We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Report: A Prospecting Program

On The

Starhill Property, Tuuri Township, Thunder Bay Mining Division

December 20, 2016

Summary

On June 30th and July 1st 2016, geologists Christian Carl and Steven Siemieniuk carried out a prospecting program on the Starhill Property (claim 4272605) in the Tuuri Township of the Thunder Bay Mining Division. The program targeted the area surrounding the Starhill Occurrence in order to determine the lateral extent of mineralization at this showing.

A total of 8 grab samples were taken from the property and submitted for assay at ALS Laboratories in Thunder Bay. The most notable sample (K086855) was taken from a small lens of semi-massive sulfides and returned assay values of 2.76% Zn, 0.26% Cu, and 14.86g/t Ag, respectively.

Though the extent of the mineralization at the Starhill Occurrence was observed to be confined to two small lenses less than two metres in strike length and less than a metre in width, the confirmation of poly-metallic mineralization on the property warrants follow up investigation. Since outcrop on the claim is limited to a few steep ridges surrounded by overburden, a modest soil sampling program to the south of the Starhill Occurrence is recommended. This will help determine if mineralization is more wide spread than previously recognized in the former trenching and drilling programs conducted to the north of the showing.

Property Description and Location

The Starhill Property is located approximately 250km east of Thunder Bay, Ontario in the Tuuri Township of the Thunder Bay Mining Division (figure 1). The property consists of a three unit unpatented mining claim (table 1), enveloped by claims held by other prospectors of the Schreiber-Hemlo Greenstone Belt (figure 2).

Claim Number	Township/Area	Mining District	Units	Recorded Holder	Recording Date	Claim Due Date	Claim Type
4272605	TUURI TOWNSHIP	Thunder Bay	3	CHRISTIAN CARL (100%)	2014-Dec- 22	2016- Dec-22	Unpatented

Table 1: Claim Details

Access to the property is via overgrown drill roads which branch off an ATV/skidoo trail adjacent to the Prairie River, north of the Trans-Canada Highway. The terrain on the property is extremely rugged and traversing/prospecting in the area is challenging. Previous trenching at the Starhill Occurrence has created a sufficient clearing where a helicopter could be landed to provide support for future exploration programs.

Figure 1: Starhill Property Location

The property is located near the northern margin of the Wawa Subprovince and is part of the Schreiber-Hemlo Greenstone Belt on the north shore of Lake Superior. Though an economic VMS deposit has yet to be discovered in this greenstone belt, the neighbouring Winston Lake Greenstone Belt and Manitouwadge Greenstone Belts have each experienced VMS-hosted base-metal mining in past decades.

The geology of the Starhill Property is comprised primarily of felsic to intermediate metavolcanic assemblages with sericite, chlorite, biotite, feldspar, and silica alteration commonly occurring on the property, especially proximal to mineralized zones. The most significant known mineralization on the claim is found at the Starhill Showing where sulfides occur as bands of sphalerite, chalcopyrite, pyrite, pyrrhotite and galena. Assays returned from historical grab samples at this site have yielded up to 7.1% Zn, 1.54% Cu, 0.33% Pb, 101g /t Ag and 0.87g /t Au, respectively.

In February 2002, two holes of limited extent were drilled on the Starhill Property by RJK Exploration Ltd. Of note, DDH S02-2, located approximately 120 metres north of the Starhill Showing, intersected 4.96% Zn over 0.4m, 0.46% Cu over 0.6m, 0.36% Pb over 1.0m, 48.1g/t Ag over 0.6m and 0.43g/t Au over 0.6m. In the accompanying report for this drill program, geologist Dave McClean considered the alteration patterns observed in drill core and the presence of disseminated sulphides over a large interval to be favorable indicators for the occurrence of a larger zone of mineralization on the property.

Drilling of the Bozena Lake Prospect, located just 1.0km north of the property, has intersected 3.36% Zn over 17.04m including an interval within that section of 13.24% Zn over 3.35m. This high-grade continuous mineralization exemplifies the potential for significant base-metal prospects in the area.

Figure 2: Geologic Map of the Starhill Property and Surrounding Area

Prospecting Program

Accessing the property during the two days of prospecting proved to be an arduous, undesirable task. The ATV trail which parallels the Prairie River was washed out only a few hundred metres north of the highway which forced us to walk several extra kilometers to access the claim. Furthermore, the drill roads leading onto the claim were so severely overgrown it proved more efficient to traverse through the nearby spruce and poplar stands than to walk on the brush covered trail.

Upon arriving on the claim, numerous sericite schist outcrops were encountered. We restricted our sampling to outcrops which contained visible sulfides to avoid carrying extra weight while traversing so deep in the backcountry. We spent the bulk of our time on June 30th doing reconnaissance work at the Starhill Occurrence. It was fairly underwhelming to recognize the mineralization at the showing was limited to two quartz

flooded sulfide lenses measuring less than two metres in strike length. Regardless, we took one sample from each lens and scoured the area for additional signs of mineralization. Unfortunately our hunt proved fruitless and we were forced to return to Terrace Bay before dusk fell as it was already getting late in the day.

On July 1st, we returned to the property and did some shoreline prospecting of a small lake on the western border of the claim. Here we found some potassic altered felsic metavolcanic rocks and a series of weakly mineralized quartz veins. The five samples we took on day two were mostly sourced from decimeter-scale quartz veins which occasionally contained sulfides. In the end, the intense topography and poor access to the property forced us to cover less ground and take fewer samples than we initially anticipated, leaving something to be desired as we made the return trip to Thunder Bay. A complete list of sample descriptions and waypoint locations can be found in appendix A. A map of our sample locations has been included in appendix C.

