We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.



MISTANGO RIVER RESOURCES INC

# **Drilling Report**

# Sackville Property, 2014-2015

llian Iliev, MSc, PGeo 11/25/2015

# **Table of Contents**

| Introduction and Summary        | 1  |
|---------------------------------|----|
| Location and Access             | 2  |
| Property Claims                 | 2  |
| Glacial Geology                 | 4  |
| Property Geology                | 5  |
| Scope of Work                   | 5  |
| Drilling                        | 11 |
| Dates and Cost of Work          | 30 |
| Conclusions and Recommendations | 36 |
| References                      | 38 |
| Certificate of Author           | 39 |
| Appendix                        | 40 |
| Lithological Core Logs          | 40 |
| Sample Logs                     | 59 |
| Certificates of Analysis        | 68 |

# List of Figures

| Figure 1 Property Boundary and Claims Map                                    | 3  |
|------------------------------------------------------------------------------|----|
| Figure 2 Property Geology Map                                                | 7  |
| Figure 3 Drill Targets and IP, VTEM and Soil Anomalies Map                   | 9  |
| Figure 4 Drill Targets and Geology Map                                       | 10 |
| Figure 5 Drill Plan with Geology, IP, VTEM and Soil Anomalies                | 13 |
| Figure 6 Drill Plan                                                          | 14 |
| Figure 7 Cross-section of DDH SK-14-01                                       | 15 |
| Figure 8 Cross-section of DDH SK-14-02                                       | 16 |
| Figure 9 Cross-section of DDH SK-14-03 and SK-14-04                          | 17 |
| Figure 10 Cross-section of DDH SK-14-05                                      | 18 |
| Figure 11 Cross-section of DDH SK-15-06                                      | 24 |
| Figure 12 Cross-section of DDH SK-15-07                                      | 25 |
| Figure 13 Cross-section of DDH SK-15-08                                      | 26 |
| Figure 14 Total Alkalis vs Silica (TAS) Diagram for DDH SK-15-08             | 27 |
| Figure 15 Ishikawa Index vs CPPI Alteration Plot for DDH SK-15-08            | 28 |
| Figure 16 Ba/Sr Plot for DDH SK-15-08                                        | 28 |
| Figure 17 Ishikawa Index vs CPPI Alteration Template after Large et al, 2001 | 29 |
|                                                                              |    |

# List of Tables

| Table 1 List of Claims                                            | 2  |
|-------------------------------------------------------------------|----|
| Table 2 Summary of Trench Lithology                               | 8  |
| Table 3 Summary of DDH drilled in 2014 (Phase 1)                  | 12 |
| Table 4 Summary of DDH drilled in 2015 (Phase 2)                  | 23 |
| Table 5 List of 2014 DDH and Associated Cost (Phase 1)            | 32 |
| Table 6 Assay and Core Cutting Cost for 2014 Program (Phase 1)    | 33 |
| Table 7 Summary of Additional Cost for 2014 Program (Phase 1)     | 33 |
| Table 8 List of 2015 DDH and Associated Cost (Phase 2)            | 34 |
| Table 9 Assay and Sample Analyses Cost for 2015 Program (Phase 2) | 34 |
| Table 10 Summary of Additional Cost for 2015 Program (Phase 2)    | 35 |
| Table 11 Phases 1 and 2 per Claim Total Exploration Cost          | 35 |
|                                                                   |    |

# **Introduction and Summary**

The Sackville Property is located west of Thunder Bay, near Kakabeka Falls along the Shebandowan Archean-aged greenstone volcanic belt. Exploration in the area started in 1956. Boulders of massive sulphide were found on the Property in 1996 by local prospectors-the Stares brothers. Subsequent exploration was carried by Cumberland Resources. RJK Exploration Ltd. started exploring the Property in 1999. The work done consisted of IP, VTEM, airborne magnetic surveys, soil and till sampling as well as several drilling phases in 2000, 2002 and 2004. More drilling and further exploration was completed by GLR Resources and RJK Exploration in 2009-2010. Mistango River Resources carried out till and soil sampling and trenching during 2011-2012.

This report describes assessment work for a two phase drilling program carried out by Mistango River Resources Inc. Phase 1 was performed between October 28<sup>th</sup> and December 18<sup>th</sup>, 2014 and Phase 2 between May 10<sup>th</sup> and June 19<sup>th</sup>, 2015. The work being assessed consists of diamond drilling, core logging and assaying. Phase 1 consisted of five diamond drill holes, amounting to a total length of 754m (Table 3) distributed between claims 4253691 and 4244452 (Tables 3, 5, 6 and 7). Phase 2 consisted of three diamond drill holes and extension of last DDH from Phase 1 (SK-14-05), totaling 507m in length on claims 4244451 and 4544452 (Tables 4, 8, 9, 10). The drilling in both phases aimed to investigate previously unexplored IP, VTEM, airborne magnetic survey, and geochemical soil anomalies associated with favourable geology and taking into consideration paleo-ice flow direction and alignment with massive sulphide boulder train. Work on planning the drill program started as early as February 2014. Eight potential targets were identified out of which four were considered primary. Site field trip was made in September 2014. During the field trip the primary targets were further assessed, based on geology and access. Outcrop grab samples were collected from some primary drill targets and submitted for analysis. More grab samples were collected and analyzed during the drilling in both phases.

# **Location and Access**

The Sackville Property is located approximately 25 km west of Kakabeka Falls, ON and about 50 km west of Thunder Bay, Ontario. The Property could be accessed all year round through Boreal Road, west of HWY 590. There are several logging roads within the Property

# **Property Claims**

The Sackville Property consists of 14 leased contiguous claims. The claims, units, hectares and townships are listed in Table 1 below and displayed in Figure 1.

| Township  | Claim   | Units | Hectares |
|-----------|---------|-------|----------|
| Sackville | 4219074 | 13    | 208      |
| Sackville | 4219075 | 16    | 256      |
| Sackville | 4244451 | 14    | 224      |
| Sackville | 4244452 | 16    | 256      |
| Sackville | 4244453 | 16    | 256      |
| Sackville | 4244454 | 16    | 256      |
| Aldina    | 4244456 | 6     | 96       |
| Aldina    | 4244457 | 8     | 128      |
| Aldina    | 4262671 | 16    | 256      |
| Aldina    | 4262672 | 16    | 256      |
| Aldina    | 4262673 | 16    | 256      |
| Aldina    | 4262674 | 6     | 96       |
| Sackville | 4253691 | 12    | 192      |
| Aldina    | 4262831 | 14    | 224      |

Table1. List of claims.

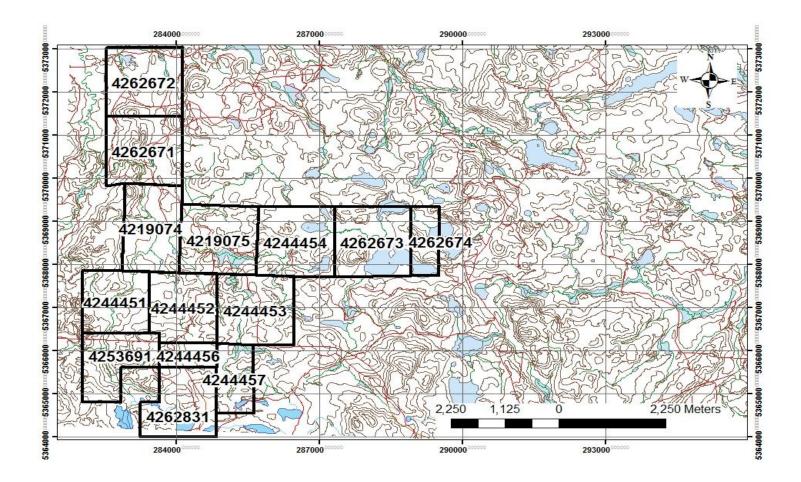



Figure 1. Property boundary and claims map.

# **Glacial Geology**

The sequence of events which occurred during the latest stages of continental glaciation in the vicinity of Thunder Bay is not entirely discernible from deposits and features within the area. The Pleistocene history proposed for the region by Burwasser (1977) and earlier authors (Zoltai, 1963), suggests a retreating ice margin in the vicinity of Thunder Bay approximately 12,400 years ago. Re-advance of the Superior lobe was recorded approximately 11,500 years ago (Burwasser, 1977). Partial dissolution of the Superior and Hudson Bay was re-established approximately 11,000 years ago, although the Superior basin was not entirely free of ice until sometime after 10,000 years ago. Based on glacial striae direction, the whole ice mass (known as the Patrician ice) was subdivided in the region of Thunder Bay into the Hudson Bay (ice advancing from Lake Nipigon) and Superior lobes (ice pushing west from Lake Superior). Ice directions varied between 170° and 215° for the Patrician ice (Bajc, 1999), while younger striae suggest a Superior ice mass trend of 295°-315° (Burwasser, 1977).

The average glacial striation direction at the Sackville Property is 185° (Fig.2), as measured by the author on multiple outcrops. The timing of the deposition of the Sackville massive sulphide mineralized boulders is not known, but they form a N-S depositional trend identical with the ice flow direction measured on site. This later fact, suggests that those boulders likely originated to the north of their deposition sites.

#### Property Geology

The Property geology has largely been interpreted from property scale geological mapping carried out by GLR Resources and RJK Resources, OGS geological township maps and airborne magnetic survey conducted by RJK Resources. Further interpretation of the Property's geology has been provided by Botrell, 2003 and Perry and Sharpley, 2010. The Sackville Property is located within the Shebandowan Archean-aged greenstone belt. Volcanic cycles part of the Property lithology consist of a lower sequence of tholeiitic basalt and basaltic-andesite flows, including magnesium-rich komatiites and an upper sequence of andesite, dacite, and rhyolite (calc-alkalic) flows (Perry and Sharpley, 2010). This bi-modal volcanic cycle is accompanied by abundant mafic sills and differentiated gabbro-anorthosite plutons. Stratigraphic units are near-vertical, with apparent dip of about 75-80° to the N (as measured in core). These units are locally unconformably overlain, by sedimentary and volcanic rocks and locally interlayered with iron formation (Fig.2). Mistango River Resources carried out an extensive trenching program during 2011-2012, which was aimed at confirming lithological units and identifying possible mineralization, proximal to IP anomalies (Table 2). Additionally, a number of whole rock analyses on outcrop samples were completed. The trenching revealed bi-modal mafic with locally felsic to pyroclastic-felsic units, banded iron formation and localized intrusive mafic-ultramafic lithology (Table2, Fig.4)

#### Scope of Work

Work on identifying and evaluation of previously unexplored targets on the Sackville Property started in February 2014. Glacial geology interpretation and careful selection of previously known IP, soil geochemistry and VTEM anomalies located up-ice from massive sulphide-rich boulder train (Fig.3) was used to single out drill targets. As a result 8 targets were selected. Criteria used for target selection include short strike length of anomalies (used to rule out formational IP anomalies and identify potential non-formational ones), amalgamation of different anomalies in a single target (such as VTEM, soil geochemical, IP, resistivity) and favourable geology (felsic-to-intermediate lithology). Figure 3 shows the eight preliminary targets with the corresponding IP, VTEM and soil anomalies. All targets are up-ice (based on average 185° azimuth of glacial striae measured on site) from mineralized boulder train (Figures 3 and 4).

Four targets were selected as primary (Targets 1, 2, 7 and 6) and three (T1,2 and 7) were drilled off in 2014 during Phase 1 of the program, based on additional evaluation of potential strike length, geology and presence of more than one anomaly within the target (Fig. 4). Target 1 (T1) was chosen as a primary target due to combination of relatively high Zn soil values (up to 1570 ppm), IP and short length VTEM anomalies, direct correlation up-ice with mineralized boulder train and presence of rhyolite with pyroclastic fragments at a nearby trench (TR9). Target 2 (T2) was also given high priority due to its location within a felsic horizon interlayered with iron formation and thus presenting similar lithological association with known bi-modal mafic deposits, such as the Geco Deposit. Target 7 (T7) was also prioritized and later drilled, based on relatively short IP anomaly strike length and being within the northern part of more or less the same inferred felsic horizon as T1. Target 6 (T6) was chosen due to its location within a parallel to other targets felsic horizon and short strike length. As a result of these target selections 5 DDH were proposed and planned using IP survey pseudo-sections as part of Phase 1.

Phase 2 of the program concentrated on investigating previously unexplored short length AEM anomaly trends (DDH's SK-15-06 and SK-15-07) along strike of the Target 1 mineralized felsic horizon and IP 29 anomaly, previously intercepted by SK-14-05 and SK-14-03 (Fig.5). Another AEM trend, which was drilled in 2005 and returned anomalous Zn, Ag and Au assays was investigated by DDH SK-15-08 (Fig. 5). Numerous grab samples were collected and analyzed with regards to rock type and alteration.

6

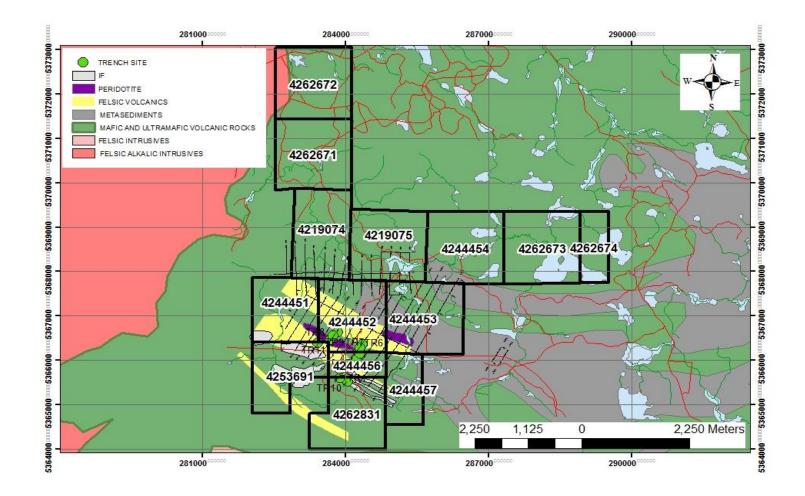
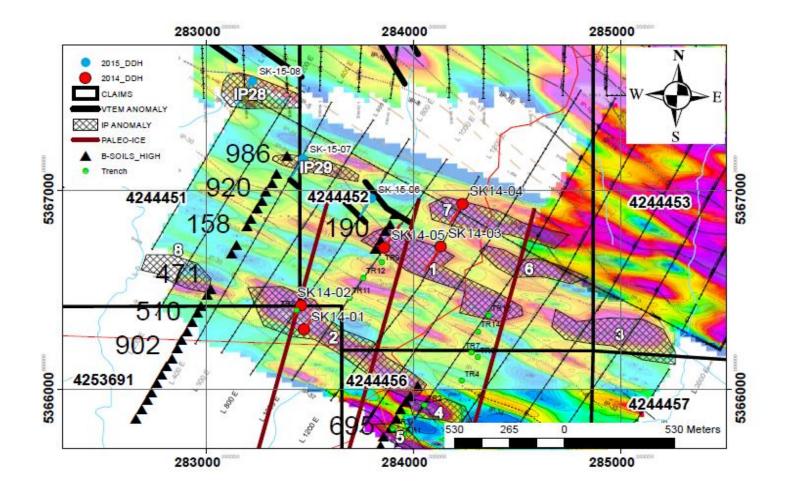




Figure 2. Property Geology.

| TRENCH | EASTING | NORTHING | GRIDE | GRIDN | COMMENTS                                                                                                                                        |
|--------|---------|----------|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| TR1    | 283951  | 5365772  | 1600  | 1550  | IP 37, Target 5 (T5). Cherty iron formation                                                                                                     |
| TR2    | 284050  | 5365920  | 1600  | 925   | IP 36, Target 4 (T4). Felsic volcanic rock.                                                                                                     |
| TR3    | 283899  | 5365800  | 1550  | 1550  | IP 37, Target 5 (T5). Cherty iron formation.                                                                                                    |
| TR4    | 284230  | 5366043  | 1600  | 650   | IP 34. Felsic-to-intermediate volcanic bedrock with localized intermediate intrusive phase to the north, trace of pyrite.                       |
| TR5    | 284048  | 5365523  | 1800  | 1150  | IP 37, Target 5 (T5). Banded iron formation, located south of T5 and south of felsic horizon.                                                   |
| TR6    | 284306  | 5366159  | 1600  | 600   | IP 33.East of TR7, exposing some felsic volcanic, with trace very fine disseminated pyrite.                                                     |
| TR7    | 284278  | 5366184  | 1600  | 575   | IP 33. Felsic volcanics and intrusives. Rhyolite in eastern part of trench. Granite with porphyry rhyolite phase in the western part of trench. |
| TR8    | 283434  | 5366395  | 800   | 825   | IP 35, Target 2 (T2). Cherty BIF weakly-to-locally strongly magnetic.                                                                           |
| TR9    | 283845  | 5366636  | 1000  | 275   | IP 29, Target 1 (T1). Quartz-eye rhyolite with pyroclastic fragments, patchy pyrrhotite. Visible gossan at surface.                             |
| TR10   | 283890  | 5365600  | 1600  | 1150  | IP 37, Target 5 (T5). Banded iron formation, located south of T5 and south of felsic horizon.                                                   |
| TR11   | 283688  | 5366459  | 1000  | 680   | IP 32.Peridodite bedrock.                                                                                                                       |
| TR12   | 283755  | 5366559  | 1000  | 550   | IP 29, Target 1 (T1). Basalt and gabbro bedrock                                                                                                 |
| TR13   | 284361  | 5366370  | 1600  | 375   | IP 29, Target 1 (T1). Sulphidized, gossanous, cherty banded iron formation.                                                                     |
| TR14   | 284309  | 5366289  | 1600  | 375   | IP 29, Target 1 (T1). Contact between quartz-feldspar porphyry and locally pyroclastic rhyolite.                                                |

Table 2. Summary of trench lithology.



*Figure 3. Eight primary targets (T1-8) and additional targets selected based on IP, VTEM, high soil Zn anomalies and geology from trench sites (TR1-14). The targets are located directly up-ice from mineralized boulder train.* 

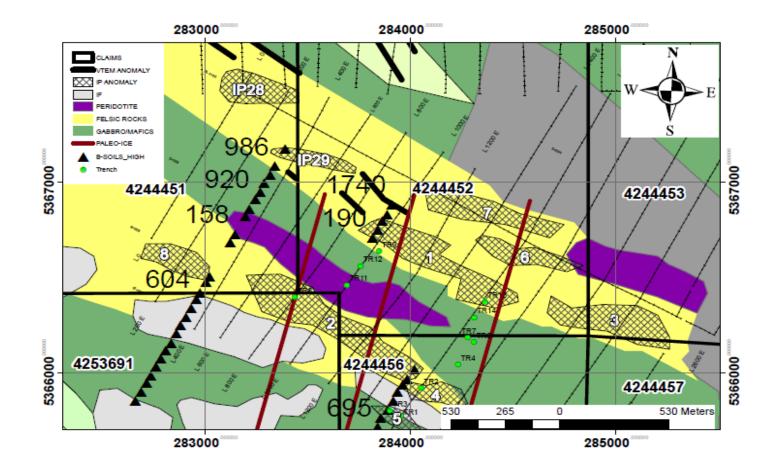



Figure 4. Drill targets displayed with corresponding geology, IP, VTEM and high Zn soil anomalies, trench sites also shown (TR1-14).

#### Drilling

**Phase 1** drilling on the Sackville Property for the 2014 exploration program began on October 28<sup>th</sup> and finished on December 18<sup>th</sup>. Additional related work (core moving and storing, water line maintenance, core logging) continued to the end of December 2015. All DDH were drilled by Huard Drilling Ltd. of Haileybury, ON using BTW-sized drill rods. The assaying was carried out by Swastika Laboratories Ltd., Activation Laboratories Ltd., and Accurassay Laboratories.

During the 2014 drilling program, five diamond drill holes (DDH) were completed to a total length of 754m (Table 3, Fig. 5, 6, 7, 8, 9 and 10). The purpose of the drilling was to attempt to intersect the source of the high grade massive sulphide boulder train. Four drill targets were prioritized out of eight initial targets located directly up-ice from expected paleo-ice flow direction (inferred from glacial striations measurements proximal to sites), based on the presence of IP, VTEM, high Zn soil values and favourable geology.

Hole SK-14-01 was started on November 5<sup>th</sup> and finished on November 8<sup>th</sup>, 2014. This DDH aimed to investigate Target 2 (T2, IP 35, Fig. 3 and 4) on grid line 900E at 950S (Fig. 5 and 6). It was a pilot hole to test for strata dip orientation and was abandoned due to being drilled down-dip at depth of 101m. The hole intersected one lithological unit (gabbro) and did not intersect any mineralization of interest (Fig. 7, lithological log in Appendix).

Hole SK-14-02 was started on November 9<sup>th</sup> and finished on November 11<sup>th</sup>, 2014. This hole was drilled normal to apparent dip (about 75°N) to a length of 101m and tested Target 2 (T2, IP 35, IP 30, Fig. 3 and 4) on grid line 800E at 765S (Fig. 5 and 6). The hole intersected fine-grained cherty sediments, banded iron formation and peridotite (Fig. 8 and lithological log in Appendix). The IP chargeability anomaly was caused by the presence of iron formation. No mineralization of interest was intersected.

| Hole     | Easting | Northing | Azimuth | Dip | Length | Purpose                                                              | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|---------|----------|---------|-----|--------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SK-14-01 | 283471  | 5366300  | 30      | -45 | 101    | Testing Target 2, IP 35<br>and MAG                                   | Line 9+00E 9+50S, drilling grid north. Abandoned, drilled grid<br>north, down-dip within gabbro. Started on November 5 <sup>th</sup> ,<br>finished on November 8 <sup>th</sup> .                                                                                                                                                                                                                                                               |
| SK-14-02 | 283456  | 5366300  | 210     | -45 | 101    | Testing Target 2, IP 35,<br>IP 34 and MAG                            | Line 8+00E 7+65S, drilled grid south. Started on November9 <sup>th</sup> , finished Nov.11 <sup>th</sup> . IP caused by Magnetite IF.                                                                                                                                                                                                                                                                                                          |
| SK-14-03 | 284130  | 5366419  | 210     | -45 | 200    | Testing Target 1 IP 29,<br>IP 30 and parallel felsic<br>horizons     | Line 12+00E 2+00S, drilled grid south. Started on November<br>13 <sup>th</sup> , finished on November18 <sup>th</sup> . Apparent dip 75 - 80 degrees<br>N. Chargeability anomaly caused by carbonaceous silicified<br>argillite horizons (43-44.7m; 155.35-159.7m) with up to 20%<br>pyrite-pyrrhotite locally and locally mineralized basaltic-<br>andesite (87-11.8m, up to 15% pyrite-pyrrhotite locally). Bi-<br>modal volcanic lithology. |
| SK-14-04 | 284130  | 5366716  | 210     | -45 | 152    | Testing Target 7, IP 28<br>and VTEM and next<br>stratigraphy horizon | Line 12+00E 0+40N, drilled grid south. Started on November<br>18 <sup>th</sup> , finished on November 22 <sup>th</sup> . Apparent dip of strata 65N.<br>Lithology mostly comprised of agglomerate. IP caused by<br>carbonaceous silicified sediment horizons at 62-71m and<br>graphitic argillite at 130-130.7m.                                                                                                                               |
| SK-14-05 | 283873  | 5366691  | 30      | -45 | 200    | Testing Target 1,IP 29<br>and VTEM and high soil                     | Line 10+00E 3+60S, drilled grid north, down-dip. Started on<br>November 29 <sup>th</sup> , finished on December. 18 <sup>th</sup> . Apparent dip of<br>lithology is 70-75N. IP caused by silicified carbonaceous<br>argillite horizons with 5-20% sulphides (10-11.7m; 149.7-<br>152.1m; 190.5-191.5m). Mostly basaltic-andesite lithology.                                                                                                    |

Table 3. Summary of DDH drilled during the 2014 drill program.

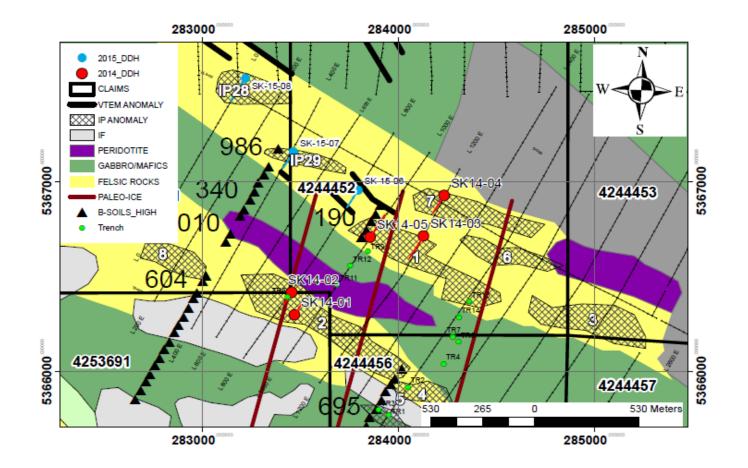



Figure 5. Drill plan showing collar location for Phases 1 and 2 and vertical projection of DDH trace in addition to trench sites, geology and IP, VTEM and high soil targets.

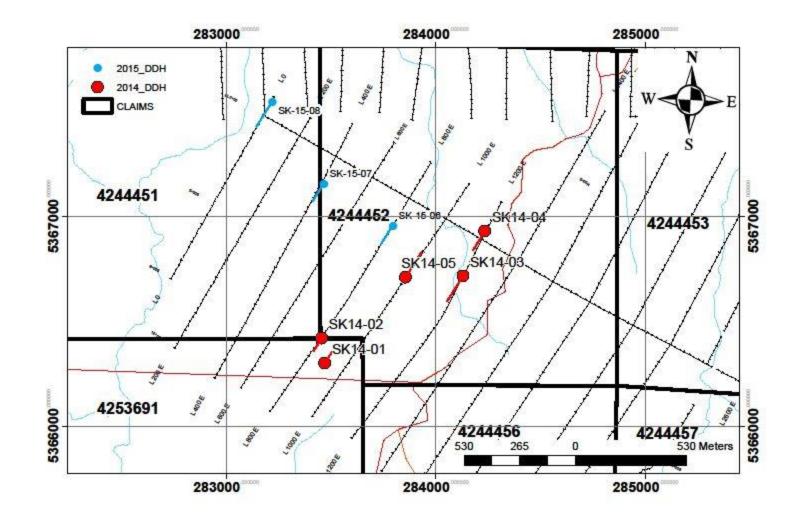
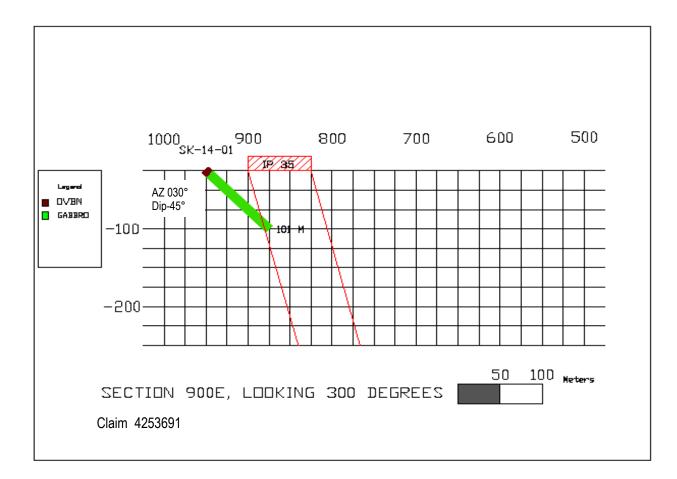
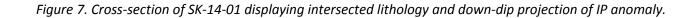
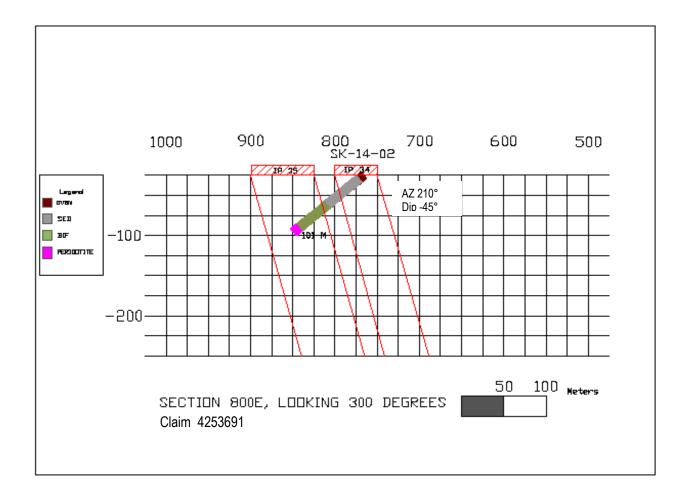






Figure 6. Drill plan showing DDH collar locations and trace of projection of holes on local grid and claim boundaries.







*Figue 8. Cross-section of SK-14-02 along grid line 800E showing the lithological units and down-dip projection of IP anomalies.* 

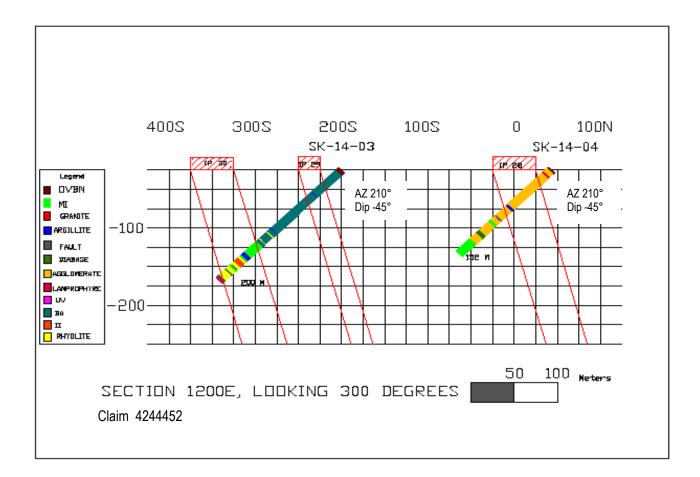
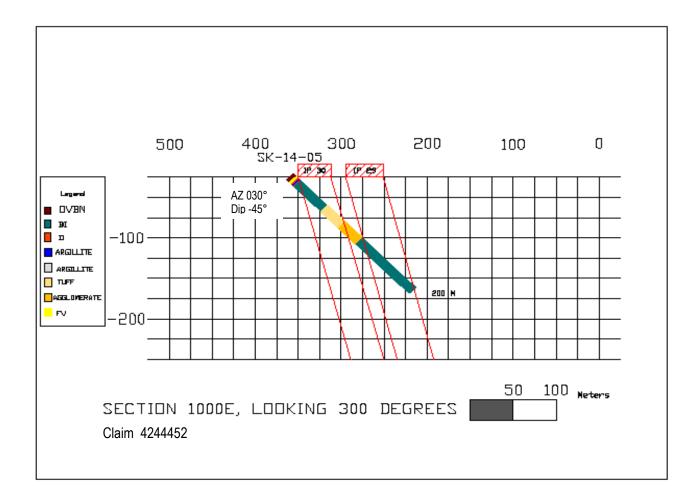




Figure 9. Cross-section of SK-14-03 and SK-14-04 along grid line 1200E, showing intersected lithological units and down-dip projection of IP anomalies.



Hole SK-14-03 was started on November 13<sup>th</sup> and finished on November 18<sup>th</sup>, 2014. The hole tested the eastern part of Target 1 (T1, IP 29, IP 30, Fig. 3 and 4) and investigated IP and VTEM parallel felsic horizon (Fig. 5). The hole was drilled normal to the apparent dip of the stratigraphy, which was calculated from core measurements to be 75-80° to the north. The hole was stopped at 200 m depth after intersecting all identified IP anomalies at depth. The IP anomalies were caused by carbonaceous highly silicified sediment (argillite) containing up to 20% sulphides locally (43-44.7m and 155.35-159.7m) and moderately mineralized basaltic-andesite (87-111.8m, up to 15 % pyrite-pyrrhotite locally). The hole intersected bi-modal mafic-to-intermediate (basaltic-andesite) and lesser felsic volcanic lithology interlayered with localized carbonaceous silicified sediment (lithological log in Appendix). Slightly mineralized ultramafic volcanic rock (Fig. 9). Thirty one half-core samples were taken and analyzed for Au, Ag, Zn, Cu and Pb. The samples returned slightly anomalous, but non-economic values (sample log in Appendix).

Hole SK-14-04 was started on November 18<sup>th</sup> and finished on November 22<sup>nd</sup>, 2014. This DDH investigated IP 28, Target 7 located within the next inferred felsic horizon to the north on grid line 1200E at 040N (Fig. 3, 4 and 5). The apparent dip of the stratigraphy was calculated from core angle measurements to be 65° to the north. The hole was drilled normal to the dip direction of the stratigraphy to a depth of 152 m. SK-14-04 intersected a wide agglomerate unit interlayered with localized argillite and mafic intrusives towards the end of the hole (Fig. 9 and lithological log in Apendix). Chargeability anomalies were caused by carbonaceous argillite hosting a fault zone (68-71m) and graphitic fault from 130-130.7m. One half-core sample was assayed for Au, Ag, Zn, Cu and Pb returning anomalous, but not economic base metal values (assay log in Apendix).

