
We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Plateau Lake Occurrence

Work Preformed: Claim 4276356

Map M80 518

December 10, 2016 Mike Frymire Adam Schneider

Overview

The Plateau Lake Property is a single claim numbered 4276356, located on the border of the Pickerel Lake (north), and McAlpine Lake claim sheets in the Thunder Bay district. It contains the apex of a circular aeromagnetic anomaly outlining an ultramafic body for 800 meters, hence a larger body would occur at depth than is exposed on surface. The claim contains the Andowan copper/nickel occurrence (MDI52B12NE00003) along with surface assay results of up to 4.4% copper and 0.76% nickel, as well as >1000ppb platinum. In the fall of 2014 prospecting was carried out on the claim and one sample was sent for assay the results of which are included

in this report.

62100	Plateau)	Fire	
800	ake Co	75000	
	1276356	7	ap M8T 141
	0	1	2 km

	(ppm)	(ppm)	(ppm)	(ppb)	(ppb)	(ppb)	(ppm)
API-1-84.	10900	2060		270	165	140	0. 22
API-1-84				250	140	86	
AP1-2-84.	15600	250		270	420	165	0.34
AP1-2-84				300	540	92	
AP1-3-84	94	220		4	4		
AP1-4-84	114	260		<1	<1		
AWS-1-85	6200	3160		230	100	90	4
AWS - 2 - 85	100	186		70	30	14	2
AWS - 3 - 85	3100	220		290	70	50	12
AWS-4-85	44000	730		185	125	250	16
AWS - 5 - 85	5120	2500		440	85	185	4
79-LKK-1	2700	600	100	103	343	343	tr
79-LKK-2	3500	300	80	103	69	343	tr
79-LKK-3	21200	3900	400	343	171	343	tr
79-LKK-4	5000	4600	500	206	137	343	tr
79-LKK-5	3800	7300	600	240	274	686	20.5
79-LKK-6	4200	2200	200	69	137	tr	tr
79-LKK-7	23200	1600	200	206	274	343	10.6
79-LKK-8	3500	800	100	34	69	tr	tr
79-LKK-9	3400	1400	100	34	103	tr	tr
79-LKK-10	11400	4200	700	171	240	343	tr
CK-4-1	9300	2400		686	tr		
CK-9-1	4100	tr		1028	686	-	•

* : Re-assay

Sample No.

Location and Access

The Plateau Lake Property is located just south of Plateau Lake in northwestern Ontario along Highway 11 approximately 225km west of Thunder Bay and 10km east of Atikokan. Access is made by foot trail along a power line which crosses Highway 11 southeast of the property, approximately 12km west of the Sapawe junction.

Location and Access (cont.)

Looking down the power line to the Plateau Lake Property

Previous Work

The property has had considerable attention since its discovery the early 1900s.

There have been pits blasted, airborne and ground electromagnetic surveys, and a single diamond drill hole, to determine the extent and quality of the mineral occurrence. Reports all warrant further work including more extensive diamond drilling to determine size and tonnage of the intrusion.

The property was briefly studied through a grant by the Ontario Prospectors Association Program (OPAP) in the early 1990s. (OPAP project numbers OP91-438, OP92-481, and OP92-821)

