.00 Deg to CA Fracture area consists of blocks 1 to 7 cm long. 293.40 - 293.60 : DYKE , 50.00 Deg to CA White QFM aplite dikelet with accessory garnet. 297.03 - 297.13 : DYKE , 50.00 Deg to CA White QFM pegmatite dikelet RQD 287.00 - 290.00 : 62.00 % RQD 96.00 % Core 290.00 - 293.00 : 93.00 % RQD 99.00 % Core 293.00 - 296.00 : 100.00 % RQD 100.00 % Core 296.00 - 299.00 : 98.00 % RQD 100.00 % Core 299.00 - 302.00 : 96.00 % RQD 98.00 % Core 302.00 - 305.00 : 97.00 % RQD 100.00 % Core									
303.31		SPD PEG, spodumene pegmatite	884448	303.31	304.00	0.6	9 0.04	1000.0	00 45.3	30 12.	30 117.0
303.31		Spodumene pegmatite. White and coarse grained. Quartz-feldspar-muscovite	884449	304.00	304.59						
		with accessory spodumene and trace pink garnet and blue-green apatite. There are a few scattered bands of aplite, especially towards the bottom of the unit. There is an 8 cm wide, strongly metasomatized metasediment xenolith located at 304.30 m. Spodumene is pale gray to altered black. Crystals are oriented randomly and are up to 1 cm long. Contacts are oriented 65 (upper) and 70 (lower) degrees to the core axis. Mineralization 303.31 - 304.59: SPOD Spodumene, PAT Patch, 1.00% podumene is pale gray to altered black. Crystals are oriented randomly and are up to 1 cm long.					,	,	,		,

Detailed Li	ithology				Assay	Data						
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppn	ı
	То	Lithology M SCH, mica schist Metasediment. Medium gray, fine grained, and massive to weakly foliated. Quartz-feldspar-biotite with trace pyrite and chlorite on fracture planes. Cut by multiple thin white quartz veinlets (up to 2 mm thick, oriented between 20 and 60 degrees to the core axis) and some dikelets. Structure 306.63 - 306.71 : DYKE , 70.00 Deg to CA White QFM pegmatite dikelet 306.92 - 307.00 : DYKE , 50.00 Deg to CA White QFM aplite dikelet with accessory garnet 313.16 - 313.23 : DYKE , 50.00 Deg to CA White QFM aplite dikelet 321.49 - 321.77 : DYKE , 60.00 Deg to CA White QFM aplite dike. RQD 305.00 - 308.00 : 97.00 % RQD 97.00 % Core 311.00 - 314.00 : 99.00 % RQD 99.00 % Core	Sample Number 884451	From 304.59					· · ·		Be_ppn	8.0
		314.00 - 317.00 : 96.00 % RQD 100.00 % Core 317.00 - 320.00 : 97.00 % RQD 97.00 % Core 320.00 - 323.00 : 99.00 % RQD 100.00 % Core										

Samples

Sample Number	From	To	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884419	252.54	253.54	0.2153	284.0000	192.0000	2.3000	8.0000
884421	253.54	254.54	0.1292	458.0000	30.5000	30.0000	174.0000
884422	254.54	255.35	0.1292	633.0000	40.0000	20.0000	184.0000
884423	255.35	256.35	0.2368	437.0000	133.0000	5.9000	36.0000
884424	260.03	261.03	0.2368	380.0000	163.0000	2.0000	8.0000
884425	261.03	262.03	0.6458	586.0000	44.3000	25.7000	235.0000
884427	262.03	263.11	0.6458	604.0000	40.7000	51.9000	175.0000
884428	263.11	263.44	0.2368	438.0000	190.0000	2.0000	11.0000
884429	263.44	264.00	1.6146	709.0000	46.7000	43.5000	161.0000
884431	264.00	264.51	1.3778	579.0000	43.1000	24.8000	167.0000
884432	264.51	264.98	0.3014	348.0000	113.0000	1.6000	13.0000
884433	264.98	265.98	1.4639	716.0000	48.5000	15.9000	145.0000
884434	265.98	266.56	1.4209	490.0000	35.2000	20.2000	173.0000
884435	266.56	267.56	0.1938	109.0000	34.7000	0.5000	2.0000
884436	278.47	279.47	0.3229	450.0000	272.0000	4.1000	19.0000
884437	279.47	280.47	1.2271	997.0000	84.5000	35.5000	146.0000

