APPENDIX D

ROCK LABORATORY TESTING

TABLE 1 SUMMARY OF ROCK POINT LOAD TESTING

Borehole Number	Approximate Sample Depth (m)	Test Type (D or A) ¹	Core Diameter (mm)	Force at Failure (kN)	Estimated UCS (MPa)	Rock Strength Designation (R value)
B-2010-660	4.6	D	47	16.87	170	R5
B-2010-2750	5.5	D	47	25.76	260	R6
B-2010-4210	15.9	D	47	19.11	193	R5
B-2010-4802	5.2	D	47	34.04	344	R6
B-2010-5288	4.6	D	47	25.42	257	R6
B-2010-7190	12.5	D	47	21.59	218	R5
B-2010-8342	6.4	D	47	23.48	237	R5

Notes:

1. D = Diametral, A = Axial.

 TABLE 2

 SUMMARY OF LABORATORY TEST RESULTS FOR POTENTIAL BEDROCK SITES

1

			ASTM C 142	ASTM C 535	ASTM C 88	ASTM D 5312	ASTM	I C 127	ASTM C 295	
Sample	Boreholes or Surface						Relative Density Coarse A	Adsorption of Aggregate		
Location	Samples	Rock Type	Clay Lumps and Friable Particles (%)	L.A. Abrasion (1000 revs), % Loss	Soundness, Sodium Sulfate, Weighted Loss %	Freeze-Thaw, % Loss	Relative Density (Dry Basis)	Adsorption (%)	Petrographic Number (PN)	Comments
Accepta	ance Requirements		0.5% Max ⁽¹⁾	25% for traprock ⁽¹⁾	5.0 % Max ⁽¹⁾	5.0% Max ⁽²⁾	2.6 (1)	1.0% Max ⁽¹⁾	125 Max ⁽³⁾	
MS 13+000	M-2010-0380 M-2010-0400 RS-007-E126-01	Gneiss	0.0	25.9	0.1, 0.1, 4.5	0.0	2.64	0.6	111	L.A. Abrasion test result slightly exceeds AREMA acceptance requirements
MS 24+400	M-2010-0710 M-2010-0730	Plutonic rock types, Gneiss			0.1				107	Parameters tested to date meet AREMA acceptance requirements
MS 26+000	Surface Sample Only RS-006-E101-1	Gabbro	0.0	12.9	0.1	0.2	2.99	0.6	106	Parameters tested to date meet AREMA acceptance requirements
MS 39+400	M-2010-1130 M-2010-1150	Gneiss			0.1				110	Parameters tested to date meet AREMA acceptance requirements
MS 41+800	M-2010-1210 M-2010-1230 RS-E11-E066-01	Granite, Gneiss	0.0	26.2	0.1	0.0	2.60	0.5	120, 135	L.A. Abrasion test result slightly exceeds AREMA acceptance requirements. In addition, the petrographic number exceeds 125 on one test.
MS 43+100	M-2010-1270 M-2010-1280									
MS 43+800	M-2010-1300 M-2010-1320 RS-E11-E066-01	Granitic Gneiss			0.5				176	The petrographic number exceeds 125. Composite surface sample may not be representative of deeper rock.
MS 44+400	M-2010-1340 M-2010-1360									
MS 82+000	M-2010-2450 R-2010-2460 M-2010-2470	Granitic Gneiss		18.5, 37.2	0.1, 0.2	0.1			109, 151	L.A. Abrasion test result for one sample exceeds AREMA acceptance requirements. In addition, the petrographic number for one test exceeds 125.
MS 85+800	M-2010-2590 M-2010-2600 M-2010-2610	Granitic Gneiss		23.5	0.2	0.1			105	Parameters tested to date meet AREMA acceptance requirements
MS 86+800	M-2010-2630 M-2010-2650	Granitic Gneiss		24.7, 26.3		0.1			110, 159	L.A. Abrasion test result for one sample slightly exceeds AREMA acceptance requirements. In addition, the petrographic number exceeds 125 on one of two tests.
MS 279+400	M-2010-7580 M-2010-7590 M-2010-7600 RS-003-N249-01	Diorite	0.0	13.1	0.9	0.0	2.95	0.3	100	Parameters tested to date meet AREMA acceptance requirements

Notes:

Not tested
(1) AREMA Manual for Railway Engineering (Table 1-2-1)
(2) Corps of Engineers
(3) CSA A23.2-15A, railroad ballast

MS 13+000

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

August 16, 2010

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson

Sample	G-10-121 (M-2010-0380/0400-BULK)	
and the second at the second sec		

Date Received: June 21, 2010

Sampled by: Client

Project number: 093-81042-00011

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTR.
	Granite 1 - red/pink, quartz, feldspar, biotite. Fine-medium grained, euhedral to subhedral crystals, dense, strong.	12.7	1	12.7
GOOD	Granite 2 – pale pink-grey/white/black, quartz, feldspar, biotite. Fine-medium grained, euhedral to subhedral crystals, dense, strong.	58.8	1	58.8
Ū	Gneiss – granitic composition, banded-zoned, medium to coarse grained, pink/grey/black.	<u>23.1</u>	1	<u>23.1</u>
	Subtotal	94.6		94.6
	Granite 1 - as above, weathered, medium strength	0.7	3	2.1
	Granite 2 – as above, weathered, medium strength	1.8	3	5.4
AIR	Granite 3 - as above, weathered, medium strength	1.1	3	3.3
ш	Gneiss – as above, weathered, medium strength.	<u>1.8</u>	3	5.4
	Subtotal	5.4		16.2
	TOTALS	100.0	PN	110.8

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER: F. Shrimer, P. Geo. ToR

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

G-10-121(M-2010-0380/0400-BULK)

General

G-10-121

August 16, 2010

The sample consisted of crushed stone. The material was split, quartered and washed to remove surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with some flat particles, and had an angular to subangular shape. The particle surface textures were generally moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were prepared from selected samples and examined, but no chemical analyses were undertaken to assist in the identification of the rock types.

The sample consisted of granite and gneiss. The granite was subdivided into two subtypes, the first being a red to bright orange-pink granite of fine to medium grain size, while the second was similar but contained more quartz and was lighter in colour and was typically pink and grey with black.

The crystals forming the rock were euhedral to subhedral in thin-section, and consisted of feldspar, quartz and biotite mica, with minor amounts of other minerals. The two varieties of granite comprised about 75% of the sample.

The gneiss was granitic in composition. The gneiss was medium- to coarse-grained in texture, and was commonly banded, with concentrations of quartz-feldspar and biotite alternating with each other. Gneiss accounted for some 25% of the sample. Most of this rock type was of good strength.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered.

On the basis of this sorting of the sample, the relative amounts of "Good" and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "111".

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

PN LIMITS	PRODUCT TYPE
125	Concrete Class C1, C2, F1
140 max	Other concrete classes

Golder Associates

PETROGRAPHIC EXAMINATION

Page 3

PN LIMITS	PRODUCT TYPE
125	Shotcrete
125	Railroad ballast
150	Granular base
160	Select Granular sub-base

The G-10-121 crushed stone sample would be considered to be of suitable quality for all uses noted above, including for use as railroad ballast, as well as other applications, including concrete, asphalt and road base materials, subject to compliance with applicable specification requirements.

The aggregate would be anticipated to provide durability and strength commensurate with these ratings, when used as construction-grade aggregate.

Alkali-Aggregate Reaction (AAR) Potential

Some of the rock material comprising the sample could have a potential to be alkali-aggregate reactive in concrete. Should the material be considered for use as Portland cement concrete aggregate, it is recommended that its potential for AAR be evaluated using the procedures given in CSA as A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and A23.2-25A (ASTM C 1260) ("Accelerated Mortar Bar").

Summary

The G-10-121 crushed stone sample consisted of granite and gneiss and had a PN of 111.

On the basis of the Petrographic Examination, the aggregate is judged suitable for use in a variety of applications, subject to satisfactory compliance with applicable specifications.

Delf

For F. Shrimer, P. Geo.

Reviewed by:

A. Briggs, M. Sc., GIT

RELATIVE DENSITY AND ABSORPTION OF COARSE AGGREGATE (ASTM C127)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

Date Received: February, 2010 Date Tested: February 26, 2010 Sampled by: N/A Golder Lab No.: G-10-041

RS-007-E126-01

Sieve Fraction	Relative Density	Relative Density	Apparent Relative	Absorption (%)
(mm)	(dry basis)	(SSD basis)	Density	
50.0 – 19.0	2.64	2.66	2.69	0.6

- **Remarks:** 1. The minimum allowable bulk specific gravity of 2.60 is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.
 - 2. The maximum allowable absorption of 1.0% is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

CLAY LUMPS AND FRIABLE PARTICLES (ASTM C142)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-007-E126-01

Date Received: February, 2010 Date Tested: February 26, 2010 Sampled by: N/A Golder Lab No.: G-10-041

Sieve Fraction (mm)	Mass of Sample (g)	Clay Lumps (%)	Acceptance Requirement ¹
50.0 – 19.0	4997.1	0.0	0.5 Max.

Remarks: 1. The acceptance requirement is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

RESISTANCE TO DEGRADATION OF LARGE-SIZE AGGREGATE BY ABRASION AND IMPACT IN LOS ANGELES MACHINE (ASTM C535)

Job Number: 093-81042-011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-007-E126-01
Date Received: February, 2010	Sampled by: N/A
Date Tested: March 18, 2010	Golder Lab Number: G-10-041

Grading	3
Sieve Sizes	37.5mm – 19.0mm
Mass – Before test (g)	10003.5
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	4996.9
Mass after 1000 revolutions (g)	7412.8
Loss after 1000 revolutions (%)	25.9

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Pest perp.

