We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

REPORT ON DRILLING BY TERRAX MINERALS INC ON THE CENTRAL CANADA PROPERTY, SAPAWE LAKE AREA, NTS MAP SHEET 52B/14, THUNDER BAY MINING DIVISION NORTHWESTERN ONTARIO

Tom Setterfield, PhD, P.Geo, GeoVector Management Inc. August, 2012

	TAB	LE OF CONTENTS	Page
	Table	of Contents	i
	List o	f Figures	i
		f Tables	ii
	List o	f Maps	ii
	Sumn	nary	1
1.0		luction	3
2.0	Prope	rty Description and Location	3
3.0	Acces	ssibility, Climate, Local Resources, Infrastructure and Physiography	6
4.0	Geolo	gical Setting	6
	4.1	Regional Geology and Mineralization	6
	4.2	Property Geology	9
	4.3	Geophysics	9
5.0	Previe	ous Work	12
	5.1	Pre-TerraX	12
	5.2	TerraX	15
6.0	Marcl	n 2012 Drilling by TerraX	16
7.0	Concl	usions and Recommendations	22
8.0	Refer	ences	23
APPE	NDIX	A: Certificate of Qualifications	
APPE	NDIX	B: Drill Hole Logs	
APPE	NDIX	C: Cross-sections	
APPE	NDIX	D: Certificates of Assay	
APPE	NDIX	E: Expenditures	
APPE	NDIX	F: Personnel and Dates Worked	

LIST OF FIGURES

Page

1.	Location of TerraX's Properties in Northwestern Ontario	4
2.	Claims Comprising the Central Canada Property	5
3.	Access to the Central Canada Property	7
4.	Regional Geology	8
5.		10
6.	First Vertical Derivative of Magnetics, Central Canada Property	11
7.	Selected Previous Work on the Central Canada Property	13
8.	Geology of Outcrops Stripped by Freewest Resources	17
9.	Channels Sampled on the Central Canada Property	18
10.	Access to Drilling Area	19
11.	Location of TerraX Drill Holes on the Central Canada Property	20
12.	Central Canada Drill Results	21

LIST OF TABLES

1.	Claims Comprising the Central Canada Property	4
2.	1985 Drill Hole Intersections	14
3.	Details of 2012 Drill Holes	16
4.	Selected Drilling Results	22

LIST OF MAPS (in pocket)

- 1. Central Canada Claims
- 2. Drill Hole Locations
- 3. Cross-section Locations

Page

SUMMARY

TerraX Minerals Inc. has optioned the Central Canada property in the Sapawe Lake area, 20 km east of the town of Atikokan in northwestern Ontario. The property consists of seven claims totaling 24 claim units (~379 ha) in the Thunder Bay Mining Division. The property occurs within and adjacent to the Marmion Batholith, the geological entity that hosts Osisko Mining Corporation's Hammond Reef gold deposit. TerraX is exploring the property for gold.

Within and along the margin of the Marmion Batholith, gold mineralization is typically associated with northeast trending lineaments traceable for up to 80 km. The lineaments are expressed by shorelines, valleys and drainage systems, and represent faults or shear zones. Shearing occurs as lenzoid zones within or adjacent to the lineaments. Mineralization occurs in and adjacent to quartz veins, with associated alteration consisting of ankerite, sericite, and chlorite. The veins are dominated by quartz, but also commonly contain pyrite, and may also have chalcopyrite, sphalerite, galena and visible gold. At the Central Canada property, structure and mineralization is more in an east-northeast direction, reflecting proximity to the east-trending, regional Quetico Fault.

The existence and ongoing exploration of the Hammond Reef gold deposit serve as the main justification for exploration in the Marmion Batholith region. This deposit occurs \sim 20 km northwest of the Central Canada property, along the western margin of the Marmion Batholith. The Hammond Reef resource has recently been upgraded to 10.52 Moz gold at a grade of 0.62 g/t Au.

Gold exploration on the property has occurred irregularly since the early 1900's. The property has been worked on by Central Canada Mines Limited, Anjamin Mines, Kenergy Resources, Interquest Resources, and more recently, briefly by Valerie Gold Resources, Cameco Gold, and Freewest Resources. This work includes the sinking of a shaft early in the century, minor mining and gold recovery in the 1930's, and intermittent examination of the property since that time.

The Central Canada property has not previously been mapped in detail, nor was it systematically mapped by TerraX. The majority of the property occurs in mafic rocks south of the Marmion Batholith with apparent felsic (granitic) dikes. The main mineralization is within 400 m of the Quetico Fault. Mineralization is associated with east-northeast trending quartz-iron carbonate veins with minor pyrite and local tourmaline and/or arsenopyrite. These veins are more common in or close to porphyry bodies than in the mafic rocks, and have locally been folded and dismembered. TerraX collected 18 samples in 2009; all had detectable gold, and seven samples had >250 ppb Au. This includes results of 2.8, 4.48 and 22.9 g/t Au.

A total of 3.1 line km was cut and chained on the Central Canada Grid in early 2010. A total of 3.1 line km of magnetic surveying was completed at 5 m station intervals. The resistivity/IP survey utilized a conventional pole-dipole array with dipole spacing of a=25 m, reading n levels 1 through 6 at 25 m station intervals. IP Survey coverage over the grid was 1.9 line km. TerraX conducted a small prospecting program on the property in

May/June, 2010. 21 grab samples were collected. The highest sample was 39.6 g/t Au, in the area of the old shaft. This sample was from a strongly carbonatized shear zone in mafic rocks, with abundant pyrite. Two samples of close to 1 g/t Au were collected 500 m northeast of the shaft in a newly discovered mineralized area. Four man-days were then spent mapping the areas that Freewest stripped in 2004. The geology was broken into gabbro, fine-grained mafic rocks and quartz porphyry. Mapping confirmed the overall east-northeast structural grain to the property, and highlighted the extreme geological complexity in this area.

In November 2010, TerraX collected 123 samples, varying from 0.45 to 1.5 m in length, from five separate channels in two outcrops proximal to the shaft on the property. The highest channel sample was 0.45 m @ 7.5 g/t Au, west of the shaft in an area were previous grab sampling returned up to 39.6 g/t Au. The outcrop west of the shaft had three closely spaced, highly anomalous sets of channel samples from the same channel, namely: 12 m @ 334 ppb Au, 2.0 m @ 2510 ppb Au, and 6.2 m @ 325 ppb Au. The outcrop south of the shaft had a chain of samples which collectively ran 2.65 m @ 754 ppb Au.

TerraX drilled holes CC12-01 to CC12-03 from March 4 to March 9, 2012 based primarily on the mapping and channeling results discussed above. In particular, an east-northeast trending, subvertical, gold-bearing structure or zone was inferred from this work; this zone formed the target of the drilling. Holes were drilled south-southeast at an angle of -45° in order to intersect the interpreted structure at the optimum angle.

The three holes each penetrated a rock sequence consisting variably of fine-grained or medium-grained mafic rocks (called basalt and gabbro respectively) alternating with quartz porphyritic felsic rocks (porphyry). Quartz-ankerite veins, with or without pyrite, were locally present. Each hole intersected a mineralized zone consisting of quartz veins, porphyries and altered host rocks. Drill intersections from southwest to northeast include 23.30 m @ 0.83 g/t Au (including 0.63 m @ 7.36 g/t Au) in hole CC12-03, 10.61 m @ 1.32 g/t Au (including 1.82 m @ 4.77 g/t Au) in hole CC12-01, and 8.92 m @ 0.74 g/t Au in hole CC12-02. Collectively the three holes delineate a110 m strike length of the interpreted main, east-northeast trending, mineralized structure at Central Canada. This structure is open along strike in both directions and down dip. Hole CC12-02 encountered extensive alteration and was extended to a final depth of 157 meters. Several anomalous gold zones parallel to the main structure were intersected in this hole indicating the potential for multiple gold horizons at Central Canada.

TerraX's first drilling campaign on the Central Canada property was successful in encountering significant widths of anomalous gold. Gold occurs in an east-northeast trending corridor with associated quartz veining and alteration, previously noted on surface in mapping and channel sampling. The drilling has defined this corridor over a strike length of 110 m, but it is open along strike and down dip. Further drilling should be undertaken to extend the known mineralized zone in all directions.

The exploration program discussed in this report cost a total of \$93,265.72.

1.0 INTRODUCTION

TerraX Minerals Inc. (TerraX) has optioned the Central Canada property in the Sapawe Lake area, 20 km east of the town of Atikokan in northwestern Ontario (Fig. 1). The property occurs on the southern margin of the Marmion Batholith, the geological entity that hosts Osisko Mining Corporation's 10.52 Moz Hammond Reef gold deposit. TerraX is exploring the property for gold. TerraX's previous exploration included prospecting/geological reconnaissance in October of 2009, local ground magnetic and Resistivity/IP surveys early in 2010, additional prospecting and geological mapping in May/June, 2010, and channel sampling in November, 2010. In March 2012, TerraX drilled three holes on the Central Canada property; this work forms the subject of this report. Exploration is being conducted by the Ottawa-based geoconsulting firm GeoVector Management Inc. (GeoVector) on behalf of TerraX.

The 1983 North American Datum (NAD83) co-ordinate system is used in this report. The Central Canada property is in Universal Transverse Mercator (UTM) Zone 15N. Some of the assessment reports cited in the report are available on the website of the Ontario Ministry of Northern Development and Mines (www.geologyontario.mndm.gov.on.ca). The AFRI (Assessment File Research Imaging) number is provided wherever possible in the references for each assessment report. All monetary figures quoted in this report are in Canadian dollars.

2.0 PROPERTY DESCRIPTION AND LOCATION

The Central Canada property consists of seven claims totaling 24 claim units in the Sapawe Lake area in the Thunder Bay Mining Division (Fig. 2; Table 1; Map 1). The claims are held in various proportions by a combination of Ken Fenwick, Karl Bjorkman, Donald Devereux and Donald Leishman. According to the terms of an option agreement signed on December 11, 2009, TerraX has the right to earn a 100% interest in the property by paying option payments totaling \$98,000, issuing 280,000 common shares and funding a total of \$140,000 in exploration and development work over four years. The vendors will retain a 2.5% NSR, 1% of which can be purchased by TerraX for \$1,000,000. The property is 379.0 ha in area and is centered at approximately 623200E/5404600N (UTM Co-ordinates) or 91°19'W/48°46'N (latitude/longitude) in National Topographic System (NTS) 1:50,000 map sheet 52B/14.

The Central Canada property consists of unpatented, unsurveyed claims (Fig. 2). The mineral rights for the entire property are owned by TerraX (through the option agreement). The mineral rights give TerraX the right to explore for ore on the claims, subject to a 400' surface rights reservation around all lakes and rivers, and a 300' surface reservation around major roads (this may be waived by the Crown). Claims require work expenditures of at least \$400 per 16 hectare claim unit in the first two years, and \$400 per year thereafter (by the anniversary of their recording date. There are no known mineral reserves on the property, and no environmental liabilities accruing to TerraX.

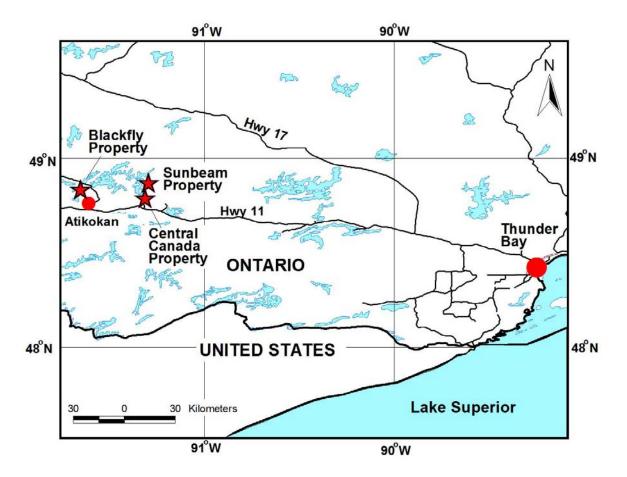
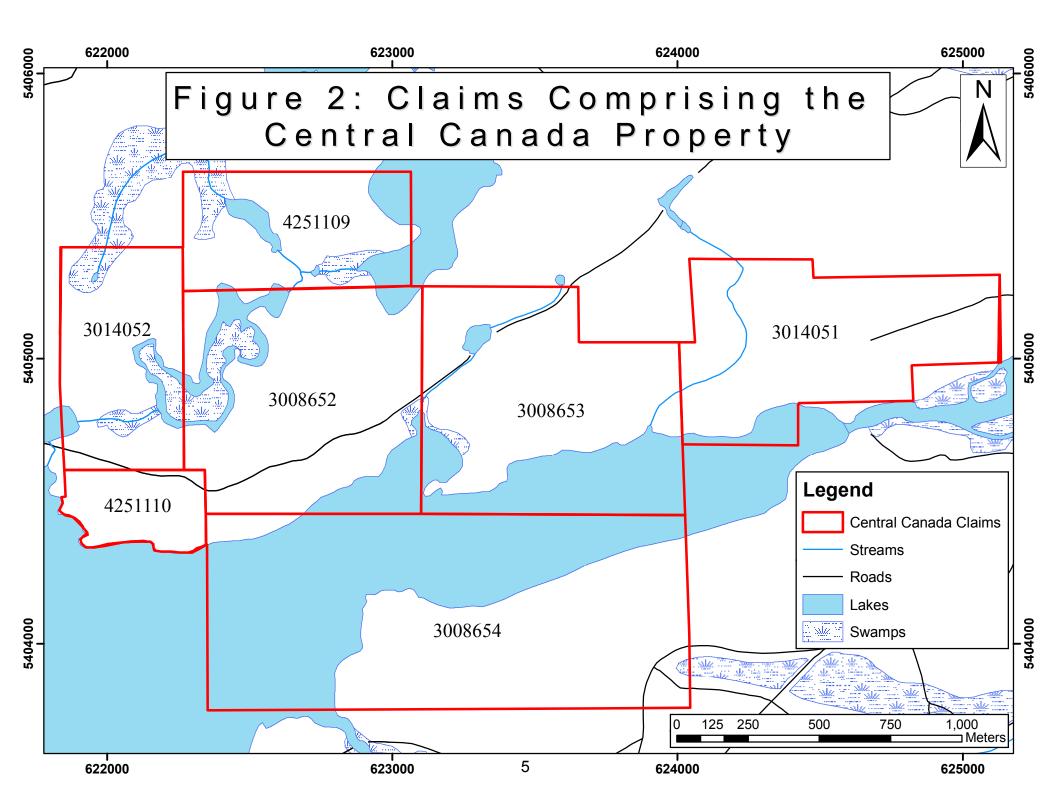



Figure 1: Location of TerraX's Properties in Northwestern Ontario

Township	Claim	Recording	Expiry	Units	Expenditure
		Date	Date		Required
HUTCHINSON	<u>3008652</u>	2003-Aug-05	2012-Sep-09	4	\$ 1,600
HUTCHINSON	<u>3008653</u>	2003-Aug-05	2012-Sep-09	4	\$ 1,600
HUTCHINSON	<u>3008654</u>	2003-Aug-05	2012-Sep-09	8	\$ 3,200
HUTCHINSON	<u>3014051</u>	2003-Nov-13	2012-Nov-13	3	\$ 1,200
HUTCHINSON	<u>3014052</u>	2003-Nov-13	2012-Nov-13	2	\$ 800
HUTCHINSON	4251109	2009-Jun-26	2013-Jun-26	2	\$ 800
HUTCHINSON	<u>4251110</u>	2009-Jun-26	2013-Jun-26	1	\$ 400
Total				24	\$9,600

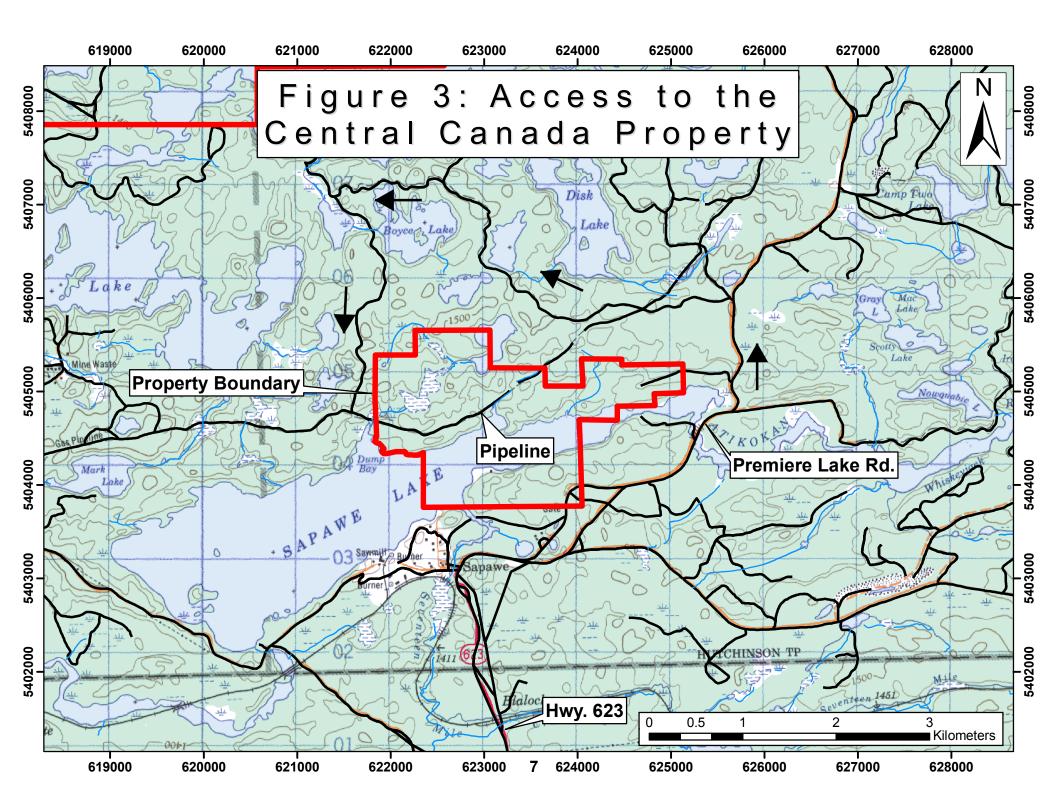
 Table 1: Claims Comprising the Central Canada Property

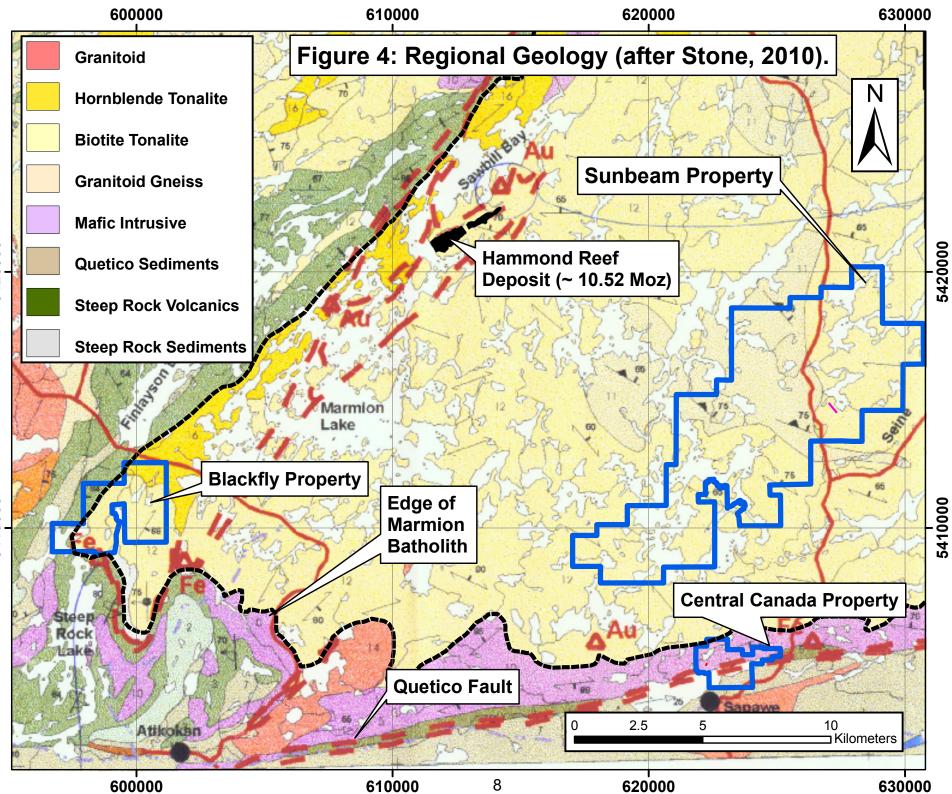
3.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

Access to the Central Canada property is reasonably good. Access is via Highway 623 from Highway 11, approximately 24 km east of Atikokan. 10.2 km north of Highway 11, one turns west onto the Marmion Lake Shore Road. After 5.9 km, turn south onto a gravel road, and travel approximately 2.8 km to the gas pipeline. From this point, access is by foot, ATV or snowmobile, 1.5 km east to the heart of the property (Fig. 3).

The property is approximately 20 km east of Atikokan, a small mining-friendly town with local labour and services. It is 190 km west of Thunder Bay, a city with a long mining history and home to personnel with the skills to work in the mining industry.

The climate of the project area is continental in nature, with cold winters (-10 to -35° C) and warm summers (+10 to $+35^{\circ}$ C). Seasonal variations affect exploration to some extent (geological mapping cannot be done in the winter, geophysics and drilling are best done at certain times of the year etc.), but the climate would not significantly hamper mining operations.


The property has gently rolling topography with a maximum relief of approximately 30 m. Elevation varies from 420 to 450 m Above Sea Level. Approximately 40% of the property is covered by lakes, but in general the property is dominated by forest and lesser swamps. Parts of the property have been logged in the past, so the present forest is second growth, a mixture of jackpine, spruce, birch and poplar trees; swampier areas contain small spruce trees and alders. The bulk of the property is covered by thin overburden, and outcrop density is moderate.


4.0 GEOLOGICAL SETTING

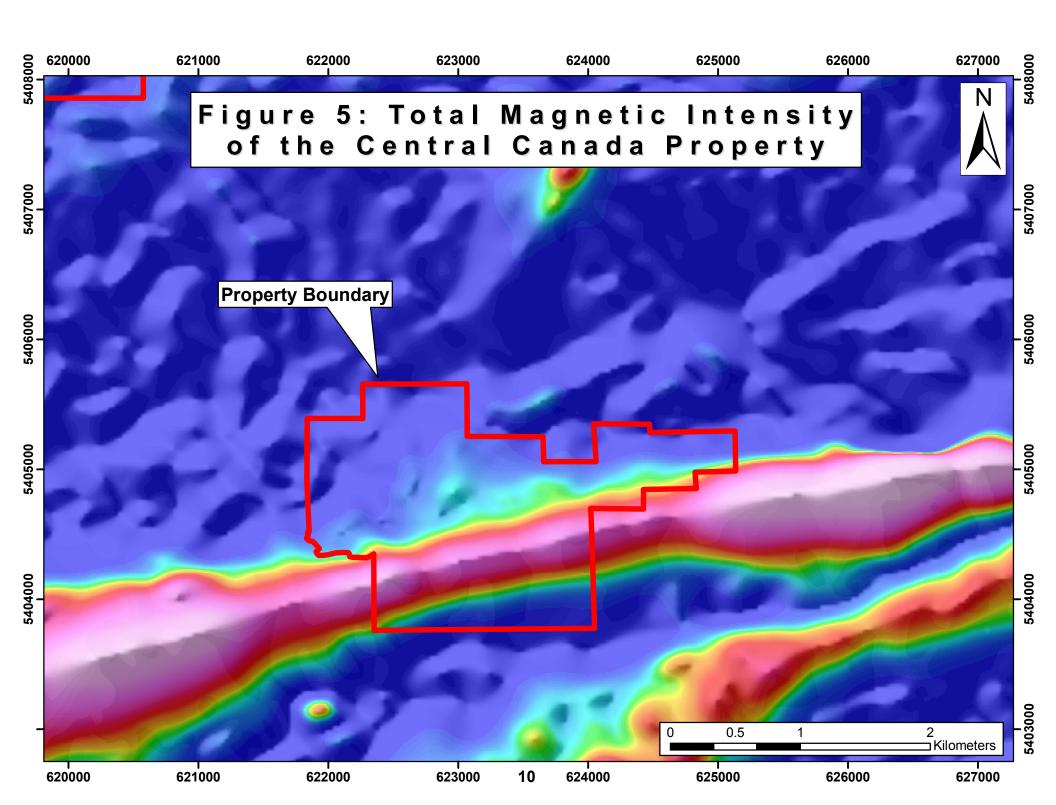
4.1 Regional Geology and Mineralization

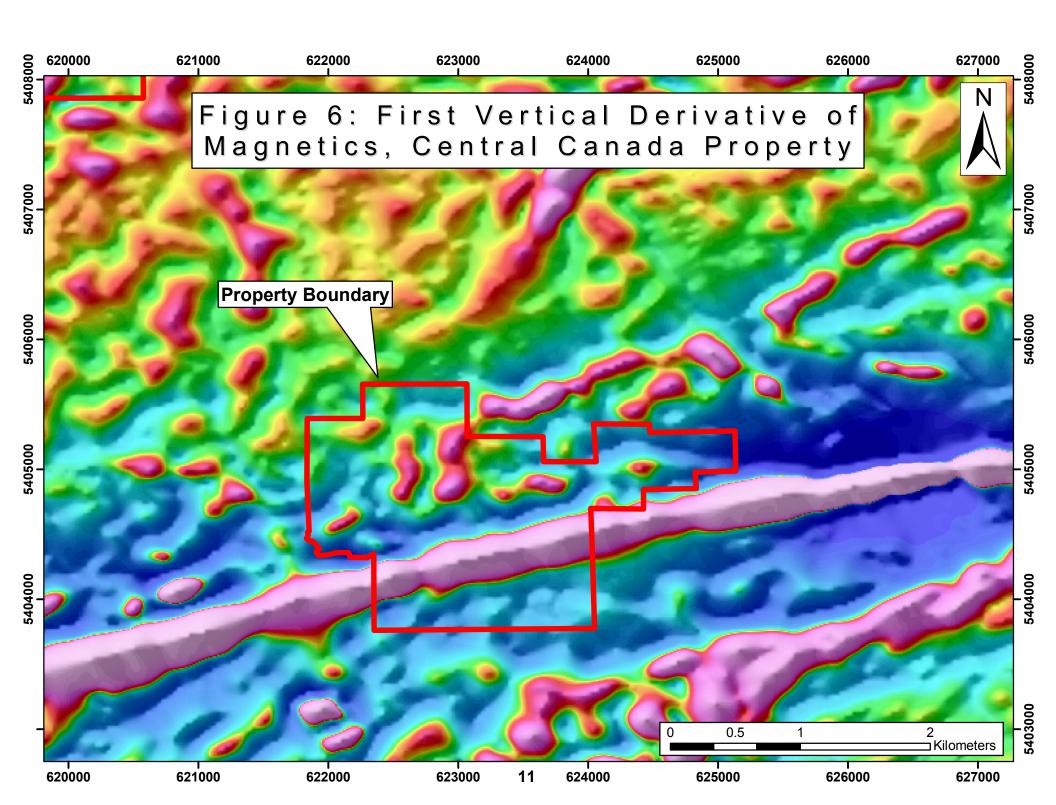
The property occurs on the southern margin of the ~ 3.0 Ga Marmion Batholith, within the Marmion Terrane of the south-central Wabigoon Subprovince in northwestern Ontario (Stone and Davis, 2006, Stone, 2008). The batholith is juxtaposed against the coeval Finalyson and Lumby Lake greenstone belts to the west and north respectively, and overlain by the rift-related Steeprock Lake belt of volcanics and sediments in the south (Fig. 4; Stone and Davis, 2006). The Marmion Batholith contains a number of phases, varying from tonalite to quartz diorite, and is locally gneissic.

