We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2016 Prospecting Report for the Mount Jamie North Gold Project, Red Lake, Ontario, Canada

Report Prepared For

Prepared By:

Jason D. LeBlanc President/CEO Bounty Gold Corp. November 20, 2016

1.0 Introduction

1.1 Property Description

The Mount Jamie North Claim Group consists of four unpatented mining claims situated in Todd Township, Red Lake Mining Division, District of Kenora (Patricia portion), Northwestern Ontario. The Red Lake area is located 250 km NE of Winnipeg, Manitoba, 150 km NNW of Dryden, Ontario and 430 km NW of Thunder Bay, Ontario.

1.2 Claims

The Mount Jamie North Claim Group consists of four (4) contiguous unpatented mining claims covering 352 hectares. The property is centered on UTM co-ordinates (NAD83, Zone 15), 419025 m E, 5659260 m N. The claims are registered with the Ontario Ministry of Northern Development and Mines, Provincial Recording Office.

Claim	Township	Recording Date	Due Date	Units	Hectares
KRL4267832	Todd	2013-Nov-21	2016-Nov-21	4	64
KRL4267833	Todd	2013-Nov-21	2016-Nov-21	7	112
KRL4267834	Todd	2013-Nov-21	2016-Nov-21	5	80
KRL4249788	Todd	2014-Jan-14	2017-Jan-14	6	96
TOTAL				22	352

1.3 Location and Access

The property is located within Todd Township approximately 24 km northwest of the Red Lake townsite. Access to the claims is via Highway 125 to Nungessor Road. 16 km north of the junction of Highway 125 and Nungessor Road, turn west onto Pine Ridge Forest Access Road. Continue west for 22 km on Pine Ridge Forest Access Road, then turn south onto the Mount Jamie Mine access road. Continue to the historic Mount Jamie Mine site, located approximately 28 km down the Mount Jamie Mine access road. The eastern boundary of KRL4267832 is then accessed by travelling an additional 1.1 km down the Scott Bay Landing access trail.

The property, situated on Red Lake, can also be accessed by float plane and boat from the Red Lake townsite.

1.4 Climate, Local Resources and Infrastructure

The Red Lake area is located in an area characterized by northern continental climate, with warm summers and cold winters. Lake freeze-up typically occurs in mid-November, and break-up is typically in early-May. Snow cover is typical from late-October through early-May. Geological mapping and sampling is easiest outside of these winter seasons. Winters are generally harsh, with nightly low temperatures below -30°C common in January and February. Although winter conditions are not conducive to geological mapping, sampling and stripping overburden (due to ground frost penetration), drilling in the area is commonly performed from the surface of frozen lakes, permitting access to areas that are inaccessible or less accessible to drills during the summer months.

The Municipality of Red Lake (pop. 5,000) is a full-service community with extensive social (schools, hospital), recreational (golf course, recreation centers) and infrastructure (power, paved roads, gravel roads, water, sewer) in place. A well-trained labour force and numerous mining supply companies are established in the community to service the gold mines that are active or under construction in the community (Goldcorp, Rubicon).

Supplies and services which cannot be found in Red Lake can be delivered via Highway 105 (paved) from the Trans-Canada Highway (165 km south of Red Lake), or flown into the Red Lake Airport (with 5,000 ft asphalt runway and new terminal building constructed in 2011).

Water is available on the property from Red Lake (no permitting to take large volumes of water is currently in place). Grid power is not available on the property. Minor power requirements can be satisfied with the use of portable generators.

1.5 Physiography

The property is underlain by rock of the Canadian Shield, with low rolling hills. Red Lake is approximately 356 m above sea level, with the surrounding hills rising to 390 m, a variance of approximately 34 m. Overburden is generally shallow (with localized exceptions), and outcrops are common in areas of higher relief. A small portion of the claim group, at its western extremity, is covered by the waters of Red Lake. No other lakes or ponds of significance occur on the claim group.

2.0 Geological Setting

2.1 Regional Geology

The following description of the Geology of the Red Lake greenstone belt was modified from Sanborn-Barrie et al. (2004) and the references therein.

The Mount Jamie North Gold Project is located in the Uchi Subprovince of the Superior Province of the Canadian Precambrian Shield. Within the Uchi Subprovince, the Red Lake greenstone belt is host to one of Canada's preeminent gold producing districts with over 20 million ounces of gold produced since the 1930s.

The belt is interpreted to have evolved on the south side of the North Caribou terrain, an ancient continental block originating approximately 3 billion years before present (Ga) (Figure 8). The terrain evolved from extensive magmatic and sedimentary activity which occurred from 3.0 to 2.7 Ga with multiple events of intense deformation, metamorphism, hydrothermal alteration and gold mineralization. Regional metamorphic assemblages range from greenschist to amphibolite facies.

The tholeiitic and komatiitic metabasalts of the **Balmer Assemblage**, dated approximately between 3,000 and 2,988 million years before present (Ma), are the oldest volcanic rocks in the greenstone belt and host the major lode gold deposits in the Red Lake district. The assemblage consists of lower, middle and upper massive to pillowed tholeiitic metabasalt sequences separated by distinctive felsic and ultramafic metavolcanic rocks. Metasedimentary rocks also occur within the assemblage, mainly as thinly bedded magnetite-chert ironstone.

Underlying the northwestern portion of the Red Lake greenstone belt is the **Ball Assemblage** (approximately 2,940 to 2,925 Ma) consisting of a thick sequence of metamorphosed intermediate to felsic calc-alkaline flows and pyroclastic rocks.

The **Slate Bay Assemblage** (approximately 2,903 to 2,850 Ma) extends the length of the belt and consists of clastic rocks of three main lithological facies varying from conglomerates, quartzose arenites, wackes and mudstones. The contact of the Slate Bay assemblage with the Ball and Balmer assemblages represents an unconformity (Figure 9).

A thin sequence of calc-alkaline dacitic to rhyodacitic pyroclastic rocks of the **Bruce Channel Assemblage** (approximately 2,894 Ma) were deposited and overlain with clastic sediments and a chert-magnetite iron formation. Enriched LREE trace element profiles relative to the Balmer assemblage are interpreted to indicate crustal growth at a juvenile continental margin.

The **Trout Bay Assemblage** (approximately 2,853 Ma) is exposed in the southwest portion of the Red Lake greenstone belt. It is a volcano-sedimentary sequence consisting of a lower tholeitic basalt unit overlain by clastic rocks and interbedded with an intermediate tuff and a chert-magnetite-iron formation.

Following a lull in volcanic activity for approximately 100 million years, the **Confederation Assemblage** represents a time of widespread calc-alkaline volcanism (approximately 2,748 to 2,739 Ma). The approximately 2,744 Ma quartz-feldspar-porphyritic lapilli tuff of the Confederation assemblage forms the hanging wall at Madsen Mine.

Overlying the McNeely sequence in the Confederation assemblage is the Heyson sequence of tholeiitic basalts and felsic volcanics. Isotopic and geochemical data suggests the McNeely rocks were formed during a shallow marine to subaerial arc on the existing continental margin with later intra-arc extension and eruption forming the Heyson sequence. In the Madsen area, the strata of the Confederation and Balmer assemblages depict an angular unconformity with opposing facing directions. The Balmer assemblage was, thus, overturned prior to the deposition of the Confederation assemblage.

Following the Confederation assemblage, the **Huston Assemblage** (approximately between 2,742 and 2,733 Ma) records a time of clastic sedimentary deposition varying from immature conglomerates and wackes. The Huston assemblage has been compared to the Timiskaming conglomerates commonly associated with gold mineralization in the Timmins camp of the Abitibi greenstone belt (Dubé et al., 2003). The Huston was followed by the **Graves Assemblage** (approximately 2,733 Ma) of calc-alkaline volcanism dominated by andesitic to dacitic pyroclastic tuff, and synvolcanic diorite and tonalite.

Plutonic rocks found in the Red Lake greenstone belt correlate with various stages of volcanism. These include mafic to ultramafic intrusions during Balmer and Ball time periods, gabbroic sills related to Trout Bay volcanism, felsic dikes and diorite intrusions during the Confederation assemblage, and intermediate to felsic plutons, batholiths and stocks of Graves assemblage age.

Post-volcanism plutonic activity is also evident from granitoid rocks such as the **McKenzie Island Stock**, **Dome Stock** and **Abino Granodiorite** (2,720 and 2,718 Ma) which were host to past producing gold mines. The last magmatic event recorded in the belt is from about 2.7 Ga with a series of potassium-feldspar megacrystic granodiorite batholiths, plutons and dikes, including the **Killala-Baird Batholith**.

Structurally, the belt displays evidence of several deformational events with associated hydrothermal activity and gold mineralization. The main episode of penetrative deformation occurred after Confederation volcanism 2.74 Ga. This D_1 deformation event resulted in the formation of northernly trending south-plunging F_1 folds and associated fabrics. The likely cause of deformation is a change in plate dynamics such as the shallowing of a subducted slab creating compression in the upper plate and the displacement of magmatic activity.

A second important deformational event superimposes D_1 structures. East to northeast trending D_2 structures occur in western and central Red Lake, and southeast trending folds and fabric are present in eastern Red Lake such as at the Campbell and Red Lake mines. The onset of penetrative D_2 strain across the belt from 2.72 Ga is interpreted to document the collision of the North Caribou Terrain and the Winnipeg River Subprovince to the south.

2.2 Geology of Todd Township and Project Area

From the perspective of gold prospectivity, the most prominent feature within Todd Township is a large regional fold structure, with the fold hinge located around 422805 E, 5657654 N. From the fold hinge, the fold limbs extend SW (235°) and NW (290°). Confederation Minerals' Newman-Todd Project is located between 1,700 and 3,900 meters SW of the hinge. West Red Lake Gold Mines' Rowan Project overlays the fold hinge itself, the initial 1,700 meters of the SW limb to the boundary of Confederation Minerals' Newman-Todd Project, as well as the initial 3,000 meters of the NW limb to Bounty Gold Corp's Mount Jamie North Project. Bounty Gold Corp's Mount Jamie North Project is located between 3,000 and 5,700 meters NW of the hinge.

Sedimentary lithological units of chert-magnetite, chert-marble and banded iron formations, occasionally stromatolitic and brecciated, define the SW and NW limbs. Descriptions from Sanborn-Barrie et. al. (2004) are provided below:

Chert-magnetite; chert-magnetite±sulphides, typically overlying and transitional with stromatolitic chert-marble unit.

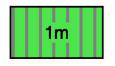
Chert-marble: locally stromatolitic including coarse-grained wollastonite- and/or diopside-bearing metamorphosed equivalents along northern margin of belt, north of Pipestone Bay; displays pseudofossil mound 'Atikokania' on west shore Golden Arm.

Chert-magnetite ironstone.

Drilling by Confederation Minerals along their portion of this horizon (SW limb) has outlined an 1,800 meter gold-bearing structure called the Newman-Todd Structure (NTS). West Red Lake Gold Mines has outlined a further 1,700 meter structure (NT Breccia Zone) along the SW limb to the Hinge Zone. Along the initial 1,500 meters of the NW limb, West Red Lake Gold Mines has identified another gold-bearing structure referred to as the Main Breccia Zone. The "Hinge Zone" on West Red Lake Gold's Rowan Mine Property is mapped (Sanborn-Barrie et. al 2004) as being near the intersection of major F1 syncline and F2 anticline structures. It is worth noting that within the established "mine trend" in the eastern portion of the Red Lake Greenstone Belt, many of the large gold deposits are associated with such structures and structural intersections. These deposits include Rubicon's F2 (Phoenix) Project, Goldcorp's Bruce Channel Deposit and Goldcorp's Campbell Mine-Dickenson Mine (Red Lake Gold Mines), which have produced in excess of 20M ounces of Au. These deposits are located across ~15 linear kilometers of the eastern "mine trend".

Enclosed by the NW and SW limbs of the regional fold structure, and generally forming the footwall to the sedimentary horizons referenced above, lies felsic-intermediate-mafic volcanics associated with the Ball Assemblage. Further west, at the center of the Ball Assemblage lies a large mafic-ultramafic (serpentinite, peridotite) unit, mapped by Sanborn-Barrie as intrusive in nature. The former felsic-intermediate sequence also shows gold-bearing potential associated with gold-bearing quartz veins emplaced parallel to sub-parallel and proximal to the F2 axial fold anticline. These gold-bearing quartz veins were the primary focus of early exploration in Todd Township, and the historic minor producers (Rowan Mine, Mount Jamie Shaft # 1 and Mount Jamie Shaft # 2) are located 300 to 3,000 meters on strike to the SE of the Mount Jamie North Gold Project.

Lower basalt: massive to locally pillowed, calc-alkaline basalt with low TiO_2 (<0.7%), modest LREE-enrichment and primitive mantle (PRIM) normalized Th/Nb >2.



Intermediate calc-alkaline volcanic rocks: dacitic to lesser andesitic rocks dominated by pyroclastic tuff and lapilli tuff, locally spherulitic in Pipestone and Sadler bays ±siltstone; characterized by pronounced LREE-enrichment and high PRIM-normalized Th/Nb; may include altered pillowed basalt north of Rowan Lake.

Felsic calc-alkaline volcanic rocks; thin rhyodacitic and rhyolitic flows and tuff including 2940.1 +2.4/-1.7 Ma massive rhyolite flows (U-Pb #5), typically quartz phyric and sericite-bearing, locally plagioclase phyric; with pronounced LREE-enrichment (type FI) and high PRIM-normalized Th/Nb.

To the east of the NW and SW limbs of the regional fold structure, and generally forming the hanging wall to the sedimentary horizons referenced previously, lies predominantly mafic flows (basalt) of the Balmer Assemblage and sediments (sandstone, wacke, conglomerate) associated with the Slate Bay Assemblage. To that end, the NW and SW limbs of the regional fold structure may also define boundaries between major assemblages, although the precise nature and exact location of the boundaries are still poorly understood.

Upper tholeiitic basalt flows and associated gabbroic rocks: pillowed and massive flows, aphyric, characterized by TiO₂ <1.3% and LREE depletion; extensively altered; carbonate-cemented breccia along north shore of central Red Lake may reflect close proximity to unconformity between Meso- and Neoarchean volcanic assemblages.

5c

Quartz arenite±siltstone±feldspathic wacke±conglomerate: quartz arenite is locally graded with crossbedding, fuchsite-bearing; conglomerate contains grit-size angular lasts of fine-grained felsic volcanics, free quartz and fuchsite.

Andrews, et. al. (1986) suggested the presence of key structural "deformation zones" within the Red Lake Greenstone Belt. One such deformation zone, the Pipestone Bay-St.Paul Bay Deformation Zone is mapped from the historic Buffalo Red Lake Mines, proceeding 23 km at 290° to the NW before trending through the center of the Mount Jamie North Gold Project, after which it continues to the western extremity of the Red Lake Greenstone Belt. This interpreted deformation corridor and associated hydrothermally altered rocks overprints the previously referenced NW limb of the regional fold structure, as well as the parallel to sub-parallel quartz veins associated with the F2 fold axis.

3.0 Project Exploration

3.1 Historic Exploration on the Property

Historic claim maps and geological maps show the area presently consisting of Bounty Gold Corp's Mount Jamie North Project as part of Hall et. al (Horwood, 1940) and WS Hall (R.A. Riley, 1971) patents. A list of the historic patents and their rough corresponding equivalents to the current unpatented mining claims are provided below:

Historic Patent or	Current Unpatented	Notes
Mining Lease	Mining Claim	
KRL10418	4267832	Only the portion not under the water of Red Lake
KRL10419	4267832	
KRL10424	4267832	
KRL12504	4267832	Only the portion not under the water of Red Lake
KRL11639	4267833	
KRL11638	4267833	
KRL11595	4267833	
KRL11730	4267833	
KRL11596	4267834	
KRL11597	4249788	
KRL13415	4249788	

No records could be located with respect to early exploration efforts, although R.A. Riley's 1971 map (M2406) of the Geology of Todd Township shows historic trenches on the peninsula covered by unpatented mining claim 4267833, and some of these trenches, now infilled with soil, moss and other vegetation, were located during the present exploration program.

By 1984, it appears the patents were held by Biron Bay Resources Limited. In that year, Biron Bay Resources Ltd. completed geophysical magnetic and EM horizontal loop surveys. The magnetic survey over the present claim group were interpreted to conform with geological mapping (Riley, 1971?) of Todd Township, with large portions "underlain by volcanic rocks and volcanosediments, with iron formations showing 4000 to 7000 gamma peaks". The EM horizontal loop surveys highlight three conductors on the present claim group, named Conductors F, G and H. Summaries of each conductor are provided below:

Conductor	Strength	Width	Magnetic Correlation	Magnetic Peak	Details
F	Strong	20-70 m	Direct	7825	Conductivity appears to be strong with direct magnetic correlation. Related to chemical sediments and iron formations possibly the combination of magnetite and pyrrhotite.
G	Strong	10 m	Direct	5702	High and moderate conductivity correlates with moderately high magnetic peak. This conductor appears to be located on the contact of mafic and intermediate volcanics and requires further investigation.
Н	Weak	1-100 m	Very Broad	2535	Under water it appears to be weakly conductive, associated with a low broad magnetic feature.

The report recommended that further work be done on Conductors F and G consisting of prospecting, mapping and sampling, although no record of subsequent work could be located. The Biron Bay Resources Limited report of 1984 was the only record of direct work that could be located with respect to the present claim group.

