We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

UNION GLORY GOLD

Tudor Project

Main Zone Drill Program 2017 Assessment Report

Tudor Township, Ontario

Garry K Smith, P.Geo May 1, 2017

Table of Contents

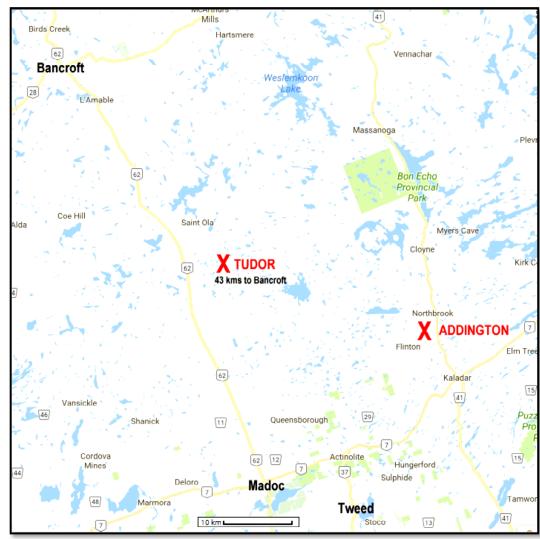
Summary	1
Terms of Reference	2
Abbreviations	3
Property Description and Location	4
Accessibility, Climate, Resources, Infrastructure and Physiography	4
History of Work	6
Geological Setting and Mineralization	9
Property Geology	10
Clastic Meta-sediments	10
Felsic Meta-volcanics	10
Mafic Meta-volcanics	10
Mafic Dyke	11
Main Zone	11
Work Covered by This Assessment report	12
Sampling Method and Approach	13
Sample Preparation, Analyses and Security	14
Quality Assurance/Quality Control	14
GS09 Standard Performance	15
Laboratory Replicate and Duplicate Samples Performance	15
Data Verification	15
Interpretation and Conclusions	16
Recommendations	16
References	16
Ontario Geological Survey Publications, Tudor Township Certificate of Qualified Person and Author	17
Appendix	20

List of Figures

Fig. 1	General Location Map	3
Fig. 2	Main Zone Drill Locations	8
Fig. 3	Drill Plan Map	12

List of Tables

Chart 1	Tudor Township Claims under option	4
Chart 2	Drill Hole Coordinates	13
Chart 3	Significant Drill Intersection Values	13


Appendix

Appendix 1	Surface Drill Hole Plan
Appendix 2	Drill Hole Sections
Appendix 3	Drill Logs
Appendix 4	Drill Hole Sample Numbers
Appendix 5	Drill Hole Assay Certificates

SUMMARY

This Assessment Report covers the February 2017 Drilling Program on Union Glory Gold Limited's ("UGG") Tudor Gold Property, located in the Township of Tudor, Ontario. UGG has the right to earn 100% of the property. They are not subject to any NSR nor royalty payments, but simply payment in exchange for the interest in the staked claims of James Chard and Robert Dillman.

The Drilling Program comprised 711 meters from 5 NQ diameter diamond drill holes centered on UTM coordinates 297193E and 4963149N (NAD83 Zone 18T). All drilling was completed on Claim 870720 under Exploration Permit PR-13-10425R. Major Drilling was the drill contractor.

Fig. 1 General Location

The Tudor property comprises 24 staked claim units totaling 388 hectares (960 acres) located 25

kilometers south of the town of Bancroft and approximately 250 kilometers northeast of Toronto. Paved highways and country roads pass within 1.5 kilometers of the claims but snowmobile and other unmaintained trails access most of property, but are only suitable for off-road oriented vehicles.

The property is covered by low ridges separated by swampy areas that are typical of this part of Ontario. Summers are usually hot and humid with temperatures reaching 30C, and winters are cold with temperatures reaching -30C. Exploration can be carried out all year.

Most exploration to date lies within what has historically been referred to as the Main Zone felsites, or felsic meta-volcanic. This unit lies above a mafic meta-volcanic to the west, and below a clastic meta-sedimentary unit to the east. The mineralized felsic meta-volcanic conspicuously hosts 5-8% disseminated arsenopyrite and gold. Previous drilling in 2008 tested a portion of the Main Zone to a vertical depth of 50 meters, while a 2011 drill program tested the Main Zone to a vertical depth of 100 meters.

The drill program covered by this Assessment Report focused on intercepting the gold mineralization adjacent to, and below, the 2011 Main Zone drill hole MZ-11-18. A potential increase in gold grade with depth in the vicinity of MZ-11-18 was confirmed.

The reader is directed to the Appendix Section of this Assessment Report for all drill logs, plans and sections, assay number locations, and assay certificates.

TERMS of REFERENCE

Union Glory Gold Limited ("UGG") retained Devon Geological Services Ltd. to manage the February 2017 Drill Program and prepare this Assessment Report. This report was prepared at the request of Mr. J. Sun, President of Union Glory Gold Limited, a private company incorporated with its corporate office located at:

301-3650 Victoria Park Avenue, Toronto, Ontario, Canada M2H 3P7.

ABBREVIATIONS

The following list shows the meaning of the abbreviations for technical terms used throughout the text of this report.

Abbreviation	Meaning
Ма	million years ago
UTM	Universal Transverse Mercator coordinate system
E (UTM)	meters East
N (UTM)	meters North
NAD83	North American Datum of 1983
18T	Zone 18 north of the equator
44° 42' 50" N	degrees, minutes, seconds North latitude
77° 10' 50" W degree	es, minutes, seconds West longitude
NSR	Net Smelter Royalty
°C	temperature in degrees Celsius

Abbreviations specific to drill logs are found in the Appendix 3: Drill Logs

PROPERTY DESCRIPTION AND LOCATION

The drilling program covered by this Assessment Report is centered on the Property at UTM coordinates 297193E 4963149N (NAD 83 Zone 18T). This corresponds to Latitude $44^{\circ} 47' 35''$ N and Longitude $77^{\circ} 33' 50''$ W.

The Tudor Gold Property, under option from Robert Dillman and James Chard, comprises 12 Crown claim blocks totaling 24 claim units. These claims generally cover a band of felsic meta-volcanic rocks hosting gold mineralization historically reported to strike over 9 kilometers in length.

Claim	Units	Due Date	Annual \$	Reserve \$	Ownership
820718	1	10-Oct-17	400	129	100% Dillman, Robert James
820719	1	10-Oct-17	400	2,431	100% Dillman, Robert James
820720	1	10-Oct-17	400	467,504	100% Dillman, Robert James
820721	1	10-Oct-17	400	2,123	100% Dillman, Robert James
1077083	2	17-Jun-18	800	0	100% Chard, James Morley
1077089	1	13-Nov-17	400	0	50% Chard, 50% Dillman
1195172	8	10-Apr-17	3,200	336	100% Chard, James Morley
1195173	1	10-Apr-17	400	53,349	100% Chard, James Morley
1195192	4	25-Mar-18	1,600	7	100% Chard, James Morley
1229345	2	13-Nov-17	800	0	50% Chard, 50% Dillman
1229346	1	19-Nov-17	400	0	50% Chard, 50% Dillman
1229347	1	19-Nov-17	400	0	50% Chard, 50% Dillman
12	24		9,600		

Chart 1 Tudor Township Claims under option to Union Glory Gold

To maintain the claims in good standing, the annual exploration expenditure commitment to UGG is \$9,600. As of May 1, 2017, all claims are in good standing.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The property is located in Tudor Township about 200 km east-northeast of Toronto, and 43

kilometers south of Bancroft, Ontario (Fig. 1). The claims can be accessed from paved Highway 62 north from Madoc to the Weslemkoon Lake Road, and east through the Hamlet of Gilmour to the Pine View Ridge Road, and then south to within 1.5 kilometers of the Main Zone.

Exploration and mining operations may be carried out year round on the property. ATV 4-wheelers in the summer, and snowmobiles in the winter, can access most of the property along a power line and a well maintained snowmobile trail. Due to the presence of numerous low swampy marshes and ponds throughout the region, some sections of the trail are prone to flooding, especially in the spring.

The climate in the project area is classified as temperate. The minimum monthly average temperature in January is -14.4°C with monthly average temperatures of 25.7°C in July. Annual precipitation can total 880 mm, with averages ranging from 60-90 mm per month. November and December are typically the wettest months. Approximately 200 mm of precipitation annually occurs as snow.

The major topographical feature on the property is the Moira River, which flows southwards through the central portion of the property. Beavers have dammed many areas of the river resulting in swampy areas and marshes. Gentle to steep-facing north-south orientated ridges are cut by east-west creeks draining into the Moira River.

The property is at an elevation of 300 meters above sea level. The maximum relief is approximately 45 meters although most hills and valleys only range 15 to 25 meters in elevation or depth.

Vegetation is dominated by white pine, spruce and poplar, with maple and birch trees growing at higher elevations. Cedar and tag-alders grow at lower elevations and on ridge slopes.

Accommodation and supplies are available in Bancroft, about 43 kilometers north of the property on Highway 62. Bancroft is a regional centre with a population of 3,900. The village of Tweed is located approximately 60 km to the south-east of the property with a population of approximately 1,800. The Ministry of Northern Development and Mines office for the Southern Ontario Mining Division is located in Tweed and offers geological services and a core library facility. Local contractors with logging and excavation equipment, and casual labour, are available to support exploration and early development.

The property, located on staked Crown Land, is situated on the traditional lands of the Alderville First Nation. Union Glory Gold has maintained a good working relationship with their Chief and other members of the Alderville First Nation. Their representative was welcomed during the active portion of this drill program.

HISTORY of WORK

1969 Lumbers reported an open cut located in the vicinity of the Main Zone. This excavation is believed to be circa the late 1800s or early 1900s. After the first discovery of gold at Eldorado in 1852, the property was prospected by settlers acquiring land grants.

1971 R. England carried out prospecting and trenching on current claim 820718 and in so doing extended the Main Zone northwards.

1985 James Chard and Robert Dillman initially staked four claims covering the Main Zone including the R. England occurrence. Surface rock sampling and a VLF electromagnetic survey were completed. In 1988 geological mapping, more rock sampling, soil sampling, and a magnetic survey were completed. Anomalous gold mineralization was interpreted to be hosted within a "mylonitized" felsic unit. Chard's and Dillman's partnership continues to this day as Vendors of the property.

1989 Hol-Lac Gold Mines optioned the property and had Homestake carry out their exploration. Geological mapping and rock sampling were completed. Soil Sampling identified three linear anomalies over a strike length of 2.5 kilometers with a coincident arsenic anomaly within the felsic rocks. An IP survey subsequently generated numerous anomalies. Homestake drilled five holes. DT-90-1, 2 and 3, about 50 meters south of the Christie Trench, intersected up to 5 3.37g/t over 5 meters.

