

DRILL HOLE REPORT

¥.

ole Number V	WTR-049				Project:	TRILL	_scjv			N	Project Numbe	r: 504
rilling		Casing			Core	aliya (had - C			Location		Other	
zimuth:	180	Length:		0	Dimension: N	Q			Township:	TRILL	Logged by:	Mohadeseh Majnoon
ip:	-45	Pulled:	no		Storage: Co	ore Shed			Claim No.:	1229977	Relog by:	
ength:	156.3	Capped:	yes		Section:				NTS:		Contractor:	Jacob & Samuel Drilling Lto
arted:	17-Nov-13	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
mpleted:	20-Nov-13										Surveyed:	
gged:	19-Nov-13										Surveyed by:	
	Surveyed w submeter Geo		24 cor" \A	10584 5146980 9	V 458394 9F 279 5		Coordinate -	Gemcom	Coordinate - U	тм	Geophysics:	UTEM
omment:	HAE). While cutting the co was asked from driller if the	res, significant amou ey are using a graph	unt of grapl ite materia	hite was observed I, and they noted t	in the cutting water. I hat they are not using	lt 9	East:	458380.8	East:	0	Geophysic Contractor:	Lamontagne
	any. Therefore, it is believe is not abservable while log		ists of nota	able amount of fine	e grained graphite wh	ich	North:	5146758.2	North:	0	Left in hole:	Nothing
	IS NOT ADSELVADIE WITHE IOG	ging.					Elev.:	315.5	Elev.:	0	Making water	Ū.
									Zone: 17	NAD: 27	Multi shot sur	

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-45.00	С	\checkmark	
30.00	179.40	-44.00	F	\checkmark	Mag: 5564; Roll: 229.6
81.00	179.90	-44.30	F	\checkmark	Mag: 5536; Roll: 281.8
130.00	174.50	-43.60	F	\checkmark	Mag: 5650; Temp: 6.8; Roll: 244.2

ole Number	WTR-049			Project: TRILL_SCJV					Project Number	: 50)4			
From (m)	To (m)		Litholog	У	Sample #	From	То	Length	A u (9/		Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
0.00	13.70	CAS Casing dominantly gneissic bou		Sudbury Breccia :										
13.70	23.00		on quartz diorite	Sudbury Breccia :	N986172	14.55	16.05	1.50	0.	00	0.00	0.00	0.01	0.
				Ithough the IQD is fine-grained, the clasts look "sick" .ocal ductile texture is observed where the clasts	N986173	16.05	17.00	0.95	0.	00	0.00	0.00	0.01	0
		appear melted.			N986174	17.00	18.50	1.50	0.	00	0.00	0.00	0.01	C
		Lots of clasts are green	broken anglevaries betweer ish color (Ep/Chl) and have	a 40-65 degree to the core axis. a white rim (Qz?) around them.	N986175	18.50	20.00	1.50	0.	00	0.00	0.01	0.01	(
		In general there is less t	than 1% Po and traces of C	py and Py in the whole unit. Mineralization is mostly	N986176	20.00	21.50	1.50	0.	00	0.00	0.00	0.01	(
				e clasts or blebby to dissiminated around the rim of etailes in: Major Mineralization). Cp assoc w/ qtz-fspr	N986177	21.50	22.65	1.15	0.	00	0.00	0.00	0.01	0
		Alteration Maj:	Type/Style/Intensity	Comment										
		16.89 - 17.64	EP VN W	Ep/Chl veinlets										
		20.43 - 21.00	EP VN W	Ep/Chl veinlets										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		13.70 - 20.00	PO DIS 0.01	Mostly dissiminated, some of them are blebby though. Traces of Py and Cpy is observed too. Mineralization mostly associated with the clasts wither around the rim or scattered in the clasts.										
		20.00 - 22.00	PO BL 0.1	Blebby or dissiminated and usually associated with clasts (either around the rim or in the clast)										
		20.00 - 22.00	PY DIS 1	Mostly dissiminated in the matrix										
		20.00 - 22.00	CP BL 0.01	Blebby or disseminated in association with Po mostly										
		22.00 - 23.00	PO DIS 0.01	Mostly dissiminated, some of them are blebby though. Traces of Py and Cpy is observed too. Mineralization mostly associated with the clasts wither around the rim or scattered in the clasts.										

05-Dec-14 1:55:35 PM

e Number	WTR-049			Project: TRILL_SCJV					Project Number:	504			
rom (m)	To (m)		Litholo	gy	Sample #	From	То	Length	Au (g/t)			Ni (%)	Cu (%)
		Structure Maj.: 13.70 - 23.00	Type/Core Angle BLKY 50	<i>Comment</i> 40-65tca									
		Minor Interval: 13.70 14.56	IGN	Intermediate Gneiss									
23.00	43.78	IGN Interme	ediate Gneiss	Sudbury Breccia :	N986178	22.65	23.50	0.85	0.0)3 0.	16 0.2	1 0.07	70
		A big block in the IQD (? core/structure (Fe-staine		s cutting IGN; 1% dissiminated Py. 35.14-35.52 broken	N986179	38.90	39.00	0.10	0.0	0 0.	0.0 0.0	0.00	0 0
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		23.00 - 23.13	CP VN 10	as vein in the boundry of IQD and IGN									
		27.09 - 27.30	PY DIS 5										
		38.93 - 39.00	CP BL 20	Associated with Qz/fspr/carbonate vein at 35 tca									
		Structure Maj.:	Type/Core Angle	Comment									
		35.14 - 35.52	BC	water seam? Fe-stained.									
		38.93 - 39.00	VN 35	qtz/fspr/carb vn + cp (2mm wide vn)									
43.78	93.03	IQD inclusio	on quartz diorite	Sudbury Breccia :	N986180	46.94	47.60	0.66	0.0	0 0.	00 0.0	1 0.01	1 (
43.70	93.03		•	d with this interval of IQD. There are ~10-15%				0.66					
		inclusions (average <2cr	m). Some clasts appear to	have 'melted' rims or haloes. SPO (shape preferred	N986181	50.56	52.06	1.50	0.0				
			ed near lower contact. Cor gtz veins (sampled to che	e is blocky and joint angles varies between 40 to 65 tca.	N986182	52.06	52.31	0.25	0.0				
		Up to 1% diss to blebby	py/po (blebby py generall	y assoc w/ carb veins/fracture infill); tends to decrease	N986183	52.31	53.50	1.19	0.0				
			generally assoc w/ clasts, along fracture at 67.65m	and cp in 2mm wide vein/fracture at 61.45m (35 tca).	N986184	61.33	61.52	0.19	0.0				
		Large FGN clast from 58			N986185	67.55	68.40	0.85	0.0				
		Alteration Mai	Type/Style/Intensity	Comment	N986186	82.80	82.95	0.15	0.0	01 0.	0.0 0.0	1 0.01	1

Alteration Maj: Type/Style/Intensity Comment

05-Dec-14 1:55:35 PM

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

Hole Number WTR-049 Project: TRILL SCJV Project Number: 504 То Pt Pd Ni Cu From Au Sample # То (g/t) (g/t) (g/t) (%) (%) (m) Lithology From Length (m) Carb VN W 43.78 - 47.00 47.00 - 47.64 BL F S around vein 47.00 - 47.64 Carb VN S Thick carbonate veins totally bleached the rock; were sampled for gold Carb VN W 47.64 - 67.63 67.63 - 68.40 EP P 67.63 - 68.40 BL P 67.63 - 68.40 Carb VN S 68.40 - 93.03 Carb F W Mineralization Maj. : Type/Style/%Mineral Comment PO TR 0.2 43.78 - 52.12 diss-blebb +/- po 43.78 - 52.12 PY BL 1 generally blebs assoc w/ carb fract infill 52.12 - 52.28 POCP BL 5 clast associated 52.28 - 93.03 CP TR 0.01 at 61.45m 52.28 - 93.03 PY TR 0.1 PO TR 0.1 52.28 - 93.03 Structure Maj.: Type/Core Angle Comment JNTS 50 43.78 - 46.95 40-65tca 46.95 - 47.64 VN 15 carb-qtz LC 40 47.64 - 93.03 47.64 - 93.03 JNTS 50 40-65tca

93.03 97.85 MTBX metamorphosed breccia Sudbury Breccia : 2DA1 Light grey, igneous textured (plag laths - QD-like) matrix with slight pink hue. Clasts have irregular margins and are being resorbed into the matrix. ~25% clasts that are generally <5cm. Feldspars in clasts

show various stages of alteration and range from light grey to dark orange.

05-Dec-14 1:55:35 PM

le Number	WTR-049			Project: TRILL_SCJV						Project Number:	504			
From	To		Litholog		Samp	10 #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cı (%
(m)	(m)	Trace diss py.	Litilolog	y	Samp	ie #	FIOIN	10	Lengin	(9/7)	(9/1)	(9/1)	(70)	()
		Mineralization Maj. : 93.03 - 97.85	Type/Style/%Mineral PY DIS 0.1	Comment										
		Structure Maj.:	Type/Core Angle	Comment										
		93.03 - 97.85	LC 20											
		93.03 - 97.85	UC 40											
97.85	98.65		r y Breccia irregular but sharo margins	Sudbury Breccia : 21 S. Grey, fine-grained matrix. ~1% diss py. Upper	DA3									
		contact defined by % an	d size of clasts. Irregular lo	wer contact with trace pyrite.										
		<i>Mineralization Maj. :</i> 97.85 - 98.65	Type/Style/%Mineral PY DIS 1	Comment										
		Structure Maj.:	Type/Core Angle	Comment										
		97.85 - 98.65	UC 20											
98.65	118.78		ediate Gneiss		1D5									
		109.55-110.20 Qtz vn + 5% SDBX (dark grey to	carb + fspr with bleaching o black fine-grained to aphan	on either side of vn. itic matrix) near lower limit.										
		Structure Maj.:	Type/Core Angle	Comment										
		109.55 - 110.20	VN 20	qtz vn + carb + fspr (resorbed?)										

05-Dec-14 1:55:35 PM

ole Number	WTR-049			Project: TRILL_SCJV					Project Number	504			
From (m)	То (т)		Litholog	У	Sample #	From	То	Length	A t (g/		Pd (g/t)	Ni (%)	C. (%
118.78	146.35	DIA is medium-grained, unit is cut by mm-wide e	(black, aphanitic matrix, ma	Sudbury Breccia : 1DA gnetic) to 119.50m. Clasts have SPO/foliation. racture controlled saussurite alteraion .Lower half of a with rare cp. d PY and is at 55 tca.	5								
		Alteration Maj:	Type/Style/Intensity	Comment									
		118.78 - 132.00	SA F W										
		132.00 - 146.35	Carb VN WM										
		132.00 - 146.35	EP VN WM										
		<i>Mineralization Maj. :</i> 138.50 - 139.00 146.00 - 146.35	Type/Style/%Mineral CP TR 0.01 PY F 0.5	<i>Comment</i> assoc w/ ep-carb veinlets									
		Structure Maj.:	Type/Core Angle	Comment									
		132.00 - 146.35	LC 55	chilled.									
		132.00 - 146.35	VN 20	15-30 tca									
146.35	156.29	IGN Interm	ediate Gneiss	Sudbury Breccia :									
		foliated, patchy epidote	alteration; saussuratization	carb-chl fracture infill									
		Alteration Maj:	Type/Style/Intensity	Comment									
		146.35 - 156.29	SA P WM										
		146.35 - 156.29	EP PCH W										
		146.35 - 156.29	Carb FF W										
		146.35 - 156.29	CHL FF W										
		Structure Maj.:	Type/Core Angle	Comment									

05-Dec-14 1:55:35 PM

~ ...

Hole Number	WTR-049		Project:	TRILL_SCJV					Project Number:	504			
From	То								Au	Pt	Pd	Ni	Cu
From (m)	(m)	Lithology			Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)

156.29 156.30 EOH End of Hole

Sudbury Breccia :

05-Dec-14 1:55:35 PM

DRILL HOLE REPORT

lole Number	WTR-050				Project:	TRILL	_SCJV				Project Numbe	er: 504
Drilling		Casing			Core				Location		Other	
zimuth:	180	Length:		0	Dimension: N	NQ			Township:	TRILL	Logged by:	Mohadeseh Majnoon
ip:	-60	Pulled:	no		Storage: C	Core Shed	l		Claim No.:	1229977	Relog by:	
ength:	398.09	Capped:	yes		Section:				NTS:	411/05	Contractor:	Jacob & Samuel Drilling Lto
tarted:	20-Nov-13	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
ompleted:	30-Nov-13										Surveyed:	
ogged:	21-Nov-13										Surveyed by:	
omment:	Surveyed w submeter Geo	XH (File"WM 12171	2A.cor". W	GS84 5147023.2N	458364.9F. 286.3	3	Coordinate	Gemcom	Coordinate - L	ІТМ	Geophysics:	UTEM
	HAE). Drillers made a mistant they wrote the block as 369	ake in 1- writing dow 9. This 3 m mistakes	n the dept continues	h on blocks from 36 until the end of the	66 m, instead of 366 hole, which was		East:	458350.7	East:	458354	Geophysic Contractor:	Lamontagne
	corrected by blue pencil on number difference, instead					50	North:	5146800.5	North:	5146800	Left in hole:	
	was corrected by blue pend		iney moto				Elev.:	325	Elev.:	325	Making water	
									Zone: 17	NAD: 27	Multi shot su	

	<u></u>	Deviation	<u>Tests</u>				<u> </u>	Deviation	<u>Tests</u>		
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.38	-60.36		\checkmark		110.00	181.23	-59.27		\checkmark	
10.00	180.19	-60.22		\checkmark		120.00	181.35	-59.54		\checkmark	
20.00	180.34	-60.28		\checkmark		123.00	182.20	-59.70	F	\checkmark	Mag: 5545; Temp: 12.2
21.00	184.50	-60.40	F	\checkmark	Mag: 5660; Temp: 9.7; Roll: 55.9	130.00	181.44	-59.49		\checkmark	
30.00	180.35	-60.15		\checkmark		140.00	181.56	-59.12		\checkmark	
40.00	180.32	-59.88		\checkmark		150.00	181.54	-59.30		\checkmark	
50.00	180.60	-60.10		\checkmark		160.00	181.62	-59.22		\checkmark	
60.00	180.83	-59.35		\checkmark		170.00	181.75	-59.40		\checkmark	
70.00	181.08	-59.75		\checkmark		173.00	183.00	-59.20	F	\checkmark	Mag: 5564; Roll: 308.9
71.00	180.60	-59.90	F	\checkmark	Mag: 5555; Roll: 304.2	180.00	181.73	-58.73		\checkmark	
80.00	181.08	-59.55		\checkmark		190.00	181.93	-58.95		\checkmark	
90.00	181.22	-59.67		\checkmark		200.00	182.01	-58.68		\checkmark	
100.00	181.24	-59.44				210.00	182.15	-58.69		\checkmark	

05-Dec-14 1:44:20 PM

HEADER REPORT

Hole Number

Project: TRILL_SCJV

Project Number: 504

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
220.00	182.18	-58.84		\checkmark	
222.00	179.70	-58.80	F	\checkmark	Mag: 5454
230.00	182.09	-58.54		\checkmark	
240.00	182.28	-58.50		\checkmark	
250.00	182.36	-58.80		\checkmark	
260.00	182.42	-58.71			
270.00	182.50	-58.78		\checkmark	
273.00	181.30	-58.70	F		Mag: 5555; Roll: 264.1
280.00	182.68	-58.53			
290.00	182.83	-58.49		\checkmark	
300.00	182.76	-58.45		\checkmark	
310.00	182.82	-59.15		\checkmark	
320.00	182.97	-58.55		\checkmark	
324.00	182.80	-58.04	F		Mag: 5525; Roll: 128.1; Temp: 11.2
330.00	183.01	-58.10			
340.00	183.09	-58.46		\checkmark	
350.00	183.11	-58.28			
360.00	183.16	-58.17			
370.00	183.17	-58.23			
375.00	182.70	-58.30	F		Mag: 5485
380.00	183.24	-58.16			
390.00	183.30	-58.08			
391.00	183.31	-58.07		\checkmark	

05-Dec-14 1:44:20 PM

le Number	WTR-050			Project: TRILL_S	CJV					Project Number:	504			
rom (m)	То (т)		Lithology			Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
0.00	6.50	CAS	Casing	Sudbury Breccia :										
6.50	15.12	MDIA	Matachewan Diabase	Sudbury Breccia :	2DA4									
0.50	10.12		han 1% dissiminated Py; mostly magnetic;	-										

whole unit with weak to me		
Alteration Maj:	Type/Style/Intensity	Comment
10.00 - 15.30	Carb VN WM	
10.00 - 15.30	EP VN WM	
Mineralization Maj. :	Type/Style/%Mineral	Comment
6.93 - 7.28	PY DIS 2	
11.51 - 11.92	PY DIS 2	Following the direction of carbonate veinlets at 40 degree to the core axis
Structure Maj.:	Type/Core Angle	Comment
6.50 - 9.00	BLKY 45	It is blocky and broken, dominantly 45 degree to core angle

15.12	16.75	SDBX	Sudbury Breccia	Sudbury Breccia :	2DA4
-------	-------	------	-----------------	-------------------	------

lole Number	WTR-050				Project: TRILL _	SCJV					Project Num	ber:	504			
From (m)	To (m)			Litholog	IV		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
16.75	20.16	MDIA A block in th		ewan Diabase	Sudbury Breccia :											
20.16	27.29	SDBX	Sudbur	y Breccia	Sudbury Breccia :	2DA4	N986189 N986190	23.09 23.42	23.28 24.37	0.19 0.95		0.00 0.00			0.01 0.01	0.07 0.01
		Alteration M	laj:	Type/Style/Intensity	Comment		1000100	20.42	24.07	0.00		0.00	0.00	0.00	0.01	0.01
		24.48 - 25.46	6	Carb VN S	Totally bleached the SDBX											
		25.46 - 27.00)	Carb VN WM												
		<i>Mineralizati</i> 23.11 - 23.24	4	Type/Style/%Mineral CP DIS 1	Comment											
		23.11 - 23.24 23.41 - 24.25		PY VN 10 PY DIS 1	2 mm veinlet in Ep/Chl/Calcite vein cuttin With trace CPY; Following the direction of veinlets at 35 degree to the core axis	-										
		Minor Interv														
		25.65	26.31	DIA	Diabase											
27.29	30.11	FGN	Felsic (Gneiss	Sudbury Breccia :	2DA5										
		Alteration M	laj:	Type/Style/Intensity	Comment											
		27.69 - 28.00)	Carb VN S	Bleached the rock											

Hole Number	WTR-050			Project: TRILL_S	CJV					Project Numb	er:	504			
From (m)	То (т)		Lithology	/		Sample #	From	То	Length		Au ′g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
30.11	30.52	SDBX Sudbu	ury Breccia	Sudbury Breccia :	2DA4										
30.52	31.67	FGN Felsic Mineralization Maj. : 30.89 - 31.20	: Gneiss Type/Style/%Mineral PY DIS 2	<i>Sudbury Breccia :</i> <i>Comment</i> With trace galena (?) along Chl/Ep/carbona	ate vein	N986191	30.89	31.20	0.31		0.00	0.00	0.00	0.00	0.02
31.67	32.39	SDBX Sudbu	ury Breccia	Sudbury Breccia :	2DA4										
32.39	37.59	FGN Felsic 5% SDBX; Less than 1	s Gneiss 1% dissiminated Py	Sudbury Breccia :	2D4										

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

ole Number	WTR-050			Project: TRILL_SCJ	v					Project Numb	er: 5	504			
From (m)	To (m)		Litholog	IV		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
37.59	38.21	SDBX Su	dbury Breccia	Sudbury Breccia :	1D5										
38.21	41.18	MDIA Ma	tachewan Diabase	Sudbury Breccia :											
		<i>Mineralization Maj</i> 38.33 - 38.56		Comment											
41.18	43.08	SHR Sh	ear	Sudbury Breccia :	2D4	N986192	41.14	42.00	0.86		0.00	0.01	0.01	0.00	
															0.01
		magnetite / carbona	ate veins cutting through the roo	k and bleached it. The major carbonate veins cur which sheared and messed up.	tting	N986193	42.00	43.11	1.11		0.00	0.01	0.01	0.01	0.01
		magnetite / carbona	ate veins cutting through the roo	k and bleached it. The major carbonate veins cur which sheared and messed up. Comment	tting	N986193	42.00	43.11	1.11		0.00	0.01	0.01	0.01	0.01
		magnetite / carbona the rocks by 30 dec	te veins cutting through the roo ree to core axis. It is all SDBX	which sheared and messed up.	-	N986193	42.00	43.11	1.11		0.00	0.01	0.01	0.01	0.01
		magnetite / carbona the rocks by 30 deg <i>Alteration Maj:</i>	te veins cutting through the roo ree to core axis. It is all SDBX Type/Style/Intensity	which sheared and messed up. Comment	S	N986193	42.00	43.11	1.11		0.00	0.01	0.01	0.01	0.01
		magnetite / carbona the rocks by 30 deg <i>Alteration Maj:</i> 41.18 - 43.08	te veins cutting through the roo ree to core axis. It is all SDBX Type/Style/Intensity MAG VN S Carb VN S	which sheared and messed up. <i>Comment</i> cutting SDBX with 30 degree angle to core axis	S S	N986193	42.00	43.11	1.11		0.00	0.01	0.01	0.01	0.01
		magnetite / carbona the rocks by 30 deg <i>Alteration Maj:</i> 41.18 - 43.08 41.18 - 43.08 <i>Mineralization Maj</i>	te veins cutting through the roo ree to core axis. It is all SDBX Type/Style/Intensity MAG VN S Carb VN S : Type/Style/%Mineral	which sheared and messed up. Comment cutting SDBX with 30 degree angle to core axis cutting SDBX with 30 degree angle to core axis Comment few Py veinlets up to 2 cm thickness cutting th	S S	N986193	42.00	43.11	1.11		0.00	0.01	0.01	0.01	0.01

le Number	WTR-050			Project: TRILL_S	CJV					Project Numb	ber: 5	504			
From (m)	То (т)		Litholog	y		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
43.08	44.89	DIA Diaba Few carbonate veinlets		Sudbury Breccia : a weak to moderate alteration.											
44.89	45.46	SDBX Sudbu	ury Breccia	Sudbury Breccia :	2D4										
45.46	51.60	FGN Felsic Mineralization Maj. : 48.76 - 48.83 49.01 - 49.07 51.39 - 51.50 51.50	e Gneiss Type/Style/%Mineral PY VN 5 PY VN 3 PY VN 3	<i>Sudbury Breccia :</i> <i>Comment</i> 1 mm veinlet in Ep/Chl vein 1 mm veinlet in Ep/Chl vein 1 mm veinlet in Ep/Chl vein		N986194	48.66	48.87	0.21		0.00	0.00	0.00	0.00	0.00
51.60	54.00	magnetite / carbonate	u ry Breccia veins cutting through the rock to core axis. It is all SDBX w Type/Style/%Mineral PY VN 5	<i>Sudbury Breccia :</i> and bleached it. The major carbonate veins hich sheared and messed up. <i>Comment</i> 2 mm vein along a carbonate veinlet	1AD5 cutting	N986195	51.86	52.20	0.34		0.00	0.01	0.01	0.00	0.02

Hole Number	WTR-050		Project:	TRILL_SCJV					Project Number:	504		
From (m)	To (m)	Lithology			Sample #	From	То	Length			Pd (g/t)	
. ,	()				-			-				

54.00

56.31 DIA

Diabase

Sudbury Breccia :

1AD5

2% SDBX with several carbonate veinlets cutting through it.

56.31	140.28	FGN Fe	lsic Gneiss	Sudbury Breccia : 2D4	N986196	65.92	66.17	0.25	0.00	0.00	0.00	0.00	0.00
			r; Ep alteration in three different ; Trace Cpy / graphite (?) / hem	way: patchy / along the fractures / as veinlets cutting atile (?)	N986197	72.34	73.47	1.13	0.00	0.00	0.00	0.00	0.00
					N986198	77.35	77.71	0.36	0.00	0.00	0.00	0.00	0.01
		Alteration Maj:	Type/Style/Intensity	Comment	N986199	132.25	133.42	1.17	0.00	0.00	0.00	0.00	0.00
		58.61 - 61.53	EP VN W	coarse grain Ep	N986200	134.41	135.94	1.53	0.00	0.00	0.00	0.00	0.00
		73.88 - 74.29	Carb VN S	Associated with Py/hematite mineralization along the fractures and iron staining	N985651	137.06	138.39	1.33	0.00	0.00	0.00	0.00	0.01
		87.58 - 90.20	Qtz VN S	Up to 2 cm veins; bleached the rock									
		87.58 - 90.20	Carb VN S	Up to 2 cm veins; bleached the rock									
		Mineralization Ma	: Type/Style/%Mineral	Comment									
		<i>Mineralization Ma</i> 65.94 - 66.18	.: Type/Style/%Mineral PY VN 5	<i>Comment</i> 1 cm veinlet in Ep/Chl vein; 25 to core axis									
		-	••••••										
		65.94 - 66.18	PY VN 5	1 cm veinlet in Ep/Chl vein; 25 to core axis									
		65.94 - 66.18 70.31 - 70.77	PY VN 5 PY VN 5	1 cm veinlet in Ep/Chl vein; 25 to core axis as both vein and dissiminated; 25 to core axis									
		65.94 - 66.18 70.31 - 70.77 72.34 - 73.47	PY VN 5 PY VN 5 PY VN 5 PY VN 5	1 cm veinlet in Ep/Chl vein; 25 to core axis as both vein and dissiminated; 25 to core axis Up to 2 cm vein; 10 to core axis Py and Hematite in fractures associated with a strong									
		65.94 - 66.18 70.31 - 70.77 72.34 - 73.47 73.88 - 74.29	PY VN 5 PY VN 5 PY VN 5 PY VN 5 PY VN 1	1 cm veinlet in Ep/Chl vein; 25 to core axis as both vein and dissiminated; 25 to core axis Up to 2 cm vein; 10 to core axis Py and Hematite in fractures associated with a strong carbonate alteration; 10 to core axis									
		65.94 - 66.18 70.31 - 70.77 72.34 - 73.47 73.88 - 74.29 76.08 - 76.20	PY VN 5 PY VN 5 PY VN 5 PY VN 1 PY DIS 1	1 cm veinlet in Ep/Chl vein; 25 to core axis as both vein and dissiminated; 25 to core axis Up to 2 cm vein; 10 to core axis Py and Hematite in fractures associated with a strong carbonate alteration; 10 to core axis Associated with graphite (?) along the fracture									

05-Dec-14 1:56:10 PM

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Hole Number WTR-050

Project: TRILL_SCJV

Project Number: 504

From	То								Au	Pt	Pd	Ni	Cu
<i>(m)</i>	(m)		Lithol	ogy	Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)
		78.78 - 78.83	PY VN 5	Along carbonate vein; 30 to core axis									
		79.07 - 79.40	PY VN 2	Along Ep/Chl/Carbonate veins; 30 to core axis									
		79.76 - 80.12	PY VN 2	in Ep/Chl vein; 30 to core axis									
		89.17 - 90.21	PY VN 5	Along Ep/carbonate vein; 30 to core axis									
		91.68 - 91.89	CP VN 0.1	Associated with coarse grained Ep alteration; 30 to core axis									
		91.68 - 91.89	PY VN 1	Associated with Ep alteration; 30 to core axis									
		95.32 - 96.11	PY VN 2	Along fine-coarse grained Ep vein; 35 to core axis									
		96.67 - 96.84	PY VN 2	Along Ep/Qz/Carbonate vein; 30 to core axis									
		102.72 - 103.38	PY VN 5	Along Ep/Chl/Carbonate vein; 14 to core axis									
		109.43 - 109.76	PY DIS 1	in the fractures associated with Ep alteration									
		112.96 - 113.04	PY DIS 1	in the fractures associated with Ep alteration									
		131.81 - 132.24	MAG VN 4	30 to core axis									
		132.24 - 133.44	PY VN 2	Along Ep/Chl/Mag veins; 30 to core axis									
		132.24 - 133.44	MAG VN 4	Mostly associated with Ep/Chl veins; 30 to core axis									
		134.44 - 135.00	PY VN 1	Along Ep/Chl/Mag veins; 30 to core axis									
		134.44 - 135.00	MAG VN 2	Mostly associated with Ep/Chl veins; 30 to core axis									
		135.00 - 137.15	MAG VN 2	Mostly associated with Ep/Chl veins; 30 to core axis									
		137.15 - 138.04	MAG VN 2	in an extensively altered part of FGN, associated with Ep/Chl/Mag veins									
		137.15 - 138.04	PY BL 15	in an extensively altered part of FGN, associated with Ep/Chl/Mag veins									
		Structure Maj.:	Type/Core Angle	Comment									
		137.16 - 137.37	SHR 30	Associated with Ep/Chl/Mag/Carb veins; right after it there is a unit that looks like strongly altered FGN containing blebbs of Py.									
		Minor Interval:											
		58.43 58.87	SDBX	Sudbury Breccia 2D4									

ole Number	WTR-050			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Litholog	y	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
140.28	144.11	AMPH Amphi	ibolite	Sudbury Breccia :	N985652	142.00	142.46	0.46	0.00	0.01	0.00	0.09	0.0
		It's a dark greenish colo amphibolitic diabse cutt force of diabase while c	ting the FGN. Brecciation in	Aly magnetic, cutting the FGN, it looks like an the begiining of it is the granite breccia causing by									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		142.13 - 142.35	CP VN 1	< 1 mm vein cutting AMPH, also as dissiminated in the fractures; 25 to core axis									
144.11	151.67	Lots of Ep/Chl veinlets <i>Mineralization Maj. :</i> 144.11 - 147.00	Type/Style/%Mineral PY DIS 2	Sudbury Breccia : Comment Associated with Ep alteration; also trace Cpy	N985653	150.00	151.11	1.11	0.00	0.00	0.00	0.00	0.0
		147.00 - 147.20 148.63 - 150.12	PY VN 1 PY VN 2	30 to core axis vein; along Ep vein Several tiny veins of Py with dominantly 30 to core axis along Ep/Chl veins									
		150.75 - 151.67	MAG VN 5	Up to 3 cm veins dominantly 30 ro core axis									
151.67	154.02	DIA Diabas	se	Sudbury Breccia :	N985654	151.11	152.54	1.43	0.00	0.00	0.00	0.01	0.
		Highly magnetic up to 1	94 T		N985655	152.54	154.04	1.50	0.00	0.00	0.00	0.01	0.0
		<i>Mineralization Maj. :</i> 152.00 - 153.12 152.00 - 153.12 153.12 - 154.00	Type/Style/%Mineral MAG VN 8 PY VN 5 PY VN 1	<i>Comment</i> Along Ep veins; 50 degree to core axis Along Ep veins; 8 degree to core axis Along Ep/Chl/Mag veins; varies between 40-50 degree to core axis									

05-Dec-14 1:56:10 PM

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Hole Number	WTR-050			Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Litholog	ענ	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
154.02	156.28	FGN Fels	ic Gneiss	Sudbury Breccia :	N985656	154.04	155.49	1.45	0.0	0 0.00	0.00	0.00	0.00
		Magnetic up to 254 T	with several Ep/Chl/Mag vein	is cutting it	N985657	155.49	156.33	0.84	0.0	0 0.00	0.00	0.02	0.01
		Alteration Maj:	Type/Style/Intensity	Comment									
		155.61 - 156.28	CHL VN S	35 degree to core axis; pervassive alteration									
		155.61 - 156.28	EP VN S	35 degree to core axis; pervassive alteration									
		155.61 - 156.28	MAG VN S	35 degree to core axis; pervassive alteration									
		155.61 - 156.28	Carb VN S	35 degree to core axis; pervassive alteration									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		154.02 - 155.61	PY DIS 1										
		154.02 - 155.61	MAG DIS 5										
		155.74 - 156.28	PY BL 10	with trace Cpy; Associated with Ep/Chl/Mag alteration									

156.28	156.52	FLT Fault With slicken sides; 35 de	gree to core axis; Associa	Sudbury Breccia : ted with Ep/Carb/Mag/Chl veins
		Alteration Maj:	Type/Style/Intensity	Comment
		156.28 - 156.52	CHL VN S	35 to core axis; pervassive alteration
		156.28 - 156.52	EP VN S	35 to core axis; pervassive alteration
		156.28 - 156.52	Carb VN S	35 to core axis; pervassive alteration
		156.28 - 156.52	MAG VN S	35 to core axis; pervassive alteration
		Mineralization Maj. :	Type/Style/%Mineral	Comment
		156 78 - 156 57	DV RI 5	Accordated with En/Chl/Mag/Carb vaine

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

Hole Number	WTR-050		Project: TRILL_SCJV					Project Number:	504			
From	То							Au	Pt	Pd	Ni	Cu
From (m)	(<i>m</i>)	Lithology		Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)

156.52	171.40	DIA Diabas	e	Sudbury Breccia :
		1 0 ()/	lagnetic (163 m: 33.2 T; 166 s cutting the rock; Trace Cp	6 m: 21.4 T; 173 m: 42.7 T; 176 m: 49.4 T; 182 m: y in some Ep veins
		Alteration Maj:	Type/Style/Intensity	Comment
		156.52 - 171.40	EP VN WM	lots of Ep veins cutting this unit; dominantly 45 degree to core axis
		Mineralization Maj. :	Type/Style/%Mineral	Comment
		156.52 - 159.00	MAG VN 4	30 to core axis; along Ep/Chl veins
		156.52 - 159.00	PY VN 1	30 to core axis; along Ep/Chl/Mag veins
		159.00 - 159.30	MAG VN 4	30 to core axis; along Ep/Chl veins
		159.30 - 159.48	MAG VN 4	Along Ep/Carb vein; 30 degree to core axis
		159.30 - 159.48	CP VN 1	Along Ep/Carb vein; 45 degree to core axis
		161.24 - 163.48	CP DIS 0.1	Along Ep veins with 30 degree to cre axis
171.40	172.16	QD Quartz	Diorite	Sudbury Breccia :

172.16	183.90	DIA	Diabase	

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Sudbury Breccia :

ble Number	WTR-050			Project: TRILL_SCJV					Project Number	: 50)4			
From (m)	To		Litholog	n/	Sample #	From	То	Length	A 1 (9/		Pt (g/t)	Pd (g/t)	Ni (%)	С (9
(11)	(m)	Coarse grain including a alteration and they vary grained blackish color n	Amph and feldspar; Lots of between 40-50 degree to c	Ep veins cutting diabase with weak to moderate ore axis; from 179.41 it changes to blocky, fine-	Gumple #		10	Lengui	19/	2	9.9	(977	(70)	
		Alteration Maj:	Type/Style/Intensity	Comment										
		172.16 - 183.90	EP VN WM	dominantly 40-50 degree to core axis										
		Structure Maj.:	Type/Core Angle	Comment										
		179.41 - 183.90	BLKY 45	dominantly 45-50 degree to core axis										
183.90	190.09	IQD inclusi	ion quartz diorite	Sudbury Breccia :	N985658	184.58	186.04	1.46	0.	00	0.00	0.00	0.01	
		With 20% clasts, matrix	and clasts are dominantly	intermediate; blocky and brocken	N985659	189.00	190.00	1.00	0.	00	0.00	0.00	0.01	
		Alteration Maj:	Type/Style/Intensity	Comment										
		183.90 - 190.09	EP VN W	Angle varies from 14 to 30 degree to core axis.										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		184.73 - 189.00	PY DIS 1	Along Ep vains as well as in the matrix and also few of them are blebbs.										
		189.00 - 190.09	PY VN 1	30 degree veins along Ep veins and also some of them are in the form of blebbs or dissiminated.										
190.09	192.91	MTBX metam	norphosed breccia	Sudbury Breccia :										
		Felsic to intermediate m	natrix, highly clast-rich; non	to trace mineralization; not to weakly magnetic										
		Structure Maj.:	Type/Core Angle	Comment										
		190.09 - 192.91	BLKY 0	Blocky parallel to the core axis										

ole Number	WTR-050			Project: TRILL_SCJV					Project Num	per: 5	504			
From	То				0	F	T .	1		Au	Pt	Pd	Ni	Cu
(m)	(m)		Litholog	У	Sample #	From	То	Length		(g/t)	(g/t)	(g/t)	(%)	(%)
192.91	197.93	IQD inclusi	on quartz diorite	Sudbury Breccia :	N985660	196.55	197.99	1.44		0.00	0.00	0.01	0.01	0.0
		It has much less inclusion	•	is darker (dark gray color), it is an IPQD, it is blocky axis										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		192.91 - 194.54	PY VN 1	in Ep veins as well as dissiminated in clasts and matrix. Veins are 30 degree to core axis.										
		194.54 - 194.58	PY VN 10	Associated with Carb vein; 25 degree to core axis										
		194.58 - 196.76	PY VN 1	in Ep veins as well as dissiminated in clasts and matrix. Veins are 30 degree to core axis.										
		196.76 - 197.88	PY DIS 0.1	Also blebby in few places										
		197.88 - 197.93	CP BL 1	Sometimes associated with Ep alteration										
		197.88 - 197.93	PO BL 1	Sometimes associated with Ep alteration										
		197.88 - 197.93	PY BL 10	Sometimes associated with Ep alteration										
		Structure Maj.:	Type/Core Angle	Comment										
		194.40 - 194.67	SHR 25	Associated with carbonate vein and Py mineralization										
197.93	200.62	DIA Diabas	е	Sudbury Breccia :	N985661	197.99	198.63	0.64		0.04	0.12	0.27	0.12	0.1
				-	N985662	198.63	200.09	1.46		0.00	0.02	0.03	0.01	0.0
		Mineralization Maj. :	Type/Style/%Mineral	Comment				-						
		197.93 - 198.87	CP BL 1	Sometimes associated with Ep alteration										
		197.93 - 198.87	PO BL 1	Sometimes associated with Ep alteration										
		197.93 - 198.87	PY BL 10	Sometimes associated with Ep alteration										

05-Dec-14 1:56:10 PM

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

e Number	WTR-050			Project: TRILL_SCJV					Project Num	ber:	504			
rom (m)	To (m)		Litholog	ЭV	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Сі (%)
200.62	243.68	FGN Felsic		Sudbury Breccia :										
		-	-	III. Py is observed dominantly along Ep veins.										
		Alteration Maj:	Type/Style/Intensity	Comment										
		231.17 - 231.67	CHL VN S	Bleached the rock; 35 degree to the core axis										
		231.17 - 231.67	Carb VN S	Bleached the rock; 35 degree to the core axis										
		231.17 - 231.67	EP VN S	Bleached the rock; 35 degree to the core axis										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		202.32 - 202.50	PY VN 2	With trace Cpy and Po; Along a 16 degree Ep vein										
		202.94 - 203.16	PY VN 5	Along Ep/Chl/Carb vein; 10 degree to core axis.										
		214.18 - 214.32	PY VN 10	Along Ep/Chl/Carb vein; 30 degree to core axis.										
		Minor Interval: 202.31 202.94	DIA	Diabase										
243.68	246.53		orphosed breccia atrix and dominnatly felsic	Sudbury Breccia : clasts; overall 1% dissiminated Py; highly clast rich	N985665	245.47	246.92	1.45		0.00	0.00	0.00	0.01	(
		<i>Mineralization Maj. :</i> 245.56 - 245.64	Type/Style/%Mineral PY DIS 2	Comment										
246.53	269.41		on quartz diorite ained with 5% inclusion; no	Sudbury Breccia : ot highly mineralized; not magnetic.	N985666 N985667	258.33 267.07	258.51 267.51	0.18 0.44		0.00 0.00	0.00 0.00	0.00 0.00	0.01 0.01	(
		<i>Mineralization Maj. :</i> 246.53 - 246.73	Type/Style/%Mineral PY VN 2	<i>Comment</i> Trace Cpy; Along Ep/Carb vein; 10 degree to the core axis										

Hole Number WTR-050

Project: TRILL_SCJV

Project Number: 504

From	То								Au	Pt	Pd	Ni	Cu
(m)	(m)		Litholog	av state and sta	Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)
		249.34 - 249.37	PO BL 5	One individual Po									
		250.00 - 250.54	PY DIS 1	In the clasts or around them									
		258.33 - 259.56	PO VN 1	Associated with Ep/Carb/Chl/Qz veins with 20 degree to core axis.									
		258.33 - 259.56	PY VN 5	Associated with Ep/Carb/Chl/Qz veins with 20 degree to core axis.									
		261.23 - 263.13	PY VN 1	Several veins with dominantly 30 degree to core axis along Ep/Carb veins									
		264.23 - 264.50	PY VN 2	Associated with Ep/Carb/Chl veins with 18 degree to core axis.									
		267.00 - 267.52	PO VN 1	Parallel vein along with Ep/Carb vein									
		267.00 - 267.52	CP VN 1	Parallel vein along with Ep/Carb vein									
		267.00 - 267.52	PY VN 10	Parallel vein along with Ep/Carb vein									
		Structure Maj.:	Type/Core Angle	Comment									
		246.53 - 249.83	BLKY 60	Blocky and brocken; 2 dominant angle: 25 and 60 to core axis									
		254.89 - 269.50	BLKY 25	Blocky and brocken with two different angles: 25 and 60 degree to core axis									
269.41	279.15	DIOR Diorite		Sudbury Breccia :									
		With lots of partial melt v 276: 38.4; 279: 32.00); Lo		inated Py; Highly magnetic (270: 35.4 T; 273: 43.9;									
		Alteration Maj:	Type/Style/Intensity	Comment									
		269.41 - 279.15	Carb VN WM	Dominantly parallel to 10 degree to core axis, few of them are 30 degree to core axis.									
		<i>Mineralization Maj. :</i> 276.79 - 277.22	Type∕Style∕%Mineral PY DIS 0.1	Comment									

05-Dec-14 1:56:10 PM

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

Project Number: 504 Hole Number WTR-050 Project: TRILL SCJV То Pt Pd Ni Cu From Au Sample # То (g/t) (g/t) (g/t) (%) (%) (m) (m) Lithology From Length Sudbury Breccia : IQD 279.15 296.00 inclusion quartz diorite 282.12 0.27 0.00 0.00 0.00 0.01 0.02 N985668 281.85 IRQD which gradually changes to IPQD at 293 m; intermediate matrix that changes to mafic matrix at N985669 293.10 293.64 0.54 0.00 0.03 0.04 0.02 0.02 293 m; fdominnatly felsic inclusion; 60% inclusion that changes gradually to 5% Mineralization Maj. : Type/Style/%Mineral Comment CP VN 2 282.00 - 282.13 Along Ep/Chl/Carb veins with 30 degree to core axis 285.43 - 285.55 CP VN 0.1 Along Ep/Chl/Carb veins with 30 degree to core axis 293.06 - 293.46 PY DIS 5 Dissiminated to blebby Py associated with Ep/Chl alteration Structure Maj.: Type/Core Angle Comment 287.35 - 294.00 BLKY 50 Blocky and brocken with two different angles: 8 and 50 degree to core axis Minor Interval: 282.22 282.63 DIOR Diorite Sudbury Breccia : 296.00 352.29 FGN Felsic Gneiss Less than 1% dissiminated Py Mineralization Maj. : Type/Style/%Mineral Comment 335.50 - 336.63 MAG BL 15 Along Ep/Chl vein with 30 degree to core axis 342.00 - 347.13 MAG BL 10 in both blebby and dissiminated forms Sudbury Breccia : 352.29 354.15 FLT Fault Faulted Olivine diabase going 10 degrees to core axis; slicken slides and fault gauge

05-Dec-14 1:56:10 PM

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

ble Number	WTR-050			Project: TRILL_SCJV					Project Nu	mber:	504			
From (m)	То (т)		Litholog	<i>IV</i>	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Си (%)
		352.29 354.15	DIA Not magnetic; almos	<i>Diabase</i> t black color; fine grained										
354.15	358.19	FGN Felsic (Blocky and brocken	Gneiss	Sudbury Breccia :										
		Alteration Maj:	Type/Style/Intensity	Comment										
		354.15 - 358.19	Carb VN MS	Dominantly 30 to core axis; associated with Qz/Ep/ChI veins										
		<i>Structure Maj.:</i> 354.15 - 358.19	Type/Core Angle BLKY 30	Comment										
358.19	358.85	FLT Fault Going 10 degrees to cor	e axis; slicken slides and f	Sudbury Breccia : ault gauge										
358.85	360.00	FGN Felsic G Blocky and brocken	Gneiss	Sudbury Breccia :										
		Alteration Maj:	Type/Style/Intensity	Comment										
		358.85 - 360.00	Carb VN W	Dominantly 30 to core axis										
		Structure Maj.:	Type/Core Angle	Comment										
		358.85 - 360.00	BLKY 30											

lole Number	WTR-050			Project: TRILL_SCJV					Project N	umber:	504			
From (m)	То (т)		Litholog	з <i>у</i>	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Сі (%)
360.00	360.11	FLT Fault	t	Sudbury Breccia :										
		Faulted Olivine diaba	se going 10 degrees to core a	axis; slicken slides and fault gauge										
360.11	384.53		ine Diabase	Sudbury Breccia :										
		Mainly amphibole, felo coarse grained; black 15.8)	dspar and quartz; fine grained ish color and mafic; magnetic	d in the beginning and then gradually changes to : (361 m:21.1 T; 363: 23.4; 366: 24.6; 369: 14; 372:										
		Alteration Maj:	Type/Style/Intensity	Comment										
		360.11 - 370.30	CHL F M	Fractures have different angles										
		360.11 - 370.30	Carb VN WM	Dominantly 10 along Ep/Chl veins										
		Structure Maj.:	Type/Core Angle	Comment										
		360.11 - 370.30	BLKY 45	parallel to 90 degree to core axis, different angles										
		382.35 - 384.53	BLKY 30	Blocky and brocken rocks										
384.53	385.00	FLT Fault	t	Sudbury Breccia :										
		Going 30 degree to co	ore axis											

lole Number	WTR-050			Project: TRILL_SCJV					Project Nun	nber:	504			
From (m)	То (т)		Litholog	у v	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
385.00	398.08		Diabase amphibole, feldspar and qu	Sudbury Breccia : artz; blackish color and mafic; magnetic (387: 22.9;	N985670	388.37	388.96	0.59		0.00	0.00	0.00	0.00	0.00
		<i>Mineralization Maj. :</i> 384.91 - 386.38	Type/Style/%Mineral PY BL 1	<i>Comment</i> In the fractures along Ep/ChI veins; 30 degree to core axis										
		<i>Structure Maj.:</i> 385.00 - 386.38	<i>Type/Core Angle</i> BLKY 30	<i>Comment</i> Blocky and brocken										

398.08 398.09

Sudbury Breccia :

EOH

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

DRILL HOLE REPORT

Hole Number	WTR-051			Project	t: TRILL	_SCJV				Project Numbe	er: 504
Drilling		Casing		Core				Location		Other	
Azimuth:	180	Length:	0	Dimension:	NQ			Township:	TRILL	Logged by:	Mohadeseh Majnoon/Jian Xion
Dip:	-80	Pulled:		Storage:	Core Shee	l		Claim No.:	1229977	Relog by:	
Length:	1077.73	Capped:		Section:				NTS:	411/05	Contractor:	Jacob & Samuel Drilling Ltd.
Started:	27-Nov-13	Cemented: no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
Completed:	15-Dec-13									Surveyed:	
Logged:	01-Dec-13									Surveyed by:	
Comment:	(Log Altered by S. Baird fro	om ~647-709m) Surveyed w	submeter GeoX	H (File"\WM 121712A (cor"	Coordinate	- Gemcom	Coordinate - l	ІТМ	Geophysics:	UTEM
	WGS84 5147024.0N, 4583 Hexagonal core barrel was	864.9E, 286.6 HAE). 18" she used to keep drill hole strai	ell put on at 21m ght.	· _	·	East:	458350.7	East:	458354	Geophysic Contractor:	Lamontagne
	From 231 m, the measurer point. The reference point	ment method was changed t	to have areference	e and measure from the	nat	North:	5146801.2	North:	5146800	Left in hole:	
		reference point of measurer	nent at 483m;			Elev.:	322.6	Elev.: Zone: 17	325 NAD: 27	Making water Multi shot su	

	<u> </u>	Deviation	<u>Tests</u>					Deviation	<u>Tests</u>		
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments
0.00	182.10	-79.88	G	\checkmark		110.00	180.20	-79.69		\checkmark	
10.00	181.46	-79.77		\checkmark		120.00	180.01	-79.55		\checkmark	
20.00	181.32	-79.91		\checkmark		123.00	176.60	-79.80	F		Mag: 5525
21.00	181.80	-80.00	F		Mag: 5663	130.00	180.10	-79.42		\checkmark	
30.00	181.41	-79.92		\checkmark	C C	140.00	180.11	-79.49		\checkmark	
40.00	181.45	-79.88		\checkmark		150.00	180.34	-79.45		\checkmark	
50.00	181.39	-79.91		\checkmark		160.00	180.50	-79.36		\checkmark	
60.00	181.14	-79.88		\checkmark		170.00	180.44	-79.28		\checkmark	
70.00	180.81	-79.93		\checkmark		174.00	178.30	-79.30	F		Mag: 5576
72.00	178.10	-80.20	F		Mag: 5547	180.00	180.38	-79.17		\checkmark	
80.00	180.66	-79.87		\checkmark		190.00	180.37	-79.10		\checkmark	
90.00	180.55	-79.90		\checkmark		200.00	180.38	-79.10		\checkmark	
100.00	180.48	-79.91		\checkmark		210.00	180.24	-78.91		\checkmark	

