We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.





#### MANITOU GOLD INC.

101-957 Cambrian Heights Drive Sudbury, Ontario CANADA P3C 5S5 tel: 705-222-8800 fax: 705-222-8801 website: <u>www.manitougold.com</u> email: info@mantiougold.com

Assessment Report on the

### Manitou Gold Inc.

### **Merrill Property**

## **2011 Prospecting and Diamond Drilling Program**

### Dryden, Ontario

Kenora Mining Division, Ontario

NTS 52F/07

Tamara Taras, B.Sc.,

May 2, 2012

#### Summary

In 2011 Manitou Gold Inc. optioned the Merrill Patents from the Merrill Family. The Merrill Property consists of six patented mining claims totaling 96 hectares, located within the Lower Manitou Lake Area of the Kenora Mining Division of Northwestern Ontario. The property was acquired in the September of 2011.

The Property is situated in the western Wabigoon greenstone and granite Subprovince of the Superior Province. The area is underlain by Precambrian rocks. The bedrock geology is described in the O.G.S. Report 202 (1981) by C. Blackburn and Thompson (1933). The Archean volcanic and sedimentary rocks in the Manitou Lakes area is typical of the greenstone belts of the Wabigoon Sub-Province. The area consists of a thick Early Precambrian mafic metavolcanic sequence followed by intermediate to felsic flows and related tuffs. This sequence is in turn overlain by a sedimentary sequence, part of the Manitou series of Thomson (1933), and is intruded by mafic to felsic stocks and sills.

Mineralization in the area consists of gold located in quartz veins and veinlets, shears, and sulphide zones within a sheared and altered (silicified and carbonatized) mafic volcanic and/or felsic to intermediate intrusive rocks. Gold-bearing quartz veins are commonly controlled by northeast- trending shear zones.

An exploration program consisting of prospecting and diamond drilling was carried out over the Property and was designed to evaluate the down dip and along strike continuity of previously identified gold bearing quartz veins and shear zones on the property. A total 17 grab samples with assays ranging from nil to a high of 69.2 g/t Au were collected over the property. Subsequently, seven diamond drill holes totalling 743 metres were completed on the Property between October 1 and October 20, 2011.

The 2011 prospecting and diamond drill program on the Merrill Property determined that the gold mineralization is contained within quartz veins found within variably sheared and altered (silicified and carbonatized) mafic volcanic rocks as well as within variably altered intermediate dykes. This drill program was successful in identifying the down dip continuity of gold bearing shear structures coincident with the historical Swede Boys showing. Further detailed exploration work over the property is recommended and should consist of linecutting, geological mapping and further diamond drilling.

## TABLE OF CONTENTS

|     | Summary                                                   | i  |
|-----|-----------------------------------------------------------|----|
| 1.0 | Introduction                                              |    |
| 2.0 | Property Description, Location and Access                 | 2  |
| 3.0 | Climate, Local Resources, Infrastructure and Physiography |    |
| 4.0 | Geological Setting                                        | 4  |
| 4.1 | Regional and Property Geology                             | 4  |
| 4.2 | Mineralization and Model                                  | 5  |
| 5.0 | Exploration History                                       | 7  |
| 6.0 | Current Program                                           | 8  |
| 6.1 | Sample Collection, Preparation, Analysis, and Security    | 9  |
| 7.0 | Results                                                   | 10 |
| 7.1 | Prospecting                                               | 10 |
| 7.2 |                                                           | 13 |
| 8.0 | Recommendations and Conclusions                           | 16 |
| 9.0 | References                                                | 17 |

# List of Figures

| Figure 1.1: Location of the Merrill Property                            | 1  |
|-------------------------------------------------------------------------|----|
| Figure 2.1: Merrill Property Claims                                     | 3  |
| Figure 4.1: Regional Geology of the Merrill Property                    | 6  |
| Figure 5.1: Sketch of the West Shear Zone (Delisle, 1990)               | 8  |
| Figure 7.1: Merrill Property 2011 grab sample locations and gold ranges | 12 |
| Figure 7.2: Merrill Property 2011 Drill holes                           |    |
|                                                                         |    |

### List of Tables

| Table 2.1: List of Claims of the Merrill Property, 2011                     | 2 |
|-----------------------------------------------------------------------------|---|
| Table 7.1: Merrill Property 2011 Grab Samples                               |   |
| Table 7.2: Manitou Gold's 2011 Diamond Drill Program on the Merrill Project |   |

# List of Appendices

| Grab Sample Locations and Assays |
|----------------------------------|
| Grab Sample Assay Certificates   |
| Diamond Drill Logs               |
| Drill Sections                   |
| Drill Core Assay Certificates    |
|                                  |

# List of Maps

| Map 1: Merrill Property 2011 Grab Sample Locations | Back Pocket |
|----------------------------------------------------|-------------|
| Map 2: Merrill Property 2011 Diamond Drill Plan    | Back Pocket |

### **1.0 Introduction**

From October 1 and October 20, 2011 an exploration program consisting of prospecting and diamond drilling was carried out in the Dryden –Manitou Lakes area of northwestern Ontario (Figure 1.1) by Manitou Gold Inc. ("Manitou Gold"). The work was designed as an evaluation of the Merrill Property ("the Property") which is comprised of 6 patented mining claims. A total of 17 grab samples were collected over the property and seven diamond drill holes totaling 743 metres were drilled on the previously identified surface showing known as the Swede Boys showing. Grab samples as well as samples collected from drill core were analyzed for Au g/t by fire assay by ALS Chemex.

This report documents the work that was undertaken and the results obtained from this preliminary exploration program.

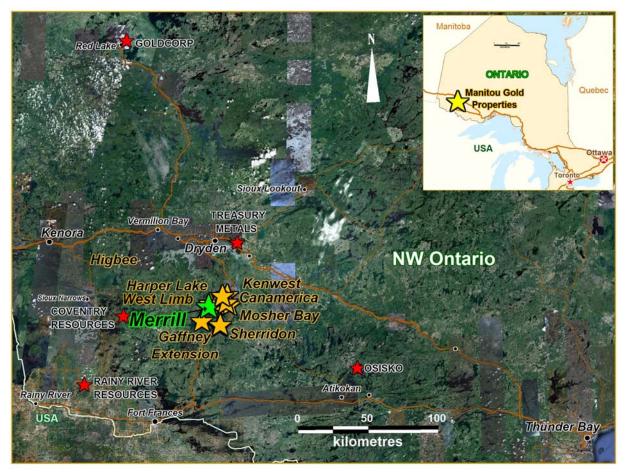
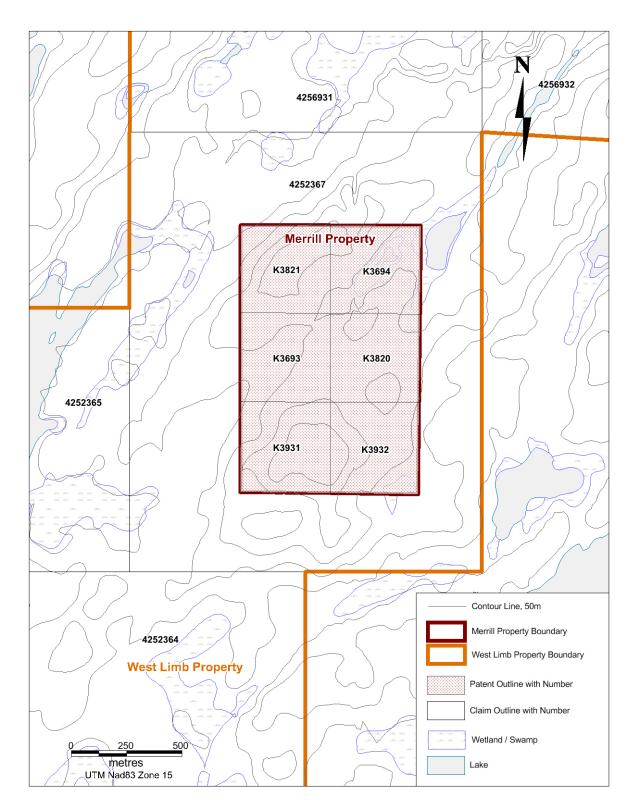



Figure 1.1: Location of the Merrill Property

### 2.0 Property Description, Location and Access


The Merrill property consists of 6 patented mining claims totaling 96 hectares within the Lower Manitou Lake Area of the Kenora Mining Division of Northwestern Ontario. The property is situated approximately 50 km south of Dryden Ontario (Figure 1.1). The property of interest is centered on UTM coordinates NAD 83 Zone 15U 507900E, 5467100N within the 1:50,000 NTS map sheet 52F/07.

Claims on which work occurred are located in the Kenora Mining Division. The claims on the property are contiguous with Manitou Gold's West Limb Property (Figure 2.1). The grab sampling and diamond drilling extended over two of the patents comprising the Merrill property. A detailed description of the property claims is included in Table 2.1.

The Merrill Property is located within the central portion of Manitou Gold's current West Limb Property in the Kenora Mining Division approximately 50 km south-southwest of Dryden, Ontario (Figure 1.1). Access to the Merrill Property is by secondary highway 502 south from Dryden, Ontario approximately 120 kilometers then west and north on the Cedar Narrows Road, the Penassi Road and finally the Lost Axe Road which along with other tertiary roads access both the West Limb and Merrill Properties. Roughly 90 km needs to be traveled on the logging roads. Once on the property, access to individual gold showings is obtained by a series of either all weather or winter logging roads, some of which are only accessible by ATV.

| Claim | Parcel No (all<br>followed by SEC<br>DKF) | Pin No     | Township/Area      | Туре   | Hectares |
|-------|-------------------------------------------|------------|--------------------|--------|----------|
| K3693 | 12332                                     | 42185-0369 | Lower Manitou Lake | Patent | 16       |
| K3694 | 12332                                     | 42185-0369 | Lower Manitou Lake | Patent | 16       |
| K3820 | 12332                                     | 42185-0369 | Lower Manitou Lake | Patent | 16       |
| K3821 | 12332                                     | 42185-0369 | Lower Manitou Lake | Patent | 16       |
| K3932 | 12726                                     | 42185-0379 | Lower Manitou Lake | Patent | 16       |
| K3931 | 12745                                     | 42185-3280 | Lower Manitou Lake | Patent | 16       |
|       |                                           |            |                    | TOTAL  | 96       |

#### Table 2.1: List of Claims of the Merrill Property, 2011



**Figure 2.1: Merrill Property Claims** 

# 3.0 Climate, Local Resources, Infrastructure and Physiography

The climate of the Dryden – Manitou Lake area is typically continental in nature, with cold winters  $(-1^{\circ}C \text{ to } -30^{\circ}C)$  and warm summers  $(10^{\circ}C \text{ to } 25^{\circ} \text{ C.})$ . Annual precipitation averages 685 mm, about half in the form of snow. Seasonal variations affect exploration to some extent (geological mapping cannot be done in the winter, geophysics and drilling are best done at certain times of the year, etc.), but the climate will not significantly hamper mining operations.

The settlements of Dryden and Fort Frances are relatively close; these all have the necessary equipment and trained personnel to support exploration and mining activities. The property has very good access to infrastructure, as it is located approximately 120 km south of the trans-Canada Highway. The mineral rights held by Manitou Gold give them the right to mine ore discovered on their property, subject to a 400' surface rights reservation around all lakes and rivers, and a 300' surface reservation around major roads (this may be waived by the Crown).

The property has a gently rolling to locally rugged topography with maximum relief on the order of 100 m. Much of the region has been logged so present forests are typically second growth; mixtures of jack pine, spruce, birch and poplar are common.

# 4.0 Geological Setting

## 4.1 Regional and Property Geology

The Merrill Property is located within the western margin of the Eagle-Wabigoon-Manitou Lakes greenstone belt and is within the Lower Manitou Lake Area in Northwestern Ontario. Regional geological mapping in the area was carried out by Thompson (1933) and Blackburn (Blackburn, 1979 & 1982). The most recent compilation map is of the Kenora-Fort Frances area, compiled from mapping in the 1970's by Blackburn (Blackburn 1982).

The Property is located in western Wabigoon sub-province of the Superior Province in the Canadian Shield. The area is underlain by Precambrian rocks. The bedrock geology is described in the O.G.S. Report 202 (1981) by C. Blackburn and Thompson (1933). The Wabigoon sub-province contains several Archean greenstone belts, including the Eagle-Wabigoon-Manitou Lakes greenstone belt. This greenstone belt trends northeast, is Archean in age, and is bounded by younger Archean granitoid intrusives; to the northwest by the Atikwa granitoid batholith and on the southeast by the Irene-Eltrut Lakes batholith, and the Meggisi granitoid pluton. The greenstone belt consists mainly of a thick sequence of mafic to felsic flows and pyroclastic rocks with minor volcaniclastic rocks and a sequence of sedimentary rocks with lesser mafic to felsic stocks and sills. The northeast-trending, steeply southeast-dipping Manitou Straits Fault ("MSF") has been mapped through the centre of the western portion of the belt for approximately 50 km., and bisects the greenstone belt. It is located just to the east of Upper and Lower Manitou Lakes, and passes to the east of the Property. Immediately to the west of the Manitou Straits Fault is the sub-parallel Manitou Anticline, which has been traced for approximately 30 km through the Manitou Lakes area. The Merrill Property lies on the western limb of the Manitou Anticline.

The property is mainly underlain by basalts of the Blanchard Lake Group (Blackburn, 1979). The Blanchard Lake Basalts occupy the core of the Manitou anticline and are predominantly fine to

medium grained flow units. The western portion of the property is composed of a mixed sequence of massive, locally porphyritic, mafic flows and intermediate pyroclastics. Thin felsic porphyry dykes were noted in several locations

### 4.2 Mineralization and Model

The Manitou Lakes area has been the scene of mining exploration for almost a hundred years. In this time numerous gold prospects have been discovered. Gold occurrences in the area are variously in quartz veins, shears, and sulphide zones. Mineralization associated with the gold occurrences is pyrite, chalcopyrite, pyrrhotite, sphalerite, and galena/telluride. Alteration products and metamorphic minerals include chlorite, amphibole, biotite, carbonate, anthophyllite in rosettes, and sulphide minerals (Delisle 1990).

Gold deposits in the area are typical of Archean lode-gold deposits, and work by the OGS has indicated that almost all of the gold deposits in the Manitou Lakes area are controlled by shear and fracture zones which appear to be regionally related to movement along the Manitou Straits Fault. Gold-bearing quartz veins are commonly controlled by northeast- and east-trending shear zones which may be secondary shear bands subparallel to the shear boundaries of the Manitou Straits Fault. Most of the shearing and fracturing was developed after the emplacement of the Atikwa Batholith. However, there are other occurrences of gold mineralization that appear to be stratigraphically controlled, and possibly genetically related to volcanism (Parker, 1989).

Gold mineralization on the Merrill Property is found in two parallel trending shear zones, the West Shear Zone and the East Shear Zone and consists of quartz-carbonate veins that are white to light grey, semi-translucent to translucent and rarely cloudy to opaque. The quartz veins are fractured and commonly contain patches of chlorite, carbonate and anthophyllite (Delisle, 1990). Sulphide content is predominantly pyrite which occurs in trace amounts up to 5% locally in the quartz veins and in the wallrock (Delisle, 1990).

Davis and Smith (1991) indicate that the gold occurring in faults, shears, and tension veins developed in response to a late Archean northwest-directed contraction and emplacement of contemporaneous plutons, such as the Atikwa Batholith. Their work indicated that gold mineralization was closely linked in time to the emplacement of late intrusions and was likely a short-lived event that occurred at about 2709 Ma.

The Merrill Property is located southeast of the Atikwa Batholith, northwest of the Miggisi Pluton and is proximal to the Manitou Anticline and the Manitou Straits Fault. There is excellent potential for gold mineralization in quartz veins related to shearing and fracturing caused by the emplacement of a late pluton.

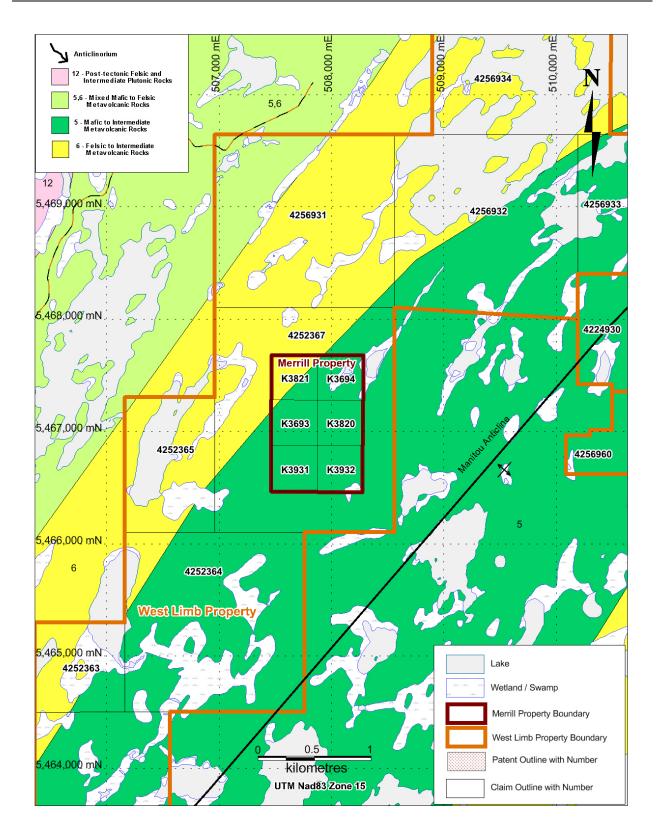



Figure 4.1: Regional Geology of the Merrill Property

# 5.0 Exploration History

There have been several periods of exploration activity in the general area of the claims. The history of gold occurrences within the property boundary date back at least to the first geological survey in the area (McInnes, 1902). Historical fieldwork in the Manitou Lakes Area was performed between 1896 and 1898. Government work in the form of geological mapping was carried out by the Ontario Department of Mines in 1933 (Thomson, 1033) and by the Ontario Geological Survey by C. Blackburn in 1979 (Blackburn, 1979, 1981). Airborne magnetic and electromagnetic surveys were completed over the area in 1980 and 2001 (OGS 1980, 2001). The following is a summary of exploration work carried out over the current Merrill Property Patents.

The historical Swede Boy Prospect consists of two northeast trending shear zones, the East shear and the West shear, that are intruded by carbonatized feldspar porphyry dykes (Delisle, 1990). In 1895, three Swedes attempted to begin a small scale placer gold operation on the current Merrill Property, where gold was reported to occur in the mud of the swamp near a two and a half food wide quartz vein, known as the West Shear Zone (Figure 5-1) (Delisle, 1990). According to Coleman (1896), a specimen taken from this showing yielded 38 oz/ton. A second vein, approximately 7 feet wide, was said to occur approximately 850 feet to the southwest, and was said to grade 0.803 oz/ton (Coleman, 1896). The property was sold to Kansas city capitalists in 1896 (Delisle, 1990).

Between 1932 and 1933, Charles Merrill and James Walmsley uncovered a new quartz vein about 300 feet east of the main vein (West Shear Zone), and exposed it over 325 feet along strike (Thomson, 1934). This vein was considered to be the East Shear Zone. The property was optioned to Arnold Hughes in 1933-1934 who completed surface trenching and test pitting (Delisle, 1990). The claims were brought to patent in 1939 by Charles Merrill and James Walmsley. Very little work is recorded after this time. Manitou Gold Inc. optioned the Property from the Merrill Family in September of 2011, and completed a small first pass prospecting program and a subsequent follow-up diamond drill program in October, 2011.

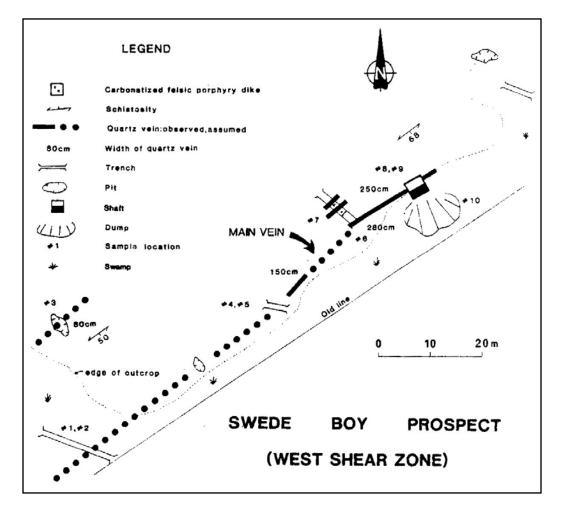



Figure 5.1: Sketch of the West Shear Zone (Delisle, 1990)

### 6.0 Current Program

From October 1 to October 20, 2011 an initial prospecting and follow-up diamond drill program was carried out in the Dryden –Eagle Lake area of northwestern Ontario (Figure 1-1) by Manitou Gold. A total of seventeen grab samples were collected from the historical Swede Boy gold showing, with assays ranging from nil to 69.2 g/t Au. A subsequent 743 m of diamond drilling was completed in seven holes on the Merrill Property to test the down dip and strike extension of the Swede Boy Showing. All samples collected from drill core were submitted to ALS Chemex Laboratory for analysis. Program planning and supervision was provided by Todd Keast, P. Geo. Prospecting and grab sampling was carried out by Todd Keast, David Healey and William Zurbrigg. Final maps and figures were completed by Karen Kettles, P. Geo and by Tamara Taras. The report writing was completed by Tamara Taras.

The work was designed to investigate the gold-bearing quartz vein occurrences on the Merrill Property. The exploration program focused on the historical Swede Boy Prospect and targeted both the East Shear Zone and the West Shear Zone. The purpose of the drill program was to confirm the presence and nature of the showings, to test their down-dip and strike extents, and to aid in prioritizing areas for further exploration.

This report documents the work that was undertaken and the results obtained from this exploration program.

### 6.1 Sample Collection, Preparation, Analysis, and Security

In conducting the exploration work set out above, the Corporation maintained all samples within its possession until transport to the laboratory. Grab samples were placed in plastic bags with the corresponding identification tags and the bags were also numbered. The bags were then tied securely and eventually placed in bags for transport to the sample preparation facility. All samples were located using handheld GPS units. The locations of the samples are in UTM NAD 83 Zone 15 coordinates, northern hemisphere, and are given in Appendix I; sample locations are plotted on Map 1 (back pocket) and shown generally on Figure 7.1.

Core recovered from drilling is placed in clean wooden core boxes and labeled and sealed for transfer to the core logging facility in Dryden. Upon delivery of core boxes to the core facility, the drill core was logged by the geologist. The description procedure involves collecting information about colour, lithology, alteration, structure and mineralization. Sampling intervals were marked by the geologist depending on lithology, mineralization, veining, and alteration. Sections of the core identified for analysis were tagged with weather resistant sample tags with a unique number. Samples were split with a core saw with one half of the sample going into a clean plastic bag with the corresponding sample number tag and the other half of the sample was returned to the core tray with a sample number tag as a permanent core record. Sample bags were tied securely and placed in bags for transport to the sample preparation facility. In conducting the exploration work set out above, Manitou Gold Inc. maintained all samples within its possession until transport to the laboratory.

All samples were analyzed by the ALS, an ISO 9001:2000 accredited company with a worldwide chain of laboratories. The Corporation delivered the samples to ALS's sample preparation facility in Thunder Bay. Samples were dried, crushed to #10 mesh (<2 mm), and then a 250 g split was pulverized to 75 microns. 100 g of pulverized material was then sent to ALS's analytical facility in Vancouver, British Columbia. Gold was analyzed by fire assay with an AAS finish, using 30 g samples. ALS has an internal QA/QC procedure of regularly re-analyzing selected samples, as well as inserting internal standards and blanks.

Manitou Gold Inc. conducted an external analytical quality control measure to monitor the reliability of the assaying and results delivered by ALS. External control samples (blank and certified reference material sample) were inserted at a rate varying between five and eight percent within each batch of samples submitted for preparation and assaying. The certificates of the assay results from grab samples taken across the Merrill Property can be found in Appendix II, and certificates of assays taken from diamond drill holes are included in Appendix V. A plan map of 2011 diamond drilling can be found on Map 2 (back pocket) and are shown generally on Figure 7.2.

# 7.0 Results

From October 4 to October 26, 2011 Manitou Gold completed an initial prospecting program followed by a first pass diamond drill program on previously identified gold showings on the Merrill Property. A total of 17 grab samples were collected from various shear zones located across the property (Figure 7.1) and a subsequent seven diamond drill holes were completed along preferable shear structures and mineralized zones.

# 7.1 Prospecting

The early stage exploration program on the Merrill Property consisted of prospecting and sampling to determine if gold is present in the system. Prospecting and sampling for gold is dependent upon outcrop distribution, the relative small size of the sample collected in relation to size of the outcrop/zone, and the "nuggety" distribution of the individual grains of gold in the outcrop. The density of grab samples collected was controlled mainly by outcrop density and to a lesser extent by the distribution of mineralization, and thus cannot be consistent. An arbitrary value of 0.20 g/t was used to determine samples that are anomalous.

From the 17 grab samples that were collected on the property, 4 samples returned assays of 0.20 g/t Au or higher and were considered anomalous. Of the anomalous samples, 1 sample returned a value as high as 69.2 g/t Au. Table 7.1 documents samples taken on the Merrill Property, and Figure 7.1 shows the results and the distribution of them across the Property.

Further work is needed to ascertain the extent and continuity of the mineralized zones across the Merrill Property.

| Sample<br>ID | Zone/Area             | UTM East | UTM North | Rock Type           | Comments                                                                        | Claim # | Au g/t  |
|--------------|-----------------------|----------|-----------|---------------------|---------------------------------------------------------------------------------|---------|---------|
| K087543      | East Shear            | 507773   | 5467260   | qtz muck            | VG - 1-2% py                                                                    | K3693   | 69.2    |
| K569501      | West<br>Shear         | 507533   | 5467078   | chl-schist          | <blocks fe,<1%="" py<="" qtz,str="" td=""><td>K3693</td><td>0.398</td></blocks> | K3693   | 0.398   |
| K569502      | West<br>Shear         | 507677   | 5467252   | chl-schist          | muck pit,50%qtz,3-<br>4% py                                                     | K3693   | 0.377   |
| K569503      | East Shear            | 507681   | 5467068   | chl-schist          | sugary qtz<br>muck,99%qtz,<1% py                                                | K3693   | 0.237   |
| K087545      | West<br>Shear<br>West | 507807   | 5467404   | QV<br>Amph-         | Tr py                                                                           | K3821   | 0.036   |
| K087544      | Shear                 | 507723   | 5467265   | schist              | Tr py<br>muck,99% qtz,1%                                                        | K3693   | 0.027   |
| K569995      | East Shear            | 507778   | 5467265   | chl-schist          | tour,0% py                                                                      | K3693   | 0.026   |
| K087546      | West<br>Shear<br>West | 507807   | 5467410   | QV - Chl.<br>Schist | nil sulphides<br>pit, muck,QV,2-                                                | K3821   | 0.023   |
| K570000      | Shear                 | 507507   | 5467408   | chl-schist          | 3%py,fe                                                                         | K3693   | 0.02    |
| K569997      | West<br>Shear         | 507603   | 5467213   | chl-schist          | 5%qtz<br>stringers,3%py,mod-<br>carb                                            | K3693   | 0.017   |
| K087540      | West<br>Shear         | 597498   | 5466994   | chl-schist          | sugary qtz no<br>sulphide                                                       | K3693   | 0.013   |
| K569999      | West<br>Shear         | 507505   | 5467408   | chl-schist          | QV with tr py,10% chl-schist                                                    | K3821   | 0.011   |
| K087547      | West<br>Shear         | 507669   | 5467138   | Qtz<br>Blowout      | Glassy Iron Stn. Tr py                                                          | K3693   | 0.01    |
| K087541      | West<br>Shear         | 507494   | 5467031   | Qtz                 | Qtz muck, chl-schist<br>1% py                                                   | K3693   | 0.008   |
| K087542      | West<br>Shear         | 507567   | 5467142   | QV w. chl<br>schist | Iron Staining 1-2% py                                                           | K3693   | 0.005   |
| K569996      | West<br>Shear         | 507603   | 5467213   | chl-schist          | muck,QV,1% py                                                                   | K3693   | 0.005   |
| K569998      | West<br>Shear         | 507506   | 5467409   | chl-schist          | qtz blow,wk fe,nil py                                                           | K3821   | < 0.005 |

| <b>Table 7.1: Merrill Property</b> | 2011 Grab Samples |
|------------------------------------|-------------------|
|------------------------------------|-------------------|

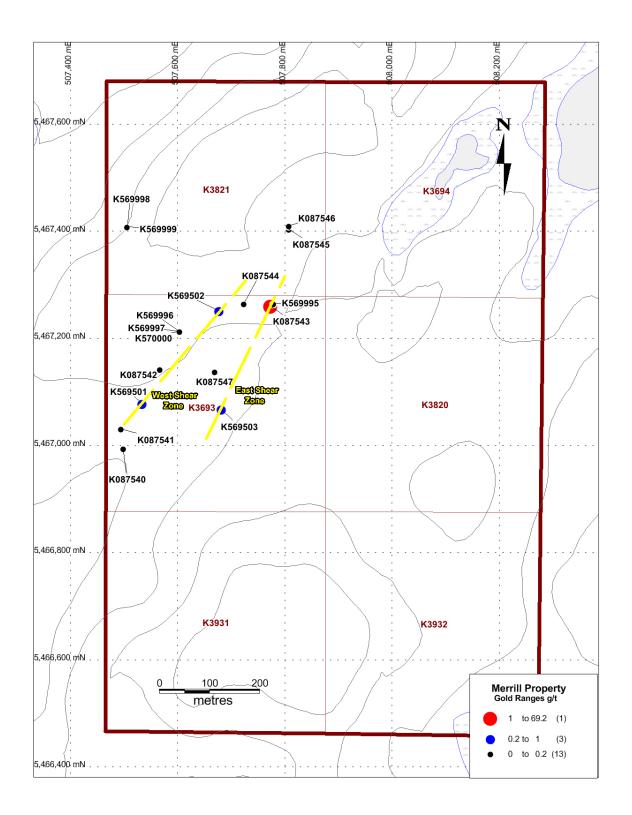



Figure 7.1: Merrill Property 2011 grab sample locations and gold ranges.

### 7.2 Diamond Drilling

The recently completed diamond drill program, consisting of seven drill holes totalling 743 m, was part of an initial evaluation to test the down-dip and along-strike extent of some of the surface gold showings identified by the initial prospecting program completed by Manitou Gold Inc. in 2011. The details of the drill holes are shown in Table 7.1. Diamond drill logs can be found in Appendix III and cross-sections of the seven drill holes are located in Appendix IV. A drill hole location plan is presented Map 2 (back pocket) as well as in Figure 7-2.

