We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Report

Winter 2010 Drilling Program Falcon Lake Property

FALCON LAKE TOWNSHIP
THUNDER BAY MINING DIVISION, ONTARIO, CANADA
NTS 52108

Prepared For:

Canadian Orebodies

Prepared by:

Michael Thompson, P.Geo. and Avery Henderson Fladgate Exploration Consulting Corporation

Date:

March 24, 2011

1 Table of Contents

List	of Tables	3
List	of Figures	3
List	of Maps	3
2	Introduction	4
3	Terms of Reference	4
4	Disclaimer	4
5	Property Description and Location	4
6	Accessibility, Local Resources and Infrastructure	7
7	Climate and Physiography	7
8	Geological Setting	7
	8.1 Regional and Local Geology	
	8.2 Property Geology	
9	History of Exploration on the Property	
10	Current Program	
. •	10.1 Drill Program	
11	Sampling Method and Approach	.12
12	Sample Preparation, Analysis and Security	
13	Interpretations and Conclusions	.12
14	Recommendations	.13
15	References and Literature	.13
16	Date	.13
17	Statement of Qualifications	.14
App	endix I – Schedule of Costs	.17
App	endix II – Work Schedule	.18
App	endix III – Certificates of Analysis	.20
App	endix IV – Drillhole Sections	.30
App	endix V – Detailed Drill Logs	.31

List of Tables

Table 1 – Falcon Lake Property Claims	7
Table 2 – Past Exploration - Falcon Lake Property	10
Table 3 – Completed 2010 drillholes	11
Table 4 – Significant results from Falcon Lake 2010 drilling	12

List of Figures

Figure 1: Regional Location.	5
Figure 2: Falcon Lake Property location	6
Figure 3: Clearing the North road to the Falcon Lake Property (photo)	8
Figure 4: Positioning the drill onto the setup for CO-10-002 (photo)	8
Figure 5: Regional geology (modified from Pye, E.G., 1968)	9

List of Maps

Map 1: Falcon West Showing, 2010 Drill Program......Map Pocket

2 Introduction

This report details the work completed during the drilling program completed during the month of December 2010 by Fladgate Exploration Consulting Corporation (Fladgate) on behalf of Canadian Orebodies Inc. (Canadian Orebodies). The work was completed on the Falcon Lake Property (the Property), located northeast of Armstrong, Ontario, Canada. Canadian Orebodies acquired its interest in the property as part of its focus in discovering and developing an economic lithium & tantalum deposit.

This report was authored by Michael Thompson, P. Geo., and Avery Henderson.

3 Terms of Reference

This report was prepared at the request of Canadian Orebodies for the use of filing assessment as required under the Ontario Mining Act.

4 Disclaimer

This report is based on information from assessment reports, private reports and general geological reports and maps listed in the References and Literature Section. Although many authors of such reports appear to be qualified and the information appears to have been prepared to standards acceptable at the time, the presentation of the data does not meet present requirements and therefore the author is unable to ascertain the full quality of the information. The author does not take responsibility for the information provided from such sources.

5 Property Description and Location

The Property is located within the Falcon Lake area, consisting of 5 contiguous claims (Table 1), located approximately 90km northeast of Armstrong, Ontario, Canada (Figure 2).

Armstrong, Ontario is located approximately 250km north of Thunder Bay, Ontario, at the end of Highway 527, running along the west side of Lake Nipigon (Figure 1).

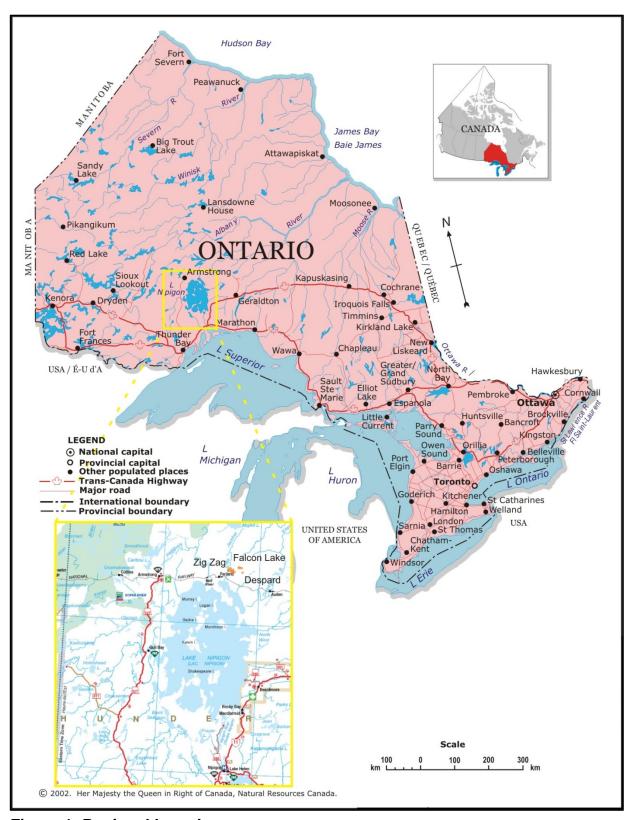


Figure 1: Regional Location.

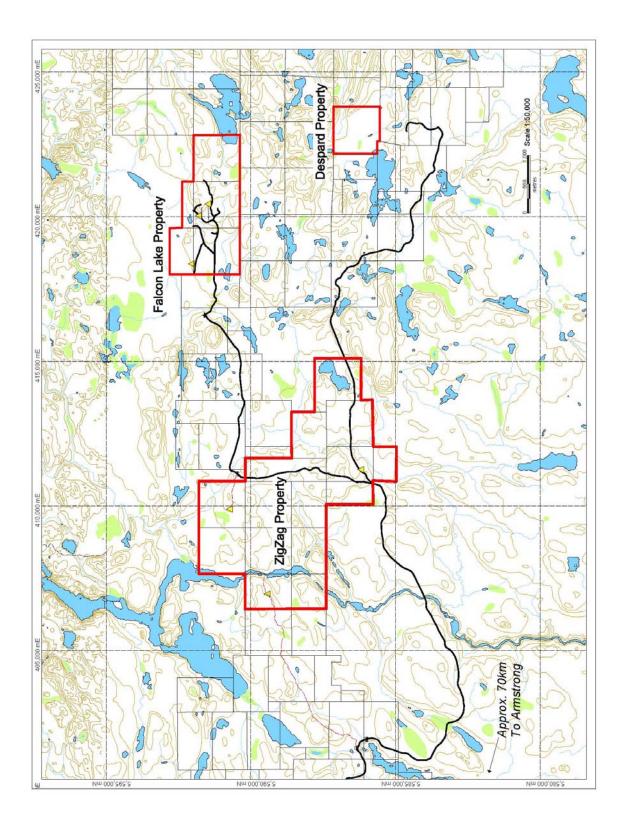


Figure 2: Falcon Lake Property location.

Table 1 – Falcon Lake Property Claims

Mining Claim	Township/Area	Units	Date Recorded	Date Due
4252441	Falcon Lake (G-0035)	8	Dec. 9, 2009	Dec. 9, 2011
4252442	Falcon Lake (G-0035)	4	Dec. 9, 2009	Dec. 9, 2011
4250593	Falcon Lake (G-0035)	16	Jul. 17, 2009	Jul. 17, 2011
4250594	Falcon Lake (G-0035)	16	Jul. 17, 2009	Jul. 17, 2011
4250595	Falcon Lake (G-0035)	16	July. 17, 2009	Jul. 17, 2011

6 Accessibility, Local Resources and Infrastructure

Main access to the site is achieved via the North Jackfish road, which is an extension of Airport Rd., leading northeast out of Armstrong, Ontario. The roads leading onto the Property itself are fairly well-maintained logging roads.

The Jackfish Road is considered a gravel logging road and is in consistent use by local outdoorsmen and the Whitesand First Nation. Although it is fairly well-maintained, an off-road capable truck or SUV is recommended.

The North Road separates from the main Jackfish road at approximately the 76km marker, while the turnoff to the Property itself is located at the 11km marker along the North Road. The network of roads can easily access most of the Property by an off-road capable truck or ATV. A future government forest harvesting program planned within the next 3 years, may extend the existing road network throughout the rest of the Property.

7 Climate and Physiography

Climatic conditions during the Winter 2010 program were typical for the time of year. Temperatures for the month of December ranged from a high of -5°C to -25°C. Snowfall was variable throughout the month, and there was roughly 3-5 feet of snow on the ground at the beginning of the program.

8 Geological Setting

8.1 Regional and Local Geology

The property is located within the Caribou Greenstone Belt, which trends ENE along the top of Lake Nipigon, extending eastward from the larger Onamon-Tashota Greenstone Belt, and lying along the northern margin of the Wabigoon Subprovince (marked by the Sydney Lake-Lake St. Joseph Fault zone). The Caribou belt differs from the Marshall Lake portion of the Tashota belt in being dominated by mafic and ultramafic rock compositions, including komatiites, with lesser intermediate and felsic metavolcanic rocks. The Caribou belt also contains horizons of metasedimentary units, including abundant iron formation. Numerous Archean-aged mafic and ultramafic bodies intrude the volcanics. In the area of the property, a prominent SSW-trending arm of the belt wraps around the northwest end of a large, early, composite felsic pluton. The contacts of

the pluton can be seen on regional vertical gradient magnetic maps, and is reported (Pye, 1968) to be composed of tonalite and granodiorite, with lesser granite, monzonite and diorite phases. The SSW arm area is also cut by a series of prominent late SSW-trending faults (with left-lateral displacement) that dictate the odd shape of Crescent Lake. Lying near the north end of the Nipigon Embayment, the area has also been affected by the Proterozoic Mid-Continental Rift event, expressed locally by outliers of Logan diabase sills that form prominent hills in the area, and can be seen on magnetic maps as strong highs or lows.

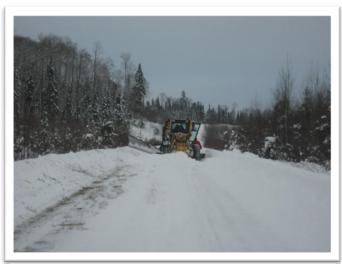


Figure 3: Clearing the North road to the Falcon Lake Property (photo).

Figure 4: Positioning the drill onto the setup for CO-10-002 (photo).

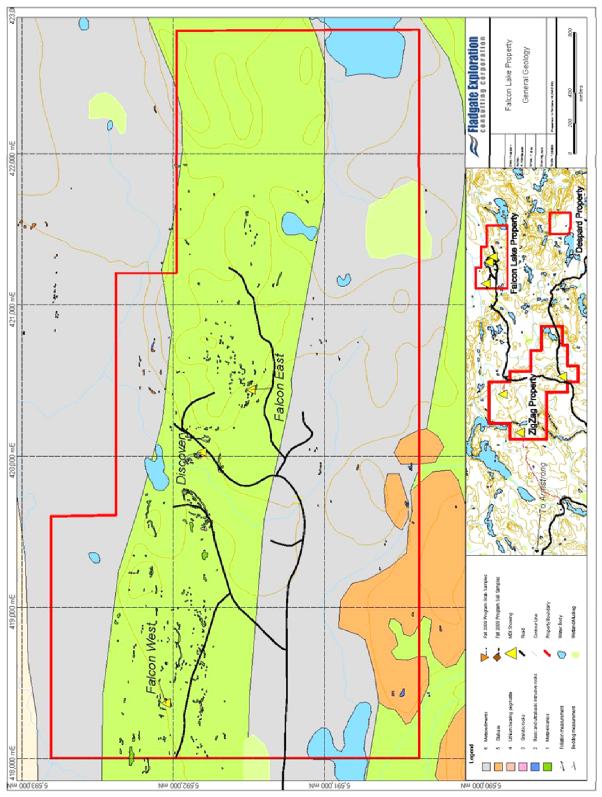


Figure 5: Regional geology (modified from Pye, E.G., 1968).

8.2 Property Geology

The Falcon Lake property is comprised mostly of a large volcanic package on the northern portion of the property, and sediments to the south (Figure 3). Both units have been metamorphosed to at least a greenschist facies, with instances of garnet in some outcrops indicating metamorphism as high as amphibolites facies.

The metavolcanics throughout the property occur in several different forms, mostly as massive basalts, whereas several outcrops show relatively unaltered pillow selvages. The metasediments are mostly poorly sorted greywackes and arkosic wackes.

Granitic intrusions are common, mostly in the form of pegmatite dykes as well as some simple granitic dykes. There are some instances of quartz and feldspar porphyries. In some areas, the pegmatites are truncated by Logan diabase sills.