05-Dec-14 1:46:01 PM

HEADER REPORT

Hole Number

Project: TRILL_SCJV

Project Number: 504

	Deviation Tests						<u>Deviation Tests</u>							
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments			
220.00	181.04	-78.96		\checkmark		470.00	185.35	-78.77		\checkmark				
225.00	179.50	-79.30	F		Mag: 5474	480.00	185.39	-78.82	G		Mag: 5514; overwrote Reflex with Gyro			
230.00	180.94	-78.85		\checkmark		490.00	185.67	-78.84		\checkmark				
240.00	181.01	-78.90		✓		500.00	186.01	-78.83		✓ ✓				
250.00	181.14	-78.92		\checkmark		510.00	186.19	-78.69		\checkmark				
260.00	181.24	-78.90		\checkmark		520.00	186.73	-78.74		\checkmark				
270.00	181.34	-78.84		\checkmark		530.00	187.09	-78.60		\checkmark				
276.00	174.50	-79.20	F		Mag: 5544	531.00	187.60	-78.60	F		Mag: 5510; Temp: 14.0			
280.00	181.42	-78.91		\checkmark		540.00	187.37	-78.67		\checkmark				
90.00	181.42	-78.98		\checkmark		550.00	187.57	-78.61		\checkmark				
00.00	181.39	-78.98		\checkmark		560.00	187.75	-78.63						
310.00	181.39	-78.99		\checkmark		570.00	187.90	-78.65		\checkmark				
20.00	181.39	-78.88		\checkmark		580.00	188.17	-78.63						
27.00	183.30	-79.20	F		Mag: 5596; Temp: 11.8	582.00	186.60	-78.90	F		Mag: 5559; Temp: 13.3			
30.00	181.46	-78.92		\checkmark		590.00	188.44	-78.62		\checkmark				
40.00	181.53	-78.95		\checkmark		600.00	188.62	-78.50		\checkmark				
50.00	181.52	-78.92		\checkmark		610.00	188.75	-78.57		\checkmark				
60.00	181.98	-78.89		\checkmark		620.00	188.83	-78.69		✓ ✓				
70.00	181.99	-78.96		\checkmark		630.00	188.87	-78.68		\checkmark				
77.00	181.30	-79.00	F		Mag: 5264; Temp: 13.3; Roll: 154.6	633.00	210.90	-78.70	F		Mag: 5481; Temp: 15.9			
80.00	182.24	-78.90		\checkmark		640.00	188.72	-78.80		\checkmark				
90.00	182.43	-78.95		\checkmark		650.00	188.57	-78.79		\checkmark				
00.00	182.93	-78.92		\checkmark		660.00	188.69	-78.78		✓ ✓				
10.00	183.48	-79.00		\checkmark		670.00	188.63	-78.81		\checkmark				
420.00	183.51	-78.87		\checkmark		680.00	188.69	-78.83		\checkmark				
29.00	185.20	-78.90	F		Mag: 5479; Roll: 167.3	684.00	203.30	-78.90	F		Mag: 5536; Temp:			
30.00	184.02	-78.96		\checkmark		690.00	188.71	-78.88		\checkmark				
40.00	184.10	-78.81		\checkmark		700.00	188.75	-78.84		\checkmark				
50.00	184.51	-78.81		\checkmark		710.00	188.41	-78.89						
460.00	184.78	-78.75		\checkmark		720.00	188.88	-78.83		\checkmark				
-Dec-14 1:4	46·01 PM													

HEADER REPORT

Hole Number

Project: TRILL_SCJV

Project Number: 504

Deviation Tests							<u> </u>	Deviation	<u>Tests</u>		
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments
80.00	188.88	-78.91		\checkmark		990.00	195.24	-79.03		\checkmark	
5.00	210.60	-79.30	F		Mag: 5519; Temp: 15.1	1000.00	195.79	-79.06		\checkmark	
40.00	188.97	-78.75		\checkmark		1010.00	195.82	-79.13		\checkmark	
50.00	189.09	-78.78		\checkmark		1020.00	195.99	-79.08		\checkmark	
60.00	189.21	-78.98		\checkmark		1030.00	195.94	-79.04		\checkmark	
0.00	189.44	-78.82		\checkmark		1038.00	215.40	-79.20	F		Mag: 5176
0.00	189.36	-79.02		\checkmark		1040.00	196.03	-78.92		\checkmark	
5.00	210.10	-79.00	F		Mag: 5557; TemP:	1050.00	195.72	-79.04		\checkmark	
90.00	189.41	-79.25		\checkmark		1060.00	194.62	-79.15		\checkmark	
0.00	189.51	-79.27		\checkmark		1069.10	194.46	-79.17		\checkmark	
0.00	189.55	-79.24		\checkmark		1077.00	206.80	-79.20	F		Mag: 5492
0.00	190.02	-79.16		\checkmark							-
.00	190.23	-79.15		\checkmark							
.00	190.36	-79.13		\checkmark							
0.00	190.53	-79.20		\checkmark							
0.00	191.42	-79.23		\checkmark							
0.00	192.28	-79.23		\checkmark							
0.00	192.97	-79.14		\checkmark							
0.00	193.71	-79.18		\checkmark							
0.00	193.85	-79.17		\checkmark							
0.00	194.06	-79.12		\checkmark							
0.00	194.20	-79.15		\checkmark							
0.00	194.32	-79.06		\checkmark							
6.00	213.90	-79.20	F		Mag: 5517;						
0.00	194.45	-79.14		\checkmark							
0.00	194.65	-79.01		\checkmark							
0.00	194.97	-79.14		\checkmark							
0.00	195.02	-78.94		\checkmark							
0.00	195.16	-78.90		\checkmark							
00	215.60	-79.10	F		Mag: 5506						
c-14	1:46:01 PM										

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

ole Number	WTR-051		Project:	TRILL_SCJV				Project Number:	504			
From (m)	То (т)		Lithology		Sample #	From	To Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
0.00	7.33	CAS	Sudbury Bi	eccia :								
7.33	9.07	MDIA <i>Matachewan Diabase</i> Magnetic with dark blackish color and fin	Sudbury Bi e-arained.	eccia :								
		<i>Mineralization Maj. : Type/Style/</i> 9 7.90 - 8.07 PY VN 5	-									
		Minor Interval: 8.35 9.07 IGN										
9.07	9.43	SDBXSudbury BrecciaMineralized (2% dissiminated Py)	Sudbury Bi	eccia : 1AC5								
		Mineralization Maj. :Type/Style/99.07 - 9.43PYDIS2										
9.43	14.53	MDIA Matachewan Diabase	Sudbury Bi	eccia: 1AC5								
		Starts with fine-grained blackish texture	vith no inclusion and gradually at 11 m cha bical of MDIA). in the inclusion-bearing par 10: 63.1; 12: 33.3; 15: 49.5); 2% SDBX	nges to less fine- t include 60% feldpar								
		Mineralization Maj. : Type/Style/? 12.75 - 12.93 PY VN 5	6Mineral Comment 30 degree to core axis; assoc	iated with EP/Chl								

le Number	WTR-051					Project: TRIL	_SCJV					Project Numbe	r: 50 4			
From	То											Д		Pt Pd		Cu
(m)	(m)				Lithol	pgy		Sample #	From	То	Length	(g	(t) (g	/t) (g/t)	(%)	(%)
						alteration										
		13.51 - 13.89		ΡY	DIS 1											
		Minor Interva	d:													
		10.78	10.96	SD	DBX	Sudbury Breccia	1AC5									
14.53	30.17	SDBX	Sudbury	/ Brecci	ia	Sudbury Breccia :	2DA4									
		Matrix is 1 to a fractures.	2 (mafic to i	ntermed	diate). Sulphide	(py dominant) generally associated with cla	sts, veins or									
		Alteration Ma	aj:	Туре	/Style/Intensity	Comment										
		16.00 - 16.57		CARE	B VN MS	Bleached the rock; 35 to core axis										
		19.19 - 19.38		EP	VN WM	19 cm vein; 35 to core axis										
		Mineralizatio	n Maj. :	Туре	/Style/%Minera	Comment										
		15.86 - 16.14		ΡY	BL 3	Associated with Ep alteration										
		17.68 - 17.81			BL 2											
		19.91 - 20.05		ΡY	BL 3	Along Ep vein with 25 to core axis										
		20.24 - 20.60		ΡY	DIS 2											
		20.95 - 21.37		ΡY	DIS 2	In the clasts and along the fractures										
		26.94 - 27.05		ΡY	DIS 0.1	Along 90 degree to core axis fractures										
30.17	36.22	FGN <1% Py	Felsic G	neiss		Sudbury Breccia :										

05-Dec-14 1:56:51 PM

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

Hole Number	WTR-051			Project: TRILL_S	Project: TRILL_SCJV Project Number: 50							04				
From (m)	To (m)			Lithology			Sample #	From	То	Length	A ((9/	i P t t) (g/t		Ni (%)	Cu (%)	
36.22	37.43	SDBX Associated	Sudbury Breccia with Mag/Ep/Chl vein		Sudbury Breccia :	1D5										

37.43	44.72	MDIA	Matachewan Diabase	Sudbury Breccia :	1DA5
			n fractures; Less than 1% SDBX; in the begin earing with around 40% typical feldpsar inclus	o o ,	nges

44.72	45.73	SDBX Sudbu	ry Breccia	Sudbury Breccia :	1AD5
		Alteration Maj:	Type/Style/Intensity	Comment	
		45.66 - 45.73	MAG VN S	Also with iron staining with 35 to core axis	
		45.66 - 45.73	CHL VN S	Also with iron staining with 35 to core axis	
		45.66 - 45.73	EP VN S	Also with iron staining with 35 to core axis	
		Mineralization Maj. :	Type/Style/%Mineral	Comment	
		44.74 - 45.53	PY BL 8	Also in dissiminated form	

45.73 48.51 FGN Felsic Gneiss Sudbury Breccia :

Hole Number	WTR-051			Project: TRILL_SCJV						Project Nu	mber:	504			
From (m)	То (т)		Litholog	у		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
48.51	51.60	SDBX Su	dbury Breccia	Sudbury Breccia : 10	DA5	N985673	50.22	51.61	1.39		0.00	0.00	0.00	0.01	0.02
		Mineralization Maj	.: Type/Style/%Mineral	Comment											
		49.00 - 51.60	CP DIS 1	Associated mainly with Ep alteration, around and the clasts and along the veins with dominantly 20 core axis	l in) to										
		49.00 - 51.60	PY DIS 1	Associated mainly with Ep alteration, around and the clasts and along the veins with dominantly 20 core axis	l in) to										
51.60	145.21	FGN Fe	lsic Gneiss	Sudbury Breccia : 2	2D5	N005074	50.07	54.00	4.40		0.00	0.00	0.00	0.00	0.00
51.00	143.21			dominantly 55 to core axis; <1% SDBX; Lots of Ep	203	N985674 N985675	52.87 54.00	54.00 54.79	1.13 0.79		0.00	0.00	0.00	0.00	
		veins cutting FGN v	vith different angles; Several particular ly associated with Ep alteration	tchy epidote alteration; magnetic; Localized Py		N985676	54.00 59.45	59.70	0.79		0.00	0.00	0.00	0.00	
		Alteration Maj:	Type/Style/Intensity	Comment		N985677	72.98	74.49	1.51		0.00		0.00	0.00	
		55.85 - 55.97	Carb VN S	With 30 to core axis											
		55.85 - 55.97	EP VN S	With 30 to core axis											
		66.00 - 74.47	Carb VN WM	Dominantly 30 to core axis											
		66.00 - 74.47	Qtz VN WM	Dominantly 30 to core axis											
		<i>Mineralization Maj.</i> 59.65 - 59.70 72.94 - 74.48	.: Type/Style/%Mineral PY VN 1 PY VN 1	<i>Comment</i> Along Ep/Chl/Carb veins; 35 to core axis Dominantly two angles: parallel and 35 to core ax along Ep/Carb veins	xis;										

LITHOLOGY REPORT - Detailed -

Project Number: 504 Hole Number WTR-051 Project: TRILL SCJV То Pt Pd Ni Cu From Au Lithology Sample # То (g/t) (g/t) (g/t) (%) (%) (m) From Length (*m*) PY VN 0.1 83.24 - 84.08 Along Ep/Chl veins with 35 to core axis PY VN Along Ep vein; 30 to core axis 93.35 - 93.40 1 94.43 - 94.55 PY VN Along Ep vein; 30 to core axis 1 PY VN 2 Along Ep vein; 30 to core axis 106.89 - 107.07 PY BL 2 Dominantly from 108.47 to 108.80 108.00 - 108.80 MAG VN 15 108.00 - 108.80 With several different angles cut the FGN and brecciated it. 110.48 - 110.53 PY VN 1 30 to core axis; along Ep/Carb vein PY VN 1 119.83 - 119.90 30 to core axis; along Ep vein PY VN 30 to core axis; along Ep vein 120.34 - 120.40 1 122.20 - 122.40 PY VN 1 30 to core axis; along Ep vein Minor Interval: SDBX 52.91 53.08 Sudbury Breccia 1DA5 Minor Interval: 108.47 108.80 DIA Diabase Sudbury Breccia : 2D5 145.21 146.02 SDBX Sudbury Breccia 60% SDBX; magnetic Sudbury Breccia : 2D5 146.02 169.65 FGN Felsic Gneiss N985678 152.74 153.12 0.38 0.11 0.00 0.01 0.01 0.00 With 1% Py along fractures and Ep/Carb vein with dominantly 55 to core axis; <1% SDBX; Lots of Ep veins cutting FGN with different angles; Several patchy epidote alteration; magnetic; Localized Py mineralization mainly associated with Ep alteration Alteration Maj: Type/Style/Intensity Comment

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Hole Number	WTR-051			Project: TRILL_SCJ	IV					Project Num	ber:	504			
From (m)	To (m)		Litholog	чv		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
	()	156.43 - 156.68	Carb VN W	Parallel to core axis					-						
		156.43 - 156.68	EP VN W	Parallel to core axis											
		156.43 - 156.68	Qtz VN W	Parallel to core axis											
		Minor Interval: 162.08 162.54	SDBX 80% SDBX	Sudbury Breccia	2D5										
169.65	170.84		ury Breccia with strong Ep alteration	Sudbury Breccia :	1D4										
170.04			- ·	Quality and Descario a	005										
170.84	185.92		: Gneiss tures and En/Carb vein with	Sudbury Breccia : dominantly 55 to core axis; <1% SDBX; Lots of I	2D5 En	N985679	175.62	175.89	0.27		0.00	0.00	0.00		
		veins cutting FGN with	different angles; Several pa	tchy epidote alteration; magnetic; Localized Py	μ	N985680 N985681	176.67 177.00	177.00 178.30	0.33 1.30		0.00 0.00	0.01 0.00	0.00 0.00		
			associated with Ep alteration			11903001	177.00	176.30	1.30		0.00	0.00	0.00	0.00	0.00
		Alteration Maj:	Type/Style/Intensity	Comment	_										
		176.33 - 179.00	EP VN W	30 to core axis; also patchy, it's the darker gre associated with Cpy mineralization	en Ep										
		Mineralization Maj. :	Type/Style/%Mineral	Comment											
		, 174.47 - 174.77	PY VN 1	55 to core axis; along Ep alteration											
		175.73 - 175.81	PY VN 5	35 to core axis; along Ep/Carb alteration											
		176.45 - 177.00	CP BL 1	Associated with dark green Ep alteration vein to core axis	is at 30										
		178.37 - 178.43	PY VN 0.1	with 55 to cre axis; along Ep alteration											

05-Dec-14 1:56:51 PM

le Number	WTR-051			Project: TRILL_SC	SIA .					Project Numb	er: 5	504			
From (m)	To (m)		Litholog	У		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
185.92	186.73		ury Breccia	Sudbury Breccia :	1AD5										
		-	-	arbonate/Ep veins; magnetic; 40% SDBX											
		Alteration Maj: 185.92 - 186.33	Type/Style/Intensity Carb VN WM	Comment 18 to core axis											
186.73	190.67	With 1% Py along fraction Ep veins cutting FGN	tures and Ep/Carb vein with of with different angles; Several associated with Ep alteration <i>Type/Style/Intensity</i> EP VN S	<i>Sudbury Breccia :</i> dominantly 35 to 55 to core axis; <1% SDBX; I patchy epidote alteration; magnetic; Localized <i>Comment</i> with several different angles; changed the co FGN completely	l Py										
190.67	196.07	Magnetic; Associated	ury Breccia with strong Ep alteration; with	<i>Sudbury Breccia :</i> a several granophyric veins that they look melt	1D4 ed and	N985682 N985683	193.42 194.18	194.18 194.75	0.76 0.57		0.00	0.01 0.01	0.01	0.01 0.00	
		hot but the SDBX itself granophyric veins as w <i>Mineralization Maj. :</i>		e-grained Cpy associated with some of these Comment					0.01						
		193.86 - 194.12	PY VN 1	Along Ep veins as well as around clasts; wit core axis	th 14 to										

le Number	WTR-051					Project: TRILL_SCJV					Project Number	er: t	504			
From (m)	То (т)				Lithol	ogy	Sample #	From	То	Length		u n∕t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
196.07	228.86	FGN	Felsic G	Gneiss		Sudbury Breccia :	N985684	196.51	197.02	0.51		0.00	0.00	0.00	0.00	0.01
		Ep veins cuttir	ng FGN wit	th differe	Ep/Carb vein wit ent angles; Seve with Ep alteration	h dominantly 35 to 55 to core axis; <1% SDBX; Lots of al patchy epidote alteration; magnetic; Localized Py n										
		Mineralization	n Maj. :	Туре	/Style/%Minera	l Comment										
		196.57 - 196.9	7	PY	VN 10	Along Ep/Carb veins with 30 to core axis										
		197.70 - 198.0	0	PY	BL 1	Associated with Ep alteration										
		200.70 - 200.7	8	PY	VN 1	Along Ep/Carb vein with 30 to core axis										
		205.72 - 205.8	0	PY	VN 1	30 to core axis; along Ep/Chl veins										
		206.00 - 206.0	6	PY	VN 2	30 to core axis; along Ep/Carb veins										
		208.78 - 208.8		PY	VN 0.1	30 to core axis; along Ep/Carb veins										
		216.21 - 216.2	:6	ΡY	VN 1	30 to core axis; along Ep vein										
		Minor Interval	l:													
		227.05	227.23	SE	DBX	Sudbury Breccia 1AD5										
228.86	237.39	SDBX	Sudbur	y Brecc	ia	Sudbury Breccia :	N985685	228.80	230.10	1.30	(0.00	0.02	0.01	0.01	0.0
						agnetite veins cutting it in the beginning; dark green Ep	N985686	230.10	231.38	1.28	(0.00	0.02	0.02	0.03	0.0
						to granitoid and from round to angular; the biggest clast e small clasts; TCA @ 237.39 is 30°;	N985687	231.38	232.83	1.45	(0.00	0.01	0.01	0.01	0.0
		Alteration Ma			/Style/Intensity		N985688	232.83	234.37	1.54		0.00	0.01	0.01	0.01	0.0
		228.86 - 231.5	•	••	VN W	from 230-231.56 with 30 to core axis	N985689	234.37	235.48	1.11		0.00	0.01	0.01	0.01	0.0
							N985690	235.48	235.91	0.43		0.00	0.01	0.00	0.01	0.0
		228.86 - 231.5	б	EP	VN S	Dark green Ep with Cpy and Py and Po and Mag mineralization; several different angles	N985693	235.91	237.39	1.48	(0.00	0.00	0.00	0.01	0.0
		231.56 - 235.0	8	Carb	VN W	With 30 to the core axis										

Hole Number WTR-051 TRILL_SCJV Project Number: 504 Project: From То Pt Pd Ni Au (g/t) (m) Lithology Sample # From То Length (g/t) (g/t) (%) (m) 235.08 - 237.39 EP PCH M 235.08 - 237.39 EP VN W Mineralization Maj. : Type/Style/%Mineral Comment Several different angles. It is like a hot melt cutting the MAG VN 20 228.86 - 231.00 rocks and have so many angles to the core axis. 228.86 - 231.00 CP DIS 1 Associated with Ep/Chl alteration PY DIS 2 228.86 - 231.00 Associated with Ep/Chl alteration 231.00 - 231.28 CP VN 1 Along Ep/Carb/Chl veins parallel to the core axis Along Ep/Carb/Chl veins parallel to the core axis 231.00 - 231.28 PY VN 20 231.28 - 237.43 PO BL 1 in the matrix; up to 1 cm in diameter CP BL 1 231.28 - 237.43 in the matrix; up to 1 cm in diameter 231.28 - 237.43 PY BL 2 in the matrix; up to 1 cm in diameter

237.39	268.12	DIA L	liabase	Sudbury Breccia :	N985694	240.96	241.76	0.80	0.00 0.00 0.00 0.00	0.05
		veinlits (>1 to 12 2-4mm wide; cont	nm wide); contains few, irregula ains 2-3% blabby py and trace (or magnetite) veinlets; contain	ained; cross-cut by ep-qtz-carbonite or Magenitite ar, greyish black colour, aphanitic , SDBX (?, 1a5) up to fine-grained cpy, some py and cpy are occur within the s 5 ep alteration bands from 6 to 40 cm long; strong	N985695	267.41	268.09	0.68	0.00 0.00 0.00 0.01	I 0.07
		Mineralization Ma	aj. : Type/Style/%Minera	l Comment						
		237.39 - 268.12	PY DIS 0.5							
		237.39 - 268.12	CP FG 0.2	most occurs within the EP-Carbonate veinlet.						
		237.39 - 268.12	PY BL 3	some associated with EP-Carbonate Veinlet						
		Texture Maj:	Туре	Comment						
		521.48 - 0.00	PEG							
05-Dec-14 1:56	6:51 PM								Pa	age 9 of 35

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Cu

(%)

Hole Number	WTR-051		Project: TRILL_SCJV							Project Number: 504					
From (m)	То (т)		Litholog	V	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)		
268.12	276.12	medium- to coarse-gra contains one irreegular alteration bands from 3	lour; prophyritic; contains 5-6 inied groundmass, 8 to 10cm r (0.5 to 3.0 cm wide), greyish 3 to 65cm long and two ep-ma	<i>Sudbury Breccia :</i> % irregular feldspar-qtz phenocryst up to 1 cm in size; wide, chilled margins occur at both contacts; black colour, aphanitic SDBX (1a5); contains 5 ep agnetite alteration bands from 2-4 cm wide; trace, tion band; moderately to strongly magnetic; TCA @	N985696	268.09	268.70	0.61	0.00	0.01	0.01	0.02	0.02		
		<i>Mineralization Maj. :</i> 268.12 - 276.12 268.12 - 276.12	Type/Style/%Mineral CP FG 0.1 PY DIS 1	<i>Comment</i> occurs inside ep altearation band possible associated with ep alteration											

276.12	282.02	DIA	Diabase		Sudbury Breccia :
		medium-graine		2.0mm wide, irreg	ralization and less ep alteration; dark grey colour; gular carbonate-ep-chl veinlets,; contains trace py 282.02 is 35°;
		Mineralization	Maj.: Type/St	tyle/%Mineral	Comment

•	•• •	
278.10 - 279.00	PY VN 0.1	a mm wide py veinlet insiide ep alteration band

282.02 282.96 MGN Mafic Gneiss Sudbury Breccia : Possible meta-gabbro; greenish dark grey colour; fine- to coarse-grained; strongly deformation with K-feldspar, ep, carbonate and magnetite alteration; moderately to strongly magnetic; TCA @ 282.96m is 60°;

40°;

Hole Number	WTR-051	Project: TRILL_SCJV	Project Number:	504			
From (m)	То		Au	Pt	Pd	Ni	Cu
<i>(m)</i>	(m)	Lithology Sample # From To Length	(g/t)	(g/t)	(g/t)	(%)	(%)

282.96 290.43 FGN Felsic Gneiss Sudbury Breccia : Greenish or reddish pink colour, coarse-grained; strongly deformation with healed fratures and brecciation; <1 to 2mm wide, qtz-carbonate or ep venlets cut; patches ep alteration; contains two greenish black to dark grey colour, fine-grained DIA from 285.18-258.59 and 289.54-289.79m with strongly magnetic; a possible SDBX (1a5) occurs at 289.40m with strongly magnetic; TCA @ 290.43m is

290.43 314.90 DIA Diabase Sudbury Breccia :

Greenish dark grey to medium grey colour; medium- to coarse-grained; a 1.3m long, aphanitic to finegrained chilled margin occurs at upper contact; weakly cut by ep or ep-qtz-carbonate veinlet; contains a few dark grey colour, aphanitic, irregular SDBX (1a5) up to 2.0 cm wide; ep atleration band from 312.12 to 312.78m; strongly carbonate veinlet from 312.78 to 314.90m with aphanitic to fine-grained texture; TCA @ 314.9 is 45°;

Alteration Maj:	Type/Style/Intensity	Comment
589.78 - 0.00	EP PCH W	
Mineralization Maj. :	Type/Style/%Mineral	Comment

314.90 315.17 QTZ Quartz Vein

Sudbury Breccia :

Light greyish to pinkish white colour; fine- to coarse grained; consists of 60% calcite, 38% qtz and 1-2% chloritized DIA (?); TCA @ 315.17 is 40° ;

05-Dec-14 1:56:51 PM

Hole Number	WTR-051		Project:	TRILL_SCJV					Project Num	iber:	504			
From (m)	To (m)	Lithology			Sample #	From	То	Length		Au (g/t)		Pd (g/t)	Ni (%)	

315.17	376.11	DIA	Diabase	Sudbury Breccia :
--------	--------	-----	---------	-------------------

Greenish or pinkish dark grey colour; fine- to coarse-grained; a 90cm long, greenish black colour, aphanitic, chilled margin ocuurs at lower contact from 375.05 to 376.11m with 1.0cm wide ep veinlet; calcite-qtz veinlet enriched in upper contact area from 315.17 to 315.52m; weakly (2-3%) ep-qtz-calcite veinelt cross-cut (<1 to 20mm wide); a 25cm long, ep-qtz-K-feldspar occurs from 346.20-346.40m; a 7cm wide, possible SDBX (1a5) occurs at 334.05m; contains trace, disseminated py along the ep-qtz-calcite veinlet; moderately to stongly magnetic; TCA at 376.11 is 30°.

Alteration Maj:	Type/Style/Intensity	Comment
690.41 - 0.00	Carb VN W	
690.41 - 0.00	EP VN W	
743.54 - 0.00	Qtz VN W	
743.54 - 0.00	GAR VN W	
743.54 - 0.00	K P M	
743.54 - 0.00	CHL INT M	
743.54 - 0.00	EP VN WM	
743.54 - 0.00	CHL VN WM	
Mineralization Maj. :	Type/Style/%Mineral	Comment
315.17 - 376.11	PY DIS 0.1	occurs along the margin of ep veinlet;
693.00 - 0.00	PY DIS 0.1	
693.00 - 0.00	CP DIS 0.1	

376.11 380.98 IGN Intermediate Gneiss

Sudbury Breccia :

Hole Numbe	r WTR-051	Project: TRILL_SCJV						Project Number: 504					
From	То						Au	Pt	Pd	Ni	Cu		
(m)	(m)	Lithology	Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)		
		Pink or pinkish light grey colour; poor foliated; fine- to coarsed-grained; contains 65-70%, pinkish light grey colour, fine- to medium-grained paleosome and 30-35% pink colour, coarse-grained, leucosome;											

moderately to strongly magnetic; TCA @380.98m is 60°;

380.98486.79FGNFelsic GneissSudbury Breccia :

Greyish pink colour; coarse-grained; poor foliated; consists of 5-10%, medium grey colour; fine- to medium-grained, paleosome bands (strongly magnetic) up to 60cm long, and 90-95%, pink colour, coarse-grained leucosome; contains 6 greenish black colour, coarse-grained, meta-gabbro dyke (non magnetic) from 5-40cm long; very weak ep/cal veinlet cross-cut; a few ep alteration band from 3-12cm wide; TCA @ 486.79m is about 60°;

Alteration Maj:	Type/Style/Intensity	Comment
380.98 - 486.79	EP PCH W	
380.98 - 486.79	CHL INT W	
380.98 - 486.79	EP INT WM	
380.98 - 486.79	EP B W	
380.98 - 486.79	EP VN W	
380.98 - 486.79	Carb VN W	

486.79 488.54 UMAF Ultramafic Sudbury Breccia : Greyish black colour; aphanitic to fine-grained; 10cm long, black colour, aphanitic chilled margin occurs at upper contact; a 2cm wide, black colour, aphanitic, possible SDBX occurs near the lower contact area; brecciated partly; cross-cut by irregular, carbonated veinlets from 2-20mm wide; trace py occurs at the margin of the carbonate veinlet; strongly magnetic; TCA @ 488.54m is 60°

Alteration Maj: Type/Style/Intensity Comment

05-Dec-14 1:56:51 PM

Hole Number	WTR-051	Project: TRILL_SCJV						Project Number: 504						
From (m)	To (m)		Litholog	IY	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		486.79 - 488.54	CHL INT W											
		486.79 - 488.54	CHL B W	occurs at lower contact area;										
		486.79 - 488.54	Carb VN M											
		<i>Mineralization Maj. :</i> 486.79 - 488.54	Type/Style/%Mineral PY DIS 0.1	<i>Comment</i> trace;										

 502.64
 FGN
 Felsic Gneiss
 Sudbury Breccia :

 Greyish pink colour; coarse-grained; consists of 5% fine-grained paleosome up to 30cm long; 95% coarse-grained leucosome; weakly ep veinlet cross-cut; moderately ep alteration as patches; weakly to moderately magnetic; TCA @ 502.64m is 40°.

 502.64
 503.63
 AMPH
 Amphibolite
 Sudbury Breccia :

 Meta-Gabbro; Greenish dark grey colour; medium- to coarse-grained; consists of 5-10%, felsic minerals, 90-95% amphibole and biotite; non magnetic; TCA @ 503.63m is 50°;
 Alteration Maj:
 Type/Style/Intensity
 Comment

 502.64 - 503.63
 CHL INT W
 CHL INT W
 Comment

503.63 521.48 IGN Intermediate Gneiss

rmediate Gneiss

Sudbury Breccia :

Medium grey to pinkish light grey colour; fine- to coarse-grained; contains 50-55%, fine- to mediumgrained paleosome with strangly magnetic; 45-50% coarse-grained leucosome with weakly to moderately

05-Dec-14 1:56:51 PM

488.54

Page 14 of 35

ole Number	WTR-051			Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Litholog	v	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cı (%
	()	magnetic; contains trace vague;		within the paleosome bands; TCA @ 521.48m is						-			
		Alteration Maj:	Type/Style/Intensity	Comment									
		503.63 - 521.48	EP P W										
		503.63 - 521.48	EP VN W										
		<i>Mineralization Maj. :</i> 503.63 - 521.48	Type/Style/%Mineral PY CG 0.1	<i>Comment</i> some associated with ep alteration;									
521.48	522.30	PEG Pegma Reddish pink colour; pe	gmatitic; consists of 20-25%	Sudbury Breccia : 6 qtz, 75-80% K-feldspar; trace fine-grained py in ep									
		veinlet; TCA @ 522.3m											
		Alteration Maj:	Type/Style/Intensity	Comment									
		521.48 - 522.30 <i>Mineralization Maj. :</i> 521.48 - 522.30	EP VN W Type/Style/%Mineral PY FG 0.1	<i>Comment</i> trace py occurs in the ep veinlet;									
522.30	529.98		ediate Gneiss	Sudbury Breccia :									
		grained; contains 30-35 with weakly to moderate	% paleosome up to 54cm lo ly magnetic; contains one 2	o greyish pink colour; poor foliated; fine- to coarse- ong with strongly magnetic and 65-70% leucosome 2cm wide, black colour, SDBX (1b5) at 528.11m with in the paleosome; TCA @ 529.98m is 55°;									
		Alteration Maj:	Type/Style/Intensity	Comment									
		522.30 - 529.98	Carb VN W										
		522.30 - 529.98	EP VN W										

lole Number	WTR-051	Project: TRILL_SCJV						Project Number: 504								
From (m)	То (т)		Litholog	<i>IV</i>			Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		<i>Mineralization Maj. :</i> 522.30 - 529.98	Type/Style/%Mineral PY CG 0.1	Comment												
529.98	548.50		Gneiss		Sudbury Bree											
			arse-graind; contains two 10 yke at 533.38m and 541.20r													

(3c5) at 533.70m and from 534.35-534.90m, respectively; Alteration Maj: Type/Style/Intensity Comment 529.98 - 540.58 EP VN W

529.98 - 540.58	EP VN W
540.58 - 542.80	Carb VN S
542.80 - 548.50	EP PCH W
542.80 - 548.50	EP VN W

548.50	553.23	contact; contains two	; fine-grained; a 30cm long, b 5-20mm wide, irregular, black	Sudbury Breccia : lack colour, aphanitic chilled margin occurs at upper colour, aphanitic SDBX (1a5) over 30cm long; long joints; strongly magenitic; TCA @ 553.23m is
		Alteration Maj:	Type/Style/Intensity	Comment
		548.50 - 553.23	EP VN W	
		548.50 - 553.23	Carb VN W	
		<i>Mineralization Maj. :</i> 548.50 - 553.23	Type/Style/%Mineral PY VN 0.1	Comment associated with carbonate veinlets

Hole Number	WTR-051	Project: TRILL_SCJV	Project Number:	504			
From (m)	То		Au	Pt	Pd	Ni	Cu
(m)	(m)	Lithology Sample # From To	Length (g/t)	(g/t)	(g/t)	(%)	(%)

553.23	558.20	AMPH	Amphibolite	Sudbury Breccia :
		Moto apph	ro: groonish black colour: co	area arained; consists of 5% folsic minorals and 05%

Meta-gabbro; greenish black colour; coarse-grained; consists of 5% felsic minerals and 95% mafic minerals; contains two pegmatite dyke from 525.63-556.23 and 556.85-557.23m; contains trace disseminated py; weakly to strongly magnetic; TCA @ 558.2m is 85°.

Alteration Maj:	Type/Style/Intensity	Comment
553.23 - 558.20	EP VN W	
553.23 - 558.20	EP PCH W	
Mineralization Maj. :	Type/Style/%Mineral	Comment
553.23 - 558.20	PY DIS 0.1	occurs in the Amph;

558.20 560.16 **FGN** *Felsic Gneiss Sudbury Breccia :* Greyish pink colour, coarse-grained; breccated partly (healed); contains one coarse-grained meta gabbro up to 18cm long; TCA @ 560.16m is vague;

560.16	563.50	DIA Dial	base	Sudbury Breccia :	N985697	562.83	563.50	0.67	0.00	0.00	0.00	0.03	0.04
				contains one 2.0cm wide SDBX (2c5); moderately ep einlets; weakly to strongly magnetic; TCA @ 563.5m									
		Alteration Maj:	Type/Style/Intensity	Comment									
		560.16 - 563.50	Carb VN W										

Hole Numbe	r WTR-051			Project: TRILL_	Project: TRILL_SCJV				Project Number: 504								
From (m)	То (т)		Litholog	y	Sample #	From	То	Length	A ((9/				Cu (%)				
		560.16 - 563.50	EP B M														
		560.16 - 563.50	CHL P W														
		<i>Mineralization Maj. :</i> 563.10 - 563.25	Type/Style/%Mineral PY VN 10	<i>Comment</i> associated with ep and calcite alteration;	;												

563.50	566.30	FGN	Felsic Gneiss	Sudbury Breccia :
		Pink colour; coa TCA @ 566.3 is	0	ng, meta-gabbro (amphibolite) with strongly magnetic;
		Alteration Maj:	Type/Style/Intensity	Comment
		563.50 - 566.30	CHL INT W	

566.30	567.45	alteration as irregular ba	ack colour; fine-grained; br nds, two 2-6cm wide, dark eration; contains <1% diss	Sudbury Breccia : ecciated (healed) in the center; very strongly ep grey colour, aphanitic SDBX (1b5) occurs at both eminated py in the center area; strongly magnetic;
		Alteration Maj:	Type/Style/Intensity	Comment
		566.30 - 567.45	Qtz VN W	
		566.30 - 567.45	Carb VN W	
		566.30 - 567.45	EP B S	
		Mineralization Maj. :	Type/Style/%Mineral	Comment

PY DIS 3

566.80 - 567.00

574.32 FGN

Hole Number WTR-051	Project:	TRILL_SCJV				Project Number:	504		
From To (m) (m)	Lithology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)		

Sudbury Breccia :

•	5.0cm long, aphanitic, pos	enish dark colour, medium- to coarse-grained DIA sible SDBX; weakly magnetic; trace, disseminated py @ 574.32m is 40°;
Alteration Maj:	Type/Style/Intensity	Comment
567.45 - 569.35	CHL INT W	
569.35 - 570.00	CHL P W	

Felsic Gneiss

<i>Mineraliz</i> 567.45 - 3	tation Maj. : 574.32	Type/St PY DI	t yle/%<i>Mine</i> S 0.1	o mment sociated with q	tz-eo-carbonate	e veinlet;
569.35 -	570.00	Qtz P	М			
569.35 -	570.00	Qtz VN	W V			
569.35 -	570.00	Carb \	/N W			

574.32	576.56	SDBX	Sudbury Breccia	Sudbury Breccia :
		FGN blocks up t blocks up to 500 consists of 5% F	to 50cm long, and 30-35% dark gr cm long, and 20-25% dark grey co	our; brecciated; consists of 40-45% reddish pink colour, rey colour, medium-grained DIA (strongly magnetic) lour SDBX (2c5) with strongly magnetic; the SDBX lour, aphanitic matrix; trace disseminated py occurs in
		Alteration Maj:	Type/Style/Intensity	Comment
		574.32 - 576.56	EP VN W	
		574.32 - 576.56	CHL INT W	
		Mineralization I	Maj. : Type/Style/%Mineral	Comment

574.32 - 576.56 PY DIS 0.1

05-Dec-14 1:56:52 PM

567.45

Hole Numbe	er WTR-051		Project: TRILL_SCJV					Project Numb	er: (504		
From (m)	To (m)	Lithology		Sample #	From	То	Length				Pd (g/t)	

576.56 588.67 FGN Felsic Gneiss Sudbury Breccia :

Reddish pink colour; coarse-grained; contains one irregular, dark grey colour, SDBX (3c5 ?) up to 2.0 cm wied; weakly to moderately magnetic; TCA @ 588.67 is 40°;

Alteration Maj:	Type/Style/Intensity	Comment
576.56 - 588.67	CHL VN W	
576.56 - 588.67	Carb VN W	
576.56 - 588.67	EP VN W	
576.56 - 588.67	EP PCH WM	
576.56 - 588.67	CHL INT W	

 588.67
 589.78
 DIA
 Diabase
 Sudbury Breccia :

 Greenish dark grey to black colour; fine-grained; consists of two DIA dykes form 35-60 cm long; chilled margins occur at contacts with aphanitic texture; strongly magenitic; contaons a 16cm long FGN in center; TCA @ 589.78 is 30°;
 Alteration Maj:
 Type/Style/Intensity
 Comment

 588.67 - 589.78
 Carb
 VN
 W

Felsic Gneiss

589.78 597.36 **FGN**

Sudbury Breccia :

Greyish pink to reddish pink colour; coarse-grained; poor foliated; contains two greenish black colour, coarse-grained meta-gabbro (amphibolite) up to 14cm long; weakly to strongly magnetic; TCA @ 597.36

Hole Numbe	r WTR-051			Project:	TRILL_SCJV					Project Nun	nber:	504			
From	То										Au	Pt	Pd	Ni	Cu
From (m)	(m)		Lithology			Sample #	From	То	Length				(g/t)		
		is 35°;													

597.36605.73IGNIntermediate GneissSudbury Breccia :

Pinkish dark green to reddish pink colour; coarse-grained; moderately foliated; migmatitic mainly; consists of 30-35% amphibolite bands, 50-55% felsic bands; contains a qtz-K-feldsar, pegmatite dyke up to 28cm long; weakly to moderately magnetic; TCA @ 605.73 is 50°;

605.73 607.87 DIA Diabase Sudbury Breccia : Geenish black colour; fine-grained; 2-3cm wide, ahpanitic, possible SDBX occurs at upper contact; moderately magnetic; TCA @ 607.87m is 50°; Alteration Mai: Type/Style/Intensity Comment

Alteration Maj:	Type/Style/Intensity	Comme

605.73 - 607.87 Carb VN W

607.87 642.19 FGN Felsic Gneiss

Sudbury Breccia :

Greyish pink to pink colour; coarse-grained; moderately foliated partly; migmatitic partly; consists of 10-15% light grey to dark colour, paleosomes with strongly magnetic, and 85-90% greyish to pink colour, coarse-grained; leucosomes; contains 2 greenish dark grey colour, meta-gabbro (amphibolite) up to 45cm long; weakly magnetic mainly; contains a geenish black colour, possible SDBX (3c5) up to 2.0 cm wide; TCA @ 642.19m is 50° (foliation);

05-Dec-14 1:56:52 PM

From To Au Pt Pd	
From To Au Pt Pd (m) (m) Lithology Sample # From To Length (g/t) (g/t) (g/t)	

Sudbury Breccia : 642.19 647.00 IGN Intermediate Gneiss

Greyish pink to greenish medium grey; medium- to coarse-grained; brecciated (healed) and hornfelsic in lower contact area from 646.9-648.72m and contains a 15cm long greenish dark grey colour, fine-grained DIA; very weakly magnetic; TCA @ 648.72m is 35°;

Alteration Maj:	Type/Style/Intensity	Comment
642.19 - 648.72	EP PCH W	
642.19 - 648.72	CHL P M	near the low contact;
642.19 - 648.72	Carb VN W	
642.19 - 648.72	EP VN W	
642.19 - 648.72	EP INT M	

Sudbury Breccia : 647.00 648.72 SHR Shear Tectonized and Brecciated Shear zone hosted in the Intermediate Gneiss. Probably caused by the intrusion of the lower Diabase. Moderate amounts of Epidote alteration bands. Trace Cpy specks close to the lower contact. (Added by S. Baird March 2014)

Diabase 648.72 690.41 DIA Greenish dark grey colour; medium- to coarse-grained; consists of 15-20% felsic minerals and 80-85%

mafic minerals; contains 8 irregular, <1-3.0cm wide, possible SDBX (or chilled QD) veins up to 50cm

Sudbury Breccia :

05-Dec-14 1:56:52 PM

le Number	WTR-051			Project: TRILL_SCJV					Project Numbe	: 504			
From (m)	To (m)		Litholog	v	Sample #	From	То	Length	A (9 [,]		Pd (g/t)	Ni (%)	Cı (%
		a greenish dark grey ma grained or blebby py and 690.41m is vague; magr 79.3; @ 678m is 4.50; @ from ~665-679m and gra	rgin, and most of it are clas d trace, fine-grained cpy wit netic susceptibility @ 652m @ 685m is 44.2; @ 690m is ades back into Fg-Mg from	and zoned with a dark grey or black colour core and t free with non magnetic; the DIA contains trace, fine- nin ep veinlet; strongly magnetic overall; TCA @ is 8.66; @ 661m is 4.19; @ 666m is 49; @ 669m is 28.4; Fg-Mg from 648.72-665m, Mg-Cg plagioclase -679-690.41m. SDBX veinlets and zones from ~673- 78-690m. (Altered by S. Baird March 2014)									
		Alteration Maj:	Type/Style/Intensity	Comment									
		648.72 - 690.41	EP P WM	with low mag sus;									
		648.72 - 690.41	Carb VN W										
		648.72 - 690.41	EP VN WM										
		<i>Mineralization Maj. :</i> 648.72 - 690.41	<i>Type/Style/%Mineral</i> CP DIS 0.1	<i>Comment</i> occurs along the ep veinlet;									
		648.72 - 690.41	PY BL 0.1										
690.41	693.00	SDBX Sudbur	y Breccia	Sudbury Breccia :									
000.41	000.00	Greenish dark grey colou 70-65% greenish dark gr a few mm size, pink colo	ur; brecciated (healed); con rey colour, medium-grained pur felsic clasts but mainly a	sists of 30-35% greenish dark grey SDBX (1a5), and DIA blocks from 30 to 120m long; the SDBX contains rea DIA clasts up to 2cm in size, the ahpanitic matrix he ep-calcite veinlet; TCA @ 693m is vague;									
		<i>Mineralization Maj. :</i> 690.41 - 693.00	Type/Style/%Mineral PY VN 0.1	Comment									

05-Dec-14 1:56:52 PM

693.00 - 701.04

LITHOLOGY REPORT - Detailed -

Hole Number	WTR-051			Project: TRILL_SCJV					Project Number	504			
From (m)	To (m)		Litholog	ıy.	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		3-8mm wide, greenish colour, aphanitic texur wide; trace cpy occurs 701.04m is 50°; magn alteration from 693.30	a dark grey, aphanitic possible e with non zonation; more qt: s inside ep-calcite veinlet, and etic susceptibility @ 695m is	k grey colour; medium- to coarse-grained; contains 4, e SDBX (1a5), the matrix of the SDBX has a dark grey z-calcite veinlet in the lower contact area up to 2cm d trace py occurs within SDBX veinlet; TCA @ 20.0; @ 699m is 19.9; Fg-Mg with heavy Qtz-Ep m brecciation. Sheared and healed brecciation from .)									
		Alteration Maj:	Type/Style/Intensity	Comment									
		693.00 - 701.04	Carb VN WM										
		693.00 - 701.04	Qtz VN W										

701.04 703.50 FGN Felsic Gneiss Sudbury Breccia : Greyish pink colour; coarse-grained; poor foliated; fractured (healed) and deformed; contains one paleosome up to 10cm long; two sets qtz-calcite vienlet cut; non magnetic; TCA @ 703.72m is 60°; Alteration Maj: Type/Style/Intensity Comment 701.04 - 703.70 EP VN W FR FR VN

EP VN W

701.04 - 703.70	
701.04 - 703.70	CHL F W
701.04 - 703.70	Qtz VN W
701.04 - 703.70	Carb VN W

ole Number	WTR-051	Project: TRILL_SCJV						Project N	Project Number: 504								
From (m)	To (m)		Lithol	ogy	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)			
703.50	704.00	SDBX	Sudbury Breccia	Sudbury Breccia :													
		Brecciated co March 2014)	ntact between the Gneiss and Diab	ase with mostly IGN fragments. (Added by S. baird													
704.00	708.28	DIA	Diabase	Sudbury Breccia :													

in size; contains trace, disemminated py occurs along the fractures; 5-8cm wide, greenish dark grey colour; aphanitic matrix SDBX (2c5 upper contact or 2a5 lower contact) occurs at the both contacts; very weakly magnetic TCA @ 708.42m is vague; magnetic susceptibility @ 706m is 1.34; @ 708m is 1.09; Fg with Heavy epidote fracture filling throughout. (Altered by S. Baird March 2014)

Alteration Maj:	Type/Style/Intensity	Comment
703.70 - 708.42	Carb VN W	
703.70 - 708.42	EP VN WM	
Mineralization Maj. :	Type/Style/%Mineral	Comment
703.70 - 708.00	PY F 0	

 708.28
 708.42
 SDBX
 Sudbury Breccia
 Sudbury Breccia :

 Brecciated contact between the Dia and gneiss units. (Added by S. baird March 2014)
 Sudbury Breccia :

708.42 731.75 FGN Felsic Gneiss

Sudbury Breccia :

05-Dec-14 1:56:52 PM

733.20 - 733.30

LITHOLOGY REPORT - Detailed -

ole Numbe	r WTR-051			Project: TRILL_SCJV					Project Nu	imber:	504			
From (m)	То (т)		Litholo	gy	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	C (%
		coarse-grained pale	osome from 727.10-727.32 an	or foliated; contains two greenis dark grey colour, d 728.34-729.36cm long; moderately ep alteration; eakly to moderately magnetic overall; TCA @ 731.75m										
		Alteration Maj:	Type/Style/Intensity	Comment										
		708.42 - 731.75	EP B WM											
		708.42 - 731.75	EP PCH W											
		708.42 - 731.75	EP VN W											
		708.42 - 731.75	EP INT WM											
		Mineralization Maj.	: Type/Style/%Mineral	Comment										
		708.42 - 731.75	PY FG 0.1											
		708.42 - 731.75	PY DIS 0.1											
731.75	733.30		dotite	Sudbury Breccia :										
		DIA from 731.75-73.	10m, and a pink colour, coars	; contains a greyish medium grey colour, fine-grained e-grained FGN from 733.20 to 733.30m; contains a non magnetic overall; TCA @ 733.3m is 25°;										
		Alteration Maj:	Type/Style/Intensity	Comment										
		731.75 - 732.10	EP P M											
		731.75 - 732.10	Carb VN S											
		732.10 - 733.20	EP B I											

05-Dec-14 1:56:52 PM

EP INT S

ole Number	WTR-051			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Litholog	У	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
733.30	739.39	SDBX Sudbu	ry Breccia	Sudbury Breccia :	N985698	733.30	734.80	1.50	0.00	0.00	0.00	0.01	0.0
				sists of 30-35% greenish dark colour, possible SDBX	N985699	734.80	735.40	0.60	0.00	0.01	0.01	0.01	0
				ost of the clasts are sub-angular up to 10cm in size, s up to 72cm long, and 35-40% greenish dark grey	N985700	735.40	736.90	1.50	0.00	0.00	0.00	0.00	0
	and 25 colour py occ magne Altera	colour; fine-grained DIA	blocks up to 70cm long; ep	alteration band occurs from 733.85 to 734.44m; trace ice, fine-grained cpy occurs inside py patches; non	N985701	736.90	737.55	0.65	0.00	0.00	0.00	0.01	0.
		magnetic overall; TCA		ice, me-grained cpy occurs inside py paches, non	N985702	737.55	738.81	1.26	0.00	0.01	0.01	0.01	0
		Alteration Maj:	Type/Style/Intensity	Comment	N985703	738.81	739.39	0.58	0.00	0.00	0.00	0.00	0
		733.30 - 733.85	EP P WM										
		733.30 - 733.85	Carb VN W										
		733.85 - 734.45	Carb VN W										
		733.85 - 734.45	EP I										
		734.45 - 735.70	Carb VN WM										
		734.45 - 735.70	EP P W										
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		733.30 - 739.39	CP FG 0.1										
		733.30 - 739.39	PY DIS 0.2										
739.39	741.68	FGN <i>Felsic</i>	Gneiss	Sudbury Breccia :									
				rmed; contains 3, greenish light grey colour, SDBX gular up to 2mm in size; non magnetic; TCA @ 741.68									

Greenish pink colour; coarse-grained; strongly deformed; contains 3, greenish light grey colour, SDBX (3c5) up to 2.0cm wide; most the clasts are sub-angular up to 2mm in size; non magnetic; TCA @ 741.68 is vague;

Alteration Maj:Type/Style/IntensityComment739.39 - 741.68EPVNW

05-Dec-14 1:56:52 PM

Hole Numbe	ble Number WTR-051		Project: TRILL_SCJV					Project Numbe	er: 50)4				
From (m)	То								A	u		Pd		
(m)	(m)		Lithology		Sample #	From	То	Length	(9	/t)	(g/t)	(g/t)	(%)	(%)
		739.39 - 741.68	CHL P W											
		739.39 - 741.68	EP INT M											

741.68	742.53	SDBX	Sudbury Breccia	Sudbury Breccia :
		long, and 5-10%		55-65% ep and chl alterated FGN clasts up to 24cm e-grained DIA clasts up to 7cm in size, and 20-15%
		Alteration Maj:	Type/Style/Intensity	Comment
		741.68 - 742.53	EP P WM	

742.53	743.54	FGN	Felsic Gneiss	Sudbury Breccia :
				k colour, coarse-grained; strongly deformed; containd a e; non magnetic; TCA @ 743.54m is 30°;
		Alteration Maj	: Type/Style/Intensity	v Comment
		742.53 - 743.54	4 EP INT W	
		742.53 - 743.54	EP VN W	

