We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

CANADIAN EXPLORATION SERVICES LTD

BATTERY MINERAL RESOURCES LTD.

Q2315 – Elk Lake Project Magnetometer Survey

C Jason Ploeger, P.Geo. – March 31, 2017

BAT-ERY MINERAL RESOURCES

Abstract

CXS was contracted by Battery Mineral Resources to perform approximately 3.0 kilometres of magnetometer work over the Elk Lake Property.

BATTERY MINERAL RESOURCES LTD. Q2315 – Elk Lake Project Magnetometer Survey

C Jason Ploeger, P.Geo. – March 31, 2017

TABLE OF CONTENTS

1.		SURVEY DETAILS	3
	1.1	PROJECT NAME	3
	1.2	CLIENT	3
	1.3	LOCATION	3
	1.4	Access	4
	1.5	SURVEY GRID	4
2.		SURVEY WORK UNDRTAKEN	5
	2.1	SURVEY LOG	5
	2.2	Personnel	5
	2.3	SURVEY SPECIFICATIONS	5
3.		OVERVIEW OF SURVEY RESULTS	.6
	3.1	SUMMARY	6

LIST OF APPENDICES

APPENDIX A: STATEMENT OF QUALIFICATIONS APPENDIX B: THEORETICAL BASIS AND SURVEY PROCEDURES APPENDIX C: INSTRUMENT SPECIFICATIONS APPENDIX D: LIST OF MAPS (IN MAP POCKET)

LIST OF TABLES AND FIGURES

Figure 1: Location of the Elk Lake Project	3
Figure 2: Claim Map with the Elk Lake Traverses	4
Figure 3: Magnetometer Plan of Elk Lake on Google Earth	6
Table 1: Survey Log	5

1. SURVEY DETAILS

1.1 PROJECT NAME

This project is known as the Elk Lake Project.

1.2 CLIENT

Battery Mineral Resources Ltd. Level 36 Governor Phillip Tower 1 Farer Place Sydney Australia

1.3 LOCATION

The Elk Lake Project covers an area that encompasses Mickle, James, Farr, Barber and Tudhope Townships. This survey was performed approximately 5 km southeast of Elk Lake, Ontario. The survey area covers a portion of mining claim 4269506 located in Tudhope Township, within the Larder Lake Mining Division.

Figure 1: Location of the Elk Lake Project

1.4 ACCESS

Access to the property was attained with a 4x4 truck highway 65. The vehicle was parked 5km south of Elk Lake on highway 65, with the final 200 meters to the survey area being traversed on foot.

1.5 SURVEY GRID

The traversed lines were established using a GPS in conjunction with the execution of the survey. The GPS operator would establish sample locations while remaining approximately 12.5m in front of the magnetometer operator. GPS waypoints, magnetic samples were taken every 12.5m along these controlled traverses. The GPS used was a Garmin GPSMAP 62s with an external antenna for added accuracy.

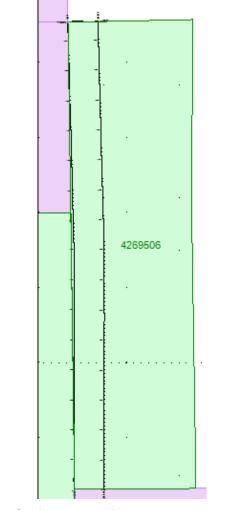


Figure 2: Claim Map with the Elk Lake Traverses

Page 5

2. SURVEY WORK UNDRTAKEN

2.1 SURVEY LOG

Date	Description	Line	Min Extent	Max Extent	Total Survey (m)
March 25, 2017	Locate survey area and conduct				
	magnetometer survey.	0	0	1562.5N	1562.5
		100E	0	1562.5N	1562.5
		1562.5N	0	100E	100

Table 1: Survey Log

2.2 PERSONNEL

Ryan Lavalley of Sudbury, Ontario conducted all the magnetic data collection while Claudia Moraga of Britt, Ontario was responsible for the GPS control and GPS waypoint collection.

2.3 SURVEY SPECIFICATIONS

The survey was conducted with a GSM-19 v7 Overhauser magnetometer with a second GSM-19 magnetometer for a base station mode for diurnal correction.

A total of 3.225 line kilometers of magnetometer was read over the elk Lake Project on March 25, 2017. This consisted of 258 magnetometer samples taken at a 12.5 metre sample interval.

