We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Report on the 2012 Drill Program

Sky Lake Property, Pickle Lake, Ontario

Patricia Mining Division, Ontario

51° 14' N, 90° 39' W

NTS 52007SE, 52002NE, 52002NW

FOR

TRI ORIGIN EXPLORATION LTD.

125 Don Hillock Dr., Unit 18 Aurora, Ontario L4G 0H8

> Martin King, P.Geo. December 17, 2012

TABLE OF CONTENTS

1.0	Introduction and Property Description4
2.0	Regional Geology
3.0	Property Geology8
4.0	Previous Work9 4.1 Previous Work By Tri Origin Exploration Ltd11
5.0	2012 Sky Lake Drill Program12
6.0	Recommendations and Conclusions20
7.0	Personnel21
8.0	Statement of Qualifications22
9.0	References

FIGURES

Figure 1	Property Location	5
Figure 2	Mineral Tenure Map	6
Figure 3	Regional Geology	8
Figure 4	Sky Lake 2012 Drill Plan	Appended
Figure 5	Drill Hole SL-12-01 Section	Appended
Figure 6	Drill Hole SL-12-02 Section	Appended
Figure 7	Drill Hole SL-12-03 Section	Appended
Figure 8	Drill Hole SL-12-04 and SL-12-05 Section	Appended
Figure 9	Drill Hole SL-12-06 Section	Appended
Figure 10	Drill Hole SL-12-07 Section	Appended

TABLE

Page #

APPENDICES

Appendix A – List of Claims

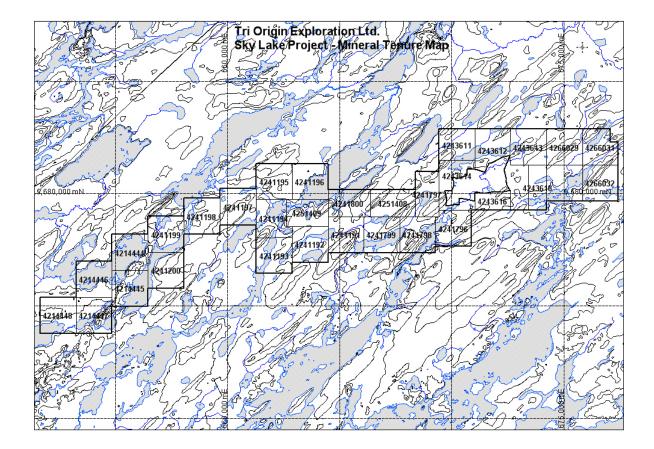
Appendix B – Sky Lake Drill Logs

Appendix C – Assay Certificates

Appendix D – Assay Procedures

1.0 INTRODUCTION AND PROPERTY DESCRIPTION

In December of 2012 Tri Origin Exploration completed a drill program on Tri Origin's Sky Lake Gold property in northwestern Ontario. The program took place between November 21st and December 6th, 2012 and consisted of seven drill holes totalling 1,180 m which were located to test several Induced Polarization (IP anomalies) outlined in a survey completed in October of 2011. The drilling was carried out over three claims (4241796, 4241797, 4241798) all wholly owned by Tri Origin Exploration.


The Sky Lake property lies within the four mapping districts of Duffell Lake, Caley Lake, Matapesatakun Bay Area and Little Ochig Lake in the Patricia Mining Division in northern Ontario. The property is located approximately 25 kilometres southwest of the town of Pickle Lake within the Pickle Lake greenstone belt (Figure 1). The seven drill holes are located to the north of Matapesatakun Bay, an embayment of St. Josephs Lake (Figure 4).

All of the Sky Lake property claims are in one contiguous block with 24 owned 100% by Tri Origin, 8 claims under an option agreement with Kitrinor Metals Inc. and 2 claims held under option agreement with Manicouagan Minerals. The claims cover a prospective area of over 79 square kilometres (7905 hectares) (Figure 2). The claims are listed in Appendix A.

FIGURE 1: Property Location

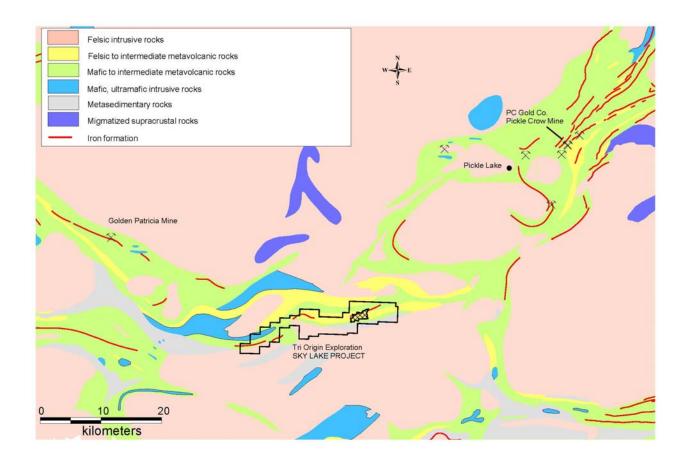
FIGURE 2: Mineral Tenure Map

2.0 REGIONAL GEOLOGY

2.1 Physiography and Vegetation

Drainage of the property area is southward via Matapesatakun Creek from Bancroft Lake to Lake St. Joseph, 1,227ft. (374 m) above sea level. Maximum relief is in the order of 115ft. (35m) with the highest elevations on southwest trending drumlins in the southwestern portions of the property. Most of the area is overburden covered with low swamps and boulder tills which probably average less than 20 feet in thickness. Outcrop is more common in the central portion of the property.

2.2 Regional Geology and Economic Mineralization (Jolliffe, 1996)


The property is located within the Uchi Subprovince, a part of the Superior Province in the Canadian Shield. The area is characterized by several arcuate, highly deformed and coalescing greenstone belts, consisting of predominantly mafic to intermediate volcanic flows, which have been intruded by numerous granitic to ultramafic intrusive bodies. The metamorphic grade ranges from greenschist to amphibolite facies. The volcanics host subordinate amounts of felsic to mafic pyroclastics, sediments and iron formation. Felsic quartz-feldspar porphyry dykes are commonly found in all lithologies (Figure 3).

Historically, gold production in the Pickle Lake area has been from structurally controlled vein type deposits or sulphide replacement bodies spatially associated with, or contained within, bands of Algoman (chert-magnetite) iron formation. The most important of these were the former producing Pickle Crow and Central Patricia mines (operated from 1935 to 1966 and 1934 to 1951, respectively) which collectively producing 2,068,020 ounces of gold from 4,966,820 tons of ore for an average grade of 0.416 ounces of gold per ton.

The Golden Patricia Mine of Barrick Gold Inc. (approx. 70,000 ounces gold per year) is located about 25 miles west-northwest of the property. The gold mineralization occurs in a quartz vein in a shear zone which cuts through a mafic metavolcanic succession.

Ultramafic rocks host copper-nickel mineralization at the former producing Thierry Mine, seven miles northwest of Pickle Lake, with mined ore and mineral reserves totaling 14,000,000 tons grading 1.6 % copper and 0.2% nickel.

FIGURE 3: Regional Geology

3.0 PROPERTY GEOLOGY

The central portion of the property in proximity to patent claims not owned by Tri Origin is the area of most abundant outcrop. The area is underlain by a west-southwest trending, vertical to steeply south-dipping assemblage of metavolcanic and metasediments with minor intrusive rocks. The northern 1/3 is dominated by mafic volcanics, mainly massive flows with some pillowed flows and tuffs, along with minor chemical sediments (oxide facies iron formation) and felsic volcanics. A diabase intrusive in the north-central area has been roughly outlined by limited outcrop exposure and previous magnetometer survey. Feldspar porphyry dykes and sills

outcrop locally and granitic intrusives have been intersected in drilling. South of the thick northern mafic volcanic unit are intermittently exposed fine grained clastic metasediments (mainly argillite, siltstone) and felsic volcanics. The central area is underlain predominately by an assemblage of intermediate volcanic and volcaniclastic rocks as well as minor intercalated fine grained clastic metasediments and felsic volcanics. The intermediate volcanic rocks and the iron formation host several historically significant gold zones on the property. On surface the intermediate volcanics hosting the gold zones are characterized by a biotite-calcite matrix and a scalloped weathering pattern. Primary textures are unclear but possible lapilli have been noted locally.

4.0 PREVIOUS WORK

Previous work completed on the claims optioned from Manicouagan Minerals Inc. involved limited geological mapping which returned grab samples containing 1.03g/t Au in an iron formation and 1.37g/t Au in silicified mafic metavocanics (MDI52O02NE00005) on Claim group 4251408. Several short diamond drill holes as indicated by Ontario assessment files were also completed on the claim groups. Four diamond drill holes were completed on claim 4251409 highlighted by an intersection of 1.4g/t Au in magnetic ironstone (MDI52O02NE00007) by Bond Gold in 1990.

Previous work on the remainder of the Sky Lake Property involved numerous phases of exploration activity as described below.

The first recorded discovery of gold in the Dempster-Pickle Lake belt was made in 1954 by prospector Ben Ohman near Bancroft Lake (Scratch, 1984).

During 1953-54 the property was optioned to Hasaga Gold Mines Ltd., who performed geological mapping, trenching and diamond drilling. The diamond drill program consisted of 87 drill holes combining to a total length of 6365.8 m. The drill program outlined numerous interesting gold intersections.

In 1960, 28 claims were surveyed and patented over the gold occurrences. They are referred to as the Koval claims and were held by Lac Minerals and have since passed to Barrick Gold Corporation. Lac completed line cutting, geological mapping and magnetic and IP geophysical surveys as well a diamond drilling. In 1996, Moss Resources drilled a total of 808.3m in eight BQ diamond drill holes.

During 1969, Newconex Canadian Exploration conducted ground electromagnetic and geological surveys on their "Ed" claim block at the western end of Tri Origin's present-day claim block. They delineated zones of pyrite.

Other companies have carried out exploration work on the ground both east and west of the Koval claims.

- Union Minerie Exploration and Mining Corporation Ltd. conducted extensive airborne and ground geophysical surveys and 4465 m of diamond drilling in 1971-1972. One of these holes was collared on the Kitrinor property, but all the rest of the work was done to the north and east of the claims which are the subject of the present report. There is no record of any samples having been assayed from that hole.
- In 1983-84 Moss Resources Ltd. conducted geological mapping and magnetic, VLF-EM and IP geophysical surveys as well as rock and humus geochemistry. This was followed by a 20 hole, 1522.78 m diamond drill program.
- From July 1 August 22, 1984 Golden Maverick Resources conducted reconnaissance geological mapping and rock and humus geochemistry. A total of 53 rock samples and 572 humus samples were collected and analyzed for Au, Ag, As, Sb, Mo and Ba. They also carried out limited drilling between 1984 and 1988.
- In September 1988 Bond Gold mapped the area they referred to as the Caley Lake claim block, to the west of the patented Koval claims, and drilled three holes in October of that year.

4.1 Previous Work by Tri Origin Exploration Ltd.

- In November and December of 2009 Tri Origin Exploration contracted Aeroquest to complete 1303.38 line-km of helicopter time domain electromagnetic and magnetics on the Sky Lake property.
- In July 2010 Tri Origin Exploration Ltd. completed a mineral soil and humus survey over sections of the claim group which were determined by interpreting the VTEM data from the Aeroquest survey flown in 2009. Preliminary line cutting of the Sky lake grid was completed in the fall of 2010.
- In the summer of 2011 Tri Origin Exploration Ltd. completed a mineral soil and humus sample survey on two claims optioned from Manicouagan Minerals Inc. A total of 109 humus and 292 mineral samples were collected.
- In November 2011 Tri Origin Exploration completed cutting the Sky Lake grid which consisted of 45.2 line kilometers. Tri Origin also staked additional contiguous claims to the east of the property.
- In October of 2011 a detailed ground geophysical program was completed by Exsics Exploration Limited for Tri Origin Exploration Ltd on the Sky Lake grid. The geophysical survey was comprised of a Total Field Magnetic survey in conjunction with an Induced Polarization (IP) survey.
- In July and August of 2012 Tri Origin Exploration Ltd. completed a mineral soil and humus sample survey on portions of the property. A total of 346 humus and 433 mineral samples were collected.

5.0 2012 DIAMOND DRILL PROGRAM

Havenman Brothers of Kakabeka Falls set up camp for the drill program and Tri Origin Exploration retained Rugged Aviation of Thunder Bay to carry out the helicopter supported Sky Lake drilling. Rugged Aviation mobilized to Pickle Lake in mid November 2012.

Targets were selected to test a number of Induced Polarization anomalies defined during an IP survey carried out in October of 2011. Targeting was also prioritized based on humus and shallow soil geochemical results from previous sampling programs. Drill hole collar locations are listed in Table 1 and the Sky Lake 2012 drill plan is appended (Figure 4).

Hole ID	Collar Easting	Collar Northing	Elevation	Depth	UTM/Zone	Azimuth	/Dip
SL-12-01	670200	5679210	383	200	NAD83/15	360	-55
SL-12-02	669200	5679955	385	153	NAD83/15	360	-55
SL-12-03	669200	5679694	396	162	NAD83/15	360	-55
SL-12-04	668900	5679430	397	180	NAD83/15	360	-55
SL-12-05	668900	5679302	401	160	NAD83/15	360	-50
SL-12-06	668700	5678774	389	174	NAD83/15	360	-50
SL-12-07	668700	5678581	380	151	NAD83/15	180	-45

TABLE 1Drill Collar Locations

Drilling commenced with hole SL-12-01 on November 21, 2012. Core recovery was excellent, with very little core going unrecovered. However, thicker than anticipated overburden, principally glacial till and boulder deposits, resulted in some loss of casing.

Recovered drill core was boxed, and then removed and stored at a temporary facility at Pickle lake Airport prior to being shipped to Red lake for logging, cutting and sampling. Drill logs are included in Appendix B. Samples were taken from mineralized and altered intervals and were submitted to the SGS laboratory facility in Red Lake for analysis for gold. Gold analysis was conducted using fire assay with an atomic absorption finish. Multi-element analysis was completed using multi-acid digestion and Induced Coupled Plasma Emission Spectrometry (ICP). The Sky Lake drill core is currently stored at the Ontario government core storage facility located south of Red Lake.

Assay certificates are compiled in Appendix C and analytical procedures are included in Appendix D.

Drill Hole SL-12-01

SL-12-01 is located on Line 102E at station 92+10N of the Sky Lake cut grid. The hole at UTM coordinates 670200E, 5679210N, is collared in an area coinciding with a strong IP and coincident Total Magnetic Intensity anomaly located towards the northern limit of the line 102E. SL-12-01 is drilled north into the target with collar location at azimuth 360° and dip -55°. The bedrock is interpreted to dip steeply, up to 80°, to the south. Mineralization consisting of disseminated to semi-massive pyrrhotite is intersected throughout the predominantly tuffaceous sequence cored in SL-12-01. The better developed pyrrhotite mineralization is intersected over the interval between 130.6 to140.5 m down hole. It consists of disseminations and stringers, generally aligned in the S1 foliation and locally developed semi-massive pyrrhotite (40% Po) extending up to 70% Po in parts of the section. The pyrrhotite, although often appearing to be non magnetic, is considered to be present in sufficient quantity to explain, for the greater part, the strong IP response and anomaly defined on this part of Line 102E.

SL-12-01 collared in intercalated intermediate tuffs and sediments, moderately foliated with minor biotite alteration extending to 32.8 m down hole. There is negligible overburden at this locality. At 32.8 m the hole cuts an extensive suite of felsic volcanic flows and underlying felsic tuffs extending to 102.4 m. This sequence is locally silicified with associated sericitic alteration and weak biotite alteration (along the S1 fabric). From 53.1 m there is a slight increase in disseminated pyrite mineralization and a slightly greater increase in fine grained pyrrhotite mineralization. Below 102.4 m a mafic tuff sequence is intersected extending to the bottom of the hole. Mineralized mafic tuff, with lesser intervals of mafic flows, contain 5-7% Po as disseminations and stringers and locally semi massive Po (40-70%) within the interval from 130.6 to 140.5 m. A total of 78 samples for a total length of 69.5 m were taken for assay. Sample 652653, the deepest in the hole (191.2 to 192.2 m) returned the highest gold value of 240 ppb Au. Sample 652653 was from chlorite altered mafic tuff with weak biotite alteration adjacent to the zone of the semi massive pyrrhotite. A section of the drill hole is shown in figure 5 (appended).

Drill Hole SL-12-02

SL-12-02 is located on Line 92E, 1,250 m northwest of SL-12-01, at station 99+54N on the cut grid. It was drilled to test a strong end of line IP chargeability and Total Magnetic Intensity anomaly towards the northern extent of Line 92E. SL-12-02 was at azimuth 360° and dip -55° at UTM coordinates 669200E and 5679955N. The hole collared in an area of moderate to deep glacial overburden deposited on a sequence of mafic to intermediate volcanic tuffs extending to 87.4 m down hole. Disseminated sulphides with up to 3% Po and trace to 1% pyrite were intersected between 50 to 63.6 m down hole and may contribute to the IP response targeted with SL-12-02.

SL-12-02 penetrated 11.3 m of overburden. Mafic to intermediate tuffs with minor flows extend to 87.4 m below where a series of more mafic massive flows are encountered. A strong to moderate S1 foliation (at between 40 to53° to the LCA) is observed cutting all lithologies. The more intermediate lithologies exhibit weak chloritization, some ankerite localised in fine bands and weak biotite development. The lower mafic massive flows also contain weakly developed chlorite and ankerite. Sulphide mineralization noted from 50 to 63.6 m down hole also contains weak sericitic alteration. A total of 12 samples, mostly covering the weak sulphide mineralized zone, were taken for assay with two samples, 652685 and 652691, each returning 110 ppb Au. Sample 652685 was from the zone containing up to 3% Po with associated sericitic alteration. Sample 652691 was taken, lower in the section, below the main pyrrhotite mineralization also in chlorite altered mafic to intermediate tuffs. Overall, the cored section is very weakly mineralized. A section of the drill hole is shown in figure 6 (appended).

Drill Hole SL-12-03

SL-12-03 is also located on Line 92E at station 96+95N, 273 m south of SL-12-02 at UTM coordinates 669200E, 5679694N. It was planned to test a broad but weaker chargeability anomaly and a magnetic low. The hole is collared at azimuth 360° and dip -55°. The stratigraphy is similar to SL-12-02 with more intermediate tuffs and massive flows in the upper part of the hole and a greater abundance of mafic lithologies towards the base (mafic tuffs and

flows as well as a series of thin mafic dykes). However, unlike SL-12-02, there are little to no sulphide minerals present thus making the broad anomaly more difficult to explain.

SL-12-03 penetrated 18 m of overburden, interpreted as predominantly glacial till at the flank of a drumlin, before coring a series of intermediate tuff and flows with a sedimentary package from 33.50 to 44.40 m. The sediments contain some quart flooding towards the base of the interval (42.03 to 42.36 m). Alteration consists of weak chloritization with associated carbonate alteration (some ankerite). There is some localized weak sericitic alteration. Below 91.95 m there is a predominance of mafic tuff and mafic dykes containing trace amounts of pyrite and pyrrhotite between 91.95 and 130 m. The mafic rocks are very weakly magnetic. A selection of six samples were taken for assay from the various lithologies intersected in SL-12-03 (covered by the number series 652678-652682). Five of the six samples contain weakly anomalous gold. Sample 652678 and 652679 were taken from the sediments and intermediate tuffs respectively. Sample 652678 covers the narrow quartz flooded sediment zone. A section of the drill hole is shown in figure 7 (appended).

Drill Hole SL-12-04

SL-12-04 is located 400 m southwest of SL-12-03 on Line 89E at station 95+30N. The hole was collared at azimuth 360°, dip -55° at UTM coordinates 668900E, 5679430N. SL-12-04 was planned to test a broad low order magnetic anomaly and chargeability high possibly reflecting disseminated sulphide mineralization. Weak sulphide mineralization (Py and Po) intersected over a broad zone extending from 70.35 to approximately 122 m is considered sufficient to explain the targeted broad IP anomaly. Unlike the previously described holes SL-12-04 contains several zones with quartz and silica flooding and an overall stronger hydrothermal signature and generally more abundant sulphides.

SL-12-04 penetrated 18 m of glacial overburden and cut a series of mafic tuffs and flows to 54 m depth. Below 54 m to about 109 m intermediate volcanics tuff and flows predominate. Metasedimentary rocks extend to 144 m down hole and intermediate tuffs dominated the lower section to base of hole at 180 m. Sulphide stringers, principally pyrite are intersected in a narrow

interval between 63.40 to 64.55 m. Quartz veining, generally parallel to the S1 foliation and occupying the interval from 70.35 to 89.75 m locally contain up to 5% pyrite and 2% Po as sulphide stringers. However, there is no anomalous gold associated with the sulphides. A silicified zone with grey quartz (117.05 to 123.45 m) within the metasediments, containing up to 3% pyrite with associated sericitic alteration returned anomalous gold assays the highest being from sample 652735 which returned 260 ppb Au. The weakly anomalous zone extends from 117.05 to 119.7 m and there is very weak gold extending to 122.7 m all within the silicified sediments. A section of drill hole is shown in figure 8 (appended).