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884438	280.47	281.47	1.3778	597.0000	48.0000	20.2000	171.0000
884439	281.47	282.40	0.2583	651.0000	41.7000	19.1000	128.0000
884441	282.40	282.80	0.1076	480.0000	34.8000	34.4000	65.0000
884442	282.80	283.80	0.2799	356.0000	220.0000	6.3000	15.0000
884443	284.83	285.83	0.2153	271.0000	123.0000	0.9000	6.0000
884444	285.83	286.91	0.0646	525.0000	35.1000	54.4000	141.0000
884445	286.91	287.91	0.1507	163.0000	64.6000	0.6000	5.0000
884447	302.31	303.31	0.1292	146.0000	47.8000	1.7000	7.0000
884448	303.31	304.00	0.0431	1000.0000	45.3000	12.3000	117.0000
884449	304.00	304.59	0.2799	700.0000	78.2000	24.3000	116.0000
884451	304.59	305.59	0.1507	129.0000	25.7000	0.9000	8.0000
Sample Type CDUP							
884426	261.03	262.03	0.3014	649.0000	45.3000	42.1000	200.0000
884446	286.91	287.91	0.1507	153.0000	55.8000	1.8000	5.0000

Page 1 of 10 DETAILED LOG

Hole Number: NC-11-29 Units: METRIC

Project Name:	Nama Creek	Primary Coordinates Grid: U	TM:	Destination Coordinates Grid: UTM:	Collar Dip:	-60.00
Project Number:	01	North: 5477824.91		North:	Collar Az:	140.00
Location:	Nama Creek	East: 424808.72		East:	Length:	254.00
		Elev: 372.42		Elev:	Start Depth:	0.00
Date Started:	Nov 16, 2011	Collar Survey: N	Plugged: N	Contractor: Cobra Drilling	Final Depth:	254.00
Date Completed:	Nov 19, 2011	Multishot Survey: Y	Hole Size: NQ	Core Storage: Beardmore ON		
		Pulse EM Survey: N	Casing: Left in Hole			

Comments: Hole logged by Andrea Dixon and Jonathan Musicco; claim number TB67167

Sample Averages

Average Type	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
WEIGHTED	144.85	150.85	6.00	1.0908	773.8333	57.7833	46.7000	190.3333
WEIGHTED	146.85	148.85	2.00	1.3240	749.0000	55.1000	50.2500	193.0000
WEIGHTED	168.43	172.43	4.00	1.1679	777.2500	55.3500	40.9250	175.2500
WEIGHTED	176.44	177.90	1.46	1.6432	346.8767	30.3671	41.3397	199.7397
WEIGHTED	176.44	178.95	2.51	1.1822	372.9841	54.0223	37.5641	151.7410

Survey Data

De	pth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
	17.00	132.60	-60.00	Reflex	ОК	mag field: 5769	101.00	138.80	-60.50	Reflex	OK	mag field: 5744
2	221.00	144.50	-60.80	Reflex	ОК	mag 58540	254.00	144.50	-60.90	Reflex	OK	mag field: 5779

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
0.00	5.60	OVB, Casing									
		Overburden									