The results returned from the 8 samples which were submitted for assay contained few surprises. High concentrations of base metals were detected in the two samples taken from the Starhill Occurrence. Sample K086855 retuned the most impressive assays with concentrations of 2.76% Zn, 0.259% Cu, 0.01175% Pb, 14.85g/t Ag and 0.098g/t Au, respectively. Sample K086856 (the second sample from the showing) ran 0.259% Zn, 0.248% Cu, 0.0130% Pb, 20.80g/t Ag and 0.069g/t Au. None of the other six samples contained significant metal concentrations. Complete assay results are given in appendix B.

Program Cost

In total, \$3685.47 worth of work was performed on the property throughout the course of the program. A breakdown of the total expenses is listed below (table 2).

Starhill Prospecting Expenses	
Prospecting \rightarrow 2 geologists for 2 days@ \$400/geologist per day	\$1,600
Sample Crushing, Splitting, Pulverizing and Aqua Regia ICP-MS \rightarrow for	
8 samples + GST	\$449.47
Mileage \rightarrow 252km (Thunder Bay to Property) x 2 + 34km x 2 (Terrace	
Bay to Property) = 572km @ \$0.5/km	\$286
Hotel and Food	\$350
Report → 1@\$1000	\$1000
Total	\$3685.47

Table 2	: Pros	pecting	Expenses
---------	--------	---------	----------

Conclusions and Recommendations

The brief prospecting program conducted on the property confirmed the occurrence of elevated base-metal concentrations on the claim. Despite the limited extent of the only known occurrence on the property (the Starhill Showing), the Bozena Lake Prospect, located with a kilometer of the northern boundary of the claim, demonstrates this areas potential to host significant VMS-style mineralization.

Since DDH S02-2 has already probed the conductor located north of the Starhill Occurrence, future low-budget programs should focus on the area south of the showing. A four line north-south soil sampling grid with 25m sample spacing and 100m between lines would sufficiently cover the southern portion of the claim. Such a program would hopefully reveal the locations with elevated base-metal concentrations as well as hone in on prospective horizons that are potassium rich and sodium depleted.

If a higher-budget program is considered for the property, a downhole IP survey of DDH S02-2 would help reveal if any conductors exist at depth. With the current depressed metal prices, basic prospecting and sampling may be the most efficient way to invest in this property for the foreseeable future.

Appendix A

Sample Descriptions and Coordinates

Sample ID	NAD 83	Eastings	Northings	Description
K086854	Zone 16	515525	5408859	Approximately 10cm wide quartz vein hosted in a sericite schist. Quartz is opaque, chalk white and does not contain any visible sulfides. Vein contains elongated xenoliths of the host (sericite-schist).
K086855	Zone 16	515520	5408943	Approximately 1 metre by 1.5 metre quartz flooded semi-massive sulfide lens hosted within a felsic meta-volcanic unit. Dominantly pyrite stringers with lesser sphalerite bands, trace fine grained subhedral chalcopyrite grains and trace euhedral galena. This outcrop has been thoroughly trenched and sampled and it appears as though the best material has been scooped up by previous geologists. This is the Starhill Occurrence.
K086856	Zone 16	515505	5408935	Approximately 1.2 metre by 0.8 metre lens of semi-massive sulfides. The non- sulfide sections of the lens are comprised of a highly gossanous felsic meta- volcanic unit which is also the host of this mineralization. Sulfides are dominantly fine grained pyrite parallel to foliation with trace sphalerite, galena and chalcopyrite.
K086857	Zone 16	515382	5408997	Quartz vein of unknown thickness (contact obscured by overburden) hosted in a sericite schist. ~2% anhedral pyrite blebs up to 6mm in diameter. Translucent white in colour with orange ankerite patches scattered throughout.
K086858	Zone 16	515381	5409033	3 metre wide shear zone within a felsic tuffaceous unit. Trace to 0.5% fracture filling pyrite. Locally quartz flooded. Highly fissile.
K086859	Zone 16	515398	5409105	Weakly gossanous, chalk-white quartz float, likely from a vein observed nearby. Extremely sparse fine grained pyrite noted in hand sample. Host rock is a felsic metavolcanic unit with sericite and chlorite alteration.
K086860	Zone 16	515511	5409208	Greyish-white opaque quartz also likely from an adjacent vein. Chlorite sealed fractures common throughout sample. No visible sulfides.
K086861	Zone 16	515550	5409344	Chalk-white quartz carbonate vein 7-8cm in width within a felsic tuff. 0.1-0.5% very fine grained pyrite disseminated throughout. Minor stock-work of quartz-carb veining observed in outcrop.

Appendix B

Assay Certificates, QC Certificates, Assay Receipt

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30- JUL- 2016 This copy reported on 2- AUG- 2016 Account: KJUVMQ

CERTIFICATE TB16113812

Project: Starhill

This report is for 8 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 14-JUL- 2016.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 22	Sample login - Rcd w/o BarCode	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 31	Pulverize split to 85% < 75 um	

	ANALYTICAL PROCEDURE	S
ALS CODE	DESCRIPTION	
ME- MS41	Ultra Trace Aqua Regia ICP- MS	
ME- OG46	Ore Grade Elements - AquaRegia	ICP- AES
Zn- OG46	Ore Grade Zn - Aqua Regia	VARIABLE
Au- ICP21	Au 30g FA ICP- AES Finish	ICP- AES

To: LYNX EXPLORATION ATTN: CHRISTIAN CARL 409 QUEEN STREET THUNDER BAY ON P7B 2K3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

***** See Appendix Page for comments regarding this certificate *****

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30- JUL- 2016 Account: KJUVMQ