Drill Hole SL-12-05

SL-12-05 is located on Line 89E, 123 m south of SL-12-04 at station 93+07N and 800 m north of Matapesatakun Bay. It was collared at azimuth 360°, dip -50° at UTM coordinates 668900E, 5679307N to test a strong IP anomaly indicative of sulphides. SL-12-05 intersected several quartz-rich alteration zones with associated disseminated and stringer sulphides of up to 3% pyrrhotite and 2% pyrite located in several altered metasedimentary sections is considered sufficient to explain the IP anomaly. The quartz-rich alteration appears better developed in the sedimentary stratigraphy intersected through most of the lower parts of SL-12-05.

SL-12-05 penetrated substantial glacial till and boulders (35.30 m) before coring weakly metamorphosed fine grained sediments – shales and siltstones with minor interbedded tuffaceous material. There is weak chlorite development. The hole progressed to cut a very restricted intermediate volcanic interval (45.67 to 47.75 m) and a predominantly metasedimentary sequence extending to the base of hole at 160 m. The sedimentary sequence contains a number of weakly mineralized zones with up to 2% of both pyrrhotite and pyrite and occasional trace chalcopyrite. The interval from 51.35 to 68.75 m contains 1-2 mm pyrite and pyrrhotite bands with minor grey quartz and silicification. The interval from 81.5 to 101.48m contains abundant (up to 30%) grey quartz and silicification in weakly tectonized argillaceous sediments. There is some locally developed chlorite and sericitization associated with the silicification. Weakly magnetic pyrrhotite is the dominant sulphide, up to 3%. There is up to 2% pyrite in parts of the altered sedimentary section.

Below 47.75 m SL-12-05 is sediment dominated. Very abundant S1 parallel grey quartz and silica veins and boudins are intersected over a 12.2 m interval (129.70 to 141.9 m). Occasional patchy pyrrhotite is associated with the silica. The entire interval is partly silicified. Veining is at 42 to 47° to core axis. There is trace chalcopyrite. There is significant chlorite associated with the veining from 132.4 to 137.0 m. Three samples only were taken in this section (132.35 to 135.0 m). The three samples returned the best gold grades of the 2012 Sky Lake program. The highest value is 970 ppb Au (134.0 to 135.0 m). It is recommended to sample the entire lower drill hole section from 103.25 m to end of hole. There is potential for a wide, low-grade mineralized zone in the metasedimentary interval intersected in SL-12-05. A total of twenty samples only were taken at various horizons throughout the cored section, focusing on the more altered material.

A second alteration zone consisting of silicified sediments, quartz-flooded with sericite extends from 151.85m to the base of hole at 160 m. Some higher metamorphic grade material contains fine garnets (1 mm) and dark green chlorite with biotite and some staurolite. A section of drill hole is shown in figure 8 (appended).

Drill Hole SL-12-06

SL-12-06 is located 300 m north of Matapesatakun Bay on Line 87 of the cut grid (Figure 4) at station 87+74N. It was collared at UTM coordinates 668700, 5678774N with azimuth 360°, dip -50° to test an apparent strong conductor (Figure 5) extending north in section to 89+00N.

SL-12-06 penetrated 10.9 m of fluvioglacial sediments and cored an alternating sequence of intermediate and mafic tuffs and volcanic flows. The metasediments intersected in previous holes are largely absent. Chlorite alteration is weakly developed throughout the volcanic package. A zone containing some sericitization extends from 108.2 to 153.0 m. The hole is mostly devoid of sulphides with the exception of very restricted zones at 15.5 to 16.3 m; 36.20 to 37.6 m and 94.45 to 96.55 m. Overall the hole is unmineralized and largely only weakly altered. A total of 26 samples for a total non continuous interval of 16.7 m between 43.2 to146.8 m were

taken (covered by the sample series 625695-652720). No sample returned any gold value exceeding 5 ppb Au. A section of drill hole is shown in figure 9 (appended).

Drill Hole SL-12-07

SL-12-07 is located 193 m south of SL-12-06 on gridline 87E at a location close to the lake shore (Figure 4). Geological mapping along the Matapesatakun Bay shore identified a series of metamorphosed sediments at a slightly higher metamorphic grade than rocks observed elsewhere on the property (lower amphibolite facies?) and an in-situ, but rotated, boulder containing a 0.80 m quartz band or S1 parallel quartz vein?. The southern part of Line 87E contains a strong 'end of line' IP anomaly. SL-12-07, the last hole of the 2102 program, was planned to test this IP anomaly by drilling south under the lake. The regional dip of 80° south was considered suitable for such a drill test. SL-12-07 was drilled at a dip of -45°, azimuth 180° from a collar at UTM 668700E, 5678581N.

SL-12-07 penetrated 9.7 m of overburden and cored a mixed sequence of intermediate tuff and sediments extending to 110 m. Below 110 m several narrow mafic tuff units are intercalated with the metasediments, many tuff 'bands' 1 m and several 0.15 m. The mafic tuff horizons exhibit a slightly higher metamorphic grade commonly containing biotite and 1mm garnets. The lower metasediment and thin bedded mafic tuff sequence is intruded by a number of late Quartz Feldspar Porphyry dykes from 133.15 m. The argillic sediments and fine siltstones from 145.4 m contain some discontinuous white/cloudy grey quartz bands with some associated pyrite and minor pyrrhotite (up to 4% Py). The quartz and narrow sulphide veinlets are orientated in the S1 fabric at approximately 32° to the long core axis. There is a slight increase in silicification and some minor sericite alteration associated with the silicification. The hole terminated at 151 m. Detailed logging indicates an increase in alteration and abundance of quartz/silica down hole from 145.4 m to the TD depth of 151.0 m.

A total of 11 samples (9.10 m of core) were taken for assay (samples 652760 to 652770). This includes a 5.8 m continuous section from 145.4 m to end of hole. No gold values exceeding 15 ppb were reported. A section of drill hole is shown in figure 10 (appended).

6.0 RECOMMENDATIONS AND CONSLUSIONS

The highest assay values encountered during this program were from drill hole SL-12-05. A one metre interval of 970 ppb Au (134.0 to 135.0 m) was encountered in silicified sediment with an abundance of chlorite dominated veining. It is recommended to sample the entire lower drill hole section from 103.25 m to end of hole. There is potential for a wide, low-grade mineralized zone in the metasediments intersected in SL-12-05

Significantly more BW casing was used in the 2012 Sky Lake drill program than anticipated. Substantial fluvioglacial deposits define many of the NE-SW trending ridges on the property with till thicknesses of up to 20 m. It proved impossible to remove casing from SL-12-03 (15 m), SL-12-04 (18 m) and SL-12-05 (30 m). For the other holes casing was removed upon completion of the hole in a manner such that the overburden would collapse into the hole.

All drill sites were marked with a stake and labelled with a metal tag identifying the drill hole. All sites were restored back to a clean condition to minimize any impacts on the surrounding environment.

7.0 PERSONNEL

Tri Origin Exploration

Frank Kendle	Senior Geologist	Queensville, Ontario
	Tri Origin Exploration	
Martin King	Senior Geologist	Guelph, Ontario
Matthew Spencer	Geologist	St. Catharines, Ontario

8.0 STATEMENT OF QUALIFICATIONS

CERTIFICATE

To accompany the geological report dated December 17, 2012 entitled "Summary of Diamond Drilling carried out by Tri Origin Exploration Ltd. on the Sky Lake Property, Winter 2012

I, Martin A. King, do hereby certify that:

1. I reside at 68 Ridgewood Avenue, Guelph, Ontario, Canada N1H 6C5.

2. I am a graduate from the National University of Ireland (Galway) with an Honors B. Sc. Degree in Geology with Applied Mathematical Science (1987) and I have practiced my profession continuously since that time.

3. I am a Professional Geologist in good standing (P. Geo) as a member of the Institute of Geologists of Ireland (Membership No. 121) since 2000. The IGI is affiliated with the IMM and other international Professional bodies. I am also a member of the European Federation of Geologists (EurGeol No. 320).

4. I am an independent Geological Consultant.

5. I have worked in the exploration and mining industry in various parts the world specializing initially in Carbonate-hosted base metal deposits, later Achaean gold and for the past seven years in epithermal silver and gold exploration in Latin America, mainly Mexico.

6. I have read the definition of "qualified person" set out in NI 43-101 and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

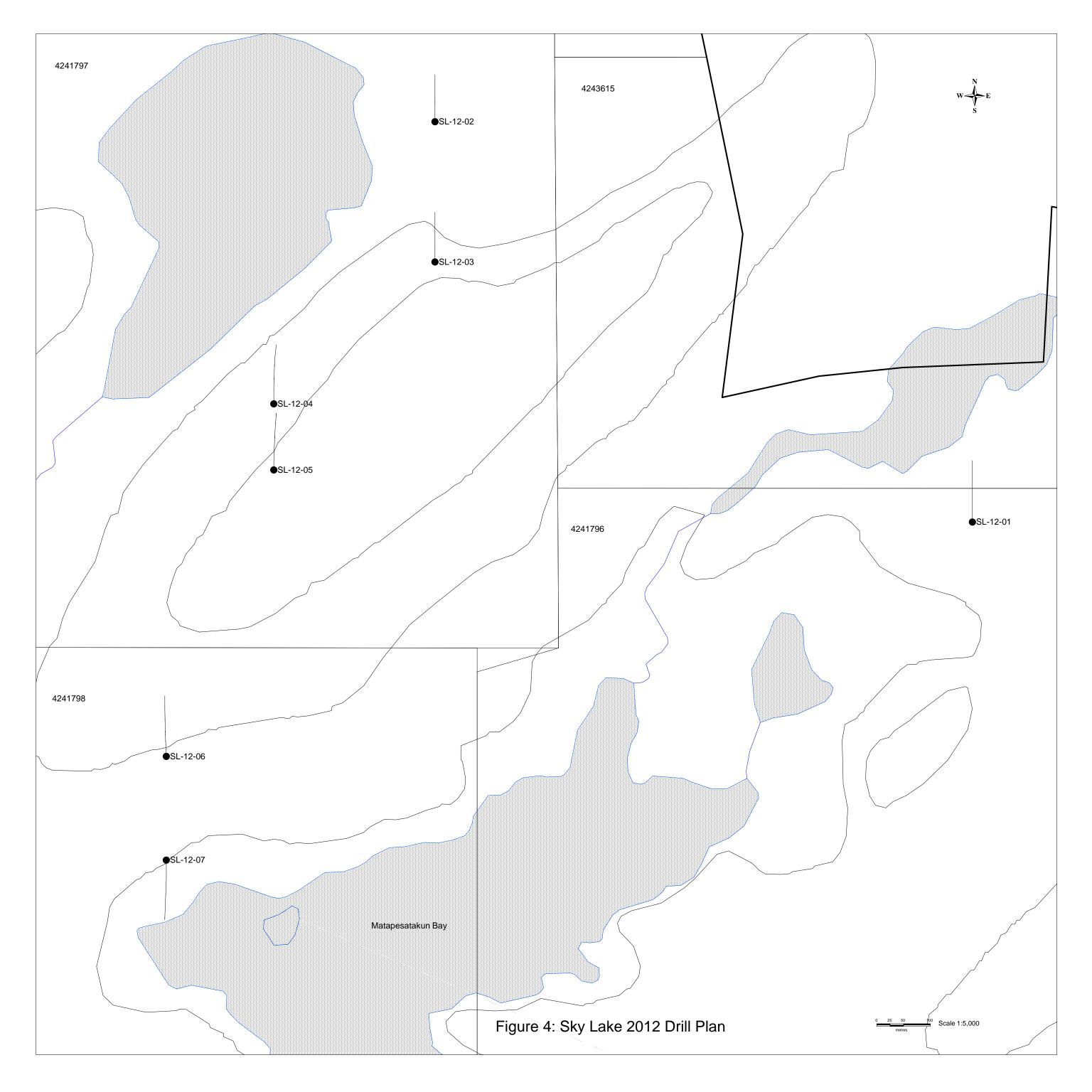
7. I have visited the Sky Lake Property in 2012 and during November and December of that year I participated in a diamond drilling exploration program to test several Induced Polarization (``IP``) geophysical exploration targets on the property.

8. I have no personal knowledge as of the date of this certificate of any material fact or change, which is not reflected in this report.

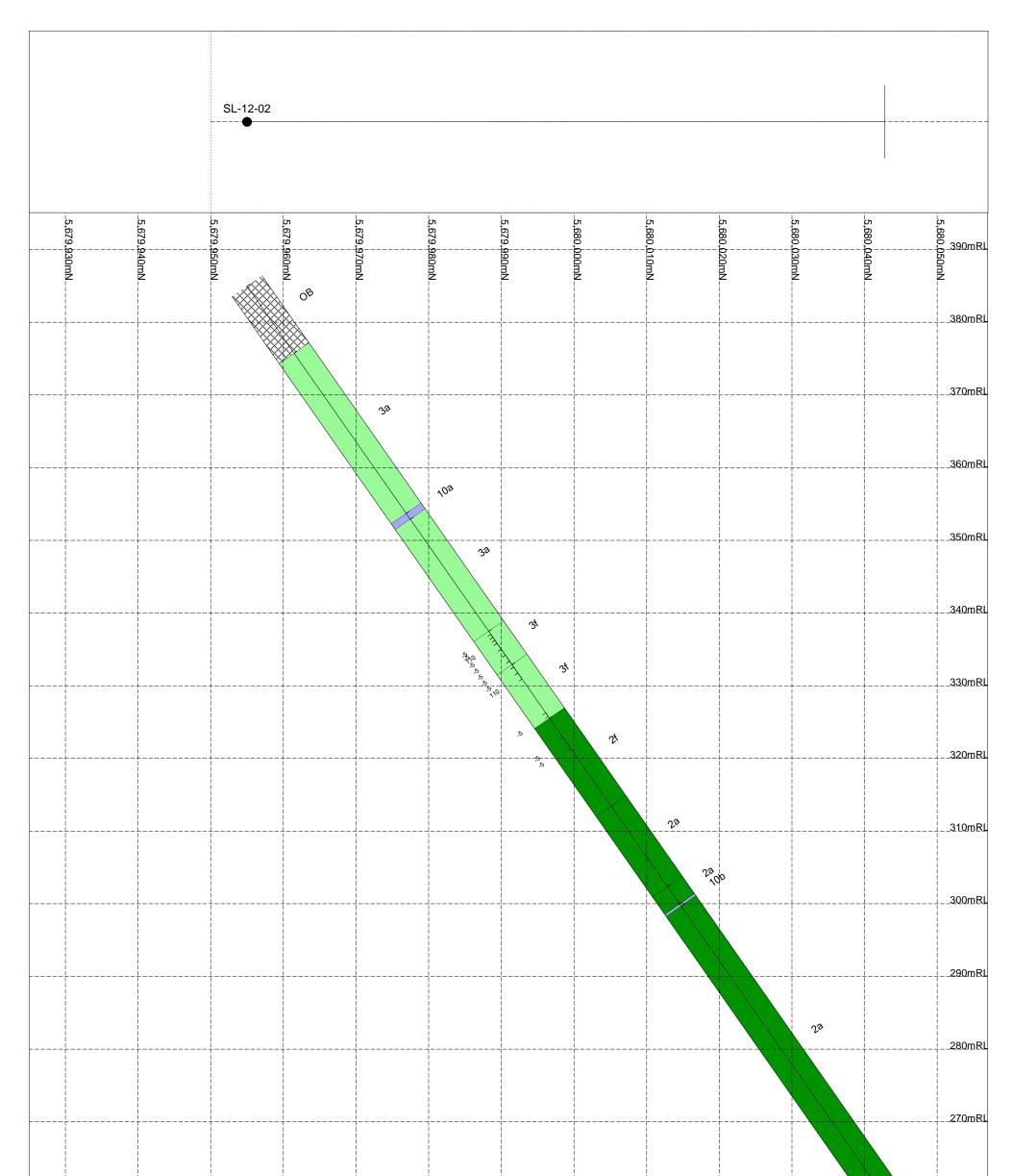
9. Neither I, nor any affiliated entity of mine, is at present, or under an agreement, arrangement or understanding expects to become, an insider, associate, affiliated entity or employee of Tri Origin Exploration Ltd., or any associated or affiliated entities.

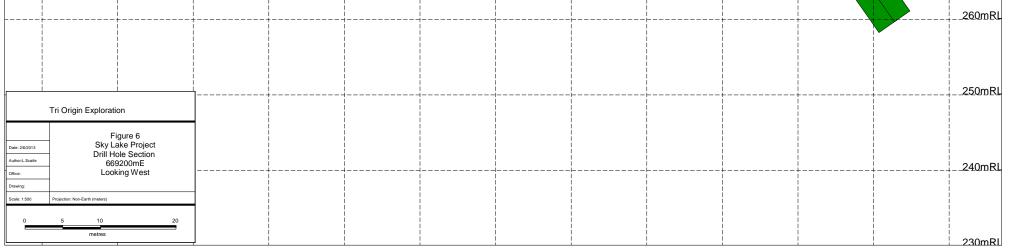
10. Neither I, nor any affiliated entity of mine own, directly or indirectly, nor expect to receive, any interest in the properties or securities of Tri Origin Exploration Ltd., or any associated or affiliated companies.

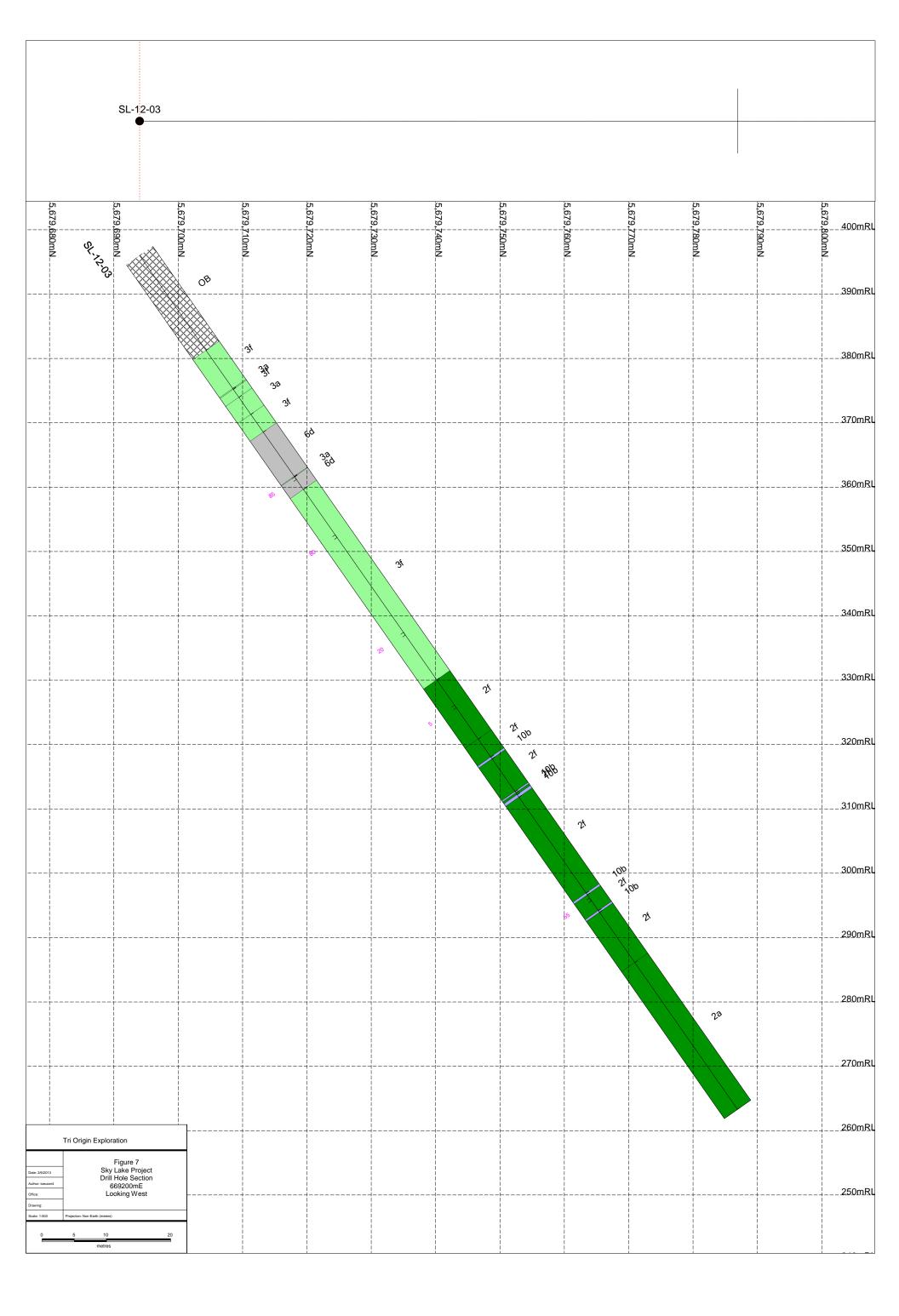
11. Neither I, nor any affiliated entity of mine, have earned the majority of our income during the preceding three years from Tri Origin Exploration Ltd., or any associated or affiliated companies.