Detailed Litholog	/			Assay	Data				,	
From To	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	M SCH, mica schist Metasediment. Medium gray, fine grained, and weakly to strongly foliated. Strong foliation resembles wood grain and is more common in the lower half of the unit. Quartz-feldspar-biotite with trace pyrite, chlorite, and epidote on fracture planes. In the infrequent, small, and localized bleached/silicified areas, there is abundant cordierite. Altered areas with cordierite are restricted to the upper part of the unit. Cut by some dikelets (the thickest are listed below), bleached hair line fractures (most prominent in the lower middle half of the unit, oriented between 10 and 70 degrees to the core axis), and thin, white quartz veinlets (up to 2 mm thick, oriented 35 and 55 degrees to the core axis, most common in the upper middle half of the unit. Structure 18.82 - 19.00: DYKE, 70.00 Deg to CA Pale brown quartz-dominant aplite dikelet with trace phosphates? 20.15 - 20.34 Wobbly pale brown quartz-dominant pegmatite dikelet with silvery gray mica? and triphylite? 27.85 - 32.50 Area of strong foliation that resembles wood grain 32.15 - 32.20: DYKE, 80.00 Deg to CA White QFM aplite dikelet 23.66 - 32.79: FR Fractured, 90.00 Deg to CA Fracture area consists of blocks 1 to 3 cm long 46.09 - 46.18: DYKE, 50.00 Deg to CA Pale gray QF aplite 53.00 - 62.60 Area of strong foliation that resembles wood grain 60.78 - 60.83: DYKE, 50.00 Deg to CA Pale gray quartz-dominant aplite with accessory feldspar RQD 5.60 - 8.00: 81.00 % RQD 99.00 % Core 11.00 - 14.00: 70.00 % RQD 100.00 % Core 11.00 - 10.00: 92.00 % RQD 99.00 % Core 11.00 - 14.00: 70.00 % RQD 99.00 % Core 22.00 - 23.00: 99.00 % RQD 99.00 % Core 23.00 - 26.00: 100.00 % RQD 99.00 % Core 23.00 - 26.00: 100.00 % RQD 99.00 % Core 23.00 - 35.00: 99.00 % RQD 99.00 % Core 23.00 - 35.00: 99.00 % RQD 99.00 % Core 23.00 - 35.00: 99.00 % RQD 99.00 % Core 23.00 - 35.00: 99.00 % RQD 99.00 % Core 35.00 - 38.00: 81.00 % RQD 99.00 % Core 35.00 - 38.00: 81.00 % RQD 99.00 % Core 35.00 - 36.00: 100.00 % RQD 99.00 % Core 36.00 - 41.00: 99.00									

Feb 24, 2012 Page 3 of 10

Detailed	Lithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		RQD 41.00 - 44.00: 74.00 % RQD 96.00 % Core Dropped box of core 44.00 - 47.00: 90.00 % RQD 100.00 % Core Partially part of the dropped box of core 47.00 - 50.00: 98.00 % RQD 100.00 % Core 50.00 - 53.00: 92.00 % RQD 100.00 % Core 53.00 - 56.00: 92.00 % RQD 98.00 % Core 56.00 - 59.00: 90.00 % RQD 100.00 % Core 56.00 - 65.00: 94.00 % RQD 98.00 % Core 62.00 - 65.00: 94.00 % RQD 98.00 % Core 65.00 - 68.00: 95.00 % RQD 98.00 % Core									
66.82	67.12	QFM PEG, quartz-feldspar-muscovite pegmatite Quartz-feldspar-muscovite pegmatite. White and coarse grained. Last 6 cm of the dike is aplite of the same composition but with what appears to be accessory silvery sulfide minerals. Feldspar is white, quartz is pale brown and the muscovite is yellow, dark green, or silvery white. Contacts are oriented 50 (upper) and 60 (lower) degrees to the core axis.									

Detailed Lit	thology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
	То	Lithology M SCH, mica schist Metasediment. Medium gray, fine grained, and moderately to strongly foliated. Cuartz-feldspar-biotite with trace pyrite, chlorite, and calcite on fracture planes. In an altered area near the bottom of the unit, there is cordierite present in the core. There is trace disseminated pyrite the core that appears to be initially associated with a mass of dikelets and continues to the bottom of the unit. Cut by numerous bleached hairline fractures (oriented about 50 degrees to the core axis), dikelets, and quartz veins. Dikelets are most numerous in the lower middle part of the unit. Veins are most common at the bottom of the unit where they merge with the mass of quartz veins that seem to be tangled with small pieces of epidotized metasediment (composes the next unit). Mineralization 77.00 - 85.95 Trace amounts of pyrite appears to be somewhat associated with all of the intruded material Alteration 80.44 - 80.85:SI Silica, Pervasive , Moderate White feldspar/quartz swirled with dark green cordierite. Structure 77.30 - 79.15 (continued from aboveshould also be labeled dike but the software doesn't like it) and white and gray zoned QFM aplites that cut across the more abundant quartz-dominant dikelets. White and dark gray feldspar, pale gray quartz, and yellow muscovite. 77.30 - 79.15 Mulitple dikelets, 2 to 14 cm thick with most being about 4 to 5 cm thick. Composed of 2 types of dike: quartz-dominant (pale brown, with multiple inclusions of metasediment, trace feldspar, mica, phosphates, and in one, garnet) RCD 68.00 - 71.00: 89.00 % RQD 99.00 % Core 71.00 - 74.00: 95.00 % RQD 99.00 % Core	Sample Number	From		1	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
		77.00 - 80.00: 93.00 % RQD 99.00 % Core 80.00 - 83.00: 64.00 % RQD 100.00 % Core 83.00 - 86.00: 75.00 % RQD 95.00 % Core									
85.95	87.50	QV, Quartz Vein									
33.73	57.30	Interupted QV - Anastomosing QV with massive, grey MSCH blocks, sharp contacts giving a brecciated apperance. Dark green(epidote?) as patches in and out of core. Thin, <4mm carbonate veinlets at low angle to CA from 25 to 40 deg. RQD 86.00 - 89.00: 82.00 % RQD 99.00 % Core									