19

Hole SK-14-05 was started on November 29<sup>th</sup> and was finished on December 18<sup>th</sup>. The hole tested IP 29 and IP 30 within Target 1, VTEM and high Zn soil anomalies on local grid line 1000E at 360S (Fig. 3, 4 and 5). This DDH was drilled down-dip to the west of topographically inferred N-S fault. Core angle measurements suggest that the strata dips at 70-75° to the north. The hole went through bi-modal volcanic units, mostly basaltic-andesite interlayered with lesser agglomerate, felsic volcanics and sediments (Fig. 10 and lithological log in Appendix). IP anomalies were caused by silicified mineralized argillite (10-11.7m, up to 20% pyrrhotite), carbonaceous argillic selvages in basaltic-andesite (21.9m-22.1m, up to 20% pyrite) and more mineralized argillite at 149.7-152 m (up to 20% pyrite) and again from 190.5 m to 191.5 m. The hole was stopped at 200 m depth due to intersection of all identified IP targets. 143 half-core samples were assayed for Au, Ag, Zn, Cu and Pb. The assays returned anomalous Zn, Cu and Pb values, much higher than in the rest of the other holes with sample M18302 containing 1890 ppm Zn and 155 ppm Cu (assay log in the Appendix and assay certificate A15-00441 in the Appendix). The hole contained visual sphalerite and 5-15% sulphides locally. A whole rock sample was analyzed for major and trace elements allowing for classification of some rock types (basaltic-andesite) and also providing data for plotting CCPI and Ishigawa index diagrams as well as Y/Zr and Ba/Sr ratios.

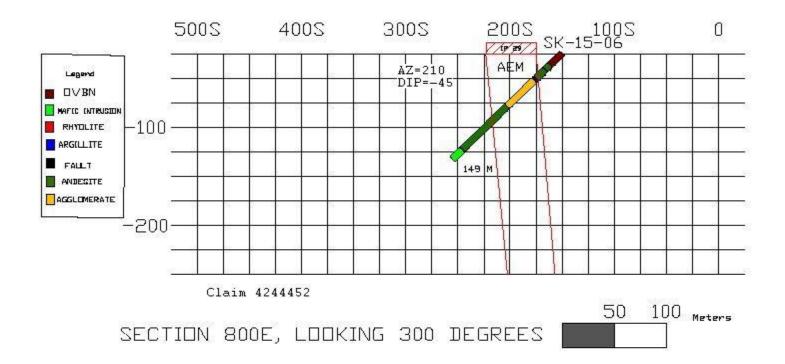
**Phase 2** of the drilling program started on May 9<sup>th</sup> and finished on June 19<sup>th</sup>, 2015. All DDH were drilled by Huard Drilling Ltd. of Haileybury, ON using BTW-sized drill rods. The assaying was carried out by Swastika Laboratories Ltd., Activation Laboratories Ltd., and Accurassay Laboratories.

During the 2015 drilling program, three diamond drill holes (DDH) and an extension of SK-14-05 were completed to a total length of 507m (Table 4, Fig. 5, 6, 11, 12 and 13). Phase 2 attempted to investigate previously unexplored AEM trends to the East and North of 2014 drill targets, some of which correlate with IP anomalies and mineralized trends intercepted by SK-14-05 and SK-14-03 (IP 29). One such trend, located East of Target 1 and along strike of a favourable rhyolite horizon was assessed by DDH SK-15-06. Another AEM trend associated with the weaker IP 28 was drilled by SK-15-07. The reasoning behind this strategy being that highly anomalous IP chargeability values drilled in previous targets were attributed to carbonaceous or graphitic horizons instead of lithologies typically associated with known VMS occurrences. The last DDH of Phase 2 (SK-15-08) investigated a different AEM trend to the North-East of 2014 targets that was previously drilled with encouraging results during 2005-2006 exploration program (Hava, J., 2006: Report on the 2005-2006 Drilling Program, Stares Project).

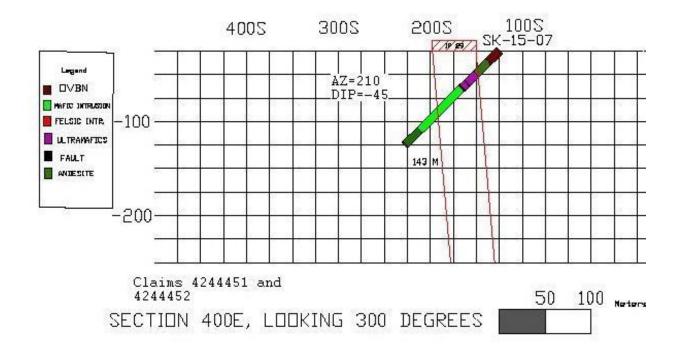
Hole SK-15-06 was started on May 10<sup>th</sup> and stopped on May 14<sup>th</sup>, 2015 at 149m depth. Angle to core axis observed while logging the core reveals a very steep lithology dip of 75°S-90°. This DDH aimed to investigate AEM trend in the eastern extent of IP 29 and to the East of Target 1 (Fig. 3, 4, 5 and 6) on grid line 800E at 150S. The hole intersected two mineralized pyrite-pyrrhotite (Py and Po) horizons within silicified carbonaceous argillite and agglomerate units (Fig. 11 and log in Appendix), which explains the AEM and IP anomalies. Mineralization within the agglomerate locally reached 20% and appears to be controlled by the increased porosity of the unit but fails to reach any appreciable base or precious metal content.

Hole SK-15-07 was started on May 16<sup>th</sup> and finished on May 21<sup>th</sup>, 2015. DDH collar was located on line 400E 125S and the hole was stopped at 143m depth (Fig. 5, 6 and 12, log in Appendix). Angle to core axis suggests a very steep lithology with apparent dip of 75°N-90°. This DDH investigated a weaker part of IP 29, proximal to an AEM trend to the South (Fig. 3). All previously drilled IP targets were highly anomalous, but did not return any significant findings. Therefore a new approach was tried with SK-15-07 attempting to test weaker IP's for base metal mineralization. The hole did not intersect any significant mineralization or alteration, but did go through a weakly mineralized rhyolite horizon. This weak mineralization was intercepted deeper than in some previous DDH's (121.1-134.5m) likely because

21


of large scale folding evident from plan view chargeability anomaly layout and could explain the cause of the weaker IP signature.

DDH SK-15-08 tested a different AEM trend and IP anomaly (IP 28) previously investigated during 2005-2006 drilling (Fig. 3 and 4). Hole SC05-08 drilled in 2005 returned 1426 ppm Zn, 183 ppm Ag and 4 ppb Au (Hava, 2006). DDH SK-15-08 was drilled in the same AEM trend and IP anomaly as SC05-08 and attempted to verify or expand its findings. A wide unit of strongly mineralized rhyolite tuff (~40% Py and lesser Po) was observed (77.6-104m) in SK-15-08, however the mineralization appears to be structural rather than VMS in origin (Fig. 13, log in Appendix). This is due to the fact that all sulphides were located on the contact between mafic-felsic units in a permeable host (tuff). A grab core sample was analyzed with whole rock XRF and various diagrams plotted with the purpose of identifying rock type and alterations associated with known VMS deposits. These diagrams included TAS, Ishikawa index- chloritecarbonate-pyrite index (CPPI) plot, Ba/Sr plot (Fig. 14, 15 and 16)., According to Large et al. (2001), some of the important exploration geochemical vectors are sodium depletion (Na<sub>2</sub>O less than 0.5%, should give a halo of up to 1km for large deposits), CCPI- Ishigawa Index, and Ba/Sr. We didn't find any significant sodium depletion in core grab sample WR-8-84 (Na<sub>2</sub>0=2.99%, Certificate 196201542411 in Appendix ), collected from hole SK-15-08 at 84m depth, where most of the mineralization was located. Furthermore a CCPI-Ishikawa index plot of the same sample places it in the least alteration box, which doesn't signify any appreciable alteration to be associated to known VMS deposits (Fig. 15 and 17). Ba/Sr ratio plot for the same sample is 1.43, where it should be >25 at 100m depth, to signify significant hanging-wall hydrothermal alteration about 100m away from mineralization (Fig 16). The TAS diagram clearly identifies the sample as dacite, although it visually appears as rhyolite tuff (Fig 14).


22

| Hole     | Easting | Northing | Azimuth | Dip | Length | Purpose                                                                           | Remarks                                                                                                                                                                                                                                                                                                                                                       |
|----------|---------|----------|---------|-----|--------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SK-15-06 | 283795  | 5366957  | 210     | -45 | 149    | Testing AEM trend, the extent<br>of IP29 and adjacent high soil<br>trend.         | Line 8+00E 1+50S, drilling grid south. Started on May 10 <sup>th</sup> ,<br>finished on May 14 <sup>th,</sup> 2015. Litho apparent dip varies from<br>75S to 90. AEM anomaly caused by mineralized, cherty<br>argillite (35.7-37.4m-7% Py) and mineralized agglomerate (68-<br>75m, up to 20% Py+Po).                                                         |
| SK-15-07 | 283466  | 5367158  | 210     | -45 | 143    | Testing weaker AEM trend<br>and weaker part of IP 29 and<br>hoigh soil trend.     | Line 4+00E 1+25S, drilled grid south. Started on May 16th,<br>finished May 21st, 2015. The hole did not intercept any<br>significant mineralization, but went through and extensive<br>rhyolite horizon (121.1-134.5m). AEM likely caused by<br>moderately magnetic UM lithology. Apparent dip varies from<br>80S to 90.                                      |
| SK-15-08 | 283220  | 5367548  | 210     | -45 | 199.3  | Testing northern AEM trend<br>within IP 28 and well within<br>the felsic horizon. | Line 0+00E 0+75N, drilled grid south. Started on June 12th and<br>finished on June 19, 2015. Significant mineralization<br>distributed in argillite (76.4-77.6m-15 Py+Po) and rhyolite tuff<br>(77.6-104-locally up to 40%Py, less Po). Mineralization<br>appears to be structurally controlled by contact between<br>felsic-mafic units. Bi-modal lithology. |

Table 4. Summary of DDH drilled during the 2015 program.



*Figure 11. Cross-section of SK-15-06 along line 800E with lithology and down-dip projection of IP anomalies.* 



*Figure 12. Cross-section of SK-15-07 along line 400E with lithology and down-dip projection of IP anomalies.* 

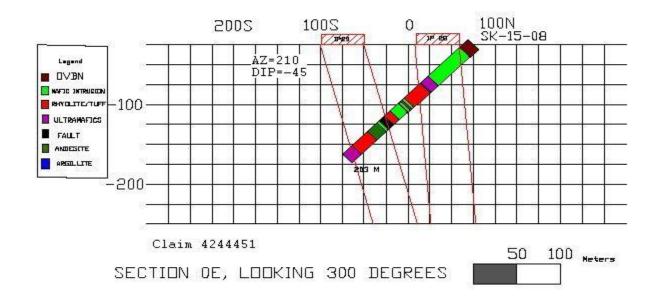
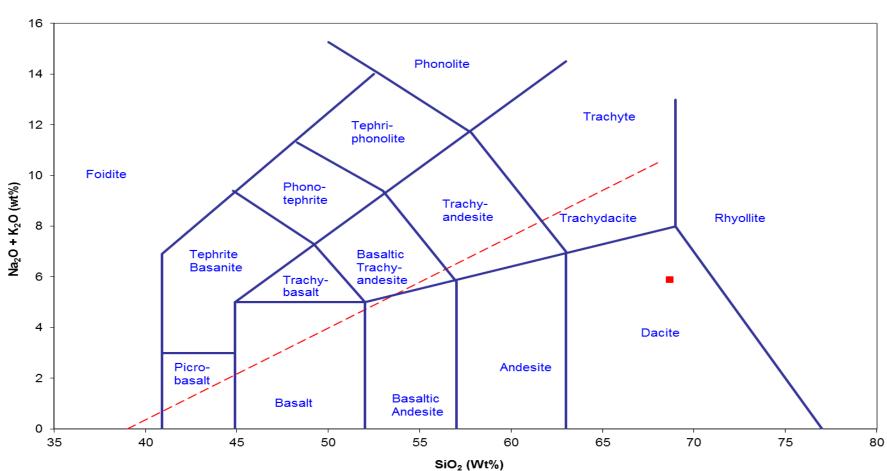
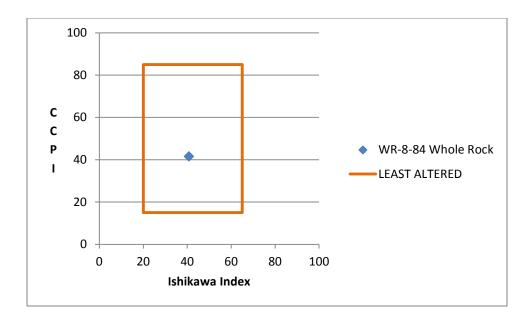





Figure 13. Cross-section of SK-15-08 along line OE with lithology and down-dip projection of IP anomalies.



Total Alkalis vs. Silica Diagram IUGS classification

Figure 14. Total alkalis vs. silica diagram. Sample WR-8-84 plots in the dacite-rhyolite field. Visually, rock type is rhyolite tuff.



*Figure 15. Sample WR-8-84 does not display any significant VMS associated alteration.* 

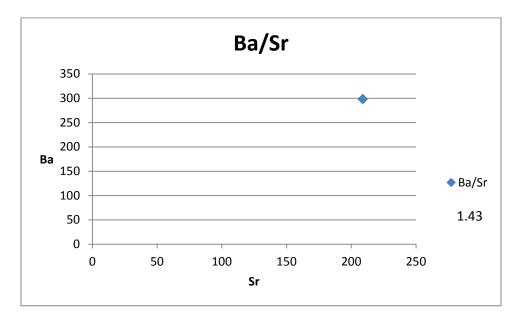
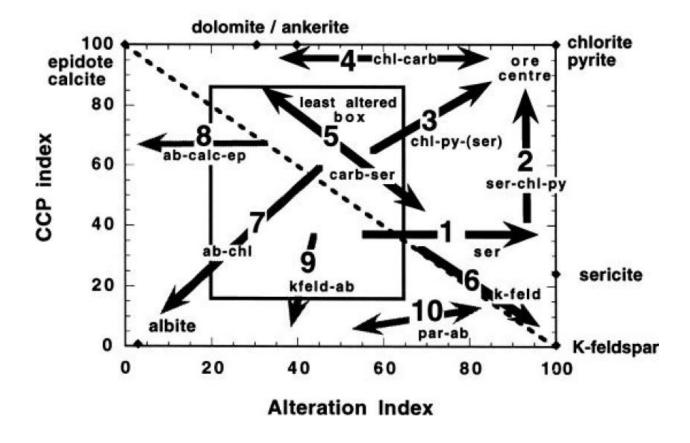




Figure 16. BA/Sr plot for sample WR-8-84. Note that according to Large et al. (2001), values should be >25 at 100m depth to identify any significant VMS alteration. Value for WR-8-84 is 1.43.





*Figure 17. Ishikawa and CPP indices diagram for alteration associated with for VMS deposits. After Large et al. (2001).* 

# **Dates and Cost of Work**

Planning for the Sackville Property drill program started in February 2014. A field visit was carried out in September evaluating the drilling targets, collecting outcrop grab samples, identifying favourable geology exposed in trench sites and outcrops. Phase 1 drilling started on October 28<sup>th</sup> and finished on December 18<sup>th</sup>, 2014, but related work continued to the end of December. Phase 2 drilling started on May 10<sup>th</sup> and finished on May 19<sup>th</sup>, 2015. The drilling for both phases was carried out by Huard Drilling Ltd. of Haileybury, ON . Assaying for the 2014-2015 Program was split between Swastika Laboratories Ltd., Activation Laboratories Ltd. and Accurassay Laboratories.

Total drilling cost for Phase 1 was \$70,176, out of which \$45, 396 was the net cost of drilling and \$24,780 was related cost (float, mobilizing, moves, supplies etc.). Detailed summary of Phase 1 drilling cost is outlined in Table 5.

As part of Phase 1, a total of 175 half-core samples were assayed from January 13<sup>th</sup>, 2015 to January27<sup>th</sup>, 2015 in addition to one whole rock sample analysis and a number of grab samples analyzed during 2014 at a combined cost of \$6,935 and additional \$625 for core cutting (Table 6).

Equipment rental for the period September 1<sup>st</sup>-October 31<sup>st</sup>, 2014 was at a cost of \$9,159 and additional supplies and labor for the period of September 25<sup>th</sup>-October 31<sup>st</sup>, 2014 were at a cost of \$51,098 (Table 7).

Travel cost related to the drilling and site visits for the period September 23<sup>rd</sup>-December 18<sup>th</sup>, 2014 came to \$5,748 and food and lodging expenses for the period September 23<sup>rd</sup>-December 23<sup>rd</sup>, 2014 was \$8,110 (Table 7).

Phase 1 work cost was distributed between two claims (4244452 and 4253691) based on meters drilled on each claim. The amount of work performed on 4244452 sums up to \$109,868 and the amount of work performed on 4253691 amounts to \$41, 983 (Table 11).

The all-inclusive cost for the 2014 exploration program is \$151,851.

Total drilling cost for Phase 2 was \$32,977.1, out of which \$25,575 was the net cost and \$7,402.1 was additional related expense. Detailed breakdown of drilling expenditure per claim is outlined in Table 8.

Assaying and analysis cost for core samples and grab samples in Phase 2 was \$3915.7 (Table 9). Additional expenses such as food and lodging, labour, rentals and miscellaneous amounted to \$29,236.16 (Table 10).

Phase 2 expenditures were distributed between 2 claims: 4244451 and 4244452. Total exploration cost for claim 4244451 was \$40,155.37. Total exploration cost for claim 4244452 was \$25,973.59. The combined cost for both claims during 2015 exploration program was \$66,128.96 (Table 11).

| Hole    | Cost  | Meters | Additional expenses | Claim   | Cost per Claim Drilling | Cost Per Claim Combined |
|---------|-------|--------|---------------------|---------|-------------------------|-------------------------|
| SK14-01 | 6060  | 101    |                     | 4253691 |                         |                         |
| SK14-02 | 6060  | 101    | 10000               | 4253691 | 12120                   | 22120                   |
| SK14-03 | 12150 | 200    | 6910                | 4244452 |                         |                         |
| SK14-04 | 9126  | 152    | 4120                | 4244452 |                         |                         |
| SK14-05 | 12000 | 200    | 3750                | 4244452 | 33276                   | 48056                   |
| Totals  | 45396 | 754    | 24780               |         | 45396                   | 70176                   |
|         |       |        |                     |         |                         |                         |

 Table 5. List of Phase 1 DDH and associated meterage, cost and claim number.

| Hole             | Certificate      | Cost Au | Cost BM | Claim   |
|------------------|------------------|---------|---------|---------|
| SK-14-05         | 14-1745          | 7       |         | 4244452 |
| SK-14-05         | 15-00195         | 50      |         | 4244452 |
| SK-14-05         | 15-016, A15-0044 | 980     | 784     | 4244452 |
| SK-14-05         | 15-017, A15-0044 | 1000    | 800     | 4244452 |
| SK-14-05         | 15-018, A15-0044 | 880     | 704     | 4244452 |
| SK-14-03; SK-14- | 15-019, A15-0044 | 640     | 512     | 4244452 |
| 05               |                  |         |         |         |
| SK-14-04         | 15-073, A15-0044 | 20      | 16      | 4244452 |
| CORE CUTTING     |                  | 625     |         | 4244452 |
| SOIL SAMPLES     | A14-06924        |         | 331     | 4244452 |
| GRAB SAMPLES     | A14-08605        |         | 211     | 4244452 |
| TOTALS           |                  | 4202    | 3358    | 7560    |

| Travel               | 5748    |
|----------------------|---------|
| Food and Lodging     | 8110    |
| Labour               | 51098   |
| Equipment Rental     | 9159    |
| Totals               | 74115   |
| Added cost for claim | 19862.8 |
| 4253691              |         |
| Added cost for claim | 54252.2 |
| 4244452              |         |
|                      |         |

Table 7. Phase 1 travel, food, lodging and additional costs.

 Table 6. Phase 1 assay and core cutting costs.

| Hole     | Cost  | Meters | Additional Expenses | Claim   | Cost per Claim Drilling | Cost per Claim Combined |
|----------|-------|--------|---------------------|---------|-------------------------|-------------------------|
|          |       |        |                     |         |                         |                         |
| SK-15-05 | 756   | 12     |                     | 4244452 |                         |                         |
|          |       |        |                     |         |                         |                         |
| SK-15-06 | 4840  | 149    | 3672.1              | 4244452 |                         |                         |
|          |       |        |                     |         |                         |                         |
| SK-15-07 | 3180  | 47.66  | 746.66              | 4244452 | 8776                    | 13194.76                |
| SK-15-07 | 6360  | 95.34  | 1493.34             | 4244451 |                         |                         |
| 3K-13-07 | 0300  | 95.54  | 1495.54             | 4244451 |                         |                         |
| SK-15-08 | 10439 | 203    | 1490                | 4244451 | 16799                   | 19782.34                |
|          |       |        |                     |         |                         |                         |
| Totals   | 25575 | 507    | 7402.1              |         | 25575                   | 32977.1                 |

 Table 8. List of Phase 2 DDH and associated meterage, cost and claim number.

| Hole       | Certificate  | Cost Au           | Cost ICP | Claim   | Total per Claim |
|------------|--------------|-------------------|----------|---------|-----------------|
|            | 15-1245/A15- |                   |          |         |                 |
| SK-15-06   | 03836        | 360               | 432      | 4244452 | 792             |
| SK-15-08   | 201542410    | Combined with ICP | 2722.5   | 4244451 |                 |
| Grab       |              |                   |          |         |                 |
| Samples    | 201541898    |                   | 23.7     | 4244451 |                 |
| Grab       |              |                   |          |         |                 |
| Samples    | A15-03287    |                   | 200      | 4244451 |                 |
| Grab       |              |                   |          |         |                 |
| Samples    | 201542411    |                   | 177.5    | 4244451 | 3123.7          |
| Total Cost |              | 360               | 3555.7   |         | 3915.7          |

Table 9. Assays and sample analysis cost for Phase 2 drilling.

| Travel, Food and                |          |
|---------------------------------|----------|
| Lodging                         | 4599.42  |
| Equipment Rental                | 3342.07  |
| Labour                          | 20450    |
| Miscellaneous                   | 844.67   |
| Added cost for<br>claim 4244451 | 17249.33 |
| Addedd cost for                 |          |
| claim 4244452                   | 11986.83 |
| Totals                          | 29236.16 |

Table 10. Phase 2 food, travel and some additional costs.

| Phase   | CLAIM   | Cost     | Total    |
|---------|---------|----------|----------|
|         |         |          |          |
| Phase 1 | 4244452 | 109868   |          |
|         | 4253691 | 41983    | 151851   |
| Phase 2 | 4244451 | 40155.37 |          |
|         |         |          |          |
|         |         |          |          |
|         | 4244452 | 25973.59 | 66128.96 |

Table 11. Phase 1 and 2 per claim total exploration cost.

### **Conclusions and Recommendations**

The 2014-2015 Sackville Property drilling program was instrumental in greatly improving knowledge about the Property geology and its association with geophysical and geochemical anomalies. Notably, key lithological units were identified and their alteration assemblages evaluated with respect to known vectors for VMS mineralization. Furthermore different IP, VTEM and high Zn soil anomalies aligned with massive sulphide boulder train based on inferred paleo-ice flow direction were evaluated with regards to geology.

Most, if not all of the drilled target anomalies appear to be structurally controlled in nature based on their proximity to lithological contacts and porous host rocks (agglomerate). Key alteration indicators of numerous core grab samples such as Ishikawa Index vs CPPI, Ba/Sr ratio, sodium depletion, show no significant association with known VMS alteration vectors. However, such geochemical vectors are often accurate on a hundreds of meters to a kilometer scale and it is the author's opinion that while they are an important tool in VMS deposits exploration, their use is somewhat limited for initial target generation, where geophysics and soil geochemistry play a more important role.

Based on the outcome of the 2014-2015 drilling program the following recommendations for future work could be suggested:

- 1. More outcrop grab samples should be collected proximal to selected IP anomalies targets and analyzed for known vectors for VMS mineralization and proper rock type classification.
- 2. Soil samples along line 1600N at 900 and 1200S close to the eastern extent of T2 (IP35) and western part of T4 (IP 36) show high Zn values of 1790 and 695 ppm respectively. Drilling showed predominantly iron formation lithology in the eastern part of T2, but the horizon has been previously mapped as felsic volcanics, so it they could be interlayered. Furthermore T4

appears to be non-formational and of small strike length. If, budget allows it these targets should be drilled and if any outcrops are present near the targets, representative samples should be collected and analyzed for major and trace elements and assayed for base metal content.

- 3. Target 6 (IP 28) is located within the same felsic horizon as T1 and T7 and also appears to be non-formational. It is also located up-ice from massive sulphide boulder train. If budget allows it this target should be drilled, given the anomalous Zn values encountered in SK-14-05 and in order to complete the evaluation of this lithological horizon.
- 4. Along line 1600E, 575S there is a large stripped rhyolite bedrock patch-Trench 7 (with associated intrusive phase), that is close to a high Zn soil values (up to1070 ppm) and is slightly south from the weaker and non-formational appearing IP 32. This target is also located within a SGH anomaly contour. Given the favourable rock type and the presence of numerous anomalous soil Zn values, this target should be further investigated and drilled if possible.
- 5. Along lines 3900W from 1200N to 1950N and 3600W from 900N to 1100N of the old grid there are anomalously high soil Zn values (up to 1420 ppm). Numerous samples were collected in the vicinity during Phase 2 of the drilling, but further investigation is recommended. This site is outside of the current IP survey, therefore additional outcrop sampling and mapping should be carried out (if outcrops are present nearby).

## **References**

Burwasser, G.J., 1977: Quaternary Geology of the City of Thunder Bay and Vicinity, District of Thunder Bay; Ontario Geological Survey Report GR164, 70p. Accompanied by Map 2372, scale 1:-50,000.

Bajc, A. F., 1999a: Results of regional humus and till sampling in the eastern part of the Shebandowan greenstone belt, northwestern Ontario; Ontario Geological Survey, Open File Report 5993.

Hava, J., 2006: Report on the 2005-2006 Drilling Program, Stares Project, Aldina and Sackville Townships, Ontario, Canada; Report for GLR Resources Inc. and RJK Explorations Ltd.

Large, R.R. McPhie, J., Gemmel, J.B., Herrmann, W. and Davidson, G.J., 2001: The Spectrum of Ore Deposit Types, Volcanic Environments, Alteration Halos and Related Exploration Vectors in Submarine Volcanic Successions: Some Examples from Australia; Econ Geology, Vol. 96, 2001, pp. 913-938.

Perry, T. and Sharpley, F.J., 2010: Assessment Work on Mining Claims 4219074 - 4219075,4244451 – 4244454, & 4244456 -4244457 Sackville Project – Drilling Report Adrian, Aldina, Sackville, and Marks Townships Ontario, Canada Thunder Bay District, Mining Division For GLR Resources Inc. & RJK Exploration Ltd.

Zoltai, S.C., 1963: Glacial Features of the Canadian Lakehead Area; Canadian Geogr. Vol.7, p.101-115.

Ilian Iliev, MSc, PGeo CONSULTING GEOLOGIST 2249 Seton Crescent Burlington, ON L7L 6Y4 TEL: (416)706-1622

#### **CERTIFICATE OF AUTHOR**

I llian lliev, MSc, PGeo do hereby certify that:

1. I am currently not employed with Mistango River Resources. I currently reside at:

2249 Seton Crescent Burlington, ON L7L 6Y4

2. I graduated with a Master of Science degree in Geology from the University of Western Ontario in 2011

3. I am registered as a practicing member (Professional Geoscientist) of the Association of Professional Geoscientists of Ontario (APGO) with registration number 2523.

4. I have worked as a geologist for over 4 years since graduation from University.I have been directly involved in exploration for base metals, gold, and iron ore in Canada.

Dated this 25<sup>th</sup> Day of November, 2015 in the City of Burlington, Ontario.

"signed"

Ilian Iliev, MSc, PGeo

## <u>Appendix</u>

Lithological Core Logs

| Mis    | Mistango River Resources Inc. |           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|--------|-------------------------------|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|        | /ILLE PROPERTY                | UTM       |      | GRID LOCATION: SACKVILLE Township, Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| DDH    | SK-14-01                      | 5366300   | N    | DRILL COMPANY: HUARD DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Az     | 30.00                         | 283471    | E    | GRID: DI Virtual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| DIP    | -45.00                        | ZONE 16   | E    | 850.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| E.O.H: | 101.00                        | NAD 83    | Ν    | -950.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Elev.: |                               |           |      | Start: November 01, 2011; End: November 04, 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| From   | То                            | Rock Type | Code | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 0.00   | 4.00                          | OVBD      | OBN  | casing left in hole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| 4.00   | 101.00                        | Gabbro    | GBR  | Hard, competent, non-magnetic, massive phaneritic,<br>locally ophitic, subhedral, orthopyroxene gabbro<br>(norite). Locallized increased quartz conetent, but<br>remains mafic throughout. Crystal size becomes fine-<br>to-locally aphanitic, close to EOH. Locallized<br>shearing at 50DTCA, but predominantly massive.<br>Numerous calcite stringers angles are very shallow,<br>suggesting drilling is down-dip, but overall difficult<br>to get a sense of the dip due to the massive nature<br>of the rock. Trace to 3-4% pyrite locally. EOH. |  |  |  |
|        |                               | Gabbio    | GDR  | of the fock. Trace to 3-4% pyrite locally. EOH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 101.00 | IFOH                          |           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |

| Mis    | Mistango River Resources Inc. |            |      |                                                                                                                                                                                                                                                             |  |  |  |
|--------|-------------------------------|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| SACKV  | /ILLE PROPERTY                | UTM        |      | GRID LOCATION: Sackville Township, Ontario                                                                                                                                                                                                                  |  |  |  |
| DDH    | SK-14-02                      | 5366419    | N    | DRILL COMPANY: HUARD DRILLING                                                                                                                                                                                                                               |  |  |  |
| Az     | 210.00                        | 283456     | E    | GRID: DI Virtual:                                                                                                                                                                                                                                           |  |  |  |
| DIP    | -45.00                        | ZONE 16    | Е    | 800.00                                                                                                                                                                                                                                                      |  |  |  |
| E.O.H: | 101.00                        | NAD 83     | Ν    | -765.00                                                                                                                                                                                                                                                     |  |  |  |
| Elev.: |                               |            |      | Start: November 09, 2011; End: November 11, 2014                                                                                                                                                                                                            |  |  |  |
| From   | То                            | Rock Type  | Code | Description                                                                                                                                                                                                                                                 |  |  |  |
| 0.00   | 8.40                          | OVBD       |      | Granite boulder                                                                                                                                                                                                                                             |  |  |  |
| 8.40   | 58.20                         | Sediment   | SED  | This ia a very lean BIF. Non-magnetic. Locally fine-<br>to-very coarse, poorly sorted, sub-angular-to-<br>medium rounded, massive-to-moderately bedded<br>wacke with localized jasper/hematization.                                                         |  |  |  |
| 58.20  | 93.20                         | BIF        | BIF  | Fine-to-medium grained cherty siltstone interbedded<br>with very fine chert and hematite-magnetite beds<br>(contain localized sulphides). Bedding is at about<br>60DTCA. Localized folding with limbs at shallow<br>angles to core axis. Strongly magnetic. |  |  |  |
| 93.20  | 101.00                        | Peridotite | PR   | Phaneritic peridotite with olivine phenocrysts.<br>(Could be olivine gabbro). Very weakly magnetic.<br>EOH                                                                                                                                                  |  |  |  |
| 101.00 | EOH                           |            |      |                                                                                                                                                                                                                                                             |  |  |  |