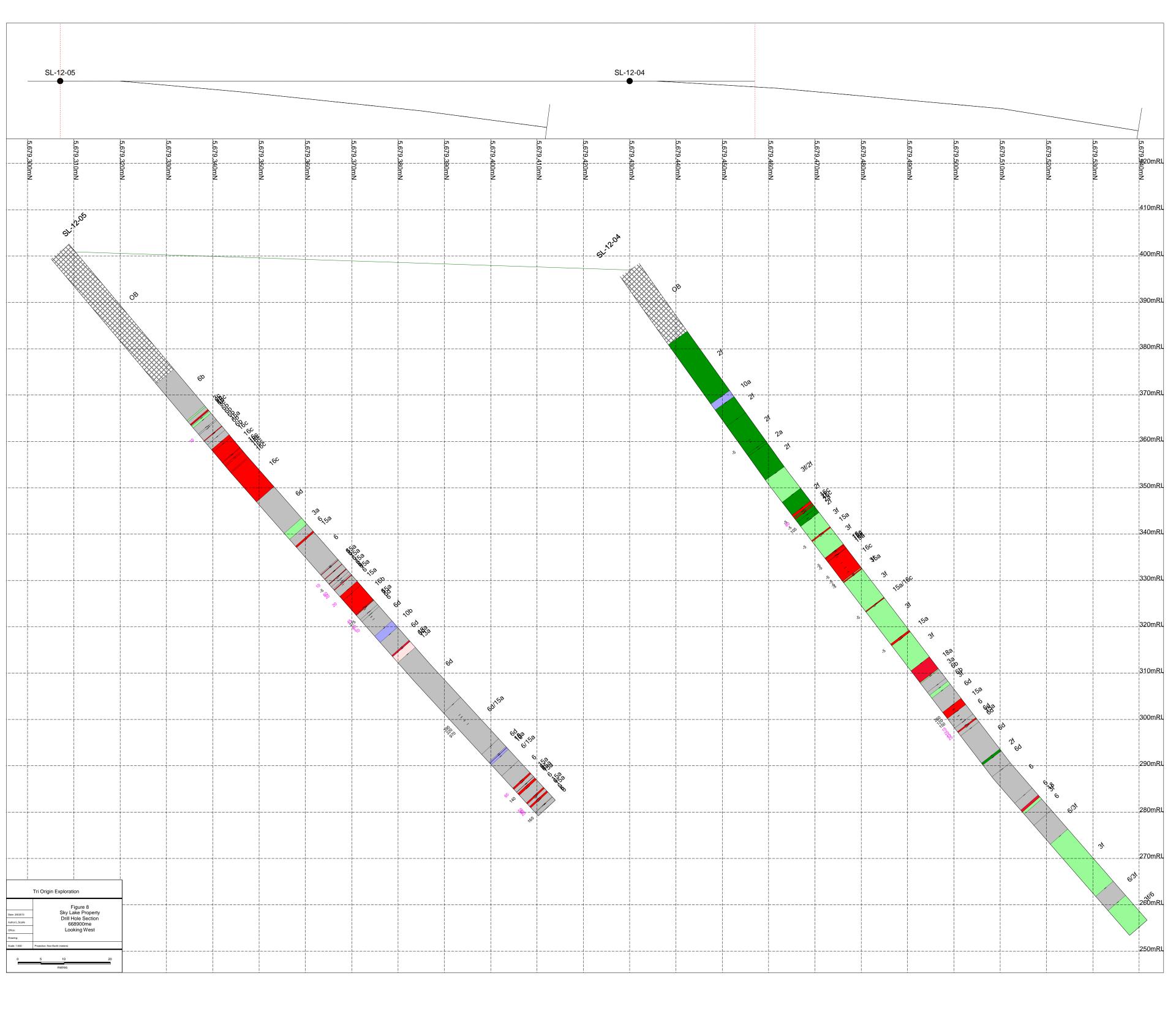

Muanti

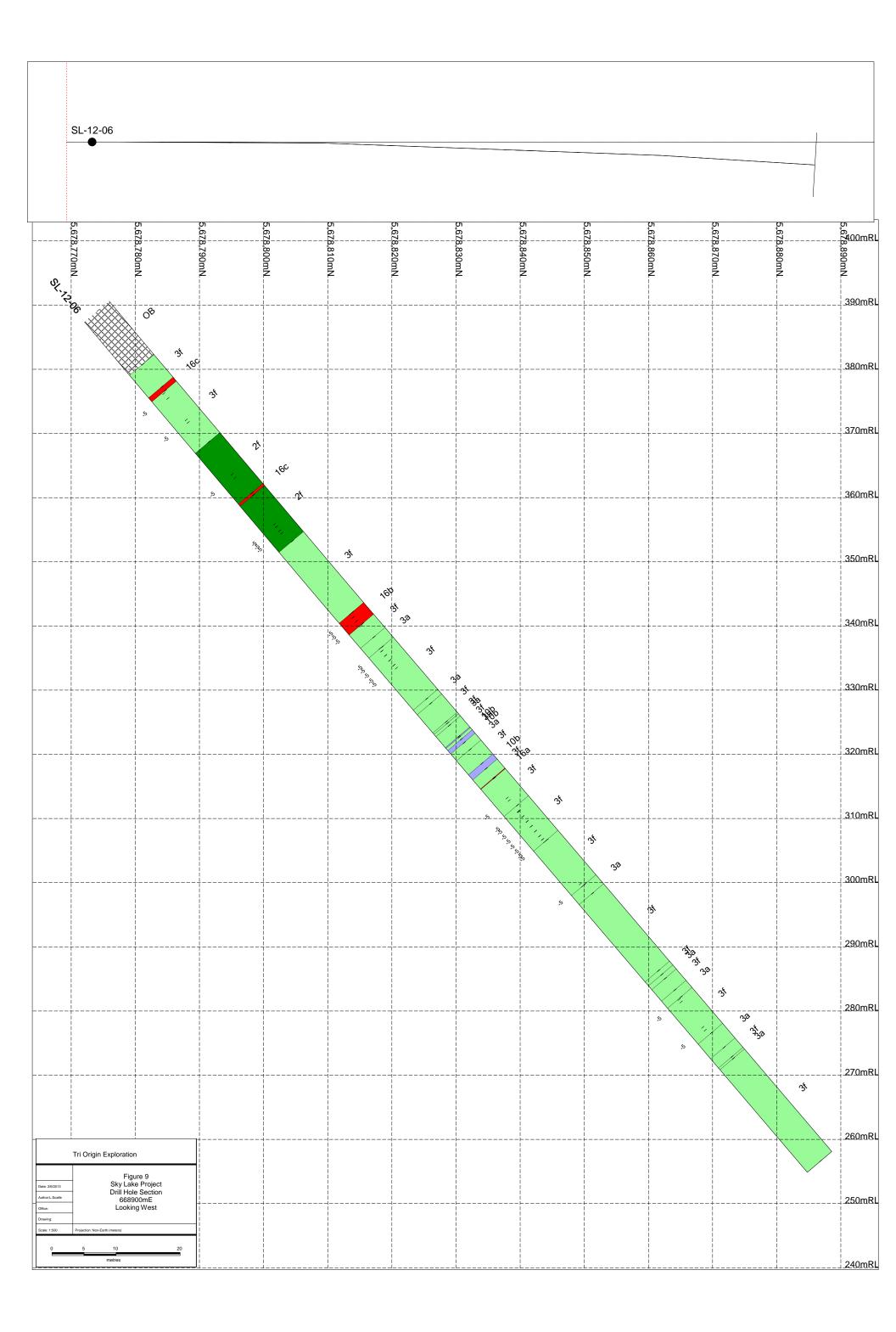
Martin A. King, B.Sc., P. Geo., December 30, 2012

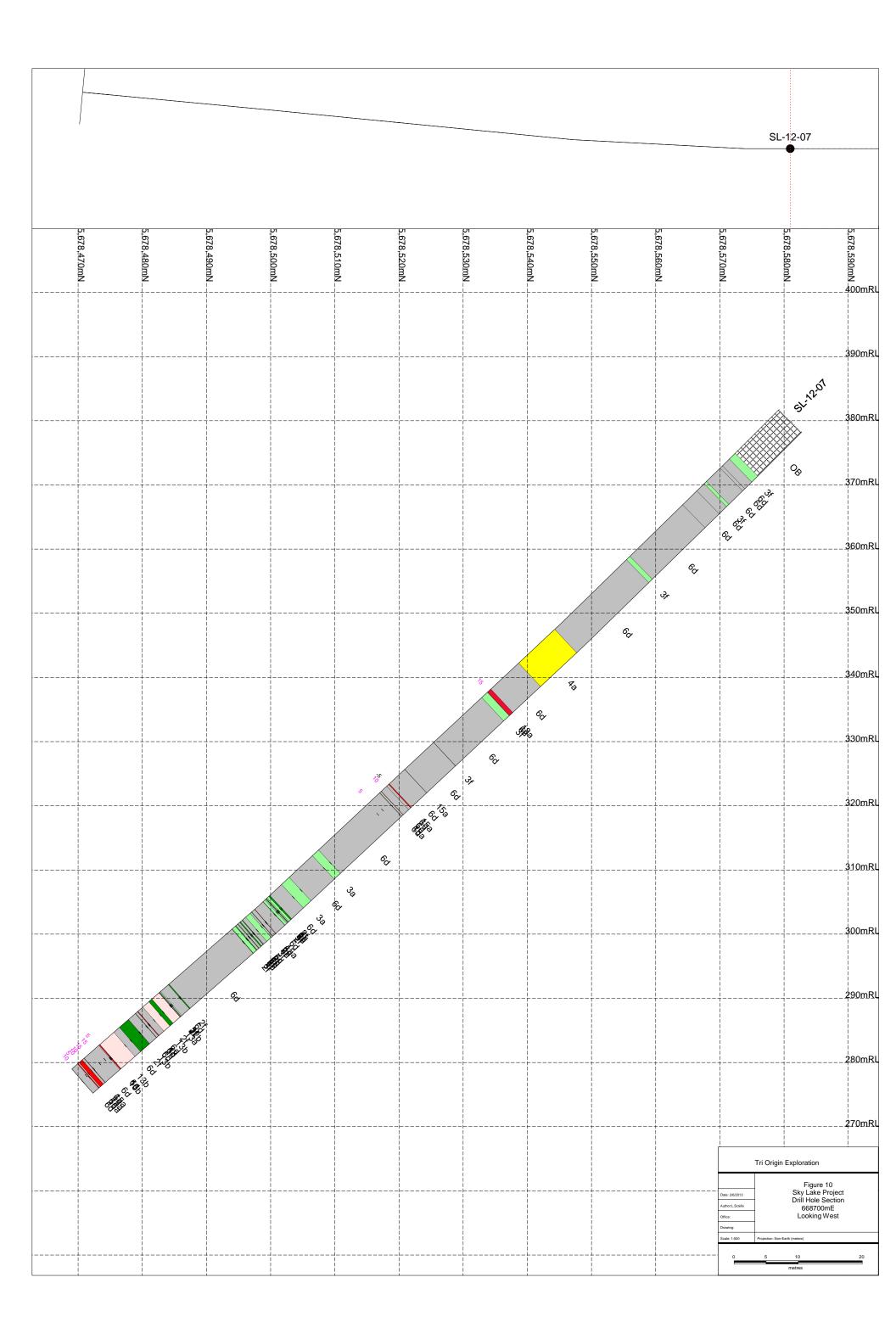

9.0 **REFERENCES**


Jolliffe, T.S. 1996. Report on Diamond Drilling, Koval Property, Patricia Mining Division, Northwestern Ontario for Moss Resources, Inc. 90pp. AFRI 52O02NE001.


Scratch, R, 1984. Report on Reconnaissance Geologic Mapping and Humus Sampling of the Golden Maverick Resources Corporation – Bancroft Lake Project currently under option to Kennco Explorations (Canada) Ltd. 87pp. AFRI 52008SW0019. FIGURES







APPENDIX A

LIST OF CLAIMS

APPENDIX A – LIST OF CLAIMS

Claim Number	Township/Area	Ownership
4214444	Duffell Lake	Tri Origin Exploration Ltd.
4214445	Duffell Lake	Tri Origin Exploration Ltd.
4214446	Duffell Lake	Tri Origin Exploration Ltd.
4214447	Duffell Lake	Tri Origin Exploration Ltd.
4214448	Duffell Lake	Tri Origin Exploration Ltd.
4241191	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241192	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241193	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241194	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241195	Caley Lake	Tri Origin Exploration Ltd.
4241196	Caley Lake	Tri Origin Exploration Ltd.
4241197	Caley Lake	Tri Origin Exploration Ltd.
4241198	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241199	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241200	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241796	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241797	Caley Lake	Tri Origin Exploration Ltd.
4241798	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241799	Matapesatakun Bay	Tri Origin Exploration Ltd.
4241800	Matapesatakun Bay	Tri Origin Exploration Ltd.
4243611	Caley Lake	Kitrinor Metals Inc.
4243612	Caley Lake	Kitrinor Metals Inc.
4243613	Caley Lake	Kitrinor Metals Inc.
4243614	Caley Lake	Kitrinor Metals Inc.
4243615	Matapesatakun Bay	Kitrinor Metals Inc.

4243616	Caley Lake	Kitrinor Metals Inc.
4243617	Caley Lake	Kitrinor Metals Inc.
4243618	Matapesatakun Bay	Kitrinor Metals Inc.
4251408	Matapesatakun Bay	Manicouagan Minerals Inc.
4251409	Matapesatakun Bay	Manicouagan Minerals Inc.
4266029	Little Ochig Lake	Tri Origin Exploration Ltd.
4266030	Little Ochig Lake	Tri Origin Exploration Ltd.
4266031	Little Ochig Lake	Tri Origin Exploration Ltd.
4266032	Little Ochig Lake	Tri Origin Exploration Ltd.

APPENDIX B

SKY LAKE DRILL LOGS

													Core		Date Log	
Hole ID:	Claim No.	Township	Nada	33 Zone 15	Location	Direction	Dip	Length (m)	Overburden Depth (m)	Date Started	Date Finished	Drill Company	Size	Logged By	Completed	Core Location
			East	North	Elevation											
SL-12-01	4241796 Ma	atapesatakum B	ay 670200	5679210) 383	360	-55	200	1.6	November 21, 2012	2 November 22, 2012	Rugged Aviation	BTW	Frank Kendle	November 29, 2012	2 Red Lake core library

	Prima	ary Unit	Secondary						Alteration				Magnetic
Hole			From To (r		To (m)			Description		Ру	Po	Сру	(0-5 (weak to strong)
SL-12-01	0.0	1.6	``````````````````````````````````````	<i>,</i>			Casing			,			
	1.6	25.3				6/3f	Sediments / Intermediate Tuff	Moderately foliated (along S0?) 50% fine grained, banded light grey, dark grey sediments and 50% moderate green-brown intermediate tuffs. Beds / bandings are predominately <1cm but can be up to 15cm wide. Locally there appears to be minor actinolite alteration. Locally in the darker green bands usually associated with the actinolite 10-20% 1-4mm dusty rose diffuse garnets. Foliation / bedding is consistant at 35° to CA. Small medium grained mafic dyke at 6.1-6.4m Upper contact is irregular lower contact is 65° to CA.	Locally weak Ac +/- Gt				0
SL-12-01	25.3	25.9				3f	Intermediate Lapilli Tuff	Medium grained, dark brown-green, weakly foliated lapilli tuff. 10% 2mm-2cm fine grained grey clasts slightly stretched along Foliation. Foliation parralels bedding.	Weak pervasive biotite alteration.				0
SL-12-01	25.9	32.8				6	Sediments	Fine grained, light grey, weakly foliated, finely bedded/ banded sediments with minor amounts of intermediate tuff light grey brown - green in colour. Beds are usually <1cm in size but can be up to 4cm wide. Occassionally there appears to be slump textures in some of the beds, possible shear?. <1% 1-2cm quartz veinlets.					0
SL-12-01	32.8	42.5				4a	Felsic Volcanic Flow	Fine grained, light grey, very weakly foliated massive felsic flow? Matrix is fine grained, aphanitic quartz rich with locally < 2% < $2mm$ feldspar phenocrysts. Locally biotite +/- muscovite along S1 foliation. Foliation is constant at ~ 40° to CA. Locally minor silicification which often has a bleaching effect on the rock. < 5% 1-2cm quartz veinlets.	Local silicification throughout, local weak pervasive seicite alteration. 35.9-36.4m minor quartz vein with monerate silicification.				0
SL-12-01	42.5	53.1				4a	Felsic Volcanic Flow	Fine grained, very light grey, very homgeneous, weakly foliated massive felsic flow. Matrix is very fine grained aphanitic. Weak biotite as very fine wisps along S1 foliation.	Locally weak sericite alteration? Weak biotite as fine wisps along S1 foliation.				0
SL-12-01	53.1	73.3				4b	Felsic Crystal Tuff / Felsic Tuff.	Light grey to white. Very fine grained, weakly foliated, locally banded in appearance felsic crystal tuffs (70%) and felsic tuffs (30%). Crystall tuffs have 5% 1mm feldspar crystals and 1% subronded to oval shaped quartz crystals. Matrix is fine grained, aphanitic, silica rich and sugar in appearance. Weak pervasive biotite alteration throughout. Weak pervasive sericite/muscovite alteration throughout locally moderate to strong. 60.0-60.85m Strong biotite actinolite alteration (possible mafic dyke). 61.7-62.1, 68.3-72.5 Moderate locally strong sericite muscovite alteration.	Locally moderate to strong Sericite alteration. Pervasive weak sericite alteration throughout. Weak biotite alteration throughout primarily along S1 foliation.	Locally very trace very fg py, po	Locally very trace very fg py, po		0
SL-12-01	73.3	102.4				4b	Felsic Tuff / Felsic Crystal Tuff.	Light to medium grey, very fine grained, weakly foliated, locally banded in appearance felsic tuffs (80%) with minor felsic crystal tuffs (20%). Matrix is fine grained aphanitic, silica rich and sugary in appearance. Very similar to above but less crystal tuff and less alteration. Possible small interbeds of sediments? Locally weak biotite alteration along S1 foliation. Local silicification giving it a bleached appearance. < 2% < 4cm quartz veins very irregular in shape and mottled in appearance.	Locally weak Biotite along S1 Foliation. Local weak silicification throughout creating a bleached appearance.		•		1
SL-12-01	102.4	130.6				2f	Mafic Tuff	Medium grey-green occassional slight blueish tint), fine grained weakly foliated mafic tuff. Matrix is fine grained sugary in appearance comprised of 60% dark minerals (biotite, amphibole) and 40% white minerals (feldspar, ankarite? and minor quartz). Minor interbedded felsic tuffs from 102.4 to 109m. Foliation is somewhat erratic but consistent between 35 and 45° to CA.	Local silicification associated with the interbedded felsic tuffs. Local carbonate alteration as <2mm diffuse white clots. Minor <2mm light pink diffuse garnets, amount increasing with depth. Local chlorite and biotite alteration along S1 foliation.	Trace disseminated py locally throughout.	Very rare locally stinger po along S1 foliation.		1

	Prima	ary Uni	t Seco	ondary Unit	Tertia	ary Unit				Alteration				Magnetic
Hole	From	To (m)	From	To (m)	From	To (m)	Code	Name	Description		Ру	Po	Сру	(0-5 (weak to strong)
SL-12-01	130.6	140).5				2f / 2a	Mafic Tuff / Mafic Flow? (Mineralized)	coloured minerals (feldspar, carbonate, +/- quartz). This interval is mineralized with 5-7% very fine grained pyrrhotite as disseminations and stringers. Locally it can be semi-massive with 50% pyrrhotite and minor pyrite. The majority of the pyrrhotite is non-magnetic. 138.5-140.2m Semi massive pyrrhotite overall 40% pyrrhotite with minor pyrite.		Trace disseminated py locally throughout.	5-7% often \non-magnetic po as fine dessemination s, stringers v and locally semi-massive. 138.5-140.2 Semi massive po (overall 40% locally up to 70%).		2
SL-12-01	140.5	191	1.2				2f	Mafic Tuff	veins and unit is locally silicified due to veining veining often disrupts foliation. 140.5-163.4m trace very fine grained po +/- py disseminated along S1 foliation usually associated with silicification, locally up to 5%. Po is predominately non-	Chlorite +/- biotite throughtout primarily along S1 foliation. Chlorite often has black slickenside appearance on S1 foliation often with smeared py.				
SL-12-01			178.	3 181.7	7		10	Mafic Dyke	Very fine grained aphanitic mafic dyke, comprised of amphibole, biotie and feldspar. Contacts are sharp but irregular and cross cut foliation.					
SL-12-01	191.2	2	00				2f	Mafic Volcanic Tuff	Fine grained medium green with white (carbonate) and mauve (biotite) bands along the S1 foliation. This unit appears to have very little alteration or mineralization except 191.2-192.2m 2% disseminated py along S1 foliation. Typical chlorite rich meta-volcanic. Probably a tuff.					