Feb 24, 2012 Page 5 of 10

Detailed L	_ithology		Assay Data								
From	То	Lithology	Sample Number	From	To	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
87.50	89.00	M SCH, mica schist MSCH - grey to charcoal in colour, qtz+fsp+biotite schist with thin carb veinlets				1				1	
		ranging from 20 to 90 deg tca. epidote and hematite altn as thin <4mm veins having trace cubic PY. lower contact is irregular to QV									
89.00	91.01	QV, Quartz Vein									
		Interupted QV - very simular in apperance as 85.95 to 87.50m. thin 1mm hematite stringers associated with QV fractures as narrow occurances less then 5cm in core length. trace PY.									
		RQD 89.00 - 92.00: 79.00 % RQD 100.00 % Core									
91.01	140.36	M SCH, mica schist									
		MSCH - Black to grey, charcoal in colour. massive to weakly foliated with thin QFM dyklets up to 8cm trend in and out in low volume, starting from 106.6 to 109.90m. thin qtz/carb veinlets trend in and out of core though-out this unit. Lower contact is sharp at 50 deg tca.									
		RQD									
		92.00 - 95.00: 92.00 % RQD 99.00 % Core									
		95.00 - 98.00: 85.00 % RQD 100.00 % Core									
		98.00 - 101.00: 78.00 % RQD 100.00 % Core									
		101.00 - 104.00: 89.00 % RQD 100.00 % Core									
		104.00 - 107.00: 97.00 % RQD 100.00 % Core									
		107.00 - 110.00: 93.00 % RQD 100.00 % Core									
		110.00 - 113.00: 94.00 % RQD 99.00 % Core									
		113.00 - 116.00: 94.00 % RQD 98.00 % Core									
		116.00 - 119.00: 97.00 % RQD 100.00 % Core									
		119.00 - 122.00: 82.00 % RQD 100.00 % Core									
		122.00 - 125.00: 88.00 % RQD 96.00 % Core									
		125.00 - 128.00: 95.00 % RQD 100.00 % Core									
		128.00 - 131.00: 92.00 % RQD 99.00 % Core									
		131.00 - 134.00: 96.00 % RQD 100.00 % Core									
		134.00 - 137.00: 83.00 % RQD 97.00 % Core									
		137.00 - 140.00: 94.00 % RQD 100.00 % Core									
		140.00 - 143.00: 80.00 % RQD 100.00 % Core									
140.36	140.95	QFM PEG, quartz-feldspar-muscovite pegmatite									
		QFM - white to cream, grey, silver with medium green mica flakes up to .75cm, course grained with no spodumene present. Lower contact is sharp at 45 deg									
		tca.									