The seven-hole diamond drill program confirmed the down-dip and strike continuity of gold mineralization contained within a number of discrete shear structures containing variable amounts of quartz veins and sulphide mineralization. Mineralization is hosted within variably sheared and altered (silicified and carbonatized) mafic volcanic rocks.

| Hole Number | Azimuth | Dip   | Length (m) | Easting | Northing |
|-------------|---------|-------|------------|---------|----------|
| ML-11-01    | 308     | -69.8 | 138        | 507800  | 5467251  |
| ML-11-02    | 306.2   | -45.9 | 77         | 507801  | 5467251  |
| ML-11-03    | 303.5   | -47.1 | 96         | 507863  | 5467354  |
| ML-11-04    | 298.2   | -45.6 | 66         | 507733  | 5467034  |
| ML-11-05    | 329.1   | -47.1 | 96         | 507687  | 5467184  |
| ML-11-06    | 335.6   | -70.1 | 153        | 507687  | 5467183  |
| ML-11-07    | 299.8   | -46.2 | 117        | 507564  | 5467017  |
| TOTAL       |         |       | 743        |         |          |

#### Table 7.2: Manitou Gold's 2011 Diamond Drill Program on the Merrill Project

Gold on the Merrill Property was initially discovered in 1895 whereby a small placer gold operation was established, which became known as the Swede Boy Prospect. Gold recovered from this small placer operation was believed to originate from a number of proximal gold bearing quartz veins. Between 1932 and 1939, two parallel shear structures, known as the West Shear Zone and the East Shear Zone were discovered on the property. Manitou gold completed an initial program consisting of prospecting and subsequently diamond drilling on the Merrill Property and the historical Swede Boy Prospect. The Swede Boy Prospect consists of two northeast trending shear zones that are intruded by carbonatized feldspar porphyry dykes (Delisle, 1990).

A total of four diamond drill holes, ML-11-01 to 04 were completed on the East shear zone. Gold mineralization was found within shear zones with variable degrees of biotite and carbonate alteration with up to 40% quartz veins, 1% pyrite and trace pyrrhotite and chalcopyrite. Moderate silicification was also noted. Individual samples taken from these drill holes ranged from nil to a high of 12.65 g/t Au in diamond drill hole ML-11-01. Cross sections of these diamond drill holes can be found on sections 5467300N, 5467313N and 5467014N (Appendix IV). Diamond Drill Logs for these holes can be found in Appendix III. The West Shear Zone lies approximately 100 m to the west of the East Shear Zone, and was also historically referred to as the Main vein. Three diamond drill holes, ML-11-05 to ML-11-07 were completed on the West Shear Zone. Gold mineralization was predominantly found to be contained within shear zones with moderate to strong biotite and carbonate alteration, 10-15% quartz veins, 1-2% pyrite and occasionally trace pyrrhotite and chalcopyrite. In diamond drill hole ML-11-07, gold mineralization was also found to occur within a variably sheared and altered intermediate dyke containing 20-25 % biotite, less than 1% pyrite and 1-2% blue quartz eyes. Individual samples taken from these drill holes ranged from nil to a high of 5.65 g/t Au in diamond drill hole ML-11-07. Cross sections of these drill holes can be found on sections 5467273N and 5466957N in Appendix IV and Drill Logs can be found in Appendix III

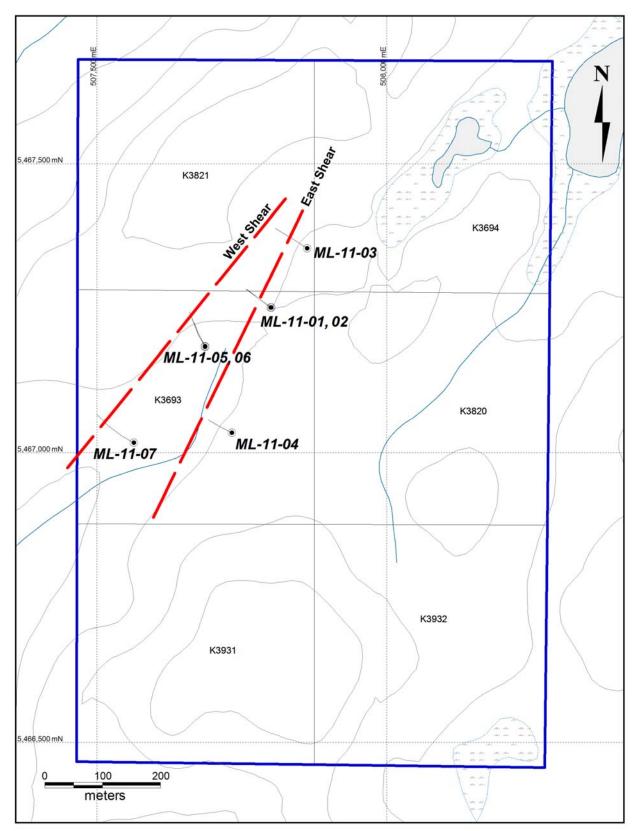



Figure 7.2: Merrill Property 2011 Drill holes

### 8.0 Recommendations and Conclusions

The 2011 Prospecting program on the Merrill Property was successful in confirming the presence of gold on previously discovered gold zones. Samples taken from these areas or zones returned anomalous to high grade gold values. The follow-up diamond drill program was successful in identifying down dip continuity of gold mineralization on both the East Shear Zone and the West Shear Zone of the historical Swede Boys Showing.

Additional work is recommended across the property to further evaluate the gold mineralization. The Property needs to be mapped in detail, trenched, and sampled (channels and grabs) to determine the nature and extent of the mineralization. An IP survey is recommended over the area to aid in generating targets for drilling. The grid established for the IP survey should be sampled and mapped. If these programs are successful in delineating mineralization then a program of additional diamond drilling is recommended.

#### 9.0 References

- Blackburn, C.E. 1976 : Geology of the Lower Manitou-Uphill Lakes Area, District of Kenora; Ontario Div of Mines, GR142, 81 p. Accompanied by Map 2320, scale l inch to 1/2 mile.
- Blackburn, C.E. (1979) Geology of the Upper Manitou Lake Area, District of Kenora; Ontario Geological Survey Report 189, 74p. Accompanied by Map 2409, scale 1:31,680 (1 inch to ½ mile).
- Blackburn, C.E. (1981) Geology of the Boyer Lake-Meggisi Lake Area, District of Kenora; Ontario Geological Survey Report 202, 107p. Accompanied by Maps 2437 and 2438, scale 1:31,680 (1 inch to ½ mile) and 3 Charts.
- Blackburn, C.E. (1982) Geology of the Manitou Lakes Area, District of Kenora (Stratigraphy and Petrochemistry); Ontario Geological Survey Report 223, 61p. Accompanied by Map 2476, scale 1:50,000.
- Blackburn, C.E., and Janes, D.A. (1983) Gold Deposits in Northwestern Ontario; *in* The Geology of Gold in Ontario, *Ontario Geological Survey*, Miscellaneous paper 110, p194-210.
- Blackburn, C.E., Johns, G.W., Ayer, J., and Davis, D.W. (1991) Wabigoon Subprovince *in* Geology of Ontario. *Ontario Geological Survey*, Special Volume 4, Part 1, 709p.
- Bjorkman, K. (2004) Prospecting / Sampling Report on the Manitou West Limb Gold Property. AFRI file # 52F07NW2003.
- Bohan, S. (1990) Report on a Geological Survey, Manitou Lakes Property, Bond Gold Canada Inc. AFRI file # 52F07SW0006.
- Carter, W.E.H (1901) Mines of Northwest Ontario, Manitou Lake Region. Ontario Bureau of Mines, Volume 10, Part 1, p. 97-100.
- Carter, W.E.H. (1902) The Mines of Ontario, Ontario Bureau of Mines, Volume 11, Part 1, p. 231-298.
- Carter, W.E.H. (1904) Mines of Western Ontario, Ontario Bureau of Mines, Volume 13, Part 1, p.58-87.
- Carter, W.E.H. (1905) Mines of Western Ontario, Ontario Bureau of Mines, Volume 14, Part 1, p. 43-75.
- Coleman, A.P. (1896) The Manitou Region, *in* Third Report on the West Ontario Gold Region, Ontario Bureau of Mines, Volume 6, published 1897, sec.2, p. 83-87.
- Davis, D.W., and Smith, P.M. (1991). Archean Gold Mineralization in the Wabigoon Subprovince, a Product of Crustal Accretion: Evidence from U-Pb Geochronology in the Lake of the Woods Area, Superior Province, Canada; *The Journal of Geology*, Volume 99, No. 3 (May, 1991), pp. 337-353.
- Delisle, P.C. (1990) Property visits by the Dryden Area Mineral Commodity Geologist; Ontario Geological Survey, Open File Report 5731, 155p.
- Hoffe, C. (2006) Report on Manitou West Limb Gold Property, Harper and Lower Manitou Lake Townships south of Dryden, ON. Report for Rubicon Minerals Corporation.

- Leonard, K. (1983) Final Report for OMEP Application OM-83-3-C-65; Humus, Max-Min, Magnetometer surveys and Diamond Drilling, Manitou Lakes Area, Northwestern Ontario. St. Joe Canada Inc. AFRI file # 52F07SW0032.
- McInnes, W. (1902) Map No. 720, Manitoulin Lake, Rainy River District, Ontario, Geological Survey of Canada.
- OGS. (1980) Airborne electromagnetic and total intensity magnetic survey, Manitou, Stormy Lake Area, District of Kenora; by Kenting Earth Sciences Limited for the Ontario Geological Survey, Geophysical/Geochemical series, Map 80477, scale 1:20,000. Survey and compilation November, December 1979 and January, February 1980.
- OGS. (2001) Airborne magnetic and electromagnetic surveys, Stormy Lake area; OGS, Map 82173, scale 1:20,000.
- Parker, J.R. (1989) Geology, gold mineralization and property visits in the area investigated by the Dryden-Ignace Economic Geologist, 1984-1987; Ontario Geological Survey, Open File Report 5723, 306p.
- Thomson, J.E. (1933) Geology of the Manitou-Stormy Lakes Area, 42<sup>nd</sup> Annual Report of the *Ontario Department of Mines*, vol. 42, part 4, 40p.

#### **Statement of Qualifications**

I, Tamara L. Taras, of 517-100 Creek Bend Road, Winnipeg, Manitoba R2N 0G1 do herby certify that:

- I am a graduate of the University of Manitoba and hold an Honours Bachelor of Science 1) (Geological Sciences) Degree, 2010.
- I am a Canadian Citizen. 2)
- I have been employed by Manitou Gold Inc. since 2009 and have worked in Ontario since 3) that time.

Dated this  $2^{nd}$  day of May, 2012.

Jamara Jarus. Tamara L. Taras, BSc.

### **APPENDIX I**

**Grab Sample Locations and Assays** 

| Sample ID | Zone       | UTM East | UTM North | Rock Type        | Comments                                                                        | Claim # | Au g/t     |
|-----------|------------|----------|-----------|------------------|---------------------------------------------------------------------------------|---------|------------|
| K087540   | West Shear | 597498   | 5466994   | chl-schist       | sugary qtz no sulphide                                                          | K3693   | 0.013      |
| K087541   | West Shear | 507494   | 5467031   | Qtz              | Qtz muck, chl-schist 1% py                                                      | K3693   | 0.008      |
| K087542   | West Shear | 507567   | 5467142   | QV w. chl schist | Iron Staining 1-2% py                                                           | K3693   | 0.005      |
| K087543   | East Shear | 507773   | 5467260   | qtz muck         | VG - 1-2% py                                                                    | K3693   | 69.2       |
| K087544   | West Shear | 507723   | 5467265   | Amph-schist      | Tr py                                                                           | K3693   | 0.027      |
| K087545   | West Shear | 507807   | 5467404   | QV               | Tr py                                                                           | K3821   | 0.036      |
| K087546   | West Shear | 507807   | 5467410   | QV - Chl. Schist | nil sulphides                                                                   | K3821   | 0.023      |
| K087547   | West Shear | 507669   | 5467138   | Qtz Blowout      | Glassy Iron Stn. Tr py                                                          | K3693   | 0.01       |
| K569501   | West Shear | 507533   | 5467078   | chl-schist       | <blocks fe,<1%="" py<="" qtz,str="" td=""><td>K3693</td><td>0.398</td></blocks> | K3693   | 0.398      |
| K569502   | West Shear | 507677   | 5467252   | chl-schist       | muck pit,50%qtz,3-4% py                                                         | K3693   | 0.377      |
| K569503   | East Shear | 507681   | 5467068   | chl-schist       | sugary qtz muck,99%qtz,<1% py                                                   | K3693   | 0.237      |
| K569995   | East Shear | 507778   | 5467265   | chl-schist       | muck,99%qtz,1% tour,0% py                                                       | K3693   | 0.026      |
| K569996   | West Shear | 507603   | 5467213   | chl-schist       | muck,QV,1% py                                                                   | K3693   | 0.005      |
| K569997   | West Shear | 507603   | 5467213   | chl-schist       | 5%qtz stringers,3%py,mod-carb                                                   | K3693   | 0.017      |
| K569998   | West Shear | 507506   | 5467409   | chl-schist       | qtz blow,wk fe,nil py                                                           | K3821   | <0.00<br>5 |
| K569999   | West Shear | 507505   | 5467408   | chl-schist       | QV with tr py,10% chl-schist                                                    | K3821   | 0.011      |
| K570000   | West Shear | 507507   | 5467408   | chl-schist       | pit, muck,QV,2-3%py,fe                                                          | K3693   | 0.02       |

## **APPENDIX II**

Grab Sample Assay Certificates



2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

#### To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Page: 1 Finalized Date: 9-NOV-2011 Account: MANGOL

### CERTIFICATE TB11201530

Project: WEST LIMB

P.O. No.:

This report is for 19 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 3-OCT-2011.

The following have access to data associated with this certificate:

ALS Canada Ltd.

TODD KEAST

NAAZNIN PASTAKIA

TAMARA TARAS

|                                       | SAMPLE PREPARATION             |  |  |  |  |  |
|---------------------------------------|--------------------------------|--|--|--|--|--|
| ALS CODE                              | DESCRIPTION                    |  |  |  |  |  |
| WEI-21                                | Received Sample Weight         |  |  |  |  |  |
| LOG-22 Sample login - Rcd w/o BarCode |                                |  |  |  |  |  |
| CRU-31                                |                                |  |  |  |  |  |
| SPL-21                                | Split sample - riffle splitter |  |  |  |  |  |
| PUL-32                                | Pulverize 1000g to 85% < 75 um |  |  |  |  |  |

|          | ANALYTICAL PROCEDU    | JRES       |
|----------|-----------------------|------------|
| ALS CODE | DESCRIPTION           | INSTRUMENT |
| Au-GRA21 | Au 30g FA-GRAV finish | WST-SIM    |
| Au-AA23  | Au 30g FA-AA finish   | AAS        |

To: MANITOU GOLD INC ATTN: TODD KEAST 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Signature:

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:
Colin Ramshaw, Vancouver Laboratory Manager



ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 2 - A Total # Pages: 2 (A) Finalized Date: 9-NOV-2011 Account: MANGOL

Project: WEST LIMB

#### CERTIFICATE OF ANALYSIS TB11201530

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-GRA21<br>Au<br>ppm<br>0.05 | Au-AA23<br>Au<br>ppm<br>0.005             |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|-------------------------------|-------------------------------------------|--|
| K087540<br>K087541<br>K087542<br>K087543<br>K087544 |                                   | 1.32<br>2.12<br>2.02<br>5.11<br>1.41 | 69.2                          | 0.013<br>0.008<br>0.005<br>>10.0<br>0.027 |  |
| K087545<br>K087546<br>K087547<br>K569501<br>K569502 |                                   | 1.59<br>1.55<br>1.79<br>1.85<br>2.11 |                               | 0.036<br>0.023<br>0.010<br>0.398<br>0.377 |  |
| K569503<br>K569504<br>K569505<br>K569995<br>K569996 |                                   | 1.83<br>2.27<br>2.20<br>1.92<br>2.32 | 26.1                          | 0.237<br>>10.0<br>2.10<br>0.026<br>0.005  |  |
| K569997<br>K569998<br>K569999<br>K570000            |                                   | 1.93<br>1.63<br>1.88<br>1.90         |                               | 0.017<br><0.005<br>0.011<br>0.020         |  |
|                                                     |                                   |                                      |                               |                                           |  |
|                                                     |                                   |                                      |                               |                                           |  |
|                                                     |                                   |                                      |                               |                                           |  |
|                                                     |                                   |                                      |                               |                                           |  |
|                                                     |                                   |                                      |                               |                                           |  |

### **APPENDIX III**

**Diamond Drill Logs** 

| ovince/State  |           | Coor     | dinate Systen         |                     |                  | Cri d/L      | roperty     |              |             | Hole Ty       |                          |                      | Manitou Gold I<br>Date Started |
|---------------|-----------|----------|-----------------------|---------------------|------------------|--------------|-------------|--------------|-------------|---------------|--------------------------|----------------------|--------------------------------|
| tario         |           |          | NAD83 Zone            |                     |                  | Griu/r       | roperty     |              |             | ν.            | <i>pe</i><br>d Drillhole | <i>Length</i> 138.00 | 15/10/2011                     |
|               |           |          |                       |                     |                  | T 1          |             | 7            |             |               |                          |                      |                                |
| nora          |           |          | North                 |                     | TM East<br>7800  | Locai        | Grid E      | Loca         | l Grid N    |               | urvey Meth               | oa                   | Date Completed                 |
|               |           | 54672    |                       |                     |                  |              |             | <b>D</b> : ( | •           | Hand-he       |                          |                      | 15/10/2011                     |
| oject         |           |          | Elevation             |                     | imuth Astro. (•) | Azımu        | th Grid (•) | Dip (        |             |               | ntractor                 |                      | Date Logged                    |
| rrill         |           | 535.0    |                       |                     | 8.00             | ~            |             | -69.8        | 0           | Downing       | •                        |                      | 17/10/2011                     |
| ea            |           | Claim    |                       | NI                  | 'S Sheet         | -            | vised By    |              |             | Logged        | -                        |                      | Verified                       |
| wer Manitou L | ake Area  | 42523    |                       |                     |                  | T. Kea       | st          |              | 1           | L. Dolan      | sky                      |                      |                                |
| ne/Prospect   |           | Asses    | sment <b>R</b> pt. No | <b>).</b> <i>Co</i> | re Storage       |              |             |              | Plug Depth  | Mak           | es Water                 | Capped               | Environmento<br>Inspection     |
|               |           |          |                       | Ва                  | rker Bay Resort  |              |             |              |             |               |                          |                      |                                |
| Core Size (1) |           |          | Casing Pul            | led                 | Casing (1) 1.50  | NW           | Steel Plug  | ged          | Pulsed      | Geophy        | sics Contrac             | ctor                 | Date Pulsed                    |
| (2)           |           |          |                       | _                   | (2)              |              |             | ]            |             |               |                          |                      |                                |
| rpose         |           |          |                       | 1                   | Results          |              |             |              | Comments    |               |                          |                      |                                |
| •             |           |          |                       |                     |                  |              |             |              | 32 boxes NQ | core          |                          |                      |                                |
| Distance      | Grid Azin | nuth (•) | Astro. Azimi          | th (•               | ) Dip (•)        | Us           | e Surve     | y Mei        | thod Ma     | ıg. Field     | Comments                 | 7                    |                                |
|               | Original  | Final    |                       | Final               |                  |              | st          | 2            |             | ( <i>nT</i> ) |                          |                      |                                |
| 15.00         |           |          | 308                   |                     | -69.8            | $\checkmark$ |             | Flexit       |             | 57800         | Shawn                    |                      |                                |
| 51.00         |           |          | 307.2                 |                     | -68.7            |              |             | Flexit       |             | 57770         | Shawn                    |                      |                                |
| 102.00        |           |          | 307.3                 |                     | -66.1            | $\checkmark$ | J           | Flexit       |             | 57880         | Michael                  |                      |                                |

| ithology                   |                   | Au        |
|----------------------------|-------------------|-----------|
| From To                    | Sample # From To  | Len. ppm  |
| 0.00 - 2.30 OVB Overburden |                   |           |
| casing/stick-up/overburden |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
|                            |                   |           |
| Ierrill                    | HOLE ID: ML-11-01 | Page 2 of |

| Litholog | gy    |                                                                                                                                                                            |          |       |       |      | Au     |             |
|----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|--------|-------------|
| From     | То    |                                                                                                                                                                            | Sample # | From  | То    | Len. | ррт    |             |
|          |       |                                                                                                                                                                            |          |       |       |      | **     |             |
| 2.30 -   | 90.80 | MV Mafic Volcanic                                                                                                                                                          |          |       |       |      |        |             |
|          |       | mafic metavolcanics; amph-chl gneiss (massive to very weakly foliated; mod to strongly foliated in shear zones) - green, sparsely spotted creamy white; predominantly med- | K574279  | 9.45  | 10.45 | 1.00 | 0.0025 |             |
|          |       | grained with <1% relict phenocrysts (subhedral to anhedral, corroded ?px crystals                                                                                          | K574280  | 10.45 | 11.45 | 1.00 | 0.007  |             |
|          |       | replaced by feld, 0.5-2cm diameter); locally feldspathic (interstitial cream feld - unclear                                                                                | K574281  | 11.45 | 12.05 | 0.60 | 0.006  |             |
|          |       | if primary or secondary feld); locally mod to str CRB alt in shear zones; locally                                                                                          | K574282  | 12.05 | 13.05 | 1.00 | 0.007  |             |
|          |       | moderately silicified; <1% QV; tr sulphides (pyo, cpy, pyr) in qtz/cal veins                                                                                               | K574283  | 13.05 | 14.50 | 1.45 | 0.006  |             |
|          |       | 11.45-12.05 SHEAR 60CA; str CRB alt, vns                                                                                                                                   | K574284  | 14.50 | 16.00 | 1.50 | 0.008  |             |
|          |       | 25.6-31.1 SHEAR 55-60CA; str CRB, vns; 3% QV; tr pyr, cpy, pyo                                                                                                             | K574285  | 16.00 | 17.50 | 1.50 | 0.006  |             |
|          |       | 38.4-42.2 SHEAR 60CA; locally str CRB vns                                                                                                                                  | K574286  | 17.50 | 19.00 | 1.50 | 0.008  |             |
|          |       | 49.3-54.4 SHEAR 60-70CA; str CRB, vns; mod BT alt; 5% QV; <1% pyr, tr pyo (sulphides locally more abundant around QV and where biotite alt is more intense)                | K574287  | 19.00 | 20.00 | 1.00 | 0.0025 |             |
|          |       | 54.4-67.0 mod sheared - mod to str fol 55-65CA, wk fol in places; locally str CRB;                                                                                         | K574288  | 20.00 | 21.00 | 1.00 | 0.009  |             |
|          |       | locally mod biotite alt; 1-2% QV                                                                                                                                           | K574289  | 21.00 | 22.50 | 1.50 | 0.006  |             |
|          |       | 67.0-81.6 SHEAR 60-80CA; mod to str BT+CRB alt; locally mod silicified; 5% QV; 1% pyr; <1% pyo; tr cpy                                                                     | K574290  | 22.50 | 23.60 | 1.10 | 0.005  |             |
|          |       | 90.3-90.95 SHEAR 65CA; str CRB                                                                                                                                             | K574291  | 23.60 | 24.60 | 1.00 | 0.011  |             |
|          |       | 90.7-90.80 MAFIC DYKE - dark green, fine-grained, homogeneous; sharp contacts UC                                                                                           | K574292  | 24.60 | 25.60 | 1.00 | 0.007  |             |
|          |       | ~80CA (irregular), LC 45CA                                                                                                                                                 | K574293  | 25.60 | 26.60 | 1.00 | 0.008  |             |
|          |       |                                                                                                                                                                            | K574294  | 26.60 | 27.60 | 1.00 | 0.007  |             |
|          |       |                                                                                                                                                                            | K574296  | 27.60 | 28.60 | 1.00 | 0.016  |             |
|          |       |                                                                                                                                                                            | K574297  | 28.60 | 29.60 | 1.00 | 0.012  |             |
|          |       |                                                                                                                                                                            | K574298  | 29.60 | 30.60 | 1.00 | 0.116  |             |
|          |       |                                                                                                                                                                            | K574299  | 30.60 | 31.10 | 0.50 | 0.031  |             |
|          |       |                                                                                                                                                                            | K574300  | 31.10 | 32.50 | 1.40 | 0.011  |             |
|          |       |                                                                                                                                                                            | K574301  | 32.50 | 34.00 | 1.50 | 0.006  |             |
|          |       |                                                                                                                                                                            | K574302  | 34.00 | 35.50 | 1.50 | 0.01   |             |
|          |       |                                                                                                                                                                            | K574303  | 35.50 | 37.00 | 1.50 | 0.0025 |             |
|          |       |                                                                                                                                                                            | K574304  | 37.00 | 38.40 | 1.40 | 0.006  |             |
|          |       |                                                                                                                                                                            | K574305  | 38.40 | 39.40 | 1.00 | 0.006  |             |
|          |       |                                                                                                                                                                            | K574306  | 39.40 | 40.40 | 1.00 | 0.008  |             |
|          |       |                                                                                                                                                                            | K574307  | 40.40 | 41.40 | 1.00 | 0.009  |             |
|          |       |                                                                                                                                                                            | K574308  | 41.40 | 42.20 | 0.80 | 0.014  |             |
|          |       |                                                                                                                                                                            | K574309  | 42.20 | 43.30 | 1.10 | 0.01   |             |
|          |       |                                                                                                                                                                            | K574310  | 43.30 | 44.80 | 1.50 | 0.008  |             |
|          |       |                                                                                                                                                                            | K574311  | 44.80 | 46.30 | 1.50 | 0.005  |             |
|          |       |                                                                                                                                                                            | K574312  | 46.30 | 47.80 | 1.50 | 0.008  |             |
|          |       |                                                                                                                                                                            | K574313  | 47.80 | 49.30 | 1.50 | 0.013  |             |
|          |       |                                                                                                                                                                            | K574314  | 49.30 | 50.30 | 1.00 | 0.014  |             |
|          |       |                                                                                                                                                                            | K574315  | 50.30 | 51.30 | 1.00 | 0.987  |             |
| 1.7      |       |                                                                                                                                                                            | I        |       |       |      |        | Page 3 of 7 |

Merrill

| Lithology |          |       |       |      | Au     |  |
|-----------|----------|-------|-------|------|--------|--|
| From To   | Sample # | From  | То    | Len. | ррт    |  |
|           | K574316  | 51.30 | 52.30 | 1.00 | 5.93   |  |
|           | K574317  | 52.30 | 53.30 | 1.00 | 0.219  |  |
|           | K574319  | 53.30 | 54.30 | 1.00 | 0.01   |  |
|           | K574320  | 54.30 | 55.30 | 1.00 | 0.009  |  |
|           | K574321  | 55.30 | 56.30 | 1.00 | 0.005  |  |
|           | K574322  | 56.30 | 57.30 | 1.00 | 0.008  |  |
|           | K574323  | 57.30 | 58.30 | 1.00 | 0.011  |  |
|           | K574324  | 58.30 | 59.00 | 0.70 | 0.011  |  |
|           | K574325  | 59.00 | 60.00 | 1.00 | 1.715  |  |
|           | K574326  | 60.00 | 61.00 | 1.00 | 0.017  |  |
|           | K574327  | 61.00 | 62.00 | 1.00 | 0.01   |  |
|           | K574328  | 62.00 | 63.00 | 1.00 | 0.0025 |  |
|           | K574329  | 63.00 | 64.00 | 1.00 | 0.01   |  |
|           | K574330  | 64.00 | 65.00 | 1.00 | 0.028  |  |
|           | K574331  | 65.00 | 66.00 | 1.00 | 0.028  |  |
|           | K574332  | 66.00 | 67.00 | 1.00 | 0.012  |  |
|           | K574333  | 67.00 | 68.00 | 1.00 | 0.015  |  |
|           | K574335  | 68.00 | 69.00 | 1.00 | 3.61   |  |
|           | K574336  | 69.00 | 70.00 | 1.00 | 0.114  |  |
|           | K574337  | 70.00 | 71.00 | 1.00 | 1.24   |  |
|           | K574338  | 71.00 | 72.00 | 1.00 | 0.896  |  |
|           | K574339  | 72.00 | 73.00 | 1.00 | 0.243  |  |
|           | K574340  | 73.00 | 74.00 | 1.00 | 0.05   |  |
|           | K574341  | 74.00 | 75.00 | 1.00 | 12.65  |  |
|           | K574342  | 75.00 | 76.00 | 1.00 | 3.81   |  |
|           | K574344  | 76.00 | 77.00 | 1.00 | 0.066  |  |
|           | K574345  | 77.00 | 78.00 | 1.00 | 0.041  |  |
|           | K574346  | 78.00 | 79.00 | 1.00 | 0.977  |  |
|           | K574347  | 79.00 | 80.00 | 1.00 | 0.01   |  |
|           | K574348  | 80.00 | 81.00 | 1.00 | 0.67   |  |
|           | K574349  | 81.00 | 82.00 | 1.00 | 0.093  |  |
|           | K574350  | 82.00 | 83.50 | 1.50 | 0.006  |  |
|           | K574351  | 83.50 | 85.00 | 1.50 | 0.011  |  |
|           | K574352  | 85.00 | 86.00 | 1.00 | 0.011  |  |
|           | K574353  | 86.00 | 87.00 | 1.00 | 0.032  |  |
|           | K574354  | 87.00 | 88.00 | 1.00 | 0.011  |  |
|           | K574355  | 88.00 | 89.00 | 1.00 | 0.011  |  |
|           |          |       |       |      |        |  |