8.3 Alteration and Mineralization

The mineralization of interest consists of coarse-grained spodumene-bearing pegmatites which are enriched in Li with associated Be, Cs, Ga, Nb, Rb, Sn and Ta.

There is no recognized alteration associated with the mineralized pegmatites into the host metavolcanics and metasediments.

9 History of Exploration on the Property

Canadian Orebodies completed a small mapping and sampling program in 2009. This program included extensive mapping and sampling over the entire Falcon Lake property, as well as a trenching and channel sampling program over the Falcon West showing (Claim 4252441).

Historical, documented exploration is summarized in Table 2 below.

Table 2 – Past Exploration - Falcon Lake Property

Year	Operator	Work	Principal Reference
1956-1958	British Canadian	Line cutting and Drill Program	BCLM Report
	Lithium Mines Ltd.	totalling 22 holes	
1978-1979	E&B Explorations Inc.	Grid cutting and Geochemistry	E&B Assessment
	& Cominco Ltd.	Program	Report

Several companies have conducted work in the area immediately surrounding (moreover to the West) of the Falcon Lake claims, however British Canadian Lithium Mines Ltd. (BCLM) was the only company to conduct work on the current claims.

BCLM conducted a drill program in 1956 over the three major showings on the property: Falcon West, Falcon East, and Discovery. Three holes were drilled in the Discovery showing, six were drilled into Falcon East, and nine were drilled into the Falcon West showing, totaling eighteen

holes on the property. As mentioned in the drilling report submitted by BCLM, there are four more holes whose locations are yet unknown. Excluding the four unknown holes, the eighteen holes drilled a total of 5,241.5 feet (~1,597.6m).

A summary of work by E&B Explorations Inc. and Cominco Ltd. outlines several properties where work was completed in the Crescent and Falcon Lake areas in 1980. Claim Group 'B' outlines most of the current Falcon Lake property. Work included a 22.43 mile grid cut by G.D. Hudson and Son, as well as a geochemistry program undertaken by E&B Explorations. A total of 1103 samples were taken for the geochemistry program.

10 Current Program

10.1 Drill Program

The 2010 Winter program consisted of a three-hole drill program (Table 3), aimed to target the Falcon West showing and determine overall lithium & tantalum consistency across the known pegmatite.

The drilling was performed by Rugged Aviation Inc., based out of Kenora, Ontario, Canada. The drilled was mobilized to Armstrong on December 15, and then out to site the following day. Drilling commenced on December 17th, with hole CO-10-001, and was completed on December 22rd, with hole CO-10-003. Demobilization back to Thunder Bay, along with the uncut drill core, was done over the course of the 23rd.

Initial planning had the holes twinning historical holes drilled by British Canadian Lithium Mines Inc., to confirm historical lithium grades. However, small adjustments to the locations of the holes were made due to inconsistencies in the rectification of the historical data, therefore the locations of the historical holes were not accurately known. The orientation of the historical holes however (i.e. azimuth and dip), were used for the current drill program.

Table 3 – Completed 2010 drillholes

Drillhole ID	Easting (NAD83)	Northing (NAD83)	Azimuth	Dip	Depth (m)	Pegmatite Intersection (m)
CO-10-001	418449.00	5592004.00	300	-45.0	103.3	20.2
CO-10-002	418422.00	5592003.00	300	-60.0	94.8	13.1
CO-10-003	418423.00	5592042.00	300	-60.0	65.0	11.0

11 Sampling Method and Approach

Core logging and subsequent sampling/cutting were performed in Thunder Bay, Ontario, by Fladgate. All pegmatite was sampled, mostly at 1m intervals, as well as any granite that was discovered. A QA/QC program was put in place that involved placing lithium standard material (SRM 181) every 25 samples, as well as a granite blank every alternating 25 samples. The blank material was obtained from Nelson Granite, in Vermilion Bay, Ontario.

The SRM 181 standard was sourced from the National Institute of Standards and Technology (NIST), part of the U.S. Department of Commerce.

12 Sample Preparation, Analysis and Security

The unsampled core was brought from Falcon Lake to Fladgate's core shack in Thunder Bay, Ontario, by truck. The samples were then cut and placed in standard clear sample bags, and then placed in rice bags in groups of 10, where able.

The samples were brought by truck to the ALS Chemex Preb Lab, located in Thunder Bay, where they were prepped to be analysed by the 48 element ME-MS61 method, which analyses for all the targeted Li, Ta, Cs and Be elements.

13 Interpretations and Conclusions

The primary intentions of drilling the Falcon West showing were to recreate and confirm the historical results listed by British Canadian Lithium Mines. All three drillholes intersected the showing at depth, with an average width of approximately 15m (Table 3).

While the current drill program did not precisely twin the historical BCLM drilling, the intersected pegmatite is essentially the same. Results from the current drilling returned several Li_2O high-grade hits from all three holes, showing that a general high-grade trend is consistent across the entire showing (Table 4).

Table 4 – Significant results from Falcon Lake 2010 drilling

•				•					
Hole ID	From	То	Width	Ве	Cs	Nb	Rb	Li ₂ O	Ta ₂ O ₅
	(m)	(m)	(m)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(ppm)
CO-10-001	69.3	83.3	14.0	145.4	166.0	62.5	2080.7	0.99	52.5
including	69.3	74.3	5.0	214.7	189.8	69.4	2862.0	1.25	46.6
Including	79.3	83.3	4.0	128.7	120.1	78.7	1657.5	1.50	47.9
CO-10-002	55.3	62.3	7.0	136.4	377.9	46.1	3477.1	1.07	68.6
CO-10-003	39.4	50.4	11.0	115.2	83.3	62.5	1377.1	1.10	50.0
including	44.4	50.4	6.0	156.6	84.7	79.9	1670.0	1.52	48.5

14 Recommendations

Current and historical drilling has revealed very little extension of the pegmatite to the north or south, on surface. However, there is every indication that the pegmatite continues at depth, as the intersection width at surface is the same as the drilled intersection at depth. It is recommended that further drilling be undertaken to determine the vertical extension of the pegmatite.

Further investigation to the extension of the pegmatite in the north and south directions should be undertaken before any further drilling occurs to investigate any strike length (i.e. mag survey, etc).

15 References and Literature

Author	Year	Title
BCLM	1956	British Canadian Lithium Mines Ltd., Diamond Drill hole logs.
Burns, R.F.	1980	EBJV Crescent Lake – Assessment Report on Claims.
Pye, E.G.	1968	Geology of the Crescent Lake Area, District of Thunder Bay, Ontario. Department of Mines – Geological Report 55.

16 Date

This report was completed on March 24, 2011.

17 Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Michael John Thompson, of the CITY of THUNDER BAY, in the PROVINCE of ONTARIO, hereby certify:

I am the President and a Principal Geologist for the geological consulting firm Fladgate Exploration Consulting Corporation.

I graduated from the University of Toronto in Toronto, Ontario, Canada and received my Honours Bachelor of Science Degree, Geology in 1997.

I have practiced continuously as an exploration geologist from that time until present that has included the design and implementation of a variety of grassroots, advanced, mine exploration and research projects in precious, base metal and industrial mineral programs in North and South America.

I am a member in good standing of the Association of Professional Geoscientists of Ontario (APGO #1521). I am also a member in good standing with the Prospectors and Developers Association of Canada, the Ontario Prospectors Association, the Society of Economic Geologists and the Geological Association of Canada.

I am, through Fladgate Exploration Consulting Corporation, currently providing consulting services to Canadian Orebodies.

I have no interest, either directly or indirectly, in the subject property.

This report is based on a study of all information made available to me, both published and unpublished, and on information collected in the field by Fladgate Exploration Consulting Corporation personnel under my supervision, or provided to me during the period of December, 2010 to March, 2011.

Dated in Thunder Bay, Ontario, this 24th day of March, 2011.

Michael John Thompson, P. Geo.

STATEMENT OF QUALIFICATIONS

I, Avery David Henderson, of the CITY of THUNDER BAY, in the PROVINCE of ONTARIO, hereby certify:

I am employed with the geological consulting firm Fladgate Exploration Consulting Corporation.

I am a graduate of Lakehead University, Thunder Bay, Ontario, with an Honours Bachelor of Science degree, majoring in Geology.

I have been employed as a Project Manager with Fladgate Exploration Consulting Company since my graduation in May, 2008.

I am, through Fladgate Exploration Consulting Corporation, currently providing consulting services to Canadian Orebodies.

I have no interest, either directly or indirectly, in the subject property.

This report is based on a study of all information made available to me, both published and unpublished, and on information collected in the field by myself and by Fladgate Exploration Consulting Corporation personnel, or provided to me during the period of December, 2010 to March, 2011.

Dated in Thunder Bay, Ontario, this 24th day of March, 2011.

Avery David Henderson

Appendices

Appendix I – Schedule of Costs

Work Performed						
Date From	Date To	Description	Cost			
Dec. 13, 2010	Dec. 23, 2010	Project Manager Consulting Fees	\$17,937.5			
Dec. 13, 2010	Jan. 24, 2011	Geotechnician Consulting Fees	\$2,000.00			
Dec. 15, 2010	Dec. 23, 2010	Drilling (Rugged Aviation Inc.)	\$45,351.79			

	Travel						
Date From	Date To	Description	Cost				
Dec. 13, 2010	Dec. 22, 2010	Truck Rental	\$1,200.00				
Dec. 13, 2010	Dec. 22, 2010	Extra Mileage	\$622.58				
Dec. 13, 2010	Dec. 22, 2010	ATV Rental	\$1,250.00				
Dec. 13, 2010	Dec. 22, 2010	Fuel	\$197.16				

Supplies							
Date From	Date To	Description	Cost				
Jan. 21, 2011	Jan. 24, 2011	Core saw & Diamond blades	\$1,600.00				
Dec. 15, 2010	Dec. 15, 2010	Other Supplies	\$36.00				

	Other							
Date From	Date To	Description	Cost					
Dec. 15, 2010	Jan. 4, 2010	Heavy Equipment Rental (Dozer, Float Truck, etc.)	\$9,710.00					
Feb. 6, 2011	Feb. 6, 2011	Assaying	\$5,548.36					

	Food & Lodging										
Date From	Date To	Description	Cost								
Dec. 13, 2010	Dec. 22, 2010	Food/Expenses	\$688.31								
Dec. 13, 2010	Dec. 22, 2010	Accommodations	\$1,012.50								

TOTAL	\$87,154.20

Appendix II - Work Schedule

Legend
Thunder Bay (in days)
Field Time (in days)

	Pr	oject Managers	
Date	Avery Henderson	Stephanie Vanos	John Fingas
Dec. 10, 2010			
Dec. 11, 2010			
Dec. 12, 2010			
Dec. 13, 2010	1.00		
Dec. 14, 2010	1.00		
Dec. 15, 2010	1.00		
Dec. 16, 2010	1.00		
Dec. 17, 2010	1.00		
Dec. 18, 2010	1.00		
Dec. 19, 2010	1.00		
Dec. 20, 2010	1.00		
Dec. 21, 2010	1.00		
Dec. 22, 2010	1.00		
Dec. 23, 2010	1.00		
Dec. 24, 2010			
Dec. 25, 2010			
Jan. 10, 2011			
Jan. 11, 2011		0.75	0.75
Jan. 12, 2011		0.75	0.875
Jan. 13, 2011		0.625	0.625
Jan. 14, 2011			
Jan. 15, 2011			
Jan. 16, 2011			
Jan. 17, 2011			
Jan. 18, 2011			
Jan. 19, 2011			
Jan. 20, 2011			
Jan. 21, 2011			
Jan. 22, 2011			
Jan. 23, 2011			
Jan. 24, 2011			
Jan. 24, 2011			
Jan. 25, 2011			
TOTAL	11.00	2.125	2.25

	Geotechnicians											
Date	Andrew Blampin	Description										
Jan. 21, 2011	1.00	Core Cutting.										
Jan. 22, 2011	1.00	Core Cutting.										
Jan. 23, 2011	1.00	Core Cutting.										
Jan. 24, 2011	1.00	Core Cutting.										
TOTAL	4.00											

	Drilling Schedule									
Date	Description									
Dec. 15, 2010	Drill arrives in Armstrong, Ontario; standby for road to Falcon Lake to be cleared.									
Dec. 16, 2010	Unloading drill on site; overall mobilization.									
Dec. 17, 2010	10 Drill setup; drilling begins with hole CO-10-001.									
Dec. 18, 2010	Drilling hole CO-10-001.									
Dec. 19, 2010	Finish drilling hole CO-10-001.									
Dec. 20, 2010	Drilling hole CO-10-002; Completed at end of night shift.									
Dec. 21, 2010	Drilling hole CO-10-003; Completed at end of night shift.									
Dec. 22, 2010	Drill pack-up and demob back to Thunder Bay, Ontario.									