| Mis          | tango Riv     | er Resource       | es Inc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|---------------|-------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | ILLE PROPERTY | UTM               |        | GRID LOCATION: Sackville Township, Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DDH          | SK-14-03      | 5366716           | N      | DRILL COMPANY: Huard Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Az           | 210.00        | 284130            | E      | GRID: DI Virtual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DIP          | -45.00        | 16                | E      | 1200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| E.O.H:       | 200.00        | NAD 83            | N      | -200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Elev.:       |               |                   |        | Start: November 13, 2014; End: November 18, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| From         | То            | Rock Type         | Code   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.00         | 5.00          | OVBD              |        | Vary blocky core MV (motio volconio)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.00<br>5.00 | 43.30         | Basaltic Andesite | BA     | Very blocky core, MV (mafic volcanic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |               |                   |        | Hard, competent, locally weakly magnetic, locally<br>brecciated (flow breccia locally-after 54m),<br>moderately carbonatized (calcite), locally weakly<br>chloritic (chloritic seams at 54-57m, but possibly<br>locally throughout), strongly siliceous(throughout),<br>weakly hematized (oxidized pyrite, but also hair line<br>hematite stringers locally, limonite on fractures<br>close to surface) intermediate volcanic rock. Pyrite<br>content varies, but in more mineralized intervals it<br>averages 5-10%, with lesser pyrrhotite. Pyrite content<br>starts to increase after 41m. |
| 43.30        | 44.70         | Argillite         | ARG    | Pervasively silicified carbonaceous sediment.<br>Brecciation and argillic seams appear after 43.3m<br>and the core becomes carbonaceous after44.2 to<br>44.7m (this is a small cherty lens). Pervasively<br>silicified. Up to 20% sulphides (about 10% average) in<br>the argillic lens (mostly botryoidal pyrite, with some<br>hematite and less pyrrhotite).                                                                                                                                                                                                                                |
| 44.70        | 87.00         | Basaltic Andesite | BA     | Back to andesite as described above. The texture<br>becomes gradually coarser below 83m, with more<br>intrusive looking localized intervals, but overall still<br>mostly volcanic.                                                                                                                                                                                                                                                                                                                                                                                                            |
| 87.00        | 111.80        | Basaltic Andesite | BA     | Silicified and mineralized mafic-to-intermediate<br>volcanics. Another zone of increased mineralization<br>(botryoldal-to-semi massive selvages of<br>pyrite+pyrrhotite <15% locally) starts at 87 to 100.6m,<br>with pyrrhotite appearing after 95m, associated with<br>increased silicification. Flow breccia observed<br>locally at 104.5m and 107.4m.                                                                                                                                                                                                                                     |
| 111.80       | 112.60        | Rhyolite          | RY     | Short unit of rhyolite/cryptocrytalline chert? (~5% pyrite).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 112.60       | 117.70        | Basaltic Andesite | BA     | This is a heterogenuous unit comprized of weakly-to-<br>moderately silicified phaneritic-to-locally aphanitic<br>felsic volcanics.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 117.70       | 118.90        | Rhyolite          | RY     | Quartz-eye porphyry (feldspar and quartz<br>phenocrysts in aphanitic siliceous groundmass)<br>rhyolite.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 118.90       | 129.60        | Basaltic Andesite | BA     | Fine phaneritic-to-locally aphanitic, massive, locally<br>weakly silicified, weakly carbonatized felsic<br>volcanics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|        | 1      |                         | 1     |                                                        |
|--------|--------|-------------------------|-------|--------------------------------------------------------|
|        |        |                         |       | Quartz-eye rhyolite. Hard, competent, non-magnetic,    |
|        |        |                         |       | porphyry (qtz and feldspar phenocrysts in very fine    |
|        |        |                         |       | qtz groundmass) rhyolite. About 3% botryoidal pyrite   |
| 129.60 | 130.95 | Rhyolite                | RY    | on average.                                            |
|        |        |                         |       |                                                        |
|        |        |                         |       | This unit is comprised of intermediate porphyry rock,  |
|        |        |                         |       | with predominantly ferro-mag mineral content, but      |
|        |        |                         |       | also contains up to ~20%qtz and feldspar               |
|        |        |                         |       | phenocrysts. Groundmas is fine phaneritic.Sheared      |
| 130.95 | 135.00 | Porphyry B Andesite     | BA    | and faulted from 133.5-135, (~30DTCA).                 |
|        |        |                         |       | Gabbroic mafic intrusives. Small chert/rhyolite        |
|        |        |                         |       | interval from 144-144.5m (very fine, black and         |
| 135.00 | 155.35 | Mafic Intrusives        | MI    | siliceous).                                            |
| 100.00 | 100.00 |                         |       | Very fine, black, finelly banded (~50DTCA), chert.     |
| 155.35 | 159.70 | Argillite               | ARG   | <5% pyrite on average.                                 |
| 100.00 | 100.10 | , riginito              | 7.1.0 |                                                        |
|        |        |                         |       | Mafic intrusives. Phaneritic, massive, locally weakly  |
| 159.70 | 163.00 | Mafic Intrusives        | MI    | silicified, weakly carbonatized mafic intrusion.       |
| 159.70 | 103.00 |                         | IVII  | Porphyry rhyolite:feldspar and quartz-eye              |
| 163.00 | 164.50 | Rhyolite                | RY    | phenocrysts in very fine siliceous groundmass.         |
| 165.00 | 104.50 | Rhyolite                | R I   | Inetrmediate intrusive rock. Predominantly silica-     |
|        |        |                         |       | -                                                      |
|        |        |                         |       | chlorite groundmass, but with higher content of        |
|        |        |                         |       | feldspar and quartz. Some intervals are                |
|        |        |                         |       | granodioritic. Localized brown, siliceous, intrusive   |
| 164.50 | 172.00 | Intermediate Intrusives | II    | xenoliths and small xenoliths of rhyolite porphyry.    |
|        |        |                         |       | Rhyolite porphyry. Feldspar and quartz phenocrysts     |
|        |        |                         |       | in aphanitic siliceous groundmass. Small mafic         |
| 172.00 | 173.40 | Rhyolite                | RY    | intrusive xenoliths after 173m.                        |
|        |        |                         |       | Predominantly mafic intrusives, interlayered with      |
| 173.40 | 176.00 | Mafic Intrusives        | MI    | localized rhyolite porphyry.                           |
| 176.00 | 176.90 | Mafic Intrusives        | MI    | Fine grained mafic dyke.                               |
|        |        |                         |       | Heterogenuous lithological unit comprized of           |
|        |        |                         |       | predominantly rhyolite porphyry interlayered with      |
| 176.90 | 179.80 | Rhyolite                | RY    | localized segments of mafic dyke.                      |
|        |        |                         |       | Fine phaneritc, competent, chloritic mafic-to-         |
|        |        |                         |       | intermediate volcanics (could be fine grained          |
| 179.80 | 185.20 | Basaltic Andesite       | BA    | intermediate intrusive).                               |
|        |        |                         |       |                                                        |
|        |        |                         |       | Creamy-to-locally brown, locally banded (~50DTCA),     |
|        |        |                         |       | locally porphyrytic (feldspar phenocrysts in aphanitic |
|        |        |                         |       | quartz groundmass from 185.5 to 185.9m and again       |
|        |        |                         |       | close to lower contact), rhyolite. This unit is        |
|        |        |                         |       | mineralized with about 3% pyrite+pyrrhotite (blebs     |
|        |        |                         |       | of botryoidal pyrite and localized finer pyrhotite).   |
|        |        |                         |       | Pyrrhotite is visible toward lower contact, but        |
|        |        |                         |       | localized magnetism suggests it is likely present      |
|        |        |                         |       |                                                        |
| 105 00 | 100.00 | Dhualita                |       | locally throughout. This zone is most likely           |
| 185.20 | 186.80 | Rhyolite                | RY    | resposible for the second IP anolamy at depth.         |

|        |        |                         |      | Green, hard, competent, non-magnetic intermediate<br>unit. The texture is porphyritic from upper contact to<br>187.5m with abundant large plagioclase phenocrysts<br>in finer, but still phaneritic ferro-mag groundmass<br>(weak shearing at 50DTCA). From187.5m to 188<br>another banded rhyolite raft. Below the rhyolite<br>xenolith, the texture becomes finer phaneritic and<br>continues to get finer toward lower contact, along<br>with border line mafic-to-intermediate rock<br>composition. Leucoxene appears below 192.3m to |
|--------|--------|-------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 186.80 | 196.00 | Basaltic Andesite       | BA   | lower contact. Weak shearing throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 196.00 | 198.70 | Chloritized Ultramafics | CUV  | Soft, magnetic, chloritized ultramafic volcanic rock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        |        |                         |      | Lamprophyric dyke: phaneritic, pervasively                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 198.70 | 199.80 | Lamprophyre             | LAMP | Biotitized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 199.80 | 200.00 | Chloritized Ultramafics | CUV  | Back to chloritized ultramafics. EOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 200.00 | EOH    |                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Mis          | tango Riv      | er Resour              | ces        | Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------|----------------|------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SACK         | /ILLE PROPERTY | UTM                    |            | GRID LOCATION: Sackville Township, Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DDH          | SK-14-04       | 5366930                | Ν          | DRILL COMPANY: Huard Drilling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Az           | 210.00         | 284235                 | E          | GRID: DI Virtual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DIP          | -45.00         | ZONE 17                | E          | 1200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| E.O.H:       | 152.00         | NAD 83                 | Ν          | 40N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Elev.:       |                |                        |            | Start: November 19, 2014; End: November 22, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| From         | То             | Rock Type              | Code       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.00         | 2.00           | OVBD                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.00<br>8.00 | 8.00<br>11.00  | Agglomerate<br>Granite | AGL<br>GRT | Grey-green, very hard, polymictic agglomerate.<br>Angular felsic porphyritic fragments, as well as<br>intermediate and more mafic fragments in highly<br>silicified groundmas. Shear fabric is locally<br>observable at about varying from 30-45 DTCA.<br>Strong fracturing close to serfice with limonite<br>alteration.<br>Pink, hard, phaneritic, sheared granite (30 DTCA).                                                                                                                                                                          |
| 11.00        | 62.00          | Agglomerate            | AGL        | Back to grey-green, hard, locally strongly silisified,<br>polymictic agglomerate. Clast very from porphyry<br>and aphanitic frlsic, to intermediate-to-phaneritic<br>mafic within felsic-to-intermediate groundmass. The<br>clasts are comprised of angular-to-subangular<br>fragments and well rounded bombs and range from<br>2-3cm to >10cm. Localized rhyolite bands (~50cm<br>width). This interval is weakly mineralized with<br>pyrrhotite. Localized pyrrhotite clasts a few cm in<br>size. Hard to estimate avr % due to logging<br>conditions. |
| 11.00        | 02.00          | Aggiomerate            | AGL        | Black-to-dark brown, highly silicified, massive (or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |                |                        |            | very finely laminated, could not determine due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 62.00        | 66.70          | Argillite              | ARG        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |                |                        |            | Intermediate monomictic agglomerate with<br>hematized felsic-intermediate angular and rounded<br>clasts (bombs?) within mafic-to-intermediate                                                                                                                                                                                                                                                                                                                                                                                                            |
| 66.70        | 68.00          | Agglomerate            | AGL        | phaneritc matrix.<br>FZ is defined by blocky core and localized goude as<br>well as strong veining (fine qtz-cal stringers cross cut<br>bedding). FZ is hosted within brown carbonaceous                                                                                                                                                                                                                                                                                                                                                                 |
| 68.00        | 71.00          | Fault Zone             | FZ         | argillite. Bedding is at 60 DTCA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 71.00        | 87.50          | Agglomerate            | AGL        | Back to agglomerate as described above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 07 50        | 80.20          | Mofio Intrusting       |            | Gradual transition into green, hard porphyrytic (plag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 87.50        | 89.30          | Mafic Intrusives       | MI         | phenocrysts) mafic intrusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |                |                        |            | Felsic-to-locally intermediate aggrlomerate, with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 89.30        | 95.50          | Agglomerate            | AGL        | mainly rhyolitic clasts and phaneritic groundmass.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0            |                |                        | <u></u>    | Sharp contacts. Phaneritic quartz-diabase dyke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95.50        | 98.90          | Diabase                | DIA        | About 6% fine-to-locally coarse pyrite throughout.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 98.90  | 115.10 | Agglomerate     | AGL           | Grey-green, hard agglomerate. Groundmass is<br>phaneritic intermediate, locally silicified, clasts are<br>angular-to-locally rounded and predominantly felsic<br>in composition. This unit is weakly carbonatized.                                                                                            |
|--------|--------|-----------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |        |                 |               | Grey-to-black, fine-to-coarse grained, poorly sorted,<br>medium thickly bedded (60DTCA) grey wacke.<br>Coarse grained close to upper contact, with<br>interlayered sand and mud beds then becomes finer<br>deeper into the interval. Becomes carbonaceous<br>from 118-119m, then silicified proximal to lower |
| 115.10 | 119.60 | Sediment        | SED           | contact. 2-3% diagenic pyrite on average.                                                                                                                                                                                                                                                                     |
|        |        |                 |               | This is a complicated lithological unit, that contains                                                                                                                                                                                                                                                        |
|        |        |                 |               | mostly agglomerate interlayered with grey wacke<br>and argillite smaller units (122.5m). Bedding in                                                                                                                                                                                                           |
| 119 60 | 130.00 | Agglomerate     | AGL           | sedimentary component is ~60 DTCA.                                                                                                                                                                                                                                                                            |
|        | 100100 | ggiomorato      | ,. <b>J</b> L | Graphitic argillite within a small fault (graphitic                                                                                                                                                                                                                                                           |
| 130.00 | 130.70 | Graphite        | GRA           | gouge). Bedding is at 60-65 DTCA. ~10% Pyrite.                                                                                                                                                                                                                                                                |
|        |        |                 |               | Green, hard, phaneritic-to-locally aphanitic flow                                                                                                                                                                                                                                                             |
| 130.70 | 152.00 | Mafic Volcanics | MV            | breccia (locally brecciated). EOH.                                                                                                                                                                                                                                                                            |
| 152.00 | EOH    |                 |               |                                                                                                                                                                                                                                                                                                               |

|        | /ILLE PROPERTY | er Resources I         |      | CPID LOCATION: Seekville Terretin, Onderig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|----------------|------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DDH    | SK-14-05       | UTM<br>5366710         | N    | GRID LOCATION: Sackville Township, Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Az     | 30.00          | 283857                 | E    | DRILL COMPANY: Huard Drilling<br>GRID: DI Virtual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DIP    | -45.00         | ZONE 17                | E    | 1000.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 200.00         | NAD 83                 | N    | 360.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Elev.: | 200.00         | INAD 05                |      | Start: November 29, 2014; End: December 14, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                |                        |      | Start. November 23, 2014, Liid. December 14, 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| From   | То             | Rock Type              | Code | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.00   | 5.00           | OVBD                   |      | 2m casing, various felsic/mafic boulders.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.00   | 0.00           |                        |      | Felsic-to intermediate, silicified volcanics. Qtz-eye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.00   | 8.00           | Felsic Volcanics       | FV   | locally visible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        |                |                        |      | Intermediate, fine grained mineralized intrusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.00   | 10.00          | Intermediate Intrusive | Ш    | Contact all broken off and not recognizable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10.00  | 11.70          | Argillite              | ARG  | Black, very hard, silicified, carbonaceous sediment.<br>This unit is highly mineralized with parallel to<br>bedding pyrrhotite selvages (up to 20%). Bedding is<br>at ~30 DTCA (drilling down-dip). This could be<br>responsible for some of the northern IP spike.<br>Intermediate-to-mafic Intrusives. Phaneritic texture,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11.70  | 12.60          | Intermediate Intrusive |      | comprised of significant plagioclase and ferro-mag<br>minerals. Contains about 5% pyrrhotite visible on<br>fractures. Upper and lower contacts at about 35<br>degrees).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12.60  | 56.00          | Basaltic Andesite      | ВА   | Whole rock shows this to be basaltic andesite.Dark<br>grey felsic-to-intermediate volcanics. This interval is<br>silicified and very hard, mostly aphanitic, but also<br>with coarser phaneritic intervals showing qtz-eye<br>and feldspars. Localized banding (15.9m) at 30<br>DTCA. Banding appears after 51m with coarser<br>texture, flow breccia 74-77, but also noted<br>locally.This interval is moderately mineralized with<br>about 3% pyrite on average and up to 10% pyrite<br>visible on some fractures (at 16.5m). Calcite stringers<br>visible locally, but intensify after 16.5m. Quartz-<br>calcite-feldspar vein from 17.5-17.8m with weak<br>localized hematization (hematized stringers locally).<br>Mineralized argillic seams at 21.9m (~15-20% Py,<br>20cm long, 30dtca bedding).Slight foliation (30DTCA)<br>after 37m with increased silica content. |
| 56.00  | 85.70          | Tuff                   | T    | Grey-brown, very hard, weakly magnetic, finely<br>bedded-to-laminated (~30DTCA), strongly silicified<br>tuff. Carbonaceous close to upper contact. Locally<br>weakly carbonaceous. Not sure if this interval is<br>pyroclastic or sedimentary. 2-3% medium-to-coarse<br>pyrite.<br>Grey-green, very hard, silicified, rhyolitic<br>agglomerate. Numeous, intermediate-to-felsic,<br>mostly sub-angular-to-well rounded intrussive<br>fragments, set in fine, but still phaneritic                                                                                                                                                                                                                                                                                                                                                                                            |
| 85.70  | 113.30         | Agglomerate            | AGL  | groundmass. Not sure if this is agglomerate or sedimentary conglomerate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 113.30 | 149.70 | Basaltic Andesite | BA  | Back to weakly chloritized, locally weakly<br>hematized (qtz-cal-hem stringers and veinlets,<br>locally feldspatic) massive-to-locally banded<br>(30DTCA), locally brecciated (flow breccia), basaltic<br>andesite, with localized pyroclastic fragments. 2-3%<br>fine-to-coarse botyoidal pyrite throughout. Non-<br>magnetic-to-locally very weakly magnetic.<br>Lens of strongly silicified carbonaceous, mineralized<br>(2000, Dr.) and import Redding (foliotion 2) is at                                                                                                                  |
|--------|--------|-------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 149.70 | 152 10 | Argillite         | ARG | (~20% Py) sediment. Bedding (foliation?) is at 30DTCA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 152.10 |        | Basaltic Andesite | BA  | Back to grey-dark gree, locally weakly chloritized<br>very silicous massive-to-locally brecciated basaltic<br>andesite. Numerous qtz-cal+/-pyrite (1-2% very fine<br>pyrite) stringers throughout, most oriented at<br>30DTCA.                                                                                                                                                                                                                                                                                                                                                                  |
| 190.50 | 191 50 | Argillite         | ARG | Sharp upper and lower contacts at 30DTCA. Black,<br>very hard, non-magnetic, pervasively silicified, very<br>fine grained, bedded (30DTCA), strongly mineralized<br>carbonaceous, altered sediment. Pyrite forms<br>stringers locally parallel to bedding, but also large,<br>rounded aggregates and stringers that cross-cit<br>bedding. (~20%).                                                                                                                                                                                                                                               |
| 130.30 |        | / uginue          | Ę   | From 191.5 to 194m the andesite likely contains<br>some altered sedimentary material and it is also<br>strongly mineralized (~15% Py), brecciated and<br>banded (30DTCA). Mineralization is comprized of<br>locally botryoidal stringers parallel to bedding and<br>also hair line very fine abundant stringers in all<br>directions, but numerous are oriented at 0 DTCA.<br>After 194m the andesite becomes more massive with<br>very fine sphalerite stringers locally (194 and<br>195.5m). Pyrite content increases again after 197m<br>(~10%). Last 20cm of the hole change into rhyolitic |
| 191.50 |        | Basaltic Andesite | BA  | tuff.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 200.00 | EOH    |                   |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Mistango River<br>Resources Inc. |          |                           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------|----------|---------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SACKVILLE<br>PROPERTY            |          | UTM                       |      | GRID LOCATION: SACKVILLE Township,<br>Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DDH                              | SK-15-06 | 5366957                   | Ν    | DRILL COMPANY: HUARD DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Az                               | 210.00   | 283795                    | E    | GRID: DI Virtual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DIP                              | -45.00   | ZONE 16                   | E    | 800.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| E.O.H:                           | 149.00   | NAD 83                    | N    | -150.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Elev.:                           |          |                           |      | Start: May 10, 2015; End: May 14, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| From                             | То       | Rock Type                 | Code | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.00                             | 16.40    | OVBD                      | OBN  | Boulders of intermediate volcanic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16.40                            | 22.10    | Andesite                  | AND  | composition<br>Grey, hard, intermediate volcanic rock,<br>displaying flow banding and flow<br>brecciation, locally agglomeritic, aphanitic,<br>to-locally medium grained. Banding varies<br>from 40 to 50DTCA. Non-magnetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22.10                            | 23.10    | Intermediate<br>Intrusive | 11   | Sharp upper and lower contacts at 75DTCA.<br>Hard, phaneritic, light grey-to-tan, sheared<br>(~30DTCA) dyke of intermediate<br>composition.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23.10<br>35.40                   | 35.40    | Andesite<br>Fault Zone    | AND  | Back to the same unit as described above.<br>Non-magnetic-to-locally weakly<br>magnetic.Banding is variable: 60 DTCA @<br>25.2m and 33.2m, 50 DTCA@26.7m,<br>45DTCA@27.7m, 70DTCA@28.4m. Localized<br>carbonate+/-sericite+/-qtz stringers parallel<br>to banding. Oxidized pyrite and sericite on<br>fracture planes close to lower contact.<br>Stronger sericite from 34m to 34.4m, the<br>core has lighter color and much stronger<br>brecciation. Pyrite becomes noticeable<br>close to lower contact (~4%, fine<br>disseminated) and is locally oxidized to<br>limonite visible in fracture planes and in<br>fine hairline stringers.<br>Brittle FZ is hosted in graphitic argillite and |
|                                  |          |                           |      | is defined by graphitic gouge, secondary<br>silicification, blocky, carbonatized,<br>bracciated core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 35.70                            | 37.40    | Argillite                 | ARG  | Black-to-dark grey, very hard, silicified,<br>carbonatized, bedded-to-locally laminated<br>(50 DTCA av.), mineralized sediment.<br>Selvages of medium grained pyrite, locally<br>forming aggregates, which are locally<br>oxidized within fracture planes. Pyrite<br>content averages 7%. This unit is locally<br>weakly magnetic.                                                                                                                                                                                                                                                                                                                                                            |

| 37.40  | 68.00  | Agglomerate | AGL | Hard, grey, magnetic (increases after 47m)<br>banded, andesitic agglomerate. Clasts are<br>sub-angular and vary in size from 1-2 cm to<br>10 cm, but core close to upper contact is<br>more massive. The agglomerate shows<br>banding whith predominant orientation of<br>40 DTCA. Sericite is visible throughout often<br>with silica sealing spaces around clasts and<br>forming selvages parallel to banding. This<br>interval is mineralized with about 6%<br>sulphide content on average, but locally<br>exceeding 10%. Sulphides are comprized of<br>pyrite and lesser pyrrhotite and possibly<br>sphalerite. The pyrite forms stringers and<br>selvages and locally aggregates. Pyrrhotite<br>forms small bronze colored, magnetic<br>botryoidal aggregates. Fine grained, soft<br>brown alteration, noticeable throughout,<br>which locally has brown streak, but locally<br>is chalky could be sphalerite. Sulphides are<br>locally oxidized in fractures. Sericite forms<br>haloes around sulphides locally. |
|--------|--------|-------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 68.00  | 75.00  | Agglomerate | AGL | This is the same rock type as in the previous<br>interval, but strongly mineralized. Hard,<br>competent, moderately magnetic, banded<br>(45DTCA av)andesitic agglomerate.<br>Mineralized throughout with up to 20%<br>Py+Po locally (69.5-70.1m). Sericite visible<br>locally and in fractures. Patches of brown<br>soft mineral associated with the sulphides<br>with chalky stereak.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 75.00  | 136.40 | Andesite    | AND | Gradual change into grey, hard, locally<br>magnetic, massive, weakly carbonatized<br>(calcite stringers and veinlets throughout)<br>very weakly mineralized locally (tr to 2-3%<br>locally, mostly Py, but also Po patches with<br>Py rims) andesite. Localized qtz and<br>cal.stringers. Core andgle is very shallow at<br>30 DTCA avr., but locally it is steeper<br>(45DTCA@123.7). Patches of andalusite(?).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 136.40 | 137.20 | Rhyolite    | RY  | 75DTCA upper and lower contacts. Grey,<br>hard, quartz-eye, banded<br>(45DTCA@136.6m)fragmented rhyolite.<br>Non-magnetic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| 137.20 | 149.00 | Mafic Intrusion | MI | Dark grey, hard, locally weakly magnetic,<br>fine-grained, phaneritic, locally weakly<br>chloritized (observable on fracture planes)<br>mafic intrusion. Fine sericite flakes noted<br>locally. This interval is weakly mineralized<br>averaging approximately 2% coarse Py<br>locally. In the last 3m run before EOH,<br>sulphide content increase to 7% locally,<br>comrised of fine pyrite stringers and semi-<br>massives Po bands and aggregates locally.<br>Fine chlorite on numerous fractures. EOH. |
|--------|--------|-----------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 149.00 | EOH    |                 |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Mistango River<br>Resources Inc. |          |                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|----------|------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SACKVILLE<br>PROPERTY            |          | UTM                                |      | GRID LOCATION: SACKVILLE Township,<br>Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DDH                              | SK-15-07 | 5367158                            | Ν    | DRILL COMPANY: HUARD DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Az                               | 210.00   | 283466                             | E    | GRID: DI Virtual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DIP                              | -45.00   | ZONE 16                            | Е    | 400.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| E.O.H:                           | 143.00   | NAD 83                             | N    | -125.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Elev.:                           |          |                                    |      | Start: May 16, 2015; End: May 21, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| From                             | То       | Rock Type                          | Code | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.00                             | 17.00    | OVBD                               | OBN  | Mixed boulders of vocanic and sedimentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                  |          |                                    |      | origin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17.00<br>35.40                   | 35.40    | Andesite<br>Ultramafic<br>volcanic | UM   | Grey, hard, massive, non-magnetic, weakly<br>chloritized, moderately silicified<br>intermediate volcanic rock. Localized qtz<br>stringers and abundant calcite stringers<br>throughout. Calcite stringers suggest core<br>angles from 15 to 40DTCA (30 DTCA@<br>21.3m, 40DTCA@23.2-24m,<br>20DTCA@28.5m, 15DTCA@ 29.4m), most<br>likely attributed to large scale folds in the<br>lithology. Weakly mineralized~1% Py on<br>average, but locally higher.<br>Gradual contact. Intervals of UM<br>interlayered with andesite noted from<br>30.9m. This suggests drilling is along<br>contact. Grey-green, soft, moderately<br>magnetic, chloritized and talcose, massive<br>ultramafic volcanic rock. Core axis angle is<br>40DTCA (45.6m) and 30DTCA (46.4m)<br>defined by localized chlorite selvages. Non-<br>mineralized. |
| 48.80                            | 49.20    | Mafic Intrusion                    | MI   | Dark grey, hard, fine grained, phaneritic, mafic dyke.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 49.20                            | 56.00    | Ultramafic<br>Intrusive            | UM   | Green, soft-to-moderately hard, chloritized,<br>pahneritic, massive UM intrussive, which<br>also could be a high Mg mafic unit. Core<br>axis angle is 50DTCA@52.7m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 56.00                            | 57.20    | Fault Zone                         | FZ   | Minor slip, characterized by qtz filled<br>brecciation, secondary silicification,<br>localized gouge and blocky core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 57.20  | 121.10 | Mafic Intrusion | MI  | Dark grey, hard, phaneritic, weakly<br>chloritized (visible on fractures) mafic<br>intrusive rock. Pyrite becomes notable after<br>66m forming fine stringers filling hairline<br>fractures (1-2% locally). Numerous qtz-cal<br>stringers and veinlets. Core axis angle is<br>difficult to determine due to the massive<br>texture, but it is 45DTCA@65.3,<br>50DTCA@65.8m, 60DTCA@70.7m and<br>45DTCA80.8m and 103.5m. Open fols<br>hinges noted at 104.9m and 105.4m at<br>20DTCA. Chill margin and brecciated<br>contact zone start at about 115 m<br>characterized by brecciation, infill veining<br>(cal+qtz), appearance of glomerophyric<br>saussuritized plagioclase phenocrysts,<br>significant reducing of grain size and high<br>levels of silicification (possibly short<br>intervals of interlayered rhyolite).<br>Shallow angle contact(~20DTCA) with flow<br>badnded (45DTCA@122.7m and 123.9m,<br>50DTCA@132.8m), quartz eye, locally |
|--------|--------|-----------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |        |                 |     | 50DTCA@132.8m), quartz eye, locally<br>fragmented, locally brecciated, pink-to-off<br>white, very hard, non-magnetic, locally<br>porphyritic (133.3m) rhyolite. Intense qtz<br>veinig locally. Intervals of interlayered<br>altered MI (129m-132.4m). Non-<br>mineralized. Core axis angle suggests this<br>unit dips sub-vertically or about 85 degrees<br>to the north. Lower contact zone is<br>porphyritic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 134.50 | 142.40 | Andesite        | AND | 50DTCA contact marked by cal+qtz veinlet.<br>Light grey, massive, aphanitic-to- fine<br>grained phaneritic hard, non magnetic,<br>volcanic or very fine grained intrusive rock<br>of intermediate composition. Calcite<br>stringers throughout, oriented at 50DTCA<br>(135m). Border line volcanic-intrusive.<br>Selvages of sericite locally (140m). Tr-<br>to1%coarse Py locally.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 142.40 | 143.00 | Felsic Dyke     | DK  | 30DTCA contact with very coarse phaneritic,<br>intermediate, biotitized dyke. Abundance of<br>biotite and localized muscovite throughout.<br>EOH.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 143.00 | EOH    |                 |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| Mistango River        |          |                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|----------|----------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resources Inc.        |          |                      |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SACKVILLE<br>PROPERTY |          | UTM                  |      | GRID LOCATION: SACKVILLE Township,<br>Ontario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DDH                   | SK-15-08 | 5367548              | Ν    | DRILL COMPANY: HUARD DRILLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Az                    | 210.00   | 283220               | E    | GRID: DI Virtual:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DIP                   | -45.00   | ZONE 16              | E    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E.O.H:                | 199.30   | NAD 83               | N    | 75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Elev.:                |          |                      |      | Start: June 12, 2015, Finished: June19, 2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| From                  | То       | Rock Type            | Code | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.00                  | 14.00    | Overburden           | OVBN | Blocky core comprised of different<br>boulders of mostly intermediate<br>volcanic and intrusive composition.<br>Localized weak oxidation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 14.00                 | 64.80    | Mafic Intrision      | MI   | Grey, hard, locally very weakly magnetic<br>medium-to-fine phaneritic-to-locally<br>aphanitic, weakly chloritized mafic-to-<br>intermediate intrisive (localized volcanic<br>intervals) rock. Locally silicified (~23-<br>24m), with localized calcite+/-qtz<br>stringers throughout. Limonite on<br>fractures close to surface. Pyrite<br>stringers and selvages at 24.7m and<br>25m, 40.2m, 40.5m. About 2-3% Py<br>locally mostly as stringers associated<br>with cal-qtz stringers, but also<br>disseminated in places. Localized weak<br>banding in the more aphanitic and<br>silicified intervals (23.7m,) is oriented at<br>~50DTCA and 40DTCA (31.8m).<br>Hematite appears in calcite veinlets<br>close to lower contact. |
| 64.80                 | 76.40    | Ultramafic Intrusion | UM   | Gradual compositional change into<br>increased ferro-mag mineral content,<br>which becomes more apparent after a<br>minor brittle fault (recognized as the<br>contact). Dark green, soft, weakly<br>magnetic, fine-phaneritic, chloritized,<br>talcose, weakly serpentinized ultramafic<br>intrusive (peridotite). Localized calcite<br>stringers throughout. Not mineralized,<br>with occasional very fine pyrite<br>stringers. The rock becomes more<br>competent and visible limited<br>plagiovlase appearsproximal to lower<br>contact after 75m, signifying transition<br>back mafic composition.                                                                                                                            |

| 76.40  | 77.60  | Argillite       | ARG | Sharp upper contact @55DTCA. Highly<br>irregular lower contact @20DTCA. Dark   |
|--------|--------|-----------------|-----|--------------------------------------------------------------------------------|
|        |        |                 |     | grey, very hard, magnetic, laminated-to-                                       |
|        |        |                 |     | finely bedded, silicified, carbonaceous                                        |
|        |        |                 |     | -                                                                              |
|        |        |                 |     | argillite. Calcite+/-qtz stringers<br>throughout. The argillite is mineralized |
|        |        |                 |     |                                                                                |
|        |        |                 |     | with up to 15% Po+Py, forming selvages                                         |
| 77.00  | 104.00 | Dhualtha Taff   |     | and stringers concordant with bedding.                                         |
| 77.60  | 104.00 | Rhyolite Tuff   | RY  | Irregular upper contact@20DTCA.                                                |
|        |        |                 |     | Creammy-to-tan, very hard, locally                                             |
|        |        |                 |     | magnetic, silicified, locally bleached                                         |
|        |        |                 |     | (~78.6-79.6m), sericitic, banded                                               |
|        |        |                 |     | (55DTCA@79.1m, 50DTCA@79.7m)-to-                                               |
|        |        |                 |     | locally more massive, locally                                                  |
|        |        |                 |     | moderately hematized (86-86.7m) lapilli                                        |
|        |        |                 |     | tuff. Sericite is observable on numerous                                       |
|        |        |                 |     | fractures and in core. Pervasive                                               |
|        |        |                 |     | silicification. This interval is highly                                        |
|        |        |                 |     | mineralized with selvages and stringers                                        |
|        |        |                 |     | mostly concordant to bedding, locally                                          |
|        |        |                 |     | forming aggregates and nodes. Two                                              |
|        |        |                 |     | semi-massive zones with up to 40-50%                                           |
|        |        |                 |     | locally Py and less Po (83.55m-83.85m                                          |
|        |        |                 |     | and 86.15m-86.8m). Sulphide content                                            |
|        |        |                 |     | gradually reduces toward lower contact.                                        |
|        |        |                 |     | Rhyolitic intervals interlayered with                                          |
|        |        |                 |     | tuffaceous rock become more apparent                                           |
|        |        |                 |     | towards lower contact. Localized                                               |
|        |        |                 |     | interlayered small intervals of mafic                                          |
|        |        |                 |     | intrusives become noticable close to                                           |
|        |        |                 |     | lower contact.                                                                 |
| 104.00 | 107.00 | Mafic Intrusive | MI  | Faulted off contact. Dark green,                                               |
|        |        |                 |     | competent, fine phaneritic, non-                                               |
|        |        |                 |     | magnetic, weakly silicified mafic                                              |
|        |        |                 |     | intrusive rock (diabase). Small lense of                                       |
|        |        |                 |     | interlayered rhyolite.                                                         |
| 107.00 | 109.60 | Rhyolite        | RY  | Faulted contact with tan-to-pink, hard,                                        |
|        |        |                 |     | non-magnetic, incompetent (the entire                                          |
|        |        |                 |     | interval is on and off brittally faulted,                                      |
|        |        |                 |     | with strong breciation and very fine                                           |
|        |        |                 |     | chloritic and sericitic gouge filling the                                      |
|        |        |                 |     | fractures ~20DTCA trend throughout,                                            |
|        |        |                 |     | noticeable mostly close to upper                                               |
|        |        |                 |     | contact) banded rhyolite                                                       |
|        |        |                 |     | (50DTCA@107.8m). Weak sericite and                                             |
|        |        |                 |     | locally chlorite alteration. Trace of very                                     |
|        |        |                 |     | fine pyrite.                                                                   |
| 109.60 | 112.70 | Mafic Intrisive | м   | Faulted off contact. First ~1m of core is                                      |
| 103.00 | 112.70 |                 |     |                                                                                |
|        |        |                 |     | blocky with abundant hairline fractures                                        |
|        |        |                 |     | and slikensides notable on certain                                             |
|        |        |                 |     | fractures. Very fine grained, moderately                                       |
| 1      |        |                 |     | hard, non-magnetic, mafic dyke.                                                |