Merrill

| ithology |       |                                                                                                                      |          |       |       |      | Au    |          |
|----------|-------|----------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|-------|----------|
| rom      | То    |                                                                                                                      | Sample # |       |       | Len. | ppm   |          |
|          |       |                                                                                                                      | K574356  |       | 90.30 | 1.30 | 0.013 |          |
|          |       |                                                                                                                      | K574357  | 90.30 | 90.80 | 0.50 | 0.008 |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
| 0.80 -   | 91.75 | QV Quartz Vein                                                                                                       |          |       |       |      |       |          |
|          |       |                                                                                                                      | K574358  | 90.80 | 91.75 | 0.95 | 0.121 |          |
|          |       | massive white qtz vein; sharp but very irregular contacts; <1% sulphide blebs in vein comprising <1% pyo+cpy, tr pyr |          |       |       |      | -     |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
|          |       |                                                                                                                      |          |       |       |      |       |          |
| errill   | ,     | HOLE ID: ML-11-                                                                                                      | 01       |       |       |      |       | Page 5 a |

| Litholo | gy       |                                                                                                 |           |        |        |      | Au     |            |
|---------|----------|-------------------------------------------------------------------------------------------------|-----------|--------|--------|------|--------|------------|
| From    | То       |                                                                                                 | Sample #  | From   | То     | Len. | ppm    |            |
|         |          |                                                                                                 |           |        |        |      |        |            |
| 91.75 - | - 138.00 |                                                                                                 |           |        |        |      |        |            |
|         |          | mafic metavolcanics, as described above                                                         | K574359   | 91.75  | 92.75  | 1.00 | 0.014  |            |
|         |          | 92.35-92.75 MAFIC DYKE - dark green, fine-grained, homogeneous; sharp contacts                  | K574361   | 92.75  | 94.20  | 1.45 | 0.0025 |            |
|         |          | UC 50CA, LC ~30CA (irregular)                                                                   | K574362   | 94.20  | 95.70  | 1.50 | 0.007  |            |
|         |          | 101.7-103.2 wk to mod fol 55CA                                                                  | K574363   | 95.70  | 97.20  | 1.50 | 0.009  |            |
|         |          | 103.2-106.6 SHEAR 65-70CA; locally str BT alt; mod CRB alt, vns; 35-40% QV; <1% pvr; tr pvo+cpv | K574364   | 97.20  | 98.70  | 1.50 | 0.007  |            |
|         |          | 116.6-138.0 mod fol 55-70CA (mainly mod fol but locally wk and locally str fol); mod            | K574365   | 98.70  |        | 1.50 | 0.009  |            |
|         |          | crb alt; 2-3% QV; tr pyo, pyr, rare cpy                                                         | K574366   | 100.20 | 101.70 | 1.50 | 0.007  |            |
|         |          | EOH 128m                                                                                        | K574367   | 101.70 | 103.20 | 1.50 | 0.0025 |            |
|         |          | EOH 138m                                                                                        |           | 103.20 |        | 1.00 | 0.02   |            |
|         |          |                                                                                                 | K574369   | 104.20 | 104.70 | 0.50 | 0.03   |            |
|         |          |                                                                                                 | K574370   | 104.70 | 105.70 | 1.00 | 0.793  |            |
|         |          |                                                                                                 | K574371   | 105.70 | 106.60 | 0.90 | 0.397  |            |
|         |          |                                                                                                 | K574373   | 106.60 | 107.60 | 1.00 | 0.006  |            |
|         |          |                                                                                                 | K574374   | 107.60 | 109.10 | 1.50 | 0.006  |            |
|         |          |                                                                                                 | K574375   | 109.10 | 110.60 | 1.50 | 0.077  |            |
|         |          |                                                                                                 | K574376   | 110.60 | 112.10 | 1.50 | 0.008  |            |
|         |          |                                                                                                 | K574377   | 112.10 | 113.60 | 1.50 | 0.017  |            |
|         |          |                                                                                                 | K574378   | 113.60 | 115.10 | 1.50 | 0.006  |            |
|         |          |                                                                                                 | K574379   | 115.10 | 116.60 | 1.50 | 0.007  |            |
|         |          |                                                                                                 | K574380   | 116.60 | 117.50 | 0.90 | 0.008  |            |
|         |          |                                                                                                 | K574381   | 117.50 | 119.00 | 1.50 | 0.01   |            |
|         |          |                                                                                                 | K574382   | 119.00 | 120.00 | 1.00 | 0.006  |            |
|         |          |                                                                                                 | K574383   | 120.00 | 121.00 | 1.00 | 0.009  |            |
|         |          |                                                                                                 | K574384   | 121.00 | 122.00 | 1.00 | 0.0025 |            |
|         |          |                                                                                                 | K574386   | 122.00 | 123.00 | 1.00 | 0.0025 |            |
|         |          |                                                                                                 | K574387   |        |        | 1.00 | 0.0025 |            |
|         |          |                                                                                                 |           | 124.00 |        | 1.00 | 0.009  |            |
|         |          |                                                                                                 |           | 125.00 |        | 1.00 | 0.009  |            |
|         |          |                                                                                                 |           | 126.00 |        | 1.00 | 0.006  |            |
|         |          |                                                                                                 |           | 127.00 |        | 1.00 | 0.005  |            |
|         |          |                                                                                                 | K574392   |        |        | 1.00 | 0.0025 |            |
|         |          |                                                                                                 | K574393   |        |        | 1.50 | 0.009  |            |
|         |          |                                                                                                 |           | 130.50 |        | 1.00 | 0.0025 |            |
|         |          |                                                                                                 |           | 131.50 |        | 1.50 | 0.005  |            |
|         |          |                                                                                                 |           | 133.00 |        | 1.00 | 0.005  |            |
|         |          |                                                                                                 | K574397   |        |        | 1.00 | 0.01   |            |
|         |          |                                                                                                 | 1101 4001 | 104.00 | 100.00 | 1.00 | 0.01   | <br>Page 6 |

Merrill

| Lithology<br>From To |                       | Au         |
|----------------------|-----------------------|------------|
| From To              | Sample # From To      | Len. ppm   |
|                      | K574398 135.00 136.00 | 1.00 0.006 |
|                      | K574399 136.00 137.00 | 1.00 0.012 |
|                      | K574400 137.00 138.00 | 1.00 0.006 |
|                      |                       |            |
|                      |                       |            |

| Province/State                | Co-ordinate System |                                       | Grid/Property    |              | Hole Type                 | Length | Date Started               |
|-------------------------------|--------------------|---------------------------------------|------------------|--------------|---------------------------|--------|----------------------------|
| Intario                       | UTM NAD83 Zone 1   | 5                                     |                  |              | Diamond Drillhole         | 77.00  | 14/10/2011                 |
| District                      | UTM North          | UTM East                              | Local Grid E     | Local Grid N | Collar Survey Met         | hod    | Date Completed             |
| enora                         | 5467251            | 507801                                |                  |              | Hand-held GPS             |        | 14/10/2011                 |
| Project                       | UTM Elevation      | Azimuth Astro. (•)                    | Azimuth Grid (•) | Dip (•)      | Drill Contractor          |        | Date Logged                |
| 1errill                       | 537.00             | 306.20                                |                  | -45.90       | Downing Drilling          |        | 15/10/2011                 |
| rea                           | Claim No.          | NTS Sheet                             | Supervised By    |              | Logged By                 |        | Verified                   |
| ower Manitou Lake Area        | 4252367            |                                       | T. Keast         |              | L. Dolansky               |        |                            |
| Cone/Prospect                 | Assessment Rpt. No | -                                     |                  | Plug Deptl   | Makes Water               | Capped | Environmenta<br>Inspection |
|                               |                    | Barker Bay Resort                     |                  |              |                           |        |                            |
| Core Size (1)                 | Casing Pul         | led Casing (1) 1.50                   | NW Steel Plug    | ged Pulsed   | Geophysics Contro         | ictor  | Date Pulsed                |
| (2)                           |                    | (2)                                   |                  |              |                           |        |                            |
| Purpose                       |                    | Results                               |                  | Comments     |                           |        |                            |
|                               |                    |                                       |                  | 18 boxes N   | Q core                    |        |                            |
| Distance Grid Azi<br>Original |                    | th (•) Dip (•)<br>'inal Original Find |                  | ey Method N  | Iag. Field Commen<br>(nT) | ts     |                            |
| 15.00                         | 306.2              | -45.9                                 | $\checkmark$     | Flexit       | 58530 Shawn               |        |                            |
| 51.00                         | 306.5              | -45.6                                 |                  | Flexit       | 57750 Michael             |        |                            |
|                               | 331.1              | -45.3                                 |                  | Flexit       | 57020 Shawn               |        |                            |

| Au                        |                                                                                          |
|---------------------------|------------------------------------------------------------------------------------------|
| Sample # From To Len. ppm |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
|                           |                                                                                          |
| AL 11.00                  | Page 2 of                                                                                |
|                           | Sample # From To         Len.         ppm           //////////////////////////////////// |

| Litholog | <i>zy</i> |                                                                                                                                                                                    |          |       |       |      | Au    |      |
|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|-------|------|
| From     | То        |                                                                                                                                                                                    | Sample # | From  | То    | Len. | ррт   |      |
|          |           |                                                                                                                                                                                    |          |       |       |      |       |      |
| 2.90 -   | 77.00     | MV Mafic Volcanic                                                                                                                                                                  |          |       |       |      |       |      |
|          |           | mafic metavolcanics; amph-chl gneiss (massive to very weakly foliated; mod to strongly                                                                                             | K574201  | 3.00  | 4.00  | 1.00 | 0.006 |      |
|          |           | foliated in shear zones) - green, sparsely spotted creamy white; predominantly med-<br>grained with <1% relict phenocrysts (subhedral to anhedral, corroded ?px crystals           | K574202  | 4.00  | 5.00  | 1.00 | 0.005 |      |
|          |           | replaced by feld, 0.5-1cm diameter); locally mod to str CRB alt in shear zones; 1% QV;                                                                                             | K574203  | 5.00  | 6.00  | 1.00 | 0.008 |      |
|          |           | tr sulphides (pyo, cpy, pyr) in qtz/cal veins                                                                                                                                      | K574204  | 6.00  | 7.00  | 1.00 | 0.007 |      |
|          |           |                                                                                                                                                                                    | K574205  | 7.00  | 8.00  | 1.00 | 0.006 |      |
|          |           | 20.0-26.5 SHEAR 70-85CA; str CRB, vns; <1% QV<br>29.1-30.6 SHEAR 60-80CA; mod to str CRB, vns; tr QV                                                                               | K574206  | 8.00  | 9.00  | 1.00 | 0.011 |      |
|          |           | 34.1-35.0 SHEAR 55-65CA; str CRB, vns; mod QZ alt (blebby)                                                                                                                         | K574207  | 9.00  | 10.00 | 1.00 | 0.013 |      |
|          |           | 43.0-46.8 SHEAR 75-80CA; str CRB, vns; mod biotite alt; 1-2% QV; <1% pyr; tr to                                                                                                    | K574208  | 10.00 | 11.00 | 1.00 | 0.013 |      |
|          |           | <1% pyo (sulphides spatially associated w/ QV and biotite alt)                                                                                                                     | K574209  | 11.00 | 12.00 | 1.00 | 0.01  |      |
|          |           | 50.0-52.0 wk SHEAR 70CA; mod to str CRB, vns; 1-2% QV<br>52.0-57.0 mod fol ~70CA; mod CRB alt; 5% QV                                                                               | K574210  | 12.00 | 13.00 | 1.00 | 0.01  |      |
|          |           | 57.0-62.2 SHEAR 65-90CA w/ 20% INTD; mod to str CRB, vns; mod to locally str                                                                                                       | K574212  | 13.00 | 14.05 | 1.05 | 0.009 |      |
|          |           | biotite alt; 7-10% QV; <1% pyr; <1% pyo                                                                                                                                            | K574213  | 14.05 | 15.00 | 0.95 | 0.024 |      |
|          |           | 57.9-58.4 INTD/?FD ?qtz diorite - grey w/ brown biotite flecks and green fg interstitial                                                                                           | K574214  | 15.00 | 16.00 | 1.00 | 0.014 |      |
|          |           | chl; predominantly qtz +?plag; med-grained; blurry grain boundaries (secondary<br>silicification?); indistinct UC, LC ~60CA                                                        | K574215  | 16.00 | 17.50 | 1.50 | 0.009 |      |
|          |           | 59.5-59.9 INTD/?FD as described above; sharp contacts, UC is bulbous, LC 75CA                                                                                                      | K574216  | 17.50 | 19.00 | 1.50 | 0.006 |      |
|          |           | 62.1-62.15 INTD/?FD as described above; sharp contacts, UC 75CA, LC 70CA                                                                                                           | K574217  | 19.00 | 20.00 | 1.00 | 0.012 |      |
|          |           | 62.2-66.75 massive fine-grained mafic volcanic flow; dark green w/ patchy light grey epidote alt (wk to mod intensity); chloritic; locally mod silicified; mod crb alt, vns/cement | K574218  | 20.00 | 21.00 | 1.00 | 0.011 |      |
|          |           | infilling fractures; <1% pyr, tr cpy (spatially associated with calcite vns); locally mod fol                                                                                      | K574210  | 20.00 | 22.00 | 1.00 | 0.009 |      |
|          |           | 65CA (65.7-66m)                                                                                                                                                                    | K574219  | 22.00 | 23.00 | 1.00 | 0.009 |      |
|          |           | 66.75-68.4 INTD/?FD ?qtz diorite - grey spotted cream/white (feld laths); med-grained;                                                                                             | K574220  |       |       | 1.00 |       |      |
|          |           | blurry grain boundaries except 5-10% ?sodic and/or potassic feld crystals (mostly                                                                                                  |          | 23.00 | 24.00 |      | 0.011 |      |
|          |           | cream coloured, some pink crystals); predominantly qtz+feld with subordinate biotite<br>and interstitial fg to mg chl (replacing amph?); sharp contacts UC 70CA, LC irregular      | K574222  | 24.00 | 25.00 | 1.00 | 0.011 |      |
|          |           | ~70CA                                                                                                                                                                              | K574223  | 25.00 | 26.00 | 1.00 | 0.013 |      |
|          |           | 70.65-72.65 INTD/?FD ?qtz diorite - as described above at 57.9m; sharp contacts UC                                                                                                 | K574224  | 26.00 | 26.50 | 0.50 | 0.027 |      |
|          |           | 65CA, LC 80CA                                                                                                                                                                      | K574225  | 26.50 | 27.50 | 1.00 | 0.006 |      |
|          |           | 72.65-74.0 SHEAR mod to str fol 75CA; mod biotite; 1% pyo; tr pyr; INTD/?FD at 72.7-72.9m as described above; irregular cnts w/ QV at margins                                      | K574226  | 27.50 | 29.00 | 1.50 | 0.007 |      |
|          |           | 74.0-75.0 mod CRB alt, vns; wk fol to massive                                                                                                                                      | K574227  | 29.00 | 30.00 | 1.00 | 0.007 |      |
|          |           |                                                                                                                                                                                    | K574228  | 30.00 | 31.00 | 1.00 | 0.012 |      |
|          |           | EOH 77m                                                                                                                                                                            | K574229  | 31.00 | 32.50 | 1.50 | 0.01  |      |
|          |           |                                                                                                                                                                                    | K574230  | 32.50 | 34.00 | 1.50 | 0.006 |      |
|          |           |                                                                                                                                                                                    | K574231  | 34.00 | 35.00 | 1.00 | 0.01  |      |
|          |           |                                                                                                                                                                                    | K574232  | 35.00 | 36.00 | 1.00 | 0.008 |      |
|          |           |                                                                                                                                                                                    | K574233  | 36.00 | 37.00 | 1.00 | 0.008 |      |
|          |           |                                                                                                                                                                                    | K574234  | 37.00 | 38.00 | 1.00 | 0.008 |      |
|          |           |                                                                                                                                                                                    | K574235  | 38.00 | 39.00 | 1.00 | 0.007 |      |
|          |           |                                                                                                                                                                                    | K574236  | 39.00 | 40.00 | 1.00 | 0.009 |      |
|          |           |                                                                                                                                                                                    | K574237  | 40.00 | 41.50 | 1.50 | 0.007 |      |
| <b>I</b> |           | HOLED MI 11                                                                                                                                                                        |          |       |       |      |       | Page |

Merrill

| Lithology |         |        |       |      | Au     |  |
|-----------|---------|--------|-------|------|--------|--|
| From To   | Sample  | # From | То    | Len. | ррт    |  |
|           | K574238 | 41.50  | 43.00 | 1.50 | 0.01   |  |
|           | K574239 | 43.00  | 44.00 | 1.00 | 0.013  |  |
|           | K574240 | 44.00  | 45.00 | 1.00 | 0.155  |  |
|           | K574241 | 45.00  | 46.00 | 1.00 | 1.195  |  |
|           | K574242 | 46.00  | 47.00 | 1.00 | 0.025  |  |
|           | K574244 | 47.00  | 48.00 | 1.00 | 0.007  |  |
|           | K574245 | 48.00  | 49.00 | 1.00 | 0.009  |  |
|           | K574246 | 49.00  | 50.00 | 1.00 | 0.01   |  |
|           | K574247 | 50.00  | 51.00 | 1.00 | 0.017  |  |
|           | K574248 | 51.00  | 52.00 | 1.00 | 0.044  |  |
|           | K574249 | 52.00  | 53.00 | 1.00 | 0.024  |  |
|           | K574250 | 53.00  | 54.00 | 1.00 | 0.013  |  |
|           | K574251 | 54.00  | 55.00 | 1.00 | 0.024  |  |
|           | K574252 | 55.00  | 56.00 | 1.00 | 0.009  |  |
|           | K574253 | 56.00  | 57.00 | 1.00 | 0.011  |  |
|           | K574255 | 57.00  | 57.90 | 0.90 | 0.295  |  |
|           | K574256 | 57.90  | 58.50 | 0.60 | 0.01   |  |
|           | K574257 | 58.50  | 59.50 | 1.00 | 0.04   |  |
|           | K574258 | 59.50  | 60.00 | 0.50 | 0.026  |  |
|           | K574259 | 60.00  | 61.00 | 1.00 | 0.391  |  |
|           | K574260 | 61.00  | 62.20 | 1.20 | 0.346  |  |
|           | K574261 | 62.20  | 63.20 | 1.00 | 0.014  |  |
|           | K574262 | 63.20  | 64.20 | 1.00 | 0.055  |  |
|           | K574263 | 64.20  | 65.20 | 1.00 | 0.024  |  |
|           | K574264 | 65.20  | 66.00 | 0.80 | 0.055  |  |
|           | K574265 | 66.00  | 66.75 | 0.75 | 0.161  |  |
|           | K574266 | 66.75  | 67.75 | 1.00 | 0.0025 |  |
|           | K574268 | 67.75  | 68.40 | 0.65 | 0.0025 |  |
|           | K574269 | 68.40  | 69.50 | 1.10 | 0.03   |  |
|           | K574270 | 69.50  | 70.65 | 1.15 | 0.0025 |  |
|           | K574271 | 70.65  | 71.65 | 1.00 | 0.012  |  |
|           | K574272 | 71.65  | 72.65 | 1.00 | 0.0025 |  |
|           | K574273 | 72.65  | 73.15 | 0.50 | 0.043  |  |
|           | K574275 | 73.15  | 74.00 | 0.85 | 0.174  |  |
|           | K574276 | 74.00  | 75.00 | 1.00 | 0.008  |  |
|           | K574277 | 75.00  | 76.00 | 1.00 | 0.005  |  |
|           | K574278 | 76.00  | 77.00 | 1.00 | 0.009  |  |
|           |         |        |       |      |        |  |

| ithology |                         | Au        |
|----------|-------------------------|-----------|
| From To  | Sample # From To Len. p | opm       |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         |           |
|          |                         | Page 5 of |
| Ierrill  | HOLE ID: ML-11-02       |           |

| vince/State    |                       | Co-or | rdinate Syste           | т                |                           | Gri  | d/Property        |        |             | Hole Ty           | pe           | Length | Date Started   |  |
|----------------|-----------------------|-------|-------------------------|------------------|---------------------------|------|-------------------|--------|-------------|-------------------|--------------|--------|----------------|--|
| tario          |                       |       | NAD83 Zone              |                  |                           |      | 1 2               |        |             |                   | d Drillhole  | 96.00  | 12/10/2011     |  |
| trict          |                       | UTM   | North                   | UT               | M East                    | Loc  | al Grid E         | Loca   | l Grid N    | Collar S          | urvey Meth   | od     | Date Completed |  |
| nora           |                       | 54673 | 354                     | 507              | 7863                      |      |                   |        |             | Hand-he           | ld GPS       |        | 13/10/2011     |  |
| oject          |                       | UTM   | Elevation               | Azi              | muth Astro. (•)           | Azi  | muth Grid (•)     | Dip (  | ·•)         | Drill Co          | ntractor     |        | Date Logged    |  |
| rrill          |                       | 535.0 | 0                       | 303              | 3.50                      |      |                   | -47.1  | 0           | Downing           | Drilling     |        | 15/10/2011     |  |
| 2a             |                       | Claim | ı No.                   | NT               | S Sheet                   | Sup  | pervised By       |        |             | Logged            | By           |        | Verified       |  |
| ver Manitou L  | ake Area              | 42523 | 367                     |                  |                           | T. K | Keast             |        |             | L. Dolan          | sky          |        |                |  |
| ne/Prospect    |                       | Asses | sment Rpt. N            | Vo. Cor          | re Storage                |      |                   |        | Plug Depth  | Mal               | es Water     | Campod | Environmenta   |  |
|                |                       |       |                         | Bar              | ker Bay Resort            |      |                   |        |             |                   |              | Capped | Inspection     |  |
| Core Size (1)  |                       |       | Casing Pu               | ılled            | Casing (1) 3.00           | 1 (  | WW Steel Plug     | ged    | Pulsed      | Geophy            | sics Contrac | ctor   | Date Pulsed    |  |
| (2)            |                       |       |                         |                  | (2)                       |      |                   |        |             |                   |              |        |                |  |
| rpose          | 1                     |       |                         | k                | Results                   |      |                   |        | Comments    |                   |              |        |                |  |
|                |                       |       |                         |                  |                           |      |                   |        | 22 boxes NQ | core              |              |        |                |  |
| Distance       | Grid Azim<br>Original |       | Astro. Azim<br>Original | uth (•)<br>Final | ) Dip (•)<br>Original Fin |      | Use Surve<br>Test | y Mei  | thod Ma     | ng. Field<br>(nT) | Comments     | 1      |                |  |
| 15.00          |                       |       | 303.5                   |                  | -47.1                     |      | $\checkmark$      | Flexit |             | 58290             | Michael      |        |                |  |
|                |                       |       | 301.8                   |                  | -47.2                     |      |                   | Flexit |             | 57570             | Michael      |        |                |  |
| 51.00<br>96.00 |                       |       | 302.3                   |                  | -46.8                     |      |                   | Flexit |             | 57580             | Shawn        |        |                |  |

| Lithology                                                       |                      | Au        |
|-----------------------------------------------------------------|----------------------|-----------|
| From To                                                         | Sample # From To Len | . ppm     |
| 0.00 - 2.50 <b>OVB Overburden</b><br>casing/stick-up/overburden |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
|                                                                 |                      |           |
| Ierrill                                                         | HOLE ID: ML-11-03    | Page 2 of |

| itholog |       |                                                                                                                                                                                  |                    |       |               |      | Au     |  |
|---------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|---------------|------|--------|--|
| From    | То    |                                                                                                                                                                                  | Sample #           | From  | То            | Len. | ррт    |  |
| 2.50 -  | 96.00 | MV Mafic Volcanic                                                                                                                                                                |                    |       |               |      |        |  |
| 2.50 -  | 50.00 | mafic metavolcanics; amph-chl gneiss (generally weakly foliated to massive in places,                                                                                            | K574119            | 6.00  | 7.00          | 1.00 | 0.0025 |  |
|         |       | strongly foliated in shear zones) - green, sparsely spotted creamy white; predominantly                                                                                          | K574119<br>K574120 | 7.00  | 8.00          | 1.00 | 0.0025 |  |
|         |       | med-grained with <1% relict phenocrysts (subhedral to anhedral, corroded ?px crystals                                                                                            | K574120            | 8.00  | 9.00          | 1.00 | 0.014  |  |
|         |       | replaced by feld, 0.5-1.5cm diameter); wk to locally mod CRB alt (and str crb in shear zones); 1-2% QV; tr sulphides (pyo, cpy, pyr) in veins, rarely dissem in host rock        | K574121<br>K574122 | 9.00  | 9.00<br>10.00 | 1.00 | 0.0025 |  |
|         |       |                                                                                                                                                                                  | K574122            | 10.00 | 11.00         | 1.00 | 0.0025 |  |
|         |       | 13.1-15.0 SHEAR 60-70CA; 2% QV; str crb alt, vns; tr pyr+pyo                                                                                                                     | K574123<br>K574124 | 11.00 | 12.00         | 1.00 | 0.011  |  |
|         |       | 17.0-18.0 weakly developed shear zone; str crb alt, vns; mod to locally str fol 70-75CA                                                                                          | K574124<br>K574125 | 12.00 | 13.10         | 1.10 | 0.0025 |  |
|         |       | 23.9-28.6 str crb alt, vns; wk to locally mod fol ~70CA; 1% QV<br>28.6-29.4 wk to mod fol, transitional to shear zone below; tr pyo+pyr                                          | K574125<br>K574126 | 13.10 | 14.00         | 0.90 | 0.013  |  |
|         |       | 29.4-33.45 SHEAR variable fol 50-90CA; str crb alt, vns; mod biotite alt; 5-10% QV; 1-                                                                                           |                    |       |               |      |        |  |
|         |       | 2% pyo; <1% pyr; tr cpy                                                                                                                                                          | K574127            | 14.00 | 15.00         | 1.00 | 0.008  |  |
|         |       | 34.25-37.5 10-15% QV, 1-8cm thick, variable orientation (e.g., 50CA, 150CA, and                                                                                                  | K574128            | 15.00 | 16.00         | 1.00 | 0.007  |  |
|         |       | ~subparallel to CA)<br>39.4-41.05 SHEAR 70-80CA; mod crb alt, vns; 1-2% QV; <1% pyo; tr cpy+pyr                                                                                  | K574129            | 16.00 | 17.00         | 1.00 | 0.0025 |  |
|         |       | 48.35-49.35 SHEAR 70-80CA; str crb alt, vns; <1% QV; tr pyo+cpy                                                                                                                  | K574130            | 17.00 | 18.00         | 1.00 | 0.006  |  |
|         |       | 53.25-54.0 weakly developed shear zone ~70CA; 1% QV; wk to mod crb alt, vns; tr                                                                                                  | K574131            | 18.00 | 19.50         | 1.50 | 0.015  |  |
|         |       | pyo+cpy<br>54.0-62.0 weak fabric 60-90CA ?veining/dissolution lamellae                                                                                                           | K574132            | 19.50 | 21.00         | 1.50 | 0.016  |  |
|         |       | 62.0-63.1 SHEAR 60-65CA; str crb alt, vns; tr pyo+cpy                                                                                                                            | K574133            | 21.00 | 22.50         | 1.50 | 0.0025 |  |
|         |       | 66.15-67.15 weak shear zone 65-70CA; tr pyr+pyo                                                                                                                                  | K574134            | 22.50 | 23.50         | 1.00 | 0.0025 |  |
|         |       | 77.2-77.5 ?MAFIC DYKE, silicified; dark brownish-grey; fine-grained; appears to have                                                                                             | K574135            | 23.50 | 24.50         | 1.00 | 0.01   |  |
|         |       | sharp contacts but core is broken at both margins; ~1% pyr infilling hairline fractures and thin (<2mm) veins w/ calcite                                                         | K574136            | 24.50 | 25.50         | 1.00 | 0.01   |  |
|         |       | 78.4-80.3 SHEAR 70CA; str crb alt, vns; 5-10% QV; mod biotite alt; tr pyr+pyo; very                                                                                              | K574138            | 25.50 | 26.50         | 1.00 | 0.011  |  |
|         |       | irregular/wavy foliation where veins occur                                                                                                                                       | K574139            | 26.50 | 27.50         | 1.00 | 0.0025 |  |
|         |       | 92.5-93.35 ?INTD/FD - strongly silicified ?diorite/qtz-diorite; purplish-grey spotted                                                                                            | K574140            | 27.50 | 28.50         | 1.00 | 0.02   |  |
|         |       | brown (biotite laths/slivers); siliceous, blurry/indistinct grain boundaries (except med-<br>grained biotite crystals); str fol 30-60CA, angle increasing downhole; <1% pyr; <1% | K574141            | 28.50 | 29.50         | 1.00 | 0.044  |  |
|         |       | pyo; sharp but undulatory contacts; dyke is bleached at margins, ~5cm near UC and                                                                                                | K574142            | 29.50 | 30.50         | 1.00 | 0.605  |  |
|         |       | ~1cm at lower contact                                                                                                                                                            | K574143            | 30.50 | 31.50         | 1.00 | 1.71   |  |
|         |       |                                                                                                                                                                                  | K574145            | 31.50 | 32.50         | 1.00 | 2.08   |  |
|         |       | EOH 96m                                                                                                                                                                          | K574146            | 32.50 | 33.50         | 1.00 | 1.08   |  |
|         |       |                                                                                                                                                                                  | K574147            | 33.50 | 34.50         | 1.00 | 0.009  |  |
|         |       |                                                                                                                                                                                  | K574148            | 34.50 | 35.50         | 1.00 | 0.005  |  |
|         |       |                                                                                                                                                                                  | K574149            | 35.50 | 36.50         | 1.00 | 0.008  |  |
|         |       |                                                                                                                                                                                  | K574150            | 36.50 | 37.50         | 1.00 | 0.006  |  |
|         |       |                                                                                                                                                                                  | K574151            | 37.50 | 38.50         | 1.00 | 0.007  |  |
|         |       |                                                                                                                                                                                  | K574152            | 38.50 | 39.40         | 0.90 | 0.006  |  |
|         |       |                                                                                                                                                                                  | K574153            | 39.40 | 40.20         | 0.80 | 0.009  |  |
|         |       |                                                                                                                                                                                  | K574154            | 40.20 | 41.05         | 0.85 | 0.089  |  |
|         |       |                                                                                                                                                                                  | K574154            | 41.05 | 42.50         | 1.45 | 0.005  |  |
|         |       |                                                                                                                                                                                  |                    |       |               |      |        |  |
|         |       |                                                                                                                                                                                  | K574157            | 42.50 | 43.50         | 1.00 | 0.008  |  |

| Lithology |         |        |       |      | Au     |  |
|-----------|---------|--------|-------|------|--------|--|
| From To   | Sample  | # From | n To  | Len. | ррт    |  |
|           | K574158 |        |       | 1.00 | 0.0025 |  |
|           | K574159 |        |       | 1.00 | 0.0025 |  |
|           | K574160 |        |       | 1.50 | 0.008  |  |
|           | K574161 |        |       | 1.35 | 0.0025 |  |
|           | K574162 |        |       | 1.00 | 0.0025 |  |
|           | K574163 |        |       | 1.00 | 0.0025 |  |
|           | K574164 |        |       | 1.00 | 0.007  |  |
|           | K574165 | 51.35  | 52.35 | 1.00 | 0.0025 |  |
|           | K574166 | 52.35  | 53.25 | 0.90 | 0.0025 |  |
|           | K574167 | 53.25  | 54.25 | 1.00 | 2.8    |  |
|           | K574168 | 54.25  | 55.75 | 1.50 | 0.009  |  |
|           | K574169 | 55.75  | 57.00 | 1.25 | 0.011  |  |
|           | K574170 |        |       | 1.00 | 0.009  |  |
|           | K574171 | 58.00  | 59.50 | 1.50 | 0.009  |  |
|           | K574172 | 59.50  | 61.00 | 1.50 | 0.014  |  |
|           | K574173 | 61.00  | 62.00 | 1.00 | 0.011  |  |
|           | K574174 | 62.00  | 63.10 | 1.10 | 0.013  |  |
|           | K574175 | 63.10  | 64.60 | 1.50 | 0.009  |  |
|           | K574177 | 64.60  | 66.15 | 1.55 | 0.007  |  |
|           | K574178 | 66.15  | 67.15 | 1.00 | 0.007  |  |
|           | K574179 | 67.15  | 68.15 | 1.00 | 0.006  |  |
|           | K574180 | 68.15  | 68.95 | 0.80 | 0.006  |  |
|           | K574181 | 68.95  | 69.45 | 0.50 | 0.0025 |  |
|           | K574182 | 69.45  |       | 1.05 | 0.007  |  |
|           | K574183 |        |       | 1.50 | 0.011  |  |
|           | K574184 | 72.00  | 73.50 | 1.50 | 0.007  |  |
|           | K574185 | 73.50  | 75.00 | 1.50 | 0.011  |  |
|           | K574186 | 75.00  | 76.00 | 1.00 | 0.012  |  |
|           | K574187 | 76.00  | 77.00 | 1.00 | 0.01   |  |
|           | K574189 |        |       | 0.50 | 0.005  |  |
|           | K574190 | 77.50  | 78.40 | 0.90 | 0.015  |  |
|           | K574191 | 78.40  | 79.40 | 1.00 | 0.02   |  |
|           | K574192 |        | 80.30 | 0.90 | 0.053  |  |
|           | K574193 |        |       | 1.00 | 0.007  |  |
|           | K574194 |        |       | 1.00 | 0.006  |  |
|           | K574195 |        |       | 1.00 | 0.013  |  |
|           | K574196 |        |       | 1.00 | 0.009  |  |
|           |         |        |       |      |        |  |

