We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

WORK REPORT on the CUCUMBER LAKE PROJECT MACBETH TOWNSHIP SUDBURY MINING DIVISION for STEVEN ANDERSON

Submitted by: Steve Anderson 2041663 ONTARIO LTD. *VISION EXPLORATION* 1780 Coyote Ridge Rd. Crystal Falls, Ontario P0H-1L0 Phone: 705-266-4703 Email: visionexploration@persona.ca Website: www.duenorth.net/vision

April, 2017

TABLE OF CONTENTS

Page #	Contents
1	Introduction
3	Location and access
3	Personnel
3	Previous work
5	General Geology
5	Claims
8	Work Summary
9	Work Program
9	Magnetometer Theory
10	Survey Results
10	Recommendations and Conclusions
11	Certificate

Figures

1	Location map
2	Regional location map
3	Claim Sketch
4	Grid Sketch

Appendices

A GEM GSM-19T Magnetometer

<u>Maps</u>

A	Posted magnetometer data
В	Contoured magnetometer data

INTRODUCTION

The following report will deal with the results of a magnetometer survey carried out on the Cucumber Lake Project, located in Macbeth Township, Sudbury Mining Division. The property is made up of a single unit mining claim (4273055) located in the east-central portion of Macbeth Township (Figure #3). This work program was carried, focusing on an old trench with reported gold values of up to 1.8 oz/ton. The work was carried out on a contract basis by Vision Exploration on behalf of Steve Anderson.

A total of 3.5km of grid lines were established to cover the subject claim (Figure #4). The entire grid was then covered with a magnetometer survey. The work program was designed to provide detailed magnetic data to aid in the geological interpretation of the area. This work was carried out between March 15th and March 16th, 2017.

This report will deal with the results of the magnetometer survey carried out on the abovementioned property.

CUCUMBER LAKE PROJECT LOCATION MAP

FIGURE #1

LOCATION AND ACCESS

The claim that makes up the Cucumber Lake Project is located in the east-central part of Macbeth Township. It is a single unit mining claim numbered 4273055 (Figure #4) that lies along the eastern part of Cucumber Lake. The work area is situated approximately 30km north-northwest of the village of River Valley (Figure #2).

Access to the work area was gained by taking Hwy 539A west from the village of River Valley. At about the 2 km point, Hwy 539A then turns into Hwy 805. Hwy 805 can be followed to approximately the 30km point to where the Cucumber Lake Road heads west. A 7km drive on Cucumber Lake Road provides access to the west side of Cucumber Lake.

It should be noted that the last 5 km of road is not maintained during the winter months. As a result, during this survey period it was necessary to use snowmobile to access the property

PERSONNEL

The following people were directly involved in carrying out the Magnetometer survey. All were employed by Vision Exploration of Timmins, Ontario.

Project Manager Helper Steve Anderson Glenda Smith Crystal Falls Crystal Falls

PREVIOUS WORK

This was first phase of exploration to be carried out on this claim by Steven Anderson A work history on the property shows a previous operator (W. Nichol, 1984) obtained assays of up to 1.76 oz./Ton Au from a trenching program

GENERAL GEOLOGY

The geology underlying the Cucumber Lake Project is shown by OGS Map 2386 to be felsic to intermediate metavolcanics. The gold values obtained from previous trench are reported to have come from a mineralized quartz vein 3-6 feet in width, striking generally east west

CLAIMS

The claim covered by this work program makes up the Cucumber Lake Project and is as follows.

<u>Claim #</u>

of Units

1

Township

Macbeth Township

4273055

WORK PROGRAM SUMMARY

General Information:

Project Dates:	March 15, 2017 – March 16, 2017
Survey Period:	2 days
Survey Days:	2 days
Weather:	0 days
Down days:	0 days
Survey Coverage:	3.5 km Gridding
	3.5 km Magnetometer Survey

Personnel:

Project Supervision:	Steve Anderson
Helper:	Glenda Smith

Survey Specifications:

Reading Interval:	12.5 meters
Line interval:	50 meters

Instrument:

Surveyed by:

2041663 ONTARIO LTD. VISION EXPLORATION

1780 Coyote Ridge Road Crystal Falls, Ontario P0H-1L0 Phone: 705-266-4703 E-Mail: visionexploration@persona.ca Website: www.duenorth.net/vision

WORK PROGRAM

The current work program involved establishing 3.5km of grid lined over a portion of the subject claim. Lines were established in a north-south direction, spaces 50 meters apart. For the land portion of the grid the stations were marked using flagging while on the lake, the stations were marked with pickets. The stations were marked every 25meters and the magnetometers readings were taken every 12.5 metres.