Within and along the margin of the Marmion Batholith, gold mineralization is associated with north-northeast trending lineaments traceable for up to 80 km (Schnieders and Dutka, 1985). The lineaments are expressed by shorelines, valleys and drainage systems, and represent faults or shear zones. East-southeast trending lineaments may aid in the localization of gold. Shearing occurs as lenzoid zones within or adjacent to the lineaments. Mineralization occurs in and adjacent to quartz veins, with associated alteration consisting of ankerite, sericite, and chlorite. The veins are dominated by quartz, but also commonly contain pyrite, and may also have chalcopyrite, sphalerite, galena and

visible gold (Wilkinson, 1982; Schnieders and Dutka, 1985). The ultimate product of alteration is chlorite schist, which can be several m thick and up to several km in strike length. Green chromium muscovite may be present, and pyrite is typically present in any significant intersection. Examples of mineralization in the Marmion Baltholith include the Hammond Reef, Roy, Pettigrew, Sunbeam, Reserve Island and Jack Lake deposits, all of which were seriously investigated in the late 19th/early 20th century and in some instances produced minor amounts of gold.

The existence and ongoing exploration of Osisko Mining Corporation's Hammond Reef gold deposit serve as the main justification for exploration within and adjacent to the Marmion Batholith. This deposit occurs 20 km northwest of the Central Canada property, along the western margin of the Marmion Batholith (Fig. 4). The deposit has been the subject of three recent NI 43-101 compliant technical reports (Rennie and McDonough, 2008; Rennie et al., 2009; Cukor et al., 2011). The latest resource model includes a calculation for an Inferred Resource of 530.6 Mt at a grade of 0.62 g/t Au, at a cut-off grade of 0.30 g/t Au. This amounts to an Inferred Resource of 10.52 million ounces of gold.


4.2 **Property Geology**


The Central Canada property has not previously been mapped in detail, nor was it systematically mapped by TerraX. As shown in Figure 4, the bulk of the property occurs in mafic rocks south of the Marmion Batholith. Abundant east-northeast trending felsic (granitic) apparent dikes occur on the property-these are locally called quartz porphyries. Structural complexity is such that it is not clear whether these are real intrusive dikes, or whether they have been structurally juxtasposed against the mafic rocks. This situation is similar to the TerraX's Blackfly property, where apparent mafic dikes may in fact have been structurally emplaced into a felsic pluton (Setterfield, 2009). The main mineralization is within 400 m of the regional scale, east-trending Quetico Fault (Fig. 4).

The southern part of the property is under water and covers 1.6 strike km of the Atikokan Iron Range.

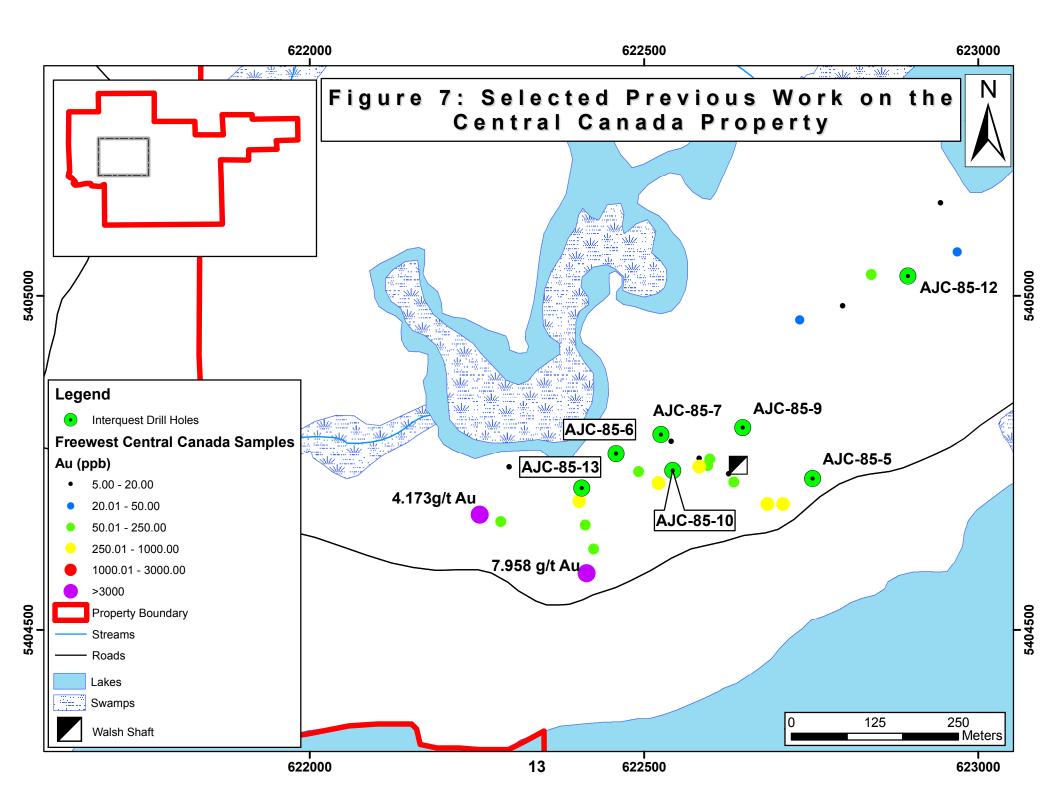
4.3 Geophysics

The Ontario Geological Survey recently released new airborne magnetic data over the Marmion Batholith (Ontario Geological Survey, 2009). TerraX reprocessed the data to produce images of Total Magnetic Intensity (Fig. 5), First Vertical Derivative (Fig. 6) and other views. Both images show an east-northeast trending structural grain, parallel to the Quetico Fault and the boundary of the Marmion Batholith, and a strong magnetic high in the south part of the property corresponding to the Atikokan Iron Range. Two northerly trending local magnetic highs occur in the northern part of the property; the cause of these highs is not known.

5.0 **PREVIOUS WORK**

5.1 Pre-TerraX

Gold exploration on the Central Canada property has occurred since the early 1900's. The property has been worked on by Central Canada Mines Limited, Anjamin Mines, Kenergy Resources, Interquest Resources, and more recently, briefly by Valerie Gold Resources, Cameco Gold, and Freewest Resources.


Exploration on the Central Canada Property from 1900 to 1935 is incompletely documented. However, old newspaper articles compiled by Ken Fenwick (one of the property vendors) provide a brief outline of the work performed during this time.

Work from 1900 to 1903 was performed by J.J. Walsh. A shaft was sunk (Fig. 7), two veins were discovered and a 3 gravity stamp mill was built (Hawley, 1929). The number 1 vein measured over 5 feet wide and the shaft was sunk to 50 feet, producing 28.5 ounces of gold from 18 tons (Fort William Daily Times Journal, July 11, 1906).

In 1928 an exploration program consisting of stripping, trenching, sampling, and mapping was carried out for the Jackson Syndicate, who leased the property. The shaft area was mapped and sampled in detail and assays returned 2.0 g/t Au in carbonated quartz porphyry and 21.0 g/t Au in 3 feet of quartz and mineralized schist (Hawley, 1929).

Central Canada Mines Limited acquired the property in 1929. By the end of 1930 the shaft had been deepened to a depth of 150 feet and 50 feet of crosscutting had been done and another vein discovered. This vein at the 100 foot level assayed 11.8 g/t Au over 1.83 m (Fort William Daily Times Journal, December 13, 1930). Diamond drilling started early in 1934. Three holes west of the shaft were drilled for a total of 610 m and showed good widths of gold-bearing quartz (Fort William Daily Times Journal, March 9, 1934). The fourth hole, drilled just south of the shaft, encountered a "highly mineralized shear zone" along with mineralized porphyry and schist (Fort William Daily Times Journal, March 26, 1934). The shaft vein, consisting of a 10 foot band of solid quartz, was encountered while drilling at approximately 480 feet (Fort William Daily Times Journal, April 21, 1934). Channel sampling across the entire width of the shaft from top to bottom with samples taken every 10 feet was done by Jules G. Cross; the average of all samples was 17.8 g/t Au (Fort William Daily Times Journal, April 28, 1934).

Combined with over 6,000 feet of drilling from 18 holes and stripping east and west of the shaft, Central Canada Mines inferred an extensive orebody of mineable extent. An orebody worth \$8,000,000 (230,000 oz.) was said to have been blocked out (Fort William Daily Times Journal, October 30, 1934). Mill tests indicated average values of vein rock and gold-bearing schists running close to 9.9 g/t Au. With this information, Central Canada built a 25 ton/day pilot mill (Newspaper articles from May-Dec, 1934). By mid 1935 operations seem to have ceased due to financial downturn.

In 1966 Anjamin Mines performed drilling, trenching and sampling on the Central Canada property near the shaft on an exposed vein. Samples of stripped sheared porphyry along the pipeline assayed greater than 17 g/t Au. Three short holes were drilled. S1 had an intersection of 6.9 g/t Au across 1.5 feet, S2 returned 37 g/t Au over 2 feet, and S3 had 44 g/t Au over 7 feet (Anjamin Mines News Release, 1966). An assessment report containing incomplete drill logs for up to 20 holes was found, but no report accompanies this work. However, the work seems to have occurred in 1966-1967 (Anjamin, 1967).

Work continued on the Central Canada property in 1984. Kenergy Resources Corp. optioned the property from Anjamin Mines Ltd. and carried out exploration programs consisting of line cutting, geological mapping, geochemistry, prospecting, and ground geophysical surveying. A total of 25.6 kilometers of line were cut, 570 soil samples and 65 rock samples were collected. Up to 130 ppb Au in soil was returned and three zones of interest were outlined. Nine percent of the 65 grab samples returned 1.0 g/t Au or higher, with a highest value of 26.9 g/t. The ground magnetic survey outlined contact zones between the intermediate and mafic volcanics as well as delineating a circular magnetic high related to an underlying gabbro. The induced polarization and resistivity survey delineated four anomalies (Leahey, 1984).

In 1985 Interquest Resources conducted a drill program to test the mineralized shear zone near the shaft area, to test geochemical targets and to also test geophysical anomalies received from an airborne geophysical survey earlier in the year (Barrie, 1985). Detailed mapping of the shaft and prospecting of the grid was also carried out. Details of 13 drill holes (AJC-85-1 to AJC-85-13) are reported by Holmes (1985), and the best intersections are listed in Table 2. Several collar positions from this campaign were recovered by Freewest in 2004, and are shown on Figure 7.

Table 2: 1905 DTm Hole Intersections					
	From	То	Length	assay oz/ton	
Hole #	(m)	(m)	(m)	Au	
AJC-85-1	38.94	40.5	1.56	0.19	
AJC-85-1	58.25	60.1	1.85	0.2	
AJC-85-2	24.84	28.8	3.96	0.228	
AJC-85-4	125.02	126.05	1.03	0.057	
AJC-85-7	87.0	88.73	1.73	0.025	
AJC-85-8	~213		3.3	0.15	
AJC-85-9	52.83	54.0	1.17	0.88	
AJC-85-10	4.93	7.38	2.45	0.017	
AJC-85-10	7.38	7.71	0.33	0.21	

 Table 2: 1985 Drill Hole Intersections

In 2001 Fenwick relocated the shaft and collected 16 rock samples. Eleven of the samples assayed 1 g/t Au or higher and four samples were higher than 10 g/t Au (Fenwick, personal communication, 2009), up to 16.55 g/t Au (Schnieders, 2002).

In 2002 the shaft was sampled by staff of the Resident Geologist's program. Samples of up to 0.44 oz/ton Au were obtained from quartz vein material and a sample of altered quartz porphyry returned 0.13 oz/ton Au. A property visit by Cameco Gold Inc in 2002 returned assays of 22.8 g/t Au from a vein on strike with the shaft (Schnieders, 2002).

Valerie Gold and Freewest Resources also did sampling on the property in 2002. Valerie Gold collected 13 samples, and obtained a maximum value of 7.2 g/t Au, with five samples assaying greater than 1 g/t Au. Freewest obtained values of up to 47,120 ppb Au (Fenwick, personal communication, 2009).

In 2004 Freewest Resources Canada optioned the Central Canada property and performed extensive stripping. Sixty-nine samples were collected and assayed for gold (Fig. 7) and 17 areas were stripped. Two anomalous samples of 4173 ppb and 7958 ppb were reported (Mosley, 2005).

5.2 TerraX

TerraX compiled previous work on the Central Canada property (see above), reprocessed the new airborne magnetic data (Figs. 5 and 6), and constructed a complete GIS for the property. Ground exploration consisted of one day of prospecting/geological reconnaissance and grab sampling in October of 2009, during which 18 grab samples were collected, followed by geophysical surveys (Resistivity/Induced Polarization and magnetics) in February/March, 2010 (Setterfield et al., 2010). TerraX sampled mineralized veins where present, zones of altered rock with or without pyrite, and in some instances apparently barren material. Gold mineralization is associated with east-northeast trending quartz-iron carbonate veins with minor pyrite and local tourmaline and/or arsenopyrite. These veins are more common in or close to porphyry bodies than in the mafic rocks, and have locally been folded and dismembered. TerraX samples all had detectable gold, and seven samples had >250 ppb Au. This includes results of 2.8, 4.48 and 22.9 g/t Au.

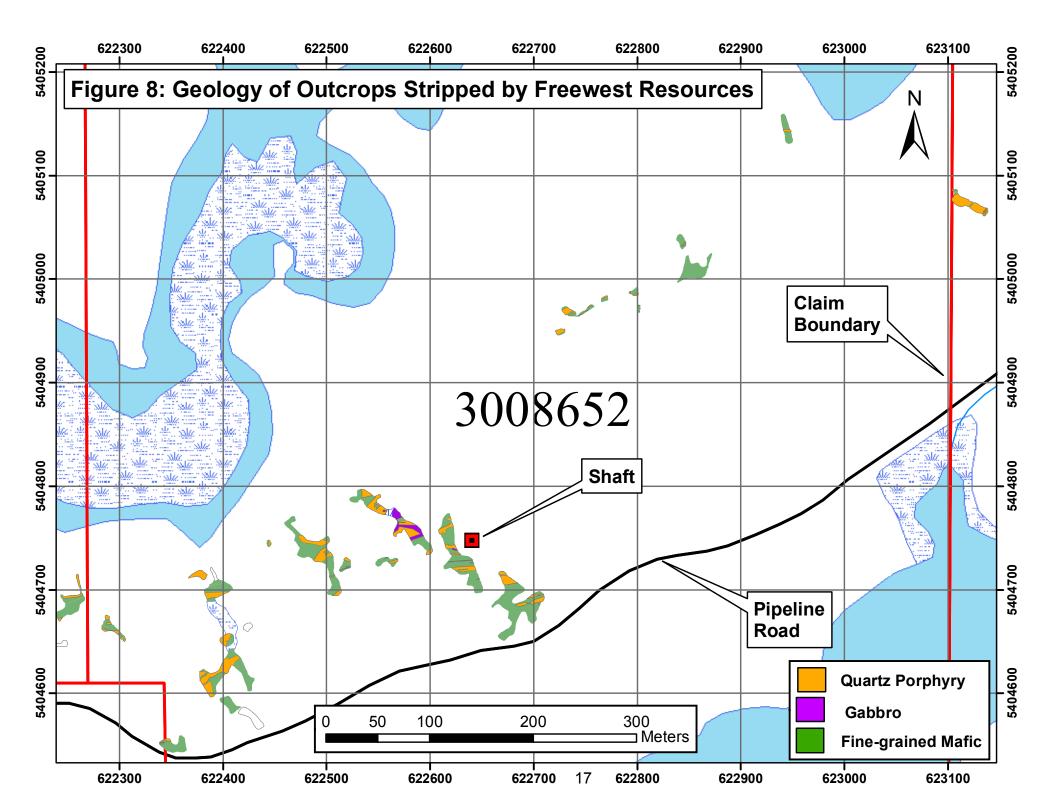
The 2010 geophysical program started with the cutting and chaining of the Central Canada Grid. The grid was surveyed with total magnetic intensity (TMI), and resistivity/induced-polarization (RES/IP). A total of 3.1 line km was cut and chained using 150 m line spacing and picketed at 25 m station intervals along the lines. TMI surveying was completed at 5 m station intervals using field and base-station Scintrex ENVI proton precession magnetometers. The entire grid was surveyed with TMI.

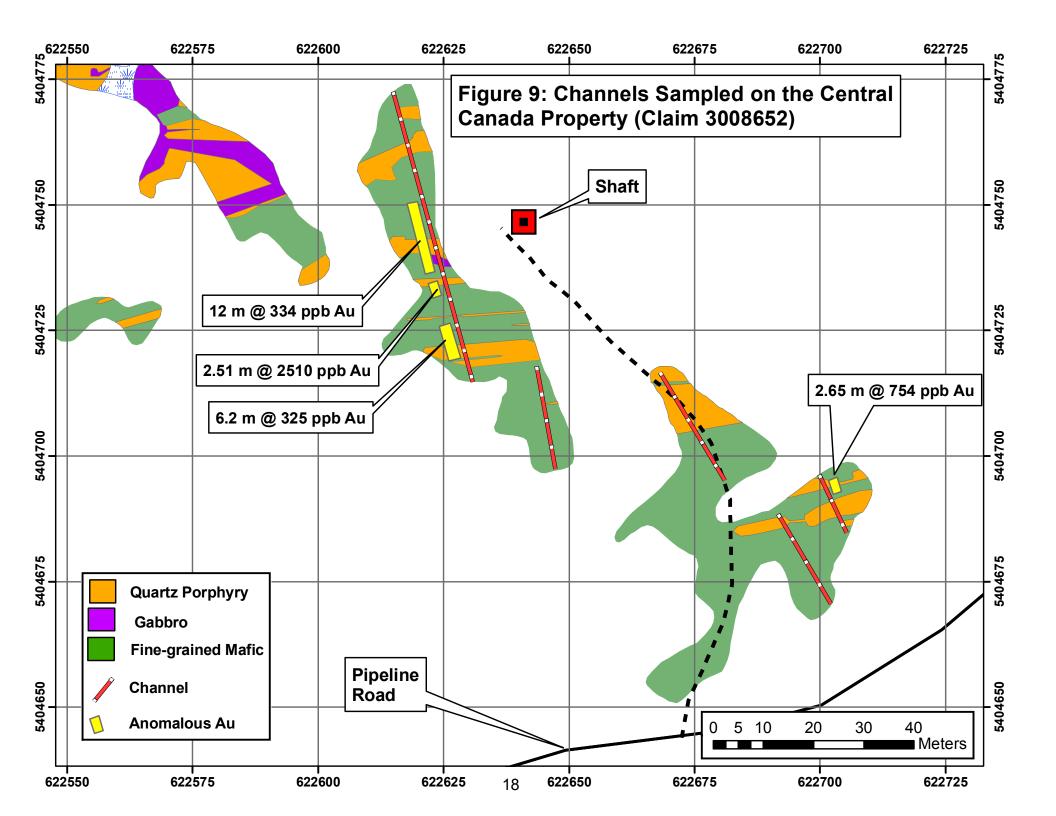
The RES/IP survey utilized a conventional pole-dipole array with dipole spacing of a=25 m, reading n levels 1 through 6 at 25 m station intervals. Measurements were made in the time-domain. Electrical current was transmitted into the ground using an Instrumentation GDD TxII-3600W-2400V-10A transmitter. The transmitter pulse was a 50% duty cycle alternating square wave with 2 sec on and 2 sec off duration. The receiver was a 32 channel Instrumentation GDD GRX8-32 measuring the decay of primary voltages over 20 linearly spaced time gates, each 80 ms in length starting at 240 ms after current shut-off. RES/IP survey coverage over the grid was 1.9 line km.

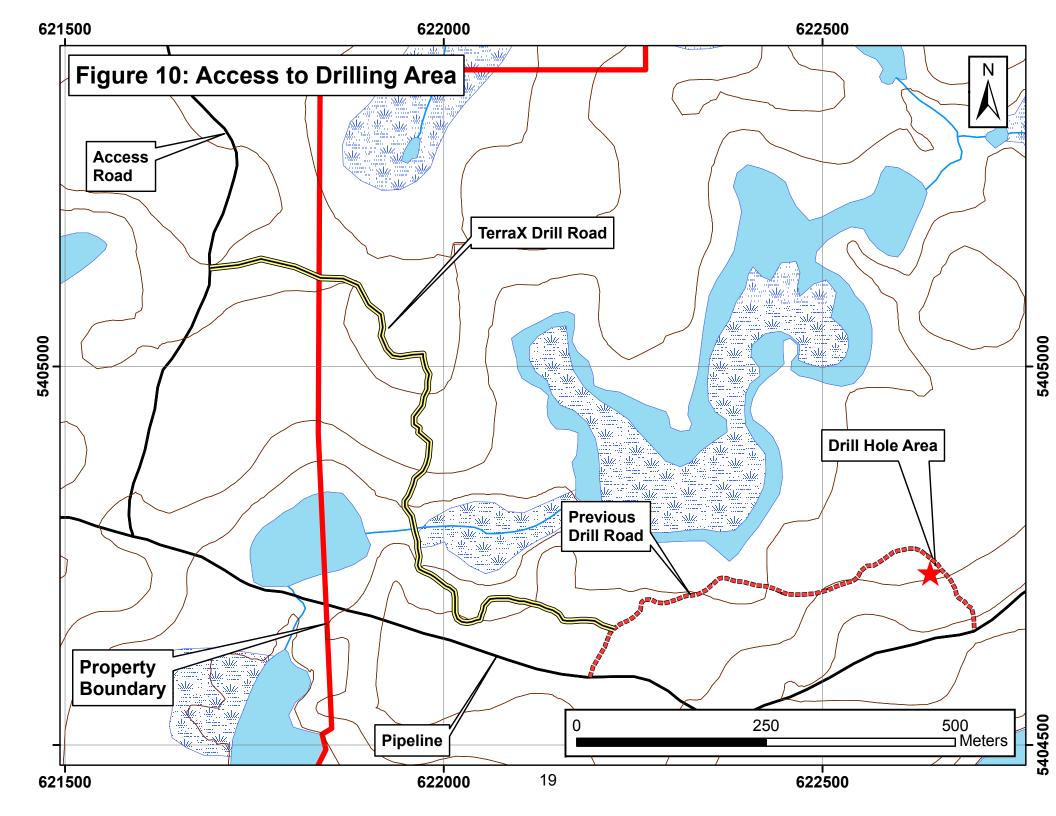
TerraX spent four man-days prospecting on the property in May/June, 2010 (Setterfield, 2010). 21 grab samples were collected. The highest sample was 39.6 g/t Au, in the area of the old shaft. This sample was from a strongly carbonatized shear zone in mafic rocks, with abundant pyrite. Two samples of close to 1 g/t Au were collected 500 m northeast of the shaft. Four man-days were spent mapping the areas that Freewest stripped in 2004. The geology was broken into gabbro, fine-grained mafic rocks and quartz porphyry.