By the early 2000's, Biron Bay Resources land holdings (including the patents that covered the present claim group) were part of Redstar Gold Corporation's West Red Lake Properties land package. Although the historic patents are referenced within several Redstar assessment work reports, no direct evidence of work on the present claim group was found. There is occasional reference regarding the need to conduct greenfield exploration on the eastern portion of their holdings, which is assumed to be a reference to the area of interest.

3.2 Exploration on Adjacent Properties

The adjacent Mount Jamie Mine Property and Rowan Mine Property (further east), now held by West Red Lake Gold Mines Inc. have been the subject of extensive historic and recent exploration work. A plethora of assessment work reports and technical data can be found with respect to these properties, not all of which has been reviewed by Bounty Gold Corp. to date. The closest historic mine workings, the Mount Jamie # 2 shaft, which was sunk to a depth of 559 feet in 1941, is only 300 meters south of claim 4267834 and 400 meters east of the present boundary of claim 4267832. The "North Vein" on which this shaft was sunk strikes NW toward the present claim group.

A Hy Lake Gold Inc. (now West Red Lake Gold Mines Inc.) news release dated May 30, 2012 highlights recent exploration successs. The map accompanying the news release identifies three corridors with strong gold mineralization and one weaker corridor, all of which have been traced west-northwest to within a few hundred meters of and trend toward Bounty Gold Corp's present claim group. These were named the "West Mt Jamie Trend", "North Vein Trend", "Golden Tree Trend" and "North Golden Tree Trend".

A more thorough review of all the historic reports and technical data with respect to the adjacent Mount Jamie and Rowan Mines is needed, but initially the possibility that the main mineralized corridors could trend on to Bounty Gold Corp's claim group appears very promising.

In 1988 Biron Bay Resources collared a single diamond drill hole (BB-87-10) on KRL12504. The hole was 1,120 feet in length. The exact collar location has not yet been located, but appears to be within the current claim group, possibly within the vicinity of 418104 E, 5658895 N. However, the majority of the hole (azimuth not provided) appears on maps to be directed slightly east of north, and therefore is primarily within the adjacent KRL12504 covered by the waters of Red Lake and not within Bounty Gold Corp's current claim group. This hole appears to have intersected 2000 ppb (Au?) or 0.058 oz/t over 1.0 ft between 78.0 and 79.0 ft downhole. The location of this intercept may be very close to and possibly related to anomalous gold values found during the present prospecting program and discussed further below (see discussion with respect to samples MJJ-021-15 through MJJ-023-15).

3.3 Recent Exploration by Bounty Gold Corp

Two distinct areas of highly anomalous gold mineralization (between 500 and 1000 ppb Au) were located during the initial prospecting programs in 2014-15.

The first area centered around coordinates 418133 E, 5658885 N. At this location, three samples were collected of dark grey to greenish mafic volcanics along the shoreline of Scott Bay. This location is estimated to be southeast and in the same general area of the drill intercept previously referenced in drill hole BB-87-10. The three samples were each collected several meters apart across the interpreted width of the mafic unit. The contacts of the mafic unit with adjacent rocks were not observed. The sample collected furthest north (MJJ-022-15) at the waterline returned 440 ppb Au. This sample was

very well foliated with talc along the foliation planes. It was fine-grained and weakly silicified. Sample MJJ-021-15 was collected 1 meter east and 2 meters south. It included a small, discontinuous quartz vein 1-2" wide. Although neither the quartz nor surrounding host rock was mineralized, this sample returned 875 ppb Au. Another 1 meter east and 2 meters further south, another sample (MJJ-023-15) was collected. This sample had more distinct, alternating grey-greenish layers. Again, although no obvious mineralization was noted, this sample returned 795 ppb Au. The fact that each sample, collected across several meters of the interpreted width of the mafic unit, contained anomalous values highlights the need for further prospecting, sampling and mapping in this area.

The second area centered around coordinates 418028 E, 5659266 N. At this location, a well mineralized, smokey grey quartz vein hosted within felsic to intermediate volcanics was found. The vein, in the small area it is exposed, was measured to be 15-20 cm wide. To the SE, the vein runs into the water of Scott Bay, to the NW it runs under overburden, therefore the potential length could not be determined, nor could it be sampled along strike. The felsic to intermediate volcanics hosting the vein were also found to be well mineralized in the immediate wall rock to the quartz vein. Three samples of the quartz vein and two samples of the mineralized wall rock were collected. Samples MJJ-024-15, MJJ-025-15 and MJJ-026-15 of the quartz material returned 510 ppb Au, 845 ppb Au and 790 ppb Au, respectively. Samples MJJ-027-15 and MJJ-028-15 of the host rock material assayed 485 ppb Au and 365 ppb Au, respectively. Smaller, less mineralized quartz veins occur further east (within 10 meters) along the shoreline, within the felsic-intermediate host unit. Three other samples collected along this shoreline to the east of the quartz vein returned values between 45 – 110 ppb. To the immediate west of the quartz vein along the shoreline a pinkish felsic unit was noted. Although the quartz vein material was not of particularly high grade, the presence of an Au-mineralized quartz vein approximately on strike to the NW of the historic Mount Jamie Mine workings is encouraging. Perhaps follow up prospecting in this area could reveal the quartz vein further along strike, or the presence of parallel or en-echelon veins of higher grade.

Aside from these two areas of particularly anomalous gold mineralization, the following observations were made elsewhere during the 2014-2015 prospecting program:

1. Samples MJJ-001-14 through MJJ-006-14 and MJCL-001-14 through MJCL-003-14 were collected in the southern portion of claim 4267832. Regional geologic maps indicated this area may be underlain by rocks of ultramafic affinity. ICP analysis of these samples do, in fact, indicate much higher Cr and Ni then generally found elsewhere, although Mg reaching a peak of 7.96% in sample MJJ-005-14 was somewhat lower than expected for ultramafics. MJJ-003-14 through MJJ-005-14 had more intense carbonate alteration. Specifically, a specimen kept of MJJ-004-14 appears to show two distinct generations of carbonate alteration, one overprinting/cross-cutting sub-parallel to the other. A specimen kept of MJJ-005-14 has the weathered appearance of ankerite. Two samples from this general area assayed higher than 100 ppb Au, with MJJ-003-14 returning 110 ppb and MJCL-001-14 returning 175 ppb Au. West Red Lake Gold Mines' "West Mt Jamie Trend" strikes toward this general area of Bounty Gold Corp's claim group. Samples MJJ-012-15 through MJJ-019-15 were also collected in the southern portion of claim 4267832, but further west along the shoreline of Red Lake. These

samples also exhibit similar characteristics to the aforementioned samples, being of more ultramafic affinity and having more intense carbonate alteration then the general population of samples from the claim group.

- 2. Iron formation or Fe-rich metasedimentary units were encountered at 418755 E, 5659200 N and again at 417788 E, 5659542 N. Only one sample (MJJ-003-15) was collected at the former location, while 10 samples (MJCL-001-15 through MJCL-010-15) were collected in the general area around the latter. At the latter site, although still low (>150 ppb Au), gold values were generally found to be elevated above background, and accompanied by modestly higher Ag, As and Sb (all good pathfinder elements associated with gold mineralization).
- 3. Samples MJCL-011-15 through MJCL-020-15 were generally collected ~100 m south of the latter iron formation referenced above. These samples again exhibited characteristics of ultramafic affinity (elevated Cr, Ni, Mg). These roughly correspond to a unit mapped as "serpentinite, serpentinized pyroxenite and peridotite" on R.A. Riley's Todd Township geological map (1971).
- 4. Samples MJJ-007-14 through MJJ-010-14 were collected from the area surrounding historic trenches (418626 E, 5659283 N) on R.A. Riley's Todd Township geological map (1971). Although some of the old trenches were located and overburden is relatively shallow, the trenches are infilled with soil and vegetation. Samples MJJ-009-14 and MJJ-010-14 were float samples collected from one of these trenches while trying to locate bedrock. Although gold values from these two samples were low, the samples were rusty staining, well mineralized, and possibly a quartz breccia with intermediate volcanic host rock. The observed characteristics of the samples, and the fact that the area seemed to receive more attention and efforts from early prospectors are suggestive that additional follow up work in this area is required. Details regarding the nature of the samples will only be possible by examining them within the broader context of exposed outcrop.

3.4 Present Exploration Program

The present prospecting program consisted of outcrop sampling and assaying. The prospecting was conducted by three prospectors over 6 man-days. A total of 57 outcrop rock samples were collected and submitted for Au, 52-element ICP and whole-rock analysis. A table summarizing the samples, sample location, Au assays and brief sample description is provided below, followed by a brief discussion of relevant observations.

Sample ID	Easting	Northing	Au (ppb)	Sample Description	
MJCL-001-16	418109	5658901	10	Grab sample. Sheared mafics, granular texture, carbonate blebs throughout, some carbonate stringers.	
MJCL-002-16	418105	5658912	<5	Grab sample. Same description as previous.	
MJCL-003-16	418107	5658911	<5	Grab sample. Same description as previous.	
MJCL-004-16	418057	5658927	<5	Grab sample. Taken from the west tip of the southern peninsula. Not on strike of MJCL-001-16 to MJCL-003-16.	
MJCL-005-16	417756	5659530	55	Grab sample. Taken of and around a banded iron formation near the NW tip of the northern peninsula. Carbonate, heavy sulphides (fine grained disseminated pyrite).	
MJCL-006-16	417756	5659530	165	Grab sample. Same as previous. Rusty, heavily mineralized with pyrite, disseminated and veinlets.	
MJCL-007-16	417756	5659531	160	Grab sample. Taken 90 cm north of MJCL-006-16. Same as previous. Has a mineralized quartz vein included. North and south contacts of BIF are banded felsic-intermediate units. This sample is also 175 cm north of MJCL-005-16.	
MJCL-008-16	417756	5659529	1105	Grab sample. Taken 50 cm south of MJCL-005-16. Middle of the banded iron formation, with heavy disseminated pyrite. Gossaneous. Appears to be a 34 cm wide altered band within the unit.	
MJCL-009-16	417756	5659528	145	Grab sample. Taken 120 cm south of MJCL-005-16. South contact of BIF at felsic-intermediate unit. Heavy disseminated pyrite, however lighter than previous sample.	
MJCL-010-16	417758	5659531	45	Grab sample. Taken 160 cm ENE of MJCL-007-16. Felsic-intermediate with some dirty quartz included. Well mineralized.	
MJCL-011-16	418658	5659290	<5	Grab sample. Taken around a N-S striking smokey quartz vein north of historic overgrown trench. The west contact is a 4" wide dike, and the east contact is a 12" wide shear in basalt. Sample MJCL-011-16 is the sheared basalt contact to the east of the vein.	
MJCL-012-16	418658	5659290	<5	Grab sample. Middle section of 12" dirty quartz vein described in previous description.	
MJCL-013-16	418658	5659290	<5	Grab sample. East portion of the dirty quartz vein and shear contact. Heavily silicified w fine mineralization, basalt.	
MJCL-014-16	418658	5659290	<5	Grab sample. West side of the contact to the dirty quartz vein. 5".	
MJCL-015-16	418658	5659290	<5	Grab sample. West contact to MJCL-014-16, 5" wide. Well mineralized.	
MJDL-001-16	418650	5659260	<5	Grab sample. Collected near the south end of a historic overgrown trench. Rusty weathering, greenish. Mica.	

Sample ID	Easting	Northing	Au (ppb)	Sample Description	
MJDL-002-16	418649	5659260	<5	Grab sample. Collected 32" SW of MJDL-001-16. Similar composition, but included dirty quartz. Rusted. Mineralized (py).	
MJDL-003-16	418651	5659260	<5	Grab sample. Collected 51" east of MJDL-001-16. Rusted. Pyrite. Greenish on fresh surfaces.	
MJDL-004-16	418653	5659262	<5	Grab sample. Rusty, well foliated in crevasse.	
MJDL-005-16	418653	5659262	<5	Grab sample. Bedrock just north of MJDL-004-16, well mineralized with pyrite as blebs and veinlets. Minor rusty weathering.	
MJDL-006-16	418654	5659262.5	<5	Grab sample. Collected 26" north of MJDL-004-16. Rusty weathering, mineralized (py), well foliated.	
MJDL-007-16	418655	5659262.5	<5	Grab sample. Collected below (east) of MJDL-006-16. Same description as MJDL-006-16 but more solid rock. Some pyrite mineralization.	
MJDL-008-16	418655	5659263	<5	Grab sample. Rusty, gossaneous rock, some mineralization.	
MJDL-009-16	418655	5659263.5	<5	Grab sample. Collected 27" north of MJDL-008-16. Grey, no mineralization.	
MJDL-010-16	418654	5659264	<5	Grab sample. Collected 12" north of MJDL-009-16. Dirty quartz vein in grey host rock. Some smaller quartz veinlets throughout host rock too.	
MJDL-011-16	418653.5	5649264.5	<5	Grab sample. Collected 74" north of MJDL-008-16. Very rusty weathering. No mineralization present.	
MJDL-012-16	418654	5649265	<5	Grab sample. 1" dirty quartz vein. Host rock is soft. Included some host rock (south contact) with sample.	
MJDL-013-16	418654.5	5649265.5	<5	Grab sample. Collected 60" north of MJDL-012-16. Rusty weathering. No mineralization.	
MJDL-014-16	418655	5659266	<5	Grab sample. Collected 97" north of MJDL-012-16. Rusty weathering. No mineralization. Well foliated.	
MJJ-001-16	418113	5658897	<5	Grab sample. Taken along strike to the WNW of MJJ-021-15. Small (1 cm) rusty carb. veinlet through mafic volcanics. Taken 175 cm W of MJCL-001-16, not quite on strike of that sample.	
MJJ-002-16	418105	5658905	<5	Grab sample. Very similar composition to previous sample, which was collected ~10 m ESE of this location. Along shoreline, would possibly be under water at high water mark. Carbonate throughout.	
MJJ-003-16	418101	5658908	<5	Grab sample. Similar composition to previous. Collected ~4 m west, 3 m south of previous. MJCL-002-16 and MJCL-003-16 are collected in between.	
MJJ-004-16	417803	5659548	<5	Grab sample. North shoreline of the peninsula. Primarily celtic, light grey to grey banding. Possibly garnetiferous. Minor py. Possible black line fault. Some mafic rock in contact with this sample.	

Sample ID	Easting	Northing	Au (ppb)	Sample Description
MJJ-005-16	418661	5659277	<5	Chip sample. Collected across 25 cm. Taken in the vicinity of old historic overgrown trenches. Intermediate-mafic volcanic, locally well mineralized with disseminated and platy py on foliated fracture surfaces. Qz-carb stringers.
MJJ-006-16	418661	5659277	<5	Chip sample. Extends previous chip sample an additional 25 cm north. Same description.
MJJ-007-16	418622	5659279	15	Grab sample. Taken from historic overgrown trench (smaller) west of previous trench. Trench is also filled with water. This is the same trench that MJJ-009-14 and MJJ-010-14 quartz breccia samples were taken (as float in overburden pile/trench walls). This time hand dug to the bedrock source and collected MJJ-007-16 through MJJ-010-16. Same material (gossaneous rusty quartz breccia).
MJJ-008-16	418622	5659279	25	Grab sample. Same as previous, rusty quartz breccia.
MJJ-009-16	418622	5659279	30	Grab sample. Same as previous, rusty quartz breccia.
MJJ-010-16	418622	5659279	<5	Grab sample. Same as previous, rusty quartz breccia.
MJJ-011-16	418660	5659276.4	<5	Grab sample. Taken 60 cm south of MJJ-005-16. Intermediate-mafic. Siliceous. Quartz stringers and impregnations throughout. Well mineralized with 1-3% py, typically associated with the quartz.
MJJ-012-16	418660	5659276	<5	Grab sample. Taken 40 cm south of MJJ-011-16. Dark grey, very fine grained, siliceous. Some sulphides (up to 1%). Possible tourmaline at centre of mineralized quartz veinlets.
MJJ-013-16	418660	5659275.4	<5	Grab sample. Taken 65 cm SE of MJJ-012-16. Very fine grained, very rusty weathering. Possible bedding observed (sedimentary?). Lots of dark quartz, which is also rusty/pinkish weathering. Minor py observed locally, but hard to tell mineralization because fresh surfaces are rare. Quartz pieces are more than just veinlets, maybe quartz vein or layer.
MJJ-014-16	418660	5659275	10	Grab sample. Taken 60 cm SE of MJJ-013-16. The larger piece of this sample is very much like the previous. Not as rusty though. Layers of dark grey, very fine grained, and quartz layers (staining pinkish). Some of the smaller pieces are quartz-amphibole-rich, and these pieces look like the quartz-breccia found in the trench further west (MJJ-007-16 to MJJ-010-16) and have chaotic py mineralization associated with the amphibole sections.
MJJ-015-16	418660	5659275	<5	Grab sample. Taken 35 cm along strike of MJJ-014-16 (quartz vein). Along strike, same description as previous. Less of the chaotically mineralized amphibole-rich sections noted in this sample though.