Date: March 29, 2010

CLAY LUMPS AND FRIABLE PARTICLES (ASTM C142)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-007-E126-01

Date Received: February, 2010 Date Tested: February 26, 2010 Sampled by: N/A Golder Lab No.: G-10-041

Sieve Fraction (mm)	Sieve Fraction (mm) Mass of Sample (g)		Acceptance Requirement ¹	
50.0 – 19.0	4997.1	0.0	0.5 Max.	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

RESISTANCE TO DEGRADATION OF LARGE-SIZE AGGREGATE BY ABRASION AND IMPACT IN LOS ANGELES MACHINE (ASTM C535)

Job Number: 093-81042-011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-007-E126-01
Date Received: February, 2010	Sampled by:

Date Tested: March 18, 2010

Sampled by: N/A Golder Lab Number: G-10-041

Date: March 29, 2010

Grading	3
Sieve Sizes	37.5mm – 19.0mm
Mass – Before test (g)	10003.5
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	4996.9
Mass after 1000 revolutions (g)	7412.8
Loss after 1000 revolutions (%)	25.9

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

MS 13+000

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

RS-007-E126-01

Date Received: February, 2010 Date Tested: March 22 – March 29, 2010

Sampled by: N/A Golder Lab No.: G-10-041

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2004.4	0.2	0.0	
37.5 – 25.0	0.620	1008.5	0.1	0.1	5.0 Max.
25.0 – 19.0	0.326	509.9	0.1	0.0	
	1.000		TOTAL	0.1	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by: John A. Watkins, Laboratory Services Manager

Date: April 19, 2010

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM C5312)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

RS-007-E126-01

Date Received: February, 2010 Date Started: March 01, 2010 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-041

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
41A	1775.5	1774.8	0.0
41B	1483.5	1483.2	0.0
41C 1688.1		1687.8	0.0
41D 1160.8		1160.1	0.1
41E	1906.2	1905.9	0.0

Remarks:

Reviewed by: John A. Watkins, Laboratory Services Manager

BEST EMPLOYERS IN CANADA 2 0 0 9 REPORT ON BUSINESS Date: May 27, 2010

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M2010-380-400-Bulk (Bucket Number 150-151)

Date Received: May, 2010 Date Tested: July 15 – July 22, 2010 Sampled by: N/A Golder Lab No.: G-10-121

Date: July 27, 2010

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2005.2	7.8	0.4	
37.5 – 25.0	0.620	1003.9	17.0	10.5	5.0 Max.
25.0 - 19.0	0.326	510.8	8.3	2.7	
	1.000		TOTAL	4.5	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by:

23

Jeremy Rose, Laboratory Manager

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

August 19, 2010

Project number: 093-81042-00011

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson

	Sample	G-10-120 (M-2010-0710/	0730-BULK)		
Da	te Received: June 21, 201	0	Sample	ed by: C	lient
	PETROGRA	PHIC DESCRIPTION/ ICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTR.
	Gabbro/Diorite/Amphil black; commonly with zo veins, dense, strong.	polite – fine-grained, dark grey to nes of epidote, occasional quartz	25.5	1	25.5
	Quartz diorite - granite	- slightly to moderately gneissic.			

	TOTALS	100.0	PN	106.8
	Subtotal	3.4		10.2
	Gneiss 2 – as above, weathered, medium strength.	<u>1.7</u>	3	<u>5.4</u>
FAI	Gneiss 1 – as above, weathered, medium strength	1.1	3	3.3
œ	Diorite-Granite – as above, weathered, medium strength	0.3	3	0.9
	Gabbro/Amphibolite – as above, weathered, medium strength	0.3	3	0.9
	Subtotal	96.6	18. 20	96.6
	Gneiss 2 – granitic composition, banded-zoned, medium to coarse grained, dense and strong, pink/grey/black.	21.0	1	<u>21.0</u>
GO	Gneiss 1 – light grey, medium grained, quartz-feldspar-biotite; quartz-rich bands, dense, strong.	18.8	1	18.8
DD	Quartz diorite - granite – slightly to moderately gneissic, medium-grained, medium grey, dense, strong.	31.3	1	31.3

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER: _

F. Shrimer, P. Geo.

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

Golder Associates Ltd., Unit B, 12330 - 88th Avenue, SURREY, B.C. Canada V3W 3J6 Tel: 604-591-6616 Fax: 604-591-6608

PETROGRAPHIC EXAMINATION

G-10-121 August 19, 2010

G-10-120

General

The sample consisted of crushed stone. The material was split, quartered and washed to remove surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with some flat particles, and had an angular to subangular shape. The particle surface textures were generally moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were prepared from selected samples and examined, but no chemical analyses were undertaken to assist in the identification of the rock types.

The sample consisted of four distinct rock types – a dark-coloured gabbro/amphibolite, a quartz diorite-granite, and two types of gneiss.

The gabbro/amphibolite varied somewhat in terms of mineralogy, but was characteristically finegrained and near black or black. Amphiboles and feldspar, along with some biotite, dominated the mineralogy of this rock, but bands of quartz and/or epidote were fairly common. Iron oxide alteration of the mafic minerals was observed in thin-section. Gabbro/amphibolites represented some 26% of the sample.

Quartz diorite and granite were typically medium-grained, medium grey rocks, with minor alteration, and generally dense and strong. These rocks accounted for just under 32% of the sample.

The two varieties of gneiss were distinguished on the basis of colour, texture and structure of the rocks. The Gneiss 1 rocks were more homogeneous in terms of distributions of minerals, while the Gneiss 2 types tended to exhibit concentrated zones of minerals, imparting a banded appearance. In total, gneiss accounted for 42% of the sample.

Slightly to moderately weathered/altered varieties of these rocks were of somewhat lower physical quality and strength and were separately classified, as described below.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered.

On the basis of this sorting of the sample, the relative amounts of "Good" and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "107".

Golder Associates

Page 3

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

PN LIMITS	PRODUCT TYPE		
125	Concrete Class C1, C2, F1		
140 max	Other concrete classes		
125	Shotcrete		
125	Railroad ballast		
150	Granular base		
160	Select Granular sub-base		

The G-10-120 crushed stone sample would be considered to be of suitable quality for all uses noted above, including for use as railroad ballast, as well as other applications, including concrete, asphalt and road base materials, subject to compliance with applicable specification requirements.

The aggregate would be anticipated to provide durability and strength commensurate with these ratings, when used as construction-grade aggregate.

Alkali-Aggregate Reaction (AAR) Potential

Some of the rock material comprising the sample could have a potential to be alkali-aggregate reactive in concrete. Should the material be considered for use as Portland cement concrete aggregate, it is recommended that its potential for AAR be evaluated using the procedures given in CSA as A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and A23.2-25A (ASTM C 1260) ("Accelerated Mortar Bar").

Summary

The G-10-120 crushed stone sample consisted of plutonic rock types and gneiss and had a PN of 107.

On the basis of the Petrographic Examination, the aggregate is judged suitable for use in a variety of applications, subject to satisfactory compliance with applicable specifications.

Reviewed by:

A. Briggs, M. Sc., GIT

F. Shrimer, P. Geo.

Golder Associates

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M2010-710/730-Bulk (Bucket Number 146-148)

Date Received: May, 2010 Date Tested: June 21 – June 30, 2010 Sampled by: N/A Golder Lab No.: G-10-120

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2000.0	0.11	0.0	
37.5 – 25.0	0.620	1014.0	0.11	0.1	5.0 Max.
25.0 - 19.0	0.326	505.5	0.08	0.0	
	1.000		TOTAL	0.1	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: July 15, 2010

BEST COMPARE

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

Sampled by: Client

July 23, 2010 Project number: 093-81042-00011

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson. P.E.

PROJECT: Aggregate Testing – Canada Chrome

Sample G-10-040 (RS-006-E101-1)

Date Received: June 21, 2010

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTRIBUTION	
0	Gabbro – Plagioclase, calcic clinopyroxene with amphibole rims, magnetite, minor quartz. Medium grained. Fresh, with minor oxidation.	75.2	1	75.2	
GOOI	Gabbro – as above, with two or more surfaces showing weathering and/or oxidation.	<u>21.9</u>	1	<u>21.9</u>	
	Subtotal	97.1	2.19	97.1	
æ	Gabbro – medium strength, significant oxidation	<u>2.9</u>	3	8.7	
FAI	Subtotal	2.9	1.	8.7	
	TOTALS	100.0	PN	105.8	

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER:

A. Briggs, M.Sc., GIT

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

Golder Associates Ltd., Unit B, 12330 - 88th Avenue, SURREY, B.C. Canada V3W 3J6 Tel: 604-591-6616 Fax: 604-591-6608

Page 2

G-10-040 (RS-006-E101-1)

<u>General</u>

The sample consisted of crushed quarried stone. The material was split, quartered and washed to remove a light coating of surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with an angular to subangular shape. The particle surface textures ranged from moderately smooth to moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were examined but no chemical analyses were undertaken to aid in the identification of the rock types.

The sample was composed entirely of gabbro, which commonly exhibited oxidation on the particle surfaces. In most cases, such oxidation was of minor to moderate thickness, and in only a small proportion of the sample was the extent of oxidation such that it affected the strength of the particles. Most of the gabbro was dense and strong.

The gabbro had a grain size of 0.4-2 mm and consisted of calcic clinopyroxene, plagioclase and magnetite/ilmenite. Some of the pyroxenes were altered to amphiboles and biotite and the plagioclase exhibited some sericite alteration, which did not have a detrimental effect on the strength of the rock material.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered.

On the basis of this sorting of the sample, the relative amounts of "Good", and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "106".

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

PRODUCT TYPE	
Concrete Class C1, C2, F1	
Other concrete classes	
Shotcrete	

Golder Associates

PETROGRAPHIC EXAMINATION

Page 3

	·
PN LIMITS	PRODUCT TYPE
125	Railroad ballast
150	Granular base
160	Select Granular sub-base

The G-10-040 crushed stone sample would thus be considered to be of suitable quality for all uses noted above, including as railroad ballast, and is judged to be of suitable physical-mechanical engineering quality for use in a variety of applications, including concrete, asphalt and road base materials, subject to compliance with applicable specification requirements. The aggregate would be anticipated to provide durability and strength commensurate with these ratings, when used as construction-grade aggregate.

Alkali-Aggregate Reaction Potential

The rock type that comprised this sample was classified as gabbro. This rock type contains no or very small amounts of quartz. Quartz is the primary mineral that reacts with the alkalis in the cement in the alkali-aggregate reaction and thereby causing expansion and cracking. The sample is not considered to be potentially reactive with respect to the alkali-aggregate reaction, since it contains no rock type with significant amounts of quartz.

Summary

The G-10-040 crushed stone sample consisted of gabbro, and had a PN of 106.

On the basis of the Petrographic Examination, the aggregate is judged suitable for use in a variety of applications, subject to satisfactory compliance with applicable specifications.

Reviewed by:

F. Shrimer, P. Geo.

Aunt the

A. Briggs, M. Sc., GIT

RELATIVE DENSITY AND ABSORPTION OF COARSE AGGREGATE (ASTM C127)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

Date Received: February, 2010 Date Tested: February 26, 2010 Sampled by: N/A Golder Lab No.: G-10-040

RS-006-E101-1

Sieve Fraction	Relative Density	Relative Density	Apparent Relative	Absorption (%)
(mm)	(dry basis)	(SSD basis)	Density	
50.0 – 19.0	2.99	3.01	3.04	0.6

- **Remarks:** 1. The minimum allowable bulk specific gravity of 2.60 is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.
 - 2. The maximum allowable absorption of 1.0% is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A/Watkins, Laboratory Services Manager

Date: March 29, 2010

CLAY LUMPS AND FRIABLE PARTICLES (ASTM C142)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-006-E101-01

Date Received: February, 2010 Date Tested: February 26, 2010

Sampled by: N/A Golder Lab No.: G-10-040

Sieve Fraction (mm)	Mass of Sample (g)	Clay Lumps (%)	Acceptance Requirement ¹
50.0 – 19.0	4995.5	0.0	0.5 Max.