Project: Starhill

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME-MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME- MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME-MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME-MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME- MS41 Ce ppm 0.02	ME- MS41 Co ppm 0.1	ME- MS41 Cr ppm 1
K086854 K086855 K086856 K086857 K086858		1.17 0.88 0.88 0.89 0.95	<0.001 0.098 0.069 <0.001 <0.001	0.01 14.85 20.8 0.48 0.15	0.76 0.48 0.64 0.09 0.64	1.1 186.0 205 1.9 1.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<10 <10 <10 <10 <10	20 10 10 20 30	0.13 0.08 0.09 0.07 0.11	0.01 10.30 20.2 3.12 0.59	0.46 0.01 0.03 0.01 0.01	0.03 95.3 9.26 0.20 0.10	27.3 0.85 0.53 8.01 36.2	3.4 147.5 95.1 5.4 0.6	17 13 7 22 4
K086859 K086860 K086861		0.71 0.83 0.88	<0.001 <0.001 <0.001	0.03 0.03 0.02	0.16 1.10 0.12	0.7 2.2 2.4	<0.2 <0.2 <0.2	<10 <10 <10	<10 10 <10	<0.05 0.10 <0.05	0.05 0.04 0.02	0.70 0.17 >25.0	0.07 0.04 0.02	0.66 1.23 8.61	2.0 9.8 0.5	18 52 2
anatara dupantai ant an o unces sut mu o unces sut																
1910 6 U S																

ALS) Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30- JUL- 2016 Account: KJUVMQ

Project: Starhill

Sample Description	Method Analyte Units LOR	ME- MS41 Cs ppm 0.05	ME- MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME- MS41 Hg ppm 0.01	ME-MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME- MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME- MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS41 Na % 0.01
K086854 K086855 K086856 K086857 K086858		0.30 0.19 0.22 <0.05 0.24	2.2 2590 2480 22.8 19.4	1.15 13.05 13.65 0.79 1.35	3.19 2.53 3.03 0.39 4.17	0.06 0.08 0.05 <0.05 <0.05	0.34 0.14 0.19 0.22 1.18	0.01 4.93 0.68 0.02 0.01	0.010 1.755 0.272 0.008 0.009	0.10 0.13 0.12 0.04 0.20	13.7 0.4 0.2 3.5 17.1	6.0 2.5 3.0 0.3 5.6	0.53 0.24 0.33 0.01 0.45	215 181 233 36 123	1.24 1.63 1.21 0.21 0.86	0.01 <0.01 0.01 0.02 0.03
K086859 K086860 K086861		0.16 1.10 0.08	14.7 19.1 7.5	0.85 2.07 0.61	0.50 3.71 0.33	<0.05 <0.05 <0.05	<0.02 0.04 <0.02	<0.01 <0.01 <0.01	<0.005 0.008 <0.005	<0.01 0.02 <0.01	0.3 0.5 3.7	1.6 7.0 0.4	0.12 0.86 0.12	144 284 1450	1.88 0.44 2.52	<0.01 <0.01 0.01
		-														
enañ e contrainno																anna Anna Altar Statistica
	10								ci a une	B.C.A.K		YNY			13915	

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-JUL-2016 Account: KJUVMQ

Project: Starhill

Sample Description	Method Analyte Units LOR	ME- MS41 Nb ppm 0.05	ME- MS41 Ni ppm 0.2	ME-MS41 P ppm 10	ME- MS41 Pb ppm 0.2	ME-MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME-MS41 Sc ppm 0.1	ME-MS41 Se ppm 0.2	ME- MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME-MS41 Th ppm 0.2
K086854 K086855 K086856 K086857 K086858		0.13 0.13 0.17 0.89 0.62	7.4 30.4 31.0 2.1 0.9	190 60 90 20 70	4.9 117.5 130.0 8.6 2.9	4.0 4.7 4.2 1.1 6.9	0.001 0.001 <0.001 <0.001 <0.001	<0.01 >10.0 >10.0 0.53 0.15	0.11 4.44 9.42 0.10 0.07	1.9 2.4 2.3 0.1 0.4	0.4 23.2 7.2 0.7 0.7	0.2 1.8 3.1 <0.2 0.3	8.1 0.6 0.9 1.7 1.4	<0.01 <0.01 <0.01 <0.01 <0.01	<0.01 0.17 0.13 0.11 0.07	1.7 0.2 0.4 2.3 3.8
K086859 K086860 K086861		<0.05 <0.05 <0.05	5.0 18.3 0.9	10 80 10	0.4 1.0 0.4	0.5 2.5 0.1	0.001 <0.001 0.002	0.04 0.02 0.35	<0.05 0.05 0.05	0.2 4.0 0.4	0.3 0.2 1.5	<0.2 <0.2 <0.2	2.0 1.6 556	<0.01 <0.01 <0.01	0.02 0.02 0.02	<0.2 <0.2 <0.2
Rateful e Representation		12														
Certa									Parks					kate)	4736) 	

ALS) Minerals

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 30-JUL-2016 Account: KJUVMQ

Project: Starhill

									С	ERTIFICATE	OF ANALYSIS	TB16113812	
Sample Description	Method Analyte Units LOR	ME- MS41 Ti % 0.005	ME- MS41 Tl ppm 0.02	ME- MS41 U ppm 0.05	ME- MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME- MS41 Zr ppm 0.5	Zn- OG46 Zn % 0.001			
K086854 K086855 K086856 K086857 K086858		0.025 0.018 0.011 <0.005 0.014	0.03 0.78 0.84 <0.02 0.02	0.25 0.10 0.08 2.19 0.59	28 24 15 1 <1	<0.05 0.09 <0.05 0.07 0.05	6.81 1.19 1.08 0.95 4.45	54 >10000 2590 48 25	7.7 4.4 7.5 6.3 47.7	2.76			
K086859 K086860 K086861		<0.005 <0.005 <0.005	0.04 <0.02 0.03	<0.05 <0.05 <0.05	2 52 3	<0.05 <0.05 <0.05	0.14 1.06 8.40	17 26 3	0.5 1.4 <0.5				
1986,62.19	-												
which not no	estatos.	- MAC 20 2011 - 3.1 2000 - 3.1											
	erstalling)	MD- WED STOLEN											
()usis													

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 30- JUL- 2016 Account: KJUVMQ

Project: Starhill

S weight used (0.5g). S Canada.
S Canada.
anada.
G46 Zn- OG46

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 30- JUL- 2016 This copy reported on 2- AUG- 2016 Account: KJUVMQ

QC CERTIFICATE TB16113812

Project: Starhill

This report is for 8 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 14-JUL-2016.