| 112.70 | 113.70 | Rhyolite        | RY | ~40DTCA sharp contact with minor<br>gouge, signifying a slip. Tan-to-pink,<br>hard, non-magnetic, banded to-massive<br>(~50DTCA113.2m), weakly chloritic and<br>sericitic rhyolite. Weakly<br>mineralized~2% fine and nodular pyrite.<br>We are possibly drilling down the<br>contact between the rhyolite and MI<br>since it changes so often between the<br>two.                                                               |
|--------|--------|-----------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 113.70 | 126.60 | Mafic Intrusive | мі | Irregular contact. Dark green,<br>competent, very weakly magnetic,<br>carbonatized (abundant cal+/-qtz<br>stringers and veinlts throughout),<br>weakly chloritized, locally<br>glomerophyric (saussuritized plag from<br>upper contact to about 122m) diabase<br>dyke. Non-mineralized.                                                                                                                                          |
| 126.60 | 135.50 | Rhyolite        | RY | 45DTCA sharp contact. Tan-to-pink,<br>hard, non-magnetic, aphanitic banded<br>(55DTCA@128.3m,<br>45DTCA@131.1m45DTCA@132.3m)<br>rhyolite. The rock contains abundant<br>chlorite stringers sealing small fractures<br>trending in the opposite direction of<br>banding at 50DTCA@131.85m and<br>40DTCA@133.2m and 45DTCA@133.35.<br>Trace of pyrite throughout, but up to 4%<br>Py in aggregates after 134m to lower<br>contact. |
| 135.50 | 136.30 | Mafic Intrusion | MI | Sharp contact at 45DTCA.Back to MI as<br>described above. Shearing defined by<br>shallow angle calcite stringers<br>throughout.                                                                                                                                                                                                                                                                                                  |
| 136.30 | 144.50 | Fault Zone      | FZ | Ductile-brittle fault defined by strong<br>shearing followed by blocky core,<br>abundant calcite-qtz stringers sealing<br>fractures (trending at shallow angles<br>~20DTCA), secondary silicification,<br>healed breccia, chloritic gouge (142.2-<br>144m). The fault is hosted within the<br>same fine grained MI unit above. Non-<br>mineralized with localized rhyolitic<br>xenoliths.                                        |

| 144.50    | 148.00 | Mafic Volcanic         | MV         | Texture becomes aphanitic after the FZ     |
|-----------|--------|------------------------|------------|--------------------------------------------|
| 177.50    | 140.00 |                        |            | signifying a transition into mafic, soft   |
|           |        |                        |            | (weakened by shearing), weakly             |
|           |        |                        |            | carbonatized (cal stringers throughout),   |
|           |        |                        |            | moderately chloritic mafic volcanic. The   |
|           |        |                        |            | unit displays shearing at 50DTCA           |
|           |        |                        |            | 146.2m, 45DTCA@147.6m. Due to high         |
|           |        |                        |            | degree of chloritization, this unit likely |
|           |        |                        |            | has increased Mg content and could be      |
|           |        |                        |            | a high Mg basalt or low Mg komatiite.      |
|           |        |                        |            | Chloritization and incompetency could      |
|           |        |                        |            |                                            |
|           |        |                        |            | be resultant of the strong shearing and    |
| 4 4 9 9 9 | 162.00 | Deselation Association | <b>D A</b> | proximity to FZ above.                     |
| 148.00    | 163.00 | Basaltic Andesite      | BA         | Sharp, irregularc contact. Dark grey,      |
|           |        |                        |            | aphanitic, hard, weakly carbonatized       |
|           |        |                        |            | (cal. stringers) and weakly silicified     |
|           |        |                        |            | (throughout), weakly chloritic (chloritie  |
|           |        |                        |            | selvages filling in healed fractures or    |
|           |        |                        |            | adjacent to calcite stringers) mafic-to-   |
|           |        |                        |            | intermediate volcanic rock. This rock is   |
|           |        |                        |            | moderately silicified and amphibolitized   |
|           |        |                        |            | (tremolite crystals visible below 158m)    |
|           |        |                        |            | and could also be classified as            |
|           |        |                        |            | AMPHIBOLITE. This interval is locally      |
|           |        |                        |            | mineralized (155-156.7m) by pyrite         |
|           |        |                        |            | bloom filling fractures and locally        |
|           |        |                        |            | forming selvages and aggregates~5% Py.     |
|           |        |                        |            | There is also localized trace of fine      |
|           |        |                        |            | disseminated pyrite. Foliation varies      |
|           |        |                        |            | from 45DTCA (156m), to 60DTCA (149m)       |
|           |        |                        |            | to 55DTCA (153.2m).                        |
| 163.00    | 188.14 | Rhyolite               | RY         | Shallow well defined contact at 20         |
|           |        |                        |            | DTCA. Light grey, very hard, non-          |
|           |        |                        |            | magnetic, locally tuffaceous (163-         |
|           |        |                        |            | 164.5m), aphanitic, locally weakly         |
|           |        |                        |            | sericitic (168.7-169.8m) banded, locally   |
|           |        |                        |            | brecciated (on and off, intensifies 176.7- |
|           |        |                        |            | 178.2m) and agglomeratic, locally          |
|           |        |                        |            | cherty rhyolite. Agglomerate intervals     |
|           |        |                        |            | noted at 164m and 165.3m. Exhalative       |
|           |        |                        |            | smoky chert from 165.5m to 167m and        |
|           |        |                        |            | 173-176m. Banding is visible throughout    |
|           |        |                        |            | and varies (50DTCA@163.5m,                 |
|           |        |                        |            | 60DTCA@165.2m, 20DTCA@164.4m,              |
|           |        |                        |            | 50DTCA@168m, 30DTCA@168.5m,                |
|           |        |                        |            |                                            |
|           |        |                        |            | 50DTCA@175m and 185.6m). Calcite-qtz       |
|           |        |                        |            | stringers are noted throughout trending    |
|           |        |                        |            | at right angles to banding, possibly       |
|           |        |                        |            | signifying a proximity to fold axis. This  |
|           |        |                        |            | interval is weakly locally mineralized by  |
|           |        |                        |            | about 1% fine Py forming aggregates        |
|           |        |                        |            | visible on fractures.                      |

| 188.14 | 199.30 | ULTRAMAFIC<br>INTRUSIVES | UM | Well defined contact@~40DTCA. Strong<br>silicification and chill margin (aphanitic<br>texture) to about 191m. Dark green,<br>moderately hard (very hard close to<br>upper contact), phaneritic (after 191m),<br>sheared (55DTCA@192.7m and<br>45@194.5m, non-magnetic, chloritized<br>and moderately silicified (strongly<br>silicified close to upper contact), weakly<br>carbonatized (numerous calcite<br>stringers and veinlets cross-cutting<br>foliation) ultramafic intrusive rock.<br>Mostly non-mineralized, except for<br>small interval b/n 197.5-197.7m<br>containing 25% pyrite in the form of<br>wide selvages and aggregates within a<br>calcite veinlet. EOH. |
|--------|--------|--------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 199.30 | EOH    |                          |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## Sample Core Logs

| DDH      | Rock | Sample# | % Sul | From   | То     | т    | Au g/t | Au g/t | Ag g/t | Cu g/t | Zn g/t  | Pb g/t | Mo g/t | CERTIFICATE       |
|----------|------|---------|-------|--------|--------|------|--------|--------|--------|--------|---------|--------|--------|-------------------|
| SK-14-03 | BA   | M18472  | 7     | 41.00  | 42.00  | 1.00 | 0.01   |        | < 0.2  | 227.00 | 70.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18473  | 5     | 42.00  | 43.00  | 1.00 | < 0.01 |        | < 0.2  | 123.00 | 52.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | ARG  | M18474  | 10    | 43.00  | 44.00  | 1.00 | < 0.01 |        | < 0.2  | 155.00 | 128.00  | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | ARG  | M18475  | 10    | 44.00  | 44.50  | 0.50 | 0.01   |        | < 0.2  | 126.00 | 1020.00 | 4.00   | 2.00   | 15-019; A15-00441 |
| SK-14-03 | ARG  | M18476  | 15    | 44.50  | 44.80  | 0.30 | 0.02   |        | 0.60   | 192.00 | 279.00  | 7.00   | 1.00   | 15-019; A15-00441 |
| SK-14-03 | BA   | M18477  | 5     | 44.80  | 45.50  | 0.70 | < 0.01 |        | < 0.2  | 107.00 | 45.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18478  | TR    | 45.50  | 46.00  | 0.50 | < 0.01 |        | < 0.2  | 108.00 | 35.00   | < 2    | 1.00   | 15-019; A15-00441 |
| SK-14-03 | BA   | M18479  | 2     | 46.00  | 47.00  | 1.00 | < 0.01 |        | < 0.2  | 123.00 | 36.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18480  | 2     | 47.00  | 48.00  | 1.00 | < 0.01 | < 0.01 | < 0.2  | 90.00  | 38.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18482  | 2     | 48.00  | 48.90  | 0.90 | 0.01   |        | < 0.2  | 125.00 | 32.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18483  | TR    | 92.00  | 93.00  | 1.00 | < 0.01 |        | < 0.2  | 92.00  | 73.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18484  | 2     | 93.00  | 94.00  | 1.00 | < 0.01 |        | < 0.2  | 123.00 | 67.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18485  | 2     | 94.00  | 95.00  | 1.00 | < 0.01 |        | < 0.2  | 85.00  | 69.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18486  | 3     | 95.00  | 96.00  | 1.00 | 0.01   |        | < 0.2  | 161.00 | 90.00   | < 2    | 1.00   | 15-019; A15-00441 |
| SK-14-03 | BA   | M18487  | 7     | 96.00  | 96.30  | 0.30 | < 0.01 |        | < 0.2  | 148.00 | 92.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18488  | 15    | 96.30  | 96.90  | 0.60 | < 0.01 |        | < 0.2  | 118.00 | 96.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18489  | 15    | 96.90  | 97.40  | 0.50 | 0.01   |        | 0.20   | 182.00 | 106.00  | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18492  | 15    | 97.40  | 98.00  | 0.60 | < 0.01 |        | < 0.2  | 89.00  | 112.00  | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18493  | 5     | 98.00  | 99.00  | 1.00 | < 0.01 | < 0.01 | < 0.2  | 89.00  | 75.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18494  | 10    | 99.00  | 100.00 | 1.00 | < 0.01 |        | < 0.2  | 70.00  | 72.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18495  | 5     | 100.00 | 100.50 | 0.50 | < 0.01 |        | < 0.2  | 262.00 | 40.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18496  | TR    | 182.00 | 183.00 | 1.00 | 0.01   |        | < 0.2  | 123.00 | 31.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18497  | TR    | 183.00 | 184.00 | 1.00 | < 0.01 |        | < 0.2  | 128.00 | 28.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18498  | TR    | 184.00 | 185.10 | 1.10 | < 0.01 |        | < 0.2  | 46.00  | 45.00   | < 2    | 2.00   | 15-019; A15-00441 |
| SK-14-03 | RY   | M18499  | 0     | 185.10 | 186.00 | 0.90 | < 0.01 |        | < 0.2  | 49.00  | 45.00   | < 2    | 2.00   | 15-019; A15-00441 |
| SK-14-03 | BA   | M18500  | 3     | 186.00 | 186.40 | 0.40 | < 0.01 |        | < 0.2  | 46.00  | 18.00   | < 2    | 2.00   | 15-019; A15-00441 |
| SK-14-03 | BA   | M18502  | 1     | 186.40 | 187.00 | 0.60 | < 0.01 |        | < 0.2  | 67.00  | 32.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18503  | 3     | 187.00 | 188.00 | 1.00 | < 0.01 |        | < 0.2  | 65.00  | 37.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18504  | 1     | 188.00 | 189.00 | 1.00 | < 0.01 | < 0.01 | < 0.2  | 128.00 | 31.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18505  | 3     | 189.00 | 190.00 | 1.00 | < 0.01 |        | < 0.2  | 73.00  | 38.00   | < 2    | < 1    | 15-019; A15-00441 |
| SK-14-03 | BA   | M18506  | TR    | 190.00 | 190.50 | 0.50 | < 0.01 |        | < 0.2  | 88.00  | 38.00   | < 2    | < 1    | 15-019; A15-00441 |

| DDH      | Rock | Sample# | % Sul | From   | То     | m    | Au g/t | Ag g/t | Cu g/t | Zn g/t | Pb g/t | Mo g/t | CERTIFICATE       |
|----------|------|---------|-------|--------|--------|------|--------|--------|--------|--------|--------|--------|-------------------|
| SK-14-04 | AGL  | M18507  | 0     | 105.00 | 106.00 | 1.00 | < 0.01 | < 0.2  | 92.00  | 51.00  | 76.00  | 1.00   | 15-073; A15-00441 |

| DDH      | Rock | Sample# | % Sul | From  | То    | m    | Au g/t | Au g/t | Ag g/t | Cu g/t | Zng/t   | Pb g/t | Mo g/t | CERTIFICATE       |
|----------|------|---------|-------|-------|-------|------|--------|--------|--------|--------|---------|--------|--------|-------------------|
| SK-14-05 | ARG  | M18301  | 15    | 10.00 | 11.00 | 1.00 |        |        | 0.20   | 160.00 |         | 9.00   | 2.00   | 15-016; A15-00441 |
| SK-14-05 | ARG  | M18302  | 15    | 11.00 | 11.70 | 0.70 | 0.01   |        | 0.30   | 155.00 | 1890.00 | 12.00  | 5.00   | 15-016; A15-00441 |
| SK-14-05 | 11   | M18304  | 1     | 11.70 | 12.60 | 0.90 | < 0.01 |        | < 0.2  | 92.00  | 62.00   | 5.00   | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18305  | tr    | 12.60 | 13.00 | 0.40 | < 0.01 |        | < 0.2  | 103.00 | 31.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18306  | 5     | 13.00 | 13.60 | 0.60 | < 0.01 |        | < 0.2  | 105.00 | 33.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18307  | 5     | 13.60 | 14.00 | 0.40 | < 0.01 |        | < 0.2  | 121.00 | 25.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18308  | 5     | 14.00 | 15.00 | 1.00 | < 0.01 |        | < 0.2  | 86.00  | 27.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18309  | 1     | 17.00 | 17.50 | 0.50 | < 0.01 |        | < 0.2  | 76.00  | 44.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18311  | 1     | 17.50 | 17.90 | 0.40 | < 0.01 | < 0.01 | < 0.2  | 54.00  | 34.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18312  | 2     | 17.90 | 18.60 | 0.70 | < 0.01 |        | < 0.2  | 85.00  | 37.00   | < 2    | 1.00   | 15-016; A15-00441 |
| SK-14-05 | BA   | M18313  | 1     | 18.60 | 19.60 | 1.00 | < 0.01 |        | < 0.2  | 75.00  | 34.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18314  | 1     | 19.60 | 20.00 | 0.40 | < 0.01 |        | < 0.2  | 180.00 | 39.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18315  | 3     | 20.00 | 21.00 | 1.00 | < 0.01 |        | < 0.2  | 125.00 | 42.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18316  | 1     | 21.00 | 21.60 | 0.60 | < 0.01 |        | < 0.2  | 89.00  | 49.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18317  | 15    | 21.60 | 22.10 | 0.50 | < 0.01 |        | < 0.2  | 335.00 | 126.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18319  | 8     | 21.10 | 23.00 | 1.90 | < 0.01 |        | < 0.2  | 123.00 | 40.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18320  | 3     | 50.00 | 51.00 | 1.00 | < 0.01 |        | < 0.2  | 143.00 | 47.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18321  | 1     | 51.00 | 51.50 | 0.50 | < 0.01 |        | < 0.2  | 43.00  | 62.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | BA   | M18322  | tr    | 51.50 | 52.00 | 0.50 | < 0.01 |        | < 0.2  | 42.00  | 51.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т    | M18324  | 1     | 83.00 | 84.00 | 1.00 | < 0.01 | < 0.01 | < 0.2  | 100.00 | 117.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т    | M18325  | 1     | 84.00 | 85.00 | 1.00 | < 0.01 |        | < 0.2  | 113.00 | 126.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т    | M18326  | 2     | 85.00 | 85.70 | 0.70 | 0.01   |        | 0.30   | 169.00 | 111.00  | 7.00   | 2.00   | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18327  | 1     | 85.70 | 86.00 | 0.30 | < 0.01 |        | 0.30   | 76.00  | 201.00  | 5.00   | 3.00   | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18328  | 2     | 86.00 | 87.00 | 1.00 | < 0.01 |        | < 0.2  | 24.00  | 65.00   | 3.00   | 1.00   | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18329  | 5     | 87.00 | 88.00 | 1.00 | < 0.01 |        | < 0.2  | 72.00  | 57.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18331  | 6     | 88.00 | 89.00 | 1.00 | < 0.01 |        | < 0.2  | 54.00  | 40.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18332  | 5     | 89.00 | 90.00 | 1.00 | < 0.01 |        | < 0.2  | 53.00  | 46.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18333  | 5     | 90.00 | 91.00 | 1.00 | < 0.01 |        | < 0.2  | 127.00 | 44.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18334  | 4     | 91.00 | 92.00 | 1.00 | < 0.01 |        | < 0.2  | 76.00  | 46.00   | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18335  | 3     | 92.00 | 93.00 | 1.00 | < 0.01 | < 0.01 | 0.40   | 66.00  | 273.00  | 11.00  | 2.00   | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18336  | 5     | 93.00 | 94.10 | 1.10 | 0.01   |        | 0.40   | 108.00 | 400.00  | 12.00  | 2.00   | 15-016; A15-00441 |
| SK-14-05 | AGL  | M18337  | 2     | 94.10 | 95.00 | 0.90 | 0.01   |        | < 0.2  | 56.00  | 140.00  | 6.00   | 2.00   | 15-016; A15-00441 |

| SK-14-05 | AGL | M18338 | 6  | 95.00  | 96.00  | 1.00 | < 0.01 |        | < 0.2 | 28.00   | 114.00 | 5.00   | < 1    | 15-016; A15-00441 |
|----------|-----|--------|----|--------|--------|------|--------|--------|-------|---------|--------|--------|--------|-------------------|
| SK-14-05 | AGL | M18341 | 1  | 96.00  | 97.00  | 1.00 | < 0.01 |        | < 0.2 | 40.00   | 184.00 | 6.00   | 3.00   | 15-016; A15-00441 |
| SK-14-05 | AGL | M18342 | 1  | 97.00  | 98.00  | 1.00 | < 0.01 |        | < 0.2 | 49.00   | 169.00 | 4.00   |        | 15-016; A15-00441 |
| SK-14-05 | AGL | M18344 | TR | 98.00  | 99.00  | 1.00 | < 0.01 |        | < 0.2 | 77.00   | 138.00 | 3.00   | 1.00   | 15-016; A15-00441 |
| SK-14-05 | AGL | M18345 | TR | 99.00  | 100.00 | 1.00 | < 0.01 |        | < 0.2 | 109.00  | 59.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | AGL | M18346 | TR | 100.00 | 101.00 | 1.00 | < 0.01 |        | < 0.2 | 62.00   | 38.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18347 | 6  | 68.00  | 69.00  | 1.00 | < 0.01 |        | < 0.2 | 174.00  | 70.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18348 | 7  | 69.00  | 69.70  | 0.70 | < 0.01 | 0.01   | < 0.2 | 300.00  | 82.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18349 | 7  | 69.70  | 70.00  | 0.30 | < 0.01 |        | 0.20  | 190.00  | 63.00  | 2.00   | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18351 | 9  | 70.00  | 71.00  | 1.00 | < 0.01 |        | < 0.2 | 171.00  | 75.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18352 | 5  | 71.00  | 72.00  | 1.00 | < 0.01 |        | < 0.2 | 127.00  | 62.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18353 | 5  | 72.00  | 73.00  | 1.00 | < 0.01 |        | < 0.2 | 125.00  | 87.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18354 | 3  | 73.00  | 74.00  | 1.00 | < 0.01 |        | 2.60  | 1120.00 | 338.00 | 118.00 | 108.00 | 15-016; A15-00441 |
| SK-14-05 | Т   | M18355 | 5  | 74.00  | 75.00  | 1.00 | < 0.01 |        | < 0.2 | 118.00  | 85.00  | < 2    | 1.00   | 15-016; A15-00441 |
| SK-14-05 | Т   | M18356 | 6  | 75.00  | 76.00  |      | < 0.01 |        | < 0.2 | 196.00  | 81.00  | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18357 | 5  | 76.00  | 77.00  |      | < 0.01 |        | < 0.2 | 183.00  | 107.00 | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18358 | 1  | 77.00  | 78.00  | 1.00 | < 0.01 |        | < 0.2 | 126.00  | 110.00 | < 2    | < 1    | 15-016; A15-00441 |
| SK-14-05 | Т   | M18361 | 2  | 78.00  | 79.00  | 1.00 | < 0.01 |        | < 0.2 | 168.00  | 86.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | Т   | M18362 | 1  | 79.00  | 80.00  | 1.00 | < 0.01 |        | < 0.2 | 122.00  | 82.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | Т   | M18363 | 3  | 80.00  | 81.00  | 1.00 | < 0.01 |        | < 0.2 | 149.00  | 68.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | Т   | M18364 | 1  | 81.00  | 82.00  | 1.00 | < 0.01 |        | < 0.2 | 71.00   | 62.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | Т   | M18365 | 4  | 82.00  | 83.00  | 1.00 | < 0.01 |        | < 0.2 | 184.00  | 87.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | BA  | M18366 | 3  | 113.00 | 114.00 | 1.00 | < 0.01 |        | < 0.2 | 64.00   | 39.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | BA  | M18367 | 4  | 114.00 | 115.00 | 1.00 | < 0.01 |        | < 0.2 | 85.00   | 41.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | BA  | M18368 | 5  | 115.00 | 116.00 | 1.00 | < 0.01 |        | 2.70  | 1150.00 | 338.00 | 119.00 | 109.00 | 15-017; A15-00441 |
| SK-14-05 | BA  | M18369 | 3  | 116.00 | 117.00 | 1.00 | < 0.01 |        | < 0.2 | 164.00  | 32.00  | < 2    | 3.00   | 15-017; A15-00441 |
| SK-14-05 | BA  | M18371 | 5  | 117.00 | 118.00 | 1.00 | < 0.01 | < 0.01 | < 0.2 | 56.00   | 24.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | BA  | M18372 | 3  | 118.00 | 119.00 | 1.00 | < 0.01 |        | < 0.2 | 49.00   | 23.00  | < 2    |        | 15-017; A15-00441 |
| SK-14-05 | BA  | M18373 | 5  | 119.00 | 120.00 | 1.00 | < 0.01 |        | < 0.2 | 73.00   | 36.00  | < 2    | 1.00   | 15-017; A15-00441 |
|          | BA  | M18374 | tr | 120.00 | 121.00 | 1.00 | < 0.01 |        | < 0.2 | 20.00   | 53.00  | < 2    |        | 15-017; A15-00441 |
| SK-14-05 | BA  | M18375 | 6  | 121.00 | 122.00 | 1.00 | < 0.01 |        | < 0.2 | 116.00  | 51.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | BA  | M18376 | 5  | 122.00 | 123.00 | 1.00 | < 0.01 |        | < 0.2 | 134.00  | 53.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | BA  | M18377 | 6  | 123.00 | 124.00 | 1.00 | < 0.01 |        | < 0.2 | 217.00  | 52.00  | < 2    | < 1    | 15-017; A15-00441 |
|          | BA  | M18378 | 8  | 124.00 | 125.00 | 1.00 | < 0.01 |        | < 0.2 | 137.00  | 76.00  | < 2    |        | 15-017; A15-00441 |
|          | BA  | M18381 | 2  | 125.00 | 126.00 | 1.00 | < 0.01 |        | < 0.2 | 157.00  | 60.00  | < 2    | < 1    | 15-017; A15-00441 |
| SK-14-05 | BA  | M18382 | 6  | 126.00 | 127.00 | 1.00 | < 0.01 | 0.01   | < 0.2 | 101.00  | 65.00  | < 2    | < 1    | 15-017; A15-00441 |

| SK-14-05 | BA  | M18383 | tr | 127.00 | 127.60 | 0.60 | < 0.01 |        | < 0.2 | 151.00 | 67.00  | < 2  | 2.00 | 15-017: A15-00441 |
|----------|-----|--------|----|--------|--------|------|--------|--------|-------|--------|--------|------|------|-------------------|
|          | BA  | M18384 | 1  | 127.60 | 128.00 | 0.40 | < 0.01 |        | < 0.2 | 64.00  | 45.00  | < 2  |      | 15-017; A15-00441 |
|          | BA  | M18385 | 1  | 128.00 | 129.00 | 1.00 | < 0.01 |        | < 0.2 | 86.00  | 100.00 | 9.00 |      | 15-017; A15-00441 |
| -        | BA  | M18386 | 3  | 129.00 | 130.00 | 1.00 | < 0.01 |        | < 0.2 | 122.00 | 39.00  | 2.00 |      | 15-017; A15-00441 |
| SK-14-05 | BA  | M18387 | 4  | 130.00 | 131.00 | 1.00 | < 0.01 |        | < 0.2 | 162.00 | 86.00  | < 2  |      | 15-017; A15-00441 |
|          | BA  | M18388 | 5  | 131.00 | 132.00 | 1.00 | < 0.01 |        | < 0.2 | 115.00 | 56.00  | < 2  |      | 15-017; A15-00441 |
|          | BA  | M18389 | 6  | 132.00 | 132.90 | 0.90 | < 0.01 |        | < 0.2 | 151.00 | 69.00  | < 2  |      | 15-017; A15-00441 |
| SK-14-05 | BA  | M18391 | 1  | 132.90 | 133.70 | 0.80 | < 0.01 |        | < 0.2 | 59.00  | 49.00  | < 2  |      | 15-017; A15-00441 |
| SK-14-05 | BA  | M18392 | 4  | 133.70 | 134.00 | 0.30 | < 0.01 |        | < 0.2 | 63.00  | 62.00  | < 2  |      | 15-017; A15-00441 |
| SK-14-05 | BA  | M18393 | 4  | 134.00 | 135.00 | 1.00 | < 0.01 | < 0.01 | < 0.2 | 93.00  | 65.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18394 | 1  | 135.00 | 136.00 | 1.00 | < 0.01 |        | < 0.2 | 78.00  | 71.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18395 | 2  | 136.00 | 137.00 | 1.00 | < 0.01 |        | < 0.2 | 105.00 | 88.00  | < 2  |      | 15-017; A15-00441 |
| SK-14-05 | BA  | M18396 | 4  | 137.00 | 138.00 | 1.00 | < 0.01 |        | < 0.2 | 119.00 | 86.00  | < 2  |      | 15-017; A15-00441 |
| SK-14-05 | BA  | M18397 | 5  | 138.00 | 139.00 | 1.00 | < 0.01 |        | < 0.2 | 119.00 | 107.00 | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18398 | 6  | 139.00 | 140.00 | 1.00 | < 0.01 |        | < 0.2 | 129.00 | 105.00 | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18401 | 4  | 140.00 | 141.00 | 1.00 | < 0.01 |        | < 0.2 | 176.00 | 98.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18402 | 2  | 141.00 | 142.00 | 1.00 | < 0.01 |        | < 0.2 | 108.00 | 94.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18403 | 5  | 142.00 | 143.00 | 1.00 | < 0.01 |        | < 0.2 | 82.00  | 59.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18404 | 5  | 143.00 | 144.00 | 1.00 | < 0.01 |        | < 0.2 | 97.00  | 81.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18405 | 3  | 144.00 | 145.00 | 1.00 | < 0.01 | < 0.01 | < 0.2 | 110.00 | 103.00 | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18406 | 5  | 145.00 | 146.00 | 1.00 | < 0.01 |        | < 0.2 | 95.00  | 109.00 | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18407 | 3  | 146.00 | 147.00 | 1.00 | < 0.01 |        | < 0.2 | 142.00 | 99.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18408 | 2  | 147.00 | 148.00 | 1.00 | < 0.01 |        | < 0.2 | 117.00 | 89.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18409 | 4  | 148.00 | 149.00 | 1.00 | < 0.01 |        | < 0.2 | 149.00 | 76.00  | < 2  | 1.00 | 15-017; A15-00441 |
| SK-14-05 | BA  | M18411 | 1  | 149.00 | 149.70 | 0.70 | < 0.01 |        | < 0.2 | 67.00  | 88.00  | < 2  | < 1  | 15-017; A15-00441 |
|          | ARG | M18412 | 20 | 149.70 | 150.20 | 0.50 | < 0.01 |        | 0.20  | 460.00 | 219.00 | 3.00 | < 1  | 15-017; A15-00441 |
| SK-14-05 | ARG | M18413 | 8  | 150.20 | 151.00 | 0.80 | < 0.01 |        | < 0.2 | 214.00 | 89.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | ARG | M18414 | 2  | 151.00 | 152.00 | 1.00 | < 0.01 |        | < 0.2 | 198.00 | 106.00 | < 2  | < 1  | 15-017; A15-00441 |
|          | BA  | M18415 | 5  | 152.00 | 153.00 | 1.00 | < 0.01 |        | < 0.2 | 136.00 | 72.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18416 | 4  | 153.00 | 154.00 | 1.00 | < 0.01 | < 0.01 | < 0.2 | 182.00 | 61.00  | < 2  |      | 15-017; A15-00441 |
| SK-14-05 | BA  | M18417 | 3  | 154.00 | 155.00 | 1.00 | < 0.01 |        | < 0.2 | 106.00 | 59.00  | < 2  | < 1  | 15-017; A15-00441 |
| SK-14-05 | BA  | M18418 | 5  | 155.00 | 156.00 | 1.00 | < 0.01 |        | < 0.2 | 73.00  | 60.00  | < 2  | < 1  | 15-018; A15-00441 |
| SK-14-05 | BA  | M18421 | 4  | 156.00 | 157.00 | 1.00 | < 0.01 |        | < 0.2 | 109.00 | 109.00 | < 2  | < 1  | 15-018; A15-00441 |
| SK-14-05 | BA  | M18422 | 1  | 157.00 | 158.00 | 1.00 | < 0.01 |        | < 0.2 | 187.00 | 63.00  | < 2  | < 1  | 15-018; A15-00441 |
|          | BA  | M18423 | 3  | 167.00 | 167.70 | 0.70 | < 0.01 |        | < 0.2 | 72.00  | 65.00  | < 2  |      | 15-018; A15-00441 |
| SK-14-05 | BA  | M18424 | 8  | 167.70 | 168.00 | 0.30 | < 0.01 |        | < 0.2 | 253.00 | 146.00 | < 2  | 1.00 | 15-018; A15-00441 |
|          | BA  | M18425 | 8  | 168.00 | 169.00 | 1.00 | < 0.01 |        | < 0.2 | 93.00  | 84.00  | < 2  |      | 15-018; A15-00441 |
| SK-14-05 | BA  | M18426 | 8  | 169.00 | 170.00 | 1.00 | < 0.01 |        | < 0.2 | 146.00 | 71.00  | < 2  |      | 15-018; A15-00441 |
|          | BA  | M18427 | 3  | 170.00 | 171.00 | 1.00 | < 0.01 |        | < 0.2 | 146.00 | 122.00 | < 2  | < 1  | 15-018; A15-00441 |
| SK-14-05 | BA  | M18428 | 1  | 171.00 | 172.00 | 1.00 | < 0.01 |        | < 0.2 | 177.00 | 138.00 | < 2  | < 1  | 15-018; A15-00441 |