Merrill

| Lithology |          |       |       |      | Au     |
|-----------|----------|-------|-------|------|--------|
| From To   | Sample # | From  | То    | Len. | ррт    |
|           | K574197  | 92.50 | 93.35 | 0.85 | 0.0025 |
|           | K574198  | 93.35 | 94.50 | 1.15 | 0.007  |
|           | K574200  | 94.50 | 96.00 | 1.50 | 0.016  |
|           |          |       |       |      |        |

| 5467034             |                                                                                                                           | Grid/Property<br>Local Grid E                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                       | Hole TypeLengDiamond Drillhole66.00                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UTM North 5467034   | UTM East                                                                                                                  | Local Grid E                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 10/10/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5467034             |                                                                                                                           | Local Gria E                                                                                                                                                                                                                         | 11C.1N                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Det Completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                                                                                                                           |                                                                                                                                                                                                                                      | Local Grid N                                                                                                                                                                                                                                                                                                                                                                          | Collar Survey Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date Completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     |                                                                                                                           |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                       | Hand-held GPS                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16/10/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| UTM Elevation       | Azimuth Astro. (•)                                                                                                        | Azimuth Grid (•)                                                                                                                                                                                                                     | Dip (•)                                                                                                                                                                                                                                                                                                                                                                               | Drill Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date Logged                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 395.00              | 298.20                                                                                                                    |                                                                                                                                                                                                                                      | -45.60                                                                                                                                                                                                                                                                                                                                                                                | Downing Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17/10/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Claim No.           | NTS Sheet                                                                                                                 | Supervised By                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                       | Logged By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Verified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4252367             |                                                                                                                           | T. Keast                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                       | L. Dolansky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Assessment Rpt. No. | Core Storage                                                                                                              | J                                                                                                                                                                                                                                    | Plug Dep                                                                                                                                                                                                                                                                                                                                                                              | th Makes Water Cappe                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Environmenta<br>ed Inspection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | Barker Bay Resort                                                                                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Casing Pulle        | d Casing (1) 1.50                                                                                                         | NW Steel Plug                                                                                                                                                                                                                        | ged Pulsed                                                                                                                                                                                                                                                                                                                                                                            | Geophysics Contractor                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date Pulsed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | (2)                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| H                   | Results                                                                                                                   |                                                                                                                                                                                                                                      | Comments                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                                                                                                                           |                                                                                                                                                                                                                                      | 15 boxes N                                                                                                                                                                                                                                                                                                                                                                            | IQ core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                                                                                                                           |                                                                                                                                                                                                                                      | ey Method                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0                   | 0                                                                                                                         |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 298.2<br>300.9      | -45.8                                                                                                                     |                                                                                                                                                                                                                                      | Flexit                                                                                                                                                                                                                                                                                                                                                                                | 57570 Michael                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | 4252367<br>Assessment Rpt. No.<br>Casing Pulle<br>Casing Pulle<br>uth (•) Astro. Azimuth<br>Final Original Final<br>298.2 | 4252367       Assessment Rpt. No.       Core Storage         Barker Bay Resort       Barker Bay Resort         Casing Pulled       Casing (1) 1.50         (2)       (2)         Results       1000000000000000000000000000000000000 | 4252367       T. Keast         Assessment Rpt. No.       Core Storage         Barker Bay Resort       Barker Bay Resort         Casing Pulled       Casing (1) 1.50       NW Steel Plug         (2)       (2)       [         Results       [       [         Uth (*)       Astro. Azimuth (*)       Dip (*)       Use         Surv       [       [         298.2       -45.6       ✓ | 4252367       T. Keast         Assessment Rpt. No.       Core Storage       Plug Dept         Barker Bay Resort       Barker Bay Resort       Plugged         Casing Pulled       Casing (1)       1.50       NW Steel       Plugged       Pulsed         (2)       (2)       Comments       15 boxes N       15 boxes N         uth (*)       Astro. Azimuth (*)       Dip (*)       Use       Survey Method       15 boxes N         298.2       -45.6       ✓       Flexit       Flexit | 4252367       T. Keast       L. Dolansky         Assessment Rpt. No.       Core Storage       Plug Depth       Makes Water       Capped         Barker Bay Resort       Barker Bay Resort       Image: Casing Pulled       Casing (1)       1.50       NW Steel       Plugged       Pulsed       Geophysics Contractor         Image: Casing Pulled       Casing (1)       1.50       NW Steel       Plugged       Pulsed       Geophysics Contractor         Image: Casing Pulled       Casing (1)       1.50       NW Steel       Plugged       Pulsed       Geophysics Contractor         Image: Casing Pulled       Casing (1)       1.50       NW Steel       Plugged       Pulsed       Geophysics Contractor         Image: Casing Pulled       Casing (1)       1.50       NW Steel       Plugged       Pulsed       Geophysics Contractor         Image: Casing Pulled       Casing (1)       1.50       NW Steel       Plugged       Plused       Geophysics Contractor         Image: Casing Pulled       Casing (1)       1.50       NW Steel       Plugged       Plugged       Geophysics Contractor         Image: Casing Pulled       Casing (1)       Image: Casing Pulled       Comments       Image: Casing Pulled       Image: Casing Pulled       Image: Casing Pulled       Image: Casing Pull |

| thology |       |                                                                                                                                                                  |          |       |       |      | Au     |  |
|---------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|--------|--|
| rom     | То    |                                                                                                                                                                  | Sample # | From  | То    | Len. | ррт    |  |
| .00 -   | 2.50  | OVB Overburden                                                                                                                                                   |          |       |       |      |        |  |
|         |       | casing/stick-up/overburden                                                                                                                                       |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
| 2.50 -  | 12.10 | MV Mafic Volcanic                                                                                                                                                |          |       |       |      |        |  |
|         |       | dark greenish-grey, silicified mafic metavolcanic flow; massive to weakly foliated in                                                                            | K574401  | 2.50  | 3.50  | 1.00 | 0.0025 |  |
|         |       | places; <1% scattered phenocrysts (feld, replacing ?px; anhedral to subhedral, 2mm to                                                                            | K574402  | 3.50  | 4.50  | 1.00 | 0.0025 |  |
|         |       | 1.5cm) in fg groundmass; 1-2% calcite veins; <1% QV; ~1% patchy alteration,<br>epidote+crb+qtz with increased abundance of sulphides; tr to <1% pyo; tr cpy, pyr | K574403  | 4.50  | 5.50  | 1.00 | 0.0025 |  |
|         |       |                                                                                                                                                                  | K574404  | 5.50  | 6.50  | 1.00 | 0.0025 |  |
|         |       |                                                                                                                                                                  | K574405  | 6.50  | 7.50  | 1.00 | 0.0025 |  |
|         |       |                                                                                                                                                                  | K574406  | 7.50  | 8.50  | 1.00 | 0.0025 |  |
|         |       |                                                                                                                                                                  | K574407  | 8.50  | 9.50  | 1.00 | 0.0025 |  |
|         |       |                                                                                                                                                                  | K574408  | 9.50  | 10.10 | 0.60 | 0.009  |  |
|         |       |                                                                                                                                                                  | K574409  | 10.10 | 11.10 | 1.00 | 0.005  |  |
|         |       |                                                                                                                                                                  | K574411  | 11.10 | 12.10 | 1.00 | 0.0025 |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
| 2.10 -  | 13.10 | QV Quartz Vein                                                                                                                                                   |          |       |       |      |        |  |
|         |       | white, massive; sharp contact UC 35CA, LC 40CA; tr pyr in vein                                                                                                   | K574412  | 12.10 | 13.10 | 1.00 | 0.0025 |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
| 3.10 -  | 15.00 | MV Mafic Volcanic                                                                                                                                                |          |       |       |      |        |  |
|         |       | dark green, fine-grained, massive (as described above); wk to mod silicified                                                                                     | K574413  | 13.10 | 14.10 | 1.00 | 0.005  |  |
|         |       |                                                                                                                                                                  | K574414  | 14.10 | 15.10 | 1.00 | 0.0025 |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  | I        |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |
|         |       |                                                                                                                                                                  |          |       |       |      |        |  |

| ithology      |                                                                                                                                                                        |          |       |       |      | Au    |  |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|-------|--|
| rom To        |                                                                                                                                                                        | Sample # | From  | То    | Len. | ppm   |  |
| 28.00 - 66.00 | MV/ Modia Valaania                                                                                                                                                     |          |       |       |      |       |  |
| .0.00 - 00.00 | MV Mafic Volcanic                                                                                                                                                      | 1/574400 | 00.00 | 00.00 | 1.00 | 0.000 |  |
|               | dark greenish-grey speckled creamy white (~5% interstitial alkali feld, locally <1% to ~10%) and sparsely spotted cream (<1% coarse-grained phenocrysts, 5mm to 1.5cm, | K574429  | 28.00 | 29.00 | 1.00 | 0.009 |  |
|               | feld replacing ?px, anhedral to subhedral crystals, appear to be px by crystal habit);                                                                                 | K574430  | 29.00 | 30.00 | 1.00 | 0.008 |  |
|               | med-grained matrix with blurry grain boundaries; mod to str chloritization; ?silicified;                                                                               | K574431  | 30.00 | 31.00 | 1.00 | 0.005 |  |
|               | massive to very wk fol; <1% QV; 1% calcite veins; tr pyo, cpy, pyr (spatially associated with veins)                                                                   | K574432  | 31.00 | 32.00 | 1.00 | 0.007 |  |
|               | with vents)                                                                                                                                                            | K574433  | 32.00 | 33.00 | 1.00 | 0.014 |  |
|               | 42.90-56.75 SHEAR ZONE 60-85CA; str crb alt, vns; 1-2% QV (locally up to 15-20%                                                                                        | K574434  | 33.00 | 34.00 | 1.00 | 0.018 |  |
|               | over~1m)                                                                                                                                                               | K574435  | 34.00 | 35.00 | 1.00 | 0.008 |  |
|               | 44.25-50.05 5-10% QV, wk to mod biotite alt; <1% pyr; tr cpy+pyo 50.05-56.75 very str crb alt (wispy veins/lenses)                                                     | K574436  | 35.00 | 36.00 | 1.00 | 0.006 |  |
|               | Solos Solito very su elo al (wispy vertis/tenses)                                                                                                                      | K574437  | 36.00 | 37.50 | 1.50 | 0.005 |  |
|               | 60.2-61.2 wk shear zone; mod fol 75CA                                                                                                                                  | K574438  | 37.50 | 39.00 | 1.50 | 0.006 |  |
|               | EOH 66m                                                                                                                                                                | K574439  | 39.00 | 40.50 | 1.50 | 0.008 |  |
|               |                                                                                                                                                                        | K574440  | 40.50 | 42.00 | 1.50 | 0.012 |  |
|               |                                                                                                                                                                        | K574441  | 42.00 | 42.90 | 0.90 | 0.011 |  |
|               |                                                                                                                                                                        | K574442  | 42.90 | 44.25 | 1.35 | 0.009 |  |
|               |                                                                                                                                                                        | K574443  | 44.25 | 45.25 | 1.00 | 0.026 |  |
|               |                                                                                                                                                                        | K574445  | 45.25 | 46.25 | 1.00 | 0.051 |  |
|               |                                                                                                                                                                        | K574446  | 46.25 | 47.25 | 1.00 | 2.53  |  |
|               |                                                                                                                                                                        | K574447  | 47.25 | 48.00 | 0.75 | 0.077 |  |
|               |                                                                                                                                                                        | K574448  | 48.00 | 49.00 | 1.00 | 0.024 |  |
|               |                                                                                                                                                                        | K574450  | 49.00 | 50.00 | 1.00 | 0.021 |  |
|               |                                                                                                                                                                        | K574451  | 50.00 | 51.00 | 1.00 | 0.023 |  |
|               |                                                                                                                                                                        | K574452  | 51.00 | 52.00 | 1.00 | 0.047 |  |
|               |                                                                                                                                                                        | K574453  | 52.00 | 53.00 | 1.00 | 0.01  |  |
|               |                                                                                                                                                                        | K574454  | 53.00 | 54.00 | 1.00 | 0.031 |  |
|               |                                                                                                                                                                        | K574455  | 54.00 | 55.00 | 1.00 | 0.057 |  |
|               |                                                                                                                                                                        | K574456  | 55.00 | 56.00 | 1.00 | 0.016 |  |
|               |                                                                                                                                                                        | K574457  | 56.00 | 57.00 | 1.00 | 0.01  |  |
|               |                                                                                                                                                                        | K574458  | 57.00 | 58.00 | 1.00 | 0.009 |  |
|               |                                                                                                                                                                        | K574459  | 58.00 | 59.00 | 1.00 | 0.01  |  |
|               |                                                                                                                                                                        | K574460  | 59.00 | 60.00 | 1.00 | 0.012 |  |
|               |                                                                                                                                                                        | K574461  | 60.00 | 61.00 | 1.00 | 0.012 |  |
|               |                                                                                                                                                                        | K574462  | 61.00 | 62.00 | 1.00 | 0.01  |  |
|               |                                                                                                                                                                        | K574462  | 62.00 | 63.00 | 1.00 | 0.007 |  |
|               |                                                                                                                                                                        | K574463  | 63.00 | 64.00 | 1.00 | 0.007 |  |
|               |                                                                                                                                                                        | 10/4404  | 03.00 | 04.00 | 1.00 | 0.011 |  |

| thology |                       | Au       |
|---------|-----------------------|----------|
| rom To  | Sample # From To Len. | ppm      |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
|         |                       |          |
| Ierrill | HOLE ID: ML-11-04     | Page 5 o |

| · · · · · / 6 / · · / ·        | (                      | l'and Card                       |         |                                     |       | 7                                       |        |                                                                             | II.1. T.                                                    |                      |               | Manitou Gold In                            |
|--------------------------------|------------------------|----------------------------------|---------|-------------------------------------|-------|-----------------------------------------|--------|-----------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|---------------|--------------------------------------------|
| ovince/State                   |                        | o-ordinate System                |         |                                     | (     | Grid/Property                           |        |                                                                             | Hole Ty                                                     |                      | Length        | Date Started                               |
| tario                          |                        | TM NAD83 Zone 1                  | _       |                                     |       |                                         | _      |                                                                             |                                                             | d Drillhole          | 96.00         | 17/10/2011                                 |
| strict                         |                        | TM North                         |         | M East                              |       | Local Grid E                            | Loca   | l Grid N                                                                    |                                                             | Survey Met           | hod           | Date Completed                             |
| nora                           |                        | 167184                           | 507     |                                     |       |                                         |        |                                                                             | Hand-he                                                     |                      |               | 17/10/2011                                 |
| oject                          |                        | TM Elevation                     |         | muth Astro.                         | (•) A | Azimuth Grid (•)                        | Dip (  |                                                                             |                                                             | ntractor             |               | Date Logged                                |
| rrill                          | 3                      | 15.00                            | 329.    |                                     |       |                                         | -47.1  | 0                                                                           | Downing                                                     |                      |               | 18/10/2011                                 |
| ea                             |                        | laim No.                         | NTS     | S Sheet                             |       | Supervised By                           |        |                                                                             | Logged                                                      | -                    |               | Verified                                   |
| wer Manitou Lake A             | rea 4                  | 252367                           |         |                                     | Т     | . Keast                                 |        |                                                                             | L. Dolan                                                    | isky                 |               |                                            |
| ne/Prospect                    | A                      | ssessment Rpt. No.               | . Cor   | e Storage                           |       |                                         |        | Plug Depth                                                                  | Make                                                        | es Water             | Capped        | Environmental                              |
|                                |                        |                                  | Bark    | ker Bay Res                         | ort   |                                         |        |                                                                             |                                                             |                      |               | <b>Inspection</b>                          |
| Core Size (1)                  |                        | Casing Pull                      | led 1   | Casing (1) 1                        | .50   | NW Steel Plug                           | naed   | Pulsed                                                                      | Geonhy                                                      | <br>sics Contra      |               | Date Pulsed                                |
|                                |                        | Cusing I and                     | · · · · | Cubing (1)                          |       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 8°"    | 1 miseu                                                                     | Geophys                                                     |                      |               | Duie I uiseu                               |
| (2)                            |                        |                                  |         | <b>U</b> 1 1                        |       |                                         |        |                                                                             |                                                             |                      |               |                                            |
| (2)                            |                        |                                  | R       | (2)                                 |       |                                         |        | Comments                                                                    |                                                             |                      |               |                                            |
| (2)<br>rpose                   |                        |                                  | R       | <b>U</b> 1 1                        |       |                                         |        | Comments                                                                    | core                                                        |                      |               |                                            |
|                                |                        |                                  | R       | (2)                                 |       |                                         |        | 22 boxes NQ<br>Box #5 (14.95                                                | 5-19.2m) v                                                  |                      |               |                                            |
|                                |                        |                                  | R       | (2)                                 |       |                                         |        | 22 boxes NQ<br>Box #5 (14.95<br>core has beel                               | 5-19.2m) v<br>n pieced b                                    | ack togethe          |               | nsport from the drill<br>der/depth of some |
|                                |                        |                                  | R       | (2)                                 |       |                                         |        | 22 boxes NQ<br>Box #5 (14.95                                                | 5-19.2m) v<br>n pieced b                                    | ack togethe          |               |                                            |
| rpose                          | Azimuth (              |                                  |         | (2)<br>Pesults                      | •)    |                                         |        | 22 boxes NQ<br>Box #5 (14.95<br>core has been<br>core in this ru            | 5-19.2m) v<br>n pieced b                                    | ack togethe          | er but the or |                                            |
| rpose<br>Distance Grid         | Azimuth (<br>inal Find | •) Astro. Azimut                 |         | (2)<br>Pesults                      |       | Use Surv<br>Test                        |        | 22 boxes NQ<br>Box #5 (14.95<br>core has been<br>core in this ru            | 5-19.2m) v<br>n pieced b<br>n is uncer                      | ack togethe<br>tain  | er but the or |                                            |
| rpose<br>Distance Grid         |                        | •) Astro. Azimut                 | th (•)  | (2)<br>Pesults                      |       | Use Surv<br>Test                        |        | 22 boxes NQ<br>Box #5 (14.95<br>core has been<br>core in this ru<br>thod Ma | 5-19.2m) v<br>n pieced b<br>n is uncer<br><b>ng. Field</b>  | ack togethe<br>tain  | er but the or |                                            |
| rpose<br>Distance Grid<br>Orig |                        | •) Astro. Azimut<br>l Original F | th (•)  | (2)<br>Sesults<br>Dip (<br>Original |       | Use Surv<br>Test                        | rey Me | 22 boxes NQ<br>Box #5 (14.95<br>core has been<br>core in this ru<br>thod Ma | 5-19.2m) v<br>n pieced b<br>n is uncer<br>ng. Field<br>(nT) | ack together<br>tain | er but the or |                                            |

| Lithology     |                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                    |                                                    |                                              | Au                                              |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|-------------------------------------------------|
| From To       |                                                                                                                                                                                                                                                                                                                                               | Sample #                                                       | From                                               | То                                                 | Len.                                         | ррт                                             |
| 0.00 - 2.60   | OVB Overburden<br>casing/stick-up/overburden                                                                                                                                                                                                                                                                                                  |                                                                |                                                    |                                                    |                                              |                                                 |
| 2.60 - 15.50  | <b>MV Mafic Volcanic</b><br>dark greenish-grey mafic metavolcanic ?flow; med to coarse-grained amph-chl gneiss;<br><1% coarse-grained phenocrysts (5mm to 1.5cm, anhedral to subhedral, feld+?crb,<br>probably pseudomorphed px); massive to very weak fol; tr QV; tr cal vns; tr sulphides<br>(pyo, cpy) in veins; gradational lower contact | K574465<br>K574466<br>K574467<br>K574468                       | 3.00<br>4.00<br>5.00<br>14.50                      | 4.00<br>5.00<br>6.00<br>15.50                      | 1.00<br>1.00<br>1.00<br>1.00                 | 0.007<br>0.019<br>0.007<br>0.009                |
| 15.50 - 24.50 | <b>MVSH Mafic Volcanic - Weakly to Moderately Sheared</b><br>SHEAR ZONE in MV 60-70CA; wk to mod biotite alt<br>17.5-20.5 v wk fol, nearly massive<br>20.5-23.3 mod to strongly silicified; fg; mod biotite alt; 1-2% pyr                                                                                                                     | K574469<br>K574470<br>K574471                                  | 15.50<br>16.50<br>17.50                            | 16.50<br>17.50<br>18.50                            | 1.00<br>1.00<br>1.00                         | 0.012<br>0.028<br>0.007                         |
|               | 23.3-24.5 ~50% QV; mod to str biotite alt; ~1% pyr                                                                                                                                                                                                                                                                                            | K574472<br>K574473<br>K574474<br>K574475<br>K574476<br>K574478 | 18.50<br>19.50<br>20.50<br>21.50<br>22.50<br>23.50 | 19.50<br>20.50<br>21.50<br>22.50<br>23.50<br>24.50 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 0.008<br>0.011<br>0.46<br>0.576<br>1.28<br>1.04 |
|               |                                                                                                                                                                                                                                                                                                                                               |                                                                |                                                    |                                                    |                                              |                                                 |

| Litholog | сy    |                                                                                                                              |          |       |       |      | Au     |      |
|----------|-------|------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|--------|------|
| From     | То    |                                                                                                                              | Sample # | From  | То    | Len. | ррт    | <br> |
| 24.50 -  | 45.60 | MV Mafic Volcanic                                                                                                            |          |       |       |      |        |      |
|          |       | dark green, fine-grained, massive mafic metavolcanic flow; 20-25% dm-scale shear                                             | K574479  | 24.50 | 25.50 | 1.00 | 0.0025 |      |
|          |       | zones with mod fol 55-70CA, mod biotite and mod/str carbonate alt; <1% pyr, <1% pyo,                                         | K574480  | 25.50 | 26.50 | 1.00 | 0.028  |      |
|          |       | tr cpy (greater abundance of sulphides in massive areas than in shear zones, spatially associated with crb vns/alt)          | K574481  | 26.50 | 27.50 | 1.00 | 0.022  |      |
|          |       | associated with the vite/ait/                                                                                                | K574482  | 27.50 | 28.00 | 0.50 | 0.017  |      |
|          |       | 24.5-25.1 INTD, silicified - purplish-grey w/ green spots (chlorite clots, replacing                                         | K574483  | 28.00 | 29.00 | 1.00 | 0.056  |      |
|          |       | amph??); med-grained but blurry grain boundaries; sharp contacts UC 70CA, LC 50CA 27.5-27.8 INTD, as above; diffuse contacts | K574484  | 29.00 | 30.00 | 1.00 | 0.005  |      |
|          |       | 34.6-34.75 INTD, as above; core broken at UC, sharp LC 60CA                                                                  | K574486  | 30.00 | 31.00 | 1.00 | 0.052  |      |
|          |       | 37.8-39.1 INTD, as above; <1% pyr, <1% pyo, dissem; sharp UC 70CA, irregular LC                                              | K574487  | 31.00 | 32.00 | 1.00 | 0.0025 |      |
|          |       | 60CA<br>39.6-41.2 INTD, as above; <1% pyr, <1% pyo, dissem; sharp UC 60CA, LC 70CA                                           | K574488  | 32.00 | 33.00 | 1.00 | 0.009  |      |
|          |       | 33.0-41.2 1141D, as above, <1 /0 pyr, <1 /0 pyo, dissent, shalp 00 000A, 20 700A                                             | K574489  | 33.00 | 34.00 | 1.00 | 0.01   |      |
|          |       |                                                                                                                              | K574490  | 34.00 | 35.00 | 1.00 | 0.005  |      |
|          |       |                                                                                                                              | K574491  | 35.00 | 36.00 | 1.00 | 0.029  |      |
|          |       |                                                                                                                              | K574492  | 36.00 | 37.00 | 1.00 | 0.048  |      |
|          |       |                                                                                                                              | K574493  | 37.00 | 37.80 | 0.80 | 0.088  |      |
|          |       |                                                                                                                              | K574494  | 37.80 | 38.50 | 0.70 | 0.0025 |      |
|          |       |                                                                                                                              | K574495  | 38.50 | 39.10 | 0.60 | 0.015  |      |
|          |       |                                                                                                                              | K574496  | 39.10 | 39.60 | 0.50 | 0.044  |      |
|          |       |                                                                                                                              | K574497  | 39.60 | 40.60 | 1.00 | 0.007  |      |
|          |       |                                                                                                                              | K574498  | 40.60 | 41.20 | 0.60 | 0.012  |      |
|          |       |                                                                                                                              | K574500  | 41.20 | 42.20 | 1.00 | 0.605  |      |
|          |       |                                                                                                                              | K574501  | 42.20 | 43.10 | 0.90 | 0.342  |      |
|          |       |                                                                                                                              | K574502  | 43.10 | 44.10 | 1.00 | 0.06   |      |
|          |       |                                                                                                                              | K574503  | 44.10 | 45.10 | 1.00 | 0.043  |      |
|          |       |                                                                                                                              | K574504  | 45.10 | 45.60 | 0.50 | 0.016  |      |
|          |       |                                                                                                                              |          |       |       |      |        |      |
|          |       |                                                                                                                              |          |       |       |      |        |      |
|          |       |                                                                                                                              | 1        |       |       |      |        |      |
|          |       |                                                                                                                              |          |       |       |      |        |      |

| itholog        | зy    |                                                                                                                       |          |       |       |      | Au     |  |
|----------------|-------|-----------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|--------|--|
| rom            | То    |                                                                                                                       | Sample # | From  | То    | Len. | ррт    |  |
| 45.60 -        | 64.00 | MVCII Metia Valennia, Weakhuta Madaratahu Shaarad                                                                     |          |       |       |      |        |  |
| - 00.61        | 64.90 | MVSH Mafic Volcanic - Weakly to Moderately Sheared                                                                    | 1/574500 | 45.00 | 40.00 | 4 00 | 0.400  |  |
|                |       | green, med-grained amphibolite with mod to locally strong fol 60-70CA; 3-5% QV; locally mod to str biotite alteration | K574506  | 45.60 | 46.60 | 1.00 | 0.499  |  |
|                |       |                                                                                                                       | K574507  | 46.60 | 47.60 | 1.00 | 0.007  |  |
|                |       | 51.0-60.0 MINERALIZED SHEAR ZONE - mod to str BT; 10-15% QV; 1-2% pyr; tr                                             | K574508  | 47.60 | 49.00 | 1.40 | 0.009  |  |
|                |       | pyo+cpy;<br>54.7-54.9 INTD; med-grained; qtz+feld w/ fg interstitial chlorite; massive; sharp UC                      | K574509  | 49.00 | 50.00 | 1.00 | 0.005  |  |
|                |       | 80CA, LC 60CA                                                                                                         | K574510  | 50.00 | 51.00 | 1.00 | 0.021  |  |
|                |       | 55.8-56.75 INTD; as above but w/ reddish-brown tint; diffuse contacts                                                 | K574511  | 51.00 | 52.00 | 1.00 | 0.039  |  |
|                |       |                                                                                                                       | K574512  | 52.00 | 53.00 | 1.00 | 0.121  |  |
|                |       |                                                                                                                       | K574513  | 53.00 | 54.00 | 1.00 | 1.07   |  |
|                |       |                                                                                                                       | K574514  | 54.00 | 54.70 | 0.70 | 0.19   |  |
|                |       |                                                                                                                       | K574515  | 54.70 | 55.80 | 1.10 | 0.013  |  |
|                |       |                                                                                                                       | K574516  | 55.80 | 56.50 | 0.70 | 0.011  |  |
|                |       |                                                                                                                       | K574517  | 56.50 | 57.50 | 1.00 | 0.0025 |  |
|                |       |                                                                                                                       | K574518  | 57.50 | 58.50 | 1.00 | 0.03   |  |
|                |       |                                                                                                                       | K574519  | 58.50 | 59.50 | 1.00 | 0.0025 |  |
|                |       |                                                                                                                       | K574521  | 59.50 | 60.00 | 0.50 | 0.0025 |  |
|                |       |                                                                                                                       | K574522  | 60.00 | 61.00 | 1.00 | 0.0025 |  |
|                |       |                                                                                                                       | K574523  | 61.00 | 62.00 | 1.00 | 0.009  |  |
|                |       |                                                                                                                       | K574524  | 62.00 | 63.00 | 1.00 | 0.012  |  |
|                |       |                                                                                                                       | K574525  | 63.00 | 64.00 | 1.00 | 0.006  |  |
|                |       |                                                                                                                       | K574526  | 64.00 | 64.90 | 0.90 | 0.006  |  |
|                |       |                                                                                                                       |          |       |       |      |        |  |
| <b>64.90</b> - | 66.10 | QV Quartz Vein                                                                                                        |          |       |       |      |        |  |
|                |       | white, massive; tr pyr; sharp but very irregular contacts (thus ~5% wall rock within the interval)                    | K574527  | 64.90 | 66.10 | 1.20 | 0.0025 |  |
|                |       |                                                                                                                       |          |       |       |      |        |  |
|                |       |                                                                                                                       |          |       |       |      |        |  |
|                |       |                                                                                                                       |          |       |       |      |        |  |
|                |       |                                                                                                                       |          |       |       |      |        |  |
|                |       |                                                                                                                       |          |       |       |      |        |  |
|                |       |                                                                                                                       |          |       |       |      |        |  |
|                |       |                                                                                                                       |          |       |       |      |        |  |
|                |       |                                                                                                                       |          |       |       |      |        |  |