The following have access to data associated with this certificate:

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG-22	Sample login - Rcd w/o BarCode	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 31	Pulverize split to 85% < 75 um	

0.1	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	
ME- MS41	Ultra Trace Aqua Regia ICP- MS	15 - C
ME- OG46	Ore Grade Elements - AquaRegia	ICP- AES
Zn- OG46	Ore Grade Zn - Aqua Regia	VARIABLE
Au- ICP21	Au 30g FA ICP- AES Finish	ICP- AES

To: LYNX EXPLORATION ATTN: CHRISTIAN CARL 409 QUEEN STREET THUNDER BAY ON P7B 2K3

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 30- JUL- 2016 Account: KJUVMQ

Project: Starhill

Method Analyte Sample Description LOR	Au- ICP21 Au ppm 0.001	ME-MS41 Ag ppm 0.01	ME- MS41 Al % 0.01	ME-MS41 As ppm 0.1	ME- MS41 Au ppm 0.2	ME- MS41 B ppm 10	ME- MS41 Ba ppm 10	ME- MS41 Be ppm 0.05	ME- MS41 Bi ppm 0.01	ME- MS41 Ca % 0.01	ME-MS41 Cd ppm 0.01	ME-MS41 Ce ppm 0.02	ME-MS41 Co ppm 0.1	ME-MS41 Cr ppm 1	ME- MS41 Cs ppm 0.05
						STAN	DARDS								
BP-13	0.366														
Target Range - Lower Bound	0.336														
Upper Bound	0.380														
Target Range - Lower Bound	7.47														
Upper Bound	7.97														
GPP-08	0.050														
Target Range - Lower Bound															
MRGeo08		4 46	2.63	31.1	<0.2	<10	450	0 74	0.64	1.07	2 27	71.0	18.5	90	10.75
Target Range - Lower Bound		4.00	2.44	29.6	<0.2	<10	370	0.67	0.60	1.00	2.01	66.2	17.0	81	9.40
Upper Bound		4.92	3.00	36.4	0.4	20	530	0.95	0.76	1.24	2.47	81.0	21.0	102	11.60
OGGeo08		20.3	2.17	126.5	<0.2	<10	90	0.82	11.25	0.90	19.70	63.2	104.0	82	9.73
Lipper Bound		22.2	2.05	107.0	<0.2	<10 30	60 110	0.61	9.44	0.82	16.75	56.7	87.2	75 03	8.68
OGGeo08		And And I don	2.00	101.0	0.1	00	110	0.00	11.00	1.02	20.0	00.0	101.0	30	10.70
Target Range - Lower Bound															
Upper Bound		0.54	0.70				0.10								
Target Range - Lower Bound		0.51	0.78	28.4	<0.2	<10	240	0.91	5.41	0.34	0.34	73.6	13.4	17	1.15
Upper Bound		0.58	0.91	35.0	0.8	20	300	1.08	6.32	0.38	0.02	88.0	15.4	2	1.14
OREAS 920		0.10	2.43	4.4	<0.2	<10	80	0.71	0.63	0.33	0.06	70.1	13.9	44	1.83
Target Range - Lower Bound		0.07	2.18	3.8	<0.2	<10	50	0.59	0.60	0.28	0.04	64.8	13.4	37	1.84
OPEAS 932		0.12	2.68	4.9	0.4	20	110	0.87	0.76	0.37	0.09	79.2	16.6	48	2.36
Target Range - Lower Bound															
Upper Bound	195 10 20														
OREAS-133a															
Lower Bound	19161101127														
OREAS-134b															
Target Range - Lower Bound															
Upper Bound	0.551														
Target Range - Lower Bound	0.508														
Upper Bound	0.576														

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION **409 QUEEN STREET** THUNDER BAY ON P7B 2K3

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 30-JUL- 2016 Account: KJUVMQ