CHL FF W

742.53 - 743.54

ole Number	WTR-051			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Litholog	/	Sample #	From	То	Length	Au (g/t)		Pd (g/t)	Ni (%)	Cu (%)
743.54	759.37	DIA Diabas	e	Sudbury Breccia :									
		Greenish dark grey colo light grey colour qtz, and at upper contact area of	ur; fine- to medium-grained; d 55-50% mafic minerals; a /er 1.5m long and gradually veakly magnetic; TCA @ 57	consists of 15-20% pink colour feldspars, 20-25% fine-grained and moderately ep alteration zone occurs into medium-grained in the center; contains trace fine- 9.39 is 60°; magnetic susceptibility @ 746m is 6.60;									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		743.54 - 759.37	PY WS 0.1										
		743.54 - 759.37	PY TR 0.1										
759.37	759.37 805.48	Dark grey to greyish bla grey to black colour, apl long; strongly magnetic;	hanitic to fine-grained chilled TCA @ 805.48m is vague; @ 776m is 57.6; @ 780m 58	Sudbury Breccia : ainely; ophilitic partly and laths amphibloe rarely; dark margins occur at both contacts from 30 to 150cm magnetic susceptibility @ 762m is 66.2; @ 769m is .0; @ 784m is 57.2; 787 is 50.7; @ 791m is 47.4; @									
		Alteration Maj:	Type/Style/Intensity	Comment									
		759.37 - 805.48	CHL FF W										
805.48	898.38	DIA Diabas	e	Sudbury Breccia :	N985704	807.08	807.72	0.64	0.0	0.00	0 0.00	0.01	I (
000.40	000.00			/ to dark grey colour; coarse-grained; weakly ep-					0.0				
		carbonate veinlet cross-	cut; contains a few dark gre	y colour; aphanitic possible SDBX from 1-5cm wide;	N985705	851.79	852.36	0.57					
				arbonated veinlets; moderately to strongly magnetic; 1.98; @ 816m is 2.81; @ 820m is 55.6; @ 824m is	N985706	868.77	869.42	0.65	0.0				
		17.8; @ 831m is 88.1 @	2 834m is 46.8; @ 837m is 5	i2.6; @ 843m is 4.10; @ 846m is 45.5; @ 849m is	N985707	893.35	894.85	1.50	0.0				
				46; @ 864m is 16.2; @ 867m is 77.6; @ 870m is	N985708	894.85	896.35	1.50	0.0	0.0	0.00	0.01	(
		10.9; @813m 19.1; @ 8	oroni is 45.5; @882m is 34.3	3; @887m is 74.2; @ 889m is 44.3; @ 894m is 43.2;	N985709	896.35	896.84	0.49	0.0	0.0	0.00	0.00) (

05-Dec-14 1:56:52 PM

Page 29 of 35

Hole Numbe	er WTR-051			Project: TRILL_SCJV					Project Num	oer:	504			
From (m)	To (m)		Litholog	v	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
()	()	@ 898m is 80.4		,										
		Alteration Maj:	Type/Style/Intensity	Comment										
		805.48 - 872.00	K INT WM											
		805.48 - 872.00	EP B W											
		805.48 - 872.00	CHL FF W											
		805.48 - 872.00	Carb VN W											
		805.48 - 872.00	EP VN W											
		872.00 - 880.00	K INT WM											
		872.00 - 880.00	CHL INT W											
		872.00 - 880.00	HE FF WM											
		872.00 - 880.00	CHL FF W											
			EP VN WM											
		872.00 - 880.00												
		872.00 - 880.00	Carb VN WM											
		880.00 - 898.38	K INT WM											
		880.00 - 898.38	Carb VN W											
		880.00 - 898.38	EP P M											
		880.00 - 898.38	EP VN WM											
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		807.08 - 807.72	CP VN 1.5	2-3mm wide cpy veinlet inside qtz-chl-carbonate veinlet (8mm wide);										
		807.72 - 851.79	PY F 0.1	occurs inside a 2-3cm wide, possible SDBX;										
		851.79 - 852.36	CP BL 1	possible associated carbonate veinlet;										
		868.77 - 869.42	CP FF 0.5	inside ep veinlet;										
		893.35 - 896.84	CP DIS 0.2	occurs inside of ep veinlet;										

e Number	WTR-051				Project: TRILL_SCJV						Project Numb	per:	504			
r om (m)	То (т)			Litholog	V	Samp	le #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
898.38	909.80	MGN Mafic	: Gneiss		Sudbury Breccia :											
050.00		and deformation; poor amphible GR patches irregular and zoned po greenisg medium grey	foliated; stror (partical melt ossible SDBX colour, fine-g	ngly migmatitic ?); contains 6, g (2b5) from 1-7c prained DIA with	 to coarse-graoned; streongly brecciated (healed) vith pinkish black colour, medium-grained, irregular reenish medium grey colour, aphanitic matrix, m wide with weakly magnetic; contains a 10cm weakly magnetic; non magnetic overall for the MG and deformed FGN; TCA @ 909.80 is vague; 	r										
		Alteration Maj:	Type/St	yle/Intensity	Comment											
		898.38 - 909.80	Carb \	/N W												
		898.38 - 909.80	EP PC	ж												
		898.38 - 909.80	CHL F	FW												
		898.38 - 909.80	HE FF	W												
		898.38 - 909.80	EP VN	I W												
		898.38 - 909.80	EP B	WM												
909.80	918.62	SDBX Brece	cia		Sudbury Breccia :	N985	710	913.11	914.48	1.37		0.00	0.00	0.00	0.00	0
					enish red colour; strongly brecciated and fractured		713	914.48	915.44	0.96		0.00	0.00	0.00	0.00	C
		a greenish medium gr	ey colour, aph	anitc and ep all	p altered DIA and FGN as blocks; the BX consists ered matrix and round to angular FNG or DIA clast aled) FGN block; TCA @ 918.62m is 35°;		714	915.44	916.44	1.00		0.00	0.00	0.00	0.00	C

Alteration Maj:	Type/Style/Intensity	Comment
909.80 - 918.62	CHL FF W	
909.80 - 918.62	EP VN W	
909.80 - 918.62	HE FF WM	
909.80 - 918.62	Carb VN W	

Hole Number	WTR-051			Project:	TRILL_SCJV					Project Numb	er: 504			
From	To (m)		Litholog	<i></i>		Sample #	From	То	Length		u Pt /t) (g/t)		Ni (%)	Cu (%)
(m)	(11)	000.00.010.00		y		Gample #	11011	10	Length		(9/)	(9/9	(70)	(70)
		909.80 - 918.62	EP P S											
		909.80 - 918.62	EP INT M											
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		909.80 - 913.11	CP DIS 0.1											
		913.11 - 915.44	CP CG 0.5											
918.62	936.35	DIA Diabas	se	Sudbury Bre	ccia :									
		the fractures; contains	8.38m; greenish medium gre 5 greenish medium grey colo d py occurs in the fracture; T	y colour; medium-grained; strong our, irregular, possible SDBX (1a5 CA @ 936.62m is vague;	ly ep alteration along 5) from 2.0-8.0cm									
		Alteration Maj:	Type/Style/Intensity	Comment										

Alleration Maj.	Type/Style/Intensity Comment
918.62 - 936.35	EP B W
918.62 - 936.35	HE FF M
918.62 - 936.35	Carb VN WM
918.62 - 936.35	EP INT M
918.62 - 936.35	EP VN S
Mineralization Maj. :	Type/Style/%Mineral Comment
918.62 - 936.35	PY FG 0.1

936.35	1003.25	FGN	Felsic Gneiss	Sudbury Breccia :	N985715	971.24	971.94	0.70	0.00	0.00	0.00	0.02	0.00
		medium grey of pegmatite up to coarse-grained	olour; coarse-grained; poor to weakly foliated; weakly r colour, medium-grained paleosome up to 20cm long, a to 130cm long; and 80-85% coarse-grained pinkish ligh d py inside ep alteration band from 971.40-971.60m; co n moderately magnetic; the FGN has non magnetic over	nd 2-3% reddish pink colour, nt grey colour FGN; contains 3-5%, ontains one, 3cm wide SDBX (3c5) at									

05-Dec-14 1:56:52 PM

Hole Numbe	er WTR-051			Project:	TRILL_SCJV					Project Numbe	r: 50 4	4			
From (m)	To (m)		Litholog	<i>IV</i>		Sample #	From	То	Length	A (g			Pd (g/t)	Ni (%)	Cu (%)
		Alteration Maj:	Type/Style/Intensity	Comment											
		936.35 - 971.24	EP B												
		936.35 - 971.24	EP PCH W												
		936.35 - 971.24	EP VN W												
		971.24 - 971.60	CHL P S												
		971.24 - 971.60	EP B I												
		971.60 - 985.00	EP PCH W												
		971.60 - 985.00	EP VN W												
		985.00 - 1003.25	EP VN WM												
		985.00 - 1003.25	EP INT S												
		Mineralization Maj. :	Type/Style/%Mineral	Comment											
		936.35 - 971.40	CP DIS 0.1	associated with ep veinlets											
		971.40 - 971.60	PY CG 3												
		971.60 - 1003.25	PY DIS 0.1												

1003.25	1077.72	DIA Diabase	Sudbury Breccia :	N985716	1015.75	1016.46	0.71	0.00	0.00	0.00	0.01	0.04
			medium-grained; sub-ophilitic partly; consists of <5% qtz, 15-20%	N985717	1037.70	1038.45	0.75	0.00	0.00	0.00	0.02	0.02
			biotite and 3-5% magnetite; contains trace cpy as veinlet or let alteration; strongly ep-carbonate alteration and SDBX brecciation	N985718	1073.63	1074.62	0.99	0.00	0.00	0.00	0.01	0.02
		55-60% greenish light grey colour, co grey, fine-grained DIA clasts up to 3c magnetic; and a few <1.0 to 2.0cm wi 1099.66m, 1015.02-1015.04m, 1042. veinlet with strongly magnetic; two K-f 9cm wide; 1072.32-1072.80m: greyish Fine-grained DIA, contains trace, fine alteration halo; magnetic susceptibility	tely to strongly magnetic; 1004.63-1005.20: SDBX (1c5), consists of arse-grained FGN clast up to 30cm long, 10% greenish medium m in size, 20-25% black colour, aphanitic matrix with strongly de SDBX (1a5) also occurs at 1007.19-1007.21m, 1009.43- 10-1042.26m, 1042.90-1043.08m, 1068.05-1069.62m as irregular feldspar-ep-(carbonate) bands occur at 1037.98 and 1055.05 from 3- h or reddish pink colour, coasre-grained FGN; 1072.80-1077.72m: -grained, disseminated py (some cpy?) with light coloured ep y @ 1006m is 12.9; @ 1010m is 85.4; @ 1016m is 81.1; @ 1019m s 30.8; @ 1032m is 60.7; @ 1036m is 60.0; @ 1040m is 75.8; @	N985719	1074.62	1076.14	1.52	0.00	0.00	0.00	0.02	0.02

lole Number	WTR-051			Project: TRILL_SCJV					Project Number	504			
From	То								Αι		Pd	Ni	Cu
(m)	(m)		Litholog	У	Sample #	From	То	Length	(g/t	(g/t)	(g/t)	(%)	(%)
			m is 76.3; @ 1053m is 61.9 @ 1075m is 85.2; E.O.H	; @ 1058m is 57.8; @ 1062m is 39.2; @ 1066m is									
		Alteration Maj:	Type/Style/Intensity	Comment									
		1003.25 - 1009.43	CHL FF WM										
		1003.25 - 1009.43	CHL VN W										
		1003.25 - 1009.43	EP P M										
		1003.25 - 1009.43	EP VN W										
		1003.25 - 1009.43	Carb VN WM										
		1009.43 - 1071.00	CHL FF W										
		1009.43 - 1071.00	EP VN W										
		1071.00 - 1077.72	CHL VN W										
		1071.00 - 1077.72	Carb VN WM										
		1071.00 - 1077.72	EP VN W										
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		1003.25 - 1015.75	PY DIS 0.1										
		1015.75 - 1016.46	CP VN 1	a 7mm wide cpy-ep veinlet;									
		1016.46 - 1037.70	CP VN 0.1	associated with ep veinlet;									
		1037.70 - 1038.45	CP DIS 0.5	occurs in the center of K-feldspar-ep-bx vein;									
		1038.45 - 1072.80	PY FF 0.1	filled in fine fracture and associated with ep-chl veinlets;									
		1072.80 - 1077.72	PY DIS 0.3	with ep alteration halo;									
1077.72	1077.73	EOH End Of	f Hole	Sudbury Breccia :									

05-Dec-14 1:56:52 PM

Hole Number		Project:	TRILL_SCJV				Project Numbe	: 504		
From (m)	To (m)	Lithology	Sample #	From	То	Length		Pt (g/t)		

DRILL HOLE REPORT

lole Number	WTR-052				Projec	rt: TRILL	_SCJV				Project Numbe	er: 504
Drilling		Casing			Core				Location		Other	
zimuth:	180	Length:		0	Dimension:	NQ			Township:	TRILL	Logged by:	Jian Xiong
ip:	-45	Pulled:	no		Storage:	Core Shee	ł		Claim No.:	1229976	Relog by:	
ength:	702.51	Capped:	yes		Section:				NTS:		Contractor:	Jacob & Samuel Drilling Ltd
tarted:	18-Dec-13	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
ompleted:	17-Jan-14										Surveyed:	yes
ogged:	07-Jan-14										Surveyed by:	Jesse Bagnell
omment:	Surveyed w submeter Geo	XH (File"WTR WM	052 cor" V	NGS84 5147195 3N	456675.4E 31	29	Coordinate -	Gemcom	Coordinate - L	тм	Geophysics:	UTEM
oninent.	HAE)		002.001 , 1	10000010111100.014	, 400010.42, 01	2.0	East:	456661.2	East:	0	Geophysic Contractor:	Lamontagne
							North:	5146972.6	North:	0	Left in hole:	Nothing
							Elev.:	348.9	Elev.: Zone: 17	0 NAD: 27	Making water	C C
										NAD. 21	Multi shot su	rvey: yes

	<u></u>	Deviation	<u>Tests</u>				<u>.</u>	Deviation	<u>Tests</u>		
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments
0.00	182.04	-47.18		\checkmark		119.00	180.80	-45.90	F		Mag: 5520
10.00	182.02	-46.45	G	\checkmark		120.00	183.29	-45.88	G	\checkmark	
20.00	182.46	-46.77	G	\checkmark		130.00	183.25	-45.85	G	\checkmark	
30.00	182.91	-47.10	G	\checkmark		140.00	183.35	-45.76	G	\checkmark	
40.00	183.11	-47.16	G	\checkmark		150.00	183.48	-45.55	G	\checkmark	
50.00	182.87	-46.68	G	\checkmark		160.00	183.72	-45.44	G	\checkmark	
60.00	183.06	-46.30	G	\checkmark		170.00	183.88	-45.59	G	\checkmark	
68.00	182.50	-46.30	F	\checkmark	Mag: 5524	173.00	183.70	-45.40	F		Mag: 5501
70.00	182.98	-46.31	G	\checkmark	0	180.00	184.03	-45.39	G	\checkmark	
80.00	182.98	-46.07	G	\checkmark		190.00	184.11	-45.41	G	\checkmark	
90.00	183.03	-46.08	G	\checkmark		200.00	184.31	-45.27	G	\checkmark	
100.00	183.15	-45.94	G	\checkmark		210.00	184.36	-45.26	G	\checkmark	
110.00	183.19	-45.97	G	\checkmark		220.00	184.52	-45.22	G	\checkmark	

05-Dec-14 1:46:59 PM

HEADER REPORT

Hole Number

Project: TRILL_SCJV

Project Number: 504

	<u> </u>	Deviation	<u>Tests</u>									
Distance	Azimuth	Dip	Туре	Good	Comments		Distance	Azimuth	Dip	Туре	Good	Comments
224.00	184.30	-45.20	F		Mag: 5538		476.00	183.70	-43.30	F	\checkmark	Mag: 5481
230.00	184.72	-45.06	G	\checkmark			480.00	185.10	-43.08	G	\checkmark	
240.00	184.34	-44.62	G	\checkmark			490.00	185.34	-43.34	G	\checkmark	
250.00	183.94	-44.56	G	\checkmark			500.00	185.30	-43.23	G	\checkmark	
260.00	184.04	-44.83	G	\checkmark			510.00	185.41	-43.18	G	\checkmark	
270.00	184.20	-44.52	G	\checkmark			520.00	185.32	-43.04	G	\checkmark	
272.00	181.20	-44.20	F		Mag: 5564		527.00	176.00	-43.00	F	\checkmark	Mag: 5390
280.00	184.24	-44.32	G	\checkmark			530.00	185.24	-42.94	G	\checkmark	
290.00	184.34	-44.34	G	\checkmark			540.00	185.30	-43.01	G	\checkmark	
300.00	184.41	-44.33	G	\checkmark			550.00	185.14	-43.17	G	\checkmark	
310.00	184.38	-44.24	G	\checkmark			560.00	185.22	-43.08	G	\checkmark	
320.00	184.45	-44.25	G	\checkmark			570.00	185.20	-43.03	G	\checkmark	
323.00	181.80	-44.20	F		Mag: 5576		580.00	185.08	-43.17	G	\checkmark	
330.00	184.54	-44.19	G	\checkmark			587.00	182.10	-43.00	F	\checkmark	Mag: 5588
340.00	184.53	-43.98	G	\checkmark			590.00	185.30	-42.83	G	\checkmark	
350.00	184.54	-44.01	G	\checkmark			600.00	185.57	-42.95	G	\checkmark	
360.00	184.59	-43.75	G	\checkmark			608.00	186.30	-42.80	F	\checkmark	Mag: 5631
370.00	184.42	-43.71	G	\checkmark			610.00	185.79	-42.89	G	\checkmark	
374.00	181.70	-43.60	F	\checkmark	Mag: 5498		620.00	185.75	-42.91	G	\checkmark	
380.00	184.51	-43.68	G	\checkmark			630.00	185.93	-42.66	G	\checkmark	
390.00	184.63	-43.45	G	\checkmark			640.00	185.88	-42.95	G	\checkmark	
400.00	184.46	-43.43	G	\checkmark			650.00	185.78	-42.40	G	\checkmark	
410.00	184.60	-43.36	G	\checkmark			659.00	184.50	-42.20	F	\checkmark	Mag: 5485
420.00	184.55	-43.55	G	\checkmark			660.00	185.93	-42.18	G	\checkmark	
425.00	182.10	-44.10	F	\checkmark	Mag: 5545		670.00	186.30	-42.13	G	\checkmark	
430.00	184.50	-43.71	G	\checkmark			680.00	186.58	-42.09	G	\checkmark	
440.00	184.29	-43.80	G	\checkmark			687.00	186.57	-42.29	G	\checkmark	
450.00	184.28	-43.70	G	\checkmark								
460.00	184.56	-43.37	G	\checkmark								
470.00	184.74	-43.33	G	\checkmark								

05-Dec-14 1:46:59 PM

Hole Number	WTR-052			Project:	TRILL_SCJV						Project Numbe	er: 50)4			
From	То										A	u	Pt	Pd	Ni	Cu
From (m)	(m)		Lithology			5	Sample #	From	То	Length					(%)	
0.00	47.20	CAS	Si	udbury Bre	ccia :											

47.20 79.90 GR Granite Sudbury Breccia :

Reddish pink colour; porphyritic to pegmatitic; very weakly foliated; weakly shearing; consists of 40-50% light pink to reddish pink colour, pegmatitic alkali feldspars (some are phenocrysts up to 3cm in size), and 5-10% light yellow colour, medium- to coarse-grained plagioclases, and 20-25% white colour, coarse-grained to pegmatitic Qtz, and 10-15% greenish black colour, ep-chl altered biotite and amphiboles, and 3-5% black colour, coarse-grained magneitte, and 1-2% fine- to medium-grained, disseminated py; contains a few of reddish pink colour, qtz-K-feldspar pegmatite dyke up to 80 cm long in the centre; contains two greenish black colour, irregular, SDBX (1c5) veinlets from 1-7mm wide; moderately to strongly magnetic; TCA @ 79.90m is vague;

Alteration Maj:	Type/Style/Intensity	Comment
47.20 - 79.90	Qtz VN W	
47.20 - 79.90	HE FF W	
47.20 - 79.90	HE P WM	
47.20 - 79.90	CHL INT M	
47.20 - 79.90	EP INT M	
47.20 - 79.90	EP VN W	
Mineralization Maj. :	Type/Style/%Mineral	Comment
47.20 - 79.90	MAG DIS 4	
47.20 - 79.90	PY DIS 2	
101.01 - 0.00	MAG INT 2	
101.01 - 0.00	PY INT 2	

05-Dec-14 1:57:18 PM

e Number	WTR-052	Project: TRILL_SCJV									Project Number: 504						
r om (m)	To (m)		Litholog	V		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	C (%		
(11)	(111)		Linolog	y		Gample #	TTOM	10	Length		(9/7)	(9/7)	(9/9	(70)	(70		
79.90	81.60	DIA Diab	base		Sudbury Breccia :												
		Greenish dark grey contain chl alteration; contain	olour; fine-grained; cross-cut b ns trace, fine-grained py; weak	y irregular qtz-calci y magnetic; TCA @	te-(heamatite) veinlet; moderately 2 81.6m is vague;												
		Alteration Maj:	Type/Style/Intensity	Comment													
		79.90 - 81.60	HE FF WM														
		79.90 - 81.60	CHL P M														
		79.90 - 81.60	Carb VN WM														
		79.90 - 81.60	Qtz VN WM														
		<i>Mineralization Maj. :</i> 79.90 - 81.60	Type/Style/%Mineral PY F 0.01	Comment													
81.60	82.82	FLT Faul			Sudbury Breccia :												
			n and ground core; heamatite		atures;												
		Alteration Maj:	Type/Style/Intensity	Comment													
		81.60 - 82.82	Carb VN WM														
		81.60 - 82.82	Qtz VN WM														
		81.60 - 82.82	HE FF M														

82.82 94.00 **GR** *Granite Sudbury Breccia :* As same as 47.2-79.9m interval; reddish pink colour; porphyritic and pegmatitic partly; weakly sheared;

05-Dec-14 1:57:18 PM

le Number	WTR-052			Project:	TRILL_SCJV					Project Num	ber:	504			
From (m)	To (m)		Litholog	<i>yy</i>		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		size), and 5-10% pinkis coarse-grained Qtz, and and 2-3% black colour,	h light yellow colour, coarse d 10-15% greenish black co	r alkali feldspars (some are phenocry e-grained plagioclases, and 10-15% lour, strongly ep-chl altered biotite a and 1-2% fine- to medium-grained, o s 60°;	white colour, and amphiboles,										
		Alteration Maj:	Type/Style/Intensity	Comment											
		82.82 - 94.00	CHL FF W												
		82.82 - 94.00	Carb FF W												
		82.82 - 94.00	HE FF W												
		82.82 - 94.00	Carb VN W												
		82.82 - 94.00	Qtz VN W												
		82.82 - 94.00	EP INT WM												
		82.82 - 94.00	CHL INT WM												
		169.03 - 0.00	K VN W												
		169.03 - 0.00	Carb VN W												
		169.03 - 0.00	EP P M	occurs in lower contact area;											
		<i>Mineralization Maj. :</i> 82.82 - 94.00 82.82 - 94.00	Type/Style/%Mineral MAG DIS 3 PY DIS 1	Comment											
94.00	101.01	DIA Diabas		Sudbury Brecc											
		occurs at the both of the cross-cut by qtz-calcite	e contacts; possible K-felds veinlet up 2.0 cm wide; con	ne- to medium-grained; 30-40cm long par alteration occurs in the centre; c ttains trace coarse-grained cpy in the netic; TCA @ 101.01m is 70°;	contains trace,										
		Alteration Maj:	Type/Style/Intensity	Comment											
		94.00 - 101.01	CHL F W												

05-Dec-14 1:57:18 PM

Hole Number	WTR-052	WTR-052 Project: TRILL_SCJV						Project Number: 504							
From (m)	To (m)		Litholog	V	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)	
		94.00 - 101.01	Carb FF W												
		94.00 - 101.01	Carb VN W												
		94.00 - 101.01	Qtz VN WM												
		94.00 - 101.01	K P WM												
		94.00 - 101.01	EP INT W												
		<i>Mineralization Maj. :</i> 94.00 - 96.00 96.00 - 97.00 96.00 - 97.00 97.00 - 101.01	Type/Style/%Mineral PY TR 0.01 PY TR 0.01 CP CG 0.1 PY TR 0.01	Comment occurs inside qtz-calcite veinlet;											
101.01	126.90	GR Granite	e	Sudbury Breccia :											
		partly; consists of 50-55 3cm in size, and 5-10% colour, coarse-grained (amphiboles, and 2-3% b fine- to medium-grained	5% light pink to reddish pink pinkish light yellow colour, o Qtz, and 10-15% greenish bl plack colour, fine-grained ma	; porphyritic and pegmatitic partly; weakly sheared colour alkali feldspars, K-feldspar phenocrysts up to coarse-grained plagioclases, and 15-20% white ack colour, strongly ep-chl altered biotite and agneitte, and trace brown colour garnet, and 1-2% ; contains 4, dark grey to greyish brown colour SDBX etic; TCA @ 126.9m is 80°; Comment											

Alteration Maj:	Type/Style/Intensity	Comment
101.01 - 126.90	HE P M	
101.01 - 126.90	HE FF W	
101.01 - 126.90	Qtz VN W	
101.01 - 126.90	CHL INT S	
101.01 - 126.90	EP INT S	
<i>Mineralization Maj. :</i> 223.31 - 0.00	<i>Type/Style/%Mineral</i> PY DIS 0.01	Comment

Hole Number	WTR-052	Project: TRILL_SCJV	Project Number:	504		
From (m)	To (m)	Lithology Sample # From To Le	Au ength (9/t)	Pt (g/t)	Pd (g/t)	

126.90	129.32	DIA Diaba	ase	Sudbury Breccia :
		contact area with apha	anitic matrix; moderately shea	h black colour, possible SDBX (1A5) occurs at upper ring and ep alteration and string of SDBX (?) occurs y py; strongly magnetic; TCA @ 129.32m is 70°;
		Alteration Maj:	Type/Style/Intensity	Comment
		126.90 - 129.32	EP VN W	
		126.90 - 129.32	EP B W	
		Mineralization Maj. :	Type/Style/%Mineral	Comment
		126.90 - 129.32	PN BL 0.5	
		126.90 - 129.32	PY WS 0.5	

129.32	134.42	GR	Granite	

Sudbury Breccia :

as same as 101.01-126.9m interval; reddish pink colour; porphyritic; consists of 40-45% light pink to reddish pink colour alkali feldspars, K-feldspar phenocrysts up to 2cm in size, and 10-15% pinkish light yellow colour, coarse-grained plagioclases, and 20-25% white colour, coarse-grained Qtz, and 15-20% greenish black colour, strongly ep-chl altered biotite and amphiboles, and 2-3% black colour, fine-grained magneitte, and <1% fine- or coarse-grained, disseminated py; contains 2, reddish dark brown colour SDBX (3C5) up to 5mm wide; moderately to strongly magnetic; TCA @ 134.42m is 65°;

Alteration Maj:	Type/Style/Intensity	Comment
129.32 - 134.42	CHL INT S	
129.32 - 134.42	EP INT S	
<i>Mineralization Maj. :</i> 129.32 - 134.42	Type/Style/%Mineral PY INT 1	Comment

05-Dec-14 1:57:18 PM

Hole Number WTR-052		52 Project: TRILL_SCJV							Project Number: 504						
From (m)	То (т)		Litholog	y	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)	
134.42	138.32	DIA Diabase	_	Sudbury Breccia :											
134.42	130.32	Greenish dark grey colou	ur; fine-grained; possible ch n colour SDBX in the centre	illed margins up to 5cm wide; contains one 8mm e; contains trace, fine-grained py; moderately to											
		<i>Mineralization Maj. :</i> 134.42 - 138.32	Type/Style/%Mineral PY DIS 0.01	Comment											
138.32	151.98	GR Granite		Sudbury Breccia :											
	.0.130	as same as 129.32-134. light pink to reddish pink pinkish light yellow colou and 20-25% greenish bla fine-grained magneitte, a py; contains 6-7, light bro contains two light greyish	42m interval; reddish pink c colour alkali feldspars, K-fe ir, coarse-grained plagioclas ack colour, strongly ep-chl a and <1% fine-grained, purpl own or reddish dark brown o	colour; porphyritic or pegmatitic; consists of 35-40% eldspar phenocrysts up to 4cm in size, and 10-15% ses, and 20-25% white colour, coarse-grained Qtz, altered biotite and amphiboles, and 2-3% black colour, e colour garnet, and <1% fine-grained, disseminated or dark grey colour SDBX (3C5) from 1 to 10mm wide; ained granitic xenoliths up to 28cm long and cross-cut											
		Alteration Maj:	Type/Style/Intensity	Comment											
		138.32 - 151.98	GAR INT W												
		138.32 - 151.98	CHL INT S												
		138.32 - 151.98	EP INT S												
		Mineralization Maj. :	Type/Style/%Mineral	Comment											

ble Number WTR-052		052 Project: TRILL_SCJV								Project Number: 504							
rom (m)	То (т)		Litholog	<i>IV</i>	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	C (%				
		size, and 10-15%, fine-g black colour biotite in the contacts; contains four,	rained plagoclase, 70-75% e groundmass; 1.2-1.5m loi 0.2-3cm wide, greenish dar	of 10-15% zoned plagoclase phenocrysts up to 5cm in medium-grained amphibole and 1-2% fine-grained ng, aphanitic to fine-grained chilled margins occur at rk grey to black colour, aphanitic SDBX (1A5) in the ated py along healed fractures; non magnetic; TCA @													
		Alteration Maj:	Type/Style/Intensity	Comment													
		151.98 - 163.00	EP P M	occurs at contact area;													
		151.98 - 163.00	Carb VN W														
		151.98 - 163.00	EP VN W														
		<i>Mineralization Maj. :</i> 151.98 - 163.00	Type∕Style/%Mineral PY DIS 0.01	Comment													
163.88	169.03	GR Granite	9	Sudbury Breccia :													
		50% light pink colour alk yellow colour, coarse-gra greenish black colour, st magneitte, and 1-2% fine contains one 1.5 cm wid	kali feldspars, K-feldspar ph ained plagioclases, and 20- trongly ep-chl altered biotite e-grained, purple colour ga	borphyritic mainly and pegmatitic partly; consists of 40- nenocrysts up to 3cm in size, and 10-15% pinkish light -25% white colour, coarse-grained Qtz, and 15-20% e and amphiboles, and 2-3% black colour, fine-grained rnet, and 1-2% fine-grained, disseminated py; SDBX in the center; weakly magnetic in contact area 3m is 20°;													
		<i>Mineralization Maj. :</i> 163.88 - 169.03	Type/Style/%Mineral PY DIS 2	Comment													
169.03	184.05	MDIA Matach	ewan Diabase	Sudbury Breccia :													

	WTR-052	Project: TRILL_SCJV						Project Number: 504						
From (m)	To (m)		Litholog	y	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		fragments from 3 to 70cr from 0.2-1.6cm wide, sor MDIA; contains <1% diss magnetic in the centre; T	n long; contains 4-5 sets, g ne of the black colour SDE seminated or veinlet py; we CA @ 184.05m is vague;	argins occur at contacts; contains three, GR greenish black to black colour; aphanitic SDBX (1A5) 3X have strongly magnetic hosted by weakly magnetic akly magnetic in the contact area and moderately 182.20-182.91m: GR; porphyritic; strongly ep nd TCA @ 128.91m is 50°;										
		<i>Mineralization Maj. :</i> 169.03 - 180.50	Type/Style/%Mineral PY VN 0.5	Comment										
184.05	223.31	50% light pink colour alka yellow colour, coarse-gra greenish black colour, stu magneitte, and 1-2% fine contains one 1.5 cm wide	98m interval; pink colour; p ali feldspars, K-feldspar ph ined plagioclases, and 20- rongly ep-chl altered biotite e-grained, purple colour gai	<i>Sudbury Breccia :</i> porphyritic mainly and pegmatitic partly; consists of 40- enocrysts up to 3cm in size, and 10-15% pinkish light 25% white colour, coarse-grained Qtz, and 15-20% and amphiboles, and 2-3% black colour, fine-grained met, and 1-2% fine-grained, disseminated py; DBX in the center; weakly magnetic in contact area am is 20°;										
184.05	223.31	As same as 138.32-151. 50% light pink colour alka yellow colour, coarse-gra greenish black colour, str magneitte, and 1-2% fine contains one 1.5 cm wide	98m interval; pink colour; p ali feldspars, K-feldspar ph ined plagioclases, and 20- rongly ep-chl altered biotite e-grained, purple colour gar e, black colour, aphanitic S	borphyritic mainly and pegmatitic partly; consists of 40- enocrysts up to 3cm in size, and 10-15% pinkish light 25% white colour, coarse-grained Qtz, and 15-20% e and amphiboles, and 2-3% black colour, fine-grained rnet, and 1-2% fine-grained, disseminated py; DBX in the center; weakly magnetic in contact area										
184.05	223.31	As same as 138.32-151. 50% light pink colour alka yellow colour, coarse-gra greenish black colour, stu magneitte, and 1-2% fine contains one 1.5 cm wide and strongly magnetic in	98m interval; pink colour; p ali feldspars, K-feldspar ph ined plagioclases, and 20- rongly ep-chl altered biotite -grained, purple colour gar e, black colour, aphanitic S the centre; TCA @ 169.03	borphyritic mainly and pegmatitic partly; consists of 40- enocrysts up to 3cm in size, and 10-15% pinkish light 25% white colour, coarse-grained Qtz, and 15-20% and amphiboles, and 2-3% black colour, fine-grained rnet, and 1-2% fine-grained, disseminated py; DBX in the center; weakly magnetic in contact area am is 20°;										
184.05	223.31	As same as 138.32-151. 50% light pink colour alka yellow colour, coarse-gra greenish black colour, str magneitte, and 1-2% fine contains one 1.5 cm wide and strongly magnetic in <i>Alteration Maj:</i>	98m interval; pink colour; p ali feldspars, K-feldspar ph ined plagioclases, and 20- rongly ep-chl altered biotite e-grained, purple colour gar e, black colour, aphanitic S the centre; TCA @ 169.03 Type/Style/Intensity	borphyritic mainly and pegmatitic partly; consists of 40- enocrysts up to 3cm in size, and 10-15% pinkish light 25% white colour, coarse-grained Qtz, and 15-20% and amphiboles, and 2-3% black colour, fine-grained rnet, and 1-2% fine-grained, disseminated py; DBX in the center; weakly magnetic in contact area am is 20°;										

223.31 225.50 UMAF

Ultramafic

Sudbury Breccia :

Possible PYXT; Greyish dark green colour; fine- to medium-grained; consists of 30-40%, medium- to coarse-grained amphibole (pyroxene) as phenocrysts and 50-60% greyish dark green colour, aphanitic matrix; strongly chl alteration; contains a few 2-6mm wide greenish dark grey colour, aphanitic SDBX (?);

05-Dec-14 1:57:18 PM

225.50 - 226.18

LITHOLOGY REPORT - Detailed -

Hole Number WTR-052		2 Project: TRILL_SCJV							Project Number: 504						
From (m)	To (m)		Litholog	<i>y</i>		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
() ()		contains <1% fine-gra	ained and disseminated py; no	on magnetic; TCA @ 225.5m is va	ague as healed fault;										
		Alteration Maj:	Type/Style/Intensity	Comment											
		223.31 - 225.50	CHL F W												
		223.31 - 225.50	CHL P S												
		223.31 - 225.50	Carb VN W												
		223.31 - 225.50	ACTL P S	occurs in the contact area;											

225.50	226.18	FLT F	Fault		Sudbury Breccia :
			breccia mainly is UM ar		(PYXT); greyish dark green colour; brecciated; weakly / irregular calcite veinlet partly; weakly magnetic; TCA
		Alteration Maj:	Type/Style/In	tensity	Comment
		225.50 - 226.18	CHL F M		
		225.50 - 226.18	CHL P S		

Carb VN S

Possible PYXT; As same as 223.31-225.5m; greyish dark green colour; consists of 35-45% coarsegrained amphibole (pyroxene) as phenocrysts, and 50-60% brownish dark green colour, aphanitic, strongly chl altered matrix; weakly to moderately magnetic; no sulphides; TCA @ 227.81 is vague;

05-Dec-14 1:57:18 PM

226.18

Hole Numbe	er WTR-052				Project:	TRILL_SCJV					Project Num	ber:	504			
From (m)	To (m)		Litholog	<i>IY</i>			Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		Alteration Maj:	Type/Style/Intensity	Comment												
		226.18 - 227.81	CHL F W													
		226.18 - 227.81	CHL P S													
		226.18 - 227.81	Carb VN W													

227.81	239.20	GR	Granite	Sudbury Breccia :
--------	--------	----	---------	-------------------

As same as 184.05-223.31m; reddish pink to pink colour; porphyritic; weakly sheared; consists of 40-50% light pink colour alkali feldspars, K-feldspar phenocrysts up to 2cm in size, and 10-15% pinkish light yellow colour, coarse-grained plagioclases, and 20-25% white colour, coarse-grained Qtz, and 15-20% greenish black colour, strongly ep-chl altered biotite and amphiboles, and 2-3% black colour, fine-grained magneitte, and 1-2% fine-grained, purple colour garnet, and 1-2% fine-grained, disseminated py; contains one 10cm long greyish dark green colour UM with 0.2-3cm wide, black colour, aphanitic SDBX (1A5) occurs at margin of the UM; moderately to strongly magnetic; TCA @ 239.20m is 14°;

Alteration Maj:	Type/Style/Intensity	Comment
227.81 - 239.20	CHL INT S	
227.81 - 239.20	EP INT S	
Mineralization Maj. :	Type/Style/%Mineral	Comment
227.81 - 239.20	PY DIS 2	

239.20242.39FLTFaultSudbury Breccia :Fault zone; severe broken core (partly due very lower angle contact from 0-10°); the FLT zone consists of 40-45% GR and 55-60% UM; healed fault occurs at upper contact area (UM) filled with calcite veinlet; contains a few cm wide greyish dark green colour fault breccia (UM); strongly heamatite coating along the fractures; very weakly magnetic overall; TCA @ 242.39m is unknown due to broken core;

Alteration Maj: Type/Style/Intensity Comment

05-Dec-14 1:57:18 PM

Hole Number WTR-052				Project	TRILL_SCJV					Project Number	504					
From	То													Pd		
(m)	(m)		L	ithology			Sample #	From	То	Length	(g/t)	(g/	(t)	(g/t)	(%)	(%)
		239.20 - 242.39	HE F M													

242.39	255.40	GR	Granite	Sudbury Breccia :
				•

As same as 227.81-239.2m; reddish pink colour; porphyritic; weakly sheared; consists of 40-50% light pink colour alkali feldspars, K-feldspar phenocrysts up to 2.5cm in size, and 10-15% pinkish light yellow colour, coarse-grained plagioclases, and 20-25% white colour, coarse-grained Qtz, and 10-15% greenish black colour, strongly ep-chl altered biotite and amphiboles, and 2-3% black colour, fine-grained magneitte, and 1-2% fine-grained, purple colour garnet, and <1% fine-grained, disseminated py; contains one 40cm long greyish dark green colour UM from 244.0-244.40m, moderately to strongly magnetic; TCA @ 255.40 m is 70°;

Alteration Maj:	Type/Style/Intensity	Comment
242.39 - 255.40	CHL INT S	
242.39 - 255.40	EP INT S	
242.39 - 255.40	HE P W	
Mineralization Maj. :	Type/Style/%Mineral	Comment
242.39 - 255.40	PY DIS 1	

255.40

259.05 UMAF Ultramafic

Sudbury Breccia :

Possible PYXT; As same as 223.31-225.5m; greyish dark green colour, aphanitic to fine-grained; 20-40m long chilled margins occur at both of the contacts; contains two greenish dark grey colour, aphanitic SDBX from 5 to 12mm wide; contains trace, disseminated py; weakly magnetic in the contact area and strongly magnetic in the centre; TCA @ 259.05m is 50°;

Alteration Maj:	Type/Style/Intensity	Comment
255.40 - 259.05	CHL P S	
255.40 - 259.05	Carb VN W	

05-Dec-14 1:57:18 PM

Hole Number WTR-052			Project: TRILL_SCJV	Project: TRILL_SCJV					Project Number: 504						
From (m)	То										Pd				
(m)	(m)		Lithology		Sample #	From	То	Length	(g/t	(g/t)	(g/t)	(%)	(%)		
		255.40 - 259.05	EP VN W												
		255.40 - 259.05	ACTL P WM												

259.05	268.24	GR Granite		Sudbury Breccia :
		feldspars, K-feldspar pher plagioclases, and 15-20% 15% greenish black colou grained magneitte, and 1- contains a few 8mm wide	nocrysts up to 3.0cm in size white colour, coarse-grai r, strongly ep-chl altered to 2% fine-grained, purple co cavity along joint sets and	prphyritic; consists of 45-55% reddish pink colour alkali te, and 10-15% yellowish pink colour, coarse-grained ned Qtz (5-10% in the lower contact area), and 10- piotite and amphiboles, and 2-3% black colour, fine- plour garnet, and <1% fine-grained, disseminated py; d filled with calcite and py; contains two 1-2cm wide r 10cm long; moderately to strongly magnetic; TCA @
		Alteration Maj:	Type/Style/Intensity	Comment
		259.05 - 268.24	Carb FF M	
		259.05 - 268.24	CHL F W	
		259.05 - 268.24	GAR INT M	
		259.05 - 268.24	CHL INT S	
		259.05 - 268.24	EP INT S	
		259.05 - 268.24	Carb VN W	
		<i>Mineralization Maj. :</i> 259.05 - 268.24 259.05 - 268.24	Type/Style/%Mineral PY FG 0.01 PY DIS 1	Comment

05-Dec-14 1:57:18 PM

LITHOLOGY REPORT - Detailed -

ole Number	WTR-052			Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Lithology	,	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	С (%
268.24	284.12	OD Olivi	ine Diabase	Sudbury Breccia :									
		(slickensides); a 20-3 feldspar alteration in t	0cm long, black colour, aphani the centre; a 2.5cm wide BX (p	medium-graind; sub-ophilitic; moderately sheared tic chilled margin occurs at contact; moderated k- ossible SDBX, 1C5) with black colour, aphanitic Ily magnetic; TCA @ 284.12m is 60°;									
		Alteration Maj:	Type/Style/Intensity	Comment									
		268.24 - 284.12	TLC F WM										
		268.24 - 284.12	К РСН М										
		268.24 - 284.12	CHL F M										
		268.24 - 284.12	Carb VN W										
284.12	313.52	of 45-55% reddish pir 15% yellowish pink to grained Qtz (5-10% ir biotite and amphibole colour garnet, and <1	68.24m; reddish pink colour; p hk to pink colour alkali feldspars light yellow colour, coarse-gra n the upper contact area), and s, and 1-2% black colour, fine- % fine-grained, disseminated p 13.44m; weakly magnetic in the	Sudbury Breccia : orphyritic, pegmatitic partly; weakly sheared; consists s, K-feldspar phenocrysts up to 3.2cm in size, and 10- ined plagioclases, and 20-25% white colour, coarse- 10-15% greenish black colour, strongly ep-chl altered grained magneitte, and 1-2% fine-grained, purple by; contains a 2.0cm wide, greenish dark grey colour, e upper contact area and strongly magnetic overall;									
		Alteration Maj:	Type/Style/Intensity	Comment									
		284.12 - 313.52	GAR INT M										
		284.12 - 313.52	CHL INT S										
		284.12 - 313.52	EP INT S										
		Mineralization Maj. :	Type/Style/%Mineral	Comment									

284.12 - 313.52 PY DIS 1

05-Dec-14 1:57:18 PM

Hole Number	WTR-052	Project: TRILL_SCJV	Project Number:	Project Number: 504						
From (m)	То			Pt						
<i>(m)</i>	(m)	Lithology Sample # From To Length	(g/t)	(g/t)	(g/t)	(%)	(%)			

313.52 334.26 NDIA Nipissing Diabase Sudbury Breccia :

Greenish dark grey colour; medium-grained; over one meter long, greenish dark grey to black colour, aphanitic to fine-grained chilled margin occurs at both contacts; salt-pepper texture in the centre; one 5mm wide, black colour, aphanitic possible SDBX occurs at upper contact; no sulphides; strongly magnetic; TCA @ 334.26m is 65°;

Alteration Maj:	Type/Style/Intensity	Comment
313.52 - 334.26	Carb VN W	
313.52 - 334.26	K Dis W	
313.52 - 334.26	EP P W	
313.52 - 334.26	EP VN WM	

334.26	346.48	GR	Granite	Sudbury Breccia :
		As same as 2	84.12-313.52m; pink	colour; porphyritic; weakly sheared; consists of 45-55% reddish pink
		to pink colour	alkali feldspars, K-fel	dspar phenocrysts up to 2.8cm in size, and 10-15% yellowish pink to
		cream colour	coarse-grained plagic	clases and 20-25% white colour coarse-grained Otz and 10-15%

cream colour, coarse-grained plagioclases, and 20-25% white colour, coarse-grained Qtz, and 10-15% greenish black colour, strongly ep-chl altered biotite and amphiboles, and 1-2% black colour, fine-grained magneitte, and <1% fine-grained, purple colour garnet, and <1% fine-grained, disseminated py; strongly ep alteration in the lower contact area; strongly magnetic overall; TCA @ 346.48m is 40°;

Alteration Maj:	Type/Style/Intensity	Comment
334.26 - 345.80	GAR INT WM	
334.26 - 345.80	CHL INT S	
334.26 - 345.80	EP INT S	

ble Number W	TR-052			Project: TRILL_SCJV					Project Num	ber:	504			
	To (m)		Litholog	V	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cı (%
	,	345.80 - 346.48	EP P I	, 	•									
				Comment										
		<i>Mineralization Maj. :</i> 334.26 - 346.48	Type/Style/%Mineral PY DIS 1	Comment										
346.48	361.09	UMAF Ultrama	afic	Sudbury Breccia :										
		alteration; consists of 95 and trace, fine-grained p 22mm wide, black or gre	i-97% amphiboles (pyroxen by; contains a GR fragment byish green colour possible	grained margins, medium-grained centre; strongly ep e), 1-2% biotite, and 1-2% fine-grained plagioclase, up to 7 cm long near lower contact, and a few, 2- SDBX (1A5); a pinkish light grey colour, fine-grained n magnetic; TCA @ 361.09m is 22°;										
		Alteration Maj:	Type/Style/Intensity	Comment										
		346.48 - 361.09	CHL P W											
		346.48 - 361.09	Qtz VN W											
		346.48 - 361.09	Carb VN W											
		346.48 - 361.09	EP P M											
		<i>Mineralization Maj. :</i> 346.48 - 361.00	Type∕Style∕%Mineral PY FG 0.1	Comment										
		Texture Maj: 346.48 - 361.09	Type MASS	Comment										
361.09	373.56	GR		Sudbury Breccia :										
		As same as 334.26-346	.48m; pink colour; porphyrit	ic; weakly sheared; consists of 45-55% reddish pink										

As same as 334.26-346.48m; pink colour; porphyritic; weakly sheared; consists of 45-55% reddish pink to pink colour alkali feldspars, K-feldspar phenocrysts up to 2.5cm in size, and 10-15% yellowish pink to cream colour, coarse-grained plagioclases, and 20-25% white colour, coarse-grained Qtz, and 10-15% greenish black colour, strongly ep-chl altered biotite and amphiboles, and 1-2% black colour, fine-grained

le Number	WTR-052	Project: TRILL_SCJV								Project Number: 504						
=rom (m)	To (m)		Litholog	<i>y</i>	Sample #	From	То	Length					li Cu %) (%)			
		moderately shearing and	d deformation in the lower of	net, and trace, fine-grained, disseminated py; contact area; strongly magnetic overall; contains a 63.46-363.73m with moderately magnetic; TCA @												
		Alteration Maj:	Type/Style/Intensity	Comment												
		361.09 - 363.46	GAR INT WM													
		361.09 - 363.46	CHL INT S													
		361.09 - 363.46	EP INT S													
		363.73 - 373.56	GAR INT WM													
		363.73 - 373.56	CHL INT S													
		363.73 - 373.56	EP INT S													
		<i>Mineralization Maj. :</i> 361.09 - 363.46 363.73 - 373.56	<i>Type/Style/%Mineral</i> PY DIS 0.01 PY DIS 0.01	Comment												
		Texture Maj: 361.09 - 363.46 363.46 - 363.73 363.46 - 363.73 363.73 - 373.56	Туре РОПРН FG АРН РОПРН	Comment												
373.56	378.00	to greenish black colour colour, feldspar (?) pher	, aphanitic chilled margins of	Sudbury Breccia : per texture in the centre; 20-30cm long, greyish green occur at both contacts; a few 4-5mm sized, light grey of the core; no sulphides; moderately magnetic; TCA												
		@ 378.00m is 55°;														
		Alteration Maj:	Type/Style/Intensity	Comment												
		373.56 - 378.00	Carb VN W													

05-Dec-14 1:57:18 PM

Hole Number WTR-052		2 Project: TRILL_SCJV								Project Number: 504							
From (m)	To (m)		Lithole	ogy	Sample #	From	То	Length					Ni (%)	Ci (%			
		373.56 - 378.00	EP VN WM														
		373.56 - 378.00	EP P W														
		Texture Maj:	Туре	Comment													
		373.56 - 378.00	FG														
378.00 384.93	384.93	GR		Sudbury Breccia :													
		to pink colour alkali fe cream colour, coarse- greenish black colour, magneitte, and <1% fi two 10-40cm long, gre	Idspars, K-feldspar phenoci- grained plagioclases, and 2 , strongly ep-chl altered biot ine-grained, purple colour g eenish dark grey colour, fine	rritic; weakly sheared; consists of 45-55% reddish pink rysts up to 2.5cm in size, and 10-15% yellowish pink to 20-25% white colour, coarse-grained Qtz, and 10-15% tite and amphiboles, and 1-2% black colour, fine-grained arnet, and trace, fine-grained, disseminated py; contains e-grained DIA from 379.56-380.0 and 282.16-282.26m, m 389.87-384.93m; moderately to strongly magnetic;													
		Alteration Maj:	Type/Style/Intensity	Comment													
		378.00 - 384.93	GAR INT W														
		378.00 - 384.93	CHL INT S														
		378.00 - 384.93	EP INT S														
		Mineralization Maj. :		l Comment													
		378.00 - 384.93	PY F 0.5														

Texture Maj:	Туре	Comment
380.00 - 385.00	PORPH	

Hole Number WTR-052				Project: TRILL_SCJV			Project Number: 504							
From (m)	To (m)			Lithology	Sample #	From	То	Length	A (g	u P t) (g		Pd (g/t)	Ni (%)	Cu (%)
384.93	388.24	DIA	Diabase	Sudbury Breccia :										
				ned; 30-40cm long, greenish black colour, aphanitic chilled margins ce, fine-grained py; contains one 3.0cm wide GR inclusion in the										

lower contact area; non magnetic; TCA @ 388.24m is 45°;

