ASSESSMENT REPORT ON THE TRILL PROPERTY

 TOTTEN, HYMAN, ERMATINGER AND TRILL TOWNSHIPS, SUDBURY, ONTARIODecember 11, 2014
Page

1. SUMMARY 1
2. PROPERTY DESCRIPTION AND LOCATION 2
3. ACCESSIBILITY 2
4. GEOLOGICAL SETTING 6
4.1. REGIONAL GEOLOGIC SETTING 6
4.2. PROPERTY GEOLOGY. 7
4.2.1. GENERAL 7
4.2.2. GEOLOGY OF THE TRILL OFFSET AREA 10
5. EXPLORATION 11
5.1. MAPPING AND TRENCHING 11
5.2. GEOPHYSICS 22
5.2.1. LINECUTTING 23
5.2.2. UTEM5 SURVEY 23
5.2.3. BOREHOLE UTEM SURVEY 23
5.3. DRILLING 23
6. RESULTS 27
6.1. RESULTS OF 2014 MAPPING PROGRAM 27
6.2. RESULTS OF 2014 GEOPHYSICS PROGRAM 28
6.2.1. UTEM 5 SURVEY RESULTS 28
6.2.2. BOREHOLE UTEM RESULTS 28
6.3. RESULTS OF 2014 DRILLING PROGRAM 29
7. INTERPRETATION AND CONCLUSIONS 32
8. RECOMMENDATIONS 33
REFERENCES 35
CERTIFICATE 37
APPENDIX A 38
APPENDIX B 38
APPENDIX C 38
APPENDIX D 38
APPENDIX E 38
LIST OF FIGURES
Figure 1: Property Location. 3
Figure 2: Property Map 5
Figure 3: Regional Geology, adapted from Ames, Davidson, Buckle and Card (2005) 8
Figure 4: Property Geology 9
Figure 5: Position of trenches relative to SIC, property boundary, and township boundary. 19
Figure 6: Map of Trench \#2 in Trill East hosting Ni-Cu-PGE mineralization 20
Figure 7: Trench \#1 with sample locations 21
Figure 8: Position of all drill holes on the Trill Property 26
Figure 9: Gold star shows the position of the new QD outcrops. 28
LIST OF TABLES
Table 1: Trill property status as of December 11, 2014 3
Table 2: Sample location and descriptions. 12
Table 3: Summary of all diamond drill holes in this report 25

1. SUMMARY

The Trill Property is located approximately 40 to 45 kilometres west of Sudbury and 25 km northwest of the Town of Whitefish. The Property is accessible by road and, within the grid area, by ATV trails.

The Trill Property is located on the North Range of the SIC; the east boundary of the Property is located 200 to 800 metres from the west end of the SIC contact, in the brecciated footwall. The Property is underlain by Archean granites and gneisses, post-Archean Matachewan diabase, Nipissing diabase, olivine diabase, and Sudbury Breccia.

This report summarizes work completed from October 1, 2013 to September 31, 2014. In this time period, the following work was completed:

1) Mapping and Sampling- a total of 355 samples were sent for 48 element and PGE analysis and 16 samples were sent for whole rock analysis.
2) Trenching: Tate's Construction excavated land in order to expose outcrops.
3) Line cutting: Daniel Gauthier Exploration was contracted to cut a total of 39.875 km .
4) Geophysics: Lamontagne was contracted to perform a Surface UTEM5 survey, as well as eight Borehole EM surveys.
5) DGPS: Canadian Exploration Services Ltd. was contracted to DGPS survey the geophysical loops.
6) Geophysical consulting: Alan King reviewed surface UTEM5 and Borehole EM data.
7) Thin Sections: Vancouver Petrographics prepared thin sections from field and core samples.
8) Gyroscope: Halliburton performed downhole gyroscope surveys.
9) Road building and maintenance: William Day Construction, Carlyle Construction, and Tate's Constructions built roads and drill pads.
10) Diamond Drilling: Jacob and Samuel were contracted to drill eleven diamond drill holes.

2. PROPERTY DESCRIPTION AND LOCATION

The Trill Property is located approximately 40 to 45 kilometres west of Sudbury and 25 km northwest of the Town of Whitefish (Figure 1). The Property extends along the north-south length of Trill Township along its western border, and covers a large part of Totten Township. It also extends into Hyman and Ermatinger Townships. It consists of:

1) Thirty-nine, 100% Wallbridge Mining Company Limited ("Wallbridge") owned, unpatented claims in the Sudbury Mining Division totalling 8176 ha (Figure 2, Error! Reference source not found.). Expiry dates for the claims range from July 25, 2015 to October 29, 2017.
2) A patented claim adjacent on the east side of claim S1229977 (Figure 2) in the southeast $1 / 4$ of lot 11 Concession 2, Trill Township (Mining Rights Only parcel 31563 SWS, claim number S 12594). The patented claim adds another 2 claim units and 43 ha to the Property size (Error! Reference source not found.).
3) There is a mining lease on claim S1167121 that is 258.3 ha in size (Table 1).

3. ACCESSIBILITY

The Trill Property is accessible by road and, within the grid area, by ATV trails. It can be accessed from the north by taking Old Cartier Road from Highway 144 at Windy Lake and travelling west and south through Cascaden Township. From the south, it is accessed by taking Highway 17 for 31 km west from Sudbury to the Worthington Road (also known as the old Hwy 17 and Hwy 658) turnoff, just past the Town of Whitefish. From there, proceed westward along the Worthington Road for a distance of about 10 km , and then follow the Fairbanks Lake Road 5.5 km north to the Chicago Mine Road turnoff. Follow the Chicago Mine Road west and north for approximately 10 km to reach the south end of the Property at the Drury-Trill Township boundary. The Chicago Mine Road traverses claim S1229501 and passes approximately 200 to 500 m east of the eastern boundary of the Property.

Figure 1: Property Location.

Table 1: Trill property status as of December 11, 2014

number	township	area (ha)	holder	recorded date	work due date	Work required \$	Work reserve \$
1167119	Totten	256	WMCL	37187	23-Oct-2001	23-Oct-2016	0
1167120	Totten	256	WMCL	37187	23-Oct-2001	23-Oct-2016	0
1229363	Trill	256	WMCL	36097	29-Oct-1998	29-Oct-2017	0
1229501	Trill	80	WMCL	35969	23-Jun-1998	23-Jun-2016	0
1229502	Trill	176	WMCL	35969	23-Jun-1998	23-Jun-2017	0
1229503	Trill	160	WMCL	35969	23-Jun-1998	23-Jun-2017	0
1229948	Trill	256	WMCL	36577	21-Feb-2000	21-Feb-2016	26795