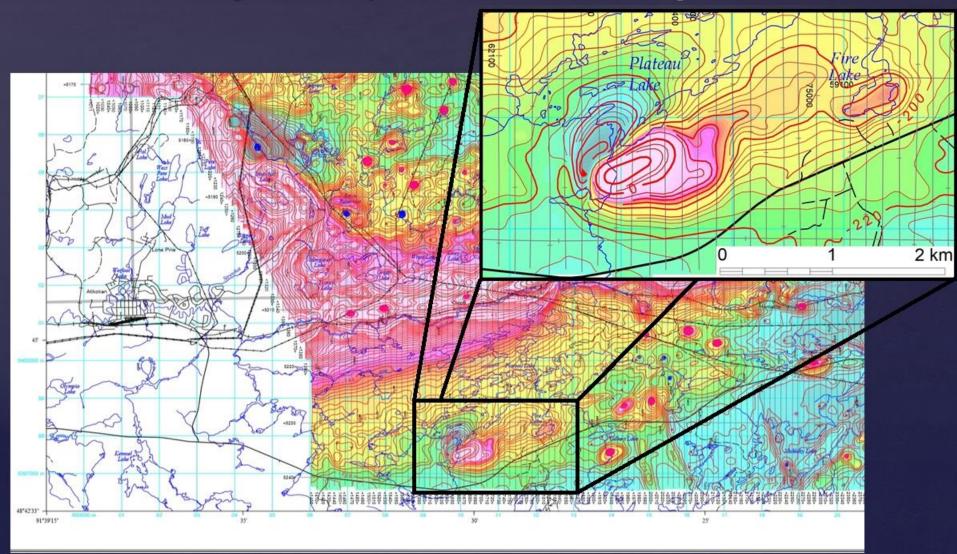
A series of **shallow pits** have previously been blasted on the property and have shown excellent mineralization at the surface proven by strong assay results including up to 4.4% Cu, 0.73% Ni and >1000ppb Pt.

Sample No.	Cu	Ni	Co	Pt	Pd	Au	Ag
	(ppm)	(ppm)	(ppm)	(ppb)	(ppb)	(ppb)	(ppm)
	(PP)	(FF)	(((FF-)	(/	()
API-1-84#	10900	2060	-	270	165	140	0. 22
API-1-84	•	•	•	250	140	86	-
AP1-2-84.	15600	250	•	270	420	165	0.34
AP1-2-84		-		300	540	92	
AP1-3-84	94	220		4	4		-
AP1-4-84	114	260	•	<1	<1		
AWS-1-85	6200	3160	-	230	100	90	4
AWS-2-85	100	186	-	70	30	14	2
AWS-3-85	3100	220		290	70	50	12
AWS-4-85	44000	730	•	185	125	250	16
AWS-5-85	5120	2500	•	440	85	185	4
79-LKK-1	2700	600	100	103	343	343	tr
79-LKK-2	3500	300	80	103	69	343	tr
79-LKK-3	21200	3900	400	343	171	343	tr
79-LKK-4	5000	4600	500	206	137	343	tr
79-LKK-5	3800	7300	600	240	274	686	20.5
79-LKK-6	4200	2200	200	69	137	tr	tr
79-LKK-7	23200	1600	200	206	274	343	10.6
79-LKK-8	3500	800	100	34	69	tr	tr
79-LKK-9	3400	1400	100	34	103	tr	tr
79-LKK-10	11400	4200	700	171	240	343	tr
CK-4-1	9300	2400		686	tr	-	•
CK-9-1	4100	tr	•	1028	686	•	

* : Re-assay tr : Trace

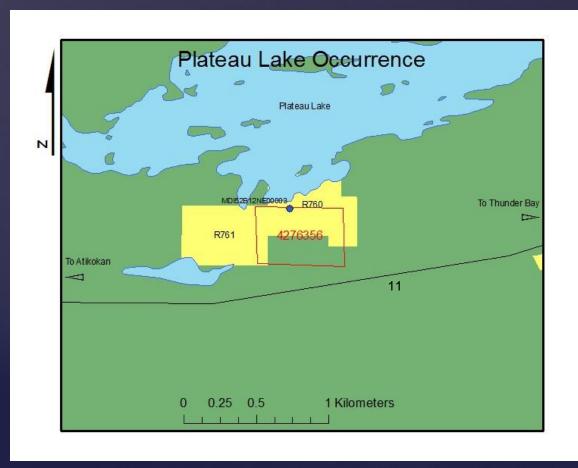
Ontario Ministry of Northern Resources 1980