The following is a brief description of the magnetometer survey and the parameters used.

MAGNETOMETER THEORY

A GEM - GSM 19 Proton Precession magnetometer was used to carry out the magnetometer survey. The instrument is synchronised with a GEM -GSM 19 recording base station to help eliminate magnetic diurnal variation. This should ensure an accuracy of less than 10 Nt.

The Proton Precession method involves energising a wire coil immersed in a hydrocarbon fluid. This causes the protons in the proton rich fluid to spin or precess simulating spinning magnetic dipoles. When the current is removed the protons precess about the direction of the earth's magnetic field, generating a signal in the same coil which is proportional to the total magnetic field intensity. In this way, the horizontal gradient of the earth's magnetic field can be measured and plotted in plan form with values of equal intensity joined to form a contour map.

This presentation is useful in correlating with other data sets to aid in structural interpretation. Individual magnetic responses can be interpreted for dip, depth and width estimates after profiling the data.

The following parameters were employed for the survey:

Instrument - GEM GSM-19 Proton Precession Magnetometer Station Interval - 12.5m Line Interval - 50m Diurnal Correction Method - GEM GSM-19 Recording Base Station Data Presentation - Magnetic posting map - Magnetic contour map

- Magnetic coloured map
- 1:2500 scale

SURVEY RESULTS

The magnetometer survey conducted on the Cucumber Lake project was successful in outlining what are likely various geological units within the grid. The eastern portion of the claim shows a magnetic low while the western part shows a magnetic high. The horizontal gradient between the east and west parts of the claim is approximately 500nT.

The trenched area that hosts the gold occurance located at 377E/135N does not appear to have responded to the magnetic survey

RECOMMENDATIONS AND CONCLUSIONS

As mentioned under results, there is a magnetic low occupying the eastern section of the grid on L400E and L500E. These lines occur at the base of a large north-south trending cliff that is made up of Nippissing diabase and is likely influencing the Magnetics.

The magnetic high along the claims western boundary may be in part marking the northsouth running Cucumber Lake fault zone

The magnetic survey does not appear to have responded to the trenched area (337E/135N), which was the focus of this work program. Since the gold bearing quartz vein is reported to contain disseminated sulphides, an Induced Polarization survey should be carried out. The IP survey may be successful outline any zones of sulphides or disseminated sulphide which may not have responded to this magnetic survey.

CERTIFICATION

- I, Steve Anderson of Timmins, Ontario hereby certify that:
- 1. I hold a three-year Geological Technologist Diploma from Sir Sandford College, Lindsay, and Ontario, obtained in May 1981.
- 2. I have been practising my profession since 1979 in Ontario, Quebec, Nova Scotia, New Brunswick, Newfoundland, NWT, Manitoba, Saskatchewan and Greenland.
- 3. I have been employed directly with Asamera Oil Inc. Urangellschaft Canada Ltd. Nanisivik Mines Ltd., R.S. Middleton Exploration Services Ltd., Rayan Exploration Ltd and I am currently president of Vision Exploration.
- 4. I hold a 100% interest in the subject property.
- 5. I have based conclusions and recommendations contained in this report on knowledge of the area, my previous experience and on the results of the fieldwork conducted on the property during March, 2017.

Dated this 25th day of April, 2017 At Crystal Falls, Ontario.

APPENDIX "A" GEM GSM-19T MAGNETOMETER

GEM GSM-19

INSTRUMENT SPECIFICATIONS

MAGNETOMETER / GRADIOMETER

•	
Resolution:	0.01 nT (gamma), magnetic field and gradient.
Accuracy:	0.2 nT over operating range.
Range:	20,000 to 120,000 nT.
Gradient Tolerance:	Over 10,000 nT/m
Operating interval:	:3 seconds minimum, faster optional. Readings initiated from keyboard,
	external trigger, or carriage return via RS-232-C.
Input/Output:	6 pin weatherproof connector, RS-232C, and (optional) analog output.
Power Requirements:	12 V, 200 mA peak (during polarization), 30 mA standby. 300mA peak
	in gradiometer mode.
Power Source:	Internal 12 V, 2.6 Ah sealed lead-acid battery standard, others op-
	tional. An External 12V power source can also be used.
Battery Charger:	Input: 110 VAC, 60 Hz. Optional 110/220 VAC, 50/60 Hz.
	Output: dual level charging.
Operating Ranges:	Temperature: -40 °C to +60 °C.
	Battery Voltage: 10.0 V minimum to 15V maximum.
	Humidity: up to 90% relative, non condensing.
Storage Temperature:	-50°C to +65°C
Display:	LCD: 240 x 64 pixels, or 8 x 30 characters. Built in heater for opera-
	tion below -20°C
Dimensions:	Console: $223 \times 69 \times 240$ mm.
	Sensor staff: 4 x 450mm sections.
	Sensor: 170 x 71mm dia.
· · .	Weight: Console 2.1kg, Staff 0.9kg, Sensors 1.1kg each.
K TTL.	