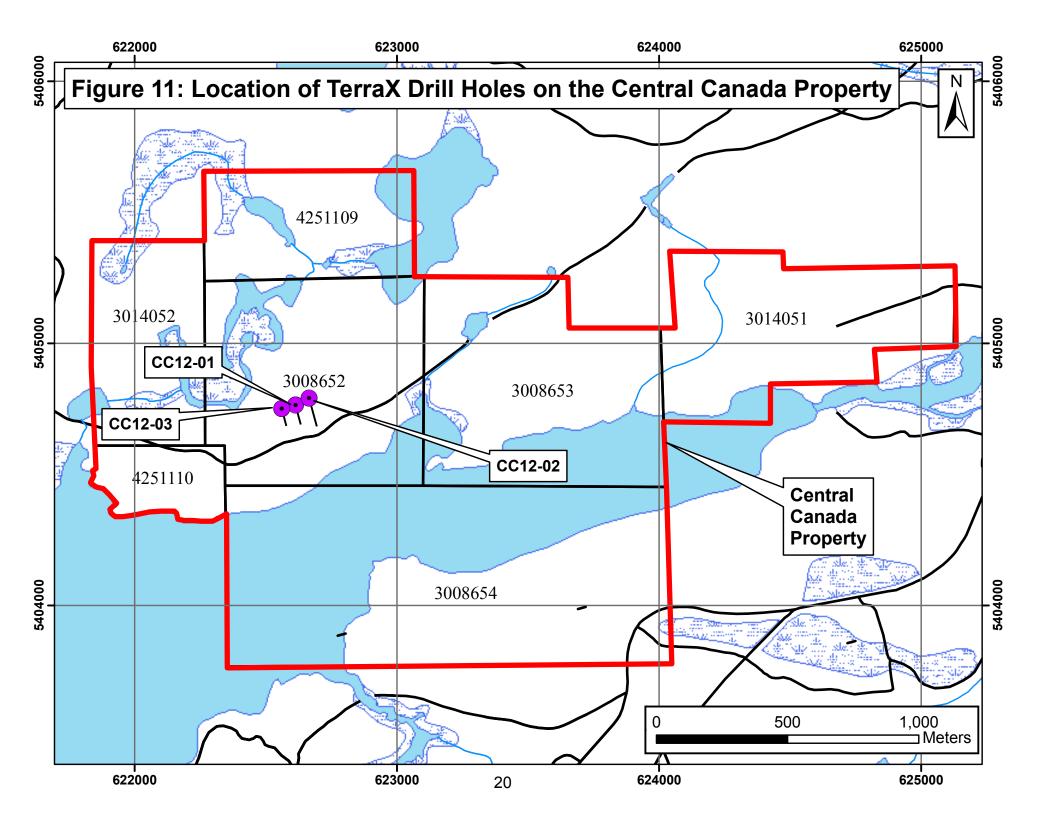
Mapping confirmed the overall east-northeast structural grain to the property, and highlighted the extreme geological complexity in this area (Fig. 8). This map formed the base map for the channel sampling.

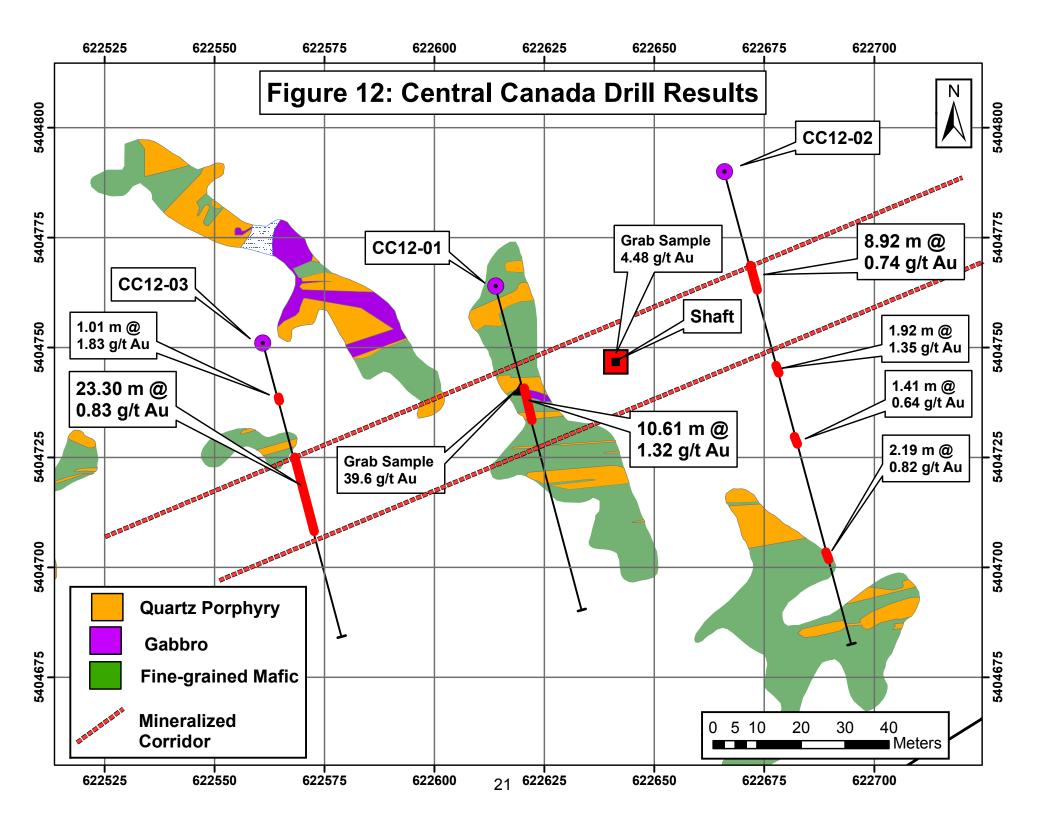
In November 2010, TerraX collected 123 samples, varying from 0.45 to 1.5 m in length, from five separate channels in two outcrops proximal to the shaft on the property (Setterfield, 2011; Fig. 9). Sampling was completed by Bjorkman Prospecting on behalf of TerraX. The highest channel sample was 0.45 m @ 7.5 g/t Au, west of the shaft in an area were previous grab sampling returned up to 39.6 g/t Au. The outcrop west of the shaft had three closely spaced, highly anomalous sets of channel samples from the same channel, namely: 12 m @ 334 ppb Au, 2.0 m @ 2510 ppb Au, and 6.2 m @ 325 ppb Au (Fig. 9). The outcrop south of the shaft had a chain of samples which collectively ran 2.65 m @ 754 ppb Au.


6.0 MARCH 2012 DRILLING BY TERRAX


TerraX drilled holes CC12-01 to CC12-03 from March 4 to March 9, 2012 based primarily on the mapping and channeling results discussed above. In particular, an east-northeast trending, subvertical, gold-bearing structure or zone was inferred from this work; this zone formed the target of the drilling. Holes were drilled south-southeast at an angle of -45° in order to intersect the interpreted structure at the optimum angle. Drilling was completed by the Thunder Bay division of Cartwright Drilling Inc., who are primarily based in Goose Bay, Labrador. A drill road was constructed to access the drilling area and avoid the pipeline; this road was partially along an old drill road (Fig. 10). The drill road was constructed under the auspices of Work Permit AT2011-26, granted by the Ministry of Natural Resources on February 23, 2012. The location of the drill holes is shown on Figures 11 and 12, and also on Map 2; details of the individual holes are provided in Table 3. Appendix B contains drill hole logs, and cross-sections of the holes are provided in Appendix C. Map 3 shows the locations of the cross-sections. Analytical Certificates are given in Appendix D.


All drill core from the 2012 drill program was logged, split and sampled at a secure core facility near Atikokan. Samples were delivered by TerraX personnel to the Activation Laboratories ("Actlabs") facility in Thunder Bay. Actlabs is an ISO/IEC 17025 accredited analytical laboratory. Analysis was by fire assay with AA finish. Analytical accuracy and precision are monitored at the laboratory by the analysis of reagent blanks, reference material and replicate samples. Quality control is further assured by the use of international and in-house standards. TerraX routinely inserted blanks and certified standards into the sample stream in order to independently assess analytical accuracy.


Hole No.	Easting	Northing	Azimuth	Dip	Length (m)
CC12-01	622614	5404764	165°	-45°	108.00
CC12-02	622666	5404790	165°	-45°	157.44
CC12-03	622561	5404751	165°	-45°	97.60
					363.04


Table 3: Details of 2012 Drill Hole	es
-------------------------------------	----

The three holes each penetrated a rock sequence consisting variably of fine-grained or medium-grained mafic rocks (called basalt and gabbro respectively) alternating with quartz porphyritic felsic rocks (porphyry). Quartz-ankerite veins, with or without pyrite, were locally present. Each hole intersected a mineralized zone consisting of quartz veins, porphyries and altered host rocks. Drill intersections from southwest to northeast include 23.30 m @ 0.83 g/t Au (including 0.63 m @ 7.36 g/t Au) in hole CC12-03, 10.61 m @ 1.32 g/t Au (including 1.82 m @ 4.77 g/t Au) in hole CC12-01, and 8.92 m @ 0.74 g/t Au in hole CC12-02. Collectively the three holes delineate a110 m strike length of the interpreted main, east-northeast trending, mineralized structure at Central Canada (Fig. 12). This structure is open along strike in both directions and down dip. Hole CC12-02 encountered extensive alteration and was extended to a final depth of 157 meters. Several anomalous gold zones parallel to the main structure were intersected in this hole indicating the potential for multiple gold horizons at Central Canada. Selected results from 2012 drilling at Central Canada are provided in Table 4:

Hole	From (m)	To (m)	Length (m)	Au (g/t)
CC12-01	32.72	43.33	10.61	1.32
including	36.05	37.87	1.82	4.77
CC12-02	29.83	38.75	8.92	0.74
	63.29	65.21	1.92	1.35
	88.05	89.46	1.41	0.64
	127.96	130.15	2.19	0.82
CC12-03	18.05	19.06	1.01	1.83
	38.72	62.02	23.30	0.83
including	38.72	39.35	0.63	7.36
including	43.87	45.73	1.86	4.44
including	58.95	59.67	0.72	4.1

 Table 4:
 Selected Drilling Results

7.0 CONCLUSIONS AND RECOMMENDATIONS

TerraX's first drilling campaign on the Central Canada property was successful in encountering significant widths of anomalous gold. Gold occurs in an east-northeast trending corridor with associated quartz veining and alteration, previously noted on surface in mapping and channel sampling. The drilling has defined this corridor over a strike length of 110 m, but it is open along strike and down dip. Further drilling should be undertaken to extend the known mineralized zone in all directions.

The exploration program discussed in this report cost a total of \$93,265.72 (Appendix E).

8.0 REFERENCES

- Anjamin Mines Ltd. 1967. Diamond Drilling Report 12. AFRI Number 52B14SW0022. 54 p.
- Anjamin Mines Ltd. 1970. Diamond Drilling Report 13. AFRI Number52B14SW0024.
- Barrie, B.Q. 1985. Report on an Airborne Magnetic and VLF-EM Survey, Atikokan Area. Interquest Resources Corporation. AFRI Number 52B14SE0017. 54 p.
- Cukor, D., Gignac, L-P. and Dagbert, M. 2011. Technical Report on the Hammond Reef Gold Property, Atikokan area, Ontario. Osisko Mining Corporation National 43-101 Report, 146 p. Available at <u>www.sedar.com</u>
- Hawley, J.E., 1929. Geology of the Sapawe Lake Area, with Notes on Some Iron and Gold Deposits of Rainy River District, by J.E. Hawley, 38th Annual Report of the Ontario Department of Mines, Vol. 38, Part 6, p. 1-58.
- Holmes, P.W. 1985. Report on the Anjamin Drilling Project. Interquest Resources Corporation. AFRI Number 52B14SW0007. 58 p.
- Leahey, M.W. 1984. The 1984 Field Program Summary on the Sapawe Lake Property, Atikokan Project. Kenergy Resources Corporation. AFRI Number 52B14SW0010. 93 p.
- MacRae, W. 1978. Mineral Deposits of the Atikokan Area. Ontario Geological Survey Miscellaneous Paper 82, p. 206-209.
- Mosley, E. 2005. Mechanical and Manual Stripping Report. Freewest Resources Canada Inc. 29 p.
- Geophysical Geological Survey 2009. Ontario Airborne Surveys, Ontario Grid Magnetic Data, and Profile Data and Geosoft® (ASCII Formats) and Vector Data, Marmion Lake Area. Ontario Geological Survey Geophysical Data Set 1066.
- Rennie, D.W. and McDonough, B. 2008. Technical Report on Hammond Reef Gold Project, Ontario, Canada. Brett Resources Inc. National 43-101 Report, available at www.sedar.com
- Rennie, D.W., Lambert, R.J. and Krutzelmann, H. 2009. Preliminary Assessment of the Hammond Reef Gold Project, Atikokan, Ontario, Canada. Brett Resources Inc. National 43-101 Report, available at <u>www.sedar.com</u>
- Schnieders, B.R. and Dutka, R.J. 1985. Property Visits and Reports of the Atikokan Economic Geologist, 1979-1983. Ontario Geological Survey Open File Report 5539, 512 p.

- Setterfield, T. 2009. Report on 2009 Exploration by TerraX Minerals Inc. on the Blackfly Property, Steeprock Lake Area, NTS Map Sheet 52B/13, Northwestern Ontario. Assessment Report, TerraX Minerals Inc., 21 p.
- Setterfield, T. 2010. Report on Geological Mapping and Prospecting by TerraX Minerals Inc. on the Central Canada Property, Sapawe Lake Area, NTS Map Sheet 52B/14, Thunder Bay Mining Division, Northwestern Ontario. Assessment Report, TerraX Minerals Inc., 19 p.
- Setterfield, T. 2011. Report on Channel Sampling by TerraX Minerals Inc. on the Central Canada Property, Sapawe Lake Area, NTS Map Sheet 52B/14, Thunder Bay Mining Division, Northwestern Ontario. Assessment Report, TerraX Minerals Inc., 20 p.
- Setterfield, T., Tykajlo, R., and Chin, H. 2010. Report on Geological Reconnaissance and Geophysical Surveying by TerraX Minerals Inc. on the Central Canada Property, Sapawe Lake Area, NTS Map Sheet 52B/14, Thunder Bay Mining Division, Northwestern Ontario. Assessment Report, TerraX Minerals Inc., 24 p.
- Stone, D. 2008. Precambrian Geology, Atikokan Area. Ontario Geological Survey Preliminary Map P.3349-revised. Scale 1:50,000.
- Stone, D. 2010. Precambrian Geology, Central Wabigoon Subprovince Area. Ontario Geological Survey Preliminary Map P.2229. Scale 1:250,000.
- Stone, D. and Davis, D.W. 2006. Project Unit 95-014. Revised Tectonic Domains of the South-Central Wabigoon Subprovince. Ontario Geological Survey Open File Report 6192, p11-1 to 11-18.
- Wilkinson, S.J. 1982. Gold Deposits of the Atikokan Area. Ontario Geological Survey Mineral Deposits Circular 24, 54 p.

APPENDIX A: Certificate of Qualifications

I, Tom Setterfield, PhD, P.Geo. do hereby certify that:

1.	I am the Vice President, Exploration of	GeoVector Management Inc.
		Suite 312, 10 Green St.,
		Ottawa, Ontario, K2J 3Z6

- 2. I graduated with a BSc degree in Geology and Chemistry from Carleton University in 1980. In addition, I have obtained an MSc in Geology from the University of Western Ontario in 1984, and a PhD in Earth Sciences from the University of Cambridge in 1991.
- 3. I am a member of the Association of Professional Geoscientists of Ontario (membership #0103).
- 4. I have worked as a geologist for a total of 32 years since my graduation from university.
- 5. I supervised and participated in the work on the Central Canada property described in this report, and wrote the assessment report.

Dated this 13th Day of August, 2012.

Tom Setterfield

Tom Setterfield

APPENDIX B: Drill Hole Logs

LEGEND FOR TERRAX IN ATIKOKAN Format: Structure-Texture-ROCK TYPE-Alteration Mineralogy-Mineralization

ROCK TYPES

UNKN Unknown (i.e. altered beyond recognition)

<u>Intrusive</u>

TONL	Tonalite		
GRAN	Granite	INTR	Intrusive, Undifferentiated
PEGM	Pegmatite	MFIN	Mafic Intrusive
APLT	Aplite	ININ	Intermediate Intrusive
GRDR	Granodiorite	FSIN	Felsic Intrusive
SYEN	Syenite	ULMI	F Ultramafic Rock
QZSY	Quartz Syenite	PERD	Peridotite
MONZ	Monzonite	DUNT	Dunite
QZMZ	Quartz Monzonite	PYRX	Pyroxenite
DIOR	Diorite	GABR	Gabbro
QZDR	Quartz Diorite	PORP	Porphyry (document mineralogy)

Extrusive

RHYL	Rhyolite	FSVL	Felsic Volcanic
DACT	Dacite	INVL	Intermediate Volcanic
ANDS	Andesite	MFVL	Mafic Volcanic
BASL	Basalt		

Sedimentary

QUAT	Unconsolidated sedir	nents	
ARGL	Argillite	RUDT	Rudite
SILT	Siltstone	LIMS	Limestone
MUDS	Mudstone	CHER	Chert
SAND	Sandstone	FEOX	Oxide Facies Iron Formation
CONG	Conglomerate	FECB	Carbonate Facies Iron Formation
DOLM	Dolomite	JOID	Jasperoid

Volcaniclastic

Tuff Lapilli Tuff	TFBX VCON	Tuff Breccia Volcanic Con	glomerate
Phyllite	MARB	Marble	
Schist	QZIT	Quartzite	
Gneiss			
eccias		Miscellaneous	<u>s</u>
Fault Breccia		STWK	Stockwork
Hydrothermal Brecci	a	VEIN	Vein
Hydraulic Breccia		QZVN	Quartz Vein
		CBVN	Carbonate Vein
		SHRZ	Shear Zone
	Lapilli Tuff Phyllite Schist Gneiss <u>eccias</u> Fault Breccia Hydrothermal Brecci	Lapilli Tuff VCON Phyllite MARB Schist QZIT Gneiss eccias Fault Breccia Hydrothermal Breccia	Lapilli TuffVCONVolcanic ConPhylliteMARBMarbleSchistQZITQuartziteGneissMiscellaneousFault BrecciaSTWKHydrothermal BrecciaVEINHydraulic BrecciaQZVNCBVNCBVN

NB: Other rock types can be added if they are significantly different to those above

TEXTURES

fg	Fine-grained	fs	Fossiliferous
mg	Medium-grained	ff	Fossiliferous-faunal
cg	Coarse-grained	fp	Fossiliferous-plants
р	Porphyritic	ht	Heterolithic
am	Amygdaloidal	mn	Monolithic
bx	Autobrecciated	mx	Massive
pc	Pyroclastic	vg	Vuggy
in	Intrusive	wk	Weak (alteration)
gl	Granule	md	Moderate (alteration)
pb	Pebble	st	Strong (alteration)
cb	Cobble	bd	Bands
bd	Boulder	sp	Salt and Pepper
do	Disseminated		

MINERALS

Primary		Alteration	
hb kf pf px q fx	Hornblende K-spar Plagioclase Pyroxene Quartz Feldspar	ab al bi cb cl cy dc	Albite Alunite Biotite Carbonate Chlorite Clay Dickite
Economic Mi	nerals	ep	Epidote
aspy	Arsenopyrite	gy	Gypsum
az	azurite	he	Hematite
bo	Bornite	il	Illite
сру	Chalcopyrite	jp	Jasper
vg	Gold	ka	Kaolinite
mc	Malachite	li	Limonite
mo	Molybdenite	mt	Magnetite
ру	Pyrite	mu	Muscovite
ро	Pyrrhotite	ор	Opal
gl	Galena	рр	Pyrophyllite
sb	Stibnite	ser	Sericite
sl	Sphalerite	sil	Silica
	-	tz	Topaz
		to	Tourmaline

STRUCTURE

vn	Vein	S 0	Bedding
vnlt	Veinlet	gc	Geological Contact
sr	Stringer	S 1	Foliation, schistosity
strz	Stringer Zone	S2 etc	Foliation, schistosity
stkw	Stockwork	fd	Fold
falt	Fault	fdax	Fold Axis
fr	Fracture	shrz	Shear Zone
lin	Lineation	SS	Slickensides
jt	Joint		

GeoVector Management Inc. GEOLOGICAL LOG

	Н	OLE DE	SCRIPT	ION								Н	OLE	LOC	ATION							HOLE	ORIE	ENTA	TION]
PROJE	CT:	С	entral C	anada		GI	RID Na	me or N	No:				_	DA	TUM:			NAD	33	AZ	IMUT	TH:			16	65.0	
HOLE	NO:		CC-12	-01		N	ORTH	IING:	:					zo	NE:			15		IN	CLIN	ATION	l:		-4	5.0	
LOGGE	ED BY:		K Bjorkı	man		E	ASTII	NG:						UT	M Northing			54047	64	FI	NAL C	DEPTH	l (m)	:	10	8.00	
START	DATE:		4-Mar-	·12		E	LEVA	TION	I:					UT	M Easting:			6226	14	cc	ORES	SIZE:		-	١	1Q	
FINISH	DATE:		6-Mar-	12		С	asing	(m):			3.15			UT	M Elevation	:		434		Ма	gneti	c Decli	inatio	on:			
																					SING	LEFT IN	N HOL	.E:		no	
	Depth			I	Rock Ty	/pe			Colou	ır 🗛		ERATI	ON y Cod	<u> </u>		S	ulphide		eralisatio	n		Veins				ctural rements	
From	То	Interval	Major Rock Code	Minor Rock Code	Texture 1	Texture 2 Dock Forming	Mineral 1	Kock Forming Mineral 2	Primary Colour	secondary Colour Sericite			onate		Type Sulphide % Secondary	Sulphide %	ertiary Sulphide	Sulphide %	Primary Texture	Texture Vein Mineralogy	Vein Type	Main Accessory Mineralogy	secondary Accessory Mineralogy	Third Accessory Mineralogy	structure / Contact	ACA	COMMENTS
3.15	3.95	0.80	BASL		vfg				gn		1		1	p	/ 1.00					-					o		Basalt. Dark green, aphanitic, massive texture. 1% vfg-fg pyrite disseminated and in mm quartz-carbonate veinlets. Pervasive chlorite and minor ankerite throughout the interval.
3.95		10.70	GABR		mg				gn		1	1	2	P!	/ 0.50					ał	<	q	ру	cl	vn	40	Gabbro. Mg, dark green, equigranular. 60% white anhedral plagioclase, 40% chlorite-epidote-actinolite. There are 3% quartz-ankerite veinlet: variably oriented between 30-60 deg TCA, often with chloritic margins and mg cubic pyrite. At 11.72m there is a 1cm white quartz vein at 50 deg TCA; below this the rock is increasingly altered by pervasive ankerite and chlorite with increased quartz-carbonate veining, silicification and disseminated cubic pyrite until the contact with the quartz porphyry. In the lower 40cm, the rock is fg and sheared as well. There is fuchsite alongside a 8mm quartz vein at 13.64m.
14.65	17.85		PORP		mg				gy g	ŋn	3	3	2	p	/ 0.70					q		ak	cl	ру	vn	45	Quartz Porphyry. Light grey-green, mg, but most original texture has been obscured by intense alteration. It is strongly silicified and chloritized with many quartz-ankerite+/- chlorite veins < 25cm. The upper contact is irregular at a 20cm quartz-ankerite-chlorite vein. Pyrite is f-mg and is within green-black chlorite seams and wallrock adjacent to quartz veins. Many of the quartz veins are disrupted and displaced by later quartz-chlorite-ankerite veins and chlorite seams. Green-black chlorite veins <8mm form a stockwork through the rock in places and rim many of the quartz veins and are typically pyritic. The lower 70cm is orange and is faulted and oxidized. A 25cm quartz-ankerite-chlorite-pyrite vein is centred over 16m. The lower contact is also at a quartz vein.
17.85	32.72		GABR																								
17.85	26.41	8.56		GABR	fg				gn		1	1	1	P	/ 0.20					q		ak	ру	cl			Gabbro. Fg, dark green, equigranular. 60% white anhedral plagioclase, 40% chlorite-epidote-actinolite. The upper 15cm is a light pea green, aphanitic, and strongly sheared; is sericite-chlorite-ankerite-pyrite altered. It is followed by a 7cm quartz-ankerite vein at 25 deg TCA. After this quart vein, the rock is gradually less sheared and altered but remains fg. Pyrite is cubic, mg, and disseminated throughout. There are 3% quartz-ankerite-chlorite veinlets variably oriented between 30-60 deg TCA, but are often discontinuous and/or folded, dominantly in an "z" pattern. The last meter of the interval is gradational to the quartz-ankerite-chlorite altered section below and contans increased pyrite and quartz-ankerite veinlets.
26.41	32.72	6.31		GABR	vfg				gn b	on	1	2	3	p	/ 2.00					q	I	ak	cl	ру	vn	40	Altered Gabbro. Aphanitic, bleached to a light tan-green, with several quartz-ankerite veins, strongly altered. Ankerite-chlorite alteration is pervasive throughout and there are ~25% ankerite+/-quartz veins <1cm. Fuchsite is common alongside vein margins and also speckled throughout. There are >10 quartz-ankerite-chlorite veins in the section: (1) 26.62-26.82m is a white quartz vein with ankerite and black chlorite seams and chlorite-fuchsite-pyrite margins. There is extreme ankerite alteration and abundant pyrite in wallrock next to vein and secondary ankerite-quartz veinlets. Contacts are irregular but at 33 and 63 deg TCA respectively. (2) 28.6-29.4m contains 35% irregular quartz-ankerite veins <8cm and trending 40 deg TCA and has disseminated pyrite. The rock between these two zones contains 35% ankerite +/-quartz veins, is strongly altered and has 1.5% disseminated pyrite. After 29.4m there is only minor mg disseminated pyrite and increased fuchsite.
32.72	36.05		QZVN						bk v	wt	3	3	3	p	/ 7.00					q		cl	ak	ру	vn	45	Quartz-tourmaline-ankerite-pyrite vein. Black and white with ~43% black vfg tourmaline ? or chlorite, 35% quartz, 15% ankerite and 7% pyrite. Quart veining shows both ductile deformation and brecciation with multiple generations of veining. Pyrite occurs as banding with tourmaline/chlorite, typically in elongated, oval quartz-ankerite inclusions, possibly a result of being deposited along vein margins multiple times. The pyrite-tourmaline/chlorite banding is folded and crenulated in places and cut by later veinlets (is 32.83-32.88, 33.00-33.39, 34.0-34.78m). There is a section of light green strongly altered mafic rock from 33.42-33.80m that is ankeritic, chloritic and has minor fuchsite similar to unit above. If is difficult to tell if this is a multigeneration quartz vein hosted by altered mafic rock or if there was a quartz porphyry there as well. From 35.3-56.7 it looks like it might have been a quartz porphyry (?) further silicified and brecciated within a chlorite matrix. Vein contacts are irregular but ~45 deg TCA. Five Olympus pictures
36.05	46.94	10.89	GABR		vfg				gn		2	2	2	P	/ 2.5					q		ak	cl	ру	vn	40	Altered Gabbro. Fg, dark green, sheared. Variably altered where alteration is strongest next to quartz-ankerite-chlorite veins and best at upper and lower portions of the unit. There are >15 quartz-ankerite-chlorite-pyrite veins <20cm comprising ~ 10% of the interval (ie 36.4, 37.3, 39.06, 39.65, 42.97, 46.0) oriented between 30-50 deg TCA. There is a zoned alteration pattern surrounding the veins, where there is intense ankerite resulting in bleaching and semimassive cubic pyrite, both of which decrease away from veins. The veins are typically multi-generational and have black chloritic margins and/or seams and often contain cubic pyrite either disseminated or as semimassive bands with ankerite. Pyrite is disseminated throughout the section but concentrated next to quartz veining.
46.94	51.32	4.38	PORP		mg				gу	1	1 1	2	1	p	/ 0.50					q		ak	cl	ру	vn	45	Quartz Porphyry. Light grey-green, massive texture. Moderately sericite-chlorite-ankerite altered. There is a sheared band from 48.53-48.63 that is aphanitic and silicified-chloritized and with cubic pyrite disseminated. At quartz vein at 49.94-50.12m has black chlorite veining within and extending below. There is pyrite in vein margins, with chlorite seams and veins, and in the wall rock surrounding the vein. Upper contact of the vein is at 45 deg TCA but lower contact is irregular.