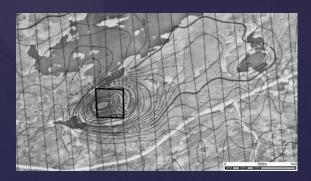
Airborne Electromagnetic Survey – Atikokan Mine Centre Area - Map 80518

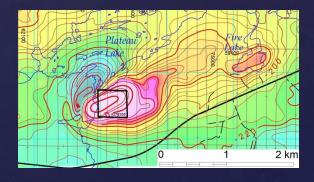


In 1991, the Ontario Prospectors Association preformed a single **diamond drill hole** nearest the pits with the strongest mineralization and highest assay results. The assays from the drill core show widespread mineralization throughout 65 feet including **copper in** excess of 2%, nickel over 0.76% and considerable platinum values.

		D:	SAY RESU LAMOND DE LATEAU LA	ILL DDH1	FILE	NAME: DDH92	2A				
	SAMPLE NUMBER	FOOTAGE	LENGTH	Au PPB	Pt PPB	Pd PPB	Cu PPM	Ni PPM	Co PPM	Cr PPM	Rh PPM
			=====	===	===	===	===	===	===	===	
	PT1	0' -2'8"	2'8"	<1	27	14	535	343	88	518	
	PT2 PT3	2'8" -5' 5' -6'4"	2'4"	<1 42	17 33	8 30	374 2947	308 606	85 107	463 469	3
	PT4	6'4" -7'6"	1'2"	108	268	171	>2000	7688	583	342	
	PT5	7'6" -8'2"	8"	207	212	79	>2000	3065	270	480	3
	PT6	8'2" -10'	1'10"	143	294	138	10133	3968	331	484	ŭ
	PT7	10' -12'3'		268	277	231	10077	2841	258	483	3
	PT8	12'3" -15'	2'9"	282	390	141	8103	2806	256	418	_
	PT9	15' -17'	2'	248	291	120	6861	3722	273	369	
	PT10		" 1'10"	194	362	148	4286	4419	336	335	
	PT11	17'10"-20'	2'2"	228	363	174	7587	3729	265	303	
	PT12	20' -21'3'		225	352	105	5871	2093	190	322	
	PT13	21'3" -23'2'		24	49	23	1934	1293	140	381	
	PT14	23'2" -25'	1'10"	69	99	45	7937	2073	204	427	3
	PT15		" 1'11"	97	112	56	3491	1377	138	395	
	PT16	26'11"-28'5'		185	159	75	7843	1951	174	442	
	PT17	28'5" -31'5'		209	232	59	10472	1425	141	510	
	PT18	31'5" -35'	4'7"	46	19	14	2820	683	102	472	<2
1	PT19 PT20	35' -37'5' 37'5" -40'	2'5"	136	21 20	13	5100 1658	800	118 97	412 425	
i i	PT21	40' -42'5'		14 25	10	10 746	55	628 88	509	425	
1	PT22	42'5" -45'	2'7"	6	29	9	707	555	92	446	
1	PT23	45' -47'5'		78	101	40	3698	728	115	479	
	PT24	47'5" -50'	2'5"	33	59	30	2335	718	108	489	
	PT25	50' -52'5'		31	77	35	1512	693	83	430	
100	PT26	52'5" -55'	2'7"	13	21	10	941	347	56	215	
	PT27	55' -60'	5'	<1	14	9	482	368	73	391	<2
020	PT28	60' -64'6"		7	16	8	517	377	74	390	-045TO
	PT29	64'6" -67'4'		20	118	31	1983	1250	138	265	
	PT30	67'4" -70'7"		56	101	42	4878	1339	122	330	3
22	PT31	70'7" -75'	4'5"	<1	11	8	421	269	60	351	
	PT32	75' -80'	5'	<1	12	6 3	150	214	51	364	<2
	PT33	80' -84'4"		<1	14	3	195	183	48	305	
	PT34	84'4" -90'	5'8"	<1	< 5	2	92	104	29	334	
	PT35	90' -95' 95' -100'	5' 5'	<1	8	2	77	100	28	338	<2
	PT36	95100.	2.	<1	<5	1	84	103	29	506	
										1002 D	OD02 021