| SK-14-05 BA | A M18429  | 2  | 172.00 | 173.00 | 1.00 | < 0.01 | < 0.01 | < 0.2 | 147.00 | 105.00 | < 2   | < 1 15-018; A15-00441  |
|-------------|-----------|----|--------|--------|------|--------|--------|-------|--------|--------|-------|------------------------|
| SK-14-05 BA | A M18431  | 3  | 173.00 | 174.00 | 1.00 | < 0.01 |        | < 0.2 | 141.00 | 99.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18432  | 1  | 174.00 | 175.00 | 1.00 | < 0.01 |        | < 0.2 | 99.00  | 48.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18433  | TR | 175.00 | 176.00 | 1.00 | < 0.01 |        | < 0.2 | 93.00  | 45.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18434  | TR | 176.00 | 177.00 | 1.00 | < 0.01 |        | < 0.2 | 63.00  | 47.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18435  | 1  | 177.00 | 178.00 | 1.00 | < 0.01 |        | < 0.2 | 170.00 | 61.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18436  | 4  | 178.00 | 179.00 | 1.00 | < 0.01 |        | < 0.2 | 91.00  | 77.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18437  | TR | 179.00 | 180.00 | 1.00 | < 0.01 |        | < 0.2 | 105.00 | 56.00  | < 2   | 1.00 15-018; A15-00441 |
| SK-14-05 BA | A M18438  | 2  | 180.00 | 181.00 | 1.00 | < 0.01 |        | < 0.2 | 142.00 | 70.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18441  | 1  | 181.00 | 182.00 | 1.00 | < 0.01 |        | < 0.2 | 118.00 | 44.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18442  | 2  | 182.00 | 183.00 | 1.00 | < 0.01 | < 0.01 | < 0.2 | 141.00 | 63.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18443  | 2  | 183.00 | 184.00 | 1.00 | < 0.01 |        | < 0.2 | 178.00 | 38.00  | < 2   | 1.00 15-018; A15-00441 |
| SK-14-05 BA | A M18444  | 4  | 184.00 | 185.00 | 1.00 | < 0.01 |        | < 0.2 | 166.00 | 66.00  | < 2   | 1.00 15-018; A15-00441 |
| SK-14-05 BA | A M18445  | 4  | 185.00 | 186.00 | 1.00 | < 0.01 |        | < 0.2 | 84.00  | 76.00  | < 2   | 1.00 15-018; A15-00441 |
| SK-14-05 BA | A M18446  | 5  | 186.00 | 187.00 | 1.00 | < 0.01 |        | < 0.2 | 128.00 | 55.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18447  | 5  | 187.00 | 188.00 | 1.00 | < 0.01 |        | < 0.2 | 105.00 | 52.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18448  | 5  | 188.00 | 189.00 | 1.00 | < 0.01 |        | < 0.2 | 242.00 | 118.00 | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18449  | 3  | 189.00 | 190.00 | 1.00 | < 0.01 |        | < 0.2 | 142.00 | 55.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18451  | 3  | 190.00 | 190.50 | 0.50 | < 0.01 |        | < 0.2 | 119.00 | 68.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 AR | RG M18452 | 20 | 190.50 | 191.00 | 0.50 | < 0.01 |        | 0.30  | 199.00 | 117.00 | 6.00  | < 1 15-018; A15-00441  |
| SK-14-05 AR | RG M18453 | 20 | 191.00 | 191.50 | 0.50 | < 0.01 | < 0.01 | 0.30  | 206.00 | 424.00 | 9.00  | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18454  | 25 | 191.50 | 192.00 | 0.50 | < 0.01 |        | 0.40  | 444.00 | 144.00 | 11.00 | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18455  | 18 | 192.00 | 192.50 | 0.50 | < 0.01 |        | < 0.2 | 138.00 | 152.00 | 6.00  | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18456  | 17 | 192.50 | 193.00 | 0.50 | < 0.01 |        | < 0.2 | 136.00 | 162.00 | 4.00  | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18457  | 20 | 193.00 | 193.60 | 0.60 | < 0.01 |        | < 0.2 | 148.00 | 103.00 | 2.00  | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18458  | 15 | 193.60 | 194.00 | 0.40 | < 0.01 |        | < 0.2 | 154.00 | 74.00  | < 2   | 1.00 15-018; A15-00441 |
| SK-14-05 BA | A M18461  | 5  | 194.00 | 194.30 | 0.30 | < 0.01 |        | < 0.2 | 128.00 | 65.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18462  | 2  | 194.30 | 195.00 | 0.70 | < 0.01 |        | < 0.2 | 129.00 | 60.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18463  | 5  | 195.00 | 195.40 | 0.40 | < 0.01 |        | < 0.2 | 90.00  | 50.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA |           | 10 | 195.40 | 195.80 | 0.40 | < 0.01 |        | < 0.2 | 146.00 | 63.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18465  | 10 | 195.80 | 196.50 | 0.70 | < 0.01 | < 0.01 | < 0.2 | 164.00 | 66.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18466  | 5  | 196.50 | 197.00 | 0.50 | < 0.01 |        | < 0.2 | 107.00 | 50.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18467  | TR | 197.00 | 197.70 | 0.70 | < 0.01 |        | < 0.2 | 100.00 | 72.00  | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA |           | 15 | 197.70 | 198.50 | 0.80 | < 0.01 |        | < 0.2 | 159.00 | 113.00 | 2.00  | < 1 15-018; A15-00441  |
| SK-14-05 BA |           | 20 | 198.50 | 199.20 | 0.70 | < 0.01 |        | < 0.2 | 118.00 | 106.00 | < 2   | < 1 15-018; A15-00441  |
| SK-14-05 BA | A M18471  | 15 | 199.20 | 200.00 | 0.80 | 0.01   |        | 0.20  | 146.00 | 98.00  | 4.00  | < 1 15-019; A15-00441  |

| DDH      | Rock | Sample# | % Sul | From | То   | m   | Au g/t | Ag g/t | Cu % | Zn % | Pb % | Mo % | CERTIFICATE       |
|----------|------|---------|-------|------|------|-----|--------|--------|------|------|------|------|-------------------|
| SK-15-06 | AGL  | 283651  | 5     | 62.4 | 63   | 0.6 | < 0.01 | <0.3   | 109  | 150  | 10   | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283652  | 6     | 63   | 64   | 1   | < 0.01 | <0.3   | 156  | 156  | 12   | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283653  | 3     | 64   | 65   | 1   | < 0.01 | <0.3   | 127  | 184  | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283654  | 7     | 65   | 66   | 1   | < 0.01 | <0.3   | 131  | 189  | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283655  | 3     | 66   | 67   | 1   | < 0.01 | <0.3   | 129  | 147  | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283656  | 4     | 67   | 68   | 1   | < 0.01 | <0.3   | 131  | 135  | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283657  | 8     | 68   | 69   | 1   | < 0.01 | <0.3   | 115  | 84   | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283658  | 10    | 69   | 69.5 | 0.5 | < 0.01 | <0.3   | 104  | 83   | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283659  | 20    | 69.5 | 70   | 0.5 | 0.01   | <0.3   | 147  | 61   | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283660  | 20    | 70   | 70.5 | 0.5 | < 0.01 | <0.3   | 141  | 63   | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283661  | 20    | 70.5 | 71   | 0.5 | < 0.01 | <0.3   | 160  | 62   | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283662  | 5     | 71   | 71.5 | 0.5 | < 0.01 | <0.3   | 91   | 90   | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283663  | 10    | 71.5 | 72   | 0.5 | < 0.01 | <0.3   | 98   | 93   | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283664  | 15    | 72   | 72.5 | 0.5 | < 0.01 | <0.3   | 103  | 98   | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283665  | 15    | 72.5 | 73   | 0.5 | < 0.01 | <0.3   | 125  | 78   | 3    | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283666  | 10    | 73   | 73.5 | 0.5 | < 0.01 | <0.3   | 142  | 76   | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AGL  | 283667  | 4     | 73.5 | 74   | 0.5 | < 0.01 | <0.3   | 141  | 105  | < 3  | < 1  | 15-1245/A15-03836 |
| SK-15-06 | AND  | 283668  | 4     | 74   | 75.3 | 1.3 | < 0.01 | <0.3   | 126  | 124  | < 3  | < 1  | 15-1245/A15-03836 |

| DDH      | Rock | Sample# | % Sul | From  | То    | m    | Au g/t  | Ag g/t | Cu, ppm | Zn, ppm | Pb, ppm | Mo, ppm | CERTIFICATE   |
|----------|------|---------|-------|-------|-------|------|---------|--------|---------|---------|---------|---------|---------------|
| SK-15-08 | UM   | 283669  | tr    | 75    | 76    | 1    | < 0.005 | <1     | 10      | 94      |         | <1      | 196_201542410 |
| SK-15-08 | UM   | 283670  | 3     | 76    | 76.4  | 0.4  | <0.005  | <1     | 70      | 99      | 8       | 3       | 196_201542410 |
| SK-15-08 | ARG  | 283671  | 15    | 76.4  | 77    | 0.6  | <0.005  | <1     | 195     | 296     | 7       | 10      | 196_201542410 |
| SK-15-08 | ARG  | 283672  | 7     | 77    | 77.6  | 0.6  | < 0.005 | <1     | 230     | 702     | 5       | 12      | 196_201542410 |
| SK-15-08 | RY   | 283673  | 5     | 77.6  | 78.1  | 0.5  | <0.005  | <1     | 28      | 85      | 8       | 5       | 196_201542410 |
| SK-15-08 | RY   | 283674  | 5     | 78.1  | 78.5  | 0.4  | <0.005  | <1     | 14      | 52      | 10      | 4       | 196_201542410 |
| SK-15-08 | RY   | 283675  | 7     | 78.5  | 79    | 0.5  | <0.005  | <1     | 20      | 26      | 9       | 6       | 196_201542410 |
| SK-15-08 | RY   | 283676  | 7     | 79    | 79.5  | 0.5  | <0.005  | <1     | 13      | 48      | 26      | 7       | 196_201542410 |
| SK-15-08 | RY   | 283677  | 4     | 79.5  | 80    | 0.5  | <0.005  | <1     | 11      | 103     | 11      | 4       | 196_201542410 |
| SK-15-08 | RY   | 283678  | 8     | 80    | 80.4  | 0.4  | <0.005  | <1     | 14      | 38      | 9       | 8       | 196_201542410 |
| SK-15-08 | RY   | 283679  | 25    | 80.4  | 80.7  | 0.3  | < 0.005 | <1     | 48      | 49      | 8       | 8       | 196_201542410 |
| SK-15-08 | RY   | 283680  | 5     | 80.7  | 81    | 0.3  | <0.005  | <1     | 11      | 84      | 7       | 4       | 196_201542410 |
| SK-15-08 | RY   | 283681  | 5     | 81    | 81.6  | 0.6  | <0.005  | <1     | 15      | 79      | 7       | 4       | 196_201542410 |
| SK-15-08 | RY   | 283682  | 6     | 81.6  | 82    | 0.4  | <0.005  | <1     | 22      | 82      | 6       | 1       | 196_201542410 |
| SK-15-08 | RY   | 283683  | 7     | 82    | 82.5  | 0.5  | <0.005  | <1     | 13      | 70      | 5       | 4       | 196_201542410 |
| SK-15-08 | RY   | 283684  | 8     | 82.5  | 83    | 0.5  | < 0.005 | <1     | 13      | 74      | 4       | 7       | 196_201542410 |
| SK-15-08 | RY   | 283685  | 6     | 83    | 83.55 | 0.55 | < 0.005 | <1     | 9       | 44      | 3       | 5       | 196_201542410 |
| SK-15-08 | RY   | 283686  | 50    | 83.55 | 83.85 | 0.3  | < 0.005 | <1     | 23      | 49      | 13      | 22      | 196_201542410 |
| SK-15-08 | RY   | 283687  | 5     | 83.85 | 84.4  | 0.55 | <0.005  | <1     | 8       | 50      | 3       | 7       | 196_201542410 |
| SK-15-08 | RY   | 283688  | 5     | 84.4  | 84.9  | 0.5  | <0.005  | <1     | 10      | 67      | 6       | 3       | 196_201542410 |
| SK-15-08 | RY   | 283689  | 18    | 84.9  | 85.2  | 0.3  | <0.005  | <1     | 13      | 48      | 2       | 6       | 196_201542410 |
| SK-15-08 | RY   | 283690  | 18    | 85.2  | 85.6  | 0.4  | <0.005  | <1     | 14      | 71      | 8       | 6       | 196_201542410 |
| SK-15-08 | RY   | 283691  | 7     | 85.6  | 86    | 0.4  | <0.005  | <1     | 9       | 60      | 7       | 5       | 196_201542410 |
| SK-15-08 | RY   | 283692  | 15    | 86    | 86.3  | 0.3  | <0.005  | <1     | 8       | 46      | 5       | 7       | 196_201542410 |
| SK-15-08 | RY   | 283693  | 35    | 86.3  | 86.7  | 0.4  | <0.005  | <1     | 24      | 41      | 8       | 15      | 196_201542410 |
| SK-15-08 | RY   | 283694  | 9     | 86.7  | 87    | 0.3  | <0.005  | <1     | 8       | 45      | 5       | 3       | 196_201542410 |
| SK-15-08 | RY   | 283695  | 5     | 87    | 87.5  | 0.5  | <0.005  | <1     | 7       | 33      |         | <1      | 196_201542410 |
|          | RY   | 283696  | 7     | 87.5  | 88    | 0.5  | <0.005  | <1     | 10      | 45      | <1      | 4       | 196_201542410 |
| SK-15-08 | RY   | 283697  | 7     | 88    | 88.5  | 0.5  | <0.005  | <1     | 11      | 61      | 2       | 3       | 196_201542410 |
|          | RY   | 283698  | 7     | 88.5  | 89    | 0.5  | <0.005  | <1     | 9       | 56      | <1      | 3       | 196_201542410 |
| SK-15-08 | RY   | 283699  | 5     | 89    | 89.5  | 0.5  | <0.005  | <1     | 9       | 34      | 1       | 4       | 196_201542410 |
| SK-15-08 | RY   | 283700  | 4     | 89.5  | 90.3  | 0.8  | <0.005  | <1     | 7       | 36      | 1       | <1      | 196_201542410 |
| SK-15-08 | RY   | 284501  | tr    | 90.3  | 91    | 0.7  | <0.005  | <1     | 8       | 41      | <1      | <1      | 196_201542410 |
| SK-15-08 | RY   | 284502  | tr    | 91    | 91.5  | 0.5  | <0.005  | <1     | 12      | 50      | 5       | 4       | 196_201542410 |
| SK-15-08 | RY   | 284503  | tr    | 91.5  | 92    | 0.5  | <0.005  | <1     | 13      | 57      | 2       | 5       | 196_201542410 |
| SK-15-08 | RY   | 284504  | 2     | 92    | 92.5  | 0.5  | < 0.005 | <1     | 9       | 55      | 3       | 4       | 196_201542410 |
| SK-15-08 | RY   | 284505  | 3     | 92.5  | 93    | 0.5  | <0.005  | <1     | 11      | 98      | 6       | 5       | 196_201542410 |
| SK-15-08 | RY   | 284506  | 1     | 93    | 93.5  | 0.5  | <0.005  | <1     | 12      | 77      | 8       | 7       | 196_201542410 |

| SK-15-08 | RY | 284507 | 4  | 93.5   | 94     | 0.5  | <0.005  | <1 | 13  | 92  | 8  | 8 196_201542410  |
|----------|----|--------|----|--------|--------|------|---------|----|-----|-----|----|------------------|
|          | RY | 284508 | 6  | 94     | 94.5   |      | < 0.005 | <1 | 11  | 70  | 12 | 6 196 201542410  |
|          | RY | 284509 | 1  | 94.5   | 95     |      | < 0.005 | <1 | 13  | 80  | 5  | 6 196 201542410  |
| SK-15-08 | RY | 284510 | 3  | 95     | 95.5   | 0.5  | <0.005  | <1 | 13  | 49  | 3  | 5 196 201542410  |
| SK-15-08 | RY | 284511 | tr | 95.5   | 96     | 0.5  | <0.005  | <1 | 11  | 42  | 7  | 4 196_201542410  |
| SK-15-08 | RY | 284512 | tr | 96     | 96.5   | 0.5  | <0.005  | <1 | 15  | 61  | 5  | 5 196_201542410  |
| SK-15-08 | RY | 284513 | tr | 96.5   | 97     | 0.5  | <0.005  | <1 | 8   | 50  | 5  | 5 196_201542410  |
| SK-15-08 | RY | 284514 | tr | 97     | 97.5   | 0.5  | <0.005  | <1 | 11  | 49  | <1 | 6 196_201542410  |
| SK-15-08 | RY | 284515 | tr | 97.5   | 98     | 0.5  | <0.005  | <1 | 4   | 53  | 6  | 4 196_201542410  |
| SK-15-08 | RY | 284516 | tr | 98     | 98.5   | 0.5  | <0.005  | 2  | 17  | 65  | 5  | 4 196_201542410  |
| SK-15-08 | RY | 284517 | tr | 98.5   | 99     | 0.5  | <0.005  | <1 | 12  | 53  | 2  | 5 196_201542410  |
| SK-15-08 | RY | 284518 | 3  | 99     | 99.3   | 0.3  | <0.005  | <1 | 113 | 164 | 12 | 12 196_201542410 |
|          | RY | 284519 | tr | 99.3   | 100    | 0.7  | <0.005  | <1 | 7   | 65  | 5  | 4 196_201542410  |
| SK-15-08 | RY | 284520 | tr | 100    | 100.5  | 0.5  | <0.005  | <1 | 9   | 38  | 7  | 4 196_201542410  |
|          | RY | 284521 |    | 100.5  | 101    | 0.5  |         | <1 | 5   | 38  | 5  | 5 196_201542410  |
| SK-15-08 | RY | 284522 | tr | 101    | 101.5  | 0.5  | <0.005  | <1 | 5   | 32  | 3  | 3 196_201542410  |
|          | RY | 284523 | tr | 101.5  | 102    | 0.5  | <0.005  | <1 | 5   | 27  | 4  | 4 196_201542410  |
|          | RY | 284524 |    | 102    | 102.5  | 0.5  | <0.005  | <1 | 4   | 31  | 5  | 6 196_201542410  |
|          | RY | 284525 | tr | 102.5  | 103    | 0.5  | <0.005  | <1 | 20  | 38  | 4  | 8 196_201542410  |
|          | RY | 284526 | 1  | 103    | 103.5  | 0.5  | <0.005  | <1 | 39  | 58  | 14 | 7 196_201542410  |
| -        | RY | 284527 | 1  | 103.5  | 104    | 0.5  |         | <1 | 39  | 52  | 11 | 10 196_201542410 |
|          | MI | 284528 | 1  | 104    | 104.5  | 0.5  |         |    | 62  | 78  | 7  | 8 196_201542410  |
|          | MI | 284529 | 2  | 104.5  | 105.1  | 0.6  | <0.005  | <1 | 38  | 58  | 17 | 9 196_201542410  |
|          | MI | 284530 |    | 105.1  | 105.5  | 0.4  | 0.006   |    | 86  | 87  | 12 | 8 196_201542410  |
| -        | MI | 284531 |    | 105.5  | 106    |      | <0.005  | <1 | 58  | 95  | 8  | 4 196_201542410  |
|          | MI | 284532 |    | 106    | 106.5  |      | <0.005  | <1 | 16  | 105 | 11 | 4 196_201542410  |
|          | MI | 284533 |    | 106.5  | 107    | 0.5  |         | <1 | 19  | 88  | 6  | 4 196_201542410  |
|          | RY | 284534 |    | 107    | 107.5  | 0.5  |         | <1 | 14  | 36  | 5  | 4 196_201542410  |
|          | RY | 284535 |    | 107.5  | 108    | 0.5  |         | <1 | 171 | 44  | 6  | 7 196_201542410  |
| -        | RY | 284536 |    | 108    | 108.5  | 0.5  |         | <1 | 17  | 39  | 6  | 5 196_201542410  |
|          | RY | 284537 |    | 108.5  | 109    | 0.5  |         | <1 | 10  | 45  | 4  | 6 196_201542410  |
|          | RY | 284538 |    | 109    | 109.5  |      | <0.005  | <1 | 12  | 44  | 8  | 7 196_201542410  |
| -        | RY | 284539 |    | 109.5  | 110    |      | <0.005  | <1 | 55  | 65  | 10 | 5 196_201542410  |
|          | MI | 284540 | 0  | 110    | 111    | 1    |         | <1 | 84  | 91  | 10 | 2 196_201542410  |
|          | MI | 284541 |    | 111    | 112    | 1    |         | <1 | 71  | 86  | 11 | 1 196_201542410  |
|          | MI | 284542 |    | 112    | 112.7  | 0.7  |         | <1 | 63  | 84  | 10 | 3 196_201542410  |
|          | RY | 284543 |    | 112.7  | 113    | 0.3  |         | <1 | 11  | 42  | 4  | 7 196_201542410  |
|          | RY | 284544 |    | 113    | 113.65 | 0.65 |         | <1 | 21  | 36  | 5  | 5 196_201542410  |
| SK-15-08 | MI | 284545 | tr | 113.65 | 114    | 0.35 | <0.005  | <1 | 175 | 45  | 9  | 3 196_201542410  |

| SK-15-08         MI         284547         tr         115         116         1         <0.005                                                                                                                                                             | 2 196_201542410<br>5 196_201542410<br>2 196_201542410<br>3 196_201542410<br>4 196_201542410 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| SK-15-08         MI         284548         tr         126         126         0         <0.005         <1         79         69         <1           SK-15-08         MI         284549         tr         126         126.6         0.6         <0.005    | 2 196_201542410<br>3 196_201542410<br>4 196_201542410                                       |
| SK-15-08         MI         284549         tr         126         126.6         0.6         <0.005         <1         93         76         2           SK-15-08         RY         284550         tr         126.6         127         0.4         <0.005 | 3 196_201542410<br>4 196_201542410                                                          |
| SK-15-08 RY 284550 tr 126.6 127 0.4 <0.005 <1 7 22 4                                                                                                                                                                                                       | 4 196_201542410                                                                             |
|                                                                                                                                                                                                                                                            |                                                                                             |
| SK-15-08 RY 284551 tr 127 128 1 <0.005 <1 15 14 6                                                                                                                                                                                                          | 4 400 004 5 40 440                                                                          |
|                                                                                                                                                                                                                                                            | 4 196_201542410                                                                             |
| SK-15-08         RY         284552         tr         128         129         1         <0.005         <1         11         46         1                                                                                                                  | 4 196_201542410                                                                             |
| SK-15-08 RY 284553 tr 129 130 1 <0.005 <1 22 203 6                                                                                                                                                                                                         | 7 196_201542410                                                                             |
| SK-15-08         RY         284554         tr         130         131         1         <0.005         <1         20         140         2                                                                                                                 | 6 196_201542410                                                                             |
| SK-15-08 RY 284555 tr 131 132 1 <0.005 <1 82 64 <1                                                                                                                                                                                                         | 9 196_201542410                                                                             |
| SK-15-08 RY 284556 tr 132 133 1 0.006 <1 85 164 4                                                                                                                                                                                                          | 7 196_201542410                                                                             |
| SK-15-08 RY 284557 tr 133 134 1 <0.005 <1 12 30 11                                                                                                                                                                                                         | 5 196_201542410                                                                             |
| SK-15-08 RY 284558 tr 134 134.4 0.4 <0.005 <1 104 186 5                                                                                                                                                                                                    | 6 196_201542410                                                                             |
| SK-15-08 RY 284559 4 134.4 134.8 0.4 <0.005 <1 142 214 12                                                                                                                                                                                                  | 8 196_201542410                                                                             |
| SK-15-08 RY 284560 tr 134.8 135.5 0.7 0.008 <1 19 18 5                                                                                                                                                                                                     | 5 196_201542410                                                                             |
| SK-15-08 MI 284561 tr 135.5 136 0.5 <0.005 <1 106 90 3                                                                                                                                                                                                     | 4 196_201542410                                                                             |
| SK-15-08 MI 284562 tr 136 137 1 <0.005 <1 62 52 1                                                                                                                                                                                                          | 5 196_201542410                                                                             |
| SK-15-08 BA 284563 tr 153.5 154 0.5 <0.005 <1 62 68 12 1                                                                                                                                                                                                   | 3 196_201542410                                                                             |
| SK-15-08         BA         284564         3         154         155         1         <0.005         <1         53         65         5                                                                                                                   | 9 196_201542410                                                                             |
| SK-15-08         BA         284565         5         155         156         1         <0.005         <1         65         59         3         1                                                                                                         | 2 196_201542410                                                                             |
| SK-15-08         BA         284566         5         156         157         1         <0.005         <1         260         62         6         1                                                                                                        | 5 196_201542410                                                                             |
| SK-15-08 BA 284567 tr 157 158 1 0.007 <1 114 77 <1                                                                                                                                                                                                         | 5 196_201542410                                                                             |
| SK-15-08 BA 284568 tr 158 158.5 0.5 0.007 <1 116 90 <1                                                                                                                                                                                                     | 1 196_201542410                                                                             |
| SK-15-08         BA         284569         tr         161.5         162         0.5         0.008         <1         102         89         6         <1                                                                                                   | 196_201542410                                                                               |
| SK-15-08         BA         284570         tr         162         163         1         <0.005         <1         113         88         9                                                                                                                 | 4 196_201542410                                                                             |
| SK-15-08 RY 284571 tr 163 164 1 0.014 <1 22 190 7                                                                                                                                                                                                          | 4 196_201542410                                                                             |
| SK-15-08         RY         284572         tr         164         165         1         0.007         <1         22         111         10                                                                                                                 | 4 196_201542410                                                                             |
| SK-15-08         RY         284573         1         165         165.5         0.5         <0.005         <1         23         308         18                                                                                                             | 5 196_201542410                                                                             |
| SK-15-08 RY 284574 2 165.5 166.5 1 <0.005 <1 27 66 7                                                                                                                                                                                                       | 5 196_201542410                                                                             |
| SK-15-08 RY 284575 2 166.5 167.2 0.7 <0.005 <1 24 65 4                                                                                                                                                                                                     | 7 196_201542410                                                                             |
| SK-15-08 RY 284576 tr 167.2 168 0.8 <0.005 <1 18 56 6                                                                                                                                                                                                      | 4 196_201542410                                                                             |
| SK-15-08 RY 284577 tr 168 169 1 <0.005 <1 21 77 11                                                                                                                                                                                                         | 4 196_201542410                                                                             |
| SK-15-08         RY         284578         tr         169         169.8         0.8         <0.005         <1         10         45         5                                                                                                              | 2 196_201542410                                                                             |

### **Assay Certificates**



# Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 3

12-Jan-15

#### Assay Certificate

## Certificate Number: 15-016

Report Date:

| Company: | Mistango River Resources |
|----------|--------------------------|
| Project: | Sackville                |
| Attn:    | Donald Kasner            |

*We hereby certify* the following Assay of 49 core samples submitted 07-Jan-15 by Donald Kasner

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |
|------------------|---------------------|-------------------------|
|                  |                     |                         |
| 18301            | 0.02                |                         |
| 18302            | 0.01                |                         |
| 18304            | < 0.01              |                         |
| 18305            | < 0.01              |                         |
| 18306            | < 0.01              |                         |
| 18307            | < 0.01              |                         |
| 18308            | < 0.01              |                         |
| 18309            | < 0.01              |                         |
| 18311            | < 0.01              |                         |
| 18312            | < 0.01              | < 0.01                  |
| Blank Value      | < 0.01              |                         |
| OxH97            | 1.27                |                         |
| 18313            | < 0.01              |                         |
| 18314            | < 0.01              |                         |
| 18315            | < 0.01              |                         |
| 18316            | < 0.01              |                         |
| 18317            | < 0.01              |                         |
| 18319            | < 0.01              |                         |
| 18320            | < 0.01              |                         |
| 18321            | < 0.01              |                         |
| 18322            | < 0.01              |                         |
| 18324            | < 0.01              | < 0.01                  |
| 18325            | < 0.01              |                         |
| 18326            | 0.01                |                         |
| 18327            | < 0.01              |                         |

Certified by

Jing Lin, M Sc.

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300



# Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 2 of 3

12-Jan-15

### Assay Certificate

### Certificate Number: 15-016

| Company: | Mistango River Resources |
|----------|--------------------------|
| Project: | Sackville                |
| Attn:    | Donald Kasner            |

Report Date:

*We hereby certify* the following Assay of 49 core samples submitted 07-Jan-15 by Donald Kasner

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |
|------------------|---------------------|-------------------------|
| 18328            | < 0.01              |                         |
| 18329<br>18331   | < 0.01              |                         |
| 18331<br>18332   | < 0.01<br>< 0.01    |                         |
| 18333            | < 0.01              |                         |
|                  | < 0.01              |                         |
| Blank Value      | < 0.01              |                         |
| OxH97            | 1.29                |                         |
| 18334            | < 0.01              |                         |
| 18335            | < 0.01              | < 0.01                  |
| 18336            | 0.01                |                         |
| 18337            | 0.01                |                         |
| 18338            | < 0.01              |                         |
| 18341            | < 0.01              |                         |
| 18342            | < 0.01              |                         |
| 18344            | < 0.01              |                         |
| 18345            | < 0.01              |                         |
| 18346            | < 0.01              |                         |
| 18347            | < 0.01              |                         |
| 18348            | < 0.01              | 0.01                    |
| 18349            | < 0.01              |                         |
| 18351            | < 0.01              |                         |
| 18352            | < 0.01              |                         |
| 18353            | < 0.01              |                         |
| 18354            | < 0.01              |                         |
| 18355            | < 0.01              |                         |
|                  |                     |                         |

Certified by

Jing Lin, M Sc.

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300



Assaying - Consulting - Representation

Page 3 of 3

## Assay Certificate

## Certificate Number: 15-016

| Company: | Mistango River Resources |              |           |
|----------|--------------------------|--------------|-----------|
| Project: | Sackville                | Report Date: | 12-Jan-15 |
| Attn:    | Donald Kasner            |              |           |
|          |                          |              |           |

*We hereby certify* the following Assay of 49 core samples submitted 07-Jan-15 by Donald Kasner

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |
|------------------|---------------------|-------------------------|
| 18356            | < 0.01              |                         |
| 18357            | < 0.01              |                         |
| Blank Value      | < 0.01              |                         |
| OxH97            | 1.25                |                         |
| 18358            | < 0.01              |                         |

Certified by \_

Jing Lin, M Sc.



Assaying - Consulting - Representation

Page 1 of 3

## Assay Certificate

### Certificate Number: 15-017

| Company: | Mistango River Resources |              |           |
|----------|--------------------------|--------------|-----------|
| Project: | Sackville                | Report Date: | 14-Jan-15 |
| Attn:    | Donald Kasner            |              |           |

*We hereby certify* the following Assay of 51 core samples submitted 07-Jan-15 by Donald Kasner

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |      |           |
|------------------|---------------------|-------------------------|------|-----------|
|                  |                     |                         | <br> | ·         |
| 18361            | < 0.01              |                         |      |           |
| 18362            | < 0.01              |                         |      |           |
| 18363            | < 0.01              |                         |      |           |
| 18364            | < 0.01              |                         |      |           |
| 18365            | < 0.01              |                         |      |           |
| 18366            | < 0.01              |                         | <br> |           |
| 18367            | < 0.01              |                         |      |           |
| 18368            | < 0.01              |                         |      |           |
| 18369            | < 0.01              |                         |      |           |
| 18371            | < 0.01              | < 0.01                  |      |           |
| Blank Value      | < 0.01              |                         | <br> | ·         |
| OxH97            | 1.26                |                         |      |           |
| 18372            | < 0.01              |                         |      |           |
| 18373            | < 0.01              |                         |      |           |
| 18374            | < 0.01              |                         |      |           |
| 18375            | < 0.01              |                         | <br> | · — — — — |
| 18376            | < 0.01              |                         |      |           |
| 18377            | < 0.01              |                         |      |           |
| 18378            | < 0.01              |                         |      |           |
| 18379            | 1                   |                         |      |           |
| 18381            | < 0.01              |                         | <br> | ·         |
| 18382            | < 0.01              | 0.01                    |      |           |
| 18383            | < 0.01              | 0.01                    |      |           |
| 18384            | < 0.01              |                         |      |           |
| 10001            | < 0.01              |                         |      |           |

1. listed not received

Certified by

Jing Lin, M Sc.



Assaying - Consulting - Representation

Page 2 of 3

## Assay Certificate

# Certificate Number: 15-017

| Company: | Mistango River Resources |              |           |
|----------|--------------------------|--------------|-----------|
| Project: | Sackville                | Report Date: | 14-Jan-15 |
| Attn:    | Donald Kasner            |              |           |

*We hereby certify* the following Assay of 51 core samples submitted 07-Jan-15 by Donald Kasner

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |  |
|------------------|---------------------|-------------------------|--|
| 18386<br>18387   | < 0.01<br>< 0.01    |                         |  |
| 18388            | < 0.01              |                         |  |
| 18389            | < 0.01              |                         |  |
| 18391            | < 0.01              |                         |  |
| Blank Value      | < 0.01              |                         |  |
| OxH97            | 1.27                |                         |  |
| 18392            | < 0.01              |                         |  |
| 18393            | < 0.01              | < 0.01                  |  |
| 18394            | < 0.01              |                         |  |
| 18395            | < 0.01              |                         |  |
| 18396            | < 0.01              |                         |  |
| 18397            | < 0.01              |                         |  |
| 18398            | < 0.01              |                         |  |
| 18401            | < 0.01              |                         |  |
| 18402            | < 0.01              |                         |  |
| 18403            | < 0.01              |                         |  |
| 18404            | < 0.01              |                         |  |
| 18405            | < 0.01              | < 0.01                  |  |
| 18406            | < 0.01              |                         |  |
| 18407            | < 0.01              |                         |  |
| 18408            | < 0.01              |                         |  |
| 18409            | < 0.01              |                         |  |
| 18411            | < 0.01              |                         |  |
| 18412            | < 0.01              |                         |  |
|                  |                     |                         |  |

1. listed not received

Certified by

#### Jing Lin, M Sc.



Assaying - Consulting - Representation

Page 3 of 3

### Assay Certificate

## Certificate Number: 15-017

| Company: | Mistango River Resources |              |           |
|----------|--------------------------|--------------|-----------|
| Project: | Sackville                | Report Date: | 14-Jan-15 |
| Attn:    | Donald Kasner            |              |           |

*We hereby certify* the following Assay of 51 core samples submitted 07-Jan-15 by Donald Kasner

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |
|------------------|---------------------|-------------------------|
| 18413            | < 0.01              |                         |
| 18414            | < 0.01              |                         |
| Blank Value      | < 0.01              |                         |
| OxH97            | 1.26                |                         |
| 18415            | < 0.01              |                         |
| 18416            | < 0.01              | < 0.01                  |
| 18417            | < 0.01              |                         |

1. listed not received

Certified by

Jing Lin, M Sc.