	Depth				Rock 1	vne			Colour		ALTER	RATIO	N					Mine	ralisat	ion					Str	uctural	
L	Dopai	-				740		1	00.00	Alt	'n Inte	nsity	Code			Su	lphide	-				Ve	eins		Meas	urement	ts
From	То	Interval	Major Rock Code	Minor Rock Code	Texture 1	Texture 2	Rock Forming Mineral 1	Rock Forming Mineral 2	Primary Colour Secondary Colour	Sericite	Chlorite	Silica	Iron Carbonate	Main Sulphide Type	Sulphide %	Secondary Sulphide Sulphide %	Tertiary Sulphide	Sulphide %	Primary Texture	Secpndary Texture	Vein Mineralogy	Vein Type Main Accessory	Mineralogy secondary Accessory	Mineralogy Third Accessory Mineralogy	Structure / Contact	ACA	COMMENTS
51.32	53.91	2.59	GABR		fg				gn		1	1	1	ру	0.70						q	a	ak		vn	45	Altered Gabbro with 20% Quartz Porphyry intrusions. Dark green, fg, strongly sheared. Weakly chloritic and ankeritic with 3% quartz-ankerite veinlet <1cm, at 35-50 deg TCA. The upper 30cm from the contact is strongly sheared and ankerite altered with 3% disseminated cubic pyrite. There is ~0.5% disseminated pyrite throughout the section with more around quartz veining. From 52.65-53.32m the mafic rock is cut by 4 rounded quartz porphyries.
53.91	55.03	1.12	PORP		mg				gy gr	n	2	2	1	ру	0.50						q	(cl ał	к ру			Quartz Porphyry. Light grey-green, massive texture. Moderately sericite-chlorite-ankerite altered. There is quartz-ankerite-chlorite veining for the firs 20cm. The upper contact is pyritic at ~67 deg TCA. There is pyrite in irregular black chlorite veining/seams.
55.03	75.54	20.51	GABR																								
55.03	58.87	3.84		GABR	fg				gn gy	/				ру	0.80						q	(cl al	k py			Altered Gabbro. F-mg, dark green-grey, with 2% pink feldspar occelli <1cm throughout. Weakly silicified, ankeritic and chloritized. Deformation and alteration is greatest at the upper contact and decreases downhole. There are 2 main quartz-ankerite-chlorite veins <18cm at 55.4 and 58.5m and several quartz-ankerite veinlets <1cm concentrated in the upper portion of the interval and some quartz-epidote veinlets in the lower half. There is increased pyrite and carbonate-chlorite alteration around the veins and locally at 57.0m as well as ~0.5% disseminated throughout. Gabbro. Mg, dark green, weakly foliated, 45% plagioclase and 55% chlorite-amphibole-epidote, with 2% pink feldspar occelli <1cm throughout. Rock
58.87	68.47	9.60		GABR	mg				gn		1	1		ру	0.30						q	e	ep co				is moderately magnetic throughout and locally strongly magnetic in sheared aphanitic zones (ie 64.0m). There is 1-2% quartz-carbonate-epidote veining <6cm. Minor mg cubic pyrite is disseminated and along chloritic seams.
68.47	73.56	5.09		BASL	fg				gn bl	<	2	1		ру	0.30						q	a	ak ep	о ру			Mafic: Basalt or Gabbro. Mg, very dark green, strongly foliated, 45% plagioclase and 55% chlorite-amphibole-epidote. 3% quartz-carbonate veinlets 40-60 deg TCA. Chlorite-ankerite alteration increases downhole. 0.3% cubic pyrite disseminated.
73.56	75.54	1.98		BASL	vfg				gn bl	1	3	3	2	ру	0.50						q	(cl py	/ ak	vn	55	Altered Basalt. F-mg, dark green-grey, banded, intensely chloritized and silicified. There are ~40% quartz-ankerite-chlorite veinlets <10cm defining a strong foliation at 55 deg TCA and occasionally folded. There is mg pyrite disseminated and along and within quartz veins and chlorite seams. Quartz porphyry. Medium grey-green, silicified and chloritic, mg where texture not destroyed by alteration. 75.54-76.12m is strongly quartz-chlorite
75.54	80.96	5.42	PORP		mg				gy gr	n	2	2		ру	0.30						q	(cl py	/ ak	vn	10	altered with local mg cubic pyrite. 76.12-76.42 is a vfg, dark green sheared mafic with 15% quartz veining and local pyrite bands at 7+AE2m1AE2 ther 3.25m. 76.42-76.94 is dark grey, possibly a silicified mafic rock or a chloritized felsic intrusive. The rock is extremely siliceous from 76.94-78.20m with 25% white quartz veining at mainly ~10 deg TCA and several chlorite-pyrite veins/seams.
80.96	86.21	5.25	BASL		vfg				gn bł	ĸ	2	2	2	ру	0.50						q	(cl ał	ĸ	vn	50	Altered Mafic. Banded on the mm scale, dark green to light tan depending on extent of alteration/bleaching. 82-85 is strongly banded with 5% quart chlorite veins and 35% ankerite bands and 1% pyrite in fine stringers parallel to S1. There quartz+/-chlorite-ankerite veining from: 82.42-82.65 at 5 deg TCA.
86.21	87.56	1.35	QZVN						wt bł	<	2	3	1	ру	2.00	сру 0.1	gl	0.01			q	(cl py	/ сру	vn	45	Quartz veining in Mafic rock. Thereis quartz-tourmaline (=black chlorite)+/-chlorite-ankerite veining from: (1) 86.23-86.38m contains abundant pyrite semimassive bands in wall-rock and with chlorite seams, at 45 deg TCA, and (2) 87-87.36m contains 15% chlorite seams that are cut by later quartz veinlets, and contains blebby mg chalcopyrite, cubic pyrite and local galena or telluride(?). Upper contact is at 38 deg TCA, lower contact at 58 deg TCA. There is 20cm of quartz veining on either side of the vein, and the wallrock contains 8% pyrite below the vein. Host rock is a fg dark green mafic rock.
87.56			BASL		vfg				gn bł	<	2	2	2	ру	0.50						q	(cl py	/ ak	vn	40	Altered Mafic. Banded on the mm scale, dark green to light tan depending on extent of chlorite-ankerite alteration/bleaching. 89.2-89.29m is a quart chlorite+/-fuchsite vein cut by quartz-ankerite veinlets. There is a carbonate-pyrite alteration halo surrounding each vein. At 89m there is a 4cm carbonate-pyrite-fuchsite band.
89.30	100.93	11.63	BASL		vfg				gn bł	<				ру	0.10						q	(cl al	к ру	vn	60	5% disseminated pyrite near the contact with the quartz porphyry.
100.93	103.79	2.86	PORP						gn gy	/	2	3		ру	0.50	сру 0.1					q	(cl ał	к ру	vn	45	Altered Quartz Porphyry. light green-grey, strongly silicified and chlorite altered with quartz veins <10cm and chlorite seams throughout, variably oriented. Pyrite is mg and concentrated along chlorite seams and tourmaline (=black chlorite?) veins but also disseminated. Upper contact is at 30 deg TCA and is pyritic. Lower contact is at 37 deg TCA. There is a pyrite-chalcopyrite stringer 2cm from the lower contact.
103.79	108.00	4.21	BASL		vfg				gn		1	1	1	ру	0.10						q	a	ak cl		vn		Mafic: Basalt or Gabbro. Fg, very dark green, strongly foliated. Carbonate-chlorite alteration and pyrite content is greatest near contact with porphyry 5% quartz-carbonate veinlets, ~60 deg TCA, decreasing down hole. 0.1% fg cubic pyrite disseminated.
	-	EOH	EOH																								EOH

		HOLE	DESCR	IPTION (OF 7	_			HOLE	LOCA	TION				HOLE C	RIENTA	TION										
ROJE	CT:			Central (Canada		NORTH	IING:			5404764	4	A	ІМОТН	:		1	65.0									
OLE I							EASTIN				622614		-					45.0									
	ED BY:			K. Bjor	kman		ELEVA				0		-	NAL DE			1	00.80									
											-		-			NQ											
	DATE:			4-Ma										ORE SI	2E:			i i i c									
NISH	DATE:			6-Ma	r-12																						
									T					TION										1			7
								FRACTURE ORIENTATION AND COUNT PER RUN LENGTH																		4	
Co	ore Interv	val	Reco	overy	RC	۶D	ка	dex		61-90 c	degrees	1	31	-60 degr	ees	_	0-30	degrees			B	3x/Gouge	9	Brok	en or Los	t Core	
rom	То	Interval m)	Rcovered Core (m)	Total Core Recovery %	Core >10cm	RQD %	Strength Index	Weathered/ Alteration Index	Type	No.	<u>ب</u>	Ja	Type	ÖN .		Type	No.	5	Ja A	F	rom	То	Interval m)	From	То	Interval m)	COMMENTS (water conditions, fault zones, etc)
5.10	9.15	3.05	3.16	103.6%	2.7	85%																	0.00			0.00	
.15	12.20	3.05	3.13	102.6%	2.97	95%																	0.00			0.00	
2.20	15.25	3.05	3.01	98.7%	2.92	97%																	0.00	<u> </u>	ļ	0.00	
5.25	18.30	3.05	3.00	98.4%	1.87	62%																	0.00			0.00	
8.30	21.35	3.05	2.76 3.20	90.5%	2.76 2.7	100% 84%																	0.00			0.00	
1.35 4.40	24.40 27.45	3.05 3.05	3.20	104.9% 98.4%	2.7	84% 85%																	0.00			0.00	
7.45	30.50	3.05	2.94	96.4%	2.04	69%																	0.00			0.00	
0.50	33.55	3.05	3.02	99.0%	2.9	96%																	0.00			0.00	
3.55	36.60	3.05	3.05	100.0%	2.61	86%																	0.00			0.00	
6.60	39.65	3.05	3.04	99.7%	3.04	100%																	0.00			0.00	
9.65	42.70	3.05	2.97	97.4%	2.97	100%																	0.00			0.00	
2.70	45.75	3.05	3.02	99.0%	2.96	98%											_						0.00			0.00	
5.75	48.80	3.05	3.05	100.0%	3.05	100%																	0.00			0.00	
8.80	51.85	3.05	3.05	100.0%	2.7	89%																	0.00			0.00	
1.85	54.90	3.05	3.05	100.0%	2.81	92%																	0.00			0.00	
4.90 7.95	57.95 61.00	3.05 3.05	3.04 2.94	99.7% 96.4%	2.57 2.94	85% 100%																	0.00			0.00	
1.00	64.05	3.05	3.10	101.6%	2.94	75%												-					0.00			0.00	
4.05	67.10	3.05	3.06	101.3%	2.89	94%											-						0.00			0.00	
7.10	70.15	3.05	2.95	96.7%	2.62	89%																	0.00			0.00	
0.15	73.20	3.05	3.05	100.0%	2.96	97%																	0.00			0.00	
3.20	76.25	3.05	2.97	97.4%	2.9	98%																	0.00			0.00	
6.25	79.30	3.05	3.04	99.7%	2.96	97%																	0.00			0.00	
9.30	82.35	3.05	3.05	100.0%	2.77	91%																	0.00			0.00	
2.35	85.40	3.05	2.94	96.4%	2.39	81%												_					0.00	ļ		0.00	
5.40	88.45	3.05	3.02	99.0%	2.85	94%																	0.00			0.00	
8.45	91.50	3.05	2.93	96.1%	1.15	39%						<u> </u>											0.00	l	<u> </u>	0.00	
1.50	94.55	3.05	2.95	96.7%	2.61	88%																	0.00			0.00	
4.55	97.60	3.05	3.09	101.3%	3.05	99%																	0.00			0.00	
7.60)0.65	100.65 103.70		3.08 2.93	101.0% 96.1%	2.94 2.43	95% 83%											-						0.00			0.00	
0.05 3.70			2.93	96.1%	2.43	91%																	0.00			0.00	
3.70	100.70	0.00	2.00	00.170	2.00	01/0											-						0.00			0.00	
												İ											0.00	1		0.00	
																							0.00			0.00	
		1							I														0.00	1	I	0.00	

1	1	
	FINISH	DATE.
	1 1141011	DAIL.

6-Mar-12

Sample	Depth	Depth	Sample	Rock									Assay F	2 Asults		
Number	From	То	Interval	Code	Au (ppb)	Au (g/t)	Ag (ppm)	Other	Other	Other	Other	Other	Other	Other	Other	Other
				Coue		Au (g/t)	Ag (ppiii)	Other	Other	Other	Other	Other	Other	Other	Other	Other
849642	7.05 11.22	9.05 12.94	2.00		< 5 < 5								-			<u> </u>
849643 849644		12.94	1.72										-			<u> </u>
	12.94 14.65	14.65			< 5 < 5								-			<u> </u>
849645			1.60	8	< 5											<u> </u>
849646	16.25	1 17.85	1.60	0	< 5											<u> </u>
849647	17.85	18.35	0.50		< 5											
849648	23.00	24.70	1.70		< 5											
849649	24.70	26.41	1.71		14											L
849650	26.41	27.98	1.57		156											
849651	27.98	29.55	1.57		6											L
849652	29.55	31.12	1.57		8											Ļ
849653	31.12	32.72	1.60		6				•	r						L
849654	32.72	33.80	1.08		832											
849655	33.80	34.92	1.12		1630								1			<u> </u>
849656	34.92	36.05	1.13		7								1			\square
849657	36.05	37.87	1.82		4770	4.77]			
849658	37.87	39.69	1.82		856											
849659	39.69	41.51	1.82		351											
849660			0.00	blank	< 5											
849661			0.00	STD	2380											
849662	41.51	43.33	1.82		239											
849663	43.33	45.15	1.82		5											
849664	45.15	46.94	1.79		18											
849665	46.94	48.40	1.46		< 5											
849666	48.40	49.86	1.46		6											
849667	49.86	51.32	1.46		< 5											
849668	51.32	52.62	1.30		< 5											
849669	52.62	53.91	1.29		< 5											
849670	53.91	55.03	1.12		< 5											
849671	55.03	56.95	1.92		< 5											
849672	56.95	58.87	1.92		< 5											
849673	70.90	72.23	1.33		< 5											
849674	72.23	73.56	1.33		< 5											
849675	73.56	75.54	1.98		< 5											
849676	75.54	76.94	1.40		< 5											
849677	76.94	78.28	1.34		5											<u> </u>
849678	78.28	79.62	1.34		< 5								1			<u> </u>
849679	79.62	80.96	1.34		< 5											<u> </u>
849680	10.02		0.00	blank	< 5											<u> </u>
849681	80.96	82.71	1.75	Jan	33											<u> </u>
849682	82.71	84.46	1.75		30											<u> </u>
0.40000	84.46	86.21	1.75		< 5											<u> </u>
849683	86.21	87.56	1.35		24											├
849685	87.56	89.30	1.74		- 27											<u> </u>
849686	92.46	93.46	1.00		< 5											┢────
849687	96.20	97.51	1.31		< 5											<u> </u>
849688	99.20	100.94	1.00		< 5											<u> </u>
849688	100.93	100.94	1.43		<pre>< 5 < 5</pre>											<u> </u>
					<pre>< 5 < 5</pre>											<u> </u>
849690 849691	102.36 103.79	103.79 104.90	1.43 1.11													┣────
049091	103.79	104.90	1.11		22											

Magnetic Susceptibility & Conductivity

	HOLE	DESCRIF	PTION				H	OLE LO	CATION	HOLE ORIENTAT	ION
PROJECT:	(Central Ca	anada			GRID Nam	ne or No:		0	AZIMUTH:	165.0
HOLE NO:		CC-12-			-	NORTH	ING:		5404764	INCLINATION:	-45.0
Geotech BY:		0			-	EASTIN	G:		622614	FINAL DEPTH (m):	108.0
START DATE:		4-Mar-	12		-	ELEVA	TION:		0	CORE SIZE:	NQ
FINISH DATE:		6-Mar-			-	Casing			3.15	Magnetic Declination:	0.00
FINISH DATE.		0-iviai-	12		-	ousing				CASING LEFT IN HOLE:	no
	Depth	MS		looguro	d (Raw Dat	(ha)	Rock	1		CASING EELT IN HOLE.	110
	Depth	MS	Depth	MS	Depth	MS	-				
Instrument Used	4.0	0.63	51.0	0.14	98.00	0.66	Code	Comm	ents		
	5.0	0.63	52.0	0.14	99.00	0.00					
	6.0	0.57	53.0	0.54	100.00	0.55					
	7.0	0.53	54.0	0.15	101.00	0.18					
	8.0	0.68	55.0	0.32	102.00	0.04	l				
	9.0 10.0	0.67 0.61	56.0 57.0	0.62	103.00 104.00	0.06					
	11.0	0.64	58.0	0.86	104.00	0.64	1	1			
	12.0	0.58	59.0	0.85	106.00	0.46	t	ł			
	13.0	0.54	60.0	10.98	107.00	0.69					
	14.0	0.45	61.0	13.44	108.00	0.59					
	15.0 16.0	0.10 0.26	62.0 63.0	9.63 1.05							
	17.0	0.20	64.0	81.12							
	18.0	0.46	65.0	14.10							
	19.0	0.55	66.0	4.41							
	20.0	0.53	67.0	0.75							
	21.0	0.71	68.0	9.20							
	22.0 23.0	0.55 0.52	69.0 70.0	0.87 0.75		-					
	24.0	0.95	71.0	13.45							
	25.0	0.78	72.0	0.68							
	26.0	0.83	73.0	0.58							
	27.0	0.53	74.0	0.59							
	28.0 29.0	0.67 0.39	75.0 76.0	0.63							
	30.0	0.39	70.0	0.10							
	31.0	0.74	78.0	0.05							
	32.0	0.56	79.0	0.23							
	33.0	0.67	80.0	0.29			-				
	34.0 35.0	0.69 0.21	81.0 82.0	0.52 0.41	-						
	36.0	0.21	83.0	0.41							
	37.0	0.83	84.0	0.95	1						
	38.0	0.96	85.0	0.75							
	39.0	0.99	86.0	0.71			l				
	40.0	0.96 0.81	87.0 88.0	0.69							
	42.0	1.03	89.0	0.00			1	1			
	43.0	0.94	90.0	4.59							
	44.0	0.65	91.0	40.55							
	45.0 46.0	0.88 0.55	92.0 93.0	24.03 1.50		-					
	46.0	0.55	93.0 94.0	0.67		+					
	48.0	0.23	95.0	0.63			1				
	49.0	0.20	96.0	0.68							
	50.0	0.15	97.0	0.53							

DOWN HOLE SURVEY SHEET

		HOLE DESCR	IPTION				
PROJEC	Г:			Cen	tral Canada		-
HOLE NO):			C	C-12-01		_
LOGGED							_
START D							
FINISH D							
						-	
Date	Instrument	Me	asured (Raw Data	a)	Mine Grid	Corrected	Corrected
Measured		Depth	Dip	Azimuth	Azimuth	Azimuth	Dip
2/28/2012		50		175.6			•
		103	-41.1	175.6			

GeoVector Management Inc. GEOLOGICAL LOG

	н	IOLE DE	SCRIPT	ΓΙΟΝ								H	OLE L	OCA.	TION							HOL	E OR		ATION		
PROJI	ECT:	С	entral C	anada	l	_	GRID N	Name or	r No:					DAT	UM:		-	N	AD83		AZIM	IUTH:			10	65.0	
HOLE	NO:		CC-12	-02			NOR	THING	3: _					ZON	IE:		_		15		INCL	INATIO	ON:		-4	5.0	
LOGG	ED BY:		K Bjork	man			EAST	FING:						υтм	North	ing:		54	04790		FINA	L DEP	TH (m	ו):	15	7.44	
START	DATE:		6-Mar	-12		-	ELEV	ΑΤΙΟ	N:					υтм	Eastir	ng:	_	62	22666		COR	E SIZE	:		1	1Q	
FINISH	DATE:		7-Mar	-12		-	Casin	ng (m):	. –		2.79			υтм	Eleva	tion:	-		447		Magn	etic De	clinat	ion:			
						-			_								-				CASIN	IG LEFT	г ім но	DLE:		no	
	Depth				Rock	Type			Colo	our		RATI							Minera	lisation	-		-			ctural	
				r	1					-	Alt'n In	tensity	y Code				Sulpl	nide 	1	۵	>	Ve	ins	1.	Measu #	rements	
From	То	Interval	Major Rock Code	Minor Rock Code	Texture 1	Texture 2	Rock Forming Mineral 1	Rock Forming Mineral 2	Primary Colour	Secondary Colou	Sericite Chlorite	Silica	Iron Carbonat	Main Sulphide Type	Sulphide %	Secondary Sulphide	Sulphide %	Tertiary Sulphid	Sulphide %	Primary Textur Secpndary Texture	Vein Mineralogy	Vein Type Main Accessory	Mineralogy Secondary Accessory	Mineralogy Third Accessory Mineralogy	Structure / Contac	ACA	COMMENTS
2.79	11.04	8.25	GABR		fg				gn	gy				ру	0.20												Gabbro or Massive Basalt. Fg, grey-green, massive equigranular texture with 1% pink feldspar occelli <12mm. There are 2% quartz-calcite+/-chlorite veinlets <4mm with mg cubic pyrite.
11.04	16.54	5.50	PORP		mg				ду	gn	2	2		aspy	2.00	ру	1	сру			q	as	ру ру	cl	vn	52	Cuartz Porphyry. Light grey-green, mg, equigranular, moderately chloritic and silicified. There are a few mm quartz veins and many chlorite anc ankerite seams. Some of the mm quartz veins contain silvery arsenopyrite and pyrite. There is 2% arsenopyrite and pyrite disseminated and along chlorite+/-ankerite+/- quartz veinlets, and trace chalcopyrite with sulphides concentrated in the lower part of the interval. Upper and lower contacts at 32 and 38 deg TCA respectively.
16.54	21.65			BASL	vfg				gn	gу	2	1	2	ру	1.00						ak	c	q cl		vn	35	Basalt. Vfg, grey-green, sheared, pervasive calcite alteration with 5% quartz-calcite+/-chlorite veinlets <2cm, 20-45 deg TCA. Quartz porphyry intrusive is from 17.60-18.03, and 18.92-19.15m, is light green-grey, silicified, chloritized and contains 2% cubic pyrite. Mafic rocks on either side are strongly sheared and chloritic. From 16.25-19.0m there is ~ 2% mg cubic pyrite disseminated in the mafic rock, but from 19-21.65 there is only minor disseminated pyrite.
21.65	29.20	7.55		BASL	mg				gn				1	ру	0.20						ak	c	4				Basalt=Gabbro. Mg, grey-green, massive equigranular texture, pervasive calcite alteration. There are <2% quartz-calcite+/-chlorite veinlets <8mm. Minor dissminated mg cubic pyrite.
29.20	29.83			BASL	vfg				bn	gn		1	3	ру	0.40						q	а	k py	,			Altered Basalt. Light tan-green, vfg, sheared. Strong pervasive ankerite alteration, 2% quartz-carbonate veinlets, with cubic pyrite in and along veinlets.
29.83	42.60		PORP																								
29.83	36.83	7.00		PORP	mg				gy	gn				ру	2.00	aspy	1.5				q	as	ру ру	, to	vn	40	Quartz Porphyry. Light grey-green, mg, equigranular, strongly silicified with several quartz veins and ~5% tourmaline(?) or black chlorite veinlets as well as dark green chlorite veins. The upper 2.2m are extremely siliceous and bleached and may be multigenerational quartz veining. There are several mm-10cm quartz-tourmaline+/-ankerite veins and some of these quartz veins contain silvery arsenopyrite and pyrite; the lower section contains more ankerite in veins than the upper portion. There is 2% pyrite and 1% arsenopyrite disseminated and along chlorite+/-ankerite+/- quartz veinlets. There are pyrite stringers along the upper contact and along black tourmaline veinlets; arsenopyrite stringers are also along tourmaline veins. The tourmaline veins often contain both pyrite and arsenopyrite but not typically in the same stringer. From 36.70-36.93m there is oxidized and/or vuggy quartz-ankerite-tourmaline-pyrite veins. Veins are at 20-60 deg TCA. Upper contact at ~80 deg TCA.
36.83	42.60	5.77		PORP	mg				gу	gn				ру	0.50	aspy	0.5				q	as	ру ру	to	vn	40	Quartz Porphyry. Light grey-green, mg, equigranular, as above but less altered and mineralized; moderately chloritic and silicified. There are a few mm quartz veins and 5% chlorite, tourmaline, and ankerite seams and several quartz-tourmaline veins <10cm. Some of the mm quartz veins contain silvery arsenopyrite and pyrite. There is 1% pyrite and arsenopyrite disseminated and along chlorite+/-ankerite+/- quartz veinlets. Lower contact at 3 deg TCA.
42.60	47.43	4.83	GABR		mg				gn	gу				ру	0.01						q	c	с ру	cl	vn	15	Gabbro. Mg, medium grey-green, equigranular, foliated, pervasive calcite throughout. There are quartz-porphyry intrusions from 43.03-43.16m, and 44.00-44.12m with irregular margins. Quartz-carbonate veinlets oriented at 0-50 deg TCA, <1cm comprise 4% of the section and there is local pyrite in a veinlet at 43.73m.
47.43 47.43	53.48 50.02		PORP	PORP	mg				gу		1	1		ру	0.01												Quartz Porphyry. Light grey-green-pink, mg, equigranular, weakly chloritic and silicified and hematite stained. 5% chlorite-carbonate seams, 2 black seams, possibly tourmaline. Trace fg pyrite. Upper and lower contacts are irregular at 23 and 65 deg TCA respectively.
50.02	50.52	0.50		GABR	fg				gn	gy			2					T			ΙT						Feldspar phyric Mafic rock. Green to tan, with 30% euhedral felspar crystals <1mm in an aphanitic matrix. Moderately to strongly ankeritic anc sheared with minor chlorite-carbonate seams.
50.52	53.48	2.96		PORP	mg				gу		1	1		ру	0.01												Quartz Porphyry. Light grey-green-pink, mg, equigranular, weakly chloritic and silicified and hematite stained. 5% chlorite-carbonate seams, 2 black seams, possibly tourmaline. Trace fg pyrite. Upper contact at 65 deg TCA, lower contact irregular at 75 deg TCA.
53.48 53.48	61.37	-53.48 7.89	GABR	GABR	mg				gn	gy	1	1	1												S1	40	Gabbro or basalt. Green-grey, f-mg, sheared to massive equigranular texture. 60% plagioclase, 40% amphibole-chlorite. 5% quartz-calcite-chlorite veinlets <2cm increasing in abundance downhole. Foliation at 35-45 deg TCA.