Hole Depth (m) Dip Dip Dip Dip Dip Dip Description SL-12-01 6.4 6.6 small mafic dyke - lower contact. small mafic dyke - lower contact. SL-12-01 10.9 0 35 small mafic dyke - lower contact. SL-12-01 10.9 0 35 small mafic dyke - lower contact. SL-12-01 34.9 38 0 35 small mafic dyke - lower contact. SL-12-01 34.9 38 0 38 small mafic dyke? upper contact. SL-12-01 51.4 36 0 small mafic dyke? upper contact. small mafic dyke? lower contact. SL-12-01 60.5 45 small mafic dyke? lower contact. small mafic dyke? lower contact. SL-12-01 66.8 45 small mafic dyke? lower contact. small mafic dyke? lower contact. SL-12-01 66.8 45 0 small mafic dyke? lower contact. SL-12-01 66.8 45 0 small mafic dyke? lower contact. SL-12-01 66.5 35 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Note: all measurements are calculated from Bottom of</th>									Note: all measurements are calculated from Bottom of
SL-1201 4.9 65 small mafic dyke - lower contact. SL-1201 10.9 35 small mafic dyke - lower contact. SL-1201 10.9 35 small mafic dyke - lower contact. SL-1201 34.9 38 38 small mafic dyke - lower contact. SL-1201 34.9 38 small mafic dyke - lower contact. small mafic dyke - lower contact. SL-1201 35.2 36 small mafic dyke - lower contact. small mafic dyke - lower contact. SL-1201 53.2 36 small mafic dyke - lower contact. small mafic dyke - lower contact. SL-1201 60 30 small mafic dyke - lower contact. small mafic dyke - lower contact. SL-1201 66.5 35 small mafic dyke - lower contact. small mafic dyke - lower contact. SL-1201 66.5 35 small mafic dyke - lower contact. small mafic dyke - lower contact. SL-1201 66.5 35 small mafic dyke - lower contact. small mafic dyke - lower contact. SL-1201 66.5 35 small mafic dyke - lower contact. small mafic dyke - lower contact. SL-1201 74.9 32 <t< th=""><th></th><th></th><th>S1</th><th>S2</th><th>Vn</th><th></th><th></th><th></th><th>core.</th></t<>			S1	S2	Vn				core.
SL-12-01 6.4 66 small matic dyke - lower contact. SL-12-01 16.9 35 SL-12-01 25.9 38 SL-12-01 34.9 38 SL-12-01 51.4 36 SL-12-01 51.4 36 SL-12-01 57.4 36 SL-12-01 57.4 36 SL-12-01 60.85 45 SL-12-01 60.85 45 SL-12-01 60.85 45 SL-12-01 68.2 40 SL-12-01 68.2 40 SL-12-01 68.2 40 SL-12-01 68.5 40 SL-12-01 74.9 32 SL-12-01 78.8 32 SL-12-01 79.8 32 SL-12-01 84.5 40 SL-12-01 102.3 37 SL-12-01			Dip	Dip	Dip	Dip			Description
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							35		
SL:12:01 16.9 35 SL:12:01 34.9 38 SL:12:01 34.9 38 SL:12:01 34.9 38 SL:12:01 34.9 38 SL:12:01 53.4 2 SL:12:01 51.4 36 SL:12:01 53.2 36 SL:12:01 57.4 36 SL:12:01 60.85 45 small mafic dyke? upper contact. SL:12:01 66.5 35 SL:12:01 66.2 40 SL:12:01 66.2 40 SL:12:01 68.2 40 SL:12:01 74.9 32 SL:12:01 74.5 40 SL:12:01 74.5 40 SL:12:01 78.8 55						65	05		small matic dyke - lower contact.
SL-12-01 25.9 38 SL-12-01 34.9 38 SL-12-01 39.5 42 SL-12-01 47.1 40 SL-12-01 53.2 36 SL-12-01 53.2 36 SL-12-01 53.2 36 SL-12-01 60 30 SL-12-01 60.5 5 SL-12-01 66.5 35 SL-12-01 66.5 35 SL-12-01 66.5 35 SL-12-01 66.5 35 SL-12-01 68.2 40 SL-12-01 74.9 32 SL-12-01 102.3 37 SL-12-01 102.3 37									
SL-12-01 34.9 38 SL-12-01 39.5 42 SL-12-01 51.4 36 SL-12-01 51.4 36 SL-12-01 57.4 36 SL-12-01 60 30 small mafic dyke? upper contact. SL-12-01 60.85 45 small mafic dyke? lower contact. SL-12-01 66.5 35 SL-12-01 66.2 40 SL-12-01 66.2 35 SL-12-01 68.2 40 SL-12-01 79.8 32	SL-12-01								
SL-12-01 39.5 42 SL-12-01 47.1 40 SL-12-01 53.2 36 SL-12-01 53.2 36 SL-12-01 57.4 36 SL-12-01 60.8 45 smail mafic dyke? lower contact.							38		
SL-12-01 47.1 40 40 SL-12-01 51.4 36 40 SL-12-01 57.4 36 40 SL-12-01 60.8 45 small mafic dyke? upper contact. SL-12-01 60.85 45 small mafic dyke? lower contact. SL-12-01 60.85 45 small mafic dyke? lower contact. SL-12-01 68.2 40 40 40 SL-12-01 68.2 40 40 40 SL-12-01 68.2 40 40 40 SL-12-01 68.5 55 40 40 40 SL-12-01 84.5 40 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
SL-12-01 51.4 36									
SL-12-01 53.2 36 Small mafic dyke? upper contact. SL-12-01 60.85 45 small mafic dyke? lower contact. SL-12-01 60.85 45 small mafic dyke? lower contact. SL-12-01 66.6 35 SL-12-01 66.6 35 SL-12-01 68.2 40 SL-12-01 68.2 40 SL-12-01 74.9 32 SL-12-01 74.9 32 SL-12-01 84.5 40 SL-12-01 88.8 55 SL-12-01 88.8 55 SL-12-01 102.3 37 SL-12-01 110.4 40 SL-12-01 128.5 35 SL-12-01 128.5 35 SL-12-01 128.5 35 SL-12-01 128.3 30	SL-12-01								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									
SL-12-01 60 30 small mafic dyke? upper contact. SL-12-01 60.85 45 small mafic dyke? lower contact. SL-12-01 66.5 35 SL-12-01 66.5 35 SL-12-01 68.2 40 SL-12-01 68.2 40 SL-12-01 79.8 32 SL-12-01 79.8 32 SL-12-01 84.5 40 SL-12-01 84.5 40 SL-12-01 88.8 55 SL-12-01 93.5 35 SL-12-01 102.3 37 SL-12-01 102.3 37 SL-12-01 119.5 35 SL-12-01 128.5 35 SL-12-01 128.5 35 SL-12-01 134.3 37	SL-12-01								
SL-12-01 60.85 45 small mafic dyke? lower contact. SL-12-01 61.9 40 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5 60.5 50.5						20			amall mofie duke? upper contact
SL-12-01 61.9 40 40 SL-12-01 66.5 35 40 SL-12-01 74.9 32 50 SL-12-01 74.9 32 50 SL-12-01 74.9 32 50 SL-12-01 74.9 32 50 SL-12-01 84.5 40 50 SL-12-01 84.5 40 50 SL-12-01 88.8 55 50 50 SL-12-01 93.5 35 50 50 SL-12-01 102.3 37 50 50 50 SL-12-01 110.4 40 50 50 50 50 SL-12-01 111.4 40 50 50 50 50 50 SL-12-01 112.5 35 50	SL-12-01								
SL-12-01 66.5 35 SL-12-01 68.2 40 SL-12-01 74.9 32 SL-12-01 74.9 32 SL-12-01 74.9 32 SL-12-01 79.8 32 SL-12-01 84.5 40 SL-12-01 93.5 35 SL-12-01 102.3 37						40			
SL-12-01 68.2 40 SL-12-01 74.9 32 SL-12-01 79.8 32 SL-12-01 84.5 40 SL-12-01 88.8 55 SL-12-01 93.5 35									
SL-12-01 74.9 32	SL-12-01								
SL-12-01 79.8 32 SL-12-01 84.5 40 SL-12-01 88.8 55 SL-12-01 93.5 35 SL-12-01 102.3 37 SL-12-01 110.4 40 SL-12-01 113.5 45									
SL-12-01 84.5 40 SL-12-01 88.8 55 SL-12-01 93.5 35 SL-12-01 102.3 37 SL-12-01 110.4 40									
SL-12-01 88.8 55 SL-12-01 93.5 35 SL-12-01 102.3 37 SL-12-01 110.4 40 SL-12-01 119.5 35 SL-12-01 123.5 45									
SL-12-01 93.5 35 SL-12-01 102.3 37 SL-12-01 110.4 40 SL-12-01 119.5 35 SL-12-01 123.5 45 SL-12-01 128.5 35									
SL-12-01 102.3 37 Image: style s									
SL-12-01 110.4 40	SL-12-01								
SL-12-01 119.5 35 SL-12-01 123.5 45 SL-12-01 128.5 35 SL-12-01 128.2 30 SL-12-01 131.3 37 SL-12-01 134.3 35 SL-12-01 137.3 35 SL-12-01 137.3 35 SL-12-01 140.3 30 SL-12-01 140.3 30 SL-12-01 142.5 30 SL-12-01 148.9 30 SL-12-01 158.3 30 SL-12-01 168.6 30									
SL-12-01 123.5 45 SL-12-01 128.5 35 SL-12-01 128.2 30 SL-12-01 128.2 30 SL-12-01 131.3 37 SL-12-01 134.3 35 SL-12-01 137.3 35 SL-12-01 140.3 30 SL-12-01 142.5 30 SL-12-01 148.9 30 SL-12-01 148.9 30		119.5	35						
SL-12-01 128.2 30 Image: state of the state of	SL-12-01	123.5							
SL-12-01 131.3 37 Image: constraint of the second se	SL-12-01								
SL-12-01 134.3 35 SL-12-01 137.3 35 SL-12-01 140.3 30 SL-12-01 140.3 30 SL-12-01 142.5 30 SL-12-01 142.5 30									
SL-12-01 137.3 35 SL-12-01 140.3 30 SL-12-01 142.5 30 SL-12-01 142.5 30									
SL-12-01 140.3 30 Image: style="text-align: center;">Image: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style=									
SL-12-01 142.5 30 Image: style="text-align: center;">Image: style="text-align: center;">Image: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="te									
SL-12-01 148.9 30 Image: style="text-align: center;">Image: style="text-align: center;">Image: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: style="text-align: center;">Image: style="text-align: style="te									
SL-12-01 152.3 35 SL-12-01 158.3 30 SL-12-01 164.3 35 SL-12-01 168.6 30 SL-12-01 174.5 30 SL-12-01 178.3 30 small mafic dyke upper contact is irregular and cross cuts foliation. SL-12-01 178.3 30 SL-12-01 182.2 40 SL-12-01 188.2 37 SL-12-01 194.4 40									
SL-12-01 158.3 30 Image: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-align: style="text-align: center;">Image: style="text-alig:									
SL-12-01 164.3 35 SL-12-01 168.6 30 SL-12-01 174.5 30 SL-12-01 178.3 30 small mafic dyke upper contact is irregular and cross cuts foliation. SL-12-01 178.2 40 SL-12-01 188.2 37 SL-12-01 194.4 40					_				
SL-12-01 168.6 30 Image: state sta					_				
SL-12-01 174.5 30 small mafic dyke upper contact is irregular and cross cuts foliation. SL-12-01 178.3 30 small mafic dyke upper contact is irregular and cross cuts foliation. SL-12-01 182.2 40 SL-12-01 188.2 37 SL-12-01 194.4 40					_				
SL-12-01 178.3 30 small mafic dyke upper contact is irregular and cross cuts foliation. SL-12-01 182.2 40 <td< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>					-				
SL-12-01 178.3 30 foliation. SL-12-01 182.2 40 <t< td=""><td>SL-12-01</td><td>174.5</td><td>30</td><td></td><td></td><td></td><td></td><td></td><td>amall motio duka uppar contact in irregular and areas sute</td></t<>	SL-12-01	174.5	30						amall motio duka uppar contact in irregular and areas sute
SL-12-01 182.2 40 Image: state sta	CI 12.01	170.0				20			
SL-12-01 188.2 37 SL-12-01 194.4 40			40		-	30			
SL-12-01 194.4 40					+	+			
					+			-	
	SL-12-01 SL-12-01	194.4			-	+			

Samp	les
------	-----

						ANALYTE	Wt	Au	Au	Au	Certificate # for Au
						METHOD	WGH79	FAA313	FAA313	FAA313	
						DETECTION	0.01	5	0.01	0.001	
Hole #	Sample #	From	То	Interval	Comment	UNITS	kg	ppb	g/t	oz/t	
SL-12-01	W652576	83.00	84.00	1.00	tr vfg diss py		-5	-0.01	-0.001	1.7	RL1204008
	W652577	84.00	85.00	1.00	tr vfg diss py		1.70	15	0.02	<0.001	RL1204008
	W652578	85.00	86.00	1.00	tr vfg diss py		1.60	10		<0.001	RL1204008
	W652579	86.00	87.00		tr vfg diss py		1.80	15		<0.001	RL1204008
	W652580	87.00	88.00		tr vfg diss py		1.90		<0.01	<0.001	RL1204008
	W652581	88.00	89.00		tr vfg diss py		1.80		<0.01	<0.001	RL1204008
	W652582	60.00	61.00		Bo-Ac alteration		1.70		<0.01	<0.001	RL1204008
	W652583	61.00	61.50		Sericite muscovite altn		0.80	90			RL1204008
	W652584	61.50	62.50		Sericite muscovite altn		1.60	15		<0.001	RL1204008
	W652585	68.30	69.30		Sericite muscovite altn		1.60		<0.01	<0.001	RL1204008
	W652586	94.00	95.00		tr vfg diss py		1.80		<0.01	<0.001	RL1204008
	W652587	95.00	96.00		tr vfg diss py (minor qtz vein)		1.60		<0.01	<0.001	RL1204008
	W652588	96.00	97.00		tr vfg diss py		1.70		<0.01	<0.001	RL1204008
	W652589	104.50	105.50		tr vfg diss py, po, small qtz-carb vein		1.70		<0.01	<0.001	RL1204008
	W652590	129.50	130.50				1.80			<0.001	RL1204008
	W652591	130.50	131.00	0.50			1.00	10			RL1204008
	W652592	131.00	132.00	1.00			1.80		<0.01	<0.001	RL1204008
	W652593	132.00	133.00	1.00			1.80		<0.01	<0.001	RL1204008
	W652594	133.00	134.00	1.00			1.80		<0.01	<0.001	RL1204008
	W652595	134.00	135.00	1.00			1.70		<0.01	<0.001	RL1204008
	W652596	135.00	136.00	1.00			1.80		<0.01	<0.001	RL1204008
	W652597	136.00	137.00	1.00			1.90		<0.01	<0.001	RL1204008
	W652598	137.00	138.00	1.00			1.80	25		<0.001	RL1204008
	W652599	138.00	138.50	0.50			0.90		<0.01	<0.001	RL1204008
	W652600	138.50	139.00	0.50			0.90		<0.01	<0.001	RL1204008
	W652601	139.00	139.50	0.50			1.00		<0.01	<0.001	RL1204008
	W652602	139.50	140.00	0.50			0.90		<0.01	<0.001	RL1204008
	W652603	140.00	140.50	0.50			0.90		<0.01	<0.001	RL1204008
	W652604	140.50	141.00	0.50			0.80	20		<0.001	RL1204008
	W652605	141.00	142.00	1.00			1.70		<0.01	<0.001	RL1204008
	W652606	142.00	143.00				1.70	20		<0.001	RL1204008
	W652607	143.00	144.00				1.50		<0.01	<0.001	RL1204008
	W652608	144.00	145.00	1.00			1.70	10	<0.01	<0.001	RL1204008

						ANALYTE	Wt	Au		Au	Au	Certificate # for Au
						METHOD	WGH79	FAA3	13	FAA313	FAA313	
						DETECTION	0.01		5	0.01	0.001	
Hole #	Sample #	From	То	Interval	Comment	UNITS	kg	ppb		g/t	oz/t	
	W652609	145.00	146.00	1.00			1.90		5	<0.01	<0.001	RL1204008
	W652610	146.00	147.00	1.00			1.70		5	<0.01	<0.001	RL1204008
	W652611	147.00	148.00	1.00			1.80			<0.01	<0.001	RL1204008
	W652612	148.00	149.00	1.00			1.80			<0.01	<0.001	RL1204008
	W652613	149.00	150.00	1.00			1.90		15		<0.001	RL1204008
	W652614	150.00	151.00	1.00			1.70		25		<0.001	RL1204008
	W652615	151.00	152.00	1.00			1.90			<0.01	<0.001	RL1204008
	W652616	152.00	153.00	1.00			1.80			<0.01	<0.001	RL1204008
	W652617	153.00	154.00	1.00			1.70			<0.01	<0.001	RL1204008
	W652618	154.00	155.00	1.00			1.80			<0.01	<0.001	RL1204008
	W652619	155.00	156.00	1.00			1.70		25		<0.001	RL1204008
	W652620	156.00	157.00	1.00			1.80		55			RL1204008
	W652621	157.00	158.00	1.00			1.60			<0.01	<0.001	RL1204008
	W652622	158.00	159.00	1.00			1.70			<0.01	<0.001	RL1204008
	W652623	159.00	160.00	1.00			1.70		10	<0.01	<0.001	RL1204008
	W652624	160.00	161.00	1.00			1.80			<0.01	<0.001	RL1204008
	W652625	161.00	161.50	0.50			0.90		5	<0.01	<0.001	RL1204008
	W652626	161.50	162.50	1.00			1.80			<0.01	<0.001	RL1204008
	W652627	162.50	163.50	1.00			1.70			<0.01	<0.001	RL1204008
	W652628	163.50	164.00	0.50			0.90			<0.01	<0.001	RL1204008
	W652629	164.00	165.00	1.00			1.70			<0.01	<0.001	RL1204008
	W652630	165.00	166.00	1.00			1.80			<0.01	<0.001	RL1204008
	W652631	166.00	166.50	0.50			0.90			<0.01	<0.001	RL1204008
	W652632	166.50	167.00	0.50			1.00		15		<0.001	RL1204008
	W652633	167.00	167.50	0.50			0.90		25		<0.001	RL1204008
	W652634	167.50	168.00	0.50			0.90			<0.01	<0.001	RL1204008
	W652635	168.00	169.00	1.00			1.90			<0.01	<0.001	RL1204008
	W652636	169.00	170.00	1.00			1.80		35		<0.001	RL1204008
	W652637	170.00	171.00	1.00			1.60			<0.01	<0.001	RL1204008
	W652638	171.00	172.00	1.00			1.80			<0.01	<0.001	RL1204008
	W652639	172.00	172.50	0.50			0.90			<0.01	<0.001	RL1204008
	W652640	172.50	173.00	0.50			0.90		10	<0.01	<0.001	RL1204008
	W652641	173.00	174.00	1.00			2.00	<5		<0.01	<0.001	RL1204008

						ANALYTE	Wt	Αι	l I	Au	Au	Certificate # for Au
						METHOD	WG	H79 FA	A313	FAA313	FAA313	
						DETECTION		0.01	5	0.01	0.001	
Hole #	Sample #	From To	С	Interval	Comment	UNITS	kg	рр	b	g/t	oz/t	
	W652642	174.00	175.00	1.00				1.70	10	<0.01	<0.001	RL1204008
	W652643	175.00	176.00	1.00				2.00 <5	5	<0.01	<0.001	RL1204008
	W652644	176.00	177.00	1.00				1.80	5	<0.01	<0.001	RL1204008
	W652645	177.00	178.00	1.00				1.80	5	<0.01	<0.001	RL1204008
	W652646	181.70	182.70	1.00				1.80	5	<0.01	<0.001	RL1204008
	W652647	182.70	183.70	1.00				1.70 <5	5	<0.01	<0.001	RL1204008
	W652648	183.70	184.70	1.00				1.80 <5	5	<0.01	<0.001	RL1204008
	W652649	184.70	185.70	1.00				1.80 <5	5	<0.01	<0.001	RL1204008
	W652650	185.70	186.70	1.00				1.70 <5	5	<0.01	<0.001	RL1204008
	W652651	186.70	187.70	1.00				2.00 <5	5	<0.01	<0.001	RL1204008
	W652652	190.70	191.20	0.50				0.90	5	<0.01	<0.001	RL1204008
	W652653	191.20	192.20	1.00				1.90	240	0.24	0.007	RL1204008