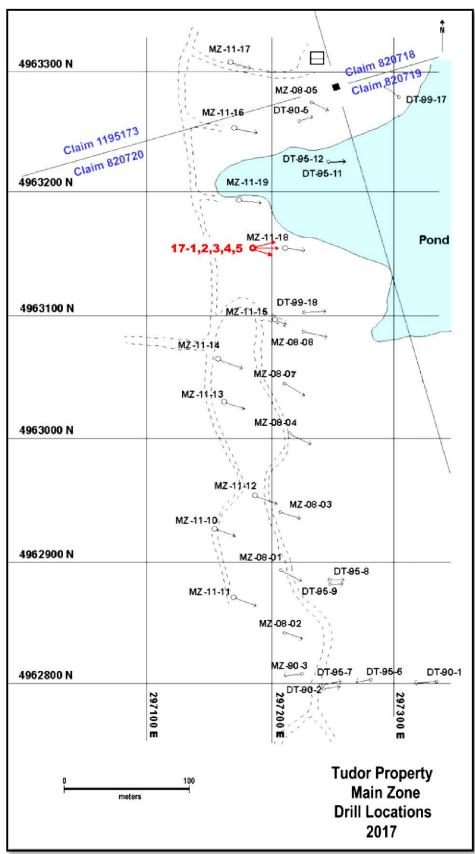
1993 Under the O.P.A.P. prospecting grant system, James Chard carried out additional prospecting, stripping, trench sampling and soil sampling.

1994 Romfield Building Corporation optioned the property and excavated 20 trenches over a strike length of 1.4 kilometers and drilled two. Holes DT-95-6 and 7 tested the Christie trench with intersections in the 0.50 gram per tonne range. Hole 8 intersected 3.20 meters grading 5.69 grams per tonne and Hole 9 intersected 14.87 meters of 0.9 grams per tonne. Hole DT-95-10

tested the Main Zone and intersected two zones grading about 1 gram per tonne. DT-95-11 and 12 tested the zone under a pond in the vicinity of the open cut noted by Lumbers (1969). Those holes intersected 16.46 meters of 1.28 grams per tonne and 22.95 meters grading 2.38 grams per tonne. An anomaly 300 meters long was subsequently discovered north of the Main Zone occurrences and was named the Vardy Zone.

Louvicourt Gold Mines Inc. (Hendrikson, 2003) described the Vardy Prospect as sucrose veins containing native gold and arsenopyrite in schistose mafic volcanic rocks altered by silicification and iron carbonate. The veins are generally 0.3 to 1 meter wide with gold values ranging from trace to 17 grams per tonne. The Vardy Zone can be traced for 250 meters northwards to the Homestake Zones located on the adjacent property.

2004 Exploration continued on the Main Zone with a channel sampling program which extended the mineralization southwards to the VG Zone. Additional work was also carried out on the Vardy Zone where more sampling and stripping better defined the mineralization.


Work concentrated on the Main Zone and its southern extension with additional geological mapping, trenching and rock sampling.

Nine holes were drilled to test the Main Zone to a vertical depth of approximate 50 meters.

2010 Speed reviewed the project for Union Glory Gold Limited. An internal geological resource estimate, for discussion purposes only, was estimated by Robert Dillman to host 1.4 million tonnes grading 2.2 grams per tonne.

Ten holes were drilled to test the Main Zone to a vertical depth ranging between 50 and 100 meters.

Fig. 2 Main Zone Drill Locations

8

GEOLOGICAL SETTING AND MINERALIZATION

The property is situated in the Madoc-Bancroft region of the Grenville Structural Province of the Precambrian Shield. Rock units belong to the Mid-Sedimentary Belt of the Elzevir Terrain subdivision of the Grenville Province.

The following information is taken from the Ontario Geological Survey (OGS) Open File Report 6238, published in 2009 and based on a visit by R.M. Easton, OGS Precambrian Geoscience Section.

"The property lies within the Grimsthorpe domain of the Central Metasedimentary Belt, Grenville Province. In the eastern part of the property, older rocks of the Canniff Complex (>1280 Ma), comprising massive and pillowed tholeiitic metabasalt, metagabbro and metaperidotite, are unconformably overlain to the west by tholeiitic metabasalt and metasedimentary rocks of the Grimsthorpe Group (>1275 Ma), and are exposed due to doming along the margins of the Lingham Lake gabbro-diorite intrusive complex and the Grimsthorpe tonalite. A felsite unit in the order of 200 to 300 m wide, probably derived from rhyolitic flows or tuffs, trends northerly through the central part of the property and hosts the majority of the gold occurrences (Easton 2004, 2008a).

Two major zones of alteration and deformation trend northerly through the metavolcanic and metasedimentary rocks of the Grimsthorpe domain, intersecting in the area of the Tudor gold property. The older, northeast-trending zone, termed the Gilmour shear zone and the younger, northtrending Moira River shear zone exhibit a range of alteration, including pervasive carbonatization, development of chlorite, sericite, and biotite schist, mylonitic lamination, and quartz veining."

A prominent structure, the Moira River Shear Zone (Lumbers, 1969), extends northeastward through the property and is the source of shearing accompanied by hydrothermal alteration of iron-carbonate alteration, silicification, chloritization and sericitization.

Metamorphism generally ranges from greenschist to amphibolite facies, but can significantly increase marginal to large intrusions like the Lingham Lake Complex. In the vicinity of the property, hornblende-amphibolite facies metamorphism surrounds the Lingham Lake Complex. The author is of the opinion that the release of volatiles associated with the transition from greenschist to amphibolite facies could be significant for generating metamorphic fluids that often provide a mechanism for transporting and focusing gold mineralization.

To date, drilling and geological mapping has focused on the area hosting the Main Zone. The predominant rock units comprise a sequence of mafic meta-volcanic tuffs and flows. They are generally fine-grained and medium to dark green, schistose, and can exhibit minor folding. The schistosity strikes at 035 degrees, dips vertically, is axial planar to folding, and plunges moderately to steeply southwest.

PROPERTY GEOLOGY

Clastic Meta-sediments (SED)

Clastic sedimentary units are in contact with the underlying Main Zone and felsic meta-volcanics. They comprise schistose argillaceous and greywacke beds but can become more like a banded chert in some facies. The meta-sediments are grey in colour with greywacke-like 1-2 centimeter darker banding/bedding. There can also be an intermixing of greenish mafic and/or grey felsic material. During this drill program it was often difficult to distinguish amongst cherty rhyolite, cherty sediments and highly silicified cherty greywacke. Cherty magnetite iron formation has also been noted and occurs in both meta-sedimentary and meta-volcanic units.

Felsic Meta-volcanics (F)

The felsites, or felsic meta-volcanic rocks, are schistose and can comprise ash or lapilli tuff with streaks of biotite, often resulting in a mottled appearance. The 5-10% disseminated arsenopyrite-rich mineralized zones are associated with an increase in silicification. As silicification increases, the ashfall? tuff appears more like a cherty banded meta-sediment.

Mafic Meta-volcanics (MV)

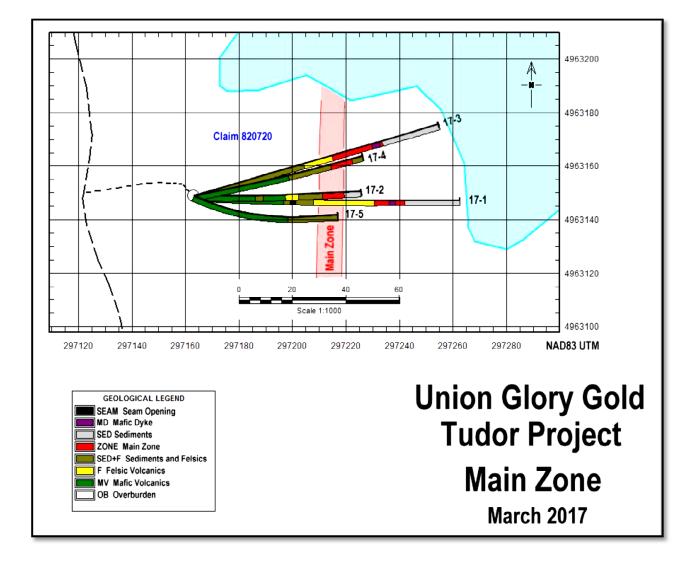
These rocks are generally green, fine to medium grained and schistose. Flows vary from basaltic to gabbroic in appearance. Basaltic units are massive and schistose, with poorly preserved pillow structures. Gabbroic units are typically coarser grained, massive and highly chloritic, and often altered with pervasive Fe-carbonate.

Mafic Dyke (MD)

Gabbroic dykes and sills can be well-preserved, or strongly altered with Fe-carbonate-chlorite schist in areas of faulting.

Main Zone

The Main Zone target comprises 5-10% disseminated arsenopyrite and gold mineralization


occurring at the contact between the felsic meta-volcanics and the meta-sediments, and strikes north 10 degrees east over an estimated 9 kilometers.

The host rock is typically called a felsite by previous workers. This is characterized as a sheared rhyolite tuff that is gneissic looking with thin alternating bands of fine quartz-feldspar and darker chlorite-biotite. Silicification, mylonitization and re-crystallization are characterized by Fe-carbonate+silicification+sericite alteration. Free gold appears to occur with silicification and arsenopyrite.

An interpreted second mineralized system on trend to the north has been discovered by Robert Dillman and James Chard at the Vardy Zone. A quartz vein carrying from trace to 17 grams per tonne gold over widths up to a meter has been followed for 250 meters. This vein is within a series of iron carbonate-rich, siliceous mafic tuffs which carry low gold values in the 0.1 to 0.2 gram per tonne range.

WORK COVERED BY THIS ASSESSMENT REPORT

The purpose of this drill program was to confirm the relevance of previous drill hole MZ-11-18 and the interpreted downward potential for improving gold grades at the Main Zone. The drill program consisted of 5 NQ diameter diamond drill holes (17-1 to 17-5) totaling 711 meters and was completed during February and March 2017. Due to mechanical problems, drill hole 17-5 was abandoned before reaching the target zone.

Fig. 3 Drill Plan Map

Hole	UTM_N	UTM_E	Elev_m	TD_m	Az_tr	Dip	Zone	Claim
17-1	4963149	297163	281	140.00	92.6	-48.4	Main	820720
17-2	4963149	297163	281	146.00	90.6	-65.4	Main	820720
17-3	4963149	297163	281	141.00	73.7	-49.7	Main	820720
17-4	4963149	297163	281	143.00	78.7	-63.3	Main	820720
17-5	4963149	297163	281	141.00	113.1	-70.6	Main	820720

Chart 2 Drill Hole Coordinates (NAD83 UTM)

Chart 3 Significant Drill Intersection Values

Hole	From_m	To_m	Width m	QV%	Aspy%	Grade
17-1	100.00	103.00	3.00	10	7	2.40/3.00m
17-1	110.36	112.36	2.00	50	8	1.75/2.00m
17-2	113.25	119.25	6.00	40	8	3.33/6.00m
17-2	125.28	128.28	3.00	20	7	1.93/3.00m
17-3	84.00	86.00	2.00	30	4	2.27/2.00m
17-3	92.00	93.00	1.00	20	5	2.14/1.00m
17-3	96.00	99.00	3.00	30	5	2.35/3.00m
17-3	107.69	109.17	1.48	45	4	3.02/1.48m
17-4	116.50	118.50	2.00	10	4	3.00/2.00m
17-4	123.50	125.50	2.00	20	2	1.96/2.00m
17-4	127.50	133.80	6.30	45	10	2.31/6.30m

SAMPLING METHOD and APPROACH

Core samples were analyzed for gold at the SGS Laboratory in Lakefield, Ontario. Methods for sample preparation and analysis are as follows:

SGS lab protocol crushes samples to >75% passing a -2 mm screen, with an assay pulp split of up to 250 grams pulverized to > 85% passing 75 micron screen. Gold content was determined using fire assay on a 30 gram aliquot with an Atomic Absorption Spectrometry (AAS) finish, with reporting limits of 5 – 10,000 ppb. Over limit samples were also analyzed using fire assay but with a gravimetric finish, with reporting limits of 0.5 - 3,000 ppm.