Remarks: 1. The acceptance requirement is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

RESISTANCE TO DEGRADATION OF LARGE-SIZE AGGREGATE BY ABRASION AND IMPACT IN LOS ANGELES MACHINE (ASTM C535)

Job Number: 093-81042-011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-006-E101-1		
Date Received: February, 20 Date Tested: March 18, 201	010 Sampled by: N/A 0 Golder Lab Number: G-10-040		
Grading	3		
Sieve Sizes	37.5mm – 19.0mm		
Mara Balandarda			

Mass – Before test (g)	10057.1		
Number of revolutions	1000		
Number of spheres (g)	12		
Mass of spheres (g)	4996.9		
Mass after 1000 revolutions (g)	8761.6		
Loss after 1000 revolutions (%)	12.9		

Remarks: 1. The maximum allowable loss of 25% for traprock is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

CLAY LUMPS AND FRIABLE PARTICLES (ASTM C142)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-006-E101-01

Date Received: February, 2010 Date Tested: February 26, 2010

Sampled by: N/A Golder Lab No.: G-10-040

Sieve Fraction (mm)	Mass of Sample (g)	Clay Lumps (%)	Acceptance Requirement ¹
50.0 – 19.0	4995.5	0.0	0.5 Max.

Remarks: 1. The acceptance requirement is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

RESISTANCE TO DEGRADATION OF LARGE-SIZE AGGREGATE BY ABRASION AND IMPACT IN LOS ANGELES MACHINE (ASTM C535)

Job Number: 093-81042-011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-006-E101-1		
Date Received: February, 2010 Date Tested: March 18, 2010	Sampled by: N/A Golder Lab Number: G-10-040		
Grading	3		
Sieve Sizes	37.5mm – 19.0mm		
Mass – Before test (g)	10057 1		

Mass – Before test (g)	10057.1	
Number of revolutions	1000	
Number of spheres (g)	12	
Mass of spheres (g)	4996.9	
Mass after 1000 revolutions (g)	8761.6	
Loss after 1000 revolutions (%)	12.9	

Remarks: 1. The maximum allowable loss of 25% for traprock is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

MS 26+000

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

RS-006-E101-1

Date Received: February, 2010 Date Tested: March 22 – March 29, 2010

Sampled by: N/A Golder Lab No.: G-10-040

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2047.8	0.2	0.0	
37.5 – 25.0	0.620	1011.5	0.1	0.1	5.0 Max.
25.0 - 19.0	0.326	517.2	0.2	0.0	
	1.000		TOTAL	0.1	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by: John A, Watkins, Laboratory Services Manager

Date: April 19, 2010

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM C5312)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

RS-006-E101-1

Date Received: February, 2010 Date Started: March 01, 2010 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-040

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
40A	1518.3	1517.5	0.1
40B	2380.7	2380.7	0.0
40C	2576.1	2576.1	0.0
40D	3127.4	3125.1	0.7
40E	3095.2	3095.1	0.0

Remarks:

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: May 27, 2010

PETROGRAPHIC EXAMINATION **OF COARSE AGGREGATE** CSA A23.2-15A / ASTM C 295

August 16, 2010

Project number: 093-81042-00011

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson

	Sample	G-10-119 (M-2010-1150-BULK	1/BULK/BUL	K 2)	
Date	Received: June 21, 2	010	Sample	ed by: C	lient
	PETROG PH	RAPHIC DESCRIPTION/ YSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTR
	Gneiss 1 – granitic, quartz, feldspar, biotite. Pink/grey/black, dense, strong.		76.4	1	76.4
GOO	Gneiss 2 – granitic composition similar to above but more biotite, pale pink/grey/black.		<u>18.8</u>	1	<u>18.8</u>
	Subtotal		95.2		95.2
		68	102	-	

Subiolai	0012		UUIL
Gneiss 1 – as above, weathered, medium strength	4.2	3	12.6
Gneiss 2 – as above, weathered, medium strength.	<u>0.6</u>	3	<u>1.8</u> 14.4
Subtotal	4.8	3 3 PN	
TOTALS	100.0	PN	109.6
	Gneiss 1 – as above, weathered, medium strength Gneiss 2 – as above, weathered, medium strength. Subtotal TOTALS	Subtotal Constrained Gneiss 1 – as above, weathered, medium strength 4.2 Gneiss 2 – as above, weathered, medium strength. 0.6 Subtotal 4.8 TOTALS 100.0	SublotalConcGneiss 1 – as above, weathered, medium strength4.2Gneiss 2 – as above, weathered, medium strength.0.6Subtotal4.8TOTALS100.0

1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed Note: separately.

F. Shrimer, P. Geo.

PETROGRAPHER:

FOR

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

PETROGRAPHIC EXAMINATION

G-10-119 (M-2010-1150-BULK 1/BULK/BULK 2)

General

G-10-119

August 16, 2010

The sample consisted of crushed stone. The material was split, quartered and washed to remove a light coating of surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with an angular to subangular shape. The particle surface textures ranged from rough to moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were examined but no chemical analyses were undertaken to aid in the identification of the rock types.

The sample consisted entirely of pink to grey/pink granitic gneiss. Most of this rock type was of good strength. Mineralogic composition ranged somewhat but was characteristically quartz-feldspar-biotite, in varying proportions. The rock had a well-defined gneissic texture, and crystals were euhedral to subhedral, and generally of medium granularity.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered. Particles which exhibited some degree of weathering and were of lower strength were separately classified.

On the basis of this sorting of the sample, the relative amounts of "Good", and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "110".

PN LIMITS	PRODUCT TYPE		
125	Concrete Class C1, C2, F1		
140 max	Other concrete classes		
125	Shotcrete		
125	Railroad ballast		
150	Granular base		
160	Select Granular sub-base		

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

Golder Associates

PETROGRAPHIC EXAMINATION

Page 3

The G-10-119 crushed stone sample would be considered to be of suitable quality for all uses noted above, and is judged to be of suitable physical-mechanical engineering quality for use in a variety of applications, including as railroad ballast, concrete, asphalt and road base materials, subject to compliance with applicable specification requirements.

Alkali-Aggregate Reaction (AAR) Potential

Since the gneiss contains quartz that exhibits some degree of strain, the rock may have a potential to be alkali-aggregate reactive. Should the material be considered for use as Portland cement concrete aggregate, it is recommended that its potential for AAR be evaluated using the procedures given in CSA as A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and A23.2-25A ("Accelerated Mortar Bar") (ASTM C 1260).

Summary

G-10-119

The G-10-119 crushed stone sample consisted of gneiss, and had a PN of 110.

On the basis of the Petrographic Examination, the aggregate is judged suitable for use in a variety of applications, subject to satisfactory compliance with applicable specifications.

Reviewed by:

A. Briggs, GIT

P. Geo.

Golder Associates

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M2010-1150-Bulk (Bucket Number 139-140)

Date Received: May, 2010 Date Tested: June 21 – June 30, 2010 Sampled by: N/A Golder Lab No.: G-10-119

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2016.7	0.13	0.0	
37.5 – 25.0	0.620	1018.4	0.08	0.0	5.0 Max.
25.0 - 19.0	0.326	506.0	0.18	0.1	
	1.000		TOTAL	0.1	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: July 15, 2010

PETROGRAPHIC EXAMINATION **OF COARSE AGGREGATE** CSA A23.2-15A / ASTM C 295

July 22, 2010 Project number: 093-81042-00011

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson, P.E.

PROJECT: Aggregate Testing - Canada Chrome

G-10-041 (RS-E11-E066-01) Sample

Date Received: June 21, 2010

Sampled by: Client

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTRIBUTION
GOOD	Granite - Quartz, potassium feldspar, biotite, muscovite. Pink, medium grained, some orange staining.	<u>89.9</u>	1	<u>89.9</u>
Ö	Subtotal	89.9		89.9
FAIR	Granite – medium strength	<u>10.1</u>	3	30.3
	Subtotal	10.1		30.3
	TOTALS	100.0	PN	120.2

1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed Note: separately.

PETROGRAPHER:

A. Briggs, M.Sc., GIT

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

Page 2

G-10-041 July 22, 2010

G-10-041 (RS-E11-E066-01)

General

The sample consisted of crushed stone. The material was split, quartered and washed to remove a light coating of surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with an angular to subangular shape. The particle surface textures ranged from moderately smooth to moderately rough.

Lithologic Composition

Identification of rock types and minerals was acheived using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were examined but no chemical analyses were undertaken to aid in the identification of the rock types.

The sample consisted entirely of pink, medium grained granite. Most of this rock type was of good strength.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered.

On the basis of this sorting of the sample, the relative amounts of "Good", and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "120".

PN LIMITSPRODUCT TYPE125Concrete Class C1, C2, F1140 maxOther concrete classes125Shotcrete125Railroad ballast150Granular base160Select Granular sub-base

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

Golder Associates

PETROGRAPHIC EXAMINATION

G-10-041 July 22, 2010 Page 3

The G-10-041 crushed stone sample would be considered to be of suitable quality for all uses noted above, and is judged to be of suitable physical-mechanical engineering quality for use in a variety of applications, including rail road ballast, concrete, asphalt and road base materials, subject to compliance with applicable specification requirements. The aggregate would be anticipated to provide durability and strength commensurate with these ratings, when used as construction-grade aggregate.

Alkali-Aggregate Reaction (AAR) Potential

Due to its quartz content, the granite that constitutes the entire sample may have a potential to be alkali-aggregate reactive. Should the material be considered for use as concrete aggregate, periodic assessment of the aggregate's AAR characteristics is recommended utilizing the procedures given in CSA A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and CSA A23.2-25A (ASTM C 1260) ("Accelerated Mortar Bar").

Summary

The G-10-041 crushed stone sample consisted of granite, and had a PN of 120.

On the basis of the Petrographic Examination, the aggregate is judged suitable for use for use in a variety of applications, including rail road ballast, subject to satisfactory compliance with applicable specifications.

Reviewed by:

A. Briggs, M. Sc., GIT

F. Shrimer, P. Geo.

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

July 22, 2010 Project number: 093-81042-00011

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson, P.E.