3. OVERVIEW OF SURVEY RESULTS

3.1 SUMMARY

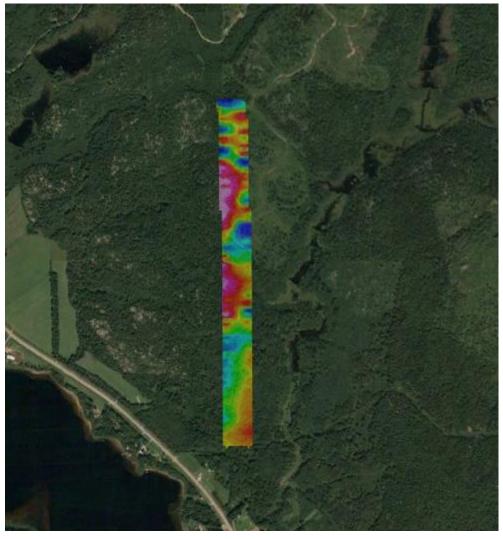


Figure 3: Magnetometer Plan of Elk Lake on Google Earth

No culture was noted through the traverse area.

Generally the magnetic relief over the property does not exhibit any strong variations. This indicates that the surveyed area is probably underlain by the similar geological unit with the variations a result of alteration or overburden.

The north part of the survey area indicates a series of magnetically elevated eastwest trends. These strike at approximately 100 degrees and are separated by magnetically low regions. This may indicate alteration patterns and should be explored further through prospecting.

APPENDIX A

STATEMENT OF QUALIFICATIONS

I, C. Jason Ploeger, hereby declare that:

- 1. I am a professional geophysicist with residence in Larder Lake, Ontario and am presently employed as a Geophysicist and Geophysical Manager of Canadian Exploration Services Inc. of Larder Lake, Ontario.
- 2. I am a Practicing Member of the Association of Professional Geoscientists, with membership number 2172.
- 3. I graduated with a Bachelor of Science degree in geophysics from the University of Western Ontario, in London Ontario, in 1999.
- 4. I have practiced my profession continuously since graduation in Africa, Bulgaria, Canada, Mexico and Mongolia.
- 5. I am a member of the Ontario Prospectors Association, a Director of the Northern Prospectors Association and a member of the Society of Exploration Geophysicists.
- 6. I do not have nor expect an interest in the properties and securities of **Battery Mineral Resources.**
- 7. I am responsible for the final processing and validation of the survey results and the compilation of the presentation of this report. The statements made in this report represent my professional opinion based on my consideration of the information available to me at the time of writing this report.

C. Jason Ploeger, P.Geo., B.Sc. Geophysical Manager Canadian Exploration Services Inc.

> Larder Lake, ON March 31, 2017

> > Page 7

Page 8

APPENDIX B

THEORETICAL BASIS AND SURVEY PROCEDURES

TOTAL FIELD MAGNETIC SURVEY

Base station corrected Total Field Magnetic surveying is conducted using at least two synchronized magnetometers of identical type. One magnetometer unit is set in a fixed position in a region of stable geomagnetic gradient, and away from possible cultural effects (i.e. moving vehicles) to monitor and correct for daily diurnal drift. This magnetometer, given the term 'base station', stores the time, date and total field measurement at fixed time intervals over the survey day. The second, remote mobile unit stores the coordinates, time, date, and the total field measurements of the Earth's field at stations, along individual profiles, including Tie and Base lines. A 2 meter staff is used to mount the sensor, in order to optimally minimize localized near-surface geologic noise. At the end of a survey day, the mobile and base-station units are linked, via RS-232 ports, for diurnal drift and other magnetic activity (ionospheric and sferic) corrections using internal software.

For the gradiometer application, two identical sensors are mounted vertically at the ends of a rigid fiberglass tube. The centers of the coils are spaced a fixed distance apart (0.5 to 1.0m). The two coils are then read simultaneously, which alleviates the need to correct the gradient readings for diurnal variations, to measure the gradient of the total magnetic field.

APPENDIX C

GSM 19

Specifications

Overhauser Performance

Resolution: 0.01 nT Relative Sensitivity: 0.02 nT Absolute Accuracy: 0.2nT Range: 20,000 to 120,000 nT Gradient Tolerance: Over 10,000nT/m Operating Temperature: -40°C to +60°C

Operation Modes

Manual: Coordinates, time, date and reading stored automatically at min. 3 second interval.

Base Station: Time, date and reading stored at 3 to 60 second intervals. Walking Mag: Time, date and reading stored at coordinates of fiducial. Remote Control: Optional remote control using RS-232 interface. Input/Output: RS-232 or analog (optional) output using 6-pin weatherproof connector.