Survey	Data
--------	------

Survey name	Depth (m)	Azimuth (uncorrected)	Azimuth (corrected)	Dip	Mag.Str.	Mag.Dip
Ranger						
Ranger Ranger						
Ranger						
	1					
	1					
	1					
	1					
	1					
	1					
	+					
	1					
	+					
	+					

Photo #	Description
SL-12-01-0001	

											Core		Date Log	
Hole ID:	Claim No. Township Na	d83 Zone 15	Location	Direction	Dip	Length (m)	Overburden Depth (m)	Date Started	Date Finished	Drill Company	Size	Logged By	Completed	Core Location
	East	North	Elevation											
SL-12-02	4241797 Caley Lake 6692	200 5679955	385	360	-55	153	11.3	November 23, 2012	2 November 24, 2012	2 Rugged Aviation	BTW	Matthew Spencer	December 8, 2012	Red Lake core library

	Prima	ary Unit	Second	lary Unit	Tertia	ary Unit				Alteration			Magnetic	Misc
Hole	From ¹	To (m)	From	To (m)	From	To (m)	Code	Name	Description		Ру	Po	with shar (0-5 (weak to s	trong)
SL-12-02	0.0	11.3		. ,			OB	Casing	Overburden					
									Dark-grey to grey, FG to V. FG, massive. ~80% mf-int massive flow and ~20%					
									possible tuff. Difficult to break out tuff and flow units due to colour and foliation					
									similarities, displaying a blending effect. Common back and forth between					
									darker chl rich and lighter less chl rich flows, seems to be grading back and					
									forth. S1 mod-strong foliation @ ~49deg TCA. @ 38.20-39.18m, Dark					
									phorphoritic white MG phenocryst possible Diorite/Gabbro dyke/intrusion. Tuff					
									units are FG-MG, display chl rich and less chl rich textures with all containing					
									ankerite and minor calcite alt. Late ank/cal vnts observed. Very weakly mag.					
SL-12-02	11.3	58					3a	Mafic-Intermediate n		chl/ank/cal				1
SL-12-02			38.2	39.18	5		10a	Diorite/Gabbro						
									Dark-grey to grey, FG- V.FG, massive. Very similar to before except with the					
									appearace of trace amounts of py and po min. ~80% Tuff and ~20% Flow. S1					
									foliation @ ~52deg TCA. @ 59.10-60.00m, ~tr-1% py and ~tr-3% $$ po stringers					
									and grains observed in dark chl rich mafic tuff units all going with S1 foliation,					
									within and next to thin bands of ankerite with OP sericite. Very trace amounts					
									of py and po observed outside this zone. Late ank/cal vnts observed. Very					
SL-12-02	58	63.6					3f	Mafic-Intermediate T		chl/ank/ser	tr-1%	tr-3%		1
									Dark-grey to grey, FG-V.FG, massive. Similar again to before except with the					
									presence of biotite. ~90% Tuff, ~10% Flow. Appearance of very common thin					
									mm-cm sized bands of biotite with much less chl, possibly intermediate					
									dominated tuff. ~70% bands of bt throughout. Common this bands of ankerite.					
									S1 foliation @ ~53deg TCA. Localized very trace amounts of py and po traces					
01 40 00	<u> </u>	70.0							and thin stringers observed all going with S1 foliation. Very weakly mag.					
SL-12-02	63.6	72.6					3f	Mafic-Intermediate T		Bt/ank/chl	tr	tr		1
									Dark Grey-green to grey, FG-V.FG. Large drop in biotite to traces thorughout.					
									Large increase in chl. Most of section seems to be tuff units with minor					
SL-12-02	72.6	87.4					2f	Mafic-Intermediate T	possible flows. Very traces amounts of pyrite observed. Very weakly mag.	Chl/ank/chl	+ -			1
JL-12-02	12.0	01.4					21		Peppered Dark grey and white-grey, FG, massive. Peppered white-grey		u			1
									ankerite and dark grey chl. All residual grains have been altered to chl and					
									ankerite and dark grey chi. All residual grains have been altered to chi and ankerite. Weak-moderate S1 Foliation @ ~48deg TCA. Likely a mafic massive					
									volcanic flow, well shaped phorphoritic chl altered subhedral crystals within a					
									white-grey ankerite matrix. Possibily may be either gabbro/diorite as well. A					
									couple white qtz-carb veins observed, no min. Unit xcut by thin ankerite filled					
SL-12-02	87.4	100.9					2a	Mafic Massive Flow	vnts. Very weakly mag.	chl/ank				1
02-12-02	07.4	100.9					20		Peppered Dark grey and white-grey, MG, massive. Exact same as before	GHI/ AHK				<u> </u>
									except with a change in grain size to all MG throughout. Mafic dyke observed					
									with sharp contacts. Localized large cm sized patches of solid forest green chl					
SL-12-02	100.9	153					2a	Mafic Massive Flow	observed. Very weakly mag.	chl/ank				1
SL-12-02			103.85	104.15	5			Mafic Dyke						-
SL-12-02					1			,,	EOH					

								Note: all measurements are calculated from Bottom of
		S1	S2	Vn	Intr Contacts	Bedding	Fract	core.
Hole	Depth (m)	Dip	Dip	Dip	Dip	Dip	Dip	Description
SL-12-02	20	49						Foliation in mf-int flow
SL-12-02	38	49						Foliation in mf-int flow
SL-12-02	39.18				60			Bottom contact of Diroite/Gabbro
SL-12-02	62	52						Foliation in mf-int flow
SL-12-02	71	53						Foliation in Mf-Int Tuff
SL-12-02	90	48						Foliation in mafic flow
SL-12-02	104.15	53						Bottom contact of dyke
SL-12-02	120	48						Foliation in mafic flow

						ANALYTE	Wt	Au	Au	Au	Certificate # for Au
						METHOD	WGH79	FAA313	FAA313	FAA313	
						DETECTION	0.01	5	0.01	0.001	
Hole #	Sample #	From	То	Interval	Comment	UNITS	kg	ppb	g/t	oz/t	
SL-12-02	652683	58.50	59.00	0.50	tr py		0.80	<5	<0.01	<0.001	RL1204105
SL-12-02	652684	59.00	59.50	0.50	tr-1% py, tr-3% po		0.90	<5	<0.01	<0.001	RL1204105
SL-12-02	652685	59.50	60.00	0.50	tr-1% py, tr-3% po		1.00	110	0.11	0.003	RL1204105
SL-12-02	652686	60.00	61.00	1.00	tr py		1.60	<5	<0.01	<0.001	RL1204105
SL-12-02	652687	61.00	62.00	1.00	tr py		1.70	<5	<0.01	<0.001	RL1204105
SL-12-02	652688	62.00	63.00	1.00	tr py		1.60	<5	<0.01	<0.001	RL1204105
SL-12-02	652689	63.00	64.00	1.00	tr py		1.70	<5	<0.01	<0.001	RL1204105
SL-12-02	652690	64.00	65.00	1.00	tr py		1.70	<5	<0.01	<0.001	RL1204105
SL-12-02	652691	65.00	66.00	1.00	tr py		1.80	110	0.11	0.003	RL1204105
SL-12-02	652692	71.70	72.30	0.60	tr py		1.00	<5	<0.01	<0.001	RL1204105
SL-12-02	652693	75.70	76.70	1.00	tr py		1.70	<5	<0.01	<0.001	RL1204105
SL-12-02	652694	76.70	77.70	1.00	tr py		1.90	<5	<0.01	<0.001	RL1204105

Survey name	Depth (m)	Azimuth (uncorrected)	Azimuth (corrected)	Dip	Mag.Str.	Mag.Dip
Ranger		NO SURVEY				
Ranger						
Ranger						
	1					
	1					
	1					
	1					
	1					
	1					
	1					1
	I	1		1	I	I

Photo #	Description
SL-12-02-0001	

												Core		Date Log	
Hole ID:	Claim No.	Township	Nad8	3 Zone 15	Location	Direction Di	p Length (m)	Overburden Depth (m)	Date Started	Date Finished	Drill Company	Size	Logged By	Completed	Core Location
			East	North	Elevation										
SL-12-03	4241797	Caley Lake	669200	5679694	396	360 -5	5 162	18	November 25, 2012	November 26, 2012	Rugged Aviation	BTW	Matthew Spencer		Red Lake

	Prima	ry Unit Secor	ndary Unit	Tertiary Unit				Alteration				Magnetic
Hole	From ⁻	To (m) From	To (m)	From To (m)	Code	Name	Description		Ру	Po	Сру	(0-5 (weak to strong)
SL-12-03	0.0	18.0			OB	Casing	Overburden					
							~75% Dark grey and white banded int. tuff, ~25% dark grey Int. massive flow					
							or possible dykes(?), homogenous, FG. Int. tuff: thin mm sized bands of dark					
							grey biotite and white-grey ankerite alt, rare banding with forest-green chl.					
							Some mm sized rounded swirls of carb alt observed. S1 mod-strong foliation					
							@ ~42deg TCA. Two dykes or flows observed with <1mm sized chloritized					
							amph. or pyx, and <1mm sub-rounded grains of white carb, lineration of chl					
SL-12-03	18	33.5			3f	Intermediate Tuff	grains at base @ S1. Very weakly mag.	bt/carb, minor	r chl			1
SL-12-03		25.25	25.4		3a	Intermediate Massive Flow						
SL-12-03		26.9			- Cu							
2 12 00		20.0	00.10				Dark-grey to blue.and white-grey bands, homogenous, Very FG. Dark-grey to					
							blue mm-cm sized bands of very FG siltstone, with interbedded mm sized thin					
							layers of carb (ankerite?) and with isolated intermized <1mm V. Siltstone is					
							weak-mod silicified. FG thin beds of biotite in rare areas. Isolated areas of					
							possible intermixed tuff in some areas. Int. massive flow observed with					
							foliation @ S1 and with lightly yellowish-white sericite alt. White-grey Q\qtz					
	00 F				0.1	Mata Ollhatana	vein or flooding qtz observed after flow @ 42.03-42.36m with sharp irregular					
SL-12-03	33.5	44.4			6d	Meta-Siltstone	contacts, no min. Very weakly mag.	Carb, minor s	er, bt			1
SL-12-03		41.9	42		3a	Intermediate Massive Flow						
							Dark-grey and white-grey banding, V. FG. Mm-cm sized thin bands of dark-					
							grey V.FG biotite with rare forest green chl in a few areas, interbedded with					
							grey-white mm-cm sized carb with some of the bands in sections displaying a					
							mod intermixed silica alt. S1 @ ~45deg TCA. Large sections of back and forth					
							dominant bt or carb banding. White-grey qtz-carb vein @ 52.05-52.30m @ S1					
							with no min. Small white-grey qtz vn @ 71.75-71.80m with trace py along					
SL-12-03	44.4	80.5			3f	Intermediate Tuff	edges. Very weakly mag.	Bt, carb, si, m	i Trace			1
							Forest green and white-gray banding, V. FG. Possible grading to mafic tuff.					
							Similar to before but now with bands of dominant chl with some bands with					
							intermixed biotite. Still few thin bands of biotite thorughout but mainly bands of					
							chl. Grainy darker chl grains in much of the chl bands. Same thin carb bands					
							as before. @ 85.50-85.55m white0grey qtz vn with py in edges, diss trace py					
							around the vn in the mf tuff going with \$1. S1 @ ~45deg TCA. Very weakly					
SL-12-03	80.5	91.75			2f	Intermediate-Mafic Tuff	mag.	Chl,carb,bt				1
							Forest green, white-grey bands, FG. Similar to before except with near loss of					
							the biotite, only occuring in small rare patchy areas. Near loss of silica alt in					
							carb bads as well. S1 foliation @ 44deg TCA. Patch of med gr garnets @					
							18.90-19.30m. Common mm-cm sized brecciated qtz vnts, most with no min.					
							Trace cpy observed in gtz vn @ 122.30m in small gtz vn. Very small patches					
							of trace po observed in some sections of mf tuff. Four FG and MG mafic dykes					
							(possible flows?) observed with sharp contacts, no foliation. Very weakly mag.					
SL-12-03	91.75	130			2f	Mafic Tuff		chl/carb, mind	or ht/ci	Traco	Traco	1
SL-12-03 SL-12-03	91.75	95.16	95.49		21 10b	Maric Tun Mafic Dyke		Chi/Carb, minc		Trace	Trace	
SL-12-03		101.7	101.94			Mafic Dyke						
SL-12-03		102.3	102.77			Mafic Dyke						
SL-12-03		121	121.3			Mafic Dyke						
SL-12-03		124.3	124.6		10b	Mafic Dyke						

	Prim	ary Unit	Secon	idary Unit	Tertia	ary Unit				Alteration				Magnetic
Hole	From	To (m)	From	To (m)	From	To (m)	Code	Name	Description		Ру	Po	Сру	(0-5 (weak to strong)
									Dark-grey to blue, Very FG, Silicified. Possible contact metamorphosed mafic					
									tuff(?) from underlying mafic flow/intrusion(?). Unit is now moderate-strongly					
									silicified with barely visible interbedded units from before. Localized dark chl					
									vnts. S1 foliation @ ~50deg TCA. Broken lower contact. Very weakly mag.					
SL-12-03	124.6	134.15					2f	Meta-Mafic Tuff		si/chl				1
									Dark-grey to grey and patchy pitacho green, MG, massive, homogenous.					
									Medium grained chloritized <1mm-3mm sized subeuhedral crystals					
									throughout. Patchy bleby mm-cm sized areas of ept alt surrounding the chl					
SL-12-03	134.2	162					2a	Mafic Massive Flow	grains thorughout. Localized mm sized ankerite vnts. Very weakly mag.	chl/ept				
SL-12-03									EOH					

								Note: all measurements are calculated from Bottom of
		S1	S2	Vn	Intr Contacts	Bedding	Fract	core.
Hole	Depth (m)	Dip	Dip	Dip	Dip	Dip	Dip	Description
SL-12-03	24.00	42	2					Foliation in int. tuff
SL-12-03	30.15				42			Bottom Int. flow contact
SL-12-03	40.00	- 38	8					Foliation in meta-siltstone
SL-12-03	41.90				38			Bottom Int. flow contact
SL-12-03	60.00	4	5					Foliation in int. tuff
SL-12-03	87.00	4	5					Foliation in Intermediate-Mafic Tuff
SL-12-03	115.00	44	4					Foliation in Mafic Tuff
SL-12-03	130.00	50	C					Foliation in Meta-Mafic Tuff

					ANALYTE	Wt	Au	Au	Au	Certificate # for Au
					METHOD	WGH79	FAA313	FAA313	FAA313	
					DETECTION	0.01	5	0.01	0.001	
Hole #	Sample #	From	То	Interval Comment	UNITS	kg	ppb	g/t	oz/t	
SL-12-03	652678	42.00	42.50	0.50 qtz vn, no min		0.80	85	0.09	0.003	RL1204105
SL-12-03	652679	53.00	53.50	0.50 qtz vn, no min		0.80	80	0.08	0.002	RL1204105
SL-12-03	652680	71.50	72.00	0.50 qtz vn, tr py		0.70	20	0.02	<0.001	RL1204105
SL-12-03	652681	85.30	85.80	0.50 qtz vn, tr py		0.90	5	<0.01	<0.001	RL1204105
SL-12-03	652682	121.90	122.40	0.50 qtz vn, tr cpy		0.90	55	0.06	0.002	RL1204105

Survey I	Data
----------	------

Azimuth (uncorrected) No Survey Data		Mag.Str.	Mag.Dip
		Image: state s	Image: state of the state of

Photo #	Description
SL-12-03-0001	
SL-12-03-0002	
SL-12-03-0003	
SL-12-03-0004	
SL-12-03-0005	
SL-12-03-0006	
SL-12-03-0007	
SL-12-03-0008	
SL-12-03-0009	

Hole ID:	Claim No.	Township	Nad8	3 Zone 15	5 Location	Direction	Dip Length (m)	Overburden Depth (m)	Date Started	Date Finished	Drill Company	Core Size	Logged By	Date Log Completed	Core Location
			East	North	Elevation										
SL-12-04	4241797	Caley Lake	668900	567943	0 397	360	-55 180	18	November 27, 2012	November 28, 20	12 Rugged Aviation	BTW	Martin King	December 10, 2012	Red Lake

	Primar	y Unit	Second	dary Unit	Tertia	ary Unit				Alteration				Magnetic
Hole					From	To (m)	Code	Name	Description		Py	Po	Сру	(0-5 (weak to strong)
SL-12-04	0.00	18.00	-	- ()		- ()	OB	Casing	Overburden		,		-17	(
									Strongly foliated, green to light green, grey fine-grained Mafic Tuff. Entire					
									section contains fine, 1-2mm chlorite bands aligned in the foliation. Minor					
									carbonate dispersed throughout the foliation - calcite and trace ankerite. Occ.					
									V. dark , 1-2cm mafic bands. Strong foliation (S1) predominently @ 38° to					
									LCA. Occ. wispy, irreg. sericite band below 24m. Rare qtz. veinlets broadly					
									parallel to foliation, occ. with a pink color. More 'mottled" chlorite towards					
SL-12-04	18.00	39.65					2f	Mafic Tuff	base. Very weakly magnetic.	chl/ser/ank				
									Fine-med. Crystalline dioritic dyke. Bk. Non foliated. Abundant fine, 1-2mm					
									hornblende crystals. Broadly parallel to S1 Foliation. Finely diss. Py. 1-2%.					
SL-12-04			33.75	35.35			10a	Mafic Intrusive/dyke	Very wealky magnetic.	chl		2		
02 12 04			00.70	00.00	, 		100	Mane Intrasive/ayke	More mafic tuffaceous interval with some mafic flow features. Increased	om		2		
									chloritie. More dk. Gn. Fine-med. Crystalline. Mostly non-foliated. Slight					
									increase in biotite. Some massive intervals. Irreg. QV or qtz. Flooding over					
							2f		the interval 40.30-40.75m. Broadly parallel to S1 foliation. No sulphides assoc.	chl/bi				
									with Qtz. Slight increase in foliation down interval. 45-45.30m: quartz-silica					
									injected zone with 3-4% Py. and fine hydrothermal Bx.clasts predom. Chlorite.					
									Some diss. py. 51.20-51.60m: Diss. Py (5%) in very mafic zone with crystalline	•				
SL-12-04	39.65	54.00						Mafic Tuff	Chl. and some Bi. all part of mafic (2f) material.				5	
SL-12-04			47.15	47.65	5		2a	Mafic Flow	Massive, dk. Gn. Mafic material. Chloritic. Less foliated.					
									Medium grey, mod. foliated, pred. intermidiate tuff. Some 1-2mm chlorite					
									bands. Some foliation-parallel, <5mm Qtzcarbonate veinlets and diffuse					
								Intermediate-Mafic	boudins. Tuffaceous material predom. Fine-grained. 55.05-55.15m: WQ Vein.					
SL-12-04	54.00	59.90					3f/2f	Tuff		Chl				
									Pred. mafic tuffaceous material. Intensely foliated. Qtz-carb. Veinlets in					
									foliation, occ. Boudined in S1 and lenticular, mainly to 62.75m. Some sulphide					
									stringer zones, occ. With associated qtz. Stringers. Minor Chl. 66.00-66.20m:					
									WQV zone with Py and Po (2-3%). Po in foliation in HW to vein. 66.20-					
CI 40.04	50.00	CC 50					0 4	Motio Tuffo				2		
SL-12-04	59.90	66.50					2f	Mafic Tuffs	66.50m: Finely disseminated sulphides (5%) Py and Po comb.			3		
								Sulphide Stringer	up to 4% Py along foliation.					
SL-12-04			63.40	64.00)		16c	Zone				4		
								Qtz, stringers with	1% Py.					
SL-12-04			64.30	64.55			16c	tr. Py.				1		
SL-12-04			64.55	65.30)			Mafic Flow						
									Pred. intermediate tuffs, lacking chl. and other more mafic minerals. Fine-med.					
									Grained, light-grey colored, occ. Blueish color. Strong F1 foliation @ 40° to					
									LCA throughout. Occ. Tr. Py. along foliation (<0.5%). 70.35-70.65m: Diffuse					
									White/grey QV with 2-3% Py, broadly parallel to S1 Foliation. Contains a					
									number of sulphide stringer zones, notably 75.10-81.45m. The lower part of					
									this section contains occasional sulphide stringers, all paralel to the foliation.					
SL-12-04	66.50	109.00					3f	Intermediate Tuff				3		
	00.00	103.00							Pyrite, coarse late and fine Py. Some tarnished Py. V. minor Cpy. Trace SbS?			5		
SL-12-04			70.35	70.65			15a	QV with sulphides	Some coarse muscovite-like selvedges (Scheelite? Silliminite?).			1	0.	2
SL-12-04 SL-12-04			10.55	10.00			150				-	•	0.	
02-12-04							+	Sulphide Stringer						
SL-12-04			75.10	81.45			16c	zone						
06-12-04			75.10	01.40	1		100	20110						
SL-12-04					75.2	5 75.45	5 15a	Qtz + Sulphides	Qtz. Flooded zone with minor (3%) sulphides, pred. Py.					