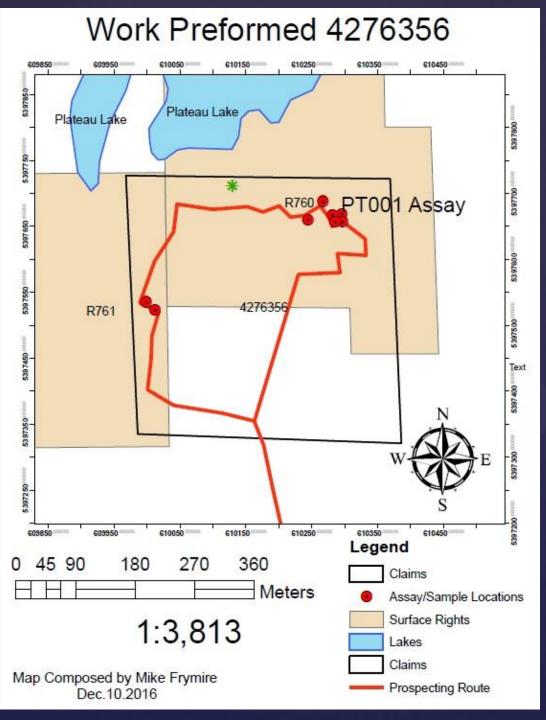

Ontario Geological Survey - 2009


Airborne Magnetic Survey – Marmion Lake Area – Map 81141



Current Work

In October 2014, the property was staked (Claim no. 4276356) and briefly prospected by M. Frymire and A. Schneider. One of the previously blasted pits was found and a small amount of grab samples were taken.



Work Performed October 2014

Daily Log of activities.	
<u>Date</u>	Work Preformed
Oct 11 2014	Travelled to Plateau Lake occurrence from Thunder Bay, Ontario. Spent the full day prospecting various locations on the claim 4276356.
Oct 12 2014	Travelled to Plateau Lake occurrence from Thunder Bay, Ontario. Spent the full day prospecting various locations on the claim 4276356.

Observational note	es from prospecting and sampling with	iin claim #427	6356.
Date	Time	Location	Comments
Oct 11 20	149:00am-1:00pm	Between Post 3 and 4	Previously during staking some noticeable mineralization was observed halfway between post 3 and 4. This area was prospected but mineralization was too surrounded by overburden. More time should be spent next trip to follow up mineralization (chalcopyrite, pyrite, foliation).
Oct 11 20	141:00pm 4:00pm	Plateau Occurrence	Prospected in the direct vicinity of the old blasting pits. Took several samples, one of which was assayed and is included in this report. Mineralization is all throughout the bedrock (see current work cont. pictures).
Oct 12 20	148:00am-12:00pm	Plateau occurrence	Prospected in the direct vicinity of the old blasting pits. Took several samples, one of which was assayed and is included in this report.
Oct 12 20	141:00pm-5:00pm	From occurrence south through middle of claim	Central portion of claim has a lot of spruce swamp and overburden, very little bedrock was located but more time should be spent prospecting in the middle of claim block.

Report Number: A14-07460						
Report Date: 17/10/2014						
Analyte Symbol	Au	Au	Pd	Pt	Ag	Cr
Unit Symbol	ppb	ppb	ppb	ppb	ppm	ppm
Detection Limit	5	2	5	5	0.3	1
Analysis Method	FA- AA		FA- ICP			TD- ICP
PT001		578	127	386	14.9	460
Analyte Symbol	Cr	Cu	Ni	Pb	Ti	Zr
Unit Symbol	ppm	ppm	ppm	ppm	%	ppm
Detection Limit	1	1	1	3	0.01	5
Analysis	TD-	TD-	TD-	TD-	TD-	TD-
Method	ICP	ICP	ICP	ICP	ICP	ICP
		>				
PT001	460	10000	579	8	0.13	25

GPS Coordinates for PT001: 15U 610279, 5397648

Note: Property was accessed from Trans Canada Highway (665m south)

Current Work (cont.)