1229976	Trill	240	WMCL	35829	03-Feb-1998	03-Feb-2017	178485
1229977	Trill	256	WMCL	35829	03-Feb-1998	03-Feb-2017	0
1230737	Trill	96	WMCL	36577	21-Feb-2000	21-Feb-2017	0
1241793	Trill	48	WMCL	36615	30-Mar-2000	30-Mar-2016	0
1246135	Trill	48	WMCL	37425	18-Jun-2002	18-Jun-2016	0
3009381	Totten	96	WMCL	38142	04-Jun-2004	04-Jun-2016	0
3009482	Totten	256	WMCL	38142	04-Jun-2004	04-Jun-2016	81019
3009483	Totten	256	WMCL	38142	04-Jun-2004	04-Jun-2016	0
3009484	Totten	256	WMCL	38142	04-Jun-2004	04-Jun-2016	13296
3017386	Totten	32	WMCL	38540	07-Jul-2005	07-Jul-2016	0
3017425	Totten	32	WMCL	38540	07-Jul-2005	07-Jul-2016	0
3018802	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2015	0
3018803	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2015	0
3018804	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2016	0
3018805	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2016	0
3018806	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2016	0
3018807	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2015	0
3018808	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2016	0
3018809	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2016	0
3018810	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2015	0
3018811	Totten	208	WMCL	38558	25-Jul-2005	25-Jul-2016	0
3018844	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2016	0
3018845	Totten	224	WMCL	38541	08-Jul-2005	08-Jul-2016	1386
3018847	Totten	256	WMCL	38541	08-Jul-2005	08-Jul-2016	0
3018848	Totten	256	WMCL	38541	08-Jul-2005	08-Jul-2016	0
3018849	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2015	0
3018850	Totten	256	WMCL	38558	25-Jul-2005	25-Jul-2015	0
4207192	Ermatinger	128	WMCL	38497	25-May-2005	25-May-2016	0
4207193	Ermatinger	256	WMCL	38497	25-May-2005	25-May-2016	0
4207194	Ermatinger	128	WMCL	38497	25-May-2005	25-May-2016	0
4207195	Totten	256	WMCL	38497	25-May-2005	25-May-2016	0
4207196	Totten	256	WMCL	38497	25-May-2005	25-May-2016	0
4207198	Totten	64	WMCL	38497	25-May-2005	25-May-2016	1792
	Totals	8176				197600	302773
mining lease:							
PIN \#	township	area (ha)	rights held	holder	renewal date	$\begin{gathered} \text { lease } \\ \text { number } \end{gathered}$	work reserve
73363-	Totten	258.23	MSR	WMCL	12-Nov-2030	108405	816221

0003							
patent:							
PIN \#	township	area (ha)	rights held	Holder			
73365- $\mathbf{0 2 1 2}$	Trill	42.99	MRO	WMCL			

Figure 2: Property Map.

4. GEOLOGICAL SETTING

4.1. REGIONAL GEOLOGIC SETTING

The Sudbury area hosts one of the most prolific Ni-Cu-PGE mining camps in the world. Sudbury geology is unique - the ore deposits are associated with the Sudbury Igneous Complex (SIC) and related rocks, which record what is generally accepted as a major, midProterozoic meteorite impact event, which occurred 1.85 billion years ago (Ga). Despite over one hundred years of academic and industry scrutiny, many aspects of Sudbury ore deposits geology are still hotly disputed and significant new discoveries continue to be made.

Current exploration focuses on the SIC and related footwall rocks. The Sudbury Structure is located at the junction of the Superior and Southern Provinces of the Canadian Shield. The Superior Province is of Archean age, about 2.7 Ga in the Sudbury area. Paleoproterozoic sedimentary and volcanic rocks of the Huronian Supergroup were then deposited unconformably on Archean basement in an elongate belt and were subsequently intruded by sill-like Nipissing gabbros. After metamorphism and folding during the Penokean Orogeny, this belt formed the Southern Province along the southern margin of the Superior Province. At $\sim 1.85 \mathrm{Ga}$, the SIC was superimposed on Archean and Huronian rocks. The SIC is located about 10 km north of the $\sim 1 \mathrm{Ga}$ Grenville Front.

The SIC consists of a discontinuous, variably mineralized, basal Sublayer unit lying along the crater wall, offset dykes intruded for up to tens of kilometres into the underlying brecciated country rocks, and the overlying so-called Main Mass units of Mafic Norite, Felsic Norite, Quartz Gabbro, and Granophyre. The formation of the SIC as a superheated meteorite impact melt sheet that was heavily contaminated by crustal rocks is strongly supported by contemporary research although other theories have been postulated in the past. At its base, the SIC intrudes brecciated rocks of the crater wall. At its top, the SIC intrudes the Onaping Formation of the Whitewater Group.

The present geometry of the SIC is the result of northwest directed tectonic shortening accommodated along regional folds, shear zones, and faults that developed during the Penokean Orogeny between 1.9 and 1.65 Ga . Deformation steepened the South Range, which was thrust northward along the South Range Shear Zone, and the East Range of the SIC, which buckled, accumulating strain along a complex series of folds and faults.

One of the world's greatest concentrations of Ni-Cu-Co-PGE mineralization occurs associated with the Sudbury Structure. Sulphide deposits occur in three distinct geological environments: (1) contact Sublayer, (2) Offset Dykes and (3) brecciated footwall.

4.2. PROPERTY GEOLOGY

4.2.1. GENERAL

The Trill Property is located on the North Range of the SIC; the east boundary of the Property is located 200 to 800 metres from the west end of the SIC contact, in the brecciated footwall (Figure 3). The Property is underlain by Archean granites and gneisses, post-Archean Matachewan diabase, Nipissing diabase, and olivine diabase dykes, as well as Sudbury Breccia.

The oldest rocks in the Property are monzogranitic and tonalitic gneisses, with lesser amounts of intermediate and mafic gneisses of the Archean Levack Gneiss Complex (2700-2640 Ma) found around Armstrong Lake and East Totten Lake in the northern part of the Property. These gneisses are intruded by slightly deformed, felsic to intermediate granitoid rocks of the Cartier Batholith (2640 Ma). Matachewan Diabase dykes (2473 Ma) and Sudbury Swarm Olivine Diabase dykes (1240 Ma) cut both the granites and gneisses (Figure 4).

Figure 3: Regional Geology, adapted from Ames, Davidson, Buckle and Card (2005).

Figure 4: Property Geology.

Occurrences of Sudbury Breccia are classified using an alphanumeric scheme that describes clast and matrix compositions, and quantifies the degree of thermal and/or metasomatic recrystallization and alteration to which the breccias have been subjected. The degree of recrystallization on the Property ranges from 3 to 5 , with 5 being the most common. Heat indices of 3 occur in the south-central and northeast breccia belts, other areas east of Ministic Creek have heat indices of 4 or 5 , and 5 west of Ministic Creek. Trace pyrite is found in approximately 50% of breccia samples; it occurs in both the clasts and matrix. The pyrite was likely derived from the comminuted wall rocks that contain pyrite.

4.2.2. GEOLOGY OF THE TRILL OFFSET AREA

The most economically important rock type of the area is quartz diorite, of which all offset dykes of the SIC are composed. Outcrops of this rock type were mapped for the first time on the Property during the fall of 2004. Only a small amount was exposed on the Property at that time. Its exposure has been increased by trenching and stripping and the discovery of new outcrops. The dyke has been traced over an east-west distance of 1.85 km , centred on the discovery showing. The rock comprises euhedral plagioclase and amphibole, with minor amounts of biotite, titanite, apatite, and characteristic, granophyric intergrowths of quartz and feldspar. Xenoliths of various rock types, including amphibolite, anorthosite, and granite are found in some parts of the dyke, especially near mineralization in which case this rock type is called inclusion quartz diorite (IQD). On the outer extents of the QD corridor there are cm scale glassy or spherulitic textured quartz diorite dykes that do not have the typical QD textures but are comprised of devitrified glass; however, they have a similar lithogeochemical signature to the QD and are hereafter referred to as spherulitic quartz diorite (SQD) by Wallbridge. In 2007, a Sudbury Breccia-like variation of the IQD was discovered. This IQD generally has smaller but more plentiful inclusions of granitoids, gabbro-anorthosite, and quartz diorite, and is bound by quartz diorite with resorbed granitic clasts and amphibole rimmed quartz grains. This version of inclusion quartz diorite is not associated with massive
mineralization. The offset dyke generally trends east-west, but is cut in several places by crosscutting faults which may displace it by several tens of metres.