Frequency Range:	15 - 30.0 kHz.
Parameters Measured:	Vertical In-phase and Out-of-phase components as percentage of total field.
• •	2 components of horizontal field.
	Absolute amplitude of total field.
Resolution:	0.1%.
Number of Stations:	Up to 3 at a time.
Storage:	Automatic with: time, coordinates, magnetic field/gradient, slope, EM field, frequency, in- and out-of-phase vertical, and both horizontal components for each selected station.
Terrain Slope Range:	0° - 90° (entered manually).
Sensor Dimensions:	$14 \times 15 \times 9$ cm. (5.5 x 6 x 3 inches).
Sensor Weight:	1.0 kg (2.2 lb).

	552000E	5	52100E	Ę	552200E	Ę	552300E	Ę	552400E	5	52500E
88400N		L50 E	L100 E	L150 E	L200 E	L250 E	L300 E	L350 E	L400 E	L450 E	U - 40 - 41
518		, 55641	55668	55666	55651	55628	55597	55529	55453	, 55297	
		55618	55668	55665	55653	55625	55594	55561	55430	55759	
		+55616	-55669	-55662	-55656	-55622	- 55584	-55807	-55438	-55258	
		55656	55669	55661	55667	55621	55583	55404	55525	55241	
		+55670	-55669	-55663	-55654	-55621	- 55590	-55519	-55432	-5\$270	
		55670	55672	55665	55648	55619	55590	55513	55432	55272	
220		-55673	-55674	-55663	-55651	-55615	-55595	-55525	-55432	-55376	
8	42730	55 55675	55675	55658	55651	55614	55594	55522	55464	55413	
Ω,		- 55678	-55670	- 55655	-55649	-55615	- 55585	-55523	-55450	-65467	
		55682	55663	55647	55645	55614	55573	55510	55432	55503	
	L.	- 55683	-55660	-55644	-55642	-55607	- 55575	- 55508	-55476	55569	
		55683	55659	55641	55635	55604	55577	55533	55393	55586	
_		+55679	- 55655	-55640	-55630	-55603	+55572	-55519	+55517	+55489	
NO	155730	55666	55649	55637	55626	55597	55570	55515	55466	55340	-
120	-55678	-55659	-55642	-55633	-55622	-55596	-55567	-55497	-55485	+55105	
∞	55676	55659	55640	55629	55618	55595	55570	55522	55420	55086	
<u>л</u>	+55684	+55658	-55638	-55628	-55616	-55596	-55571	-55515	-55433	-55279	
	55667	55655	55636	55626	55615	55597	55578	55519	55403	55160	
	-55677	-55654	-55632	-55624	-55614	-55594	-55575	-55523	-55446	-55157	
	55669	55650	55630	55621	55613	55593	55575	55532	55452	55211	
	-55660	-55647	-55629	-55620	-55612	-55591	-55575	- 55555	-55458	-55200	
NO	55661	55642	55628	55619	55612	55593	55576	55546	55459	55276	(
	-55664	-55640	-55627	-55617	-55611	-55593	-55581	-55541	-55458	-55376	
00	55673	55640	55625	55616	55610	55593	55582	55522	55486	55416	
2	-55674	-55639	-55624	-55615	-55609	-55593	-55581	-55590	-55487	-55428	
	55668	55637	55624	55615	55608	55594	55580	55545	55483	55435	
	-55660	-55633	-55624	-55615	-55607	-55597	-55581	-55557	-55501	-55437	
	55651	55631	55623	55617	55607	55598	55581	55556	55478	55441	
	-55645	-55631	-55624	-55621	55605	55598	55582	55572	155511	55454	
NO		00001	00021	00021	00000	00000	00002	00072	00011	00101	
									Ĺ	L_	
8	m U	0	100	150	200	250	300	350	100	150	
, N		ГП	Ē	Ē	Ē	Ē	Ē	Ē	Ē	Ē	
			521005		50000	c	503005		504005		525005
	552000E	0	52TUUE	5	JJZZUUE	5	1023UUE	5	55240UE	D	525UUE