Appendix

Certificates

of

Analysis

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com TO: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9 Page: 1 Finalized Date: 6- FEB- 2011 Account: FLGEXP

CERTIFICATE TB11011392

Project: COB- ZIG

P.O. No.:

This report is for 62 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 24- JAN- 2011.

The following have access to data associated with this certificate:

AVERY HENDERSON

MICHAEL THOMPSON

SAMPLE PREPARATION									
ALS CODE	ALS CODE DESCRIPTION								
WEI- 21	Received Sample Weight								
LOG- 22	Sample login - Rcd w/o BarCode								
LOG-23	Pulp Login - Rcvd with Barcode								
CRU- QC	Crushing QC Test								
PUL- QC	Pulverizing QC Test								
CRU- 31	Fine crushing - 70% < 2mm								
SPL- 21	Split sample - riffle splitter								
PUL- 31	PUL- 31 Pulverize split to 85% < 75 um								

ANALYTICAL PROCEDURES							
ALS CODE	DESCRIPTION	INSTRUMENT					
Li- OG63	Ore grade Li - 4ACID	VARIABLE					
ME-OG62o	Ore Grade open beaker - ICPAES	ICP- AES					
ME- MS81	38 element fusion ICP- MS	ICP- MS					
ME- MS61	48 element four acid ICP- MS						

To: FLADGATE EXPLORATION CONSULTING CORPORATION ATTN: AVERY HENDERSON 195 PARK AVE THUNDER BAY ON P7B 1B9

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 6- FEB- 2011 Account: FLGEXP

Minera	linerals											CERTIFICATE OF ANALYSIS TB11011392					
Sample Description	Method Analyte Units LOR	WEJ- 21 Recvd Wt. kg 0.02	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME- MSG1 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MSG1 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MSG1 Cr ppm I	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS6 Fe % 0.01	
E450951		1.61	0.06	7.19	<0.2	970	0.73	0.02	0.97	0.03	140.5	2.7	15	1.77	5.5	1.30	
E450952		1.63	< 0.01	5.47	0.3	10	155.0	0.03	0.33	0.20	0.17	0.4	8 7	14.85 20.7	1.1	0.29	
E450953		1.60	0.04	3.76	0.3	10	116.5	0.03	0.32	0.13	0.26 12.05	0.5 57.4	70	156.0	122.5	10.45	
E450954	- 1	1.79	0.14	7.99	<0.2	90	5.41	0.19	6.39 0.49	0.27	0.10	0.7	9	134.0	3.7	0.38	
E450955		1.67	0.15	5.55	0.6	10	159.5	0.05	0.440.00	061075				9,51,055	1550	0.000	
E450956		1.70	0.06	5.70	0.7	20	131.0	0.22	0.27	0.12	0.10	0.5	11	93.0	1.9	0.43	
E450957		1.98	0.06	7.55	0.4	30	265	7.75	0.33	0.23	0.16	0.3	13	41.1	1.0	0.69	
E450958		1.65	0.04	6.29	1.1	40	118.0	0.27	0.25	0.07	0.15	0.5	9	105.5	1.7	0.45	
E450959		1.63	< 0.01	5.84	1.1	60	122.5	0.22	0.30	0.09	0.38	1.4	8	83.6 51.0	1.4	0.45	
E450960		1.52	0.05	6.77	0.4	70	143.5	0.06	0.28	0.12	0.99	1.3					
		1.66	<0.01	7.29	0.8	20	195.5	0.04	0.46	0.11	2.05	8.0	10	35.8	3.3	0.37	
E450961 E450962		3.26	0.17	9.25	1.4	220	3.32	0.12	6.84	0.13	115.0	46.4	313	49.3	64.0	8.29	
H181151		3.38	0.17	8.66	0.8	130	11.15	0.21	6.21	0.30	12.65	52.1	73	322	94.0	10.15	
H181152		1,58	0.08	6.93	0.6	60	57.4	0.05	0.41	0.02	0.71	1.3	10	133.5	9.6	0.40	
H181153		1.75	0.03	8.05	1.0	100	323	0.04	0.71	0.19	0.28	0.6	11	116.5	1.6	0.88	
		1.74	<0.01	7.45	1.2	90	84.0	0.23	0.70	0.12	0.16	0.3	8	>500	1.3	0.44	
H181154		1.66	<0.01	7.19	0.6	170	250	0.50	0.76	0.21	0.25	0.4	12	225	3.2	0.55	
H181155		1.59	<0.01	6,29	0.8	70	241	0.09	0.53	0.12	0.08	0.5	13	85.7	2.4	0.55	
H181156	1	1,62	<0.01	6.20	0.9	50	175.5	0.08	0.34	0.15	0.06	0.5	11	90.7	1,2	0.40	
H181157 H181158		1,35	< 0.01	6.78	1.5	40	164.5	0.13	0.80	0.26	0.59	2.2	9	242	17.0	0.63	
		3.80	0.17	8.35	0.7	110	6.49	0.26	6.75	0.40	16.55	48.6	76	174.5	147.5	10.50	
H181159		1,67	<0.01	7.67	0.7	50	123.5	0.14	0.50	0.16	0.37	0.7	8	117.5	5.2	0.37	
H181160		1.47	0.01	7.26	0.7	110	146.D	0.34	0.50	0.06	0.30	0.6	11	186.0	2.4	0.47	
H181161		1.69	<0.01	7.21	8.0	60	134.5	0.10	0.97	0.05	0.09	0.5	8	118.5	1.1	0.54	
H181162 H181163		1.47	< 0.01	7.04	0.7	130	129.5	1.59	0.67	0.20	0.05	0.5	8	119.0	9.6	0.58	
			<0.01	7.06	0.7	60	153.5	0.43	0.68	0.02	0.07	0.4	11	127.5	2.3	0.51	
H181164		1.46 1.65	<0.01	4.74	0.6	40	97.4	0.63	0.36	< 0.02	< 0.01	0.3	9	115.5	2.8	0.34	
H181165		1 253,531 /.	< 0.01	7.43	0.6	90	141.5	1.08	0.86	0.11	0.17	0.4	8	209	1.7	0.50	
H181166		1.60 1.50	0.09	7.38	1.3	90	90.8	1.13	0.78	0.10	0.15	0.4	6	123.5	1.9	0.47	
H181167		1.59	0.01	7.12	1.6	80	122.5	0.31	0.62	0.13	0.17	0.9	7	130.0	1.5	0.39	
н181168		28332	25.77.77		5,1	170	154.0	0.35	0.92	0.16	0.12	0.6	8	205	7.1	0.53	
H181169		1.62	0.02	7.65 7.04	0.7	240	126.0	0.23	0.74	0.19	0.37	0.6	9	59.9	4.9	0.56	
H181170		1.61	0.05 <0.01	7.42	0.9	140	137.0	0.11	0.68	0.19	1.02	3.6	9	85.1	4.3	0.90	
H181171		1.63 1.95	<0.01	6.76	0.9	30	170.5	0.07	0.80	0.19	0.88	1.1	10	45.7	15.3	0.44	
H181172		3.47	0.10	7.79	<0.2	70	10.50	0.22	6.11	0.17	12.05	41.6	64	188.0	132.0	9.68	
H181173		1,555.			0,3	50	1.24	0.10	6.37	0.18	13,15	43.2	80	92.2	129.0	9.79	
H181174		3.80	0.09	7.79	0.3	80	44.0	0.10	0.90	0.02	0.94	2.0	10	138.0	3.6	0.58	
H181175		1.62	0.04	7.57 7.33	3.0	<10	519	0.73	0.41	0.12	0.23	1.6	205	51.1	10.2	0.58	
H181176		0.03	0.05	6.96	0.8	30	335	0.04	1.24	< 0.02	0.88	2.9	8	251	7.1	0.68	
H181177		1.39 3.84	< 0.01	7.76	<0.2	60	3.90	0.12	5.82	0.15	16.15	42.5	65	456	141.0	9.50	
H181178		3.84	0.09	7.70	-0.2	-	0.00			111111111111111111111111111111111111111							

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9 Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 6- FEB- 2011 Account: FLGEXP

Minera	IS								С	ERTIFIC	CATE O	F ANAL	YSIS	TB110	11392	
Sample Description	Method Analyte Units LOR	ME-MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MSG1 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10	ME- MS6 Pb ppm 0.5
E450951	_	17.55	0.18	6.2	0.012	4.41	76.2	19.8	0.23	202	0.15	2.41	3.2	4.8	320	36,9
E450951 E450952		47.0	0.09	2.6	< 0.005	0.38	< 0.5	1090	0.01	325	0.20	5.97	90.6	1.9	1770	1.4
E450952		45.6	0.11	2.5	< 0.005	0.52	< 0.5	2860	0.01	336	0.09	5.58	79.1	1.4	1060	2.0
E450954	1	19.85	0.58	0.9	0.078	1.20	4.6	1650	4.91	2070	0.13	0.86	5.1	112.0	400	7.2
E450955		55.7	0.11	2.1	<0.005	1.77	<0.5	6290	0.03	340	0.08	3.30	64.3	1.7	950	2.6
E450956		55.9	0.12	1.3	<0.005	1,56	<0.5	7640	0.01	581	0.10	2.72	88.9	1.5	1440 1490	2.8
E450957		73.5	0.14	0.4	< 0.005	1.52	<0.5	9990	0.02	603	0.10	1.82	100.5 69.7	1.0	1070	2.5
E450958		58.5	0.13	0.5	< 0.005	2.77	<0.5	7510	0.02	416	0.09	2.24	66.7	0.9	1250	2.9
E450959		55.7	0.11	0.9	< 0.005	2.33	<0.5	5460	0.03	376	0.09	2.96 3.24	89.5	0.9	1200	3.4
E450960		56.7	0.13	1.2	<0.005	1.31	<0.5	5430	0.06	347	0.10	1707.0	5.5400			
E450961	1	50.6	0.11	2.3	< 0.005	1.55	0.7	600	0.05	183	0.09	5.06	82.5	1.8 161.0	1640 1840	3.7
E450962		21.9	0.33	3.9	0.069	0.71	55.6	366	5.65	1940	28.4	1.95	8.4 7.8	72.1	750	4.8
H181151	10	21.6	0.31	1.2	0.074	0.99	5.1	500	4.49	2180	0.17	1.97 3.06	65.5	1.6	960	9.5
H181152	1	41.4	0.10	1.2	< 0.005	4.26	<0.5	1170	0.07	160	0.17	1.52	83.4	1.2	1120	2.1
H181153	la l	83.3	0.14	0.3	<0.005	2.20	<0.5	8600	0.06	611	1.57.551	1,550,00	75.55.55	10,000	0.000	
H181154		49.5	0.12	0.4	<0.005	5.82	<0.5	2660	0.02	255	0.11	1.61	45.3 66.8	0.9	1830 1920	5.3 4.3
H181155		58.8	0.14	0.6	<0.005	4.35	<0.5	4300	0.03	394	0.09	1.49 3.07	84.7	0.9	1220	1.4
H181156		63.4	0.13	0.5	< 0.005	1.53	<0.5	5920	0.03	398	0.12	3.32	66.8	1.0	990	2.0
H181157		54.3	0.12	0.4	< 0.005	1.31	<0.5	7570	0.02	326 214	0.09	5.05	64.2	3.5	2640	6.8
H181158		47.7	0.10	2.0	<0.005	1.54	<0.5	1240	0.14					1777	640	17.
H181159		22.0	0.91	1.0	0.090	0.69	6.6	730	3.74	2060	0.23	1.41 4.31	6.8 72.3	59.3 1.0	1900	7.3
H181160		44.0	0.11	1.6	<0.005	2.32	<0.5	1190	0.04	194 313	0.09	3.58	62.8	1.7	1540	3.7
H181161		49.1	0.11	0.6	<0.005	2.70	<0.5	3720	0.05	452	0.09	2.04	81.3	0.6	1280	4.3
H181162		62.3	0.12	0.7	<0.005	2.03	<0.5	7800	0.03	386	0.08	2.63	67.6	0.6	1530	24.0
H181163		57.0	0.12	0.5	<0.005	2.08	<0.5	5570						0.8	1050	3.8
H181164		61.1	0.10	0.7	< 0.005	1.66	<0.5	5880	0.04	300	0.09	2.52	97.3 68.5	0.5	770	2.7
H181165		62.0	0.11	3.7	< 0.005	1.43	<0.5	8550	0.01	313 319	0.09	2.21	80.0	0.5	1710	6.2
H181166		53.1	0.11	1.6	<0.005	4.21	<0.5	3140 3770	0.03	305	0.09	3.48	78.4	1.3	1640	3.4
H181167		56.8	0.06	2.1	<0.005	1.65	<0.5 <0.5	2120	0.04	233	0.08	3.60	70.5	0.6	1810	4.1
H181168		51.2	0.06	1.0	<0.005	2.11					0.07	2.17	60.0	0.7	1490	12.7
H181169		57.9	0.08	1.2	0.006	3.01	<0.5 <0.5	3590 1840	0.06	280 261	0.07	3.68	84.4	1.7	1390	4.2
H181170		66.4	0.07	1.9	<0.005	1.34	0.6	331	0.08	235	0.06	3.64	65.7	2.1	1410	3.4
H181171		59.4	0.09	1.8	<0.005	1.75 0.74	0.5	140.5	0.09	273	0.09	4.86	95.1	1.8	2300	2.7
H181172		44.7	0.08	3.1	<0.005	0.74	5.2	510	3.33	1680	0.14	1.63	5.4	45.3	650	14.2
H181173		19.00	0.23	0.9	0.088					1720	0.24	1.87	4.0	56.0	440	3.5
H181174		19.00	0.23	1.1	0.084	0.37	5.9	323	3,46 0,15	1720	0.24	5.19	91.8	2.7	3210	4.0
H181175		42.8	0.10	4.0	<0.005	0.86	0.5	342 >10000	0.15	1090	0.33	0.58	121.0	5.1	7290	4.6
H181176		43.9	0.08	2.4	<0.005	0.21	<0.5	266	0.02	158	0.07	4.97	85.7	3.5	5060	2.7
H181177		37.4	0.09	4.0	<0.005	0.56	<0.5 7.6	460	3.36	1620	0.36	1.93	5.4	63.4	560	2.0
H181178		19.65	0.24	1.7	0.081	0.49	7.6	460	3.30	1020	5.50		3.4			