5. EXPLORATION

5.1. MAPPING AND TRENCHING

In September and October of 2013, mechanical stripping in the Eastern part of Trill was performed. Eleven days were spent by Tate's Construction, excavating two trenches on claim 1229977 (Figure 5). The sites are referred to as Trench \#2 (Figure 6) and Trench \#1 (Figure 7). The outcrops were then washed by technicians, Kevin Dutchburn and Jesse Bagnell and mapped by Geologist, Györgyi Tuba. This work exposed $\mathrm{Cu}-\mathrm{Ni}-\mathrm{PGE}$ sulfide mineralization hosted by a chaotic mixing zone of QD and Sudbury breccia on Trench \#2 The sulfides (pyrrhotite, chalcopyrite, pyrite and millerite in order of abundance) occur as irregular, massive veinlets up to 10 cm in width, and as lenses, blebs, disseminations hosted by QD, Sudbury breccia and the host granite. Trench \#1 was less interesting, therefore, only the lithologies were mapped. All samples taken from the trenches are in table 2. Any sample in table two that has "channel" under sample type was been taken from trench \#2.

FGN= Felsic Gneiss, Dia= Diabase, Po= Pyrrhotite, Py=Pyrite, Cpy= Chalcopyrite, QTZ= Quartz, Fg=Fine grained, STD=Standard, BLK=Blank.

Location	Sample ID	E NAD27	N NAD27	$\frac{\text { Sample }}{\text { Type }}$	$\frac{\text { Length }}{(\mathrm{m})}$	Geologist	$\begin{gathered} \text { Date } \\ \text { Sampled } \end{gathered}$	$\begin{aligned} & \text { Rock } \\ & \hline \text { Type } \end{aligned}$	Field Description
TRILL	N984163	458355.1351	5146708.459	CHANNEL		AP	9/10/2013	IQD	Channel 1, IQD with bleby po in matrix
TRILL	N984164	458353.2797	5146708.399	CHANNEL		AP	9/10/2013	IQD	Channel 2, IQD with bleby po in matrix
TRILL	N984165	458357.0647	5146701.87	CHANNEL		AP	9/10/2013	IQD	Channel 3, py-cpy vein ($\sim 1 \mathrm{~cm}$ width) cutting IQD
TRILL	N984166	458338.511	5146710.469	CHANNEL		AP	9/10/2013	GR	Channel 4, py-po-cpy bearing hydrothermal vein cutting SDBX and GR
TRILL	N984167	458341.6527	5146711.158	CHANNEL		AP	9/10/2013	GR	Channel 5, py-po-cpy bearing hydrothermal vein cutting GR
TRILL	N984168	458341.9908	5146707.049	CHANNEL		AP	9/10/2013	GR	Channel 6, py-po-cpy bearing hydrothermal vein cutting GR
TRILL	N984169			STD					
TRILL	N984170			BLK					
TRILL	N984171	458347.961	5146716.007	CHANNEL	0.16	AP	15/10/2013	GR	Channel A, Brick sample, po-cpy-py (2 cm) bearing vein cutting $G R$
TRILL	N984172	458363.1833	5146753.659	GRAB		AP	31/10/2013	SDBX	Regional (?) pervasive epidote alteration with disseminated py-cpy
TRILL	N984173	458366.1684	5146737.523	GRAB		AP	31/10/2013	GR	Po-cpy vein/lens in GR next to IQD contact
TRILL	N984174	458364.8407	5146743.192	GRAB		AP	31/10/2013	IQD	BI-diss po-cpy in IQD near contact with SDBX
TRILL	N984175	458354.6898	5146726.695	CHANNEL	0.85	AP	4/11/2013	GR	Channel B, Cpy-po veinlets, blebs in GR, channel cut is oriented 40-220
TRILL	N984176	458354.0878	5146725.935	CHANNEL	0.71	AP	4/11/2013	GR	Channel C, Sulfide lens in GR, channel cut is oriented 40-220
TRILL	N984177	458356.6689	5146725.165	CHANNEL	0.41	AP	4/11/2013	IQD	Channel D, Sulfide-qtz vein going 272, channel cut is oriented 160-340
TRILL	N984178	458355.6711	5146723.846	CHANNEL	0.39	AP	4/11/2013	IQD	Channel E , Massive sulfide vein going ~320, channel cut is oriented 78-258
TRILL	N984179	458355.4072	5146723.276	CHANNEL	0.75	AP	4/11/2013		Channel F-1, channel cut is oriented N-S, total length is 4.93 m
TRILL	N984180	458355.4649	5146722.616	CHANNEL	0.6	AP	4/11/2013		Channel F-2
TRILL	N984181	458355.5062	5146721.916	CHANNEL	0.78	AP	4/11/2013		Channel F-3

Location	Sample ID	E NAD27	N NAD27	Sample Type	$\frac{\text { Length }}{(\mathrm{m})}$	Geologist	$\begin{gathered} \text { Date } \\ \text { Sampled } \end{gathered}$	$\frac{\text { Rock }}{\text { Type }}$	Field Description
TRILL	N984182	458355.5639	5146721.026	CHANNEL	0.95	AP	4/11/2013		Channel F-4
TRILL	N984183	458355.6216	5146720.266	CHANNEL	0.55	AP	4/11/2013		Channel F-5
TRILL	N984184	458355.6628	5146719.687	CHANNEL	0.62	AP	4/11/2013		Channel F-6
TRILL	N984185	458355.7041	5146719.017	CHANNEL	0.7	AP	4/11/2013		Channel F-7
TRILL	N984186			STD		AP	4/11/2013		
TRILL	N984187			BLK		AP	4/11/2013		
TRILL	N984188	458362.0041	5146701.32	CHANNEL	0.16	AP	4/11/2013	IQD	Channel G, py vein in IQD going 145/45
TRILL	N984189	458354.9537	5146702.58	CHANNEL	0.9	AP	4/11/2013		Channel $\mathrm{H}-1$, channel cut is oriented $\mathrm{N}-\mathrm{S}$, total length is $20 . \mathrm{Hm}$
TRILL	N984190	458354.8382	5146703.53	CHANNEL	1	AP	4/11/2013		Channel H-2
TRILL	N984191	458354.731	5146704.45	CHANNEL	0.94	AP	4/11/2013		Channel H-3
TRILL	N984192	458354.6321	5146705.39	CHANNEL	0.9	AP	4/11/2013		Channel H-4
TRILL	N984193	458354.5166	5146706.349	CHANNEL	1	AP	4/11/2013		Channel H-6
TRILL	N984194	458354.4094	5146707.289	CHANNEL	0.89	AP	4/11/2013		Channel H-7
TRILL	N984195	458354.294	5146708.319	CHANNEL	1.15	AP	4/11/2013		Channel H-8
TRILL	N984196	458354.1703	5146709.369	CHANNEL	1.01	AP	4/11/2013		Channel H-9
TRILL	N984197	458354.0796	5146710.299	CHANNEL	0.88	AP	4/11/2013		Channel H-10
TRILL	N984198	458353.9641	5146711.268	CHANNEL	0.97	AP	4/11/2013		Channel H-11
TRILL	N984199	458353.8569	5146712.308	CHANNEL	1.1	AP	4/11/2013		Channel H-12
TRILL	N984200	458353.7332	5146713.278	CHANNEL	1.02	AP	4/11/2013		Channel H-13
TRILL	N985501	458353.6178	5146714.338	CHANNEL	0.97	AP	5/11/2013		Channel H-14