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample G-10-042 (RS-E11-E066-01)

Date Received: June 21, 2010

Sampled by: Client

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTRIBUTION
GOOD	Grey Granitic gneiss – Quartz, feldspar, biotite, muscovite, minor epidote, trace fluorite/apatite. Fine to medium grained, white/light pink-black.	53.2	1	53.2
	Pink Granitic gneiss – Quartz, feldspar, some sericite-altered, biotite, muscovite, epidote, trace fluorite/apatite. Fine to medium grained, pink-black.	<u>29.4</u>	1	<u>29.4</u>
	Subtotal	82.6		82.6
FAIR	Grey Granitic gneiss – as above, but brittle	13.8	3	41.1
	Pink Granitic gneiss – as above, but medium strength	<u>3.6</u>	3	<u>10.8</u>
	Subtotal	17.4		52.2
	TOTALS	100.0	PN	134.8

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER:

A. Briggs, M.Sc., GIT

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.
G-10-042 July 22, 2010

G-10-042 (RS-E11-E066-01)

General

The sample consisted of crushed stone.

The particle geometry was primarily cubical with an angular to subangular shape. The particle surface textures ranged from rough to moderately rough.

Lithologic Composition

Identification of rock types and minerals was achieved using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were examined but no chemical analyses were undertaken to aid in the identification of the rock types.

The sample was composed entirely of gneiss, which was further divided into sub-categories based on the dominant colour. Varying degrees of alteration characterized the gneiss. While most of the sample was of good strength, a significant portion of the sample was brittle and of medium strength. The brittle nature of some of the grey gneiss particles was interpreted to be a result of poorer intergranular bonding. The lower strength of some of the pink gneiss is thought to be attributable to a higher degree of weathering in these particles.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered.

On the basis of this sorting of the sample, the relative amounts of "Good", and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "135".

PN LIMITS	PRODUCT TYPE	
125	Concrete Class C1, C2, F1	
140 max	Other concrete classes	
125	Shotcrete	
125	Railroad ballast	
150	Granular base	
160	Select Granular sub-base	

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

Golder Associates

Page 2

G-10-042 July 22, 2010 Page 3

The G-10-042 crushed stone sample, as tested, would be considered to be of suitable quality for only some of the uses noted above, such as road base materials, subject to compliance with applicable specification requirements. The aggregate would be anticipated to provide durability and strength commensurate with these ratings, when used as construction-grade aggregate.

It is understood that the sample is under consideration for use as railroad ballast. Comparison with the suggested PN limits given in CSA, per the table above, indicates that the sample exceeds the suggested limit of 125. Thereby, the material may provide 'marginal' performance with respect to durability due to slightly excessive "fair" quality rock, as identified in this sample.

However, should the sample represent "surficial" and thus "weathered" rock material, it may be that the material located at depth, below the weathered outer rock, could be of higher quality. If the sample that was obtained incorporated some of this presumed weathered rock, the current sample may provide an overly negative view of the rock quality at this site. In order to confirm this possibility, we recommend that follow-up sampling and evaluation be undertaken in which fresh material is obtained.

Alkali-Aggregate Reaction Potential

All of the rocks comprising this sample have been identified as "potentially alkali-reactive", meaning that they may contribute under certain circumstances to a deleterious expansive reaction in concrete termed "Alkali-Aggregate Reaction" (AAR).

Should the material be considered for use as concrete aggregate, periodic assessment of the aggregate's AAR characteristics is recommended utilizing the procedures given in CSA A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and CSA A23.2-25A (ASTM C 1260) ("Accelerated Mortar Bar").

Summary

The G-10-042 crushed stone sample consisted of gneiss, and had a PN of 135.

On the basis of the Petrographic Examination, the aggregate is judged suitable for certain applications, subject to satisfactory compliance with applicable specifications. Further qualification or assessment, as discussed above, may be warranted in order to accept or reject the material for potential use as railroad ballast material.

A. Briggs, M. Sc., GIT

Reviewed by:

F. Shrimer, P. Geo.

RELATIVE DENSITY AND ABSORPTION OF COARSE AGGREGATE (ASTM C127)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

Date Received: February, 2010 Date Tested: February 26, 2010 Sampled by: N/A Golder Lab No.: G-10-042

Date: March 29, 2010

RS-E11-E066-01

Sieve Fraction	Relative Density	Relative Density	Apparent Relative	Absorption (%)
(mm)	(dry basis)	(SSD basis)	Density	
50.0 – 19.0	2.60	2.61	2.63	0.5

- **Remarks:** 1. The minimum allowable bulk specific gravity of 2.60 is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.
 - 2. The maximum allowable absorption of 1.0% is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

CLAY LUMPS AND FRIABLE PARTICLES (ASTM C142)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID	RS-E11-E066-01

Date Received: February, 2010 Date Tested: February 26, 2010 Sampled by: N/A Golder Lab No.: G-10-042

Sieve Fraction (mm) Mass of Sample (g)		Clay Lumps (%)	Acceptance Requirement ¹
50.0 – 19.0	5000.8	0.0	0.5 Max.

Remarks: 1. The acceptance requirement is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

RESISTANCE TO DEGRADATION OF LARGE-SIZE AGGREGATE BY ABRASION AND IMPACT IN LOS ANGELES MACHINE (ASTM C535)

Job Number: 093-81042-011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sam	ple ID
-----	--------

RS-E11-E066-01

Date Received: February, 2010 Date Tested: March 18, 2010 Sampled by: N/A Golder Lab Number: G-10-042

Grading	3
Sieve Sizes	37.5mm – 19.0mm
Mass – Before test (g)	10031.9
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	4996.9
Mass after 1000 revolutions (g)	7401.5
Loss after 1000 revolutions (%)	26.2

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by: John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

CLAY LUMPS AND FRIABLE PARTICLES (ASTM C142)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID	RS-E11-E066-01

Date Received: February, 2010 Date Tested: February 26, 2010 Sampled by: N/A Golder Lab No.: G-10-042

Sieve Fraction (mm) Mass of Sample (g)		Clay Lumps (%)	Acceptance Requirement ¹
50.0 – 19.0	5000.8	0.0	0.5 Max.

Remarks: 1. The acceptance requirement is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

RESISTANCE TO DEGRADATION OF LARGE-SIZE AGGREGATE BY ABRASION AND IMPACT IN LOS ANGELES MACHINE (ASTM C535)

Job Number: 093-81042-011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sam	ple ID
-----	--------

RS-E11-E066-01

Date Received: February, 2010 Date Tested: March 18, 2010 Sampled by: N/A Golder Lab Number: G-10-042

Grading	3
Sieve Sizes	37.5mm – 19.0mm
Mass – Before test (g)	10031.9
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	4996.9
Mass after 1000 revolutions (g)	7401.5
Loss after 1000 revolutions (%)	26.2

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by: John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

RS-007-E126-01

Date Received: February, 2010 Date Tested: April 05 – April 12, 2010

Sampled by: N/A Golder Lab No.: G-10-042

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 – 37.5	0.054	2017.6	0.1	0.0	
37.5 – 25.0	0.620	1013.9	0.1	0.1	5.0 Max.
25.0 – 19.0	0.326	501.2	0.3	0.0	
	1.000		TOTAL	0.1	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by:

Date: April 19, 2010

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM C5312)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

RS-E11-E066-01

Date Received: February, 2010 Date Started: March 01, 2010 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-042

Date: May 27, 2010

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
42A	1423.2	1422.8	0.0
42B	1515.7	1515.0	0.1
42C	1454.9	1454.2	0.1
42D	1268.1	1267.8	0.0
42E	2138.6	2138.2	0.0

Remarks:

John A. Watkins, Laboratory Services Manager

Reviewed by:

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

August 23, 2010

Project number: 093-81042-00011

Sampled by: Client

GOLDER ASSOCIATES INC. 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson, P.E.

PROJECT: Aggregate Testing - Canada Chrome

Sample G-10-118 (M-2010-1270/1280/1300/1320/1340/1360-BULK)

Date Received: June 21, 2010

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTRI- BUTION
	Granite – red-dark pink, slightly gneissic texture. Fine-medium grained, dense, strong.	5.6	1	5.6
ДОС	Gneiss 1 – granitic, quartz/feldspar/biotite. Red- pink/black, banded, fine- to coarse-grained, dense, strong	20.2	1	20.2
ğ	Gneiss 2 – granitic, quartz, feldspar, biotite. White- grey-black, occasionally pink, strongly banded appearance, dense, strong	48.4	1	48.4
	Subtotal	74.2		74.2
	Gneiss 1 – as above, weathered, medium strength.	3.6	3	10.8
FAIR	Gneiss 2 – as above, weathered (strong development of iron oxides on biotite, some alteration of feldspar to clay, medium strength.	14.2	3	42.6
	Subtotal	17.8		53.4
OR	Gneiss 2 – as above, deeply weathered, weak/friable.	8.0	6	48.0
PC	Subtotal	8.0		48.0
	TOTALS	100.0	PN	175.6

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER: Shrimer, P. Geo. FOR:

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

G-10-118 (M-2010-1270/1280/1300/1320/1340/1360-BULK)

General

G-10-118

August 23, 2010

The sample consisted of crushed stone. The material was split, quartered and washed to remove surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with some flat particles, and particles had an angular to subangular shape. The particle surface textures were generally moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were prepared from selected samples and examined, but no chemical analyses were undertaken to assist in the identification of the rock types.

The sample consisted of granite and granitic gneiss. The mineralogy of these rocks was generally quartz/feldspar/biotite, although texture varied from fine to coarse grained between as well as within the various groups. Alteration ranged from none to slight to deeply weathered.

Gneissic texture was generally absent in the granites, although in some pieces, a slight gneissic texture was observed. Where gneissic texture was characteristic, the rocks were classified as 'gneiss'; within these rocks, differentiation of minerals within bands was often observed.

Colour for the granite was typically red or dark pink with minor black, grey/white, while the gneisses ranged from red-pink/black to white/grey/black with little pink. Where biotites were altered to iron oxides, colours were characteristically tinted with rust/brown hues.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

On the basis of this sorting of the sample, the relative amounts of "Good", "Fair" and "Poor" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "176".

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

PRODUCT TYPE
Concrete Class C1, C2, F1
Other concrete classes
Shotcrete
Railroad ballast

Page 3

	2007
PN LIMITS	PRODUCT TYPE
150	Granular base
160	Select Granular sub-base

The G-10-118 crushed stone sample would not be considered to be of suitable quality for uses as railroad ballast and for most of the uses noted above, with the possible exception of some types of structural fill / granular base, only if complying with applicable specification requirements.

The PN of 176 suggests that the use of this material as railroad ballast, concrete and asphalt aggregate would be precluded.