Photos from one of the shallow pits.

Current Work (cont.)

Work Performed October 2014

4276356 Work Performed		
Date	Explanation	Amount (\$)
11-Oct-14	Prospecting/Sampling (1 day @ \$350/prospector)	700
11-Oct-14	Travel costs (360km @ \$0.40/km)	144
11-Oct-14	Food allowance (\$25/day/person)	50
12-Oct-14	Prospecting/Sampling (1 day @ \$350/prospector)	700
12-Oct-14	Travel costs (360km @ \$0.40/km)	144
12-Oct-14	Food allowance (\$25/day/person)	50
17-Oct-14	Assay (1)	54
10-Dec-16	Report Creation (1/2 day)	175
	TOTAL	2017

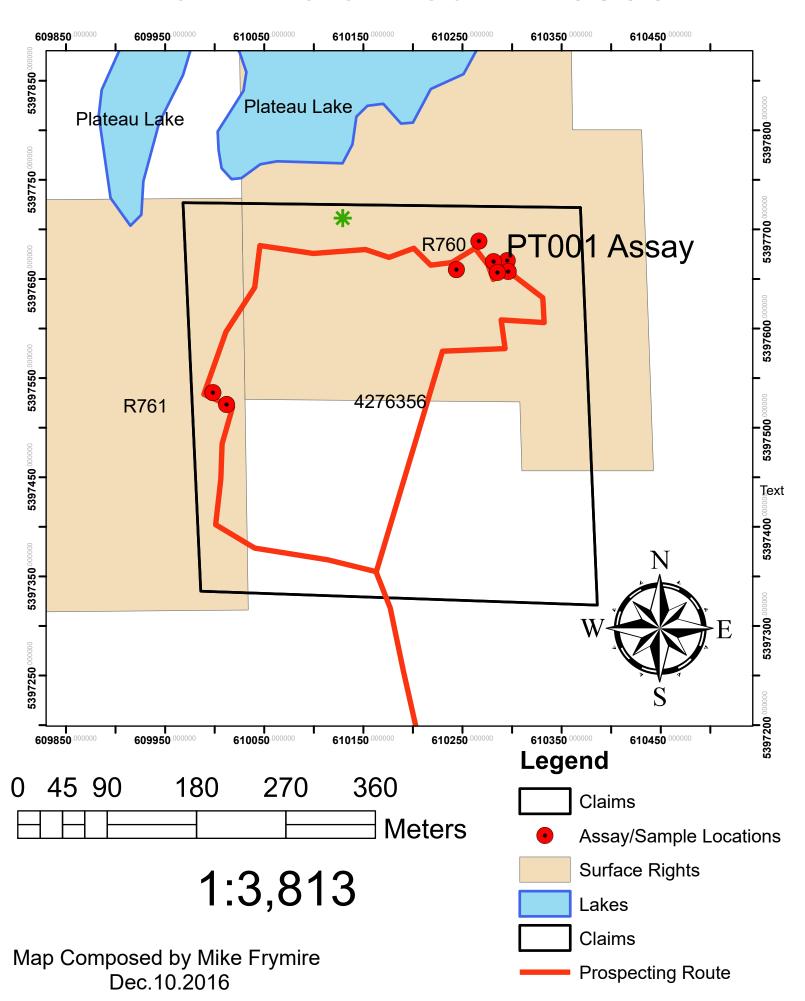
Recommended Action

Due to the high copper (up to 4.4%), nickel (up to 0.76%), platinum (>1000ppb) and gold (1/2 gram/tonne) results found on the property, as well as the very distinct magnetic anomaly, further work is warranted. This includes further stripping and magnetic studies followed by diamond drilling to define the mineralization.

The proximity to Highway 11 and Atikokan, and ease of access, make the Plateau Lake Property very appealing.