Location	$\frac{\text { Sample }}{\underline{I D}}$	E NAD27	N NAD27	$\frac{\text { Sample }}{\text { Type }}$	$\frac{\text { Length }}{(\mathrm{m})}$	Geologist	$\begin{gathered} \text { Date } \\ \underline{\text { Sampled }} \end{gathered}$	$\frac{\text { Rock }}{\text { Type }}$	Field Description
TRILL	N985502	458353.5188	5146715.218	CHANNEL	0.95	AP	5/11/2013		Channel H-15
TRILL	N985503	458353.3952	5146716.307	CHANNEL	1.11	AP	5/11/2013		Channel H-16
TRILL	N985504	458353.3045	5146717.177	CHANNEL	0.78	AP	5/11/2013		Channel H-17
TRILL	N985505	458353.222	5146717.887	CHANNEL	0.52	AP	5/11/2013		Channel H-18
TRILL	N985506	458353.156	5146718.427	CHANNEL	0.63	AP	5/11/2013		Channel H-19
TRILL	N985507	458353.0818	5146719.097	CHANNEL	0.58	AP	5/11/2013		Channel H-20
TRILL	N985508	458353.0158	5146719.627	CHANNEL	0.52	AP	5/11/2013		Channel H-21
TRILL	N985509	458352.9911	5146720.176	CHANNEL	0.5	AP	5/11/2013		Channel H-22
TRILL	N985510	458352.8427	5146721.136	CHANNEL	1.01	AP	5/11/2013		Channel H-23
TRILL	N985511	458358.1614	5146713.958	CHANNEL	0.93	AP	5/11/2013		Channel I-1, channel cut is oriented $\mathrm{N}-\mathrm{S}$, total length is 14.9 m
TRILL	N985512	458358.0212	5146714.858	CHANNEL	0.96	AP	5/11/2013		Channel I-2
TRILL	N985513	458357.914	5146715.737	CHANNEL	0.78	AP	5/11/2013		Channel I-3
TRILL	N985514			CHANNEL	0.8	AP	5/11/2013		Channel H-5
TRILL	N985515	458362.9441	5146721.686	GRAB		AP	5/11/2013		Ep-carb alteration (veins and vugs) in IQD with associated disseminated cpy
TRILL	N985516			STD		AP	5/11/2013		
TRILL	N985517			BLK		AP	5/11/2013		
TRILL	N985518	458357.7738	5146716.597	CHANNEL	0.98	GyT	11/11/2013		Channel I-4
TRILL	N985519	458357.6501	5146717.447	CHANNEL	0.73	GyT	11/11/2013		Channel I-5
TRILL	N985520	458357.5347	5146718.287	CHANNEL	0.92	GyT	11/11/2013		Channel I-6
TRILL	N985521	458357.4028	5146719.167	CHANNEL	0.94	GyT	11/11/2013		Channel I-7

Location	Sample ID	E NAD27	N NAD27	$\frac{\text { Sample }}{\text { Type }}$	$\frac{\text { Length }}{(\mathrm{m})}$	Geologist	$\begin{gathered} \text { Date } \\ \text { Sampled } \end{gathered}$	Rock Type	Field Description
TRILL	N985522	458357.2791	5146720.017	CHANNEL	0.7	GyT	11/11/2013		Channell-8
TRILL	N985523	458357.1801	5146720.696	CHANNEL	0.7	GyT	11/11/2013		Channell-9
TRILL	N985524	458357.0399	5146721.626	CHANNEL	0.96	GyT	11/11/2013		Channel I-10
TRILL	N985525	458356.941	5146722.316	CHANNEL	0.63	GyT	11/11/2013		Channell-11
TRILL	N985526	458356.8255	5146723.126	CHANNEL	0.92	GyT	11/11/2013		Channell-12
TRILL	N985527	458356.6854	5146724.086	CHANNEL	1.1	GyT	11/11/2013		Channell-13
TRILL	N985528	458356.5452	5146725.105	CHANNEL	0.83	GyT	11/11/2013		Channel I-14
TRILL	N985529	458356.4462	5146725.755	CHANNEL	0.47	GyT	11/11/2013		Channel l-15
TRILL	N985530	458356.372	5146726.225	CHANNEL	0.5	GyT	11/11/2013		Channell-16
TRILL	N985531	458356.306	5146726.635	CHANNEL	0.32	GyT	11/11/2013		Channel l-17
TRILL	N985532	458356.2318	5146727.185	CHANNEL	0.7	GyT	11/11/2013		Channell-18
TRILL	N985533	458357.8233	5146726.255	CHANNEL	0.6	GyT	11/11/2013		Channel J-1, channel cut oriented 340-160, total length is ca. 3.8 m
TRILL	N985534	458357.914	5146725.575	CHANNEL	0.72	GyT	11/11/2013		Channel J-2
TRILL	N985535	458358.0295	5146724.785	CHANNEL	0.78	GyT	11/11/2013		Channel J-3
TRILL	N985536	458358.1367	5146724.026	CHANNEL	0.78	GyT	11/11/2013		Channel J-4
TRILL	N985537	458358.2274	5146723.276	CHANNEL	0.96	GyT	11/11/2013		Channel J-5
TRILL	N985538	458344.8357	5146708.639	CHANNEL	0.48	GyT	13/11/2013		Channel K, oriented 110-290
TRILL	N985539			STD		GyT	13/11/2013		
TRILL	N985540			BLK		GyT	13/11/2013		
TRILL	N985541	458342.6258	5146717.517	CHANNEL		GyT	13/11/2013		Brick

Location	$\frac{\text { Sample }}{\underline{I D}}$	E NAD27	N NAD27	$\frac{\text { Sample }}{\text { Type }}$	$\frac{\text { Length }}{(\mathrm{m})}$	Geologist	$\begin{gathered} \text { Date } \\ \text { Sampled } \end{gathered}$	Rock Type	Field Description
TRILL	N985542	458365.6241	5146741.822	CHANNEL	0.6	GyT	13/11/2013		Channel L-1 (unable to cut whole length of proposed channel due to topo; only first 1.2 m sampled)
TRILL	N985543	458365.1706	5146742.242	CHANNEL	0.6	GyT	13/11/2013		Channel L-2
TRILL	N985544	458364.6676	5146739.502	CHANNEL	0.4	GyT	13/11/2013		Channel M, oriented E-W
TRILL	N985546	458366.4652	5146739.952	CHANNEL	0.6	GyT	13/11/2013		Channel N, oriented 140-320
TRILL	N985547	458355.1681	5146737.233	CHANNEL	0.83	GyT	13/11/2013		Channel O
TRILL	N985548			STD		GyT	13/11/2013		
TRILL	N985549			BLK		GyT	13/11/2013		
TRILL	N984795	458195.83	5146678.89	GRAB		AP	13/08/2013	IQD	Clast-rich, fine-grained IQD sampled near the intrusive contact with granite, some trace sulfide along joints. No QD on the edge, IQD is directly in contact with GR same as in WTR-044)
TRILL	N984796	458200.36	5146670.93	GRAB		AP	13/08/2013	IQD	Clast-poor, fine-grained (I)QD sampled approx. 5-8 m South of the contact with the granite
TRILL	N984797	458208.34	5146663.59	GRAB		AP	13/08/2013	IQD	Fine-grained, clast-bearing (not as much as N984795) typical of the outcrop approx. 15 m South of the contact with granite
TRILL	N984158	458197.47	5146674.47	GRAB		AP	26/09/13		Inclusion in the QD, very rusty and jointed (hard to get fresh surface), appears to be mafic and contain clasts, small belbs of cpy and po
TRILL	P446351	456696.00	5146607.00	FLOAT		GB	17/07/14	UNKNOWN	Black, polymictic (?) fissile mafic/clastic rock. Lithology unknown, probably float
TRILL	P446352	456800.61	5146550.75	GRAB		GB	17/07/14	QD	Medium grey amphibole-rich fg rock. Variable plagioclase content with local quartz phenocrysts ($\sim 15 \%$ of rock). 1-5\% disseminated and blebby (to 1 mm) pyrite.