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9 Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 6- FEB- 2011 Account: FLGEXP

Minera	Ninerals										CATE O	F ANAI	LYSIS	TB110	11392	2
Sample Description	Method Analyte Units LOR	ME-MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME-MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MSG1 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0.1	ME- MS6 V ppm 1
E450951		150.5	<0,002	0.01	<0.05	3.1	1	0.6	259	0.20	<0.05	37.2	0.104	0.79	3.1	14
E450952		298	< 0.002	< 0.01	0.16	0.1	1	38.4	5.4	88.8	< 0.05	2.0	< 0.005	1.61	1.4	<1
E450953		450	< 0.002	< 0.01	0.17	0.1	1	82.2	4.9	100.0	< 0.05	1.2	< 0.005	2.84	0.9	1
E450954		1030	< 0.002	0.04	0.28	45.1	2	23.4	102.0	2.15	< 0.05	0.5	0.670	8.32	0.5	330
E450955		1720	<0.002	<0.01	0.43	0.1	1	86.1	7.8	49.7	<0.05	1.8	0.005	11.25	1.0	2
E450956		1330	<0.002	< 0.01	0.34	0.1	1	53.5	9.2	49.7	<0.05	2.6	<0.005	8.76 7.86	1.4	1
E450957		1500	< 0.002	< 0.01	0.22	0.2	1	62.0	18.8	29.9	< 0.05	0.9		14.30	0.8	<1
E450958		2330	< 0.002	< 0.01	0.48	0.1	1	50.9	15.6	30.9	<0.05	1.7	<0.005	11.95	1.3	<1
E450959		1930	< 0.002	< 0.01	0.37	0.1	1	62.4	15.5	35.1	< 0.05	1.5 4.7	< 0.005	6,61	8.0	<1
E450960		1210	<0.002	<0.01	0.26	0.1	1	57.6	16.8	43.1	<0.05	23370			07.10.0	
E450961		1450	< 0.002	0.01	0.27	0.1	1	41.5	12.5	88.2	<0.05	3.6	<0.005	8.13	8.1	1 246
E450962		161.0	0.021	0.04	1.01	32.2	2	9.2	299	1.77	< 0.05	11.4	0.616	1.16	2.9 0.3	344
H181151	1	790	< 0.002	0.06	0.75	49.5	2	35.2	122.5	15.30	< 0.05	0.6	0.702	4.74 22.8	2.7	4
H181152		4060	< 0.002	< 0.01	0.35	0.4	1	52.5	20.3	50.2	<0.05	2.5	0.008 <0.005	10.60	1.0	2
H181153		2070	< 0.002	<0.01	1.23	0.3	1	108.0	93.9	36.2	<0.05	0.7			105555	
H181154		5840	< 0.002	< 0.01	0.81	0.2	1	53.5	44.7	55.0	<0.05	0.6	<0.005	35.0	1.3	<1
H181155		3920	< 0.002	<0.01	0.47	0.2	1	68.5	57.1	35.7	<0.05	0.8	< 0.005	23.2	1.6	<1
H181156		1290	< 0.002	< 0.01	0.50	0.1	1	73.1	37.4	34.9	<0.05	1.5	< 0.005	7.21	0.7	<1
H181157		1190	< 0.002	< 0.01	0.59	0.1	1	64.4	27.5	28,9	<0.05	3.4 1.8	<0.005	7.41 13.05	1.2 3.8	11
H181158		1960	< 0.002	0.01	0.51	1.3	1	42.8	23.8	>100	V2001000			100.000		
H181159		700	0.002	0.12	0.55	48.9	2	27.2	118.0	8.85	< 0.05	8.0	0.776	4.51	0.5 5.9	321
H181160		2290	< 0.002	< 0.01	0.27	0.4	1	37.3	18.0	93.0	<0.05	2.3	0.005	13.40 15.00	4.0	2
H181161		2540	< 0.002	< 0.01	0.38	0.4	1	40.1	44.9	31.7	<0.05	2.2	< 0.005	10.35	5.7	1
H181162		1840	< 0.002	<0.01	0.42	0.1	1	57.7	25.3	30.4	<0.05 <0.05	2.5 2.6	<0.005	10.55	2.7	<1
H181163		1870	<0.002	<0.01	0.61	0.1	1	66.3	35.7	29.2					32773877.5	
H181164		1700	< 0.002	<0.01	0.46	0.1	1	74.6	23.1	48.1	<0.05	4.6	<0.005	8.52	7.7	<1
H181165		1220	< 0.002	< 0.01	0.44	0.1	1	79.3	13.7	49.3	<0.05	2.6	<0.005	6.96 22.5	2.2 6.2	<1
H181166		3870	< 0.002	< 0.01	0.41	0.2	1	52.3	29.3	40.6	< 0.05	3.2 3.2	<0.005	7.54	6.1	<1
H181167		1530	< 0.002	<0.01	0.39	0.2	1	53.6 51.8	39.3 38.0	54.1 49.1	<0.05	3.0	<0.005	11.70	4.9	<1
H181168		2140	<0.002	<0.01	0.33	0.1	1		200000				11/2/20/20/20		4.9	1
H181169		3170	<0.002	<0.01	0.47	0.2	1	76.3	82.8	57.9	<0.05	2.9 3.5	<0.005	17.35 4.04	7.0	<1
H181170		1060	< 0.002	<0.01	0.27	0.2	1	74.2	124.0 64.2	46.0 >100	< 0.05	2.2	<0.005	6.69	5.4	2
H181171		1810	<0.002	0.02	0.22	0.3	1	95.4	16.7	>100	<0.05	1.6	0.013	3.78	6.8	7
H181172		930	<0.002	0.01	0.14	0.8 42.0	1 2	71.4 15.3	106.0	4.93	0.03	0,6	0.722	4.78	0.2	340
H181173		760	0.002	0.11	0.40					100000		0.7	0.733	2.04	0.2	339
H181174		270	0.002	0.12	0.43	42.1	2	6.8	114.5 44.9	0.57 >100	0.08	1.0	0.733	4.53	4.9	15
H181175		1140	< 0.002	< 0.01	0.21	1.6	1	50.1 108.5	14.2	58.2	<0.05	0.2	0.028	0.89	0.8	8
H181176		57.7	< 0.002	0.02	0.82	0.7	1	39.9	32.6	>100	<0.05	1.3	0.044	4.69	6.8	21
H181177		960	< 0.002	< 0.01	0.16	2.6	2	24.4	109.0	1.51	0.08	1.0	0.746	5.34	0.3	322
H181178		840	0.003	0.12	0.51	38,1	2	24.4	109.0	1.01	0.00	1.0	0.1.43			

North Vancouver BC V7H 0A7
Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9 Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 6- FEB- 2011 Account: FLGEXP

Project: COB- ZIG

CERTIFICATE OF ANALYSIS TB11011392

									CERTIFICATE OF AFFACTORS TOTTOTTO
Sample Description	Method Analyte Units LOR	ME- MS61 W ppm 0,1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0,5	Li- OG63 Li % 0.005	ME- MS81 Cs ppm 0.01	ME- MS81 Ta ppm 0.1	
	LOK	0.1	4.8	38	230				
E450951		1.6	0.2	19	21.8				
E450952	7	1.7	0.1	25	19.8		23.7	107.0	
E450953	- 0	0.5	24.3	187	25.7				
E450954		1.8	0.2	33	15.9				
E450955		132.0		44	8.8				
E450956		2.4	0.2	50	3.1				
E450957		4.5	0.7	32	2.9				
E450958		2.5	0.2	41	6.8				
E450959		2.2	0.5	41	10.5				
E450960		2.7	0.5					12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
E450961	The state of the s	1.7	0.8	20	18.8				
E450962		1.4	22.6	92	164.0				
H181151		2.7	26.4	174	33.1				
H181152		1.6	0.4	28	8.4				
H181153		4.3	1.4	54	1.8				
H181154		2.2	0.9	28	2.0		431	38.3	
H181155		3.2	1.5	39	4.6				
H181156		3.2	0.3	35	3.3				
H181157		1.6	0.1	21	2.8			200000	
H181158		1.3	1.0	55	14.5		256	111.5	
H181159		1.2	31.6	324	28.0				
H181160		1.6	0.4	27	10.5				
H181161		1.7	0,3	24	5.4				
H181162		2.3	0.4	23	5.5				
H181163		2.2	0.1	57	2.7				
		2.5	0,3	35	6.3				
H181164		2.0	0.1	33	31.5				
H181165		2.4	1.2	29	14.0				
H181166		1.6	0.6	24	15.3				
H181167		1.7	0.4	31	8.3				
H181168		1,750	7.747	66	9.7				
H181169		1.6	0.3	35	15.3				
H181170		2.3	0.6	25	10.8		92.0	140.5	
H181171		1.8	1.3	17	18.9		48.1	198.5	
H181172		1.7	1.3	131	22.9				
H181173		0.9	27.9	1000					
H181174		0.5	27.9	133	33.9		140.5	200	
H181175		0.7	1.9	24	20.8	0.000	149.5	388	
H181176		7.4	0.5	64	26.0	2.890	200	204	
H181177		8.0	2.6	26	27.2		266	394	
H181178		0.7	27.7	106	59.3				

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 6- FEB- 2011 Account: FLGEXP