Sample ID	Easting	Northing	Au (ppb)	Sample Description
MJJ-016-16	418660	5659275	<5	Grab sample. Taken 20 cm south of MJJ-015-16. Wall rock, south contact of the quartz. Very rusty, fresh surfaces are rare, but we may see that the amphibole-rich section (that is heavily mineralized) occurs at the contact of the quartz and very fine-grained siliceous host rock.
MJJ-017-16	418660	5659274.5	<5	Grab sample. Taken 45 cm south of MJJ-016-16. This sample is a cross-cutting smokey quartz vein 1-2" wide. We see these again further south in the trench (will be samples MJJ-020-16 and MJJ-021-16). The quartz itself appears unmineralized, but where host rock is attached, the host rock carries 1-3% pyrite.
MJJ-018-16	418660	5659274	<5	Grab sample. Taken 50 cm south of MJJ-017-16. Fine grained, dark grey, siliceous, 1-3% pyrite as veinlets, often breaks along these surfaces. Veinlets in at least two directions. Well foliated.
MJJ-019-16	418660	5659272.5	<5	Grab sample. Taken 150 cm south of MJJ-018-16. This rock weathers differently than previous section, probably due to high concentration of quartz veinlets and impregnations (blebs) throughout. Like sample MJJ-011-16, pyrite mineralization is again associated with this quartz and amphibole.
MJJ-020-16	418660	5659271.5	<5	Grab sample. Taken 90 cm south of MJJ-019-16. Cross-cutting quartz vein like MJJ-017-16. Also very little mineralization in the quartz itself, but some seen at the contact and within the amphibole-rich host rock.
MJJ-021-16	418660	5659271.75	5	Grab sample. Taken 85 cm south of MJJ-020-16. Same description as previous, but much more of the host rock and much less of the quartz in this sample.
MJJ-022-16	418660	5659271	<5	Grab sample. Taken 75 cm south of MJJ-021-16. Fine grained, quartz-rich, well foliated. Pyrite veinlets in several directions, often breaks along these surfaces. Well mineralized, 1-3% pyrite.
MJJ-023-16	418660	5659270.5	<5	Grab sample. Taken 45 cm south of MJJ-022-16. Smokey quartz vein. Although there is still only minor sulphides observed, this quartz has a lot more impurities in it and more closely resembles the quartz observed at Mt. Jamie shaft # 2 (north vein).
MJJ-024-16	418660	5659270	<5	Grab sample. Taken 40 cm south of MJJ-023-16. Rustier, more impure section of quartz vein. Fresh surfaces are rare, but where found more pyrite mineralization was observed than in previous quartz samples.
MJJ-025-16	418660	5659270	<5	Grab sample. Taken in contact 15 cm to the south of MJJ-024-16. Host rock south of the quartz vein. Again, very rusty and fresh surfaces are rare, but mineralized where surface can be observed. Hard to get overall estimate of % mineralization.

Sample ID	Easting	Northing	Au (ppb)	Sample Description
MJJ-026-16	418660	5659269.5	<5	Grab sample. Taken 30 cm south of MJJ-025-16. Very silicified and well mineralized. Light grey. Intermediate. Pyrite as veinlets but also as disseminations throughout.
MJJ-027-16	418660	5659269	<5	Grab sample. Taken 45 cm south of MJJ-026-16. Darker rock than previous sample. Amphibole? Cross-cutting quartz vein (1-2" wide) included. Minor pyrite. Less siliceous than previous sample. This sample resembles MJJ-020-16 and MJJ-021-16.
MJJ-028-16	418660	6569268	<5	Grab sample. Taken 40 cm SE, along strike, of MJJ-028-16. Grab sample, taken along strike just east of previous. Same description as previous.

Discussion of 2015-2016 Prospecting Program

Prospecting conducted in 2016 identified one new area with sub-economic gold mineralization. This area occurs at 417756E, 5659529N on the northwest tip of the peninsula on which historic trenches are found. The gold mineralization occurs in and immediately surrounding a banded iron formation. Samples MJCL-005-16 through MJCL-010-16 were collected here, and all six samples were found to have gold values elevated above background, with sample MJCL-008-16 being the highest at 1105 ppb Au.

A significant portion of the samples collected in 2016 were taken in the area of 418660E, 5659275N where historic trenches are found. Although the trenches are infilled with moss and soil (and one was full of water), bedrock was easily re-exposed for sampling along the length of the longest trench.

Despite a broad zone of mineralization, no significant gold values were obtained from the samples collected from this trench. The only values obtained above 10 ppb Au were taken from a smaller trench further west at 418622E, 5659279N. Although the three samples collected at this location were only found to have gold up to 30 ppb, the ICP shows elevated Bi (0.98-2.63 ppm), Te (0.51-1.4 ppm) and Ag (0.62-0.93 ppm). These pathfinder elements would be expected to occur as enrichments within the mineralized quartz vein systems of the historic Mt. Jamie and Rowan mines further to the southeast. This was a difficult location to sample, since water in the bottom of the historic trench quickly filled the excavation that exposed bedrock shortly after the samples were collected, thus not allowing very detailed observation of the host rock. There may be a mineralized quartz breccia here, but this could not be conclusively determined for these reasons.

4.0 Recommendations

Preliminary prospecting on the Mount Jamie North Gold Project has now identified three areas of low-grade gold mineralization, and several additional areas demonstrating good alteration, mineralization or other characteristics often associated with hydrothermal flows and gold emplacement. Additionally, exploration activities on adjacent, and other properties along the same geological trend continue to expand the known mineralized zones as well as the geological understanding of the regional-scale structure which is presumed to transect the property. The potential of the property to host economic-grade gold mineralization is considered to be good.

Near-term early exploration activities should continue to focus on property-wide prospecting (sampling, mapping), and research of exploration work on adjacent properties, and how the data and observations may be useful in focusing exploration activities on the Mount Jamie North Gold Project. The three areas identified as having low-grade gold mineralization should receive additional follow-up sampling and prospecting along strike.

Several areas, including the carbonatized ultramafics in the southern portion of claim 4267832 and in the vicinity of historic trenches on claim 4267833 are good candidates for mechanical stripping. In each case, overburden is relatively shallow.

Jason D. LeBlanc, President/CEO

Bounty Gold Corp.

5.0 References

Andrews, A.J., Hugon, H., Durocher, M., Corfu, F., and Lavigne, M.,1986: The anatomy of a gold-bearing greenstone belt: Red Lake, northwestern Ontario; Gold '86 Symposium, Toronto, September 1986, p. 3–22.

Riley, R A, 1970: Ball Township; in summary of field work, 1970 Ontario Dept. of Mines and Northern Affairds, map 2407, scale 1:12000.

Sanborn-Barrie, M., Skulski, T., Parker, J. and Dube, B., 2000: Integrated regional analysis of the Red Lake Greenstone Belt and its mineral deposits, western Superior province, Ontario. Geological Survey of Canada, Current Research 2000-C18, 16 p.

Sanborn-Barrie, M., Skulski, T., and Parker, J., 2001: Three hundred million years of tectonic history recorded by the Red Lake greenstone belt, Ontario; Geological Survey of Canada, Current Research 2001-C19, 19 p.

Stott, G.M. and Corfu, F., 1991: Uchi Subprovince; *in* Geology of Ontario; Ontario Geological Survey, Special Volume 4, pt. 1, 145–236.

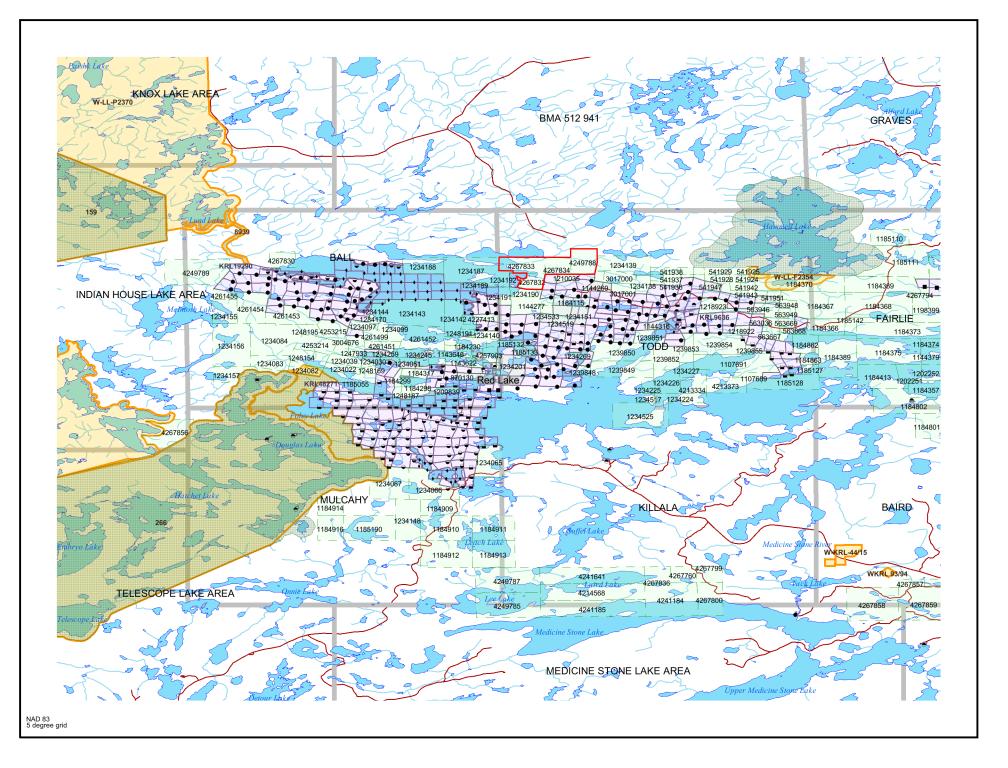
Vamos, P.J.: Diamond Drilling Assessment Work Report for Biron Bay Resources Limited, 52M01SE0016, 1988.

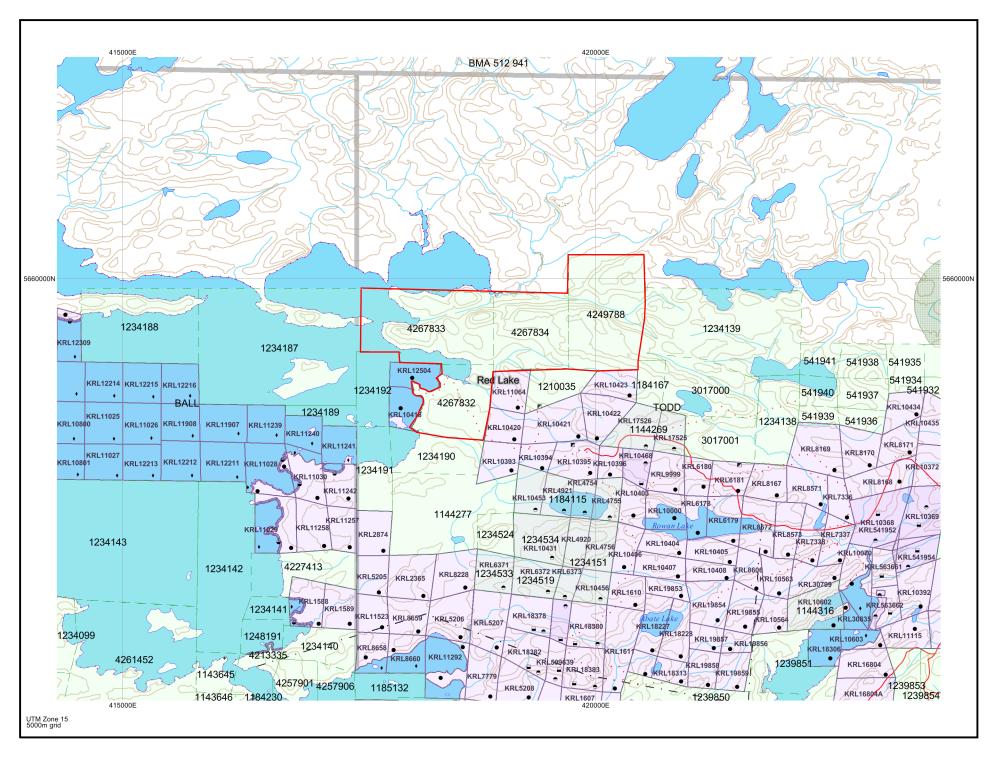
Vamos, P.J.: Report on Geophysical Surveys – Ball and Todd Townships for Biron Bay Resources Limited, 52M01SE0002, 1984.

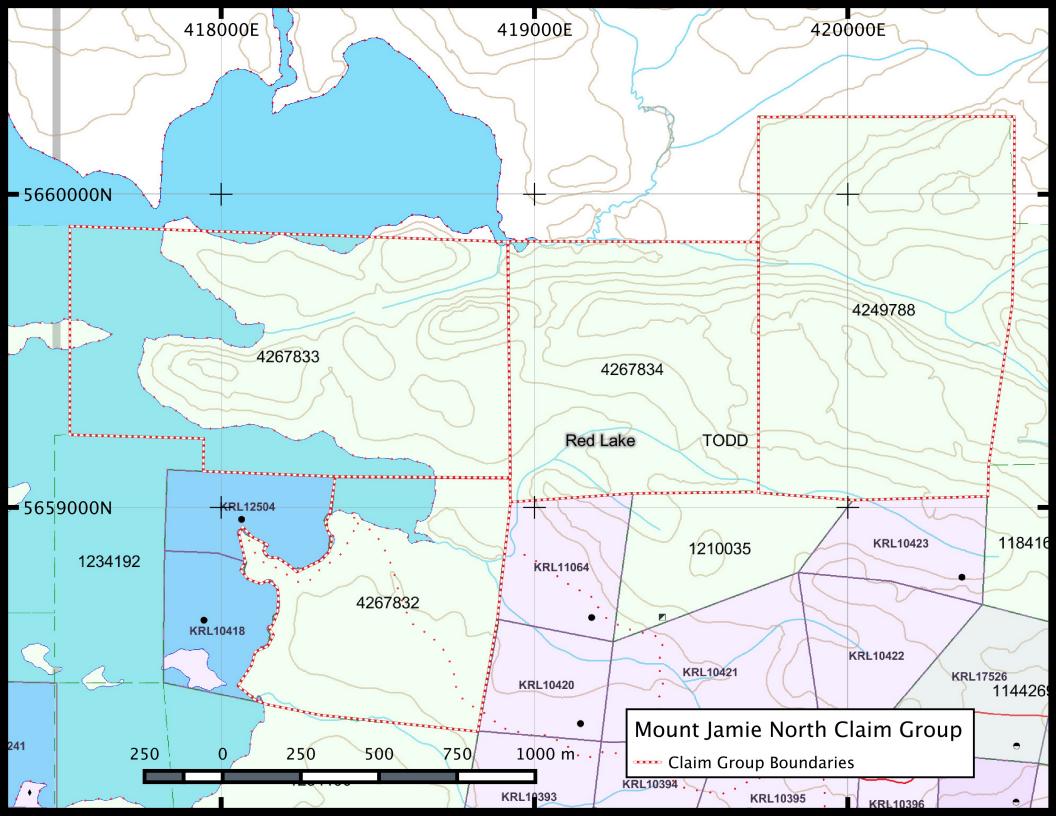
Appendix A – Summary of Exploration Activities

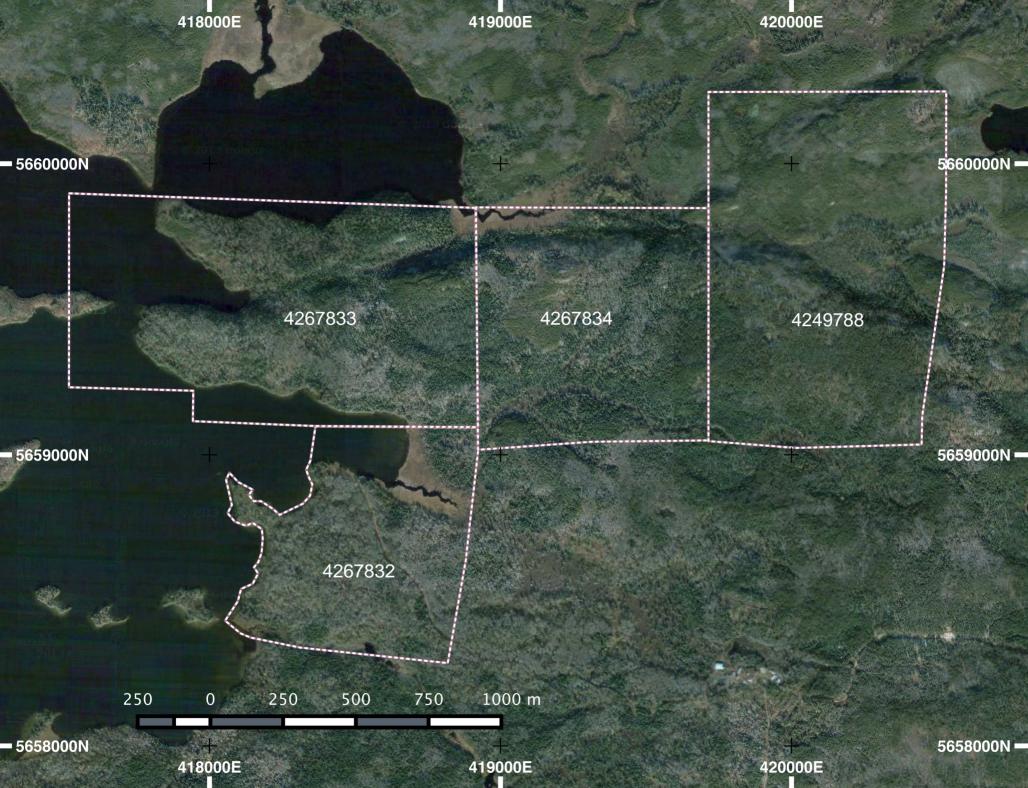
Date	Activity
October 1,	Jason LeBlanc and Chris LeBlanc accessed property by boat from Red Lake. Collected
2016	samples MJJ-001-16 through MJJ-010-16 and MJCL-001-16 through MJCL-006-16.
October 2,	Jason LeBlanc, Chris LeBlanc and Dennis LeBlanc accessed property by boat from Red
2016	Lake. Collected samples MJJ-011-16 through MJJ-022-16, MJCL-007-16 through MJCL-
	MJCL-015-16 and MJDL-001-16 through MJDL-014-16.
October 3,	Jason LeBlanc accessed the property by boat from Red Lake. Collected samples MJJ-
2016	022-16 through MJJ-028-16.