	Depth	,			Rock	Type		Co	lour		TERAT							Miner	alisatio	n					Stru	ctural	
	Бера	· ·		1	NOCK	i ype			ioui	Alt'n I	ntensi	ty Cod	е	-	-	Sulp	hide	, ,	_			Veir	IS	-	Measu	rements	s
From	То	Interval	Major Rock Code	Minor Rock Code	Texture 1	Texture 2	Rock Forming Mineral 1 Rock Forming Mineral 2	Primary Colour	Secondary Colour	Sericite	Chlorite	Iron Carbonate	Main Sulphide	Type Sulphide %	Secondary Sulphide	Sulphide %	Tertiary Sulphide	Sulphide %	Primary Texture Secondary	Texture	Vein Mineralogy Vein Type	Main Accessory Mineralogy	Accessory	<u>Wineraloαv</u> Third Accessory Mineralogy	Structure / Contac	ACA	COMMENTS
61.37	84.36	22.99		BASL	vfg			gn	gу		2 2	2 2	P	/ 1.20	0 aspy	0.1					q	ak	cl	ру	S1	45	Strongly altered Gabbro or basalt. Green-grey, vfg, strongly sheared, silicified and chloritic, and banded with 20-50% white quartz-carbonate veins/bands mm-4cm wide. Quartz veins often have fuchsite (67.54, 68.87, 69.0) and tourmaline (67.54, 70.95, 71.20, 79.96) within and along margins and are typically irregular but ~ subparallel to S1 at 40-47 deg TCA. There are pyrite bands along vein margins and in wall rock (63.42, 64.65, 70.20, 80.87, 82.30, 82.30, 83.19, 83.53m) and arsenopyrite along quartz-ankerite and chlorite bands (67.93, 83.73m). Pyrite is f-mg, and ~1% disseminated throughout, especially in lower 4m. There is trace chalcopyrite at 84.14m along a quartz vein margin. Banding is folded in places (65.25-65.50m) and crenulated (64.34-65.2, 66.09-66.58, 75.15-75.50, 80.30, 83.87m). Lower 6m are light green and tan due to intense alteration/bleaching.
84.36	90.33	5.97	PORP					ду	gn	2	2 3	3 2	P	/ 0.2	0 aspy	0.1	сру	0.05			q	ak	cl	ру	S1	40	Quartz Porphyry and altered Mafic. Porphyry is light grey to grey green and massive, very siliceous and sericitic. There are 3-7% sericite-chlorite seams and veins and minor black tourmaline or chlorite seams mostly along S1 at -40-50 deg TCA; many cut the S1 fabric. Minor pyrite is disseminated locally (89.15m). Mafic sections are banded dark green and white, strongly foliated and occur from: (1) 84.67-85.15 and 86.04-86.18 have 20% mm quartz-carbonate bands and 0.5% arsenopyrite concentrated along bands in the middle, (2) 87.05-87.43 has 45% quartz-carbonate bands with chalcopyrite at 87.31m and is strongly deformed with crenulation, and (3) 89.46-89.90m is tan, pervasively ankeritic with 40% quartz-carbonate bands <1cm and 0.5% pyrite disseminated along bands.
90.33	97.56	5 7.23	BASL					gn	gу			3 3		/ 0.5							q	ak			vn		Strongly altered Gabbro or basalt. Green-grey to tan, vfg, strongly sheared, ankeritic and chloritic, and banded with 20-50% white quartz-carbonate veins/bands mm-4cm wide. The larger quartz veins have fuchsite (96.82-96.90, 96.97-97.05, 97.17, 97.22) and many of them have tourmaline (93.61, 95.74-95.91, 96.82-97.56m) within and along margins. Veining is typically irregular and is often tadpole shaped or boudinaged but ~ subparallel to S1 at 40-55 deg TCA. It could also be felsic fragments/lappilli (?). There are local pyrite bands along vein margins and in wall rock (90.46, 92.54). Pyrite is f-mg, and ~0.2% disseminated throughout. Quartz Vein. White with 7% tourmaline (=black chlorite)-sericite seams and minor fuchsite. There is trace to minor fg pyrite along the black seams.
97.56	98.10	0.54	QZVN					wt		2	1 3	3	P.	/ 0.0	1						q	cl	ser	ру	vn	50	Contacts are at 60 and 40 deg TCA, respectively. Strongly altered Gabbro or basalt. Green-grey, vfg, strongly sheared, ankeritic and chloritic, and banded with 20-30% white guartz-carbonate
98.10	100.22	2 2.12	BASL		fg			gn	gу		1 2	2 2	asp	oy 0.0	5 сру	0.01					q	ak	aspy	у сру	vn	55	veins/bands mm-4cm wide. A felsic band at 100.08-100.12 contains arsenopyrite and trace chalcopyrite.
100.22	103.00	0 2.78	QZVN					wt	gу	2	1 3	3 2	ası	oy 0.5	0 py	0.5					q	cl	to	aspy	vn	70	Quartz veining and Quartz Porphyry(?). Bleached white, upper margin is grey. 5-10% chlorite-ankerite-sericite and black chlorite or tourmaline seams. 1% fg euhedral arsenopyrite and pyrite disseminated throughout and locally at 101.39m. Upper contact at 57 deg TCA, lower contact is irregular at ~90 deg TCA.
103.00	105.24	4 2.24	BASL		vfg			gn			3 2	2 2	P)	/ 1.0	D						q	ak	cl	ру	vn	50	Strongly altered Gabbro or basalt. Green-grey, vfg, strongly sheared, ankeritic and chloritic, and banded with 30% white quartz-carbonate veins/bands mm-4cm wide 45-55 deg TCA. There is 1% fg pyrite disseminated along bands and locally at 103.3 and 104.37m. 104.83-105.22m is a white, multigenerational quartz-ankerite vein with 7% chlorite-tourmaline-ankerite in seams and along margins.
105.24	106.70	0 1.46	PORP					gу	gn		2 3	3 1	P	/ 1.0	0 сру	0.1					q	ak	cl	ру			Quartz Porphyry and altered Mafic. Porphyry is light grey to grey green and massive, very siliceous and sericitic. There are 3-7% sericite-chlorite seams and veins and minor black tourmaline or chlorite seams mostly along S1 at ~40-50 deg TCA. A white quartz vein is from 105.33-105.43m. Pyrite is disseminated and locally in stringers. There is trace chalcopyrte at 105.98m. There is a fg mafic section from 106.08-106.30m.
106.70	116.5	1 9.81	BASL		vfg			gn	gу		3 3	3 2	p	/ 0.7	0 aspy	0.5					q	ak	to	ру	vn	30	Strongly altered Gabbro or basalt. Green-grey, vfg, strongly sheared, ankeritic and chloritic, and banded with 35% white quartz-carbonate and quart tourmaline veins mm-32cm wide 30-60 deg TCA. The major quartz veins include: (1) 108.78-108.98m is white quartz with minor fg pyrite disseminated in vein and in wall rock, at 65 deg TCA, below the vein there is intense quartz-ankerite-tourmaline veining with disseminated pyrite unt (2) a white quartz vein at 110.41-110.74m, 30 deg TCA, with minor chlorite seams and mm black tourmaline veinlets with trace pyrite and fuchsite along margins; (3) 113.24-114.55 there is 35% quartz veining and 2-3% euhedral mg pyrite and arsenopyrite disseminated and in bands; (4) 114.65 115.0m there is intense quartz-tourmaline-ankerite veining with pyrite and arsenopyrite in chlorite bands and with tourmaline; (5) 115.9-116.0 is a quartz-tourmaline vein with tensional ankerite vein and 4% mg euhedral arsenopyrite disseminated in wall rock.
116.51			QZVN					wt	gn		3 3	3 2	P)	/ 4.0	D						q	ak	to	ру			Quartz veining in altered and sheared mafic rock. 70% white quartz-ankerite veins with 10% black tourmaline in bands and seams. Veins are <30cr deformed (irregular, anastomosing, folded) and cross-cutting S1 and other veins. Mafic rock is strongly ankerite-chlorite altered with fuchsite around the quartz-ankerite veins and is crenulated. There is ~5% f-cg cubic pyrite disseminated in the mafic rock and along tourmaline seams.
	127.1		BASL	BASL	fg			gn	gу		3 3	3 2	P!	/ 0.5	0 aspy	0.1	сру	0.01			q	ak	to	ру	vn	45	Strongly altered Gabbro or basalt. Green-grey, vfg, strongly sheared, ankeritic and chloritic, and banded with 35% white quartz-carbonate and quart tourmaline veins mm-32cm wide 45-50 deg TCA. There is intensely banded quartz-tourmaline veining at 119.47-119.73m. Quartz-tourmaline banding deformed and is cut by mm quartz veins and cm quartz-ankerite veins. The upper 1m has 1% f-mg disseminated pyrite and trace
117.61		4 <u>1.43</u> 0 7.06		BASL	vfg			gn	gу		1	1 2	P!	/ 0.0	1					-	ak	q	gm		vn	50	chalcopyrite at 117.69m. There is minor pyrite and arsenopyrite in the quartz-tourmaline banding and veining. Basalt. Vfg, dark green-grey. Massive, weakly ankeritic and chloritic with 2% quartz-ankerite-fuchsite veinlets. From 122.59-123.57m the rock is me and bleached and looks as though there is a contact, but it may be due to increased ankerite alteration. This section has 15% ankerite-quartz-fuchsit veining <4cm at -50deg TCA.
		9 1.09		GABR	mg			gn	bn		2 2	2 2	P!	/ 0.7	D						q	ak					Gabbro and basalt. Gabbro is mg, green, basalt is vfg and brown-green; the fg bands may be mylonite(?). There is 75% gabbro bands <35 cm. Bot units are cut by quartz-ankerite veinlets <1cm. Some of these veinlets are displaced along the contacts. There is 0.5-1% vfg sulphides disseminated throughout.

						Deale	.			Colou		ALTE	ERATIC	DN						Minera	lisatio	on					T	Stru	ctural	
	D	Depth				Rock	гуре			Colot	A T	lt'n In	tensity	Cod	е			Sulp	hide						/eins		N	leasu	rement	ts
From	1	То	Interval	Major Rock Code	Minor Rock Code	Texture 1	Texture 2	Rock Forming Mineral 1	Rock Forming Mineral 2	Primary Colour	Secondary Colour Sericite	Chlorite	Silica	Iron Carbonate	Main Sulphide Type	Sulphide %	Secondary Sulphide	Sulphide %	Tertiary Sulphide	Sulphide %	Primary Texture	Texture	Vein Mineralogy	Vein Type	Main Accessory Mineralogy secondary	Accessory Mineraloav Third Accessory	Inira Accessory Mineralogy	Structure / Contact	ACA	COMMENTS
127.1	9 13		2.96	QZVN						wt t	ok 1	3	3 3	3	ру	3.00	aspy	2					q		to a	ak	ру			Quartz-tourmaline vein and Quartz Porphyry. White and black quartz-tourmaline-chlorite veining, ankerite-quartz+/-fuchsite veins are from 127.19 127.96m. After this there is a green-grey quartz porphyry cut by mm quartz veinlets with >10% mg cubic pyrite disseminated and in veinlets and along contacts. There is m-cg arsenopyrite along the lower contact and disseminated partway up the QP. The upper contact of the QP is ~53 deg TCA and the lower contact is irregular at 7-30 deg TCA. Below the contact there is tourmaline-arsenopyrite and troumaline-pyrite veins. From 128.10- 128.57m there is a cream coloured ankerite-sericite(?) and black tourmaline breccia-vein section with 5% m-cg pyrite and arsenopyrite throughout. This section is cut by extensional quartz veinlets. The lower contact is crenulated and pyritic at 30 deg TCA. 128.57-129.76m is a white quartz vein cut by many quartz-ankerite veinlets <8mm and 7% tourmaline seams. There is 3% f-cg pyrite and arsenopyrite disseminated and with tourmaline. There is a 8cm band of altered vfg green-brown mafic rock below and then an 8cm band of green quartz porphyry followed by a white quartz vein to the end of the section. Lower contact at 50 deg TCA.
130.1	5 13	31.18	1.03	BASL		fg				gy g	gn	1		1																Basalt. Fg, medium grey-green, weakly altered. 1% mm quartz-ankerite veins.
131.1	8 13	33.15	1.97	PORP		mg					gn	2	3	2	ру	0.50	aspy	0.1					q		to a	ak	ру			Quartz Porphyry with quartz veining. Mg, light grey-green, moderately chloritic and silicified. 15% quartz-ankerite veins with 3-5% irregular tourmalin seams. Upper 12cm is a quartz-tourmaline vein followed by 12cm of vfg mafic rock. After this is the silicified grey-green porphyry. There is minor pyrite to 1% concentrated in the lower 50cm. Upper and lower contacts at 22 and 15 deg TCA respectively.
133.1	5 13	33.71	0.56	BASL		vfg																								Basalt. Fg, medium to light grey-green, moderately altered, weakly banded. 1% mm quartz-ankerite veins.
133.3	1 13	34.95	1.24	PORP						gy g	gn	2	3	2	ру	0.50	aspy	0.1					q		to a	ak	ру			Quartz Porphyry with quartz veining. Mg, light grey-green, moderately chlorite-sericite altered and silicified. 35% quartz-ankerite veins with 3-5% irregular tourmaline seams. There is pyrite within tourmaline veins and in mafic inclusions at the end of the zone. Upper and lower contacts are at 30 and 53 deg TCA respectively.
134.9	95 14	42.11	7.16	BASL		vfg				gn		1		2	ру	0.50							q		ak g	m				Basalt. Fg, medium to light grey-green, moderately altered, weakly banded. Carbonate alteration increased downhole with 5% quartz-ankerite veinlet and minor fuchsite along margins. 0.5% disseminated fg sulphides.
142.1	1 14	46.43	4.32	PORP		mg				gy g	gn	1	2	2	asp	y 1.00							q		ak	cl a:	ispy			Quartz porphyry. Light grey-green to pink, very siliceous, moderately chloritic and sericitic. 10% quartz-ankerite-chlorite+/-tourmaline veins < 1cm. There is 1% is m-cg silvery arsenopyrite disseminated throughout and concentrated along quartz-chlorite+/-tourmaline veins. Upper contact at 60 deg TCA, lower contact irregular.
146.4	3 15	57.44	11.01	BASL		fg				gn																				Basalt. F-mg, dark green. 3% quartz-carbonate veins <1cm, 15-40 deg TCA. Wall rock surrounding veining contains mg cubic pyrite disseminated for 5-15cm (148.84, 154.3, 154.7, 154.95, 155.7m). The lower 1m is aphanitic.
		-	EOH	EOH																										ЕОН

	oVec			PTION (GE									1							
		HOLE			-				HOLE	LOCA		0				E ORI	ENIAI		- 0								
PROJE				Central (Canada		NORTH				5404790		-	AZIMU					5.0								
HOLE	10:						EASTIN	NG:			622666	i	-	INCLIN	NOTAN	1:		-4:	5.0								
OGGE	D BY:			K. Bjor	kman		ELEVA	TION:			0		_	FINAL	DEPTI	H:		157	.44								
START	DATE:			6-Ma	r-12									CORE	SIZE:			N	Q								
FINISH	DATE:			7-Ma	r-12																						
				1 1114																							
									1		F	RACTUR		NTATIO	N AND C	OUNT P	ER RUN	I LENGT	н								
Co	ore Interv	/al	Reco	overy	R	סנ		×		61-90	degrees			31-60 d	earees			0-30 d	earees				Bx/Gouge	Brok	en or Los	t Core	
							lex	Weathered/ Alteration Index						0.000	- <u>-</u>									2.01			
		Ê	σ	v %	Core >10cm		Strength Index	n Ir															Ê			Ê	
		alr	m) ere	Col	>10	%	gth	Jer															rval r			alr	
		Interval m)	Rcovered Core (m)	Total Core Recovery %	re	RQD -	ren	eatl	Type				Type	ċ			Type	d.			_		er			Interval	
From	То	Int	မီးလိ	To Re	ပိ	RG	St	ŇĒ	Ϋ́	No.	Ŀ	Ja	Ţ	No.	ŗ	Ja	È	No.	٦L	Ja	٩L	From	To To	From	То	Int	COMMENTS (water conditions, fault zones, etc)
3.05	6.10	3.05	2.96	97.0%	2.6	88%																	0.00			0.00	
6.10	9.15	3.05	3.05	100.0%	2.85	93%																	0.00			0.00	
9.15	12.20	3.05	2.93	96.1%	2.51	86%		ļ			ļ												0.00		ļ	0.00	
12.20	15.25	3.05	3.08	101.0%	1.91	62%																	0.00			0.00	
15.25	18.30	3.05	3.05	100.0%	2.36	77%																	0.00			0.00	
18.30	21.35	3.05	2.83	92.8%	2.62	93%																	0.00			0.00	
21.35	24.40	3.05	3.06	100.3%	2.98	97%															• • • • • • • • • • • • • • • • • • • •		0.00			0.00	
24.40 27.45	27.45	3.05	3.03 3.00	99.3% 98.4%	2.96	98% 85%																	0.00			0.00	
30.50	30.50 33.55	3.05 3.05	3.00	100.3%	2.54 2.76	90%																	0.00			0.00	
33.55	36.60	3.05	2.99	98.0%	2.93	98%																	0.00			0.00	
36.60	39.65	3.05	3.04	99.7%	3	99%																	0.00			0.00	
39.65	42.70	3.05	2.98	97.7%	2.9	97%																	0.00			0.00	
42.70	45.75	3.05	3.05	100.0%	2.59	85%																	0.00			0.00	
45.75	48.80	3.05	3.02	99.0%	2.27	75%																	0.00			0.00	
48.80	51.85	3.05	3.05	100.0%	2.8	92%																	0.00			0.00	
51.85	54.90	3.05	3.05	100.0%	2.43	80%																	0.00			0.00	
54.90	57.95	3.05	3.06	100.3%	2.65	87%																	0.00			0.00	
57.95	61.00	3.05	2.90	95.1%	2.84	98%																	0.00			0.00	
61.00	64.05	3.05	2.99	98.0%	2.77	93%																	0.00			0.00	
64.05	67.10	3.05	3.15	103.3%	3.11	99%																	0.00			0.00	
67.10 70.15	70.15 73.20	3.05 3.05	2.98 2.87	97.7% 94.1%	2.53 2.51	85% 87%					1												0.00			0.00	
73.20	76.25	3.05	3.11	102.0%	2.62	84%																	0.00			0.00	
76.25	79.30	3.05	2.89	94.8%	2.75	95%																	0.00	1		0.00	
79.30	82.35	3.05	3.02	99.0%	2.68	89%		1			1												0.00		1	0.00	
82.35	85.40	3.05	3.00	98.4%	2.51	84%																	0.00			0.00	
85.40	88.45	3.05	3.06	100.3%	2.49	81%																	0.00			0.00	
88.45	91.50	3.05	2.99	98.0%	2.72	91%																	0.00			0.00	
91.50	94.55	3.05	3.04	99.7%	2.74	90%					ļ												0.00			0.00	
94.55	97.60	3.05	2.97	97.4%	2.87	97%																	0.00			0.00	
97.60	100.65	3.05	2.83	92.8%	2.3	81%		ļ			ļ											ļ	0.00			0.00	
100.65	103.70	3.05	3.20	104.9%	2.17	68%																	0.00			0.00	
103.70	106.75	3.05	2.99	98.0%	2.86	96%																	0.00			0.00	
106.75	109.80	3.05	3.05	100.0%	2.9	95%																	0.00	-		0.00	
109.80	112.85	3.05	2.83	92.8%	2.7	95% 95%			 			l											0.00		 	0.00	

GeoVe						1										TION											
	HUL	DESCR				NORT		HULE	LOCA	5404790			A 711.01		ORIENT		165.0	-									
PROJECT:			Central (Janada		NORTH				622666			AZIMU				-45.0	_									
HOLE NO:						EASTIN								NATION:													
LOGGED BY:			K. Bjor			ELEVA	TION:			0				DEPTH:			157.44										
START DATE:	:		6-Ma	r-12		_							CORE	SIZE:			NQ	_									
FINISH DATE:			7-Ma	r-12																							
		1								FR/	ACTUR	E ORIE	NTATIO	N AND COU	NT PER R	JN LEN	IGTH										
Core Inte	rval	Rec	overy	R	D	×	ex		61-90 c	legrees			31-60 c	legrees		0-3) degree	s			В	x/Goug	e	Brok	en or Los	st Core	
From To	Interval m)	Rcovered Core (m)		Core >10cm	RQD %	Strength Index	Weathered/ Alteration Index	Type	No.	'n	Ja	Type	No.	5	Ja Type	No.	5	5	P Ju	Fi	rom	То	Interval m)	From	То	Interval m)	COMMENTS (water conditions, fault zones, etc)
115.90 118.95		3.06	100.3%	2.9	95%																		0.00			0.00	
118.95 122.00		3.05	100.0%	2.91	95%				 	-													0.00	ļ	ļ	0.00	
122.00 125.05		3.00	98.4%	2.84	95%				<u> </u>	-						-							0.00	 		0.00	
125.05 128.10 128.10 131.15		2.99 3.05	98.0% 100.0%	2.92 2.91	98% 95%																		0.00			0.00	
131.15 134.20		3.05	100.0%	3.08	95% 100%																		0.00			0.00	
134.20 137.25		2.97	97.4%	2.83	95%																		0.00			0.00	
137.25 140.30		2.99	98.0%	2.83	95%																		0.00			0.00	
140.30 143.35		3.09	101.3%	3.09	100%																		0.00			0.00	
143.35 146.40	3.05	3.01	98.7%	2.75	91%																		0.00			0.00	
146.40 149.45	3.05	3.11	102.0%	2.79	90%																		0.00			0.00	
149.45 152.50		3.02	99.0%	2.7	89%																		0.00			0.00	
152.50 155.55		3.04	99.7%	2.8	92%																		0.00			0.00	
	0.00		#DIV/0!																				0.00			0.00	
	0.00		#DIV/0! #DIV/0!																			·····	0.00			0.00	
	0.00		#DIV/0!																				0.00			0.00	
	0.00		#DIV/0!																				0.00			0.00	
	0.00		#DIV/0!																				0.00			0.00	
	0.00		#DIV/0!																				0.00			0.00	
	0.00		#DIV/0!																				0.00			0.00	
	0.00		#DIV/0!					ļ	ļ														0.00		ļ	0.00	
	0.00	-	#DIV/0!																				0.00			0.00	
	0.00		#DIV/0!							-													0.00			0.00	
	0.00	-	#DIV/0!							-				├						_			0.00			0.00	
	0.00		#DIV/0! #DIV/0!							-													0.00			0.00	
	0.00	1	#DIV/0! #DIV/0!											<u> </u>		-							0.00		+	0.00	
	0.00		#DIV/0!						1	-													0.00	1	1	0.00	
	0.00		#DIV/0!																				0.00			0.00	
	0.00		#DIV/0!																				0.00			0.00	
	0.00		#DIV/0!																				0.00			0.00	
	0.00		#DIV/0!							-													0.00			0.00	
	0.00		#DIV/0!						 	└───┤													0.00			0.00	
	0.00	-	#DIV/0!							-						-							0.00			0.00	
	0.00		#DIV/0!							-													0.00			0.00	
	0.00	L	#DIV/0!		L	L		L	L							1			I				0.00	l	I	0.00	