Met Ana								С	ERTIFIC	CATE O	F ANAL	YSIS	TB110	11392	
Sample Description LC	lyte Record i		ME- MS61 AI % 0.01	ME- MS61 As ppm 0.2	ME-MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MSG 1 Cd ppm 0,02	ME- MS61 Ce ppm 0.01	ME-MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS6 Fe % 0.01
H181179 H181180 H181181 H181182 H181183	3.47 1.91 3.81 3.86 1.72	0.09 0.28 0.11 0.10 0.11	8.02 6.99 8.16 8.46 6.79	0.4 0.7 0.8 0.6 1.7	140 100 140 120 60	3.17 213 2.27 1.22 190.0	0.13 0.47 0.15 0.21 1.22	7.45 2.52 7.01 7.73 0.89	0.10 0.06 0.14 0.28 0.11	10.45 2.40 11.20 11.40 0.40	45.8 6.9 45.2 46.6 2.6	136 19 100 113 11	11.55 108.5 3.97 11.80 318	115,5 64.3 149.0 105.0 5.7	8.39 1.50 8.72 9.19 0.64
H181184 H181185 H181186 H181187 H181188	1.69 1.59 1.58 1.61 1.78	0.04 <0.01 <0.01	6.43 7.54 6.63 6.87 6.83	1.1 1.0 0.7 0.8 0.5	100 100 70 50 60	128.0 105.5 85.7 197.5 167.5	5.98 0.50 2.45 1.83 0.69	0.67 0.59 0.55 0.55 0.90	0.09 0.10 0.18 0.05 0.11	0.19 0.17 0.16 0.14 0.21	0.9 0.6 0.3 0.3	14 10 8 7 10	318 >500 >500 359 368	1.7 1.4 1.7 1.5 1.4	0.55 0.64 0.45 0.69 0.68
H181189 H181190 H181191 H181192 H181193	1.66 1.83 1.83 1.66	0.01 0.03 0.03	6.83 7.19 7.07 6.92 6.34	0.5 0.6 0.4 0.7 0.5	70 60 140 140 160	165.5 105.0 100.5 72.4 220	3.76 0.73 0.91 1.37 0.36	0.82 1.25 1.14 0.42 0.46	0.12 0.11 0.12 0.06 0.10	0.16 0.93 1.31 0.11 0.10	0.3 3.3 3.6 0.3 0.3	10 12 15 7 8	406 188.5 442 >500 387	0.9 7.6 15.2 1.4 2.5	0.61 0.96 1.13 0.32 0.43
H181194 H181195 H181196 H181197 H181198	1,23 3,6 2,22 3,86 3,56	0.13 0.10 0.09	7.67 8.08 7.16 7.80 7.41	0.8 0.5 2.6 4.8 <0.2	50 130 10 50 50	118.0 2.19 148.5 1.85 1.14	0.86 0.21 0.77 0.17 0.08	1.36 8.02 0.66 6.96 6.72	0.21 0.22 0.20 0.17 0.14	1.75 11.05 0.45 10.15 9.13	7.3 47.8 0.9 46.4 50.0	20 80 9 69 67	44.5 13.65 181.0 228 15.75	6.6 157.5 2.7 108.5 112.5	1.70 8.96 0.42 9.67 9.90
H181199 H181200	1.69 1.69		7.10 6.75	1.6 0.7	30 40	50.1 178.0	0.15 0.21	0.34 0.23	0.10 0.06	0.43 0.18	1.4 0.6	7 9	215 187.0	10.0 3.3	0.74 0.59

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 6- FEB- 2011 Account: FLGEXP

Minera	15								C	ERTIFIC	CATE O	F ANAL	_YSIS	TB110	11392	
Sample Description	Method Analyte Units LOR	ME-MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MSG1 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MSG I Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MSG1 Na % 0.01	ME- MS61 Nb ppm 0,1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10	ME- MS6 I Pb ppm 0.5
H181179		19,50	0.19	0.7	0.073	0.65	4.5	296	3.60	2030	0.19	1.64	3.6	109.5	370	3.0
H181180		56.4	0.11	1.2	0.021	1.46	1.1	3230	0.60	381	0.09	2.58	94.4	13.1	1740	6.2
H181181		19.70	0.20	0.8	0.078	0.65	5.1	301	3.73	2020	0.31	1.79	4.1	93.2	410	6.7
H181182		19,25	0.21	0.8	0.097	0.58	5.1	434	3.36	1960	0.28	1.65	3.6	101.0	390	11.1
H181183		54.8	0.09	1.7	< 0.005	2.78	<0.5	3030	0.11	269	0.07	2.39	63.7	4.7	1920	3.3
H181184		55.7	0.09	1.2	<0.005	2.94	<0.5	5250	0.04	245	0.07	1.25	37.7	1.7	1500	3.0
H181185		54.7	0.10	1.4	< 0.005	5.00	< 0.5	5170	0.03	218	0.08	1.49	36.9	1.3	1910	4.3
H181186		43.4	0.10	1.1	< 0.005	4.86	< 0.5	3070	0.02	266	0.07	1.34	33.4	1.0	2010	5.3
H181187		68.9	0.08	0.5	< 0.005	3.14	< 0.5	4950	0.03	472	0.08	1.60	67.9	0.7	2450	3.1
H181188		66.2	0.10	0.7	<0.005	2.88	<0.5	6320	0.04	363	0.08	0.99	41.6	0.9	1680	3.3
H181189		59.8	0.08	0.4	< 0.005	3.20	<0.5	4810	0.04	298	0.23	1.21	43.3	1.1	1330	3.4
H181190		63.9	0.08	1.0	< 0.005	1.45	< 0.5	5180	0.18	428	0.10	2,56	61.9	6.6	1510	3.0
H181191		49.5	0.11	0.7	< 0.005	4.06	0.6	2750	0.22	365	0.11	1.59	33.4	7.5	1240	6.7
H181192		36.8	0.09	1.4	< 0.005	5.31	< 0.5	1450	0.02	138	0.09	2.20	44.2	0.7	1560	5.6
H181193		42.4	0.08	1.1	<0.005	3.24	<0.5	1250	0.04	142	0.06	2.66	59.0	0.6	1420	3.5
H181194		49.4	0.09	2.6	0.006	0.50	0.8	361	0.38	476	0.13	5.52	85.9	14.7	2850	7.2
H181195		18.05	0.23	0.8	0.087	0.61	4.9	258	2.90	1980	0.26	1.96	4.3	78.5	510	7.6
H181196		42.5	0.08	3.5	< 0.005	0.64	<0.5	127.5	0.06	305	0.07	5.64	145.5	2.1	3380	5.5
H181197		16.60	0.20	1.0	0.079	0.40	4.4	331	3.94	1640	0.42	1.38	3.5	83.5	390	1.5
H181198		16.85	0.22	1.0	0.075	0.37	3.8	720	4.51	1810	0.23	1.31	3.7	115.0	380	1.9
H181199	-	61.4	0.09	1.2	<0.005	3.27	< 0.5	8400	0.07	335	0.07	1.43	30.3	1.9	740	4.7
		53.6	0.09	1.2	< 0.005	3.50	< 0.5	5290	0.04	318	0.07	1.74	55.7	1.3	920	4.0

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 6- FEB- 2011 Account: FLGEXP

Minera	IS								С	ERTIFIC	CATE O	F ANAL	YSIS	TB110	11392	
Sample Description	Method Analyte Units LOR	ME- MSG1 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME- MSG I Se ppm I	ME- MS61 Sn ppm 0.2	ME- MSG1 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MSG I Te ppm 0.05	ME- MS61 Th ppm 0.2	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1
H181179 H181180 H181181 H181182		118.5 1370 100.5 74.7 3000	0.002 <0.002 0.002 0.002 <0.002	0.07 0.03 0.15 0.08 <0.01	0.50 0.29 0.70 0.56 0.33	37.6 2.2 40.2 40.3 1.4	2 1 2 2 1	22.2 82.7 17.6 10.2 68.2	142.0 34.8 135.0 141.0 35.0	0.75 69.0 0.65 0.37 75.2	0.06 <0.05 0.07 0.08 <0.05	0.5 3.7 0.5 0.5 1.5	0.597 0.040 0.641 0.666 0.025	0.54 9.34 0.31 0.27 17.85	0.2 2.6 0.3 0.1 2.3	288 21 306 320 12
H181183 H181184 H181185 H181186 H181187 H181188		3010 4940 4910 3350 2920	<0.002 <0.002 <0.002 <0.002 <0.002	<0.01 <0.01 <0.01 <0.01 <0.01	0.51 0.54 0.62 0.52 0.56	0.3 0.2 0.2 0.3 0.3	1 1 1 1	64.6 49.8 49.0 97.6 89.9	61.2 60.9 30.9 23.2 24.6	52.1 70.8 46.2 62.3 52.0	<0.05 <0.05 <0.05 <0.05 <0.05	0.8 0.6 1.0 1.6 0.5	<0.005 <0.005 <0.005 <0.005 <0.005	18.00 29.8 29.7 19.50 16.05	1.9 2.2 2.6 3.2 1.6	1 <1 1 <1
H181189 H181190 H181191 H181192 H181193		3680 1530 4010 6160 3470	<0.002 <0.002 <0.002 <0.002 <0.002	<0.01 <0.01 <0.01 <0.01 <0.01	0.65 0.55 0.48 0.51 0.37	0.2 1.7 2.0 0.1 0.1	1 1 1 1	79.2 76.2 55.5 20.1 38.2	28.8 38.0 75.6 47.0 52.8	44.8 65.0 59.7 >100 >100	<0.05 <0.05 <0.05 <0.05 <0.05	0.7 2.3 1.1 0.9 2.0	<0.005 0.040 0.051 <0.005 <0.005	21.7 8.67 24.3 40.2 20.0	1.4 3.0 1.7 2.9 3.1	1 15 20 <1 1
H181194 H181195 H181196 H181197 H181198		303 80.4 1780 530 92.5	<0.002 0.002 <0.002 0.002 0.002	0.01 0.18 <0.01 0.10 0.08	0.30 0.41 1.86 5.20 0.41	6.5 40.4 0.9 39.8 36.6	1 2 1 2 2	36.1 22.0 53.0 4.2 5.0	40.8 134.5 22.9 116.5 117.0	>100 1.35 >100 0.80 1.11	<0.05 0.10 <0.05 0.07 0.07	2.8 0.5 0.9 0.5 0.5	0.107 0.672 0.010 0.642 0.631	1,38 0.27 9,90 4,33 0,74	5.9 0.2 3.5 0.2 0.2	51 322 5 315 303
H181199 H181200		3200 3340	<0.002 <0.002	<0.01 <0.01	0.63 0.51	0.5 0.3	1	88.3 75.1	15.0 15.0	20.8 21.7	<0.05 <0.05	1.3 1.7	0.007 <0.005	19.05 18.80	2.0 3.3	3

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9

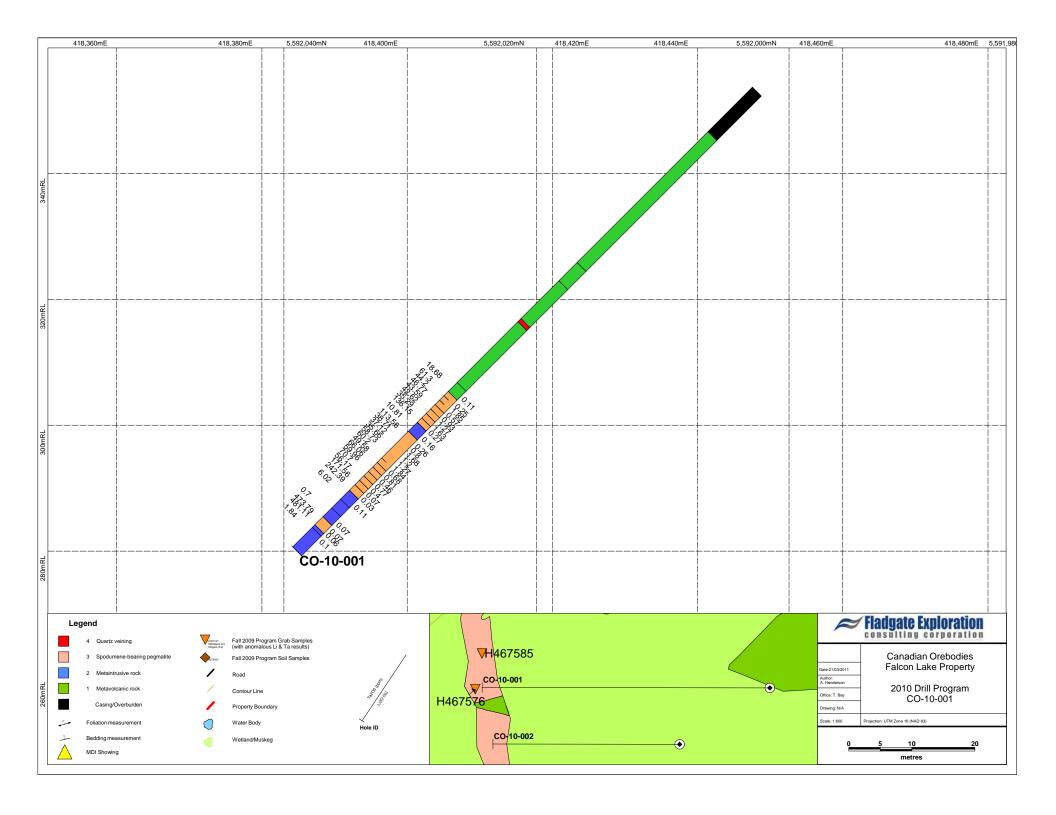
Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 6- FEB- 2011 Account: FLGEXP