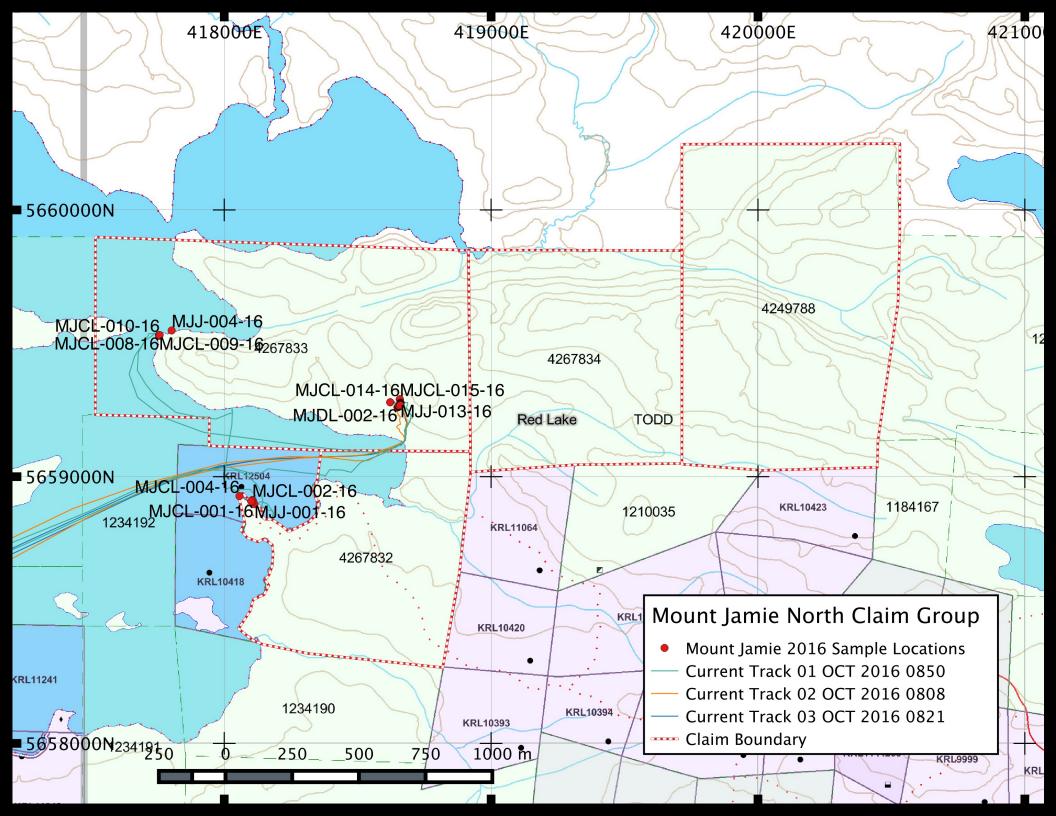
Appendix B – Summary of Exploration Expenditures


	# of Units	Unit	Cost/Unit	TOTAL
Sample Assays	57	samples	\$108.87	\$6,205.59
Chris - Labour	2	days	\$150.00	\$300.00
Jason - Labour	3	days	\$150.00	\$450.00
Dennis - Labour	1	days	\$150.00	\$150.00
Boat Rental	3	days	\$75.00	\$225.00
ATV Rental	0	days	\$75.00	\$-
Truck Mileage	0	km	\$0.50	\$-
Meals	6	days	\$50.00	\$300.00
Work Report	32	hours	\$37.50	\$1,200.00
				\$8,830.59


Breakdown of Rock Sample Au and ICP Assay Expenses (Included in Table Above)


	MJ Samples	TOTAL Samples	% MJ	TOTAL COST	MJ COST
RL1603478	57	57	100.0%	\$6,205.59	\$6,205.59
	57				\$6,205.59




Appendix C – Maps



Appendix D – Assay Certificates

Certificate of Analysis Work Order: RL1603478

[Report File No.: 0000020105]

Date: October 13, 2016

To: ACCOUNTS PAYABLE

NORTHERN WATERWORKS INC

BOX 1160

104 HOWEY ST

REALAKE ON POV 2M0

P.O. No.: BOUNTY GOLD CORP

Project No.: -Samples: 57

> Received: Oct 11, 2016 Pages: Page 1 to 17

> > (Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	<u>Description</u>
57	CRU25	Crush to 85% passing 2mm
57	CRU21	Crush to 75% passing 2mm
57	PUL46	Pulv to 85%, Cr Steel,75µm, 500g
57	GE_FAA515	Au, FAS, AAS, 50g-10ml
57	GO_FAG505	Au, FAS, Gravimetric, 50g
57	WGH79	Sample Weight & Reporting of weights
57	GO_XRF76V	Meta/Tetraborate fusion, XRF (0.5g)
57	GE IC40M	Package, ICPAES and ICPMS after Multi-Acid Digest

Certified By :

Susan Isaac Operations Manager

Report Footer: L.N.R. = Listed not received = Insufficient Sample

n.a. = Not applicable = No result

= Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

	Element Method Det.Lim.	AUGT@ GE_FAA515 0.01	Auppb@ GE_FAA515 5	Au GO_FAG505 0.001	Auppm GO_FAG505 1	Auppb GO_FAG505 1,000	Auppm(s) GO_FAG505 1	Auppb(s) GO_FAG505 1,000	WtKg WGH79 0.01
	Units	g/t	ppb	oz/t	ppm	ppb	ppm	ppb	kg
MJCL-001-16		<0.01	10						0.42
MJCL-002-16		<0.01	<5						1.05
MJCL-003-16		<0.01	<5						1.43
MJCL-004-16		<0.01	<5						0.77
MJCL-005-16		0.06	55						1.96
MJCL-006-16		0.16	165						1.29
MJCL-007-16		0.16	160						0.70
MJCL-008-16		1.10	1105						0.91
MJCL-009-16		0.14	145						1.03
MJCL-010-16		0.05	45						1.82
MJCL-011-16		<0.01	<5						0.92
MJCL-012-16		<0.01	<5						0.38
MJCL-013-16		<0.01	<5						1.01
MJCL-014-16		<0.01	<5						1.00
MJCL-015-16		<0.01	<5						0.58
MJDL-001-16		<0.01	<5						1.73
MJDL-002-16		<0.01	<5						1.31
MJDL-003-16		<0.01	<5						1.75
MJDL-004-16		<0.01	<5						1.97
MJDL-005-16		<0.01	<5						1.43
MJDL-006-16		<0.01	<5						1.27
MJDL-007-16		<0.01	<5						1.23
MJDL-008-16		<0.01	<5						1.31
MJDL-009-16		<0.01	<5						1.47
MJDL-010-16		<0.01	<5						0.42
MJDL-011-16		<0.01	<5						1.07
MJDL-012-16		<0.01	<5						0.53
MJDL-013-16		<0.01	<5						0.87
MJDL-014-16		<0.01	<5						1.35
MJJ-001-16		<0.01	<5						1.02
MJJ-002-16		<0.01	<5						1.57
MJJ-003-16		<0.01	<5						2.13
MJJ-004-16		<0.01	<5						1.93
MJJ-005-16		<0.01	<5						2.28
MJJ-006-16		<0.01	<5						3.58
MJJ-007-16		0.01	15						2.40
MJJ-008-16		0.02	25						2.20
MJJ-009-16		0.03	30						1.07
MJJ-010-16		<0.01	<5						2.02
MJJ-011-16		<0.01	<5						1.84

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 3 of 17

M	ement lethod et.Lim.	AUGT@ GE_FAA515 0.01	Auppb@ GE_FAA515 5	Au GO_FAG505 0.001	Auppm GO_FAG505	Auppb GO_FAG505 1,000	Auppm(s) GO_FAG505	Auppb(s) GO_FAG505 1,000	WtKg WGH79 0.01
	Units	g/t	ppb	oz/t	ppm	ppb	ppm	ppb	kg
MJJ-012-16		<0.01	<5						1.98
MJJ-013-16		<0.01	<5						2.17
MJJ-014-16		0.01	10						2.09
MJJ-015-16		<0.01	<5						1.36
MJJ-016-16		<0.01	<5						1.51
MJJ-017-16		<0.01	<5						1.93
MJJ-018-16		<0.01	<5						1.66
MJJ-019-16		<0.01	<5						1.34
MJJ-020-16		<0.01	<5						2.45
MJJ-021-16		<0.01	5						1.31
MJJ-022-16		<0.01	<5						1.71
MJJ-023-16		<0.01	<5						2.68
MJJ-024-16		<0.01	<5						1.82
MJJ-025-16		<0.01	<5						1.88
MJJ-026-16		<0.01	<5						1.58
MJJ-027-16		<0.01	<5						0.85
MJJ-028-16		<0.01	<5						2.01

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 4 of 17

Element	Al XRF76V	Al VDE76V	Ca XRF76V	Cr			Fe2O3 XRF76V
Method Det.Lim.	0.01	XRF76V 0.01	0.01	XRF76V 0.01	0.01	XRF76V 0.01	0.01
Units	%	%	%	%			%
MJCL-001-16				 			
MJCL-002-16				 			
MJCL-003-16				 			
MJCL-004-16				 			
MJCL-005-16				 			
MJCL-006-16				 			
MJCL-007-16				 			
MJCL-008-16				 			
MJCL-009-16				 			
MJCL-010-16				 			
MJCL-011-16				 			
MJCL-012-16				 			
MJCL-013-16				 			
MJCL-014-16				 			
MJCL-015-16				 			
MJDL-001-16				 			
MJDL-002-16				 			
MJDL-003-16				 			
MJDL-004-16				 			
MJDL-005-16				 			
MJDL-006-16				 			
MJDL-007-16				 			
MJDL-008-16				 			
MJDL-009-16				 			
MJDL-010-16				 			
MJDL-011-16				 			
MJDL-012-16				 			
MJDL-013-16				 			
MJDL-014-16				 			
MJJ-001-16				 			
MJJ-002-16				 			
MJJ-003-16				 			
MJJ-004-16				 			
MJJ-005-16				 			
MJJ-006-16				 			
MJJ-007-16				 			
MJJ-008-16				 			
MJJ-009-16				 			
MJJ-010-16				 			
MJJ-011-16				 			

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 5 of 17

1									
	Element	Al	Al	Ca	CaO	Cr	Cr2O3	Fe	Fe2O3
	Method	XRF76V							
	Det.Lim.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Units	%	%	%	%	%	%	%	%
MJJ-012-16									
MJJ-013-16									
MJJ-014-16									
MJJ-015-16									
MJJ-016-16									
MJJ-017-16									
MJJ-018-16									
MJJ-019-16									
MJJ-020-16									
MJJ-021-16									
MJJ-022-16									
MJJ-023-16									
MJJ-024-16									
MJJ-025-16									
MJJ-026-16									
MJJ-027-16									
MJJ-028-16									
-									

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 6 of 17

Elemen			LOI		MgO			Na
Method			XRF76V		XRF76V			XRF76V
Det.Lim		0.01	0.01		0.01	0.01		0.01
Units	8	%	%	%	%	%	%	%
MJCL-001-16								
MJCL-002-16								
MJCL-003-16								
MJCL-004-16								
MJCL-005-16								
MJCL-006-16								
MJCL-007-16								
MJCL-008-16								
MJCL-009-16								
MJCL-010-16								
MJCL-011-16								
MJCL-012-16								
MJCL-013-16								
MJCL-014-16								
MJCL-015-16								
MJDL-001-16								
MJDL-002-16								
MJDL-003-16								
MJDL-004-16								
MJDL-005-16								
MJDL-006-16								
MJDL-007-16								
MJDL-008-16								
MJDL-009-16								
MJDL-010-16								
MJDL-011-16								
MJDL-012-16								
MJDL-013-16								
MJDL-014-16								
MJJ-001-16								
MJJ-002-16								
MJJ-003-16								
MJJ-004-16								
MJJ-005-16								
MJJ-006-16								
MJJ-007-16								
MJJ-008-16								
MJJ-009-16								
MJJ-010-16								
MJJ-011-16								
F 11 111 12								

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 7 of 17

	- 1	К	K20	LOI	Ma	MaO	Mn	MnO	Na
	Element				-	MgO		- 1	
	Method	XRF76V	XRF76V	XRF76V	XRF76V	XRF76V			XRF76V
	Det.Lim.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Units	%	%	%	%	%	%	%	%
MJJ-012-16									
MJJ-013-16									
MJJ-014-16									
MJJ-015-16									
MJJ-016-16									
MJJ-017-16									
MJJ-018-16									
MJJ-019-16									
MJJ-020-16									
MJJ-021-16									
MJJ-022-16									
MJJ-023-16									
MJJ-024-16									
MJJ-025-16									
MJJ-026-16									
MJJ-027-16									
MJJ-028-16									

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 8 of 17

Elemen					SiO2			Ag
Method			XRF76V 0.01		XRF76V 0.01			GE_ICM40B
Det.Lim Unit:					0.01 %	0.01 %	0.01 %	0.02 ppm
	,,	/0	70	70		70	70	ррш
MJCL-001-16								
MJCL-002-16								
MJCL-003-16								
MJCL-004-16								
MJCL-005-16								
MJCL-006-16								
MJCL-007-16								
MJCL-008-16								
MJCL-009-16								
MJCL-010-16								
MJCL-011-16								
MJCL-012-16								
MJCL-013-16								
MJCL-014-16								
MJCL-015-16								
MJDL-001-16								
MJDL-002-16								
MJDL-003-16								
MJDL-004-16								
MJDL-005-16								
MJDL-006-16								
MJDL-007-16								
MJDL-008-16								
MJDL-009-16								
MJDL-010-16								
MJDL-011-16								
MJDL-012-16								
MJDL-013-16								
MJDL-014-16								
MJJ-001-16								
MJJ-002-16								
MJJ-003-16								
MJJ-004-16								
MJJ-005-16								
MJJ-006-16								
MJJ-007-16								
MJJ-008-16								
MJJ-009-16								
MJJ-010-16								
MJJ-011-16								
11 111 12								

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 9 of 17

'									
	Element	Na2O	Р	P2O5	Si	SiO2	Ti	TiO2	Ag
	Method	XRF76V	GE_ICM40B						
	Det.Lim.	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	Units	%	%	%	%	%	%	%	ppm
MJJ-012-16									
MJJ-013-16									
MJJ-014-16									
MJJ-015-16									
MJJ-016-16									
MJJ-017-16									
MJJ-018-16									
MJJ-019-16									
MJJ-020-16									
MJJ-021-16									
MJJ-022-16									
MJJ-023-16									
MJJ-024-16									
MJJ-025-16									
MJJ-026-16									
MJJ-027-16									
MJJ-028-16									
-									

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 10 of 17

	Element Method Det.Lim. Units	As GE_ICM40B 1 ppm	Be GE_ICM40B 0.1 ppm	Bi GE_ICM40B 0.04 ppm	GE_ICM40B 0.02	Ce GE_ICM40B 0.05 ppm	GE_ICM40B	Ga GE_ICM40B 0.1 ppm
MJCL-001-16								
MJCL-002-16								
MJCL-003-16								
MJCL-004-16								
MJCL-005-16								
MJCL-006-16								
MJCL-007-16								
MJCL-008-16								
MJCL-009-16								
MJCL-010-16								
MJCL-011-16								
MJCL-012-16								
MJCL-013-16								
MJCL-014-16								
MJCL-015-16								
MJDL-001-16								
MJDL-002-16								
MJDL-003-16								
MJDL-004-16								
MJDL-005-16								
MJDL-006-16								
MJDL-007-16								
MJDL-008-16								
MJDL-009-16								
MJDL-010-16								
MJDL-011-16								
MJDL-012-16								
MJDL-013-16								
MJDL-014-16								
MJJ-001-16								
MJJ-002-16								
MJJ-003-16								
MJJ-004-16								
MJJ-005-16								
MJJ-006-16								
MJJ-007-16								
MJJ-008-16								
MJJ-009-16								
MJJ-010-16								
MJJ-011-16								
14100-011-10								