1		DATE
	FINISH	DATE:

7-Mar-12

Sample	Depth	Depth	Sample	Rock									Assay R			
Number	From	То	Interval	Code	Au (ppb)	Au (g/t)	Ag (ppm)	Other	Other	Other	Other	Other	Other	Other	Other	Other
849692	10.04	11.04	1.00		< 5											
849693	11.04	12.87	1.83		< 5											
849694	12.87	14.70	1.83		< 5											
849695	14.70	16.54	1.84		58											
849696	16.54	1 18.24	1.70	8	< 5											
849697	18.24	19.94	1.70		< 5											
849698	19.94	21.65	1.71		< 5											
849699	29.20	29.83	0.63		< 5											
849700			0.00	blank	< 5											
849701			0.00	STD	2440											
849702	29.83	31.58	1.75		1580											
849703	31.58	33.33	1.75		1480											
849704	33.33	35.08	1.75		233											
849705	35.08	36.83	1.75		116											
849706	36.83	38.75	1.92		308											
849707	38.75	40.67	1.92		14											
849708	40.67	42.60	1.93		< 5											
849709	42.60	44.00	1.40		< 5											
849710	61.37	63.29	1.92		< 5											
849711	63.29	65.21	1.92		1350											
849712	65.21	67.13	1.92		63											
849713	67.13	69.05	1.92		20											
849714	69.05	70.97	1.92		12											
849715	70.97	72.89	1.92		10											
849716	72.89	74.81	1.92		< 5											
849717	74.81	76.73	1.92		< 5											
849718	76.73	78.65	1.92		305											
849719	78.65	80.57	1.92		478											
849720			0.00	blank	< 5											
849721	80.57	82.49	1.92		34											
849722	82.49	84.36	1.87		< 5											
849723	84.36	86.18	1.82		14											
849724	86.18	88.05	1.87		14											
849725	88.05	89.46	1.41		642											
849726	89.46	90.33	0.87		< 5											
849727	90.33	92.14	1.81		25											
849728	92.14	93.95	1.81		< 5											
849729	93.95	95.76	1.81		< 5											
849730	95.76	97.56	1.80		< 5											
849731	97.56	98.10	0.54		< 5											
849732	98.10	99.16	1.06		< 5											
849733	99.16	100.22	1.06		< 5											
849734	100.22	101.61	1.39		< 5											
849735	101.61	103.00	1.39		< 5											
849736	103.00	104.12	1.12		5											
849737	104.12	105.24	1.12		38											
849738	105.24	106.70	1.46		< 5											
849739	106.70	108.66	1.96		12											
849740			0.00	blank	< 5											
849741	1		0.00	STD	2400				1	l	1		l	l	1	1

FINIS	SH D	ATE:

7-Mar-12

Sample	Depth	Depth	Sample	Rock			<u>-</u>						Assay R	Results		
Number	From	To	Interval	Code	Au (ppb)	Au (q/t)	Ag (ppm)	Other	Other	Other	Other	Other	Other	Other	Other	Other
849742	108.66	110.21	1.55		42	(3.7)	341 7									
849743	110.21	111.79	1.58		< 5											
849744	111.79	113.37	1.58		25											
849745	113.37	114.95	1.58		< 5											
849746	114.95	2 16.51	1.56	8	37											
849747	116.51	117.61	1.10	-	64											
849748	117.61	119.04	1.43		< 5											
849749	122.59	123.57	0.98		< 5											
849750	126.10	127.19	1.09		< 5											
849751	127.19	127.96	0.77		< 5 < 5 15											
849752	127.96	128.57	0.61		903											
849753	128.57	130.15	1.58		791											
849754	130.15	131.18	1.03		< 5											
849755	131.18	133.15	1.97		6											
849756	133.15	133.71	0.56		< 5											
849757	133.71	134.95	1.24		< 5 42											<u> </u>
849758	134.95	136.61	1.66		< 5											<u> </u>
849759	140.11	142.11	2.00		< 5											<u> </u>
849760			0.00	blank	< 5 < 5											<u> </u>
849761	142.11	143.55	1.44	biarin	16											<u> </u>
849762	143.55	144.99	1.44		17											<u> </u>
849763	144.99	146.43	1.44		17											<u> </u>
849764	146.43	148.43	2.00		< 5											<u> </u>
849765	154.00	156.00	2.00		< 5								1			<u> </u>
049705	154.00	150.00	0.00													<u> </u>
			0.00		-											<u> </u>
			0.00		-								1			<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-				-							<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		•											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
			0.00		-											<u> </u>
	1		0.00	-	-				+							┢────
			0.00		-											<u> </u>
			0.00		-											<u> </u>
	-		0.00		-											<u> </u>
	-			-	-				+							┢────
					-											┢────
	1				-						1				I	L

Magnetic Susceptibility & Conductivity

	HOLE	DESCRIF	PTION				H	OLE LO	CATION	HOLE ORIENTAT	ION
PROJECT:	(Central Ca	anada			GRID Nam	ne or No:		0	AZIMUTH:	165.0
HOLE NO:		CC-12-	-02		-	NORTH	ING:		5404790	INCLINATION:	-45.0
- Geotech BY:		0			-	EASTIN	IG:		622666	FINAL DEPTH (m):	157.4
START DATE:			12		-	ELEVA	TION:		0	CORE SIZE:	NQ
FINISH DATE:					-	Casing	(m):		2.79	Magnetic Declination:	0.00
		7 mai			-		. ,			CASING LEFT IN HOLE:	no
	Depth	MS		Measure	d (Raw Dat	ta)	Rock				
Instrument Used	Depth	MS	Depth	MS	Depth	MS		Comm	ents		
	3.0	0.93	50.0	0.20	97.00	0.45					
	4.0	0.97	51.0	0.02	98.00	0.14					
	5.0	0.87	52.0	0.15	99.00	0.84					
	6.0 7.0	0.98 0.97	53.0 54.0	0.18	100.00	0.14 0.10					
	8.0	0.81	55.0	0.67	101.00	0.71					
	9.0	1.01	56.0	0.53	103.00	0.11					
	10.0	0.78	57.0	0.65	104.00	0.60	<u> </u>				
	11.0 12.0	0.81 0.14	58.0 59.0	0.45	105.00 106.00	0.18	<u> </u>				
	12.0	0.14	59.0 60.0	0.44	106.00	0.17	+				
	14.0	0.12	61.0	0.59	108.00	0.79					
	15.0	0.15	62.0	0.59	109.00	0.66					
	16.0	0.13	63.0	0.64	110.00	0.70					
	17.0 18.0	1.12 0.26	64.0 65.0	0.75	111.00 112.00	0.71 0.86					
	19.0	0.20	66.0	0.66	113.00	0.80					
	20.0	0.65	67.0	0.69	114.00	0.53					
	21.0	0.78	68.0	0.59	115.00	0.71					
	22.0	0.64	69.0	0.36	116.00	0.60					
	23.0 24.0	0.67 0.88	70.0 71.0	0.71 0.22	117.00 118.00	0.37 0.59					
	25.0	12.95	72.0	0.62	119.00	0.67					
	26.0	22.29	73.0	0.48	120.00	0.78					
	27.0	6.22	74.0	0.64	121.00	0.66					
	28.0 29.0	1.07 0.52	75.0 76.0	0.55 0.54	122.00 123.00	0.54					
	30.0	0.52	76.0	0.54	123.00	0.61					
	31.0	0.12	78.0	0.62	125.00	0.48					
	32.0	0.07	79.0	0.63	126.00	0.54					
	33.0	0.02	80.0	0.43	127.00	0.44					
	34.0	0.12 0.02	81.0 82.0	0.84 0.59	128.00 129.00	0.15					
	35.0 36.0	0.02	83.0	0.59	129.00	0.14					
	37.0	0.11	84.0	0.66	131.00	0.39					
	38.0	0.11	85.0	0.80	132.00	0.12					
	39.0	0.14	86.0	0.59	133.00	0.25					
	40.0	0.03	87.0 88.0	0.19 0.18	134.00 135.00	0.18	<u> </u>				
	41.0	0.11	88.0	0.18	135.00	0.83					
	43.0	0.14	90.0	0.20	137.00	0.59	1				
	44.0	0.46	91.0	0.68	138.00	0.71	1				
[45.0	0.37	92.0	0.95	139.00	0.49	<u> </u>				
	46.0 47.0	0.49	93.0 94.0	0.98	140.00	0.57	<u> </u>				
	47.0	0.51 0.13	94.0 95.0	0.78	141.00 142.00	0.50	+				
	49.0	0.13	96.0	0.69	143.00	0.05					
					144.00	0.06	-	-			
					145.00	0.12					
					146.00 147.00	0.14 1.09					
					147.00	1.03					

	0.00
145.00	0.12
146.00	0.14
147.00	1.09
148.00	1.42
149.00	0.60
150.00	0.87
151.00	0.89
152.00	2.25
153.00	47.82
154.00	73.06
155.00	55.47
156.00	28.76
157.00	1.02

DOWN	HOLE	SURVE	Y SHEET
		00111	

		HOLE DESCR					
PROJEC	Г:			Cen	tral Canada		
HOLE NO):			C	C-12-02		-
LOGGED							_
START D						1	
FINISH D						-	
	ATE:					-	
Date	Instrument	Ме	easured (Raw Data	a)	Mine Grid	Corrected	Corrected
Measured	Used	Depth	Dip	Azimuth	Azimuth	Azimuth	Dip
3/7/2012		50		168.7			· · ·
		103	-36.6	169.7			
				<u> </u>			

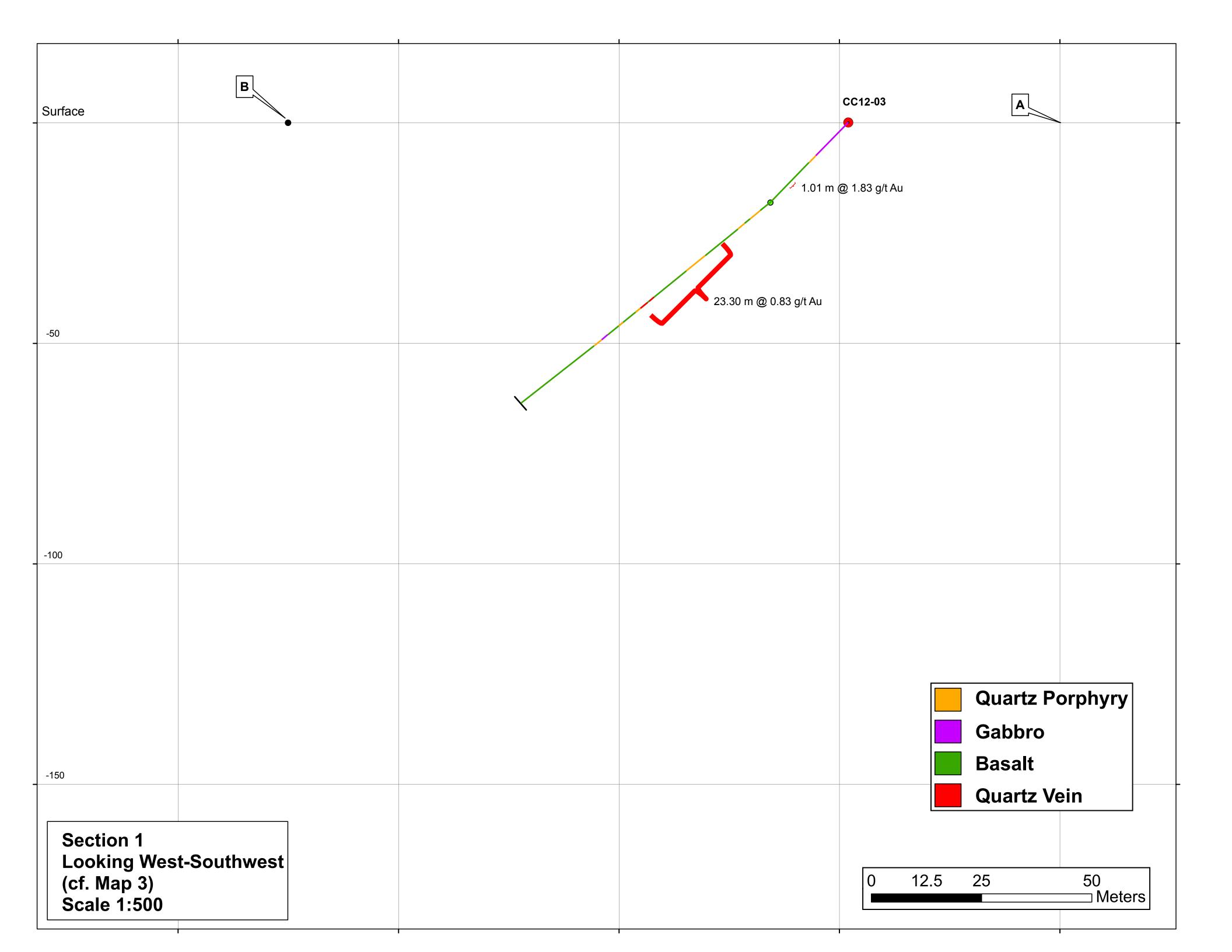
GeoVector Management Inc. GEOLOGICAL LOG

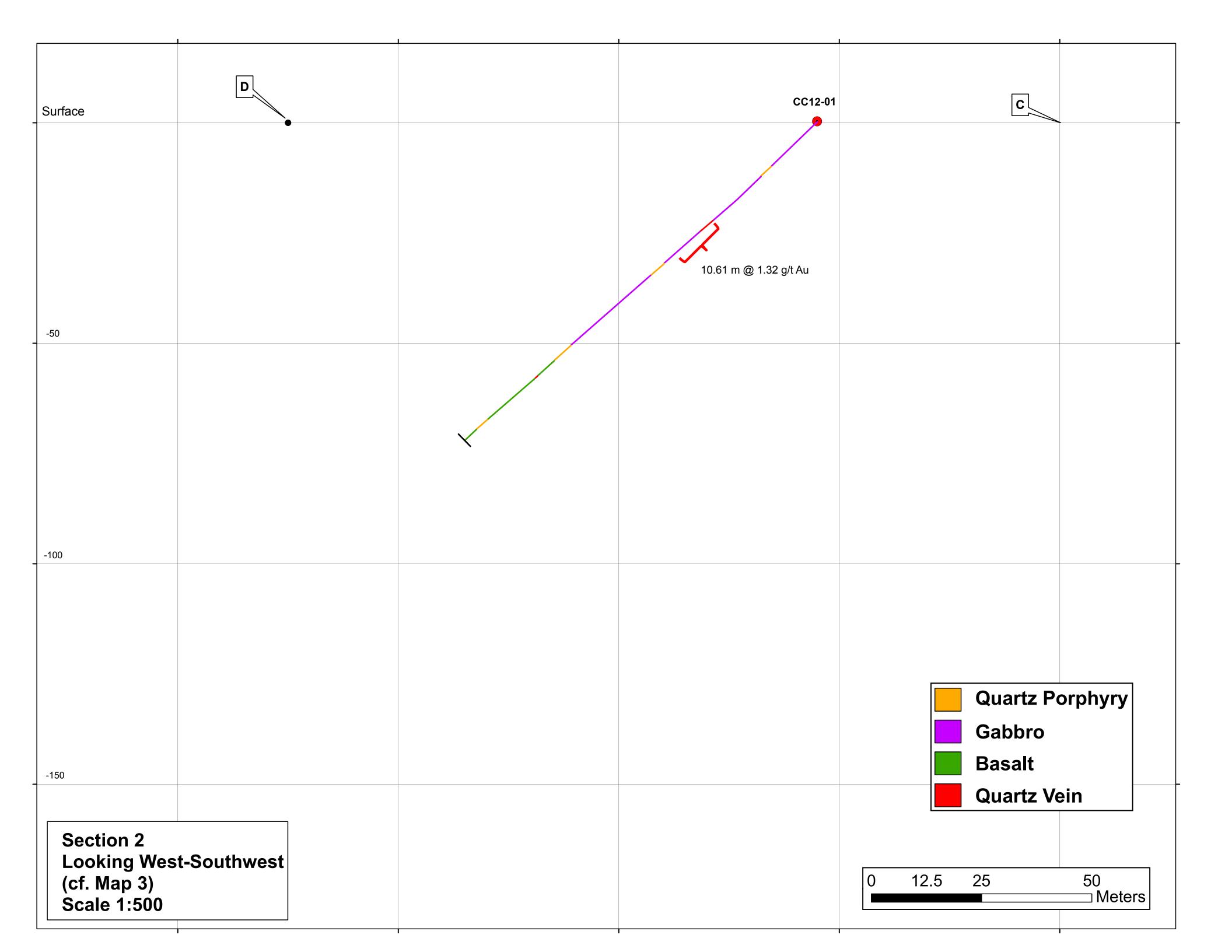
	Н	OLE DE	SCRIPT	ION								НО	LE LO	OCATIO	N						Н	IOLE	E ORII	ENTA			
PROJE	CT:	С	entral C	anada		GR	ID Name	e or No	o:					DATUN	:			NAD83		AZ		H:			16	5.0	
HOLE	NO:		CC-12	-03		N	ORTHI	NG:						ZONE:				15		IN	CLINA		N:		-4	5.0	
LOGG	ED BY:		K Bjork	man		EA	ASTIN	G:						UTM Nor	thing:		5	404751		FI	NAL D	EPT	Ή (m)	:	97	.60	
START	DATE:		7-Mar	12		EL	EVAT	TION:					_	UTM Eas	ting:			622561		cc	ORE S	IZE:		-	N	Q	
FINISH	DATE:		9-Mar	12		Ca	ising (I	m):			3.29		-	UTM Ele	ation/	:		435		Ма	gnetic	Decl	linatio	on:			
													-							СА	SING L	EFT I	IN HOL	E:	r	0	
	Depth				Rock Ty	уре		C	Colou		ALTER					Sul	phide	Miner	alisatio	n		Vein	Ne .		Strue Measur		
										5		lisity	te	a					e	2	3	>	13	~	tieasui	ements	
From	То	Interval	Major Rock Code	Minor Rock Code	Texture 1	Texture 2 Rock Forming	Mineral 1 Rock Forming	Mineral 2 Primary Colour	Secondary Colo	Sericite	Chlorite	Silica	Iron Carbona	Main Sulphid Type Sulphide %	Secondary	Sulphide %	Tertiary Sulphide	Sulphide %	Primary Textu Secondary	Texture Vein Mineralo	Vein Type	Main Accessor Mineralogy	Secondary Accessory Mineralogy	Third Accessor Mineralogy	Structure / Cont	ACA	COMMENTS
3.29	10.47	7.18	GABR		mg			g	jn t	Ы	2		2	po 1.0	0 ру	0.5	сру	0.02									Gabbro. Mg, dark blue-green, 65% plag, 35 % chlorite-actinolite, moderately foliated. 1% fg disseminated pyrrhotite-pyrite and minor disseminated chalcopyrite. Strongly magnetic. Could be sampled for PGE's. Rusty oxidized fracutres, moderately ankerite altered. Lower 2m is increasingly bleached by ankerite and weakly silicified.
10.47 12.43		1.96 15.38	PORP					g	ay g	jn 1	2	3	2	aspy 2.0	0 ру	1	сру	0.01		q		ak	to	aspy	vn	42	Quartz-tourmaline veining in Altered Quartz Porphyry. Light grey-green to pinkish, strongly altered and siliceous. There is 25% quartz+/-ankerite+, tourmaline veining <15cm 40-50 deg TCA. There is 3% f-mg arsenopyrite disseminated and with 7% tourmaline+/-chlorite veins. 1% f-mg pyrite disseminated. Minor chalcopyrite with arsenopyrite along brecciated and carbonate-altered upper contact. Lower contact is at a brecciated quartz-tourmaline vein with inclusions of mafic rock and 5% sulphides.
12.43		4.61		BASL	fg			g	ay g	ın	2	2	3	aspy 0.3	0 ру	0.3	сру	0.01		q		ak	to	aspy	vn	42	Altered Basalt. Light grey-green, banded with quartz-ankerite veining, bleached by carbonate alteration. Fractures in the upper meter are strongly oxidized and orange. There are 25% ankerite carbonate veinlets, subparallel to S1 at 35-48 deg TCA. There is a dark quartz-tourmaline vein from 15.31-15.41 and local chalcopyrite at 15.47m. There is minor fuchsite along ankerite veins throughout much of the section. There is 1% arsenopyrite disseminated and concentrated along quartz-ankerite veins.
17.04	25.22	8.18		BASL	fg			g	n g	iy	1	1	1	aspy 0.1	0 ру	0.1				q		ak	to	ру	vn	55	Basalt. Vfg-fg, green, weakly chloritic and ankeritic. There are 2-5% quartz-ankerite+/-tourmaline veins <8cm with ankerite-pyrite+/-arsenopyrite alteration zones alongside (17.46, 17.71, 18.7, 18.85, 18.95, 22.48) at 50-60 deg TCA.
		2.59		BASL					ay g	n 2	2	2	3	py 0.1	0					q		ak	to	ру	S1	60	Altered Basalt. Light grey-green, banded at 60 deg TCA. Bleached from carbonate-sericite alteration. 20% ankerite bands throughout. Minor fç pyrite along quartz=ankerite+/-tournaline veins.
25.22	27.81		PORP					g			2	2	2	aspy 0.5		0.1				q		ak	to		vn	20	Quartz Prophyry. Lihgt grey-green cut by 5% irregular quartz-chlorite+/-tourmaline+/-ankerite veins <3cm (28.62m, 20 deg TCA). There is 0.5% arsenopyrite disseminated and concentrated along veins. Strongly siliceous, moderately chloritized. From 29.18-29.40 there is an aphanitic green- grey malic band, strongly ankeritic. Contacts are at 52 and 35 deg TCA respectively.
31.05			BASL		vfg			g	jn b	n 1	2		2	py 0.0	5												Basalt. Vfg-aphanitic. Dark green-brown, 5% irregular ankerite veins <4mm. Trace to minor mg disseminated pyrite
32.35 34.50	34.50 43.87	2.15 9.37	PORP					g	ay g	ın 1	2	3	2	aspy 1.0	0 ру	0.5				q		ak	to	aspy	vn	45	Quartz Prophyry. Lihgt grey-green cut by 10% quartz+/-tourmaline+/-ankerite veins <3cm. There is 2% arsenopyrite disseminated and concentratec along veins, more in the upper section while the lower section has more pyrite. Strongly siliceous, moderately chloritized. From 33.1-33.46m there is a fg green-tan altered mafic band with mg cubic pyrite. Upper contact is at 24 deg TCA, lower contact is obscured by a 31cm multignerational quartz- ankerite-tourmaline vein. There is abundant pyrite and arsenopyrite at the lower contact.
34.50	37.71		BAGE	BASL				g	ŋn	1	1	1	1	aspy 0.1	0 ру	0.1									S1	52	Basalt. Fg, dark forest green. 5% quartz-ankerite veining <10cm, subparallel to S1 at55 deg TCA. There is minor fg disseminated pyrite anc arsenopyrite along veins and upper contact. Main vein is at 36.62-36.72m. Strongly magnetic at 37m.
37.71		6.16		BASL				g	jn b	on 1	3	2	3	aspy 1.5	0 ру	0.5				q		ak	to	aspy	vn	50	Altered Basalt with 10% quartz porphyry. Medium grey-green, banded with 5-20% ankerite-quartz-tourmaline veins <15cm, 45-55 deg TCA. Alteration contact with unit below where there is increased bleaching, veining and mineralization downhole. From 38.72-38.94 there is intense ankerite alteration, sericite-chlorite and 15% pyrite+/-arsenopyrite centred around a 2cm of quartz-tourmaline veining at 50 deg TCA. The veining is cut and offset by arsenopyrite mineralization. This is followed by a light grey-green quartz porphyry from 38.94-39.35m that is silicified and chloritic with 1-2% disseminated arsenopyrite and minor tourmaline. There is increased arsenopyrite at 39.50m with quartz-ankertie banding, and along quartz-ankerite-tourmaline+/-fuchsite at 40.6, 40.85, 41.22-41.80, 42.22-42.52, 43.00-43.34, and 43.67-43.87m. There is a 3cm band of ankerite- pyrite between the quartz-tourmaline vein and the quartz porphyry.
43.87	49.45 58.95		PORP					g	ay g	ın 1	2	3	2	py 1.5	0 asp	y 1				q		ak	to	aspy	vn	50	Altered Quartz Porphyry. Lihgt grey-green, silicified, chloritic, sericitic. There is 20% quartz+/-tourmaline+/-ankerite veins <9cm. Upper 2m are bleached with 3% bronze cubic pyrite and 1% arsenopyrite disseminated and concentrated along veins. The rest of the section has 0.5%-1% disseminated pyrite +/-arsenopyrite until the lower contact which is at a 30cm quartz-tourmaline-ankerite vein with 5% arsenopyrite and pyrite. Upper and lower contacts are obscured quartz-ankerite-tourmaline veins.
49.45	53.00		BAUE	BASL				g	jn		2		1	aspy 0.1	0 ру	0.1	L			q		ak	to	aspy	S1	45	Basalt. Dark green, 5% quartz-ankerite veins <1cm concentrated in upper section. Arsenopyrite and pyrite are also concentrated along upper contact with quartz-ankerite-tourmaline vein. S1 is at ~45 deg TCA.
53.00	57.13	4.13		BASL				g	jn g	iy 1	2	2	2	ру 0.5	0 asp	y 0.5				q		ak	to	ру	vn	50	Altered Basalt. Medium grey-green, banded with 20% ankerite-quartz-tourmaline veins <15cm, 35-55 deg TCA with arsenopyrite-pyrite mineralization in wallrock to veins. Gradational alteration contact with unit below where there is increased bleaching, veining and mineralization downhole. The main quartz-tourmaline veins are at 53.10, 53.50-53.58, 54.80-55.00. There is quartz-ankerite+/-fuchsite veining at 53.69-54.18 with mg arsenopyrite