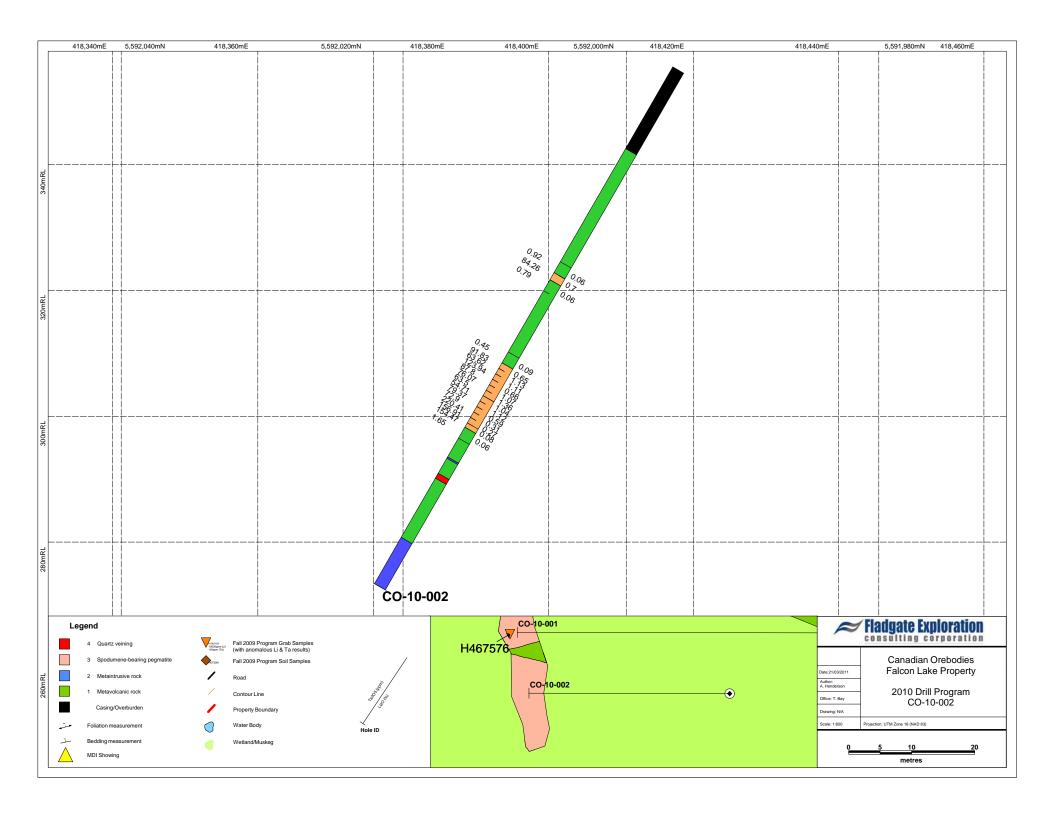
Method Analyte Units LOR	ME- MS61 W	ME- MS61	ME- MS61		110000		A STATE OF THE STA		
	0.1	ppm 0.1	Zn ppm 2	ME- MS61 Zr ppm 0.5	Li- OG63 Li % 0.005	ME- MS81 Cs ppm 0.01	ME- MS81 Ta ppm 0.1		
	1.5 2.3 2.0 1.2 2.5	23.3 3.8 24.6 25.1 1.1	106 34 124 216 39	15.0 12.2 20.1 18.7 7.5					
	2.0 1.6 1.7 4.1 2.9	0.7 0.9 1.0 1.1 1.7	32 22 23 57 46	4.3 7.4 5.2 3.2 3.7		506 500	101.5 71.9		
	2.6 2.2 1.8 0.9 1.8	0.8 1.4 2.2 0.2 0.3	45 37 34 10 19	2.2 11.3 10.2 6.2 5.8		775 415	180.5 128.5		
	2.3 1.8 1.7 0.7 0.3	4.2 24.9 0.7 24.6 23.1	54 151 40 121 114	21.4 20.3 14.4 28.0 26.2		50.3 202	126.5 341		
	1.4 2.3	0.5 0.6	34 36	10.5 11.7					
		2.0 1.2 2.5 2.0 1.6 1.7 4.1 2.9 2.6 2.2 1.8 0.9 1.8 2.3 1.8 1.7 0.7 0.3 1.4 2.3	2.0	2.0 24.6 124 1.2 25.1 216 2.5 1.1 39 2.0 0.7 32 1.6 0.9 22 1.7 1.0 23 4.1 1.1 57 2.9 1.7 46 2.6 0.8 45 2.2 1.4 37 1.8 2.2 34 0.9 0.2 10 1.8 0.3 19 2.3 4.2 54 1.8 24.9 151 1.7 0.7 40 0.7 24.6 121 0.3 23.1 114 1.4 0.5 34 2.3 0.6 36	2.0 24.6 124 20.1 1.2 25.1 216 18.7 2.5 1.1 39 7.5 2.0 0.7 32 4.3 1.6 0.9 22 7.4 1.7 1.0 23 5.2 4.1 1.1 57 3.2 2.9 1.7 46 3.7 2.6 0.8 45 2.2 2.2 1.4 37 11.3 1.8 2.2 34 10.2 0.9 0.2 10 6.2 1.8 0.3 19 5.8 2.3 4.2 54 21.4 1.8 24.9 151 20.3 1.7 0.7 40 14.4 0.7 24.6 121 28.0 0.3 23.1 114 26.2 1.4 0.5 34 10.5 2.3 0.6 36 11.7	2.0 24.6 124 20.1 1.2 25.1 216 18.7 2.5 1.1 39 7.5 2.0 0.7 32 4.3 1.6 0.9 22 7.4 1.7 1.0 23 5.2 4.1 1.1 57 3.2 2.9 1.7 46 3.7 2.6 0.8 45 2.2 2.2 1.4 37 11.3 1.8 2.2 34 10.2 0.9 0.2 10 6.2 1.8 0.3 19 5.8 2.3 4.2 54 21.4 1.8 24.9 151 20.3 1.7 0.7 40 14.4 0.7 24.6 121 28.0 0.3 23.1 114 26.2 1.4 0.5 34 10.5 2.3 0.6 36 11.7	2.0	2.0	2.0

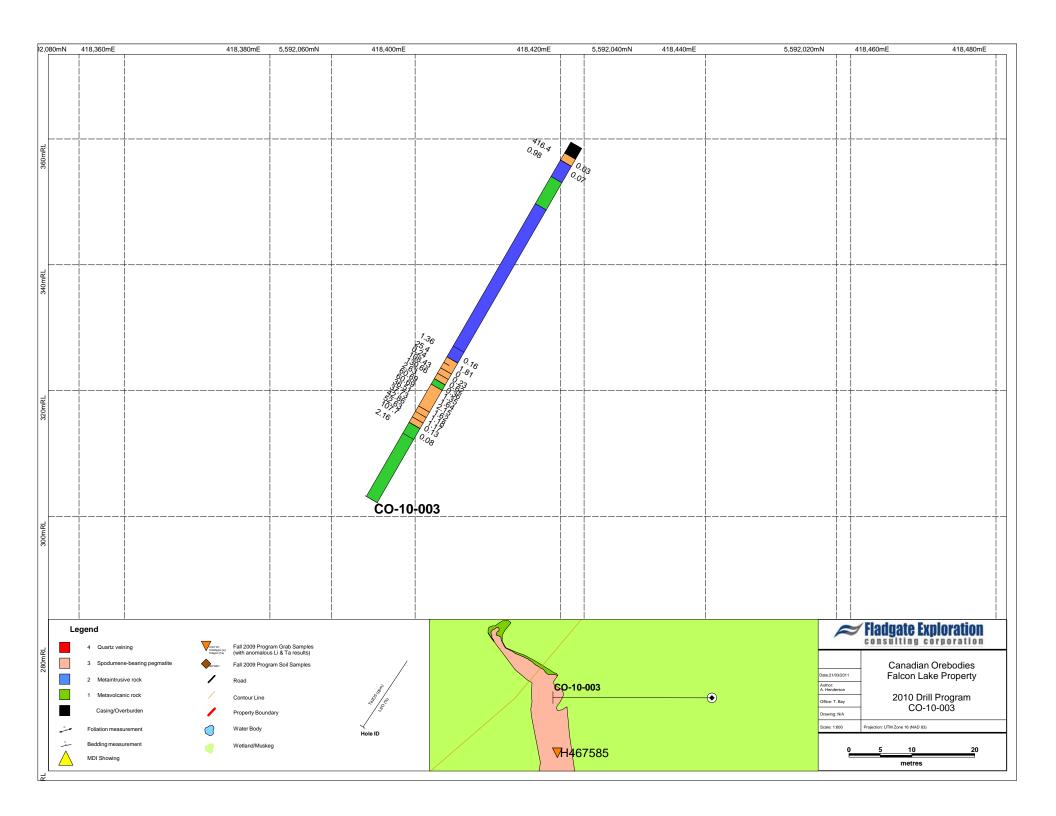
ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
None: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: FLADGATE EXPLORATION CONSULTING CORPORATION 195 PARK AVE THUNDER BAY ON P7B 1B9 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 6- FEB- 2011 Account: FLGEXP

Project: COB- ZIG


CERTIFICATE OF ANALYSIS TB11011392


Method	CERTIFICATE COMMENTS	
ME- MS61	REE's may not be totally soluble in this method.	


Appendix IV - Drillhole Sections

See attached Drill Sections

Appendix V – Detailed Drill Logs

See attached Drill Logs (printed on Legal size paper)

DRILL HOLE REPORT

Hole Number CC	D-10-001				Proje	ct: ARMS	TRONG				Project Number	: 001
Drilling		Casing			Core				Location		Other	
Azimuth:	300	Length:		0	Dimension:	BTW			Township:	FALCON LA	Logged by:	Stephanie Vanos
Dip:	-60	Pulled:	no		Storage:	Thunder B	ay		Claim No.:		Relog by:	
Length:	103.3	Capped:	yes		Section:				NTS:	052108	Contractor:	Rugged Aviation Inc.
Started:	17-Dec-10	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Avery Henderson
Completed:	19-Jan-11										Surveyed:	
Logged:	11-Jan-11										Surveyed by:	
Comment:							Coordinate -	Gemcom	Coordinate - L	ITM	Geophysics:	None
							East:	418449	East:	418449	Geophysic Contractor:	
							North:	5592004	North:	5592004	Left in hole:	Nothing
							Elev.:	353	Elev.:	353	Making water:	no
									Zone: 16	NAD: NAD83	Multi shot surv	

Deviation Tests

Distance	Azimuth	Dip	Type	Good	Comments
0.00	300.00	-45.00	С	✓	

23-Mar-11 2:05:30 PM Page 1 of 1

Hole Number	CO-10-001	Project: ARMSTRONG		Project Number:	001			
From (m)	To (m)	Lithology	Sample #	From	То	Length		Ta2O5 (ppm)
0.00	10.00	CS Overburden/Casing Overburden/Casing						
10.00	39.40	MV Mafic Metavolcanic Dark green, fine grained, moderately foliated mafic metavolcanic, chloritized, foliation on average 35 deg TCA. 30% pinkish qtz-carb veins and vienlets with chl alteration from 1mm to 3cm in size, orientation tends to be parallel to foliation. Trace blebby po-cpy-py associated with qtz veins, thin zone of more highly altered material assoicated with qtz viens near the end of the interval has increased chl alteration along with fine grained black material.						
39.40	43.50	MV Mafic Metavolcanic Altered; Black, massive, recrystallized metavolcanics with ~40% randomly oriented blobs, stringers, streaks, disseminations and minor stockworks of pyrrhotite-chalcopyrite bearing quartz-carbonate; interfingering with less altered foliated mafic metavolcanics. black sections possibly actinolite? contain thin laith-like to platy black crystals 1 mm wide and up to 4mm long. Up to 25% pyrrhotite locally, in blebs associated with the quartz-carbonate. Contacts are sharp, with an irregular upper contact and a lower contact parallel to foliation.						
43.50	52.00	MV Mafic Metavolcanic dark green, fine grained mafic metavolcanic, chloritized, stronger foliation than previous on average 35 deg TCA, with less qtz-carb veining, trace up to 10% locally bleby po-cpy-py associated with qtz-carb						