Feb 24, 2012 Page 6 of 10

Detailed Lit	hology				Assay I	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
140.95	144.85	M SCH, mica schist MSCH - grey, massive to weakly foliated at low angle tca with very little qtz/carb veinlets present. lower contact is sharp at 40 deg tca. RQD 143.00 - 146.00: 87.00 % RQD 100.00 % Core	884452	143.85	144.8	5 1.00	0 0.1	9 167.0	00 60.	00 C	0.90 3.0
144.85	151.20	SPD PEG, spodumene pegmatite SPD PEG Dyke - white, silver, cream, grey, light to dark green. 20-25% spodumene over all in this unit. Very course grained feldspar xtals up to 5cm. spodumene trends in and out of core as short stubby fresh xtals at various orientations down to 150.0m, where then the spodumene is dark green and has been altered from 150.0m to end of the dyke. lower contact is irregular and sharp at ~40 deg tca. Texture 144.85 - 151.20 : CG Coarse Grained Mineralization 150.00 - 151.20 : SPOD Spodumene, INT Interstitial, 7.00% 7-10 fresh spod 144.85 - 150.00 : SPOD Spodumene, INT Interstitial, 20.00% 20-25% fresh spod. RQD 146.00 - 149.00 : 98.00 % RQD 100.00 % Core	884453 884454 884455 884456 884457 884458 884459	144.85 145.85 146.85 147.85 148.85 149.85	146.8 147.8 148.8 149.8 150.8	5 1.00 5 1.00 5 1.00 5 1.00 5 1.00	0 0.6 0 1.3 0 1.2 0 0.9 0 0.9	9 852.0 6 789.0 9 709.0 0 901.0 5 737.0	00 59. 00 51. 00 59. 00 63. 00 59.	40 34 10 29 10 70 10 46 70 39	0.60 164.0 1.10 217.0 0.80 161.0 0.70 225.0 0.60 188.0 0.40 187.0 0.70 186.0
151.20	168.43	149.00 - 152.00 : 97.00 % RQD 100.00 % Core M SCH, mica schist MSCH - grey, massive to weakly foliated at ~65 deg tca. few QFM thin dyklets trend in and out of this unit up to 14cm. no fresh spodumene noticed. lower contact is sharp at 75 deg tca. RQD 152.00 - 155.00 : 95.00 % RQD 97.00 % Core 155.00 - 158.00 : 98.00 % RQD 98.00 % Core 158.00 - 161.00 : 97.00 % RQD 99.00 % Core 161.00 - 164.00 : 97.00 % RQD 100.00 % Core 164.00 - 167.00 : 86.00 % RQD 99.00 % Core	884461 884462	151.20 167.43							3.40 9.60 9.60 82.0

Feb 24, 2012 Page 7 of 10

Detailed L	ithology				Assay D	ata					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
168.43	172.76	SPD PEG, spodumene pegmatite	884463	168.43	169.43	1.00	0.84	615.0	00 59.3	0 82.	60 216.0
		SPD PEG Dyke - white, grey, light to medium green to silver. very coarse grained	884464	169.43	170.43	1.00	1.46	646.0	00 50.1	0 32.	60 189.0
		up to 23cm(perthitic fsp).	884465	170.43	171.43	1.00	0.97	838.0	00 45.6	0 12.	00 129.0
		spod orientation varies from 0 to 90 deg tca, short stubby xtals, fresh,euhedral	884466	170.43	171.43			724.0	00 40.2		
		and light green in colour. estimate the spodumene at 20% as it trends in and out of core as patches with fsp and qtz making up the remainder of the unit.	004407	171.43	172.43						
		Thin(5cm) aplite patches start at 171.95m down hole to end of unit. trace	884468	172.43	172.76	0.33	0.32	510.0	00 74.8	0 71.	50 173.0
		garnet. trace dark green muscovite trend in and out of core. lower contact is sharp at 70 deg tca.									
		Mineralization									
		168.43 - 172.76 : SPOD Spodumene, INT Interstitial, 20.00%									
		RQD									
		170.00 - 173.00: 89.00 % RQD 98.00 % Core									
172.76	176.44	M SCH, mica schist	884469	172.76	173.76	1.00	0.37	7 287.0	00 311.0	0 5.	00 38.0
		MSCH - Grey, massive MSCH having three, thin(2cm) QFM dyklets with 1-2 %	884471	175.44	176.44	1.00	0.32	104.0	00 21.0	0 0.	50 2.0
		garnets. lower contact is sharp at 75 deg tca.									
		RQD									
		173.00 - 176.00: 96.00 % RQD 100.00 % Core									
		176.00 - 179.00: 92.00 % RQD 99.00 % Core									
176.44	177.90	SPD PEG, spodumene pegmatite	884472	176.44	177.44	1.00	1.77	7 293.0	00 29.8	0 49.	50 201.0
		SPD PEG- white, cream, light to medium green. fresh, stubby to short(3cm)	884473	177.44	177.90	0.46	1.38	464.0	00 31.6	0 23.	60 197.0
		xtals, with no preferred orientation and randomlly scattered in dyke. Garnets at 1% volume up to 3mm. very little aplite present. spod is estimated at 25-30% volume. lower contact is sharp at 75 deg tca.									
		Mineralization									
		176.44 - 177.90 : SPOD Spodumene, INT Interstitial, 25.00%									
		fresh spodumene					T				
177.90	178.50	M SCH, mica schist	884474	177.90	178.50	0.60	0.30	399.0	00 120.0	0 5.	40 10.0
		MSCH - massive grey MSCH. lower contact is sharp at 75 deg tca.				1					
178.50	178.95	SPD PEG, spodumene pegmatite	884475	178.50	178.95	0.45	0.86	423.0	00 42.8	0 68.	20 185.0
		SPD PEG - white to cream, light green spodumene xtals at 40 deg tca. unit is estimated at 15% spod with dominating qtz and fsp minerals. lower contact is									
		sharp at 60 deg tca.									
		Mineralization									
		178.50 - 178.95 : SPOD Spodumene, INT Interstitial, 15.00%									
178.95	181.65	M SCH, mica schist	884476	178.95	179.95	1.00	0.26	125.0	00 33.7	0 0.	90 2.0
		MSCH - same as described from 177.90 to 178.50m		1			3.20		33.7	-1 0.	-1 -1
		RQD									
		179.00 - 182.00 : 94.00 % RQD 98.00 % Core									
		177.00 102.00 . 74.00 /0 RQD 70.00 /0 COIC									