Assaying - Consulting - Representation

Page 1 of 2

## Assay Certificate

# Certificate Number: 15-018

| Company: | Mistango River Resources |              |           |
|----------|--------------------------|--------------|-----------|
| Project: | Sackville                | Report Date: | 14-Jan-15 |
| Attn:    | Donald Kasner            |              |           |

*We hereby certify* the following Assay of 44 core samples submitted 07-Jan-15 by Donald Kasner

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |
|------------------|---------------------|-------------------------|
|                  |                     |                         |
| 18418            | < 0.01              |                         |
| 18421            | < 0.01              |                         |
| 18422            | < 0.01              |                         |
| 18423            | < 0.01              |                         |
| 18424            | < 0.01              |                         |
| 18425            | < 0.01              |                         |
| 18426            | < 0.01              |                         |
| 18427            | < 0.01              |                         |
| 18428            | < 0.01              |                         |
| 18429            | < 0.01              | < 0.01                  |
| Blank Value      | < 0.01              |                         |
| OxH97            | 1.25                |                         |
| 18431            | < 0.01              |                         |
| 18432            | < 0.01              |                         |
| 18433            | < 0.01              |                         |
| 18434            | < 0.01              |                         |
| 18435            | < 0.01              |                         |
| 18436            | < 0.01              |                         |
| 18437            | < 0.01              |                         |
| 18438            | < 0.01              |                         |
| 19441            |                     |                         |
| 18441<br>18442   | < 0.01              | < 0.01                  |
|                  | < 0.01              | < 0.01                  |
| 18443<br>18444   | < 0.01<br>< 0.01    |                         |
| 18445            | < 0.01              |                         |
|                  |                     |                         |

Certified by

Jing Lin, M Sc.



Assaying - Consulting - Representation

Page 2 of 2

## Assay Certificate

## Certificate Number: 15-018

| Company: | Mistango River Resources |              |           |
|----------|--------------------------|--------------|-----------|
| Project: | Sackville                | Report Date: | 14-Jan-15 |
| Attn:    | Donald Kasner            |              |           |

*We hereby certify* the following Assay of 44 core samples submitted 07-Jan-15 by Donald Kasner

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |
|------------------|---------------------|-------------------------|
| 18446            | < 0.01              |                         |
| 18447            | < 0.01              |                         |
| 18448            | < 0.01              |                         |
| 18449            | < 0.01              |                         |
| 18451            | < 0.01              |                         |
| Blank Value      | < 0.01              |                         |
| OxH97            | 1.27                |                         |
| 18452            | < 0.01              |                         |
| 18453            | < 0.01              | < 0.01                  |
| 18454            | < 0.01              |                         |
| 18455            | < 0.01              |                         |
| 18456            | < 0.01              |                         |
| 18457            | < 0.01              |                         |
| 18458            | < 0.01              |                         |
| 18461            | < 0.01              |                         |
| 18462            | < 0.01              |                         |
| 18463            | < 0.01              |                         |
| 18464            | < 0.01              |                         |
| 18465            | < 0.01              | < 0.01                  |
| 18466            | < 0.01              |                         |
| 18467            | < 0.01              |                         |
| 18468            | < 0.01              |                         |
| 18469            | < 0.01              |                         |
|                  |                     |                         |

Certified by \_

Jing Lin, M Sc.



Assaying - Consulting - Representation

Page 1 of 2

## Assay Certificate

## Certificate Number: 15-019

| Company: | Mistango River Resources |              |           |
|----------|--------------------------|--------------|-----------|
| Project: | Sackville                | Report Date: | 15-Jan-15 |
| Attn:    | Donald Kasner            |              |           |

*We hereby certify* the following Assay of 32 core samples submitted 07-Jan-15 by Donald Kasner

| Au<br>FA-MP | Au Chk<br>FA-MP                                                                       |
|-------------|---------------------------------------------------------------------------------------|
| g/Mt        | g/Mt                                                                                  |
| 0.01        |                                                                                       |
| 0.01        |                                                                                       |
| < 0.01      |                                                                                       |
|             |                                                                                       |
| 0.01        |                                                                                       |
| 0.02        |                                                                                       |
| < 0.01      |                                                                                       |
| < 0.01      |                                                                                       |
| < 0.01      |                                                                                       |
| < 0.01      | < 0.01                                                                                |
| < 0.01      |                                                                                       |
| 1.27        |                                                                                       |
| 0.01        |                                                                                       |
| < 0.01      |                                                                                       |
| < 0.01      |                                                                                       |
| < 0.01      |                                                                                       |
| 0.01        |                                                                                       |
| < 0.01      |                                                                                       |
| < 0.01      |                                                                                       |
| 0.01        |                                                                                       |
| < 0.01      |                                                                                       |
| < 0.01      | < 0.01                                                                                |
| < 0.01      |                                                                                       |
| < 0.01      |                                                                                       |
| 0.01        |                                                                                       |
|             | FA-MP<br>g/Mt<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.01 |

Certified by

Jing Lin, M Sc.



Assaying - Consulting - Representation

Page 2 of 2

## Assay Certificate

## Certificate Number: 15-019

| Company: | Mistango River Resources |              |           |
|----------|--------------------------|--------------|-----------|
| Project: | Sackville                | Report Date: | 15-Jan-15 |
| Attn:    | Donald Kasner            |              |           |

*We hereby certify* the following Assay of 32 core samples submitted 07-Jan-15 by Donald Kasner

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |
|------------------|---------------------|-------------------------|
| 18497            | < 0.01              |                         |
| 18498            | < 0.01              |                         |
| 18499            | < 0.01              |                         |
| 18500            | < 0.01              |                         |
| 18502            | < 0.01              |                         |
| Blank Value      | < 0.01              |                         |
| OxH97            | 1.26                |                         |
| 18503            | < 0.01              |                         |
| 18504            | < 0.01              | < 0.01                  |
| 18505            | < 0.01              |                         |
| 18506            | < 0.01              |                         |

Certified by

Jing Lin, M Sc.



Assaying - Consulting - Representation

Page 1 of 1

# Assay Certificate

# Certificate Number: 15-073

| Company: | Mistango River Resources                                                        |              |           |
|----------|---------------------------------------------------------------------------------|--------------|-----------|
| Project: | Sackville                                                                       | Report Date: | 26-Jan-15 |
| Attn:    | Donald Kasner                                                                   |              |           |
|          | <i>certify</i> the following Assay of 1 core samples 07-Jan-15 by Donald Kasner |              |           |

| Sample<br>Number | Au Au Ch<br>FA-MP FA-M<br>g/Mt g/M |
|------------------|------------------------------------|
| 18507            | < 0.01                             |

Certified by

Jing Lin, M Sc.

Quality Analysis ...



Innovative Technologies

Date Submitted: 21-Jan-15 Invoice No.: A15-00441 Invoice Date: 03-Feb-15 Your Reference: Mistango 15-017;016;073;018;019

Swastika Labs Box 10, 1 Cameron Ave. Swastika ON P0K 1T0 Canada

ATTN: Jing Lin

# CERTIFICATE OF ANALYSIS

177 Pulp samples were submitted for analysis. The following analytical package was requested:

Code 1E3 Aqua Regia ICP(AQUAGEO)

REPORT A15-00441

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes: Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control



ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Page 1/11

Report: A15-00441

Results

| Analysis Combal               | Th     | 4.0       | Cd         | 0.     | Mn          | Mo        | Ni       | Pb       | 7-          | AI                    | As       | в         | Ba        | Be         | Bi       | Ca                    | Co       | Cr       | <b>F</b> .   | c.        | Lie .     | к      |           |
|-------------------------------|--------|-----------|------------|--------|-------------|-----------|----------|----------|-------------|-----------------------|----------|-----------|-----------|------------|----------|-----------------------|----------|----------|--------------|-----------|-----------|--------|-----------|
| Analyte Symbol<br>Unit Symbol | ppm    | Ag<br>ppm |            | Cu     | ppm         | MO<br>DDM | ppm      | ppm      | Zn          | AI<br>%               | ppm      |           |           |            | ppm      | va<br>%               | ppm      | ppm      | Fe<br>%      | Ga<br>ppm | Hg<br>ppm | к<br>% | La        |
| Lower Limit                   | 20     | 0.2       | ppm<br>0.5 | ppm    | ppm<br>5    | ppm       | ppm<br>1 | ppm<br>2 | ppm<br>2    | <sup>36</sup><br>0.01 | ppm<br>2 | ppm<br>10 | ppm<br>10 | ppm<br>0.5 | ppm<br>2 | <sup>70</sup><br>0.01 | ppm<br>1 | ppm<br>1 | <sup>%</sup> | ppm<br>10 | ppm<br>1  | 0.01   | ppm<br>10 |
| Method Code                   | AR-ICP | AR-ICP    | AR-ICP     | AR-ICP | o<br>AR-ICP | AR-ICP    | AR-ICP   | AR-ICP   | 2<br>AR-ICP | AR-ICP                | AR-ICP   | AR-ICP    | AR-ICP    | AR-ICP     | AR-ICP   | AR-ICP                | AR-ICP   | AR-ICP   | AR-ICP       | AR-ICP    | AR-ICP    | AR-ICP | AR-ICF    |
| 18301                         | < 20   | 0.2       | 0.9        | 160    | 711         | 2         | 75       | 0        | 703         | 1.85                  | ANTION   | < 10      | 16        | < 0.5      | < 2      | 1.30                  | 40       | 134      | 6.78         | < 10      | <1        | 0.18   | < 10      |
| 18302                         | < 20   | 0.2       | 3.1        | 155    | 203         | 5         | 140      | 12       | 1890        | 1.00                  |          | < 10      | 18        | < 0.5      | <2       | 0.63                  | 61       | 218      | 6.76         | < 10      | <1        | 0.05   | 11        |
| 18304                         | < 20   | < 0.2     | < 0.5      | 92     | 479         | <1        | 589      | 5        | 62          | 1.87                  | 3        | < 10      | 27        | < 0.5      | < 2      | 1.11                  | 87       | 817      | 5.91         | < 10      | <1        | 0.03   | < 10      |
| 18305                         | < 20   | < 0.2     | < 0.5      | 103    | 411         | <1        | 821      | <2       | 31          | 1.75                  | 4        | < 10      | 43        | < 0.5      | <2       | 1.72                  | 102      | 794      | 3.60         | < 10      | <1        | 0.12   | < 10      |
| 18306                         | < 20   | < 0.2     | < 0.5      | 105    | 476         | <1        | 764      | <2       | 33          | 2.02                  | 58       | < 10      | 29        | < 0.5      | <2       | 1.92                  | 98       | 903      | 3.62         | < 10      | <1        | 0.10   | < 10      |
| 18307                         | < 20   | < 0.2     | < 0.5      | 121    | 581         | <1        | 533      | <2       | 25          | 2.14                  | 51       | < 10      | 72        | < 0.5      | < 2      | 3.08                  | 82       | 796      | 3.25         | < 10      | <1        | 0.21   | < 10      |
| 18308                         | < 20   | < 0.2     | < 0.5      | 86     | 483         | <1        | 84       | <2       | 27          | 2.06                  | 3        | < 10      | 52        | < 0.5      | <2       | 2.59                  | 23       | 212      | 2.07         | < 10      | <1        | 0.16   | < 10      |
| 18309                         | < 20   | < 0.2     | < 0.5      | 76     | 679         | <1        | 75       | <2       | 44          | 2.26                  | < 2      | < 10      | 33        | < 0.5      | <2       | 2.32                  | 30       | 262      | 4.13         | < 10      | <1        | 0.10   | < 10      |
| 18311                         | < 20   | < 0.2     | < 0.5      | 54     | 600         | <1        | 81       | <2       | 34          | 1.93                  | <2       | < 10      | 38        | < 0.5      | <2       | 3.05                  | 25       | 319      | 3.41         | < 10      | <1        | 0.12   | < 10      |
| 18312                         | < 20   | < 0.2     | < 0.5      | 85     | 658         | 1         | 63       | <2       | 37          | 1.95                  | 2        | < 10      | 27        | < 0.5      | <2       | 3.00                  | 25       | 270      | 3.59         | < 10      | <1        | 0.09   | < 10      |
| 18313                         | < 20   | < 0.2     | < 0.5      | 75     | 616         | <1        | 63       | <2       | 34          | 1.88                  | < 2      | < 10      | 39        | < 0.5      | <2       | 2.28                  | 24       | 263      | 3.35         | < 10      | <1        | 0.10   | < 10      |
| 18314                         | < 20   | < 0.2     | < 0.5      | 180    | 618         | <1        | 95       | <2       | 39          | 1.81                  | <2       | < 10      | 35        | < 0.5      | <2       | 2.39                  | 35       | 269      | 3.50         | < 10      | <1        | 0.10   | < 10      |
| 18315                         | < 20   | < 0.2     | < 0.5      | 125    | 730         | <1        | 102      | <2       | 42          | 2.54                  | <2       | < 10      | 57        | < 0.5      | <2       | 3.41                  | 34       | 329      | 3.86         | < 10      | <1        | 0.16   | < 10      |
| 18316                         | < 20   | < 0.2     | < 0.5      | 89     | 788         | <1        | 85       | <2       | 49          | 2.53                  | <2       | < 10      | 67        | < 0.5      | <2       | 3.23                  | 31       | 378      | 4.08         | < 10      | <1        | 0.19   | < 10      |
| 18317                         | < 20   | < 0.2     | < 0.5      | 335    | 768         | <1        | 129      | <2       | 126         | 2.35                  | <2       | < 10      | 27        | < 0.5      | <2       | 2.62                  | 48       | 383      | 5.67         | < 10      | <1        | 0.09   | < 10      |
| 18319                         | < 20   | < 0.2     | < 0.5      | 123    | 705         | <1        | 48       | <2       | 40          | 2.48                  | <2       | < 10      | 39        | < 0.5      | <2       | 3.25                  | 27       | 110      | 3.15         | < 10      | <1        | 0.13   | < 10      |
| 18320                         | < 20   | < 0.2     | < 0.5      | 143    | 777         | <1        | 62       | <2       | 47          | 2.73                  | 6        | < 10      | 33        | < 0.5      | <2       | 3.67                  | 33       | 170      | 3.58         | < 10      | <1        | 0.09   | < 10      |
| 18321                         | < 20   | < 0.2     | < 0.5      | 43     | 733         | <1        | 108      | <2       | 62          | 2.64                  | 6        | < 10      | 60        | < 0.5      | <2       | 3.00                  | 24       | 346      | 2.89         | < 10      | <1        | 0.14   | < 10      |
| 18322                         | < 20   | < 0.2     | < 0.5      | 42     | 887         | <1        | 90       | <2       | 51          | 1.86                  | 5        | < 10      | 46        | < 0.5      | <2       | 4.90                  | 19       | 327      | 2.68         | < 10      | <1        | 0.14   | < 10      |
| 8324                          | < 20   | < 0.2     | < 0.5      | 100    | 1420        | <1        | 67       | <2       | 117         | 2.53                  | 11       | < 10      | 47        | < 0.5      | <2       | 7.18                  | 37       | 107      | 4.86         | < 10      | <1        | 0.12   | < 10      |
| 18325                         | < 20   | < 0.2     | < 0.5      | 113    | 1390        | <1        | 82       | <2       | 126         | 2.44                  | 15       | < 10      | 51        | < 0.5      | <2       | 4.90                  | 44       | 117      | 5.44         | 10        | <1        | 0.21   | < 10      |
| 18326                         | < 20   | 0.3       | < 0.5      | 169    | 1430        | 2         | 60       | 7        | 111         | 1.79                  | 14       | < 10      | 27        | < 0.5      | <2       | 9.06                  | 40       | 103      | 4.74         | < 10      | <1        | 0.14   | < 10      |
| 18327                         | < 20   | 0.3       | < 0.5      | 76     | 1150        | 3         | 119      | 5        | 201         | 1.35                  | 118      | < 10      | 42        | < 0.5      | <2       | 5.16                  | 36       | 143      | 2.85         | < 10      | <1        | 0.17   | 11        |
| 18328                         | < 20   | < 0.2     | < 0.5      |        | 355         | 1         | 34       | 3        | 65          | 1.21                  | 33       | < 10      | 79        | < 0.5      | <2       | 1.40                  | 9        | 102      | 1.40         | < 10      | <1        | 0.33   | 10        |
| 18329                         | < 20   | < 0.2     | < 0.5      | 72     | 669         | <1        | 63       | <2       | 57          | 2.40                  | 5        | < 10      | 77        | < 0.5      | <2       | 2.17                  | 27       | 166      | 3.19         | < 10      | <1        | 0.16   | < 10      |
| 18331                         | < 20   | < 0.2     | < 0.5      | 54     | 679         | < 1       | 44       | <2       | 40          | 2.17                  | 3        | < 10      | 77        | < 0.5      | < 2      | 2.59                  | 19       | 131      | 3.05         | < 10      | <1        | 0.18   | < 10      |
| 18332                         | < 20   | < 0.2     | < 0.5      | 53     | 692         | <1        | 56       | <2       | 46          | 2.32                  | 4        | < 10      | 49        | < 0.5      | < 2      | 2.32                  | 27       | 125      | 3.77         | < 10      | <1        | 0.14   | < 10      |
| 18333                         | < 20   | < 0.2     | < 0.5      | 127    | 553         | <1        | 73       | <2       | 44          | 2.48                  | 14       | < 10      | 45        | < 0.5      | <2       | 2.58                  | 29       | 128      | 3.43         | < 10      | <1        | 0.13   | < 10      |
| 18334                         | < 20   | < 0.2     | < 0.5      | 76     | 669         | <1        | 88       | <2       | 46          | 2.40                  | 5        | < 10      | 43        | < 0.5      | < 2      | 2.69                  | 29       | 179      | 3.57         | < 10      | <1        | 0.15   | < 10      |
| 18335                         | < 20   | 0.4       | < 0.5      | 66     | 679         | 2         | 83       | 11       | 273         | 1.25                  | 150      | < 10      | 44        | < 0.5      | < 2      | 3.15                  | 23       | 104      | 2.54         | < 10      | <1        | 0.26   | 14        |
| 18336                         | < 20   | 0.4       | < 0.5      | 108    | 402         | 2         | 101      | 12       | 400         | 1.61                  | 76       | < 10      | 44        | < 0.5      | < 2      | 0.70                  | 30       | 121      | 3.18         | < 10      | <1        | 0.39   | 14        |
| 18337                         | < 20   | < 0.2     | < 0.5      | 56     | 503         | 2         | 39       | 6        | 140         | 1.11                  | 17       | < 10      | 59        | < 0.5      | <2       | 2.20                  | 12       | 88       | 1.97         | < 10      | <1        | 0.36   | < 10      |
| 18338                         | < 20   | < 0.2     | < 0.5      | 28     | 263         | <1        | 16       | 5        | 114         | 1.24                  | 2        | < 10      | 119       | < 0.5      | <2       | 1.03                  | 5        | 92       | 0.91         | < 10      | <1        | 0.49   | 12        |
| 18341                         | < 20   | < 0.2     | < 0.5      | 40     | 264         | 3         | 32       | 6        | 184         | 1.27                  | 8        | < 10      | 72        | < 0.5      | < 2      | 0.79                  | 9        | 113      | 1.30         | < 10      | <1        | 0.44   | 13        |
| 18342                         | < 20   | < 0.2     | < 0.5      | 49     | 739         | 2         | 61       | 4        | 169         | 1.61                  | 6        | < 10      | 67        | < 0.5      | < 2      | 3.55                  | 16       | 111      | 1.85         | < 10      | <1        | 0.46   | 13        |
| 18344                         | < 20   | < 0.2     | < 0.5      | 77     | 827         | 1         | 66       | 3        | 138         | 2.69                  | 7        | < 10      | 146       | < 0.5      | <2       | 2.44                  | 25       | 178      | 3.43         | < 10      | <1        | 1.10   | < 10      |
| 18345                         | < 20   | < 0.2     | < 0.5      | 109    | 768         | <1        | 58       | < 2      | 59          | 2.95                  | 5        | < 10      | 94        | < 0.5      | < 2      | 2.68                  | 34       | 142      | 3.70         | < 10      | <1        | 0.27   | < 10      |
| 18346                         | < 20   | < 0.2     | < 0.5      | 62     | 567         | <1        | 50       | <2       | 38          | 1.79                  | < 2      | < 10      | 38        | < 0.5      | < 2      | 2.23                  | 22       | 84       | 2.90         | < 10      | <1        | 0.13   | < 10      |
| 18347                         | < 20   | < 0.2     | < 0.5      | 174    | 790         | <1        | 50       | <2       | 70          | 3.07                  | 3        | < 10      | 65        | < 0.5      | < 2      | 3.87                  | 35       | 65       | 3.49         | < 10      | <1        | 0.14   | < 10      |
| 18348                         | < 20   | < 0.2     | < 0.5      | 300    | 1030        | <1        | 48       | <2       | 82          | 3.47                  | 6        | < 10      | 67        | < 0.5      | < 2      | 4.12                  | 42       | 71       | 5.37         | 10        | <1        | 0.15   | < 10      |
| 18349                         | < 20   | 0.2       | < 0.5      | 190    | 2200        | <1        | 41       | 2        | 63          | 2.58                  | 3        | < 10      | 30        | < 0.5      | < 2      | 9.29                  | 42       | 50       | 6.48         | < 10      | <1        | 0.08   | < 10      |
| 18351                         | < 20   | < 0.2     | < 0.5      | 171    | 1060        | <1        | 49       | <2       | 75          | 3.24                  | 8        | < 10      | 63        | < 0.5      | < 2      | 3.88                  | 41       | 74       | 4.68         | 10        | <1        | 0.14   | < 10      |
| 18352                         | < 20   | < 0.2     | < 0.5      | 127    | 939         | <1        | 44       | <2       | 62          | 2.40                  | 11       | < 10      | 44        | < 0.5      | < 2      | 3.64                  | 35       | 80       | 3.63         | < 10      | <1        | 0.10   | < 10      |
| 18353                         | < 20   | < 0.2     | < 0.5      | 125    | 952         | <1        | 45       | <2       | 87          | 3.06                  | 11       | < 10      | 45        | < 0.5      | <2       | 3.68                  | 37       | 67       | 4.00         | < 10      | <1        | 0.12   | < 10      |
| 8354                          | < 20   | 2.6       | 2.1        | 1120   | 745         | 108       | 186      | 118      | 338         | 1.89                  | 179      | 14        | 34        | 6.9        | 32       | 2.17                  | 37       | 85       | 4.56         | 20        | 5         | 0.47   | 29        |
| 8355                          | < 20   | < 0.2     | < 0.5      | 118    | 784         | 1         | 45       | <2       | 85          | 2.48                  | 9        | < 10      | 39        | < 0.5      | < 2      | 2.56                  | 35       | 69       | 3.47         | < 10      | <1        | 0.11   | < 10      |
| 8356                          | < 20   | < 0.2     | < 0.5      | 196    | 796         | <1        | 52       | <2       | 81          | 2.67                  | 4        | < 10      | 41        | < 0.5      | < 2      | 2.59                  | 38       | 83       | 3.66         | < 10      | <1        | 0.12   | < 10      |
| 18357                         | < 20   | < 0.2     | < 0.5      | 183    | 985         | <1        | 60       | <2       | 107         | 3.16                  | 5        | < 10      | 30        | < 0.5      | < 2      | 3.96                  | 42       | 115      | 4.63         | 10        | <1        | 0.09   | < 10      |
| 18358                         | < 20   | < 0.2     | < 0.5      | 126    | 607         | <1        | 49       | <2       | 110         | 1.71                  | 16       | < 10      | 30        | < 0.5      | < 2      | 2.43                  | 42       | 81       | 2.90         | < 10      | <1        | 0.08   | < 10      |
|                               |        |           |            |        |             |           | 1.0      | -        |             |                       |          |           |           |            | -        |                       |          |          |              |           |           |        | 1.14      |

Page 2/11

Report: A15-00441

| Analyte Symbol | Th     | Ag     | Cd     | Cu        | Mn         | Мо         | Ni       | Pb       | Zn        |        | As     | в            | Ba       | Be     | Bi       | Ca           | Co       | Cr       | Fe           | Ga     | Hg       | n.     | La     |
|----------------|--------|--------|--------|-----------|------------|------------|----------|----------|-----------|--------|--------|--------------|----------|--------|----------|--------------|----------|----------|--------------|--------|----------|--------|--------|
| Unit Symbol    | ppm    | ppm    | ppm    | ppm       | ppm        | ppm        | ppm      | ppm      | ppm       | %      | ppm    | ppm          | ppm      | ppm    | ppm      | %            | ppm      | ppm      | %            | ppm    | ppm      | %      | ppm    |
| Lower Limit    | 20     | 0.2    | 0.5    | 1         | 5          | 1          | 1        | 2        | 2         | 0.01   | 2      | 10           | 10       | 0.5    | 2        | 0.01         | 1        | 1        | 0.01         | 10     | 1        | 0.01   | 10     |
| Method Code    | AR-ICP | AR-ICP | AR-ICP | AR-ICP    |            | AR-ICP     | AR-ICP   | AR-ICP   | AR-ICP    | AR-ICP | AR-ICP | AR-ICP       | AR-ICP   | AR-ICP |          | AR-ICP       | AR-ICP   | AR-ICP   | AR-ICP       | AR-ICP | AR-ICP   | AR-ICP | AR-ICP |
| 18361          | < 20   | < 0.2  | < 0.5  | 168       | 655        | < 1        | 44       | <2       | 86        | 1.74   | 3      | < 10         | 40       | < 0.5  | <2       | 1.81         | 41       | 69       | 3.26         | < 10   | <1       | 0.09   | < 10   |
| 18362          | < 20   | < 0.2  | < 0.5  | 122       | 737        | <1         | 48       | <2       | 82        | 2.04   | 9      | < 10         | 52       | < 0.5  | <2       | 2.74         | 40       | 68       | 3.25         | < 10   | <1       | 0.13   | < 10   |
| 18363          | < 20   | < 0.2  | < 0.5  | 149       | 628        | < 1        | 53       | <2       | 68        | 1.72   | 8      | < 10         | 63       | < 0.5  | < 2      | 2.50         | 41       | 89       | 2.68         | < 10   | <1       | 0.11   | < 10   |
| 18364          | < 20   | < 0.2  | < 0.5  | 71        | 900        | <1         | 50       | <2       | 62        | 2.57   | 14     | < 10         | 64       | < 0.5  | < 2      | 3.70         | 32       | 137      | 3.46         | < 10   | <1       | 0.15   | < 10   |
| 18365          | < 20   | < 0.2  | < 0.5  | 184       | 1240       | <1         | 52       | <2       | 87        | 3.05   | 4      | < 10         | 48       | < 0.5  | <2       | 4.90         | 38       | 118      | 5.11         | < 10   | <1       | 0.14   | < 10   |
| 18366          | < 20   | < 0.2  | < 0.5  | 64        | 567        | < 1        | 172      | < 2      | 39        | 2.75   | 11     | < 10         | 76       | < 0.5  | < 2      | 2.41         | 33       | 396      | 3.36         | < 10   | <1       | 0.20   | < 10   |
| 18367          | < 20   | < 0.2  | < 0.5  | 85        | 678        | < 1        | 138      | <2       | 41        | 3.51   | 2      | < 10         | 83       | < 0.5  | < 2      | 3.61         | 30       | 172      | 3.42         | < 10   | <1       | 0.26   | < 10   |
| 18368          | < 20   | 2.7    | 2.2    | 1150      | 747        | 109        | 188      | 119      | 338       | 1.91   | 179    | 14           | 35       | 7.0    | 32       | 2.16         | 37       | 85       | 4.59         | 20     | 5        | 0.48   | 29     |
| 18369          | < 20   | < 0.2  | < 0.5  | 164       | 762        | 3          | 65       | < 2      | 32        | 2.70   | 21     | < 10         | 70       | < 0.5  | < 2      | 4.15         | 27       | 117      | 3.73         | < 10   | <1       | 0.19   | < 10   |
| 18371          | < 20   | < 0.2  | < 0.5  | 56        | 643        | < 1        | 73       | <2       | 24        | 2.33   | < 2    | < 10         | 64       | < 0.5  | < 2      | 4.29         | 19       | 176      | 2.26         | < 10   | <1       | 0.16   | < 10   |
| 18372          | < 20   | < 0.2  | < 0.5  | 49        | 535        | 1          | 82       | < 2      | 23        | 2.85   | 12     | < 10         | 77       | < 0.5  | < 2      | 3.84         | 18       | 119      | 2.21         | < 10   | <1       | 0.20   | < 10   |
| 18373          | < 20   | < 0.2  | < 0.5  | 73        | 680        | 1          | 83       | <2       | 36        | 2.27   | 14     | < 10         | 61       | < 0.5  | < 2      | 3.72         | 24       | 251      | 3.23         | < 10   | < 1      | 0.15   | < 10   |
| 18374          | < 20   | < 0.2  | < 0.5  | 20        | 718        | < 1        | 40       | <2       | 53        | 2.34   | 6      | < 10         | 157      | < 0.5  | < 2      | 2.35         | 20       | 154      | 3.17         | < 10   | <1       | 0.22   | < 10   |
| 18375          | < 20   | < 0.2  | < 0.5  | 116       | 749        | <1         | 56       | <2       | 51        | 2.71   | 3      | < 10         | 53       | < 0.5  | < 2      | 3.13         | 38       | 102      | 3.81         | < 10   | <1       | 0.14   | < 10   |
| 18376          | < 20   | < 0.2  | < 0.5  | 134       | 720        | <1         | 49       | <2       | 53        | 2.36   | < 2    | < 10         | 54       | < 0.5  | < 2      | 2.79         | 38       | 83       | 3.99         | < 10   | < 1      | 0.13   | < 10   |
| 18377          | < 20   | < 0.2  | < 0.5  | 217       | 746        | <1         | 47       | <2       | 52        | 2.72   | 3      | < 10         | 54       | < 0.5  | < 2      | 3.13         | 36       | 82       | 4.28         | < 10   | <1       | 0.14   | < 10   |
| 18378          | < 20   | < 0.2  | < 0.5  | 137       | 989        | 1          | 62       | <2       | 76        | 3.13   | 6      | < 10         | 70       | < 0.5  | < 2      | 4.02         | 41       | 104      | 4.39         | 10     | < 1      | 0.18   | < 10   |
| 18381          | < 20   | < 0.2  | < 0.5  | 157       | 1030       | <1         | 54       | <2       | 60        | 2.91   | 4      | < 10         | 71       | < 0.5  | < 2      | 3.50         | 36       | 102      | 4.76         | 10     | <1       | 0.17   | < 10   |
| 18382          | < 20   | < 0.2  | < 0.5  | 101       | 1070       | < 1        | 44       | <2       | 65        | 2.64   | < 2    | < 10         | 63       | < 0.5  | < 2      | 3.17         | 31       | 86       | 4.89         | 10     | <1       | 0.17   | < 10   |
| 18383          | < 20   | < 0.2  | < 0.5  | 151       | 1050       | 2          | 48       | <2       | 67        | 2.88   | 4      | < 10         | 51       | < 0.5  | < 2      | 2.42         | 39       | 99       | 4.95         | 10     | <1       | 0.12   | < 10   |
| 18384          | < 20   | < 0.2  | < 0.5  | 64        | 1260       | < 1        | 49       | <2       | 45        | 3.23   | 4      | < 10         | 30       | < 0.5  | < 2      | 4.81         | 33       | 117      | 5.53         | 10     | <1       | 0.05   | < 10   |
| 18385          | < 20   | < 0.2  | < 0.5  | 86        | 1220       | <1         | 57       | 9        | 100       | 3.53   | 5      | < 10         | 22       | < 0.5  | < 2      | 3.18         | 38       | 111      | 5.64         | 10     | <1       | 0.06   | < 10   |
| 18386          | < 20   | < 0.2  | < 0.5  | 122       | 902        | <1         | 56       | 2        | 39        | 2.99   | 3      | < 10         | 38       | < 0.5  | < 2      | 3.12         | 43       | 111      | 4.34         | 10     | <1       | 0.09   | < 10   |
| 18387          | < 20   | < 0.2  | < 0.5  | 162       | 932        | <1         | 45       | <2       | 86        | 2.08   | 2      | < 10         | 36       | < 0.5  | < 2      | 2.77         | 35       | 85       | 4.17         | < 10   | <1       | 0.10   | < 10   |
| 18388          | < 20   | < 0.2  | < 0.5  | 115       | 856        | <1         | 49       | <2       | 56        | 2.98   | 4      | < 10         | 68       | < 0.5  | <2       | 3.37         | 33       | 101      | 3.93         | < 10   | <1       | 0.17   | < 10   |
| 18389          | < 20   | < 0.2  | < 0.5  | 151       | 826        | <1         | 43       | <2       | 69        | 2.61   | < 2    | < 10         | 119      | < 0.5  | <2       | 2.52         | 32       | 105      | 4.18         | 10     | <1       | 0.28   | < 10   |
| 18391          | < 20   | < 0.2  | < 0.5  | 59        | 930        | < 1        | 25       | <2       | 49        | 1.99   | < 2    | < 10         | 73       | < 0.5  | < 2      | 4.34         | 17       | 88       | 3.52         | 10     | <1       | 0.15   | < 10   |
| 18392          | < 20   | < 0.2  | < 0.5  | 63        | 1050       | <1         | 42       | <2       | 62        | 3.01   | < 2    | < 10         | 58       | < 0.5  | < 2      | 3.76         | 28       | 116      | 4.69         | 10     | <1       | 0.17   | < 10   |
| 18393          | < 20   | < 0.2  | < 0.5  | 93        | 981        | <1         | 44       | <2       | 65        | 2.73   | <2     | < 10         | 53       | < 0.5  | <2       | 3.86         | 31       | 116      | 4.46         | 10     | <1       | 0.16   | < 10   |
| 18394          | < 20   | < 0.2  | < 0.5  | 78        | 1150       | <1         | 53       | <2       | 71        | 3.04   | 4      | < 10         | 60       | < 0.5  | <2       | 3.08         | 35       | 146      | 5.64         | 10     | <1       | 0.10   | < 10   |
| 18395          | < 20   | < 0.2  | < 0.5  | 105       | 951        | <1         | 48       | <2       | 88        | 2.83   | 3      | < 10         | 75       | < 0.5  | <2       | 3.58         | 31       | 128      | 4.46         | < 10   | <1       | 0.14   | < 10   |
| 18396          | < 20   | < 0.2  | < 0.5  | 119       | 894        | 1          | 56       | <2       | 86        | 2.65   | 4      | < 10         | 74       | < 0.5  | <2       | 3.10         | 40       | 109      | 4.73         | < 10   | <1       | 0.13   | < 10   |
| 18390          | < 20   | < 0.2  | < 0.5  | 119       | 698        | 1          | 50       | <2       | 107       | 2.44   | 4      | < 10         | 74<br>44 | < 0.5  | < 2      | 2.67         | 40<br>45 | <u> </u> | 4.73         | < 10   | <1       | 0.17   | < 10   |
|                | < 20   | < 0.2  | < 0.5  | 129       | 887        | < 1<br>< 1 | 50<br>53 | <2       | 107       | 2.08   | < 2    | < 10         | 44       | < 0.5  | < 2      | 3.22         | 40<br>38 | 51<br>94 | 5.29<br>4.76 | < 10   | <1       | 0.10   | < 10   |
| 18398<br>18401 | < 20   |        |        |           |            |            | 55       |          |           |        |        |              |          |        |          |              |          |          |              | -      |          |        | -      |
|                | _      | < 0.2  | < 0.5  | 176       | 771        | <1         |          | < 2      | 98        | 3.20   | 3      | < 10         | 39       | < 0.5  | < 2      | 3.86         | 39       | 94       | 4.56         | < 10   | <1       | 0.09   | < 10   |
| 18402          | < 20   | < 0.2  | < 0.5  | 108       | 718        | <1         | 42       | < 2      | 94        | 3.20   | 2      | < 10         | 38       | < 0.5  | < 2      | 2.90         | 38       | 45       | 4.59         | < 10   | <1       | 0.10   | < 10   |
| 18403<br>18404 | < 20   | < 0.2  | < 0.5  | 82        | 655        | <1         | 55       | < 2      | 59        | 2.95   | 7      | < 10         | 80       | < 0.5  | < 2      | 3.27         | 34       | 122      | 3.49         | < 10   | <1       | 0.10   | < 10   |
| 18404          | < 20   | < 0.2  | < 0.5  | 97<br>110 | 866<br>920 | < 1<br>< 1 | 45<br>41 | <2<br><2 | 81<br>103 | 3.06   | 4      | < 10<br>< 10 | 94<br>59 | < 0.5  | < 2      | 3.07<br>3.11 | 44<br>50 | 66<br>49 | 5.12<br>5.37 | 10     | <1<br><1 | 0.40   | < 10   |
|                | _      |        |        |           |            |            |          |          |           |        |        |              |          |        | <u> </u> |              |          |          |              | -      |          |        |        |
| 18406          | < 20   | < 0.2  | < 0.5  | 95        | 1080       | <1         | 40       | < 2      | 109       | 3.74   | 4      | < 10         | 55       | < 0.5  | < 2      | 3.71         | 49       | 40       | 5.85         | 10     | <1       | 0.83   | < 10   |
| 18407          | < 20   | < 0.2  | < 0.5  | 142       | 958        | <1         | 40       | < 2      | 99        | 3.84   | < 2    | < 10         | 56       | < 0.5  | < 2      | 2.76         | 47       | 46       | 5.84         | 10     | <1       | 1.16   | < 10   |
| 18408          | < 20   | < 0.2  | < 0.5  | 117       | 785        | <1         | 56       | < 2      | 89        | 3.11   | 3      | < 10         | 133      | < 0.5  | < 2      | 3.69         | 48       | 65       | 4.54         | < 10   | <1       | 0.48   | < 10   |
| 18409          | < 20   | < 0.2  | < 0.5  | 149       | 572        | 1          | 52       | <2       | 76        | 2.67   | 6      | < 10         | 89       | < 0.5  | < 2      | 2.66         | 43       | 72       | 3.89         | < 10   | <1       | 0.15   | < 10   |
| 18411          | < 20   | < 0.2  | < 0.5  | 67        | 729        | <1         | 42       | < 2      | 88        | 2.53   | 16     | < 10         | 87       | < 0.5  | < 2      | 4.07         | 31       | 125      | 3.05         | < 10   | <1       | 0.10   | < 10   |
| 18412          | < 20   | 0.2    | < 0.5  | 460       | 905        | <1         | 65       | 3        | 219       | 3.26   | 3      | < 10         | 23       | < 0.5  | <2       | 3.45         | 47       | 80       | 6.97         | 10     | <1       | 0.13   | < 10   |
| 18413          | < 20   | < 0.2  | < 0.5  | 214       | 888        | <1         | 46       | <2       | 89        | 3.24   | 3      | < 10         | 74       | < 0.5  | < 2      | 3.51         | 36       | 83       | 5.05         | < 10   | <1       | 0.16   | < 10   |
| 18414          | < 20   | < 0.2  | < 0.5  | 198       | 868        | <1         | 54       | <2       | 106       | 3.51   | 3      | < 10         | 108      | < 0.5  | < 2      |              | 40       | 99       | 4.43         | < 10   | <1       | 0.16   | < 10   |
| 18415          | < 20   | < 0.2  | < 0.5  | 136       | 858        | <1         | 48       | <2       | 72        | 3.72   | < 2    | < 10         | 118      | < 0.5  | <2       | 3.73         | 35       | 87       | 4.54         | 10     | <1       | 0.16   | < 10   |
| 18416          | < 20   | < 0.2  | < 0.5  | 182       | 998        | <1         | 54       | <2       | 61        | 3.58   | 2      | < 10         | 87       | < 0.5  | <2       | 3.87         | 36       | 116      | 4.52         | < 10   | <1       | 0.14   | < 10   |
| 18417          | < 20   | < 0.2  | < 0.5  | 106       | 1030       | <1         | 57       | <2       | 59        | 2.97   | 9      | < 10         | 87       | < 0.5  | < 2      | 3.92         | 40       | 155      | 4.30         | < 10   | < 1      | 0.11   | < 10   |