Location	$\frac{\text { Sample }}{\underline{I D}}$	E NAD27	N NAD27	$\frac{\text { Sample }}{\text { Type }}$	$\frac{\text { Length }}{(\mathrm{m})}$	Geologist	$\begin{aligned} & \text { Sate } \\ & \text { Sampled } \end{aligned}$	Rock Type	Field Description
TRILL	P446353	457490.25	5146436.97	GRAB		GB	18/07/14	UNKNOWN	Melanocratic intrusive rock. Soft, tan weathering, but very hard (siliceous?) and dark grey to black on fresh. Rock varies from diab texture on and near weathered surfaces to aphanitic and locally glassy on deeper surfac Fresh surfaces have blocky to conchoidal fracture. Trace blebby pyrite present\}
TRILL	P446354	457554.39	5146831.62	GRAB		GB	21/07/14	SDBX	SDBX with diabase clasts. ~5\% blebby pyrite with possible trace chalcopyrite
TRILL	P446355	457527.87	5146818.81	GRAB		GB	21/07/14	SDBX	SDBX along contact between Monzogranite and diabase. Contains 1-3\% chalcopyrite along and near a fracture oriented perpendicular to the contact.
TRILL	P446356	457519.15	5146766.18	GRAB		GB	21/07/14	SDBX	SDBX w/ FGN clasts. 10% pyrite along fracture or vein
TRILL	P446357	458333.27	5146777.88	Grab		GB	23/07/14	SDBX	SDBX with trace to 3\% pyrite and trace chalcopyrite
TRILL	P446358	458323.92	5146758.54	GRAB		GB	24/07/14	FGN	Trace to 5% pyrite in gossanous vein hosted in FGN
TRILL	P446359	458228.85	5147609.72	GRAB		GB	25/07/14	UNKNOWN	Unknown lithology. Melanocratic matrix with felsic clasts. $\sim 1 \%$ pyrite. Also contains unidentified black glassy mineral
TRILL	P446360	457739.75	5147903.55	GRAB		GB	28/07/14	FGN	FGN with trace to 2% pyrite with trace chalcopyrite associated with epidote
TRILL	P446361	457716.85	5147859.00	FLOAT		GB	28/07/14	SDBX	$1-3 \%$ blebby chalcopyrite in SDBX with diabase clasts. Mineralization is associated with potassium-feldspar and epidote veins
TRILL	P446362	457715.14	5147864.20	FLOAT		GB	29/07/14	SDBX	SDBX with trace to 1% blebby chalcopyrite. CCP occurs in the breccia matrix, as well and both in and rimming felsic clasts
TRILL	P446363	457708.61	5147864.64	GRAB		GB	29/07/14	SDBX	SDBX with Trace to 1% blebby to wispy chalcopyrite with 1-5\% pyrite
TRILL	P446365	456910.00	5147725.00	FLOAT		GB	1/8/2014	UNKNOWN	Float. QD? medium grey non-magnetic rock. Contains trace disseminated pyrite

Location	$\frac{\text { Sample }}{\text { ID }}$	E NAD27	N NAD27	$\frac{\text { Sample }}{\text { Type }}$	Length	Geologist	Date Sampled	Rock Type	Field Description
TRILL	P446367	456267.00	5146784.00	FLOAT		GB	5/8/2014	UNKNOWN	Float. Possible IQD? Black, massive matrix with abundant angular quartzose clasts and trace pyrite
TRILL	P446368			STD		GB	5/8/2014		
TRILL	P446369			BLK		GB	5/8/2014		
trill	P446473	449550.13	5148015.28	grab		NW	25/8/2014	QD	Taken to confirm that it is QD
trill	P446474	449614.91	5147994.61	GRAB		NW	25/8/2014	QD	Taken to confirm that it is QD
trill	P446475	449641.86	5148026.46	grab		NW	25/8/2014	Dia	Taken to confirm that it is diabase
TRILL	P446478			STD		NW			
trill	P446494	452057.08	5147373.11	grab		NW	26/9/2014	Dia	Need to confirm the lithology of mafic dike.
trill	P446496	451741.87	5147540.90	grab		NW	26/9/2015	Dia	Need to confirm the lithology of the mafic dike with needles.
trill	P446497	451468.61	5147569.13	grab		NW	26/9/2016	Dia	Need to confirm the lithology of the mafic dike.
trill	P446499	458465.28	5153628.34	grab		NW	29/9/2014	SDBX	Minor pyrite hosted in the matrix of a cold sudbury breccia
trill	P446500	452697.59	5147189.73	grab		NW	1/10/2014	IQD	Sampled to confirm that it is IQD
TRILL	P448801	452668.22	5147309.96	grab		NW	1/10/2014	SDBX	Minor blebby chalcopyrite in the SDBX matrix
TRILL	P448802			standard					
Trill	N984155	458331.32	5146708.51	Grab		AP	25/09/13		Sulfide-bearing vein in GR within few m of $Q D$ contact, cutting SDBX vein, going 235/45
Trill	N984156	458326.38	5146703.65	Grab		AP	25/09/13	Dia	Diabase dyke (magnetic) going 315, cutting GR, and in turn cut by the QD dyke
Trill	N984159	458351.61	5146714.68	Grab		AP	26/09/13		Sulfide veinlets, blebs along an SDBX vein cuttting GR within a couple m of the contact with QD
Trill	N984160	458351.33	5146713.18	Grab		AP	26/09/13		Sulfide vein cutting GR within a couple m of the contact with QD
Trill	N984161			STD					
Trill	N984162			BLK					

Figure 5: Position of trenches relative to SIC, property boundary, and township boundary.

Figure 6: Map of Trench \#2 in Trill East hosting Ni-Cu-PGE mineralization Note primary bend in offset dyke and abundance of metabreccia within Inclusion QD (quartz diorite) and along the contact with felsic gneiss. PGE-bearing mineralization occurs primarily in the metabreccia, the Sudbury breccia and felsic gneiss.

Figure 7: Trench \#1 with sample locations

Field mapping of Trill restarted in July of 2014. A field crew consisting of Geologist, Geoff Baldwin, and Field Assistant, Karen Barlow mapped and prospected the $\sim 2 \mathrm{~km}$ gap between the known occurrences of the Trill Offset dyke and prospected the Sudbury breccia extending northwest from the eastern showing. Seventeen samples, including two QA/QC, were sent for ICP/FA (table 2).

In August of 2014 a field crew consisting of Geologist in Training, Nicholas Wray, and Field Assistant, Karen Barlow mapped at the site of a possible QD sample interpreted from previous geochemistry. Four samples were sent for ICP/FA (table 2).