| ovince/State  |                       | Co-01    | rdinate Syste           | m              |                  | Grid/Prope      | ertv    |        |             | Hole Ty           | ne               | Length | Date Started      |
|---------------|-----------------------|----------|-------------------------|----------------|------------------|-----------------|---------|--------|-------------|-------------------|------------------|--------|-------------------|
| ntario        |                       |          | NAD83 Zone              |                |                  | or the Prope    |         |        |             |                   | d Drillhole      | 153.00 | 18/10/2011        |
| istrict       |                       |          | North                   | U              | TM East          | Local Grid      | E       | Loca   | l Grid N    | Collar S          | urvey Meth       | hod    | Date Completed    |
| enora         |                       | 54671    |                         |                | 7687             |                 |         |        |             | Hand-he           | -                |        | 19/10/2011        |
| oject         |                       | UTM      | Elevation               | Az             | imuth Astro. (•) | Azimuth G       | rid (•) | Dip (  | •)          | Drill Co          | ntractor         |        | Date Logged       |
| ərrill        |                       | 345.0    | 0                       | 33             | 5.60             |                 | . ,     | -70.1  |             | Downing           | g Drilling       |        | 20/10/2011        |
| rea           |                       | Claim    | ı No.                   | N              | TS Sheet         | Supervised      | By      |        |             | Logged            | By               |        | Verified          |
| wer Manitou L | ake Area              | 42523    | 367                     |                |                  | T. Keast        | -       |        |             | L. Dolar          | sky              |        |                   |
| one/Prospect  |                       | Asses    | sment <b>Rpt.</b> I     | No. Co         | ore Storage      |                 |         |        | Plug Depth  | Mak               | es Water         | Capped | Environmenta      |
|               |                       |          |                         | Ba             | arker Bay Resort |                 |         |        | _           |                   |                  |        | <i>Inspection</i> |
| Core Size (1) |                       |          | Casing P                | ulled          | Casing (1) 1.50  | NW Stee         |         | oed    | Pulsed      | Geonhy            | ∟<br>sics Contra | ctor   | Date Pulsed       |
| (2)           |                       |          |                         | 1              | (2)              |                 |         |        |             | Geophy            | ies connu        |        |                   |
| (-)<br>irpose |                       | <u> </u> |                         |                | Results          |                 |         | _      | Comments    |                   |                  |        |                   |
| 1             |                       |          |                         |                |                  |                 |         |        | 36 boxes NQ | core              |                  |        |                   |
| -             | ~ • • • •             |          |                         |                |                  |                 | ~       |        |             |                   | ~                |        |                   |
| Distance      | Grid Azin<br>Original |          | Astro. Azin<br>Original | nuth (<br>Fina |                  | Use<br>nal Test | Surv    | ey Met | thod M      | ag. Field<br>(nT) | Comment          | S      |                   |
| 15.00         | Originai              | 1 inai   | 335.6                   | 1 ma           | -70.1            |                 |         | Flexit |             | 56880             | Shawn            |        |                   |
| 51.00         |                       |          | 331.1                   |                | -70.3            | $\checkmark$    |         | Flexit |             | 58370             | Michael          |        |                   |
| 102.00        |                       |          | 337.8                   |                | -69.2            | $\checkmark$    |         | Flexit |             | 57850             | Michael          |        |                   |
| 153.00        |                       |          | 335.3                   |                | -68.7            | $\checkmark$    |         | Flexit |             | 57880             | Shawn            |        |                   |

| Lithology     |                                                                                                                                                                                                                                                                                                                                             |                                                                                      |                                                                                        |                                                                                                 |                                                              | Au                                                                                    |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| From To       |                                                                                                                                                                                                                                                                                                                                             | Sample #                                                                             | From                                                                                   | То                                                                                              | Len.                                                         | ррт                                                                                   |  |
| 0.00 - 1.90   | OVB Overburden<br>casing/stick-up/overburden                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                                        |                                                                                                 |                                                              |                                                                                       |  |
| 1.90 - 14.50  | <b>MV Mafic Volcanic</b><br>dark greyish-green mafic metavolcanic ?flow; med-grained amphibolite/amph-chl<br>gneiss; <1% coarse-grained phenocrysts (4mm to 1.5cm, anhedral to subhedral,<br>feld+?crb, probably pseudomorphed px); massive to weak fol; <1% QV; tr cal vns; tr<br>sulphides (pyo, cpy) in veins; gradational lower contact | K574553                                                                              | 8.00<br>9.00<br>9.50<br>11.00<br>12.50<br>13.50                                        | 9.00<br>9.50<br>11.00<br>12.50<br>13.50<br>14.50                                                | 1.00<br>0.50<br>1.50<br>1.00<br>1.00                         | 0.007<br>0.006<br>0.0025<br>0.005<br>0.0025<br>0.007                                  |  |
| 14.50 - 25.20 | MVSH Mafic Volcanic - Weakly to Moderately Sheared<br>as above (to 21.3m) but moderately foliated at 60CA<br>21.3-25.20 SHEAR ZONE str fol 55-70CA; ?altered INTD/FD in places?? 3% QV; 2-3%<br>pyr<br>21.3-24.95 bt-ser-crb schist; abrupt contacts - different protolith?<br>24.95-25.2 mod fol+mineralized MV flow (as described below)  | K574556<br>K574557<br>K574558<br>K574559<br>K574560<br>K574561<br>K574563<br>K574564 | 14.50<br>15.50<br>16.50<br>17.50<br>18.50<br>20.50<br>21.30<br>22.30<br>23.30<br>24.30 | 15.50<br>16.50<br>17.50<br>18.50<br>19.50<br>20.50<br>21.30<br>22.30<br>23.30<br>24.30<br>25.20 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>0.80<br>1.00<br>1.00 | 0.007<br>0.01<br>0.008<br>0.006<br>0.005<br>0.134<br>0.742<br>0.632<br>1.005<br>0.345 |  |

| Litholog | <i>y</i> |                                                                                                                                                                                                                                                                                                                                                                              |                               |                         |                         |                      | Au                      |  |
|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------|-------------------------|----------------------|-------------------------|--|
| From     | То       |                                                                                                                                                                                                                                                                                                                                                                              | Sample #                      | From                    | То                      | Len.                 | ррт                     |  |
| 05.00    | 40.00    |                                                                                                                                                                                                                                                                                                                                                                              |                               |                         |                         |                      |                         |  |
| 25.20 -  | 40.00    | MV Mafic Volcanic                                                                                                                                                                                                                                                                                                                                                            |                               |                         |                         |                      |                         |  |
|          |          | dark green, fine-grained, massive metavolcanic flow; locally mod fol ~70CA (shear zones, <10% of unit); <1% QV; <1% pyr, tr to <1% pyo, tr cpy, dissem small slivers +                                                                                                                                                                                                       | K574567                       | 25.20                   | 26.20                   | 1.00                 | 0.008                   |  |
|          |          | fine stringers; gradational lower contact                                                                                                                                                                                                                                                                                                                                    | K574568                       | 26.20                   | 27.20                   | 1.00                 | 0.023                   |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574569                       | 27.20                   | 28.20                   | 1.00                 | 0.012                   |  |
|          |          | 37.0-37.5 wk to mod fol                                                                                                                                                                                                                                                                                                                                                      | K574570                       | 28.20                   | 29.20                   | 1.00                 | 0.025                   |  |
|          |          | 37.5-38.5 SHEAR 60-65CA; str crb; 37.75-37.85m INTD/?FD, contacts 60CA 38.5-40.0 dark green faintly speckled grey (feld), fine-grained, massive; silicified; ~1%                                                                                                                                                                                                             | K574571                       | 29.20                   | 30.20                   | 1.00                 | 0.006                   |  |
|          |          | pyr dissem                                                                                                                                                                                                                                                                                                                                                                   | K574573                       | 30.20                   | 31.20                   | 1.00                 | 0.0025                  |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574574                       | 31.20                   | 32.20                   | 1.00                 | 0.005                   |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574575                       | 32.20                   | 33.20                   | 1.00                 | 0.005                   |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574576                       | 33.20                   | 34.20                   | 1.00                 | 0.035                   |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574577                       | 34.20                   | 35.20                   | 1.00                 | 0.224                   |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574578                       | 35.20                   | 36.20                   | 1.00                 | 0.029                   |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574579                       | 36.20                   | 37.00                   | 0.80                 | 0.023                   |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574580                       | 37.00                   | 38.00                   | 1.00                 | 0.038                   |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574581                       | 38.00                   | 39.00                   | 1.00                 | 0.02                    |  |
|          |          |                                                                                                                                                                                                                                                                                                                                                                              | K574582                       | 39.00                   | 40.00                   | 1.00                 | 0.0025                  |  |
| 40.00 -  | 43.00    | INTD Intermediate Dike                                                                                                                                                                                                                                                                                                                                                       |                               |                         |                         |                      |                         |  |
|          |          | intermediate/?felsic dyke; grey spotted cream (feld, 5-10% med-grained subhedral laths                                                                                                                                                                                                                                                                                       | K574583                       | 40.00                   | 41.00                   | 1.00                 | 0.0025                  |  |
|          |          | in random orientation, overprinting fol in dyke - late/recrystallized feld?); mod to str fol                                                                                                                                                                                                                                                                                 | K574584                       | 41.00                   | 42.00                   | 1.00                 | 0.0025                  |  |
|          |          | 45-55CA; composition is approximately 25% biotite+chlorite (fg to mg, slivers and interstitial grains; chl after amph?), 65-70% qtz+feld (very blurry grain boundaries), <1% magnetite; tr to <1% pyr, dissem; sharp contacts 60CA                                                                                                                                           | K574585                       | 42.00                   | 43.00                   | 1.00                 | 0.0025                  |  |
| 43.00 -  | 43.70    | <b>MVSH Mafic Volcanic - Weakly to Moderately Sheared</b><br>foliation 50CA; mod to str crb alt; tr pyr                                                                                                                                                                                                                                                                      | K574587                       | 43.00                   | 43.70                   | 0.70                 | 0.0025                  |  |
| 43.70 -  | 46.20    | <b>INTD Intermediate Dike</b><br>intermediate/?felsic dyke; grey, weakly spotted white; med-grained, inequigranular;<br>?25% feld (plag + ?Kfs), 25-30% biotite (+secondary chlorite), ?45-50% qtz, <1% pyr;<br>blurry grain boundaries (secondary silicification?); composition based on abundances in<br>localized less deformed sections; sharp UC 50CA, diffuse LC ~65CA | K574588<br>K574589<br>K574590 | 43.70<br>44.70<br>45.20 | 44.70<br>45.20<br>46.20 | 1.00<br>0.50<br>1.00 | 0.01<br>0.022<br>0.0025 |  |
|          |          | iocalized less deformed sections, shalp of sock, diffuse to ~030A                                                                                                                                                                                                                                                                                                            |                               |                         |                         |                      |                         |  |

Merrill

| From To Samp                                                                              | ple # Fr | rom To    | Len. | ррт   |
|-------------------------------------------------------------------------------------------|----------|-----------|------|-------|
|                                                                                           |          |           |      |       |
|                                                                                           |          |           |      |       |
| 46.20 - 50.00 MV Mafic Volcanic                                                           |          |           |      |       |
| dark green, fine-grained, massive metavolcanic flow (part of same flow as described K5745 | 591 46.  | .20 47.20 | 1.00 | 0.017 |
| above at 25.2m?); mod fol 60CA K5745                                                      |          |           | 1.00 | 0.155 |
| K5745                                                                                     | 593 48.  | .20 49.20 | 1.00 | 0.042 |
| K5745                                                                                     | 594 49.  | .20 50.20 | 1.00 | 0.173 |

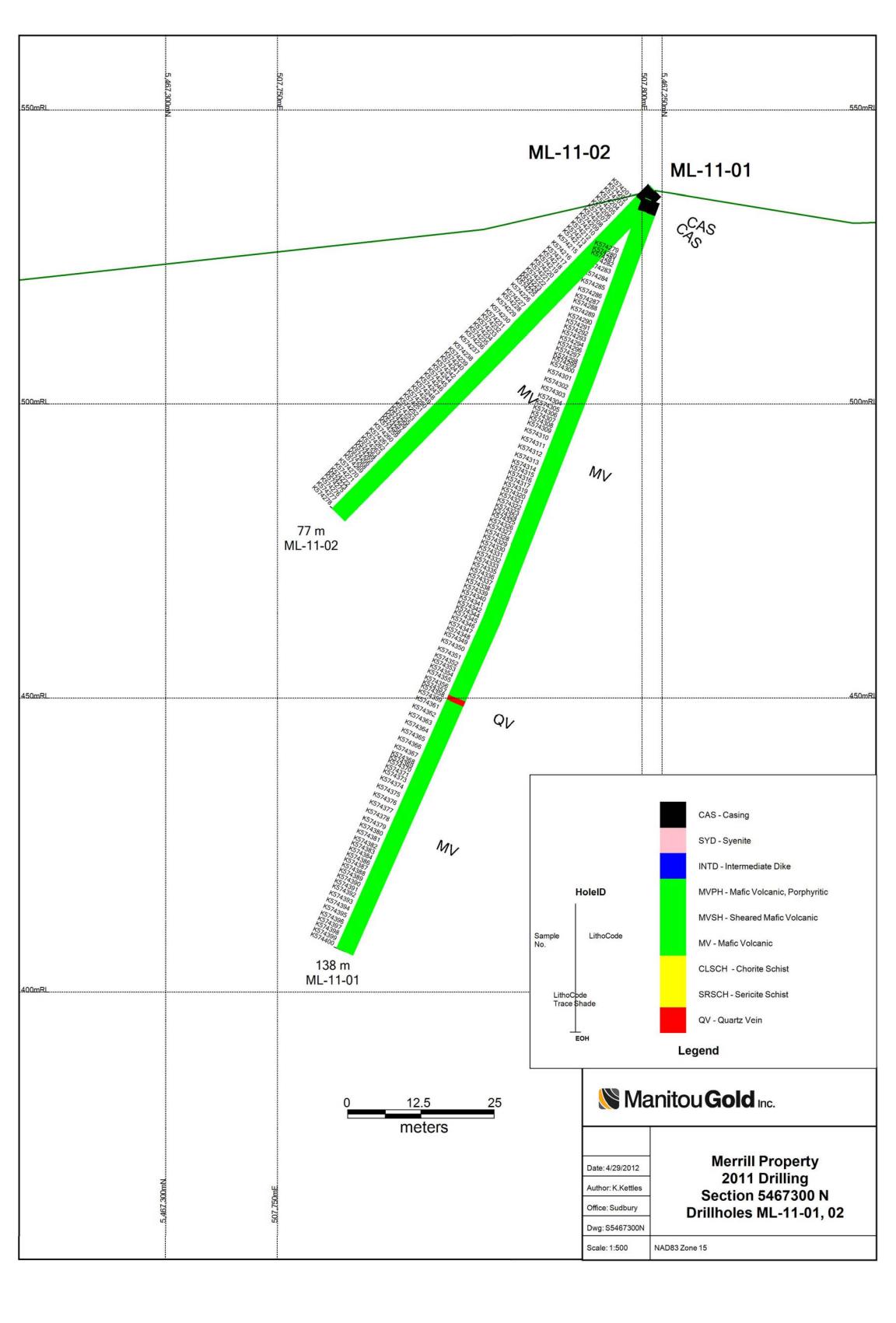
| Litholog | gy       |                                                                                                                                                                          |          |                |       |      | Au     |           |
|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------|------|--------|-----------|
| From     | То       |                                                                                                                                                                          | Sample # | From           | То    | Len. | ррт    |           |
|          |          |                                                                                                                                                                          |          |                |       |      | **     |           |
| 50.00 -  | - 146.50 | , ,                                                                                                                                                                      |          |                |       |      |        |           |
|          |          | green, med-grained amphibolite/amph-feld gneiss with <1% phenocrysts (as described at 1.9m); locally mod to str fol 60CA; mod to str CRB alt                             | K574595  | 50.20          | 51.20 | 1.00 | 0.024  |           |
|          |          | at 1.911), locally floor to sti for 60CA, floor to sti CRB alt                                                                                                           | K574596  | 51.20          | 52.20 | 1.00 | 0.011  |           |
|          |          | 57.2-66.5 SHEAR 50-60CA; mod to str CRB; 7-10% QV; str biotite alt; <1 to 1% pyr                                                                                         | K574597  | 52.20          | 53.20 | 1.00 | 0.014  |           |
|          |          | (with ~2% pyr at 60.2-64.45m)                                                                                                                                            | K574598  | 53.20          | 54.20 | 1.00 | 0.009  |           |
|          |          | 60.7-62.6 75% INTD/?FD - few cm to dm-scale thicknesses; locally granular, fg to mg; sharp contacts commonly discernable, in places cnts are indistinct                  | K574599  | 54.20          | 55.20 | 1.00 | 0.007  |           |
|          |          | 66.5-73.5 mod to str fol 45-50CA                                                                                                                                         | K574600  | 55.20          | 56.20 | 1.00 | 0.0025 |           |
|          |          | 69.0-72.5 SHEAR 45-50CA; mod to locally str BT alt; 7-10% QV; <1% pyr; mod to str                                                                                        | K574601  | 56.20          | 57.20 | 1.00 | 0.009  |           |
|          |          | CRB alt, dissem                                                                                                                                                          | K574602  | 57.20          | 58.20 | 1.00 | 0.005  |           |
|          |          | 73.5-80.6 wk to mod fol<br>80.6-82.5 SHEAR 65-70CA                                                                                                                       | K574603  | 58.20          | 59.20 | 1.00 | 0.0025 |           |
|          |          | 82.5-86.4 very wk fol                                                                                                                                                    | K574604  | 59.20          | 60.20 | 1.00 | 0.062  |           |
|          |          | 86.4-91.9 SHEAR 50-60CA; mod BT; str CRB; 10% QV; tr pyr, pyo, cpy                                                                                                       | K574605  | 60.20          | 61.20 | 1.00 | 0.22   |           |
|          |          | 90.1-90.65 fol is perpendicular to rest of unit (~130CA at 90.1m) bounded by QV along ?fault at 90.1m (rotated block?); fol angle decreases to 90CA at 90.4m and 80CA at | K574606  | 61.20          | 62.00 | 0.80 | 0.023  |           |
|          |          | 90.65m                                                                                                                                                                   | K574607  | 62.00          | 63.00 | 1.00 | 0.008  |           |
|          |          | 91.9-96.55 mod to locally str fol 50-60CA; locally str BT alt; ~50% qtz-crb vns at 94.90-                                                                                | K574608  | 63.00          | 64.00 | 1.00 | 0.026  |           |
|          |          | 96.55m                                                                                                                                                                   | K574609  | 64.00          | 65.00 | 1.00 | 0.013  |           |
|          |          | 96.55-140.3 wk to mod fol 55-60CA<br>121.6-123.6 str BT; 20% QV                                                                                                          | K574611  | 65.00          | 66.00 | 1.00 | 0.028  |           |
|          |          | 140.3-144.0 SHEAR ZONE w/ INTD/?FD - str fol 20-40CA, locally erratic/disrupted, in                                                                                      | K574612  | 66.00          | 67.00 | 1.00 | 0.005  |           |
|          |          | places swirly patterns due to wavy and kink folds; str crb alt                                                                                                           | K574614  | 67.00          | 68.00 | 1.00 | 0.0025 |           |
|          |          | 140.75-141.4 INTD/?FD brownish-grey, fg, qtz+feld+bt; sharp very irregular contacts                                                                                      | K574615  | 68.00          | 69.00 | 1.00 | 0.0025 |           |
|          |          | 144.0-146.5 mod fol ~60CA                                                                                                                                                | K574616  | 69.00          | 70.00 | 1.00 | 0.0025 |           |
|          |          |                                                                                                                                                                          | K574617  | 70.00          | 71.00 | 1.00 | 0.007  |           |
|          |          |                                                                                                                                                                          | K574618  | 71.00          | 72.00 | 1.00 | 0.006  |           |
|          |          |                                                                                                                                                                          | K574619  | 72.00          | 73.00 | 1.00 | 0.005  |           |
|          |          |                                                                                                                                                                          | K574620  | 73.00          | 74.00 | 1.00 | 0.0025 |           |
|          |          |                                                                                                                                                                          | K574621  | 74.00          | 75.50 | 1.50 | 0.005  |           |
|          |          |                                                                                                                                                                          | K574622  | 75.50          | 77.00 | 1.50 | 0.008  |           |
|          |          |                                                                                                                                                                          | K574623  | 77.00          | 78.50 | 1.50 | 0.01   |           |
|          |          |                                                                                                                                                                          | K574624  | 78.50          | 80.00 | 1.50 | 0.01   |           |
|          |          |                                                                                                                                                                          | K574625  | 80.00          | 81.00 | 1.00 | 0.011  |           |
|          |          |                                                                                                                                                                          | K574626  | 81.00          | 82.00 | 1.00 | 0.011  |           |
|          |          |                                                                                                                                                                          | K574627  | 82.00          | 83.00 | 1.00 | 0.012  |           |
|          |          |                                                                                                                                                                          | K574628  | 83.00          | 84.50 | 1.50 | 0.01   |           |
|          |          |                                                                                                                                                                          | K574628  | 83.00<br>84.50 | 86.00 | 1.50 | 0.01   |           |
|          |          |                                                                                                                                                                          | K574629  | 86.00          | 87.00 | 1.00 | 0.023  |           |
|          |          |                                                                                                                                                                          | K574630  | 87.00          | 88.00 | 1.00 | 0.023  |           |
|          |          |                                                                                                                                                                          | K574631  | 87.00          | 89.00 | 1.00 | 0.026  |           |
|          |          |                                                                                                                                                                          | NJ/4032  | 00.00          | 09.00 | 1.00 | 0.046  | Page 5 of |

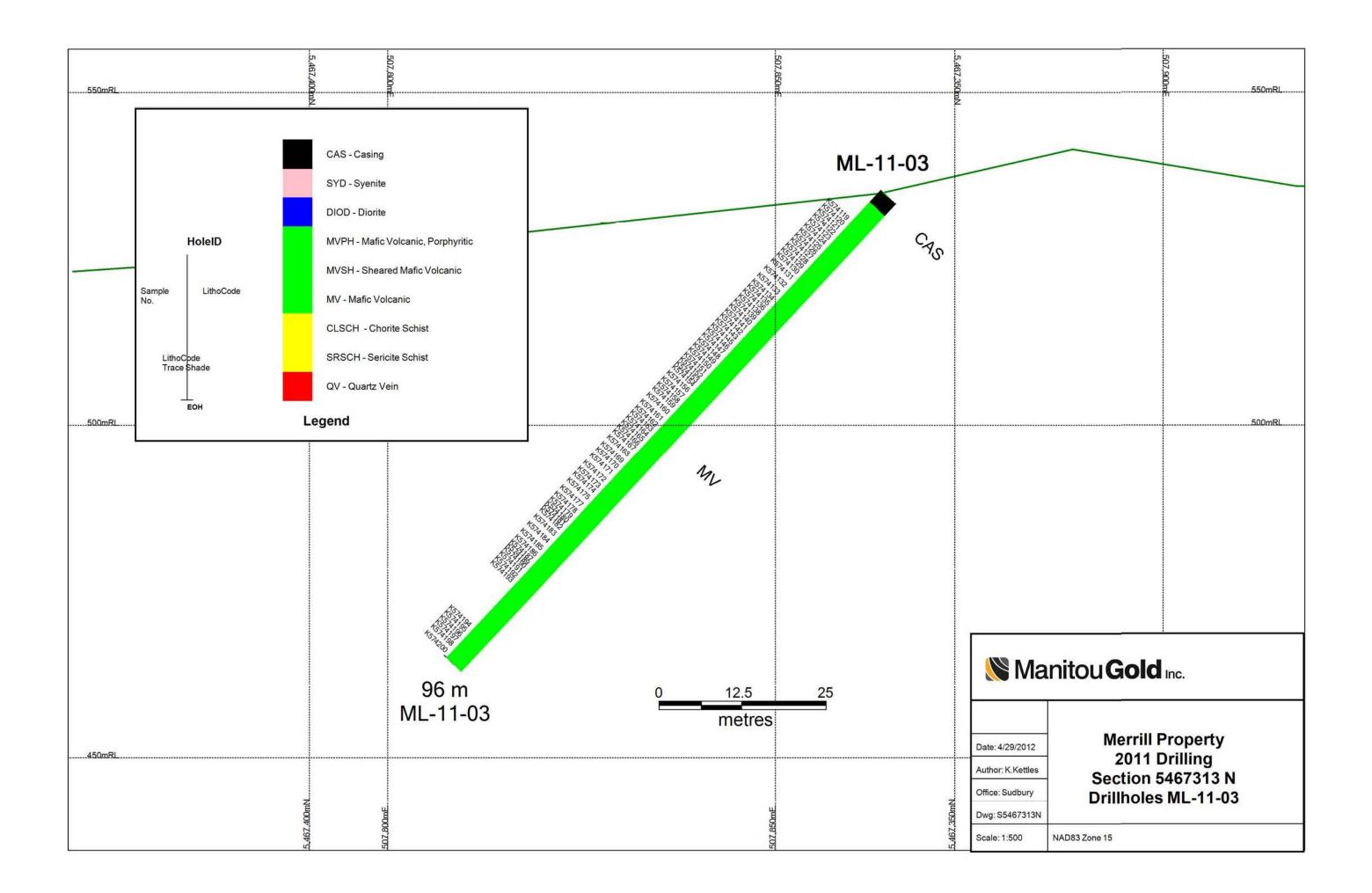
| Lithology |          |        |        |      | Au       |
|-----------|----------|--------|--------|------|----------|
| From To   | Sample # | From   | То     | Len. | ppm      |
|           | K574633  | 89.00  | 90.00  | 1.00 | 0.041    |
|           | K574635  | 90.00  | 91.00  | 1.00 | 0.023    |
|           | K574636  | 91.00  | 92.00  | 1.00 | 0.011    |
|           | K574637  | 92.00  | 93.00  | 1.00 | 0.017    |
|           | K574638  | 93.00  | 94.00  | 1.00 | 0.007    |
|           | K574639  | 94.00  | 95.00  | 1.00 | 0.009    |
|           | K574640  | 95.00  | 96.00  | 1.00 | 0.007    |
|           | K574641  | 96.00  | 97.00  | 1.00 | 0.006    |
|           | K574642  | 97.00  | 98.00  | 1.00 | 0.01     |
|           | K574643  | 98.00  | 99.00  | 1.00 | 0.011    |
|           | K574644  | 99.00  | 100.50 | 1.50 | 0.011    |
|           |          | 100.50 |        | 1.50 | 0.008    |
|           | K574646  | 102.00 | 103.25 | 1.25 | 0.007    |
|           | K574647  | 103.25 | 104.25 | 1.00 | 0.008    |
|           | K574648  | 104.25 | 105.00 | 0.75 | 0.005    |
|           | K574649  | 105.00 | 106.00 | 1.00 | 0.011    |
|           | K574650  | 106.00 | 107.00 | 1.00 | 0.011    |
|           | K574651  | 107.00 | 108.00 | 1.00 | 0.011    |
|           | K574652  | 116.00 | 117.00 | 1.00 | 0.01     |
|           | K574653  | 117.00 | 118.00 | 1.00 | 0.006    |
|           | K574654  | 118.00 | 119.00 | 1.00 | 0.011    |
|           | K574655  | 119.00 | 120.00 | 1.00 | 0.006    |
|           | K574656  | 120.00 | 121.00 | 1.00 | 0.015    |
|           | K574657  | 121.00 | 122.00 | 1.00 | 0.012    |
|           | K574658  | 122.00 | 123.00 | 1.00 | 0.01     |
|           | K574660  | 123.00 | 124.00 | 1.00 | 0.01     |
|           | K574661  | 124.00 | 125.00 | 1.00 | 0.014    |
|           | K574662  | 125.00 | 126.00 | 1.00 | 0.009    |
|           | K574663  | 126.00 | 127.00 | 1.00 | 0.009    |
|           | K574664  | 127.00 | 128.00 | 1.00 | 0.01     |
|           | K574665  | 128.00 | 129.50 | 1.50 | 0.012    |
|           |          | 129.50 |        | 1.50 | 0.012    |
|           |          | 131.00 |        | 1.50 | 0.014    |
|           |          | 132.50 |        | 1.50 | 0.012    |
|           |          | 134.00 |        | 1.00 | 0.014    |
|           |          | 135.00 |        | 1.00 | 0.008    |
|           | K574671  | 136.00 | 137.00 | 1.00 | 0.007    |
|           |          |        |        |      | <b>D</b> |