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 11 of 17

Met Det.	nent As ihod GE_ICM40B Lim. 1 Inits ppm	GE_ICM40B 0.1	GE_ICM40B 0.02	Ce GE_ICM40B 0.05 ppm	GE_ICM40B 0.1	GE_ICM40B 0.05	Ga GE_ICM40B 0.1 ppm
MJJ-012-16			 				
MJJ-013-16			 				
MJJ-014-16			 				
MJJ-015-16			 				
MJJ-016-16			 				
MJJ-017-16			 				
MJJ-018-16			 				
MJJ-019-16			 				
MJJ-020-16			 				
MJJ-021-16			 				
MJJ-022-16			 				
MJJ-023-16			 				
MJJ-024-16			 				
MJJ-025-16			 				
MJJ-026-16			 				
MJJ-027-16			 				
MJJ-028-16			 				

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 12 of 17

1	Element Method Det.Lim. Units	Ge GE_ICM40B 0.1 ppm	Hf GE_ICM40B 0.02 ppm	In GE_ICM40B 0.02 ppm	La GE_ICM40B 0.1 ppm	Lu GE_ICM40B 0.01 ppm	Mo GE_ICM40B 0.05 ppm	Nb GE_ICM40B 0.1 ppm	Pb GE_ICM40B 0.5 ppm
MJCL-001-16									
MJCL-002-16									
MJCL-003-16									
MJCL-004-16									
MJCL-005-16									
MJCL-006-16									
MJCL-007-16									
MJCL-008-16									
MJCL-009-16									
MJCL-010-16									
MJCL-011-16									
MJCL-012-16									
MJCL-013-16									
MJCL-014-16									
MJCL-015-16									
MJDL-001-16									
MJDL-002-16									
MJDL-003-16									
MJDL-004-16									
MJDL-005-16									
MJDL-006-16									
MJDL-007-16									
MJDL-008-16									
MJDL-009-16									
MJDL-010-16									
MJDL-011-16									
MJDL-012-16									
MJDL-013-16									
MJDL-014-16									
MJJ-001-16									
MJJ-002-16									
MJJ-003-16									
MJJ-004-16									
MJJ-005-16									
MJJ-006-16									
MJJ-007-16									
MJJ-008-16									
MJJ-009-16									
MJJ-010-16									
MJJ-011-16									

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 13 of 17

	Element Method	Ge GE_ICM40B	Hf GE_ICM40B	In GE_ICM40B		Lu GE_ICM40B	Mo GE_ICM40B	Nb GE_ICM40B	Pb GE_ICM40B
	Det.Lim.	0.1	0.02	0.02		0.01	0.05		GE_ICW40B
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
MJJ-012-16									
MJJ-013-16									
MJJ-014-16									
MJJ-015-16									
MJJ-016-16									
MJJ-017-16									
MJJ-018-16									
MJJ-019-16									
MJJ-020-16									
MJJ-021-16									
MJJ-022-16									
MJJ-023-16									
MJJ-024-16									
MJJ-025-16									
MJJ-026-16									
MJJ-027-16									
MJJ-028-16									

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 14 of 17

Elemen Method Det.Lim Unit	d GE_ICM40B i. 0.2	GE_ICM40B 0.05	Sc GE_ICM40B 0.1 ppm	GE_ICM40B 2	Sn GE_ICM40B 0.3 ppm	GE_ICM40B	GE_ICM40B	Te GE_ICM40B 0.05 ppm
MJCL-001-16								
MJCL-002-16								
MJCL-003-16								
MJCL-004-16								
MJCL-005-16								
MJCL-006-16								
MJCL-007-16								
MJCL-008-16								
MJCL-009-16								
MJCL-010-16								
MJCL-011-16								
MJCL-012-16								
MJCL-013-16								
MJCL-014-16								
MJCL-015-16								
MJDL-001-16								
MJDL-002-16								
MJDL-003-16								
MJDL-004-16								
MJDL-005-16								
MJDL-006-16								
MJDL-007-16								
MJDL-008-16								
MJDL-009-16								
MJDL-010-16								
MJDL-011-16								
MJDL-012-16								
MJDL-013-16								
MJDL-014-16								
MJJ-001-16								
MJJ-002-16								
MJJ-003-16								
MJJ-004-16								
MJJ-005-16								
MJJ-006-16								
MJJ-007-16								
MJJ-008-16								
MJJ-009-16								
MJJ-010-16								
MJJ-011-16								

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Page 15 of 17

	Element Method	Rb GE_ICM40B 0.2	Sb GE_ICM40B 0.05	Sc GE_ICM40B 0.1		Sn GE_ICM40B 0.3	GE_ICM40B	Te GE_ICM40B 0.05
	Det.Lim. Units	ppm	ppm	ppm	ppm	ppm		ppm
MJJ-012-16							 	
MJJ-013-16							 	
MJJ-014-16							 	
MJJ-015-16							 	
MJJ-016-16							 	
MJJ-017-16							 	
MJJ-018-16							 	
MJJ-019-16							 	
MJJ-020-16							 	
MJJ-021-16							 	
MJJ-022-16							 	
MJJ-023-16							 	
MJJ-024-16							 	
MJJ-025-16							 	
MJJ-026-16							 	
MJJ-027-16							 	
MJJ-028-16							 	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Report File No.: 0000020105

Element Method Det.Lim. Units	Th GE_ICM40B 0.2 ppm	TI GE_ICM40B 0.02 ppm	U GE_ICM40B 0.1 ppm	W GE_ICM40B 0.1 ppm	Y GE_ICM40B 0.1 ppm	Yb GE_ICM40B 0.1 ppm
MJCL-001-16						
MJCL-002-16						
MJCL-003-16						
MJCL-004-16						
MJCL-005-16						
MJCL-006-16						
MJCL-007-16						
MJCL-008-16						
MJCL-009-16						
MJCL-010-16						
MJCL-011-16						
MJCL-012-16						
MJCL-013-16						
MJCL-014-16						
MJCL-015-16						
MJDL-001-16						
MJDL-002-16						
MJDL-003-16						
MJDL-004-16						
MJDL-005-16						
MJDL-006-16						
MJDL-007-16						
MJDL-008-16						
MJDL-009-16						
MJDL-010-16						
MJDL-011-16						
MJDL-012-16						
MJDL-013-16						
MJDL-014-16						
MJJ-001-16						
MJJ-002-16						
MJJ-003-16						
MJJ-004-16						
MJJ-005-16						
MJJ-006-16						
MJJ-007-16						
MJJ-008-16						
MJJ-009-16						
MJJ-010-16						
MJJ-011-16						

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000020105

Element	Th	TI	U	W	Y	Yb
Method	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B
Det.Lim.	0.2	0.02	0.1	0.1	0.1	0.1
Units	ppm	ppm	ppm	ppm	ppm	ppm
	Method Det.Lim.	Method GE_ICM40B Det.Lim. 0.2	Method GE_ICM40B GE_ICM40B Det.Lim. 0.2 0.02	Method GE_ICM40B GE_ICM40B GE_ICM40B Det.Lim. 0.2 0.02 0.1	Method GE_ICM40B GI GI<	Method Det.Lim. GE_ICM40B O.1 O.1<

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals 16A Young Street Red Lake t(807) 727-2939 f(807) 727-3183 www.ca.sgs.com

Page 17 of 17

Certificate of Analysis Work Order: RL1603478

[Report File No.: 0000019903]

Date: November 15, 2016

To: Jason Leblanc

COD SGS ASSAYERS
Bounty Gold Corp

104 Howey St., P.O. Box 1160

Red Lake ON P0V 2M0 P.O. No.: Bounty Gold Corp/Laird Lake Gold Proj

Project No.: - Samples: 57

Received: Oct 19, 2016 Pages: Page 1 to 21

(Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	<u>Description</u>
57	G_LOG02	Pre-preparation processing, sorting, logging, boxing
57	GO_XRF76V	Ore grade Borate fusion, XRF
57	GE_IC40A	Multi-acid (4-acid) digestion/ICP-AES finish
57	GE_IC40M	Multi-acid (4-acid) digestion/ICP-MS finish
1	GE_CSA06V	Total Sulfur and Total Carbon, Leco Method

Storage: Pulp & Reject

PULP STORAGE : STORE

Comments:

REE values are informational only.

Certified By

QC Chemist

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

Report Footer: L.N.R. = Listed not received

I.S. = Insufficient Sample

n.a. = Not applicable

-- = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 2 of 21

Report File No.: 0000019903

	Element Method	@LOI GO_XRF76V	@SiO2 GO_XRF76V	@Al2O3 GO_XRF76V	@Fe2O3 GO_XRF76V	@MgO GO_XRF76V	@CaO GO_XRF76V	@K2O GO_XRF76V	@Na2O GO_XRF76V
,	Det.Lim.	-10.000	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Units	%	%	%	%	%	%	%	%
MJCL-001-16		7.58	50.4	11.1	12.1	11.6	5.85	0.39	0.29
MJCL-002-16		2.50	51.3	4.93	10.4	18.7	11.4	0.05	0.27
MJCL-003-16		7.62	42.5	6.31	11.3	16.8	14.4	0.04	0.23
MJCL-004-16		1.46	52.1	11.8	13.7	8.34	10.7	0.70	0.55
MJCL-005-16		2.25	65.5	1.53	16.1	5.96	6.44	0.15	0.12
MJCL-006-16		3.54	80.6	0.26	11.7	2.01	2.14	0.04	0.02
MJCL-007-16		1.23	81.9	0.54	8.90	3.19	3.45	0.09	0.07
MJCL-008-16		2.31	74.8	0.62	13.6	3.70	4.24	0.03	0.06
MJCL-009-16		7.60	51.5	2.97	26.9	4.43	5.01	0.12	0.10
MJCL-010-16		3.59	65.3	15.4	6.25	1.42	1.53	5.26	0.48
MJCL-011-16		2.67	54.0	15.5	12.9	3.55	8.13	1.01	1.77
MJCL-012-16		0.439	96.0	0.10	2.37	0.74	1.27	0.02	0.03
MJCL-013-16		0.300	95.3	0.17	2.29	0.61	1.06	0.01	0.03
MJCL-014-16		0.300	91.9	0.44	3.39	0.86	3.08	<0.01	<0.01
MJCL-015-16		2.28	50.1	15.7	13.1	4.20	10.1	0.89	1.41
MJDL-001-16		2.82	54.1	14.5	11.3	5.20	9.59	0.63	1.64
MJDL-002-16		1.31	66.3	10.3	8.53	4.20	8.10	0.33	1.23
MJDL-003-16		1.45	52.2	12.6	12.5	8.40	9.96	0.44	1.89
MJDL-004-16		5.69	48.7	10.3	19.1	6.21	7.92	0.93	0.75
MJDL-005-16		2.23	48.8	13.2	15.0	7.47	10.9	0.65	1.12
MJDL-006-16		2.77	48.7	12.5	15.2	8.12	9.95	0.61	1.39
MJDL-007-16		1.88	51.9	12.0	13.2	8.20	9.35	1.49	1.30
MJDL-008-16		5.30	52.0	9.81	18.3	5.80	6.93	0.95	0.56
MJDL-009-16		1.39	51.9	13.0	12.4	8.17	10.1	1.19	1.37
MJDL-010-16		1.46	53.7	13.2	10.6	7.64	10.7	0.87	1.36
MJDL-011-16		2.58	49.0	14.6	13.4	5.91	12.9	0.64	0.77
MJDL-012-16		2.14	61.8	10.9	10.2	4.88	8.07	0.51	1.10
MJDL-013-16		2.57	54.3	16.0	10.6	4.19	8.19	0.58	2.74
MJDL-014-16		1.38	61.5	15.9	6.97	3.07	6.66	0.73	3.47
MJJ-001-16		9.92	41.8	6.84	11.6	22.4	6.42	0.02	0.23
MJJ-002-16		3.57	50.6	6.20	8.32	12.4	17.9	0.10	0.36
MJJ-003-16		5.58	47.3	8.68	11.4	16.6	9.45	0.10	0.28
MJJ-004-16		2.04	55.6	14.8	13.5	4.94	7.46	0.64	0.65
MJJ-005-16		2.14	55.1	19.1	7.97	2.47	9.81	0.95	1.91
MJJ-006-16		2.53	51.1	15.6	11.8	4.42	12.3	0.83	0.81
MJJ-007-16		4.43	61.1	8.01	13.8	4.18	7.63	0.35	0.27
MJJ-008-16		4.48	52.4	11.0	14.9	5.27	11.4	0.34	0.25
MJJ-009-16		4.86	54.5	8.26	17.0	4.76	9.69	0.33	0.11
MJJ-010-16		4.41	55.1	10.5	14.0	5.15	9.42	0.69	0.35
MJJ-011-16		1.54	54.0	19.0	8.66	3.22	9.78	0.86	2.24

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 3 of 21

Report File No.: 0000019903

1									
E	Element	@LOI	@SiO2	@Al2O3	@Fe2O3	@MgO	@CaO	@K2O	@Na2O
	Method	GO_XRF76V							
С	Det.Lim.	-10.000	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	Units	%	%	%	%	%	%	%	%
MJJ-012-16		1.56	55.6	18.5	9.15	2.32	8.99	0.78	2.39
MJJ-013-16		0.980	89.7	0.11	7.97	0.47	0.63	0.02	0.05
MJJ-014-16		1.77	81.1	0.97	8.67	2.44	3.20	0.03	0.09
MJJ-015-16		0.520	95.4	0.10	3.10	0.47	0.73	<0.01	0.02
MJJ-016-16		3.86	51.3	13.7	17.2	4.00	6.89	1.20	1.51
MJJ-017-16		1.88	63.9	11.5	9.61	3.44	7.75	0.58	1.06
MJJ-018-16		1.85	49.3	14.2	13.3	8.39	9.79	0.88	1.98
MJJ-019-16		2.96	58.8	11.8	11.2	6.36	6.82	0.65	0.96
MJJ-020-16		2.91	58.7	11.9	11.2	6.42	6.87	0.65	0.98
MJJ-021-16		1.80	55.5	12.6	11.2	6.70	9.46	0.45	1.87
MJJ-022-16		2.84	49.8	14.9	13.2	5.59	11.3	0.55	1.22
MJJ-023-16		1.43	77.1	3.95	8.16	1.14	7.71	0.03	0.07
MJJ-024-16		1.18	83.8	3.35	6.20	0.89	4.54	0.03	0.06
MJJ-025-16		4.49	45.1	15.5	18.3	4.54	8.72	1.16	1.40
MJJ-026-16		3.56	48.2	15.8	15.2	4.36	9.69	0.77	1.71
MJJ-027-16		2.02	51.8	15.0	12.3	4.58	12.2	0.41	1.38
MJJ-028-16		1.74	54.8	14.1	11.3	5.05	10.5	0.51	1.42

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 4 of 21

Report File No.: 0000019903

	Element Method	@TiO2 GO_XRF76V	@MnO GO_XRF76V	@P2O5 GO_XRF76V	@Cr2O3 GO_XRF76V	@V2O5 GO_XRF76V	Sum GO_XRF76V	@Ag GE ICM40B	@AI GE_ICM40B
	Det.Lim.	0.01	0.01	0.01	0.01	0.01	GO_XKF/0V 0	0.02	0.01
	Units	%	%	%	%	%	%	ppm	%
MJCL-001-16		0.43	0.20	0.03	0.10	0.04	100.2	0.13	5.90
MJCL-002-16		0.18	0.19	0.02	0.37	0.03	100.2	0.11	2.72
MJCL-003-16		0.22	0.25	0.02	0.36	0.02	100.1	0.28	3.30
MJCL-004-16		0.44	0.45	0.04	0.06	0.04	100.3	0.31	6.34
MJCL-005-16		0.06	0.87	0.03	0.07	<0.01	99.1	0.41	0.83
MJCL-006-16		0.01	0.25	0.02	<0.01	<0.01	100.6	0.68	0.17
MJCL-007-16		0.04	0.62	0.02	0.03	<0.01	100.1	0.31	0.31
MJCL-008-16		0.02	0.69	0.02	<0.01	<0.01	100.1	1.73	0.36
MJCL-009-16		0.13	0.99	0.03	<0.01	0.01	99.7	1.01	1.67
MJCL-010-16		0.42	0.14	0.16	<0.01	<0.01	99.9	0.35	8.25
MJCL-011-16		0.90	0.20	0.07	0.04	0.06	100.8	0.38	8.30
MJCL-012-16		<0.01	0.08	0.03	<0.01	<0.01	101.1	0.06	0.11
MJCL-013-16		0.01	0.06	0.03	0.02	<0.01	99.9	0.06	0.12
MJCL-014-16		0.02	0.10	0.03	<0.01	<0.01	100.2	0.03	0.27
MJCL-015-16		0.90	0.21	0.06	0.04	0.06	99.1	0.23	8.47
MJDL-001-16		0.65	0.21	0.06	0.09	0.06	100.8	0.36	7.78
MJDL-002-16		0.45	0.18	0.04	0.07	0.04	101.1	0.29	5.50
MJDL-003-16		0.55	0.34	0.03	0.07	0.05	100.4	0.10	6.71
MJDL-004-16		0.52	0.25	0.05	0.07	0.05	100.6	0.80	5.32
MJDL-005-16		0.59	0.31	0.04	0.08	0.06	100.4	0.39	7.11
MJDL-006-16		0.57	0.34	0.04	0.08	0.05	100.3	0.33	6.55
MJDL-007-16		0.53	0.33	0.04	0.08	0.05	100.4	0.15	6.30
MJDL-008-16		0.49	0.24	0.04	0.06	0.06	100.5	0.57	5.07
MJDL-009-16		0.58	0.28	0.04	0.07	0.05	100.5	0.14	6.80
MJDL-010-16		0.58	0.25	0.04	0.08	0.05	100.5	0.07	7.08
MJDL-011-16		0.80	0.20	0.06	0.04	0.06	101.1	0.38	7.84
MJDL-012-16		0.59	0.18	0.05	0.03	0.04	100.6	0.16	5.82
MJDL-013-16		0.90	0.17	0.07	0.04	0.06	100.4	0.25	8.57
MJDL-014-16		0.65	0.13	0.18	<0.01	0.03	100.7	0.17	8.39
MJJ-001-16		0.20	0.17	0.02	0.46	0.02	100.1	0.19	3.67
MJJ-002-16		0.22	0.30	0.02	0.43	0.02	100.5	0.09	3.32
MJJ-003-16		0.32	0.21	0.03	0.27	0.03	100.3	0.04	4.73
MJJ-004-16		0.65	0.28	0.04	0.02	0.06	100.7	0.13	7.83
MJJ-005-16		1.06	0.14	0.08	0.05	0.06	100.8	0.12	10.1
MJJ-006-16		0.86	0.23	0.06	0.04	0.06	100.6	0.23	8.33
MJJ-007-16		0.37	0.14	0.04	0.05	0.04	100.4	0.88	4.25
MJJ-008-16		0.49	0.18	0.05	0.05	0.05	100.9	0.66	5.84
MJJ-009-16		0.44	0.17	0.05	0.04	0.04	100.3	0.93	4.30
MJJ-010-16		0.48	0.17	0.04	0.06	0.04	100.4	0.62	5.39
MJJ-011-16		1.05	0.16	0.07	0.05	0.06	100.7	0.14	9.89