QC CERTIFICATE OF ANALYSIS TB16113812

Project: Starhill

								Constant of the second s						and the second		
Sample Description	Method Analyte Units LOR	ME- MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME-MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME- MS41 Mo ppm 0.05	ME- MS4 1 Na % 0.01	ME- MS41 Nb ppm 0.05
							STAN	DARDS								
BP-13																
Target Range - Lower	Bound															
Upper	Bound															
Target Range - Lower	Bound															
Upper	Bound	1222														
GPP-08	Deres	1.2														
Linner	Bound															
MRGeo08		607	3.58	10.05	0.13	0.65	0.06	0.153	1.26	35.3	35.6	1.15	400	13.65	0.32	1.03
Target Range - Lower	Bound	587	3.22	8.73	0.07	0.64	0.04	0.137	1.12	33.2	29.6	1.03	378	13.10	0.30	0.79
Upper	Bound	675	3.96	10.80	0.29	0.83	0.10	0.179	1.40	41.0	36.4	1.29	473	16.10	0.39	1.09
Target Range - Lower	Bound	7800	5.20	8.00	0.17	0.90	0.45	1.535	1.12	31.6	33.6	0.98	382	893	0.28	1.14
Upper	Bound	8980	5.53	9.95	0.45	0.92	0.57	1.645	1.18	34.3	36.6	1.05	438	991	0.26	0.97
OGGeo08			· Province and state of the sta			The state of the s	I PRINCIPAL PROPERTY INTERNAL				Inter and the second second				0.01	1.4.0
Target Range - Lower	Bound															
OREAS 905	Bound	1520	3.41	6 31	0.07	1.00	0.01	0 552	0.20	27.4	4.2	0.45	000	0.70	0.00	
Target Range - Lower	Bound	1450	3.14	5.74	<0.05	1.08	<0.01	0.517	0.30	35.6	4.2	0.15	333	2.78	0.09	0.29
Upper	Bound	1670	3.86	7.12	0.10	1.36	0.02	0.643	0.36	44.0	5.5	0.19	390	3.35	0.12	0.10
OREAS 920		113.0	3.83	6.31	0.09	0.46	0.01	0.027	0.41	35.9	20.1	1.16	526	0.37	0.02	0.27
Target Range - Lower	Bound	102.0	3.26	6.12	< 0.05	0.53	< 0.01	0.019	0.39	33.3	19.0	0.98	<5	0.29	<0.01	0.31
OREAS 932	bound	110.0	4.00	7.00	0.10	0.69	0.02	0.043	0.50	41.1	23.4	1.22	10	0.53	0.02	0.55
Target Range - Lower	Bound															
Upper	Bound															
OREAS-133a	Round															
Upper	Bound															
OREAS-134b																
Target Range - Lower	Bound															
Upper	Bound	1.1														
Target Range - Lower	Bound	Section														
Upper	Bound															

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 30- JUL- 2016 Account: KJUVMQ

Project: Starhill

Sample Description	Method Analyte Units LOR	ME- MS41 Ni ppm 0.2	ME- MS41 P ppm 10	ME-MS41 Pb ppm 0.2	ME- MS41 Rb ppm 0.1	ME- MS41 Re ppm 0.001	ME- MS41 S % 0.01	ME- MS41 Sb ppm 0.05	ME- MS41 Sc ppm 0.1	ME- MS41 Se ppm 0.2	ME- MS41 Sn ppm 0.2	ME- MS41 Sr ppm 0.2	ME- MS41 Ta ppm 0.01	ME- MS41 Te ppm 0.01	ME- MS41 Th ppm 0.2	ME- MS41 Ti % 0.005
							STAN	IDARDS				-				
BP-13																
Target Range - Lowe Uppe	r Bound r Bound															
G909-4																
Target Range - Lowe	r Bound	1. 19 MA														
Uppe	r Bound	10-10-10-10														
Target Range - Lowe	r Bound	11411														
Uppe	r Bound															
MRGeo08		690	980	1065	144.5	0.006	0.33	3.26	7.3	1.7	3.2	75.8	0.01	0.02	20.9	0.365
Target Range - Lowe	r Bound	622	900	959	132.0	0.006	0.27	2.80	6.7	0.9	2.8	72.1	<0.01	<0.01	19.1	0.338
Uppe	r Bound	760	1130	1175	162.0	0.010	0.35	3.90	8.4	1.9	4.0	88.5	0.03	0.04	23.7	0.424
OGGeo08	Descel	9050	830	7390	133.0	1.455	2.84	19.40	6.8	11.7	14.0	66.7	0.01	0.19	18.4	0.313
Target Kange - Lowe	r Bound	9480	700	0520	109.5	1.295	2.51	17.70	6.0	9.7	12.0	59.6	<0.01	0.14	15.6	0.279
OGGeo08	Bound	5400	000	1310	104.0	1.000	3.09	24.1	7.0	12.0	10.1	13.2	0.03	0.20	19.0	0.353
Target Range - Lowe	r Bound r Bound															
OREAS 905	AND DESCRIPTION OF TAXABLE	8.3	230	15.8	18.4	< 0.001	0.09	1.03	1.7	2.8	1.2	12.0	<0.01	0.08	8.0	0.020
Target Range - Lowe	r Bound	7.8		15.2	17.3	< 0.001	0.04	0.90	1.6	1.8	0.8	10.9	< 0.01	0.04	7.8	0.008
Uppe	r Bound	10.0		19.0	21.3	0.002	0.09	1.34	2.2	2.8	1.7	13.7	0.02	0.09	10.0	0.030
OREAS 920		35.4	730	21.7	23.0	< 0.001	0.03	0.59	2.8	1.0	1.0	17.1	0.01	0.01	16.0	0.115
Target Range - Lowe	r Bound	34.4		19.2	22.2	<0.001	< 0.01	0.45	2.5	0.4	0.7	15.0	< 0.01	< 0.01	13.6	0.106
OREAS 932	гвоина	42.4		23.9	21.4	0.002	0.05	0.77	3.3	1.3	1.7	18.8	0.02	0.02	17.0	0.140
Target Range - Lowe	r Bound															
Uppe	r Bound															
OREAS-133a																
Target Range - Lowe	r Bound															
Uppe	r Bound															
OREAS- 1340	r Pound															
linne	r Bound															
PD1	Journa															
Target Range - Lowe	r Bound	and states														
Uppe	r Bound															
and a second of																
and the second second second		54000														
1 (No 1 2)																
			1													

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 30-JUL-2016 Account: KJUVMQ