Operating Parameters

Power Consumption: Only 2Ws per reading. Operates continuously for 45 hours on standby.

Power Source: 12V 2.6Ah sealed lead acid battery standard, other batteries available

Operating Temperature: -50°C to +60°C

Storage Capacity

Manual Operation: 29,000 readings standard, with up to 116,000 optional. With 3 VLF stations: 12,000 standard and up to 48,000 optional.

Base Station: 105,000 readings standard, with up to 419,000 optional (88 hours or 14 days uninterrupted operation with 3 sec. intervals)

Gradiometer: 25,000 readings standard, with up to 100,000 optional. With 3 VLF stations: 12,000, with up to 45,000 optional.

Omnidirectional VLF

Performance Parameters: Resolution 0.5% and range to $\pm 200\%$ of total field. Frequency 15 to 30 kHz.

Measured Parameters: Vertical in-phase & out-of-phase, 2 horizontal components, total field coordinates, date, and time.

Features: Up to 3 stations measured automatically, in-field data review, displays station field strength continuously, and tilt correction for up to $\pm 10^{\circ}$ tilts.

Dimensions and Weights: 93 x 143 x 150mm and weighs only 1.0kg.

Dimensions and Weights

Dimensions: Console: 223 x 69 x 240mm Sensor: 170 x 71mm diameter cylinder Weight: Console: 2.1kg Sensor and Staff Assembly: 2.0kg

Standard Components

GSM-19 magnetometer console, harness, battery charger, shipping case, sensor with cable, staff, instruction manual, data transfer cable and software.

Taking Advantage of a "Quirk" of Physics

Overhauser effect magnetometers are essentially proton precession devices except that they produce an order-of magnitude greater sensitivity. These "supercharged" quantum magnetometers also deliver high absolute accuracy, rapid cycling (up to 5 readings / second), and exceptionally low power consumption.

The Overhauser effect occurs when a special liquid (with unpaired electrons) is combined with hydrogen atoms and then exposed to secondary polarization from a radio frequency (RF) magnetic field. The unpaired electrons transfer their stronger polarization to hydrogen atoms, thereby generating a strong precession signal-- that is ideal for very high-sensitivity total field measurement. In comparison with proton precession methods, RF signal generation also keeps power consumption to an absolute minimum and reduces noise (i.e. generating RF frequencies are well out of the bandwidth of the precession signal).

In addition, polarization and signal measurement can occur simultaneously - which enables faster, sequential measurements. This, in turn, facilitates advanced statistical averaging over the sampling period and/or increased cycling rates (i.e. sampling speeds).

• The unique Overhauser unit blends physics, data quality, operational efficiency, system design and options into an instrumentation package that ... ex-

Page 11

ceeds proton precession and matches costlier optically pumped cesium capabilities

APPENDIX C

GARMIN GPS MAP 62S

Physical & Performance:			
Unit dimensions, WxHxD:	2.4" x 6.3" x 1.4" (6.1 x 16.0 x 3.6 cm)		
Display size, WxH:	1.43" x 2.15" (3.6 x 5.5 cm); 2.6" diag (6.6 cm)		
Display resolution, WxH:	160 x 240 pixels		
Display type:	transflective, 65-K color TFT		
Weight:	9.2 oz (260.1 g) with batteries		
Battery:	2 AA batteries (not included); NiMH or Lithium recom- mended		
Battery life:	20 hours		
Waterproof:	yes (IPX7)		
Floats:	no		
High-sensitivity re- ceiver:	yes		

Interface:

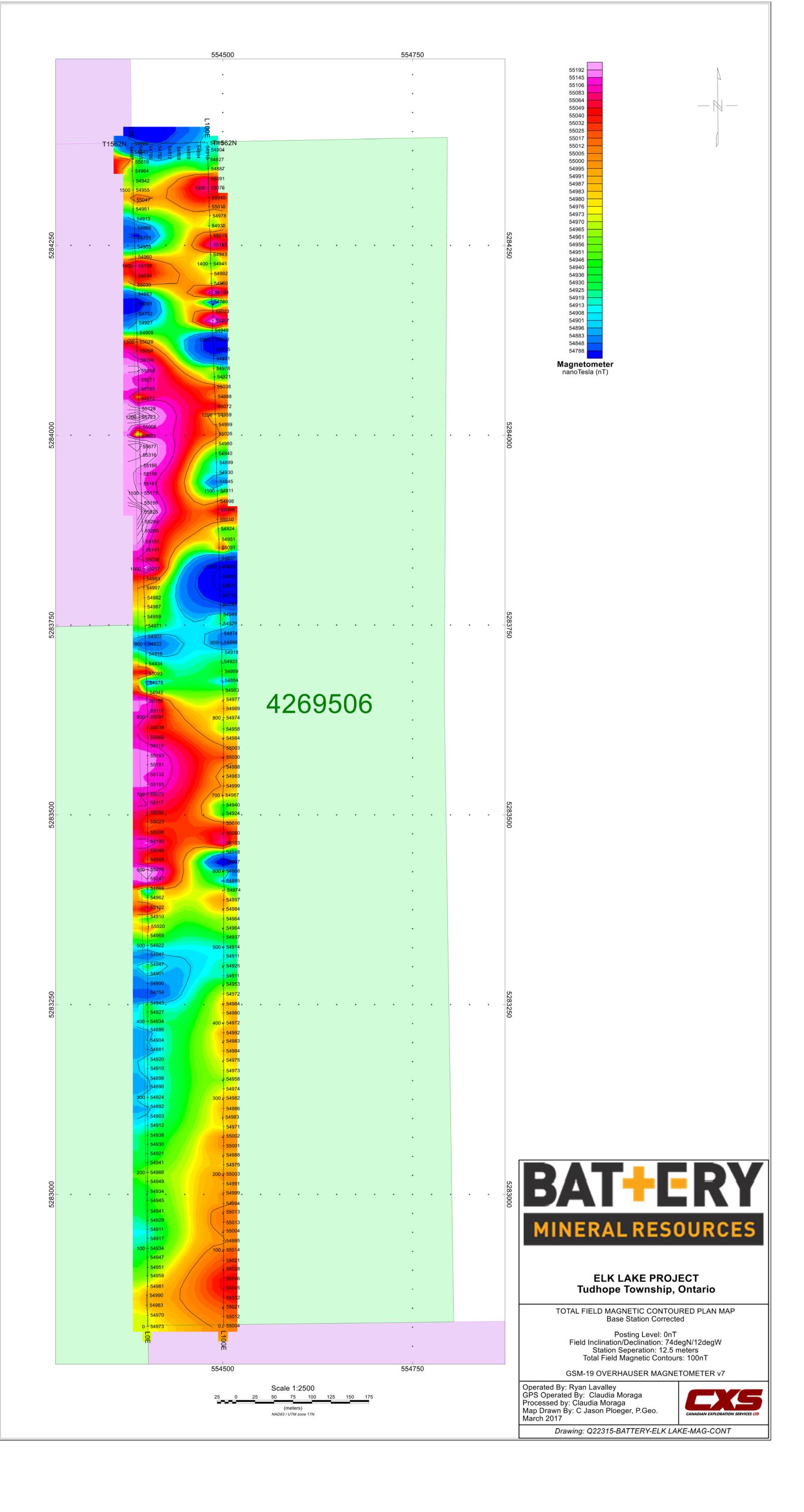
high-speed USB and NMEA 0183 compatible

Maps & Memory:		
Basemap:	yes	
Preloaded maps:	no	
Ability to add maps:	yes	
Built-in memory:	1.7 GB	
Accepts data cards:	microSD™ card (not included)	
Waypoints/favorites/locations:	2000	
Routes:	200	
Track log:	10,000 points, 200 saved tracks	

Features & Benefits:		
Automatic routing (turn by turn routing on	yes (with optional mapping for detailed	
roads):	roads)	
Electronic compass:	yes (tilt-compensated, 3-axis)	
Touchscreen:	no	
Barometric altimeter:	yes	
Camera:	no	
Geocaching-friendly:	yes (paperless)	
Custom maps compatible:	yes	
Photo navigation (navigate to geotagged photos):	yes	
Outdoor GPS games:	no	
Hunt/fish calendar:	yes	

Sun and moon information:	yes
Tide tables:	yes
Area calculation:	yes
Custom POIs (ability to add additional points of interest):	yes
Unit-to-unit transfer (shares data wire- lessly with similar units):	yes
Picture viewer:	yes
Garmin Connect™ compatible (online community where you analyze, catego-rize and share data):	yes

• Specifications obtained from www.garmin.com


APPENDIX D

LIST OF MAPS (IN MAP POCKET)

Magnetometer Plan Map (1:2500)

1) Q2315-BATTERY-Elk Lake-Mag-Cont

TOTAL MAPS = 1