References

OFR5539 p.378-380	B. R. Schneiders, R. J. Dutka, 1985: Property Visits and Reports of the Atikokan Economic Geologists, 1979-1983, Atikokan Geological Survey; Ontario Geological Survey Open File Report 5539, 512p., 2 tables, 42 figures, 2 maps and 3 appendices.
OFR5681 p.96-98	Macdonald, A.J., and Cherry, M.E. 1988: The Platinum Group of Elements in Ontario; Ontario Geological Survey, Open File Report 5681, 279p., 74 figures, 28 tables, l appendix, and l map in back pocket.
OP91-438 Site 4	Andrews, M. 1991: OPAP 1991 Report; Project Number OP91-438.
OP92-481 Site 3	Hicks, C. 1992: OPAP 1992 Report; Project Number OP92-481.
OP92-821 Site 3	Andrews, M. 1992: OPAP 1992 Report; Project Number OP92-821.


Patrie 2001 Patrie, D. 2001: Total Field Magnetometer Survey on the Plateau Lake Property.

Middleton 2001 Middleton, R.S., Halle, J. 2001: Magnetic Survey; Plateau Lake Property.

Map References

- Map 80518 Ontario Geological Survey 1980: Airborne Electromagnetic and Total Intensity Magnetic Survey, Atikokan- Mine Centre Area, Eastern Part, District of Rainy River; by Questor Surveys Limited for the Ontario Geological Survey, Geophysical/Geochemical Series. Map 80518, Scale 1:20,000 Survey and Compilation, December 1979 to April 1980.
- Map 81 141 Ontario Geological Survey 2009. Airborne magnetic survey, colour-filled contours of the residual magnetic field and Keating coefficients, Marmion Lake area; Ontario Geological Survey, Map 81 141, scale 1:50 000.
- Map 81 142 Ontario Geological Survey 2009. Airborne magnetic survey, shaded colour image of the second vertical derivative of the residual magnetic field and Keating coefficients, Marmion Lake area; Ontario Geological Survey, Map 81 142, scale 1:50 000.

Work Preformed 4276356

Quality Analysis ...

Innovative Technologies

Date Submitted: 07-Oct-14
Invoice No.: A14-07460
Invoice Date: 22-Oct-14

Your Reference:

Mike Frymire 377 Albert Street Stratford ON N5A 3L1 Canada

ATTN: Mike Frymire

CERTIFICATE OF ANALYSIS

3 Rock samples were submitted for analysis.

The following analytical package was requested:

REPORT **A14-07460**

Code 1A2 Au - Fire Assay AA Code 1C-OES Fire Assay ICPOES Code 1F2 Total Digestion ICP(TOTAL)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3 Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

Activation Laboratories Ltd.

Report:

A14-07460

Results

Analyte Symbol	Au	Au	Pd	Pt	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	Hg	K	Mg	Li	Mn	Мо
Unit Symbol	ppb	ppb	ppb	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	ppm
Lower Limit	5	2	5	5	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	1
Method Code	FA-AA	FA-ICP	FA-ICP	FA-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP										
HW001	< 5				< 0.3	7.73	20	476	2	< 2	1.06	< 0.3	23	139	48	4.49	16	< 1	2.07	1.96	69	621	< 1
HW002	< 5				< 0.3	5.94	23	503	1	< 2	0.51	< 0.3	26	179	40	4.40	16	< 1	1.72	1.84	66	581	1
PT001		578	127	386	14.9	1.35	< 3	51	< 1	< 2	3.07	1.0	48	460	> 10000	23.0	5	< 1	0.16	5.35	4	666	< 1

Activation Laboratories Ltd.