SGS is an independent laboratory operating more than 2,000 offices and labs throughout the world. Sample processing services at SGS are ISO/IEC 17025:2005 accredited by the Standards Council of Canada. Quality Assurance procedures include standard operating procedures for all aspects of the processing and also include protocols for training and monitoring of staff. ONLINE LIMS is used for detailed worksheets, batch and sample tracking including weights, and labeling for all the products from each sample.

SAMPLE PREPARATION, ANALYSES and SECURITY

All drill core was logged and sampled at a heated logging garage on-site during the drill program. The author marked all core that looked mineralized, and a geo-technician cut the marked sections with a 10" diamond core saw at the logging garage on-site.

Samples to be submitted for analysis were also removed daily to the secure facility. At the end of the short program, the author delivered the samples to SGS Labs in Lakefield, a 1.5 hour drive from the Property.

All cut core was removed daily and stored in steel racks at the Company's Northbrook Storage secure facility. Core not selected for analysis was cross-piled adjacent to the core logging garage and subsequently delivered to the Government Core Storage Facility in Tweed by James Chard.

QUALITY ASSURANCE/QUALITY CONTROL

The Drill program comprised 5 diamond drill holes (holes 17-1 to 17-5) and was completed during the February to March 15, 2017 time period.

Certified Reference Material ("standards" or "CRMs") was inserted into the sample stream approximately every 20 samples. Due to the small number of samples taken, only CRM GS09 was used.

Criteria for assessing CRM performance are based as follows: data falling within ± 2 standard deviations from the accepted mean value, pass. Data falling outside ± 3 standard deviations from the accepted mean value, or two consecutive data points falling between ± 2 and ± 3 standard

deviations on the same side of the mean, fail.

GS09 Standard Performance:

Material for the GS09 standard (Drill Log Code "D") was provided to Accurassay by a third party. The sample was pulverized to –200 mesh and blended by Accurassay, then analyzed to demonstrate suitable homogeneity, and bottled in approximately 800-gram units. This standard is certified for gold and there were 3 data points for this reference material for gold. This standard returned no failures for gold during the drilling at the Project.

Duplicate samples were not inserted into the sample stream by the author during the Drill Program. However, SGS lab's internal duplicate (coarse or crusher duplicates) and replicate (pulp duplicate) samples were routinely inserted.

Laboratory Replicate and Duplicate Samples Performance:

Due to the small numbers of samples taken, only 2 replicate and 2 duplicate samples were inserted into the sample stream by SGS during the QC program to monitor precision for gold.

The results of the CRM standard and the SGS replicates and duplicates are deemed to be acceptable by the author.

DATA VERIFICATION

Much of the background information used in this report is available at the mining archives at the Ontario Department of Mines office in Tweed, Ontario and on-line at the Ministry of Natural Resources web site.

Some information was made available to the author by UGG and by the property vendors. No attempt has been made by the author to verify the gold grades or extent of the gold-bearing zone outside of this drill program.

INTERPRETATION AND CONCLUSIONS

The Main Zone has been the focus of most of the exploration on the property to date. The gold mineralization appears to be confined to the upper portion of a felsic meta-volcanic sequence at or near the contact with the overlying meta-sediments.

The Main Zone has been tested to a vertical depth of only about 100 meters. It has been postulated that the gold grades increase with depth and this drill program appears to confirm that. Therefore, it is reasonable to conclude that there is the potential to increase the gold resource of the Main Zone at depth in the greater than 3 gram gold range.

RECOMMENDATIONS

The results of this drill program are encouraging and therefore warrant an internal Preliminary Economic Assessment (PEA) to establish a potentially economic grade and tonnage model. Should a grade of 3-4 grams gold be an economically viable target, then significant additional drilling may be warranted to define the geometry of mineable plunging shoots.

It is also recommended that the Vardy Zone, relatively unexplored, be evaluated by an MMI soil geochemical survey and followed up with a small evaluation drilling program.

A data compilation with a 3D computerized model of all available data is also recommended.

REFERENCES

There are many Assessment File Reports and internal Company documents available for this property. The following references were used for this Assessment Report.

Christie, B. J. 1989: Assessment report on Geological Mapping and Lithogeochemical Sampling, Dillman Property, Tudor Township, Southern Ontario Mining Division, Ontario: OGS Assessment File 2.13007, 9p.

Homestake Zone: Tudor Gold property; OGS Assessment File No. 2.29870, 42p. Hendrikson, G. N. 2003: Property Examination report, Tudor Gold property, Tudor and Grimsthorpe Twps., NI43-101 Format, for Louvicourt Gold Mines Inc.: 49p.

- Lumbers, S. B. 1969: Geology of Limerick and Tudor Townships; Ont. Dept. Mines Geol. Rept. 67, 110 p.
- McBride, D. E. 2012: report on the 2011 drilling Program, Main Zone, Tudor Gold Property; Comp Rept.

Publication	Author:	Publication Title:
ARM22F	W.G. Miller, C.W. Knight	Map of the Gilmour area, Townships of Limerick and
		Tudor, Hastings County, Province of Ontario
ARV22-02	W.G. Miller, C.W. Knight	The pre-Cambrian geology of southeastern Ontario
GDIF084	Tweed RGO	Tudor Township, Hastings County
M2106	R.K. Laakso	Lake Township, Hastings County
	D.F. Hewitt, E.C.	Madoc Township and part of Huntingdon Township,
M2154	Appleyard, G.R. Guillet	Hastings County
M2167	S.B. Lumbers	Limerick Township, Hastings County
M2168	S.B. Lumbers	Tudor Township, Hastings County
M80650		Geophysical/geochemical series, airborne
	Kenting Earth Sciences	magnetometer survey, Kaladar-Marmora area, high
		resolution total field, southern Ontario
		Geophysical/geochemical series, airborne
M80651	Kenting Earth Sciences	magnetometer survey, Kaladar-Marmora area, high
		resolution total field, southern Ontario
		Geophysical/geochemical series, airborne
M80700	Kenting Earth Sciences.	magnetometer survey, Kaladar-Marmora area, high
		resolution vertical gradient, southern Ontario
		Geophysical/geochemical series, airborne
M80701	Kenting Earth Sciences	magnetometer survey, Kaladar-Marmora area, high
		resolution vertical gradient, southern Ontario
		Geological, Geochemical and Geophysical Data
MRD213	R.M. Easton	from Western Grimsthorpe Domain, Grenville
		Province, Ontario;
P0146	S.B. Lumbers	Tudor Township (north half), County of Hastings

Ontario Geological Survey Publications, Tudor Township

P0147	S.B. Lumbers	Tudor Township (south half), County of Hastings
P0176	S.B. Lumbers	Limerick Township, Hastings County
P0190	R.K. Laakso	Lake Township (north half), Hastings County
P0368	D.F. Hewitt, E.C. Appleyard, G.R. Guillet	Madoc Township (north part), Hastings County
P2374	D.M. Carson	Geological series, Paleozoic geology of the
1 2014		Bannockburn-Campbellford area, southern Ontario
P2536	P.F. Finamore, S.J.	Geological series, Quaternary geology of the Coe
F 2000	Courtney	Hill area, southern Ontario
P2982	G.A. Gorrell	Bedrock aggregate assessment, Hastings County, south-central sheet, Lake, Tudor, Grimsthorpe,
1 2302		Marmora, Madoc, Elzevir townships
P3402	S.B. Lumbers, V.M. Vertolli	Precambrian Geology, Bannockburn Area
P3403	S.B. Lumbers, V.M. Vertolli	Precambrian Geology, Coe Hill Area
P3600	R.M. Easton	Precambrian Geology of the Western Grimsthorpe Domain, Grenville Province;
R067	S.B. Lumbers	Geology of Limerick and Tudor townships, Hastings County

CERTIFICATE OF QUALIFIED PERSON

GARRY K SMITH, P.GEO.

I, Garry K Smith, P. Geo., residing at 3267 Stonecrest Rd., Woodlawn, Ontario, do hereby certify that:

I am an independent geological consultant and President of Devon Geological Services Ltd.

This certificate applies to the Assessment Report titled "Tudor Project, Main Zone Drill Program 2017 Assessment Report, Tudor Township, Ontario" (the "Assessment Report"), with an effective date of May 1, 2017.

I am a graduate of the University of Waterloo with an Honours Bachelor of Science degree in Earth Sciences (1977). I have worked continuously as a geologist since graduation. I am a geological consultant currently licensed by the Association of Professional Geoscientists of Ontario (License No 0367).

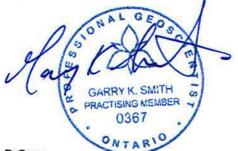
I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that, by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purposes of NI 43-101.

My relevant experience for the purpose of this Technical Report is:

Mining Camp Research Specialist, Rio Tinto	1978-1981
Exploration Manager, Lac Minerals	
Director of Exploration, Golden Terrace Resources	
President Viking Geotechnical	
Computerized Resource Specialist, MPH Consulting	
Managing Director, Micromine North America	
Managing Director, Visidata-Interdex, North America	
Managing Director, Devon Geological Services Ltd	2004-present

I personally managed and supervised all work covered by this Assessment Report.

I am responsible for all sections of this Assessment Report.


I am independent of the Issuer applying the test in Section 1.5 of NI 43-101.

I have not managed nor supervised any previous work on this property.

I have read NI 43-101 and Form 43-101F1 and this Assessment Report has been prepared in compliance with Best Practice Guidelines.

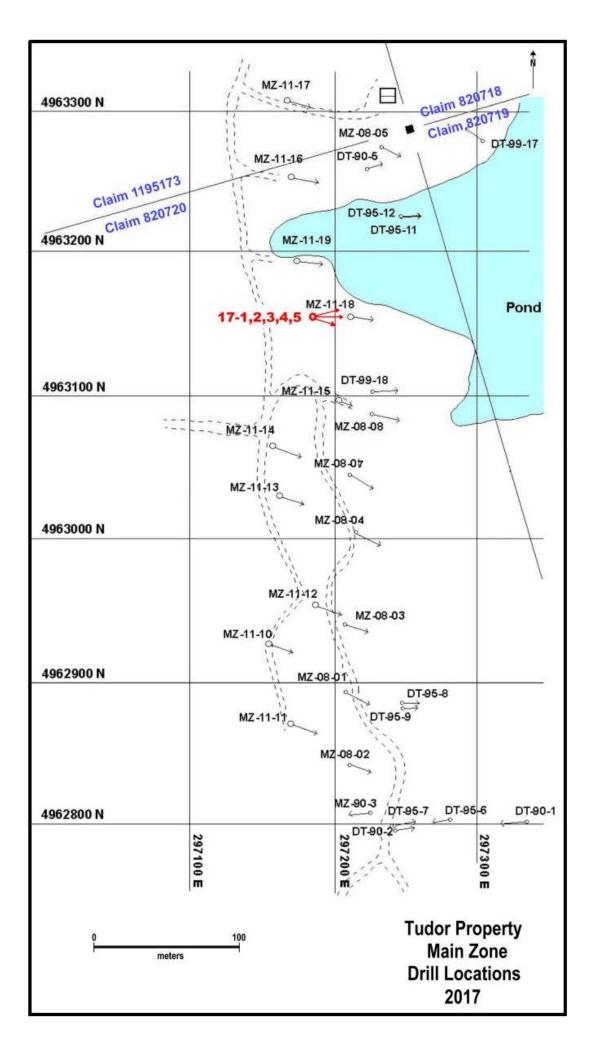
As of the date of this certificate, to the best of my knowledge, information and belief, this Assessment Report contains all scientific and technical information that is required to be disclosed to make the Assessment Report not misleading.