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 5 of 21

Report File No.: 0000019903

Element @TiO2 @MnO @P2O5 @Cr2O3 @V2O5 Sum @Ag GO_XRF76V GO	@AI GE_ICM40B
Det.Lim. Units 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.01 % 0.02 % ppm MJJ-012-16 1.01 0.16 0.07 0.05 0.06 100.6 0.22 MJJ-013-16 <0.01 0.04 0.09 <0.01 <0.01 100.0 0.20 MJJ-014-16 0.04 0.11 0.07 <0.01 0.01 98.6 0.49	_
Units % % % % % % ppm MJJ-012-16 1.01 0.16 0.07 0.05 0.06 100.6 0.22 MJJ-013-16 <0.01 0.04 0.09 <0.01 <0.01 100.0 0.20 MJJ-014-16 0.04 0.11 0.07 <0.01 0.01 98.6 0.49	
MJJ-012-16 1.01 0.16 0.07 0.05 0.06 100.6 0.22 MJJ-013-16 <0.01 0.04 0.09 <0.01 <0.01 100.0 0.20 MJJ-014-16 0.04 0.01 0.07 <0.01 0.01 98.6 0.49	0.01
MJJ-013-16 <0.01 0.04 0.09 <0.01 <0.01 100.0 0.20 MJJ-014-16 0.04 0.11 0.07 <0.01 0.01 98.6 0.49	%
MJJ-014-16 0.04 0.11 0.07 <0.01 0.01 98.6 0.49	9.83
	0.09
MILO15.16 <0.01 0.04 0.04 <0.01 <0.01 100.5 0.14	0.52
M00-013-10 0.04 0.01 100.3 0.14	0.08
MJJ-016-16 0.77 0.19 0.07 0.03 0.06 100.9 0.42	7.20
MJJ-017-16 0.65 0.15 0.05 0.03 0.05 100.7 0.25	5.91
MJJ-018-16 0.79 0.24 0.05 0.03 0.06 100.9 0.25	7.30
MJJ-019-16 0.63 0.17 0.05 0.03 0.05 100.5 0.24	6.17
MJJ-020-16 0.64 0.17 0.05 0.03 0.04 100.6 0.22	6.20
MJJ-021-16 0.68 0.22 0.05 0.03 0.04 100.6 0.16	6.50
MJJ-022-16 0.79 0.23 0.06 0.03 0.06 100.5 0.37	7.82
MJJ-023-16 0.14 0.15 0.06 0.01 0.03 99.9 0.23	2.15
MJJ-024-16 0.12 0.07 0.05 0.01 0.02 100.3 0.20	1.83
MJJ-025-16 0.88 0.21 0.07 0.04 0.07 100.4 0.64	8.01
MJJ-026-16 0.87 0.21 0.07 0.04 0.07 100.5 0.73	8.31
MJJ-027-16 0.78 0.22 0.07 0.03 0.06 100.8 0.18	7.82
MJJ-028-16 0.79 0.22 0.06 0.03 0.06 100.6 0.31	7.56

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 6 of 21

Report File No.: 0000019903

	Element	@Ва	@Ca	@Cr	@Cu	@Fe	@K	@Li	@Mg
	Method	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B
	Det.Lim. Units	ppm	0.01	ppm	0.5 ppm	0.01	0.01 %	ppm	0.01 %
MJCL-001-16		51	3.92	423	46.7	8.20	0.34	86	6.78
MJCL-002-16		2	8.06	1660	4.5	7.32	0.04	16	11.8
MJCL-003-16		3	9.69	1460	46.6	7.54	0.03	21	9.82
MJCL-004-16		113	7.56	226	48.4	9.41	0.62	43	4.85
MJCL-005-16		3	4.46	352	21.4	11.5	0.12	6	3.50
MJCL-006-16		2	1.56	16	30.6	8.46	0.03	3	1.27
MJCL-007-16		2	2.47	126	2.7	6.42	0.07	2	1.98
MJCL-008-16		3	3.04	14	16.7	10.0	0.02	2	2.41
MJCL-009-16		4	3.49	39	39.3	>15.0	0.10	11	2.73
MJCL-010-16		565	1.15	11	12.3	4.43	4.43	100	0.87
MJCL-011-16		356	5.61	179	237	8.73	0.84	63	2.13
MJCL-012-16		9	0.95	15	31.6	1.83	0.02	2	0.45
MJCL-013-16		9	0.78	49	32.0	1.66	0.01	1	0.35
MJCL-014-16		7	2.28	36	23.5	2.36	<0.01	2	0.52
MJCL-015-16		333	7.07	179	220	8.83	0.76	37	2.55
MJDL-001-16		132	6.69	397	195	7.70	0.54	58	3.13
MJDL-002-16		60	5.67	278	134	5.89	0.28	11	2.60
MJDL-003-16		57	6.87	308	46.5	8.38	0.38	23	4.89
MJDL-004-16		162	5.22	335	427	12.9	0.77	26	3.43
MJDL-005-16		90	7.68	359	189	10.4	0.55	23	4.32
MJDL-006-16		97	6.85	367	232	10.3	0.52	28	4.65
MJDL-007-16		239	6.23	304	107	8.97	1.25	41	4.73
MJDL-008-16		158	4.71	297	391	12.4	0.78	38	3.51
MJDL-009-16		181	6.89	320	40.7	8.28	1.01	34	4.73
MJDL-010-16		221	7.52	324	21.0	7.20	0.76	31	4.41
MJDL-011-16		111	8.93	148	216	9.13	0.56	29	3.68
MJDL-012-16		77	5.64	116	147	7.05	0.43	29	3.05
MJDL-013-16		87	5.71	179	141	7.21	0.49	40	2.48
MJDL-014-16		141	4.68	51	64.7	4.72	0.61	36	1.82
MJJ-001-16		6	4.46	1910	38.1	8.01	0.01	11	14.0
MJJ-002-16		29	12.2	1950	8.0	5.61	0.08	24	7.27
MJJ-003-16		10	6.48	959	<0.5	7.91	0.08	58	10.3
MJJ-004-16		75	5.15	72	96.4	9.26	0.55	47	3.02
MJJ-005-16		213	6.93	177	63.0	5.39	0.79	41	1.44
MJJ-006-16		111	8.41	152	145	8.01	0.69	26	2.64
MJJ-007-16		40	5.35	244	396	9.99	0.31	17	2.60
MJJ-008-16		24	8.01	254	338	10.1	0.29	19	3.23
MJJ-009-16		13	6.51	232	398	11.6	0.27	4	2.84
MJJ-010-16		58	6.29	276	595	9.20	0.57	25	3.10
MJJ-011-16		160	6.87	166	78.8	5.72	0.74	33	1.93

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 7 of 21

Report File No.: 0000019903

	Element	@Ba	@Ca	@Cr	@Cu	@Fe	@K	@Li	@Mg
	Method	GE_ICM40B							
	Det.Lim.	1	0.01	1	0.5	0.01	0.01	1	0.01
	Units	ppm	%	ppm	ppm	%	%	ppm	%
MJJ-012-16		179	6.24	171	139	6.20	0.64	27	1.35
MJJ-013-16		2	0.45	50	93.4	5.64	0.01	<1	0.28
MJJ-014-16		5	2.25	32	351	6.45	0.02	2	1.47
MJJ-015-16		1	0.53	31	74.0	2.18	<0.01	<1	0.28
MJJ-016-16		274	4.73	175	209	11.8	0.96	47	2.38
MJJ-017-16		114	5.35	101	200	6.42	0.48	23	2.07
MJJ-018-16		180	6.68	156	101	8.75	0.75	51	4.75
MJJ-019-16		130	4.69	112	110	7.60	0.54	65	3.65
MJJ-020-16		128	4.70	119	111	7.61	0.54	64	3.62
MJJ-021-16		60	6.29	97	89.3	7.44	0.37	31	3.79
MJJ-022-16		90	7.59	151	297	8.85	0.46	43	3.35
MJJ-023-16		9	5.54	61	202	5.76	0.02	2	0.71
MJJ-024-16		5	3.25	45	98.0	4.12	0.02	2	0.50
MJJ-025-16		296	5.75	204	394	12.2	0.95	68	2.73
MJJ-026-16		181	6.76	197	585	10.2	0.67	67	2.78
MJJ-027-16		68	8.27	165	89.7	8.19	0.34	20	2.75
MJJ-028-16		72	7.22	149	149	7.72	0.42	21	3.03

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 8 of 21

Report File No.: 0000019903

	Element	@Mn	@Na	@Ni GE_ICM40B	@P	@S GE_ICM40B	@Sr	@Ti	@V
	Method	GE_ICM40B	GE_ICM40B 0.01	GE_ICM40B 0.5	GE_ICM40B 0.005	GE_ICM40B 0.01	GE_ICM40B 0.5	GE_ICM40B 0.01	GE_ICM40B 2
	Det.Lim. Units	ppm	%	ppm	%	%	ppm	%	ppm
MIOL 004 40									
MJCL-001-16		1370	0.21	245	0.014	0.05	57.3	0.24	219
MJCL-002-16		1380	0.20	590	0.011	0.04	18.0	0.10	101
MJCL-003-16		1700	0.17	472	0.011	0.10	60.8	0.13	118
MJCL-004-16		3230	0.39	144	0.018	0.06	59.1	0.25	206
MJCL-005-16		6190	0.08	81.8	0.007	1.34	21.9	0.04	9
MJCL-006-16		1770	0.02	28.7	0.008	3.84	4.2	<0.01	<2
MJCL-007-16		4680	0.04	5.4	0.008	0.29	10.9	0.03	3
MJCL-008-16		5390	0.05	8.0	0.015	0.94	7.3	0.01	<2
MJCL-009-16		7010	0.07	56.1	0.010	>5.00	7.8	0.08	<2
MJCL-010-16		1040	0.35	21.2	0.068	1.33	60.1	0.24	36
MJCL-011-16		1360	1.27	95.2	0.033	0.14	166	0.52	283
MJCL-012-16		578	0.02	6.8	0.014	0.05	1.7	<0.01	17
MJCL-013-16		420	0.02	7.0	0.011	0.04	2.5	<0.01	11
MJCL-014-16		723	0.02	8.3	0.012	0.07	3.8	0.01	42
MJCL-015-16		1480	1.05	108	0.025	0.68	129	0.52	302
MJDL-001-16		1460	1.21	86.3	0.026	0.38	115	0.38	322
MJDL-002-16		1280	0.91	85.2	0.021	0.38	81.9	0.26	222
MJDL-003-16		2360	1.39	110	0.016	0.14	102	0.31	254
MJDL-004-16		1750	0.54	23.4	0.019	0.73	75.5	0.29	260
MJDL-005-16		2220	0.84	82.1	0.019	0.92	101	0.34	273
MJDL-006-16		2400	1.02	78.3	0.019	0.62	99.1	0.32	273
MJDL-007-16		2270	0.94	102	0.014	0.34	79.9	0.30	245
MJDL-008-16		1610	0.38	33.5	0.012	0.40	47.0	0.28	259
MJDL-009-16		1970	1.00	107	0.012	0.14	101	0.33	272
MJDL-010-16		1770	0.99	131	0.018	0.10	103	0.34	278
MJDL-011-16		1350	0.58	80.4	0.034	0.42	172	0.46	294
MJDL-012-16		1230	0.81	71.7	0.022	0.19	100	0.34	186
MJDL-013-16		1170	1.96	97.4	0.025	0.25	147	0.52	310
MJDL-014-16		879	2.44	29.4	0.072	0.13	214	0.37	125
MJJ-001-16		1210	0.05	707	0.007	0.07	54.9	0.12	124
MJJ-002-16		2130	0.27	826	0.007	0.05	96.1	0.13	120
MJJ-003-16		1490	0.18	446	0.012	0.04	37.1	0.16	165
MJJ-004-16		1950	0.44	101	0.021	0.05	98.2	0.36	295
MJJ-005-16		999	1.34	154	0.031	0.22	144	0.61	326
MJJ-006-16		1630	0.57	120	0.030	0.67	123	0.50	300
MJJ-007-16		950	0.18	17.8	0.015	0.37	78.9	0.21	183
MJJ-008-16		1270	0.18	26.0	0.018	0.41	116	0.28	244
MJJ-009-16		1160	0.07	11.2	0.015	0.32	93.4	0.24	210
MJJ-010-16		1120	0.25	27.9	0.015	0.54	98.0	0.27	218
MJJ-011-16		1120	1.58	156	0.032	0.34	142	0.60	334

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 9 of 21

Report File No.: 0000019903

	Element	@Mn	@Na	@Ni	@P	@S	@Sr	@Ti	@V
	Method	GE_ICM40B							
	Det.Lim.	2	0.01	0.5	0.005	0.01	0.5	0.01	2
	Units	ppm	%	ppm	%	%	ppm	%	ppm
MJJ-012-16		1090	1.71	177	0.035	0.77	137	0.58	326
MJJ-013-16		301	0.01	3.8	0.039	0.14	1.6	<0.01	<2
MJJ-014-16		815	0.04	21.4	0.030	1.07	6.9	0.03	47
MJJ-015-16		251	0.01	6.5	0.022	0.38	1.8	<0.01	7
MJJ-016-16		1310	1.10	63.1	0.028	0.80	91.1	0.44	320
MJJ-017-16		1030	0.78	79.1	0.022	0.76	89.7	0.37	225
MJJ-018-16		1620	1.39	113	0.027	0.37	88.3	0.41	281
MJJ-019-16		1200	0.68	95.3	0.021	0.53	69.2	0.35	229
MJJ-020-16		1200	0.69	94.5	0.017	0.51	70.4	0.35	227
MJJ-021-16		1470	1.33	98.4	0.016	0.37	80.6	0.36	234
MJJ-022-16		1640	0.88	117	0.029	1.00	115	0.45	275
MJJ-023-16		1020	0.04	17.5	0.028	0.24	62.2	0.08	142
MJJ-024-16		496	0.02	5.3	0.017	0.11	51.8	0.07	99
MJJ-025-16		1390	0.99	88.7	0.033	0.79	109	0.49	373
MJJ-026-16		1440	1.22	126	0.037	1.29	115	0.50	356
MJJ-027-16		1570	0.96	49.6	0.031	0.15	177	0.44	331
MJJ-028-16		1500	1.04	70.8	0.026	0.36	121	0.46	280