	Primar	y Unit	Second	dary Unit		ry Unit			Alteratio	n				Magnetic
Hole	From	To (m)	From	To (m)	From	To (m)	Code		Description	Py		Po	Сру	(0-5 (weak to strong)
SL-12-04					76.10	76.20)	QV + Sulphides	Narrow QV. Bk to Dk with diffuse inclusions. 1-2% Po, 1% Py.					
									Parallel to S1 Foliation. Diffuse white-glassy qtz. With coarse (late) and finer					
									sulphides, principally Py, some Po and trace Cpy observed. 5% Py. Weakly					
SL-12-04			81.60	81.85			15a	Qtz + Sulphide Zone	magnetic.		5	5 1	0.	3
							15a/							
SL-12-04			89.55	89.75			16c	QV + Sulphides	QV and sulphides. 2% Py, 2% Po. Broadly parallel to foliation.		2	2 2		
									QV and sulphides. 2% Py, 2% Po. Broadly parallel to foliation. Includes better					
SL-12-04					98.50	98.95	15a	QV + Sulphides	QV 98.85-98.95m. Weakly magnetic.		2	2 2		
SL-12-04			105.75	111.60					Silicification (80%). Some sericite Sil					
SL-12-04	109.00	109.20					3a	Intermediate flow	Intermediate Flow. Some lapilli observed.					
									Predominently a sedimentary sequence. Dk. Gy. Fine wackes with some					
SL-12-04	109.20	112.40					6b	Meta wackes	intermediate tuff bands (<0.5m).					
SL-12-04	112.40						3f	Intermediate tuff	Medium-grained, bedded intermediate lapilli tuff.					
									Mostly banded, black, fine-grained sediments varying from fine-grained					
									wackes to black fissile siltstones and shales. Occasional thin tuffs. Expect					
									bedding parallel to foliation? @ 40° to LCA. Abundant 1-2mm Po bands, occ.					
SL-12-04	113 20	144.00					6d	Meta Sediments	Py, aligned parallel to S1 and Bedding.		1	2		
02 12 04	110.20	144.00					ou		Several quartz injected sections into fine-grained bk. Shales and mudstones.			2		
							15a		Much irregular lobate/lenticular quartz. Abundant fine fragmental quartz with Sil					
SL-12-04			117.05	118.75			154	QV zone	sub-rounded qtz. class. Minor pyrite. Zone mostly silicified.					
SL-12-04			117.05	110.75					Green, light green, sericite-altered fine-grained wackes. Mottled due to dk. Gy.					
								Sericite altered	Silica zones containing 2-3% Py. Entire interval mod. Silicified (Quartz-sericite Sil/Ser/					
SL-12-04			118.75	121.32			C	seds.	alteration). Clean lower contact @ 38° to LCA.	ý		, ,		
											3			
SL-12-04			121.32	123.45				Qtz. injected seds.	weakly silicified, qtz-injected bk dk gy sediments - shales/mudstones. sil					
0 40.04					400.00	100.00	15a	Quartz Vein	Fragmented grey qtz. Looks like a shattered exhalative also? in bk. mud sil		2			
SL-12-04 SL-12-04			400.05	131.37		122.60	2f	Mafic tuff			2	2 2		
SL-12-04 SL-12-04			130.85	131.37		1 4 4 00		Meta sediments	Fine mafic tuff interval. Some sediment. Fine biotite aligned in S1 Silicified sediments (80%) and fractured accordingly. Grey, massive					
					134.60			6 Meta sediments						
SL-12-04					142.00	144.00		s meta sediments	Chlorite alteration, some biotite alteration of fine mafic units.					
							~		Banded intermediate tuffs. Several cycles of med-grained lapilli tuff unit - 2 to					
0 40 04	444.00	44545					3f	latera eliste tutte	3 cm. Best developed tuff bands from 144-144.70m with occ. 1-2mm Po bands					
SL-12-04	144.00	145.15						Intermediate tuffs	parallel to S1 schistosity.					
01 40 04			444.00	444.55				Alteration	Well-developed banded more mafic material. Contains coarse crystalline staurolit	e				
SL-12-04			144.00	144.55				Alteration	mafic minerals including elongate dark green staurolite laths <8mm.					
01 40 04	445 45	4 4 9 9 5					6		Dense, bk, fine-grained wackes and bk shales. Occasionally banded. Trace 1-					
SL-12-04	145.15	148.35						Meta sediments	2mm py grains. Weak chloritization, occ. Biotite alteration					
01 40 04	4 4 9 9 -	450.00					6/3f	Tuffaceous	Fine-grained sediments and intermediate tuffs. 60% tuffaceous material.					
SL-12-04	148.35	153.80						sediments	Green-grey.					
									Pred. Banded intermediate Tuff with minor bk, very fine grained shales. Fine-					
							3f		med-grained grey tuffaceous sediments. Occasional <1cm bedding-parallel					
SL-12-04	153.80	168.80						Intermediate tuff	unmineralized WQ bands.					
							6/3f	Tuffaceous	Pred. Banded tuffaceous sediments. Intermediate. Fine-grained, Bk. X-cut by					
SL-12-04	168.80							sediments	multiple bedding parallel WQ bands, <15mm.					
SL-12-04	172.90	180.00					3f/6	Intermediate	More massive tuffaceous sediments. Fine grained, wealky foliated.					
SL-12-04									TD: 180m					

Structure Lo	g
--------------	---

								Note: all measurements are calculated from Bottom of
		S1	S2	Vn	Intr Contacts	Bedding	Fract	core.
Hole	Depth (m)	Dip	Dip	Dip	Dip	Dip	Dip	Description
SL-12-04								
SL-12-04	24.00	38						Foliation of mf tuff
SL-12-04	27.70			37				Sericite veinlet, 5mm
SL-12-04	35.36					34		Lower contact of mafic dyke
SL-12-04	39.65					30		Lower contact to mafic tuff unit. 3cm QV at contact.
SL-12-04	39.70			33				Lower contact of narrow WQ vein
SL-12-04	47.65					27		Lr. Ctc. of mafic flow
SL-12-04	54.00	44						S1 Foliation towards base if section
SL-12-04	55.90	40						S1 Foliation towards base if section
SL-12-04	64.00	40						Foliation with sulphide stringers.
SL-12-04	65.30					47		Lower ctc. of mafic flow
SL-12-04	70.65			34				Lower QV contact.
SL-12-04	76.20			50				Lower QV contact.
SL-12-04	81.85							Foliation at lower part of QV zone.
SL-12-04	89.75	38						Foliation at lower part of QV zone.
SL-12-04	98.95							Lower QV contact.
SL-12-04	109.20	38						Lr. Ctc. Of intermediate flow
SL-12-04	112.30	37						
SL-12-04	118.75			38				General Qtz band dip
SL-12-04	121.32				38			Base of Sericite-altered seds.
SL-12-04	123.45					40		
SL-12-04	131.37	43						S1 in Mafic tuff band
SL-12-04	145.15	38						
SL-12-04	172.70					40		Base of Tuffaceous sed unit.
SL-12-04								

									ANALYTE	Wt		Au		Au	Au	Certificate # for Au
									METHOD	WG	179	FAA3	13	FAA313	FAA313	
									DETECTION		0.01		5	0.01	0.001	
Hole #	Sample #	From	То		Interval	Comme	ent		UNITS	kg		ppb		g/t	oz/t	
SL-12-04	W652721	44.90	4	45.40	0.5	0 Qtz and	l tr Py				08.0	<5		<0.01	<0.001	RL1204130
SL-12-04	W652722	63.40	(64.10	0.7						1.30			<0.01		RL1204130
SL-12-04	W652723	64.10		64.60		0 Qtz and					08.0		80	0.08		RL1204130
SL-12-04	W652724	64.60		66.00			low. Diss.py				2.30			<0.01		RL1204130
SL-12-04	W652725	66.00		66.50	0.5						0.90		05	0.11		RL1204130
SL-12-04	W652726	70.30		70.80		0 WQV.					0.90			<0.01	<0.001	RL1204130
SL-12-04	W652727	75.10		76.00	0.4						1.60			<0.01	<0.001	RL1204130
SL-12-04	W652728	76.00		76.50		0 QV + Fo	oliated 3f				0.80			<0.01	<0.001	RL1204130
SL-12-04	W652729	78.10		79.40	1.3						2.00			<0.01	<0.001	RL1204130
SL-12-04	W652730	79.40		80.50			e stringers				2.10			<0.01	<0.001	RL1204130
SL-12-04	W652731	80.50		81.00	0.5).70			<0.01	<0.001	RL1204130
SL-12-04	W652732	81.00		81.50	0.5						1.00			<0.01	<0.001	RL1204130
SL-12-04	W652733	89.40		89.90			ulphide Stringe	ers			0.80			<0.01	<0.001	RL1204130
SL-12-04	W652734	98.50		99.00	0.5						0.80			<0.01	<0.001	RL1204130
SL-12-04	W652735	117.05		17.95	0.9						1.50		260	0.26		RL1204130
SL-12-04	W652736	117.95		18.70	0.7						1.30		20	0.12		RL1204130
SL-12-04	W652737	118.70		19.70	1.0						1.60		50	0.15		RL1204130
SL-12-04	W652738	119.70		20.70	1.0						1.70		15		<0.001	RL1204130
SL-12-04	W652739	120.70		21.35	0.6						1.00		25		<0.001	RL1204130
SL-12-04	W652740	121.35		22.20	0.8						1.40		45	0.05		RL1204130
SL-12-04	W652741	122.20	12	22.70	0.5	0					2.00		25	0.03	<0.001	RL1204130

Samples

						ANALYTE	Wt	Au	Au	Au	Certificate # for Au
						METHOD	WGH79	FAA313	FAA313	FAA313	
						DETECTION	0.01	5	0.01	0.001	
Hole #	Sample #	From	То	Interval	Comment	UNITS	kg	ppb	g/t	oz/t	

Survey I	Data
----------	------

Survey name			Azimuth (corrected)	Dip	Mag.Str.	Mag.Dip
Ranger	20			-54.3		
Ranger	90			-52.5	56850	76.1
Ranger	180	9.2		-48.6	56760	76.1
	-			+		

Photo #	Description
SL-12-04	

	Claim No. Township	Nad8	3 Zone 15	Location	Direction Dip Length (m) Overburden Depth (m)	Date Started	Date Finished	Drill Company	Core Size	Logged By	Date Log Completed	Core Location
note ib.		East	North	Elevation	Direction Dip Length (ii		Date Otanted	Date I mished	Drin Company	0126	Logged by	Completed	Core Education
SL-12-05	4241797 Caley Lake	668900	5679307	401	360 -50 16	0 35.5	November 30, 2012	December 2, 2012	Rugged Aviation	BTW	Martin King	December 13, 2012	Red Lake

	Primar	y Unit	Secon	dary Unit	Tertia	ary Unit				Alteration				Ν	/lagnetic	Misc
lole	From	, To (m)	From	To (m)		To (m)	Code	Name	Description		Pv	Po	Сру	· (0-5 (weak to strong)	
SL-12-05	0.00	. ,						Overburden	Overburden. Mostly till and boulders lower in interval. Hole on Esker		,			Ň	(0/	
									Fine-grained, grey, weakly metamorphosed wakes. Occur banded dark and							
									light material. Mostly unaltered. Some smeared Pie and Po on joints and Si							
									cleavage surfaces. Occ. Fine-grained intermediate tuffaceous input, up to 5%,							
									exhibiting weak chloritization. S1 foliation mod-strong throughout seds and							
SL-12-05	35.30	45.67					6b	Sediments	enhanced in tuffaceous material.	chl	2.	0 2	0		1	
	00.00	.0.01					0.0	Counterne		0		-				
									Intermediate variolitic flow. Fine-med grained. Biotite aligned as elongate							
SL-12-05	45.67	45.97					3c	Intermediate Flow	crystals or `clasts` in S1 foliation. Some chlorite replacement of biotite grains.	chl/hi						
DL-12-03	43.07	40.07					50	Internediate Flow	Fine-grained sediments, predominantly wakes. Occ. banded as above with fine							
SL-12-05	45.97	47.25					6b	meta wakes	1mm chl. Crystals. Some light-green tuff bands <5mm.	1						
DE-12-03	40.07	47.25					00	meta wakes	Wispy` sulphide bands parallel to cleavage/bedding. Pred. Po, with minor Py							
12.05			46.70	47.00			16c		and trace Cpy. Weakly magnetic.		1	0 0	.0	0.2		
SL-12-05			40.70	47.00			100				1.	0 2	.0	0.2		
									Intermediate variolitic flow. Med green color. Abundant elongate biotite							
	47.05	47.75							crystals, up to 5mm, aligned in the schistosity. Predominantly a fine grained							
SL-12-05	47.25	47.75					3c	Intermediate Flow	volcanic rock. V. Fine disseminated py.							
									Fine-grained, occ. Banded grey wakes. Occ. Minor intermediate tuffaceous							
									material input not exceeding 5%. Feint biotite alteration of the tuffaceous							
SL-12-05	47.75	49.75			-		6b	meta wakes	material in mod. S1 foliation.							<u> </u>
									Quartz-sericite band/shear. Tectonized and silica intruded. Some breccia.							
									Yellow-green color (sericite). 'Healed' minor fault zone/fluid conduit. Tr. Cpy							
SL-12-05			49.45	49.75	;		6b		diss. in sericite altered sediment. Upp. Ctc. @ 30° and Lr. Ctc @ 38° to LCA.					0.3		
									Pred. Fine-grained wakes. Overall increase in carbonaceous material. Distinct							
									fine banding of wakes. Minor ankerite. Increase in bk. Mudstone down interval.							
									Increase in narrow Po bands (1-5mm), unevenly distributed through the lower							
									part of the section. Occ. irregular 1-3cm grey quartz veins or foliation parallel							
SL-12-05	49.75	68.75					6b	grevwackes, shales	bands. Trace Po marginal to same. Some very fine sediments (mudstones).							
SL-12-05			51.35	51.50)		15a	Quartz Vein Set	Grey quartz. Lr. Ctc. @40°. Multi-phase qtz/silica zone. Non-sulphide.							
SL-12-05			51.50	52.50			6b		20% silicification of sediments.							
SL-12-05			53.85	54.50				Sulphide bands	3-4% pyrrhotite along S1 cleavage consisting of several 1mm bands			4	.0			
SL-12-05			57.45	57.60				Sulphide bands	2-3mm Po bands, all @ 36° to LCA.			2				
SL-12-05			58.30	58.60				Sulphide bands	Banded Po, up to 2%. Weakly magnetic.			2				
SL-12-05			60.20	60.45				Sulphide bands	Banded Po, up to 2%. Weakly magnetic. All in the bk mudstones			2	.0			
SL-12-05			60.20	60.45			100	Sulphide bands								
10.05			00.45	00.75			10-		Irregularly distributed Po bands, 1-5mm, in bk. Mudstone. Includes a 1cm band							
SL-12-05			60.45	68.75	1		16c		@ 64.80m @ 35° to LCA.		_					
									90% Bk. Argillite/mudstone. Fine argillaceous material. Weakly							
									metamorphosed. Very little wacke/siltstone input. Slight increase in fine grey							
									siltstone towards base of interval. Occ. 1-2mm Po bands aligned in cleavage.							
SL-12-05	68.75	77.80					6d	Black Argillite	Lr. Contact with intermediate flow is 34.			1	.0			
									Intermediate massive flow with distinct Crystal Tuff textures Bk.Dk. Gy. Med-							
									grained. Biotite crystal overgrowths throughout consisting of 1-3mm grains.							
SL-12-05	77.80	79.55					3a	Intermediate Flow	Weak chloritization.							
									Pred. Fine-grained sediments. Alternating shales and fine siltstones. Bk.							
									Mudstones. Some homogenous bk argillaceous mudstone. Charcoal grey fine-	.						
									grained wackes forming distinct bands. Occ. Fine 1-2mm Po bands parallel to							
SL-12-05	79.55	89.60					6	Sediments	the S1 fabric/bedding.			2	.0			
SL-12-05		_	81.50	81.90			15a		Some 1-2cm WQ bands with trace Po.							
	1				1				Argillite dominated sequence. Slight increase in siltstone bands throughout.							
									Bk. Unaltered mudstone. Minor (1%) Po distributed along cleavage planes.							
12.05	89.60	103.25					6	Motasodimonto	Increase in grey quartz bands + Po, tr Py, rare Cpy down section			2	0			
SL-12-05	09.00	103.25	89.80	89.90				Metasediments Quartz Vein	Grey QV. With 4% Po. 30° to LCA			2	.0			
SL-12-05	+											-	~			
SL-12-05	+		91.00	91.10	1		15a	QV	Gy. Quartz with minor Py. Sheared with 3% Pc			3	.0			
			_						Healed tectonized (sheared) zone with 15% grey quartz, 2% Po. Bk.	sil			_			
SL-12-05			92.40	92.55			15a	Qtz zone	Groundmass. Trace Asp. Zone @ 30° to LCA			2	.0	1		1

		ary Unit		ary Unit		ary Unit				Alteration				Magnetic	Misc
Hole	From	To (m)	From	To (m) I	From	To (m)	Code	Name	Description		Py	Po	Сру	(0-5 (weak to strong)	
01 40 05			00.05	00.05			_		Tectonized zone. Some grey qtz. Gouge. Slightly silicified. Contains 2% Po,	chl/sil		2.0	0		
SL-12-05			93.25	93.85			6		7% chlorite in `shear`. 15 cm saccharoidal grey qtz-rich material (like outcrop on Lake Shore!). Fine			2.0 2.0	U		
										-11					
SL-12-05			94.10	94.25			15a	Qtz zone	Bk mineral dispersed throughout grey quartz. Dk Gn chlorite selvedges. Po wisps (2-3%).	sil					
SL-12-05			94.10	94.20			15a		Several narrow, diffuse gy qtz veinlets with Po on cleavage						
									planes/fabric/bedding. <1cm chlorite dominated mafic bands. 3-4% Po. Trace						
									Aspy at lower part of interval. Several 1-2mm Po bands on cleavage planes	Chl					
SL-12-05			96.00	97.15			15a	Qtz zone	outside of the grey gtz injected intervals.						
02 12 00			50.00	57.10			Tou		Overall interval with 2-3% Po. 5% silicification of argillaceous material. Post						
SL-12-05					96.00	101.30	16b		silica fracturing. Weakly graphitic. Weakly tectonized.	Sil					
02 12 00					00.00	101.00	100		Gy-dk gy glassy QV with pale green-gy chlorite and sericite component. Trace						
SL-12-05			101.30	101.48			15a	Qtz zone	Py, no Po. Upp contact @ 43; Lower ctc @ 38°.	chl		1.0			
02 12 00									Bk. Argillite/altered shale. Mod graphitic. 1-2mm Po orientated on cleavage						
									planes, bands up to 7mm. Entire unit weakly silicified. Base of zone @ 35 to						
SL-12-05			101.48	102.70			6d		LCA.						
									Silicified sediments (80%) in sheared zone. Some grey quartz. Sericite bands.						
									Trace Cpy and rare Aspy. Lr. Contact @ 37 to LCA. Minor chloritization.	Chl					
SL-12-05			102.70	103.25			6						0.	5	I
									Pred. Bk. Argillaceous sediments but with an increase in siltstone down						
									section. 70% silicificied with fine hairline fracturing of sil seds. Cross cut by a						
									series of irregular gy-blue qtz, generally parallel to bedding/S1 fabric. Green-	Sil/Chl.					
									grey chlorite and a minor sericite associated with the quartz. Trace Py with Qtz	z					
SL-12-05	103.25	5 107.43	3				6d	Metasediments	Tr. cpy from 106.50m. Vein structures @ 33° to LCA.			0.5	0.	2 ()
									Fine-med crystalline. Bk to Dk. Gy. 5% diss. Py. as 1-2mm euhedral to						
									subhedral grains. Dyke intruded into the seds. Sediments in HW and FW	Sil (margins	5)				
SL-12-05	107.43	3 109.25	5				10b	Diabase? Dyke	slightly silicified fine siltstones/wackes, some shale.			1.0			
									Sediments with up to 80% bk argillitized mudstones. Up to 80% silicified giving	1					
SL-12-05	109.25	5 113.35	5				6d	Metasediments	a massive appearance. Trace Po. Occ. 1-2cm barren Qtz/silica vein.			0.	5		
SL-12-05			113.00	113.35					100% silicified ``cooked`` shales.	silicification					
								Quartz Feldspar	Grey, light gy. Colored. Abundant anhedral quartz `augens`. Intrusive cross-cu	it					
SL-12-05	113.35	5 115.05	5				13a	Porphyry	by a series of 1mm foliation-parallel qtz veinlets.					()
									Predominantly mudstones (argillites). Fine grained, dense, Bk. Increase in						
									siltstone banding down interval (from 130m). Bedding parallel fabric (S1),	Chl					
SL-12-05	115.05	5 144.25	5				6d	Metasediments	generally @ 38° to LCA. Some weal chloritization.					()
									Very abundant S1 parallel grey qtz and silica veins and boudins, extended with	า					
									the fabric. Occ. Patchy Po associated with the silica. Entire interval partly						
									silicified. Veining @ 42-47° to LCA. Tr. Cpy at 133.50m. Chlorite associated						
SL-12-05					129.70	141.90	6d/15		with the veining from 132.40-137.00m.						
01 40 05								Mafic Intrusive -	Dark, melanocratic med crystalline, containing irregular biotite crystals aligned				_		
SL-12-05	144.25	5 145.00						Porphyry?	in the fabric (S1). Trace Po			0.	5		
SL-12-05	-	-	144.50	144.55			15a	Quartz Vein	Grey QV in Dyke @ 35° to LCA.						
01 40 05	145.00	160.00)				_	Material	Sedimentary sequence. Slight increase in siltstone/silty material. Dk gy						
SL-12-05							6	Metasediments	colored. Increase in metamorphic grade and silicification towards EOH?						
									Mod sheared, tectonized, graphitic zone containing irregular qtz veining and	Ch1/ail					
CI 10.05			145.00	140.00			GIAT -		lenses all parallel to the foliation/bedding. 15% chlorite through the interval.	Chl/sil					
SL-12-05			145.00	148.30			6/15a		Some localized silicification, <20%.				-		
QL 12 0F			151 05	150.05			15a	QV Zone	Irregular grey qtz injected into foliation; all with 2% assoc. Po. Some patchy	Chl		2.	0 0.	,	
SL-12-05 SL-12-05			151.85		152 05	153.10		QV Zone Breccia	Chl. Tr. Cpy Bx zone. Micro Bx. Sub-angular clasts; tectonic?			2.0	0.	3 2	-
JL-12-05	-				153.05	153.10	ISa	DIECCIA							
CI 12.05			150 15	152.05			150	OV Zono	Another grey QV injection zone in sediments. Tr. Cpy. Up to 1% Po mainly marginal to the siliceous material. Lr. Ctc @ 38 to LCA.					0	
SL-12-05			153.45	153.95			15a	QV Zone					1.	0	
									Increase in silicification of sediments (15%). Apparent increase in the						
SI 10.05			150.00	160.00				Motocodimente	metamorphic grade. Some 1-2mm subhedral garnets and biotite-chlorite	sil/chl/Bi					
SL-12-05			156.20	160.00		1	6	Metasediments	alteration in bands parallel to the schistosity. Rock appears more `cooked`.						<u> </u>