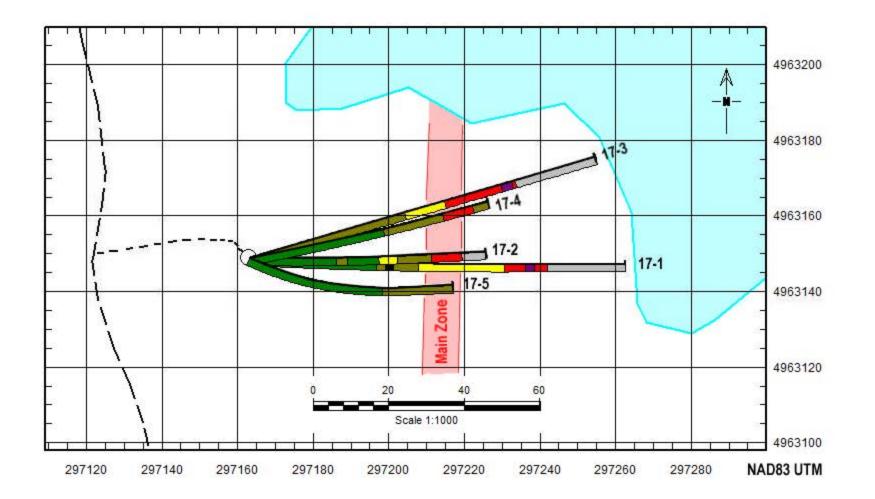
Effective date: May 1, 2017

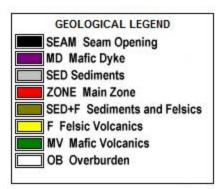
Garry K Smith, P.Geo.