Project: Starhill

Sample Description	Method Analyte Units LOR	ME- MS41 Tl ppm 0.02	ME- MS41 U ppm 0.05	ME- MS4 1 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME- MS41 Zr ppm 0.5	Zn- OG46 Zn % 0.001				
51%.							STAN	IDARDS					
8P-13													
Target Range - Lower Upper	r Bound Bound												
G909-4		1000											
Target Range - Lower Upper	r Bound Bound												
GPP-08	Pound												
Linner	Bound												
MRGeo08	bound	0.80	5.57	101	2.95	19.05	750	21.4					
Target Range - Lower	r Bound	0.64	4.93	90	2.44	17.50	708	18.1					
Upper	Bound	0.92	6.13	112	3.42	21.5	870	25.7					
OGGeo08		1.34	4.81	81	2.88	18.55	7270	24.2					
Target Range - Lower	r Bound	1.14	4.45	70	2.58	15.35	6500	19.5	0103				
Upper	Bound	1.58	5.55	88	3.60	18.85	7950	27.5					
OGGeo08									0.745				
Target Range - Lower	r Bound								0.696				
Upper	Bound	0.10	2 21	6	0.56	6 33	62	41.6	0.748				
Target Range - Lower	Round	0.06	2.21	4	<0.00	6.32	58	30.0	1				
Upper	Bound	0.16	2.66	8	0.10	7.84	76	55.1					
OREAS 920		0.13	1.93	25	0.37	17.45	107	14.3					
Target Range - Lower	r Bound	0.07	1.89	23	< 0.05	16.85	93	17.6					
Upper	Bound	0.18	2.42	30	0.10	20.7	119	25.0					
OREAS 932									0.071				
Target Range - Lower Upper	r Bound r Bound								0.055 0.061				
OREAS-133a									10.55				
Target Range - Lower	r Bound								10.25				
Upper	r Bound								10.95				
OREAS-134b	a 1								18.40				
Target Range - Lower	r Bound								17.05				1991
opper	воини								10.30				
Target Range - Lower	r Bound	1 million 100											
Upper	Bound												
opper													
STREET & COST													
			II. II.	_							 		

BLANK

BLANK

BLANK

BLANK

DUP

DUP

DUP

DUP

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION **409 QUEEN STREET** THUNDER BAY ON P7B 2K3

Page: 3 - A Total # Pages: 3 (A - D) **Plus Appendix Pages** Finalized Date: 30- JUL- 2016 Account: KIUVMQ

Project: Starhill

QC CERTIFICATE OF ANALYSIS TB16113812 Au- ICP21 ME- MS41 ME- MS41 ME- MS41 ME- MS41 ME-MS41 ME- MS41 Method Al Analyte Au Ag As Au В Ba Be Bi Ca Cd Ce Co Cr Cs % Units ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm ppm ppm Sample Description LOR 0.001 0.01 0.01 0.1 0.2 10 10 0.05 0.01 0.01 0.01 0.02 0.1 1 0.05 **BLANKS** < 0.001 < 0.001 Target Range - Lower Bound Upper Bound 0.002 < 0.01 < 0.01 < 0.1 < 0.2 <10 <10 <0.05 < 0.01 < 0.01 < 0.01 < 0.02 < 0.1 <1 < 0.05 < 0.01 < 0.01 0.1 <0.2 <10 <10 <0.05 < 0.01 < 0.01 < 0.01 < 0.02 < 0.1 <1 < 0.05 Target Range - Lower Bound < 0.01 < 0.01 <0.1 <0.2 <10 <10 <0.05 < 0.01 < 0.01 < 0.01 < 0.02 <0.1 <1 <0.05 Upper Bound 0.02 0.02 0.2 0.4 20 0.10 0.02 20 0.02 0.02 0.04 0.2 0.10 2 Target Range - Lower Bound Upper Bound **DUPLICATES** ORIGINAL 0.16 1.19 <0.2 0.1 <10 60 0.08 0.75 0.01 0.01 4.09 5.2 10 0.07 0.17 1.23 0.1 <0.2 <10 60 0.07 0.01 0.78 0.02 4.51 5.3 14 0.08 Target Range - Lower Bound 0.15 1.14 < 0.1 <0.2 50 <10 < 0.05 < 0.01 0.72 < 0.01 4.07 4.9 10 < 0.05 Upper Bound 0.18 1.28 0.2 70 0.02 0.4 20 0.10 0.81 0.02 4.54 5.6 0.10 14 ORIGINAL 0.03 1.38 2.0 <0.2 <10 10 0.10 0.09 0.30 0.04 6.11 1.6 11 0.13 0.03 1.43 2.1 <0.2 <10 10 0.09 0.11 0.32 0.06 6.42 1.6 10 0.14 0.02 Target Range - Lower Bound 1.32 1.8 <0.2 <10 <10 <0.05 0.08 0.28 0.04 5.93 1.4 9 0.08 Upper Bound 0.04 1.49 2.3 0.4 20 20 0.16 0.10 0.34 0.06 6.60 0.19 1.8 12 K086852 < 0.001 < 0.001 Target Range - Lower Bound < 0.001 0.002 **Upper Bound** ORIGINAL Target Range - Lower Bound Upper Bound

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 30- JUL- 2016 Account: KJUVMQ