The QD dike is interpreted to run through topographically low areas. In September of 2014, Geologist in Training, Nicholas Wray and Field Assistant, Taylor Walker mapped in topographic lows, east of the recently discovered QD outcrops and west of previously known QD outcrops. The goal was to locate the QD dike in the missing gap in order to better constrain the position of the dike and to search for mineralization. The crew did not manage to locate QD in this gap as there was very little outcrop exposure. Seven samples were sent for ICP/FA (table 2).

Surface mapping, other than the trench, was conducted at 1:2000 using base maps with air photos in NAD 27, Zone 17 Datum. A compass and a Garmin Etrex GPS were used for navigation and mapping. The field crew was equipped with one $4 x 4$ pick-up truck.

5.2. GEOPHYSICS

5.2.1. LINECUTTING

Line-cutting of the surface EM grid was carried out by Daniel Gauthier Exploration in October. Including the baseline, a total of 32 line-kilometres were cut.

5.2.2. UTEM5 SURVEY

The UTEM 5 surface EM survey was carried out by Lamontagne Geophysics Ltd. between November 6 and January 30 (see report in appendix E). To complete the survey, Wallbridge Mining Company incurred costs in addition to that for the services provided by Lamontagne Geophysics. Wallbridge employees Tom Johnson and Jesse Bagnell were responsible for supervising the contractors. Canadian Exploration Services was contracted to DGPS the pickets along the grid lines and the position of the loop for the UTEM5 survey. Alan King was contracted to review the geophysical data. Attila Pentek, Joshua Bailey and Natalie MacLean were responsible for planning the survey, sequestering, supervising and coordinating contractors, and review of the results. Peter Anderson was responsible for data preparation and management. Nick Wray was responsible for assembling the assessment report. Wallbridge's trucks were used for the purpose of supervision and establishing access.

5.2.3. BOREHOLE UTEM SURVEY

The Borehole UTEM survey was carried out by Lamontagne Geophysics Ltd. between January of 2014 and August of 2014 (see reports in appendix E). The following holes were surveyed: WTR-018, WTR-044, WTR-050, WTR-051, WTR-052, WTR-053, WTR-056, and WTR-059.

5.3. DRILLING

Jacob \& Samuel Drilling Ltd completed 11 diamond drill holes for Wallbridge Mining Company Limited on their Trill Property between November 15, 2013 and September 12,

2014 (table 3). The boreholes completed are: WTR-049, WTR-050, WTR-051, WTR-052, WTR-053, WTR-054, WTR-055, WTR-056, WTR-057, WTR-058, and WTR-059. In total, 6390 meters of core was drilled on the Trill property and 285 samples, including QA/QC, were sent for geochemistry (16 whole rock and 269 for 48 element ICP-MS). All of the drill core is NQ in diameter and is stored on core racks at Wallbridge property (129 Fielding road, Lively, Ontario, P3Y 1L7). All holes were drilled with success other than WTR-055; which had a problem with retrieving rods. Fifty four meters of rod, core barrel, and one shell was left in hole somewhere between 411 m and 563 m but are likely at the bottom of the hole. Figure 7 shows the positions of all drill holes on the Trill property. See appendix D for drill logs and plan/section views of the holes.

Wallbridge Mining Company Limited

Table 3: Summary of all diamond drill holes in this report															
HOLE ID	Easting	Northing	Elevation (m)	Datum	Claim	Contractor	Azimuth	Dip	Length (m)	Year	START_DATE	FIN_DATE	PROJECT	Log Complete d	Geophysics
WTR049	458380	5146758	315	NAD27	1229977	Jacob and Samuel	180	-45	156	2013	17-Nov-13	20-Nov-13	TRILL_SCJV	21-Nov-13	none
$\begin{aligned} & \text { WTR- } \\ & 050 \end{aligned}$	458350	5146800	325	NAD27	1229977	Jacob and Samuel	180	-60	298	2013	20-Nov-13	30-Nov-13	TRILL_SCJV	1-Dec-13	none
$\begin{aligned} & \text { WTR- } \\ & 051 \end{aligned}$	458350	5146801	323	NAD27	1229977	Jacob and Samuel	180	-80	1077	2013	27-Nov-13	15-Dec-13	TRILL_SCJV	16-Dec-13	none
$\begin{aligned} & \text { WTR- } \\ & 052 \end{aligned}$	456661	5146972	349	NAD27	1229976	Jacob and Samuel	180	-45	703	2013	18-Dec-13	7-Jan-14	TRILL_SCJV	8-Jan-14	UTEM
$\begin{aligned} & \text { WTR- } \\ & 053 \end{aligned}$	455240	5147193	364	NAD27	1167121- LEASE	Jacob and Samuel	180	-45	440	2014	20-Jan-14	26-Jan-14	TRILL_SCJV	27-Jan-14	UTEM
$\begin{aligned} & \text { WTR- } \\ & 054 \end{aligned}$	454650	5147199	352	NAD27	3009484	Jacob and Samuel	180	-45	358	2014	28-Jan-14	3-Feb-14	TRILL_SCJV	4-Feb-14	none
$\begin{aligned} & \text { WTR- } \\ & 055 \end{aligned}$	454650	5147201	353	NAD27	3009484	Jacob and Samuel	178	-77	564	2014	3-Feb-14	13-Feb-14	TRILL_SCJV	14-Feb-14	none
$\begin{aligned} & \text { WTR- } \\ & 056 \end{aligned}$	455240	5147193	364	NAD27	1167121- LEASE	Jacob and Samuel	189	-83	714	2014	15-Feb-14	28-Feb-14	TRILL_SCJV	1-Mar-14	UTEM
$\begin{aligned} & \text { WTR- } \\ & 057 \end{aligned}$	455741	5151933	360	NAD27	4207195	Jacob and Samuel	230	-57	465	2014	9-Mar-14	$\begin{array}{r} \text { 15-Mar- } \\ 14 \end{array}$	TRILL_SCJV	10-Mar-14	none
$\begin{aligned} & \text { WTR- } \\ & 058 \end{aligned}$	458101	5146861	338	NAD27	129977	Jacob and Samuel	180	-45	518	2014	12-Aug-14	28-Aug-14	TRILL_SCJV	13-Aug-14	none
WTR059	458109	5146656	333	NAD27	129977	Jacob and Samuel	180	-70	1000	2014	19-Aug-14	12-Sep-14	TRILL_SCJV	13-Sep-14	UTEM

Figure 8: Position of all drill holes on the Trill Property.

6. RESULTS

6.1. RESULTS OF 2014 MAPPING PROGRAM

Mapping and sampling at "trench \#2" concluded that the sulfide mineralization exposed in the trench is Ni-Cu-PGE bearing, and in general, the metal tenors and ratios are typical for offsetstyle rather than footwall-style mineralization. Trench \# 2 exposes very interesting geology along the contact of the Trill Offset with host rocks. There is evidence of strong assimilation of host rocks due to the heat of the intruding IQD melt. The result of this melting process is a chaotic magmatic breccia unit that is referred to as metabreccia (MTBX), which is analogous to other Sudbury offset dykes (Whistle, Parkin, Worthington). This rock appears to be equivalent to the Footwall breccia (FWBX)/late granite breccia (LGBX) that occurs together with Sublayer along the basal contact of the SIC. Clasts in the IQD also show signs of strong assimilation and alteration and tend to break apart within the IQD further indicating the significant heat associated with the intrusion of the IQD melt. Such environment is believed to be very favorable for hosting $\mathrm{Ni}-\mathrm{Cu}-\mathrm{PGE}$ mineralization.

Mapping in August of 2014 outlined two QD outcrops (Figure 8). They are 4.3 km westnorthwest of the previously known extent of the Trill Offset. The QD outcrops are not mineralized and do not host inclusions.