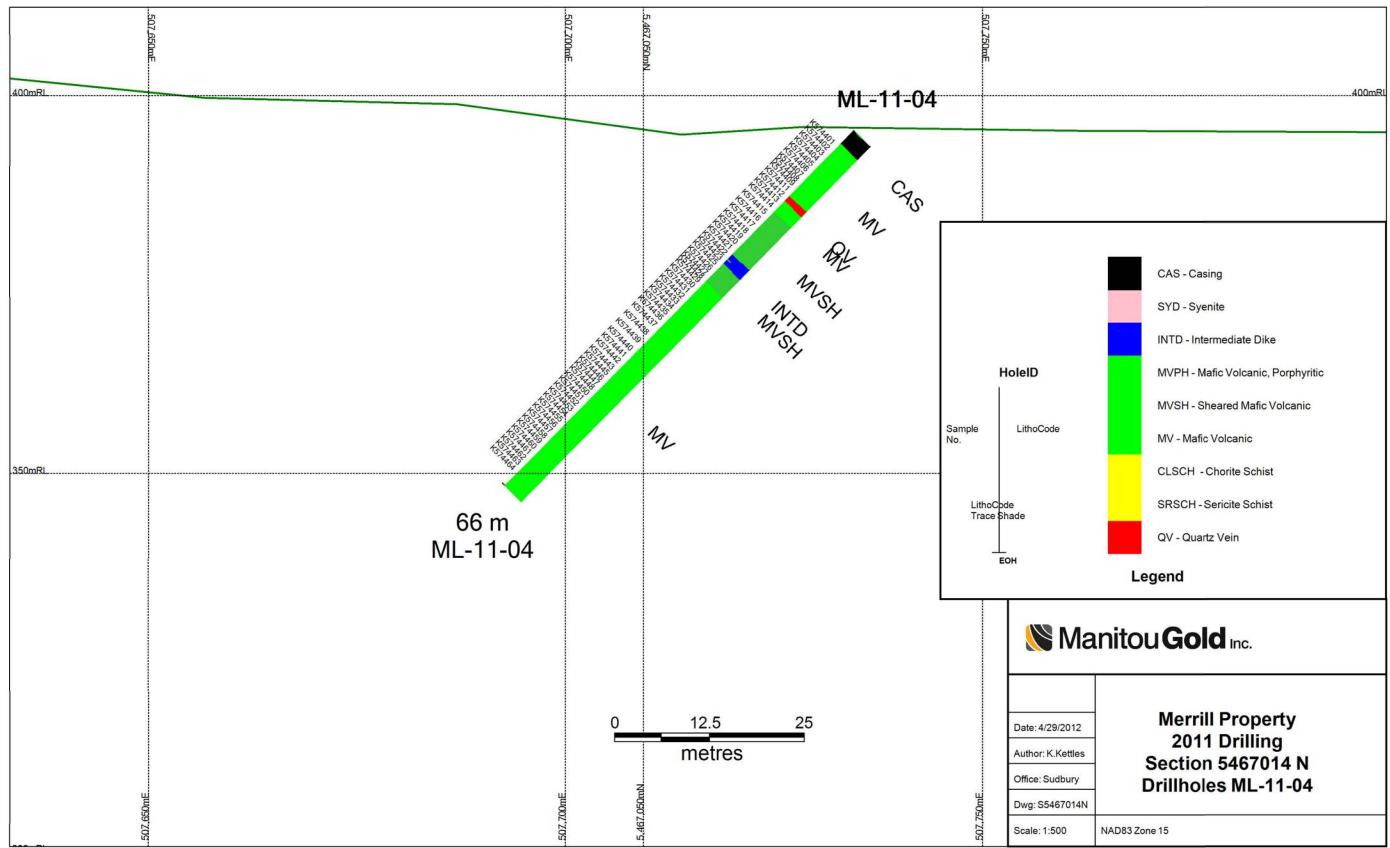
| hology        |                                                                                                            |          |         |             |      | Au     |  |
|---------------|------------------------------------------------------------------------------------------------------------|----------|---------|-------------|------|--------|--|
| om To         |                                                                                                            | Sample # | From    | То          | Len. | ррт    |  |
|               |                                                                                                            | K574672  | 137.00  | 138.00      | 1.00 | 0.013  |  |
|               |                                                                                                            | K574673  | 138.00  | 139.50      | 1.50 | 0.011  |  |
|               |                                                                                                            | K574674  | 139.50  | 140.75      | 1.25 | 0.01   |  |
|               |                                                                                                            | K574675  | 140.75  | 141.50      | 0.75 | 0.01   |  |
|               |                                                                                                            | K574676  | 141.50  | 142.50      | 1.00 | 0.0025 |  |
|               |                                                                                                            | K574677  | 142.50  | 143.50      | 1.00 | 0.011  |  |
|               |                                                                                                            | K574678  |         |             | 1.00 | 0.014  |  |
|               |                                                                                                            | K574679  | 144.50  | 146.00      | 1.50 | 0.012  |  |
|               |                                                                                                            | K574680  | 146.00  | 147.00      | 1.00 | 0.011  |  |
|               |                                                                                                            |          |         |             |      |        |  |
| 6.50 - 153.00 | <b>MV</b> Mafic Volcanic<br>dark greenish-grey mafic metavolcanic ?flow; med-grained amphibolite/amph-feld | 1/574004 | 4 47 00 | 4 4 9 . 0 0 | 1.00 | 0.045  |  |
|               | gneiss; <1% coarse-grained phenocrysts (5mm to 1.5cm, anhedral to subhedral,                               |          | 147.00  |             | 1.00 | 0.015  |  |
|               | feld+?crb, probably pseudomorphed px); massive; mod to str chloritization; tr QV; tr cal                   | K574682  |         |             | 1.50 | 0.007  |  |
|               | vns; tr sulphides (pyo, cpy) in veins                                                                      | K574683  |         |             | 1.50 | 0.013  |  |
|               | EOH 153m                                                                                                   | K574684  |         |             | 1.00 | 0.014  |  |
|               |                                                                                                            | K574685  | 152.00  | 153.00      | 1.00 | 0.017  |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            | I        |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |
|               |                                                                                                            |          |         |             |      |        |  |

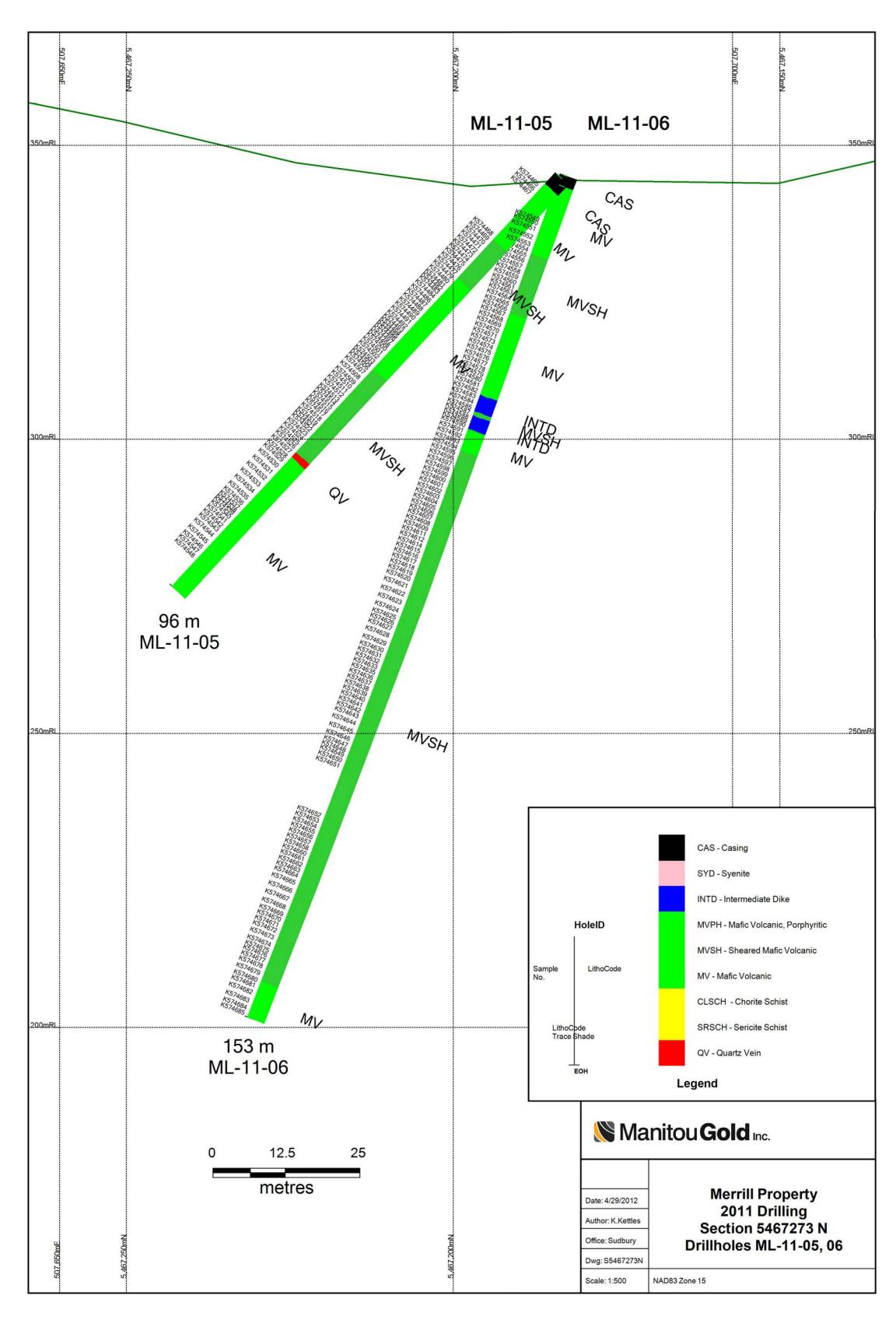
| vince/State    |           | Co-or          | dinate System  |       |                 | Grid/Prope   | erty    |         |             | Hole Ty       | pe           | Length | Date Started               |
|----------------|-----------|----------------|----------------|-------|-----------------|--------------|---------|---------|-------------|---------------|--------------|--------|----------------------------|
| ario           |           |                | NAD83 Zone 1   | 5     |                 | -            |         |         |             | Diamono       | d Drillhole  | 117.00 | 19/10/2011                 |
| trict          |           | UTM            | North          | UT    | M East          | Local Grid   | E       | Local   | l Grid N    | Collar S      | urvey Meth   | od     | Date Completed             |
| ora            |           | 54670          | )17            | 507   | 564             |              |         |         |             | Hand-he       | ld GPS       |        | 20/10/2011                 |
| ject           |           | UTM            | Elevation      | Azin  | nuth Astro. (•) | Azimuth G    | rid (•) | Dip (   | •)          | Drill Co      | ntractor     |        | Date Logged                |
| rill           |           | 411.0          | 0              | 299.  | .80             |              |         | -46.2   | 0           | Downing       | Drilling     |        | 21/10/2011                 |
| a              |           | Clain          | ı No.          | NTS   | S Sheet         | Supervised   | By      |         |             | Logged        | By           |        | Verified                   |
| er Manitou Lak | e Area    | 42523          | 367            |       |                 | T. Keast     | -       |         |             | L. Dolan      | sky          |        |                            |
| e/Prospect     |           | Asses          | sment Rpt. No. | Cor   | e Storage       |              |         |         | Plug Depth  | Make          | es Water     | Capped | Environmento<br>Inspection |
|                |           |                |                | Bark  | ker Bay Resort  |              |         |         |             |               |              |        |                            |
| ore Size (1)   |           |                | Casing Pull    | ed (  | Casing (1) 1.50 | NW Ste       | el Plug | ged     | Pulsed      | Geophys       | sics Contrac | ctor   | Date Pulsed                |
| (2)            |           |                |                |       | (2)             |              | _ [     |         |             |               |              |        |                            |
| pose           | I         |                |                | R     | esults          |              |         |         | Comments    |               |              |        |                            |
|                |           |                |                |       |                 |              |         |         | 27 boxes NQ | core          |              |        |                            |
| Distance G     | Grid Azim | <i>uth</i> (•) | Astro. Azimut  | h (•) | <i>Dip</i> (•)  | Use          | Surve   | y Met   | hod Ma      | ıg. Field     | Comments     | 7      |                            |
|                | riginal   |                |                | inal  | Original Fina   |              |         | <i></i> |             | ( <i>nT</i> ) |              |        |                            |
| 18.00          |           |                | 299.8          |       | -46.2           | $\checkmark$ |         | Flexit  |             | 56130         | Michael      |        |                            |
| 54.00          |           |                | 307.4          |       | -46.5           | $\checkmark$ |         | Flexit  |             | 57370         | Shawn        |        |                            |
| 102.00         |           |                | 315.4          |       | -45.9           | $\checkmark$ |         | Flexit  |             | 60590         | Shawn        |        |                            |
|                |           |                |                |       |                 |              |         |         |             |               |              |        |                            |
|                |           |                |                |       |                 |              |         |         |             |               |              |        |                            |

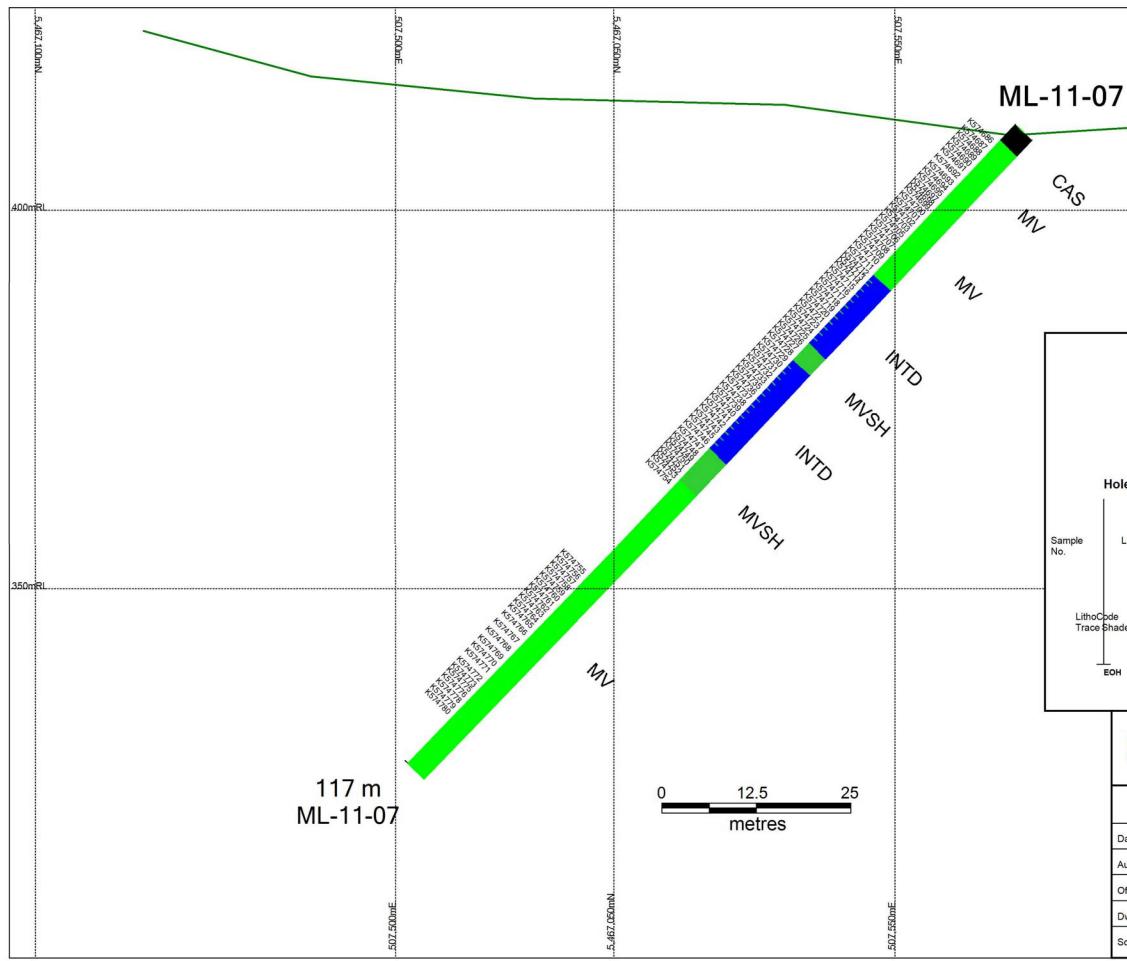
| Litholo | gy      |                                                                                                                                                   |          |       |       |      | Au     |  |
|---------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|------|--------|--|
| From    | То      |                                                                                                                                                   | Sample # | From  | То    | Len. | ррт    |  |
| 0.00    | 2.00    |                                                                                                                                                   |          |       |       |      |        |  |
| 0.00    | - 3.00  | OVB Overburden                                                                                                                                    |          |       |       |      |        |  |
|         |         | casing/stick-up/overburden                                                                                                                        |          |       |       |      |        |  |
|         |         |                                                                                                                                                   |          |       |       |      |        |  |
|         |         |                                                                                                                                                   |          |       |       |      |        |  |
| 3.00    | - 13.15 | MV Mafic Volcanic                                                                                                                                 |          |       |       |      |        |  |
|         |         | dark greyish-green mafic metavolcanic flow; med-grained amphibolite/amph-chl gneiss;                                                              | K574686  | 3.00  | 4.50  | 1.50 | 0.006  |  |
|         |         | sparse <<1% coarse-grained phenocrysts (5mm to 1cm, anhedral to subhedral, feld+?crb, pseudomorphed px); massive to very weak fol; <1% QV; tr pyr | K574687  | 4.50  | 5.50  | 1.00 | 0.0025 |  |
|         |         | $100 \pm 100$ , pseudomolphed px), massive to very weak 101, $< 1.0$ QV, it py                                                                    | K574688  | 5.50  | 6.50  | 1.00 | 0.0025 |  |
|         |         | 5.1-8.5 ~20% mafic dykes; dm-scale thickness; dark green, fine-grained; sharp                                                                     | K574689  | 6.50  | 7.50  | 1.00 | 0.0025 |  |
|         |         | contacts discernable in places<br>6.5-7.5 ?INTD dark brown, spotted white (rounded crb grains - replacing feld?);                                 | K574690  | 7.50  | 8.50  | 1.00 | 0.0025 |  |
|         |         | abundant biotite; med-grained; granular; mod to str calcite alt; tr pyr; str fol 80CA;                                                            | K574691  | 8.50  | 9.50  | 1.00 | 0.006  |  |
|         |         | diffuse contacts                                                                                                                                  | K574692  | 9.50  | 11.00 | 1.50 | 0.007  |  |
|         |         |                                                                                                                                                   | K574693  | 11.00 | 12.00 | 1.00 | 0.005  |  |
|         |         |                                                                                                                                                   | K574694  | 12.00 | 13.00 | 1.00 | 0.009  |  |
|         |         |                                                                                                                                                   | K574695  | 13.00 | 14.00 | 1.00 | 0.191  |  |
| 13.15   | - 27.55 | MV Mafic Volcanic                                                                                                                                 |          |       |       |      |        |  |
|         |         | dark green mafic metavolcanic flow; <1% cg phenocrysts (feld+crb replacing ?px); vfg                                                              | K574697  | 14.00 | 15.00 | 1.00 | 0.086  |  |
|         |         | to fg chloritic matrix; massive to wk fol; mod crb alt; <1% QV; <1% pyr; tr pyo+cpy                                                               | K574698  | 15.00 | 15.50 | 0.50 | 0.239  |  |
|         |         |                                                                                                                                                   | K574699  | 15.50 | 16.50 | 1.00 | 0.182  |  |
|         |         | 13.15-16.4 SHEAR 80-90CA; mod BT alt; 5-10% QV; 1% pyr, tr to <1% pyo 13.90-14.5 INTD dark grey spotted white; silicified                         |          | 16.50 | 17.50 | 1.00 | 0.017  |  |
|         |         |                                                                                                                                                   |          | 17.50 | 18.50 | 1.00 | 0.0025 |  |
|         |         |                                                                                                                                                   |          | 18.50 | 19.50 | 1.00 | 0.01   |  |
|         |         |                                                                                                                                                   |          | 19.50 | 20.50 | 1.00 | 0.016  |  |
|         |         |                                                                                                                                                   | K574705  | 20.50 | 21.50 | 1.00 | 0.01   |  |
|         |         |                                                                                                                                                   |          | 21.50 | 22.50 | 1.00 | 0.01   |  |
|         |         |                                                                                                                                                   | K574707  | 22.50 | 23.50 | 1.00 | 0.021  |  |
|         |         |                                                                                                                                                   | K574708  | 23.50 | 24.50 | 1.00 | 0.024  |  |
|         |         |                                                                                                                                                   | K574709  | 24.50 | 25.50 | 1.00 | 0.046  |  |
|         |         |                                                                                                                                                   | K574710  | 25.50 | 26.50 | 1.00 | 0.09   |  |
|         |         |                                                                                                                                                   | K574711  | 26.50 | 27.55 | 1.05 | 0.016  |  |
|         |         |                                                                                                                                                   |          | _0.00 |       |      | 0.010  |  |
|         |         |                                                                                                                                                   |          |       |       |      |        |  |
|         |         |                                                                                                                                                   |          |       |       |      |        |  |


| 27.55       -       40.15       INTD Intermediate Dike       -70% INTD/?FD, 20-25% shear zones (bt-crb schist) w/ 5-10% QV; dm- to m-scale dykes are grey, spotted light grey/white, med-grained, locally with salmon tint (Kfs alt?) around veins; <1 to 1% pyr; tr pyo+cpy       K574712       27.55       28.55       1.00       0.013         K574714       29.15       30.15       1.00       3.7         K574715       30.15       31.15       1.00       3.41         K574714       29.15       30.15       1.00       0.333         K574715       30.15       31.15       1.00       0.012         K574714       31.15       32.15       1.00       0.333         K574717       32.15       33.15       1.00       0.012         K574719       34.15       34.15       1.00       0.022         K574719       34.15       34.15       1.00       0.048         K574719       34.15       35.15       1.00       0.041         K574720       35.15       36.15       1.00       0.041         K574721       36.15       39.15       1.00       0.041         K574723       37.15       38.15       1.00       0.052         K574724       38.15       39.15       1.00 <th>Litholog</th> <th>У</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Au</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Litholog | У     |                                                    |          |       |       |      | Au    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|----------------------------------------------------|----------|-------|-------|------|-------|
| <ul> <li>43.10 MVSH Mafic Volcanic - Weakly to Moderately Sheared weakly to locally moderately foliated MV</li> <li>K574712</li> <li>K574714</li> <li>K574714</li> <li>K574714</li> <li>K574714</li> <li>K574714</li> <li>K574715</li> <li>K574715</li> <li>K574714</li> <li>K574715</li> <li>K574715</li> <li>K574715</li> <li>K574715</li> <li>K574715</li> <li>K574716</li> <li>K574717</li> <li>K574717</li> <li>K574715</li> <li>K574717</li> <li>K574715</li> <li>K574715</li> <li>K574715</li> <li>K574716</li> <li>K574717</li> <li>K574715</li> <li>K574716</li> <li>K574720</li> <li>K574720</li> <li>K574721</li> <li>K574721</li> <li>K574723</li> <li>K574723</li> <li>K574725</li> <li>K574725</li> <li>K574725</li> <li>K574725</li> <li>K574726</li> <li>K574726</li> <li>K574727</li> <li>K1.10</li> <li>K574727</li> <li>K1.10</li> <li>K574727</li> <li>K1.10</li> <li>K574727</li> <li>K1.10</li> <li>K57472</li> <li>K574727</li> <li>K1.10</li> <li>K57472</li> <li>K574727</li> <li>K1.10</li> <li>K57472</li> <li>K574727</li> <li>K1.10</li> <li>K57472</li> <li>K574727</li> <li>K574727&lt;</li></ul>                                                                                                                                                                                                                                                                                                                                                                             | From     | То    |                                                    | Sample # | From  | То    | Len. | ррт   |
| <ul> <li>43.10 MVSH Mafic Volcanic - Weakly to Moderately Sheared weakly to locally moderately foliated MV</li> <li>K574712</li> <li>K574712</li> <li>K574712</li> <li>K574712</li> <li>K574712</li> <li>K574712</li> <li>K574712</li> <li>S2.55</li> <li>S2.55</li> <li>S3.15</li> <li>S3.10</li> <li>S3.10</li> <li>S3.15</li> <li>S3.15</li> <li>S3.15<td>27 55 -</td><td>40 15</td><td>INTR Intermediate Dike</td><td></td><td></td><td></td><td></td><td></td></li></ul>                                                                                                                                                                                                                                                                                                         | 27 55 -  | 40 15 | INTR Intermediate Dike                             |          |       |       |      |       |
| 43.10       MVSH Mafic Volcanic - Weakly to Moderately Sheared<br>weakly to locally moderately foliated MV       K574716       43.10       43.10       0.01         MVSH Mafic Volcanic - Weakly to Moderately Sheared<br>weakly to locally moderately foliated MV       K574726       40.15       41.10       0.95       0.122         K574727       41.10       42.10       10.00       0.422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21.00 -  | 40.10 |                                                    | K574712  | 27 55 | 28 55 | 1 00 | 0.013 |
| around veins; <1 to 1% pyr; tr pyo+cpy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |       |                                                    |          |       |       |      |       |
| <ul> <li>43.10 MVSH Mafic Volcanic - Weakly to Moderately Sheared weakly to locally moderately foliated MV</li> <li>K57472 43.10 K57472 41.10 0.55 0.122 K57472 41.10</li></ul> |          |       | around veins; <1 to 1% pyr; tr pyo+cpy             |          |       |       |      |       |
| <ul> <li>43.10 MVSH Mafic Volcanic - Weakly to Moderately Sheared weakly to locally moderately foliated MV</li> <li>K57472 43.10 K57472 41.10 0.95 0.122</li> <li>K57472 41.10 0.95 0.122</li> <li>K57472 41.10 0.95 0.122</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       |                                                    |          |       |       |      |       |
| 0.15 - 43.10 MVSH Mafic Volcanic - Weakly to Moderately Sheared<br>weakly to locally moderately foliated MV K57472 43.15 41.10 0.95 0.122<br>K57472 41.10 42.10 1.00 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |                                                    |          |       |       |      |       |
| <ul> <li>NOVSH Mafic Volcanic - Weakly to Moderately Sheared weakly to locally moderately foliated MV</li> <li>K574726</li> <li>K574727</li> <li>K574726</li> <li>K574726</li> <li>K574726</li> <li>K574727</li> <li>K574726</li> <li>K574727</li> <li>K574727</li> <li>K574726</li> <li>K574727</li> <li>K574727</li> <li>K574726</li> <li>K574727</li> <li>K574727</li> <li>K574727</li> <li>K574727</li> <li>K574727</li> <li>K574726</li> <li>K574727</li> <li>K574720</li> <li>K574727</li> <li>K574720</li> <li>K574727</li> <li>K574720</li> <li>K574727</li> <li>K574720</li> <li>K574727</li> <li>K574720</li> <li>K574720</li></ul>                                                                                                                                                                                                                                                                                                                                                                                     |          |       |                                                    |          |       |       |      |       |
| <ul> <li>NVSH Mafic Volcanic - Weakly to Moderately Sheared weakly to locally moderately foliated MV</li> <li>K574726 40.15 41.10 0.95 0.122</li> <li>K574727 41.10 42.10 1.00 0.95</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       |                                                    |          |       |       |      |       |
| 43.10 MVSH Mafic Volcanic - Weakly to Moderately Sheared<br>weakly to locally moderately foliated MV<br>K574727 41.10 42.10 1.00 0.95 0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |       |                                                    |          |       |       |      |       |
| 10.15 - 43.10 <b>MVSH Mafic Volcanic - Weakly to Moderately Sheared</b><br>weakly to locally moderately foliated MV<br>MODE A 1.10 0.95 0.122<br>K574727 41.10 42.10 1.00 0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |       |                                                    |          |       |       |      |       |
| 43.10       MVSH Mafic Volcanic - Weakly to Moderately Sheared<br>weakly to locally moderately foliated MV       K574723       37.15       38.15       1.00       0.052         K574725       39.15       40.15       1.00       0.176         K574726       40.15       40.15       1.00       0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       |                                                    |          |       |       |      |       |
| 40.15       -       43.10       MVSH Mafic Volcanic - Weakly to Moderately Sheared<br>weakly to locally moderately foliated MV       K574726       38.15       39.15       1.00       0.052         K574725       39.15       40.15       1.00       0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                                                    |          |       |       |      |       |
| 40.15       -       43.10       MVSH Mafic Volcanic - Weakly to Moderately Sheared<br>weakly to locally moderately foliated MV       K574725       40.15       41.10       0.95       0.122         K574727       41.10       42.10       1.00       0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |       |                                                    |          |       |       |      |       |
| 40.15       - 43.10       MVSH Mafic Volcanic - Weakly to Moderately Sheared<br>weakly to locally moderately foliated MV       K574726       40.15       41.10       0.95       0.122         K574727       41.10       42.10       1.00       0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |                                                    |          |       |       |      |       |
| K574727 41.10 42.10 1.00 0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.15 -  | 43.10 | MVSH Mafic Volcanic - Weakly to Moderately Sheared |          |       |       |      |       |
| K574727 41.10 42.10 1.00 0.462                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       |                                                    | K574726  | 40.15 | 41.10 | 0.95 | 0.122 |
| K574728 42.10 43.10 1.00 0.164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |       |                                                    |          |       |       |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |       |                                                    | K574728  | 42.10 | 43.10 | 1.00 | 0.164 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |       |                                                    |          |       |       |      |       |


| Lithology  |     |                                                                                                                                 |           |       |       |      | Au     |
|------------|-----|---------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------|------|--------|
| From To    |     |                                                                                                                                 | Sample #  | From  | То    | Len. | ррт    |
| 43.10 - 59 | .30 | INTD Intermediate Dike                                                                                                          |           |       |       |      |        |
| 43.10 - 59 | .30 | INTD Intermediate Dike                                                                                                          | 1/57 4700 | 40.40 | 44.00 | 4.40 | 0.000  |
|            |     | grey, spotted light grey; med-grained; 75-80% qtz+feld, 20-25% biotite; massive to wk fol; <1% pyr dissem; 1-2% blue qtz grains | K574729   | 43.10 | 44.20 | 1.10 | 0.029  |
|            |     |                                                                                                                                 | K574730   | 44.20 | 45.20 | 1.00 | 2.03   |
|            |     |                                                                                                                                 | K574731   | 45.20 | 46.20 | 1.00 | 5.65   |
|            |     |                                                                                                                                 | K574732   | 46.20 | 47.20 | 1.00 | 0.19   |
|            |     |                                                                                                                                 | K574733   | 47.20 | 48.20 | 1.00 | 0.015  |
|            |     |                                                                                                                                 | K574735   | 48.20 | 49.20 | 1.00 | 0.093  |
|            |     |                                                                                                                                 | K574736   | 49.20 | 50.20 | 1.00 | 0.012  |
|            |     |                                                                                                                                 | K574737   | 50.20 | 51.20 | 1.00 | 0.0025 |
|            |     |                                                                                                                                 | K574738   | 51.20 | 52.20 | 1.00 | 0.0025 |
|            |     |                                                                                                                                 | K574739   | 52.20 | 53.20 | 1.00 | 0.006  |
|            |     |                                                                                                                                 | K574740   | 53.20 | 54.20 | 1.00 | 0.0025 |
|            |     |                                                                                                                                 | K574741   | 54.20 | 55.20 | 1.00 | 0.02   |
| l<br>I     |     |                                                                                                                                 | K574742   | 55.20 | 56.20 | 1.00 | 0.0025 |
|            |     |                                                                                                                                 | K574743   | 56.20 | 57.20 | 1.00 | 0.019  |
|            |     |                                                                                                                                 | K574745   | 57.20 | 58.20 | 1.00 | 0.007  |
|            |     |                                                                                                                                 | K574746   | 58.20 | 59.30 | 1.10 | 0.026  |
|            |     |                                                                                                                                 |           |       |       |      |        |
|            |     |                                                                                                                                 |           |       |       |      |        |
|            |     |                                                                                                                                 |           |       |       |      |        |
| 59.30 - 65 | .00 | MVSH Mafic Volcanic - Weakly to Moderately Sheared                                                                              |           |       |       |      |        |
|            |     | dark green; fine-grained; mod to str fol 70CA; <1% pyr; tr pyo+cpy                                                              | K574747   | 59.30 | 60.40 | 1.10 | 0.393  |
|            |     |                                                                                                                                 | K574748   | 60.40 | 61.40 | 1.00 | 0.01   |
|            |     | 59.3-60.4 SHEAR 80-85CA; BT-CRB SCHIST, locally MV; 3% QV; 1-2% pyr<br>63.0-64.5 SHEAR 70-90CA; str BT alt; 15% QV; <1% pyr     | K574749   | 61.40 | 62.20 | 0.80 | 0.007  |
|            |     | 03.0-04.3 SHEAR 10-300A, SH DT dil, 13% QV, <1% μyi                                                                             | K574750   | 62.20 | 63.00 | 0.80 | 0.011  |
|            |     | gradational lower contact                                                                                                       | K574751   | 63.00 | 64.00 | 1.00 | 0.336  |
|            |     |                                                                                                                                 | K574752   | 64.00 | 64.50 | 0.50 | 0.03   |
|            |     |                                                                                                                                 | K574753   | 64.50 | 65.50 | 1.00 | 0.005  |
|            |     |                                                                                                                                 | 1074700   | 04.50 | 05.50 | 1.00 | 0.005  |
|            |     |                                                                                                                                 |           |       |       |      |        |
|            |     |                                                                                                                                 |           |       |       |      |        |
|            |     |                                                                                                                                 | 1         |       |       |      |        |
|            |     |                                                                                                                                 |           |       |       |      |        |
|            |     |                                                                                                                                 |           |       |       |      |        |
|            |     |                                                                                                                                 |           |       |       |      |        |
|            |     |                                                                                                                                 |           |       |       |      |        |