Project: Starhill

Sample Description	Method Analyte Units LOR	ME- MS41 Cu ppm 0.2	ME- MS41 Fe % 0.01	ME- MS41 Ga ppm 0.05	ME- MS41 Ge ppm 0.05	ME- MS41 Hf ppm 0.02	ME-MS41 Hg ppm 0.01	ME- MS41 In ppm 0.005	ME- MS41 K % 0.01	ME- MS41 La ppm 0.2	ME-MS41 Li ppm 0.1	ME- MS41 Mg % 0.01	ME-MS41 Mn ppm 5	ME-MS41 Mo ppm 0.05	ME- MS41 Na % 0.01	ME- MS41 Nb ppm 0.05
0.0	Colorest and						BL/	ANKS								
BLANK																
Target Range - Lowe	r Bound															
Uppe	r Bound															
BLANK		<0.2	<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	<0.05	<0.01	<0.05
BLANK		<0.2	< 0.01	< 0.05	<0.05	< 0.02	< 0.01	<0.005	< 0.01	<0.2	<0.1	< 0.01	<5	< 0.05	< 0.01	< 0.05
Target Range - Lowe	r Bound	<0.2	<0.01	<0.05	<0.05	<0.02	<0.01	<0.005	<0.01	<0.2	<0.1	<0.01	<5	<0.05	< 0.01	< 0.05
PLANK	rBound	0.4	0.02	0.10	0.10	0.04	0.02	0.010	0.02	0.4	0.2	0.02	10	0.10	0.02	0.10
Target Range - Lowe Uppe	r Bound r Bound	2														
and an excellence of the							DUPL	ICATES								
ORICINAL		000	1 75	1 22	<0.05	0.02	<0.01	<0.005	0.06	17	9.0	0.64	241	9.16	0.05	-0.05
DUP		1020	1.81	4.22	<0.05	0.02	<0.01	0.006	0.00	1.7	8.2	0.65	241	8.27	0.05	<0.05
Target Range - Lowe	r Bound	974	1.68	4.04	<0.05	< 0.02	< 0.01	<0.005	0.05	1.5	7.6	0.60	227	7.75	0.04	<0.05
Uppe	r Bound	1045	1.88	4.57	0.10	0.04	0.02	0.010	0.08	2.0	8.6	0.69	261	8.68	0.06	0.10
ORIGINAL	of which	5.3	2.63	14.00	<0.05	0.08	0.05	0.022	0.01	3.0	0.9	0.08	202	1.47	<0.01	2.25
DUP	. Derved	5.2	2.70	14.50	<0.05	0.09	0.05	0.021	0.01	3.2	0.9	0.08	205	1.49	< 0.01	2.38
Target Range - Lowe Uppe	r Bound r Bound	4.9 5.6	2.52	15.00	0.10	0.08	0.04	0.015	0.02	3.5	1.0	0.07	219	1.60	<0.01	2.15 2.48
K086852 DUP Target Range - Lowe Uppe	r Bound r Bound	2	- 18 590			10 10 1 10 10 1		And Anos	414	-21	10		57	275		715
ORIGINAL DUP							BIN	INKE								
Target Range - Lowe Uppe	r Bound r Bound															
-	a des sectore and the sectore of	-														
		100														

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 30-JUL- 2016 Account: KJUVMQ

Project: Starhill

QC CERTIFICATE OF ANALYSIS TB16113812 ME- MS41 ME- MS41 ME- MS41 Method ME- MS41 MF-MS41 ME- MS41 Ni P Pb Rb Analyte Re S Sb Sc Se Sn Sr Та Te Th Ti Units ppm ppm ppm ppm ppm % ppm ppm ppm ppm ppm ppm Sample Description ppm ppm % LOR 0.2 10 0.2 0.01 0.1 0.001 0.05 0.1 0.2 0.2 0.2 0.01 0.01 0.2 0.005 **BLANKS** BLANK Target Range - Lower Bound Upper Bound BLANK <0.2 <10 <0.2 < 0.1 < 0.001 < 0.01 < 0.05 < 0.1 0.2 <0.2 <0.2 < 0.01 < 0.01 <0.2 < 0.005 BLANK <0.2 <10 < 0.2 < 0.1 < 0.001 < 0.01 0.08 <0.1 <0.2 <0.2 <0.2 < 0.01 0.01 <0.2 < 0.005 Target Range - Lower Bound <0.2 <10 <0.2 <0.1 < 0.001 < 0.01 < 0.05 <0.1 <0.2 <0.2 <0.2 < 0.01 < 0.01 <0.2 <0.005 Upper Bound 0.4 20 0.4 0.2 0.002 0.02 0.10 0.2 0.4 0.4 0.4 0.02 0.02 0.4 0.010 BLANK Target Range - Lower Bound Upper Bound DUPLICATES ORIGINAL 2.7 450 0.6 1.0 0.002 0.13 0.06 1.2 0.6 0.3 41.4 < 0.01 0.01 0.5 0.040 DUP 2.8 450 0.7 1.1 0.002 0.14 0.06 1.3 0.6 0.3 44.6 < 0.01 0.02 0.5 0.045 Target Range - Lower Bound 2.4 420 0.4 0.9 < 0.001 0.12 < 0.05 1.1 0.4 <0.2 40.7 < 0.01 < 0.01 0.3 0.035 Upper Bound 3.1 480 0.9 1.2 0.003 0.15 0.10 1.4 0.8 0.4 45.4 0.02 0.02 0.7 0.050 ORIGINAL 1.7 90 10.5 1.6 < 0.001 0.03 0.23 1.8 0.5 1.0 15.3 0.02 0.01 0.5 0.163 DUP 1.9 90 11.1 1.7 < 0.001 0.03 0.23 1.8 0.7 1.1 15.8 0.02 0.01 0.6 0.162 Target Range - Lower Bound 1.5 80 10.1 1.5 < 0.001 0.02 0.16 1.6 0.4 0.8 14.6 < 0.01 < 0.01 0.3 0.149 Upper Bound 2.1 100 11.5 1.8 0.002 0.04 0.30 2.0 0.8 1.3 16.5 0.03 0.02 0.8 0.176 K086852 DUP Target Range - Lower Bound Upper Bound ORIGINAL DUP Target Range - Lower Bound Upper Bound

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 30- JUL- 2016 Account: KJUVMQ