388.24 443.62 GR Granite Sudbury Breccia : As same as 378-384.93m; pink colour; porphyritic and pegmatitic partly; weakly sheared; consists of 45

55% reddish pink to pink colour alkali feldspars, K-feldspar phenocrysts up to 2.5cm in size, and 10-15% yellowish pink to cream colour, coarse-grained plagioclases, and 20-25% white colour, coarse-grained Qtz, and 10-15% greenish black colour, strongly ep-chl altered biotite and amphiboles, and 1-2% black colour, fine-grained magneitte, and <1% fine-grained, purple colour garnet, and trace, fine-grained, disseminated py; contains a few reddish pink colour, pegmatitic dyke from 20-40cm long; moderately to strongly carbonate alteration from 430 to 443.62m; moderately to strongly magnetic overall, and weakly magnetic in the lower contact area; TCA @ 443.62m is 40°;

443.62	444.30	DIA	Diabase		Sudbury Breccia :
		occurs at low	edium grey to greenish black o ver contact; cross-cut by irrgul o strongly magnetic; TCA @ 4	ar, light pink colour, coarse	ong, aphanitic chilled margin (?) e-grained calcite-qtz veinlet;

444.30 444.75 GR Granite

Sudbury Breccia :

05-Dec-14 1:57:18 PM

ole Number WTR-052		Project:	TRILL_SCJV					Project Number:	504			
From To								Au	Pt	Pd	Ni	Cu
(m) (m)	Lithology			Sample #	From	То	Length	(g/t)	(g/t)		(%)	

alteration; non magnetic; no sulphides; TCA @ 444.75m is 50°

444.75 451.12 DIA Diabase Sudbury Breccia : Greenish dark grey colour; medium-grained; 15-30cm long, greenish dark grey colour, aphanitic chilled margins occur at both contacts; cross-cut by low to high angles calcite veinlets; contains trace, finegrained py; contains one 10cm long ep-calcite altered GR in lower contact area; strongly magnetic overall; TCA @ 451.12m is vague;

451.12 456.07 **GR Granite** Sudbury Breccia : As same as 388.24-430m interval; reddish pink colour; porphyritic; weakly sheared; consists of 55-60% reddish pink to pink colour alkali feldspars, K-feldspar phenocrysts up to 3.2cm in size, and 5-10% yellowish pink to cream colour, coarse-grained plagioclases, and 20-25% white colour, coarse-grained Qtz, and 10-15% greenish black colour, strongly ep-chl altered biotite and amphiboles, and 1-2% black colour, fine-grained magneitte, and <1% fine-grained, purple colour garnet, and trace, fine-grained, disseminated py; strongly magnetic overall; TCA @ 456.07m is 70°;

456.07 459.26 **DIA**

DIA Diabase

Sudbury Breccia :

Greenish dark grey colour; fine-grained; a 50cm long, greyish dark green colour, aphanitic chilled margin occurs at lower contact area; cross-cut by irregular, very fine calcite-magnetite-chlorite (or k-feldsar) veinlets; trace, fine-grained py occurs in the centre of the veinlets; moderately to strongly magnetic; TCA

Hole Number	WTR-052		Project: TRILL_SCJV					Project Number:	504		
From (m)	То (т)	Lithology		Sample #	From	То	Length		Pt (g/t)	Pd (g/t)	
		@ 459.26m is 50°;									

459.26	460.12	GR	Granite	Sudbury Breccia :
				val; reddish pink colour; porphyritic to pegmatitic partly; weakly to
		moderately s	heared; contains trac	e, fine-grained py; weakly to moderately magnetic; TCA @ 460.12m is

vague;

460.12 463.98 UMAF Ultramafic

Sudbury Breccia :

Greenish dark grey to greyish black; aphanitic to fine-grained; strongly sheared in the lower contact area; cross-cut by high angle, irregular, carbonate-talc veinlets; weakly magnetic in the both contacts area and strongly magnetic in the centre area; TCA @ 463.98m is 50°;

Alteration Maj:	Type/Style/Intensity	Comment
460.12 - 463.98	MAG P I	
460.12 - 463.98	CHL VN WM	occurs at the magin of carbonate veinlet;
460.12 - 463.98	SERP P WM	
460.12 - 463.98	TLC P WM	
460.12 - 463.98	TLC VN M	
460.12 - 463.98	Carb VN I	

le Number	WTR-052			Project: TRILL_SCJV					Project Numbe	: 504			
From (m)	То (т)		Litholog	y	Sample #	From	То	Length	A (g/		Pd (g/t)	Ni (%)	C (%
463.98	473.46	GR Granit	е	Sudbury Breccia :									
		deformation (brecciated cream colour, aphanitic	d) in the upper contact area; aplitic dyke up to 20cm long analitic SDBX (?) in the cent	c colour; porphyritic; weakly sheared and strongly strongly carbonate-talc alteration; contains one light g; contains two, 2-7mm wide, greenish light grey to re; contains trace, disseminated py; non to weakly									
		Alteration Maj:	Type/Style/Intensity	Comment									
		463.98 - 473.46	EP INT S										
		463.98 - 473.46	CHL INT S										
		463.98 - 473.46	Carb VN W										
		463.98 - 473.46	Carb P S										
		463.98 - 473.46	TLC P M										
		<i>Mineralization Maj. :</i> 463.98 - 473.46	Type/Style/%Mineral PY DIS 0.2	Comment									
473.46	484.92	DIA Diabas	se	Sudbury Breccia :									
		strongly shearing at bo	th contacts; cross-cut by hig	d medium-grained center with salt-peper texture; n angles, irregular, carbonate-qtz-veinlets; contains akly to strongly magnetic; TCA @ 484.92m									
		Alteration Maj:	Type/Style/Intensity	Comment									
		473.46 - 484.92	CHL VN W										
		473.46 - 484.92	Qtz VN W										
		473.46 - 484.92	EP PCH W										
		473.46 - 484.92	EP P WM										
		473.46 - 484.92	Carb VN S										

Hole Numbe	ele Number WTR-052					r WTR-052 Project: TRILL_SCJV							Project Number: 504							
From	То											Au	Pt	Pd	Ni	Cu				
From (m)	(m)		Litholog	У			Sample #	From	То	Length		(g/t)	(g/t)	(g/t)	(%)	(%)				
		Mineralization Maj. :	Type/Style/%Mineral	Comment																
		473.46 - 484.92	PY DIS 0.2																	

484.92	605.15	GR	Granite	Sudbury Breccia :
484.92	605.15	GR	Granite	Sudbury Breccia :

As same as 388.24-443.62m interval; reddish pink colour; porphyritic and pegmatitic partly; weakly sheared; consists of 50-55% reddish pink to pink colour alkali feldspars, K-feldspar phenocrysts up to 4.0cm in size, and 10-15% yellowish pink to cream colour, coarse-grained plagioclases, and 15-20% white colour, coarse-grained Qtz, and 10-15% greenish black colour, strongly ep-chl altered biotite and amphiboles, and 1-2% black colour, fine-grained magneite, and <1% fine-grained, purple colour garnet, and trace, fine-grained, disseminated py; contains a few of reddish pink colour, K-feldspar-qtz pegmatitic dyke from 10cm to 250cm long (from 494.04-494.78, 505.41-506.27 and 528.33-530.81m); contains one greenish pink colour, brecciated-sheared and ep altered zone from 507.22-507.56m; contains a few of very narrow, 2-10mm wide and 5-25cm long, reddish light grey to dark grey colour, irregular SDBX (3C5) at 502.39, 502.62, 504.50, 509.20, 524.21, 524.59, 535.82, 555.25, 570.25, 583.00, 578.4, 589.42, 591.81, 601.02 and 603.36m; strongly magnetic overall; TCA @ 605.15m is 70°;

Alteration Maj:	Type/Style/Intensity	Comment
484.92 - 605.15	HE FF W	
484.92 - 605.15	CHL FF W	
484.92 - 605.15	GAR INT W	
484.92 - 605.15	CHL INT S	
484.92 - 605.15	EP INT S	
484.92 - 605.15	Qtz VN W	
484.92 - 605.15	Carb VN W	
<i>Mineralization Maj. :</i> 484.92 - 605.15	Type/Style/%Mineral PY DIS 0.5	Comment
Texture Maj: 484.92 - 605.15	<i>Type</i> PORPH	Comment

ole Number	WTR-052			Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Litholog	IY	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cı (%
605.15	605.61	DIA Diabas	se	Sudbury Breccia :									
		strongly ep alteration (0		10cm wide chilled margins occur at both contacts with ninated py occurs along very fine fractures and some									
		Alteration Maj:	Type/Style/Intensity	Comment									
		605.15 - 605.61	EP VN W										
		605.15 - 605.61	EP B S	occurs at contact area;									
		<i>Mineralization Maj. :</i> 605.15 - 605.61	Type/Style/%Mineral PY DIS 0.5	Comment									
605.61	608.18	GR Granit	e	Sudbury Breccia :									
		As same as 484.9-605.		olour; porphyritic and pegmatitic partly; weakly y to strongly magnetic overall; TCA @ 608.18m is 35°									
			Tupo/Stulo/Intonsitu										

Alteration Maj:	Type/Style/Intensity	Comment
605.61 - 608.18	GAR INT W	
605.61 - 608.18	EP FF S	
605.61 - 608.18	CHL INT S	
605.61 - 608.18	EP INT S	
<i>Mineralization Maj. :</i> 605.61 - 608.18	<i>Type/Style/%Mineral</i> PY DIS 0.01	Comment

ole Number	WTR-052			Pro	ject: TRILL_SCJV					Project Numb	ber: 5	504			
From	То										Au	Pt	Pd	Ni	Cı
(m)	(m)		Litholog	<i>y</i>		Sample #	From	То	Length	((g/t)	(g/t)	(g/t)	(%)	(%)
608.18	608.75	FLT Fau	ılt	Sudbu	ry Breccia :										
		sheared; rock types greenish dark grey c	ely occurs in the contact area; b are mainly GR with strongly fra colour, fault gouge; moderately 70° (on slickenside);	ctured and deformed; conta	ins three <cm td="" wide,<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></cm>										
		Alteration Maj:	Type/Style/Intensity	Comment											
		608.18 - 608.75	CHL INT S												
		608.18 - 608.75	EP INT S												
		608.18 - 608.75	CHL F M												
		608.18 - 608.75	HE P M												
		608.18 - 608.75	Carb VN W												
		608.18 - 608.75	Carb FF W												

608.75 611.20 SDBX Sudbury Breccia

Sudbury Breccia :

Reddish pink or greenish dark grey colour; brecciated and fractured; the SDBX (3C5 to 3C4) consists of 50-55% GR blocks (from 30-90cm long), 5-10% GR clasts (from 0.1-6.5cm) and 30-35% greenish dark grey or black colour, aphanitic to fine-grained matrix; well developed joint set at 50-60° and 25-35° and 80-85°; the SDBX matrix has strongly magnetic; TCA @ 611.2m is 28°;

Alteration Maj:	Type/Style/Intensity	Comment
608.75 - 611.20	HE F WM	
608.75 - 611.20	CHL INT S	
608.75 - 611.20	EP INT S	
608.75 - 611.20	Carb F M	
608.75 - 611.20	CHL F M	

Hole Number	WTR-052	Project: TRILL_SCJV	Project Number:	504			
From	То		Au	Pt	Pd	Ni	Cu
From (m)	(m)	Lithology Sample # From To Length	(g/t)	(g/t)	(g/t)	(%)	(%)

611.20 630.20 **FGN** *Felsic Gneiss Sudbury Breccia :* Reddish pink colour; coarse-grained and pegmatitic partly; moderately sheared; partial melted; contains K-feldspar-qtz pegmatitic dyke from 9-30cm long; trace py occurs along the ep veinlets; non magnetic; TCA @ 649.45m is 55°;

630.20	631.18	DIA Diabase		Sudbury Breccia :
				ur at both conacts; cross-cut by irregular and very fine lagnetic; TCA @ 663.21m is 60.0°;
		Alteration Maj:	Type/Style/Intensity	Comment
		611.20 - 649.45	BIO INT WM	
		611.20 - 649.45	EP VN W	
		611.20 - 649.45	EP INT S	
		630.20 - 631.18	EP VN WM	
		Mineralization Maj. :	Type/Style/%Mineral	Comment
		611.20 - 649.45	PY DIS 0.01	
		630.20 - 631.18	PY DIS 0.5	
		Texture Maj:	Туре	Comment
		611.20 - 649.45	PRBL	

ole Number	WTR-052			Project:	TRILL_SCJV					Project Num	ber:	504			
From (m)	To (m)		Litholog	y		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
631.18	649.45	GR Granite		Sudbury Br	reccia :										
		as same as 611.2-630.2 moderately sheared; pa 633.49m and 649.26-64 637.40-639.43m with tra	2m interval; reddish pink to li rtial melted; contains two gro 9.34m with strongly magnet	ight pink colour; coarse-grained eenish dark grey colour, aphanit tic; contains a reddish pink colou s a 5mm wide, reddish dark grey	and partly pegmatitic; tic DIA from 633.34- ur; porphyritic GR from										
		Alteration Maj:	Type/Style/Intensity	Comment											
		631.18 - 649.45	BIO INT WM												
		631.18 - 649.45	Carb VN W												
		631.18 - 649.45	EP VN W												
		631.18 - 649.45	EP INT S												
		<i>Mineralization Maj. :</i> 637.40 - 639.43	Type/Style/%Mineral PY DIS 0.5	Comment											
649.45	663.21	aphanitic chilled margins	our; medium-grained with sal so occur at both contacts with	Sudbury Br It-peper texture; 20-30cm long, g h strongly magnetic and weakly	greyish black colour, magnetic in the										
		magnetic, the later DIA	greyish dark green colour, a contacted by a 4cm wide, gr nated py; TCA @ 663.21m is	aphanitic DIA occurs from 657.9 reenish dark grey colour, aphan s 60°;	2-661.73m with itic BX at 661.73m;										
		Alteration Maj:	Type/Style/Intensity	Comment											
		649.45 - 663.21	EP INT W												
		649.45 - 663.21	EP B W												
		649.45 - 663.21	EP VN WM												

05-Dec-14 1:57:18 PM

Comment

Type/Style/%Mineral

PY DIS 0.1

Mineralization Maj. :

649.45 - 663.21

Hole Number WTR-052			Project:	TRILL_SCJV					Project Numb	er:	504			
From (m)	To (m)	Lithology			Sample #	From	То	Length				Pd (g/t)	Ni (%)	

663.21 702.50 GR Granite Sudbury Breccia :

As same as 484.92-605.15m interval; reddish pink colour; porphyritic and pegmatitic partly; weakly sheared; consists of 50-55% reddish pink to pink colour alkali feldspars, K-feldspar phenocrysts up to 3.0cm in size, and 10-15% yellowish pink to cream colour, coarse-grained plagioclases, and 15-20% white colour, coarse-grained Qtz, and 10-15% greenish black colour, strongly ep-chl altered biotite and amphiboles, and 1-2% black colour, fine-grained magneitte, and <1% fine-grained, purple colour garnet, and trace, fine-grained, disseminated py; contains a few of reddish pink colour, K-feldspar-qtz pegmatitic dyke from 6.0 to 40cm long; strongly magnetic overall;

Alteration Maj:	Type/Style/Intensity	Comment
663.21 - 702.50	GAR INT W	
663.21 - 702.50	CHL INT S	
663.21 - 702.50	EP INT S	
663.21 - 702.50	EP VN W	
Mineralization Maj. :	Type/Style/%Mineral	Comment
663.21 - 702.50	PY DIS 0.1	

702.50 702.51 EOH End of Hole

Sudbury Breccia :

DRILL HOLE REPORT

Hole Number	WTR-053				Projec	ct: TRILL	_SCJV				Project Numbe	er: 504
Drilling		Casing			Core				Location		Other	
Azimuth:	180	Length:		0	Dimension:	NQ			Township:	TOTTEN	Logged by:	Jian Xiong
Dip:	-45	Pulled:	no		Storage:	Core Shee	ł		Claim No.:	1167121-LE	Relog by:	
_ength:	440.21	Capped:	yes		Section:				NTS:		Contractor:	Jacob & Samuel Drilling Ltd.
Started:	20-Jan-14	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
completed:	26-Jan-14										Surveyed:	yes
_ogged:	23-Jan-14										Surveyed by:	Wallbridge-Other
comment:	Surveyed w submeter Geo		34 cor" \/	CS84 5147416 1N	155251 2E 22	77 4 4 5 1	Coordinate	- Gemcom	Coordinate - L	ITM	Geophysics:	UTEM
omment.	Surveyed w Submeter Geo		5A.COI , W	0004 0147410.114	, 433204.2L, 32	<i>1.1</i> HAL)	East:	455240	East:	0	Geophysic Contractor:	Lamontagne
							North:	5147193.4	North:	0	Left in hole:	Nothing
							Elev.:	363.7	Elev.:	0	Making water:	0
		Zone: 17 NAD: 2		NAD: 27	Multi shot sur							

	Deviation Tests		<u>Deviation Tests</u>								
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-45.00	С	\checkmark		110.00	183.79	-45.32	G	\checkmark	
0.00	180.51	-48.37	G	\checkmark		120.00	184.09	-44.82	G	\checkmark	
0.00	180.83	-47.67	G	\checkmark		130.00	183.73	-44.97	G	\checkmark	
9.00	179.40	-47.40	F		Mag: 5544	131.00	183.80	-44.70	F		Mag: 5534
30.00	181.45	-47.47	G	\checkmark	Ū	140.00	183.89	-44.71	G	\checkmark	
0.00	181.85	-47.40	G	\checkmark		150.00	183.84	-44.66	G	\checkmark	
0.00	182.13	-47.21	G	\checkmark		160.00	183.88	-44.72	G	\checkmark	
0.00	182.83	-46.68	G	\checkmark		170.00	183.84	-44.39	G	\checkmark	
0.00	183.07	-46.48	G	\checkmark		180.00	183.79	-44.42	G	\checkmark	
0.00	183.44	-45.98	G	\checkmark		182.00	183.30	-44.40	F		Mag: 5518
0.01	182.50	-45.90	F		Mag: 5624	190.00	183.84	-44.39	G	\checkmark	
0.00	183.60	-45.95	G	\checkmark	-	200.00	183.85	-44.54	G	\checkmark	
00.00	183.70	-45.64	G	\checkmark		210.00	183.95	-44.11	G	\checkmark	

05-Dec-14 1:47:43 PM

Deviation Tests

HEADER REPORT

Hole Number

Project: TRILL_SCJV

Project Number: 504

		oc manon	10313		
Distance	Azimuth	Dip	Туре	Good	Comments
220.00	184.01	-44.17	G	\checkmark	
230.00	183.83	-44.23	G	\checkmark	
233.00	182.40	-43.90	F		Mag: 5520
240.00	184.13	-44.06	G	\checkmark	
250.00	184.23	-43.78	G	\checkmark	
260.00	184.27	-43.67	G	\checkmark	
270.00	184.43	-43.60	G	\checkmark	
280.00	184.39	-43.32	G	\checkmark	
284.00	182.90	-43.30	F		Mag: 5546
290.00	184.56	-43.47	G	\checkmark	
300.00	184.57	-43.12	G	\checkmark	
310.00	184.75	-43.13	G	\checkmark	
320.00	184.79	-43.18	G	\checkmark	
330.00	184.88	-43.09	G	\checkmark	
335.00	182.90	-42.70	F		Mag: 5570
340.00	184.95	-42.81	G	\checkmark	
350.00	184.95	-42.96	G	\checkmark	
360.00	184.92	-43.00	G	<!--</td--><td></td>	
370.00	184.96	-42.56	G	\checkmark	
380.00	184.97	-42.45	G	\checkmark	
386.00	184.80	-42.50	F		Mag: 5540
390.00	184.97	-42.33	G	\checkmark	
400.00	184.78	-42.40	G	\checkmark	
410.00	184.74	-42.21	G	✓ ✓	
420.00	184.69	-42.02	G		
430.00	184.83	-41.68	G	\checkmark	

05-Dec-14 1:47:43 PM

Hole Number	WTR-053				Project: TRILL_SCJV	Project: TRILL_SCJV					Project Number: 504						
From (m)	To (m)			Lithology		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)			
0.00	12.90	CAS	Casing		Sudbury Breccia :	· · · · · · · · · · · · · · · · · · ·											
		casing to	13.5m;														

9.60	DIA	Diaba		Sudbury Breccia :
	greenish mediu alteration; cont	um grey col tains <1% la	lour, fine-grained chilled ath plagioclase up to 3x2	margin occurs at lower contact with strongly ep 0mm in size, an a few granitic inclusions up to 2x4cm
	Alteration Maj	:	Type/Style/Intensity	Comment
	19.40 - 19.60		EP P S	
Ģ	9.60	Greenish dark greenish mediu alteration; cont in size; contain Alteration Maj	Greenish dark grey colour greenish medium grey colour alteration; contains <1% la in size; contains trace, dis <i>Alteration Maj:</i>	Greenish dark grey colour; medium-grained, sub- greenish medium grey colour, fine-grained chilled alteration; contains <1% lath plagioclase up to 3x2 in size; contains trace, disseminated py; non magr <i>Alteration Maj:</i> Type/Style/Intensity

Mineralization Maj. :	Type/Style/%Mineral	Comment
12.90 - 19.60	PY DIS 0.5	

19.60	22.90	GR Granite		Sudbury Breccia :
		• • •	% disseminated py; strong	racture coated with hematite; strongly ep-chl alteration ly magnetic in the center and very weakly magnetic
		Alteration Maj:	Type/Style/Intensity	Comment
		19.60 - 22.90	GAR INT WM	
		19.60 - 22.90	HE FF M	
		19.60 - 22.90	HE P W	
		19.60 - 22.90	CHL INT S	
		19.60 - 22.90	EP INT S	

05-Dec-14 1:57:43 PM

12.90

Hole Numbe	er WTR-053				Project:	TRILL_SCJV					Project Num	ber:	504		
From (m)	To (m)		Litholog	y			Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Ni (%)	Cu (%)
		<i>Mineralization Maj. :</i> 19.60 - 22.90	Type/Style/%Mineral PY DIS 1	Comment										 	

22.90	32.19	DIA	Diabase	Sudbury Breccia :
		colour, aphanit trace, fine- to r	ic chilled margins occur at both con	r texture partly; 20-40cm long, greyish dark green tacts with moderately ep or chl alteration; contains ke or along the joints, and very fine-grained cpy occurs gnetic overall; TCA @ 32.19m 80°;
		Alteration Maj	: Type/Style/Intensity	Comment

Alteration Maj:	Type/Style/Intensity	Comment
22.90 - 23.00	EP B S	
23.00 - 32.00	CHL P W	
23.00 - 32.00	EP VN W	
32.00 - 32.19	CHL P S	
Mineralization Maj. :	Type/Style/%Mineral	Comment
22.90 - 32.19	PY FF 0.1	
22.90 - 32.19	PY FG 0.01	
22.90 - 32.19	CP FG 0.01	

fine-grained DIA (weakly to moderately magnetic) from 37.56-37.60, 56.82-57.00, 63.26-63.36 and 67.24-67.44m; contains 0.5-3cm wide and 5-26cm long, greenish dark grey to greyish black colour SDBX (3C5) at 42.12, 46.40, 61-61.26, 69.08m; contains trace, a few coarse-grained py occur at upper contact (within a 2-3cm wide zone contains about 5-10% py woith red colour K-feldspar), and disseminated py overall;

05-Dec-14 1:57:43 PM

lole Numbe	er WTR-053				Project:	TRILL_SCJV						Project Numbe	r: 504			
From	То											A				Cu
(m)	(m)		Litholog	IУ			Sá	ample #	From	То	Length	(9	't) (g/	t) (g/t)	(%)	(%)
		moderately to strongly m	nagnetic; TCA @ 69.60m is	s 60°;												
		Alteration Maj:	Type/Style/Intensity	Comment												
		32.19 - 69.60	HE FF W													
		32.19 - 69.60	CHL F W													
		32.19 - 69.60	GAR INT WM													
		32.19 - 69.60	CHL INT S													
		32.19 - 69.60	EP INT S													
		Mineralization Maj. :	Type/Style/%Mineral	Comment												
		32.19 - 69.60	PY DIS 0.5													

69.6070.39MDIAMatachewan DiabaseSudbury Breccia :

Greenish dark grey colour, porphyritic; consists of 10% white to light cream colour, zoned plagioclase phenocrysts up to 2.0cm in size, and 90% greenish dark grey colour, aphanitic groundmass, and trace, fine-grained py; weakly magnetic overall; TCA @ 70.39 is vague;

Alteration Maj:	Type/Style/Intensity	Comment
69.60 - 70.39	EP B S	2cm wide zone occurs at upper contact area;
69.60 - 70.39	EP P WM	
<i>Mineralization Maj. :</i> 69.60 - 70.39	Type∕Style∕%Mineral PY FG 0.01	Comment

70.39	86.27	GR	Granite	Sudbury Breccia :
		ep-chl alteratio (3C5) at 72m;	2.19-69.6m; reddish pink to light pink colour; porphyritic in intersititialy; contains one 2-4mm wide and 35cm lon a partial melt transtion zone occurs at lower contact fro D (LQD ?) occurs around K-feldspar-plagioclase-qtz gr	g, greenish dark grey colour, SDBX m 85.23-86.27m, a light pink colour,

05-Dec-14 1:57:44 PM

ole Number	WTR-053			Project: TRILL_SC.	JV				Project Number	504			
From (m)	To (m)		Litholog	<i>W</i>	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
				ower contact; contains <1%, dissemined and fine coverall; TCA @ 86.27m is vague (gradational	9-								
		Alteration Maj:	Type/Style/Intensity	Comment									
		70.39 - 85.23	GAR INT WM										
		70.39 - 85.23	EP VN W										
		70.39 - 85.23	CHL INT S										
		70.39 - 85.23	EP INT S										
		<i>Mineralization Maj. :</i> 70.39 - 86.27	Type/Style/%Mineral PY DIS 0.5	Comment									
		Minor Interval:											
		85.23 86.27	TRZN	Transition Zone									
			QD (LQD) occurs are grains in the GR and lower contact; the ma non toward the lower	brecciated partly; a light pink colour, fine-grained bund the margins of K-feldspar-plagioclase-qtz gradationally increased to form the IQD near th agnetic gradually decreased from moderately to contact; the relicts (or inclusions) of K-feldspar, in the QD (LQD) matrix have the same orientation	e								
86.27	92.01	QD Quart	z Diorite	Sudbury Breccia :									
		consists of 2-5% felsic 98% qd matrix with aci wide granophyre micro	(K-feldspar-plagioclase-Qtz cular amphibole, and trace, -dyke; contains two dark gre	to medium-grained QD (LQD?); brecciated partly of the GR) inclusions from 0.5 to 11cm in size, very fine-grained py; contains two pink colour, 3 ey colour, IQD (MTBX?) from 5 to 22cm long (thi nd 2-3% felsic clasts); non magnetic overall; TC	and 95- -4mm s								
		Alteration Maj:	Type/Style/Intensity	Comment									
		86.27 - 92.01	CHL F WM										
		86.27 - 92.01	EP P M										

05-Dec-14 1:57:44 PM

lole Number	WTR-053			Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Litholo	gy	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		86.27 - 92.01	HE P W										
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		86.27 - 92.01	PY TR 0.01										
		Texture Maj:	Туре	Comment									
		86.27 - 92.01	MASS										
92.01	107.47	IQD inclus	sion quartz diorite	Sudbury Breccia :	N985720	95.87	96.43	0.56	0.0	0 0.0	0.01	0.01	0.0
		Possible matrix mixed	with MTBX and QD (?); gree	enish dark grey colour; brecciated; partial melted;	N985721	96.43	97.03	0.60	0.0	0 0.0	0.00	0.00	0.0
		dark grey to greyish bl QD pods, and 40-45% white colour, coarse-g disseminated fine-grai	ack colour, UM or MDIA clas aphanitic to very fine-graine rained, sub-rounded felsic cl	, GR and GN clasts or blacks, and 20-30% greenish sts and blocks, and <1% dark grey colour, fine-grained ed (some as fine-grained QD) matrix, and 3-5%, pink or lasts (qtz-feldspars) in cm size, and trace, few pink colour, mm wide, irregular granophyre °;	N985722	97.03	97.66	0.63	0.0	0 0.0	1 0.00	0.01	0.0
		Alteration Maj:	Type/Style/Intensity	Comment									
		92.01 - 107.47	EP VN W										
		92.01 - 107.47	EP P W										
		<i>Mineralization Maj. :</i> 92.01 - 107.00	Type/Style/%Mineral CP TR 0.01	Comment									
		92.01 - 107.00	PY TR 0.01										
		Minor Interval:											
		99.45 100.51	UMAF	Ultramafic									

Greenish dark grey colour, porphyritic; strongly magnetic;

05-Dec-14 1:57:44 PM

le Number	WTR-053			Project: TRILL_SCJV					Project Number:	504			
From (m)	To		Litholo		Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
(11)	(m)	Min on he formed	Ennolog	<i>9)</i>	Gample #	TIOM	10	Length	(9'')	(9/9	(9/1/	(70)	(70)
		Minor Interval: 101.65 102.57	MDIA	Matachewan Diabase									
		101.00 102.07		white colour; strongly deformation; partial melted;									
		Minor Interval:											
		106.27 107.07	FGN	Felsic Gneiss									
			Medium grey or rede and pegmatitic partly	dish pink colour; coarse-grained, gneissic mainly y; non magnetic;									
107.47	108.49	QD Quartz	Diorite	Sudbury Breccia :	N985723	107.43	108.49	1.06	0.0	0.00) 0.00	0.01	0.0
		(K-feldspar-Qtz from the	GR) inclusions from 0.5 to	olour; medium-grained (LQD ?); consists of 1% felsic o 1.2cm in size, and 99% qd matrix with acicular agnetic overall; TCA @ 108.49m is gradational;									
		Alteration Maj:	Type/Style/Intensity	Comment									
		107.47 - 108.49	EP P W										
		<i>Mineralization Maj. :</i> 107.47 - 108.49	Type/Style/%Mineral PY TR 0.01	Comment									
				Deutheren Deutsche									
108.49	123.70	GR Granite		Sudbury Breccia :	N985724	108.49	109.07	0.58	0.0				
		sheared overall, strongly colour, SDBX (3C5) at 1 109.58m, the pinkish lig in the GR and gradually	y ep-chl alteration intersititi 23.45m; a partial melt trar ht grey colour, fine-grained	nk colour; porphyritic and pegmatitic partly; weakly aly; contains one 1.2cm wide, greenish dark grey istion zone occurs at upper contact from 108.49- d QD (LQD ?) occurs around the K-feldspar-qtz grains ct; contains <1%, dissemined and fine-grained py CA @ 123.7m is 65°;	N985725	109.07	110.02	0.95	0.0	0.00	0.00	0.00	0.0
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		108.49 - 109.58	PY CL 5										
		109.58 - 123.70	PY DIS 0.5										

05-Dec-14 1:57:44 PM

	le Number	WTR-053			Project: TRILL_SCJV					Project Number	504			
 Minor Interval: 108.49 109.58 TRZN Transition Zone gransmith TRZN Granitic occurs around the K-feldspar-plagicolase-qtrz gransmith TRZN g	F rom (m)			Litholog	v	Sample #	From	То	Length					Cı (%
124.9 104.89 104.95 TEZN Transition Zoore 123.70 124.50 DA Datase Subbury Braccia : synchronized for the Coore and gracial melicity the fine grained QD (LOD) ration in the GR and gracially diversated from the coore and gracial melicity the fine grained QD (LOD) ration in the GR and gracially diversated from the coore and gracially magnetic cooreality is graduational. 123.70 124.50 DA Datase Subbury Braccia : graduational of the GR in	()	(11)	Minor Interval:		,		-				,	,	. ,	
124.59 17.11 OR Cameral Subhury Breckie 124.59 17.17 OR Cameral Comment 124.59 17.17 OR OR OR OR 124.59 17.17 OR OR OR OR OR 124.59 17.17 OR Or OR Subhury Breckie Subhury Breckie 124.59 OR V V V V V V V 124.59 OR V V V Subhury Breckie Subhury Breckie Subhury Breckie 124.59 OR V V V Subhury Breckie				TRZN	Transition Zone									
Image: Substrain State Colour, fine-grained; contains trace disseminated py; strongly magnetic; TCA @ 124.59m Alteration Maj: Type/Style/Intensity Comment 123.70 - 124.59 Bio P WM 123.70 - 124.59 CH_ P W 123.70 - 124.59 CH_ P W 123.70 - 124.59 P W J 124.59 TMineralization Maj: Type/Style/Mineral Comment 123.70 - 124.59 PY J O 124.59 TMineralization Maj: Type/Style/Mineral Comment 123.70 - 124.59 PY J O 124.59 TMineralization Maj: Subbury Breccia : 124.59 TMineralization Maj: Subbury Breccia : 124.59 TM: Seame as 109.58-123.70m; Reddish pink to pink colour, porphyritic and pegmetitic partly; weakly sheared; strongly enchal lateration for amphibole and bolitic, and moderately genes tateration interstitialy; contains four genesish dark grey colour, fine-grained DIA at 158.90-159.12, 166.21-166.41, 168.56-184.41 and 171.08-171.71m; two, 1-4-cm wide, greenish dark grey colour, aphanitic SDBX occurs trongly magnetic correction group sheared at torongly and tope colour, aphanitic SDBX occurs at 124.59 and 126.22m; as 124.50m; as 24-cm wide, BX (possible SDBX) occurs trongly magnetic correction T73.38-173.60m with moderately ch-calcite alteration; contains trace dissible at the tope colour, aphanitic SDBX occurs trongly magnetic oversel; TCA 40, BX (TT, BM IS TO*); Alteration Maj:				QD (LQD?) as a matr grains in the GR and 5% coarse-grained py the relicts (or inclusio (LQD) matrix have the	ix occurs around the K-feldspar-plagioclase-qtz gradually decreased from the contact; contains as clasts; non to moderately magnetic overall; ns) of K-feldspar, plagioclase and Qtz in the QD									
124.59 177.18 GR Granite Sudbury Breccia : Sudbury Breccia : As same as 109.58-123.70m; Reddish pink to pink colour; porphyritic and pegmatitic partly; weakly sheared; strongly ep-chi alterations four greenish dark grey colour; fine-grained DIA at 158.30-159. L21 (56.24). 168.30-168.44 and 171.06.171./m; two, 1-4cm wide; greenish dark grey colour; fine-grained DIA at 158.30-159. L21 (56.24). 168.30-168.44 and 171.06.171.71m; two, 1-4cm wide; greenish dark grey colour; porphyritic alteration; interstituk; contains four greenish dark grey colour; fine-grained DIA at 158.30-159. L21 (56.24). 168.30-168.44 and 171.06.171.71m; two, 1-4cm wide; greenish dark grey colour; aphanitic SDBX (3C5) occurs at 124.59 at 126.22m; a strongly sheared zone occurs from 170.59-171.05m; a 2-4cm wide, BX (possible SDBX) occurs from 173.36-173.66m with moderately chi-calcite alteration; contains trace disseminated py; strongly magnet coverali; TCA del 177.18m is 70°; 24.teration Maj: Type/Style/Intensity Comment 124.59 - 177.18	123.70	124.59	DIA Diabase	9	Sudbury Breccia :									
 123.70 - 124.59 BIO P WM 123.70 - 124.59 CHL P W Mineralization Maj.: Type/Style/%Mineral Comment 123.70 - 124.59 PY DIS 0.01 123.70 - 124.59 PY DIS 0.01 123.70 - 124.59 PY DIS 0.01 124.59 177.18 GR Grante Subburg Breccia : As same as 109.58-123.70m; Reddish pink to pink colour; porphytic and pegmatitic party; weakly sheared; strongly ep-chl alterations for amphibole and biotie, and moderately gamet alteration interstitial; contains four greenish dark grey colour, fibre art 158.90-159.12, 166.21-166.41, 168.96-159.43, 168.96-159.43, 168.96-159.12, 166.21-166.41, 168.96-159.43, 168.96-159.12, 166.21-166.41, 168.96-159.12, 166.21-166.41, 173.96-173.66-173				ne-grained; contains trace	disseminated py; strongly magnetic; TCA @ 124.59m									
123.70 - 124.59 CHL P W Mineralization Maj.: Type/Style/%Mineral Comment 123.70 - 124.59 PY DIS 0.01 124.59 177.18 GR Crante Subbury Breccia : As same as 109.58-123.70m; Reddish pink to pink colour; porphyritic and pegmatitic partly; weakly sheared; strongly ep-chl alterations for amphibole and biotite, and moderately gamet alteration interstitialy: contains four greenish dark grey colour, fine-grained DIA at 158.90-159.12, 166.21-166.41, 168.36-168.44 and 171.68-171.71m; two, 1-4cm wide, greenish dark grey colour, fine-grained DIA at 158.90-159.12, 166.21-166.41, 168.36-168.44 and 171.68-171.71m; two, 1-4cm wide, greenish dark grey colour, sphantic SDBX (3C5) occurs rat 124.59 and 126.22m; a strongly sheared zone occurs for 170.95-171.05m; a 2-4cm wide, BX (possible SDBX) occurs from 173.36-173.66m with moderately chl-calcite alteration; contains trace disseminated py; strongly magnetic overall; TCA @ 177.18m is 70°; Alteration Maj: Type/Style/Intensity Comment 124.59 - 177.18 GAR INT WM			Alteration Maj:	Type/Style/Intensity	Comment									
Mineralization Maj. : Type/Style/%Mineral Comment 124.59 177.18 GR Granite Sudbury Breccia : 124.59 177.18 GR Granite Granite Granite 124.59 177.18 GR Granite Granite Granite 124.59 177.18 GR IT7.18 Granite Granite 124.59 177.18 GR IT7.18 Granite Granite			123.70 - 124.59	BIO P WM										
 123.70 - 124.59 PY DIS 0.01 124.59 177.18 GR Granite Subbury Breccia : As same as 109.58-123.70m; Reddish pink to pink colour; porphyritic and pegmatitic partly; weakly sheared; strongly ep-ch alterations for amphibole and biotite, and moderately game alteration interstitialy; contains four greenish dark grey colour, fine-grained DIA at 158.90-159.12, 166.21-166.41, 168.36-168.44 and 171.68-171.71m; two, 1-4cm wide, gree colour, aphantitic SDBX (30C5) occurs at 124.59 and 126.22m; a strongly sheared zone occurs from 170.95-171.05m; a 2-4cm wide, BX (possible SDBX) occurs from 173.36-173.66m with moderately chl-calcite alteration; contains trace disseminated py; strongly magnetic overall; TCA @ 177.18m is 70°; Alteration Maj: Type/Style/Intensity Comment 124.59 - 177.18 GAR INT WM 			123.70 - 124.59	CHL P W										
As same as 109.58-123.70m; Reddish pink to pink colour; porphyritic and pegmatitic partly; weakly sheared; strongly ep-chl alterations for amphibole and biotite, and moderately garnet alteration interstitialy; contains four greenish dark grey colour, fine-grained DIA at 158.90-159.12, 166.21-166.41, 168.36-168.44 and 171.68-171.71m; two, 1-4cm wide, greenish dark grey colour, aphanitic SDBX (3C5) occurs at 124.59 and 126.22m; a strongly sheared zone occurs from 170.95-171.05m; a 2-4cm wide, BX (possible SDBX) occurs from 173.36-173.66m with moderately chl-calcite alteration; contains trace disseminated py; strongly magnetic overall; TCA @ 177.18m is 70°; <i>Alteration Maj:</i> Type/Style/Intensity Comment 124.59 - 177.18 GAR INT WM			•	•• •	Comment									
sheared; strongly ep-chl alterations for amphibole and biotite, and moderately garnet alteration interstitialy; contains four greenish dark grey colour, fine-grained DIA at 158.90-159.12, 166.21-166.41, 168.36-168.44 and 171.68-171.71m; two, 1-4cm wide, greenish dark grey colour, aphanitic SDBX (3C5) occurs at 124.59 and 126.22m; a strongly sheared zone occurs from 170.95-171.05m; a 2-4cm wide, BX (possible SDBX) occurs from 173.36-173.66m with moderately chl-calcite alteration; contains trace disseminated py; strongly magnetic overall; TCA @ 177.18m is 70°;Alteration Maj:Type/Style/IntensityComment124.59 - 177.18GARINTWM	124.59	177.18	GR Granite		Sudbury Breccia :									
124.59 - 177.18 GAR INT WM			sheared; strongly ep-chl interstitialy; contains four 168.36-168.44 and 171.6 occurs at 124.59 and 12 (possible SDBX) occurs	alterations for amphibole a r greenish dark grey colour, 58-171.71m; two, 1-4cm wi 6.22m; a strongly sheared a from 173.36-173.66m with	nd biotite, and moderately garnet alteration fine-grained DIA at 158.90-159.12, 166.21-166.41, de, greenish dark grey colour, aphanitic SDBX (3C5) zone occurs from 170.95-171.05m; a 2-4cm wide, BX moderately chl-calcite alteration; contains trace									
			Alteration Maj:	Type/Style/Intensity	Comment									
124.59 - 177.18 CHL INT S			124.59 - 177.18	GAR INT WM										
			124.59 - 177.18	CHL INT S										

Hole Numbe	r WTR-053				Project:	TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Lithology	y			Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		124.59 - 177.18	EP INT S												
		124.59 - 177.18	Carb VN W												
		<i>Mineralization Maj. :</i> 124.59 - 177.18	Type∕Style∕%Mineral PY DIS 0.5	Comment											

 177.18
 178.36
 DIA
 Diabase
 Sudbury Breccia :

 Greenish dark grey colour; fine-grained; 8-10cm wide, aphanitic chilled margins occur at both contacts; moderately ep-chl alterations; trace, coarse-grained py occurs along the joints; strongly magnetic; TCA @ 178.36m is 60°;

Alteration Maj:	Type/Style/Intensity	Comment
177.18 - 178.36	HE FF	
177.18 - 178.36	Carb VN W	
177.18 - 178.36	EP P WM	
Mineralization Maj. :	Type/Style/%Mineral	Comment
177.18 - 178.36	PY CG 0.01	

178.36 214.86 GR Granite

Sudbury Breccia :

As same as 124.59-177.18m; reddish pink to pink colour; porphyritic and pegmatitic partly (pink colour, K-feldspar-qtz pegmatite dyke up to 35cm Long); weakly sheared; strongly ep-chl alterations for amphibole and biotite, and moderately garnet alteration interstitialy; a greenish dark grey colour, fine-grained DIA occurs from 212.86-213.18m (non magnetic); moderately to strongly magnetic overall; TCA @ 214.86m is 50°;

Alteration Maj:	Туре/	Style	/Intensity	Comment
178.36 - 214.86	CHL	FF	W	

05-Dec-14 1:57:44 PM

Hole Numbe	er WTR-053			F	Project:	TRILL_SCJV					Project Numbe	r: 5	504			
From (m)	To (m)		Lithology	/			Sample #	From	То	Length	A (9/		Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		178.36 - 214.86	GAR INT WM													
		178.36 - 214.86	HE FF W													
		178.36 - 214.86	Carb VN W													
		178.36 - 214.86	CHL INT S													
		178.36 - 214.86	EP INT S													
		<i>Mineralization Maj. :</i> 178.36 - 214.86	Type/Style/%Mineral PY DIS 0.5	Comment												

214.86 237.00 DIA Diabase Sudbury Breccia :

Greenish dark grey colour; fine- to medium-grained, salt-peper texture mainly and porphyritic texture from 230-237m; fine-grained margin up to 50cm long; a 8mm wide SDBX occurs at 230m; contains 2-3% lath, plagioclase phenocrysts up to 4cm long, and a 8cm long GR fragment 230.03m; contains a few grains (2-3%), coarse-grained py along a joint or whitin the GR fragment from 230-230.20m; non magnetic from 214.86-230m and moderately magnetic from 230.00-237.00m (two dykes ?); TCA 237.00m is 65°;

Alteration Maj:	Type/Style/Intensity	Comment
214.86 - 237.00	EP P W	
Mineralization Maj. :	Type/Style/%Mineral	Comment

237.00 301.80 **GR** *Granite Sudbury Breccia :* As same as 178.36-214.86m; reddish pink colour; porphyritic and pegmatitic partly (with a few pegmatite dyke up to 25cm long); contains 3, greenish dark grey to greyish black colour, fine-grained (porphyritic partly) DIA from 291.31-291.35, 295.14-295.49 and 301.64-301.70m (with strongly magnetic), and a few 2-8mm wide SDBX; contains <1% disseminated py and trace fine-grained cpy (near the dyke contacts); strongly magnetic overall; TCA @ 301.8m is 45°;

Alteration Maj: Type/Style/Intensity Comment

05-Dec-14 1:57:44 PM

Hole Numbe	er WTR-053	3		Project:	TRILL_SCJV					Project Num	ber:	504			
From	То										Au	Pt	Pd	Ni	Cu
(m)	(m)		Litholog	у		Sample #	From	То	Length		(g/t)	(g/t)	(g/t)	(%)	(%)
		237.00 - 301.80	Carb FF W												
		237.00 - 301.80	CHL FF W												
		237.00 - 301.80	Carb VN W												
		237.00 - 301.80	GAR INT WM												
		237.00 - 301.80	CHL INT S												
		237.00 - 301.80	EP INT S												
		Mineralization Maj. :	Type/Style/%Mineral	Comment											
		237.00 - 301.80	CP TR 0.01	near the contacts of the the DIA	λ;										
		237.00 - 301.80	PY DIS 0.5												

301.80 307.60 DIA Diabase

Sudbury Breccia :

Greenish dark grey colour, medium-grained with salt-peper texture, about 30cm long, ep altered chilled margin occurs at upper contact; a 5-6 cm wide, greenish or greyish black colour, weakly sheared SDBX (1A5) occurs at lower contact (with strongly magnetic); contains trace, fine-grained py and cpy; non magnetic overall; TCA @ 307.6m is vague;

Alteration Maj:	Тур	e/Sty	le/Intensity	Comment
301.80 - 307.60	ΕP	Ρ	WM	
Mineralization Maj. :	Туре	e/Sty	le/%Mineral	Comment
<i>Mineralization Maj. :</i> 301.80 - 307.60			l e/%Mineral 0.01	Comment

307.60 315.40 SDBX Sudbury Breccia

Sudbury Breccia :

SDBX (1A5 mainly) zone; brecciated; consists of 5-10% greenish red colour, pegmatitic GR clasts from 4-30cm in size, and 45-55% greenish dark grey colour, medium-grained DIA blocks or clasts from 15-150cm in size, and 30-35% greenish dark grey colour, aphanitic matrix, and 1-2% white colour, medium-

05-Dec-14 1:57:44 PM

lole Number	WTR-053		Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Lithology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
()	()	grained (mm sized) felsic 312.90-313.10 has a very	clasts, and trace, fine-grained py; non magnetic overall, but the SDBX from strongly magnetic and posible sheared; TCA @ 315.40m is 70°;									
		Alteration Maj:	Type/Style/Intensity Comment									
		307.60 - 315.40	EP VN W									
		307.60 - 315.40	HE FF W									
		307.60 - 315.40	EP INT M									
		307.60 - 315.40	CHL B WM									
		307.60 - 315.40	Carb VN W									
		<i>Mineralization Maj. :</i> 307.60 - 315.40	<i>Type/Style/%Mineral Comment</i> PY FG 0.02									
		Minor Interval: 311.77 312.09	GR Granite									
		012.00	Reddish green colour; brecciated; strongly chl alteration; contains trace, fine-grained; non magnetic;									
		Alteration Min:	Type/Style/Intensity Comment									
		311.77 - 312.09	CHL INT S									
		311.77 - 312.09	EP INT WM									
		Mineralization Min:	Type/Style/%Mineral Comment									
		311.77 - 312.09	PY TR 0.01									
		Minor Interval:										
		312.23 312.90	DIA Diabase Greenish dark grey colour, medium-grained; salt-peper texture; moderated to strongly ep alteration at contact area; non magnetic;									
		Alteration Min:	Type/Style/Intensity Comment									
		312.17 - 312.90	EP INT M									

05-Dec-14 1:57:44 PM

le Number	WTR-053			Project: TRILL_SCJV					Project Number:	504			
-rom	То								Au	Pt	Pd	Ni	Cu
(m)	(m)		Lithology		Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)
		Minor Interval:											
		313.10 314.68											
				9m; medium-grained; salt-peper texture; lear the contact area; no magnetic;									
		Alteration Min:	Type/Style/Intensity	Comment									
		313.10 - 314.68	EP INT M										
315.40	358.59	GR Granite		Sudbury Breccia :									
		pegmatite dyke up to 65cr (3C5), and a greenish darl	n long); weakly sheared partly k grey colour, aphanitic DIA (w	nyritic and pegmatitic partly (K-feldspar-qtz ; contains a few mm wide, black colour SDBX /ith strongly magnetic) from 330.87-331.73m; c overall; TCA @ 258.59 is 70°;									
		Minor Interval:											
		330.87 331.73	Greenish dark grey to gre alteration along the joints;	base yish black colour; aphantic; moderately ep contains 1-2% disseminated py; strongly is 50° and @ 331.73m is 70°;									
		Alteration Min:	Type/Style/Intensity	Comment									
		330.87 - 331.73	EP F M										
		Mineralization Min:	Type/Style/%Mineral	Comment									
		330.87 - 331.73	PY F 0.5										
		330.87 - 331.73	PY DIS 1										
250 50	000 40			Sudbury Breccia :									
358.59	363.13	DIA Diabase	fine-grained at margins and u	medium-grained in the centre with salt-peper									
		texture; weakly cross-cut b	by qtz-calcite (heamatite) vein	lets; contains trace, course-grained py occurs at n magnetic; TCA @ 363.13m is vague;									

05-Dec-14 1:57:44 PM

Hole Numbe	r WTR-053			Project:	TRILL_SCJV					Project Num	ber:	504			
From (m)	To (m)		Lithology			Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		358.59 - 363.13	CHL F W												
		358.59 - 363.13	HE VN W												
		358.59 - 363.13	Qtz VN W												
		358.59 - 363.13	Carb VN WM												
		<i>Mineralization Maj. :</i> 362.83 - 363.13	Type/Style/%Mineral Comment PY DIS 1												

363.13	440.20	GR G	Granite	Sudbury Breccia :
		K-feldspar pegma	tite dyke up to 1.0m long; weakly	orphyritic; pegmatitic partly with many pink colour, qtz- sheared partly; contains a greenish dark grey colour, ice, fine-grained py; strongly magnetic overall;
		Alteration Maj:	Type/Style/Intensity	Comment

	.,,,,	
363.13 - 440.20	CHL F W	
363.13 - 440.20	GAR INT WM	
363.13 - 440.20	Carb VN W	
363.13 - 440.20	CHL INT S	
363.13 - 440.20	EP INT S	
<i>Mineralization Maj. :</i> 363.13 - 440.20	Type/Style/%Mineral PY FG 0.5	Comment

Minor Interval:

376.76	377.60	MDIA	Matachewan Diabase
		feldspars phenod (3C5) with mode	ey colour, porphyritic; contains 2-3% white colour, crysts up to 8mm in size, a possible 2-3cm wide SDBX rately magnetic; contains trace disseminated py near @ 376.76m is 50° and @ 377.6m is 70°;

05-Dec-14 1:57:44 PM

EOH

440.21

End of Hole

LITHOLOGY REPORT - Detailed -

Hole Numbe	r WTR-053				Project:	TRILL_SCJV					Project Numb	er:	504			
From	То											Au	Pt	Pd	Ni	Cu
(m)	(m)		Lithology				Sample #	From	То	Length		(g/t)	(g/t)	(g/t)	(%)	(%)
		Alteration Min:	Type/Style/Intensity	Comment												
		376.76 - 377.60	EP P W													
		Mineralization Min:	Type/Style/%Mineral	Comment												
		376.76 - 377.60	PY CG 0.1													

Sudbury Breccia :

05-Dec-14 1:57:44 PM

440.20

DRILL HOLE REPORT

Hole Number	WTR-054				Projec	rt: TRILL	_SCJV				Project Numbe	r: 504
Drilling		Casing			Core				Location		Other	
Azimuth:	180	Length:		0	Dimension:	NQ			Township:	TOTTEN	Logged by:	Györgyi Tuba
Dip:	-45	Pulled:	no		Storage:	Core Shee			Claim No.:	3009484	Relog by:	
Length:	358.34	Capped:	yes		Section:				NTS:		Contractor:	Jacob & Samuel Drilling Ltd
Started:	28-Jan-14	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
Completed:	03-Feb-14										Surveyed:	yes
Logged:	11-Feb-14										Surveyed by:	Wallbridge-Other
Comment:	Surveyed w submeter Geo	XH (File"\\/M_03041		S84 5147421 9N	454664 3E 316	\$ 5	Coordinate	- Gemcom	Coordinate - U	тм	Geophysics:	None
	HAE). Block 44 was put in Pieces in box #61 (259.88	wrong row - block 44 to 264.00 m) are not	is really a in the corr	45.5m. ect order - box mus	-		East:	454650.1	East:	0	Geophysic Contractor:	
	The whole interval is GR so Detailed log (major alteration				e was lost to a G	ems	North:	5147199.2	North:	0	Left in hole:	Nothing
	Detailed log (major alteration, minor lithology) of the first ca. 100 m of the hole was lost to a Gems glitch. GR in this interval is altered by pervasive chl-ep-mag alteration, DIA is saussauritized. Both units are magnetic. No alteration/mineralization of major importance was noted in this interval.						Elev.:	352.5	Elev.:	0	Making water:	C C
	units are maynelic. No alle		or major ii	iportance was note					Zone: 17	NAD: 27	Multi shot sur	vev: no

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-45.00	С	\checkmark	
29.00	176.60	-42.30	F	\checkmark	mag: 5536
80.00	175.20	-42.50	F	\checkmark	mag: 5539
131.00	175.00	-42.10	F	\checkmark	mag: 5540
182.00	174.80	-42.10	F	\checkmark	mag: 5545
233.00	177.70	-42.20	F	\checkmark	mag: 5563
284.00	175.70	-42.00	F	\checkmark	mag: 5526
335.00	175.80	-41.80	F	\checkmark	mag: 5573
358.00	176.60	-41.80	F	\checkmark	mag: 5544

05-Dec-14 1:48:13 PM

Hole Number	WTR-054		Project: TRILL_SCJV						Project Number: 504								
From (m)	To (m)			Lithology		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)		
0.00	15.12	CAS granite bou	Casing ulders; 13.5 m casing indic	ated in timesheet, but might bo	Sudbury Breccia : e down to 15.12 based on broken core.												
15.12	28.94	DIA	Diabase		Sudbury Breccia :												

Fine- to coarse-grained DIA with chilled margins and trace to 1% disseminated pyrite. Few feldspar porphyroblasts (few mm average): Matachewan?