APPENDIX 1: SURFACE DRILL HOLE PLAN

APPENDIX 2: DRILL HOLE SECTION

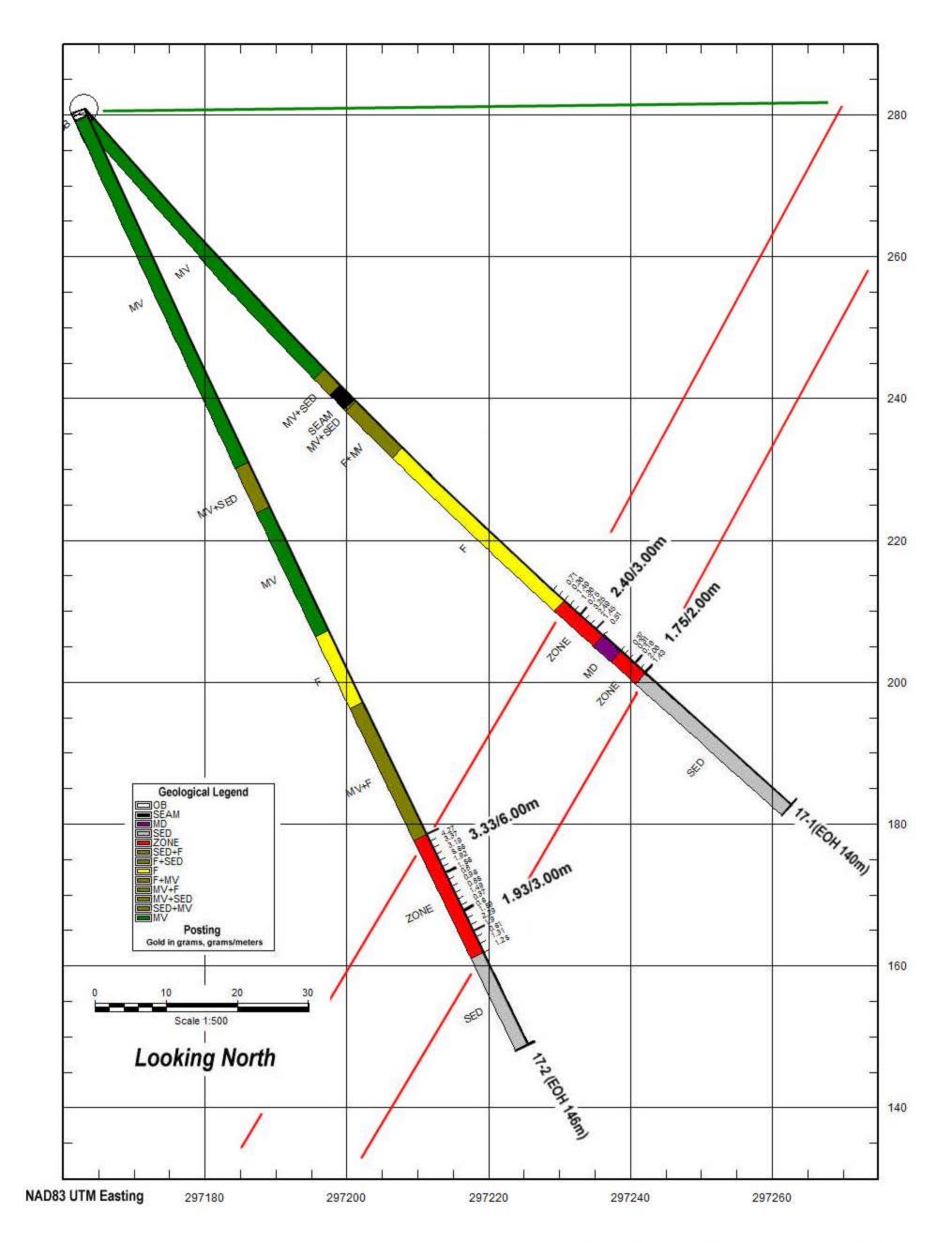

APPENDIX 3: DRILL LOGS

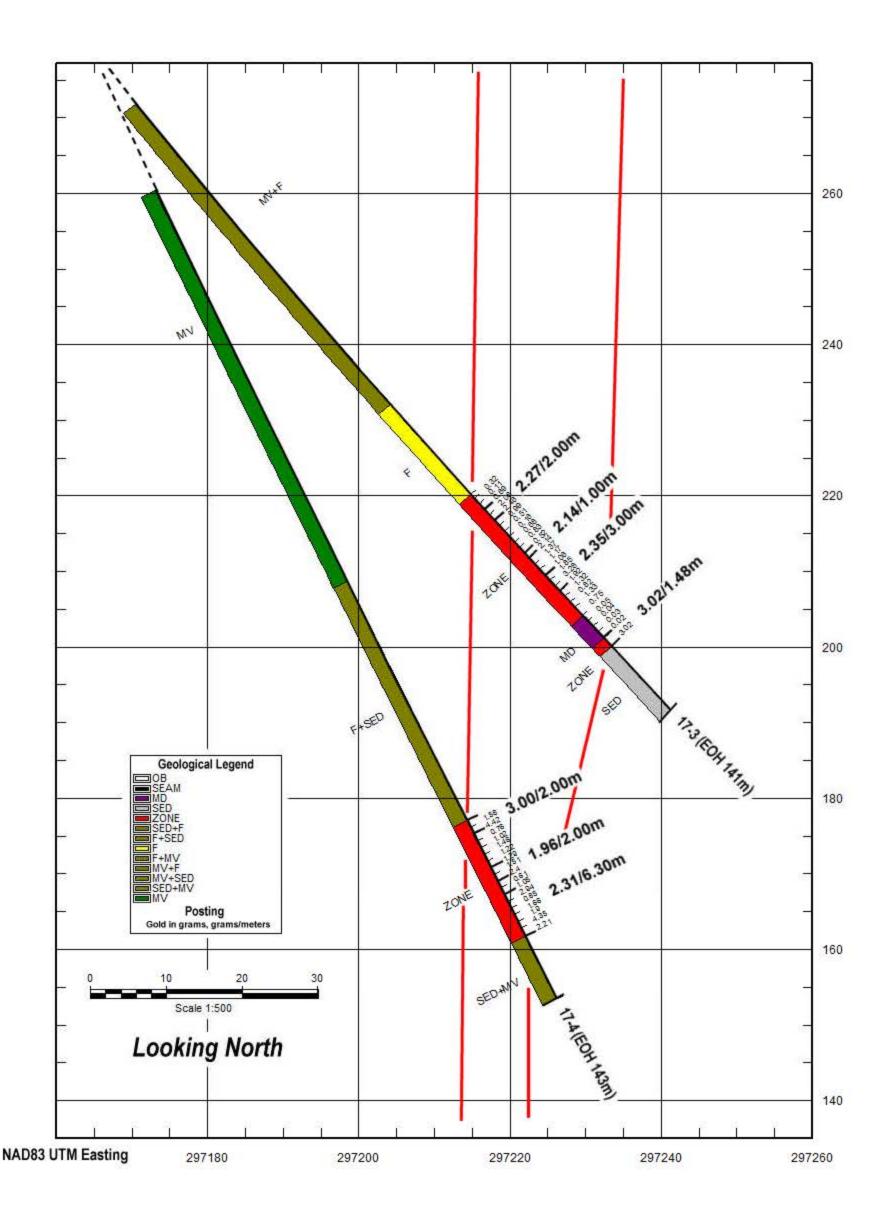

APPENDIX 4: DRILL HOLE SAMPLE NUMBER LOCATIONS


APPENDIX 5: DRILL HOLE ASSAY CERTIFICATES

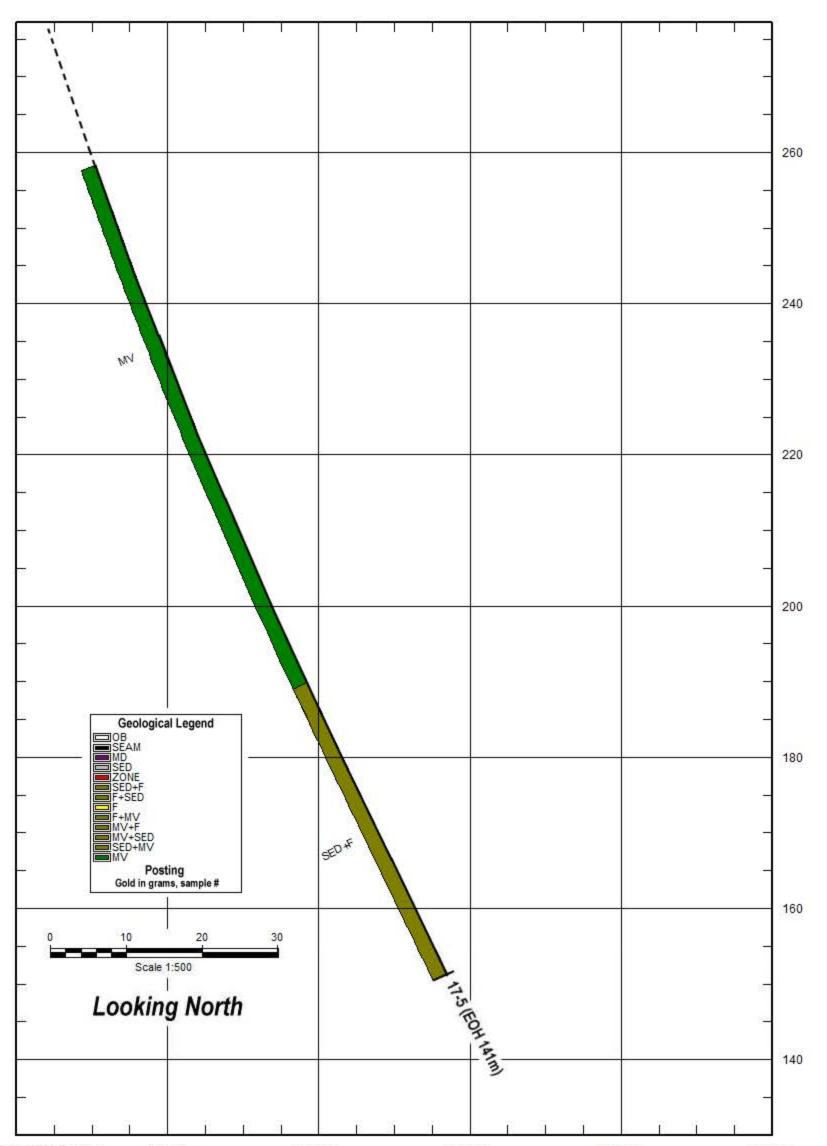
APPENDIX 1

Surface Drill Hole Plan




Union Glory Gold Tudor Project Main Zone March 2017

APPENDIX 2


Drill Hole Sections

Union Glory Gold Tudor Project Main Zone Holes 17-1 & 17-2

Union Glory Gold Tudor Project Main Zone Holes 17-3 & 17-4

NAD83 UTM Easting

297180

297200

297220

297240

297260

Union Glory Gold Tudor Project Main Zone Hole 17-5

APPENDIX 3

Drill Logs

Drill Log Abbreviations

Code	General Log Surveys
Az_m	azimuth in magnetic north (no declination)
Az_tr	azimuth in true north (declination added)
Mag	magnetic background
*204.0	bad REFLEX instrument azimuth reading, followed by correction

Code General Log Lithology Codes

MD	mafic dyke
EOH	end of holle
F	felsic meta-volcanics, cherty ash tuff to coarse granitic
F+MV	felsic meta-volcanics with intercalated mafic flows
MV	mafic meta-volcanic flows
MV+F	mafic meta-volcainic flows with intercalated felsic layers
MV+SED	mafic meta-volcanics with intercalated clastic to cherty metasediments
MVt	mafic meta-volcanics, tuffaceous appearing
OB	overburden
REDOX	altered reducing and oxide environments
SEAM	open ground, fault or shear
SED	clastic greywacke to cherty meta-sediments
SED+F	clastic meta-sediments with intercalated felsic tuff
WKE	greywacke-like clasitc meta-sediments
ZONE	Main Zone of silicification and arsenopyrite

Code	General Log Descriptive Codes
aspy	arsenopyrite
c/a	core angle, measurement from core axis where core axis = 0 degrees
сс	calcium carbonate
cg	coarse grained
cm	centimeters
cont	contact
сру	chalcopyrite
fg	fine grained
fol	foliation
lin	lineation
m	meters
med	medium
med-drk	medium dark
mg	medium grained
mm	millimeter
mod	moderate
ро	pyrrhotite
ру	pyrite
Struct	Structure observations
vfg	very fine grained

Code Assaying Log

10+3cm	2 veins, one is 10 centimeters and one is 3 centimeters wide
3x1cm	3 veins, each 1 centimeter wide
h	high magnetic attraction
irr	irregular, varying angles
K-spar	alkali (potassium) feldspar
I	low magnetic attraction
m	medium magnetic attraction
Mag	approximate magnetitic attraction
QTZ	greater than 50% quartz/silica content
QV	quartz vein

Union Glory Gold

DDH: 17-1

LOCATION: NAD 83 UTM E: 297193 UTM N: 4963149 Core: NQ Collar Elev: 281m Collar Az: 92.6 Collar Dip: -48.4 Length: 140.00 MZ-11-18 area DDH Started: Feb. 16, 2017 DDH Finished: Mar. 5, 2017

TARGET: MAIN ZONE

Driller: Major Drilling

Date Logged: Mar. 5, 2017

Logged by: Garry K Smith, P.Geo

Notes: REFLEX down-hole survey instrument measures magnetic north true north declination is -12.0

Claim: 820720

l		Surveys										
I	Depth	Az_m	Az_tr	Dip	Mag							
I												
I	14.0	104.6	92.6	-48.4	5411							
ſ												
I	102.0	101.8	89.8	-41.9	5361							
ſ												
I												

From m	To m	Thick m	Lith	Comments	Depth	Struct	C/A	Mag
0.00	2.00	2.00	OB				<u> </u>	
2.00	50.00	48.00	MV	med-drk green, wispy chloritic tuffaceaous appearance, weak to mod cc, 16.0m: flows with magnete rims and cm-scale interflow IF brx	5.0	fol	30	L
2.00	00.00	10.00			9.0	fol	37	
50.00	53.18	3.18	MV+SED	highly silicified, with m-scale cherty wacke and arkosic/felsic SED, tops up-hole?, reddish bed margins and 3% 1-2mm magnetite throughout	27.0	fol	40	L
					35.0	fol	50	L
53.18	56.00	2.82	SEAM	2.4m of no recovery, 20% of sandy rubble	44.0	fol	54	L
					50.0	cont	50	L
56.00	56.33	0.33	MV+SED	continued mafic flows with m-scale cherty arkosic/felsic SED, 3% 1-2mm magnetite throughout				<u> </u>
50.00	05.00	0.07	E . N () /		56.3	cont	60	
56.33	65.60	9.27	F+MV	light to pinkish-grey felsite with 2% 2mm magnetite, .5-1m-scale intercalated MV to 62.33	58.0	fol	46	L
65.60	96.93	31.33	F	med-grey to pinkish dark-grey, tuffaceous appearance with biotite wrapping 2-4mm pumaceous lapilli, 83.7m: coarser granitic appearance	70.0	fol	55	L
00.00	00.00	01.00		with 1-2cm K-spar and increasing guartz breccia floods, tr-2% aspy, 94.8m: increasing guartz floods with K-spar and 3-7% aspy	75.0	fol	60	L
					80.0	fol	53	L
96.93	104.40	7.47	ZONE	highly silicified and altered felsic or granitic rock, 3-7% fine to 3mm aspy with silica floods	85.0	fol	40	L
					100.0	fol	53	
104.40	107.69	3.29	MD	dark green, medium grained, weakly foliated to massive, amphibolitized gabbro?				
107.69	112.36	4.67	ZONE	as above, increasing to extremely high silicification downhole, 3-7% aspy	109.0	fol	60	
112.36	140.00	27.64	SED	WKE, gradational to dark grey to black, very fine silicified mudstone, 139.0m: 1% 1mm garnet?	117.0	fol	65	
112.30	140.00	27.04	3ED		122.0		75	
-			EOH		130.0	fol	71	
			2011		133.0	cont	71	
					140.0		76	

Page 1 of 2

ASSAYING

				- 4	
	1 11	H:	1	1_1	
~	ບ				

Sample From Tote Ithek Comments Ove Ove Nag Asyste Pyte Cpyte Nag Auget Auget 279261 94.80 96.83 1.13 F aboudler sample, 1% aspy I	DDH:	17-1														
279252 95.33 96.93 1.00 F shoulder sample, 1% aspy 1 1 1 361 0.36 279252 95.33 96.93 1.00 F shoulder sample, 1% aspy 1 1 1 1494 1.49 1	Sample	From m	To m	Thick m	Lith	Comments	QV <	QV%	Mag	Aspy%	Py %	Сру%	Po%	Tour%	Au ppb	Au gpt
279252 95.33 96.93 1.00 F shoulder sample, 1% aspy 1 1 1 361 0.36 279252 95.33 96.93 1.00 F shoulder sample, 1% aspy 1 1 1 1494 1.49 1																
Image: Note of the second se	279251	94.80	95.93	1.13	F	shoulder sample, 1% aspy				1					709	0.71
Image: Note of the second se	270252	05.02	06.02	1.00	F	aboulder complex 19/ com/				1					261	0.26
r r	219252	90.93	90.93	1.00	Г					I					301	0.30
r r	279253	96.93	98.00	1.07	F	quartz flood with K-spar and sericitic alteration	irr	25		4					1494	1.49
279255 99.00 100.00 1.00 F quartz flood with K-spar and sericitic alteration irr 5 1 1 750 0.75 279256 100.00 10.00 F quartz flood with K-spar and sericitic alteration irr 10 5 23253 3.25 279256 100.00 10.00 F quartz flood with K-spar and sericitic alteration irr 10 5 23253 3.25 279257 101.00 102.00 F quartz flood with K-spar and sericitic alteration irr 10 7 2488 2.49 279258 102.00 103.00 1.00 F quartz flood with K-spar and sericitic alteration irr 15 7 1451 1.45 279259 103.00 104.40 F quartz flood with K-spar and sericitic alteration irr 13 2 510 0.51 279260 107.69 108.36 0.67 F quartz flood with weak K-spar and sericitic alteration irr 10 5 367 0.37								_								
Image: Note of the second se	279254	98.00	99.00	1.00	F	quartz flood with K-spar and sericitic alteration	irr	15		3					1355	1.36
Image: Note of the second se																
Image: Constraint of the state of	279255	99.00	100.00	1.00	F	quartz flood with K-spar and sericitic alteration	irr	5		1					750	0.75
Image: Constraint of the state of	270256	100.00	101.00	1.00	-	guarte flood with K oper and periodic alteration	:	10		F					2052	2.25
279258 102.00 103.00 1.00 F quartz flood with K-spar and sericitic alteration irr 15 7 1451 1.451 279258 103.00 104.40 1.40 F quartz flood with K-spar and sericitic alteration irr 3 2 1451 1.45 279259 103.00 104.40 1.40 F quartz flood with K-spar and sericitic alteration irr 3 2 16 1451 1.45 279259 103.00 104.40 1.40 F quartz flood with K-spar and sericitic alteration irr 3 2 16 <t< td=""><td>279230</td><td>100.00</td><td>101.00</td><td>1.00</td><td>Г</td><td></td><td>111</td><td>10</td><td></td><td>5</td><td></td><td></td><td></td><td></td><td>3203</td><td>3.20</td></t<>	279230	100.00	101.00	1.00	Г		111	10		5					3203	3.20
279258 102.00 103.00 1.00 F quartz flood with K-spar and sericitic alteration irr 15 7 1451 1.451 279258 103.00 104.40 1.40 F quartz flood with K-spar and sericitic alteration irr 3 2 1451 1.45 279259 103.00 104.40 1.40 F quartz flood with K-spar and sericitic alteration irr 3 2 16 1451 1.45 279259 103.00 104.40 1.40 F quartz flood with K-spar and sericitic alteration irr 3 2 16 <t< td=""><td>279257</td><td>101.00</td><td>102.00</td><td>1.00</td><td>F</td><td>guartz flood with K-spar and sericitic alteration</td><td>irr</td><td>10</td><td></td><td>7</td><td></td><td></td><td></td><td></td><td>2488</td><td>2.49</td></t<>	279257	101.00	102.00	1.00	F	guartz flood with K-spar and sericitic alteration	irr	10		7					2488	2.49
279259 103.00 104.40 1.40 F quartz flood with K-spar and sericitic alteration irr 3 2 1 510 0.51 279259 103.00 104.40 1.40 F quartz flood with K-spar and sericitic alteration irr 3 2 1 1 510 0.51 279260 107.69 108.36 0.67 F quartz flood with weak K-spar and sericitic alteration irr 10 5 1					-					-						
And a	279258	102.00	103.00	1.00	F	quartz flood with K-spar and sericitic alteration	irr	15		7					1451	1.45
And a																
279261 108.36 109.36 1.00 F quartz flood with weak K-spar and sericitic alteration irr 15 3 3 4 5 308 0.31 279262 109.36 110.36 1.00 F quartz flood with weak K-spar and sericitic alteration irr 12 3 4	279259	103.00	104.40	1.40	F	quartz flood with K-spar and sericitic alteration	irr	3		2					510	0.51
279261 108.36 109.36 1.00 F quartz flood with weak K-spar and sericitic alteration irr 15 3 3 4 5 308 0.31 279262 109.36 110.36 1.00 F quartz flood with weak K-spar and sericitic alteration irr 12 3 4																
279261 108.36 109.36 1.00 F quartz flood with weak K-spar and sericitic alteration irr 15 3 3 4 5 308 0.31 279262 109.36 110.36 1.00 F quartz flood with weak K-spar and sericitic alteration irr 12 3 4	270260	107.60	109.26	0.67	F	quartz flood with weak K spar and corigitic alteration	irr	10		Б					267	0.27
279262 109.36 110.36 1.00 F quartz flood with weak K-spar and sericitic alteration irr 12 3 155 0.16 279263 110.36 11.36 1.00 QTZ as above, increased silica flooding irr 50 7 2057 2.06 279264 111.36 1.00 QTZ as above, increased silica flooding, 5-10mm blebs of aspy irr 55 10 1431 1.43	279200	107.09	100.30	0.07	Г			10		5					307	0.37
279262 109.36 110.36 1.00 F quartz flood with weak K-spar and sericitic alteration irr 12 3 155 0.16 279263 110.36 11.36 1.00 QTZ as above, increased silica flooding irr 50 7 2057 2.06 279264 111.36 1.236 1.00 QTZ as above, increased silica flooding, 5-10mm blebs of aspy irr 55 10 1431 1.43 279264 111.36 112.36 1.00 QTZ as above, increased silica flooding, 5-10mm blebs of aspy irr 55 10	279261	108.36	109.36	1.00	F	guartz flood with weak K-spar and sericitic alteration	irr	15		3					308	0.31
279263 110.36 111.36 1.00 QTZ as above, increased silica flooding irr 50 7 2057 2.06 279264 111.36 112.36 1.00 QTZ as above, increased silica flooding, 5-10mm blebs of aspy irr 55 10 1431 1.43 279264 111.36 112.36 1.00 QTZ as above, increased silica flooding, 5-10mm blebs of aspy irr 55 10 1431 1.43																
279264 111.36 12.36 1.00 QTZ as above, increased silica flooding, 5-10mm blebs of aspy irr 55 10 10 1431 1.43	279262	109.36	110.36	1.00	F	quartz flood with weak K-spar and sericitic alteration	irr	12		3					155	0.16
279264 111.36 12.36 1.00 QTZ as above, increased silica flooding, 5-10mm blebs of aspy irr 55 10 10 1431 1.43																
	279263	110.36	111.36	1.00	QTZ	as above, increased silica flooding	irr	50		7					2057	2.06
	270264	111.26	112.26	1.00	017	as above increased silica fleeding 5 10mm blobs of aspy	irr	55		10					1/21	1 / 2
279265 STANDARD D: 2156 Image: Constraint of the constraint of	279204	111.50	112.30	1.00	QIZ	as above, increased sinca hooding, 5-romin blebs of aspy		55		10					1431	1.45
Image: Section of the system of the syste	279265		STANDA	RD		D: 2156										
Image: Series of the series																
Image: state of the state																
Image: state of the state																
Image: state of the state																