Figure 9: Gold star shows the position of the new QD outcrops.

6.2. RESULTS OF 2014 GEOPHYSICS PROGRAM

6.2.1. UTEM 5 SURVEY RESULTS

Final results of the UTEM 5 survey were received and reviewed. There are no immediate drill targets apparent in the survey data, however there are several sharp anomalous features that are visible in multiple channels. These may represent weak, surface mineralization or fault zones.

6.2.2. BOREHOLE UTEM RESULTS

WTR-044: An off-hole conductor was identified at $\sim 85 \mathrm{~m}$ down hole distance. The conductor was modelled to be 20 m to the South of the hole with a conductance of ~ 250 Siemens, dimensions of $28 \times 18 \mathrm{~m}$ and it appears to $\operatorname{dip} 60^{\circ}$ to the South. The conductance and the direction to the centre of the conductor were well defined by the response. The dimensions and dip may vary slightly from the model but provide a good approximation.

WTR-50: No off-hole conductors were identified by these surveys.

WTR-51: No off-hole conductors were identified by these surveys. WTR-52: No off-hole conductors were identified by these surveys. WTR-53: No off-hole conductors were identified by these surveys. WTR-18: No off-hole conductors were identified by these surveys. WTR-56: No off-hole conductors were identified by these surveys. WTR-59: No off-hole conductors were identified by these surveys.

6.3. RESULTS OF 2014 DRILLING PROGRAM

WTR-49: This hole was testing the conductors from the InfiniTEM and VTEM surveys. After 15 m of casing, the bedrock started off as inclusion-rich IQD with 1-2 \% disseminated to blebby pyrrhotite-chalcopyrite. The hole went through a 22 m granitic block after which it was back to IQD (slightly poorer in inclusions as above) with only trace pyrrhotite as clast replacements and along joints. In the granite there are some quartz veins with blebby chalcopyrite. The IQD continued until 93 m where it is in sharp contact with a felsic, clastrich breccia similar to that seen on the trench. This breccia is referred to as metabreccia (MTBX) hereafter following analogues of other Sudbury offset dykes (Worthington, Parkin, Whistle) were this rock type is often associated with Ni-Cu-PGE mineralization. The metabreccia has also a sharp contact toward Sudbury breccia at 97.85 m depth. After that the hole intersected felsic gneiss and Nipissing diabase with some SDBX at their contact. The hole was shut down at 156 m depth. Although the EM plates were intersected by the hole (Fig. 8), the seen sulfide does not explain the conductors. It is likely that the sulfide mineralization identified by the EM systems was undercut by the hole.

WTR-050: The hole started off in Matachewan diabase and Sudbury breccia and then intersected Felsic gneiss. These units contain pyrite-chalcopyrite mineralization associated with epidote alteration and epidote-chlorite-carbonate veinlets. The hole got into the offset dyke vertically below the contact on the trench thus confirming the vertical dip of the dyke. The offset dyke contained a few large clasts of host rocks and was made up of IQD and Metabreccia similar to the previous hole (WTR-049). The southern contact of the dyke was intersected at 296 m depth giving an approximately $56-57 \mathrm{~m}$ true width of the dyke similar to
that seen in the holes WTR-044 and WTR-049. At 350-360 m depths, the hole intersected a fault zone and then was ended in a coarse-grained diabase/gabbro. Near the northern contact of the dyke a strong magnetite-sulfide (pyrite \pm chalcopyrite)-chlorite alteration zone was intersected with an approx. 0.5 m section that contains 10% pyrite, and possibly chalcopyrite. At 197 m there is a 1 m section of 10% blebby pyrrhotite-chalcopyrite at the contact of IQD and a diabase clast.

WTR-051: The hole started off in Matachewan diabase, followed by Sudbury breccia, and then intersected Felsic gneiss. All of these units contain pyrite-chalcopyrite bearing alteration assemblages similar to those in WTR-050. Between 228.5 and 231.5 m the hole intersected a diabase unit with strong magnetite-epidote-chlorite-sulfide alteration (3\% pyrite and 1% chalcopyrite) similar to that seen in WTR-050. From 231.5 to 237.5 m a potential narrow branch of IQD is intruding the diabase after which the hole continued in further diabase.

WTR-052: The drill hole did not intersect QD. However, we intersected a significant fault zone and an Olivine diabase dyke right where it was previously modelled based on projections from nearby holes and the Titan resistivity data. Both the fault and the Olivine diabase are running approximately E-W, dipping steeply to the North, are now known along a strike length of 2.8 km and may have caused substantial displacement of the Trill offset.

WTR-053: This hole was drilled in an area where the Trill offset contains blebby sulfide on surface. The hole was designed to overlap with WTR-037 to test the entire QD corridor for potential multiple splays as seen at the showing and also on the section 575 m to the East (holes WTR-019, WTR-020, WTR-038). The drill hole intersected the (a splay of the) Trill Offset between 85.75 and 108.5. Because on this section, and surface outcrops of the dyke, the dip of the dyke could be established (~ 58 degrees to the North). A northerly dip near surface is seen at the showing as well, however at depth the dyke seems to curve back to vertically below the showing. The IQD contains both mafic and granitic inclusions and some trace disseminated chalcopyrite. Further blebby pyrite occurs at the lower contact of the dyke in the partially melted granite.

WTR-054: The hole intersected a splay of the Trill Offset between 113.8 and 135 m depth. This establishes an approximate dip of 60 degrees to the North, just as in the case of WTR053.

WTR-055: The hole intersected a symmetrical QD-IQD dyke between 350 and 408 m depth and there are two short sections with disseminated-blebby sulfide mineralization. There is another QD splay higher up at around 200 m depth. This hole confirms the overall vertical nature of the dyke which is complicated by smaller local flexures and other irregularities.

WTR-056: From 142 to 208.5 metres, the hole intersected a major shear zone at a low angle (30 degrees) to the core. It is very ductile and healed, with very little broken core, jointing, or fault gouge. It is the NW-SE running structure identified as a lineament and as a Mag and Resistivity low feature and causing the apparent displacement of the main Trill offset dyke. This intersection establishes a 75 degree dip to the SW. Despite being in the footwall of the structure, the hole intersected a symmetrical QD-IQD splay of the Trill Offset from 270.5 to 295.5 m . The intersection is narrower than expected from the low angle of intersection and there are sections that show shearing, tectonic brecciation. It is possible that the dyke was affected and potentially displaced by shearing associated with a splay of the shear zone noted above although the symmetrical QD-IQD nature of the dyke does not support this interpretation.

WTR-057: The hole intersected a coarse-grained pyroxenite sill/dyke between 252 to 285 m depth with another narrow splay higher up between 241 and 252 . These intersections are right in the heart of a Mag/IP anomaly and are interpreted to be the cause of the anomaly. There is no sulfide mineralization associated with the pyroxenite. After intersecting the pyroxenite dyke the hole returned into Levack gneiss and remained in that until the end of the hole, where there was again a short section of pyroxenite of the same appearance.

WTR-058: At approximately 311 m to 351 m the drill hole intersected the Olivine diabase (OD) and structure trend that strikes sub-parallel to the interpreted Offset dyke trend. At 360 m depth the first narrow intersection of QD was encountered. Several of these glassy veins were intersected between 360 m and 385 m . At $385 \mathrm{~m}, 6 \mathrm{~m}$ of footwall breccia was intercepted
followed by two intervals of IQD from 391-412m. The last glassy vein of QD was observed at $\sim 425 \mathrm{~m}$. Trace blebs and disseminated chalcopyrite and pyrite veins were encountered in and proximal to the footwall breccia/IQD intercepts.