Project: Starhill

Sample Description	Method Analyte Units LOR	ME- MS41 TI ppm 0.02	ME- MS41 U ppm 0.05	ME- MS41 V ppm 1	ME- MS41 W ppm 0.05	ME- MS41 Y ppm 0.05	ME- MS41 Zn ppm 2	ME- MS41 Zr ppm 0.5	Zn- OG46 Zn % 0.001		
							BL/	ANKS			
BLANK											
Target Range - Lowe	r Bound										
BLANK	Dound	<0.02	<0.05	<1	<0.05	<0.05	<2	<0.5			
BLANK		< 0.02	< 0.05	<1	< 0.05	<0.05	<2	<0.5			
Lowe	r Bound	<0.02	<0.05	<1	<0.05	<0.05	<2	<0.5			
BLANK	. sound		0110		0.10	0.10	7	1.0	0.002		
Target Range - Lowe	r Bound								<0.001		
Upper	r Bound								0.002		
							DUPL	ICATES			
ORIGINAL		<0.02	0.21	17	0.08	3.40	23	<0.5			
DUP		<0.02	0.24	18	0.12	3.61	25	<0.5			
Target Range - Lowe	r Bound	< 0.02	0.16	16	< 0.05	3.28	21	<0.5			
opper	Бойни	0.04	0.29	19	0.10	3.73	27	1.0	A PORTAGE A	of pf manager	
ORIGINAL		0.02	0.23	145	<0.05	1.84	12	3.2			
DUP Target Pange - Lower	r Pound	0.02	0.23	147	< 0.05	1.95	12	3.5			
Upper	r Bound	0.02	0.29	154	0.10	2.04	9 15	4.1			
K086852								Variation	CIV UN	0802062	
DUP											
Target Range - Lower	r Bound										
Uppei	r Bound	1946 (NO)	1								
ORIGINAL		No. 1 St. No.				and house a	and the second second	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.92		
DUP Target Papers Lower	r Pound								9.83		
Upper	r Bound								9.63		
								_			
											111111 010 111011
1374481.9	18 20 10 10										
and the second second	1										

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 30- JUL- 2016 Account: KJUVMQ

Project: Starhill

					CERT	IFICATE	COMI	MENTS			
Applies to Method:	Gold dete ME- MS41	rminatic	ons by thi	s method	are semi	- quantitat	ANALYT ive due to	ICAL CON the small	IMENTS sample weight used (0.	5g).	
	Processed	at ALS	Thunder	Bay locate	ed at 116	Commer		TORY AD	DRESSES		
Applies to Method:	CRU- 31 PUL- QC	ut / 125	manaci	buy locut	CRU- C SPL- 21	QC I	ee street,	induce b	LOG- 22 WEI- 21		PUL- 31
Applies to Method:	Processed Au- ICP21	at ALS	Vancouve	er located	at 2103 I ME- MS	Dollarton H 541	Hwy, Nort	h Vancouve	er, BC, Canada. ME- OG46		Zn- OG46
INFIGURE											
personal personal from the second sec											
				n kajilanta di	n distr		1990 1993 1997 - Carlo	dami ya dami ya dami ya dana ya	OK 637 EK7 MERI Altoni	10	4 - L repe ² 14 - N & Legel a twee 24 - N & Legel a twee 24 - N - L - N - N - N - N - N - N - N - N

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LYNX EXPLORATION 409 QUEEN STREET THUNDER BAY ON P7B 2K3

INVOICE NUMBER 3631684

D				ANAL	YSED FOR	UNIT	
B	ILLING INFORMATION		QUANTITY	CODE -	DESCRIPTION	PRICE	TOTAL
Certificate:	TR16113812		1	BAT- 01	Administration Fee	33.10	33.10
Sample Type:	Rock		7.18	PREP- 31 PREP- 31	Crush, Split, Pulverize Weight Charge (kg) - Crush, Split, Pulverize	7.45 0.70	59.60 5.02
Account:	KIUVMQ		8	Au- ICP21	Au 30g FA ICP- AES Finish	16.70	133.60
Date:	30-101-2016		8	ME- MS41	Ultra Trace Aqua Regia ICP- MS	23.20	185.60
Project:	Starbill		1	ME- OG46	Ore Grade Elements - AquaRegia	8.70	8.70
P.O. No.: Quote:	Starini		1	Zn- OG46	Ore Grade Zn - Aqua Regia	2.45	2.45
Terms: Comments:	Due on Receipt	C2					

 SUBTOTAL (CAD)
 \$
 428.07

 R100938885
 GST
 \$
 21.40

 TOTAL PAYABLE (CAD)
 \$
 449.47

To: LYNX EXPLORATION ATTN: CHRISTIAN CARL 409 QUEEN STREET THUNDER BAY ON P7B 2K3

Payment may be made by: Cheque or Bank Transfer

 Beneficiary Name:
 ALS Canada Ltd.

 Bank:
 Royal Bank of Canada

 SWIFT:
 ROYCCAT2

 Address:
 Vancouver, BC, CAN

 Account:
 003-00010-1001098

 Please send payment info to accounting.canusa@alsglobal.com

Please Remit Payments To : ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Appendix C

Sample Location Map

515500		516	3000 I
		1000000	
		1233239	
	K086861		3012208
	K086860		
	-		
K086859	4272605		
K086858	IDH S02-2		
K086857			
STARHILL OCCURRENCE	K <u>08</u> 6856 K086855		
	K086854		
			N
			GIS/Cartography:
			Date: December 15, 201 Author: S. Siemieniuk NTS Sheet(s):
			Projection: NAD 83, UTM Zor
515500	,	516	1 3000

		_
		409500
		5
8		
		5409000
		_
_	▲ Waypoints MTDB_Waterline	
	→ NTDB_Road → NTDB_Railway	
i	NTDB_Waterbody Disposition	
	Mining Claim	
y :		
PERIOR BATION LTD	Starhill Project Claim with Waypoints	3500
	December 19, 2016	5405
Zone 16N	1:2,500 Map File:	
	50 25 0 50 100 Meters	