Alkali-Aggregate Reaction (AAR) Potential

Most of the rock material comprising the sample could have a potential to be alkali-aggregate reactive in concrete, due to the presence of quartz exhibiting undulatory extinction as seen in thin-section.

Were the material considered for use as Portland cement concrete aggregate, it would be recommended that its potential for AAR be evaluated using the procedures given in CSA as A23.2-14A (or as ASTM C 1293) ("Concrete Prism") and A23.2-25A (ASTM C 1260) ("Accelerated Mortar Bar").

Discussion

We note that the sample contains some 26% of material that has been classified as being of "Fair" or "Poor" quality. Much of this material was observed to contain significant weathering/alteration products, as is commonly seen in surface rock in outcrop; additionally, lichens and other biologic materials were observed encrusting these Fair/Poor rock materials.

We therefore consider that the sampling procedures may have inadvertently incorporated these materials into the sample submitted for testing. This surficial weathered material is likely not representative of the rock forming the deposit(s) at depth.

If much of this material (e.g., say 20%) was theoretically excluded from the Petrographic Examination sample, we note that the PN would be recalculated for this sample to about 110 - 115, which is indicative of better quality rock. It would be recommended to resample and retest samples from this location in order to verify this.

Summary

The G-10-118 crushed stone sample, as tested, consisted of granitic gneiss and had a PN of 176, and would not be judged suitable for use as railroad ballast, concrete aggregate or asphalt aggregate. We suggest that the PN may reflect incorporation of excessive weathered, surficial rock that does not represent the true nature of the rock at depth, and thus resampling may be in order.

Reviewed by:

A. Briggs, M. Sc., GIT

For F. Shrimer, P. Geo.

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M2010-1270/1280/1300/1340/1360-Bulk (Bucket Number 131-137)

Date Received: May, 2010 Date Tested: June 10 – June 18, 2010 Sampled by: N/A Golder Lab No.: G-10-118

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2021.5	0.22	0.0	
37.5 – 25.0	0.620	1016.6	0.30	0.2	5.0 Max.
25.0 - 19.0	0.326	5016.8	0.75	0.3	
	1.000		TOTAL	0.5	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: July 15, 2010

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

August 16, 2010

Project number: 093-81042-00011

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson

Sample	G-10-051 (M-2010-2450-BULK)
Date Received: June 21, 2010	Sampled by: Client

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTR.
D	Gneiss 1 – granitic, weakly gneissic texture, quartz, feldspar, biotite, rare to occasional accessory/alteration minerals (chlorite, pyrite, epidote), subhedral to euhedral crystals, salt-pepper appearance with some pinkish particles, dense, strong.	51.1	1	51.1
G00	Gneiss 2 – granitic composition similar to above but more pronounced gneissic texture, zoned/banded structure with concentrations of quartz-feldspar and biotite, pink/grey/black. Strong, dense.	<u>44.5</u>	1	<u>44.5</u>
	Subtotal	95.6		95.6
В	Gneiss 1 – as above, weathered with significant development of secondary alteration (Fe-ox, clay minerals), medium strength	2.8	3	8.4
FA	Gneiss 2 – as above, weathered, medium strength.	<u>1.6</u>	3	<u>4.8</u>
_	Subtotal	4.4		13.2
	TOTALS	100.0	PN	108.8

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER: F. Shrimer, P. Geo. FOR

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

Golder Associates Ltd., Unit B, 12330 – 88th Avenue, SURREY, B.C. Canada V3W 3J6 Tel: 604-591-6616 Fax: 604-591-6608

Page 2

G-10-051 August 16, 2010

G-10-051 (M-2010-2450-BULK)

General

The sample consisted of crushed stone. The material was split, quartered and washed to remove surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with an angular to subangular shape. The particle surface textures ranged from rough to moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were examined but no chemical analyses were undertaken to aid in the identification of the rock types.

The sample consisted of granitic gneiss. The rock was subdivided into two subtypes, based upon the type and intensity of the gneissic texture. The two subtypes represented 54% ("weakly gneissic texture") and 46% ("strongly gneissic") respectively of the sample.

Some rocks possessed fine to medium grain size, while others were of coarser texture. Mineralogic composition was within broad ranges, consisting of quartz, feldspar and biotite, with minor/variable amounts of epidote, pyrite and chlorite/sericite.

More weathered/altered varieties were characterized by significant development of iron-oxide haloes on biotite crystals/masses, and clay minerals after feldspars. These weathered rocks tended to be of somewhat lower strength.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered. Particles which exhibited some degree of weathering and were of lower strength were separately classified.

On the basis of this sorting of the sample, the relative amounts of "Good", and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "109".

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

PN LIMITS	PRODUCT TYPE	
125	Concrete Class C1, C2, F1	
140 max	Other concrete classes	

G-10-051 August 16, 2010

PN LIMITS	PRODUCT TYPE
125	Shotcrete
125	Railroad ballast
150	Granular base
160	Select Granular sub-base

The G-10-051 crushed stone sample would be considered to be of suitable quality for all uses noted above, and is judged to be of suitable physical-mechanical engineering quality for use in a variety of applications, including as railroad ballast, concrete, asphalt and road base materials, subject to compliance with applicable specification requirements.

Alkali-Aggregate Reaction (AAR) Potential

Since the gneiss contains quartz that exhibits some degree of strain, the rock may have a potential to be alkali-aggregate reactive. Should the material be considered for use as Portland cement concrete aggregate, it is recommended that its potential for AAR be evaluated using the procedures given in CSA as A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and A23.2-25A ("Accelerated Mortar Bar") (ASTM C 1260).

Summary

The G-10-051 crushed stone sample consisted of granitic gneiss, and had a PN of 109.

On the basis of the Petrographic Examination, the aggregate is judged suitable for use for use in a variety of applications, subject to satisfactory compliance with applicable specifications

Reviewed by:

A. Briggs, GIT

F. Shrimer, P. Geo.

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

August 19, 2010

Project number: 093-81042-00011

Sampled by: Client

GOLDER ASSOCIATES INC. 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson, P.E.

PROJECT: Aggregate Testing - Canada Chrome

Sample G-10-054 (M-2010-2470-BULK)	
------------------------------------	--

Date Received: June 21, 2010

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTRI- BUTION
DOD	Gneiss – Granitic, quartz, feldspar, biotite. Pink- white-black, medium grained, dense, strong.	77.8	1	77.8
Ğ	Subtotal	77.8		77.8
FAIR	Gneiss – granitic, quartz-feldspar-biotite, iron-oxide alteration common, medium strength.	20.1	3	60.3
	Subtotal	20.1		60.3
OR	Gneiss – weathered, alteration common to pronounced, low strength	2.1	6	12.6
Б	Subtotal	2.1		12.6
	TOTALS	100.0	PN	150.7

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER:

FOR

F. Shrimer, P. Geo.

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

Page 2

G-10-054 August 19, 2010

G-10-054 (M-2010-2470-BULK)

General

The sample consisted of crushed stone. The material was split, quartered and washed to remove surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with some flat particles, and had an angular to subangular shape. The particle surface textures were generally moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were prepared from selected samples and examined, but no chemical analyses were undertaken to assist in the identification of the rock types.

The sample consisted of granitic gneiss, generally consisting of a quartz/feldspar/biotite mineralogy, with overall medium grain size with euhedral to subhedral crystals. Some 78% of the sample was composed of gneiss that was dense, strong and with little significant weathering/alteration.

The remaining material was composed of gneiss that was higher in biotite content, and in which biotite was significantly altered to iron oxides, thereby resulting in weaker rocks.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

On the basis of this sorting of the sample, the relative amounts of "Good", "Fair" and "Poor" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "151".

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

PN LIMITS	PRODUCT TYPE
125	Concrete Class C1, C2, F1
140 max	Other concrete classes
125	Shotcrete
125	Railroad ballast
150	Granular base
160	Select Granular sub-base

G-10-054 August 19, 2010

The G-10-054 crushed stone sample, as tested, would not be considered to be of suitable quality for the uses noted above, except for various types of granular base, subject to demonstrated compliance with applicable specification requirements.

For uses such as railroad ballast, concrete and asphalt aggregate, the material would not be recommended for use, based solely upon its PN.

However, should the sample represent "surficial" and thus "weathered" rock material, it may be that the material located at depth, below the weathered outer rock, could be of higher quality. If the sample that was obtained incorporated some of this presumed weathered rock, the current sample may provide an overly negative view of the rock quality at this site. In order to confirm this possibility, we recommend that follow-up sampling and evaluation be undertaken in which fresh material is obtained.

Alkali-Aggregate Reaction (AAR) Potential

Most of the rock material comprising the sample could have a potential to be alkali-aggregate reactive in concrete, due to the presence of quartz exhibiting undulatory extinction as seen in thin-section.

If the material was considered for use as Portland cement concrete aggregate, it is recommended that its potential for AAR be evaluated using the procedures given in CSA as A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and A23.2-25A (ASTM C 1260) ("Accelerated Mortar Bar").

Summary

The G-10-054 crushed stone sample consisted of granitic gneiss and had a PN of 151.

On the basis of the Petrographic Examination, the aggregate is not judged to be suitable for use as railroad ballast, concrete aggregate or asphalt aggregate. However, as noted above, if it is considered that the sample may have been negatively biased as a result of sampling of weathered, surface rock, it may be appropriate to resample and retest this site.