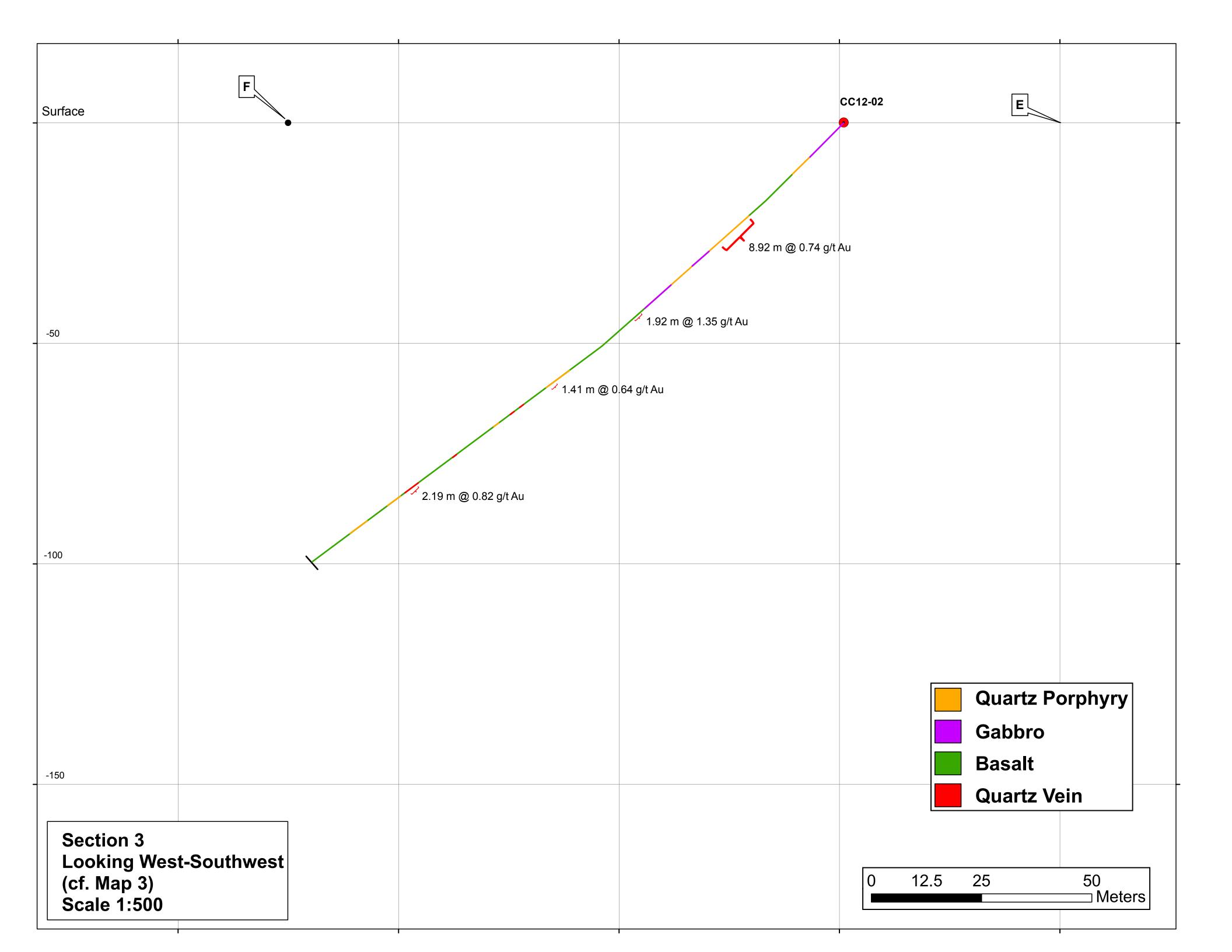
	Depth				Rock T	who			Colour		ALTERA							Minerali	sation						Str	uctural	
	Deptil				NUCK I	ype			Colour	Alt	'n Intens	-			1	Sulp	hide	<u>г г</u>			-	Vein	IS	1	Measu	irement	s
From	То	Interval	Major Rock Code	Minor Rock Code	Texture 1	Texture 2	Rock Forming Mineral 1	Rock Forming Mineral 2	Primary Colour Secondary Colour	Sericite	Chlorite	Silica	Iron Carbonate Main Sulphide	Type Sulphide %	Secondary Sulphide	Sulphide %	Tertiary Sulphide	Sulphide %	Secondary	Vein Mineralogy	Vein Type	Main Accessory Mineralogy	Secondary Accessory	<u>Mineraloav</u> Third Accessory Mineralogy	Structure / Contact	ACA	COMMENTS
57.13	57.87	0.74		PORP					gy gr	n 2	1	2	P.	y 0.50) aspy	0.1				q		ak	ру	aspy	(Quartz Porphyry. Light grey-green. Silicified, sericitic and chloritic, 5% irregular quartz-ankerite veins <1cm, 1% disseminate pyrite and minor arsenopyrite. Upper contact at 65 deg TCA, lower contact broken up.
00	01.01	0																					-				Altered Basalt or Gabbro with quartz-ankerite-tourmaline veins. There is a brecciated quartz-ankerite-tourmaline vein from 58.22-58.50 with
57.87	58.95	1.08		BASL					gn gy	/ 1	3	2	2 p	y 2.50) aspy	1				q		ak	to	ру	vn	50	semimassive bands of pyrite +/- arsenopyrite along margins and along tourmaline seams and disseminated in the surrounding wallrock. The contacts are at 50 deg TCA. There are several mm-cm ankerite-quartz+/-tourmaline veins throughout the section with 0.5-1% disseminated arsenopyrite+/- pyrite.
58.95	59.67	0.72	QZVN						wt bk	c		3	3 ası	oy 1.00	ру	1				q		ak	to	aspy	vn vn	58	Quartz-ankerite-tourmaline vein. 20% tourmaline, 25% ankerite. Quartz-ankerite fragments are brecciated and defromed in a matrix of tourmaline- quartz-ankerite. Arsenopyrite and pyrite are typically in the matrix as stringers or along tourmaline seams within the more massive guartz vein.
59.67	60.95	1.28	BASL						gn		2	2	2 as	oy 1.00	ру	1				q		ak	to	aspy	vn vn	70	Altered Basalt or Gabbro with quartz-ankerite-tourmaline veins. There are several mm-cm ankerite-quartz+/-tourmaline veins, 50-75 deg TCA throughout the section with 2% disseminated euhedral arsenopyrite+/-pyrite concentrated around veins (59.90-60.43, and 60.60-60.93).
60.95			QZVN						wt bk	2	1	3	2 p <u>y</u>	y 2.00) aspy	0.5				q		to	ak	ру			Quartz-ankerite-tourmaline vein. 20% tourmaline, 15% ankerite, 10%sericite. Tourmaline viens within the quartz are <3cm wide and contair brecciated quartz-ankerite fragments. Arsenopyrite and pyrite are typically subhedral to anhedral and/or brecciated, in the matrix as stringers or along tourmaline seams but are also disseminated within the quartz vein. There are cm quartz veins extending outward at the upper and lower contacts, with a carbonate-pyrite alteration halo. From 62.02-62.30m, the rrock is a lime green, probably ankerite with minor fuchsite (or sericite?) and 5% disseminated cubic euhedral pyrite.
62.79	63.79	1.00	PORP		mg				gy gr	n 2	1	2	1 as	oy 1.00) ру	1	сру	0.1		q		to	ak	ру	vn	30	Altered Quartz Porphyry. Light grey-green, silicified and sericitic. 15% quartz-tourmaline+/-ankerite veins <1cm, irregular. Pyrite and arsenopyrite are disseminated and with tourmaline+/-fuchsite margins of quartz veins 30-45 deg TCA. Chalcopyite is within an irregular 1.5cm quartz vein at 63.23-63.42m, 15 deg TCA.
63.79	68.24	4.45	BASL		fg				gn		2	1	2 p <u>y</u>	y 0.10) aspy	0.05				q		ak	to	ру	vn	54	Basalt or Gabbro. Fg, very dark green. Upper m is bleached by carbonate and is sheared and banded with 35% quartz-ankerite+/-tourmaline and minor fuchsite veins subparallel to S1 at ~54 deg TCA, but the section gradually becoms less altered to the lower contact. There is minor pyrite-arsenopyrite disseminated along veins in the upper section. pyThere is a quartz porphyry dike from 67.82-67.86m ~ at 55 deg TCA.
68.24	70.79	2.55	PORP		mg				gy gr	n	1	1	1 p	y 0.30)					q		to	ak				Quartz Porphyry. Light grey-green, mg. Weakly altered: silicified, sericitic and chloritic, 2% quartz-ankerite+/-tourmaline veins <1cm, 1% disseminate pyrite and minor arsenopyrite. Upper contact at 65 deg TCA, lower contact broken up.
70.79	72.46	1.67	BASL		fg				gn		1	1	1 p	y 0.0'						q		cl	ak				Basalt or Gabbro. Fg, dark green, foliated. 3-5% quartz-ankerite veinlets ~35 deg TCA, and minor rusty brown fracutres at 45 deg TCA. Minoi fuchsite along vein margins.
72.46	74.44	1.98	MFIN		mf				gy br	n			1														Hornblende porphyritic Mafic Dike? Dark Grey-brown, mg hornblende-porphyritic in vfg groundmass. Moderately ankeritic and bleached at lower contact. Upper and lower contacts at 52 and 30 deg TCA respectively.
74.44	76.25	1.81	PORP		mg				gy gr	n 1	1	1	1 p <u>:</u>	y 0.50)					q		ak	to	ру	vn	45	Quartz Porphyry. Light grey-green, mg. Weakly altered until lower 80cm where it is bleached, silicified, sericitic and ankeritic, with 15% quartz ankerite+/-tourmaline veins <7cm, 30-45 deg TCA. 1% disseminate pyrite. Upper contact at 30 deg TCA, lower contact at 70 deg TCA along a cm quartz vein.
76.25	97.60 80.26	21.35 4.01	BASL	BASL	vfg				gn gy	,	1	1	1 p <u>y</u>	y 0.50) aspy	0.4				q		ak	to	ру	vn	55	Altered Basalt. Dark blue-green-grey, with 10% quartz-ankerite-tourmaline veins <10cm in upper 2m. There is minor pyrite and arsenopyrite disseminated around veins and trace galena at 77.68m. Gradational alteration contact with unit below where the rock becomes mg, massive and green. There is quartz-ankerite-tourmaline veining from 78.03-78.13m.
80.26	82.71	2.45		BASL	mg				gn			1								q		cl					Mafic (Massive Basalt or Gabbro). Mg, forest green, 60% plagioclase (some 7mm feldspar phenocrysts) 40% chlorite-actinolite, 3% pink occelli <9mm. 3% quartz-chlorite veins <1cm.
82.71	83.37	0.66		MFIN	vfg				gn											q		сс					Mafic Dike. Dark green, aphanitic. 2% quartz-calcite veinlets with reddish contacts. Lower contact at 65 deg TCA, upper contact broken
83.37	84.62	1.25		BASL	mg			I	gn		[1								q		cl					Mafic (Massive Basalt or Gabbro). Mg, forest green, 60% plagioclase (some 7mm feldspar phenocrysts) 40% chlorite-actinolite, 3% pink occelli <9mm. 3% quartz-chlorite veins <1cm. Gradually becoming more altered by chlorite-carbonate to unit below.
84.62 92.15	92.15 96.87	4.72		BASL	mg				gn gn		2	1	2 p <u>y</u>	y 0.20)					q		ak	to	cl	vn		Mafic (Altered Basalt or Gabbro). Dark green-grey, except where bleached around intense quartz-ankerite veins. 20-30% quartz-ankerite viens <2cn to 88m, with minor fuchsite and tourmaline along some margins (86.17) and disseminated pyrite in some veins (84.70). Many veins are anastomosing or weakly crenulated (87.25, 87.85). Most veins are subparallel to S1 at 53 deg TCA, but some are crosscutting. From 88.10-89.15m the rock is light strongly silicified-ankeritic with 45% anastomosing and boudinaged quartz-ankerite veins <1cm at 35 deg TCA. There is an altered, banded section from 90.65-90.87m, and quartz-chlorite veining with minor mg pyrite from 91.78-92.04m at 60 deg TCA, but the section is only weakly altered with <2% veining.
96.87	97.60	0.73		BASL	vfg				gn																		Basalt. Aphanitic, grey-green with 5% dark green chlorite seams. Possibly squished pillows? Sharp contact at 55 deg TCA.
	-	EOH	EOH												1	1									1	1	ЕОН

		HOLE	DESCR	IPTION	OF 7				HOLE		TION				HOL	E ORI	ENTAT											
PROJE	ст			Central (NORTH				540475	1		ZIMU					65.0									
HOLE				Central	Janaua		EASTIN				622561		-			ı.			15.0									
				K D'							0		-						7.60									
	ED BY:			K. Bjor			ELEVA	HON:			0		- 1		DEPTH	4:												
START	DATE:			7-Ma	r-12								C C	ORE	SIZE:				NQ									
FINISH	DATE:			9-Ma	r-12																							
											F	RACTU	RE ORIEN	TATION	I AND C	OUNT P	PER RUN	N LENG	TH									
C	ore Inter	val	Rec	overy	R	۶D	×	ех		61-90	degrees		:	31-60 de	egrees			0-30 (degrees				Bx/Goug	e	Brok	en or Los	t Core	
From	То	Interval m)	Rcovered Core (m)	Total Core Recovery %	Core >10cm	RQD %	Strength Index	Weathered/ Alteration Index	Type	No.	5	Ja	Type	No.	۲ ۲	Ja	Type	No.	٦	Ja	лL	From	То	Interval m)	From	То	Interval m)	COMMENTS (water conditions, fault zones, etc)
6.10	9.15	3.05	3.00	98.4%	3	100%																		0.00			0.00	
9.15	12.20	3.05	2.93	96.1%	2.08	71%																		0.00			0.00	
12.20	15.25	3.05	3.05	100.0%	1.98	65%				+	 							<u> </u>						0.00			0.00	
15.25	18.30	3.05	2.99	98.0% 99.3%	2.36 2.86	79% 94%																		0.00			0.00	
18.30 21.35	21.35 24.40	3.05 3.05	3.03 3.03	99.3%	2.86	94%																••••••		0.00			0.00	
24.40	24.40	3.05	3.05	100.0%	2.19	92% 80%													-					0.00			0.00	
27.45	30.50	3.05	3.00	98.4%	2.73	91%																		0.00			0.00	
30.50	33.55	3.05	2.93	96.1%	2.89	99%																		0.00			0.00	
33.55	36.60	3.05	2.98	97.7%	2.52	85%																		0.00			0.00	
36.60	39.65	3.05	2.93	96.1%	2.63	90%																		0.00			0.00	
39.65	42.70	3.05	2.94	96.4%	2.54	86%																		0.00			0.00	
42.70	45.75	3.05	3.04	99.7%	2.74	90%																		0.00			0.00	
45.75	48.80	3.05	2.96	97.0%	2.81	95%																		0.00			0.00	
48.80	51.85	3.05	2.94	96.4%	2.54	86%																		0.00			0.00	
51.85 54.90	54.90 57.95	3.05 3.05	2.97 2.87	97.4% 94.1%	2.33 1.54	78% 54%				-														0.00	-		0.00	
57.95	61.00	3.05	3.02	99.0%	2.2	73%																		0.00			0.00	
61.00	64.05	3.05	3.05	100.0%	2.76	90%																		0.00			0.00	
64.05	67.10	3.05	3.01	98.7%	1.54	51%																		0.00			0.00	
67.10	70.15	3.05	2.80	91.8%	2.41	86%																		0.00			0.00	
70.15	73.20	3.05	3.15	103.3%	2.21	70%																		0.00	ļ		0.00	
73.20	76.25	3.05	3.05	100.0%	2.56	84%																		0.00			0.00	
76.25	79.30	3.05	2.93	96.1%	2.72	93%																		0.00			0.00	
79.30	82.35	3.05	2.97	97.4%	2.61	88%							╂											0.00			0.00	
82.35	85.40	3.05	3.18	104.3%	2.73	86%																		0.00			0.00	
85.40	88.45	3.05	3.00	98.4%	2.66	89%				+								<u> </u>						0.00			0.00	
88.45 91.50	91.50 94.55	3.05 3.05	3.01 2.98	98.7% 97.7%	2.89 2.91	96% 98%				+	1	1	ł					<u> </u>						0.00			0.00	
94.55	94.55	3.05	3.04	99.7%	3.04	100%					1													0.00			0.00	
		0.00	0.04	#DIV/0!	0.04	#DIV/0!																		0.00			0.00	
		0.00		#DIV/0!		#DIV/0!																		0.00			0.00	
		0.00		#DIV/0!		#DIV/0!																		0.00			0.00	
		0.00		#DIV/0!		#DIV/0!																		0.00			0.00	
		0.00		#DIV/0!		#DIV/0!																		0.00	 		0.00	
	ļ	0.00		#DIV/0!		#DIV/0!							ļ											0.00			0.00	
	1	0.00		#DIV/0!		#DIV/0!	l		I	<u> </u>	<u> </u>	<u> </u>					l	1	<u> </u>					0.00	<u> </u>	I	0.00	

INISH DA	TE:			9-M	ar-12											
Sample	Depth	Depth	Sample	Rock									Assay R	esults		
Number	From	То	Interval	Code	Au (ppb)	Au (g/t)	Ag (ppm)	Other	Other	Other	Other	Other	Other	Other	Other	Other
849766	8.47	10.47	2.00		13											
849767	10.47	12.43	1.96		112											
849768	12.43	13.97	1.54		< 5											
849769	13.97	15.51	1.54		6											
849770	15.51	1 17.04	1.53	6	30											
849771	17.04	18.05	1.01		273											
849772	18.05	19.06	1.01		1830											
849773	25.22	26.52	1.30		23											
849774	26.52	27.81	1.29		7											
849775	27.81	29.43	1.62		< 5											
849776	29.43	31.05	1.62		8											
849777	31.05	32.35	1.30		< 5											
849778	32.35	33.42	1.07		100											
849779	33.42	34.50	1.08		321											
849780			0.00	blank	< 5											
849781			0.00	STD	2480											
849782	34.50	36.10	1.60		36											
849783	36.10	37.71	1.61		< 5											
849784	37.71	38.72	1.01		10											
849785	38.72	39.35	0.63		7360	7.36										
849786	39.35	40.86	1.51		9											
849787	40.86	42.37	1.51		51											
849788	42.37	43.87	1.50		298											
849789	43.87	45.73	1.86		4440	4.44										
849790	45.73	47.59	1.86		7											
849791	47.59	49.45	1.86		226											
849792	49.45	51.22	1.77		13											
849793	51.22	53.00	1.78		123											
849794	53.00	54.38	1.38		127											
849795	54.38	55.76	1.38		46											
849796	55.76	57.13	1.37		< 5											
849797	57.13	57.87	0.74		< 5											
849798	57.87	58.95	1.08		731											
849799	58.95	59.67	0.72		4100	4.1										
849800			0.00	blank	< 5											
849801	59.67	60.95	1.28		565											
849802	60.95	62.02	1.07		525											
849803	62.02	62.79	0.77		139											
849804	62.79	63.79	1.00		66											
849805	63.79	65.24	1.45		< 5											
849806	68.24	69.51	1.27		< 5											
849807	69.51	70.79	1.28		< 5											
849808	70.79	72.46	1.67		< 5											
849809	74.44	76.25	1.81		< 5											
849810	76.25	77.59	1.34		< 5											
849811	77.59	78.93	1.34		< 5											
849812	84.62	86.31	1.69		< 5											
849813	86.31	88.00	1.69		< 5											
849814	88.00	89.20	1.20		73											
849815	91.60	92.15	0.55		< 5											


Magnetic Susceptibility & Conductivity


	HOLE	DESCRI	PTION				H	OLE LO	CATION	HOLE ORIENTAT	ION
PROJECT:	(Central Ca	anada			GRID Nar	me or No:		0	AZIMUTH:	165.0
HOLE NO:		CC-12-			_	NORTH	ING:		5404751	INCLINATION:	-45.0
Geotech BY:		0			-	EASTIN	NG:		622561	FINAL DEPTH (m):	97.60
START DATE:		7-Mar-	12		-	ELEVA	TION:		0	CORE SIZE:	NQ
FINISH DATE:		9-Mar-			-	Casing			3.29	Magnetic Declination:	0.00
FINISH DATE.		9-11101-	12		_	ousing	().			CASING LEFT IN HOLE:	no
	Dawth	MS			ed (Raw Dat	<u> </u>	Rock	1		CASING LEFT IN HOLE.	110
	Depth				-	1					
Instrument Used	Depth	MS	Depth	MS	Depth	MS	Code	Comm	ents		
	4.0 5.0	88.42 84.65	51.0 52.0	0.92							
	6.0	76.34	53.0	0.72							
	7.0	74.96	54.0	0.49							
	8.0	62.40	55.0	0.87		-					
	9.0	1.44	56.0	0.67			_				
	10.0	1.45	57.0	0.56		-					
	11.0 12.0	0.21 0.10	58.0 59.0	0.68		+					
	13.0	0.10	60.0	0.52		1	1	1			
	14.0	0.66	61.0	0.60		-					
	15.0	0.60	62.0	0.26							
	16.0	0.74	63.0	0.07							
	17.0	0.81	64.0	0.60							
	18.0	0.83	65.0	0.64		-	_				
	19.0 20.0	0.93 0.90	66.0 67.0	0.73 0.55							
	20.0	0.90	68.0	0.55			-				
-	22.0	0.68	69.0	0.18							
	23.0	0.98	70.0	0.28							
	24.0	3.12	71.0	0.58							
	25.0	0.88	72.0	0.53							
	26.0	0.42	73.0	0.75		-	_				
	27.0 28.0	0.48 0.20	74.0 75.0	0.80							
	28.0	0.20	76.0	0.00							
	30.0	0.41	77.0	0.56							
	31.0	0.41	78.0	0.34							
	32.0	0.33	79.0	0.82							
	33.0	0.04	80.0	0.74			1				
	34.0	0.19	81.0	1.10		-		I			
	35.0 36.0	0.93	82.0 83.0	9.03 0.88				 			
	36.0	15.16	83.0 84.0	0.67			-				
	38.0	0.85	85.0	0.63				1			
	39.0	0.12	86.0	0.60							
	40.0	0.55	87.0	0.78							
	41.0	0.73	88.0	0.42				I			
	42.0	0.78	89.0	0.67				I			
	43.0 44.0	0.85 0.12	90.0 91.0	0.58				l			
	44.0	0.12	91.0 92.0	0.66			-				
	46.0	0.00	93.0	0.47			1	1			
	47.0	0.11	94.0	0.62			1	l			
	48.0	0.15	95.0	0.58							
	49.0	0.10	96.0	0.62							
	50.0	0.69	97.0	0.91							


DO	NN HOL	E SUI	RVEY \$	SHEET

PROJECT:							
HOLE NC):			C	C-12-03		-
LOGGED							-
START D							
FINISH D						-	
	/ · · _ ·					-	
Date	Instrument	Me	easured (Raw Data	a)	Mine Grid	Corrected	Corrected
Measured		Depth	Dip	Azimuth	Azimuth	Azimuth	Dip
2/28/2012		50					-
		103	-37.3	163.3			

APPENDIX C: Cross-sections

APPENDIX D: Certificates of Assay

Quality Analysis ...

Innovative Technologies

Date Submitted:14-Mar-12Invoice No.:A12-02646Invoice Date:30-Mar-12Your Reference:Sunbeam/Pettigrew

Terrax Minerals Inc. 21 Tripp Cres. Ottawa ON K2J 1C5 Canada

ATTN: Tom Setterfield

CERTIFICATE OF ANALYSIS

1 Crushed Rock sample, 4 Pulp samples and 175 Rock samples were submitted for analysis.

The following analytical packages were requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

A12-02646

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

REPORT

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

			Activation Eaboratorics Eta.	Report.	
Analyte Symbol	Au	Au			
Unit Symbol	ppb	g/tonne			
Detection Limit	5	0.03			
Analysis Method	FA-AA	FA-GRA			
849610	< 5				
849611	< 5				
849612	< 5				
849613	< 5				
849614	< 5				
849615	< 5				
849616	< 5				
849617	6				
849618	< 5				
849619	< 5				
849620	< 5				
849621	2310				
849622	< 5				
849623	< 5				
849624	< 5				
849625	< 5				
849626 849627	< 5 < 5				
849627 849628	< 5 < 5				
849629	< 5				
849630	< 5				
849631	27				
849632	8				
849633	< 5				
849634	< 5				
849635	15				
849636	< 5				
849637	< 5				
849638	< 5				
849639	< 5				
849640	< 5				
849641	< 5				
849642	< 5				
849643	< 5				
849644	< 5				
849645	< 5				
849646	< 5				
849647	< 5				
849648	< 5				
849649 849650	14 156				
849650	156				
849652	8				
849653	6				
849654	832				
849655	1630				
849656	7				
849657	> 3000	4.77			
849658	856				
849659	351				
849660	< 5				
849661	2380				

Au	Au	
ppb	g/tonne	
5	0.03	
FA-AA	FA-GRA	
239		
5		
18		
< 5		
6		
< 5		
< 5		
< 5		
< 5		
< 5		
< 5		
< 5		
< 5		
< 5		
< 5		
5		
< 5		
< 5		
< 5		
33		
30		
< 5		
24		
9		
	ppb 5 FA-AA 239 5 18 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	ppb g/tonne 5 0.03 FA-AA FA-GRA 239 5 5 18 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 5 < 5 3 300 <<5 24 5

Quality Analysis ...