Page 2 of 2

Union Glory Gold

DDH: 17-2

LOCATION: NAD 83 UTM E: 297193 UTM N: 4963149 Core: NQ Collar Elev: 281m Collar Az: 90.6 Collar Dip: -65.4 Length: 146.00 MZ-11-18 area DDH Started: Mar. 5, 2017 DDH Finished: Mar. 7, 2017

TARGET: MAIN ZONE

Driller: Major Drilling

Date Logged: Mar. 7, 2017

Logged by: Garry K Smith, P.Geo

Notes: REFLEX down-hole survey instrument measures magnetic north true north declination is -12.0

Claim: 820720

 Surveys

 Depth
 Az_m
 Az_tr
 Dip
 Mag

 15.0
 102.6
 90.6
 -65.4
 5346

 102.0
 99.3
 87.3
 -64.1
 5368

 102.0
 99.3
 87.3
 -64.1
 5368

From m	To m	Thick m	Lith	Comments	Depth	Struct	C/A	Mag
0.00	0.97	0.97	OB					
0.97	EE 00	54.03	MV	les previeus med derk groep, silisseus, vig tuffesseus, like handing (likely shear folistion of flows)	2.0	fol fol	10 10	
0.97	55.00	54.03	IVI V	as previous, med-dark green, siliceous, vfg tuffaceous-like banding (likely shear foliation of flows)	13.0	fol	25	
55.00	62.00	7.00	MV+SED	flows with intercalated finely laminated cm-scale magnetic black Iron Formation with highly contorted soft sediment slump and kink folding	20.0	fol	45	
00.00	02.00	7.00	MIVIOLD		24.0	fol	10	
62.00	81.25	19.25	MV	as above	30.0	fol	30	1
					34.0	fol	30	
81.25	92.50	11.25	F	cherty, highly siliceous, magnetite-rich zones, hematitic and sericitic colouration (rhyolite?)	38.0	fol	30	
					47.0	fol	34	
92.50	113.25	20.75	MV+F	m-scale intercalated MV and Felsic units, felsic units are cherty and black (rhyolite?)	54.0	fol	34	
					63.0	fol	40	
113.25	131.67	18.42	ZONE	quartz breccia floods with pink K-spar + biotite, highly silicified with 3-15% aspy with silca floods	74.0	fol	15	<u> </u>
131.67	4.40.00	44.00	SED		78.0	fol	35 25	
131.67	146.00	14.33	SED	WKE, possible intermixed with MVt, m-scale cherty layers, rare 1m MV flows	81.25 92.50	cont cont	25 25	
			EOH		92.30	cont	30	
			LOIT		101.0	cont	12	
					109.0	cont	23	
					126.0	fol	20	ł
					130.0	fol	20	
					133.0	fol	30	
							<u> </u>	
							┝──┦	
					_		┝──┤	
							┝──┦	
								[

Page 1 of 2

ASSAYING

DDH: 17-2	
-----------	--

DDH:				1		ii.						-		· · · · · · · · · · · · · · · · · · ·	
Sample	From m	To m	Thick m	Lith	Comments	QV <	QV%	Mag	Aspy%	Py %	Сру%	Po%	Tour%	Au ppb	Au gpt
279266	113.25	114.25	1.00	F	quartz breccia floods with pink K-spar and biotite	irr	20		4					4269	4.27
279267	114.25	115.25	1.00	F	quartz breccia floods with pink K-spar and biotite, 8% aspy	irr	30		8					3369	3.37
210201	114.20	110.20	1.00	•			00		Ŭ					0000	0.07
279268	115.25	116.25	1.00	F	quartz breccia floods with pink K-spar and biotite, 8% aspy	irr	40		8					3189	3.19
279269	116.25	117.25	1.00	F	quartz breccia floods with pink K-spar and biotite, 8% aspy	irr	40		8					5660	5.66
279270	117.25	118.25	1.00	F	quartz breccia floods with pink K-spar and biotite, 8% aspy	irr	45		8					1919	1.92
279271	118.25	119.25	1.00	QTZ	quartz breccia floods with pink K-spar and biotite, 8% aspy	irr	50		8					1556	1.56
279272	119.25	120.25	1.00	F	quartz breccia floods with pink K-spar and biotite	irr	30		6					796	0.80
279273	120.25	121.28	1.03	QTZ	guartz breccia floods with pink K-spar and biotite	irr	50		5					955	0.96
219215	120.23	121.20	1.05	QIZ			50		5					300	0.30
279274	121.28	122.28	1.00	F	quartz breccia floods with pink K-spar and biotite	irr	30		4					848	0.85
279275	122.28	123.28	1.00	F	quartz breccia floods with pink K-spar and biotite	irr	30		4					1491	1.49
279276	123.28	124.28	1.00	F	quartz breccia floods with pink K-spar and biotite	irr	20		3					372	0.37
279277	124.28	125.28	1.00	F	quartz breccia floods with pink K-spar and biotite	irr	20		3					595	0.60
279278	125.28	126.28	1.00	F	quartz breccia floods with pink K-spar and biotite, 8% aspy	irr	20		8					1593	1.59
279279	126.28	127.28	1.00	F	guartz breccia floods with pink K-spar and biotite	irr	15		5					2285	2.29
215215	120.20	127.20	1.00				10		5					2205	2.25
279280	127.28	128.28	1.00	F	quartz breccia floods with pink K-spar and biotite	irr	20		7					1899	1.90
279281	128.28	129.28	1.00	F	quartz breccia floods with pink K-spar and biotite	irr	10		4					610	0.61
279282	129.28	130.28	1.00	F	quartz breccia floods with pink K-spar and biotite, 15% aspy	irr	20		15					1313	1.31
279283	130.28	131.67	1.39	F	quartz breccia floods with pink K-spar and biotite, 15% aspy	irr	25		15					1248	1.25

Page 2 of 2

Union Glory Gold

DDH: 17-3

LOCATION: NAD 83 UTM E: 297193 UTM N: 4963149 Core: NQ Collar Elev: 281m Collar Az: 73.7 Collar Dip: -49.7 Length: 141.00

MZ-11-18 area DDH Started: Mar. 7, 2017 DDH Finished: Mar. 8, 2017 Driller: Major Drilling

Date Logged: Mar. 8, 2017

Logged by: Garry K Smith, P.Geo

TARGET: MAIN ZONE

Notes: REFLEX down-hole survey instrument measures magnetic north true north declination is -12.0

Claim: 820720

	Surveys									
Depth	Az_m	Az_tr	Dip	Mag						
12.0	85.7	73.7	-49.7	5472						
102.0	85.8	73.8	-45.8	5347						