Report: A15-00441

| Analyte Symbol | Th           | Ag             | Cd             | Cu         | Mn         | Мо       | Ni       | Pb      | Zn                   | AI           | As       | в            | Ba       | Be             | Bi       | Ca           | Co       | Cr        | Fe           | Ga           | Hg       | K      | La           |
|----------------|--------------|----------------|----------------|------------|------------|----------|----------|---------|----------------------|--------------|----------|--------------|----------|----------------|----------|--------------|----------|-----------|--------------|--------------|----------|--------|--------------|
| Unit Symbol    | ppm          | Ag<br>ppm      | ppm            | ppm        |            | ppm      | ppm      | ppm     |                      | %            |          |              | ppm      | ppm            | ppm      | %            |          | ppm       | 7e<br>%      | ppm          | ppm      | %      | ppm          |
| Lower Limit    | 20           |                | 0.5            | ppm<br>1   | ppm<br>5   | 1        | 4        | 2       | ppm<br>2             | 0.01         | ppm<br>2 | ppm<br>10    | 10       | 0.5            | 2        | 0.01         | ppm<br>1 | 1         | 0.01         | 10           | 1        | 0.01   | 10           |
| Method Code    | AR-ICP       | AR-ICP         |                | AR-ICP     | AR-ICP     | AR-ICP   | AR-ICP   | AR-ICP  | AR-ICP               | AR-ICP       | AR-ICP   | AR-ICP       |          | AR-ICP         | AR-ICP   | AR-ICP       | AR-ICP   | AR-ICP    | AR-ICP       | AR-ICP       | AR-ICP   | AR-ICP | AR-ICP       |
| 18418          | < 20         | < 0.2          | < 0.5          | 73         | 605        | <1       | 36       | <2      | 60                   | 1.84         | 8        | < 10         | 83       | < 0.5          | <2       | 1.73         | 37       | 85        | 3.37         | < 10         | <1       | 0.09   | < 10         |
| 18421          | < 20         | < 0.2          | < 0.5          | 109        | 627        | <1       | 38       | <2      | 109                  | 2.00         | 4        | < 10         | 70       | < 0.5          | < 2      | 2.08         | 39       | 37        | 3.58         | < 10         | <1       | 0.09   | < 10         |
| 18422          | < 20         | < 0.2          | < 0.5          | 187        | 717        | <1       | 46       | <2      | 63                   | 2.53         | < 2      | < 10         | 89       | < 0.5          | < 2      | 3.17         | 34       | 79        | 3.64         | < 10         | <1       | 0.13   | < 10         |
| 18423          | < 20         | < 0.2          | < 0.5          | 72         | 754        | <1       | 39       | <2      | 65                   | 3.32         | 4        | < 10         | 65       | < 0.5          | < 2      | 3.72         | 24       | 95        | 3.48         | < 10         | <1       | 0.18   | < 10         |
| 18424          | < 20         | < 0.2          | < 0.5          | 253        | 1490       | 1        | 38       | <2      | 146                  | 3.68         | 4        | < 10         | 55       | < 0.5          | < 2      | 4.33         | 32       | 65        | 7.60         | < 10         | <1       | 0.15   | < 10         |
| 18425          | < 20         | < 0.2          | < 0.5          | 93         | 1530       | <1       | 32       | <2      | 84                   | 3.88         | < 2      | < 10         | 86       | < 0.5          | < 2      | 5.52         | 28       | 43        | 6.52         | 10           | <1       | 0.20   | < 10         |
| 18426          | < 20         | < 0.2          | < 0.5          | 146        | 1000       | <1       | 41       | <2      | 71                   | 3.58         | < 2      | < 10         | 49       | < 0.5          | <2       | 4.04         | 36       | 51        | 4.29         | 10           | <1       | 0.14   | < 10         |
| 18427          | < 20         | < 0.2          | < 0.5          | 146        | 786        | <1       | 35       | <2      | 122                  | 3.46         | 2        | < 10         | 62       | < 0.5          | < 2      | 3.32         | 41       | 38        | 3.80         | 10           | <1       | 0.17   | < 10         |
| 18428          | < 20         | < 0.2          | < 0.5          | 177        | 643        | <1       | 50       | <2      | 138                  | 2.66         | < 2      | 365          | 49       | < 0.5          | < 2      | 3.54         | 35       | 57        | 2.67         | < 10         | <1       | 0.14   | < 10         |
| 18429          | < 20         | < 0.2          | < 0.5          | 147        | 692        | <1       | 53       | <2      | 105                  | 2.92         | 5        | 15           | 48       | < 0.5          | <2       | 3.51         | 35       | 82        | 2.78         | < 10         | <1       | 0.16   | < 10         |
| 18431          | < 20         | < 0.2          | < 0.5          | 141        | 1020       | <1       | 48       | <2      | 99                   | 3.40         | 6        | 20           | 67       | < 0.5          | < 2      | 3.78         | 35       | 120       | 4.41         | < 10         | <1       | 0.15   | < 10         |
| 18432          | < 20         | < 0.2          | < 0.5          | 99         | 844        | <1       | 51       | <2      | 48                   | 2.15         | 6        | < 10         | 40       | < 0.5          | < 2      | 3.75         | 29       | 152       | 3.00         | < 10         | <1       | 0.07   | < 10         |
| 18433          | < 20         | < 0.2          | < 0.5          | 93         | 623        | <1       | 40       | <2      | 45                   | 2.18         | 5        | < 10         | 42       | < 0.5          | <2       | 3.04         | 25       | 125       | 2.36         | < 10         | <1       | 0.07   | < 10         |
| 18434          | < 20         | < 0.2          | < 0.5          | 63         | 622        | <1       | 37       | <2      | 47                   | 2.89         | 8        | < 10         | 58       | < 0.5          | <2       | 3.16         | 24       | 134       | 2.45         | < 10         | <1       | 0.10   | < 10         |
| 18435          | < 20         | < 0.2          | < 0.5          | 170        | 861        | <1       | 52       | <2      | 61                   | 2.64         | 7        | < 10         | 53       | < 0.5          | <2       | 3.48         | 34       | 166       | 3.82         | < 10         | <1       | 0.08   | < 10         |
| 18436          | < 20         | < 0.2          | < 0.5          | 91         | 967        | <1       | 56       | <2      | 77                   | 2.77         | 6        | < 10         | 50       | < 0.5          | <2       | 3.66         | 32       | 192       | 4.05         | < 10         | <1       | 0.08   | < 10         |
| 18437          | < 20         | < 0.2          | < 0.5          | 105        | 975        | 1        | 57       | <2      | 56                   | 2.35         | 6        | < 10         | 40       | < 0.5          | <2       | 3.65         | 33       | 183       | 3.80         | < 10         | <1       | 0.07   | < 10         |
| 18438          | < 20         | < 0.2          | < 0.5          | 142        | 1020       | <1       | 53       | <2      | 70                   | 2.93         | 3        | < 10         | 57       | < 0.5          | <2       | 3.74         | 29       | 211       | 5.29         | < 10         | <1       | 0.11   | < 10         |
| 18441          | < 20         | < 0.2          | < 0.5          | 118        | 823        | <1       | 51       | <2      | 44                   | 3.00         | 15       | < 10         | 119      | < 0.5          | <2       | 4.04         | 32       | 186       | 3.27         | < 10         | <1       | 0.08   | < 10         |
| 18442          | < 20         | < 0.2          | < 0.5          | 141        | 907        | <1       | 49       | <2      | 63                   | 3.13         | 7        | < 10         | 98       | < 0.5          | < 2      | 3.80         | 30       | 191       | 4.39         | < 10         | <1       | 0.11   | < 10         |
| 18443          | < 20         | < 0.2          | < 0.5          | 178        | 752        | 1        | 49       | <2      | 38                   | 3.22         | 21       | < 10         | 99       | < 0.5          | < 2      | 4.18         | 31       | 146       | 2.89         | < 10         | <1       | 0.09   | < 10         |
| 18444          | < 20         | < 0.2          | < 0.5          | 166        | 1020       | 1        | 49       | <2      | 66                   | 3.71         | 19       | < 10         | 119      | < 0.5          | < 2      | 4.21         | 39       | 103       | 4.41         | < 10         | <1       | 0.16   | < 10         |
| 18445          | < 20         | < 0.2          | < 0.5          | 84         | 1160       | 1        | 39       | <2      | 76                   | 3.16         | 10       | < 10         | 83       | < 0.5          | < 2      | 3.70         | 31       | 80        | 4.78         | < 10         | <1       | 0.10   | < 10         |
| 18446          | < 20         | < 0.2          | < 0.5          | 128        | 1110       | <1       | 41       | <2      | 55                   | 2.65         | 4        | < 10         | 40       | < 0.5          | < 2      | 4.00         | 30       | 65        | 4.10         | < 10         | <1       | 0.07   | < 10         |
| 18447          | < 20         | < 0.2          | < 0.5          | 105        | 1050       | <1       | 34       | <2      | 52                   | 2.59         | 17       | < 10         | 70       | < 0.5          | < 2      | 3.82         | 30       | 73        | 3.66         | < 10         | <1       | 0.06   | < 10         |
| 18448          | < 20         | < 0.2          |                | 242        | 1150       | <1       | 43       | <2      | 118                  | 3.18         | 15       | < 10         | 65       | < 0.5          |          | 4.19         | 37       | 74        | 5.04         | < 10         | <1       | 0.09   | < 10         |
| 18449          | < 20         | < 0.2          | < 0.5          | 142        | 603        | <1       | 38       | <2      | 55                   | 3.51         | 22       | < 10         | 141      | < 0.5          | < 2      | 3.26         | 35       | 62        | 2.70         | < 10         | <1       | 0.16   | < 10         |
| 18451          | < 20         | < 0.2          |                | 119        | 593        | <1       | 53       | <2      | 68                   | 3.63         | 5        | < 10         | 85       | < 0.5          | < 2      | 3.29         | 37       | 65        | 3.17         | < 10         | <1       | 0.20   | < 10         |
| 18452          | < 20         | 0.3            | < 0.5          | 199        | 770        | <1       | 61       | 6       | 117                  | 3.13         | 2        | < 10         | 26       | < 0.5          | < 2      | 1.70         | 47       | 105       | 7.14         | 10           | <1       | 0.21   | < 10         |
| 18453          | < 20         | 0.3            | 0.7            | 206        | 742        | <1       | 79       | 9       | 424                  | 2.82         | < 2      | < 10         | 36       | < 0.5          |          | 3.25         | 57       | 128       | 6.94         | 10           | <1       | 0.13   | < 10         |
| 18454          | < 20         | 0.4            |                | 444        | 809        | <1       | 82       | 11      | 144                  | 2.84         | < 2      | < 10         | 15       | < 0.5          | <2       | 1.99         | 66       | 145       | 9.23         | 10           | <1       | 0.14   | < 10         |
| 18455          | < 20         | < 0.2          | < 0.5          | 138        | 572        | <1       | 60<br>58 | 6<br>4  | 152                  | 3.33         | 2        | < 10         | 33       | < 0.5          | < 2      | 1.67         | 51<br>46 | 91        | 6.10         | 10           | <1       | 0.21   | < 10         |
| 18456          | < 20<br>< 20 | < 0.2<br>< 0.2 | < 0.5<br>< 0.5 | 136<br>148 | 692<br>562 | <1<br><1 | 58<br>61 | 4       | 162<br>103           | 3.10<br>3.01 | < 2<br>2 | < 10<br>< 10 | 24<br>26 | < 0.5<br>< 0.5 | <2<br><2 | 1.71<br>1.98 | 46<br>50 | 111<br>91 | 6.90         | 10<br>< 10   | <1       | 0.17   | < 10<br>< 10 |
| 18457          | < 20         | < 0.2          | < 0.5          | 148        | 502<br>611 | 1        | 63       | 2<br><2 | 103<br>74            | 2.67         | 2        | < 10         | 20<br>31 | < 0.5          | < 2      | 1.98         | 50<br>56 | 91<br>79  | 5.67<br>5.72 | < 10<br>< 10 | <1<br><1 | 0.12   | < 10         |
| 18461          | < 20         | < 0.2          | < 0.5          | 128        | 741        | 1<br><1  | 53       | <2      | / <del>4</del><br>65 | 2.82         | 4        | < 10         | 74       | < 0.5          |          | 2.12         | 50<br>48 | 79<br>94  | 5.18         | < 10         | <1       | 0.12   | < 10         |
| 18462          | < 20         | < 0.2          | < 0.5          | 128        | 741        | <1       | 42       | <2      | 60<br>60             | 2.82         | 4        | < 10         | 60       | < 0.5          |          | 2.12         | 48<br>41 | 94<br>67  | 0.18<br>4.81 | < 10         | <1       | 0.10   | < 10         |
| 18463          | < 20         | < 0.2          | < 0.5          | 90         | 780        | <1       | 42<br>36 | <2      | 50                   | 2.70         | 3        | < 10         | 78       | < 0.5          | <2       | 2.80         | 41<br>34 | 07<br>52  | 4.81         | < 10         | <1       | 0.13   | < 10         |
| 18464          | < 20         | < 0.2          | < 0.5          | au<br>146  | 818        | <1       | 52       | <2      | 63                   | 2.88         | а<br>11  | < 10         | 70<br>67 | < 0.5          |          | 3.15         | 34<br>42 | 121       | 4.70         | < 10         | <1       | 0.13   | < 10         |
| 18465          | < 20         | < 0.2          | < 0.5          | 164        | 682        | <1       | 51       | <2      | 66                   | 2.00         | 3        | < 10         | 67       | < 0.5          | -        | 2.38         | 46       | 81        | 4.50         | < 10         | <1       | 0.13   | < 10         |
| 18466          | < 20         | < 0.2          | < 0.5          | 107        | 574        | <1       | 38       | <2      | 50                   | 2.20         | 4        | < 10         | 61       | < 0.5          | <2       | 1.71         | 36       | 56        | 3.67         | < 10         | <1       | 0.10   | < 10         |
| 18467          | < 20         | < 0.2          | < 0.5          | 100        | 537        | <1       | 44       | <2      | 72                   | 3.77         | 3        | < 10         | 79       | < 0.5          |          | 2.16         | 40       | 49        | 4.30         | 10           | <1       | 0.16   | < 10         |
| 18468          | < 20         | < 0.2          | < 0.5          | 159        | 681        | <1       | 56       | 2       | 113                  | 2.81         | <2       | < 10         | 31       | < 0.5          | <2       | 1.41         | 50       | 83        | 6.75         | < 10         | <1       | 0.12   | < 10         |
| 18469          | < 20         | < 0.2          | < 0.5          | 118        | 614        | <1       | 58       | <2      | 106                  | 2.84         | <2       | < 10         | 43       | < 0.5          | <2       | 1.31         | 49       | 86        | 5.89         | < 10         | <1       | 0.18   | < 10         |
| 18471          | < 20         | 0.2            | < 0.5          | 146        | 640        | <1       | 77       | 4       | 98                   | 2.26         | <2       | < 10         | 32       | < 0.5          | <2       | 1.28         | 53       | 133       | 6.38         | < 10         | <1       | 0.18   | < 10         |
| 18472          | < 20         | < 0.2          |                | 227        | 757        | <1       | 44       | <2      | 70                   | 3.24         | <2       | < 10         | 30       | < 0.5          | -        | 2.84         | 36       | 60        | 5.08         | 10           | <1       | 0.09   | < 10         |
| 18473          | < 20         | < 0.2          | < 0.5          | 123        | 743        | <1       | 33       | <2      | 52                   | 3.23         | 4        | < 10         | 47       | < 0.5          | <2       | 3.08         | 28       | 60        | 3.90         | < 10         | <1       | 0.10   | < 10         |
| 18474          | < 20         | < 0.2          | < 0.5          | 155        | 807        | <1       | 50       | <2      | 128                  | 2.92         | 4        | < 10         | 44       | < 0.5          | <2       | 2.72         | 40       | 71        | 5.18         | < 10         | <1       | 0.10   | < 10         |
| 18475          | < 20         | < 0.2          | 2.0            | 126        | 718        | 2        | 143      | 4       | 1020                 | 2.22         | 36       | < 10         | 34       | < 0.5          | <2       | 3.14         | 45       | 276       | 5.09         | < 10         | <1       | 0.13   | < 10         |
| 18476          | < 20         | 0.6            | < 0.5          | 192        | 877        | 1        | 108      | 7       | 279                  | 2.59         | 10       | < 10         | 14       | < 0.5          |          | 2.53         | 48       | 141       | 10.00        | < 10         | <1       | 0.19   | < 10         |
|                | <u> </u>     | <u> </u>       |                | <u> </u>   | <u> </u>   |          | <u> </u> |         | <u> </u>             |              |          |              |          |                |          |              |          |           | 1            |              |          |        | t – 1        |

Page 4/11

```
Report: A15-00441
```

| Analyte Symbol | Th     | Ag     | Cd     | Cu     | Mn     | Мо     | Ni     | Pb     | Zn     | AI     | As     | в      | Ba     | Be     | Bi     | Ca     | Co     | Cr     | Fe     | Ga     | Hg     | К      | La     |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol    | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | 96     | ppm    | ppm    | %      | ppm    |
| Lower Limit    | 20     | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2      | 2      | 0.01   | 2      | 10     | 10     | 0.5    | 2      | 0.01   | 1      | 1      | 0.01   | 10     | 1      | 0.01   | 10     |
| Method Code    | AR-ICP |
| 18477          | < 20   | < 0.2  | < 0.5  | 107    | 701    | <1     | 43     | <2     | 45     | 2.67   | 8      | < 10   | 57     | < 0.5  | <2     | 3.73   | 27     | 139    | 3.41   | < 10   | <1     | 0.13   | < 10   |
| 18478          | < 20   | < 0.2  | < 0.5  | 108    | 519    | 1      | 37     | <2     | 35     | 2.66   | 26     | < 10   | 48     | < 0.5  | < 2    | 2.98   | 26     | 123    | 2.37   | < 10   | <1     | 0.11   | < 10   |
| 18479          | < 20   | < 0.2  | < 0.5  | 123    | 608    | <1     | 43     | <2     | 36     | 2.85   | 9      | < 10   | 45     | < 0.5  | < 2    | 3.43   | 25     | 141    | 2.59   | < 10   | <1     | 0.11   | < 10   |
| 18480          | < 20   | < 0.2  | < 0.5  | 90     | 646    | < 1    | 48     | <2     | 38     | 2.60   | 5      | < 10   | 38     | < 0.5  | < 2    | 3.87   | 25     | 147    | 2.70   | < 10   | <1     | 0.10   | < 10   |
| 18482          | < 20   | < 0.2  | < 0.5  | 125    | 608    | < 1    | 38     | <2     | 32     | 2.41   | 3      | < 10   | 29     | < 0.5  | < 2    | 3.49   | 20     | 127    | 2.62   | < 10   | <1     | 0.08   | < 10   |
| 18483          | < 20   | < 0.2  | < 0.5  | 92     | 880    | < 1    | 42     | <2     | 73     | 3.85   | 8      | < 10   | 48     | < 0.5  | < 2    | 4.81   | 29     | 87     | 4.01   | < 10   | <1     | 0.14   | < 10   |
| 18484          | < 20   | < 0.2  | < 0.5  | 123    | 937    | < 1    | 47     | <2     | 67     | 3.73   | 4      | < 10   | 83     | < 0.5  | < 2    | 4.40   | 34     | 82     | 4.49   | < 10   | < 1    | 0.22   | < 10   |
| 18485          | < 20   | < 0.2  | < 0.5  | 85     | 905    | <1     | 49     | <2     | 69     | 3.42   | 5      | < 10   | 51     | < 0.5  | < 2    | 4.14   | 32     | 135    | 3.74   | < 10   | <1     | 0.14   | < 10   |
| 18486          | < 20   | < 0.2  | < 0.5  | 161    | 837    | 1      | 51     | <2     | 90     | 3.56   | 3      | < 10   | 77     | < 0.5  | < 2    | 3.39   | 44     | 62     | 5.11   | < 10   | <1     | 0.17   | < 10   |
| 18487          | < 20   | < 0.2  | < 0.5  | 148    | 693    | < 1    | 69     | <2     | 92     | 3.40   | < 2    | < 10   | 31     | < 0.5  | < 2    | 2.77   | 56     | 82     | 6.01   | < 10   | <1     | 0.11   | < 10   |
| 18488          | < 20   | < 0.2  | < 0.5  | 118    | 607    | < 1    | 62     | <2     | 96     | 3.21   | < 2    | < 10   | 41     | < 0.5  | < 2    | 2.62   | 51     | 61     | 5.42   | < 10   | <1     | 0.08   | < 10   |
| 18489          | < 20   | 0.2    | < 0.5  | 182    | 582    | < 1    | 76     | <2     | 106    | 3.23   | < 2    | < 10   | 29     | < 0.5  | < 2    | 3.01   | 63     | 59     | 6.75   | < 10   | < 1    | 0.05   | < 10   |
| 18492          | < 20   | < 0.2  | < 0.5  | 89     | 664    | < 1    | 59     | <2     | 112    | 2.96   | < 2    | < 10   | 31     | < 0.5  | < 2    | 2.57   | 47     | 50     | 5.77   | < 10   | <1     | 0.09   | < 10   |
| 18493          | < 20   | < 0.2  | < 0.5  | 89     | 829    | < 1    | 51     | <2     | 75     | 2.77   | < 2    | < 10   | 70     | < 0.5  | < 2    | 2.45   | 38     | 55     | 4.81   | < 10   | <1     | 0.17   | < 10   |
| 18494          | < 20   | < 0.2  | < 0.5  | 70     | 784    | < 1    | 47     | <2     | 72     | 2.47   | 2      | < 10   | 127    | < 0.5  | < 2    | 2.87   | 30     | 76     | 4.35   | < 10   | <1     | 0.26   | < 10   |
| 18495          | < 20   | < 0.2  | < 0.5  | 262    | 707    | < 1    | 67     | <2     | 40     | 2.90   | < 2    | < 10   | 120    | < 0.5  | < 2    | 3.76   | 31     | 90     | 4.17   | < 10   | <1     | 0.25   | < 10   |
| 18496          | < 20   | < 0.2  | < 0.5  | 123    | 521    | < 1    | 43     | <2     | 31     | 1.90   | < 2    | < 10   | 56     | < 0.5  | < 2    | 2.43   | 18     | 87     | 2.92   | < 10   | < 1    | 0.15   | < 10   |
| 18497          | < 20   | < 0.2  | < 0.5  | 128    | 488    | < 1    | 82     | <2     | 28     | 2.45   | < 2    | < 10   | 65     | < 0.5  | < 2    | 3.13   | 19     | 102    | 2.51   | < 10   | <1     | 0.20   | < 10   |
| 18498          | < 20   | < 0.2  | < 0.5  | 46     | 538    | 2      | 123    | <2     | 45     | 3.47   | < 2    | < 10   | 83     | < 0.5  | < 2    | 3.40   | 23     | 183    | 3.16   | < 10   | <1     | 0.30   | < 10   |
| 18499          | < 20   | < 0.2  | < 0.5  | 49     | 379    | 2      | 69     | <2     | 45     | 2.19   | 4      | < 10   | 106    | < 0.5  | < 2    | 2.90   | 26     | 169    | 1.99   | < 10   | <1     | 0.32   | < 10   |
| 18500          | < 20   | < 0.2  | < 0.5  | 46     | 123    | 2      | 9      | <2     | 18     | 0.48   | 3      | < 10   | 27     | < 0.5  | < 2    | 0.92   | 3      | 128    | 0.86   | < 10   | <1     | 0.05   | < 10   |
| 18502          | < 20   | < 0.2  | < 0.5  | 67     | 573    | <1     | 88     | <2     | 32     | 4.23   | < 2    | 15     | 91     | < 0.5  | <2     | 3.95   | 25     | 124    | 3.25   | < 10   | <1     | 0.31   | < 10   |
| 18503          | < 20   | < 0.2  | < 0.5  | 65     | 438    | <1     | 55     | <2     | 37     | 3.41   | <2     | 12     | 99     | < 0.5  | <2     | 2.74   | 19     | 153    | 3.05   | < 10   | <1     | 0.29   | < 10   |
| 18504          | < 20   | < 0.2  | < 0.5  | 128    | 704    | <1     | 24     | <2     | 31     | 1.71   | <2     | < 10   | 31     | < 0.5  | <2     | 2.21   | 24     | 76     | 4.27   | < 10   | <1     | 0.10   | < 10   |
| 18505          | < 20   | < 0.2  | < 0.5  | 73     | 453    | <1     | 52     | <2     | 38     | 3.50   | < 2    | 13     | 106    | < 0.5  | <2     | 2.78   | 20     | 92     | 3.18   | < 10   | <1     | 0.32   | < 10   |
| 18506          | < 20   | < 0.2  | < 0.5  | 88     | 705    | <1     | 16     | <2     | 38     | 1.93   | <2     | < 10   | 26     | < 0.5  | <2     | 2.87   | 21     | 21     | 4.67   | < 10   | <1     | 0.11   | < 10   |
| 18507          | < 20   | < 0.2  | < 0.5  | 92     | 994    | 1      | 76     | <2     | 51     | 3.30   | <2     | < 10   | 80     | < 0.5  | <2     | 5.22   | 27     | 359    | 3.58   | < 10   | <1     | 0.26   | < 10   |