Report:

A14-07460

Results

Analyte Symbol	Na	Ni	Р	Pb	Sb	S	Sc	Sr	Te	Ti	TI	U	V	W	Υ	Zn	Zr	Cu
Unit Symbol	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	%						
Lower Limit	0.01	1	0.001	3	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5	0.001
Method Code	TD-ICP	ICP-OES																
HW001	2.65	70	0.058	< 3	< 5	0.15	16	231	< 2	0.31	< 5	< 10	100	< 5	11	45	104	
HW002	2.55	68	0.058	5	< 5	0.37	13	212	2	0.36	< 5	< 10	109	< 5	9	41	112	
PT001	0.31	579	0.032	8	< 5	3.14	18	73	22	0.13	< 5	10	87	5	4	49	25	1.19

QC

Analyte Symbol	Au	Au	Pd	Pt	Ag	Al	As	Ва	Ве	Bi	Ca	Cd	Со	Cr	Cu	Fe	Ga	Hg	К	Mg	Li	Mn	Мо
	ppb			ppb	ppm		ppm		ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	L ~	ppm	ppm	ppm
Lower Limit	5	2	5	5	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	1
Method Code	FA-AA	FA-ICP	FA-ICP	FA-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP										
GXR-1 Meas					31.3	2.55	411	737	1	1390	0.90	2.7	11		1130	23.9	13	2	0.04	0.22	8	905	14
GXR-1 Cert					31.0	3.52	427	750	1.22	1380	0.960	3.30	8.20		1110	23.6	13.8	3.90	0.050	0.217	8.20	852	18.0
DH-1a Meas																							
DH-1a Cert																							
GXR-4 Meas					3.3	6.86	101	193	2	11	1.07	< 0.3	15	52	6500	3.07	16	< 1	3.70	1.70	11	150	313
GXR-4 Cert					4.0	7.20	98.0	1640	1.90	19.0	1.01	0.860	14.6	64.0	6520	3.09	20.0	0.110	4.01	1.66	11.1	155	310
SDC-1 Meas						8.19	< 3	630	3		1.07		19	44	29	4.70	20	< 1	2.50	0.98	33	882	
SDC-1 Cert						8.34	0.220	630	3.00		1.00		18.0	64.00	30.000	4.82	21.00	0.20	2.72	1.02	34.00	880.00	
GXR-6 Meas					< 0.3	12.1	247	> 1000	1	< 2	0.18	0.5	15	73	68	5.53	27	< 1	1.79	0.58	33	1080	< 1
GXR-6 Cert					1.30	17.7	330	1300	1.40	0.290	0.180	1.00	13.8	96.0	66.0	5.58	35.0	0.0680	1.87	0.609	32.0	1010	2.40
MP-1b Meas																							
MP-1b Cert																							
SAR-M (U.S.G.S.) Meas					4.1	6.18	29	828	3	< 2	0.62	4.9	12	78	324	3.18	15		2.79	0.48	29	5190	6
SAR-M (U.S.G.S.) Cert					3.64	6.30	38.8	801	2.20	1.94	0.61	5.27	10.70	79.7	331.0000	2.99	17		2.94	0.50	27.4	5220	13.1
DNC-1a Meas								99					56	184	92						4		
DNC-1a Cert								118					57.0	270	100.00						5.20		
CCU-1d Meas																							
CCU-1d Cert																							
CZN-4 Meas																							
CZN-4 Cert																							
CDN-GS-1L Meas	1140																						
CDN-GS-1L Cert	1160.00																						
OxD108 Meas	421																						
OxD108 Cert	414.000																						
SBC-1 Meas							21	794	3	< 2		0.4	24	98	29		26				144		2
SBC-1 Cert							25.7	788.0	3.20	0.70		0.40	22.7	109	31.0000		27.0				163.0		2.40
CDN-PGMS-24 Meas		742	5030	1140																			
CDN-PGMS-24 Cert		806.000	4880.00	1090.00																			
CDN-PGMS-25 Meas		471	1770	403																			
CDN-PGMS-25 Cert		483	1830	400																			
PTC-1b Meas																							
PTC-1b Cert																							
HW002 Orig	< 5																						
HW002 Dup	< 5																						
PT001 Orig		418	129	394																			
PT001 Dup		738	125	379																			
Method Blank		< 2	< 5	< 5																			
Method Blank					< 0.3	< 0.01	< 3	< 7	< 1	< 2	< 0.01	< 0.3	< 1		< 1	< 0.01	< 1	< 1	< 0.01	< 0.01	< 1		< 1
Method Blank																							

QC

Activation Laboratories Ltd.