28.94	31.65	GR	Granite		Sudbury Breccia :
		Strongly altered	d, coarse-grained granite.		
		Altoration Main	Turne/Cturle/Interneity	Commont	

Alleration Maj.	Type/Style/Intensity	Comment
28.94 - 31.65	CHL P S	chl-ep-mag

31.65 33.82 DIA Diabase Sudbury Breccia : Medium-grained DIA with occasional feldspar porphyroblasts (Matachewan?) and trace disseminated pyrite.

05-Dec-14 1:58:05 PM

Hole Number	WTR-054	Project: TRILL_SCJV							Project Nu	imber:	504			
From (m)	To (m)		Litholog	У	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
33.82	114.84	veins and interstitial/p	e, feldspars oxydized/hematite ervasive style. Probably finely vals of regional epidote altera	Sudbury Breccia : e stained. Strong alteration of chl+/-ep+/-py in <2 mm disseminated magnetite with alteration (strongly tion (stockworks of veins and pervasive/metasomatic										
		Alteration Maj:	Type/Style/Intensity	Comment										
		33.82 - 36.10 92.33 - 114.84	CHL P S CHL P M	Chl+/-py chl-mag+/-py+/- ep alteration										
114.84	116.35	DIA Diab Fine-grained diabase.		Sudbury Breccia :										
116.35	118.95			<i>Sudbury Breccia :</i> asional felsic clasts (<1%, GR, mm to 2 cm in size)										

05-Dec-14 1:58:05 PM

e Number	WTR-054	Project: TRILL_SCJV									Project Number: 504						
rom (m)	To (m)		Litholog	y	Sample #	From	То	Length	Au (9/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cı (%				
118.95	127.35	IQD inclusi	on quartz diorite	Sudbury Breccia :	N985726	118.88	120.24	1.36	0.00	0.00	0.01	0.01	0				
				GR: mm to cm range, common mafic clasts: few mm	N985727	120.24	121.80	1.56	0.00	0.00	0.00	0.01	C				
		in diameter). Gradual up associated with/replacin	oper contact to QD. Trace p or mafic clasts. From 123.86	y dissemination and py-po+/-cpy nests, commonly 6: increased amount of clasts (ca. 25%) and sulphides	N985728	121.80	123.43	1.63	0.00	0.00	0.00	0.01	(
		(about 2%), core looks r			N985729	123.43	124.25	0.82	0.00	0.00	0.01	0.01	(
					N985730	124.25	125.45	1.20	0.00	0.01	0.02	0.01					
		<i>Mineralization Maj. :</i> 123.86 - 127.35	<i>Type/Style/%Mineral</i> POCP DIS 2	Comment py-po+/-cpy dissem and small (few mm) nests.	N985731	126.00	127.35	1.35	0.00	0.00	0.01	0.01					
		Structure Maj.:	Type/Core Angle	Comment													
		118.95 - 127.35	JNTS 30	30-35 joints													
127.35 131.30	131.30	STRC Structu Broken core. Structure i along joints		Sudbury Breccia : e. Very rare cpy dissemination (trace). Chl-py+/-carb	N985732	129.20	130.34	1.14	0.00	0.00	0.01	0.01					
		Structure Maj.:	Type/Core Angle	Comment													
		127.35 - 131.30	JNTS 50														
		127.35 - 131.30	JNTS 20														
131.30	133.51	IQD inclusi	on quartz diorite	Sudbury Breccia :	N985733	131.36	132.63	1.27	0.00	0.00	0.01	0.01					
		Ca. 25% GR and mafic 132.56, matrix grain-size	clasts, fine-grained matrix, t e slightly increases and mat	trace py-cpy dissemination. Thermally altered. From trix becomes more felsic and of pinkish-greyish colour.	N985734	132.63	133.54	0.91	0.00	0.00	0.01	0.01					
		Mineralization Maj. :	Type/Style/%Mineral	Comment													
		131.30 - 133.51	PY DIS 1	py+/-cpy dissemination													
		Structure Maj.:	Type/Core Angle	Comment													
		101 00 100 51	INITO DE	20.40 ininto													

Hole Numbe	WTR-054		Project: TRILL_SCJV					Project Number:	504		
From (m)	To (m)	Lithology		Sample #	From	То	Length	Au (g/t)		Pd (g/t)	

Sudbury Breccia :

0 / /	QD. Occasional GR and m) cm chilled margin against DIA at lower contact, nafic clasts (ca. 1%). Trace disseminated py, trace
Mineralization Maj. :	Type/Style/%Mineral	Comment
400 54 400 00		

Quartz Diorite

133.51 - 136.22	ΡY	DIS	0.1	
136.22 - 136.56	ΡY	DIS	0.1	
136.22 - 136.56	СР	STR	1	cpy associated with epidote stringers

136.56143.14DIADiabaseSudbury Breccia :Coarse-grained, magnetic diabase, relatively unaltered. Fg-Mg diabase likely MDIA with fine plag bursts
throughout fg and chilled +/- bleaching near the lower contact, not QD variable mag of 1.2-50 but
averages at 1-2 (S.Baird april 2014)

143.14	247.80	GR Gra	anite	Sudbury Breccia :
		Coarse-grained GR alteration.	R. Feldspars partially hematite-sta	ained. Magnetic due to pervasive chl-ep-mag
		Alteration Maj:	Type/Style/Intensity	Comment
		143.14 - 247.80	CHL P MS	Chl-ep-mag alteration.

05-Dec-14 1:58:05 PM

133.51

136.56

QD

ole Number	WTR-054				Project	TRILL_SCJV					Project Numb	er: 50)4			
From	Το			,	ith a ta and		Somalo #	From	Ta	l o nath			Pt	Pd	Ni	CL
(m)	(m)			L	ithology		Sample #	From	То	Length	(5	ı/t)	(g/t)	(g/t)	(%)	(%)
		Minor Inter														
		147.25	148.26	SDBX	Sudbury Breccia	1D5										
				About 5% SD	BX in irregular stringers.											
		Minor Inter														
		163.95	164.25	DIA	Diabase											
				Fine-grained,	manetic DIA.											
		Minor Inter														
		164.74	165.15	DIA	Diabase											
				Fine-grained,	magnetic DIA, trace py.											
		Minor Inter	val:													
		177.55	179.20	SDBX	Sudbury Breccia	1D5										
				Fine-grained,	irregular SDBX stringers/pockets, 5%.											
		Minor Inter	val:													
		192.30	198.50	SDBX	Sudbury Breccia	1D5										
				Fine-grained,	irregular SDBX stringers, 1%.											
		Minor Inter	val:													
		200.69	201.56	PEG	Pegmatite											
		Minor Inter	val:													
		219.30	219.85	DIA	Diabase											
				Fine-grained, saussauritized	magnetic DIA with saussauritized felds d GR clasts.	par fenocrysts and										
		Minor Inter	val:													
		232.67	232.71	SDBX	Sudbury Breccia	1D5										
		Minor Inter	val:		-											
		241.79	241.93	DIA	Diabase											
		-			t is brecciated; SDBX 1D5.											
247.80	250.56	DIA	Diabase		Sudbury B	reccia :										
247.00	200.00			agnotia Sharp of	ontacts with GR (ca. 40 to core angle).											

05-Dec-14 1:58:05 PM

ole Number	WTR-054			Project: TRILL_SCJV	/					Project Num	ber:	504			
From (m)	То (т)		Litholog			Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		coarse-grained, grain siz <i>Mineralization Maj. :</i> 247.80 - 250.56	e gets finer towards margi Type/Style/%Mineral PY DIS 1	ns. 1% disseminated py. <i>Comment</i> disseminated in DIA											
		Minor Interval: 248.25 248.56	GR Coarse-grained, chl-r	<i>Granite</i> nag altered GR. Same as sections above.											
250.56	283.38	GR Granite	(partially) hematite-stained	Sudbury Breccia : I feldspars and trace disseminated py. Strongly											
		-		enriched bands are common.											
		Alteration Maj:	Type/Style/Intensity												
		250.56 - 281.77 250.56 - 281.77	CHL VN M CHL P MS	stockwork of chl-ep-mag stringers chl-ep-mag alteration											
		281.77 - 283.38	EP P M	ep-chl-mag alteration (same as above but domi by epidote and assoc. with less mag)	inated										
		Minor Interval:													
		270.35 276.36	SDBX About 5% SDBX as i	Sudbury Breccia rregular stringers and pockets in GR.	1D5										
283.38	284.56	Lower contact cut by SD	agnetic diabase with some BX (ca. 3 cm wide vein, 1[Sudbury Breccia : cm-sized saussauritized and deformed GR clasts D5). Original texture is deminished by alteration; MDIA with few saussauritized feldspar fenocrysts											
		Alteration Maj:	Type/Style/Intensity	Comment											
5-Dec-14 1:58	8:05 PM													Pa	ge 6

le Number	WTR-054	Project: TRILL_SCJV								Project Number: 504								
From	То								Au	Pt	Pd	Ni	Cu					
(m) (m)		Lithology				From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)					
		283.38 - 284.56	MAG VN MS	dark, fine-grained irregular veins of mag(? based on strong magnetism) and chl(? Probably the same assemblage as the alteration in GR)														
		283.38 - 284.56	EP VN WM	stockwork of ep-calcite veins 1 mm in width avg														
		Mineralization Maj. :	Type/Style/%Mineral	Comment														
		283.38 - 284.56	PY DIS 5	Disseminated euhedral py up to 1 cm in size.														
284.56	285.06	SDBX Sudbur	y Breccia	Sudbury Breccia : 1D5														
		About 15% of SDBX cutt	ting pegmatitic GR. Weakly	r magnetic.														
		Alteration Maj:	Type/Style/Intensity	Comment														
		284.56 - 285.06	EP P M	Partially pervasive ep+/-chl+/-mag in GR only, cut by SDBX.														

304.36	GR Gr	anite	Sudbury Breccia :
	Coarse-grained GR	with hematite-stained felsdspar	s. Same as above.
	Alteration Maj:	Type/Style/Intensity	Comment
	285.06 - 304.36	EP VN W	Occasional regional ep veins
	285.06 - 304.36	CHL P M	Chl-mag-ep alteration
	Mineralization Maj	.: Type/Style/%Mineral	Comment
	285.06 - 304.36	PY DIS 0.1	

05-Dec-14 1:58:05 PM

285.06

lole Number	WTR-054		Project: TRILL_SCJV					Project Number:	504				
From (m)	To (m)		Litholog	<i>y</i> y	Sample #	From	То	Length	Au (g/t)		Pd (g/t)	Ni (%)	Cı (%
304.36	306.22		hewan Diabase with large, saussauritized fe	Sudbury Breccia : eldspar porphyroblasts. Sharp contact, ca. 50 to core									
		Alteration Maj:	Type/Style/Intensity	Comment									
		304.36 - 306.22	Carb VN W	Cc+/-ep veins, ca. 1mm in width.									
		304.36 - 306.22	EP VN W	Ep-cc veins, ca. 1 mm in width.									
306.22	343.04	GR Granit Coarse-grained, altered		Sudbury Breccia :									
		Alteration Maj:	Type/Style/Intensity	Comment									
		306.22 - 343.04	CHL P M	Chl-mag+/-ep alteration. Magnetite enriched in bands at some places.									
		Minor Interval:											
		320.23 320.51	PEG	Pegmatite									
		Minor Interval:	Fsp-qtz pegmatite in	terval in GR.									
		325.22 325.42	PEG	Pegmatite									
			Fsp-qtz pegmatite in	-									
343.04	343.71	DIA Diabas		Sudbury Breccia :									
		Fine-grained, altered DI	A. Weak magnetism, trace	disseminated py.									
		Alteration Maj:	Type/Style/Intensity	Comment									
		343.04 - 343.71	EP VN MS	Stockwork of <1 mm veins.									

05-Dec-14 1:58:05 PM

Hole Numbe	WTR-054		Project: TRIL	L_SCJV				Project Number:	504		
From (m)	То (т)	Lithology		Sample	# From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	

343.71	350.26	GR	Granite				Sudbury Breccia :
		Coarse-grained	I GR, same	e as abo	ove.		
		Alteration Maj:		Туре	/Sty	le/Intensity	Comment
		343.71 - 350.26	;	CHL	Ρ	Μ	Chl-mag+/-ep alteration.

350.26	352.46	DIA Dial	base	Sudbury Breccia :
		Fine-grained, strong	y altered diabase. Interval incl	udes about 20 cm of GR (clast).
		Alteration Maj:	Type/Style/Intensity	Comment
		350.26 - 352.46	Carb VN MS	cc veins with associated hematite metasom of the host. Cc cemented DIA bx @ 351.14, ca. 5 cm wide.
		350.26 - 352.46	EP VN M	ep-chl veins shearing both contacts to GR

352.46	353.91	PEG	Pegmatite
		Fsp-qtz pegmat	ite.

Sudbury Breccia :

05-Dec-14 1:58:05 PM

ole Number	WTR-054			Project: TRILL_SCJV					Project N	umber:	504			
From (m)	To (m)		Litholog	IV	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
353.91	355.82	GR Gr Coarse-grained GR	r anite R, same as above.	Sudbury Breccia :										
		Alteration Maj:	Type/Style/Intensity	Comment										
		353.91 - 355.82	CHL P M	Chl-mag-ep alteration.										
355.82	358.33		egmatite graphic-granophyric texture. Wo	Sudbury Breccia : eak alteration.										
		Alteration Maj:	Type/Style/Intensity	Comment										

355.82 - 358.33 CHL P W Chl-mag-ep alteration.

358.33 358.34 EOH End of Hole

Sudbury Breccia :

05-Dec-14 1:58:05 PM

DRILL HOLE REPORT

Hole Number	WTR-055				Projec	t: TRILL	_SCJV				Project Numbe	er: 504
Drilling		Casing			Core				Location		Other	
Azimuth:	178	Length:		0	Dimension:	NQ			Township:	TOTTEN	Logged by:	Györgyi Tuba
Dip:	-77	Pulled:	no		Storage:	Core Shee	ł		Claim No.:	3009484	Relog by:	Marshall Hall
ength:	563.78	Capped:	yes		Section:				NTS:		Contractor:	Jacob & Samuel Drilling Ltd.
Started:	04-Feb-14	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
completed:	13-Feb-14										Surveyed:	yes
.ogged:	11-Feb-14										Surveyed by:	Other
comment:	Log updated by M. Hall ap	ril 2014 (27 52-68 1m	2)				Coordinate	- Gemcom	Coordinate - L	ITM	Geophysics:	None
onment.	Updated location Mar 6 20)14 from 454650.8E,5	, 5147201N,								Geophysic	
	(File"WM_030410A.cor" W			· / · · ·		ру	East:	454650.8	East:	454650.8	Contractor:	
	offset, File"WM_021413A.	.cor" WGS84 514742	3.7N, 4546	65.0E, 317.1 HAE)			North:	5147201	North:	5147201	Left in hole:	Rod + Bit + Core
	Nearly 5m of lost ground c	ore between 327m a	nd 393m, s	so depth marking we	ere restarted at 3	393m.	Elev.:	353.1	Elev.:	353.1	Making water:	
	There was a problem durir hole somewhere between	0 0	0	'		ll left in			Zone: 17	NAD: 27	Multi shot sur	

	Deviation Tests			Deviation Tests							
tance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments
	178.00	-77.00	С	\checkmark		534.00	175.00	-76.40	F	\checkmark	Mag: 5404 Temp: 19.6
	177.50	-76.90	F	\checkmark	Mag 5545 Temp 26.4						
	178.20	-77.10		\checkmark							
	178.40	-76.70		\checkmark	Mag: 5518. Temp: 9.7						
	177.50	-76.80	F	\checkmark	Mag: 5540 Temp: 10.3						
	178.30	-76.90	F	\checkmark	Mag: 5479 Temp: 7.8						
	178.10	-76.40	F	\checkmark	Mag: 5498 Temp: 9.6						
	180.10	-76.50	F	\checkmark	Mag: 5645 Temp: 12.9						
	181.00	-76.70	F	\checkmark	Mag: 5460 Temp: 7.0 Roll: 199.7						
	181.20	-76.80	F	\checkmark	Mag: 5457 Temp: 9.2						
	176.60	-76.60	F	\checkmark	Mag: 5489 Temp: 18.6						

05-Dec-14 1:48:47 PM

Hole Number	WTR-055				Project: TRILL_SCJV					Project Number	504		
From (m)	To (m)			Lithology		Sample #	From	То	Length	A i (g/	Pt (g/t)	Ni (%)	
0.00	9.00	CAS Granite.	Casing		Sudbury Breccia :								

9.00	15.69	GR G	Granite	Sudbury Breccia :
		Coarse-grained gr alteration.	ranite with partially hematite-staine	ed feldspar. Slightly magnetic due to ep-chl-hem
		Alteration Maj:	Type/Style/Intensity	Comment
		9.00 - 15.69	HE P MS	hem staining gets more intense from ca. 14.70 m towads DIA
		9.00 - 15.69	EP P WM	ep-chl-mag alteration replacing mafic rock-forming minerals of GR
		Mineralization Ma	aj. : Type/Style/%Mineral	Comment
		9.00 - 15.69	PY DIS 0.1	trace in GR

15.69	27.52	MDIA Matach	ewan Diabase	Sudbury Breccia :
		Fine- to medium-grained ca. 5% disseminated py	, , , , ,	etic dike with feldspar fenocrysts (saussauritized) and
		Alteration Maj:	Type/Style/Intensity	Comment
		15.69 - 16.43	CHL VN S	mesh of chl-ep-? Veinlets obscure GR-DIA contact
		16.43 - 27.52	EP VN W	very fine (<mm), -cc="" -chl+="" ep+="" irregular="" occasional="" py<="" td="" veinlets,=""></mm),>
		Mineralization Maj. :	Type/Style/%Mineral	Comment
		15.69 - 27.52	PY DIS 5	in DIA

05-Dec-14 1:58:31 PM

lole Number	WTR-055			Project: TRILL_SCJV	CJV Project Number: 504											
From (m)	То (т)		Litholog	ay	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Си (%)		
		Structure Maj.:	Type/Core Angle	Comment												
		15.69 - 27.52	JNTS 75	chl-cc-filled												
		15.69 - 27.52	JNTS 25	20-30 joints, chl-cc-filled												
27.52	59.21	NDIA Nipi	issing Diabase	Sudbury Breccia :												
		grained, mesocratic a amphiboles (30%) wi aphanitic DIA unit wi small 10cm unit of S cm sized pyrites. OR diabase in the overly	and marked by mm sized equa ithin an aphanitic groundmass th sharp contacts and minor a DBX 2AD5. Sample N985893 RGINAL LOG>Coarse-graine	served in the core brought in. Main unit is medium ant plagioclase grains (40%), mm sized needly a. Looks like NDIA, and section is cut episodically by an mounts of py along the conacts, and at 63m there is a (PGM & WR) was taken from a diabasic portion with ed diabase, more felsic and less magnetic than the n disseminations and patches. Contains a few, cc-												
		Alteration Maj:	Type/Style/Intensity	Comment												
		27.52 - 59.21	EP VN W	fine-grained ep veinlets (typically around 1 mm in width) with occasional cpy dissem (trace) and hem halo; dip 75-85 to c/a												
		Mineralization Maj.	: Type/Style/%Mineral	Comment												
		27.52 - 59.21	PY VN 1	Remobilized along hairline cracks, ep veining cuts them.												
		07 50 50 04		- ··· ·												
		27.52 - 59.21	PY BL 2	Some of it coeval to shears.												

59.21 62.80 **SHR**

Sudbury Breccia :

le Number	WTR-055			Project: TRILL_SCJV					Project Number	504			
From (m)	To (m)		Litholog	av	Sample #	From	То	Length	A u (9/2		Pd (g/t)	Ni (%)	Cu (%)
		Structure Maj.:	Type/Core Angle	Comment									
		59.21 - 62.80	SHR	Strongly altered zone with cm-scale shears and brecciated parts.									
62.80	68.10	NDIA Nipis	ssing Diabase	Sudbury Breccia :	N985892	66.00	66.50	0.50	-	-	-	-	-
		Alteration Maj:	Type/Style/Intensity	Comment									
		62.80 - 64.75	MAG F S	1: Dark, very f/g, magnetic alt. with symmetric microcrystalline qtz lining along margins. +/- cc. In irregular veins and pockets, assoc. w/ py. 2: Mesh of pale green, f/g veinlets. Relationship ambiguous.									
		Structure Maj.:	Type/Core Angle	Comment									
		62.80 - 64.18	JNTS 35	Broken core. Alteration as above, considered part of the shear.									
		64.18 - 64.45	SHR	Lower margin of shear zone, less intense alteration.									
		65.00 - 65.10	G 65	Gouge with mag alt.									
		66.96 - 66.97	G 80										
		67.06 - 67.07	G 45	Awesome euhedral py (1 cm) rotated in gouge.									
68.10	80.79	GR Gran	nite	Sudbury Breccia :									
		Coarse-grained GR, rained GR, rained alteration. Trace diss	moderately magnetic. Hemati eminated py.	te-stained feldspars and partially pervasive ep-chl-mag									
		Alteration Maj:	Type/Style/Intensity	Comment									
		68.10 - 80.79	EP P M	ep-chl-mag alteration replacing mafic rock-forming minerals									

e Number	WTR-055			Project: TRILL_SCJV					Project Numb	er:	504			
rom (m)	То (т)		Litholog	av	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	C (?
		Structure Maj.:	Type/Core Angle	Comment										
		80.53 - 80.60	SHR 45	associated with chl-ep-py alteration										
		Minor Interval:												
		80.60 80.64		Sudbury Breccia 1D5 ke cutting the shear zone but core is broken so it is										
80.79	82.06		ymatite -qtz pegmatite, granophyric tex chl-ep-mag).	Sudbury Breccia : ture common. Hematite-stained. Very few mafic										
		Alteration Maj:	Type/Style/Intensity	Comment										
		80.79 - 82.06	CHL P W	chl-mag-ep patches replacing mafic components.										
82.06	120.45	GR Gra	nite	Sudbury Breccia :										
02.00	120.40	Coarse-grained, alto	ered granite. Hematite staining veakly and moderately stained	from ca. 90.5 m is usually much weaker than that in intervals alternate downwards. Strong magnetism due ssemblage). Trace disseminated py. Medium-grained										
		Alteration Maj:	Type/Style/Intensity	Comment										
		82.06 - 120.45	EP VN W	f/g regional ep veins, few mm in width, dipping 70 to c/a										
		82.06 - 120.45	CHL P S	chl-mag-ep alteration replacing mafic rock-forming minerals										
		Mineralization Maj.	: Type/Style/%Mineral	Comment										
				occasional discontinuous py-ep(-cpy?) precipitation										

					Au	Pt	Pd	Ni	Cu
	Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)
in	e cracks dipping 10-25 to c/a	•		•	· · ·	Sample # From To Length (g/t)	Sample #FromToLength(g/t)(g/t)(g/t)(g/t)(g/t)	Sample # From To Length (g/t) (g/t) (g/t)	Sample # From To Length (g/t) (g/t) (g/t) (%)

120.45	122.10	APL Aplite	Dike	Sudbury Breccia :
		Fine-grained granite, w	eakly magnetic, slightly alte	red.
		Alteration Maj:	Type/Style/Intensity	Comment
		120.45 - 122.10	CHL P W	chl-mag alteration

122.10	123.81	GR C	Granite			Sudbury Breccia :
		Medium-grained,	altered GR, wea	ak m	agnetism, mo	derate hematite staining.
		Alteration Maj:	Туре	/Sty	le/Intensity	Comment
		122.10 - 123.81	CHL	Ρ	WM	chl-ep+/-mag alteration, mag tends to be concentrated in bands

123.81	124.39		te Dike	Sudbury Breccia :	
		Fine-grained granite,	weakly magnetic, slightly alte	red.	
		Alteration Maj:	Type/Style/Intensity	Comment	
		123.81 - 124.39	CHL P W	chl-mag alteration	

lole Number	WTR-055			Project: TRILL_SCJV	,				Project Number:	504			
From (m)	То (т)		Litholog	av	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	(
124.39	139.70	GR Grar Medium- (upper conta feldspars. Strong mag		Sudbury Breccia : oderate hematite staining and saussauritization of ttion.									
		Alteration Maj:	Type/Style/Intensity	Comment									
		124.39 - 133.64	CHL P MS	chl-mag-ep alteration									
		133.64 - 133.67	CHL FF S	Very f/g, pale green alteration zone (clay min? c ep?) dipping ca. 65 to c/a	chl,								
		133.67 - 139.52	CHL P S	chl-mag-ep alteration									
		Minor Interval:											
		132.40 132.60		<i>Diabase</i> ke of DIA dipping 50 to c/a. Strongly magnetic.									
139.70	148.42	SDBX Sudi	bury Breccia	Sudbury Breccia :	2D5								
		BX matrix. There is a interval from ~146m t sausseritized with ma	2.5m zone of 90% SDBX that o 148.42m. The host is the g	ghout with granitic wallrock clasts within aphanitic t is predominantly matrix supported at the end of t ranite from above and below that has been magnetite. Mag susc is variable from ~2 in the mar cones.	he								
		Alteration Maj:	Type/Style/Intensity	Comment									
		139.52 - 140.50	CHL FF S	assemblage same as at 133.64 m, mesh of vei (cuts SDBX)	ns								
		145.00 - 148.00	MAG PCH W										
		145.00 - 148.00	CHL FF M										
		<i>Mineralization Maj. :</i> 139.70 - 148.42	Type/Style/%Mineral PY DIS 0.5	Comment									

Hole Number WTR-055	Project:	TRILL_SCJV			Project Number:	504		
From To (m) (m)	Lithology	Sample #	From	To Leng		Pt (g/t)	Pd (g/t)	

148.42	152.66	GR	Granite
--------	--------	----	---------

Sudbury Breccia :

Medium to coarse grained granite with light to moderate hematite staining and up to 5% SDBX. Weakly magnetic due to chlorite-magnetite alteration throughout. However, there is much less magnetite in this section and it is spotty. Mag susc ~2-3.

Alteration Maj:	Type/Style/Intensity	Comment
148.42 - 152.66	MAG P W	
148.42 - 152.66	CHL P M	Pervasive Chlorite-Magnetite alteration of mafic minerals

152.66 155.52 SDBX Sudbury Breccia Sudbury Breccia : 2BD4

Breccia is located at contact between and upper granite and a lower diabase unit. Up to 25-30% breccia throughout with the highest concentration located right near the contact of the two host units at ~154.50m. The upper portion from 152.50m to 154.50m is predominantly granitoid clasts within the matrix with an average mag susc of ~2-20, while the lower zone from 154.50 to 155.52m is actually a mixture of granite and diabase clasts with an average mag sus of ~15-60.

Alteration Maj:	Type/Style/Intensity	Comment
152.66 - 154.50	MAG P M	Mostly within granite clasts in breccia
152.66 - 154.50	CHL P WM	
154.50 - 155.52	MAG PCH M	
154.50 - 155.52	CHL PCH MS	

Hole Number	WTR-055	Project: TRILL_SCJV Pr	oject Number:	504		
From (m)	To (m)	Lithology Sample # From To Length	Au (g/t)	Pt (g/t)		Cu (%)

 155.52
 156.85
 DIA
 Diabase
 Sudbury Breccia :

 Unsure if diabase is Matachewan or Nipissing. It is fine to medium grained, intermediate with quite evenly grown feldspars. The mag susc varies from ~2-8.

Alteration Maj: Tyj	pe/Style/Intensity	Comment
---------------------	--------------------	---------

155.52 - 156.85 EP F MS

156.85 169.38 GR Granite Sudbury Breccia :

Medium - to coarse-grained GR, moderate hematite staining and saussauritization of feldspars. Strong magnetism due to chl-mag alteration of mafics. Mag susc ~30-60. There is a small zone of cold SDBX with small granitic fragments from ~163.75m to 163.95m.

Alteration Maj:	Type/Style/Intensity	Comment
156.85 - 164.00	EP FF W	
156.85 - 164.00	MAG PCH WM	
156.85 - 164.00	CHL P M	
164.00 - 169.38	EP FF M	
164.00 - 169.38	MAG P MS	
164.00 - 169.38	CHL P M	

171.58SDBXSudbury BrecciaSudbury Breccia :2BD5SDBX located at contact between hangingwall granite and footwall diabase. Up to 90% SDBX between

05-Dec-14 1:58:32 PM

169.38

lole Number	wtr-055			Project: TRILL_SCJV					Project Number	504			
From	То								Au	Pt	Pd	Ni	С
(m)	(m)		Litholog	IУ	Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%
		supported with up to 15%	% SDBX from 169.38m to 1 hewan with up to 20% SDB	clasts. The unit is fractured with breccia and is clast 69.60m. The lower half of the unit is hosted in 3X from 170.10m to 171.58m. The overall average									
		Alteration Maj:	Type/Style/Intensity	Comment									
		169.38 - 171.58	EP FF W										
		<i>Mineralization Maj. :</i> 169.38 - 171.58	Type/Style/%Mineral PY F 0.1	Comment									
171.58	183.37	DIA Diabas	e	Sudbury Breccia :									
		plagioclase growths thro slightly finer grained zon alteration from ~173.20r ~182.60m to 183.37m. \$	bughout which stand out in r ne from ~173.20m to 174.10 n to 173.75m. There is ano Since there is no brecciatior	ran. It has fairly coarse grained and clustered relative comparison to the finer matrix. There is a Om with a coincident overlapping zone of hematite ther finer grained zone near the lower contact from n present at the lower contact of the dyke, a visibly verage Mag Susc of the unit is ~1-2.									
		Alteration Maj:	Type/Style/Intensity	Comment									
		171.58 - 173.20	HE PCH W										
		171.58 - 173.20	EP F M										
		173.20 - 173.75	EP FF W										
		173.20 - 173.75	HE P M										
		173.75 - 182.50	EP FF MS										
		Mineralization Maj. :	Type/Style/%Mineral	Comment									

Granite

Sudbury Breccia :

le Number	WTR-055			Project: TRILL_SCJV					Project Num	ber:	504			
From (m)	To (m)		Litholog	V	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		above. There is a zon fragments. The upper more altered probably	e of SDBX from 186.30m to 1 portion of granite from ~183.3 caused by the brecciation an	Itered by epidote and magnetite like the granite units 86.80m that is mostly matrix with minor wall 87m to 186.30m appears to be nearly foliated and d dyke contact. The lower portion is lighter in color, ave as high of mafic content to allow for chloritization.										
		Alteration Maj:	Type/Style/Intensity	Comment										
		183.37 - 186.30	CHL P M											
		186.30 - 186.80	EP P WM											
		186.30 - 186.80	CHL P W											
		186.80 - 193.16	EP F WM											
193.16	204.90	DIA Diab	ase	Sudbury Breccia :	N985737	196.24	196.54	0.30		0.00	0.00	0.00	0.00	(
		throughout the unit ar controlled sulfides in s well. The upper conta altered, possibly chlor several zones of poss hydrothermal brecciat growths up to 1cm wit grained up to ~ 202.3	Ind some sections appear to posome sections. WR samples were to the granite is quite sharp ritized and epidotized and high sible SDBX within this unit as we tion boxworking around 197m. Thin a fine grained dark matrix 0m where it the begins to coal	odd dyke? The mag and grain size is variable ssibly have some inclusions. There is also fracture vill be taken throughout and into the dyke below as and is ~80-85 dtca. The upper portion is highly ly magnetic from 193.16m to 193.70m. There are vell ~25cm in size. There is a small zone of There is an odd zone of possible inclusions or from ~198.70m to 199.30m. The unit is fairly fine 'sen and could be a gradational contact to the ag to high mag at this juncture. Whole rock samples	N985738	201.38	202.00	0.62		0.00	0.00	0.00	0.00	(

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

revealed that this is diabase and not QD

Hole Number WTR-055 Project: TRILL SCJV Project Number: 504 То From Pt Pd Ni Cu Au То (g/t) (g/t) (%) (%) (m) (m) Lithology Sample # From Length (g/t) Sudbury Breccia : 204.90 217.00 DIA Diabase N985739 208.72 209.00 0.00 0.00 0.00 0.01 0.01 0.28 Highly magnetic diabase of possible Matachewan origin? Very similar to the diabase units above but there appears to be much less alteration throughout. There is a bleached epidote zone at the lower contact to the granite from ~216.70 to 217.00m. There is also Fe-staining and pyrite along fractures in this zone. From 204.90m to 214.64m the unit is typical in grain size but becomes finer grained past this point which is also coincident with higher mag ranging from 20-40 in the coarser grained upper portion and averaging between 60-90 in the finer grained lower portion.

217.00	229.80	GR	Granite	Sudbury Breccia :

Unit is lighter colored and contains less Fe-staining than the granites encountered above. The last 70cm of the unit from 229.13m appears to be partially melted and foliated during the emplacement of the diabase below. Very interesting feature. Mag of the entire unit is ~3 overall but appears to lower as you go downhole from a high of ~10 down to 0.5 at the end of the unit. The lower contact with the diabase is at ~15dtca.

229.80245.09DIADiabaseSudbury Breccia :The diabase is probably Nipissing and is slightly finer grained closer to the contact zone from ~229.80m
to 233.84m where it grades into slightly coarser grained material. The diabase is typical with feldspathic
intergrowths throughout. There are a few sub-millimeter fracture filling quartz+/-pyrite veinlets throughout
as well. The Mag Susc of the unit is quite stable averaging at ~1.80. The entire unit is very competent
with very few broken fractures. The lower contact to the granite is quite sharp and is at ~22 dtca.

Mineralization Maj. :	Type/Style/%Mineral	Comment
234.00 - 236.00	PY FF 0.1	

Hole Number	WTR-055			Project: TRILL_SCJV					Project Nun	nber:	504			
From (m)	To (m)		Litholog	y	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
245.09	252.30			Sudbury Breccia : ning and saussauritization of feldspars. Minor usc averages ~1.2 but there are a few zones that jump										
252.30	253.60	Small dyke probably less th angles, both at ~22 dtca. It Glomeroporphyroblasts mo	is dark grey, fine graine ostly situated in the center of the unit. Whole rock	Sudbury Breccia : e upper and lower contacts are fairly sharp at low d and fairly soft with up to 2cm plagioclase er of the dyke demonstrating flow within the dyke. The sample was taken to verify Matachewan origin an to c of the unit is ~1.6.	N985740	253.03	253.28	0.25		0.00	0.00	0.00	0.01	0.02
253.60	259.15	moderate hematitic staining	g throughout as well as s from ~257.35m to 258m	<i>Sudbury Breccia :</i> ous ones above. It is coarse grained with weak to sausseritization of the feldspars. There is a highly The magnetics vary wildly throughout from a low of 2- itic zone. <i>Comment</i>										

Hole Number	WTR-055	Project: TRILL_SCJV							Project Numb	ər: 5	504			
From (m)	То (т)		Litholog	V	Sample #	From	То	Length		\u g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
259.15	260.34	DIA Dial	base	Sudbury Breccia :										
		diabase, possibly a c Susc is between 50- center but the contac	chilled Olivine Diabase? There i 60. The contact angle througho	derately hard when scratched. Unsure what type of s a small amount of brecciation in the unit. The Mag ut is ~35dtca. There is a 30cm granite raft in the be 2 separate parallel dykes at this location that took										
260.34	261.34	This may be pegmat		<i>Sudbury Breccia :</i> by the intrusion of the dykes adjacent to it. It is very Susc is still at 3-4 in this unit. The lower ragged										
			atite to the granite is also ~35 d											
261.34	272.30	GR Gra	nite	Sudbury Breccia :										
		ranging from 60-90 r	elsics with a fairly high percentanilli SI. A high proportion of the unting for the high Mag.	age of mafics. The Mag Susc of this unit is very high mafics appear to be altered with a Chl-Mag alteration										
		Alteration Maj:	Type/Style/Intensity	Comment										

 261.34 - 272.30
 MAG
 P
 M

 261.34 - 272.30
 CHL
 P
 WM

EP PCH W

261.34 - 272.30

lole Number	WTR-055			Project: TRILL_SCJV					Project N	umber:	504			
From (m)	To (m)		Litholog	IY	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
272.30	273.20	•		Sudbury Breccia : nate with large mafic blades and crystals. The Mag										
273.20	327.34	GR Gra t Lighter whitish pink fe	elsics with a fairly high percen	Sudbury Breccia : tage of mafics. The Mag Susc of this unit is very high										
		+/-Ep probably accou as 2 small chilled dia	Inting for the high Mag. There base dykes between 318m ar	e mafics appear to be altered with a Chl-Mag alteration are several small pegmatitic zones throughout as well d 323m similar to the one at 260m. There is a darker ng with a pegmatitic zone in the last 50cm.										
		+/-Ep probably accou as 2 small chilled dia	Inting for the high Mag. There base dykes between 318m ar ion from ~290m to 301m endi Type/Style/Intensity	are several small pegmatitic zones throughout as well d 323m similar to the one at 260m. There is a darker										
		+/-Ep probably accou as 2 small chilled dia pink, Fe-stained sect	Inting for the high Mag. There base dykes between 318m ar ion from ~290m to 301m endi	are several small pegmatitic zones throughout as well d 323m similar to the one at 260m. There is a darker ng with a pegmatitic zone in the last 50cm.										
		+/-Ep probably accou as 2 small chilled dia pink, Fe-stained sect Alteration Maj:	Inting for the high Mag. There base dykes between 318m ar ion from ~290m to 301m endi Type/Style/Intensity	are several small pegmatitic zones throughout as well d 323m similar to the one at 260m. There is a darker ng with a pegmatitic zone in the last 50cm.										
		+/-Ep probably accou as 2 small chilled dia pink, Fe-stained sect <i>Alteration Maj:</i> 273.20 - 300.50	Inting for the high Mag. There base dykes between 318m ar ion from ~290m to 301m endi <i>Type/Style/Intensity</i> HE P S	are several small pegmatitic zones throughout as well d 323m similar to the one at 260m. There is a darker ng with a pegmatitic zone in the last 50cm.										

327.34330.55DIADiabaseSudbury Breccia :N985741329.53329.780.250.000.010.

Hole Number	WTR-055	Project: TRILL_SC.	JV				Project Number:	504			
From (m)	То (т)	Lithology	Sample #	From	То	Length	Au (9/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
330.55	333.55	GRGraniteSudbury Breccia :Minor SDBX in a nondescript granite. Mag =~60-80.									
333.55	337.10	DIA Diabase Sudbury Breccia : Very fine grained, dark grey, glassy, fairly hard diabase. Very high Mag at ~60-75. Could be a chille portion of the QD but unlikely due to the high Mag. The upper and lower dyke contacts are at ~35 d with sharp contacts and the lower one being slightly block faulted.	N985746 ed dtca	334.08	334.30	0.22	0.0) 0.0 [,]	0.01	0.01	0.02
337.10	348.30	GRGraniteSudbury Breccia :Non-descript, light pinkish white granite. Mag =~60-80. There is a section of ground core located at approximately 342.50 to 344.00m where there is most likely at least 1m of missing core.	t								
348.30	367.60	QDQuartz DioriteSudbury Breccia :Typical medium grained, light grey, homogenous, Non-Inclusion Quartz Diorite. There is one 8-10c diabase inclusion at ~355m. The Mag Susc is fairly consistent averaging ~0.8-0.9. The only major	N985742 cm N985743	353.52 358.82	354.02 359.32	0.50 0.50	0.0 0.0				

05-Dec-14 1:58:32 PM

ole Number WTR-055		Project: TRILL_SCJV					Project Number: 504							
From	То									Au	Pt	Pd	Ni	Cu
(m)	(m)		Litholog	/		Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)
		sulfides of note are bleb upper contact is very sha		to 354m and consist of Py+/-Cpy	y+/-Po up to 2%. The									
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		353.75 - 354.00	PO BL 0.5											
		353.75 - 354.00	CP BL 1											
		353.75 - 354.00	PY BL 0.5											

367.60 371.00 IQD inclusion guartz diorite

Sudbury Breccia :

Fine grained grey matrix with mostly small (<1cm) quartzofeldspathic and mafic clasts up to 20% of the unit. There are also several larger granitic clasts from 5cm up to 10cm between 368.5-369m. The contact to the upper QD is somewhat gradual but distinct and irregular but trends at ~40dtca. The overall Mag Susc is quite typical, coming in at ~1.4, which is slightly higher than it's Non-Inclusion QD counterpart due to the presence of small mafic clasts throughout. There is a section of ground core located at approximately 369.10m to 369.90m where there is most likely at least 1m of missing core.

371.00 372.55 **DIA** *Diabase Sudbury Breccia :* Large Clast within the QD. Cooked up and altered. Probably just a diabase clast similar to the high mag units above but hard to tell due to alteration. The Mag Susc ranges from ~110-125 milli SI.

Hole Number WTR-055

Project: TRILL_SCJV

Project Number: 504

From (m)	То (m)		Lithology		Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)		Cu (%)
372.55	394.30	IQD	inclusion quartz diorite	Sudbury Breccia :	N985747	380.42	381.22	0.80	0.00	0.01	0.02	0.01	0.01
	Same as above. Fine grained grey matrix with mostly small (<1cm) quartzofeldspathic and lesser mafic clasts up to 20% of the unit. There are also several larger granitic clasts from 3cm up to 30cm between 373-374m. The contact to the lower QD appears to be ground and no visible contact angle can be seen				N985744	381.22	382.22	1.00	0.00	0.01	0.01	0.01	0.01

373-374m. The contact to the lower QD appears to be ground and no visible contact angle can be seen. The overall Mag Susc is somewhat variable throughout ranging from 0.8-15 due to exotic clasts of diabase and possibly pyroxenite. The larger pyroxenite clast is located at ~393.90 to 394.15m. The average Mag Susc of the unit is still probably ~1.8-2.0. There are several sections of ground core throughout with an overal core loss of ~3m. These sections appear to be located at approximately 377.10m to 377.60m, 386.20 to 386.60m, and at ~394.3m. The drillers have marked "Ground Core" on 2 blocks at 390m and 393m. Due to the high amount of lost core, THE DEPTH COUNT WAS RESTARTED AT 393M WITH A NOTED NEARLY 5M LOSS OF CORE.

394.30	400.42	There are a minor amount of very small que consistent averaging ~0.7-0.9 except in the	Sudbury Breccia : ned, light grey, homogenous, Non-Inclusion Quartz Diorite. Jartz or diabase inclusions throughout. The Mag Susc is fairly e chilled contact where it jumps to ~2.6. The lower contact is granite clast at ~50dtca. The chill margin is ~20cm in width	N985745	397.87	398.87	1.00	0.00	0.00	0.00	0.01	0.00
400.42	401.65	GR <i>Granite</i> Large granite clast within the QD. Mag Sus	Sudbury Breccia : sc is ~50.									

05-Dec-14 1:58:32 PM

Hole Number	WTR-055			Project: TRILL_SCJV					Project Number:	504		
From (m)	То (т)		Lithology		Sample #	From	То	Length	Au (g/t)			Cu (%)
401.65	402.20	Chilled QD betw	Quartz Diorite ween 2 large granite clasts. It is dark grey to black, ver the unit. The Mag Susc is ~3.2.	Sudbury Breccia : ery fine grained and coarsens slightly								
402.20	402.52	GR	Granite	Sudbury Breccia :								

402.20 402.52 GR Granite Sudbur Large granite clast within the QD. Mag Susc is ~25-30.

402.52 407.83 QD Quartz Diorite Sudbury Breccia :

Granite

VERY INTERESTING QD. Looks like IQD but is actually a medium grained, light greyish matrix full of granitic pieces that are being absorbed and broken apart by the infiltrating QD into the footwall rock. Classic texture. There is a thin chill margin against the granite on the lower contact at ~30dtca as well as wormy QD infiltrating into the granite body for 10s of cm up to ~408.5m. The Mag Susc of the unit is ~20-25, which is quite high since it is loaded with small broken fragments of the granitic wallrock. There is a more barren, chilled section at the upper contact from ~402.52m to 403.40m where the inclusion percentage increases up to 40-50% overall in the center of the unit and grades back down to 1-2% closer to the lower contact where you can see it destroying the wallrock.

407.83 419.14 **GR**

Sudbury Breccia :

05-Dec-14 1:58:32 PM

Hole Number WTR	-055		Project:	TRILL_SCJV					Project Numb	er:	504			
From To										Au	Pt	Pd	Ni	Cu
From To (m) (m)		Lithology			Sample #	From	То	Length	6	(g/t)	(g/t)	(g/t)	(%)	(%)

Non-descript, light pinkish white granite. Mag =~60-80.

419.14	428.38	MDIA	Matachewan Diabase	Sudbury Breccia :
		Large Mat	achewan duke. Both contacts are fairly sharr	with the upper one being at ~35dtca and

Large Matachewan dyke. Both contacts are fairly sharp with the upper one being at ~35dtca and the lower one at ~60dtca. It is dark grey to black, fine grained and fairly soft with up to 5cm plagioclase Glomeroporphyroblasts throughout the dyke comprising ~5% of the dyke overall. Mag Susc of the unit is ~50-60.

428.38 435.47 **GR** Granite Sudbury Breccia : Non-descript, light pinkish white granite. Mag =~70. There is a small splay of MDIA located from 430.38m to 430.60m.

 435.47
 439.65
 SDBX
 Sudbury Breccia
 2D4

 Up to 50% SDBX overall with several larger granitic blocks throughout but still containing brecciation. Some epidote banding present. Overal Mag Susc averages ~70-80 due to the high mag host granite.
 2D4

 Alteration Maj:
 Type/Style/Intensity
 Comment

 435.47 - 439.65
 EP F WM

05-Dec-14 1:58:32 PM

Hole Number	WTR-055		Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)	Litho	logy	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
439.65	466.70	GR <i>Granite</i> Non-descript, light pinkish white granite. Mag =~ ~441.70m to 442.40m.	<i>Sudbury Breccia :</i> 70. There is a small zone of pegmatitic material from									
466.70	472.41	OD Olivine Diabase Fg to Mg, bluish grey dyke. Fairly fresh and unal and low angled at ~20dtca. The lower contact is between 120-160.	Sudbury Breccia : tered cutting the granite. The upper contact is fairly sharp against a large GR block. Mag Susc of the unit ranges									
472.41	473.36	GR Granite Large GR block within the dyke.	Sudbury Breccia :									
473.36	475.90	OD Olivine Diabase Fg to Mg, bluish grey dyke. Fairly fresh and unal sharp, blocky and low angled at ~20dtca. The up unit ranges between 120-160.	Sudbury Breccia : tered cutting the granite. The lower contact is fairly oper contact is against a large GR block. Mag Susc of the									

05-Dec-14 1:58:32 PM

Hole Number	r WTR-055	Project: TRILL_SCJV Pr	oject Number:	504			
From (m)	То			Pt			
(m)	(m)	Lithology Sample # From To Length	(g/t)	(g/t)	(g/t)	(%)	(%)

475.90493.40GRGraniteSudbury Breccia :Non-descript, peachy pinkish white granite. Appears to be foliated and finer grained than granites above.
Mag =~1.3. There are several small quartz veins up to 5cm wide cutting it.