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 10 of 21

Report File No.: 0000019903

	Element	@Zn	@Zr	@As	@Be	@Bi	@Cd	@Ce	@Co
	Method	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B
	Det.Lim. Units	ppm	0.5 ppm	1 ppm	0.1 ppm	0.04 ppm	0.02 ppm	0.05 ppm	0.1 ppm
	Oilles								
MJCL-001-16		122	31.0	<1	0.2	0.06	0.23	6.87	51.0
MJCL-002-16		79	12.7	<1	0.2	0.10	0.32	3.43	75.1
MJCL-003-16		75	14.6	<1	0.1	0.18	0.34	6.16	64.4
MJCL-004-16		126	35.8	2	0.3	0.06	0.61	6.49	45.9
MJCL-005-16		110	8.0	1	0.4	0.09	0.19	2.49	13.3
MJCL-006-16		35	5.4	7	0.1	0.36	0.06	3.14	27.4
MJCL-007-16		67	4.2	<1	0.2	0.11	0.13	2.23	2.5
MJCL-008-16		70	8.8	3	0.3	0.20	0.12	1.65	3.7
MJCL-009-16		61	21.0	37	0.5	0.64	0.13	8.03	47.1
MJCL-010-16		17	140	10	0.9	0.21	0.06	27.8	7.9
MJCL-011-16		50	25.0	<1	0.4	0.43	0.11	4.82	25.4
MJCL-012-16		11	0.9	<1	<0.1	<0.04	0.02	1.11	14.0
MJCL-013-16		8	<0.5	<1	<0.1	<0.04	0.02	0.88	10.1
MJCL-014-16		13	1.4	<1	<0.1	0.10	0.04	1.47	12.3
MJCL-015-16		63	15.4	<1	0.4	0.44	0.11	5.82	42.2
MJDL-001-16		46	16.1	<1	0.2	0.64	0.09	4.72	30.1
MJDL-002-16		49	10.2	<1	0.2	0.50	0.09	3.05	27.8
MJDL-003-16		78	12.5	<1	0.2	0.20	0.08	3.69	42.3
MJDL-004-16		58	19.2	<1	0.2	1.36	0.07	2.96	13.4
MJDL-005-16		70	14.4	<1	0.3	1.01	0.12	4.35	26.4
MJDL-006-16		75	17.1	<1	0.3	0.70	0.11	3.80	40.8
MJDL-007-16		68	14.3	<1	0.2	0.42	0.08	3.76	35.7
MJDL-008-16		56	21.4	<1	0.3	1.28	0.09	2.58	12.1
MJDL-009-16		70	11.6	<1	0.3	0.39	0.11	3.85	34.8
MJDL-010-16		101	12.6	<1	0.3	0.41	0.24	3.59	40.0
MJDL-011-16		50	15.0	<1	0.3	0.75	0.07	5.55	33.9
MJDL-012-16		57	13.4	<1	0.2	0.66	0.12	3.58	24.9
MJDL-013-16		40	17.0	<1	0.3	0.43	0.07	5.51	33.0
MJDL-014-16		42	108	<1	0.5	0.19	0.08	25.0	18.9
MJJ-001-16		81	13.3	<1	0.2	0.13	0.14	5.39	78.8
MJJ-002-16		154	9.0	2	0.4	0.17	1.74	3.01	123
MJJ-003-16		112	22.2	<1	0.2	0.06	0.26	2.71	56.8
MJJ-004-16		80	21.3	<1	0.5	<0.04	0.15	5.19	42.4
MJJ-005-16		29	25.6	<1	0.6	0.89	0.07	6.32	33.9
MJJ-006-16		48	17.3	<1	0.4	0.77	0.07	5.60	34.6
MJJ-007-16		35	12.7	<1	0.2	1.44	0.08	2.71	18.8
MJJ-008-16		37	17.3	<1	0.3	1.82	0.10	3.53	21.8
MJJ-009-16		43	16.9	1	0.3	2.63	0.09	2.70	16.3
MJJ-010-16		34	14.5	<1	0.3	0.98	0.08	2.77	20.5
MJJ-011-16		43	21.1	<1	0.6	0.39	0.00	6.88	37.7

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 11 of 21

Report File No.: 0000019903

n ent @Zn	@Zr	@As	@Be	@Bi	@Cd	@Ce	@Co
hod GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B
.im. 1	0.5	1	0.1	0.04	0.02	0.05	0.1
nits ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
35	26.7	<1	0.6	0.45	0.06	6.24	38.9
9	3.2	1	<0.1	0.27	<0.02	0.85	3.9
24	5.3	2	<0.1	0.40	0.04	2.07	20.0
6	1.5	1	<0.1	0.09	<0.02	1.01	8.9
57	25.4	<1	0.5	0.88	0.09	4.17	35.5
46	17.1	<1	0.3	1.14	0.13	5.25	34.3
73	24.5	<1	0.2	0.35	0.18	5.20	43.8
67	21.4	1	0.2	0.32	0.12	5.53	40.9
65	22.0	2	0.1	0.32	0.13	5.66	41.4
68	22.7	<1	0.2	0.30	0.16	4.56	33.3
57	15.6	<1	0.2	0.76	0.12	5.13	44.7
20	12.5	1	0.1	0.91	0.13	4.09	9.7
16	9.1	1	<0.1	1.01	0.09	3.45	6.2
66	28.1	<1	0.4	0.72	0.17	6.84	38.1
54	20.9	<1	0.4	0.95	0.12	6.97	59.3
57	19.8	<1	0.3	2.63	0.17	5.67	25.3
63	16.2	<1	0.3	0.86	0.12	5.21	32.2
L	thod GE_ICM40B Lim. 1 Inits ppm 35 9 24 6 57 46 73 67 65 68 57 20 16 66 54 57	thod GE_ICM40B GE_ICM40B Lim. 1 0.5 Jnits ppm ppm 35 26.7 9 3.2 24 5.3 6 1.5 57 57 25.4 46 17.1 73 24.5 67 21.4 65 22.0 68 22.7 57 15.6 20 12.5 16 9.1 66 28.1 54 20.9 57 19.8	thod GE_ICM40B DEMONSTANCE CIMADE DEMONSTANCE CIMADE DEMONSTANCE CIMADE DEMONSTANCE CIMADE DEMONSTANCE CIMADE DEMONSTANCE CIMADE ACM CIMADE CIMADE	thod GE_ICM40B O.1 Jnits ppm 1 0.01 1 0.01 0.2 2 0.1 <td>thod GE_ICM40B GU GU GU GU GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GU GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GU GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GU GE_ICM40B <t< td=""><td>thod GE_ICM40B GE_</td><td>thod Lim. GE_ICM40B Lim. O.05 O.05 Lim. O.05 O.05 Lim. O.06 C.24 Lim. O.05 O.05 Lim. O.06 C.24 Lim. O.00 C.24 Li</td></t<></td>	thod GE_ICM40B GU GU GU GU GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GU GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GU GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GE_ICM40B GU GE_ICM40B <t< td=""><td>thod GE_ICM40B GE_</td><td>thod Lim. GE_ICM40B Lim. O.05 O.05 Lim. O.05 O.05 Lim. O.06 C.24 Lim. O.05 O.05 Lim. O.06 C.24 Lim. O.00 C.24 Li</td></t<>	thod GE_ICM40B GE_	thod Lim. GE_ICM40B Lim. O.05 O.05 Lim. O.05 O.05 Lim. O.06 C.24 Lim. O.05 O.05 Lim. O.06 C.24 Lim. O.00 C.24 Li

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 12 of 21

Report File No.: 0000019903

	Element Method	@Cs GE_ICM40B	@Ga GE_ICM40B	@Hf GE_ICM40B	@In GE_ICM40B	@La GE_ICM40B	@Lu GE_ICM40B	@Mo GE_ICM40B	@Nb GE_ICM40B
	Det.Lim.	1	0.1	0.02	0.02	0.1	0.01	0.05	0.1
	Units	ppm							
MJCL-001-16		3	10.9	0.90	0.04	2.8	0.20	0.28	1.6
MJCL-002-16		<1	5.2	0.38	0.03	1.3	0.09	0.25	0.7
MJCL-003-16		<1	6.3	0.46	0.03	3.0	0.12	0.39	0.8
MJCL-004-16		3	11.1	1.04	0.04	3.1	0.22	0.42	1.7
MJCL-005-16		<1	1.9	0.22	0.09	1.7	0.07	1.82	0.4
MJCL-006-16		<1	0.7	0.11	0.05	1.7	0.04	2.25	0.2
MJCL-007-16		<1	1.1	0.19	0.08	1.8	0.05	1.58	0.4
MJCL-008-16		<1	1.3	0.20	0.12	0.7	0.11	1.92	0.4
MJCL-009-16		<1	4.6	0.72	0.14	4.3	0.18	2.87	1.8
MJCL-010-16		2	19.7	3.58	0.04	15.3	0.14	1.22	4.6
MJCL-011-16		10	15.6	0.77	0.05	1.9	0.27	1.11	2.0
MJCL-012-16		<1	0.4	0.03	<0.02	0.5	0.04	1.38	<0.1
MJCL-013-16		<1	0.5	<0.02	<0.02	0.4	0.03	5.36	<0.1
MJCL-014-16		<1	1.1	<0.02	<0.02	0.7	0.06	3.28	<0.1
MJCL-015-16		7	16.2	0.58	0.07	2.4	0.32	1.01	2.0
MJDL-001-16		2	14.0	0.56	0.07	2.1	0.22	1.01	1.5
MJDL-002-16		1	10.0	0.39	0.05	1.3	0.16	1.34	1.1
MJDL-003-16		2	12.3	0.42	0.07	1.4	0.25	0.48	1.2
MJDL-004-16		5	12.3	0.58	0.07	1.2	0.38	1.16	1.3
MJDL-005-16		3	13.3	0.50	0.07	1.7	0.31	0.72	1.4
MJDL-006-16		2	12.6	0.58	0.07	1.5	0.32	0.51	1.4
MJDL-007-16		3	11.5	0.51	0.06	1.5	0.24	1.16	1.1
MJDL-008-16		2	12.4	0.63	0.07	1.0	0.33	1.60	1.1
MJDL-009-16		4	12.0	0.45	0.06	1.5	0.23	0.63	1.2
MJDL-010-16		5	12.9	0.48	0.06	1.4	0.22	1.18	1.3
MJDL-011-16		1	15.9	0.54	0.09	2.3	0.29	0.50	1.7
MJDL-012-16		3	12.5	0.48	0.06	1.4	0.21	2.61	1.4
MJDL-013-16		3	16.2	0.62	0.05	2.2	0.28	0.71	2.1
MJDL-014-16		5	17.0	2.65	0.03	13.3	0.20	1.58	3.9
MJJ-001-16		<1	7.3	0.41	0.02	3.6	0.11	0.15	0.6
MJJ-002-16		<1	6.4	0.31	0.03	1.4	0.11	0.47	0.5
MJJ-003-16		<1	8.8	0.70	0.04	1.2	0.16	0.12	0.7
MJJ-004-16		1	15.0	0.67	0.06	2.2	0.27	0.50	1.3
MJJ-005-16		5	21.2	0.82	0.07	2.5	0.23	0.87	2.3
MJJ-006-16		3	16.5	0.63	0.07	2.2	0.28	0.66	1.9
MJJ-007-16		<1	10.9	0.39	0.06	1.2	0.20	1.41	0.8
MJJ-008-16		<1	15.2	0.56	0.14	1.5	0.23	1.06	1.1
MJJ-009-16		<1	13.4	0.53	0.09	1.3	0.20	1.48	1.0
MJJ-010-16		<1	12.8	0.46	0.07	1.1	0.19	0.77	1.0
MJJ-011-16		5	18.5	0.73	0.04	2.5	0.27	1.00	2.2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 13 of 21

Report File No.: 0000019903

	Element	@Cs	@Ga	@Hf	@In	@La	@Lu	@Mo	@Nb
	Method	GE_ICM40B							
	Det.Lim.	1	0.1	0.02	0.02	0.1	0.01	0.05	0.1
	Units	ppm							
MJJ-012-16		4	18.5	0.76	0.04	2.4	0.24	0.59	2.1
MJJ-013-16		<1	0.8	0.02	<0.02	0.5	0.03	3.42	<0.1
MJJ-014-16		<1	1.7	0.06	<0.02	1.0	0.17	1.75	0.1
MJJ-015-16		<1	0.4	<0.02	<0.02	0.5	0.04	2.66	<0.1
MJJ-016-16		10	14.4	0.77	0.04	1.7	0.39	1.55	1.6
MJJ-017-16		3	12.2	0.53	0.06	2.1	0.26	2.00	1.3
MJJ-018-16		3	14.2	0.75	0.06	1.8	0.32	0.51	1.5
MJJ-019-16		2	13.4	0.66	0.05	2.5	0.25	1.96	1.3
MJJ-020-16		2	13.5	0.67	0.05	2.5	0.25	2.04	1.4
MJJ-021-16		2	13.3	0.75	0.05	1.7	0.28	0.64	1.4
MJJ-022-16		2	15.3	0.55	0.08	1.8	0.30	0.94	1.7
MJJ-023-16		<1	5.5	0.27	0.04	1.8	0.30	2.11	0.3
MJJ-024-16		<1	5.0	0.20	0.03	1.4	0.27	1.93	0.2
MJJ-025-16		12	16.2	0.81	0.07	2.7	0.41	0.89	1.9
MJJ-026-16		4	17.4	0.68	0.09	2.6	0.40	0.89	2.0
MJJ-027-16		2	20.0	0.69	0.19	2.2	0.31	8.56	1.7
MJJ-028-16		3	16.7	0.60	0.09	1.8	0.31	9.45	1.6

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 14 of 21

Report File No.: 0000019903

	Element	@Pb	@Rb	@Sb	@Sc	@Se	@Sn	@Ta	@Tt
	Method	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40E
	Det.Lim. Units	0.5 ppm	0.2 ppm	0.05 ppm	0.5 ppm	ppm	0.3 ppm	0.05 ppm	0.05 ppm
MJCL-001-16		3.9	10.1	0.29	44.8	<2	0.4	0.13	0.24
MJCL-002-16		<0.5	0.8	0.25	22.5	<2	<0.3	0.15	0.14
MJCL-003-16		2.1	0.5	0.13	24.3	<2	<0.3	0.05	0.19
MJCL-004-16		10.0	18.1	0.12	37.6	<2	0.5	0.03	0.28
MJCL-005-16		5.6	2.3	0.20	5.5	<2	0.6	<0.05	0.10
MJCL-006-16		18.1	0.4	0.73	0.9	<2	0.4	<0.05	0.06
MJCL-007-16		7.5	0.8	0.73	2.3	<2	0.6	<0.05	0.07
MJCL-008-16		7.5	0.4	1.22	1.7	<2	0.8	<0.05	0.16
MJCL-009-16		22.2	1.5	1.49	5.4	2	1.0	0.12	0.23
MJCL-010-16		18.9	107	1.04	4.3	<2	1.6	0.30	0.21
MJCL-011-16		5.4	49.9	0.52	33.8	<2	0.5	0.13	0.41
MJCL-012-16		<0.5	1.1	0.32	6.6	<2	<0.3	<0.05	0.07
MJCL-013-16		1.3	1.1	0.17	3.0	<2	<0.3	<0.05	0.05
MJCL-014-16		<0.5	0.7	0.11	4.1	<2	<0.3	<0.05	0.00
MJCL-015-16		4.6	34.9	0.76	40.7	<2	0.7	0.14	0.50
MJDL-001-16		4.6	21.9	0.48	50.5	<2	0.5	0.09	0.33
MJDL-002-16		5.2	7.1	0.48	38.9	<2	0.4	0.05	0.24
MJDL-003-16		1.8	11.8	0.30	44.6	<2	0.5	0.08	0.36
MJDL-004-16		6.6	34.8	0.36	48.1	3	0.5	0.07	0.38
MJDL-005-16		4.7	19.7	0.35	48.0	<2	0.7	0.08	0.42
MJDL-006-16		4.3	14.4	0.29	51.9	<2	0.6	0.00	0.4
MJDL-007-16		1.4	47.0	0.29	46.4	<2	0.5	0.07	0.3
MJDL-008-16		5.3	25.7	0.32	46.0	3	0.6	0.06	0.38
MJDL-009-16		2.8	42.7	0.25	44.1	<2	0.6	0.08	0.34
MJDL-010-16		9.9	32.9	0.30	46.6	<2	0.5	0.08	0.33
MJDL-011-16		4.4	20.8	0.49	36.6	<2	0.6	0.11	0.45
MJDL-012-16		3.6	17.8	0.46	25.0	<2	0.4	0.07	0.32
MJDL-013-16		4.4	12.9	0.35	41.4	<2	0.5	0.15	0.45
MJDL-014-16		9.2	24.7	0.18	15.5	<2	0.5	0.26	0.36
MJJ-001-16		1.2	0.3	0.10	27.6	<2	<0.3	<0.05	0.16
MJJ-002-16		6.6	1.5	0.49	28.4	<2	0.4	<0.05	0.17
MJJ-003-16		1.6	2.7	0.13	35.5	<2	0.5	0.05	0.19
MJJ-004-16		2.4	23.1	0.40	43.9	<2	0.5	0.08	0.39
MJJ-005-16		5.4	33.2	0.49	31.8	<2	0.9	0.17	0.43
MJJ-006-16		5.2	30.6	0.57	37.2	<2	0.7	0.11	0.46
MJJ-007-16		11.1	5.6	0.48	30.9	<2	0.5	<0.05	0.22
MJJ-008-16		8.7	4.6	0.50	41.1	<2	0.7	0.07	0.3
MJJ-009-16		10.2	3.5	0.64	36.7	4	0.6	0.07	0.24
MJJ-010-16		7.0	12.4	0.42	35.7	<2	0.4	0.06	0.23
MJJ-011-16		6.3	26.3	0.35	39.6	<2	0.7	0.18	0.49