| Litholog | у      |                                                                                                                                                                                                               |          |                |        |      | Au     |
|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|--------|------|--------|
| From     | То     |                                                                                                                                                                                                               | Sample # | From           | То     | Len. | ррт    |
| 65.00 -  | 117.00 | MV Mafic Volcanic                                                                                                                                                                                             |          |                |        |      |        |
|          | 117.00 | dark greyish-green mafic metavolcanic flow; med-grained amphibolite/amph-chl gneiss;                                                                                                                          | K574754  | 65.50          | 66.50  | 1.00 | 0.007  |
|          |        | sparse trace coarse-grained phenocrysts (5mm to 2.5cm, anhedral to subhedral,                                                                                                                                 | K574754  | 82.00          | 83.00  | 1.00 | 0.007  |
|          |        | feld+?crb, pseudomorphed px); wk to mod fol; <1% QV; tr pyr                                                                                                                                                   | K574755  | 83.00          | 84.00  | 1.00 | 0.01   |
|          |        | 97.0.97.9. CLIEAD 60.95CA very irregular fel legelly very abactic textures at                                                                                                                                 | K574750  | 83.00<br>84.00 | 85.00  | 1.00 | 0.010  |
|          |        | 87.0-87.8 SHEAR 60-85CA, very irregular fol, locally very chaotic texture; str<br>biotite+crb alt; 10% QV; tr pyr+pyo                                                                                         |          | 84.00<br>85.00 |        | 1.00 | 0.012  |
|          |        | 90.0-91.0 SHEAR 65-85CA, very irregular fol, locally very chaotic texture; str<br>biotite+crb alt; 5% QV<br>103.7-106.8 SHEAR 75-85CA; locally very irregular fol; str biotite+crb alt; 10-15% QV;<br>~1% pyr | K574758  |                | 86.00  |      | 0.009  |
|          |        |                                                                                                                                                                                                               | K574759  | 86.00<br>87.00 | 87.00  | 1.00 | 0.009  |
|          |        |                                                                                                                                                                                                               | K574760  |                | 88.00  | 1.00 |        |
|          |        | 105.5-105.7 INTD                                                                                                                                                                                              | K574761  | 88.00          | 89.00  | 1.00 | 0.012  |
|          |        |                                                                                                                                                                                                               | K574762  | 89.00          | 90.00  | 1.00 | 0.019  |
|          |        | EOH 117m                                                                                                                                                                                                      | K574763  | 90.00          | 91.00  | 1.00 | 0.018  |
|          |        |                                                                                                                                                                                                               | K574764  | 91.00          | 92.00  | 1.00 | 0.005  |
|          |        |                                                                                                                                                                                                               | K574765  | 92.00          | 93.00  | 1.00 | 0.005  |
|          |        |                                                                                                                                                                                                               | K574766  | 93.00          | 94.50  | 1.50 | 0.0025 |
|          |        |                                                                                                                                                                                                               | K574767  | 94.50          | 96.00  | 1.50 | 0.005  |
|          |        |                                                                                                                                                                                                               | K574768  | 96.00          | 97.50  | 1.50 | 0.0025 |
|          |        |                                                                                                                                                                                                               | K574769  | 97.50          | 99.00  | 1.50 | 0.006  |
|          |        |                                                                                                                                                                                                               | K574770  |                |        | 1.00 | 0.0025 |
|          |        |                                                                                                                                                                                                               |          | 100.00         |        | 1.50 | 0.009  |
|          |        |                                                                                                                                                                                                               |          | 101.50         |        | 1.50 | 0.008  |
|          |        |                                                                                                                                                                                                               |          | 103.00         |        | 0.70 | 0.011  |
|          |        |                                                                                                                                                                                                               | K574775  | 103.70         | 104.70 | 1.00 | 0.157  |
|          |        |                                                                                                                                                                                                               |          | 104.70         |        | 1.00 | 0.153  |
|          |        |                                                                                                                                                                                                               |          | 105.70         |        | 1.10 | 0.025  |
|          |        |                                                                                                                                                                                                               | K574779  | 106.80         | 107.80 | 1.00 | 1.19   |
|          |        |                                                                                                                                                                                                               | K574780  | 107.80         | 108.80 | 1.00 | 0.0025 |
|          |        |                                                                                                                                                                                                               |          |                |        |      |        |
|          |        |                                                                                                                                                                                                               |          |                |        |      |        |
|          |        |                                                                                                                                                                                                               |          |                |        |      |        |
|          |        |                                                                                                                                                                                                               |          |                |        |      |        |
|          |        |                                                                                                                                                                                                               |          |                |        |      |        |
|          |        |                                                                                                                                                                                                               |          |                |        |      |        |
|          |        |                                                                                                                                                                                                               |          |                |        |      |        |


## **APPENDIX IV**


**Drill Sections** 












|           | 5.467.000mN. |                                                                            |      |
|-----------|--------------|----------------------------------------------------------------------------|------|
| 7         | Ž            |                                                                            |      |
|           |              |                                                                            |      |
|           |              |                                                                            |      |
|           |              | CAS - Casing<br>SYD - Syenite<br>INTD - Intermediate Dike                  |      |
| bleID     |              | MVPH - Mafic Volcanic, Por                                                 |      |
| LithoCode |              | MVSH - Sheared Mafic Volc<br>MV - Mafic Volcanic<br>CLSCH - Chorite Schist | anic |
| ade       |              | SRSCH - Sericite Schist<br>QV - Quartz Vein                                |      |
| н         | Le           | gend                                                                       |      |
|           |              |                                                                            |      |

# Date: 4/29/2012 Merrill Property Author: K.Kettles Office: Sudbury Office: Sudbury Drillholes ML-11-07 Dwg: S5466957N NAD83 Zone 15

# **APPENDIX V**

**Drill Core Assay Certificates** 



#### To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Page: 1 Finalized Date: 5-NOV-2011 Account: MANGOL

# CERTIFICATE TB11213480

Project: WEST LIMB

P.O. No.:

This report is for 82 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 21-OCT-2011.

The following have access to data associated with this certificate:

ALS Canada Ltd.

| TODD KEAST | NAAZNIN PASTAKIA | TAMARA TARAS |
|------------|------------------|--------------|
|            |                  |              |

| SAMPLE PREPARATION |                                |  |  |  |
|--------------------|--------------------------------|--|--|--|
| ALS CODE           | DESCRIPTION                    |  |  |  |
| WEI-21             | Received Sample Weight         |  |  |  |
| LOG-22             | Sample login - Rcd w/o BarCode |  |  |  |
| CRU-31             | Fine crushing - 70% <2mm       |  |  |  |
| CRU-QC             | Crushing QC Test               |  |  |  |
| PUL-QC             | Pulverizing QC Test            |  |  |  |
| SPL-21             | Split sample - riffle splitter |  |  |  |
| PUL-32             | Pulverize 1000g to 85% < 75 um |  |  |  |
| LOG-23             | Pulp Login – Rcvd with Barcode |  |  |  |

# ANALYTICAL PROCEDURES

| ALS CODE | DESCRIPTION         | INSTRUMENT |
|----------|---------------------|------------|
| Au-AA23  | Au 30g FA-AA finish | AAS        |

To: MANITOU GOLD INC ATTN: TAMARA TARAS 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Nacera nana Signature: Nacera Amara, Laboratory Manager, Val d'Or



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 2 - A Total # Pages: 4 (A) Finalized Date: 5-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                        |  |
|----------------------------------------------------------------|-----------------------------------|--------------------------------------|------------------------------------------------------|--|
| K574119<br>K574120<br>K574121<br>K574122<br>K574122            |                                   | 2.49<br>2.52<br>2.30<br>2.27<br>2.60 | <0.005<br><0.005<br>0.014<br><0.005<br><0.005        |  |
| K574123<br>K574124<br>K574125<br>K574126<br>K574127<br>K574128 |                                   | 2.34<br>2.83<br>1.98<br>2.45<br>2.49 | <0.003<br>0.011<br><0.005<br>0.013<br>0.008<br>0.007 |  |
| K574129<br>K574130<br>K574131<br>K574132<br>K574132            |                                   | 2.51<br>2.52<br>3.81<br>3.56<br>3.68 | <pre>&lt;0.005 0.006 0.015 0.016 &lt;0.005</pre>     |  |
| K574134<br>K574135<br>K574136<br>K574136<br>K574137<br>K574138 |                                   | 2.59<br>2.64<br>2.54<br>0.05<br>2.41 | <0.005<br>0.010<br>0.010<br>0.761<br>0.011           |  |
| K574139<br>K574140<br>K574141<br>K574142<br>K574143            |                                   | 2.45<br>2.40<br>1.86<br>2.40<br>2.30 | <0.005<br>0.020<br>0.044<br>0.605<br>1.710           |  |
| K574144<br>K574145<br>K574146<br>K574146<br>K574147<br>K574148 |                                   | 1.49<br>2.39<br>2.26<br>2.42<br>2.42 | <0.005<br>2.08<br>1.080<br>0.009<br>0.005            |  |
| K574149<br>K574150<br>K574151<br>K574152<br>K574152            |                                   | 2.57<br>2.48<br>2.49<br>2.33<br>1.88 | 0.008<br>0.006<br>0.007<br>0.006<br>0.009            |  |
| K574154<br>K574155<br>K574156<br>K574157<br>K574157            |                                   | 2.41<br>0.04<br>3.72<br>2.55<br>2.46 | 0.089<br>2.37<br>0.005<br>0.008<br><0.005            |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 3 - A Total # Pages: 4 (A) Finalized Date: 5-NOV-2011 Account: MANGOL

Project: WEST LIMB


| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                 |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------------|--|
| K574159<br>K574160<br>K574161<br>K574162<br>K574163 |                                   | 2.49<br>3.78<br>3.56<br>2.56<br>2.41 | <0.005<br>0.008<br><0.005<br><0.005<br><0.005 |  |
| K574164<br>K574165<br>K574166<br>K574167<br>K574167 |                                   | 2.43<br>2.36<br>2.38<br>2.55<br>3.86 | 0.007<br><0.005<br><0.005<br>2.80<br>0.009    |  |
| K574169<br>K574170<br>K574171<br>K574172<br>K574173 |                                   | 2.96<br>2.60<br>3.68<br>3.87<br>2.49 | 0.011<br>0.009<br>0.009<br>0.014<br>0.011     |  |
| K574174<br>K574175<br>K574176<br>K574177<br>K574177 |                                   | 2.73<br>3.79<br>1.42<br>3.98<br>2.51 | 0.013<br>0.009<br>0.007<br>0.007<br>0.007     |  |
| K574179<br>K574180<br>K574181<br>K574182<br>K574183 |                                   | 2.69<br>2.21<br>1.17<br>2.59<br>3.71 | 0.006<br>0.006<br><0.005<br>0.007<br>0.011    |  |
| K574184<br>K574185<br>K574186<br>K574187<br>K574188 |                                   | 3.73<br>3.69<br>2.45<br>2.64<br>0.05 | 0.007<br>0.011<br>0.012<br>0.010<br>2.40      |  |
| K574189<br>K574190<br>K574191<br>K574192<br>K574193 |                                   | 1.10<br>2.05<br>2.46<br>2.06<br>2.59 | 0.005<br>0.015<br>0.020<br>0.053<br>0.007     |  |
| K574194<br>K574195<br>K574196<br>K574197<br>K574198 |                                   | 2.48<br>2.49<br>2.39<br>1.74<br>2.89 | 0.006<br>0.013<br>0.009<br><0.005<br>0.007    |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 4 - A Total # Pages: 4 (A) Finalized Date: 5-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02 | Au-AA23<br>Au<br>ppm<br>0.005 |  |
|--------------------|-----------------------------------|-----------------------------------|-------------------------------|--|
| K574199<br>K574200 |                                   | 1.02<br>3.71                      | <0.005<br>0.016               |  |
|                    |                                   |                                   |                               |  |
|                    |                                   |                                   |                               |  |
|                    |                                   |                                   |                               |  |
|                    |                                   |                                   |                               |  |
|                    |                                   |                                   |                               |  |
|                    |                                   |                                   |                               |  |
|                    |                                   |                                   |                               |  |
|                    |                                   |                                   |                               |  |



#### To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Page: 1 Finalized Date: 16-NOV-2011 Account: MANGOL

# CERTIFICATE TB11224631

Project: WEST LIMB

P.O. No.:

This report is for 78 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 28-OCT-2011.

The following have access to data associated with this certificate:

ALS Canada Ltd.

| TODD KEAST | NAAZNIN PASTAKIA | TAMARA TARAS |
|------------|------------------|--------------|
|            |                  |              |

| SAMPLE PREPARATION |                                |  |  |
|--------------------|--------------------------------|--|--|
| ALS CODE           | DESCRIPTION                    |  |  |
| WEI-21             | Received Sample Weight         |  |  |
| LOG-22             | Sample login - Rcd w/o BarCode |  |  |
| CRU-31             | Fine crushing - 70% <2mm       |  |  |
| CRU-QC             | Crushing QC Test               |  |  |
| PUL-QC             | Pulverizing QC Test            |  |  |
| SPL-21             | Split sample - riffle splitter |  |  |
| PUL-32             | Pulverize 1000g to 85% < 75 um |  |  |
| LOG-23             | Pulp Login - Rcvd with Barcode |  |  |

## ANALYTICAL PROCEDURES

| ALS CODE | DESCRIPTION         | INSTRUMENT |
|----------|---------------------|------------|
| Au-AA23  | Au 30g FA-AA finish | AAS        |

To: MANITOU GOLD INC ATTN: TAMARA TARAS 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Nacera nana Signature: Nacera Amara, Laboratory Manager, Val d'Or



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 2 - A Total # Pages: 3 (A) Finalized Date: 16-NOV-2011 Account: MANGOL

Project: WEST LIMB


| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                      |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------------|--|
| K574201<br>K574202<br>K574203<br>K574204<br>K574205 |                                   | 2.36<br>2.55<br>2.28<br>2.55<br>2.41 | 0.006<br>0.005<br>0.008<br>0.007<br>0.006          |  |
| K574206<br>K574207<br>K574208<br>K574209<br>K574210 |                                   | 2.47<br>2.46<br>2.58<br>2.49<br>2.50 | 0.011<br>0.013<br>0.013<br>0.010<br>0.010          |  |
| K574211<br>K574212<br>K574213<br>K574214<br>K574215 |                                   | 0.05<br>2.44<br>2.09<br>2.56<br>3.62 | 0.759<br>0.009<br>0.024<br>0.014<br>0.009          |  |
| K574216<br>K574217<br>K574218<br>K574219<br>K574220 |                                   | 3.49<br>2.62<br>2.49<br>2.40<br>2.32 | 0.006<br>0.012<br>0.011<br>0.009<br>0.009          |  |
| K574221<br>K574222<br>K574223<br>K574224<br>K574225 |                                   | 2.33<br>2.39<br>2.28<br>1.37<br>2.46 | 0.011<br>0.011<br>0.013<br>0.027<br>0.006          |  |
| K574226<br>K574227<br>K574228<br>K574229<br>K574230 |                                   | 3.66<br>2.39<br>2.54<br>3.75<br>3.86 | 0.007<br>0.007<br>0.012<br>0.010<br>0.006          |  |
| K574231<br>K574232<br>K574233<br>K574234<br>K574235 |                                   | 2.41<br>2.38<br>2.58<br>2.44<br>2.46 | 0.010<br>0.008<br>0.008<br>0.008<br>0.008<br>0.007 |  |
| K574236<br>K574237<br>K574238<br>K574239<br>K574240 |                                   | 2.53<br>3.75<br>3.79<br>2.24<br>2.19 | 0.009<br>0.007<br>0.010<br>0.013<br>0.155          |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 3 - A Total # Pages: 3 (A) Finalized Date: 16-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------|--|
| K574241<br>K574242<br>K574243<br>K574244<br>K574245 |                                   | 2.26<br>2.49<br>1.12<br>2.51<br>2.60 | 1.195<br>0.025<br><0.005<br>0.007<br>0.009   |  |
| K574246<br>K574247<br>K574248<br>K574249<br>K574250 |                                   | 2.48<br>2.28<br>2.40<br>2.48<br>2.51 | 0.010<br>0.017<br>0.044<br>0.024<br>0.013    |  |
| K574251<br>K574252<br>K574253<br>K574254<br>K574255 |                                   | 2.52<br>2.68<br>2.57<br>0.05<br>2.04 | 0.024<br>0.009<br>0.011<br>2.35<br>0.295     |  |
| K574256<br>K574257<br>K574258<br>K574259<br>K574260 |                                   | 1.47<br>2.41<br>1.07<br>2.46<br>3.04 | 0.010<br>0.040<br>0.026<br>0.391<br>0.346    |  |
| K574261<br>K574262<br>K574263<br>K574264<br>K574265 |                                   | 2.39<br>2.63<br>2.69<br>2.07<br>1.85 | 0.014<br>0.055<br>0.024<br>0.055<br>0.161    |  |
| K574266<br>K574267<br>K574268<br>K574269<br>K574270 |                                   | 2.30<br>1.69<br>1.45<br>2.74<br>2.90 | <0.005<br>0.012<br><0.005<br>0.030<br><0.005 |  |
| K574271<br>K574272<br>K574273<br>K574274<br>K574275 |                                   | 2.18<br>2.32<br>1.24<br>0.05<br>1.97 | 0.012<br><0.005<br>0.043<br>2.34<br>0.174    |  |
| K574276<br>K574277<br>K574278                       |                                   | 2.74<br>2.52<br>2.80                 | 0.008<br>0.005<br>0.009                      |  |



#### To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Page: 1 Finalized Date: 17-NOV-2011 Account: MANGOL

# CERTIFICATE TB11224632

Project: WEST LIMB

P.O. No.:

This report is for 122 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 28-OCT-2011.

The following have access to data associated with this certificate:

ALS Canada Ltd.

| I | TODD KEAST | NAAZNIN PASTAKIA | TAMARA TARAS |
|---|------------|------------------|--------------|
|   |            |                  |              |

| SAMPLE PREPARATION |                                |  |  |  |
|--------------------|--------------------------------|--|--|--|
| ALS CODE           | DESCRIPTION                    |  |  |  |
| WEI-21             | Received Sample Weight         |  |  |  |
| LOG-22             | Sample login - Rcd w/o BarCode |  |  |  |
| CRU-31             | Fine crushing - 70% <2mm       |  |  |  |
| CRU-QC             | Crushing QC Test               |  |  |  |
| PUL-QC             | Pulverizing QC Test            |  |  |  |
| SPL-21             | Split sample - riffle splitter |  |  |  |
| PUL-32             | Pulverize 1000g to 85% < 75 um |  |  |  |
| LOG-23             | Pulp Login - Rcvd with Barcode |  |  |  |

|          | ANALYTICAL PROCEDU    | JRES       |
|----------|-----------------------|------------|
| ALS CODE | DESCRIPTION           | INSTRUMENT |
| Au-GRA21 | Au 30g FA-GRAV finish | WST-SIM    |
| Au-AA23  | Au 30g FA-AA finish   | AAS        |

To: MANITOU GOLD INC ATTN: TAMARA TARAS 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Nacera nana Signature: Nacera Amara, Laboratory Manager, Val d'Or



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 2 - A Total # Pages: 5 (A) Finalized Date: 17-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02 | Au-GRA21<br>Au<br>ppm<br>0.05 | Au-AA23<br>Au<br>ppm<br>0.005 |  |
|--------------------|-----------------------------------|-----------------------------------|-------------------------------|-------------------------------|--|
| K574279            |                                   | 2.53                              |                               | <0.005                        |  |
| K574280            |                                   | 2.30                              |                               | 0.007                         |  |
| K574281            |                                   | 1.35                              |                               | 0.006                         |  |
| K574282            |                                   | 2.42                              |                               | 0.007                         |  |
| K574283            |                                   | 3.71                              |                               | 0.006                         |  |
| K574284            |                                   | 3.36                              |                               | 0.008                         |  |
| K574285            |                                   | 3.75                              |                               | 0.006                         |  |
| K574286            |                                   | 3.89                              |                               | 0.008                         |  |
| K574287            |                                   | 2.65                              |                               | <0.005                        |  |
| K574288            |                                   | 2.53                              |                               | 0.009                         |  |
| K574289            |                                   | 3.81                              |                               | 0.006                         |  |
| K574290            |                                   | 2.93                              |                               | 0.005                         |  |
| K574291            |                                   | 2.56                              |                               | 0.011                         |  |
| K574292            |                                   | 2.58                              |                               | 0.007                         |  |
| K574293            |                                   | 2.26                              |                               | 0.008                         |  |
| K574294            |                                   | 2.31                              |                               | 0.007                         |  |
| K574295            |                                   | 0.05                              |                               | 0.779                         |  |
| K574296            |                                   | 2.28                              |                               | 0.016                         |  |
| K574297            |                                   | 2.30                              |                               | 0.012                         |  |
| K574298            |                                   | 2.45                              |                               | 0.116                         |  |
| K574299            |                                   | 1.14                              |                               | 0.031                         |  |
| K574300            |                                   | 3.45                              |                               | 0.011                         |  |
| K574301            |                                   | 3.69                              |                               | 0.006                         |  |
| K574302            |                                   | 3.65                              |                               | 0.010                         |  |
| K574303            |                                   | 3.71                              |                               | <0.005                        |  |
| K574304            |                                   | 3.28                              |                               | 0.006                         |  |
| K574305            |                                   | 2.44                              |                               | 0.006                         |  |
| K574306            |                                   | 2.50                              |                               | 0.008                         |  |
| K574307            |                                   | 2.35                              |                               | 0.009                         |  |
| K574308            |                                   | 1.94                              |                               | 0.014                         |  |
| K574309            |                                   | 2.75                              |                               | 0.010                         |  |
| K574310            |                                   | 3.71                              |                               | 0.008                         |  |
| K574311            |                                   | 3.60                              |                               | 0.005                         |  |
| K574312            |                                   | 3.84                              |                               | 0.008                         |  |
| K574313            |                                   | 3.58                              |                               | 0.013                         |  |
| K574314            |                                   | 2.26                              |                               | 0.014                         |  |
| K574315            |                                   | 2.30                              |                               | 0.987                         |  |
| K574316            |                                   | 2.29                              |                               | 5.93                          |  |
| K574317            |                                   | 2.39                              |                               | 0.219                         |  |
| K574318            |                                   | 1.55                              |                               | 0.011                         |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 3 - A Total # Pages: 5 (A) Finalized Date: 17-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-GRA21<br>Au<br>ppm<br>0.05 | Au-AA23<br>Au<br>ppm<br>0.005              |  |
|----------------------------------------------------------------|-----------------------------------|--------------------------------------|-------------------------------|--------------------------------------------|--|
| K574319<br>K574320<br>K574321<br>K574322<br>K574323            |                                   | 2.35<br>2.48<br>2.72<br>2.55<br>2.34 |                               | 0.010<br>0.009<br>0.005<br>0.008<br>0.011  |  |
| K574324<br>K574325<br>K574326<br>K574327<br>K574327<br>K574328 |                                   | 1.65<br>1.77<br>2.31<br>2.46<br>2.66 |                               | 0.011<br>1.715<br>0.017<br>0.010<br><0.005 |  |
| K574329<br>K574330<br>K574331<br>K574332<br>K574332            |                                   | 2.60<br>2.30<br>2.49<br>2.42<br>2.36 |                               | 0.010<br>0.028<br>0.028<br>0.012<br>0.015  |  |
| K574334<br>K574335<br>K574336<br>K574336<br>K574337<br>K574338 |                                   | 0.08<br>1.98<br>2.42<br>2.35<br>2.54 |                               | 8.35<br>3.61<br>0.114<br>1.240<br>0.896    |  |
| K574339<br>K574340<br>K574341<br>K574342<br>K574343            |                                   | 2.48<br>2.53<br>2.49<br>2.60<br>1.32 | 12.65                         | 0.243<br>0.050<br>>10.0<br>3.81<br>0.018   |  |
| K574344<br>K574345<br>K574346<br>K574347<br>K574348            |                                   | 2.82<br>2.65<br>2.55<br>2.33<br>2.45 |                               | 0.066<br>0.041<br>0.977<br>0.010<br>0.670  |  |
| K574349<br>K574350<br>K574351<br>K574352<br>K574353            |                                   | 2.46<br>3.78<br>3.80<br>2.40<br>2.25 |                               | 0.093<br>0.006<br>0.011<br>0.011<br>0.032  |  |
| K574354<br>K574355<br>K574356<br>K574357<br>K574357            |                                   | 2.41<br>2.44<br>3.10<br>1.25<br>1.91 |                               | 0.011<br>0.011<br>0.013<br>0.008<br>0.121  |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 4 - A Total # Pages: 5 (A) Finalized Date: 17-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description            | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02 | Au-GRA21<br>Au<br>ppm<br>0.05 | Au-AA23<br>Au<br>ppm<br>0.005 |  |
|-------------------------------|-----------------------------------|-----------------------------------|-------------------------------|-------------------------------|--|
| K574359<br>K574360            |                                   | 2.42<br>1.08                      |                               | 0.014<br><0.005               |  |
| K574361<br>K574362<br>K574363 |                                   | 3.53<br>3.51<br>3.57              |                               | <0.005<br>0.007<br>0.009      |  |
| K574364<br>K574365<br>K574366 |                                   | 3.90<br>3.67<br>3.56              |                               | 0.007<br>0.009<br>0.007       |  |
| K574367<br>K574368            |                                   | 3.75<br>2.31                      |                               | <0.007<br><0.005<br>0.020     |  |
| K574369<br>K574370<br>K574371 |                                   | 1.05<br>2.28<br>2.06              |                               | 0.030<br>0.793<br>0.397       |  |
| K574372<br>K574373            |                                   | 0.08<br>2.56                      |                               | 1.500<br>0.006                |  |
| K574374<br>K574375<br>K574376 |                                   | 3.56<br>3.62<br>3.43              |                               | 0.006<br>0.077<br>0.008       |  |
| K574378<br>K574378            |                                   | 3.29<br>3.68                      |                               | 0.000<br>0.017<br>0.006       |  |
| K574379<br>K574380<br>K574381 |                                   | 3.45<br>2.63<br>3.22              |                               | 0.007<br>0.008<br>0.010       |  |
| K574381<br>K574382<br>K574383 |                                   | 2.55<br>2.37                      |                               | 0.006                         |  |
| K574384<br>K574385            |                                   | 2.27<br>1.61                      |                               | <0.005<br><0.005              |  |
| K574386<br>K574387<br>K574388 |                                   | 2.33<br>2.34<br>2.28              |                               | <0.005<br><0.005<br>0.009     |  |
| K574389<br>K574390<br>K574391 |                                   | 2.48<br>2.21<br>2.46              |                               | 0.009<br>0.006<br>0.005       |  |
| K574391<br>K574392<br>K574393 |                                   | 2.46<br>2.47<br>3.86              |                               | <0.005<br><0.005<br>0.009     |  |
| K574394<br>K574395            |                                   | 2.65<br>3.71                      |                               | <0.005<br>0.005<br>0.005      |  |
| K574396<br>K574397<br>K574398 |                                   | 2.53<br>2.55<br>2.58              |                               | 0.005<br>0.010<br>0.006       |  |




#### To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Page: 5 - A Total # Pages: 5 (A) Finalized Date: 17-NOV-2011 Account: MANGOL

Project: WEST LIMB

|                    |                                   | WEI-21     | Au-GRA21 | Au-AA23 |  |
|--------------------|-----------------------------------|------------|----------|---------|--|
|                    | Method                            | Recvd Wt.  | Au       | Au      |  |
|                    | Analyte                           | RECVU VVL. |          |         |  |
| Sample Description | Units                             | kg         | ppm      | ppm     |  |
|                    | Method<br>Analyte<br>Units<br>LOR | 0.02       | 0.05     | 0.005   |  |
| K574399            |                                   | 2.43       |          | 0.012   |  |
| K574400            |                                   | 2.48       |          | 0.006   |  |
| K574400            |                                   | 2.40       |          | 0.006   |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |
|                    |                                   |            |          |         |  |



#### To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Page: 1 Finalized Date: 20-NOV-2011 Account: MANGOL

# CERTIFICATE TB11224633

Project: WEST LIMB

P.O. No.:

This report is for 137 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 28-OCT-2011.