493.40	494.08	DIA Diaba	se	Sudbury Breccia :
		looks different and has	a higher percentage of sulfic	with fracture filling Pyrite throughout. It most likely de because it is a contact chill zone. The unit are just catching the edge of the dyke. Up to 2%
		Mineralization Maj. :	Type/Style/%Mineral	Comment
		493.40 - 494.08	PY FF 2	

 494.08
 509.82
 GR
 Granite
 Sudbury Breccia :

 Pinkish white granite with patchy Fe-stained alteration of feldspars and minor small fracture controlled epidote +/-Py. Mag = ~50-70.
 Sudbury Breccia :

05-Dec-14 1:58:32 PM

Hole Number	WTR-055		Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)	Lithology		Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
509.82	510.23	MDIAMatachewan DiabaseFine grained, dark grey matrix with up to 5% (<3mm) plagioclase g disseminated to fracture controlled pyrite. Contacts are cutting gradMineralization Maj. :Type/Style/%Mineral509.82 - 510.23PYPYF1	<i>Sudbury Breccia :</i> lomeroporphyroblasts. There is ~1% nite at ~35-40 dtca. Mag = ~105.									
510.23	516.30	GR <i>Granite</i> Pinkish white granite with patchy Fe-stained alteration of feldspars epidote +/-Py. Mag = ~50-70.	Sudbury Breccia : and minor small fracture controlled									
516.30	517.30	DIA <i>Diabase</i> Mg, grey, siliceous, fairly hard dyke. It contains homogenous amou has minor sulfides and may be of possible Nipissing origin. The up lower is at ~35dtca. Mag = ~135.	<i>Sudbury Breccia :</i> unts of feldspar growths throughout. It per contact cuts at ~45dtca while the									
517.30	518.00	GR <i>Granite</i> Pinkish white granite. Mag = ∼50-70.	Sudbury Breccia :									

05-Dec-14 1:58:32 PM

Hole Number WTR-055

Project: TRILL_SCJV

From (m)	То (т)	Lithology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
518.00	518.20	DIADiabaseSudbury Breccia :Small Fg diabase unit. Mag = ~95.									
518.20	520.35	GRGraniteSudbury Breccia :Light peachy pink, foliated and altered granite sandwiched between several dykes. May be a large within the dyke that has been cooked up. Mag = ~0.5-2.5.	block								
520.35	521.98	DIA Diabase Sudbury Breccia : VFg, dark greenish grey dyke that may be cutting along a chill margin again. It is very siliceous and altered with bleaching near the contacts and fracture filling Chlorite+/-Pyrite. There are fine dark fra all throughout with dark halos around them. Mag = ~40.	d acures								
521.98	536.47	GRGraniteSudbury Breccia :Pinkish white granite with the typical alteration pattern and zoning of plagioclase from sausseritizate Mag = ~45-70.	tion.								

05-Dec-14 1:58:32 PM

Project Number: 504

Hole Number	WTR-055		Project:	TRILL_SCJV					Project Number:	504			
From	То								Au	Pt	Pd	Ni	Cu
From (m)	(<i>m</i>)	Lithology			Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)

536.47	538.69	DIA	Diabase	Sudburv Breccia :
536.47	538.69	DIA	Diabase	Suddury Breccia :

Fg, dark greenish grey diabase dyke with fracture filling Chlorite+Pyrite throughout. The contacts cut at \sim 35dtca with the lower one actually being slightly brecciated and fragmented. Mag = \sim 55.

Mineralization Maj. : Type/Style/%Mineral Comment

536.47 - 538.69 PY FF 0.5

538.69	563.77	GR	Granite	Sudbury Breccia :
		Pinkish white of Mag = ~55-75.	,	pical alteration pattern and zoning of plagioclase from sausseritization.

563.77 563.78 EOH End of Hole

Sudbury Breccia :

05-Dec-14 1:58:32 PM

DRILL HOLE REPORT

Hole Number	ole Number WTR-056				Projec	ct: TRILL	_SCJV		Project Number: 504			
Drilling		Casing			Core				Location		Other	
zimuth:	189.36	Length:		0	Dimension:	NQ			Township:	TOTTEN	Logged by:	Shannon Baird
ip:	-83	Pulled:	no		Storage:	Core Shee			Claim No.:	1167121-LE	Relog by:	
ength:	714.24	Capped:	yes		Section:				NTS:		Contractor:	Jacob & Samuel Drilling Ltd
started:	15-Feb-14	Cemented:	yes		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
ompleted:	28-Feb-14										Surveyed:	
ogged:	24-Feb-14										Surveyed by:	
omment:	Block correction at 69m. S	tarting block should l	he 9m inste	ad of 6m Anothe	r 3m block correc	rtion at	Coordinate	e - Gemcom	Coordinate - L	ІТМ	Geophysics:	UTEM
onnicht.	99m.						East:	455240	East:	0	Geophysic Contractor:	Lamontagne
	Cement 230-315m.						North:	5147193.4	North:	0	Left in hole:	Nothing
							Elev.:	363.7	Elev.: Zone: 17	0 NAD: 27	Making water Multi shot su	: no

	<u> </u>	Deviation	<u>Tests</u>				<u>-</u>	Deviation	<u>Tests</u>		
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments
0.00	189.36	-83.00	С	\checkmark		110.00	190.10	-82.48	G	\checkmark	
10.00	187.78	-82.83	G	\checkmark		120.00	191.09	-82.37	G	\checkmark	
20.00	187.96	-82.93	G	\checkmark		126.00	191.80	-82.60	F		Mag=5456 Temp: 10.9
24.00	186.50	-82.90	F		Mag=5556 Temp: 4.2	130.00	190.62	-82.22	G	\checkmark	
30.00	188.70	-82.82	G	\checkmark	5	140.00	190.56	-82.10	G	\checkmark	
40.00	189.26	-82.82	G	\checkmark		150.00	191.50	-82.06	G	\checkmark	
50.00	189.36	-82.78	G	\checkmark		160.00	191.01	-82.25	G	\checkmark	
60.00	189.12	-82.72	G	\checkmark		170.00	190.50	-82.58	G	\checkmark	
70.00	188.73	-82.69	G	\checkmark		177.00	194.30	-82.80	F		Mag=5467 Temp: 9.2 Roll: 185.9
75.00	186.00	-83.10	F		Mag=5507 Temp: 3.5 Roll: 359.3	180.00	190.89	-82.55	G	\checkmark	
80.00	189.82	-82.64	G	\checkmark	.	190.00	192.10	-82.37	G	\checkmark	
90.00	189.63	-82.54	G	\checkmark		200.00	191.26	-82.33	G	\checkmark	
100.00	190.25	-82.52	G	\checkmark		210.00	192.39	-82.28	G	\checkmark	

05-Dec-14 1:49:19 PM

HEADER REPORT

Hole Number

Project: TRILL_SCJV

Project Number: 504

	<u>[</u>	Deviation	<u>Tests</u>				<u> </u>	Deviation	<u>Tests</u>		
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments
220.00	192.05	-82.30	G	\checkmark		470.00	190.17	-81.56	G	\checkmark	
228.00	190.80	-82.10	F		Mag=5483 Temp: 11.5	480.00	190.34	-81.55	G	\checkmark	
230.00	191.73	-82.15	G	\checkmark		483.00	189.30	-82.00	F		Mag=5482 Temp: 12.2
240.00	191.29	-82.26	G	\checkmark		490.00	189.10	-81.55	G	\checkmark	
250.00	190.40	-82.14	G	\checkmark		500.00	188.86	-81.60	G	\checkmark	
260.00	190.60	-82.21	G	\checkmark		510.00	189.13	-81.58	G	\checkmark	
270.00	191.33	-82.08	G	\checkmark		520.00	188.59	-81.50	G	\checkmark	
279.00	188.50	-82.60	F		Mag=5490 Temp: 13.3 Roll: 297.7	530.00	188.34	-81.46	G	\checkmark	
280.00	189.88	-82.15	G	\checkmark		534.00	188.10	-81.30	F		Mag=5485 Temp: 13.0 Roll: 126.8
290.00	190.43	-82.13	G	\checkmark		540.00	188.98	-81.36	G	\checkmark	
300.00	190.74	-82.15	G	\checkmark		550.00	189.10	-81.37	G	\checkmark	
310.00	191.50	-82.01	G	\checkmark		560.00	188.29	-81.38	G	\checkmark	
320.00	191.74	-81.99	G	\checkmark		570.00	188.55	-81.38	G	\checkmark	
330.00	190.40	-81.90	F		Mag=5500 Temp: 19.9	580.00	188.60	-81.31	G	\checkmark	
330.00	191.46	-81.91	G	\checkmark		585.00	184.90	-81.60	F		Mag: 5496 Temp: 17.9
340.00	190.99	-81.86	G	\checkmark		590.00	189.31	-81.20	G	\checkmark	
350.00	190.81	-81.86	G	\checkmark		600.00	189.29	-81.16	G	\checkmark	
360.00	190.70	-81.80	G	\checkmark		610.00	189.03	-81.37	G	\checkmark	
370.00	191.03	-81.70	G	\checkmark		620.00	188.80	-81.44	G	\checkmark	
380.00	190.86	-81.67	G	\checkmark		630.00	188.98	-81.40	G	\checkmark	
381.00	192.20	-81.90	F		Mag=5492 Temp: 12.4	636.00	185.10	-81.40	F		Mag: 5474 Temp: 19.6
390.00	190.71	-81.70	G	\checkmark		640.00	189.26	-81.36	G	\checkmark	
400.00	191.87	-81.74	G	\checkmark		650.00	188.59	-81.31	G	\checkmark	
410.00	192.48	-81.59	G	\checkmark		660.00	188.57	-81.32	G	\checkmark	
420.00	191.84	-81.53	G	\checkmark		670.00	188.05	-81.41	G	\checkmark	
430.00	192.95	-81.53	G	\checkmark		680.00	188.44	-81.37	G	\checkmark	
432.00	192.30	-82.00	F		Mag=5478 Temp: 15.4 Roll: 222.7	687.00	189.20	-81.60	F		Mag: 5516 Temp: 16.0
440.00	189.67	-81.61	G	\checkmark		690.00	187.22	-81.41	G	\checkmark	
450.00	190.82	-81.55	G	\checkmark		700.00	187.83	-81.28	G	\checkmark	
460.00	190.18	-81.55	G	\checkmark		710.00	188.18	-81.31	G	\checkmark	

05-Dec-14 1:49:20 PM

HEADER REPORT

Hole Number

Project: TRILL_SCJV

Project Number: 504

Deviation Tests

 Distance
 Azimuth
 Dip
 Type
 Good
 Comments

 710.10
 188.19
 -81.31
 G
 ✔

05-Dec-14 1:49:20 PM

Hole Number	WTR-056			Project: TRILL_SCJV					Project Nur	mber:	504				
From (m)	To (m)			Lithology		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	
0.00	8.62	CAS Casing	Casing		Sudbury Breccia :										

8.62	9.66	SDBX	Sudbury Breccia	Sudbury Breccia :
		May be SDB	X but may also be a dyke that fractured the	wallrock? Mag =~1.2.

9.66	14.00	GR	Granite	Sudbury Breccia :
		Heavily hemat	ite Fe altered granite. Dark reddish pink. Mag =~0.35	

14.00	15.50	SDBX	Sudbury Breccia	Sudbury Breccia :
		thermomech	nanically eroded. Both ends of the The large clast is from ~14.44m to	have a large disintigrating clast throughout most of it being SDBX are more typical Fg, dark grey matrix with small 15.14m. The conacts are between 20-30dtca and are fairly

05-Dec-14 1:59:01 PM

Hole Number	WTR-056			Project: TRILL_SCJV					Project Numbe	r: 504			
From	То											Ni	
(m)	(m)			Lithology	Sample #	From	То	Length	(9	/t) (g/	't) (g/t	(%)	(%)
15.50	52.00	GR	Granite	Sudbury Breccia :									
			ausseritized granite from the ut. Mag =~25-35.	area with weak Fe-staining. Minor small bands of SDBX									

52.00 73.50 MDIA Matachewan Diabase Sudbury Breccia : Typical Fg to Mg, grey MDIA of the area with up to 15% plagioclase glomeroporphyroblasts throughout.

The dyke cuts at \sim 30-35dtca. From 52-60m, Mag = \sim 6-12, while from 60-74m, Mag = \sim 1.2.

 73.50
 73.96
 SDBX
 Sudbury Breccia

 Fg, dark grey to black but altered and bleached from fluid flow in some areas. May just be a chilled zone against the granite? MAG =~40
 Sudbury Breccia :

73.96 74.76 **GR** *Granite*

Altered and dark pinkish red. SDBX bands throughout.

05-Dec-14 1:59:01 PM

You created this PDF from an application that is not licensed to print to novaPDF printer (<u>http://www.novapdf.com</u>)

Sudbury Breccia :

lole Number	WTR-056		Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)	Lith	ology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Сі (%)
74.76	77.38	SDBX Sudbury Breccia Same as upper side of granite block. Fg, dark some areas. May just be a chilled zone agains and 70.	Sudbury Breccia : grey to black but altered and bleached from fluid flow in t the granite? MAG is highly variable ranging between 2									
77.38	96.84	MDIA <i>Matachewan Diabase</i> Typical Fg to Mg, grey MDIA of the area with u Contacts are not visible since the ends are eith very homogenous throughout at ~1.7.	<i>Sudbury Breccia :</i> p to 15% plagioclase glomeroporphyroblasts throughout. her gradational and altered heavily or brecciated. MAG is									
96.84	98.34	SDBX Sudbury Breccia Fg, dark grey to black but altered and bleached host MDIA with minor GR. May just be a chilled	Sudbury Breccia : If from fluid flow in some areas. Mostly larger clasts of the d zone against the granite? MAG =~1.5									
98.34	101.58	GR <i>Granite</i> Darker pinkish grey granite that is becoming for ~99-99.70m. There are fine SDBX bands and =~0.5-0.7.	Sudbury Breccia : liated and has a 70cm pegmatitic core in its center from fracture controlled epidote alteration throughout. MAG									

05-Dec-14 1:59:01 PM

Hole Number	WTR-056			Project:	TRILL_SCJV					Project Num	oer:	504		
From (m)	To (m)		Litholog	,	s	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Ni (%)	
101.58	103.64	SDBX	Sudbury Breccia (ture of GR and MDIA fragments. MAG =	Sudbury Br	eccia :									

103.64	104.88	GR	Granite	Sudbury Breccia :
			nkish red granite fragment/bloc n ~5-60.	k. MAG is highly variable and fragment dependent ranging

 104.88
 110.00
 SDBX
 Sudbury Breccia
 Sudbury Breccia :

 Upper portion is Fg, dark grey to black but altered and bleached from fluid flow in some areas. May just be a chilled zone against the granite? MAG =~20. The lower 3/4 of the unit is composed of more NDIA and GR fragments. MAG =~20-60.

 110.00
 142.00
 NDIA
 Nipissing Diabase
 Sudbury Breccia :

 Fg, grey, homogenous, diabase (Nipissing?) dyke with coarser plagioclase growths evenly spread throughout. Fairly non-descript up to about 125m where it begins to become finer grained and more

05-Dec-14 1:59:01 PM

lole Number	WTR-056			Project: T	TRILL_SCJV					Project Nu	ımber:	504			
From	То										Au	Pt	Pd	Ni	Cu
(<i>m</i>)	(<i>m</i>)		Litl	nology		Sample #	From	То	Length		(g/t)	(g/t)	(g/t)	(%)	(%
		altered with 70	increasing fracture fillings probabl	y caused by proximity to the underlying Sh	near. MAG =~40-										
142.00	209.75	SHR	Shear	Sudbury Brecci	ia :										
		Ductile, hea between 25- comprising ~187-188.30 depending c	led shear zone composed mainly -30 dtca. The diabase section are up to 60-70 of the unit in some sec m where the core is highly fractur on what unit you are cutting throug	of Granite and Nipissing Diabase with an overy sheared and healed with carbonate+/ tions. There is a more brittle looking faulte ed and broken apart. Mag of the Shear is h and even within the same unit. Mag can	overall orientation /-quartz ed section from highly variable range from as										

low as 0.25 in pegmatitic quartz-Kspar rich zones up to 10-20 in the granites and a variable range of 1-60 in the diabase. Most of the granites are altered to a deep red color or darker reddish grey.

209.75 227.17 **GR** *Granite Sudbury Breccia :* Cg, dark pinkish red, heavily altered and Fe-stained Granite. Minor Pyrite disseminations throughout. Mag =-40-50

 227.17
 228.40
 Shear
 Sudbury Breccia :

 Sheared diabase within the granite. Same contact angle of 25-30 dtca. Mag =~1.2

05-Dec-14 1:59:01 PM

Hole Number	WTR-056	Project: TRILL_SCJV				Project Number:	504			
From (m)	То	Litte Learn	 	7-	l an aith		Pt		Ni	
(<i>m</i>)	(m)	Lithology Sample #	 rom	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)

228.40 239.66 **GR** Granite Sudbury Breccia : Cg, dark pinkish red, heavily altered and Fe-stained Granite. Minor Pyrite disseminations throughout. Average Mag =~40 but there are zones that range between 75-125.

239.66 244.70 SHR Shear Sudbury Breccia : Zone of small shears in diabase within the granite. Same contact angle of 25-30 dtca. Mag =~8-10

 244.70
 271.04
 GR
 Granite
 Sudbury Breccia :

 Cg, dark pinkish red, heavily altered and Fe-stained Granite. The last few meters before the QD is fractured and is especially altered and almost jasperoid. Minor Pyrite disseminations throughout. Mag =~50-60
 Alteration Maj:
 Type/Style/Intensity
 Comment

 260.00 - 271.04
 HE
 P
 MS

271.04 277.77 QD Quartz Diorite Sudbury Breccia : Typical Mg, non-inclusion QD with minor inclusions throughout. It appears to have a reddish hue or tint to the plagioclase possibly suggesting that the Shear is younger than the QD or possibly the shear acted as

05-Dec-14 1:59:01 PM

LITHOLOGY REPORT - Detailed -

ole Number	WTR-056				Project: TRILL_SCJV					Project Number	504			
From (m)	То (т)		Litholog	у.		Sample #	From	То	Length	Au (g/t)		Pd (g/t)	Ni (%)	Cı (%
		sections as well. It is diff	placement of the QD? The ficult to get a contact angle 5-5.5 but averages ~2 mills	on the upper granite I	t but is full of brittle fractured but it looks fairly shallow. Mag									
		Alteration Maj:	Type/Style/Intensity	Comment										
		271.04 - 277.77	HE P MS											
277.77	282.00	IQD inclusio	on quartz diorite	s	udbury Breccia :									
211.11	202.00	Fg, dark grey matrix with overall. There are severa ranges from 1.5-5 deper disseminated sulfides, m	n mostly small inclusions (< al larger highly altered gran nding on clast composition l	1cm) throughout com ite inclusions betweer but averages around nostly seem to be ass	prising up to 10% of the unit 5-10cm as well. Mag Susc									
		<i>Mineralization Maj. :</i> 281.00 - 282.00	Type/Style/%Mineral PY DIS 0.1	Comment										
282.00	284.00	GR Granite	9	s	udbury Breccia :									
		Large, highly altered gra	nitic inclusion/block within t	the IQD. Mag =~50-80).									
			on quartz diarita		udhurv Breccia -									

Sudbury Breccia : inclusion quartz diorite 284.00 284.60 IQD Fg, dark grey matrix with small (<0.5cm) inclusions throughout. Mag =~8.5.

05-Dec-14 1:59:01 PM

Hole Number	WTR-056		Project:	TRILL_SCJV					Project Num	ber:	504			
From (m)	То					_	_				Pt			
<i>(m)</i>	(m)	Lithology			Sample #	From	То	Length		(g/t)	(g/t)	(g/t)	(%)	(%)

284.60285.70MDIAMatachewan DiabaseSudbury Breccia :It is Fg, dark grey to black, very hard and siliceous with fine alteration bands throughout and plagioclase

glomeroporphyroblasts. Mag ranges from 50-120.

285.70 285.90 IQD inclusion quartz diorite Sudbury Breccia : Fg, dark grey matrix with small (<0.5cm) inclusions throughout. Small zone between 2 large blocks. Mag =~10.

285.90	286.35	GR	Granite	Sudbury Breccia :
		0	the IQD. Highly altered and cooked that will be sampled. Mag =~1.8 but	up dark red, granite with jasperoid zones as well as t can get up to 9-10 in places.
		Alteration Maj:	Type/Style/Intensity	Comment

285.90 - 286.35 HE P I

05-Dec-14 1:59:01 PM

Hole Number	WTR-056	Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)	Lithology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
286.35	286.85	IQDinclusion quartz dioriteSudbury Breccia :Small IQD band between heavily altered granite blocks. Mag =~2-5									
286.85	288.73	GRGraniteSudbury Breccia :Large block in the IQD. Highly altered and cooked up dark red, granite with jasperoid zones . Mag =~12-25.									
		Alteration Maj:Type/Style/IntensityComment286.85 - 288.73HEPS									
288.73	291.84	IQDinclusion quartz dioriteSudbury Breccia :IQD with blocks of heavily altered, jasperoid granite and ochre. Mag =~0.85.	N985750	289.88	290.23	0.35	0.0	0.00	0.00	0.00	0.0
291.84	295.84	QDQuartz DioriteSudbury Breccia :Typical Mg, non-inclusion QD with minor inclusions throughout. It appears to have a reddish hue or tint to the plagioclase possibly suggesting that the Shear is younger than the QD or possibly the shear acted as a fluid pathway after emplacement of the QD? The QD is fairly competent but is full of brittle fractured sections as well. It is difficult to get a contact angle on the lower granite but it appears to be ~40dtca with									

a 25-30cm finer grained chilled and altered zone against the granite. Mag = \sim 0.9.

Alteration Maj: Type/Style/Intensity Comment

05-Dec-14 1:59:01 PM

le Number	WTR-056			Project: TRILL_SCJV					Project Number	504			
From (m)	To (m)		Lithology		Sample #	From	То	Length	A u (g/t)		Pd (g/t)	Ni (%)	C (%
		291.84 - 295.84	HE P M										
295.84	305.34	GR Gran Cg, dark pinkish red, n Average Mag =~12 bu		Sudbury Breccia : d Granite. Minor Pyrite disseminations throughout.									
305.34	306.00	FLT Fault Clay rich, crumbly dar 1.2.		Sudbury Breccia : upper contact to the granite is ~30dtca. Mag =~0.9-									
306.00	365.68	granite at the upper co	erately altered and Fe-stained Gra ontact to the fault from ~306-314r g =~12 but ranges between 1-25 th	<i>Sudbury Breccia :</i> Inite. There is a zone of bleached and altered In with Sericite and Epidote as well and quartz Inroughout. The Mag of the intensely altered zone									
		Alteration Maj:		omment									
		306.00 - 314.00	EP FF M										
		306.00 - 314.00	Ser PCH MS										

05-Dec-14 1:59:01 PM

Hole Number	WTR-056	Project: TR	L_SCJV				Project Number:	504			
From (m)	То						Au	Pt			
(m)	(m)	Lithology	Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)

365.68	370.80	SHR	Shear		Sudbury Breccia :
		Possibly part	of the shear zone	a smaller splav	Almost appears like a breccia with granitic fragm

Possibly part of the shear zone, a smaller splay. Almost appears like a breccia with granitic fragments being torn from the large wallrock blocks. It is most likely a fg, dark grey to black diabase dyke intruding into the granite that sluffed several large blocks off during bifurcation which has been tectonically sheared and altered post emplacement. There appears to be very fine chill margins surrounding the granite fragments. No visible sulfides. Mag = ~ 1.25 .

```
        370.80
        375.90
        GR
        Granite
        Sudbury Breccia :
```

Cg, pinkish red, moderately altered and Fe-stained Granite. Mag = ~0.65.

375.90	376.60	SHR	Shear		Sudbury Breccia :
		Come on observe	It is an east literal to a fea	محجما والمحاط والمحد والمحاد	all deal testing allocations and a state of the state.

Same as above. It is most likely a fg, dark grey to black diabase dyke intruding into the granite that sluffed several large blocks off during bifurcation which has been tectonically sheared and altered post emplacement. There appears to be very fine chill margins surrounding the granite fragments. No visible sulfides. Mag = \sim 1.45.

05-Dec-14 1:59:01 PM

From To Au F (m) (m) Lithology Sample # From To Length (g/t) (g										
	To Lenath	To Lenath	То	From	Sample #	logy				From (m)
376.60 379.40 GR Granite Sudbury Breccia :	 				C umpic ::	••	Granita	GP	()	

379.40	385.60	SHR	Shear	Sudbury Breccia :
				en sheared and altered. Full of quartz-Carbonate-Pyrite healed h. It contains the typical (<1cm) plagioclase glomeroporphyroblasts. Mag

385.60386.46GRGraniteSudbury Breccia :Cg, pinkish red, moderately altered and Fe-stained Granite. Mag = ~0.35.

 386.46
 387.08
 SHR
 Shear
 Sudbury Breccia :

 Small shear zone in diabase with thick quartz-carbonate healed fractures especially against the granite contact which is running ~25dtca. Mag = ~1.7.
 Small shear zone in diabase with thick quartz-carbonate healed fractures especially against the granite contact which is running ~25dtca.

05-Dec-14 1:59:01 PM

Hole Number	WTR-056			Proj	ect: TRILL_SCJV					Project Numb	er: !	504			
From (m)	To (m)		L	ithology		Sample #	From	То	Length				Pd (g/t)	Ni (%)	
387.08	395.85	GR	Granite	Sudbur	y Breccia :										
		Cg, pinkis	sh red, moderately altered and Fe-	stained Granite. Mag = ~0.55.											

415.97 MDIA Matachewan Diabase Sudbury Breccia : Typical Fg, grey MDIA dyke with (<1cm) plagioclase glomeroporphyroblasts. Contains far fewer healed fractures than the sheared diabase units above. Much more competent rock. The upper contact to the granite is sharp and ~25-30 dtca. The lower meter of the unit is much finer grained and chilled/altered against the granite. Mag =~3.

415.97517.75GRGraniteSudbury Breccia :Cg, pinkish red, moderately altered and Fe-stained Granite. Several pegmatitic zones throughout as well
as foliated portions. Nothing spectacular. An even Chlorite/Sericite-Epidote alteration of the mafics
throughout with minor Magnetite. There is a finer grained portion of the granite from ~457-459.15m. The
mag can range from 0.5-15 but for the most part the Mag averages ~2-3.

 517.75
 520.15
 SHR
 Shear
 Sudbury Breccia :

 Healed ductile Shear at the contact between the upper granite and lower diabase. Both units are fractured and healed and sheared. The actual contact between the two is at ~519.25m. Mag =~65.

05-Dec-14 1:59:01 PM

395.85

Hole Number	WTR-056		Project:	TRILL_SCJV					Project Num	ber:	504		
From (m)	То (m)	Lithology			Sample #	From	То	Length				Pd (g/t)	

 520.15
 559.88
 DIA
 Diabase
 Sudbury Breccia :

 Fg, dark grey diabase with minor plag porphyroblasts throughout. Contacts are at ~25-30dtca. Mag =~3.6

559.88 561.35 **GR** *Granite Sudbury Breccia :* Cg, pinkish red, moderately altered and Fe-stained Granite. Mag = ~0.55.

Sudbury Breccia : 561.35 571.40 SHR Shear Ductile Shear within the diabase. There are a high amount of shallow fractures mostly running at ~20-30dtca that have been healed with Carbonate-Magnetite infill. Mag of the unit averages ~45 but can go as high as ~200 around larger healed fractures. Alteration Maj: Type/Style/Intensity Comment EP F S 561.35 - 570.00 561.35 - 570.00 MAG FF MS 561.35 - 570.00 Carb FF MS

05-Dec-14 1:59:01 PM

Hole Number WTR-056		Project: TRILL_SCJV						Project Number	Project Number: 504							
From (m)	To (m)		Lithology	Sample #	From	То	Length	A ((9/		Pd (g/t)	Ni (%)	Cu (%)				
571.40	573.40	GR <i>Granite</i> Cg, pinkish red, moderately altered	Sudbury Breccia : and Fe-stained Granite. Mag = ~0.55.													
573.40	576.63	SHR Shear Sheared Diabase with healed Carbo	<i>Sudbury Breccia :</i> onate-Magnetite fractures throughout. Mag =~65 milli SI.													
576.63	586.70		<i>Sudbury Breccia :</i> and Fe-stained Granite. Mag = ~2-3.													

586.70 594.00 SHR Shear Sudbury Breccia :

Healed ductile Shear at the contact between the upper granite and lower diabase. Both units are fractured and healed and sheared. Mag ranges from ~3-180 but most likely averages around ~40.

05-Dec-14 1:59:01 PM

lole Number	WTR-056			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)			Lithology	Sample #	From	То	Length	Au (g/t)		Pd (g/t)		
594.00	612.62	GR	Granite	Sudbury Breccia :				Longin	13-7	(3.7	(3-7	()))	(,,,,
594.00	012.02			and Fe-stained Granite. Mag = ~0.55.									

612.62	618.30	SHR	Shear	Sudbury Breccia :
		Sheared	Diabase with healed	Carbonate-Magnetite fractures throughout. Mag =~120 milli SI.

618.30	628.10	DIA	Diabase	Sudbury Breccia :
		Fine grained,	dark grey diabase unit. Mag =~120 milli SI.	

628.10 632.45 **GR** *Granite Sudbury Breccia :* Cg, pinkish red, moderately altered and Fe-stained Granite. Mag = ~25.

632.45634.20DIADiabaseSudbury Breccia :Fine grained, dark grey diabase unit. Mag =~105 milli SI.

05-Dec-14 1:59:01 PM

le Number	WTR-056	Project: TRILL_SCJV							Project Number: 504					
From (m)	То (т)		Lithology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)		
634.20	701.82	GR Granite Cg, pinkish red, moderately altered a ~349.50m. Mag = ~30.	<i>Sudbury Breccia :</i> and Fe-stained Granite. There is a small 10cm zone of SDBX at											
701.82	702.22	SHR Shear Ductily sheared Diabase with healed there are the CC-Mag fracture healing	<i>Sudbury Breccia :</i> Carbonate-Magnetite fractures throughout. Mag =~15 but where ngs it can go up to 110 milli SI.											
702.22	714.24	GR <i>Granite</i> Cg, pinkish red, moderately altered a	<i>Sudbury Breccia :</i> and Fe-stained Granite. Mag = ~40.											
714.24	0.00	EOH End of Hole	Sudbury Breccia :											
-Dec-14 1:5	9:01 PM										Pag	e 17 of 1		

Hole Number WTR-056		Project:	TRILL_SCJV					Project Num	ber:	504		
From To (m) (m)	Lithology		s	Sample #	From	То	Length			Pt (g/t)		

05-Dec-14 1:59:01 PM

520.00 Y			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
		Claim S1167121	
440.00 Y		2013-2014 Drilling Trill Property	
<u>1000 ··</u>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+-+ +-0+	
320.00 Y			
			+ ++ ++ ++ ++
<u>280.00 Y _ _ _ _ _ _ _ _ _ _ _ </u>			WTR-056
260.00 Y			Dip = -83
			Length= 714.24m
<u>220.00 Y</u> <u> </u> 			
200.00 Y			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
160.00 Y		-200- 	GR
<u>140.00 Y</u> <u> </u> <u>_</u> <u>_</u> <u> </u> <u>_</u> <u>_</u> <u> </u> <u>_</u> <u>_</u> <u>_</u> <u>_</u> <u> </u> <u>_</u>			SHR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SHR
100.00 Y			
80.00 Y			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$= \begin{array}{c c c c c c c c c c c c c c c c c c c $
40.00 Y	CAS= Casing, SDBX=		GR
20.00 Y	Breccia, GR= Granite Matachewan Diabase	e, NDIA=	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nipissing Diabase, SH QD- Quartz Diorite, IQD		- + + + + + + +
-2 <u>0.00 Y</u>	Quartz Diorite, FLT = F		= - + + + + + + + + + + + + + + + + + +
<u>-40.00 Y </u>			
 -6 0.00 Y 			
 - <u>-1bo.oo Y</u> _			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
 -120.00 Y → → → → → → →			
1 <u>40.00 Y</u>			500^{-1}
 1 <u>60.00 Y </u>			
-2 <u>00.00 Y</u>			$\begin{array}{c c c c c c c c c c c c c c c c c c c $
-2 <u>20.00 Y </u>			
-2 <u>40.00 Y</u>			
 -2 <u>60.00 Y</u> _ + +			SHR

<u>-260.00 Y</u>	+ +			
<u>-280.00 Y _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ </u>	- $ -$		+++++++++++-	
-300.00 Y		GR I I I I I		
<u>-320.00 Y</u>				
		700 SHR		
<u> -340.00 Y _ </u>				
$\begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} -360.00 & \mathbf{Y} \\ -360.00 & \mathbf$		+ + + + + + +		
<u>-400.00 Y</u>	50 0	100		
	Scale 1	1250		
<u>-420.00 Y</u>		- $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$ $ +$		
-440.00 Y + + + + + + +	+ +	++ ++	+++	++++
-460.00 Y				
	$- \neg - \neg$			$\neg - \neg - \neg - \neg - \neg \neg - \neg \neg $
-480.00 Y		+ +	+ +	
				X 00 00 00 00
You created this PDF from an application that	at is not licensed to r	rint to novaPDE printer (h	otto://www.novandf.com)	860-00 880-00 120-00
\mathbb{P}				36 36 40

DRILL HOLE REPORT

Hole Number WTR-057					Proje	Project: TRILL_SCJV						er: 504
Drilling		Casing			Core				Location		Other	
Azimuth:	230	Length:		0	Dimension:	NQ			Township:	TOTTEN	Logged by:	Shannon Baird
Dip:	-57	Pulled:	no		Storage:	Core Shed			Claim No.:	4207195	Relog by:	
ength:	465.2	Capped:	yes		Section:				NTS:		Contractor:	Jacob & Samuel Drilling Lto
started:	09-Mar-14	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
ompleted:	15-Mar-14										Surveyed:	
ogged:	11-Mar-14										Surveyed by:	
omment:							Coordinate -	Comoom	Coordinate - U	TM	Geophysics:	None
onment.							East:	455741	East:	455741	Geophysic Contractor:	
							North:	5151933	North:	5151933	Left in hole:	Nothing
							Elev.:	360	Elev.: Zone: 17	360 NAD: 27	Making water	: no
									Zone: 17	NAD: 27	Multi shot su	rvey: no

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	230.00	-57.00	С	\checkmark	
30.00	228.90	-57.00	F	\checkmark	Mag: 5547 Temp: 7.3
81.00	231.80	-57.00	F	\checkmark	Mag: 5118 Temp: 17.5 Roll: 177.7
132.00	226.90	-56.40	F	\checkmark	Mag: 5368 Temp: 12.2
183.00	221.50	-56.30	F	\checkmark	Mag: 5324 Temp: 9.7 Roll: 141.9
234.00	233.70	-56.40	F	\checkmark	Mag: 5470 Temp: 11.5
285.00	219.60	-56.20	F	\checkmark	
336.00	230.10	-55.90	F	\checkmark	Mag: 5393 Temp: 16.0
387.00	227.50	-56.00	F	\checkmark	Mag: 5312 Temp: 15.5 Roll: 213.0
438.00	233.80	-55.50	F	\checkmark	Mag: 5545 Temp: 14.7

05-Dec-14 1:49:58 PM

Hole Number	WTR-057				Project: TRILL_SCJV	Project Number: 504									
From (m)	To (m)			Lithology		Sample #	From	То	Length		lu (<u>1</u> /t) (<u>1</u>	Pt ′g/t)		Ni (%)	Cu (%)
0.00	14.30	CAS	Casing	~13m. Rubble left out of log	Sudbury Breccia :										

14.30	20.00	GR	Granite	Sudbury Breccia :
		Metamorphose	ed Granite with heavy alteration and minor brecciation	n. Mag =~13.

20.00	23.10	IGN	Intermediate Gneiss	Sudbury Breccia :
		Mg, grey, me	tagabbro or Intermediate Gneiss with minor foliation	ons. Mag =~110.

23.10	24.60	GR	Granite	Sudbury Breccia :
		MetaGr =~55.	anitoid with small dark mic	rofractures and brecciations throughout. Minor epidote banding. Mag

24.60 25.35 IGN Intermediate Gneiss

05-Dec-14 1:59:29 PM

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)

Sudbury Breccia :

00 SDBX Sudbury Brecc	<i>Lithology</i> diate Gneiss with an amphibolite gra	ide metamorphism. Mag =~	.130.	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)
00 SDBX Sudbury Brecc		ıde metamorphism. Mag =∼	130.									
-	-											
	a n MetaGabbro and Granitid. Cold bre	<i>Sudbury Breccia :</i> eccia. Mag =~55.	2D5									
2.80 IGN Intermediate Gi Mg, grey, metagabbro or Interme	neiss diate Gneiss with an amphibolite gra	Sudbury Breccia : ade metamorphism. Mag =~	125.									
8.70 SDBX Sudbury Brecc Brecciated Granitoid with very co	a Id SDBX veins and small granitic fra	Sudbury Breccia : gments. Mag =∼65.	2D5									
8.27 GR <i>Granite</i>	acturing and epidote alteration. Mode	Sudbury Breccia : erately metamorphosed. Ma	ag =~3-5									
9.27	GR Granite	GR <i>Granite</i> Very felsic granitoid with minor fracturing and epidote alteration. Mode	GR <i>Granite Sudbury Breccia :</i> Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Ma	GR Granite Sudbury Breccia : Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~3-5	GR <i>Granite Sudbury Breccia :</i> Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~3-5	GR <i>Granite Sudbury Breccia :</i> Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~3-5	GR <i>Granite Sudbury Breccia :</i> Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~3-5	GR <i>Granite Sudbury Breccia :</i> Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~3-5	GR <i>Granite Sudbury Breccia :</i> Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~3-5	GR <i>Granite Sudbury Breccia :</i> Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~3-5	GR <i>Granite Sudbury Breccia :</i> Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~3-5	GR <i>Granite Sudbury Breccia :</i> Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~3-5

le Number	WTR-057				Project:	TRILL_SCJV					Project Numbe	r: 504			
From	To (m)		Litho	logy			Sample #	From	То	Length		u Pt /t) (g/t		Ni (%)	Cu (%)
(m)	(111)									g		/ 13	137	(
38.27	38.42	SDBX	Sudbury Breccia		Sudbury Bree	ccia :									
		Small SDB	X band cutting through the granite ne e altered and very cold. Mag =~3.	ar the contact f the Met	agabbro. The	breccia is bleached									

 38.42
 38.52
 GR
 Granite
 Sudbury Breccia :

 Small contact to metagabbro cut off by SDBX band. Mag =~1.5.

 38.52
 39.34
 UMAF
 Ultramafic
 Sudbury Breccia :

 Fg to Mg, greyish green, partially bleached and altered Ultramafic block in the Breccia. Mag =~2.5.

 39.34
 39.94
 SDBX
 Sudbury Breccia
 Sudbury Breccia :
 2AD5

 Moderately cold SDBX with a mixture of small Granitoid and larger altred light greyish green ultramafic near the contact. Mag =~20.
 South a mixture of small Granitoid and larger altred light greyish green ultramafic
 South a mixture of small Granitoid and larger altred light greyish green ultramafic

05-Dec-14 1:59:29 PM

Hole Number	WTR-057			Project: TRILL_SC.	TRILL_SCJV						Project Number: 504						
From (m)	То (т)		Lithology		S	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)		
39.94	43.00	GAB MetaGabbro to	<i>Gabbro</i> DIGN between 2 larger SDBX zones. Probably a large	<i>Sudbury Breccia :</i> block. Mag =~35.													
43.00	44.27	IGN MetaGabbro to	<i>Intermediate Gneiss</i> o IGN between 2 larger SDBX zones. Probably a large	<i>Sudbury Breccia :</i> block. Mag =∼150.													
44.27	48.45	SDBX Large SDBX zo Matrix. Very cc	Sudbury Breccia one of brecciated Granitoid with several clasts of IGN a old matrix. Mag =~70.	<i>Sudbury Breccia :</i> and MGAB as well. Up to 40%	2BD5												
48.45	49.87	GR Minor brecciati	<i>Granite</i> ion within a Granitic Block in the SDBX. Mag =~30.	Sudbury Breccia :													

05-Dec-14 1:59:29 PM

Hole Number WTR-057		roject: TRILL_SCJV				Project Number:			
From To (m) (m)	Lithology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)		

 49.87
 51.06
 SDBX
 Sudbury Breccia
 Sudbury Breccia :

 Large SDBX zone of brecciated Granitoid with several clasts of IGN and MGAB as well. Up to 40% Matrix. Very cold matrix. Mag =~50.
 Matrix. Very cold matrix.

51.0651.50MDIAMatachewan DiabaseSudbury Breccia :Fg, dark grey MDIA with up to 2cm sized plagioclase glomeroporphyroblasts. Mag =~90.

 51.50
 51.70
 SDBX
 Sudbury Breccia
 Sudbury Breccia :

 Small SDBX band cutting the MDIA unit. The breccia is matrix supported and consists mainly of granitoid and MDIA clasts. Mag =~50.
 Small SDBX band cutting the MDIA unit. The breccia is matrix supported and consists mainly of granitoid and MDIA clasts. Mag =~50.

51.7059.80MDIAMatachewan DiabaseSudbury Breccia :Fg, dark grey MDIA with up to 2cm sized plagioclase glomeroporphyroblasts. Mag =~130.

05-Dec-14 1:59:29 PM

lole Number	WTR-057		Project: TRILL_SCJV					Project Numb	er: 5	504			
From (m)	То (т)	Lithology		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
59.80	69.25	IGN Intermediate Gneiss IGN similar to above. Possibly a large block. Mag =~55.	Sudbury Breccia :										
69.25	69.65	SDBX Sudbury Breccia Cold SDBX with IGN and DIA fragments from the contact between the con	Sudbury Breccia : een the two. Mag =~120.										

69.65 71.12 **DIA** *Diabase* Fg, dark grey to black diabase unit. Mag =~160. Sudbury Breccia :

 71.12
 72.25
 QMON
 Quartz Monzonite
 Sudbury Breccia :

 Light pinkish grey granitoid with very little mafics. Mag =~8.
 Sudbury Breccia :

05-Dec-14 1:59:29 PM

Hole Number	WTR-057			Project: TRILL_SCJV					Project Numb	oer:	504			
From (m)	То (т)		Lithology		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
72.25	79.25	GAB Gabbro Mg to Cg, dark greyish green met been amphibolized and is nearing	tamorphosed Gabbro with thin leu g Mafic Gneiss territory. Mag =~3	<i>Sudbury Breccia :</i> icosome bands throughout. Unit has 5.										
79.25	81.60	Mineralization Maj. : Type/	acturing and epidote alteration. M /Style/%<i>Mineral Comment</i> BL 2	Sudbury Breccia : oderately metamorphosed. Mag =~2-3.	N985851	79.28	80.28	1.00		0.00	0.00	0.00	0.00	0.00
81.60	82.20	DIA <i>Diabase</i> Fg, dark grey to black diabase un =~260.	it. Very dark and very fine grained	<i>Sudbury Breccia :</i> d quenched/chilled diabase. Mag										
82.20	84.56	GR <i>Granite</i> Very felsic granitoid with minor fra	acturing and epidote alteration. M	Sudbury Breccia : oderately metamorphosed. Mag =~3-5.										

05-Dec-14 1:59:29 PM

lole Number	WTR-057		Project: TRILL_SCJV					Project Nu	mber:	504			
From (m)	То (т)		Lithology	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
84.56	84.90	GAB Gabbro Mg to Cg, dark greyish green metamorp been amphibolized and is nearing Mafic	<i>Sudbury Breccia :</i> nosed Gabbro with thin leucosome bands throughout. Unit has Gneiss territory. Mag =~22.										
84.90	85.60	GR <i>Granite</i> Very felsic granitoid with minor fracturing	Sudbury Breccia : and epidote alteration. Moderately metamorphosed. Mag =~4-5.										

85.60 88.05 **IGN** Intermediate Gneiss Sudbury Breccia : Dark grey to light grey foliation/banding. Mostly salt and peppery, medium grained with interspersed leucosome bands. Mag =~110.

 88.05
 89.18
 GR
 Granite
 Sudbury Breccia :

 Very felsic granitoid with minor fracturing and epidote alteration. Moderately metamorphosed. Mag =~25.

05-Dec-14 1:59:29 PM

Hole Number	WTR-057		Project:	TRILL_SCJV					Project Numb	ber:	504			
From (m)	To (m)	Lithology			Sample #	From	То	Length			Pt (g/t)	Pd (g/t)	Ni (%)	

 89.18
 91.70
 IGN
 Intermediate Gneiss
 Sudbury Breccia :

Dark grey to light grey with foliation/banding. Mostly lighter bleached bands with salt and peppery, medium grained texture with larger interspersed leucosome bands. Mag =~25 but can range up to 90.

91.70 92.60 **GAB** Gabbro Sudbury Breccia : Mg to Cg, dark greyish green metamorphosed Gabbro with thin leucosome bands throughout. Unit has been amphibolized and is nearing Mafic Gneiss territory. Mag =~10-20 but can jump up to 120.

92.60 92.70 DIA Diabase Sudbury Breccia : Fg, dark grey to black diabase unit. Very dark and very fine grained quenched/chilled diabase. Mag =~250.

92.70 93.10 **GAB** Gabbro Sudbury Breccia : Mg to Cg, dark greyish green metamorphosed Gabbro with thin leucosome bands throughout. Unit has been amphibolized and is nearing Mafic Gneiss territory. Mag =~50.

05-Dec-14 1:59:29 PM

Hole Number	WTR-057		Project: TRILL_SCJV					Project Nu	mber:	504			
From (m)	То (т)	Lithc	blogy	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
93.10	94.95	IGN Intermediate Gneiss Dark grey to light grey foliation/banding. Mostly leucosome bands. Mag =~150.	Sudbury Breccia : finer grained light salt and peppery, with interspersed										
94.95	105.75	GAB Gabbro Mg to Cg, dark greyish green metamorphosed (been amphibolized and is nearing Mafic Gneiss	<i>Sudbury Breccia :</i> Gabbro with thin leucosome bands throughout. Unit has territory. Mag =~20.										
105.75	109.70	DIA Diabase	Sudbury Breccia :										

109.70DIADiabaseSudbury BFg, dark grey diabase unit. Mag =~170 but ranges between 100-250.

 109.70
 112.94
 IGN
 Intermediate Gneiss
 Sudbury Breccia :

 Dark grey to light grey foliation/banding. Mostly finer grained light salt and peppery, with interspersed leucosome bands. Mag =~75.
 Sudbury Breccia :

05-Dec-14 1:59:29 PM

ole Number	WTR-057				Project:	TRILL_SCJV					Project Number:	504			
From (m)	To (m)			Lithology			Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
112.94	115.30	GAB	Gabbro		Sudbury Bred	ccia :									
		Mg to Cg,	dark greyish green metamorph hibolized and is nearing Mafic (osed Gabbro with thin leucos Gneiss territory. Mag =~30.	-										

 115.30
 117.63
 FGN
 Felsic Gneiss
 Sudbury Breccia :

 Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =~15.
 Sudbury Breccia :

117.63	125.00	IGN	Intermediate Gneiss	Sudbury Breccia :	N985852	122.20	122.80	0.60	0.00	0.00	0.00	0.00	0.00
		leucosome	bands. There are several quartofeldsp	ner grained light salt and peppery, with interspersed bathic veins crosscutting between 122-123m with g =~125 but ranges between 25 and 170.									

 125.00
 127.50
 FGN
 Felsic Gneiss
 Sudbury Breccia :

 Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures

05-Dec-14 1:59:30 PM

Hole Numbe	r WTR-057		Project:	TRILL_SCJV					Project Number:	504			
From	То								Au	Pt	Pd	Ni	Cu
From (m)	(m)	Lithology			Sample #	From	То	Length			(g/t)		
		throughout Mag =~20											

throughout. Mag = ~ 20 .

 127.50
 131.40
 GAB
 Gabbro
 Sudbury Breccia :

Mg to Cg, dark greyish green metamorphosed Gabbro with thin leucosome bands throughout. Unit has been amphibolized and is nearing Mafic Gneiss territory. Mag =~75-80.

131.40 136.22 IGN Intermediate Gneiss Sudbury Breccia :

Dark grey to light grey foliation/banding. Mostly finer grained light salt and peppery, with interspersed leucosome bands. Mag = \sim 95 but ranges between 75 and 130.

 136.22
 136.92
 FGN
 Felsic Gneiss
 Sudbury Breccia :

 Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =~15.
 FGN
 Sudbury Breccia :

Hole Number	WTR-057			Project: TRILL_SCJV					Project Number:	504			
From (m)	To			Lithology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu
	(m)				Sample #	110111	10	Length	(977	(9/1)	(9/7	(70)	(70)
136.92	138.00	GAB	Gabbro	Sudbury Breccia :									
		Mg to Cg.	dark grevish green met	amorphosed Gabbro with thin leucosome bands throughout. Unit has									

been amphibolized and is nearing Mafic Gneiss territory. Mag =~200.

 138.00
 138.50
 FGN
 Felsic Gneiss
 Sudbury Breccia :

 Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =~15.
 Sudbury Breccia :

 138.50
 140.60
 GAB
 Gabbro
 Sudbury Breccia :

 Mg to Cg, dark greyish green metamorphosed Gabbro with thin leucosome bands throughout. Unit has been amphibolized and is nearing Mafic Gneiss territory. Mag =~130.
 Sudbury Breccia :

 140.60
 142.05
 FGN
 Felsic Gneiss
 Sudbury Breccia :

 Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =~45.
 Sudbury Breccia :

Hole Number	WTR-057		Project: TRILL_SCJV					Project Numbe	r: 5	04			
From (m)	То (т)	Litholo	gy	Sample #	From	То	Length	A (g		Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
142.05	143.18	IGN Intermediate Gneiss Dark grey to light grey foliation/banding. Mostly fin leucosome bands. Several small blebs of up to 1% granitic/felsic band in the altered IGN located at ~		N985853 N985854	142.13 142.65	142.65 142.95	0.52 0.30		0.00 0.00	0.00 0.00	0.00 0.00		0.00 0.04

 148.30
 UMAF
 Ultramafic
 Sudbury Breccia :

 Dark greyish green to black, fine grained ultramafic. Very soft with talc veins crosscutting. Mag =~40 but can range between 15 and 90.
 Sudbury Breccia :

 148.30
 149.20
 MGN
 Mafic Gneiss
 Sudbury Breccia :

 Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =~50.
 Sudbury Breccia :

149.20154.50IGNIntermediate GneissSudbury Breccia :Dark grey to light grey foliation/banding. Mostly finer grained light salt and peppery, with interspersed

leucosome bands. Mag =~100 but ranges between 30 and 190.