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 15 of 21

Report File No.: 0000019903

Element	@Pb	@Rb	@Sb	@Sc	@Se	@Sn	@Ta	@Tb
Method	GE_ICM40B							
Det.Lim.	0.5	0.2	0.05	0.5	2	0.3	0.05	0.05
Units	ppm							
MJJ-012-16	5.9	24.0	0.28	40.6	<2	0.6	0.14	0.43
MJJ-013-16	0.9	0.3	0.12	0.7	<2	<0.3	<0.05	<0.05
MJJ-014-16	3.1	0.9	0.25	16.0	<2	<0.3	<0.05	0.21
MJJ-015-16	0.6	0.3	0.09	2.9	<2	<0.3	<0.05	0.05
MJJ-016-16	7.0	38.6	0.39	59.3	<2	0.4	0.10	0.43
MJJ-017-16	5.5	20.2	0.42	33.1	<2	0.6	0.08	0.40
MJJ-018-16	4.2	26.4	0.28	38.0	<2	0.5	0.09	0.46
MJJ-019-16	3.6	19.4	0.32	32.3	<2	0.5	0.08	0.38
MJJ-020-16	3.9	19.6	0.30	32.1	<2	0.5	0.08	0.38
MJJ-021-16	3.5	10.4	0.26	34.3	<2	0.6	0.08	0.42
MJJ-022-16	5.3	16.2	0.36	37.1	<2	0.6	0.12	0.44
MJJ-023-16	3.8	0.9	0.20	24.7	<2	0.4	<0.05	0.36
MJJ-024-16	3.4	0.3	0.14	25.8	<2	0.3	<0.05	0.33
MJJ-025-16	8.2	46.5	0.26	48.5	<2	0.6	0.13	0.53
MJJ-026-16	7.8	20.5	0.28	51.3	<2	0.8	0.13	0.58
MJJ-027-16	8.0	8.7	0.38	37.4	<2	0.8	0.10	0.43
MJJ-028-16	5.2	16.5	0.36	39.8	<2	0.6	0.10	0.47

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 16 of 21

Report File No.: 0000019903

	Element	@Te	@Th	@TI	@U	@W	@Y	@Yb	Pr
	Method	GE_ICM40B	GE_ICM40B	GE_ICM40B 0.02	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B	GE_ICM40B
	Det.Lim. Units	0.05 ppm	0.2 ppm	ppm	0.05 ppm	0.1 ppm	0.1 ppm	0.1 ppm	0.05 ppm
M 101 004 40	Omio	-							
MJCL-001-16		<0.05	0.7	0.07	0.19	1.6	9.8	1.2	0.77
MJCL-002-16		<0.05	0.3	<0.02	0.08	26.7	5.2	0.6	0.40
MJCL-003-16		<0.05	0.3	<0.02	0.09	27.9	6.7	0.7	0.76
MJCL-004-16		<0.05	0.7	0.18	0.19	0.9	11.7	1.4	0.87
MJCL-005-16		0.17	0.2	0.08	0.15	2.4	5.0	0.4	0.30
MJCL-006-16		0.30	<0.2	0.15	0.09	2.5	2.9	0.3	0.39
MJCL-007-16		0.20	<0.2	0.09	0.14	3.2	3.9	0.3	0.23
MJCL-008-16		0.44	<0.2	0.34	0.08	3.5	9.5	0.7	0.26
MJCL-009-16		0.75	1.6	0.12	0.70	73.7	10.7	1.1	0.97
MJCL-010-16		0.11	8.3	0.85	2.57	14.5	7.3	0.8	3.26
MJCL-011-16		0.18	0.2	0.33	0.11	1.7	16.1	1.8	0.80
MJCL-012-16		<0.05	<0.2	<0.02	<0.05	0.4	2.9	0.3	0.17
MJCL-013-16		<0.05	<0.2	<0.02	<0.05	0.3	2.2	0.2	0.13
MJCL-014-16		<0.05	<0.2	<0.02	<0.05	0.4	4.4	0.4	0.25
MJCL-015-16		0.21	0.2	0.27	0.08	1.4	18.4	2.1	0.99
MJDL-001-16		0.28	<0.2	0.16	0.12	1.3	11.7	1.4	0.73
MJDL-002-16		0.20	<0.2	0.04	0.06	1.2	8.4	1.0	0.49
MJDL-003-16		0.08	<0.2	0.09	0.05	0.8	14.0	1.6	0.63
MJDL-004-16		1.08	0.2	0.26	0.09	1.3	16.7	2.2	0.49
MJDL-005-16		0.44	<0.2	0.14	0.07	0.8	17.4	1.9	0.74
MJDL-006-16		0.36	<0.2	0.11	0.07	0.8	16.4	2.0	0.65
MJDL-007-16		0.12	<0.2	0.33	0.08	1.0	13.3	1.5	0.63
MJDL-008-16		0.76	0.2	0.19	0.08	1.2	15.5	2.0	0.45
MJDL-009-16		0.13	<0.2	0.29	0.06	0.9	13.1	1.5	0.65
MJDL-010-16		0.08	<0.2	0.17	0.06	2.4	12.4	1.4	0.60
MJDL-011-16		0.27	<0.2	0.15	0.07	1.4	16.8	1.9	0.92
MJDL-012-16		0.19	<0.2	0.12	0.07	1.1	12.4	1.4	0.61
MJDL-013-16		0.26	0.2	0.10	0.07	1.7	16.5	1.8	0.92
MJDL-014-16		0.08	4.5	0.15	1.13	1.4	12.1	1.3	3.11
MJJ-001-16		<0.05	0.3	<0.02	0.08	0.3	6.5	0.7	0.68
MJJ-002-16		<0.05	<0.2	<0.02	0.11	1.8	6.3	0.7	0.44
MJJ-003-16		<0.05	0.4	<0.02	0.11	0.7	8.5	1.0	0.38
MJJ-004-16		<0.05	<0.2	0.15	0.06	26.1	14.7	1.7	0.78
MJJ-005-16		0.24	0.2	0.13	0.10	9.2	15.2	1.5	1.05
MJJ-006-16		0.24	<0.2	0.21	0.10	5.2	17.2	1.9	0.95
MJJ-007-16		0.23	0.3	0.13	0.07	1.6	9.3	1.1	0.93
			0.3						
MJJ-008-16		0.56		0.08	0.15	2.0	12.8	1.4	0.55
MJJ-009-16		1.40	0.3	0.11	0.13	3.2	10.2	1.2	0.40
MJJ-010-16 MJJ-011-16		0.51 0.17	0.2	0.14	0.13 0.11	1.4 2.7	9.7 16.5	1.1	0.44 1.10

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 17 of 21

Report File No.: 0000019903

Element	@Te	@Th	@TI	@U	@W	@Y	@Yb	Pr
Method	GE_ICM40B							
Det.Lim.	0.05	0.2	0.02	0.05	0.1	0.1	0.1	0.05
Units	ppm							
MJJ-012-16	0.28	0.2	0.19	0.09	1.8	15.4	1.6	0.99
MJJ-013-16	0.36	<0.2	<0.02	<0.05	1.1	1.7	0.2	0.10
MJJ-014-16	0.38	<0.2	0.03	<0.05	3.1	9.2	1.1	0.30
MJJ-015-16	0.12	<0.2	<0.02	<0.05	0.4	2.4	0.2	0.14
MJJ-016-16	0.54	<0.2	0.35	0.08	2.2	19.2	2.4	0.65
MJJ-017-16	0.29	<0.2	0.13	0.07	1.9	15.2	1.6	0.81
MJJ-018-16	0.18	<0.2	0.19	0.05	0.6	17.7	2.0	0.85
MJJ-019-16	0.28	<0.2	0.13	0.07	1.5	14.6	1.6	0.78
MJJ-020-16	0.27	<0.2	0.14	0.07	1.6	14.6	1.7	0.81
MJJ-021-16	0.15	<0.2	0.08	0.07	2.0	16.0	1.8	0.75
MJJ-022-16	0.31	<0.2	0.11	0.06	2.2	16.8	1.9	0.85
MJJ-023-16	0.15	<0.2	<0.02	<0.05	1.2	16.1	1.7	0.63
MJJ-024-16	0.18	<0.2	<0.02	<0.05	0.4	14.4	1.6	0.55
MJJ-025-16	0.45	0.2	0.41	0.11	0.8	20.5	2.6	1.08
MJJ-026-16	0.49	<0.2	0.18	0.08	1.6	22.8	2.6	1.09
MJJ-027-16	0.17	<0.2	0.05	0.09	1.2	17.5	1.9	0.91
MJJ-028-16	0.24	<0.2	0.09	0.07	1.5	18.1	2.0	0.86

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 18 of 21

Report File No.: 0000019903

	Element Method	Nd GE_ICM40B	Sm GE_ICM40B	Eu GE ICM40B	Gd GE_ICM40B	Dy GE_ICM40B	Ho GE_ICM40B	Er GE ICM40B	Tm GE_ICM40B
	Det.Lim.	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	Units	ppm							
MJCL-001-16		3.1	0.85	0.29	1.16	1.70	0.39	1.21	0.19
MJCL-002-16		1.8	0.55	0.25	0.76	0.95	0.20	0.60	0.09
MJCL-003-16		3.1	0.86	0.36	1.07	1.22	0.26	0.74	0.11
MJCL-004-16		3.6	1.00	0.43	1.49	1.99	0.45	1.36	0.21
MJCL-005-16		1.3	0.35	0.19	0.57	0.68	0.15	0.43	0.06
MJCL-006-16		1.5	0.31	0.13	0.36	0.40	0.09	0.26	<0.05
MJCL-007-16		0.9	0.27	0.15	0.42	0.50	0.11	0.32	<0.05
MJCL-008-16		1.3	0.48	0.36	0.92	1.13	0.26	0.76	0.10
MJCL-009-16		3.9	0.96	0.39	1.34	1.52	0.34	1.04	0.15
MJCL-010-16		11.3	1.86	0.57	1.41	1.22	0.25	0.81	0.13
MJCL-011-16		4.1	1.44	0.61	2.21	2.83	0.62	1.81	0.27
MJCL-012-16		0.8	0.30	0.16	0.43	0.49	0.10	0.29	<0.05
MJCL-013-16		0.7	0.22	0.12	0.30	0.31	0.07	0.18	<0.05
MJCL-014-16		1.3	0.47	0.25	0.68	0.71	0.15	0.41	0.06
MJCL-015-16		5.2	1.90	0.71	2.73	3.37	0.74	2.15	0.31
MJDL-001-16		3.6	1.24	0.60	1.81	2.23	0.47	1.39	0.21
MJDL-002-16		2.5	0.89	0.40	1.24	1.61	0.34	0.99	0.14
MJDL-003-16		3.3	1.23	0.51	1.88	2.47	0.55	1.61	0.25
MJDL-004-16		2.6	1.04	0.39	1.93	2.83	0.65	2.03	0.32
MJDL-005-16		3.8	1.40	0.53	2.26	2.94	0.65	1.95	0.30
MJDL-006-16		3.5	1.33	0.52	2.12	2.88	0.64	1.95	0.29
MJDL-007-16		3.2	1.15	0.54	1.85	2.39	0.53	1.54	0.23
MJDL-008-16		2.5	1.09	0.47	1.83	2.68	0.62	1.85	0.30
MJDL-009-16		3.3	1.19	0.51	1.86	2.34	0.51	1.49	0.22
MJDL-010-16		3.2	1.17	0.52	1.77	2.27	0.49	1.44	0.22
MJDL-011-16		4.7	1.64	0.69	2.44	3.04	0.66	1.91	0.29
MJDL-012-16		3.1	1.15	0.49	1.71	2.21	0.48	1.41	0.21
MJDL-013-16		4.7	1.65	0.66	2.42	3.00	0.66	1.91	0.28
MJDL-014-16		11.7	2.39	0.83	2.28	2.22	0.46	1.36	0.20
MJJ-001-16		2.5	0.60	0.17	0.88	1.09	0.24	0.73	0.11
MJJ-002-16		2.1	0.71	0.40	0.99	1.15	0.24	0.72	0.11
MJJ-003-16		1.7	0.59	0.29	0.99	1.41	0.32	0.97	0.15
MJJ-004-16		4.0	1.39	0.53	2.11	2.71	0.58	1.74	0.25
MJJ-005-16		5.4	1.82	0.86	2.46	2.81	0.59	1.68	0.24
MJJ-006-16		4.9	1.70	0.77	2.55	3.10	0.66	1.92	0.28
MJJ-007-16		2.2	0.72	0.36	1.18	1.49	0.36	1.07	0.16
MJJ-008-16		3.0	0.99	0.50	1.63	2.07	0.48	1.46	0.22
MJJ-009-16		2.2	0.72	0.36	1.22	1.59	0.39	1.12	0.17
MJJ-010-16		2.4	0.80	0.40	1.21	1.56	0.38	1.12	0.17
MJJ-011-16		6.1	1.96	0.85	2.70	3.03	0.67	1.92	0.28

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 19 of 21

Report File No.: 0000019903

	Element	Nd	Sm	Eu	Gd	Dy	Но	Er	Tm
	Method	GE_ICM40B							
	Det.Lim.	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	Units	ppm							
MJJ-012-16		5.2	1.68	0.74	2.26	2.70	0.61	1.74	0.25
MJJ-013-16		0.5	0.13	0.07	0.19	0.22	0.06	0.16	<0.05
MJJ-014-16		1.7	0.58	0.25	1.03	1.41	0.34	1.04	0.16
MJJ-015-16		0.7	0.21	0.11	0.29	0.36	0.08	0.24	<0.05
MJJ-016-16		3.5	1.29	0.56	2.20	3.09	0.74	2.28	0.35
MJJ-017-16		4.4	1.44	0.60	2.15	2.51	0.58	1.68	0.25
MJJ-018-16		4.7	1.65	0.66	2.45	3.05	0.69	2.05	0.30
MJJ-019-16		4.1	1.29	0.50	1.97	2.48	0.57	1.65	0.24
MJJ-020-16		4.2	1.31	0.50	1.97	2.46	0.57	1.66	0.25
MJJ-021-16		4.2	1.42	0.47	2.10	2.67	0.61	1.81	0.27
MJJ-022-16		4.7	1.61	0.67	2.40	2.88	0.67	1.95	0.29
MJJ-023-16		3.5	1.13	0.46	1.87	2.34	0.56	1.66	0.26
MJJ-024-16		3.1	1.08	0.43	1.73	2.29	0.53	1.56	0.23
MJJ-025-16		5.8	1.91	0.78	2.75	3.49	0.84	2.55	0.39
MJJ-026-16		5.9	2.01	0.71	2.98	3.82	0.90	2.61	0.40
MJJ-027-16		4.8	1.54	0.81	2.35	2.83	0.65	1.93	0.29
MJJ-028-16		4.8	1.61	0.70	2.52	3.04	0.70	2.05	0.30

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000019903

Report File No	000001990	J
	Element Method Det.Lim. Units	@S GE_CSA06V 0.005 %
MIOL 004 40		
MJCL-001-16		N.A.
MJCL-002-16		N.A.
MJCL-003-16		N.A.
MJCL-004-16		N.A.
MJCL-005-16		N.A.
MJCL-006-16		N.A.
MJCL-007-16		N.A.
MJCL-008-16		N.A.
MJCL-009-16		8.25
MJCL-010-16		N.A.
MJCL-011-16		N.A.
MJCL-012-16		N.A.
MJCL-013-16		N.A.
MJCL-014-16		N.A.
MJCL-015-16		N.A.
MJDL-001-16		N.A.
MJDL-002-16		N.A.
MJDL-003-16		N.A.
MJDL-004-16		N.A.
MJDL-005-16		N.A.
MJDL-006-16		N.A.
MJDL-007-16		N.A.
MJDL-008-16		N.A.
MJDL-009-16		N.A.
MJDL-010-16		N.A.
MJDL-011-16		N.A.
MJDL-012-16		N.A.
MJDL-013-16		N.A.
MJDL-014-16		N.A.
MJJ-001-16		N.A.
MJJ-002-16		N.A.
MJJ-003-16		N.A.
MJJ-004-16		N.A.
MJJ-005-16		N.A.
MJJ-006-16		N.A.
MJJ-007-16		N.A.
MJJ-008-16		N.A.
MJJ-009-16		N.A.
MJJ-010-16		N.A.
MJJ-011-16		N.A.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000019903

	Element Method Det.Lim. Units	@S GE_CSA06V 0.005 %
MJJ-012-16		N.A.
MJJ-013-16		N.A.
MJJ-014-16		N.A.
MJJ-015-16		N.A.
MJJ-016-16		N.A.
MJJ-017-16		N.A.
MJJ-018-16		N.A.
MJJ-019-16		N.A.
MJJ-020-16		N.A.
MJJ-021-16		N.A.
MJJ-022-16		N.A.
MJJ-023-16		N.A.
MJJ-024-16		N.A.
MJJ-025-16		N.A.
MJJ-026-16		N.A.
MJJ-027-16		N.A.
MJJ-028-16		N.A.

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Appendix E – Declarations and Mining Act Awareness Certificates

The following licensed prospectors conducted the assessment work on the property and with their signatures below, attest to the accuracy of the information provided herein:

[original signed]

Jason D. LeBlanc (LIC # 1007516) 239 Hammell Road, Red Lake, Ontario, Canada

[original signed]

Chris S. LeBlanc (LIC # 1010470) 10 Dupont Drive, Red Lake, Ontario, Canada

[original signed]

Dennis S. LeBlanc (LIC # 1010471) 71 Dellenor Road, Red Lake, Ontario, Canada

I, Jason D. LeBlanc, residing at 239 Hammell Road, Red Lake, Ontario, POV 2MO, state the following with respect to this report:

I wrote this report and produced the accompanying tables and maps based on information collected by the aforementioned prospectors in the course of conducting assessment work in 2016. The information has been presented, and is believed, to be accurate.

Respectfully,

[original signed]

Jason D. LeBlanc, President/CEO Bounty Gold Corp.