Page 8 of 10 DETAILED LOG

Detailed L	ithology				Assay	Data					
From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
181.65	182.41	QFM PEG, quartz-feldspar-muscovite pegmatite QFM - light grey to off white with dark green flecks of mica in and out of this is unit. no fresh spodumene noticed in core. aplite for 13 cm at end of this unit. lower contact sharp at 45 deg tca. RQD 182.00 - 185.00: 93.00 % RQD 98.00 % Core									
182.41	207.57	M SCH, mica schist MSCH - grey to charcoal in colour, massive, weak to moderate foliation and ranges, trends in and out of core at various deg tca. Thin qtz/card veinlets up to 6cm trend also in and out of core with sharp contacts. Lower contact is chilled over ~1.85 m. Structure 204.00 - 204.18 : VNLT Veinlets , 40.00 Deg to CA irregular contact RQD 185.00 - 188.00 : 89.00 % RQD 98.00 % Core 188.00 - 191.00 : 70.00 % RQD 100.00 % Core 191.00 - 194.00 : 98.00 % RQD 98.00 % Core 194.00 - 197.00 : 98.00 % RQD 97.00 % Core 197.00 - 200.00 : 91.00 % RQD 100.00 % Core 200.00 - 203.00 : 100.00 % RQD 100.00 % Core 203.00 - 206.00 : 98.00 % RQD 99.00 % Core 206.00 - 209.00 : 95.00 % RQD 100.00 % Core									
207.57	224.17	DIAB, diabase DIA - dark grey to charcoal, medium to coarse grained, equigranular, weakly magnetic in and out of core, holocrystaline, pyroxene, feldspar with minor olivine, chl on joint planes. ophitic texture. lower contact is sharp at 40 deg tca. RQD 209.00 - 212.00 : 98.00 % RQD 98.00 % Core 212.00 - 215.00 : 97.00 % RQD 98.00 % Core 215.00 - 218.00 : 100.00 % RQD 97.00 % Core 218.00 - 221.00 : 94.00 % RQD 98.00 % Core 221.00 - 224.00 : 100.00 % RQD 96.00 % Core 224.00 - 227.00 : 98.00 % RQD 96.00 % Core									