Reviewed by:

A. Briggs, M. Sc., GIT

F. Shrimer, P. Geo.

RESISTANCE TO DEGRADATION OF LARGE-SIZE AGGREGATE BY ABRASION AND IMPACT IN LOS ANGELES MACHINE (ASTM C535)

Job Number: 093-81042-00011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M-2010-2450-BULK (Bucket Number 105,106,107)

Date Received: April, 2010 Date Tested: April 22, 2010 Sampled by: N/A Golder Lab Number: G-10-051

Grading	2
Sieve Sizes	50.0mm – 25.0mm
Mass – Before test (g)	10010.3
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	5016.2
Mass after 1000 revolutions (g)	8157.4
Loss after 1000 revolutions (%)	18.5

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by: John A/Watkins, Laboratory Services Manager BEST

REPORT ON BUSINESS

Date: May 4, 2010

RESISTANCE TO DEGRADATION OF LARGE-SIZE AGGREGATE BY ABRASION AND IMPACT IN LOS ANGELES MACHINE (ASTM C535)

Job Number: 093-81042-00011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

M-2010-2470-BULK (Bucket Number 108)

Date Received: April, 2010 Date Tested: May 10, 2010 Sampled by: N/A Golder Lab Number: G-10-054

Date: May 14, 2010

Grading	2
Sieve Sizes	50.0mm – 25.0mm
Mass – Before test (g)	10022.5
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	5012.7
Mass after 1000 revolutions (g)	6294.5
Loss after 1000 revolutions (%)	37.2

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

SO WEST MOMPAGERS

MS 82+000

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M-2010-2450-BULK (Bucket Number 105,106,107)

Date Received: April, 2010 Date Tested: May 11 – May 18, 2010 Sampled by: N/A Golder Lab No.: G-10-051

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2010.3	0.1	0.0	
37.5 - 25.0	0.620	1021.7	0.2	0.1	5.0 Max.
25.0 - 19.0	0.326	503.5	0.1	0.0	
	1.000		TOTAL	0.1	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by: John Á. Watkins, Laboratory Services Manager

Date: May 27, 2010

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M2010-2470-Bulk (Bucket Number 108)

Date Received: April, 2010 Date Tested: June 10 – June 18, 2010 Sampled by: N/A Golder Lab No.: G-10-054

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2013.2	0.06	0.0	
37.5 – 25.0	0.620	1026.5	0.09	0.1	5.0 Max.
25.0 - 19.0	0.326	509.9	0.25	0.1	
	1.000		TOTAL	0.2	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: July 15, 2010

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM D5312-04)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

M-2010-2450-BULK (Bucket Number 105,106,107)

Date Received: May, 2010 Date Started: June 23, 2010 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-051

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
51A	1549.1	1547.6	0.1
51B	1284.4	1283.7	0.1
51C	1281.6	1279.6	0.2
51D	1512.5	1509.8	0.2

Remarks:

Reviewed by: 10 Jeremy Rose, Laboratory Manager

Date: August 16, 2010

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM D5312-04)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M-2010-2470-BULK (Bucket Number 108)

Date Received: May, 2010 Date Started: June 23, 2010 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-054

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
54A	2051.1	2046.4	0.2
54B	1589.9	1588.5	0.1
54C	1167.4	1165.8	0.1
54D	1898.7	1897.0	0.1
54E	1533.6	1532.3	0.1

Remarks:

Reviewed by:

Jeremy Rose, Laboratory Manager

Date: August 16, 2010

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

August 23, 2010 Project number: 093-81042-00011

GOLDER ASSOCIATES INC. 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson, P.E.

PROJECT: Aggregate Testing - Canada Chrome

Sample	G-10-055 (M-2010-2590-BULK)
	the second se

Date Received: June 21, 2010

Sampled by: Client

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTRI- BUTION
GOOD	Gneiss – granitic, quartz, feldspar, biotite. Pink- white-black, medium grained, except occasional coarse-grained zones, banded appearance common, typical salt-pepper appearance, dense, strong.	97.6	1	97.6
	Subtotal	97.6		97.6
VIR	Gneiss – granitic, quartz-feldspar-biotite, iron- oxide, moderately weathered, feldspar alteration to clay (sericite) common, medium strength.	2.4	3	7.2
FA	Subtotal	2.4		7.2
	TOTALS	100.0	PN	104.8

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER Shrimer, P. Geo.

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

G-10-055 August 23, 2010

G-10-054 (M-2010-2590-BULK)

General

The sample consisted of crushed stone. The material was split, quartered and washed to remove surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with some flat particles, and had an angular to subangular shape. The particle surface textures were generally moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were prepared from selected samples and examined, but no chemical analyses were undertaken to assist in the identification of the rock types.

The sample consisted of granitic gneiss, generally consisting of quartz, feldspar, and biotite. The overall grain size was medium with euhedral to subhedral crystals. 97.6% of the sample was composed of gneiss that was dense, strong and with little significant weathering/alteration.

The remaining material (2.4%) was gneiss that exhibited some degree of alteration, such as feldspar alteration to sericite. These gneisses were less dense and of medium strength.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered.

On the basis of this sorting of the sample, the relative amounts of "Good" and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "105".

PN LIMITS	PRODUCT TYPE		
125	Concrete Class C1, C2, F1		
140 max	Other concrete classes		
125	Shotcrete		
125	Railroad ballast		
150	Granular base		
	1		

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

August 23, 2010		
	DALLIMITO	
	PN LIMITS	

160

PRODUCT TYPE

Select Granular sub-base

The G-10-055 crushed stone sample would therefore be considered of suitable quality for all the uses noted above, subject to demonstrated compliance with applicable specification requirements.

Alkali-Aggregate Reaction (AAR) Potential

Most of the rock material comprising the sample could have a potential to be alkali-aggregate reactive in concrete, due to the presence of quartz exhibiting undulatory extinction as seen in thin-section.

Should the material was considered for use as Portland cement concrete aggregate, it is recommended that its potential for AAR be evaluated using the procedures given in CSA as A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and A23.2-25A (ASTM C1260) ("Accelerated Mortar Bar").

Summary

G-10-055

The G-10-055 crushed stone sample consisted of granitic gneiss and had a PN of 105.

On the basis of the Petrographic Examination, the aggregate is judged to be suitable for use as railroad ballast, concrete aggregate or asphalt aggregate, as well as for other construction applications.

F. Shrimer, P. Geo.

Reviewed by:

A. Briggs, M. Sc., GIT

RESISTANCE TO DEGRADATION OF LARGE-SIZE AGGREGATE BY ABRASION AND IMPACT IN LOS ANGELES MACHINE (ASTM C535)

Job Number: 093-81042-00011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

M-2010-2590-BULK (Bucket Number 110)

Date Received: April, 2010 Date Tested: April 22, 2010

Sampled by: N/A Golder Lab Number: G-10-055

Date: May 4, 2010

Grading	2
Sieve Sizes	50.0mm – 25.0mm
Mass – Before test (g)	10023.2
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	5016.2
Mass after 1000 revolutions (g)	7665.3
Loss after 1000 revolutions (%)	23.5

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A/Watkins, Laboratory Services Manager

MS 85+800

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M-2010-2590-BULK (Bucket Number 110)

Date Received: April, 2010 Date Tested: May 11 – May 18, 2010

Sampled by: N/A Golder Lab No.: G-10-055

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2011.9	0.1	0.0	
37.5 – 25.0	0.620	1002.9	0.2	0.1	5.0 Max.
25.0 - 19.0	0.326	509.2	0.2	0.1	
	1.000		TOTAL	0.2	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by: John A. Watkins, Laboratory Services Manager

Date: May 27, 2010

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM D5312-04)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

M-2010-2590-BULK (Bucket Number 110)

Date Received: May, 2010 Date Started: June 23, 2010 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-055

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
55A	1944.3	1942.1	0.1
55B	922.2	921.0	0.1
55C	2187.2	2184.2	0.1
55D	758.4	757.9	0.1
55E	972.1	970.6	0.2

Remarks:

Reviewed by: Jeremy Rose, Laboratory Manager

Date: August 16, 2010

EST COMPARES

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

July 23, 2010 Project number: 093-81042-00011

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson, P.E.

Sample G-10-056

Date Received: June 21, 2010

Sampled by: Client

				-
	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTRIBUTION
GOOD	Gneiss – Quartz, feldspar, biotite. Pink-white- black, medium grained, oxidation common, some sericite alteration of the feldspar.	45.5	1	45.5
	Gneiss – Quartz, feldspar, biotite. Grey to black/white, fresh, minor oxidation. Generally moderate to high biotite content, with biotite often concentrated in some zones.	<u>26.3</u>	1	<u>26.3</u>
	Subtotal	71.8		71.8
AIR	Gneiss – Pink and grey, brittle, frequently banded, medium strength	<u>16.9</u>	3	<u>50.7</u>
Ъ	Subtotal	16.9		50.7
OOR	Gneiss – weathered, alteration common to pronounced, low strength, brittle	<u>5.0</u>	6	<u>30.0</u>
Ă	Subtotal	5.0		30.0
	TOTALS	100.0	PN	158.8

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER:

J. Taylor, M.Sc./ F. Shrimer, P. Geo.

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

G-10-056 July 23, 2010

<u>G-10-056</u>

<u>General</u>

The sample consisted of crushed stone

The particle geometry was primarily cubical with some particles trending towards elongated morphology, with angular to subangular shape. The particle surface textures were moderately rough to rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 40x, supplemented by basic geologic diagnostic methods. Thin sections were examined but no chemical analyses were undertaken to aid in the identification of the rock types.

The sample was composed entirely of gneiss, which was divided into sub-categories based on the mineralogic composition, strength and physical attributes, and dominant colour.

In thin-section, the gneisses were composed of quartz, feldspar, biotite in varying proportions. Feldspars occasionally exhibited sericite rims; iron oxide alteration was observed after biotite. Rare garnets were observed in occasional biotite gneiss specimens. Crystallinity ranged from subhedral to euhedral, and texture for the rocks was generally medium to coarse-grained, with some finer-grained zones.

Rocks exhibiting zonation and concentrations of minerals were common.

Stronger gneisses tended to be those which exhibited low alteration, while the more altered and weathered gneisses were of moderate to low strength.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

On the basis of this sorting of the sample, the relative amounts of "Good", "Fair" and "Poor" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "159".

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

PN LIMITS	PRODUCT TYPE
125	Concrete Class C1, C2, F1
140 max	Other concrete classes
125	Shotcrete

PN LIMITS	PRODUCT TYPE	
125	Railroad ballast	
150	Granular base	
160	Select Granular sub-base	

The G-10-056 crushed stone sample would be considered to be of unsuitable quality for uses as noted above, and is judged to be of suitable physical-mechanical engineering quality only for use as granular subbase and similar structural fill aggregates, subject to compliance with applicable specification requirements.

It is understood that the sample is under consideration for use as railroad ballast. Comparison with the suggested PN limits given in CSA, per the table above, indicates that the sample exceeds the suggested limit of 125. Thereby, the material would be anticipated to provide unacceptable performance with respect to durability due to excessive "fair/poor" quality rock, as identified in this sample.

Alkali-Aggregate Reaction Potential

The rocks comprising this sample are considered to be as "potentially alkali-reactive", meaning that they may contribute under certain circumstances to a deleterious expansive reaction in concrete termed *"Alkali-Aggregate Reaction"* (AAR).

Should the material be considered for use as concrete aggregate, periodic assessment of the aggregate's AAR characteristics is recommended utilizing the procedures given in CSA A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and CSA A23.2-25A (ASTM C 1260) ("Accelerated Mortar Bar").

<u>Summary</u>

The G-10-056 crushed stone sample consisted of gneiss, and had a PN of 159.

On the basis of the Petrographic Examination, the aggregate is judged unsuitable for use in a variety of applications, including railroad ballast, concrete, asphalt and road base materials.

Reviewed by:

J. Taylor, M. Sc.

F. Shrimer, P. Geo.

August 23, 2010 Project number: 093-81042-00011

GOLDER ASSOCIATES INC. 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson, P.E.