From m	To m	Thick m	Lith	Comments	Depth	Struct	C/A	Ма
0.00	2.30	2.30	OB					
2.30	65.00	62.70	MV+F	MV as previous with 2-3% 2-3mm py, 7m: 20cm brecciated magnetic Iron Formation, soft slump folds throughout	10.0	fol	30	
				25m: zones of magnetic Iron Formation fragments throughout	14.0	fol	20	
				29m: .5m white quartz vein, non-mineralized	30.0	fol	50	M
				31.25m: zones of vfg, highly siliceous, tan and black, mod-high magnetite	37.0	fol	40	L
				38.50m: buff-tan cherty magnetic Iron Formation or cherty rhyolite beds, rare sphalerite fracture fills	40.0	cont	35	
				43m: m-scale coarser amphibolitized mafic flows with magnetic margins	47.0	fol	65	
				56m: 2m-scale buff cherty beds with moderate magnetic attraction, mm size magnetite	52.0	fol	45	L
				63m: reddish redox colouration of buff coloured cherty beds, magnetite crystals become non-magnetic				
							<u> </u>	
65.00	81.27	16.27	F	indistinct transition to (rhyolite?) fine cherty tuffs/flows, increasing biotite downhole	69.0	fol	50	
					72.0	fol	40	
81.27	103.50	22.23	ZONE	indistinct transition to highly silicified coarser (granitic?) unit with K-spar wrapped in wispy biotite, increasing aspy 5-10% downhole	76.0	fol	57	
					82.0	fol	65	
103.50	107.69	4.19	MD	as previous, amphibolitized sill with fine grained chill margins	100.0	fol	33	L
							L	L
107.69	109.17	1.48	ZONE	as above, highly silicified cherty breccia	109.0	cont	45	L
							└──	
109.17	141.00	31.83	SED	WKE, upper contact brecciated cherty rip-ups	110.0	fol	40	<u> </u>
				110.47-115.32m: highly siliceous, light-med grey massive chert	116.0	fol	70	
				115.32-141.00m: black, hilghly siliceous, weakly magnetic lean Iron Formation? 139m: 1% 1mm garnets?	120.0	fol	25	
					122.0	fol	60	
			EOH		125.0	fol	55	ĻĻ
					135.0	fol	65	ĻĻ
					140.0	fol	60	
							┝───	<u> </u>
							┝───	┣───
							┝───	<u> </u>

Page 1 of 3

ASSAYING

|--|

Sample	From m	To m	Thick m	Lith	Comments	QV <	QV%	Mag	Aspy%	Py %	Сру%	Po%	Tour%	Au ppb	Au gpt
279284	81.27	82.00	0.73				10							318	0.00
279284	81.27	82.00	0.73	F	beginning of zone, typical granitic looking with coarse K-spar	irr	10		2					318	0.32
279285		STANDA	RD		D: 2105										
279286	82.00	83.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	15		2					109	0.11
279287	83.00	84.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	20		2					694	0.69
279288	84.00	85.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	30		4					2078	2.08
279289	85.00	86.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	30		4					2459	2.46
279290	86.00	87.00	1.00	F	cm-scale quartz floods, pink K-spar rich	irr	30		3					987	0.99
279291	87.00	88.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	10		2					514	0.51
279292	88.00	89.00	1.00	F	minor red hematitic colouration	irr	10		1					164	0.16
279293	89.00	90.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	10		2					678	0.68
279294	90.00	91.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	30		2					826	0.83
279295	91.00	92.00	1.00	F	4cm of red hematitic colouartion	irr	10		2					524	0.52
279296	92.00	93.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	20		5					2143	2.14
279297	93.00	94.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	15		4					1372	1.37
279298	94.00	95.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	10		5					1166	1.17
279299	95.00	96.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	20		3					1062	1.06
279300	96.00	97.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	35		5					1851	1.85
279301	97.00	98.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	30		4					3280	3.28
279302	98.00	99.00	1.00	F	pink-orange K-spar, granite-like	irr	20		5					1918	1.92

Page 2 of 3

DDH:	17-3														
Sample	From m	To m	Thick m	Lith	Comments	QV <	QV%	Mag	Aspy%	Ру %	Сру%	Po%	Tour%		Au gpt
279303	99.00	100.00	1.00	F	pink-orange K-spar, granite-like	irr	20		5					1315	1.32
279304	100.00	101.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	10		5					821	0.82
279305	101.00	102.00	1.00	F	quartz floods, often with granitic looking K-spar	irr	10		5					1328	1.33
279306	102.00	103.50	1.50	F	quartz floods, often with granitic looking K-spar	irr	20		10					754	0.75
279307	103.50	104.50	1.00	MD	amphibolitized sill, 2% finely disseminated aspy				2					46	0.05
279308	104.50	105.50	1.00	MD	amphibolitized sill, 2% finely disseminated aspy				2					43	0.04
279309	105.50	106.50	1.00	MD	amphibolitized sill, 2% finely disseminated aspy				2					27	0.03
279310	106.50	107.69	1.19	MD	amphibolitized sill, 2% finely disseminated aspy				2					16	0.02
279311	107.69	109.17	1.48	F	cherty quartz breccia flood	irr	45		4					3021	3.02

DDH: 17-3

Union Glory Gold

DDH: 17-4

LOCATION: NAD 83 UTM E: 297193 UTM N: 4963149 Core: NQ Collar Elev: 281m Collar Az: 78.7 Collar Dip: -63.3 Length: 143.00 MZ-11-18 area DDH Started: Mar. 9, 2017 DDH Finished: Mar. 10, 2017 Driller: Major Drilling

Date Logged: Mar. 10, 2017 Logged by: Garry K Smith, P.Geo

TARGET: MAIN ZONE

Notes: REFLEX down-hole survey instrument measures magnetic north true north declination is -12.0

Claim: 820720

 Surveys

 Depth
 Az_m
 Az_tr
 Dip
 Mag

 15.0
 90.7
 78.7
 -63.3
 5515

 134.0
 86.5
 74.5
 -62.4
 5374

From m	To m	Thick m	Lith	Comments	Depth	Struct	C/A	Mag
0.00	1.15	1.15	OB				└───	
4.45	00.05	70.70	N 41 /		4.0	6.1		
1.15	80.85	79.70	MV	as previous, tuffaceous appearance from wavy foliation, 41.3m: .5m of rubble, 70.0m: 7m of 3-5% 2-4mm magnetite crystals, increasing cc	4.0	fol fol	28 20	
80.85	116.50	35.65	F+SED	upper contact reddish REDOX over 2m, pinkish-grey, highly siliceous, cherty, 1-2% 2-3mm magnetite crystals throughout	37.0	fol	20	
00.05	110.50	55.05	FTGED	92.0m: cherty beds/laminations are kink folded, 2-4mm scale magnetic Iron Formation beds	48.0	fol	30	
				95.0m: WKE-like, intercalated with m-scale beds of chert and cherty rip-ups, increasing soft sediment slump folds and ptygmatic shears	70.0	fol	23	-
					80.85	cont	10	L
116.50	133.80	17.30	ZONE	upper 1m parallel to core angle, coarse pink K-spar and wispy biotite, becomes silicified mosaic of med-grey quartz + biotite + 2-8% aspy	84.0	fol	17	L
					96.0	fol	40	L
133.80	143.00	9.20	SED+MV	laminated WKE-like with m-scale sections of MV flows with 15% 1mm vesicles	105.5	cont	30	
					111.5	cont	30	
			EOH		133.8	cont	35	
					135.0	fol	25	
					138.0	fol	40	
					141.0	fol	30	
							┝───	
							├───	
							<u> </u>	
							<u> </u>	
							<u> </u>	
							L	
							└───	
							┝───	
					1		i i	1

Page 1 of 2

ASSAYING

		 47	4
U	υп	17-4	-

															1
Sample	From m	To m	Thick m	Lith	Comments	QV <	QV%	Mag	Aspy%	Ру %	Сру%	Po%	Tour%	Au ppb	Au gpt
279312	116.50	117.50	1.00	F	brecciated cherty rip-ups and siliceous, grantitic looking with K-spar	irr	10		2					1579	1.58
070040	117 50	440.50	4.00			<u> </u>	10							4.400	4.40
279313	117.50	118.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	10		4					4420	4.42
279314	118.50	119.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	10		3					755	0.76
275514	110.50	115.50	1.00				10		5					700	0.70
279315	119.50	120.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	15		5					1123	1.02
279316	120.50	121.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	20		5					1464	1.46
279317	121.50	122.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	25		3					1222	1.22
279318	122.50	123.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	25		5					1289	1.29
279310	122.50	123.30	1.00	Г			25		5					1209	1.29
279319	123.50	124.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	20		2					1513	1.51
	.20.00			•					_						
279320		STANDA	RD		D: 2115										
279321	124.50	125.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	20		2					2398	2.40
279322	105 50	100 50	1.00		dark area mattled granitic leaking with fine winny histite	:	20		4					608	0.61
279322	125.50	126.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	20		4					608	0.61
279323	126.50	127.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	25		7					1050	1.05
	0.00			•											
279324	127.50	128.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	35		7					2936	2.94
279325	128.50	129.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	40		8					845	0.85
070000	400.50	100.50	4.00		deal and the second state of the level of the Control Second Second Section	•	45		0					4000	1.00
279326	129.50	130.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite	irr	45		6					1660	1.66
279327	130.50	131.50	1.00	F	dark-grey, mottled, granitic looking with fine wispy biotite, 10% aspy	irr	45		10					1895	1.90
213321	100.00	101.00	1.00		dark grey, motiou, granite looking with the wispy blotte, 10% aspy				10					1000	1.50
279328	131.50	132.50	1.00	QTZ	dark-grey, mottled, granitic looking with fine wispy biotite, 15% aspy	irr	50		15					4352	4.35
279329	132.50	133.80	1.30	QTZ	dark-grey, mottled, granitic looking with fine wispy biotite, 15% aspy	irr	50		15					2214	2.21
						1	1	1							

Page 2 of 2

Union Glory Gold

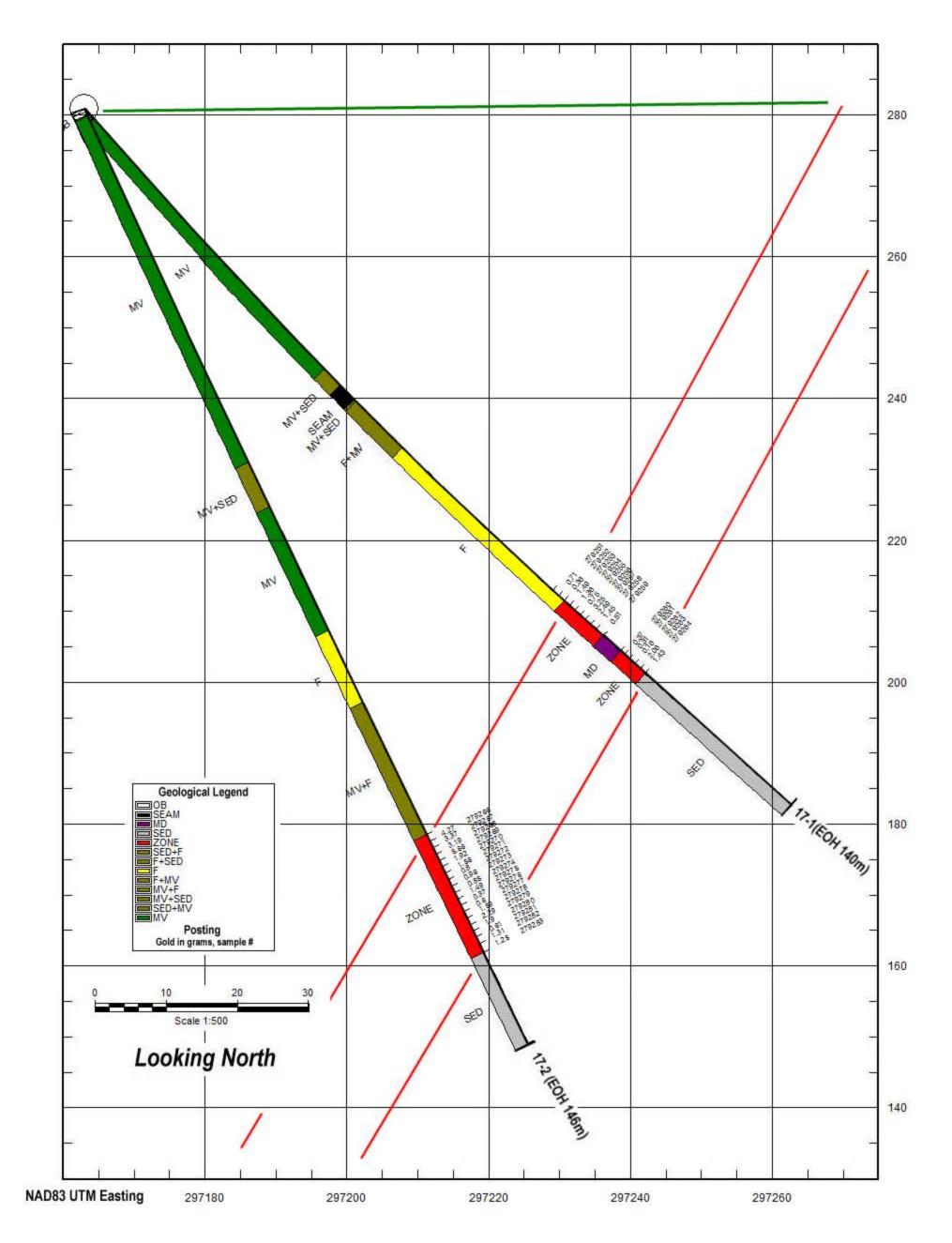
DDH:	17-5	

LOCATION: NAD 83 UTM E: 297193 UTM N: 4963149 Core: NQ Collar Elev: 281m Collar Az: 113.1 Collar Dip: -70.6 Length: 141.00 MZ-11-18 area DDH Started: Mar. 10, 2017 DDH Finished: Mar. 12, 2017 Driller: Major Drilling