From To Lithology Sample Number From To Length Li2O_per Rb_ppm Cs_ppm Ta_ppm Be_ppm 224.17 253.99 M SCH, mica schist	Detailed L	ithology				Assay	Data					
MSCH - grey, massive to weakly foliated at high angle tca. Many(14-15) qfm dykes intrude through MSCH at high angle tca and vary from a few cm up to 34 cm. (structure tab) Some OFM dykes carry minor silvery to light-dark green altered mica as flakes starting from 231.23 m for 33 cm at 3% volume. mica is cg and up to 2mm is size, scattered in and throught this unit. Structure 231.25 - 231.58 : VNLT Veinlets , 65.00 Deg to CA OFM ROD 227.00 - 230.00 : 100.00 % RQD 99.00 % Core 230.00 - 233.00 : 82.00 % RQD 100.00 % Core 233.00 - 236.00 : 95.00 % RQD 100.00 % Core 236.00 - 236.00 : 95.00 % RQD 96.00 % Core 239.00 - 242.00 : 74.00 % RQD 99.00 % Core 242.00 - 245.00 : 94.00 % RQD 98.00 % Core 245.00 - 245.00 : 94.00 % RQD 98.00 % Core	From	То	Lithology	Sample Number	From	То	Length	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
251.00 - 254.00 : 76.00 % RQD 100.00 % Core	224.17	253.99	MSCH - grey, massive to weakly foliated at high angle tca. Many(14-15) qfm dykes intrude through MSCH at high angle tca and vary from a few cm up to 34 cm. (structure tab) Some QFM dykes carry minor silvery to light-dark green altered mica as flakes starting from 231.23 m for 33 cm at 3% volume. mica is cg and up to 2mm is size, scattered in and throught this unit. Structure 231.25 - 231.58 : VNLT Veinlets , 65.00 Deg to CA QFM RQD 227.00 - 230.00 : 100.00 % RQD 99.00 % Core 230.00 - 233.00 : 82.00 % RQD 100.00 % Core 233.00 - 236.00 : 95.00 % RQD 100.00 % Core 236.00 - 239.00 : 100.00 % RQD 96.00 % Core 239.00 - 242.00 : 74.00 % RQD 99.00 % Core 242.00 - 245.00 : 94.00 % RQD 98.00 % Core 245.00 - 248.00 : 100.00 % RQD 98.00 % Core 248.00 - 251.00 : 100.00 % RQD 99.00 % Core									

Samples

Sample Number	From	To	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884452	143.85	144.85	0.1938	167.0000	60.0000	0.9000	3.0000
884453	144.85	145.85	1.3563	655.0000	54.3000	59.6000	164.0000
884454	145.85	146.85	0.6889	852.0000	59.4000	34.1000	217.0000
884455	146.85	147.85	1.3563	789.0000	51.1000	29.8000	161.0000
884456	147.85	148.85	1.2917	709.0000	59.1000	70.7000	225.0000
884457	148.85	149.85	0.9042	901.0000	63.1000	46.6000	188.0000
884458	149.85	150.85	0.9472	737.0000	59.7000	39.4000	187.0000
884459	150.85	151.20	0.5382	548.0000	43.6000	40.7000	186.0000
884461	151.20	152.20	0.1722	231.0000	62.7000	3.4000	9.0000
884462	167.43	168.43	0.2153	665.0000	351.0000	29.6000	82.0000
884463	168.43	169.43	0.8396	615.0000	59.3000	82.6000	216.0000
884464	169.43	170.43	1.4639	646.0000	50.1000	32.6000	189.0000
884465	170.43	171.43	0.9688	838.0000	45.6000	12.0000	129.0000
884467	171.43	172.43	1.3993	1010.0000	66.4000	36.5000	167.0000
884468	172.43	172.76	0.3229	510.0000	74.8000	71.5000	173.0000
884469	172.76	173.76	0.3660	287.0000	311.0000	5.0000	38.0000

Samples

Sample Number	From	То	Li2O_per	Rb_ppm	Cs_ppm	Ta_ppm	Be_ppm
Sample Type ASSAY							
884471	175.44	176.44	0.3229	104.0000	21.0000	0.5000	2.0000
884472	176.44	177.44	1.7653	293.0000	29.8000	49.5000	201.0000
884473	177.44	177.90	1.3778	464.0000	31.6000	23.6000	197.0000
884474	177.90	178.50	0.3014	399.0000	120.0000	5.4000	10.0000
884475	178.50	178.95	0.8611	423.0000	42.8000	68.2000	185.0000
884476	178.95	179.95	0.2583	125.0000	33.7000	0.9000	2.0000
Sample Type CDUP							
884466	170.43	171.43	1.1410	724.0000	40.2000	16.5000	152.0000