PROJECT: Aggregate Testing - Canada Chrome

Sample	G-10-057 (M-2010-2650-BULK)	
Sample	G-10-057 (M-2010-2650-BULK)	

Date Received: June 21, 2010

Sampled by: Client

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTRI- BUTION
GOOD	Gneiss – granitic, quartz, feldspar, biotite. Pink- white-black, medium grained, except occasional coarse-grained zones, banded appearance common, typical salt-pepper appearance, dense, strong.	94.8	1	94.8
	Subtotal	94.8		94.8
FAIR	Gneiss – granitic, quartz-feldspar-biotite, iron-oxide moderately weathered, feldspar alteration to clay. (sericite) common, medium strength.	5.2	3	15.6
	Subtotal	5.2		15.6
	TOTALS	100.0	PN	110.4

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

Page 2

G-10-057 August 23, 2010

G-10-055 (M-2010-2650-BULK)

General

The sample consisted of crushed stone. The material was split, quartered and washed to remove surficial dust, in preparation for the examination.

The particle geometry was primarily cubical with some flat particles, and particles had an angular to subangular shape. The particle surface textures were generally moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were prepared from selected samples and examined, but no chemical analyses were undertaken to assist in the identification of the rock types.

The sample consisted of granitic gneiss, generally consisting of quartz, feldspar, and biotite. The overall grain size was medium with euhedral to subhedral crystals. 94.8% of the sample was composed of gneiss that was dense, strong and with little significant weathering/alteration.

The remaining material (5.2%) was gneiss that exhibited some degree of alteration, such as feldspar alteration to sericite. These gneisses were less dense and of medium strength.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered.

On the basis of this sorting of the sample, the relative amounts of "Good" and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "110".

PN LIMITS	PRODUCT TYPE
125	Concrete Class C1, C2, F1
140 max	Other concrete classes
125	Shotcrete
125	Railroad ballast
150	Granular base
	1

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:
PETROGRAPHIC EXAMINATION

G-10-057 August 23, 2010

PN LIMITS	PRODUCT TYPE
160	Select Granular sub-base

The G-10-057 crushed stone sample would therefore be considered of suitable quality for all the uses noted above, subject to demonstrated compliance with applicable specification requirements.

Alkali-Aggregate Reaction (AAR) Potential

Most of the rock material comprising the sample could have a potential to be alkali-aggregate reactive in concrete, due to the presence of quartz exhibiting undulatory extinction as seen in thin-section.

Should the material was considered for use as Portland cement concrete aggregate, it is recommended that its potential for AAR be evaluated using the procedures given in CSA as A23.2-14A (or as ASTM C 1293) ("Concrete Prism") and A23.2-25A (ASTM C 1260) ("Accelerated Mortar Bar").

Summary

The G-10-057 crushed stone sample consisted of granitic gneiss and had a PN of 110.

On the basis of the Petrographic Examination, the aggregate is judged to be suitable for use as railroad ballast, concrete aggregate or asphalt aggregate, as well as for other construction applications.

Reviewed by:

A. Briggs, M. Sc., GIT

F. Shrimer, P. Geo.

Job Number: 093-81042-00011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M-2010-2630-BULK (Bucket Number 113)

Date Received: April, 2010 Date Tested: April 22, 2010 Sampled by: N/A Golder Lab Number: G-10-056

Date: May 4, 2010

Grading	2
Sieve Sizes	50.0mm – 25.0mm
Mass – Before test (g)	10053.7
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	5016.2
Mass after 1000 revolutions (g)	7410.3
Loss after 1000 revolutions (%)	26.3

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John K. Watkins, Laboratory Services Manager

(**5**0)

Job Number: 093-81042-00011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

M-2010-2650-BULK (Bucket Number 114)

Date Received: April, 2010 Date Tested: April 22, 2010

Sampled by: N/A Golder Lab Number: G-10-057

Date: May 4, 2010

Grading	2
Sieve Sizes	50.0mm – 25.0mm
Mass – Before test (g)	10009.7
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	5016.2
Mass after 1000 revolutions (g)	7535.5
Loss after 1000 revolutions (%)	24.7

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM D5312-04)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

M-2010-2630-BULK (Bucket Number 113)

Date Received: May, 2010 Date Started: June 23, 2010 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-056

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
56A	1653.8	1650.7	0.2
56B	1314.6	1313.5	0.1
56C	1110.2	1108.4	0.2
56D	1347.2	1344.1	0.2

Remarks:

Reviewed by: Jeremy Rose, Laboratory Manager

STOREST EXAMPLOYERS IN CANADA 2 0 0 9 REPORT ON BUSINESS Date: Auguat 16, 2010

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM D5312-04)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

M-2010-2650-BULK (Bucket Number 114)

Date Received: May, 2010 Date Started: June 23 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-057

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
57A	1969.5	1966.4	0.2
57B	1973.3	1970.7	0.1
57C	2072.1	2069.9	0.1
57D	1099.1	1097.7	0.1
57E	893.8	892.7	0.1

Remarks:

Reviewed by: Jeremy Rose, Laboratory Manager

SCHEREST EMPLOYERS IN CANADA 2 0 0 9 REPORT ON BUSINESS Date: August 16, 2010

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM C5312)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

RS-003-N249-01

Date Received: February, 2010 Date Started: March 01, 2010 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-039

Date: May 27, 2010

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
39A	1358.3	1358.2	0.0
39B	1911.3	1910.8	0.0
39C	1848.9	1848.7	0.0
39D	1639.1	1639.0	0.0
39E	2123.3	2123.0	0.0

Remarks:

Reviewed by:

John A. Watkins, Laboratory Services Manager

July 23, 2010 Project number: 093-81042-00011

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson, P.E.

Date Received: June 21, 2010

PROJECT: Aggregate Testing – Canada Chrome

Sample G-10-039 (RS-003-N249-01)

Sampled by: Client

	PETROGRAPHIC DESCRIPTION/ PHYSICAL QUALITY	PERCENT BY MASS	MULTI- PLIER	PN CONTRIBUTION
GOOD	Diorite – Plagioclase, amphibole, some sulphides, minor epidote, occasional thin quartz veins. Medium to coarse grained, with concentrations of fine grained amphibole. Contains very thin weathering rims.	100.0	1	100.0
	Subtotal	100.0	1.	100.0
œ	Diorite – Weathering rims and fine grained concentrations of amphibole	<u>Trace</u>	3	Trace
Subtotal		Trace	1	Trace
	TOTALS	100.0	PN	100.0

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER:

A. Briggs, M.Sc., GIT

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

Golder Associates Ltd., Unit B, 12330 – 88th Avenue, SURREY, B.C. Canada V3W 3J6 Tel: 604-591-6616 Fax: 604-591-6608

G-10-039 (RS-003-N249-01)

General

The sample consisted of crushed stone.

The particle geometry was primarily cubical with angular to subangular shape. The particle surface textures were primarily moderately rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were examined but no chemical analyses were undertaken to aid in the identification of the rock types.

The sample consisted entirely of diorite with very thin weathering rims. All of the material was dense and hard to very hard.

The grain size of the diorite was 1-3 mm and the rock consisted of plagioclase, amphibole and some sulphide minerals. Fine grained epidote was scattered throughout the tin section and some quartz veining was also observed.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered.

On the basis of this sorting of the sample, the relative amounts of "Good", and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "100".

PN LIMITS	PRODUCT TYPE
125	Concrete Class C1, C2, F1
140 max	Other concrete classes
125	Shotcrete
125	Railroad ballast
150	Granular base
160	Select Granular sub-base

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

Golder Associates

PETROGRAPHIC EXAMINATION

G-10-039 July 23, 2010

Comparison of the PN with the suggested limits given above indicates that the G-10-039 crushed stone sample would be considered to be of suitable quality for all uses noted above, including railroad ballast and is judged to be of suitable physical-mechanical engineering quality for use in a variety of applications, including concrete, asphalt and road base materials, subject to compliance with applicable specification requirements.

The aggregate would be anticipated to provide durability and strength commensurate with these ratings, when used as construction-grade aggregate.

Alkali-Aggregate Reaction (AAR) Potential

The rock type that comprised this sample was classified as diorite. This rock type contains no or very small amounts of quartz. Quartz is the primary mineral that reacts with the alkalis in the Portland cement in the alkali-aggregate reaction and thereby causing expansion and cracking of Portland cement concrete. Although no quartz was observed as a mineral constituent in the diorite, some quartz veining was observed. However, the quartz veining would not be expected to be significant enough to render the sample reactive with respect to AAR, should the material be considered for use as concrete aggregate.

Summary

The G-10-039 crushed stone sample consisted of diorite, and had a PN of 100.

On the basis of the Petrographic Examination, the aggregate is judged suitable for use in a variety of applications, subject to satisfactory compliance with applicable specifications.

A. Briggs, M. Sc., GIT

Reviewed by:

F. Shrimer, P. Geo.

RELATIVE DENSITY AND ABSORPTION OF COARSE AGGREGATE (ASTM C127)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

Date Received: February, 2010

Date Tested: February 26, 2010

Sampled by: N/A Golder Lab No.: G-10-039

RS-003-N249-01

Sieve Fraction	Relative Density	Relative Density	Apparent Relative	Absorption (%)
(mm)	(dry basis)	(SSD basis)	Density	
50.0 – 19.0	2.95	2.96	2.98	0.3

- **Remarks:** 1. The minimum allowable bulk specific gravity of 2.60 is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.
 - 2. The maximum allowable absorption of 1.0% is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by: Watkins, Laboratory Services Manager John A

Date: March 29, 2010

CLAY LUMPS AND FRIABLE PARTICLES (ASTM C142)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-003-N249-01

Date Received: February, 2010 Date Tested: February 26, 2010

Sampled by: N/A Golder Lab No.: G-10-039

Sieve Fraction (mm)	Mass of Sample (g)	Clay Lumps (%)	Acceptance Requirement ¹
50.0 – 19.0	5008.4	0.0	0.5 Max.