	Prima	ary Unit	Second	dary Unit	Terti	iary Unit				Alteration				Magnetic	Misc
Hole	From	To (m)	From	To (m)	From	To (m)	Code Na	ame	Description		Ру	Po	Сру	(0-5 (weak to strong)	
									Qtz-Sil zone with minor sericite, parallel to foliation. Gy qtz injected (as above)	oil/oor					
SL-12-05			156.20	156.55			15a Qt	tz. alt zone	1% Po. Tr Cpy. Lr. Ctc @ 36° to LCA	SII/Sei		1.0	0.2		
									Gy. Qtz. sil zone, all parallel to S1. Up to 2% Po. Tr. Cpy. Lr. Ctc @ 35 to	oil					
SL-12-05			157.25	157.65			15a Qt	tz. alt zone	LCA.	511		2.0	0.2		
i									20% silicificied. 2-3mm garnets in foliation. Increase in phyllosilicates towards	Cil/Di					
SL-12-05			159.00	159.10			6 Alt	t. Zone	base.	31/DI					
SL-12-05															
SL-12-05							TE	D: 160m							

								Note: all measurements are calculated from Bottom of
		S1	S2	Vn	Intr Contacts	Bedding	Fract	core.
Hole	Depth (m)	Dip	Dip	Dip	Dip	Dip	Dip	Description
SL-12-05	45.67	38						Lr sediments contact.
SL-12-05	45.97					30		Lr flow contact
SL-12-05	47.75	30						Lr sediments contact.
SL-12-05	49.75	38						Lr. Qtz-ser alt ctc.
SL-12-05	57.60			36				Sulphide bands dip
SL-12-05	64.80			35				Sulphide bands dip
SL-12-05								
SL-12-05	77.80	34						Lr Ctc of argillites with Intermediate flow.
SL-12-05	79.55	40						Lr. Intermediate massive flow contact
SL-12-05	89.90			30				QV dip
SL-12-05	92.55			30				QV dip
SL-12-05	101.48			38				Lr. QV dip
SL-12-05	102.70	35						Lr. Graphitic shale contact.
SL-12-05	107.43	38						Lr. Contact of seds with Dyke.
SL-12-05	113.35	28						Lr ctc of silicified shales
SL-12-05	115.05				31			Lr. Intrusive contact.
SL-12-05	145.00				30			Lr. Intrusive contact.
SL-12-05	152.25			38				Lower vein contact dip.
SL-12-05	153.95			38				Lower QV zone contact.
SL-12-05	156.55			36				Lower QV zone contact.
SL-12-05	157.65			35				Lower QV zone contact.

						ANALYTE	Wt		Au	Au	Au	Certificate # for Au
						METHOD		GH79	FAA313	FAA313	FAA313	
						DETECTION		0.01	5		0.001	
Hole #	Sample #	From	То	Interval	Comment	UNITS	kg		ppb	g/t	oz/t	
SL-12-05	652742	49.35	49.85	0.50		W652742		10	0.01	<0.001	0.8	RL1204142
SL-12-05	652743	90.90	91.40	0.50		W652743		10	<0.01	<0.001	1	RL1204142
SL-12-05	652744	92.20	92.70	0.50		W652744	<5		<0.01	<0.001	0.9	RL1204142
SL-12-05	652745	93.25	93.90	0.65		W652745		60	0.06	0.002	1.1	RL1204142
SL-12-05	652746	93.90	94.50	0.60		W652746		20	0.02	<0.001	1	RL1204142
SL-12-05	652747	96.00	97.15	1.15		W652747		20	0.02	<0.001	2	RL1204142
SL-12-05	652748	101.15	101.65	0.50		W652748		45	0.04	0.001	0.9	RL1204142
SL-12-05	652749	101.65	102.65	1.00		W652749		275	0.27	0.008	1.7	RL1204142
SL-12-05	652750	102.65	103.25	0.60		W652750		40	0.04	0.001	1	RL1204142
SL-12-05	652751	132.35	133.00	0.65		W652751		395	0.39	0.011	1.1	RL1204142
SL-12-05	652752	133.00	134.00	1.00		W652752		220	0.22	0.006	1.7	RL1204142
SL-12-05	652753	134.00	135.00	1.00		W652753		970	0.97	0.028	1.7	RL1204142
SL-12-05	652754	151.80	152.30	0.50		W652754		65	0.06	0.002	0.8	RL1204142
SL-12-05	652755	153.45	153.95	0.50		W652755		140	0.14	0.004	0.9	RL1204142
SL-12-05	652756	156.20	156.70	0.50		W652756		50	0.05	0.002	0.9	RL1204142
SL-12-05	652757	156.70	157.20	0.50		W652757		95	0.1	0.003	0.8	RL1204142
SL-12-05	652758	157.20	157.70	0.50		W652758		25	0.03	<0.001	0.8	RL1204142
SL-12-05	652759	159.00	160.00	1.00		W652759		160	0.16	0.005	1.6	RL1204142
SL-12-05	652771	103.25	103.80	0.55		W652771		5	<0.01	<0.001	0.9	RL1204168
SL-12-05	652772	103.80	104.50	0.70		W652772		10	0.01	<0.001	1.4	RL1204168

Survey	Data
--------	------

Survey name			Azimuth (corrected)	Dip	Mag.Str.	Mag.Dip
Ranger	40	5.1		-49.8		
Ranger	80			-48.5		
Ranger	160	7.5		-47.1	56690	71.1

Photo #	Description
SL-12-05-0001	

Hole ID:	Claim No.	Township	Nad8	3 Zone 15	Location	Direction	Dip Length	m) Overburden Depth (m) Date Started	Date Finisl	hed Drill Company	Core Size	Logged By	Date Log Completed	Core Location
			East	North	Elevation										
SL-12-06	4241798	Matapesatakum Bay	668700	5678774	4 389	360	-50	74 1	1 December 2, 2012	December 4	2012 Rugged Aviation	BTW	Matthew Spencer	December 10, 2012	Red Lake core library

	Primary Unit	Second	dary Unit	Tertiary U	Jnit			Alteration				Magnetic	Misc
Hole	From To (m)	From	To (m)	From To (r	m) Cod	e Name	Description		Py	Po	Сру	(0-5 (weak to strong)	
SL-12-06	0.0 10.9		. /		OB	Casing	Overburden		- Í			5/	
							Light grey-dark grey and forest green bands, V.FG-FG. Entire unit made up of						
							mm-2cm sized of It grey, dk grey and forest green chl banding. Strong-intense						
							S1 foliation @ ~38deg TCA. Unit seems to be mainly intermediate with						
							occasional chl bands throughout, small sections of darker more mafic tuff rare.						
							Localied bands of FG biotite throughout. Common thin mm sized bands of						
							ankerite thorughout. Py min observed @ 15.50-16.30m and @ 22.10m as FG						
							py imbedded within thin 0.5cm wide ankerite filled bands, ~tr-1% py. Very						
SL-12-06	10.9 26.8	3			Зf	Intermediate-Mafic Tuf	Weakly mag.	chl/ank/bt	tr-1%			1	
SL-12-06		15.5	16.3	•	16c	Stringer Sulphide							
							Dark grey-light grey, forest green chl banding, V.FG-FG. Seeing a increase in						
							chl and large increase in biotite, dominant darker bands, therefore more mafic						
							looking tuff. Common ankerite banding along with thin stretched blebs of						
							ankerite. Common mm-cm sized bands of FG biotite throughout occuring						
							mainly next to the bands of chl, some mixtures of chl and bt. S1 mod-intense						
							foliation @ ~37deg TCA. Py min observed @ 37.20-37.60m with tr-1% py						
							located within thin mm-0.5cm wide ankerite, chl and bt filled banding. Localied						
							trace po observed thorughout. Rare mm sized subangular pink garnets						
SL-12-06	26.8 47				2f	Mafic Tuff	observed in chl. Very weakly mag.	chl/bt/ank	tr-1%	trace		1	
SL-12-06		37.2	37.6	i	16c	Stringer Sulphide							
							Light grey-dark grey, forest green bands, V.FG-FG. Back into dominantly						
							intermediate tuff with increased lighter grey banding. Large decrease in biotite						
							and slight decrease in chl. Mod-intense S1 foliation @ ~38deg TCA. Rare						
							trace amounts of po min observed thorughout and @ 61.50-63.90 and 68.60-						
							72.60m with tr-1% diss and as stringeers of po located within patches and						
							bands of chl and minor ankerite. Late ankerite filled vnts observed xcutting						
							everything. Minor calcite observed in some banding. Rare patchy bands of						
							epidoite observed. 2 dark grey phorphyritc Intermediate(?) flows observed with						
							mm sized white phenocrysts and sharp contacts. Very weakly mag.						
SL-12-06	47 84	-			3f	Intermediate-Mafic Tuf		chl/ank/bt, m	inor ept	tr-1%		1	
SL-12-06		61.5	63.9		16b	Dissiminated Sulphide							
SL-12-06		66.64			3a	Intermediate Flow							
SL-12-06		79.3	80.25		3a	Intermediate Flow			_		_		
							Light grey-dark grey, forest green bands, V.FG-FG. Similar to before except						
							with the presence of possible intermediate flows(?). Bands of chl, rare bands						
							of bt. S1 moderate-intense foliation @ ~43deg TCA. Flows are FG with						
							phorphoritic MG biotites which are alligned with S1 foliation. Large sections of						
							the Tuff display varying amounts of sericite alt, with grainy grains going with S1						
							foliation. Forest green dykes with phorphoritic MG biotites alligned with S1						
							foliation observed. Trace amounts of po observed throughout within chl						
					~ .		banding. Semi-massive ~80% po @ 95.45-95.55m. Very weakly mag.			-			
SL-12-06	84 101.1		04 ==		3f	Intermediate-Mafic Tuf		Chl/ser/ank/b	ot	Trace	_	1	
SL-12-06		84.3	84.75		3a	Intermediate Flow			_		_		
SL-12-06		87	87.15		10b	Mafic Dyke			_		_		
SL-12-06		87.15			3a	Intermediate Flow			_		_		
SL-12-06		87.6			10b	Mafic Dyke			_		_		
SL-12-06		88.3	89.7		3a	Intermediate Flow							
SL-12-06		92.55	93.6		10b	Mafic Dyke			_		_		
SL-12-06		95.45	95.55		16a	Semi-massive Sulphide	9						

	Prim	ary Unit	Secon	dary Unit	Tertia	ary Unit				Alteration				Magnetic	Misc
Hole	From	To (m)	From	To (m)	From	To (m)	Code	Name	Description		Ру	Po	Сру	(0-5 (weak to strong)	
									Dark grey, black, forest green bands, V.FG-FG. Sharp change in colouration to	þ					
									all dark throughout. Proabably still the Int-mf tuff as before except with greater						
									alt from increased fluid influx. S1 foliation @ ~39deg TCA. Mm-cm sized black						
									FG biotite and forest green chl bands thorughout all going with S1 foliation.						
									Thin graniy bands of ankerite common. Very weak amounts of red hem						
									observed on ank bands. Localized silicifed bands. Rare trace amounts of weak	r L					
									hem observed OP some ank. Po observed thorughout zone tiny mm sized						
									stringers going with S1 foliation. Broken core, fault zone with fault gouge @						
									106.80-107.75m Very weakly mag.						
SL-12-06	101.1	108.2					3f	Intermediate-Mafic Tuff		chl/bt/ank/ m	inor hem	Trace		1	
									Light grey-Blue-grey, forest green bands, V.FG-FG. Back into regular Int-mf						
									tuff from before, near loss of the dark tuff, and black biotite bands. S1 foliation						
									@ ~40deg TCA. Common grainy sericite alt. Less bands of chl now from						
									before. Common thin grainy ankerite bands. Small S-type shear @ 122.60m.						
									Sliver of flow observed as described before, concentration of trace Po and 1-						
									2% aresopyrite and black FG biotite near upper contact. Very traces amounts						
									of Po stringers through all of section going with S1 foliation. Very Weakly mag.						
SL-12-06	108.2	135					3f	Intermediate-Mafic Tuff		ser/ank/chl, r	ninor bt	Trace		1	
SL-12-06			117.3	119.15	5		3a	Intermediate Flow							
									Light Grey-dark grey, forest green bands, V.FG-FG. Simialr to before except						
									with loss of the bluish-grey coloured banding and an increase in mm-cm sized						
	405	450					.	Intermediate-Mafic	chl banding and the presence of biotite banding again. Silicified bands						
	135	153					3f	Tuff	observed with trace Po. Common sections of intermediate flows. S1 foliation	ser/chl/ank/b	[
									@ ~28deg TCA. Common grainy sericite alt going with S1 foliation. FG-MG						
SL-12-06									phorphoritic flows observed. Trace amounts of stringers of Po still common in			T *****			
SL-12-06 SL-12-06			405.0	136.6			2.5	Intermediate Flow	tuff going with S1 foliation. Very weakly mag.			Trace		I	
SL-12-06 SL-12-06			135.8 138.95				3a 3a	Intermediate Flow							
SL-12-06 SL-12-06			138.95	-			3a 3a	Intermediate Flow							
SL-12-06			147.75				sa 3a	Intermediate Flow			-				
SL-12-00	+		192.09	152.3			Ja	Internetiate FIOW	Light-grey-dark grey, black and forest green banding, V.FG-FG. Similar to		-		-		
									before except with a large increase in flows, ~50% flows, ~50% Tuff. S1 @						
	153	174					3f	Intermedate-Mafic		chl/bt/ank					
	100	1/4					51	Tuff/Flow	Some tuff banding seems mildly silicified. Black thin mm sized bands of biotite	UN/DI/ANK					
SL-12-06									observed. Very weakly mag.			Trace		1	
SL-12-00 SL-12-06									EOH	+		Tace		'	+

								Note: all measurements are calculated from Bottom of
		S1	S2	Vn	Intr Contacts	Bedding	Fract	core.
Hole	Depth (m)	Dip	Dip	Dip	Dip	Dip	Dip	Description
SL-12-06	20.00	38						Foliation in Int-mf tuff
SL-12-06	40.00	37						Foliation in Mafic tuff
SL-12-06	58.00	38						Foliation in Int-mf tuff
SL-12-06	68.63				36			Bottom contact of mafic dyke
SL-12-06	80.25				46			Bottom contact of mafic dyke
SL-12-06	90.00	43						Foliation in Int-mf tuff
SL-12-06	84.75				40			Bottom Contact
SL-12-06	87.15				39			Bottom Contact
SL-12-06	87.60				20			Bottom Contact
SL-12-06	88.30				34			Bottom Contact
SL-12-06	89.70				44			Bottom Contact
SL-12-06	93.60				49			Bottom Contact
SL-12-06	93.60							Fault Gouge, unknown orientation
SL-12-06	105.00	39						Foliation in Int-mf tuff
SL-12-06	107.00							Fault Gouge, unknown orientation
SL-12-06	119.15				28			Bottom int flow contact
SL-12-06	122.60		40)				Small meso shear: S-Type
SL-12-06	130.00	40						Foliation in Int-mf tuff
SL-12-06	160.00	42						Foliation in Int-mf tuff

						ANALYTE	Wt	Au	Au	Au	Certificate # for Au
						METHOD	WGH79	FAA313	FAA313	FAA313	
						DETECTION	0.01	5	0.01	0.001	
Hole #	Sample #	From	То	Interval	Comment	UNITS	kg	ppb	g/t	oz/t	
SL-12-06	652695	16.50	17.50	1.00	tr-1% py		1.70	<5	<0.001	<0.001	RL1204122
SL-12-06	652696	21.90	22.40		tr-1% py		1.10	<5	<0.001	<0.001	RL1204122
SL-12-06	652697	33.00	33.70	0.70	tr-1% py		1.10	<5	<0.001	<0.001	RL1204122
SL-12-06	652698	43.20	43.70	0.50	tr-1% py		0.80		<0.001	<0.001	RL1204122
SL-12-06	652699	43.70	44.50	0.80	py in fracture		1.20	<5	<0.001	<0.001	RL1204122
SL-12-06	652700	44.50	45.00	0.50	tr-1% po		0.90	<5	<0.001	<0.001	RL1204122
SL-12-06	652701	61.50	62.20	0.70	tr-1% po		1.10		<0.001	<0.001	RL1204122
SL-12-06	652702	62.20	63.00		tr-1% po		1.40		<0.001	<0.001	RL1204122
SL-12-06	652703	63.00	64.00	1.00	tr-1% po		1.70		<0.001	<0.001	RL1204122
SL-12-06	652704	68.60	69.10		tr-1% po		0.80		<0.001	<0.001	RL1204122
SL-12-06	652705	69.10	70.00	0.90	tr-1% po		1.50	<5	<0.001	<0.001	RL1204122
SL-12-06	652706	70.00	71.00	1.00	tr-1% po		1.70		<0.001	<0.001	RL1204122
SL-12-06	652707	71.00	72.00		tr-1% po		1.70		<0.001	<0.001	RL1204122
SL-12-06	652708	72.00	72.60	0.60	tr-1% po		0.90	<5	<0.001	<0.001	RL1204122
SL-12-06	652709	99.20	99.70	0.50	80% po		0.80		<0.001	<0.001	RL1204122
SL-12-06	652710	101.90	102.00	0.10	tr-1% po		1.50		<0.001	<0.001	RL1204122
SL-12-06	652711	102.00	103.00		tr-1% po		1.70		<0.001	<0.001	RL1204122
SL-12-06	652712	103.00	104.00	1.00	tr-1% po		1.70		<0.001	<0.001	RL1204122
SL-12-06	652713	104.00	105.00		tr-1% po		1.70		<0.001	<0.001	RL1204122
SL-12-06	652714	105.00	106.00		tr-1% po		1.90		<0.001	<0.001	RL1204122
SL-12-06	652715	106.00	107.00	1.00	tr-1% po		1.30	<5	<0.001	<0.001	RL1204122
SL-12-06	652716	107.00	107.70		tr-1% po		0.60		<0.001	<0.001	RL1204122
SL-12-06	652717	107.70	108.20		tr-1% po		0.90	<5	<0.001	<0.001	RL1204122
SL-12-06	652718	116.80	117.30	0.50	tr-1% po, arseno		0.80	<5	<0.001	<0.001	RL1204122
SL-12-06	652719	140.50	141.00		tr-1% po, silica		0.90		<0.001	<0.001	RL1204122
SL-12-06	652720	146.20	146.80		tr-1% po, silica		0.80	<5	<0.001	<0.001	RL1204122
				16.70							