The following have access to data associated with this certificate:

ALS Canada Ltd.

| TODD KEAST | NAAZNIN PASTAKIA | TAMARA TARAS |
|------------|------------------|--------------|
|            |                  |              |

| SAMPLE PREPARATION |                                |  |  |  |
|--------------------|--------------------------------|--|--|--|
| ALS CODE           | DESCRIPTION                    |  |  |  |
| WEI-21             | Received Sample Weight         |  |  |  |
| LOG-22             | Sample login - Rcd w/o BarCode |  |  |  |
| CRU-31             | Fine crushing - 70% <2mm       |  |  |  |
| CRU-QC             | Crushing QC Test               |  |  |  |
| PUL-QC             | Pulverizing QC Test            |  |  |  |
| SPL-21             | Split sample - riffle splitter |  |  |  |
| PUL-32             | Pulverize 1000g to 85% < 75 um |  |  |  |
| LOG-23             | Pulp Login - Rovd with Barcode |  |  |  |

# ANALYTICAL PROCEDURES

| ALS CODE | DESCRIPTION         | INSTRUMENT |
|----------|---------------------|------------|
| Au-AA23  | Au 30g FA-AA finish | AAS        |

To: MANITOU GOLD INC ATTN: TAMARA TARAS 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Nacera nana Signature: Nacera Amara, Laboratory Manager, Val d'Or



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 2 - A Total # Pages: 5 (A) Finalized Date: 20-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------|--|
| K574549<br>K574550<br>K574551<br>K574552<br>K574553 |                                   | 2.57<br>1.34<br>3.45<br>4.00<br>2.43 | 0.007<br>0.006<br><0.005<br>0.005<br><0.005  |  |
| K574554<br>K574555<br>K574556<br>K574557<br>K574557 |                                   | 2.42<br>2.38<br>2.55<br>2.36<br>2.32 | 0.007<br>0.007<br>0.010<br>0.008<br>0.006    |  |
| K574559<br>K574560<br>K574561<br>K574562<br>K574563 |                                   | 2.81<br>2.56<br>2.07<br>0.05<br>2.33 | 0.006<br>0.005<br>0.134<br>2.42<br>0.742     |  |
| K574564<br>K574565<br>K574566<br>K574567<br>K574567 |                                   | 2.40<br>2.25<br>2.17<br>2.43<br>2.98 | 0.632<br>1.005<br>0.345<br>0.008<br>0.023    |  |
| K574569<br>K574570<br>K574571<br>K574572<br>K574573 |                                   | 2.66<br>2.66<br>2.82<br>1.28<br>2.46 | 0.012<br>0.025<br>0.006<br><0.005<br><0.005  |  |
| K574574<br>K574575<br>K574576<br>K574577<br>K574578 |                                   | 2.68<br>2.30<br>2.56<br>2.59<br>2.47 | 0.005<br>0.005<br>0.035<br>0.224<br>0.029    |  |
| K574579<br>K574580<br>K574581<br>K574582<br>K574583 |                                   | 1.98<br>2.51<br>2.80<br>2.64<br>2.41 | 0.023<br>0.038<br>0.020<br><0.005<br><0.005  |  |
| K574584<br>K574585<br>K574586<br>K574587<br>K574588 |                                   | 2.55<br>2.28<br>0.05<br>1.80<br>2.25 | <0.005<br><0.005<br>0.764<br><0.005<br>0.010 |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 3 - A Total # Pages: 5 (A) Finalized Date: 20-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                             | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                |  |
|----------------------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------|--|
| K574589<br>K574590<br>K574591<br>K574592<br>K574593            |                                   | 1.13<br>2.48<br>2.35<br>2.34<br>2.58 | 0.022<br><0.005<br>0.017<br>0.155<br>0.042   |  |
| K574594<br>K574595<br>K574596<br>K574597<br>K574598            |                                   | 2.56<br>2.34<br>2.60<br>2.46<br>2.25 | 0.173<br>0.024<br>0.011<br>0.014<br>0.009    |  |
| K574599<br>K574600<br>K574601<br>K574602<br>K574603            |                                   | 2.45<br>2.48<br>2.38<br>2.44<br>2.28 | 0.007<br><0.005<br>0.009<br>0.005<br><0.005  |  |
| K574604<br>K574605<br>K574606<br>K574607<br>K574608            |                                   | 2.51<br>2.39<br>1.85<br>2.36<br>2.40 | 0.062<br>0.220<br>0.023<br>0.008<br>0.026    |  |
| K574609<br>K574610<br>K574611<br>K574612<br>K574613            |                                   | 2.38<br>1.52<br>2.28<br>2.32<br>0.05 | 0.013<br>0.019<br>0.028<br>0.005<br>2.23     |  |
| K574614<br>K574615<br>K574616<br>K574617<br>K574618            |                                   | 2.54<br>2.50<br>2.38<br>2.28<br>2.37 | <0.005<br><0.005<br><0.005<br>0.007<br>0.006 |  |
| K574619<br>K574620<br>K574621<br>K574622<br>K574622<br>K574623 |                                   | 2.35<br>2.55<br>3.76<br>3.67<br>3.57 | 0.005<br><0.005<br>0.005<br>0.008<br>0.010   |  |
| K574624<br>K574625<br>K574626<br>K574627<br>K574628            |                                   | 3.72<br>2.51<br>2.40<br>2.54<br>3.82 | 0.010<br>0.011<br>0.012<br>0.011<br>0.010    |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 4 - A Total # Pages: 5 (A) Finalized Date: 20-NOV-2011 Account: MANGOL

Project: WEST LIMB


| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005             |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------------|--|
| K574629<br>K574630<br>K574631<br>K574632            |                                   | 3.88<br>2.34<br>2.39<br>2.38         | 0.011<br>0.023<br>0.026<br>0.048          |  |
| K574633<br>K574634<br>K574635<br>K574636<br>K574637 |                                   | 2.42<br>0.05<br>2.35<br>2.36<br>2.30 | 0.041<br>0.753<br>0.023<br>0.011<br>0.017 |  |
| K574638<br>K574639<br>K574640<br>K574641<br>K574642 |                                   | 2.38<br>2.42<br>2.35<br>2.30<br>2.66 | 0.007<br>0.009<br>0.007<br>0.006<br>0.010 |  |
| K574643<br>K574644<br>K574645<br>K574646            |                                   | 2.49<br>3.67<br>3.80<br>3.05         | 0.011<br>0.011<br>0.008<br>0.007          |  |
| K574647<br>K574648<br>K574649<br>K574650<br>K574651 |                                   | 2.52<br>1.86<br>2.57<br>2.34<br>2.33 | 0.008<br>0.005<br>0.011<br>0.011<br>0.011 |  |
| K574652<br>K574653<br>K574654<br>K574655<br>K574656 |                                   | 2.57<br>2.43<br>2.39<br>2.46<br>2.59 | 0.010<br>0.006<br>0.011<br>0.006<br>0.015 |  |
| K574657<br>K574658<br>K574659<br>K574660            |                                   | 2.09<br>2.35<br>0.05<br>2.52         | 0.012<br>0.010<br>0.777<br>0.010          |  |
| K574661<br>K574662<br>K574663<br>K574664<br>K574665 |                                   | 2.63<br>2.47<br>2.48<br>2.43<br>3.71 | 0.014<br>0.009<br>0.009<br>0.010<br>0.012 |  |
| K574665<br>K574666<br>K574667<br>K574668            |                                   | 3.83<br>3.53<br>3.75                 | 0.012<br>0.012<br>0.014<br>0.012          |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 5 - A Total # Pages: 5 (A) Finalized Date: 20-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005              |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|--------------------------------------------|--|
| K574669<br>K574670<br>K574671<br>K574672<br>K574673 |                                   | 2.28<br>2.32<br>2.46<br>2.45<br>3.64 | 0.014<br>0.008<br>0.007<br>0.013<br>0.011  |  |
| K574674<br>K574675<br>K574676<br>K574677<br>K574678 |                                   | 2.91<br>1.74<br>2.39<br>2.51<br>2.49 | 0.010<br>0.010<br><0.005<br>0.011<br>0.014 |  |
| K574679<br>K574680<br>K574681<br>K574682<br>K574683 |                                   | 3.78<br>2.47<br>2.54<br>3.68<br>3.71 | 0.012<br>0.011<br>0.015<br>0.007<br>0.013  |  |
| K574684<br>K574685                                  |                                   | 2.44<br>2.37                         | 0.014<br>0.017                             |  |
|                                                     |                                   |                                      |                                            |  |
|                                                     |                                   |                                      |                                            |  |
|                                                     |                                   |                                      |                                            |  |
|                                                     |                                   |                                      |                                            |  |
|                                                     |                                   |                                      |                                            |  |



#### To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Page: 1 Finalized Date: 20-NOV-2011 Account: MANGOL

# CERTIFICATE TB11224634

Project: WEST LIMB

P.O. No.:

This report is for 84 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 28-OCT-2011.

The following have access to data associated with this certificate:

ALS Canada Ltd.

| TODD KEAST | NAAZNIN PASTAKIA | TAMARA TARAS |
|------------|------------------|--------------|
|            |                  |              |

| SAMPLE PREPARATION |                                |  |  |
|--------------------|--------------------------------|--|--|
| ALS CODE           | DESCRIPTION                    |  |  |
| WEI-21             | Received Sample Weight         |  |  |
| LOG-22             | Sample login - Rcd w/o BarCode |  |  |
| CRU-31             | Fine crushing - 70% <2mm       |  |  |
| CRU-QC             | Crushing QC Test               |  |  |
| PUL-QC             | Pulverizing QC Test            |  |  |
| SPL-21             | Split sample - riffle splitter |  |  |
| PUL-32             | Pulverize 1000g to 85% < 75 um |  |  |
| LOG-23             | Pulp Login - Rcvd with Barcode |  |  |

## ANALYTICAL PROCEDURES

| ALS CODE | DESCRIPTION         | INSTRUMENT |
|----------|---------------------|------------|
| Au-AA23  | Au 30g FA-AA finish | AAS        |

To: MANITOU GOLD INC ATTN: TAMARA TARAS 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Nacera nana Signature: Nacera Amara, Laboratory Manager, Val d'Or



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 2 - A Total # Pages: 4 (A) Finalized Date: 20-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005               |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|---------------------------------------------|--|
| K574465<br>K574466<br>K574467<br>K574468<br>K574468 |                                   | 2.39<br>2.51<br>2.77<br>2.50<br>2.38 | 0.007<br>0.019<br>0.007<br>0.009<br>0.012   |  |
| K574470<br>K574471<br>K574472<br>K574473<br>K574474 |                                   | 2.55<br>2.52<br>2.55<br>2.19<br>2.13 | 0.028<br>0.007<br>0.008<br>0.011<br>0.460   |  |
| K574475<br>K574476<br>K574477<br>K574478<br>K574479 |                                   | 2.05<br>2.39<br>0.05<br>2.38<br>2.39 | 0.576<br>1.280<br>2.37<br>1.040<br><0.005   |  |
| K574480<br>K574481<br>K574482<br>K574483<br>K574484 |                                   | 2.47<br>2.40<br>1.21<br>2.62<br>2.55 | 0.028<br>0.022<br>0.017<br>0.056<br>0.005   |  |
| K574485<br>K574486<br>K574487<br>K574488<br>K574488 |                                   | 1.27<br>2.48<br>2.76<br>2.56<br>2.53 | <0.005<br>0.052<br><0.005<br>0.009<br>0.010 |  |
| K574490<br>K574491<br>K574492<br>K574493<br>K574493 |                                   | 2.37<br>2.49<br>2.55<br>2.10<br>1.61 | 0.005<br>0.029<br>0.048<br>0.088<br><0.005  |  |
| K574495<br>K574496<br>K574497<br>K574498<br>K574499 |                                   | 1.35<br>1.42<br>2.18<br>1.34<br>0.05 | 0.015<br>0.044<br>0.007<br>0.012<br>0.738   |  |
| K574500<br>K574501<br>K574502<br>K574503<br>K574504 |                                   | 2.25<br>2.25<br>2.77<br>2.56<br>1.25 | 0.605<br>0.342<br>0.060<br>0.043<br>0.016   |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 3 - A Total # Pages: 4 (A) Finalized Date: 20-NOV-2011 Account: MANGOL

Project: WEST LIMB


| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                      |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------------|--|
| K574505<br>K574506<br>K574507<br>K574508<br>K574509 |                                   | 1.34<br>2.28<br>2.64<br>3.54<br>2.49 | <0.005<br>0.499<br>0.007<br>0.009<br>0.005         |  |
| K574510<br>K574511<br>K574512<br>K574513<br>K574514 |                                   | 2.37<br>2.41<br>2.44<br>2.45<br>1.67 | 0.021<br>0.039<br>0.121<br>1.070<br>0.190          |  |
| K574515<br>K574516<br>K574517<br>K574518<br>K574519 |                                   | 2.55<br>1.68<br>2.38<br>2.44<br>2.44 | 0.013<br>0.011<br><0.005<br>0.030<br><0.005        |  |
| K574520<br>K574521<br>K574522<br>K574523<br>K574523 |                                   | 1.33<br>1.27<br>2.53<br>2.65<br>2.46 | <0.005<br><0.005<br><0.005<br>0.009<br>0.012       |  |
| K574525<br>K574526<br>K574527<br>K574528<br>K574529 |                                   | 2.50<br>2.21<br>2.67<br>2.27<br>2.41 | 0.006<br>0.006<br><0.005<br><0.005<br>0.009        |  |
| K574530<br>K574531<br>K574532<br>K574533<br>K574533 |                                   | 3.85<br>3.96<br>3.53<br>3.75<br>3.75 | 0.011<br>0.009<br>0.010<br>0.010<br>0.010<br>0.014 |  |
| K574535<br>K574536<br>K574537<br>K574538<br>K574539 |                                   | 3.67<br>2.57<br>2.41<br>1.19<br>1.72 | 0.012<br>0.016<br>0.018<br>0.012<br>0.199          |  |
| K574540<br>K574541<br>K574542<br>K574543<br>K574544 |                                   | 2.45<br>2.52<br>2.53<br>2.58<br>3.78 | 0.006<br>0.008<br>0.009<br><0.005<br>0.005         |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 4 - A Total # Pages: 4 (A) Finalized Date: 20-NOV-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                       | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02 | Au-AA23<br>Au<br>ppm<br>0.005       |  |
|------------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|--|
| K574545<br>K574546<br>K574547<br>K574548 |                                   | 3.68<br>2.39<br>2.45<br>2.40      | 0.005<br><0.005<br><0.005<br><0.005 |  |
|                                          |                                   |                                   |                                     |  |
|                                          |                                   |                                   |                                     |  |
|                                          |                                   |                                   |                                     |  |
|                                          |                                   |                                   |                                     |  |
|                                          |                                   |                                   |                                     |  |



#### To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Page: 1 Finalized Date: 11-DEC-2011 Account: MANGOL

# CERTIFICATE TB11233080

Project: WEST LIMB

P.O. No.:

This report is for 95 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 7-NOV-2011.

The following have access to data associated with this certificate:

| TODD KEAST | NAAZNIN PASTAKIA | TAMARA TARAS |
|------------|------------------|--------------|
|            |                  |              |

ALS Canada Ltd.

| SAMPLE PREPARATION |                                |  |  |  |
|--------------------|--------------------------------|--|--|--|
| ALS CODE           | DESCRIPTION                    |  |  |  |
| WEI-21             | Received Sample Weight         |  |  |  |
| LOG-22             | Sample login - Rcd w/o BarCode |  |  |  |
| CRU-31             | Fine crushing – 70% <2mm       |  |  |  |
| CRU-QC             | Crushing QC Test               |  |  |  |
| PUL-QC             | Pulverizing QC Test            |  |  |  |
| SPL-21             | Split sample - riffle splitter |  |  |  |
| PUL-32             | Pulverize 1000g to 85% < 75 um |  |  |  |
| LOG-23             | Pulp Login - Rovd with Barcode |  |  |  |

## ANALYTICAL PROCEDURES

| ALS CODE | DESCRIPTION         | INSTRUMENT |
|----------|---------------------|------------|
| Au-AA23  | Au 30g FA-AA finish | AAS        |

To: MANITOU GOLD INC ATTN: TODD KEAST 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Nacera ana Signature: Nacera Amara, Laboratory Manager, Val d'Or



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 2 - A Total # Pages: 4 (A) Finalized Date: 11-DEC-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                 |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------------------|--|
| K574686<br>K574687<br>K574688<br>K574689<br>K574690 |                                   | 3.57<br>2.16<br>2.48<br>2.55<br>2.17 | 0.006<br><0.005<br><0.005<br><0.005<br><0.005 |  |
| K574691<br>K574692<br>K574693<br>K574694<br>K574695 |                                   | 2.48<br>3.74<br>2.51<br>2.38<br>2.42 | 0.006<br>0.007<br>0.005<br>0.009<br>0.191     |  |
| K574696<br>K574697<br>K574698<br>K574699<br>K574700 |                                   | 0.05<br>2.28<br>1.20<br>2.42<br>2.47 | 0.792<br>0.086<br>0.239<br>0.182<br>0.017     |  |
| K574701<br>K574702<br>K574703<br>K574704<br>K574705 |                                   | 2.62<br>2.52<br>2.49<br>1.33<br>2.56 | <0.005<br>0.010<br>0.016<br><0.005<br>0.010   |  |
| K574706<br>K574707<br>K574708<br>K574709<br>K574710 |                                   | 2.52<br>2.43<br>2.33<br>2.54<br>2.34 | 0.010<br>0.021<br>0.024<br>0.046<br>0.090     |  |
| K574711<br>K574712<br>K574713<br>K574714<br>K574715 |                                   | 2.62<br>2.39<br>1.28<br>2.27<br>2.40 | 0.016<br>0.013<br>0.010<br>3.70<br>3.41       |  |
| K574716<br>K574717<br>K574718<br>K574719<br>K574720 |                                   | 2.22<br>2.41<br>2.05<br>2.23<br>2.47 | 0.333<br>0.116<br>0.022<br>0.048<br>0.040     |  |
| K574721<br>K574722<br>K574723<br>K574724<br>K574725 |                                   | 2.20<br>0.05<br>2.14<br>2.37<br>2.24 | 0.031<br>2.44<br>0.041<br>0.052<br>0.176      |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 3 - A Total # Pages: 4 (A) Finalized Date: 11-DEC-2011 Account: MANGOL

Project: WEST LIMB


| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------|--|
| K574726<br>K574727<br>K574728<br>K574729<br>K574730 |                                   | 2.18<br>2.68<br>2.71<br>2.28<br>2.31 | 0.122<br>0.462<br>0.164<br>0.029<br>2.03     |  |
| K574731<br>K574732<br>K574733<br>K574734<br>K574735 |                                   | 2.03<br>1.96<br>2.32<br>1.18<br>2.66 | 5.65<br>0.190<br>0.015<br>0.012<br>0.093     |  |
| K574736<br>K574737<br>K574738<br>K574739<br>K574740 |                                   | 2.03<br>2.17<br>2.25<br>2.25<br>2.13 | 0.012<br><0.005<br><0.005<br>0.006<br><0.005 |  |
| K574741<br>K574742<br>K574743<br>K574744<br>K574745 |                                   | 2.12<br>2.24<br>2.29<br>0.05<br>2.26 | 0.020<br><0.005<br>0.019<br>2.41<br>0.007    |  |
| K574746<br>K574747<br>K574748<br>K574749<br>K574750 |                                   | 2.96<br>2.23<br>2.71<br>2.01<br>1.62 | 0.026<br>0.393<br>0.010<br>0.007<br>0.011    |  |
| K574751<br>K574752<br>K574753<br>K574754<br>K574755 |                                   | 2.46<br>1.25<br>2.29<br>2.40<br>2.56 | 0.336<br>0.030<br>0.005<br>0.007<br>0.010    |  |
| K574756<br>K574757<br>K574758<br>K574759<br>K574760 |                                   | 2.21<br>2.47<br>2.46<br>2.56<br>2.40 | 0.016<br>0.012<br>0.009<br>0.009<br>0.013    |  |
| K574761<br>K574762<br>K574763<br>K574764<br>K574765 |                                   | 2.48<br>2.45<br>2.46<br>2.56<br>2.83 | 0.012<br>0.019<br>0.018<br>0.005<br>0.005    |  |



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 4 - A Total # Pages: 4 (A) Finalized Date: 11-DEC-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005                |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|----------------------------------------------|--|
| K574766<br>K574767<br>K574768<br>K574769<br>K574770 |                                   | 3.91<br>3.68<br>3.97<br>3.66<br>2.46 | <0.005<br>0.005<br><0.005<br>0.006<br><0.005 |  |
| K574771<br>K574772<br>K574773<br>K574774<br>K574775 |                                   | 3.88<br>3.81<br>1.80<br>0.05<br>2.37 | 0.009<br>0.008<br>0.011<br>2.46<br>0.157     |  |
| K574776<br>K574777<br>K574778<br>K574779<br>K574780 |                                   | 2.63<br>1.21<br>2.71<br>2.68<br>2.62 | 0.153<br><0.005<br>0.025<br>1.190<br><0.005  |  |
|                                                     |                                   |                                      |                                              |  |
|                                                     |                                   |                                      |                                              |  |
|                                                     |                                   |                                      |                                              |  |
|                                                     |                                   |                                      |                                              |  |
|                                                     |                                   |                                      |                                              |  |
|                                                     |                                   |                                      |                                              |  |



#### To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

Page: 1 Finalized Date: 11-DEC-2011 Account: MANGOL

# CERTIFICATE TB11233081

Project: WEST LIMB

P.O. No.:

This report is for 64 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 7-NOV-2011.

The following have access to data associated with this certificate:

| TODD KEAST | NAAZNIN PASTAKIA | TAMARA TARAS |
|------------|------------------|--------------|
|            |                  |              |

ALS Canada Ltd.

| SAMPLE PREPARATION |                                |  |  |
|--------------------|--------------------------------|--|--|
| ALS CODE           | DESCRIPTION                    |  |  |
| WEI-21             | Received Sample Weight         |  |  |
| LOG-22             | Sample login - Rcd w/o BarCode |  |  |
| CRU-31             | Fine crushing - 70% <2mm       |  |  |
| CRU-QC             | Crushing QC Test               |  |  |
| PUL-QC             | Pulverizing QC Test            |  |  |
| SPL-21             | Split sample - riffle splitter |  |  |
| PUL-32             | Pulverize 1000g to 85% < 75 um |  |  |
| LOG-23             | Pulp Login - Rcvd with Barcode |  |  |

## ANALYTICAL PROCEDURES

| ALS CODE | DESCRIPTION         | INSTRUMENT |
|----------|---------------------|------------|
| Au-AA23  | Au 30g FA-AA finish | AAS        |

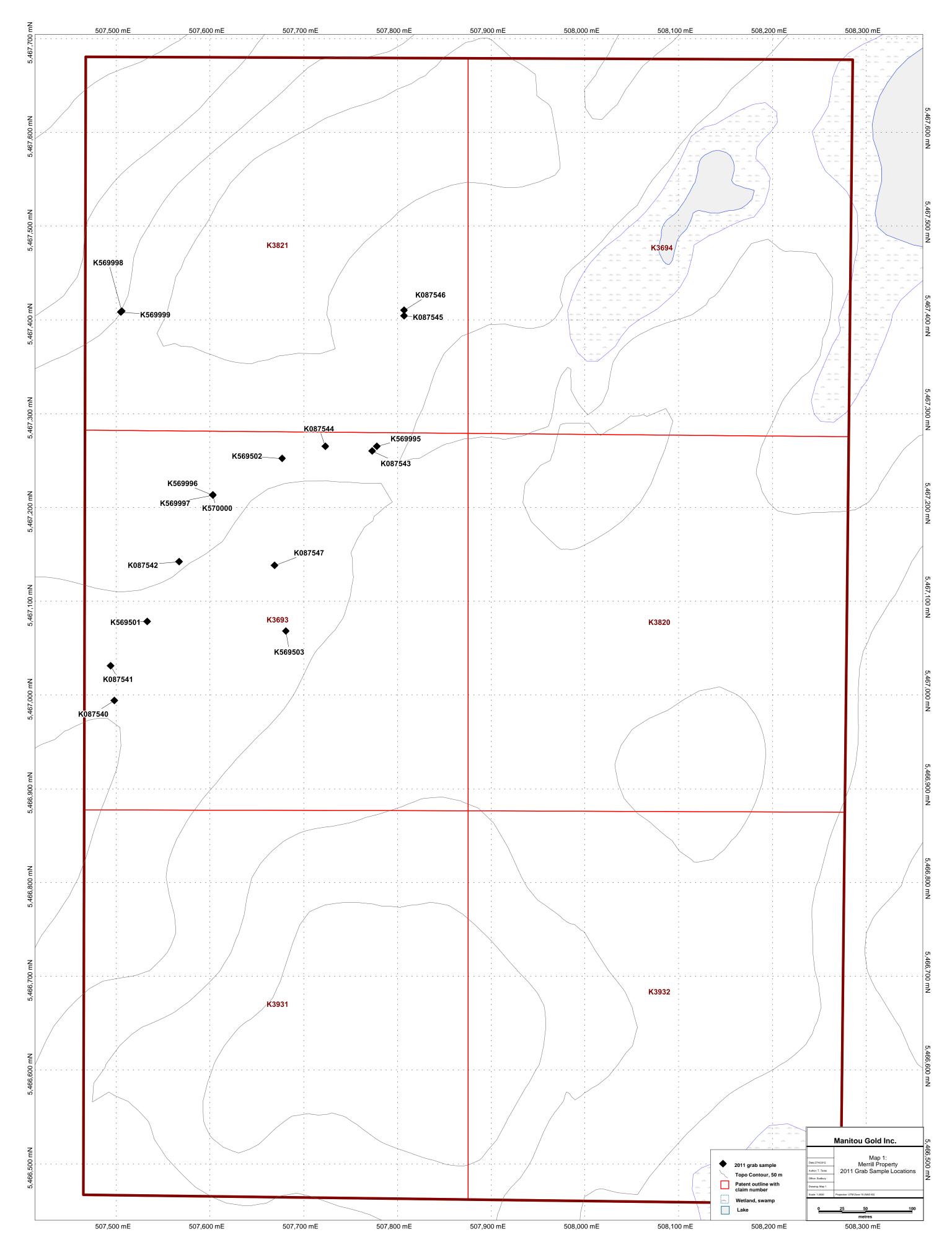
To: MANITOU GOLD INC ATTN: TODD KEAST 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5

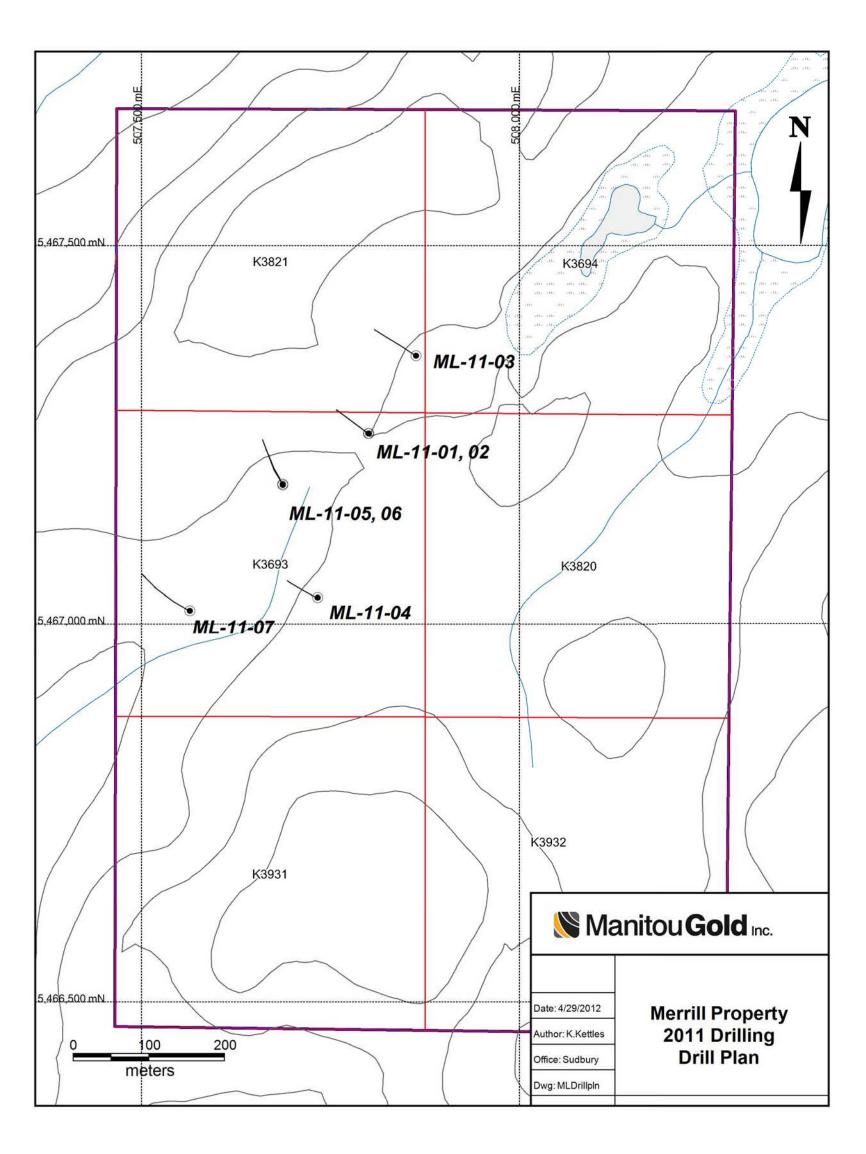
Nacera ana Signature: Nacera Amara, Laboratory Manager, Val d'Or



To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 2 - A Total # Pages: 3 (A) Finalized Date: 11-DEC-2011 Account: MANGOL

Project: WEST LIMB


| Sample Description                                                        | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02            | Au-AA23<br>Au<br>ppm<br>0.005                           |  |
|---------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|---------------------------------------------------------|--|
| K574401<br>K574402<br>K574403<br>K574404<br>K574405                       |                                   | 2.63<br>2.76<br>2.72<br>2.31<br>2.54         | <0.005<br><0.005<br><0.005<br><0.005<br><0.005          |  |
| K574406<br>K574407<br>K574408<br>K574409<br>K574410                       |                                   | 2.65<br>2.50<br>1.55<br>2.53<br>1.18         | <0.005<br><0.005<br>0.009<br>0.005<br><0.005            |  |
| K574411<br>K574412<br>K574413<br>K574414<br>K574415                       |                                   | 2.46<br>2.19<br>2.50<br>3.26<br>2.59         | <0.005<br><0.005<br>0.005<br><0.005<br><0.005<br><0.005 |  |
| K574416<br>K574417<br>K574418<br>K574419<br>K574420                       |                                   | 2.51<br>3.35<br>2.48<br>2.48<br>2.73         | 0.056<br>0.007<br><0.005<br>0.005<br>0.008              |  |
| K574421<br>K574422<br>K574423<br>K574424<br>K574424                       |                                   | 2.42<br>2.15<br>1.86<br>0.05<br>2.42         | 0.014<br><0.005<br>0.023<br>2.53<br>0.018               |  |
| K574426<br>K574427<br>K574428<br>K574429                                  |                                   | 2.50<br>1.91<br>1.10<br>2.51                 | 0.008<br>0.015<br>0.006<br>0.009                        |  |
| K574430<br>K574431<br>K574432<br>K574433<br>K574434<br>K574435            |                                   | 2.60<br>2.58<br>2.52<br>2.46<br>2.54<br>2.44 | 0.008<br>0.005<br>0.007<br>0.014<br>0.018<br>0.008      |  |
| K574435<br>K574436<br>K574437<br>K574438<br>K574439<br>K574439<br>K574440 |                                   | 2.37<br>3.64<br>3.95<br>3.68<br>3.83         | 0.006<br>0.005<br>0.006<br>0.008<br>0.012               |  |




To: MANITOU GOLD INC 101-957 CAMBRIAN HEIGHTS DRIVE SUDBURY ON P3C 5S5 Page: 3 - A Total # Pages: 3 (A) Finalized Date: 11-DEC-2011 Account: MANGOL

Project: WEST LIMB

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | WEI-21<br>Recvd Wt.<br>kg<br>0.02    | Au-AA23<br>Au<br>ppm<br>0.005             |  |
|-----------------------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------------|--|
| K574441<br>K574442<br>K574443<br>K574444<br>K574444 |                                   | 2.36<br>3.03<br>2.38<br>0.05<br>2.15 | 0.011<br>0.009<br>0.026<br>0.797<br>0.051 |  |
| K574446<br>K574447<br>K574448<br>K574449<br>K574450 |                                   | 2.41<br>1.76<br>2.44<br>1.14<br>2.36 | 2.53<br>0.077<br>0.024<br><0.005<br>0.021 |  |
| K574451<br>K574452<br>K574453<br>K574454<br>K574455 |                                   | 2.44<br>2.41<br>2.67<br>2.27<br>2.31 | 0.023<br>0.047<br>0.010<br>0.031<br>0.057 |  |
| K574456<br>K574457<br>K574458<br>K574459<br>K574460 |                                   | 2.32<br>2.45<br>2.56<br>2.60<br>2.37 | 0.016<br>0.010<br>0.009<br>0.010<br>0.012 |  |
| K574461<br>K574462<br>K574463<br>K574464            |                                   | 2.50<br>2.47<br>2.60<br>2.51         | 0.010<br>0.010<br>0.007<br>0.011          |  |
|                                                     |                                   |                                      |                                           |  |
|                                                     |                                   |                                      |                                           |  |
|                                                     |                                   |                                      |                                           |  |
|                                                     |                                   |                                      |                                           |  |