05-Dec-14 1:59:30 PM

143.18

Hole Number	WTR-057		Project: TRILL_SCJV					Project Num	ber:	504			
From (m)	То (т)	Lithology		Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
154.50	154.80	SDBX Sudbury Breccia Very cold, fine grained, dark grey to black SDBX with small granitoid the IGN and DIA. Mag =~150.	Sudbury Breccia : 2D5 fragments at the contacts between										
154.80	155.48	DIA Diabase Fg, dark grey, chilled diabase unit. Mag =~275.	Sudbury Breccia :										
155.48	156.16	FGN <i>Felsic Gneiss</i> Light pinkish grey with foliation/banding. Mostly medium grained with throughout. Mag =~40.	Sudbury Breccia : weak foliations and microfractures										
156.16	167.95	IGN Intermediate Gneiss	Sudbury Breccia :										

Dark grey to light grey foliation/banding. Mostly finer grained light salt and peppery, with interspersed leucosome bands. Mag =-100 but can range from 25 to 180 milli SI.

"o n)	Lithology											
n)	Lithology		Commla #	From	То	l o porth		Au	Pt	Pd	Ni (%)	Cu (%)
			Sample #	From	10	Length		(g/t)	(g/t)	(g/t)	(70)	(70)
170.90	MGN Mafic Gneiss	Sudbury Breccia :										
	Dark grey to black foliation/banding. Mostly medium graine	ed peppery and amphibolized, with interspersed										
	FGN <i>Felsic Gneiss</i> Light pinkish grey with foliation/banding. Mostly medium g throughout. Mag =~4-8.	Sudbury Breccia : rained with weak foliations and microfractures										
	DIA <i>Diabase</i> Fg, dark grey diabase unit. Mag =~45 but ranges between	Sudbury Breccia : 15 and 80.										
17	74.50	Dark grey to black foliation/banding. Mostly medium grain-leucosome bands. Mag =~30 but ranges between 10 and 74.50 FGN Felsic Gneiss Light pinkish grey with foliation/banding. Mostly medium g throughout. Mag =~4-8. 93.98 DIA Diabase	Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =-30 but ranges between 10 and 100. 74.50 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =-4-8.	74.50 FGN Felsic Gneiss Sudbury Breccia : 74.50 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =~4-8. Sudbury Breccia :	Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =~30 but ranges between 10 and 100. 74.50 FGN Felsic Gneiss Sudbury Breccia : 74.50 Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =~4-8. 93.98 DIA Diabase Sudbury Breccia :	Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =-30 but ranges between 10 and 100. 74.50 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =-4-8. 33.98 DIA Diabase Sudbury Breccia :	Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =-30 but ranges between 10 and 100. 74.50 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =-4-8. 93.98 DIA Diabase Sudbury Breccia :	Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =-30 but ranges between 10 and 100. 74.50 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =-4-8. Sudbury Breccia : 33.98 DIA Diabase Sudbury Breccia :	Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =30 but ranges between 10 and 100. 74.50 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =-4-8. 33.98 DIA Diabase Sudbury Breccia :	Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =~30 but ranges between 10 and 100. 74.50 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =~4-8. Sudbury Breccia : 33.98 DIA Diabase Sudbury Breccia :	Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =-30 but ranges between 10 and 100. 74.50 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =-4-8. 33.98 DIA Diabase Sudbury Breccia :	Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed leucosome bands. Mag =-30 but ranges between 10 and 100. 74.50 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =-4-8. 33.98 DIA Diabase Sudbury Breccia :

MGNMafic GneissSudbury Breccia :Dark grey to black foliation/banding. Mostly medium grained peppery and amphibolized, with interspersed
leucosome bands. Mag =~45.

05-Dec-14 1:59:30 PM

193.98

194.47

ole Number	WTR-057			Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Litholo	ogy	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
194.47	195.60	SDBX Very cold, fine contacts betw	Sudbury Breccia e grained, dark grey to black SDBX een the IGN and DIA. Mag =~30 bu	Sudbury Breccia : with large granitoid and FGN to IGN fragments at the it ranges between 10 and 120 milli SI.									

 195.60
 196.25
 IGN
 Intermediate Gneiss
 Sudbury Breccia :

 Dark grey to light grey foliation/banding. Mostly finer grained light salt and peppery, with interspersed leucosome bands. Mag =~35.
 Sudbury Breccia :

 196.25
 196.42
 SDBX
 Sudbury Breccia
 2B5

 Small band of cold, dark grey, fine grained SDBX cutting through the IGN with small fragments within.
 Mag =~150.

 196.42
 196.93
 Intermediate Gneiss
 Sudbury Breccia :

 Dark grey to light grey foliation/banding. Mostly finer grained light salt and peppery, with interspersed leucosome bands. Small winding 1-2cm bands of SDBX cutting through. Mag =~60.
 Sudbury Breccia :

05-Dec-14 1:59:30 PM

Hole Number	WTR-057		Project:	TRILL_SCJV						Project Nun	nber:	504			
From (m)	То (т)	Lithology				Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
196.93	197.03	SDBX Sudbury Breccia Small band of cold, dark grey, fine grained SDBX cutting through the Mag =~70.	Sudbury Brecci IGN with small frag		2B5										
197.03	211.55	IGN Intermediate Gneiss Dark grey to light grey foliation/banding. Mostly finer grained light salt leucosome bands. Mag =~8-10.	Sudbury Brecci and peppery, with												
211.55	211.80	SDBX Sudbury Breccia Very cold, fine grained, dark grey to black SDBX with a couple >5cm fragments at the contacts between the IGN and DIA. Mag =~35.	Sudbury Brecci granitoid clasts an												
211.80	221.60	DIA <i>Diabase</i> Fg, dark grey diabase unit. Mag =~95 but ranges between 25 and 130	Sudbury Brecci	ia :											

05-Dec-14 1:59:30 PM

Hole Number WTR-057			Project:	TRILL_SCJV					Project Numb	ber:	504			
From	То									Au	Pt	Pd	Ni	Cu
From (m)	(m)	Lithology			Sample #	From	То	Length	((g/t)	(g/t)	(g/t)	(%)	(%)

221.60	236.80	FGN	Felsic Gneiss	Sudbury Breccia :
		0 1	actures throughout. It is variable and	anding. Mostly medium grained with weak foliations and I may actually turn to IGN several times. Mag =~20 but ranges

236.80	237.14	GRBX	granite breccia	Sudbury Breccia :
		Same as	above but appears to be partially b	recciated and partially melted or heavily altered. Mag =~1-3.

237.14	237.25	FLT	Fault	Sudbury Breccia :
		altered L	0,	and blocky rocks at the contact between the intrusive ultramafic and the re if it is an actual fault or if it is just a highly altered zone at the contact of

05-Dec-14 1:59:30 PM

Hole Number WTR-057

Project: TRILL_SCJV

Project Number: 504

From (m)	То (т)		Lithology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
237.25	241.78	UMAF Ultramafic	Sudbury Breccia :	N985855	237.25	238.65	1.40	0.00	0.00	0.00	0.11	0.02
			Jltramafic, possibly more mafic than Pyroxenite below, may have ssibly making the original rock a Lherzolite (Peridotite). The	N985856	238.65	240.15	1.50	0.00	0.00	0.00	0.14	0.02
			magnetite to be formed from the breakdown of the olivines. Possibly	N985857	240.15	241.65	1.50	0.00	0.00	0.00	0.10	0.02
		the Carbonate+/-Talc Vein is at ~45	lag. Will possibly run for Ni and maybe PGEs? The lower contact to dtca and fairly sharp with a Silvery mineral along the boundary, sure, doesn't streak Red and is too soft and has no cleavage to be	N985858	241.65	241.85	0.20	0.00	0.00	0.00	0.06	0.00

Galena. Galena also doesn'e make sense for how mafic the intrusion is but an Fe-rich mineral would? Mag =~250-300.

241.78 241.84 DOL Dolomite

241.84 - 251.38

Sudbury Breccia :

Carbonate vein at the contact between the Gneiss and the Ultramafic intrusion. Probable Galena vein at contact. See description above. Mag =-2.

Mineralization Maj. :	Type/Style/%Mineral	Comment
241.78 - 241.84	GR VN 5	Possibly Hematite or Galena? Silvery and Soft. May even be Graphite.

241.84	251.38	IGN Inte	rmediate Gneiss	Sudbury Breccia :
		leucosome bands. T	here are patches of heavier alt	dium grained light salt and peppery, with interspersed eration and/or bleaching especially surrounding off from the ultramafic. Mag =~80 but ranges between
		Alteration Maj:	Type/Style/Intensity	Comment
		241.84 - 251.38	SA P M	

HE F M

05-Dec-14 1:59:30 PM

Hole Number	WTR-057		Project:	TRILL_SCJV					Project Numbe	: 504	4			
From (m)	То						_					Pd		
(m)	(m)	Lithology			Sample #	From	То	Length	(9/	t) (g	ŋ∕t)	(g/t)	(%)	(%)

251.38 253.50 FWBX Footwall Breccia Sudbury Breccia :

Brecciated IGN that has been highly altered by the intrusion below and is being incorporated and assimilated into the Pyroxenite. There is a lot of bleaching, fracturing and and fragmenting. It grades into a more pyroxenite rich version of the breccia before grading fully into the pyroxenite. Mag =~60 but ranges between 30 and 160 milli SI.

253.50	256.00	ΡΥΧΤ	Pyroxenite	Sudbury Breccia :	N985859	253.30	254.80	1.50	0.00	0.00	0.00	0.00	0.00
		,	ccia same as above but the footwall has been more f rroxenite intrusion. Intermediate unit between the IGN 35-55.	,	N985860	254.80	256.30	1.50	0.00	0.00	0.00	0.02	0.01
256.00	263.79	ΡΥΧΤ	Pyroxenite	Sudbury Breccia :	N985861	256.30	257.80	1.50	0.00	0.00	0.00	0.07	0.01
			to Cg Ultramafic Pyroxenite intrusive sill. Most likely for the intrusive contacts to the Levack Gneiss as well		N985862	257.80	259.30	1.50	0.00	0.00	0.00	0.04	0.02
			ble Matachewan to Nipissing age therefore constraini	0,	N985863	259.30	260.80	1.50	0.00	0.00	0.00	0.04	0.02
					N985864	260.80	262.30	1.50	0.00	0.00	0.00	0.05	0.02
					N985865	262.30	263.80	1.50	0.00	0.00	0.00	0.05	0.02

ole Number	WTR-057	To (m) Lithology							Project Number:	504			
From (m)			Litholog	y	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
263.79	264.56	DIA Diabas Fg, dark grey diabase d the lower contact being		Sudbury Breccia : AF unit. Sharp upper contact cutting at ~65dtca with ~35.	N985866	263.80	264.56	0.76	0.01	0.02	0.02	0.01	0.03
264.56	266.60	UMAF Ultrama Heavily altered ultramafi and may be serpentinize	ic which grades into more fr	Sudbury Breccia : esh Pyroxenite below. It appears much lighter in color en lighter in weight, lower specific gravity. Mag =~2-3.	N985867 N985868	264.56 265.75	265.75 267.25	1.19 1.50	0.00 0.00	0.01 0.00	0.00 0.00		0.01 0.01
		<i>Alteration Maj:</i> 264.56 - 266.60 264.56 - 266.60	<i>Type/Style/Intensity</i> TLC P MS SERP P MS	Comment									
266.60	280.76	PYXT <i>Pyroxe</i> Same sill unit as above.		Sudbury Breccia :	N985869 N985872 N985873	267.25 268.75 270.25	268.75 270.25 271.75	1.50 1.50 1.50	0.00 0.00 0.00	0.00 0.01 0.01	0.00 0.00 0.01		0.02
					N985874 N985875 N985876 N985877 N985878	271.75 273.25 274.75 276.25 277.75	273.25 274.75 276.25 277.75 279.25	1.50 1.50 1.50 1.50 1.50	0.00 0.00 0.00 0.00 0.00	0.01 0.00 0.00 0.01 0.00	0.00 0.00 0.00 0.00 0.00	0.11 0.12 0.13	0.01 0.01
					N985878	279.25	279.25 280.75	1.50	0.00	0.00	0.00		0.01

05-Dec-14 1:59:30 PM

Hole Number	WTR-057			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)			Lithology	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
280.76	283.53	DIA	Diabase	Sudbury Breccia :	N985880	280.75	282.25	1.50	0.00	0.00	0.00	0.01	0.0
			ey diabase dyke cutting thr between 2 and 40.	ough the UMAF unit. Sharp contacts cutting at ~65dtca. Mag =~20	N985881	282.25	283.53	1.28	0.00	0.00	0.00	0.01	0.0
283.53	285.07		<i>Pyroxenite</i> bove but with a sharp lowe e dark black fractures with o	<i>Sudbury Breccia :</i> r contact to the Levack Gneiss at ~70dtca. There appears to be dark halos. Mag =~150.	N985882	283.53	285.07	1.54	0.00	0.01	0.01	0.14	0.(

285.07 302.77 FGN Felsic Gneiss Sudbury Breccia : Light pinkish grey to orange with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =~45.

302.77 304.02 DIA Diabase Sudbury Breccia : Fg, dark grey diabase dyke cutting between the gneissic unit. Sharp contacts cutting at ~55-60dtca. Mag =~200.

05-Dec-14 1:59:30 PM

ole Number	WTR-057			Project: TR	ILL_SCJV				Project Number:	504			
From (m)	То (т)		Lithology		Sample #	From	То	Length	Au (g/t)		Pd (g/t)	Ni (%)	Cu (%)
304.02	305.30	FGN Felsic G Pinkish grey to orange wi microfractures throughou	ith foliation/banding. Mostly	Sudbury Breccia medium grained with weak foliations ally turn to IGN several times. Mag =	and								
305.30	305.80	FGN Felsic G Highly altered and felsic : Alteration Maj: 305.30 - 305.80 305.30 - 305.80 305.30 - 305.80 305.30 - 305.80	zone of quartz-feldspar-serie	Sudbury Breccia cite-epidote alteration throughout. Mag Comment									
305.80	306.45	FGN Felsic G Felsic Gneiss between zo	Gneiss ones of heavy alteration. Ma	Sudbury Breccia g =∼12.									
306.45	309.40	FGN <i>Felsic</i> G		Sudbury Breccia									

Hole Number	WTR-057				Project:	TRILL_SCJV					Project Num	oer:	504			
From	Το		Litholog				Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
(m)	(<i>m</i>)	Alteration Maj:	Type/Style/Intensity	Comment			Sample #	FIOIII	10	Length		(9/1)	(9/1)	(9/1)	(70)	(70)
		306.45 - 309.40	MS P MS													
		306.45 - 309.40	EP P M													
		306.45 - 309.40	BL P I													

 309.40
 342.40
 IGN
 Intermediate Gneiss
 Sudbury Breccia :

 Typical dark grey to light grey foliation/banding. Mostly Medium grained light salt and peppery, with interspersed leucosome bands. Mag =~10.
 Sudbury Breccia :

342.40343.52FGNFelsic GneissSudbury Breccia :

Highly altered and felsic zone of quartz-feldspar-sericite-epidote alteration throughout. There is also a 2-3cm wide quartz-carbonate+/-talc vein cutting the core at a very low angle to axis at ~342.70-342.80m. Mag =~25.

343.52 367.18 **FGN** *Felsic Gneiss Sudbury Breccia :* Light pinkish grey to orange with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. There is also a 2-3cm wide guartz-carbonate+/-talc vein cutting the core at a

very low angle to axis at ~354.20-354.80m as well as at 362.90-363.20m. Mag =~40.

05-Dec-14 1:59:30 PM

Hole Number	WTR-057		Project: TRILL_SCJV					Project Numbe	r: 5	504			
From (m)	То (т)	Lithology		Sample #	From	То	Length	A (g)		Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
367.18	380.70	IGN Intermediate Gneiss Typical dark grey to light grey foliation/banding. Mostly interspersed leucosome bands. Mag =~30 but ranges	Sudbury Breccia : Medium grained light salt and peppery, with between 8 and 60 milli SI.										
380.70	380.85	SDBX Sudbury Breccia Small zone of SDBX between some IGN and FGN. It is ripped off the wall as well as a >1cm IGN. Mag =~110.	Sudbury Breccia : 2C5 s cold and grey with small FGN fragments being										
380.85	383.65	FGN Felsic Gneiss	Sudbury Breccia :										

Light pinkish grey to orange with foliation/banding. Mostly medium grained with weak foliations and microfractures throughout. Mag =~65.

 383.65
 383.95
 SDBX
 Sudbury Breccia
 Sudbury Breccia :

 Small zone of SDBX between some IGN and FGN. It is cold and grey with small FGN fragments being

05-Dec-14 1:59:30 PM

Hole Numbe	er WTR-05	,	Project:	TRILL_SCJV					Project Number:	504			
From	То								Au	Pt	Pd	Ni	Cu
From (m)	(m)	Lithology			Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)
		ripped off the wall as well as a >1cm IGN. Mag =~80.											

 383.95
 385.90
 FGN
 Felsic Gneiss
 Sudbury Breccia :

 Light pinkish grey to orange with foliation/banding. Mostly medium grained with weak foliations and

microfractures throughout. Mag = \sim 1-3.

 385.90
 402.12
 DIA
 Diabase
 Sudbury Breccia :

Fg to Mg, dark grey diabase dyke cutting between the gneissic unit. Sharp contacts cutting at ~55-60dtca. Mag =~70 but ranges between 30 and 120 milli SI.

402.12 411.30 IGN Intermediate Gneiss Sudbury Breccia : Typical dark grey to light grey foliation/banding. Mostly Medium grained light salt and peppery, with interspersed leucosome bands. Mag =~50.

Hole Number	WTR-057			Project: TRILL_SCJV					Project Number	504			
From (m)	To (m)		Litholog	ענ	Sample #	From	То	Length	A L (g/t		Pd (g/t)	Ni (%)	
411.30	412.10	FGN	Felsic Gneiss	Sudbury Breccia :									
		Light pinki	ish orange with foliation/banding. Mostly f	finer to medium grained with weak foliations. Probably									

very altered with a weak Fe-alteration as well. Mag =~3.

 412.10
 425.40
 IGN
 Intermediate Gneiss
 Sudbury Breccia :

 Typical dark grey to light grey foliation/banding. Mostly Medium grained light salt and peppery, with interspersed leucosome bands. Mag =~60.
 Sudbury Breccia :

425.40 433.23 DIA Diabase Sudbury Breccia : Fg, dark grey diabase dyke. Sharp contacts cutting at ~55dtca. Mag =~80 but ranges between 50 and 120 milli SI.

433.23 449.82 **IGN**

Sudbury Breccia :

Typical dark grey to light grey foliation/banding. Mostly Medium grained light salt and peppery, with interspersed leucosome bands. Small zone of SDBX veins up to 2cm wide cutting the IGN near the lower contact to the DIA between 449.22 to 449.56m. Mag =~60.

05-Dec-14 1:59:30 PM

Hole Number	WTR-057		Project: TRILL_SCJV					Project Number:	504		
From (m)	То (m)	Lithology		Sample #	From	То	Length		Pt (g/t)		

 449.82
 457.03
 DIA
 Sudbury Breccia :

 Fg to Mg, dark grey diabase dyke cutting between the gneissic unit. Sharp contacts cutting at ~55

60dtca. Mag =~75 but ranges between 50 and 90 milli SI.

457.03 458.53 IGN Sudbury Breccia : Small block or zone of altered IGN sandwiched between the DIA above and UMAF Pyroxenite below. It is very mafic poor and appears silicified and fractured with Fe-staining halos and fracture filling. Mag =~1-3.

458.53	461.87	PYXT Pyroxe	enite	Sudbury Breccia :	N985883	458.60	459.84	1.24	0.00	0.01	0.00	0.13	0.02
				intrusive sill. Most likely East Bull Lake in age e contacts to the Levack Gneiss as well as being cut	N985884	459.84	460.30	0.46	0.00	0.00	0.00	0.14	0.01
		by a diabase dyke of pro sulfides but will be samp for testing metal depletion minerals as in the High	robable Matachewan to Nipis pled for ICP and WR to test ions. There appears to be th	ssing age therefore constraining age dates. No visible for PGEs and Ni as well as compare element ratios e same type of altered olivine/pyroxene ghost ut by several carboate filled fractures and weakly	N985885	460.30	461.87	1.57	0.00	0.00	0.00	0.11	0.01
		Alteration Maj:	Type/Style/Intensity	Comment									
		458.53 - 461.87	Carb FF WM										
		458.53 - 461.87	SERP P W										

Hole Number	WTR-057			Project: TRILL_SCJV					Project Numbe	∍r: 5 0	04			
From (m)	To (m)		Lithology		Sample #	From	То	Length				Pd (g/t)	Ni (%)	Cu (%)
461.87	462.47	DIA Diab Fg, dark grey diabase between ~40-60dtca		<i>Sudbury Breccia :</i> nite unit. Sharp variable contacts cutting ılar. Mag =~30.	N985886	461.87	462.47	0.60	C	0.01	0.02	0.03	0.02	0.02
462.47	465.20	-	oxenite g =~65 but ranges between 30 and 100 n	<i>Sudbury Breccia :</i> nilli SI.	N985887 N985888	462.47 463.70	463.70 465.20	1.23 1.50			0.01 0.01	0.01 0.00	0.11 0.11	0.01 0.01
		Alteration Maj: 462.47 - 465.20 462.47 - 465.20	Type/Style/Intensity Comme SERP P W Carb FF M	ent										

465.20 0.00 EOH End of Hole

Sudbury Breccia :

05-Dec-14 1:59:30 PM

<u>-80.00 Y</u>								+-			\vdash — — — —				+					+		
		-														ĺ			ĺ			
<u>-100.00 Y</u>			\perp					$$ \bot $-$														
-120.00 Y				<u> </u>															<u> </u>			
-140.00 Y																						
									\top						+-					$=$ $=$ \top		
						-50)		0			50		100			150					
-160.00 Y														100								
									+		Sca	le 1:800						- — — — — -		+	+ -	
-180 00 Y																						
					+			 	+		+			+	+	+				+	+ -	
-200 100 V																						
			+		+ I	·		<u> </u>	· +		⊢ 			— — — — + — - I	+ I			 	+	+		
														20.00 X								
×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
× 8. 229.00 ×	80.0	0.0	40.0	20.0	0.00	80.0	90.0	40.0	20.0	0.00		0.0	40.0	20.0	0.00	80.0	<u> </u>	40.0	20.0	0.00	30.0	0.0
-228.00		1	. • 1			- <u>-</u> -			131						<u> </u>			A 1		Q,	$-\frac{4}{6}$	— — — <mark>4</mark> —
	ou or	hotod	thic [DDE fr	$\sim m \sim$	n onn	lication	that	ic n	ot lia	hoone	to pri	nt to r	novaPDF		or /	http://		ovon	df oor	m)	I
T T		zaitu			uii di	ii avv	ทเปลเเบเ	i li idl	12 11					IUVAFUF	וווע		IIID.//V	'V VV VV . I I	UvdD	u U		

DRILL HOLE REPORT

Hole Number	WTR-058				Projec	rt: TRILL	_SCJV				Project Numbe	r: 504
Drilling		Casing			Core				Location		Other	
Azimuth:	180	Length:		0	Dimension:	NQ			Township:	TRILL	Logged by:	Marshall Hall
Dip:	-45	Pulled:	no		Storage:	Core Shed			Claim No.:	129977	Relog by:	
_ength:	518.08	Capped:	yes		Section:				NTS:		Contractor:	Jacob & Samuel Drilling Ltd
Started:	12-Aug-14	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Tom Johnson
completed:	22-Aug-14										Surveyed:	yes
.ogged:	28-Aug-14										Surveyed by:	Wallbridge-Other
comment:	Box 26 has a note stating	the box was dropped	lt is unkr	own if the box v	was dropped open or	closed	Coordinate	- Gemcom	Coordinate - L	ІТМ	Geophysics:	None
omment.	Box was rebuilt by matchin However there remains a c	ng the start and end o	of the box	with previous ar	nd next boxes respec	ctively.	East:	458101.85	East:	458101.85	Geophysic Contractor:	
	Collar DGPSed by D. Smit	h 'WM 082215A'					North:	5146861.7	North:	5146861.7	Left in hole:	Nothing
							Elev.:	338.02	Elev.: Zone: 17	338.02 NAD: 27	Making water: Multi shot sur	no

Deviation Tests

Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-45.00	С	\checkmark	
32.00	182.70	-44.10	F	\checkmark	Mag: 5489 Temp: 14.9 Roll: 005.6
83.00	186.50	-43.60	F	\checkmark	Mag: 5497 Temp:15.3 Roll: 265.5
134.00	184.20	-43.50	F	\checkmark	Mag: 5450 Temp: 19.8
185.00	180.00	-43.40	F		couldn't read mag on unit
347.00	188.10	-43.40	F	\checkmark	Mag: 5517 Temp: 17.9
398.00	187.90	-43.60	F	\checkmark	Mag: 5504 Temp: 22.9
452.00	187.80	-43.30	F	\checkmark	Mag: 5541 Temp: 19.5
518.00	189.40	-43.50	F	\checkmark	Mag: 5530 Temp: 18.8

05-Dec-14 1:50:42 PM

ble Number	WTR-058			Project: TRILL_SCJV					Project Numbe	er: 5	04			
From (m)	То (т)		Litholo	gy	Sample #	From	То	Length	A (g		Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
0.00	16.00	CAS Casi First box of core is all	ing casing, and part of the secc	Sudbury Breccia : and box is as well										
16.00	19.09	Coarse, grained, sem	mediate Gneiss ni-crystalline, with local sectionse, quartz and aphanitic mafi	<i>Sudbury Breccia :</i> ons displaying a moderate foliation (37dtca). Composed cs.										
		<i>Structure Maj.:</i> 19.08 - 19.09	Type/Core Angle LC 35	Comment										
19.09	24.95	PYXT Pyro	oxenite	Sudbury Breccia :	P446852	20.51	22.00	1.49	C	0.00	0.00	0.01	0.08	0
		Fine to medium grain	ed, dark blue to black with b	uish tints, slightly magnetic, and contains some vage). The lower contact is cut by SDBX with a trend of	P446853	24.76	25.13	0.37	C	0.00	0.00	0.00	0.02	0
		Structure Maj.:	Type/Core Angle	Comment										
		24.94 - 24.95	LC 35											

05-Dec-14 1:59:53 PM

Hole Number WTR-058

Project: TRILL_SCJV

Project Number: 504

From (m)	To (m)		Litholog	y	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
24.95	93.10	IGN Interme	ediate Gneiss	Sudbury Breccia :	P446854	29.67	30.02	0.35	0.00	0.00	0.00	0.00	0.00
) is slightly more granitic and has weak to no foliation.	P446855	49.07	49.39	0.32	0.00	0.00	0.00	0.01	0.00
				s a mix between granitic rocks and smaller tion can be pervasive. Average foliation is ~25dtca	P446856	50.28	50.62	0.34	0.00	0.00	0.00	0.00	0.01
		meianosomes. Locally n		nion can be pervasive. Average fonation is ~250tca	P446857	70.99	71.32	0.33	0.00	0.00	0.00	0.00	0.00
		29.42-39.21m zone with 29.66-30.00m massive 31.00-31.50m carbona enough to be called a br 32.65-32.89m massive 46.56-46.69m 5mm carb 45.00-49.39m small she and carbonate veining. 50.46m 5cm diabase dyl amounts of epidote. 57.00m 20cm zone of ep 59.00-59.26m weakly sh clasts of country rock, ar 68.00m 1.5cm wide blue 71.12m carbonate vein t 85.36-85.56m zone of si	eccia) e quartz with 1% pyrite (not bonate vein that trends para ar zone trending 36dtca, wi ke cutting 31dtca with a 1cr bidote alteration in a feldspa leared zone centered aroun nd possible shear sinistral s carbonate vein trending 18 rending 30dtca, 1.5cm wide liceous alteration mixed wit	ite alteration zation (1%) n small angular clasts of country rock (but not quite sampled) llel to core axis with minor deviations in orientation. th pervasive chlorite alteration, minor epidote veining n band of epidote alteration on either side with trace ar rich zone d a 1.5cm wide carbonate vein that has sub-rounded hear sense indicators									
		Structure Maj.:	Type/Core Angle	Comment									

 Structure Maj.:
 Type/Core Angle

 49.06 - 49.69
 SHR 36

 59.00 - 59.26
 SHR 18

93.10

94.05

DIA Diabase

Sudbury Breccia :

Aphanitic, black, strongly magnetic, cut by weak quartz and epidote veining. Both the upper and lower contacts are brecciated and have a thin rim of epidote.

05-Dec-14 1:59:53 PM

Hole Number	WTR-058			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Litholog	IУ	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
94.05	129.63	Similar to previous sect 105.00m 1cm wide carl		<i>Sudbury Breccia :</i> nd some epidote as well. Vein trends 28dtca. ca	P446858	104.84	105.12	0.28	0.00	0.00	0.00	0.00	0.00
129.63	133.60	DIA Diabas		Sudbury Breccia :	P446859	129.61	129.94	0.33	0.00	0.02	0.02	0.01	0.00
		has local sections of pe angular magnetite grain mm sized grains of gne (indicating multiple injection)	ervasive epidote alteration. T ns intergrown with pyrite, hou eiss. This zone is then follow ctions). Trace amounts of co The lower contact is rich in c	agnetic. The unit is cut by weak carbonate veining and The upper 7cm is marked by a brecciated section with used in a matrix of epidote that also contains abundant ed a region containing multiple chilled margins cp can be seen through out the section and SDBX cuts quartz and epidote alteration with small pyrite stringers	P446860 P446861 P446862	130.48 131.63 132.88	130.99 132.32 133.19	0.51 0.69 0.31	0.00 0.00 0.00	0.02	0.02	0.01	0.01 0.04 0.01
		131.80m trace ccp in fe 132.22m trace ccp in ca 130.90m trace ccp in ca	arbonate	9dtca by carbonate veins te alteration cut by small stringers of pyrite									
		<i>Mineralization Maj. :</i> 130.90 - 130.91 131.80 - 131.81 132.22 - 132.23	<i>Type/Style/%Mineral</i> CP BL 0.1 CP BL 0.1 CP BL 0.1	<i>Comment</i> trace blebs in carbonate trace blebs in feldspathic grains cut by carbonate trace blebs in carbonate									

Hole Number	WTR-058			Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Litholog	У	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
133.60	169.34	IGN Interm	ediate Gneiss	Sudbury Breccia :	P446863	134.14	134.44	0.30	0.0	0 0.0	0.00	0.00	0.01
100.00	100.04			itic leucosomes that have undergone varying degrees	P446864	135.37	135.68	0.30	0.0				0.00
		of hematite alteration, a	nd are interbanded with mel	lanosomes. Carbonate veining is relatively weak in the					0.0				0.00
		unit and ccp can be see	en in trace amounts as discre	ete blebs (0.0001% of section).	P446865 P446866	147.57 168.37	147.84 168.65	0.27 0.28	0.0				0.00
		leucosome/melanosome 138.54m 4cm wide epid 137.00-138.00m trace p 143.00m ~15cm of torq	e lote vein trending 24dtca wit syrite can be seen in epidote ued core ssible ccp found along the ed ar zone trending 18dtca pyrite of ccp										
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		147.66 - 147.67	CP BL 0.01	trace ccp in pyrite									
		168.46 - 168.47	CP BL 0.1	pinhead grain of ccp									
		169.33 - 169.34	CP BL 0.1	single grain along the lower contact									
		Structure Maj.:	Type/Core Angle	Comment									
		151.24 - 151.25	SHR 18	1cm wide									
		169.33 - 169.34	LC 46										
169.34	170.40	SDBX Sudbu	ry Breccia	Sudbury Breccia : 2AD4	P446867	170.07	170.49	0.42	0.0	0 0.0	0.00	0.00	0.01

170.12m grain of ccp along the edge of a granitic clast.

05-Dec-14 1:59:53 PM

Aphanitic and glassy matrix, with sharp clast margins, and trace disseminated sulphides in the matrix.

lole Number	WTR-058			Project: TRILL_SCJV					Project Num	ber: 5	504			
From (m)	То (т)		Litholog	IV	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
170.40	198.92	Likely Nipissing diab plagioclase), highly 178.54-179.00m is a	magnetic, and cut by SDBX ca an aphanitic diabase dyke cutti te vein trending 26dtca	Sudbury Breccia : by in colour, 60/40 mafic to felsic (almost entirely rbonate veins. Lower 30cm of the unit is SDBX 2AD4 ang the main unit. The aphanitic dyke is cut by SDBX	P446868	194.18	194.58	0.40		0.00	0.00	0.00	0.01	0.02
198.92	233.18	Similar to previous s	ermediate Gneiss sections. Lower 18cm of the un vein trending 28dtca	<i>Sudbury Breccia :</i> it is SDBX 2AD4 with trace ccp on grain boundaries	P446871 P446872 P446873	203.06 208.79 215.46	203.36 209.06 215.78	0.30 0.27 0.32		0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.01 0.00
		200.87m carbonate 203.14m single grai 206.23m 1cm wide 208.91m 1cm wide 47dtca with 1% pyrit 215.55m 1% pyrite 219.47m carbonate 221.47m carbonate 223.00m foliation tre 227.30m running all observed lower nea	and epidote vein trending 44dt in of ccp SDBX vein trending 14dtca feldspathic vein, likely related to te on fracture face in epidote/carb veining with a trend of 16dtca a vein trending 33dtca ending 61dtca ong the edge of the core is a jac r the Offset dyke irline pyrite veins trending 14dto	o the gneiss but looks like a partial melt. Trends onate vein trending 20dtca	P446874	229.61	229.93	0.32		0.00	0.00	0.00	0.00	0.0
		Structure Maj.:	Type/Core Angle	Comment										

223.00 - 223.01 FOL 61

le Number	WTR-058			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Litholog	<i>y</i>	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
	()	232.00 - 232.01	FOL 35	-									
		233.17 - 233.18	LC 25										
233.18	238.42	DIA Diabas	e	Sudbury Breccia :	P446875	233.03	233.85	0.82	0.00	0.00	0.00	0.01	0.0
		Aphanitic, blue/grey to b	black, cut by SDBX and epic	dote veins that carry trace amounts of ccp, and the	P446876	235.53	235.90	0.37	0.00	0.00	0.00	0.01	0
		unit is highly magnetic.	Most of the veins in the sec	tion trend 20dtca	P446877	236.74	237.60	0.86	0.00	0.00	0.00	0.01	0
		233.58m trace ccp in ep 233.73m trace ccp in dia 235.66m ccp in epidote 236.90-238.00m 1% ccp 238.41m trace ccp in ep	abase matrix o in hematite and epidote ve	sins	P446878	237.60	238.51	0.91	0.00	0.00	0.00	0.00	0
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		233.58 - 233.59	CP BL 0.1	blebs in epidote									
		233.73 - 233.74	CP BL 0.1	bleb in diabase matrix									
		235.66 - 235.67	CP BL 0.1	blebs in epidote									
		236.90 - 238.00 238.41 - 238.42	CP BL 1 CP BL 0.1	blebs in epidote and hematite veins blebs along the lower contact									
		Structure Maj.:	Type/Core Angle	Comment									
		238.41 - 238.42	LC 20										
238.42	251.11	FGN Felsic	Gneiss	Sudbury Breccia :									
		Similar to the intermedia	ate gneisses above, but lack i feldspar with variable amou	k the melanosomes, and are enriched in unts of hematite alteration.									
		Structure Maj.:	Type/Core Angle	Comment									
		251.10 - 251.11	LC 23										

05-Dec-14 1:59:53 PM

Hole Number	WTR-058			Project: TRILL_SCJV					Project Number	50	94			
From (m)	То (т)		Litholog	y	Sample #	From	То	Length	A u (g/		Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
251.11	252.00		black, highly magnetic and le	<i>Sudbury Breccia :</i> boks to have some assimilation of the granite/gneiss rs and multiple 1mm wide quartz veins.										
252.00	267.64	IGN Interme Similar to previous units	ediate Gneiss	Sudbury Breccia :	P446879 P446880	257.33 259.22	258.37 259.64	1.04 0.42			0.00 0.00	0.00 0.00	0.00 0.00	0.01 0.00
		256 83-257 33m shear 7	zone with strong pervasive	chlorite (?) alteration, that gives the rock a soft	P446881	260.10	260.44	0.34	0.	00	0.00	0.00	0.00	0.00
		greeny/grey colour. Qua	artz veins are parallel to the	foliation (28dtca). Small angular blocks can be seen	P446882	261.99	262.28	0.29	0.	00	0.00	0.00	0.00	0.00
			hear looks to have occurred mbles diabase, and is mage	l on the upper contact of diabase/gneiss. The lower etic	P446883	262.84	263.50	0.66	0.		0.00	0.00	0.00	0.02
		257.33-258.00m region cut the section and have 259.23m pyrite stringers 259.54m trace ccp 260.33m single grain of 262.14m single grain of 262.73-263.37m breccia matrix of epidote 263.36m single grain of 266.28-266.78m anothe breccia. Where the class	where the rock looks cooke e trace ccp s trending 42dtca ccp in a network of epidote ccp in a network of epidote a like zone where angular to ccp er epidote breccia, but this re	d up, is finer grained and almost diffuse. Quartz veins sub-angular clasts of country rock are supported by a egion grades into a breccia that looks close to footwall oported by a region where the country has melted	P446884	266.61	267.41	0.80	0.	00	0.00	0.00	0.00	0.02
		<i>Mineralization Maj. :</i> 259.23 - 259.26 259.54 - 259.55	<i>Type/Style/%Mineral</i> PY STR 1 CP BL 0.1	<i>Comment</i> hairline stringers trending 42dtca trace ccp										
		260.33 - 260.34 266.78 - 267.64	CP BL 0.01 CP BL 0.1	single bleb trace grains of ccp in epidote and hematite veins										

ole Number	WTR-058			Project: TRILL_SC	SJV					Project Numb	er: t	504			
From (m)	To (m)		Litholog	y		Sample #	From	То	Length		Au g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		Structure Maj.:	Type/Core Angle	Comment											
		256.83 - 257.33	SHR 28												
		267.63 - 267.64	LC 18												
267.64	269.37	SDBX Sudb	oury Breccia	Sudbury Breccia :	2AD4	P446885	267.78	268.04	0.26		0.00	0.00	0.00	0.01	0.02
		Matrix is aphanitic and	d glassy, clast margins are sha	arp, and clasts are relatively undeformed.		P446886	268.69	269.17	0.48		0.00	0.00	0.00	0.00	0.01
		267.87m trace ccp in 268.85m trace ccp in e	5cm zone of breccia like epide epidote	ote											
		Mineralization Maj. :		Comment											
		267.87 - 267.88 268.85 - 268.86	CP BL 0.1 CP BL 0.1	trace ccp in breccia like epidote ccp in epidote											
269.37	271.58	DIA Diaba	ase	Sudbury Breccia :		P446887	271.38	271.65	0.27		0.00	0.00	0.00	0.00	0.01
		Aphanitic, dark blue to healed fault and a she	b black, magnetic, and cut by ear zone on the lower contact.	SDBX, epidote, and carbonate. The unit conta	ins a										
		269.37-269.50m fault There is a weak foliation 271.36-271.58m shea	on trending 14dtca.	ub-angular and housed in a tannish white mat	trix.										
		Toward the base of the the shear zone (45dtc	e section there is an increase a) at the base of the section.	in carbonate veining, and these veins are par-	allel to										
		Structure Maj.:	Type/Core Angle	Comment											
		269.37 - 269.50	SHR 14												
		269.37 - 269.50	FLT												

Hole Number	WTR-058			Project: TRILL_SCJV					Project Num	iber:	504			
From (m)	To (m)		Litholog	у	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		271.57 - 271.58	LC 47											
271.58	311.00	FGN Felsic	Gneiss	Sudbury Breccia :	P446888	286.69	287.21	0.52		0.00	0.00	0.00	0.00	0.13
		Similar to previous.			P446889	288.03	288.32	0.29		0.00	0.00	0.00	0.00	0.00
		283.54m grain of ccp or 287.05m 1cm grain of c	ccp in carbonate vein trendin arbonate/epidote vein trendir s 65dtca	ng 46dtca										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		283.54 - 283.55	CP BL 0.1	single grain on fracture face										
		287.05 - 287.06	CP BL 0.1	trace grains in carbonate vein										
		288.14 - 288.15	CP BL 0.1	trace ccp in carbonate/epidote vein										
		Structure Maj.:	Type/Core Angle	Comment										
		305.00 - 305.01	FOL 65											
		310.00 - 310.01	FOL 84											
		310.99 - 311.00	LC 37											
311.00	338.00	OD Olivine	e Diabase	Sudbury Breccia :										
		not cut by many second	dary veins. It is strongly mag	d margins, has a felty texture, relatively unaltered and netic, heavily fractured in local sections and in these faces. The lower 10cm of the section is fault gouge.										
			lickenlines 60dtca lickenlines 60dtca llong a joint trending 29dtca llong a joint trending 39dtca lickenlines 65dtca											

Hole Number	WTR-058			Project: TRILL_SCJV					Project Num	ber:	504			
From (m)	To (m)		Litholog	У	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		331.28-331.43m slicker 336.72m joint 21dtca, s joint 19dtca, s	lickenlines 70dtca	cture trending 5dtca e trend, as it is separated from the main rocks										
338.00	348.81	Similar to previous sect to have undergone som	<i>Gneiss</i> tions. The first 3m of the unit ne degree of thermal alteration ed of broken to brecciated g	Sudbury Breccia : have undergone some hematite alteration and look on. The lower meter of the section has been ranite.										
		346.5m is the start of br 348.45m joint 55dtca, s		to be thermally altered as well.										
		Structure Maj.: 346.50 - 348.81	Type/Core Angle BX	Comment										
348.81	350.95	Medium grained, dark b		Sudbury Breccia : d tints, highly magnetic, moderate epidote veining cuts er contact. The epidote veins have an average trend	P446892	350.19	350.47	0.28		0.00	0.00	0.00	0.01	0.01
		348.81-348.83m fault gr 350.30m single grain of												
		<i>Mineralization Maj. :</i> 350.30 - 350.31	<i>Type/Style/%Mineral</i> CP BL 0.1	<i>Comment</i> single bleb in epidote vein										
		Structure Maj.: 348.81 - 348.83	Type/Core Angle G 42	Comment										

05-Dec-14 1:59:53 PM

Hole Number	WTR-058				Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Litholo	gy		Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
350.95	359.60		again looks slightly cook	ed up, with a sugary	Sudbury Breccia : texture, and diffuse crystal margins. reccia" (but not likely related)	P446893	357.40	357.74	0.34	0.0) 0.00	0.00	0.00	0.0
359.60	359.80	QD Quartz Aphanitic, greenish/bluis is weak schlerin textures		h minor pyrite miner	Sudbury Breccia : alization in epidote stringers. There gular.	P446894	359.51	359.81	0.30	0.0) 0.00	0.00	0.00	0.0
		Structure Maj.: 359.79 - 359.80	Type/Core Angle LC 20	Comment										
359.80	360.44	FGN <i>Felsic</i> (Similar to above	Gneiss		Sudbury Breccia :									

05-Dec-14 1:59:53 PM

Hole Number	WTR-058		Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)	Litholog	y	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
360.44	361.64	QD Quartz Diorite Similar to above, cut by an epidote/actinolite (?) vei	Sudbury Breccia : n that runs nearly parallel to core axis.	P446895	360.92	361.43	0.51	0.00	0.00	0.00	0.01	0.0
361.64	384.04	FGN Felsic Gneiss Similar to previous sections.	Sudbury Breccia :	P446896	362.08	362.40	0.32	0.00	0.00	0.00	0.00	0.0
		362.14m pyrite bleb in chlorite vein trending 49dtca 363.84m trace pyrite in quartz (along joint face 30d 366.16-366.19m carbonate matrix in small breccia 370.77-371.00m 3cm wide aphanitic QD vein trend	ca) ike vein trending 22dtca									
384.04	385.64	MTBX metamorphosed breccia	<i>Sudbury Breccia :</i> been partially assimilated into the unit. It's marked by	,								

Unit starts with a zone where the country rock has been partially assimilated into the unit. It's marked by a texture very similar to the billiard ball model where abundant country rock fragments are observed near the contact and they slowly grade into the MTBX unit. 1-3cm clasts of what appears to be jasper are common in the section and small mafic to ultramafic clasts can be seen as well. Pyrite is disseminated throughout the section, and in local sections it looks like the matrix is composed of partially melted/assimilated country rocks.

05-Dec-14 1:59:53 PM

lole Number	WTR-058			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Litholo	gy	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
385.64	389.47	IQD inclu	ision quartz diorite	Sudbury Breccia :	P446897	385.79	386.79	1.00	0.00	0.00	0.00	0.00	0.0
			c matrix of QD supporting dia teration/assimilation and due	abasic and gneissic clasts that have undergone varying tile deformation.	P446898	387.54	388.27	0.73	0.00	0.00	0.00	0.01	0.01
		Trace pyrite can be se	een at 386.00, 386.50										
		Structure Maj.:	Type/Core Angle	Comment									
		389.46 - 389.47	LC 55										
389.47	393.10	MTBX meta	amorphosed breccia	Sudbury Breccia :	P446899	389.50	390.04	0.54	0.00	0.00	0.00	0.01	0.01
		metamorphosed and		netamorphosed IQD/SDBX. Section has been of partially assimilated country rocks. More clasts of ubrounded.	P446900	391.67	392.09	0.42	0.00	0.00	0.00	0.00	0.01
393.10	402.11		ision quartz diorite	Sudbury Breccia :	P448151	393.08	393.59	0.51	0.00		0.00	0.01	
		alteration rims that ar deformation, and pyri hematite altered plag	e housed within a aphanitic te can be seen disseminated ioclase/feldspar and similar	*d up breccia (FUB). It consists of altered clasts +/- matrix. Clasts often appear to have undergone plastic d throughout the section. Clasts are again extremely to Jasper. Carbonate veining is weak to moderate t local sections prefer an orientation of ~70dtca.	P448152	397.06	397.62	0.56	0.00	0.00	0.00	0.01	0.01
		396.56m single ccp b 397.12m single bleb o disseminated through 398.64m single bleb o		ding 84dtca. This is followed by trace grains nd seem to be associated to epidote and chlorite veins									

05-Dec-14 1:59:53 PM

lole Number	WTR-058			Project: TRILL_SCJV					Project Numbe	er: 5	504			
From (m)	To (m)		Litholog	y	Sample #	From	То	Length		\u ŋ/t)	Pt (g/t)	Pd (g/t)	Ni (%)	С и (%)
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		393.36 - 393.37	CP BL 0.01	single grain										
		396.56 - 396.57	CP BL 0.01	single grain in feldspathic clast										
		397.12 - 397.13	CP BL 0.01	single grain in carb vein										
		398.64 - 398.65	CP BL 0.01	single grain in IQD										
		401.37 - 401.38	PY Rim 0.1	around a single clast										
		401.56 - 401.57	PY Rim 0.1	seen on a single clast										
402.11	409.64	GR Granite	2	Sudbury Breccia :	P448153	406.87	407.19	0.32		0.00	0.00	0.00	0.00	0.0
402.11 409.64		Primarily composed of h hematite alteration is str	nematite altered plagioclase rong and pervasive and give rs interstitially). Weak carbo	(55%), quartz (40%), and amphiboles (5%). The es the section a deep red tint with white spots caused nate veining can be seen cutting the section and	P448154	407.69	408.05	0.36	(0.00	0.00	0.00		
		407.03m trace cco in ca	ate veins for a weak cluster irbonate/quartz veins trendii cp in separate carbonate ve country rock	ng 60dtca										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		407.03 - 407.04	CP BL 0.01	in carbonate veins										
		408.00 - 408.01	CP BL 0.01	blebs in carb/quartz veins										
		408.49 - 408.50	CP BL 0.01	bleb in country rock										
		Structure Maj.:	Type/Core Angle	Comment										
		409.63 - 409.64	LC 85											

411.28 IQD *inclusion quartz diorite Sudbury Breccia :* Somewhat similar to previous section, but has a marked decrease in the jasper like clasts. The matrix

05-Dec-14 1:59:53 PM

409.64

lole Number	WTR-058				Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Lithol	ogy		Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		remains similar and sti coarse grained epidote	ill contains the wispy to sto e veins cut the unit and loca	rmcloud like colour ally 30cm clasts of	ation of dark grey and black. A few country rock can be seen.									
		Structure Maj.:	Type/Core Angle	Comment										
		411.27 - 411.28	LC 28											
411.28	413.33		c Gneiss		Sudbury Breccia :									
		Similar to previous uni												
		412.77-412.96m small	l olivine diabase dyke											
		<i>Structure Maj.:</i> 413.32 - 413.33	Type/Core Angle LC 60	Comment										
413.33	414.80	OD Olivir Similar to previous uni	ne Diabase ts		Sudbury Breccia :									
414.80	424.89	FGN Felsic Similar to previous uni	c Gneiss ts		Sudbury Breccia :									
		Structure Maj.:	Type/Core Angle	Comment										
5-Dec-14 1:5	9:53 PM		11 60										Page	e 15 of

Hole Number	WTR-058			Project: TRILL_SCJV					Project Numb	er:	504			
From (m)	To (m)		Lithology		Sample #	From	То	Length		Au ′g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
424.89	425.00	QD Quartz Di Very glassy and aphanitic, alteration.	<i>iorite</i> non-magnetic, greenish grey in colour, wi	<i>Sudbury Breccia :</i> th weak to moderate carbonate										
425.00	425.58	FGN Felsic Gri similar to previous units	neiss	Sudbury Breccia :										
425.58	425.65	QD Quartz Di Same as above	iorite	Sudbury Breccia :										
425.65	464.43		ed epidote and carbonate veins are comm phanitic/glassy, black vein that has flow ba		P448155 P448156	455.31 463.63	455.65 463.93	0.34 0.30		0.00 0.00	0.00 0.00		0.00 0.00	

05-Dec-14 1:59:53 PM

Hole Number WTR-058 Project: TRILL SCJV Project Number: 504 From То Pt Ni Cu Au Pd (g/t) (g/t) (%) (%) (m) Lithology Sample # From То Length (q/t)(m) 437.00m there is a small section of epidote veining with carbonate and trace hematite (blue/grey with red streak) 440.75m 5mm carbonate vein with clay and looks like a thin breccia that trends 40dtca 454.05m 2mm quartz/carbonate vein with hematite and pyrite, overall trend of 57dtca 454.00m the rocks start developing a thermally altered appearance and guartz/carbonate veining starts to increase as the underlying structures are approached. The average trend in this area is ~68dtca 455.00-456.00m there is trace hematite and pyrite in the carbonate/quartz veins cutting this section 456.32-457.15m section is sheared (16dtca) and is composed of bands that alternate between feldspathic units, a bleached SDBX like unit, and zones that contain plastically deformed clasts in a mafic matrix (parallel to shear). 457.15-460.00m is a zone of weak veining that follows the shear 461.00-462.00m there is a shift in the veining from hairline chloritic veins to 1-3mm guartz/carbonate veins, average trend near 50dtca Lower contact is gradational into the underlying fault rocks. Alteration Maj: Type/Style/Intensity Comment 457.15 - 464.43 Sil P S gives the rock a tannish colour Structure Maj.: Type/Core Angle Comment 456.32 - 457.15 SHR 16 464.43 472.39 IGN Intermediate Gneiss Sudbury Breccia : P448157 0.01 0.00 0.01 0.00 467.37 0.27 0.00 467.10 Called IGN as it composes most of the recognizable rocks in the section. It has undergone multiple structural events, however there is no evidence to indicate a sequence of events. 464.43-465.90m healed fault, composed of angular clasts of country rock with the cracks infilled by guartz and carbonate veins. Has still been affected by the siliceous alteration noted in the previous section. 465.90-465.97m shear zone trending 37dtca 466.00-468.78m slightly hematized and deformed country rock. Section is largely hematized feldspars with minor mafic sections that are cut by pyrie stringers that trend parallel to core axis 467.16-467.36m mafic patch with pyrite stringers parallel to core axis 468.11m pyrite stringer that trends 8dtca 468.78-470.07m discontinuous shear zone largely composed of epidote alteration within bands of mafics separated by guartzo-feldspathic sections. 470.43-470.83m shear zone trends 43dtca, some intergrown hematite giving the rocks a purplish tint.