Survey I	Data
----------	------

Survey name	Depth (m)	Azimuth (uncorrected)	Azimuth (corrected)	Dip	Mag.Str.	Mag.Dip
Ranger	12			-49.8		
Ranger	100			-49.5		76.4
Ranger	174	3.5		-49.5	57190	76.2

Photo #	Description
SL-12-06-001	Py Stringers in Int-mf tuff
SL-12-06-002	Py Stringers in Int-mf tuff

Hole ID:	Claim No.	Township	Nad8	3 Zone 15	Location	Direction	Dip Length (m)	Overburden Depth (m)	Date Started	Date Finished	Drill Company	Core Size	Logged By	Date Log Completed	Core Location
			East	North	Elevation										
SL-12-07	4241798	Matapesatakum Bay	668700	5678581	1 380	180	-45 15	1 10	December 5, 2012	December 6, 20	12 Rugged Aviation	BTW	Martin King	December 13, 2012	Red Lake core library

	Primar	,	Second		Tertiary					Alteration				Magnetic	Misc
Hole	From	To (m)	From	To (m) F	rom	To (m)	Code	Name	Description		Ру	Po	Сру	(0-5 (weak to strong)	
SL-12-07	0.00	9.70					OB	Casing	Overburden						
									Fine to medium grained Intermediate tuff. Gy-purple. Some argillite						
SL-12-07	9.70	11.00					3f	Intermediate tuff	interbanding from 10.75m.						
									80% mudstones and 20% siltstones. Contains very narrow tuffaceous bands						
SL-12-07	11.00	16.00					6d	Metasediments	(<1cm). Lr. Ctc. @36° to LCA.						
SL-12-07			12.50	13.00			6d		Several 1mm py bands in fissile shale/argillite.						
SL-12-07	16.00	16.50						Intermediate tuff	Tuffaceous unit (60%) and black mudstones. Lr. Ctc @ 29° to LCA.						
SL-12-07	16.50	18.10						Argillite	Shale-dominated mudstone. Py developed as segregarions along cleavage						
SL-12-07	18.10	21.20						Metasediments	50% altered mudstone and 50% poorly developed banded intermediate tuff						
SL-12-07	21.20	32.70						Metasediments	Mixed shaley sediments with more tuffaceous cycles. Unaltered						
02 12 01	21.20	02.70					0u	motacodimonto	Intermediate tuff. Strongly foliated @ 35° to LCA. Some crystal tuff.						
SL-12-07	32.70	33.45					3f	Intermediate tuff	Attenuated, boudined white, wealky ankeritic tuff bands.						
02 12 07	02.10	00.40					01		Predominantly sedimentary sequence. Some interbanded tuffaceous material.						
SL-12-07	33.45	49.10					6d	Metasediments	Fine-medium grained. Essentially unaltered.						
SL-12-07	55.45	49.10					ou	Melaseuments	Predominantly a crystal tuff with some interbanded sediments - siltstones and						
									black shales. This unit contains well-developed ``Blue Quartz Eyes`` No Po.						
01 40 07	10.10	50.00					4-	Talaia Tuffa			0.5				
SL-12-07	49.10	56.80					4a	Felsic Tuff?	Trace Py over the interval 56.70-59.20m.		0.5				
01 40 07	50.00	00 50					0.1	Matazzak	Availitie dominated addimente. Come forme the distribution of the						
SL-12-07	56.80	63.50	oc =-	00.1-				Metasediments	Argillite dominated sediments. Some 1mm py banding along cleavage planes						
SL-12-07	00 -0	0.1 - 1	62.75	63.45				Silica alteration	Irregular 'blue-grey' colored silica blebs and boudins with 1% Py		1				
SL-12-07	63.50	64.70					3f	Intermediate tuff	or crystal tuff. Lr. Ctc. @36°.						
									Homogenous bk argillite/shale. Contains 1mm Py bands on cleavage planes.						
SL-12-07	64.70	74.97						Argillite	Lr ctc @ 30° to LCA.						
SL-12-07	74.97	75.00					3f	Intermediate tuff	Green intermediate tuff band. Unaltered.						
									Bk. Shales/argillites. NO tuffaceous material. Some Py on cleavage planes.						
SL-12-07	75.00	99.60						Metasediments	Strongly graphitic over many sections. Lr. Ctc @ 60 to LCA.						
SL-12-07					81.15	81.17	15a	Qtz	Qtz band @ 47° to LCA						
									Cloudy white quartz band. Lr. Ctc @ 50° to LCA. Po wisps at margins. Some						
SL-12-07					84.45	84.60	15a	Qtz	chlorite inclusions.			0.5	5		
SL-12-07			85.00	86.50			6d		Strongly graphitic shales						
SL-12-07					86.16	86.20	15a		Cloudy white quartz band with Po at margins			0.5	5	()
									Contains significant biotite and some diss. Py. Lr. Ctc is a small fault @56° to						
SL-12-07	99.60	100.90					3a	Intermediate flow	LCA						
									80% black argillites (mudstones) with interlayered fine tuffaceous material and						
									wacke. Contains up to 3? Po on cleavage planes. Entire unit weakly graphitic.						
SL-12-07	100.90	105.87					6d	Metasediments	2cm grey QV @ 104.15m.						
									Fine grained. There is a gradational contact with the underlying sediments. Lr.						
SL-12-07	105.87	107.50					3a	Intermediate flow	Ctc @ 48° to LCA.						
02 12 01	100.01	101.00					ou		Bk. Predominantly argillaceous sediments. 2-3% Po as wisps aligned on						
SL-12-07	107.50	110.00					6d	Metasediments	cleavage planes.						
	107.00	110.00					54	motuocumento	Altered tuff Increase in metamorphic grade with chlorite and pink garnets K		+		+		+
SL-12-07	110.00	110.23					2f	Mafic Tuff	2mm). Up to 5% Po	Chl		5.0			
SL-12-07 SL-12-07	110.00	110.23						Intermediate tuff	Fine-grained, dk. Gy. Some biotite, up to 5%. Lr. Ctc @ 47° to LCA.		+	5.0	1		+
SL-12-07 SL-12-07	110.23	110.80						Metasediments	Weaky metamorphosed black shales and mudstones (argillites).						
JL-12-0/	110.00	110.70					ou	metascuments	Green mafic tuff unit. Chloritized. Banded. Contains 0.5mm garnets in fine						
SI 10.07	110.75	110.05					2f	Mafic Tuff	j	chl					
SL-12-07	110.75	110.85					21		bands at upper contact. Lower ctc @ 35' to LCA. Weaky metamorphosed black shales and mudstones (argillites). Lr. Ctc @ 43'						
01 40 07	110.05	444.00					<u>.</u>	Matagadimanta							
SL-12-07		111.03						Metasediments	to LCA.						
SL-12-07	111.03	111.43					3f	Intermediate tuff	Fine grained tuff unit. Unaltered. Lr. Ctc @38° to LCA.						
									Green mafic tuff unit. Chloritized. Banded. Contains 0.5mm garnets in fine	chl					
SL-12-07	111.43	111.47					2f	Mafic Tuff	bands at upper contact. Lower ctc @ 40 to LCA.	~···					
									Argillaceous sediments. 5% tuffaceous material. Up to 1% Po. Weakly						
SL-12-07	111.47	113.90					6d	Metasediments	magnetic.			1.0)		
SL-12-07					113.27	113.32	15a	QV	Grey Qtz band with 2% Pc						
									Mafic Tuff band. Green. Banded. Contains v fine garnets < 0.5mm. Minor Py	abl					
SL-12-07	440.00	113.95					2f	Mafic Tuff	and Po. Lr. Ctc @ 39° to LCA.	chl	0.5	0.5	. 1	1	1

			Second	ary Unit	Tertiary					Alteration				Magnetic	Misc
ole			rom	To (m) F	rom T	. ,		Name	Description		Py Po)	Сру	(0-5 (weak to stron	g)
L-12-07	113.95						6d	Metasediments	Black shales with 10% fine wacke. Unaltered.						
SL-12-07	114.25						3f	Intermediate tuff	Fine grained, gy. Poorly banded. Contains some fine 1mm Po bands			1.0			
SL-12-07	115.15	115.82					6d	Metasediments	Black shales with 10% fine wacke. Unaltered.						
									Another mafic tuff band. Contains chlorite and garnets (<1mm) and up to 5%						
									Po ocurring parallel to the S1 schistosity/cleavage. Lr. Ctc is 42. Weaky	chl					
SL-12-07	115.82	115.92					2f	Mafic Tuff	developed cleavage.			1.0			
SL-12-07	115.92	116.25					6d	Metasediments	Black shales with 10% fine wacke. Unaltered						
									Mafic Tuff Band. All garnet-chlorite altered. Perfect dev. Garnets<1mm. Pale						
SL-12-07	116.25	116.40					2f	Mafic Tuff	green chlorite alteration. Lr. Ctc @ 44° to LCA.	Chl					
SL-12-07	116.40	116.75					6d	Metasediments	Carbonaceous black shales and mudstones. Lr. Ctc @ 45° to LCA.						
SL-12-07	116.75						2f	Mafic Tuff	Green mafic tuff band. Chlorite and fine green garnets <1mm.	Chl					
SL-12-07	116.82	117.20					6d	Metasediments		Graphitic					
SL-12-07	117.20	117.30					2f	Mafic Tuff	Green mafic tuff band. Chlorite and fine green garnets<1mm.	Chapinae					
SL-12-07	117.30	117.95					3f	Intermediate tuff	Fine grained intermediate tuff. Unaltered. Lr. Ctc @35 to LCA. Grey-green.						
SL-12-07 SL-12-07							2f	Mafic Tuff	Green mafic tuff band. Chlorite and fine green garnets <1mm.						
JE-12-01	117.95	118.00					<u> </u>		Bk. Dk. Gy. 75% Fine grained mudstone/argillite. 25% fine wackes and		+				
21 12 07	110.00	121 05					6d	Metasediments	sitstones. Essentially unaltered.						
SL-12-07	118.00	131.05					ou				+				
SL-12-07	131.05	131.20					24	Mafic Tuff		Chl	<u>↓ </u>				
SL-12-07	131.20	132.80					6d	Metasediments	Black shales/argillites. Weakly graphitic.						
SL-12-07	132.80	132.95					3f	Intermediate tuff	Gy. Med-grained, diffuse texture. Unaltered. Lr. Ctc. @ 30°.		<u>↓ </u>				
									Fine-grained mafic tuff. Dk. Green. Fine, 1mm biotite crystals aligned in S1.						
									The unit contains poorly developed `Blue Quartz` augens elongate in the						
SL-12-07	132.95	133.00					2f	Mafic Tuff		sil					
SL-12-07	133.00	133.10					12b	Felsic Dyke	Felsic dyke. Qtz. diorite. Leucocratic. Non-qtz porphyry. Lr ctc @ 30°						
									Fine-grained mafic tuff. Dk. Green. Fine, 1mm biotite crystals aligned in S1. Lr.						
SL-12-07	133.10	133.15					2f	Mafic Tuff	Ctc @ 30° to LCA. Unaltered.						
									Late intrusive, Dyke? Well-developed euhedral feldspar phenocrysts <10mm).						
								Quartz Feldspar	Grey, light grey. Leucodratic. Weal fabric, Some fine diss biotite. Le ctc @ 32						
SL-12-07	133.15	134.60					13a	Porphyry	to LCA.						
SL-12-07	134.60	135.25					2f	Mafic Tuff	as above. Lr ctc @35°						
									Massive dyke. Increase in mafic minerall, minor biotite. Anhedral feldspars. Lr						
SL-12-07	135.25	136.50					13b	Feldspar Porphyry	ctc @ 35° to LCA						
SL-12-07	136.50	138.00					6d	Metasediments	Sediments: argillites with minor mafic tuff component. Lr ctc @ 35° to LCA.						
SL-12-07					137.50	137.62				gtz/ser/chl					
SL-12-07	138.00	138.05			101.00		2t	Mafic Tuff		chl					
SL-12-07	138.05	139.45					6d	Metasediments	Bk argillic seds. Lr ctc @ 36°	om					
SL-12-07 SL-12-07	139.45	139.43					13b	Feldspar Porphyry	as above. Lr ctc @ 38° to LCA.		<u> </u>				
02-12-01	103.40	100.00					100		mafic or crystal tuff. Large, up to 5mm elongate olive-green biotite		+ +				
									phenocrysts. Coarse crystalline version og material at 133.10m, etc. Lr. Ctc @						
SL-12-07	139.50	141.35					2f	Mafic Tuff	30°						
SL-12-07 SL-12-07	139.50	141.35						Metasediments	85% shale and 15% wackes. Pyrite on cleavage planes. Lr. Ctc @ 35		1.0				
							6d		as above. 10% biotite. Lr. Ctc 35°		1.0				
SL-12-07	142.50	145.40					13b	Feldspar Porphyry			<u>↓ </u>				
									Pred fine grained sediments. Banded. 65% mudstone with minor fine-grained						
									wacke. Occasionally more mafic tuffaceous sections <10cm. There is an						
									increase in WQ veining/banding towards the lower part of this sed sequence						
SL-12-07	145.40	151.00						Metasediments	and an increase in shearing in the more argillaceous material.		0.5				
SL-12-07					145.40	145.55	16		Py and Po on cleavage planes @ 36						
SL-12-07															
SL-12-07			145.55	145.65			13b	Feldspar Porphyry	as above						
SL-12-07					148.65	148.70	15a		Quartz banding with up to 4% Py. Some chlorite banding.	chl/sil	0.5				
						0			Set of white/cloudy qtz `veins` orientated in S1 fabric. Minor Py (2%) and trace		0.0			1	
SL-12-07					149.05	149.70	15a		Po. Minor carbonate. Veining @ 32° to LCA.		2.0	0.5			0
					1 10.00	1 10.70	100		White/cloudy Qtz.band. 2% Po. Marginal to QV. Associated sericite alteration.		2.0	0.0			
SL-12-07					145.90	150.02	150			ser/chl			0.2	,	1
JL-12-01					140.90	100.02	10a			301/011	1		0.2	·	<u> </u>

Log

	Prim	ary Unit	Second	ary Unit	Tert	ary Unit			Alteration				Magnetic	Misc
Hole	From	To (m)	From	To (m)	From	To (m)	Code	Name	Description	Py	Po	Сру	(0-5 (weak to strong)	
									TD: 151m, 5:30pm, Dec. 6, 2012					
									Indications are that the core is getting better mineralized downhole as observed in last 5m section? Deeper drilling required to target below lake??					

Structure L	_og
-------------	-----

								Note: all measurements are calculated from Bottom of
		S1	S2	Vn	Intr Contacts	Bedding	Fract	core.
Hole	Depth (m)	Dip	Dip	Dip	Dip	Dip	Dip	Description
SL-12-07	11.00				36			Lr. Ctc.of Intermediate tuff
SL-12-07	16.00				36			
SL-12-07	18.10	30						Argillite cleavage, commonly with Pyrite.
SL-12-07	21.20				35			Lr. Argillite ctc.
SL-12-07	25.00	30						Steepening cleavage.
SL-12-07	56.80				53			Lr. Tuff ctc.
SL-12-07	64.70				36			Lt. Tuff ctc.
SL-12-07	74.97	30						Cleavage in Bk. Argillite controlling 1mm Py bands.
SL-12-07	75.00	30						
SL-12-07	99.60				60			Lr ctc og graphitic seds
SL-12-07	100.90						56	Lr. Contact is a small fault.
SL-12-07	107.50				48			Lr. contact with sediments.
SL-12-07	110.60				47			Lr. Contact with bk argillaceous sediments.
SL-12-07	110.85				35			Lr. Mafic band contact.
SL-12-07	111.03				43			Lr. Ctc of bk shales/argillites
SL-12-07	111.43				38			Tuff lower contact.
SL-12-07	111.47				40			Lr. Ctc of Metamorphosed Mafic Tuff band.
SL-12-07	113.90							
SL-12-07	115.92				42			Lr. Ctc of Mafic Band
SL-12-07	116.75				45			
SL-12-07	118.00				38			Lr. Tuff band contact.
SL-12-07	131.05				41			Lr. Sediment contact.
SL-12-07	131.20				40			Contact with seds.
SL-12-07	132.80	33			33			
SL-12-07	132.95				30			Lr. Tuff contact with seds.
SL-12-07	133.10				30			Lower dyke contact.
SL-12-07	133.15				30			Mafic tuff lower ctc.
SL-12-07	134.60				32			QFP lower ctc.
SL-12-07	136.50				35			Lower dyke contact.
SL-12-07	138.00				35			Lr. Sediment contact.
SL-12-07	138.05				36			Mafic tuff lower ctc.
SL-12-07	139.45				36			Lr. Sediment contact.
SL-12-07	139.50				38			Lower dyke contact.
SL-12-07	141.35				30			Mafic tuff lower ctc.
SL-12-07	142.50	38			39			Lr sed contact
SL-12-07	145.40				35			Lr FP contact
SL-12-07	145.55							Cleavage with Py and Po
SL-12-07	149.70			32				Qtz banding
SL-12-07	150.02		1	34				Qtz banding

						ANALYTE	Wt	Au	Au	Au	Certificate # for Au
						METHOD	WGH79	FAA313	FAA313	FAA313	
						DETECTION	0.01	5	0.01	0.001	
Hole #	Sample #	From	То	Interval	Comment	UNITS	kg	ppb	g/t	oz/t	
SL-12-07	652760	62.75	63.45	0.70		W652760	15	0.02	<0.001	1.3	RL1204168
SL-12-07	652761	84.40	85.00	0.60		W652761	<5	<0.01	<0.001	1	RL1204168
SL-12-07	652762	85.00	86.00	1.00		W652762	10	0.01	<0.001	1.3	RL1204168
SL-12-07	652763	88.00	89.00	1.00		W652763	5	<0.01	<0.001	1.3	RL1204168
SL-12-07	652764	145.40	146.35	0.95		W652764	5	<0.01	<0.001	1.7	RL1204168
SL-12-07	652765	146.35	147.35	1.00		W652765	15	0.02	<0.001	1.9	RL1204168
SL-12-07	652766	147.35	148.60	1.25		W652766	15	0.01	<0.001	2.2	RL1204168
SL-12-07	652767	148.60	149.05	0.45		W652767	10	0.01	<0.001	0.9	RL1204168
SL-12-07	652768	149.05	149.70	0.65		W652768	10	<0.01	<0.001	0.9	RL1204168
SL-12-07	652769	149.70	150.20	0.50		W652769	5	<0.01	<0.001	0.9	RL1204168
SL-12-07	652770	150.20	151.20	1.00		W652770	10	0.01	<0.001	1.5	RL1204168

Survey I	Data
----------	------

Survey name	Depth (m)	Azimuth (uncorrected)	Azimuth (corrected)	Dip	Mag.Str.	Mag.Dip
Ranger	20			-44.3		76.7
Ranger	75	185.6		-42.9	56990	76.5 76.2
Ranger Ranger	150	185.4		-41.0	56890	76.2

Photo #	Description
SL-12-07-0001	

APPENDIX C

ASSAY CERTIFICATES

APPENDIX D

ASSAY PROCEDURES

FAA313 :

The Determination of Gold by Fire Assay and Flame Atomic Absorption – Trace Grade

- 1. Parameter(s) measured, unit(s): Gold (Au): ppb
- **2. Typical sample size:** 30.0 g
- **3. Type of sample applicable (media):** Crushed and pulverized rocks.

4. Sample preparation technique used:

Crushed and pulverized rock sample are weighed and mixed with flux and fused using lead oxide at 1100°C, followed by cupellation of the resulting lead button (Dore bead). The bead is digested using 1:1 HNO₃ and HCI and the resulting solution is submitted for analysis.

5. Method of analysis used:

The digested sample solution is analyzed by Flame Atomic Absorption Spectrometer (AAS), Samples are analyzed against known calibration materials to provide quantitative analysis of the original sample

6. Data reduction by:

The results are exported via computer, on line, data fed to the SGS Laboratory Information Management System (SLIM) with secure audit trail.

7. Figures of Merit:

Element	Reporting Limit (ppb)
Au	5.0

8. Quality control:

Instrument calibration is performed for each batch or work order and calibration checks are analyzed within each analytical run. Quality control materials include method blanks, replicates, duplicates and reference materials and are randomly inserted with the frequency set according to method protocols at ~14%.

Quality assurance measures of precision and accuracy are verified statistically using SLIM control charts with set criteria for data acceptance. Data that fails is subject to investigation and repeated as necessary