Innovative Technologies

Date Submitted:16-Mar-12Invoice No.:A12-02728Invoice Date:30-Mar-12Your Reference:Sunbeam/Pettigrew

Terrax Minerals Inc. 21 Tripp Cres. Ottawa ON K2J 1C5 Canada

ATTN: Tom Setterfield

CERTIFICATE OF ANALYSIS

3 Pulp samples and 127 Rock samples were submitted for analysis.

The following analytical packages were requested:

REPORT **A12-02728**

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY :

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1336 Sandhill Drive, Ancaster, Ontario Canada L9G 4V5 TELEPHONE +1.905.648.9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

			Activation Laboratories Ltu	. Report.	A12-02120
Analyte Symbol	Au	Au			
Unit Symbol	ppb	g/tonne			
Detection Limit	5	0.03			
Analysis Method	FA-AA	FA-GRA			
849686	< 5				
849687	< 5				
849688	< 5				
849689	< 5				
849690	< 5				
849691	22				
849692	< 5				
849693	< 5				
849694	< 5				
849695	58				
849696 849697	< 5 < 5				
849698	< 5 < 5				
849699	< 5				
849700	< 5				
849701	2440				
849702	1580				
849703	1480				
849704	233				
849705	116				
849706	308				
849707	14				
849708	< 5				
849709	< 5				
849710	< 5				
849711	1350				
849712 849713	63 20				
849713	20 12				
849715	12				
849716	< 5				
849717	< 5				
849718	305				
849719	478				
849720	< 5				
849721	34				
849722	< 5				
849723	14				
849724	14				
849725	642				
849726	< 5				
849727 849728	25 < 5				
849728 849729	< 5 < 5				
849730	< 5 < 5				
849731	< 5				
849732	< 5				
849733	< 5				
849734	< 5				
849735	< 5				
849736	5				
849737	38				
			Dara 2 of C		

			sport.	
Analyte Symbol	Au	Au		
Unit Symbol	ppb	g/tonne		
Detection Limit	5	0.03		
Analysis Method	FA-AA	FA-GRA		
849738	< 5			
849739	12			
849740	< 5			
849741	2400			
849742	42			
849743	< 5			
849744	25			
849745	< 5			
849746	37			
849747	64			
849748	< 5			
849749	< 5			
849750 849751	< 5 15			
849751 849752	15 903			
849752 849753	903 791			
349754	< 5			
349755	6			
349756	< 5			
349757	42			
349758	< 5			
349759	< 5			
349760	< 5			
349761	16			
349762	17			
849763	17			
849764	< 5			
849765	< 5			
849766	13			
849767	112			
849768	< 5			
349769	6			
349770	30			
349771	273			
849772	1830			
349773	23			
349774	7			
349775 349776	< 5 8			
349776 349777	8 < 5			
849777 849778	< 5 100			
349779	321			
49780	< 5			
349781	2480			
49782	36			
49783	< 5			
849784	10			
849785	> 3000	7.36		
849786	9			
849787	51			
849787 849788	51 298			

			Activation Eaboratories Etd.	Report.	A12-02120	
Analyte Symbol	Au	Au				
Unit Symbol	ppb	g/tonne				
Detection Limit	5	0.03				
Analysis Method	FA-AA	FA-GRA				
849790	7					
849791	226					
849792	13					
849793	123					
849794	127					
849795	46					
849796	< 5					
849797	< 5					
849798	731					
849799	> 3000	4.10				
849800	< 5					
849801	565					
849802	525					
849803	139					
849804	66					
849805	< 5					
849806	< 5					
849807	< 5					
849808	< 5					
849809	< 5					
849810	< 5					
849811	< 5					
849812	< 5					
849813	< 5					
849814	73					
849815	< 5					

Analysis SymbolAAData SymbolyearsDecision LinnoyearsDecision LinnoyearsD			
Analysis SymbolAAData SymbolyearsDecision LinnoyearsDecision LinnoyearsD	Quality Control		
		۸	۸
Dene0.000.00Analysis Mull0.00Analysis Mull0.00An			
Analysis MailFieldState MailState Mail			
Decision 000 Decision 00100 Decision 001000 Decision 0010000000 Decision 0010000000000000000000000000000000000			
	Analysis Method	FA-AA	FA-GRA
	OxE86 Meas	608	
	OxE86 Cert	613.00	
Date Bit and	OxE86 Meas	616	
DatesOtherDates72Dates72Dates73Dates80 <td>OxE86 Cert</td> <td></td> <td></td>	OxE86 Cert		
	OxE86 Meas		
Draw De WallTASDraw De Wall<			
CDNC438 Main7.81CDNC438 Main7.72CDNC58 Cat08.00CDNC58 Cat08.00CDNC68 Cat<			
CDM-G-88 Cell7.2CDM-SA CellSACDM-SA CellSA <td></td> <td>613.00</td> <td></td>		613.00	
Drifes CertRoteDrifes CertRotsDrifes CertRotsDrifes CertRotsDrifes CertRotsDrifes CertRotsDrifes CertRotsDrifes CertRotsR			
DamBS cell80.00DamBS cell805.00DamBS cell805.00DamBS Cell805.00DamBS Cell805.00DamBS Cell805.00DamBS Cell805.00JamBS DamBS Cell805.00JamBS DamBS DamBS Cell805.00JamBS DamBS DamBS DamBS Cell805.00JamBS DamBS		00.4	7.72
Driffs Cort805.00Driffs Cort805.00Driffs Cort805.00Driffs Cort805.00Driffs Cort805.00Staffs			
DarBs CamB759DarBs CamB05.000DarBs CamB05.000B0560 (1)B05.000B0560 (1)B05.000B0570 (1) </td <td></td> <td></td> <td></td>			
DAF85 Carl 085.000 DAF85 Carl 0805.000 DAF85 Carl 0805.000 SA666 DAP S8 Marces DAP S800			
Dr485 den 983 Dr485 den 9630 M4685 dbij 683 M4685 dbij 683 M4705 dbij 610 M4705 dbij 10 M4715 dbij 10 M4730 dbij 5 M4730 dbij 5 M4730 dbij 5 M4745 dbij			
OxF85 Cet 80.000 M4965 Dig 83 M4965 Dig 83 M4965 Dig 120 M4975 Dig 120 M4975 Dig 100 M4975 Dig 010 M4975 Dig 0100 M4975 Dig </td <td>OxF85 Meas</td> <td></td> <td></td>	OxF85 Meas		
94985 0ng 88 94985 0ng 12 94070 0ng 12 94070 0ng 10 94071 0ng 10 94071 0ng 9 94073 0ng 10 94073 0ng 5 94075 0ng 5 94			
34880 Dup 58 34870 Dup 120 34871 Split 10 34871 Split 5 34873 Split 5 34874 Split 5 34875 S	849695 Orig		
349705 Obj 12 349715 Obj 112 349715 Obj 10 34973 Obj 10 34974 Obj 10 34975 Obj 10	849695 Dup		
349705 Dup 112 349715 Dup 0 349715 Dup 0 349715 Dup 0 349735 Dup - 349740 Dup - 34975 Dup -	849705 Orig		
348716 Sogi 10 348715 Sogi 10 348715 Sogi 9 348715 Sogi 10 348715 Sogi 10 348715 Sogi 10 348715 Sogi 10 348735 Sogi 5 348735 Sogi 5 348735 Sogi 5 348745 Ong 6 348745 Ong 6 348755 Sogi 5 348765 Ong 6 348775 Ong 6 348775 Ong 6 348775 Ong 7.8 348785 Ong 7.28 348785 Ong 7.28 348980 Dnu 6 348980 Ong	849705 Dup		
348715 Onig 9 348715 Dip 10 348715 Dip 10 348705 Olig 5 348705 Olig 50 348705 Olig 50 348705 Olig 500 348705 Olig 500 348705 Olig 500 34870	849715 Orig		
348715 Dup 10 348720 Odp < 5	849715 Split		
34930 Orig < 5	849715 Orig	9	
349730 Dup < 5	849715 Dup	10	
349735 Snjit 349735 Snjit 5 349740 Dig <.5	849730 Orig		
34973 Dpil 5 34974 Dpil - 34974 Dpil - 34974 Dpil - 34974 Dpil - 34974 Spill - 34975 Dpil - 34975 Dpil - 34975 Dpil - 34975 Spill - 34975 Dpil - </td <td>849730 Dup</td> <td></td> <td></td>	849730 Dup		
349740 Orig 349740 Orig 349745 Orig 349745 Orig 349755 Orig 349765 Orig 349755 Orig 34975 Orig 349975 Orig	849735 Orig		
849740 Dup < 5	849735 Split		
349745 Orig < 5	849740 Orig		
349745 Split < 5			
349750 Orig < 5			
349750 Dup < 5			
349765 Orig < 5			
349765 Dup < 5			
349775 Orig 349775 Opit 349775 Opit 349775 Opit 349775 Opit 349775 Opit 349775 Opit 34975 Opit > 3000 7.36 349785 Opit > 3000 349805 Opit < 3000			
349775 Split 6 349775 Orig < 5			
349775 Orig < 5			
349775 Dup < 5			
349785 Orig > 3000 7.36 349785 Split > 3000 7.28 349785 Orig > 3000 - 349785 Dup > 3000 - 349785 Split > 3000 - 349785 Split > 3000 - 349800 Orig < 5			
349785 Split > 3000 7.28 349785 Split > 3000 349785 Split > 3000 349785 Split > 3000 349785 Split > 3000 349800 Orig < 5			7.36
349785 Drig > 3000 349785 Dup > 3000 349785 Split > 3000 349800 Orig < 5			
349785 Dup > 3000 349785 Split > 3000 349800 Orig < 5	849785 Orig		
349785 Split > 3000 349800 Orig < 5	849785 Dup		
349800 Orig < 5	849785 Split		
349800 Dup < 5	849800 Orig		
349805 Orig < 5	849800 Dup		
849805 Split < 5 849810 Orig < 5	849805 Orig		
	849805 Split		
349810 Dup < 5	849810 Orig		
	849810 Dup		

			Activation Laboratories Ltd. Report. A12-02040
Quality Control			
Analyte Symbol	Au	Au	
Unit Symbol	ppb	g/tonne	
Detection Limit	5	0.03	
Analysis Method		FA-GRA	
OxE86 Meas	623		
OxE86 Cert OxE86 Meas	613.00 599		
OxE86 Cert	613.00		
OxE86 Meas	629		
OxE86 Cert	613.00		
OxE86 Meas	595		
OxE86 Cert	613.00		
OxE86 Meas OxE86 Cert	596 613.00		
OxE86 Meas	614		
OxE86 Cert	613.00		
OxE86 Meas	623		
OxE86 Cert	613.00		
CDN-GS-8B Meas		7.58	
CDN-GS-8B Cert OxF85 Meas	835	7.72	
OxF85 Cert	805.000		
OxF85 Meas	801		
OxF85 Cert	805.000		
OxF85 Meas	803		
OxF85 Cert	805.000		
OxF85 Meas	785		
OxF85 Cert OxF85 Meas	805.000 805		
OxF85 Cert	805.000		
849515 Orig	< 5		
849515 Dup	< 5		
849525 Orig	< 5		
849525 Dup	< 5		
849535 Orig 849535 Split	< 5 < 5		
849535 Orig	< 5		
849535 Dup	< 5		
849550 Orig	1140		
849550 Dup	1320		
849555 Orig	< 5		
849555 Split 849560 Orig	< 5 < 5		
849560 Dup	< 5		
849565 Orig	< 5		
849565 Split	< 5		
849572 Orig	187		
849572 Dup	198		
849585 Orig 849585 Dup	< 5 < 5		
849595 Orig	< 5		
849595 Split	< 5		
849595 Orig	< 5		
849595 Dup	< 5		
849605 Orig	< 5		
849605 Split 849605 Orig	< 5 < 5		
849605 Dup	< 5 < 5		
849620 Orig	< 5		
849620 Dup	< 5		
849625 Orig	< 5		
			Page 6 of 7

ality Control		
yte Symbol	Au	Au
	ppb	g/tonne
ction Limit	5	0.03
		FA-GR/
ysis Method FA		FA-
25 Split	< 5	
30 Orig	< 5	
30 Dup	< 5	
1 Orig	< 5	
1 Dup	< 5	
	630	
	660	
	720	
-	540	
	< 5	
5 Dup	8	
	< 5	
	< 5	
	24	
34 Dup	24	
35 Orig	24 9	
85 Split	5	
o opin	э	

Report: A12-02646

Activation Laboratories Ltd.

APPENDIX E: Expenditures

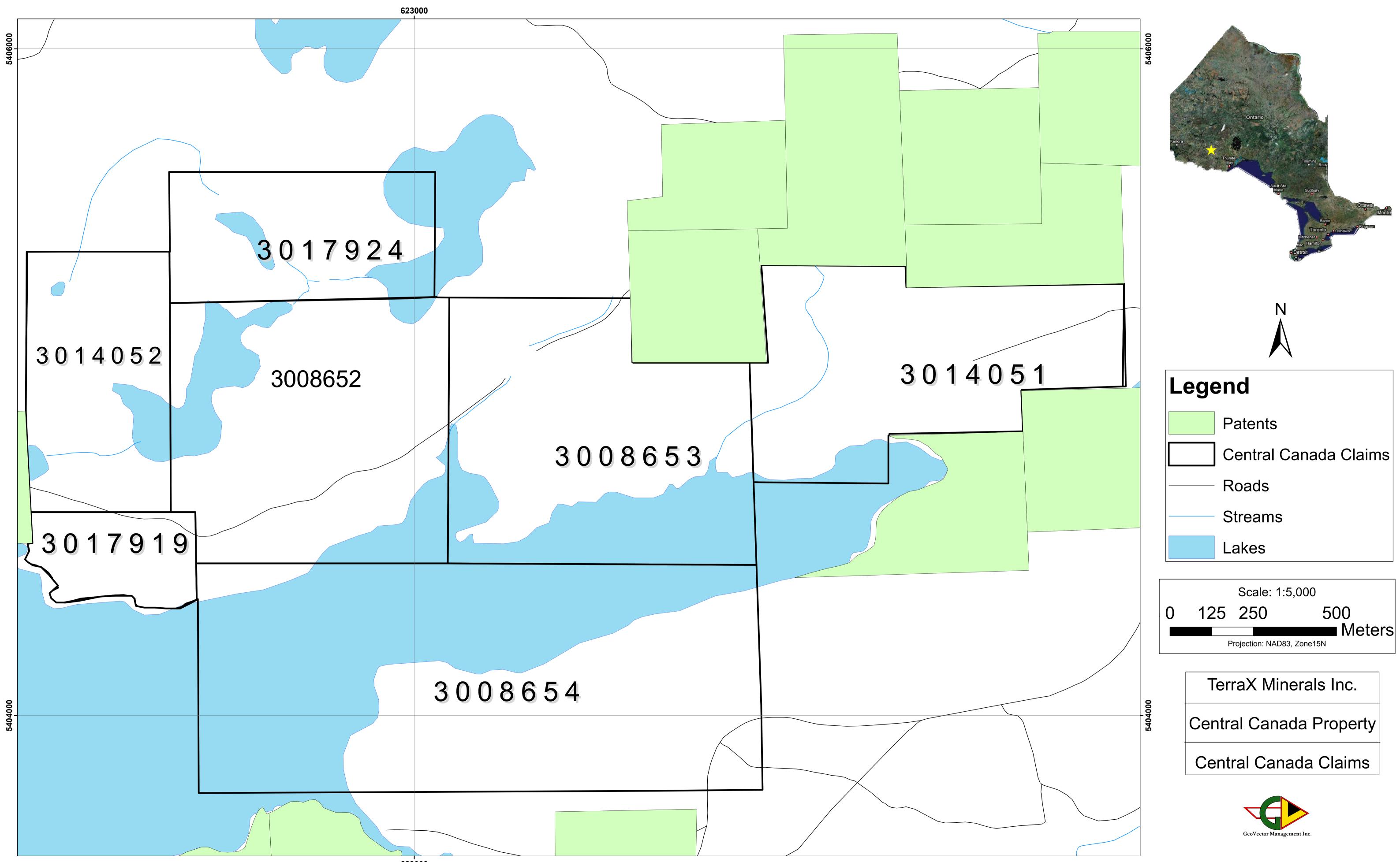
The Central Canada drilling program was conducted in conjunction with a drilling program on TerraX's nearby Sunbeam-Pettigrew property. 68.7% of the drilling was conducted on Sunbeam-Pettigrew and 31.3% on Central Canada. Thus general costs such as mobilization, saw blades, food etc are charged 31.3% to Central Canada and 68.7% to Sunbeam Pettigrew. The total cost for the Central Canada program reported herein is \$93,265.72 (Table E1). All work was completed on claim 3008652.

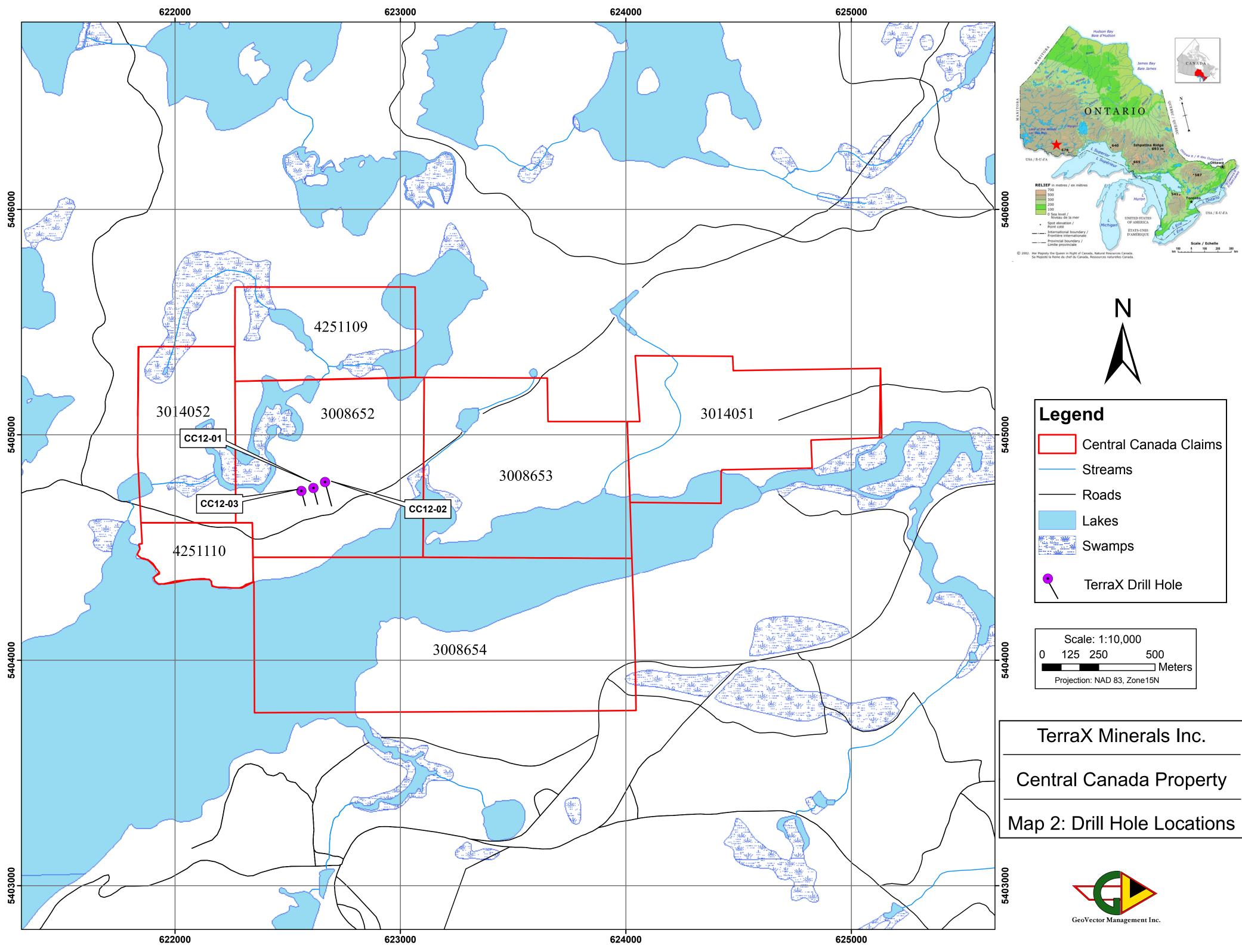
				Cost	
				per	
Section	Item	Detail	Units	unit	Total
А	Drill Mobilization				\$5,947.00
А	Drilling, drill-related				\$54,695.93
А	Core Cutting		10 days	150	\$1,500.00
А	Bjorkman Logistics		4 days	508.5	\$2,034.00
А	Bjorkman Logging		9 days	565	\$5,085.00
	GeoVector Logging,		5.75		
А	Supervision		days	678	\$3,898.50
В	Flex-it Rental				\$1,117.74
В	Core Trays				\$445.65
В	Chemical Analyses				\$4,096.53
В	Saw Blades				\$495.17
В	Cook		10	250	\$2,500
В	Internet				\$123.44
В	Report Writing		1 day	678	\$678.00
	Core-shed Supplies,				
В	Preparation				\$2,887.93
С	Snowmobile Rental				\$711.46
С	Bjorkman Truck, Gas				\$499.57
С	GeoVector Truck, Gas				\$697.43
С	Flight				\$802.58
D	Food				\$1,435.34
D	Apartment Rental				\$626.00
D	Driller Accommodation				\$2,847.20
D	Hotel				\$141.25
		Total			\$93,265.72

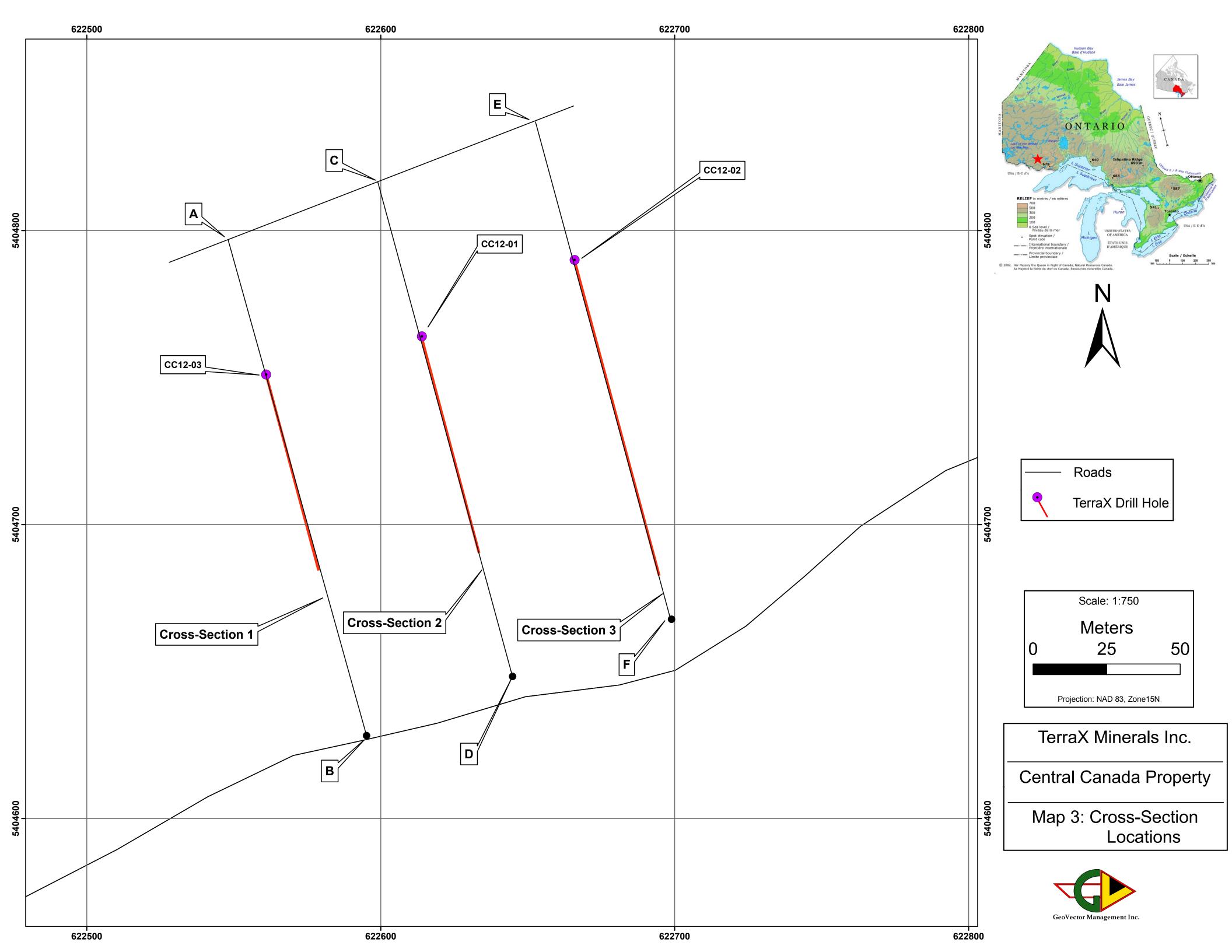
Table E1:	Expenditures a	according to the	format of Form 0241E

APPENDIX F: Personnel and Dates Worked

Tom Setterfield 21 Tripp Crescent Ottawa, ON K2J 1C5 Drill Supervision: March 1-10; Report Writing: August 11-12, 2012; 6.75 days


Bjorn Bjorkman P.O. Box 1814 Atikokan, ON POT 1C0 Logistics: March 1-8, 2012; 4 days


Katarina Bjorkman P.O. Box 1814 Atikokan, ON POT 1C0 Logging: March 7-15, 2012; 9 days


Pat Thorson Atikokan, ON P0T 1C0 Cooking, March 4-13, 2012; 10 days

William Peters Thunder Bay, ON Core Cutting, March 7-16, 2012; 10 days

Cartwright Drilling Inc. Thunder Bay, ON March 1-9, 2012