05-Dec-14 1:59:53 PM

Hole Numbe	r WTR-058				Project: TRILL_S	SCJV					Project Num	ber:	504		
From (m)	To (m)		Litholo	ogy			Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Cu (%)
		Structure Maj.:	Type/Core Angle	Comment											
		464.43 - 465.90	FLT	healed											
		465.90 - 466.00	SHR 16												

468.78 - 470.07	SHR	25		
470.43 - 470.83	SHR	43		

518.07 FGN Felsic Gneiss Sudbury Breccia : Section has a semi-crystalline appearance, is composed of plagioclase, feldspar, quartz and amphibole, with the plagioclase and feldspar having undergone variable amounts of hematite alteration (stronger near the overlying structures).

488.09m epidote and hematite alteration vein 30dtca

518.07 518.08 EOH End of Hole

Sudbury Breccia :

05-Dec-14 1:59:53 PM

472.39

DRILL HOLE REPORT

Hole Number V	WTR-059				Project: T	RILL_SCJ	v				Project Numbe	er: 504
Drilling		Casing			Core				Location		Other	
Azimuth:	180	Length:		0	Dimension: NQ				Township:	TRILL	Logged by:	Nick Wray
)ip:	-70	Pulled:	no		Storage: Core	Shed			Claim No.:	129977	Relog by:	
ength:	1000	Capped:	yes		Section:				NTS:		Contractor:	Jacob & Samuel Drilling Ltd
Started:	19-Aug-14	Cemented:	yes		Hole Type DD	1			Hole:	SURFACE	Spotted by:	Tom Johnson
ompleted:	12-Sep-14										Surveyed:	yes
ogged:	28-Aug-14										Surveyed by:	Wallbridge-Other
omment:	There was a core measuri	ng error from 165m t	o 511 due i	o a fault. The m	arkings on the rock are	Coo	rdinate - Ger	ncom	Coordinate -	лтм	Geophysics:	UTEM
onnient.	low by approximately 2 me	eters. 511-EOH marl				East		458109	East:	458109	Geophysic Contractor:	Lamontagne
	DGPSed collar by D. Smith	h Aug 22, 2014.				Nort	:h: 5	146656.85	North:	5146656.85	Left in hole:	Nothing
						Elev	. :	332.58	Elev.:	332.58	Making water	C
									Zone: 17	NAD: 27	Multi shot sur	

	<u></u>	Deviation	<u>Tests</u>				<u> </u>	Deviation	<u>Tests</u>		
Distance	Azimuth	Dip	Туре	Good	Comments	Distance	Azimuth	Dip	Туре	Good	Comments
0.00	180.00	-70.00	С	\checkmark		640.00	193.30	-70.20	F	\checkmark	Mag: 5580 temp: 23.1
24.00	182.70	-72.80	F	\checkmark	Mag: 5560 Temp: 23.1	691.00	191.50	-70.00	F	\checkmark	Mag: 5496 Temp: 23.6
75.00	183.20	-72.50	F	\checkmark	Mag: 5479 Temp: 28.4	742.00	195.00	-69.80	F	\checkmark	Mag: 5487
126.00	181.80	-72.50	F	\checkmark	Mag: 5518	793.00	195.10	-69.50	F	\checkmark	Mag: 5489 Temp: 21.1
176.00	184.40	-72.50	F	\checkmark	Mag: 5493 Temp: 23.9	844.00	194.00	-69.50	F	\checkmark	Mag: 5518
228.00	182.10	-72.40	F	\checkmark	Mag: 5494 Temp: 23.2	895.00	188.20	-69.50	F	\checkmark	Mag: 5507
279.00	184.70	-72.50	F	\checkmark	Mag: 5500 Temp: 28.0 Roll: 058.7	946.00	193.00	-69.80	F	\checkmark	mag: 5469
330.00	185.40	-72.30	F	\checkmark	Mag: 5522 temp: 19.3 Roll: 117.4	1000.00	189.10	-69.60	F	\checkmark	Mag: 5492
381.00	186.80	-71.80	F	\checkmark	Mag: 5511 Temp: 24.1						
432.00	188.40	-71.20	F	\checkmark	Mag: 5526						
483.00	190.10	-70.70	F	\checkmark	Mag: 5504						
535.00	190.50	-70.80	F	\checkmark	mag: 5471						
588.00	193.30	-70.40	F	\checkmark	Mag: 5528 Temp: 20.7 Roll: 036.9						

05-Dec-14 1:51:30 PM

Hole Number	WTR-059			Project: TRIL	L_SCJV				Project Numb	er:	504			
From (m)	To (m)		Litholog	У	Sample #	From	То	Length		Au ′g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
0.00	10.27	CAS Casing		Sudbury Breccia :										
10.27	12.35	IQD inclusio	on quartz diorite	Sudbury Breccia :										
10.21	12.00	Dark gray aphanitic mati	rix. Clasts are mostly gran similated. There is trace py	tic with minor mafic and ultramafic clasts rite throughout the section. In places, th	. Most clasts e clasts are									
		Structure Maj.:	Type/Core Angle	Comment										
		12.34 - 12.35	BC	rubble										
12.35	22.44	MDIA <i>Matach</i> Black fine grained unit th	ewan Diabase nat is locally magnetic.	Sudbury Breccia :	P448160	21.27	21.75	0.48		0.00	0.02	0.02	0.01	0.02
		Alteration Maj:	Type/Style/Intensity	Comment										
		12.35 - 22.44	EP VN M	associated with minor quartz										
		<i>Mineralization Maj. :</i> 12.73 - 12.74 16.00 - 16.01 21.38 - 21.39 21.58 - 21.59	Type/Style/%Mineral CP BL 0.01 CP BL 0.01 CP BL 0.01 CP BL 0.01	Comment										
		Structure Maj.:	Type/Core Angle	Comment										
		12.35 - 22.44	VN 25	epidote vein										

le Number	WTR-059			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Litholog	nv	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
()	()	Minor Interval:	3	<i></i>		-	-			,	,	. ,	
		15.40 15.54	вх	Breccia									
				rounding mafic clasts									
		Minor Interval:	- ·	-									
		16.44 16.51	BX	Breccia									
			fine grain epidote sur	rounded by mafic clasts									
		Minor Interval:											
		19.33 19.34											
			first appearance of g	ranitic country rock in the diabase									
22.44	32.33	IQD inclusi	ion quartz diorite	Sudbury Breccia :	P448161	22.95	23.58	0.63	0.00	0.00	0.00	0.00	0.0
		Dark gray, fine grained	matrix, approximately 10%	of the rock is clasts. The majority of the clasts are	P448162	24.92	25.83	0.91	0.01	0.01	0.01	0.01	0.0
				subrounded and appear to be assimilated.	P448163	26.32	27.09	0.77	0.00	0.00	0.00	0.01	0.0
		Alteration Maj:	Type/Style/Intensity	Comment				-					
		22.44 - 32.33	EP VN W	52 DTCA									
		22.44 - 32.33	Qtz VN W	52 DTCA									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		22.73 - 22.74	CP BL 0.01	associated with epidote and pyrite									
		23.13 - 23.14	CP BL 0.01	associated with epidote and pyrite									
		23.42 - 23.43	CP BL 0.01	associated with epidote and pyrite									
		23.45 - 23.46	CP BL 0.01	associated with epidote and pyrite									
		24.68 - 24.69	CP BL 0.01										
		25.00 - 25.10	PY BL 1	associated with coarse epidote vein									
		25.71 - 25.72	CP BL 0.01										
		26.85 - 26.86	CP BL 0.01										
				Sudbury Breccia :									

To (m) Lithology	Project: TRILL_SCJV					Project Number: 504							
		Litholog	У	Sample #	From	То	Length			Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
	Intermediate overall but massive gneiss. There	the unit is very heterogener are alternating leucosomes	ous. Continuously changing intervals of banding and and melanosomes.										
	Alteration Maj:	Type/Style/Intensity	Comment										
	32.33 - 60.74	HE P W	increased in intensity from 38.72-40.00										
	58.45 - 58.47	EP VN WM	55 DTCA										
	58.45 - 58.47	Qtz VN WM	55 DTCA										
	59.67 - 59.87	EP VN WM	49 DTCA										
	59.67 - 59.87	Qtz VN WM	49 DTCA										
	59.67 - 59.87	HE VN WM	49 DTCA										
	Mineralization Maj. :	Type/Style/%Mineral	Comment										
	32.33 - 60.74	PY BL 1	found locally throughout the section										
64.00	MGN Mafic G	Gneiss	Sudbury Breccia :										
	rock is medium grained the mafic units.	and dark gray. There are s	ome smaller felsic bands that are much coarser than										
	To (m)	To (m) Intermediate overall but massive gneiss. There Alteration Maj: 32.33 - 60.74 32.33 - 60.74 58.45 - 58.47 58.45 - 58.47 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 59.67 - 59.87 64.00 MGN Maj. Correct is medium grained	To (m)LithologIntermediate overall but the unit is very heterogenear massive gneiss. There are alternating leucosomesAlteration Maj:Type/Style/Intensity32.33 - 60.74HE P W32.33 - 60.74HE P W58.45 - 58.47EP VN WM58.45 - 58.47Qtz VN WM59.67 - 59.87EP VN WM59.67 - 59.87Qtz VN WM59.67 - 59.87HE	To (m) Lithology Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Alteration Maj: Type/Style/Intensity Comment 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 58.45 - 58.47 EP VN WM 55 DTCA 58.45 - 58.47 EP VN WM 49 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA 50.07 Y BL 1 found lo	To (m) Lithology Sample # Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Alteration Maj: Type/Style/Intensity Comment 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 58.45 - 58.47 EP VN WM 55 DTCA 58.45 - 58.47 EP VN WM 49 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 HE VN VN 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA 59.67 - 59.87 HE VN VM 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA 59.67 - 59.87 HE VN VM 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA 50.67 - 59.87 EV W W W W W W W W </td <td>To (m) Lithology Sample # From Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Alteration Maj: Type/Style/Intensity Comment 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 58.45 - 58.47 EP VN WM 55 DTCA 58.45 - 58.47 Qtz VN WM 49 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 HE VN WM 10 cond locally throughout the section 64.00 MGN Matic Gneiss Sudburg Brecta : rock is medium grained and dark gray. There are some smaller felsic bands that are much coarser than Subsci bands that are much coarser than</td> <td>To (m) Lithology Sample # From To Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Alteration Maj: Type/Style/Intensity Comment 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 58.45 - 58.47 EP VN WM 55 DTCA 58.45 - 58.47 Qtz VN WM 49 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 Qtz VN WM 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA 50.67 - 59.87 HE VN WM 10 dut locally throughout the section 50.07 MINICE To dut locally thro</td> <td>To (m) Lithology Sample # From To Length Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Alteration Maj: Type/Style/Intensity Comment 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 58.45 - 58.47 EP VN WM 55 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA Mineralization Maj: Type/Style/%Mineral Comment 32.33 - 60.74 PY BL 1 64.00 MGN Mafic Gneiss Subbury Breccia : rock is medium grained and dark gray. There are some smaller felsic bands that are much coarser than Sin burburb coarser than</td> <td>To (m) Lithology Sample # From To Length Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Interaction Maj: Type/Style/Intensity Comment 32.33 · 60.74 HE P W increased in intensity from 38.72-40.00 58.45 · 58.47 EP VN VM 55 DTCA 58.45 · 58.47 Qiz VN WM 55 DTCA 59.67 · 59.87 Qiz VN WM 49 DTCA 59.67 · 59.87 Qiz VN WM 49 DTCA 59.67 · 59.87 Qiz VN W4 9D TCA 32.33 · 60.74 PY BL 1 found locally throughout the section Found locally throughout the section 64.00 MGN Mafic Gneiss Sudbury Breccia : rock is medium grained and dark gray. There are some smaller felsic bands that are much coarser than</td> <td>To (m) Litholgy Sample # From To Length Au (w) Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Atteration Maj: Type/Style/Intensity Comment Sample # From To Length (w) 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 Satury 55.01CA Satury 55.01CA</td> <td>To (m) Lithology Sample # From To Length Au Pt (g/l) Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gnetiss. There are alternating leucosomes and melanosomes. Main for the same same same same same same same sam</td> <td>To (m) Lithology Sample # From To Length Pd (g/l) (g/l) (g/l)</td> <td>To (m) Litholog Sample # From To Length Ni Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Sample # From To Length Qi Qi</td>	To (m) Lithology Sample # From Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Alteration Maj: Type/Style/Intensity Comment 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 58.45 - 58.47 EP VN WM 55 DTCA 58.45 - 58.47 Qtz VN WM 49 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 HE VN WM 10 cond locally throughout the section 64.00 MGN Matic Gneiss Sudburg Brecta : rock is medium grained and dark gray. There are some smaller felsic bands that are much coarser than Subsci bands that are much coarser than	To (m) Lithology Sample # From To Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Alteration Maj: Type/Style/Intensity Comment 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 58.45 - 58.47 EP VN WM 55 DTCA 58.45 - 58.47 Qtz VN WM 49 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 Qtz VN WM 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA 50.67 - 59.87 HE VN WM 10 dut locally throughout the section 50.07 MINICE To dut locally thro	To (m) Lithology Sample # From To Length Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Alteration Maj: Type/Style/Intensity Comment 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 58.45 - 58.47 EP VN WM 55 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 EP VN WM 49 DTCA 59.67 - 59.87 HE VN WM 49 DTCA Mineralization Maj: Type/Style/%Mineral Comment 32.33 - 60.74 PY BL 1 64.00 MGN Mafic Gneiss Subbury Breccia : rock is medium grained and dark gray. There are some smaller felsic bands that are much coarser than Sin burburb coarser than	To (m) Lithology Sample # From To Length Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Interaction Maj: Type/Style/Intensity Comment 32.33 · 60.74 HE P W increased in intensity from 38.72-40.00 58.45 · 58.47 EP VN VM 55 DTCA 58.45 · 58.47 Qiz VN WM 55 DTCA 59.67 · 59.87 Qiz VN WM 49 DTCA 59.67 · 59.87 Qiz VN WM 49 DTCA 59.67 · 59.87 Qiz VN W4 9D TCA 32.33 · 60.74 PY BL 1 found locally throughout the section Found locally throughout the section 64.00 MGN Mafic Gneiss Sudbury Breccia : rock is medium grained and dark gray. There are some smaller felsic bands that are much coarser than	To (m) Litholgy Sample # From To Length Au (w) Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Atteration Maj: Type/Style/Intensity Comment Sample # From To Length (w) 32.33 - 60.74 HE P W increased in intensity from 38.72-40.00 Satury 55.01CA Satury 55.01CA	To (m) Lithology Sample # From To Length Au Pt (g/l) Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gnetiss. There are alternating leucosomes and melanosomes. Main for the same same same same same same same sam	To (m) Lithology Sample # From To Length Pd (g/l) (g/l) (g/l)	To (m) Litholog Sample # From To Length Ni Intermediate overall but the unit is very heterogeneous. Continuously changing intervals of banding and massive gneiss. There are alternating leucosomes and melanosomes. Sample # From To Length Qi Qi

Alteration Maj:	Type/Style/Intensity	Comment
60.74 - 64.00	EP VN W	fine grain epidote veins average 50 DTCA
60.74 - 64.00	HE P M	the quartz rich felsic zones have the hematite alteration

64.0096.56IGNIntermediate GneissSudbury Breccia :The upper portion of the section is weakly foliated with very coarse crystals. The crystal faces are very
rounded and appear to be assimilated. At 72.90 the section transitions into a more banded and finer
grained gneiss (crystals still coarse). The banded section alternates between leucosomes (60%) and

05-Dec-14 2:00:20 PM

Page 3 of 22

Hole Numbe	r WTR-059			Project: TRILL_SCJV					Project Numbe	r: 504			
From	То					_	_		А			Ni	Cu
(m)	(m)		Litholog	lV	Sample #	From	То	Length	(g	t) (g/t) (g/t)	(%)	(%
		melanosomes (40%). slightly increases (ver		the foliation/banding weakens and the crystal size									
		Alteration Maj:	Type/Style/Intensity	Comment									
		69.10 - 69.15	CHL VN M	associated with quartz and epidote									
		69.10 - 69.15	Qtz PD M										
		73.00 - 74.15	EP VN W										
		82.09 - 89.52	HE P S	also at 84.78 there is a 4cm of blebby epidote, epidote veins parallel to core axis									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		64.00 - 96.56	PY BL 0.1	minor clusters of pyrite throughout the whole section									
		Structure Maj.:	Type/Core Angle	Comment									
		96.00 - 96.10	FLT	missing core									
96.56	146.38	OD Olivii	ne Diabase	Sudbury Breccia :									
		Colour is dark gray. L gradationally increase	in size downhole. The chille	argin. The crystals are very fine at the contact and d margin has 1% feldspar phenocrysts that are up to from the chilled margins. Other than directly at the									

gradationally increase in size downhole. The chilled margin has 1% feldspar phenocrysts that are up to 1cm in length. These phenocrysts dissapear away from the chilled margins. Other than directly at the contacts, the rock is very magnetic. The lower contact is also chilled and the feldspar phenocrysts appear at approximately 141 m.

Alteration Maj:	Type/Style/Intensity	Comment
103.00 - 103.27	BL VN W	16 DTCA
108.10 - 108.11	EP VN W	
108.10 - 108.11	Qtz VN W	
113.48 - 113.50	CHL VN W	

Hole Number	WTR-059			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Litholog	ly	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
146.38	175.41	IQD with clasts rangin		Sudbury Breccia : e clasts are 50% felsic and 50% mafic. The mafic	P448164 P448165	155.60 158.00	156.33 158.79	0.73 0.79	0.00 0.00		0.00 0.00	0.01 0.01	
	ci 1 a: w A 14	173.16 the rock has a t	typical dark gray QD matrix on 173.16-175.41 there is a r	rounded. The QD matrix is fine grained. 153.68- colour. The clast size, colour, and shape is the same nessed up breccia section that is slightly bleached	P448166 P448167	160.24 162.39	160.56 163.08	0.32 0.69	0.00 0.00		0.00 0.01	0.01 0.01	
					P448168	167.03	167.36	0.33	0.00	0.00	0.00	0.01	0.04
		Alteration Maj:	Type/Style/Intensity	Comment	P448169	168.91	169.53	0.62	0.00	0.00	0.00	0.01	0.01
		148.38 - 148.39	K PD M	throughout the whole section there are clasts that have a bleached alteration rim, most likely potassic	P448170	172.25	172.78	0.53	0.00	0.01	0.01	0.01	0.01
		157.64 - 157.65	EP VN W	randomly oriented stringers									
		160.23 - 160.25	CHL PCH M	2cm clast with a 5cm alteration rim surrounding it									
		161.00 - 165.00	HE VN W	purple hematite occuring in veins and surrounding clasts									
		166.33 - 166.40	K PD W										
		166.33 - 166.40	EP PD W										
		166.33 - 166.40	CHL PD W										
		166.33 - 166.40	Qtz PD W										
		172.54 - 172.60	HE VN M	36 DTCA									
		173.50 - 173.70	CHL VN W	pyrite concentrated in chlorite altered mafic zones									
		173.71 - 174.81	HE P M										
		<i>Mineralization Maj. :</i> 155.91 - 155.92 160.65 - 160.66 162.78 - 162.79 163.92 - 163.93 164.53 - 164.54 164.61 - 164.62	Type/Style/%Mineral CP BL 0.01 CP BL 0.01	Comment									

Hole Numbe	r WTR-059			Project: TRILL_SCJV					Project Number:	504			
From	То								Au	Pt	Pd	Ni	Cu
(m)	(m)		Litholo	pgy	Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)
		164.83 - 164.84	CP BL 0.01										
		164.94 - 164.95	CP BL 0.01										
		166.76 - 166.77	CP BL 0.01										
		169.27 - 169.28	CP BL 0.01										
		169.44 - 169.45	CP BL 0.01										
		171.21 - 171.22	CP BL 0.01										
		174.42 - 174.43	CP BL 0.01										
		Structure Maj.:	Type/Core Angle	Comment									
		146.38 - 153.68	F	rocks are heavily fractured which likely represents a fault. The core is very bleached which is probably die to fluids moving through a fault.									

175.41180.38FGNFelsic GneissSudbury Breccia :

section is banded but dominated by quartz and feldspar rich felsic bands. Bands are oriented 50 DTCA. Locally there is hematite alteration over short intervals. Towards the bottom of the section the felsic areas have been slightly stained green due to epidote alteration.

Alteration Maj:	Туре	e/St	yle/Intensity	Comment
180.13 - 180.28	HE	Ρ	Μ	associated with randomly oriented epidote

Structure Maj.:	Type/Core Angle	Comment
175.41 - 180.38	GN 50	strong banding

Hole Number WTR-059

Project: TRILL_SCJV

Project Number: 504

From	То								Au	Pt	Pd	Ni	Cu
(m)	(m)		Lithology		Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%)
180.38	260.89	IQD	inclusion quartz diorite	Sudbury Breccia :	P448171	182.84	183.24	0.40	0.00	0.00	0.00	0.01	0.03
				he lighter sections have been bleached from	P448172	184.23	185.54	1.31	0.00	0.00	0.00	0.00	0.01
				ne quartz/epidote veins. The halo zones are much cciated. The upper contact looks like an in situ	P448173	194.29	195.01	0.72	0.00	0.00	0.00	0.01	0.00
				eccia. Breccia fragments are very angular and heavily hematized and brecciated. 202.60-203.02	P448174	204.69	205.36	0.67	0.00	0.01	0.00	0.01	0.02
		is a blead	ched in situ breccia zone 33 DTCA. 211.71-2	13.01 is bleached dark green. Towards the bottom	P448175	221.74	223.26	1.52	0.00	0.00	0.00	0.01	0.00
		matrix is a	ction there is an increase in small clasts (<10 also brecciated with very angular fragments. ly deformed unit that is more recognizable a		P448176	232.37	233.65	1.28	0.00	0.00	0.00	0.00	0.01

Alteration Maj:	Type/Style/Intensity	Comment
205.71 - 205.72	HE VN W	26 DTCA
218.20 - 218.21	EP VN W	18 DTCA
218.20 - 218.21	CHL VN W	18 DTCA
228.80 - 228.81	Carb VN W	vuggy carb vein with hematite
230.00 - 230.11	EP VN W	randomly oriented swarm
Mineralization Maj. :	Type/Style/%Mineral	Comment
194.51 - 204.97	CP BL 0.01	
221.93 - 243.16	CP BL 0.01	small blebs consistantly over the interval. Typically associated with qtz veins and less commonly epidote, hematitie, carbonate, pyrite, and chlorite.
Structure Maj.:	Type/Core Angle	Comment
193.47 - 193.73	F 41	fractures and porous rocks. Rocks are slightly bleached from alteration when fluids moved through the fractures
193.47 - 193.73	BX 33	bleached in situ breccia zone with very angular fragments

represents the contact between the gneiss and the IQD, The gneiss likely is clasts up to a meter in size. 247.75 there is a 2cm altered zone that is sheared at 26 DTCA. 254.19-254.40 is a breccia zone. 254.67-255.12 clast rotated breccia with very angular clasts in a qtz/carb matrix. 259.55-259.81 1D% SDBX. The whole section from 246-260.89 is structurally complex with pervasive hematite and epidote alteration

le Number	WTR-059			Project: TRILL_SCJV					Project Number:	504			
rom (m)	То (т)		Litholog	y	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	C (?
(m) (m) 260.89 290.40		260.89-264.80, very red distinct banding betweer 267.95 there is a small s calcite veins. 268.89-273 be a metabreccia. 275.1	n mafic and felsic areas but ection of IQD that is dark g 3.37 is same as previous se 9-275.31 there is glassy SE	Sudbury Breccia : associated with epidote stringers. Locally there is the texture is granular for the most part. 267.00- ray and aphanitic. IQD is altered by epidote and ection. The gneisses between the two IQD units may DBX with granitic clast (1D5), contacts are very sharp. .05-288.70 there is a breccia zone surrounded by qtz. Comment trace throughout the whole section Comment may be a metabreccia.									
290.40	292.42	Dark gray fine grained m	the contacts. This small ch	<i>Sudbury Breccia :</i> red gneiss clasts. The matrix has a dark green tinge haotic section of rock likely represents the contact <i>Comment</i>									
292.42	297.12	FGN Felsic (Sudbury Breccia : re is banding at 36 DTCA. At 295.59-295.74 there is									

lole Number	WTR-059			Project: TRILL_SCJV					Project Number:	504			
From (m)	To (m)		Litholog	ay	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		a section of breccia in SDBX or possibly IQI		trix is black and fine grained. The breccia is likely									
		Alteration Maj:	Type/Style/Intensity	Comment									
		290.42 - 295.12	CHL VN W	randomly oriented veins									
		290.42 - 295.12	EP VN W	randomly oriented veins									
		290.42 - 295.12	Qtz VN W	radomly oriented veins									
		Structure Maj.:	Type/Core Angle	Comment									
		292.42 - 297.12	GN 36	banding									
297.12	302.05	This section is either is a dark matrix which are diffuse. The mat	h makes the rock appear like l trix is very fine grained. There	Sudbury Breccia : and gneiss or just a brecciated gneiss section. There IQD. Also, the contacts between the clasts and matrix are clasts up to 2cm in this section. The larger clasts 301.41 there is a shear fabric with a quartz vein at 9									
		Alteration Maj:	Type/Style/Intensity	Comment									
		295.12 - 300.05	Qtz VN M	42 DTCA									
		295.12 - 300.05	EP P W										
		Structure Maj.:	Type/Core Angle	Comment									
		297.12 - 302.05	BX	appears to be a clast rotated breccia									
302.05	308.73	OD Oliv	rine Diabase	Sudbury Breccia :									
		The contact margins	are chilled and grain size incr	s 22 DTCA. The contacts are very sharp and straight. eases slightly towards the center of the section. There v. 302.70-304.09 there is a contact between the OD									
-Dec-14 2:0	0:20 PM											Pa	ige 9

Number	WTR-059			Project: TRILL_SCJV						Project Numbe	er: 5	504			
om (m)	To (m)		Litholog	<i>av</i>	Sample	# Fro	om	То	Length		u ₁∕t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cı (%
. ,		and gneiss parallel to 303.94 and 305.47-3	the CA. The rock is very ma	gnetic. Breccia zones filled with quartz at 303.92-											
		Alteration Maj:	Type/Style/Intensity	Comment											
		300.05 - 306.73	EP PD W												
		300.05 - 306.73	EP VN M	haloes at the upper and lower contacts											
		Structure Maj.:	Type/Core Angle	Comment											
		303.92 - 303.94	BX	filled with quartz											
		305.47 - 305.80	BX	filled with quartz											
308.73	406.54	FGN Fels	ic Gneiss	Sudbury Breccia :											
:08.73 406		brecciated. 312.16-3 phenocrysts up to 1 of 315.07 there is the si feldspar crystals with banded from 329.58-	312.25 there is a section of ver cmm. The contacts are 28 DT ame as above with contacts w trace pyrite. At 329.58 the gr	potassic alteration. The upper part of the section is ry fine grain black OD that contains 10% feldspar 'CA and are very sharp with epidote haloes. 314.81- ith contacts at 45 DTCA. There are also minor neissic banding is 43 DTCA. The rocks are very well gneiss is very coarse and red/white in colour because is present.											
		Structure Maj.:	Type/Core Angle	Comment											
		308.73 - 330.00	BX	upper part of the section is brecciated											
		329.58 - 330.00	GN 43	Banding											
406.54	416.59	SDBX Sud	bury Breccia	Sudbury Breccia : 1	D5 P4481	7 40)7.87	408.73	0.86	(0.00	0.00	0.00	0.02	(
			•	r to IQD seen previously in the hole. Fine dark gray	1 4401	7 40		400.75	0.00			0.00	0.00		

05-Dec-14 2:00:20 PM

Page 10 of 22

ole Number	WTR-059			Project: TRILL_SCJV					Project Number:	504			
From	То								Au	Pt	Pd	Ni	Cu
(m)	(m)		Litholog	IV	Sample #	From	То	Length	(g/t)	(g/t)	(g/t)	(%)	(%
		clasts up to 80 cm in ler was not magnetic. The	igth. However, the mafic m lower contact is 16 DTCA a aching was seen at the con	ct is diffuse and perpendicular to core axis. There are natrix in this section is magnetic while the previous QD and the gneiss below the contact is bleached until tacts of the IQD and gneiss. At 411.72 there is a									
		Alteration Maj:	Type/Style/Intensity	Comment									
		409.72 - 409.75	EP VN M	15DTCA									
		409.72 - 409.75	CHL VN M	15 DTCA									
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		406.02 - 409.37	CP BL 0.01										
		Structure Maj.:	Type/Core Angle	Comment									
		411.72 - 411.72	F 15										
		411.72 - 411.72	SHR 15										
416.59	625.90	IGN Interme	ediate Gneiss	Sudbury Breccia :									

On average, this section in intermediate. The rocks are well banded but the felsic and mafic zones are blended together so there are not distinct leucosomes and melanosomes. Grain size is variable but, in general, the felsic minerals are coarser grained than than the mafics. 419.03-419.96 there is a highly altered bleached zone altered by epidote, pyrite, and silica. The pyrite is found in quartz veins. 435 banding = 39 DTCA, 467 banding= 85 DTCA, 478.50 banding= 43 DTCA, 497 banding= 53 DTCA. 448.07-448.27 there is a small fault recognized from the broken core. 480.67 there is a decrease in banding and the rocks have a mottled texture from rounded feldspars. The feldspars have increased epidote associated with them.

Alteration Maj:	Type/Style/Intensity	Comment
416.88 - 423.66	Carb VN M	
416.88 - 423.66	Qtz VN M	
416.88 - 423.66	HE VN M	
416.88 - 423.66	EP VN M	

Hole Number WTR-059 Project Number: 504 Project: TRILL_SCJV То Pt Pd Ni Cu From Au (g/t) Lithology Sample # То Length (g/t) (g/t) (%) (%) (m) (m) From 439.44 - 439.80 Qtz VN W HE INT W crystalline hematite 439.44 - 439.80 448.68 - 448.70 Carb VN W Qtz VN 448.68 - 448.70 W crystals up to 1 cm 448.68 - 448.70 HE VN W 467.09 - 469.08 EP VN M increase in radomly oriented epidote veins 503.20 - 503.32 CHL PCH M EP PCH M 503.20 - 503.32 504.00 - 514.00 CHL VN M 504.00 - 514.00 EP VN Μ 504.00 - 514.00 Carb VN M 520.79 - 526.57 EP PCH M concentrated in mafic zones EP P S 530.19 - 530.78 almost entirely altered other than 10% qtz. Minor hematite associated with the epidote 549.26 - 549.66 EP VN S randomly oriented veins 549.26 - 549.66 Carb VN S randomly oriented veins Carb VN M 580.51 - 581.47 vuggy 580.51 - 581.47 EP P M 580.51 - 581.47 КРМ 613.37 - 613.63 EP B S in mafic band Structure Maj.: Type/Core Angle Comment GN 39 435.00 - 436.00 banding FLT 448.00 - 448.27 broken core 467.00 - 468.00 GN 85 banding

ole Number	WTR-059			Project: TRILL_SCJV					Project Numb	er:	504			
From (m)	To (m)		Litholog	IV	Sample #	From	То	Length		Au ig/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
	()	478.50 - 479.00	GN 43	banding	•			U						
		497.00 - 498.00	GN 53	banding										
625.90	637.17	MD Mafic L	Dike	Sudbury Breccia :	P448181	626.00	627.40	1.40		0.00	0.01	0.01	0.01	0.0
		except for at the chilled similar to diabase but th	margin. The true lithology the blebby nature of the mine	chilled margin for 15 cm. The rocks is magnetic of the dike is currently unknown The texture is very eralization appears like QD. The rock is magnetic tact is chilled and at 38 DTCA.										
		Alteration Maj:	Type/Style/Intensity	Comment										
		625.90 - 637.17	EP VN W	randomly oriented veinlets throughout the mafic dike										
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		625.90 - 637.17	PY BL 0.1	associated with fine grain epidote veins										
		625.90 - 637.17	CP BL 0.01	associated with fine grain epidote veins										
637.17	694.19	IGN Interm	ediate Gneiss	Sudbury Breccia :										
		Crystals size ranges from band with a green tinge due to an increase in the	m coarse to very coarse. 6 due to pervasive epidote al e size of qtz crystals (up to	feldspars. The gneiss is moderately well banded. 56.31-657.64 there is a large, very magnetic mafic teration. 661.92-663.25 there is a small felsic section 2cm). 682.76-683.51 there is a highly altered zone includes qtz/potassic/ep/chl.										
		Alteration Maj:	Type/Style/Intensity	Comment										
		645.66 - 645.91	EP P S	9.% epidote, 10% qtz										
		649.99 - 651.04	КРМ	rock is very red in colour										
		669.24 - 669.43	HE PCH M	pyrite clustered around hematite zone										
		669.24 - 669.43	EP P S											
		689.04 - 689.05	Carb VN W											

ole Number	WTR-059			Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Litholog	ЭУ	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Ci (%
		Structure Maj.:	Type/Core Angle	Comment									
		683.51 - 684.00	BX	hydrothermal breccia									
694.19	721.80	MD Mafic D	Dike	Sudbury Breccia :	P448192	696.76	698.37	1.61	0.00	0.00	0.00	0.00	0
ô94.19		clasts. There is pyrite a between the mafic dike a are multiple small dikes.	nd minor chalcopyrite prox and gneiss. The hole is jus . The mafic dike has a dark	The is 3 cm of bleached fine grained SDBX with mafic imal to the contact. This interval continuosly switches at skimming the contact of the two rock types or there a green tinge to it, due to pervasive epidote alteration. In plagioclase crystals can be seen.	P448182	704.90	706.15	1.25	0.00	0.00	0.00	0.00	0
		Alteration Maj:	Type/Style/Intensity	Comment									
		699.92 - 700.92	HE VN W										
		699.92 - 700.92	Carb VN W										
		699.92 - 700.92	Qtz VN W										
		699.92 - 700.92	EP P S										
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		694.79 - 708.29	CP BL 0.01	found at the margins if the diffuse gneiss clast contacts									

Sudbury Breccia :

Weakly banded, highly altered rocks. The felsic sections are coarse to very coarse grained while the mafic sections are medium to coarse grained.

Alteration Maj:	Type/Style/Intensity	Comment
721.80 - 731.52	Carb VN W	

Intermediate Gneiss

05-Dec-14 2:00:20 PM

721.80

731.52

IGN

e Number	WTR-059			Project: TRILL_SCJV					Project Number:	504			
rom (m)	То (т)		Lithology	/	Sample #	From	То	Length	Au (9/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cı (%)
		721.80 - 731.52	Qtz VN W										
		721.80 - 731.52	EP P W										
731.52	737.05	MD Mafie	c Dike	Sudbury Breccia :	P448183	734.32	735.68	1.36	0.00	0.00	0.00	0.01	0.
		due to carbonate alter	ration. The center of the dike i	margin that is bleached for 10 cm. The bleaching is s coarser with 1-2 mm plagioclase crystals. The the mafic dike from 625.9-637.17.	P448184	736.17	736.79	0.62	0.00	0.00	0.00	0.01	0.
		<i>Mineralization Maj. :</i> 731.53 - 733.87	Type/Style/%Mineral PY BL 1	Comment at 733.87 there is the first appearance of cpy exsolved within the pyrite blebs and this continues until 737.05									
737.05	824.25	IGN Inter	mediate Gneiss	Sudbury Breccia :									
		sections where there well banded locally bu rock has a mottled tex as previous0. 780.50 chilled with minor blet mottled texture. 811.4 lenses of the mafic di	is an increase in quartz and in ut generally pretty poorly bande xture and there is an increase i 0-780.73 there is a small dike o bby pyrite. 789.35-789.55 fault 88-812.08 minor black glassy \$	an intermediate gneiss but locally there are felsic increase in the size of the quartz crystals. The rock is ad and more granular in texture. 746.45-749.06 the n pervasive potassic alteration. 758.96-762.41 (same f the "mafic dike" at 43 DTCA. The whole dike is with broken core. 804.07-808.76 the rocks have a SDBX with clasts <1mm. 812.51-813.29 there are and contain fine grained epidote veins with minor s had a mottled texture.									
		Alteration Maj:	Type/Style/Intensity	Comment									
		750.23 - 754.31	EP PCH M										

Hole Number	WTR-059			Project: TRILL_SCJV					Project Num	ber:	504			
From (m)	To (m)		Litholo	gy	Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		773.12 - 773.91	EP PCH M											
		773.12 - 773.91	CHL P M	chlorite is surrounded by epidote										
		781.73 - 781.95	EP PCH W	medium grained epidote associated.										
		Structure Maj.:	Type/Core Angle	Comment										
		789.35 - 789.55	FLT											
		789.35 - 789.55	BC											
824.25	836.89	MD Mafic	: Dike	Sudbury Breccia :	P448185	824.56	826.00	1.44		0.00	0.00	0.00	0.01	0.02
		20 cm below the rock assimilated. The rock the section. Epidote a	is bleached and contains cla x is magnetic, similar to the p altered plagioclase crystals u e chilled with an increase in	s been silicified and altered by fine grain epidote. For asts of the gneiss. The clasts appear to be previous mafic dikes. There is blebby pyrite throughout up to 3mm can be seen in the center of the dike. Upper pyrite close to the contacts, Overall, the rocks are dark	P448186	826.45	827.65	1.20		0.00	0.00	0.00	0.01	0.02
		Mineralization Maj. :	Type/Style/%Mineral	Comment										
		824.25 - 836.89	PY BL											
		825.70 - 828.75	CP BL	trace										
836.89	838.60	FGN Felsi	c Gneiss	Sudbury Breccia :										

Sharp and straight upper contact at 836.89. The gneiss is more felsic than the previous gneisses due to an abundance of quartz. 837.32 there is a 1cm vein perpendicular to CA of the quenched mafic dike.

Hole Number	WTR-059			Project: TRILL_SCJV					Project Number	er: 5	504			
From (m)	To (m)		Litholog	IV	Sample #	From	То	Length		u n∕t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
838.60	839.66	MD Mafic L Upper contact is quench There are stringers of p	ned and bleached. The who	Sudbury Breccia : ble dike is chilled. The drill is skimming the contact.										
839.66	841.22		Gneiss rtz. Upper contact at 37 DT	Sudbury Breccia : CA.										
841.22	860.90	core breaks along medi	ntersection. The upper cont um grained epidote planes.	Sudbury Breccia : tact is at 63 DTCA and is a hydrothermal breccia. The Chalcopyrite is found within these broken planes. At										
		lower contacts of the dil	ke are also bleached and a											
		Alteration Maj: 842.51 - 842.52	<i>Type/Style/Intensity</i> EP VN	Comment epidote surrounds the qtz/carb vein with fine grained chalcopyrite associated										
		842.51 - 842.52	Carb VN											
		842.51 - 842.52	Qtz VN											
		843.09 - 843.30	EP VN	chaotic veining										
		<i>Mineralization Maj. :</i> 841.22 - 860.90	Type/Style/%Mineral CP F	Comment Trace cpy throughout the section. Mostly found in carb/ep veins. Most seen at fractures on alteration planes.										

05-Dec-14 2:00:20 PM

ole Number	WTR-059			Project: TRILL_SCJV					Project Number:	504			
From (m)	То (т)		Litholog	У	Sample #	From	То	Length	Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		<i>Structure Maj.:</i> 841.22 - 842.00	Type/Core Angle BX	<i>Comment</i> hydrothermal breccia									
860.90	876.98	FGN Felsion Similar to previous. In	c Gneiss icrease in chalcopyrite.	Sudbury Breccia :	P448187	860.88	861.18	0.30	0.0	0.00) 0.00	0.00	0.0
		<i>Mineralization Maj. :</i> 860.90 - 876.98	Type/Style/%Mineral CP BL	Comment large blebs									
876.98 88	995.69	MD <i>Mafic</i>	Dika	Sudbury Breccia :	D440400	077.07	970.40	4.06	0.0		0.01	0.00	0.0
876.98 885.6	865.66	Upper contact is at 40 greenish gray with plag Matachewan diabse. 8 clasts. 878-883 there i then transitions into a	DTCA, bleached, chilled, and gioclase phenocrysts up to 10 777.18-877.39 there is a qtz/c s a section of SDBX (1D5).	d contians gneiss fragments. The rock is dark m in size. The phenocryts really look like arb filled hydrothermal breccia with subrounded The section starts with 3 granitic clasts (up to 10 cm) ction still has the plagioclase phenocrysts with	P448188	877.87	879.13	1.26	0.0	5 0.0	0.01	0.00	0.0
		Mineralization Maj. :	Type/Style/%Mineral	Comment									
		876.98 - 885.68	CP BL	trasce									
		876.98 - 885.68	PY BL										
		Structure Maj.:	Type/Core Angle	Comment									
		877.18 - 877.39	BX	quartz filled hydrothermal breccia with subrounded clasts									

lole Number	WTR-059				Project: TRILL_S	CJV					Project Num	per:	504			
From (m)	То (т)		Litholog				Sample #	From	То	Length		Au (g/t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
		Upper contact is at 41 I previous sections. 886	DTCA. The rock is a typica .81 there is an 8 cm band c	l coarse grained, int of 1D5 SDBX. 887.6	ermediate gneiss similar to 6 there is a 1cm band of 1	o D5 SDBX.										
887.90	891.68		ıry Breccia		Sudbury Breccia :	1A5	P448191	887.96	889.27	1.31		0.00	0.00	0.00	0.00	0.01
		pyrite. There is also cu structure at 890.53-890	Ily hematized gneiss clasts. Ibic pyrite found in the glass 0.92 that has rubbly/rotten c that has been filled with chl ation.	sy matrix. SDBX is ore. Above the bree	hosted in the mafic dike. T	here is a al breccia										
		Structure Maj.: 890.53 - 890.92	Type/Core Angle BC	Comment												
891.68	894.95	The start of the section	nediate Gneiss is chaotic but it grades into there is fine grain SDBX at	a typical IGN with the lower contact.	Sudbury Breccia : coarse crystals. The section	on is										
894.95	904.90	MD Mafic	Dike		Sudbury Breccia :		P448189	898.50	899.24	0.74		0.00	0.00	0.00	0.01	0.02
		Towards the center of t	and straight and at 25 DTC he dike, the crystals are me s surrounded by pyrite. Sma	edium grained and a	ppear like diabase. At 895		P448190	902.06	902.59	0.53		0.00	0.00	0.00	0.01	0.02

05-Dec-14 2:00:20 PM

vein

LITHOLOGY REPORT - Detailed -

Hole Numbe	r WTR-059				Project:	TRILL_SCJV						Project Nu	mber:	504			
From (m)	Το						C	- 4	F ue m	T -	Loweth			Pt			
(<i>m</i>)	(<i>m</i>)	Minorolization Mai .	Litholog				Samp	е #	From	То	Length		(g/t)	(g/t)	(g/t)	(%)	(%)
		<i>Mineralization Maj. :</i> 894.95 - 904.90	Type/Style/%Mineral PY CG	<i>Comment</i> found in clusters													

904.90918.29IGNIntermediate GneissSudbury Breccia :Typical well banded gneiss similar to previous intermediate gneisses but slightly more mafic.906.38-907.92 qtz/feldspar pegmatite dike with crystals up to 3cm. The rocks are hematized and potassic
altered. Trace chalcopyrite found at the bottom of this section. At 918.13 there is a 1cm fine grain SDBX

918.29 925.35 **MD** Mafic Dike Sudbury Breccia : Similar to previous section. There is an increase in plagioclase phenocrysts towards the center of the dike. The phenocrysts are up to 2cm in size. Really looks like Matachewan diabase.

925.35 930.02 IGN Intermediate Gneiss Sudbury Breccia : Upper contact at 39 DTCA. Similar to previous. Alteration Maj: Type/Style/Intensity Comment 929.85 - 929.95 EP P S 90% epidote, 10% quartz

05-Dec-14 2:00:20 PM

Hole Number	WTR-059			Project: TRILL_SCJV					Project Numbe	er: 5	504			
From (m)	To (m)		Litholo	av	Sample #	From	То	Length		u n∕t)	Pt (g/t)	Pd (g/t)	Ni (%)	Cu (%)
930.02	940.00		c Dike revious. Likely skimming the o Ispar phenocrysts.	Sudbury Breccia : contact because the dike is consistantly fine grained										
940.00	953.00		r mediate Gneiss 43.53-944.42 there is broken Type/Style/Intensity EP VN M	<i>Sudbury Breccia :</i> core from a drill issue. <i>Comment</i> parallel to core axis.										
		Structure Maj.: 943.53 - 944.42	Type/Core Angle BC	Comment										
953.00	982.66	Dark gray, fine to mee	c Dike dium grained. Less alteratior SDBX qith a very fine grain	<i>Sudbury Breccia :</i> a than seen in previous sections. 976.54-978.29 the matrix (1D5).										

Hole Number WTR-059 TRILL_SCJV Project Number: 504 Project: From То Pt Pd Ni Cu Au (%) Lithology Sample # From То Length (g/t) (g/t) (g/t) (%) (m) (m) Sudbury Breccia : 1D5 982.66 1000.00 SDBX Sudbury Breccia P448193 984.02 985.37 1.35 0.00 0.01 0.01 0.00 0.02 Hosted in the phenocrystic mafic dike. 998.01-998.35 the SDBX is very chaotic due to an increse in P448194 994.63 996.04 1.41 0.00 0.01 0.01 0.00 0.02 quartz/carbonate alteration. P448195 996.40 997.11 0.71 0.00 0.01 0.01 0.00 0.02 Alteration Maj: Type/Style/Intensity Comment 998.92 - 999.06 Qtz VN S 998.92 - 999.06 HE VN S 998.92 - 999.06 EP VN S Mineralization Maj. : Type/Style/%Mineral Comment CPPY DIS 0.1 984.05 - 985.34 associated with qtz/carb veins 984.05 - 985.34 CP BL 0.01 trace 992.20 - 997.11 CPPY DIS 0.1 associated with qtz/carb veins

05-Dec-14 2:00:20 PM

Alteration Pick List Report

Intensity L	ist	Style List		
Code	Description	Code	Description	
I	intense	В	Banded	
М	moderate	Dis	Disseminated	
MS	moderate to strong	F	Fracture Controlled	
S	strong	FF	Fracture Filling	
W	weak	INT	Interstitial	
WM	weak to moderate	MO	Mottled	
		Р	Pervasive	
		PCH	Patchy	
		PD	Pods	
		SP	Spotted	
		VN	Vein	

Type List

Code	Description
ACTL	Actinolite
Alb	Albite
Ank	Ankerite
BIO	Biotite
BL	Bleaching
Carb	Carbonate
CHL	Chlorite
EP	Epidote
GAR	Garnet
GRPH	Graphitic
HE	Hematite
К	K-Feldspar
MAG	Magnetite
MS	Muscovite
Oxid	Oxidized
Qtz	Quartz
SA	Saussurization
Ser	Sericite
SERP	Serpentinized
Sid	Siderite
Sil	Silica
TLC	Talc
UR	Uralitization

Structure Pick List Report

Structure Code	Code Description
AUG	Augen
BC	Broken Core
BD	Bedded
BLKY	Blocky
BOUD	Boudinage
BX	Brecciation
CL	Cleavage
CNTR	Contorted
DSK	Disking
F	Fractured
FD	Folded
FLT	Fault
FOL	Foliated
G	Gouge
GN	Gneissic
JNTS	Joints
LAM	Laminated
LC	Lower Contact
MYL	Mylonitic
S	Schistose
SHR	Shear
SLK	Slickensides
SLP	Slips
UC	Upper Contact
VN	Veins

Mineralization Pick List Report

Style List		Type List			
Code	Description	Code	Description		
Amyg	Filling Amygdules	ASP	Arsenopyrite		
BL	Blebby	BN	Bornite		
BX	Breccia	BNMILL	Bornite/Millerite		
CG	Coarse Grained	CP	Chalcopyrite		
CL	Clasts	CPPO	Chalcopyrite/Pyrrhotite		
CU	Cumulus	GN	Galena		
DIS	Disseminated	GR	Graphite		
E	Eyes	MAG	Magnetite		
EX	Exsolution	MI	Malachite		
F	Fracture Controlled	MILL	Millerite		
FF	Fracture Filling	МО	Molybdenite		
FG	Fine Grained	PN	Pentlandite		
Frag	Fragments	PO	Pyrrhotite		
ICU	Intercumulus	POCP	Pyrrhotite/Chalcopyrite		
INT	Interstitial	POCPPN	Pyrrhotite/Chalcopyrite/Pentlandite		
Mass	Massive	POPN	Pyrrhotite>Pentlandite		
MG	Medium Grained	POPY	Pyrrhotite>Pyrite		
Net	Net Textured	PY	Pyrite		
Rim	Rims	SPH	Sphalerite		
SM	Semi-Massive				
STR	Stringers				
TR	Trace				
٧N	Veins				
ws	wisps				