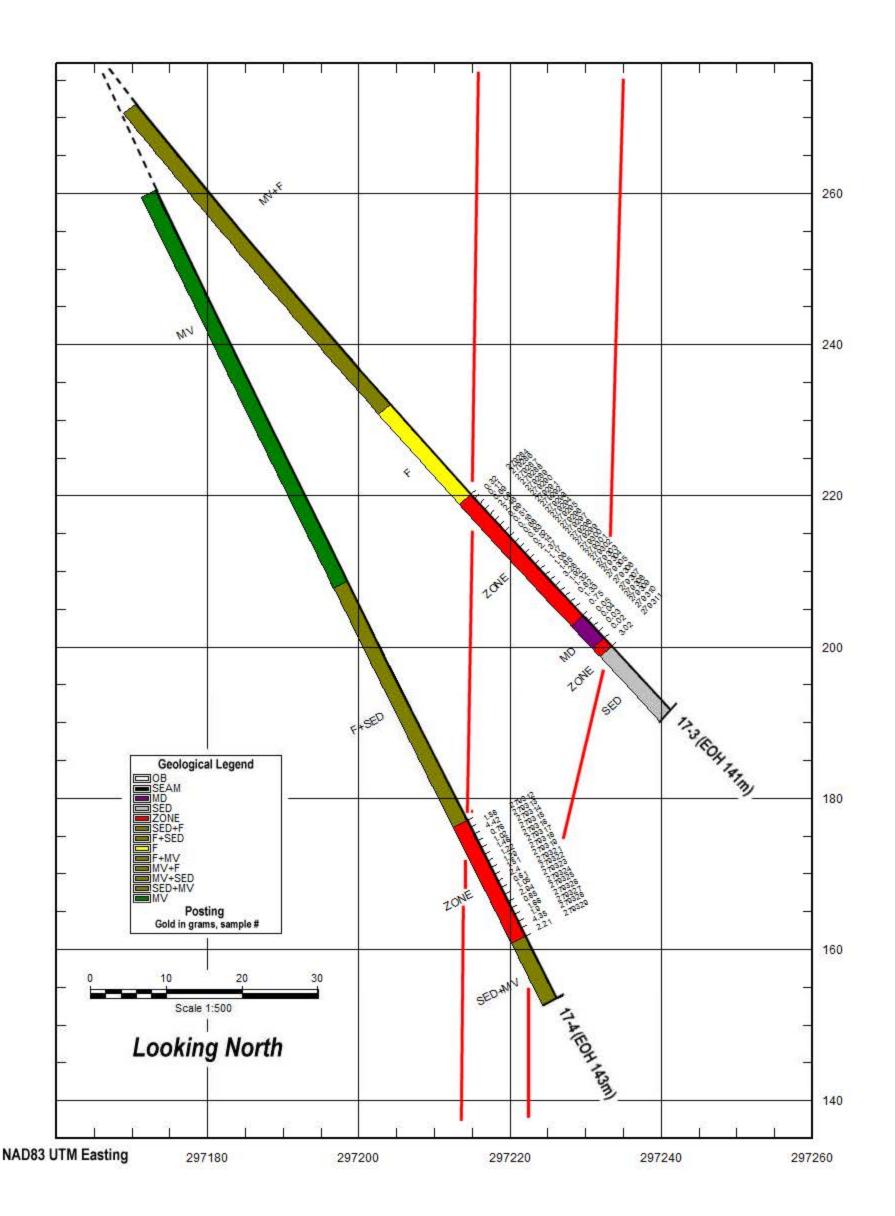
TARGET: MAIN ZONE

Date Logged: Mar. 12, 2017 Logged by: Garry K Smith, P.Geo Notes: REFLEX down-hole survey instrument measures magnetic north true north declination is -12.0 Planned TD was 150+m, drill head breakdown at 141m Must De-mobe by Mar 14 due to water crossing regulations

Claim: 820720


Surveys										
Depth	Az_m	Az_tr	Dip	Mag						
12.0	125.1	113.1	-70.6	5392						
111.0	99.5	87.5	-64.2	5376						

From m	To m	Thick m	Lith	Comments	Depth	Struct	C/A	Mag
0.00	0.56	0.56	OB					L
					3.0	fol	5	
0.56	98.20	97.64	MV	as previous, med-green flows with tuffaceous appearance due to foliation, down-dip foliations	9.0	fol	5	L
				51.0m: gradual fining down-hole, becomes dark greenish-black, fine beddining/laminations moderately magnetic throughout	17.0	fol	20	L
				69.0m: more massive, fine to medium grained flows	24.0	fol	5	L
				77.5m: transitions to more tuffaceous appearing with laminations of 5% 2-4mm magnetite crystals	32.0	fol	25	L
				83.0m: 1m of dark grey-black laminated inetrflow cherty magnetic Iron Formation	42.0	fol	25	L
					52.0	fol	30	L
98.20	141.00	42.80	SED+F	reddish-brown finely laminated chert, 1-2m cycles of highly siliceous intercalated banded chert with minor MV, laminations at 5-15 c/a	63.0	fol	25	L
					69.0	fol	30	L
			EOH		78.0	fol	15	Μ
					83.0	fol	25	Μ
					87.0	fol	5	Μ
					98.2	cont	25	Μ
					105.0	cont	30	L
					110.0	cont	37	
					114.0	cont	10	
					125.0	fol	20	
					129.0	cont	18	
					135.0	fol	25	
					140.0	fol	23	
							1	
							i i	
							1	
								(
								[


Page 1 of 1

APPENDIX 4

Drill Hole Assay Sample Numbers

Union Glory Gold Tudor Project Main Zone Holes 17-1 & 17-2

Union Glory Gold Tudor Project Main Zone Holes 17-3 & 17-4

APPENDIX 5

Drill Hole Assay Certificates

Certificate of Analysis

Work Order : LK1700460 [Report File No.: 0000010266]

> Date: May 16, 2017

To: Jimmy Sun

UNION GLORY GOLD LIMITED C/O SUN & PARTNERS PROFESSIONAL CORPORATION 301-3650 VICTORIA PARK AVENUE TORONTO ON M2H 3P7

P.O. No.	:	Union Glory Group
Project No.	:	-
No. Of Samples	:	79
Date Submitted	:	Mar 20, 2017
Report Comprises	:	Pages 1 to 4
		(Inclusive of Cover Sheet)

Distribution of unused material: To be Returned to Client:

bie Waldon Certified By :

Debbie Waldon Project Coordinator

= Insufficient Sample = No result

SGS Minerals Services (Lakefield) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

I.S.

Report Footer:	L.N.R.	= Listed not received	I.S.	= Insuffi
	n.a.	= Not applicable		= No re
	*INF	= Composition of this sample makes detection im	possible by this	method
	M afte	a result denotes ppb to ppm conversion, % denote	es ppm to % cor	nversion
	Method	s marked with an asterisk (e.g. *NAA08V) were sul	bcontracted	

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Final : LK1700460 Order: Union Glory Group Report File No.: 0000010266

	Element Method Det.Lim. Units	@Au GE_FAA313 5 ppb	WtKg G_WGH79 0.001 kg
070054	enite		
279251		709	2.859
279252		361	2.299
279253		1494	2.559
279254		1355	2.409
279255		750	2.494
279256		3253	1.990
279257		2488	2.407
279258		1451	2.333
279259		510	2.416
279260		367	1.560
279261		308	1.910
279262		155	2.410
279263		2057	2.200
279264		1431	2.561
279265		2156	0.055
279266		4269	2.406
279267		3369	2.206
279268		3189	2.270
279269		5660	2.311
279270		1919	2.294
279271		1556	2.341
279272		796	2.124
279273		955	2.372
279274		848	2.586
279275		1491	2.296
279276		372	2.297
279277		595	2.204
279278		1593	2.187
279279		2285	2.421
279280		1899	2.921
279281		610	2.041
279282		1313	2.210
279283		1248	3.085
279284		318	1.632
279285		2105	0.059
279286		109	2.183
279287		694	2.022
279288		2078	2.265
279289		2459	2.585
279290		987	2.141

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Page 2 of 4

Final : LK1700460 Order: Union Glory Group Report File No.: 0000010266

	Element Method Det.Lim. Units	@Au GE_FAA313 5 ppb	WtKg G_WGH79 0.001 kg
279291		514	2.171
279291		164	2.171
279293		678 826	2.117 2.198
279294 279295		524	2.190
		2143	2.120
279296		1372	2.279
279297		1372	1.926
279298 279299		1062	2.225
279300		1851	2.175
279301		3280	2.291
279302 279303		1918	2.217
		1315	2.308
279304		821	2.045
279305		1328	1.947
279306		754	3.462
279307		46	2.250
279308		43	2.336
279309		27	2.585
279310		16	3.046
279311		3021	3.263
279312		1579	2.274
279313		4420	2.147
279314		755	2.202
279315		1123	2.405
279316		1464	2.175
279317		1222	2.399
279318		1289	2.188
279319		1513	1.976
*Dup 279258		1179	N.A.
*Dup 279305		1326	N.A.
*Rep 279259		443	
*Rep 279291		450	
279320		2115	0.050
279321		2398	2.421
279322		608	2.321
279323		1050	2.173
279324		2936	2.200
279325		845	2.165
279326		1660	1.970

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Page 3 of 4

Final : LK1700460 Order: Union Glory Group Report File No.: 0000010266

Element	@Au	WtKg
Method	GE_FAA313	G_WGH79
Det.Lim.	5	0.001
Units	ppb	kg
279327	1895	2.129
279328	4352	2.895
279329	2214	3.025

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals 185 Concession Street Lakefield ON K0L 2H0 t+1(705) 652-2000 f+1(705) 652-6365 www.ca.sgs.com

Page 4 of 4