23-Mar-11 2:03:24 PM Page 1 of 5

lole Number	CO-10-001			Project: ARMSTRONG					Project Number:	001
From (m)	To (m)		Litholo	gy	Sample #	From	То	Length		Ta2O5 (ppm)
	<u> </u>	vienlets, sharp upper	and lower contacts.							
52.00	52.70	Qtz-Carb vein; pinkis salmon pink (k-spar?	nrtz Vein h massive qtz vein with carbo) found in upper part of interv xls crowd lower contact along	nate infilling fractures along with minor chl flecks, al, ranges from 1mm to 3cm anhedral to sub-hedral, with ribbons of chlorite.						
52.70	68.35	dark green, streaky, f	<i>ic Metavolcanic</i> fine grained, moderately foliat	ed mafic metavolcanics, chloritized, with possible	H181151	66.35	68.35	2.00	0.1	1 18.68
		(both folation parallel haloes. Also occasio chlorite +/- minor pyri	I and cutting foliatoin) often fill onal quartz-carbonate veinlets ite, pyrrhotite. Core is non-ma	rallel quartz-carbonate-sericite-feldspar. Fractures ed with quartz-carbonate and surrounded with greyish up to 3 cm in width, with associated sericite and agnetic except where there is significant pyrrhotite ith underlying pegmatite is sharp and slightly undulating						
		Structure Maj.:	Type/Core Angle	Comment						
		55.00 - 55.00	FOL 23							
		58.80 - 58.80	JNTS 25							
		59.90 - 59.90	FOL 28							

23-Mar-11 2:03:24 PM Page 2 of 5

lole Number	CO-10-001	Project: ARMSTRONG		Project Number:	001			
From	To	1.80 and a second	Communica #	5	T -	Lamouth		Ta2O5
(m)	(m)	Lithology	Sample #	From	То	Length	(%)	(ppm)
68.35	75.30	PEG Pegmatite	H181152	68.35	69.30	0.95	0.25	61.30
		Pink-grey-blue-green very coarse grained pegmatite, generally phaneritic with local graphic textures. Qtz-	H181153	69.30	70.30	1.00	1.85	44.20
		ab-Kspar-Muscovite-spodumene with minor tourmaline and beryl. Contains kspar megacrysts to 50 cm, enclosing euhedral to graphic smokey-grey quartz crystals to 2 cm. Spodumene is light green blue, with	H181154	70.30	71.30	1.00	0.57	67.16
		wide size variation from ~1 mm to 8 cm. Spodumene content is very variable, ranging from 0% near top	H181155	71.30	72.30	1.00	0.93	43.59
		contact and within kspar megacrysts, up to 40%, with an average of ~ 20% over the entire interval. Spodumene crystals also overgrow euhedral quartz crystals. pegmatitie margins are spodumine poor,	H181156	72.30	73.30	1.00	1.27	42.62
		with minor grain size reduction at contacts.	H181157	73.30	74.30	1.00	1.63	35.29
			H181158	74.30	75.30	1.00	0.27	136.15
75.30	77.30	MT Mafic Metaintrusive	H181159	75.30	77.30	2.00	0.16	10.81
		dark green with white, fine to medium grained gabbro, relatively fresh and moderately foliated. Mineralogy primarily plaginglase + cpx, crystals of cpx up to 3 mm with apparitic interstitial plaginglase.						

Mineralogy primarily plagioclase + cpx, crystals of cpx up to 3 mm with aphanitic interstitial plagioclase. Some very minor foliation cutting carbonate-filled jointing, with minor associated calcite alteration. Contacts with pegmatite are relatively sharp and roughly foliation parallel, trace fine grained py disseminated throughout. Slightly magnetic in places

Structure Maj.: Type/Core Angle Comment

77.00 - 77.00 FOL 55

23-Mar-11 2:03:24 PM Page 3 of 5

Hole Number CO-10-001 Project: ARMSTRONG Project Number: 001

om (m)	To (m)	Lithology	Sample #	From	То	Length	LiO2 Ta2O5 (%) (ppm)
77.30	90.55	PEG Pegmatite	H181160	77.30	78.30	1.00	0.26 113.56
		similar to previous pegmatitie interval, however the grainsize appears slightly reduced overall. Minerals	H181161	78.30	79.30	1.00	0.80 38.71
		present are again qtz-ab-kspar-musc-spodumine-tourmaline and beryl but an increase in qtz and decrease in k-spar content is observed. kspar megacrysts up to 30cm, weak foliation defined by	H181162	79.30	80.30	1.00	1.68 37.12
		allignment of spodumine crystals at ~ 45 deg tca shows well from 79 to 83m. spodumine content is ~	H181163	80.30	81.30	1.00	1.20 35.66
		20% overall with local concentrations up to 40%, the margins are again spodumine poor, with a slight grainsize reduction.	H181164	81.30	82.30	1.00	1.27 58.73
			H181165	82.30	83.30	1.00	1.84 60.20
			H181166	83.30	84.30	1.00	0.68 49.58
		Structure Maj.: Type/Core Angle Comment	H181167	84.30	85.30	1.00	0.81 66.06
		80.50 - 80.50 FOL 45	H181168	85.30	86.30	1.00	0.46 59.96
		50.00 50.00 1 52 10	H181169	86.30	87.30	1.00	0.77 70.70
			H181170	87.30	88.30	1.00	0.40 56.17
			H181171	88.30	89.30	1.00	0.07 171.56
			H181172	89.30	90.55	1.25	0.03 242.39
90.55	96.50	MT Mafic Metaintrusive	H181173	90.55	92.55	2.00	0.11 6.02
		dark green, fine to medium grained, moderately foliated gabbro, rounded cpx crystals with platy chl replacing amph, trace pyrite specks disseminated throughout. From 95.7 to 95.85 massive black aphanitic dyke with chilled margins	H181174	94.50	96.50	2.00	0.07 0.70
		Structure Maj.: Type/Core Angle Comment					
		93.20 - 93.20 FOL 33					
96.50	98.30	PEG Pegmatite	H181175	96.50	97.50	1.00	0.07 473.79
		qtz-plag rich pegmatits with minor k-spar-musc-chl-epidote, no spodumine observed, phaneritic with no preferential orientation of crystals, grain size reduction at contacts along which there are 3cm wide bands of black and grey strongly foliated material.	H181177	97.50	98.30	0.80	0.06 481.11

23-Mar-11 2:03:24 PM Page 4 of 5

ole Number	CO-10-001		Project: ARMSTRONG						Project Number: 001			
From (m)	To (m)		Litholo	gy	Sample #	From	То	Length	LiO2 (%)	? Ta2O5 (ppm)		
98.30	98.90	Black aphanitic dyke	<i>ic Metaintrusive</i> with chilled margins, very sim units is roughly foliation paral	ilar to the one observed from 95.7-95.85. Contact with lel.								
98.90	103.00	Dark green fine-medi fresh, mainly cpx+pla ~2%. A few minor qt	ag with more plagioclase than	gabbro; grain size increases with depth. Relatively other intrusions. Minor magnetic pyrrhotite, up to ing foliation, generally without any surrounding	H181178	98.30	100.30	2.00	0.1	0 1.84		
		Structure Maj.: 99.20 - 99.20 99.80 - 99.80 103.00 - 103.00	Type/Core Angle FOL 18 FOL 38 FOL 39	Comment								

23-Mar-11 2:03:24 PM Page 5 of 5

DRILL HOLE REPORT

Hole Number CO	Hole Number CO-10-002				Proje	ct: ARMS	TRONG	Project Numbe	r: 001			
Drilling		Casing			Core				Location		Other	
Azimuth:	300	Length:		0	Dimension:	BTW			Township:	FALCON LA	Logged by:	Stephanie Vanos
Dip:	-60	Pulled:	no		Storage:	Thunder Ba	ay		Claim No.:		Relog by:	
Length:	94.75	Capped:	yes		Section:				NTS:	052108	Contractor:	Rugged Aviation Inc.
Started:	20-Dec-10	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Avery Henderson
Completed:	21-Dec-10										Surveyed:	
Logged:	12-Jan-11										Surveyed by:	
Comment:							Coordinate -	- Gemcom	Coordinate - I	JTM	Geophysics:	None
							East:	418422	East:	418422	Geophysic Contractor:	
							North:	5592003	North:	5592003	Left in hole:	Nothing
							Elev.:	355	Elev.:	355	Making water:	· ·
									Zone : 16	NAD: NAD83	Multi shot sur	

Deviation Tests

Distance	Azimuth	Dip	Type	Good	Comments
0.00	300.00	-60.00	С	✓	

23-Mar-11 2:06:46 PM Page 1 of 1

ole Number	CO-10-002	Project: ARMSTRONG		Project Number: 001			
From (m)	To (m)	Lithology	Sample #	From	То	Length	LiO2 Ta2O5 (%) (ppm)
0.00	15.00	CS Overburden/Casing overburden/Casing					
15.00	37.75	MV Mafic Metavolcanic moderately foliated fine grained dark greenish-grey mafic metavolcanics with moderately abundant qtz-carb stringers and veinlets ranging in size from 1mm to 5cm. Near the top of the hole the larger veinlets tend to be more carbonate rich and vuggy. possible pillow selvages observed. foliation on average 30 deg tca. sharp lower contact with pegmatitie	H181179	35.75	37.75	2.00	0.06 0.92
37.75	39.05	PEG Pegmatite pink, grey and green phaneritic granitic pegmatite. Mainly qtz-kspar with spodumine-muscovite and possible tourmaline. Spodumine tends to only be present near the centre of the interval, light greenish crystals up to 7cm long and 4cm wide make up ~10% of the interval. contacts are sharp with slight grain-size reduction along contacts. @38.5-38.8 meters the pegmatitic crumbles into fault gouge.	H181180	37.75	39.05	1.30	0.70 84.26
39.05	54.30	MV Mafic Metavolcanic dark greenish grey, fine grained moderately foliated on average 25 deg tca. 30% qtz-carb veinlets and fracture infilling, 2 generations of veinlets, older generation up to 3cm wide, generally oriented parallel to foliation and many contain chl alteration, younger generation tend to x-cut foliation are on average only 2-3mm thick and have are oriented 140 deg tca. Possible pillow selvages. trace amounts of blebby po-cpy associated with qtz veins.	H181181 H181182	39.05 52.30	41.05 54.30	2.00 2.00	0.06 0.79 0.09 0.45

Lithology	Sample #	From				
			То	Length	LiO2 (%)	Ta2O5 (ppm)
	H181183	54.30	55.30	1.00	0.65	91.83
granitic pegmatite, qtz-ab-kspar- with musc, spodumine, beryl,	H181184	55.30	56.30	1.00	1.13	63.62
aline. K-spar megacrysts up to 40cm wide. Spodumine makes light green crystals are generally around 3cm wide but up to	H181185	56.30	57.30	1.00	1.11	123.94
61.5 and again at 63.2 thin black aphanitic dykes are	H181186	57.30	58.30	1.00	0.66	87.80
	H181187	58.30	59.30	1.00	1.07	76.07
	H181188	59.30	60.30	1.00	1.36	63.50
	H181189	60.30	61.30	1.00	1.04	54.71
	H181190	61.30	62.30	1.00	1.12	79.37
	H181191	62.30	63.30	1.00	0.59	72.90
	H181192	63.30	64.30	1.00	0.31	220.41
	H181193	64.30	65.30	1.00	0.27	156.91
	H181194	65.30	66.10	0.80	0.08	154.47
	H181195	66.10	68.10	2.00	0.06	1.63
c, moderately foliated, heavily streaked with foliation-parallel ricitized, particularly surrounding joints. Contains a number of onate veinlets with significant accessory content is low (generally <1%).						
	ricitized, particularly surrounding joints. Contains a number of contains a number of contains with significant accessory	H181193 H181194 C, moderately foliated, heavily streaked with foliation-parallel ricitized, particularly surrounding joints. Contains a number of conate veinlets with significant accessory content is low (generally <1%).	H181193 64.30 H181194 65.30 C, moderately foliated, heavily streaked with foliation-parallel ricitized, particularly surrounding joints. Contains a number of conate veinlets with significant accessory content is low (generally <1%).	H181193 64.30 65.30 H181194 65.30 66.10 H181195 66.10 68.10 c, moderately foliated, heavily streaked with foliation-parallel ricitized, particularly surrounding joints. Contains a number of conate veinlets with significant accessory content is low (generally <1%).	H181193 64.30 65.30 1.00 H181194 65.30 66.10 0.80 H181195 66.10 68.10 2.00 c, moderately foliated, heavily streaked with foliation-parallel ricitized, particularly surrounding joints. Contains a number of onate veinlets with significant accessory content is low (generally <1%).	H181193 64.30 65.30 1.00 0.27 H181194 65.30 66.10 0.80 0.08 H181195 66.10 68.10 2.00 0.06 c, moderately foliated, heavily streaked with foliation-parallel ricitized, particularly surrounding joints. Contains a number of onate veinlets with significant accessory content is low (generally <1%).