Remarks: 1. The acceptance requirement is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A, Watkins, Laboratory Services Manager

Date: March 29, 2010

Job Number: 093-81042-011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-003-N249-01
Date Received: February, 2 Date Tested: March 18, 201	010 Sampled by: N/A 0 Golder Lab Number: G-10-039
Grading	3
Sieve Sizes	37.5mm – 19.0mm
Mass - Before test (a)	10046.8

Mass – Before test (g)	10046.8
Number of revolutions	1000
Number of spheres (g)	12
Mass of spheres (g)	4996.9
Mass after 1000 revolutions (g)	8732.1
Loss after 1000 revolutions (%)	13.1

Remarks: 1. The maximum allowable loss of 25% for traprock is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John K. Watkins, Laboratory Services Manager

BENT GERES

Date: March 29, 2010

MS 279+400

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

RS-003-N249-01

Date Received: February, 2010 Date Tested: March 11 – March 18, 2010

Sampled by: N/A Golder Lab No.: G-10-039

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2003.6	0.2	0.1	
37.5 – 25.0	0.620	1023.3	1.3	0.8	5.0 Max.
25.0 – 19.0	0.326	518.8	0.1	0.0	
	1.000		TOTAL	0.9	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by: John A. Watkins, Laboratory Services Manager

Date: April 19, 2010

PETROGRAPHIC EXAMINATION OF COARSE AGGREGATE CSA A23.2-15A / ASTM C 295

July 23, 2010

Project number: 093-81042-00011

Sampled by: Client

GOLDER ASSOCIATES INC 4438 Haines Road, Duluth, MN USA 55811

ATTENTION: Amy Thorson, P.E.

PROJECT: Aggregate Testing – Canada Chrome

Sample G-10-038 (RS-002-N0310-01)

Date Received: June 21, 2010

PERCENT MULTI-PN PETROGRAPHIC DESCRIPTION/ CONTRIBUTION BY MASS PLIER PHYSICAL QUALITY Gneiss - Quartz, feldspar, biotite. Pink, 1 50.7 medium grained, oxidation common, some 50.7 sericite alteration of the feldspar. GOOD Gneiss - Quartz, feldspar, biotite. Grey, fresh, 1 38.8 38.8 minor oxidation. 89.5 89.5 Subtotal 3 10.3 30.9 Gneiss - Pink, brittle FAIR 30.9 Subtotal 10.3 1.2 6 Gneiss - Pink, brittle and weathered 0.2 POOR 1.2 0.2 Subtotal 100.0 PN 121.6 TOTALS

Note: 1. The PN is not related to potential for Alkali-Aggregate Reaction. AAR must be assessed separately.

PETROGRAPHER:

A. Briggs, M.Sc..

Notice: The data given in this report pertain to the sample provided, and may not be applicable to samples from earlier or subsequent production. This report comprises a testing service only. Interpretation may be provided upon written request.

Golder Associates Ltd., Unit B, 12330 - 88th Avenue, SURREY, B.C. Canada V3W 3J6 Tel: 604-591-6616 Fax: 604-591-6608

PETROGRAPHIC EXAMINATION

G-10-038 July 23, 2010 Page 2

G-10-038 (RS-002-N0310-01)

General

The sample consisted of crushed stone

The particle geometry was primarily cubical with some particles trending towards elongated morphology and angular to subangular shape. The particle surface textures were moderately rough to rough.

Lithologic Composition

Identification of rock types and minerals was done using a stereomicroscope with magnifications from 8x to about 60x, supplemented by basic geologic diagnostic methods. Thin sections were examined but no chemical analyses were undertaken to aid in the identification of the rock types.

The sample was composed entirely of gneiss, which was divided into sub-categories based on the dominating colour. Grey gneiss was composed of alternating mafic bands and grey quartzo-feldspathic bands. All of this rock type was hard, dense and competent; minor concentrations of oxidation staining within these rocks were not observed to affect the strength.

Pink gneiss consisted of dark bands alternating with primarily pink quartzo-feldspathic bands which exhibited varying degrees of sericite alteration and oxidation. Most of this rock type was strong; however, some more prominently oxidized particles were more brittle and were only of moderate to poor strength.

Engineering Characteristics

In addition to the geologic classification of the aggregate, the sample was also examined for characteristics relevant to engineering uses. Aspects such as porosity, strength, tenacity, presence or absence of vugs, voids, fissures, cracks, coatings and impurities in the particles were considered in the assignment of individual particles into various quality classifications.

Most of the particles examined were found to be of good engineering quality, being dense, strong and unweathered.

On the basis of this sorting of the sample, the relative amounts of "Good", and "Fair" quality material were determined. This enabled the determination of a Petrographic Number (or "PN"), in accordance with the method given in CSA A23.2-15A. The PN is an index of a coarse aggregate's overall physical-mechanical quality. The PN for this sample was "122".

For reference, the PN scale referenced in CSA A23.2-15A, Attachment A2, is as follows:

PN LIMITS	PRODUCT TYPE
125	Concrete Class C1, C2, F1
140 max	Other concrete classes
125	Shotcrete
125	Railroad ballast
Gold	er Associates

PETROGRAPHIC EXAMINATION

Page 3

PN LIMITS	PRODUCT TYPE
150	Granular base
160	Select Granular sub-base

The G-10-038 crushed stone sample would be considered to be of suitable guality for all uses noted above, and is judged to be of suitable physical-mechanical engineering quality for use in a variety of applications, including as railroad ballast, concrete, asphalt and road base materials, subject to compliance with applicable specification requirements.

The aggregate would be anticipated to provide durability and strength commensurate with these ratings, when used as construction-grade aggregate.

Alkali-Aggregate Reaction Potential

All of the rocks comprising this sample have been identified as "potentially alkali-reactive", meaning that they may contribute under certain circumstances to a deleterious expansive reaction in concrete termed "Alkali-Aggregate Reaction" (AAR).

Should the material be considered for use as concrete aggregate, periodic assessment of the aggregate's AAR characteristics is recommended utilizing the procedures given in CSA A23.2-14A (or ASTM as C 1293) ("Concrete Prism") and CSA A23.2-25A (ASTM C 1260) ("Accelerated Mortar Bar").

Summary

The G-10-038 crushed stone sample consisted of gneiss, and had a PN of 122.

On the basis of the Petrographic Examination, the aggregate is judged suitable for use in a variety of applications, including railroad ballast, subject to satisfactory compliance with applicable specifications.

Reviewed by:

Shrimer, P. Geo.

A. Briggs, M. Sc., GIT

Job Number: 093-81042-011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-002-N0310-01		
Date Received: February, 2010 Date Tested: March 18, 2010	Sampled by: N/A Golder Lab Number: G-10-038		
Grading	3		
Sieve Sizes	37.5mm – 19.0mm		
Mass – Before test (g)	10021.2		
Number of revolutions	1000		

12

4996.9

7712.4

23.0

Date: March 29, 2010

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

Number of spheres (g)

Mass after 1000 revolutions (g)

Loss after 1000 revolutions (%)

Mass of spheres (g)

John A. Watkins, Laboratory Services Manager

MS-312+000 Rejected as material sites

SOUNDNESS OF COARSE AGGREGATE USE OF SODIUM SULFATE (ASTM C88)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID

RS-002-N0310-01

Date Received: February, 2010 Date Tested: March 11 – March 18, 2010

Sampled by: N/A Golder Lab No.: G-10-038

Date: April 19, 2010

Sieve Fraction (mm)	Original Grading	Mass per fraction before test (g)	Loss (%)	Weighted Loss (%)	Acceptance Requirement ¹
50.0 - 37.5	0.054	2007.1	0.3	0.1	
37.5 – 25.0	0.620	1022.2	0.0	0.0	5.0 Max.
25.0 - 19.0	0.326	519.1	0.3	0.0	
	1.000		TOTAL	0.1	

Remarks: 1. The acceptance requirement is taken from Table 1-2-1of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

EVALUATION OF DURABILITY OF ROCK FOR EROSION CONTROL UNDER FREEZING AND THAWING CONDITIONS (ASTM C5312)

Job Number: 093-81042-00011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

RS-002-N0310-01

Date Received: February, 2010 Date Started: March 01, 2010 for 30 cycles Sampled by: N/A Golder Lab No.: G-10-038

Sample No.	Mass of rock before test (g)	Mass of rock after test (g)	Loss (%)
38A	1783.1	1782.8	0.0
38B	1429.6	1429.1	0.0
38C	1974.8	1973.9	0.1
38D	2232.3	2231.4	0.0
38E	2067.7	2066.9	0.0

Remarks:

Reviewed by: John A. Watkins, Laboratory Services Manager

STOREST ENPLOYERS 2 0 0 9 REPORT ON BUSINESS Date: May 27, 2010

CLAY LUMPS AND FRIABLE PARTICLES (ASTM C142)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID	RS-002-N0310-01

Date Received: February, 2010 Date Tested: February 26, 2010 Sampled by: N/A Golder Lab No.: G-10-038

Sieve Fraction (mm)	Mass of Sample (g)	Clay Lumps (%)	Acceptance Requirement ¹
50.0 – 19.0	4999.7	0.0	0.5 Max.

Remarks: 1. The acceptance requirement is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

RELATIVE DENSITY AND ABSORPTION OF COARSE AGGREGATE (ASTM C127)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID

Date Received: February, 2010 Date Tested: February 26, 2010

Sampled by: N/A Golder Lab No.: G-10-038

RS-002-N0310-01

Sieve Fraction	Relative Density	Relative Density	Apparent Relative	Absorption (%)
(mm)	(dry basis)	(SSD basis)	Density	
50.0 – 19.0	2.65	2.66	2.68	0.5

- **Remarks:** 1. The minimum allowable bulk specific gravity of 2.60 is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.
 - 2. The maximum allowable absorption of 1.0% is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

John A. Watkins, Laboratory Services Manager

Date: March 29, 2010

CLAY LUMPS AND FRIABLE PARTICLES (ASTM C142)

Job Number: 093-81042-011

Golder Associates Ltd. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: Aggregate Testing – Canada Chrome

Sample ID	RS-002-N0310-01

Date Received: February, 2010 Date Tested: February 26, 2010 Sampled by: N/A Golder Lab No.: G-10-038

Sieve Fraction (mm) Mass of Sample (g)		Clay Lumps (%)	Acceptance Requirement ¹
50.0 – 19.0	4999.7	0.0	0.5 Max.

Remarks: 1. The acceptance requirement is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

Date: March 29, 2010

Job Number: 093-81042-011

Golder Associates Inc. 4438 Haines Road Duluth, Minnesota USA 55811

ATTENTION: Ms. Amy Thorson

PROJECT: <u>Aggregate Testing – Canada Chrome</u>

Sample ID	RS-002-N0310-01
Date Received: February, 2 Date Tested: March 18, 201	010 Sampled by: N/A IO Golder Lab Number: G-10-038
Grading	3
Sieve Sizes	37.5mm – 19.0mm
Mass – Before test (g)	10021.2
Number of revolutions	1000
Number of spheres (g)	12

4996.9

7712.4

23.0

Date: March 29, 2010

Remarks: 1. The maximum allowable loss of 35% for granite is taken from Table 1-2-1 of the AREMA Manual for Railway Engineering.

Reviewed by:

Mass of spheres (g)

Mass after 1000 revolutions (g)

Loss after 1000 revolutions (%)

John A. Watkins, Laboratory Services Manager