Report:

A14-07460

Analyte Symbol	Na	Ni	Р	Pb	Sb	S	Sc	Sr	Те	Ti	TI	U	٧	W	Υ	Zn	Zr	Cu
Unit Symbol	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	%						
Lower Limit	0.01	1	0.001	3	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5	0.001
Method Code	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	ICP-OES
GXR-1 Meas	0.05	42	0.060	725	20	0.26	< 4	289	23	0.03	< 5	40	87	157	28	743	26	
GXR-1 Cert	0.0520	41.0	0.0650	730	122	0.257	1.58	275	13.0	0.036	0.390	34.9	80.0	164	32.0	760	38.0	
DH-1a Meas												2400						
DH-1a Cert												2629						
GXR-4 Meas	0.52	41	0.131	42	< 5	1.76	8	219	8	0.29	< 5	< 10	88	38	13	72	40	
GXR-4 Cert	0.564	42.0	0.120	52.0	4.80	1.77	7.70	221	0.970	0.29	3.20	6.20	87.0	30.8	14.0	73.0	186	
SDC-1 Meas	1.49	35	0.053	19	< 5		17	170		0.17	< 5	< 10	41	< 5		97	29	
SDC-1 Cert	1.52	38.0	0.0690	25.00	0.54		17.00	180.00		0.606	0.70	3.10	102.00	0.80		103.00	290.00	
GXR-6 Meas	0.10	27	0.034	90	< 5	0.01	26	37	3		< 5	< 10	129	< 5	10	128	59	
GXR-6 Cert	0.104	27.0	0.0350	101	3.60	0.0160	27.6	35.0	0.0180		2.20	1.54	186	1.90	14.0	118	110	
MP-1b Meas																		3.10
MP-1b Cert																		3.069
SAR-M (U.S.G.S.) Meas	1.19	43	0.064	998	< 5		9	150	< 2	0.23	< 5	< 10	47	14	33	943		
SAR-M (U.S.G.S.) Cert	1.140	41.5	0.07	982	6.0		7.83	151	0.96	0.38	2.7	3.57	67.2	9.78	28.00	930.0		
DNC-1a Meas		254			< 5		31	128		0.28			140		14	58	32	
DNC-1a Cert		247			0.96		31	144.0		0.29			148.00		18.0	70.0	38.000	
CCU-1d Meas																		23.9
CCU-1d Cert																		23.93
CZN-4 Meas																		0.395
CZN-4 Cert																		0.403
CDN-GS-1L Meas																		
CDN-GS-1L Cert																		
OxD108 Meas																		
OxD108 Cert																		
SBC-1 Meas		87		26	< 5		21	175		0.51	< 5	< 10	210	< 5	29	180	107	
SBC-1 Cert		82.8		35.0	1.01		20.0	178.0		0.51	0.89	5.76	220.0	1.60	36.5	186.0	134.0	
CDN-PGMS-24 Meas																		
CDN-PGMS-24 Cert																		
CDN-PGMS-25 Meas																		
CDN-PGMS-25 Cert																		
PTC-1b Meas																		7.91
PTC-1b Cert																		7.97
HW002 Orig				1	1		1											
HW002 Dup																		
PT001 Orig																		1.19
PT001 Dup																		1.20
Method Blank									1									
Method Blank	< 0.01	< 1	< 0.001	< 3	< 5	< 0.01	< 4	< 1	< 2	< 0.01	< 5	< 10	< 2	< 5	< 1	< 1	< 5	
Method Blank	l			1	1		1			1			†				<u> </u>	< 0.001