WTR-059: The drill hole encountered IQD from 10.5 m to 32.5 m with a large diabase (DIA) clast from 12 m to 22 m . A small (10 cm) fault was observed at 90 m and has an unknown displacement. Olivine diabase was intersected between 97 m and 145.6 m , with the lower contact lost to heavily broken rock. In this broken section from 145.6 m to 151 m the fragments are primarily bleached IQD. This IQD unit then extends to a depth of 299 m , and seems to run along the contact from 260 m to 299 m and is indicated by the inconsistent appearance/disappearance of local country rocks (FGN). The hole intersected FGN with minor Olivine Diabase and Sudbury Breccia to 598m. Trace pyrite and chalcopyrite blebs can be seen throughout the IQD. Notable occurrences of chalcopyrite can be seen at 204 m where centimeter sized blebs were observed.

Halliburton was contracted to perform gyroscope surveying down the drill holes.

7. INTERPRETATION AND CONCLUSIONS

- The assays results confirmed that the sulfide mineralization exposed in Trench \#2 is $\mathrm{Ni}-\mathrm{Cu}-\mathrm{PGE}$ bearing and in general the metal tenors and ratios are typical for offsetstyle rather than footwall-style mineralization.
- An off-hole conductor was identified in WTR-044 at $\sim 85 \mathrm{~m}$ down hole distance. The conductor was modelled to be 20 m to the South of the hole with a conductance of \sim 250 Siemens, dimensions of $28 \times 18 \mathrm{~m}$ and it appears to dip 60° to the South.
- WTR-052 confirmed the presence of an east-west trending fault zone that displaces the trill offset.
- Drilling of WTR-052 indicated a gap in the Trill offset that can only be explained by:
- Pinching of the dyke related to the emplacement of the Quartz diorite melt.
- En echelon character of the Quartz Diorite system.
- Structural displacement along the E-W fault zone.
- Structural interpretation of the E-W fault zone and Olivine diabase dyke was carried out on drill hole intersections of drill holes WTR-038, -041, -043, -045, -050 and -052. Measurements of slickensides confirmed that all intersections belong to the same fault zone and indicate three dominant structural orientations: 98/85, 98/50, 278/20. The first set is the most important and is believed to represent the orientation of the actual fault confirming that the zone is nearly vertical. The amount of movement along the fault doesn't appear to be significant.
- Drilling confirms the overall vertical nature of the offset dyke which is complicated by smaller local flexures and other irregularities.
- Drilling of WTR-057 intercepted a pyroxenite dike that explains magnetic and Induced Polarization anomalies. The pyroxenite has anomalous nickel content (up to 1430 ppm).
- Surface mapping revealed new outcrops of Quartz Diorite on the Trill Property. They are 4.3 km west-northwest of the previously known extent of the Trill Offset and do not contain sulfides.

8. RECOMMENDATIONS

- Constrain the location of 4.3 km segment of the Trill Offset discovered in 2014 with trenching and drilling.
- Conduct large loop surface EM survey over the 4.3 km segment of the Trill Offset discovered in 2014.
- Explore the remainder of the Trill Offset dyke below the geophysics coverage with drilling and borehole EM.

REFERENCES

Ames, D.E., Davidson, A., Buckle, J.L., and card, K.D. (2005) Geology, Sudbury bedrock compilation, Ontario; Geological Survey of Canada, Open File 4570, scale 1:50 000.

Hanley, J.H. (2002) The Distribution of the Halogens in Sudbury Breccia Matrix as Pathfinder Elements for Footwall Cu-PGE Mineralization at the Fraser Cu Zone, Barnet Main Copper Zone, and Surrounding Margin of the Sudbury Igneous Complex, Onaping-Levack Area, Ontario, Canada. M.Sc. thesis, University of Toronto, Toronto, Ontario.

Jago, B.C., Morrison, G.G., Little, T.L. (1994) Metal Zonation Patterns and Microtextural and Micromineralogical Evidence for Alkali- and Halogen-Rich Fluids in the Genesis of the Victor Deep and McCreedy East Footwall Copper Orebodies, Sudbury Igneous Complex, in Proceedings of the Sudbury - Noril'sk Symposium, Ontario GeologicalSurvey Special Volume 5, pp. $65-75$.

Jago, B.C. (2007) 2007 Technical Report on the Trill Property, Sudbury, Ontario. Filed on SEDAR.

Mungal, J.E. (2002) Late-Stage Sulphide Liquid Mobility in the Main Mass of the Sudbury Igneous Complex: Examples from the Victor Deep, McCreedy East, and Trillabelle Deposits, Economic Geology, v. 97, p. 1563-1576.

Lesher, C.M., and Thurston, P.C. (Editors) (2002) Special Issue on Geology and Ore Deposits of the Sudbury District, Economic Geology, v. 97, no. 7.

Lightfoot, P.C., and Farrow, C.E. (2002) Geology, Geochemistry, and Mineralogy of the Worthington Offset Dike: A Genetic Model for Offset Dike Mineralization in the Sudbury Igneous Complex: Economic Geology, v. 97, p. 1419-1445.

Morrison, G.G., Jago, B.C., White, T.L. (1994) Footwall Mineralization of the Sudbury Ignesou Complex, in Proceedings of the Sudbury-Noril'sk Symposium, Lightfoot, P.C. and Naldrett, A.J. (eds), Ontario Geological Survey Special Volume 5, pp. $57-64$.

Naldrett, A. J., Asif, M., Scandl, E., Searcy, T., Morrison, G. G., Binney, W. P., Moore, C. (1999) Platinum-group elements in the Sudbury ores; significance with respect to the origin of different ore zones and to the exploration for footwall orebodies: Economic Geology, v. 94, p.185-210.

Ontario Geological Survey (2007) Open File Report 6205: Report of Activities, 2006 www.mndm.gov.on.ca/mndm/mines/ims/pub/roa/roapdfs/ofr6205.pdf

Popelar, J. (1971) Gravity Measurements in the Sudbury Area: Gravity Map Series, Earth Physics Branch, Department of Energy, Mines and Resources, Canada, No. 138

Xstrata Nickel News Releases (2008) Xstrata Nickel completes Nickel Rim South's main shaft without lost time injury, January 9.

CERTIFICATE

To Accompany the Assessment Report
for the Trill Property
Totten and Trill Townships
Sudbury, Ontario
for
Wallbridge Mining Company Limited
Effective: December 11, 2014

I, Nicholas Wray, do hereby certify that:

1. I reside at 859 Adelaide st, Sudbury, Ontario, Canada, P3E 4B7.
2. I am a graduate from Laurentian University in 2014 with my Bachelor of Science (Hons.) in Geology and have been practicing my profession ever since.
3. I am a Geologist in Training with Wallbridge Mining Limited.
4. I have personally performed the work carried out in 2014.
5. As an employee, and an insider, of Wallbridge Mining Company, I do not qualify as an independent Qualified Person.

Nicholas Wray.
Wallbridge Mining Company Ltd. 129 Fielding Rd.
Lively, Ont. P3Y 1L7

APPENDIX A

Maps

APPENDIX B

Assay certificates

APPENDIX C

Invoices

APPENDIX D

Drilling logs, plans, and sections

APPENDIX E

Geophysics reports

$5,147,900 \mathrm{mN}$.
$147,700 \mathrm{mN}$.

5,147,600 mN
$5,147,500 \mathrm{mN}$.