23-Mar-11 2:06:31 PM

lole Number	CO-10-002	Project: ARMSTRONG				Project Number:	001	
From (m)	To (m)	Lithology metavolcanics are sharp, and apparently concordant with a joint direction. Fresh, but contains some tiny	Sample #	From	То	Length	LiO2 (%)	Ta2O5 (ppm)
		calcite-lined fractures						
74.00	74.55							
71.80	74.55	MV Mafic Metavolcanic Dark green grey-streaked fine-grained moderately foliatied mafic metavolcanics, same as above.						
74.55	75.45	QTZ Quartz Vein Light pink-grey translucent relatively purenquartz vein, with strings and blotches of chlorite (~3%) and minor (<1%) pyrite and k-spar; the pyrite and k-spar appear to be filling cracks and likely late to postvein. Contacts with the surrounding metavolcanics are sharp and roughly foliation parallel						
		volin. Contacto with the currenting metavolcariles are sharp and recignly foliation parallel						
75.45	86.30	MV Mafic Metavolcanic						
		Dark green metavolcanics, moderately foliated, heavily streaked with foliation-parallel grey-brown streaks. Some secitons (particularly 75.45-78.6 and 82.9-84.5) are heavily sericite altered, upt to 100% in some sections; these areas are usually associated with foliation-parallel stringers of sericite, bright orange k-spar, calcite and pyrite, in places showing euhedral crystals. Percentage of stringers and alteration decreases away from the quartz contact and rock becomes more homogeneous. Apart from the stringers, sulphide content is trace						

23-Mar-11 2:06:31 PM

Hole Number CO-10-002				ARMSTRONG					Project Number: 001
From (m)	To (m)	Lithology			Sample #	From	То	Length	LiO2 Ta2O5 (%) (ppm)

86.30 94.75 MV *Mafic Metavolcanic*

Dark green white-speckeld fine-medium grained diabase; white "speckles" are orange in some sections. Moderately foliated. Grain size decreases towards the contact with the overlying metavolcanics, and contact may be gradational. Relatively fresh and homogeneous, with some small foliation parallel or f-cutting veinlets of calcite and kspar. From 94.15-EOH, rock is shows significant potassic alteration.

23-Mar-11 2:06:31 PM Page 4 of 4

DRILL HOLE REPORT

Hole Number CO-10	-003				Proje	ct: ARM	STRONG				Project Numbe	r: 001
Drilling		Casing			Core				Location		Other	
Azimuth:	300	Length:		0	Dimension:	BTW			Township:	FALCON LA	Logged by:	Stephanie Vanos
Dip:	-60	Pulled:	no		Storage:	Thunder E	Вау		Claim No.:		Relog by:	
Length:	65	Capped:	yes		Section:				NTS:	052108	Contractor:	Rugged Aviation Inc.
Started:	22-Dec-10	Cemented:	no		Hole Type	DD			Hole:	SURFACE	Spotted by:	Avery Henderson
Completed:	23-Dec-10										Surveyed:	
Logged:	13-Jan-11										Surveyed by:	
Comment:							Coordinate -	Gemcom	Coordinate - U	ITM	Geophysics:	None
							East:	418423	East:	418423	Geophysic Contractor:	
							North:	5592042	North:	5592042	Left in hole:	Nothing
							Elev.:	359	Elev.:	359	Making water:	· ·
									Zone : 16	NAD: NAD83	Multi shot sur	

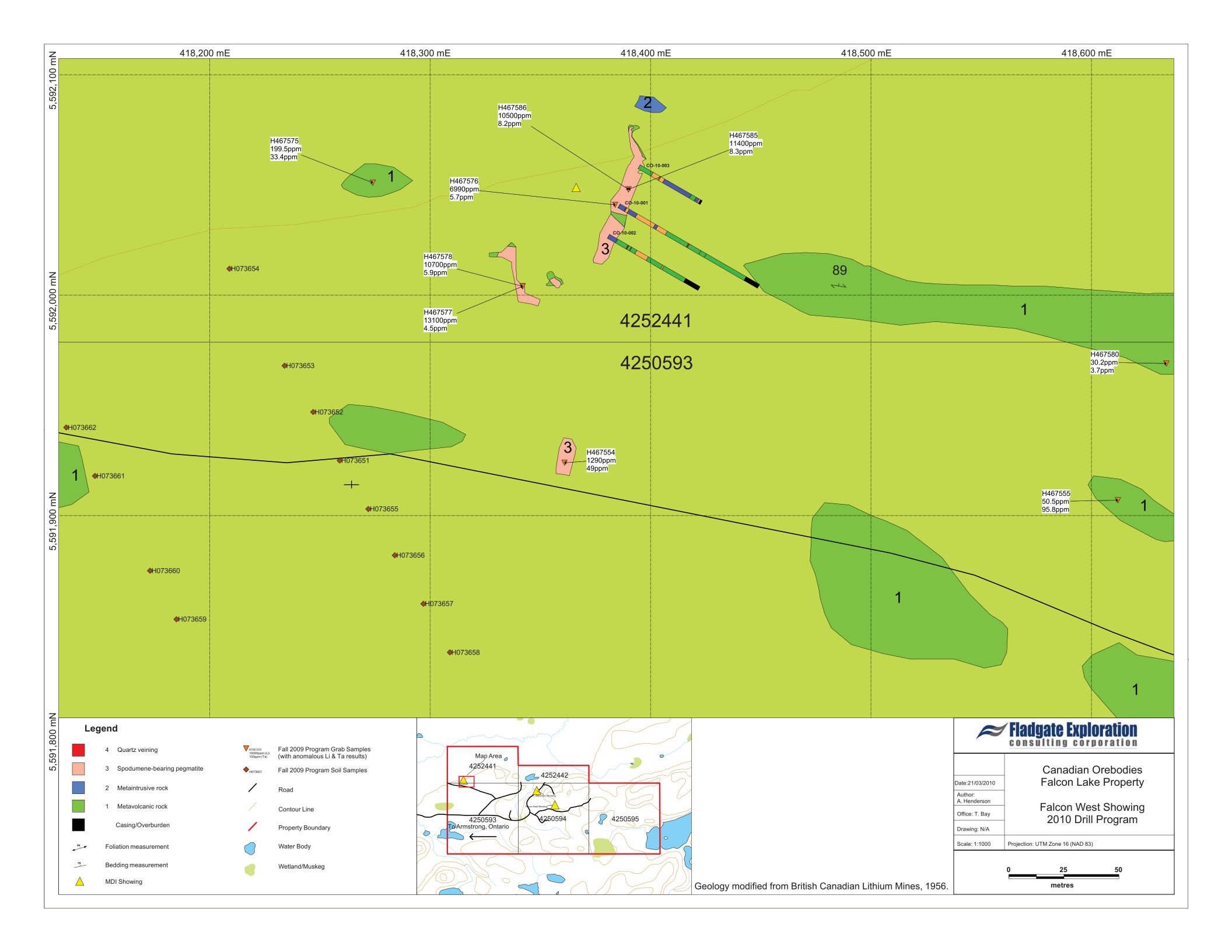
Deviation Tests

Distance	Azimuth	Dip	Type	Good	Comments
0.00	300.00	-60.00	С	✓	

23-Mar-11 2:07:59 PM Page 1 of 1

Hole Number	CO-10-003	Project: ARMSTRONG					Project Number: 001
From (m)	To (m)	Lithology	Sample #	From	То	Length	LiO2 Ta2O5 (%) (ppm)
0.00	2.00	CS Overburden/Casing Overburden/casing					
2.00	3.30	PEG Pegmatite White, Fine-medium grain pegmatite. Consists of greyish quartz crystals and yellow-green muscovite books to 2 cm, along with occasional light orange-pink kspar crystals and abundant small crystals of schorl and a deep-blue amphibole in a groundmass of white cleavelandite. Albite is the most abundant mineral, probably ~65% of the intersect. No spodumene was observed.	H181196	2.00	3.30	1.30	0.03 416.40
3.30	6.30	MT Mafic Metaintrusive Medium-fine grained, dark green homogeneous gabbro; foliation is light at first but increases towards the bottom contact to moderately foliated. Contains a few stringers and fracture-fills of quartz-carbonate. Non-magnetic.	H181197	3.30	5.30	2.00	0.07 0.98
6.30	11.30	MV Mafic Metavolcanic Dark green fine-grained moderately foliated mafic volcanics, with some grey and brown foliation parallel streaks. Appears subtly different from surrounding intrusives but contacts are hard to observe and could potentially be a fine-grained part of the larger intrusive body. Contains numerous f-parallel stringers of quartz-feldspar. Well fractured at 7.6, 10.6 and 11.1					

23-Mar-11 2:07:47 PM


Hole Number	CO-10-003	Project: ARMSTRONG					Project Number: 001
From (m)	To (m)	Lithology	Sample #	From	То	Length	LiO2 Ta2O5 (%) (ppm)
11.30	39.40	MT Mafic Metaintrusive Dark green, fine-medium grained, moderately foliated gabbro; grain size increases away from the contact, reaching a maximum around 17.3 m. Appearance realitvely homogeneous, with some minor sericite alteration surrounding a persistent and common foliation-cutting fracture set. Otherwise fresh. after 19.5m foliation increases in ingtensity and grain size begins to vary from fine to medium across the interval. below 31.4m thin bands of sericite alteration appear sporadically	H181198	37.40	39.40	2.00	0.16 1.36
39.40	43.40	PEG Pegmatite qtz-ab-k-spar pink green and grey coarse grained granitic pegmatite with light green spodumine up to 10cm long and 4 cm wide, yellowish to greenish muscovite books up to 1cm and mm scale flecks of deep blue amphibole in white ab. Peachy pink Kspar megacrysts get up to 80cm wide. spodumine xls mainly occur near the centre of the pegmatite and make up approx 10% of overall composition (locally up to 60%). contacts are sharp and parallel foliation.	H181199 E450951 E450952 E450953	39.40 40.40 41.40 42.40	40.40 41.40 42.40 43.40	1.00 1.00 1.00 1.00	1.81 25.40 0.00 0.24 0.23 108.43 0.62 130.66
43.40	44.40	MV Mafic Metavolcanic dark greenish grey fine grained foliated (~40 deg tca) mafic metavolcanics with rare qtz infilling fractures. Chl-bio/phlog present. Rare trace py-po grains occur in association with qtz stringers	E450954	43.40	44.40	1.00	0.36 2.63

23-Mar-11 2:07:47 PM

Hole Number CO-10-003		Project: ARMSTRONG			Project Number: 001				
From (m)	To (m)	Lithology	Sample #	From	То	Length	LiO2 (%)	Ta2O5 (ppm)	
44.40	51.40	PEG Pegmatite	E450955	44.40	45.40	1.00	1.35	60.69	
		similar to previous pegmatite interval but with increased qtz and spodumine content. K-spar megacrysts are significantly smaller with the largest being only 10 cm wide. Again the spodumine tends to occur more toward the center of the pegmatite, making up approx 25% composition. crystals show a larger	E450956	45.40	46.40	1.00	1.64	60.69	
			E450957	46.40	47.40	1.00	2.15	36.51	
	variablility in size and are crowded locally giving them a similar appearence to net texture.	E450958	47.40	48.40	1.00	1.62	37.73		
		E450959	48.40	49.40	1.00	1.18	42.86		
			E450960	49.40	50.40	1.00	1.17	52.63	
			E450961	50.40	51.40	1.00	0.13	107.70	
51.40	65.00	MV Mafic Metavolcanic	F.450062	E4 40	F2 40	2.00	0.08	2.16	
31.40	65.00	fine grained, weakly to moderatly foliated, dark greenish grey, with darker grey bands parallel to foliation, very broken up at beginning of interval but becomes more competent around 52.7m. Also around this meterage begin to observe possible sericitized pillow selvages. rare qtz infilling fractures with associated po-py-cpy flecks and blebs occuring frequently in the qtz but making up <1% of the composition of the interval overall	E450962	51.40	53.40	2.00	0.06	2.10	

23-Mar-11 2:07:47 PM