Page 5/11

Results

| Analyte Symbol | Mg     | Na     | P      | S      | Sb     | Sc     | Sr     | TI     | те     | TI     | U      | v      | W      | Y      | Zr    |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| Unit Symbol    | %      | %      | %      | %      | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm    | ppm    | ppm   |
| Lower Limit    | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 1      | 1      | 0.01   | 1      | 2      | 10     | 1      | 10     | 1      | 1     |
| Method Code    | AR-ICP | AR-IC |
| 18301          | 0.74   | 0.263  | 0.019  | 4.42   | 2      | 10     | 26     | 0.25   | 3      | < 2    | < 10   | 97     | < 10   | 11     | 12    |
| 18302          | 0.30   | 0.154  | 0.014  | 6.13   | 3      | 3      | 18     | 0.07   | 2      | < 2    | < 10   | 26     | < 10   | 8      | 37    |
| 18304          | 2.68   | 0.115  | 0.017  | 2.99   | 5      | 8      | 8      | 0.16   | 3      | < 2    | < 10   | 69     | < 10   | 4      | 6     |
| 18305          | 1.45   | 0.256  | 0.018  | 1.47   | 4      | 8      | 24     | 0.17   | 5      | < 2    | < 10   | 61     | < 10   | 5      | 3     |
| 18306          | 2.03   | 0.222  | 0.017  | 0.92   | 4      | 9      | 16     | 0.17   | 3      | < 2    | < 10   | 67     | < 10   | 5      | 4     |
| 18307          | 1.78   | 0.225  | 0.018  | 0.58   | 4      | 10     | 27     | 0.21   | 2      | < 2    | < 10   | 75     | < 10   | 6      | 3     |
| 18308          | 1.42   | 0.289  | 0.019  | 0.09   | < 2    | 9      | 43     | 0.24   | 2      | < 2    | < 10   | 70     | < 10   | 6      | 2     |
| 18309          | 2.58   | 0.202  | 0.020  | 0.11   | 3      | 14     | 12     | 0.24   | 4      | < 2    | < 10   | 107    | < 10   | 7      | 4     |
| 18311          | 2.10   | 0.177  | 0.030  | 0.17   | 3      | 11     | 16     | 0.20   | 3      | < 2    | < 10   | 83     | < 10   | 6      | 4     |
| 18312          | 2.29   | 0.150  | 0.020  | 0.14   | 2      | 10     | 11     | 0.22   | 2      | < 2    | < 10   | 83     | < 10   | 7      | 4     |
| 18313          | 2.19   | 0.204  | 0.018  | 0.03   | 2      | 11     | 15     | 0.23   | < 1    | < 2    | < 10   | 83     | < 10   | 6      | 3     |
| 18314          | 1.82   | 0.204  | 0.018  | 0.60   | 2      | 11     | 20     | 0.21   | 3      | < 2    | < 10   | 81     | < 10   | 7      | 4     |
| 18315          | 1.93   | 0.285  | 0.018  | 0.39   | 3      | 14     | 41     | 0.24   | 5      | < 2    | < 10   | 100    | < 10   | 8      | 3     |
| 18316          | 2.33   | 0.225  | 0.018  | 0.05   | 3      | 16     | 22     | 0.26   | 4      | < 2    | < 10   | 113    | < 10   | 8      | 4     |
| 18317          | 2.20   | 0.195  | 0.021  | 1.83   | 4      | 14     | 13     | 0.19   | < 1    | < 2    | < 10   | 105    | < 10   | 7      | 7     |
| 18319          | 1.55   | 0.336  | 0.022  | 0.24   | < 2    | 11     | 41     | 0.24   | 3      | < 2    | < 10   | 97     | < 10   | 7      | 3     |
| 18320          | 1.84   | 0.371  | 0.021  | 0.54   | < 2    | 12     | 44     | 0.21   | 3      | < 2    | < 10   | 100    | < 10   | 7      | 4     |
| 18321          | 1.75   | 0.339  | 0.023  | 0.07   | 2      | 7      | 43     | 0.21   | 5      | < 2    | < 10   | 69     | < 10   | 5      | 9     |
| 18322          | 1.64   | 0.191  | 0.017  | 0.08   | 2      | 6      | 29     | 0.18   | 8      | < 2    | < 10   | 58     | < 10   | 6      | 10    |
| 18324          | 2.34   | 0.167  | 0.019  | 0.95   | 2      | 15     | 49     | 0.25   | 4      | < 2    | < 10   | 136    | < 10   | 9      | 6     |
| 18325          | 2.70   | 0.094  | 0.024  | 1.02   | 3      | 21     | 31     | 0.28   | 2      | < 2    | < 10   | 170    | < 10   | 10     | 8     |
| 18326          | 1.91   | 0.086  | 0.018  | 2.09   | 2      | 17     | 51     | 0.23   | 4      | < 2    | < 10   | 104    | < 10   | 9      | 10    |
| 18327          | 1.23   | 0.111  | 0.041  | 1.24   | < 2    | 10     | 34     | 0.18   | < 1    | < 2    | < 10   | 77     | < 10   | 7      | 29    |
| 18328          | 0.82   | 0.107  | 0.025  | 0.46   | < 2    | 3      | 12     | 0.07   | 2      | < 2    | < 10   | 25     | < 10   | 3      | 25    |
| 18329          | 1.56   | 0.296  | 0.024  | 0.21   | < 2    | 13     | 33     | 0.22   | < 1    | < 2    | < 10   | 104    | < 10   | 7      | 9     |
| 18331          | 1.22   | 0.272  | 0.022  | 0.16   | < 2    | 11     | 33     | 0.20   | 2      | < 2    | < 10   | 88     | < 10   | 7      | 7     |
| 18332          | 1.73   | 0.267  | 0.029  | 0.13   | < 2    | 15     | 19     | 0.24   | 1      | < 2    | < 10   | 120    | < 10   | 11     | 8     |
| 18333          | 1.64   | 0.283  | 0.030  | 0.23   | 2      | 13     | 28     | 0.20   | < 1    | < 2    | < 10   | 113    | < 10   | 8      | 5     |
| 18334          | 1.78   | 0.278  | 0.025  | 0.12   | < 2    | 14     | 22     | 0.25   | 4      | < 2    | < 10   | 117    | < 10   | 9      | 5     |
| 18335          | 0.97   | 0.080  | 0.041  | 1.39   | 2      | 5      | 16     | 0.10   | < 1    | < 2    | < 10   | 44     | < 10   | 6      | 28    |
| 18336          | 1.06   | 0.090  | 0.052  | 1.88   | < 2    | 5      | 11     | 0.12   | 1      | < 2    | < 10   | 44     | < 10   | 8      | 37    |
| 18337          | 0.55   | 0.054  | 0.026  | 1.24   | < 2    | 2      | 12     | 0.04   | < 1    | < 2    | < 10   | 13     | < 10   | 3      | 29    |
| 18338          | 0.33   | 0.080  | 0.017  | 0.44   | < 2    | <1     | 18     | 0.03   | <1     | < 2    | < 10   | 7      | < 10   | 3      | 23    |
| 18341          | 0.52   | 0.106  | 0.024  | 0.56   | < 2    | 3      | 15     | 0.06   | < 1    | < 2    | < 10   | 20     | < 10   | 4      | 32    |
| 18342          | 0.72   | 0.110  | 0.037  | 0.80   | < 2    | 4      | 30     | 0.10   | < 1    | < 2    | < 10   | 37     | < 10   | 5      | 22    |
| 18344          | 1.47   | 0.275  | 0.026  | 0.86   | < 2    | 12     | 39     | 0.22   | < 1    | < 2    | < 10   | 94     | < 10   | 7      | 16    |
| 18345          | 1.74   | 0.360  | 0.024  | 0.48   | < 2    | 14     | 37     | 0.27   | 3      | < 2    | < 10   | 130    | < 10   | 7      | 7     |
| 18346          | 1.45   | 0.213  | 0.025  | 0.13   | < 2    | 12     | 18     | 0.21   | 2      | < 2    | < 10   | 101    | < 10   | 8      | 4     |
| 18347          | 1.50   | 0.433  | 0.023  | 0.58   | < 2    | 12     | 55     | 0.18   | 4      | < 2    | < 10   | 99     | < 10   | 7      | 3     |
| 18348          | 2.25   | 0.333  | 0.023  | 1.20   | 3      | 18     | 43     | 0.21   | 4      | < 2    | < 10   | 144    | < 10   | 9      | 5     |
| 18349          | 2.27   | 0.122  | 0.016  | 2.55   | 2      | 12     | 26     | 0.15   | 2      | < 2    | < 10   | 111    | < 10   | 12     | 5     |
| 18351          | 2.36   | 0.305  | 0.024  | 0.54   | < 2    | 18     | 38     | 0.24   | 2      | < 2    | < 10   | 153    | < 10   | 10     | 5     |
| 18352          | 1.76   | 0.262  | 0.023  | 0.26   | < 2    | 13     | 28     | 0.23   | 2      | < 2    | < 10   | 113    | < 10   | 8      | 4     |
| 18353          | 2.00   | 0.330  | 0.024  | 0.31   | < 2    | 15     | 34     | 0.23   | 1      | < 2    | < 10   | 130    | < 10   | 9      | 4     |
| 18354          | 1.20   | 0.200  | 0.059  | 1.15   | 24     | 9      | 96     | 0.12   | 3      | 10     | 27     | 76     | 14     | 28     | 33    |
| 18355          | 1.55   | 0.342  | 0.024  | 0.30   | 2      | 14     | 37     | 0.23   | 5      | < 2    | < 10   | 110    | < 10   | 7      | 4     |
| 18356          | 1.52   | 0.374  | 0.024  | 0.69   | < 2    | 13     | 40     | 0.20   | 3      | <2     | < 10   | 102    | < 10   | 7      | 5     |
| 18357          | 2.10   | 0.220  | 0.024  | 0.83   | 2      | 15     | 25     | 0.20   | 1      | <2     | < 10   | 134    | < 10   | 9      | 6     |
| 18358          | 1.59   | 0.161  | 0.023  | 0.29   | < 2    | 12     | 22     | 0.23   |        | <2     | < 10   | 108    | < 10   | -      | 8     |

Page 6/11

| Activation | Laboratories Lto | ł. – |
|------------|------------------|------|

Report: A15-00441

| Analyte Symbol | Mg     | Na     | P      | S      | Sb     | Sc     | Sr     | TI     | те     | TI     | U      | v      | w      | Y      | Zr     |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol    | %      | %      | %      | %      | ppm    | ppm    | ppm    | %      | ppm    |
| Lower Limit    | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 1      | 1      | 0.01   | 1      | 2      | 10     | 1      | 10     | 1      | 1      |
| Method Code    | AR-ICP |
| 18361          | 1.60   | 0.195  | 0.027  | 0.57   | < 2    | 13     | 18     | 0.25   | < 1    | < 2    | < 10   | 125    | < 10   | 8      | 6      |
| 18362          | 1.70   | 0.235  | 0.026  | 0.40   | < 2    | 14     | 26     | 0.26   | 4      | < 2    | < 10   | 130    | < 10   | 9      | 6      |
| 18363          | 1.47   | 0.220  | 0.024  | 0.50   | < 2    | 11     | 27     | 0.22   | 3      | < 2    | < 10   | 97     | < 10   | 7      | 6      |
| 18364          | 2.03   | 0.305  | 0.023  | 0.19   | < 2    | 14     | 37     | 0.24   | 1      | < 2    | < 10   | 115    | < 10   | 8      | 5      |
| 18365          | 2.25   | 0.314  | 0.022  | 1.03   | 2      | 17     | 43     | 0.24   | 4      | < 2    | < 10   | 136    | < 10   | 9      | 6      |
| 18366          | 1.98   | 0.275  | 0.024  | 0.07   | 3      | 10     | 26     | 0.21   | 2      | < 2    | < 10   | 83     | < 10   | 6      | 7      |
| 18367          | 1.75   | 0.350  | 0.026  | 0.26   | < 2    | 9      | 43     | 0.24   | 5      | < 2    | < 10   | 85     | < 10   | 7      | 4      |
| 18368          | 1.21   | 0.199  | 0.059  | 1.16   | 25     | 9      | 96     | 0.12   | 3      | 9      | 28     | 77     | 15     | 28     | 33     |
| 18369          | 1.86   | 0.313  | 0.030  | 0.67   | 3      | 11     | 34     | 0.28   | 3      | < 2    | < 10   | 94     | < 10   | 11     | 7      |
| 18371          | 1.36   | 0.279  | 0.026  | 0.10   | < 2    | 6      | 37     | 0.22   | 2      | < 2    | < 10   | 60     | < 10   | 8      | 6      |
| 18372          | 1.34   | 0.271  | 0.020  | 0.08   | < 2    | 6      | 39     | 0.18   | < 1    | < 2    | < 10   | 61     | < 10   | 6      | 3      |
| 18373          | 1.79   | 0.227  | 0.023  | 0.32   | < 2    | 9      | 28     | 0.24   | 5      | < 2    | < 10   | 73     | < 10   | 8      | 7      |
| 18374          | 1.69   | 0.208  | 0.022  | 0.06   | 2      | 13     | 28     | 0.26   | 4      | < 2    | < 10   | 100    | < 10   | 7      | 7      |
| 18375          | 1.83   | 0.298  | 0.023  | 0.60   | < 2    | 13     | 36     | 0.29   | 1      | < 2    | < 10   | 118    | < 10   | 9      | 5      |
| 18376          | 1.80   | 0.265  | 0.023  | 0.79   | < 2    | 13     | 29     | 0.27   | 3      | < 2    | < 10   | 115    | < 10   | 9      | 5      |
| 18377          | 1.62   | 0.353  | 0.026  | 1.28   | < 2    | 12     | 40     | 0.27   | 3      | < 2    | < 10   | 107    | < 10   | 10     | 5      |
| 18378          | 2.07   | 0.370  | 0.027  | 0.64   | 2      | 16     | 40     | 0.29   | 7      | < 2    | < 10   | 131    | < 10   | 10     | 5      |
| 18381          | 2.26   | 0.262  | 0.026  | 0.88   | 2      | 17     | 33     | 0.30   | 8      | < 2    | < 10   | 150    | < 10   | 11     | 6      |
| 18382          | 2.19   | 0.213  | 0.022  | 0.99   | < 2    | 15     | 25     | 0.28   | 3      | < 2    | < 10   | 125    | < 10   | 10     | 7      |
| 18383          | 2.76   | 0.187  | 0.024  | 0.63   | 2      | 18     | 21     | 0.32   | 3      | < 2    | < 10   | 160    | < 10   | 10     | 6      |
| 18384          | 4.29   | 0.062  | 0.020  | 0.49   | 3      | 21     | 18     | 0.28   | 3      | < 2    | < 10   | 169    | < 10   | 11     | 10     |
| 18385          | 4.08   | 0.077  | 0.021  | 0.56   | 3      | 22     | 15     | 0.26   | < 1    | < 2    | < 10   | 193    | < 10   | 11     | 8      |
| 18386          | 2.42   | 0.143  | 0.024  | 0.79   | < 2    | 14     | 16     | 0.31   | 4      | < 2    | < 10   | 141    | < 10   | 10     | 8      |
| 18387          | 1.82   | 0.208  | 0.023  | 0.87   | < 2    | 13     | 18     | 0.25   | 4      | < 2    | < 10   | 112    | < 10   | 9      | 5      |
| 18388          | 1.80   | 0.353  | 0.023  | 0.52   | < 2    | 15     | 37     | 0.26   | 2      | < 2    | < 10   | 119    | < 10   | 9      | 6      |
| 18389          | 1.80   | 0.262  | 0.024  | 0.60   | < 2    | 16     | 29     | 0.27   | 4      | < 2    | < 10   | 131    | < 10   | 8      | 7      |
| 18391          | 1.44   | 0.114  | 0.019  | 0.26   | 2      | 11     | 27     | 0.19   | 2      | < 2    | < 10   | 92     | < 10   | 6      | 7      |
| 18392          | 1.91   | 0.294  | 0.024  | 0.31   | < 2    | 18     | 32     | 0.26   | 5      | < 2    | < 10   | 148    | < 10   | 9      | 6      |
| 18393          | 1.70   | 0.263  | 0.023  | 0.49   | 2      | 15     | 27     | 0.23   | 4      | < 2    | < 10   | 120    | < 10   | 9      | 7      |
| 18394          | 2.38   | 0.186  | 0.022  | 0.90   | < 2    | 18     | 27     | 0.23   | 4      | < 2    | < 10   | 135    | < 10   | 8      | 8      |
| 18395          | 1.82   | 0.305  | 0.020  | 0.88   | 3      | 15     | 39     | 0.20   | 2      | < 2    | < 10   | 119    | < 10   | 8      | 6      |
| 18396          | 1.91   | 0.269  | 0.024  | 0.91   | 2      | 17     | 26     | 0.28   | 4      | < 2    | < 10   | 141    | < 10   | 9      | 6      |
| 18397          | 1.50   | 0.355  | 0.024  | 2.14   | < 2    | 13     | 34     | 0.25   | <1     | < 2    | < 10   | 120    | < 10   | 9      | 6      |
| 18398          | 1.94   | 0.324  | 0.024  | 0.91   | 3      | 16     | 26     | 0.28   | < 1    | < 2    | < 10   | 131    | < 10   | 10     | 5      |
| 18401          | 1.65   | 0.419  | 0.024  | 1.07   | 3      | 14     | 42     | 0.22   | 1      | < 2    | < 10   | 113    | < 10   | 9      | 4      |
| 18402          | 1.92   | 0.444  | 0.026  | 0.51   | 3      | 16     | 33     | 0.25   | 2      | < 2    | < 10   | 142    | < 10   | 9      | 4      |
| 18403          | 1.69   | 0.387  | 0.023  | 0.33   | < 2    | 13     | 38     | 0.23   | 3      | < 2    | < 10   | 108    | < 10   | 8      | 3      |
| 18404          | 1.96   | 0.386  | 0.025  | 0.94   | < 2    | 17     | 35     | 0.35   | 2      | < 2    | < 10   | 158    | < 10   | 12     | 6      |
| 18405          | 2.01   | 0.384  | 0.029  | 0.93   | 2      | 17     | 38     | 0.48   | 3      | < 2    | < 10   | 204    | < 10   | 14     | 5      |
| 18406          | 2.12   | 0.361  | 0.029  | 1.20   | 3      | 20     | 45     | 0.46   | 2      | < 2    | < 10   | 217    | < 10   | 13     | 8      |
| 18407          | 2.18   | 0.349  | 0.030  | 1.17   | < 2    | 19     | 43     | 0.48   | 3      | < 2    | < 10   | 226    | < 10   | 13     | 7      |
| 18408          | 1.84   | 0.449  | 0.027  | 0.97   | 2      | 14     | 46     | 0.40   | < 1    | < 2    | < 10   | 146    | < 10   | 11     | 5      |
| 18409          | 1.64   | 0.319  | 0.024  | 0.97   | 2      | 11     | 36     | 0.21   | < 1    | < 2    | < 10   | 113    | < 10   | 7      | 4      |
| 18411          | 1.63   | 0.356  | 0.020  | 0.18   | 2      | 12     | 38     | 0.29   | 1      | < 2    | < 10   | 102    | < 10   | 8      | 3      |
| 18412          | 1.70   | 0.388  | 0.026  | 2.69   | 3      | 12     | 50     | 0.19   | 1      | < 2    | < 10   | 95     | < 10   | 9      | 9      |
| 18413          | 2.07   | 0.314  | 0.023  | 0.90   | 3      | 14     | 34     | 0.23   | 2      | < 2    | < 10   | 118    | < 10   | 9      | 5      |
| 18414          | 1.94   | 0.371  | 0.023  | 0.64   | < 2    | 14     | 42     | 0.23   | 2      | < 2    | < 10   | 124    | < 10   | 8      | 4      |
| 18415          | 2.17   | 0.438  | 0.024  | 0.26   | 3      | 16     | 41     | 0.26   | < 1    | < 2    | < 10   | 139    | < 10   | 8      | 4      |
| 18416          | 1.93   | 0.520  | 0.024  | 0.33   | 3      | 17     | 46     | 0.26   | 4      | < 2    | < 10   | 139    | < 10   | 9      | 4      |
| 18417          | 2.05   | 0.392  | 0.024  | 0.21   | 2      | 19     | 37     | 0.28   | 2      | < 2    | < 10   | 147    | < 10   | 10     | 4      |

Page 7/11

Report: A15-00441

| Analyte Symbol | Mg     | Na     | P      | s      | Sb     | Sc     | Sr     | Ti     | Те     | ті     | U      | v      | w      | Y      | Zr    |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| Unit Symbol    | %      | %      | %      | %      | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm    | ppm    | ppm   |
| Lower Limit    | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 1      | 1      | 0.01   | 1      | 2      | 10     | 1      | 10     | 1      | 1     |
| Method Code    | AR-ICP | AR-IC |
| 18418          | 1.68   | 0.204  | 0.028  | 0.08   | <2     | 14     | 15     | 0.31   | 2      | <2     | < 10   | 139    | < 10   | 8      | 5     |
| 18421          | 1.77   | 0.205  | 0.028  | 0.23   | < 2    | 15     | 17     | 0.23   | < 1    | < 2    | < 10   | 144    | < 10   | 9      | 4     |
| 18422          | 1.74   | 0.316  | 0.026  | 0.41   | < 2    | 13     | 34     | 0.32   | 2      | < 2    | < 10   | 116    | < 10   | 12     | 4     |
| 18423          | 1.64   | 0.421  | 0.025  | 0.09   | < 2    | 13     | 55     | 0.20   | 5      | < 2    | < 10   | 103    | < 10   | 7      | 3     |
| 18424          | 2.05   | 0.330  | 0.023  | 1.16   | 3      | 15     | 34     | 0.21   | < 1    | < 2    | < 10   | 120    | < 10   | 9      | 5     |
| 18425          | 2.00   | 0.361  | 0.022  | 0.37   | 2      | 16     | 40     | 0.24   | < 1    | < 2    | < 10   | 134    | < 10   | 10     | 4     |
| 18426          | 1.75   | 0.411  | 0.026  | 0.31   | 2      | 14     | 45     | 0.27   | < 1    | < 2    | < 10   | 136    | < 10   | 8      | 4     |
| 18427          | 1.64   | 0.344  | 0.033  | 0.38   | < 2    | 14     | 42     | 0.34   | 2      | < 2    | < 10   | 160    | < 10   | 10     | 6     |
| 18428          | 1.24   | 0.234  | 0.026  | 0.27   | < 2    | 9      | 34     | 0.29   | 6      | < 2    | < 10   | 101    | < 10   | 8      | 5     |
| 18429          | 1.46   | 0.287  | 0.024  | 0.15   | <2     | 12     | 36     | 0.28   | < 1    | < 2    | < 10   | 116    | < 10   | 7      | 4     |
| 18431          | 2.01   | 0.430  | 0.023  | 0.32   | 2      | 16     | 36     | 0.26   | < 1    | < 2    | < 10   | 130    | < 10   | 9      | 5     |
| 18432          | 1.47   | 0.337  | 0.021  | 0.21   | <2     | 13     | 30     | 0.25   | 2      | < 2    | < 10   | 94     | < 10   | 9      | 3     |
| 18433          | 1.43   | 0.367  | 0.021  | 0.08   | < 2    | 11     | 34     | 0.28   | 3      | < 2    | < 10   | 88     | < 10   | 8      | 3     |
| 18434          | 1.59   | 0.478  | 0.021  | 0.04   | 2      | 12     | 43     | 0.26   | 2      | < 2    | < 10   | 89     | < 10   | 7      | 3     |
| 18435          | 1.99   | 0.324  | 0.021  | 0.54   | 2      | 13     | 32     | 0.23   | 2      | < 2    | < 10   | 99     | < 10   | 8      | 4     |
| 18436          | 2.11   | 0.344  | 0.020  | 0.32   | 2      | 15     | 29     | 0.25   | 1      | <2     | < 10   | 111    | < 10   | 9      | 4     |
| 18437          | 2.04   | 0.290  | 0.020  | 0.22   | < 2    | 14     | 19     | 0.25   | 3      | < 2    | < 10   | 103    | < 10   | 10     | 3     |
| 18438          | 2.79   | 0.303  | 0.021  | 0.22   | 3      | 17     | 16     | 0.23   | <1     | <2     | < 10   | 122    | < 10   | 9      | 3     |
| 18441          | 1.69   | 0.429  | 0.020  | 0.18   | 3      | 13     | 46     | 0.25   | 2      | <2     | < 10   | 95     | < 10   | 8      | 3     |
| 18442          | 2.23   | 0.364  | 0.020  | 0.31   | 2      | 15     | 36     | 0.23   | <1     | <2     | < 10   | 110    | < 10   | 9      | 3     |
| 18443          | 1.47   | 0.304  | 0.021  | 0.33   | 2      | 10     | 49     | 0.23   | 2      | <2     | < 10   | 83     | < 10   | 8      | 2     |
|                | 2.12   |        | 0.021  | 0.38   | <2     | 16     | 49     | 0.25   | 3      | <2     | < 10   | 127    |        |        |       |
| 18444          |        | 0.480  |        |        |        |        |        |        |        |        |        |        | < 10   | 9      | 3     |
| 18445          | 2.03   | 0.388  | 0.021  | 0.18   | 3      | 15     | 30     | 0.23   | 6      | < 2    | < 10   | 118    | < 10   | 9      | 3     |
| 18446          | 1.70   | 0.385  | 0.022  | 0.27   | 2      | 14     | 32     | 0.21   | 2      | < 2    | < 10   | 107    | < 10   | 8      | 3     |
| 18447          | 1.68   | 0.365  | 0.023  | 0.14   | < 2    | 13     | 30     | 0.22   | 3      | < 2    | < 10   | 107    | < 10   | 8      | 3     |
| 18448          | 1.92   | 0.409  | 0.021  | 0.86   | 3      | 15     | 33     | 0.21   | 3      | < 2    | < 10   | 116    | < 10   | 9      | 4     |
| 18449          | 1.38   | 0.502  | 0.024  | 0.25   | < 2    | 10     | 51     | 0.21   | 2      | < 2    | < 10   | 91     | < 10   | 6      | 2     |
| 18451          | 1.40   | 0.568  | 0.024  | 0.61   | < 2    | 9      | 50     | 0.24   | < 1    | < 2    | < 10   | 90     | < 10   | 6      | 3     |
| 18452          | 2.29   | 0.298  | 0.023  | 3.68   | 3      | 12     | 25     | 0.35   | 3      | < 2    | < 10   | 130    | < 10   | 11     | 5     |
| 18453          | 1.43   | 0.330  | 0.020  | 4.35   | 3      | 16     | 36     | 0.30   | 2      | < 2    | < 10   | 127    | < 10   | 12     | 6     |
| 18454          | 1.67   | 0.226  | 0.023  | 6.23   | 4      | 18     | 25     | 0.35   | 4      | < 2    | < 10   | 144    | < 10   | 11     | 8     |
| 18455          | 1.65   | 0.408  | 0.026  | 3.19   | 2      | 10     | 37     | 0.42   | 6      | < 2    | < 10   | 128    | < 10   | 11     | 6     |
| 18456          | 1.99   | 0.283  | 0.025  | 3.27   | 3      | 15     | 28     | 0.31   | 3      | < 2    | < 10   | 131    | < 10   | 11     | 10    |
| 18457          | 1.63   | 0.473  | 0.024  | 2.78   | 3      | 13     | 37     | 0.24   | 4      | < 2    | < 10   | 113    | < 10   | 8      | 8     |
| 18458          | 1.83   | 0.347  | 0.026  | 2.33   | <2     | 12     | 26     | 0.23   | 3      | < 2    | < 10   | 116    | < 10   | 7      | 8     |
| 18461          | 2.09   | 0.324  | 0.025  | 0.96   | <2     | 18     | 23     | 0.29   | 2      | < 2    | < 10   | 154    | < 10   | 9      | 7     |
| 18462          | 1.99   | 0.285  | 0.025  | 0.58   | 3      | 16     | 23     | 0.25   | 3      | < 2    | < 10   | 142    | < 10   | 9      | 4     |
| 18463          | 1.70   | 0.348  | 0.028  | 0.39   | < 2    | 15     | 26     | 0.24   | 7      | < 2    | < 10   | 131    | < 10   | 10     | 3     |
| 18464          | 2.05   | 0.270  | 0.024  | 0.63   | 3      | 17     | 24     | 0.22   | 3      | < 2    | < 10   | 143    | < 10   | 9      | 5     |
| 18465          | 1.68   | 0.238  | 0.024  | 1.05   | < 2    | 13     | 23     | 0.22   | 2      | < 2    | < 10   | 118    | < 10   | 8      | 6     |
| 18466          | 1.60   | 0.308  | 0.026  | 0.61   | < 2    | 12     | 20     | 0.19   | 3      | < 2    | < 10   | 109    | < 10   | 8      | 4     |
| 18467          | 1.94   | 0.508  | 0.025  | 0.73   | < 2    | 11     | 38     | 0.18   | < 1    | < 2    | < 10   | 121    | < 10   | 6      | 3     |
| 18468          | 2.03   | 0.248  | 0.024  | 3.07   | 3      | 11     | 22     | 0.20   | 2      | < 2    | < 10   | 110    | < 10   | 6      | 9     |
| 18469          | 1.77   | 0.330  | 0.025  | 2.53   | <2     | 11     | 26     | 0.20   | 2      | < 2    | < 10   | 121    | < 10   | 7      | 7     |
| 18471          | 1.74   | 0.223  | 0.023  | 3.53   | 3      | 13     | 19     | 0.19   | 4      | < 2    | < 10   | 112    | < 10   | 9      | 7     |
| 18472          | 2.34   | 0.282  | 0.026  | 0.55   | 2      | 16     | 22     | 0.22   | <1     | < 2    | < 10   | 135    | < 10   | 11     | 5     |
| 18473          | 1.89   | 0.392  | 0.024  | 0.15   | < 2    | 13     | 37     | 0.21   | <1     | < 2    | < 10   | 118    | < 10   | 7      | 3     |
| 18474          | 2.01   | 0.323  | 0.024  | 1.28   | 2      | 14     | 32     | 0.25   | <1     | < 2    | < 10   | 123    | < 10   | 9      | 6     |
| 18475          | 1.64   | 0.220  | 0.040  | 2.28   | 3      | 13     | 38     | 0.27   | 4      | < 2    | < 10   | 104    | < 10   | 10     | 17    |
| 18476          | 1.56   | 0.220  | 0.040  | 5.08   | 4      | 10     | 37     | 0.27   | 2      | <2     | < 10   | 91     | < 10   | 7      | 11    |
| 10470          | 1.00   | 0.200  | 0.010  | 3.00   | 7      | 10     | 51     | 9.17   | 4      | ×4     | × 10   | 91     | × 10   | ·      | 11    |

86

Report: A15-00441

| Analyte Symbol | Mg     | Na     | P      | S      | Sb     | Sc     | Sr     | Ti     | Te     | TI     | U      | v      | w      | Y      | Zr     |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol    | %      | %      | %      | %      | ppm    | ppm    | ppm    | %      | ppm    |
| Lower Limit    | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 1      | 1      | 0.01   | 1      | 2      | 10     | 1      | 10     | 1      | 1      |
| Method Code    | AR-ICP |
| 18477          | 1.69   | 0.342  | 0.020  | 0.46   | 2      | 11     | 39     | 0.19   | 3      | <2     | < 10   | 88     | < 10   | 7      | 3      |
| 18478          | 1.45   | 0.398  | 0.022  | 0.07   | < 2    | 10     | 43     | 0.15   | 4      | < 2    | < 10   | 80     | < 10   | 6      | 2      |
| 18479          | 1.52   | 0.406  | 0.021  | 0.11   | <2     | 11     | 49     | 0.22   | 2      | < 2    | < 10   | 83     | < 10   | 6      | 3      |
| 18480          | 1.67   | 0.375  | 0.021  | 0.13   | < 2    | 11     | 46     | 0.23   | 2      | < 2    | < 10   | 87     | < 10   | 7      | 3      |
| 18482          | 1.58   | 0.347  | 0.021  | 0.08   | < 2    | 10     | 40     | 0.21   | < 1    | < 2    | < 10   | 78     | < 10   | 6      | 2      |
| 18483          | 1.82   | 0.536  | 0.024  | 0.17   | <2     | 14     | 59     | 0.24   | < 1    | < 2    | < 10   | 116    | < 10   | 8      | 4      |
| 18484          | 2.04   | 0.430  | 0.024  | 0.39   | 2      | 15     | 52     | 0.24   | 3      | < 2    | < 10   | 125    | < 10   | 8      | 4      |
| 18485          | 1.83   | 0.419  | 0.022  | 0.24   | < 2    | 15     | 54     | 0.23   | 3      | < 2    | < 10   | 123    | < 10   | 7      | 4      |
| 18486          | 1.73   | 0.500  | 0.025  | 1.09   | 3      | 16     | 51     | 0.23   | 3      | < 2    | < 10   | 124    | < 10   | 9      | 6      |
| 18487          | 1.32   | 0.500  | 0.022  | 2.52   | <2     | 11     | 58     | 0.20   | < 1    | < 2    | < 10   | 95     | < 10   | 8      | 6      |
| 18488          | 1.21   | 0.559  | 0.024  | 2.40   | 3      | 11     | 61     | 0.23   | 4      | < 2    | < 10   | 94     | < 10   | 9      | 6      |
| 18489          | 0.91   | 0.567  | 0.023  | 3.62   | 2      | 10     | 69     | 0.21   | < 1    | < 2    | < 10   | 78     | < 10   | 8      | 7      |
| 18492          | 1.31   | 0.450  | 0.024  | 2.00   | < 2    | 11     | 53     | 0.17   | 2      | < 2    | < 10   | 92     | < 10   | 8      | 6      |
| 18493          | 1.89   | 0.331  | 0.025  | 0.45   | 2      | 17     | 23     | 0.24   | 4      | < 2    | < 10   | 136    | < 10   | 9      | 4      |
| 18494          | 1.69   | 0.318  | 0.024  | 0.59   | <2     | 13     | 28     | 0.22   | 2      | < 2    | < 10   | 108    | < 10   | 8      | 8      |
| 18495          | 1.67   | 0.377  | 0.032  | 0.63   | <2     | 11     | 36     | 0.27   | 3      | < 2    | < 10   | 110    | < 10   | 10     | 6      |
| 18496          | 1.73   | 0.200  | 0.027  | 0.06   | <2     | 12     | 15     | 0.21   | 4      | < 2    | < 10   | 84     | < 10   | 8      | 4      |
| 18497          | 1.48   | 0.233  | 0.021  | 0.09   | <2     | 7      | 28     | 0.21   | 1      | < 2    | < 10   | 67     | < 10   | 6      | 4      |
| 18498          | 2.15   | 0.292  | 0.017  | 0.04   | <2     | 7      | 30     | 0.17   | 2      | < 2    | < 10   | 67     | < 10   | 4      | 5      |
| 18499          | 0.90   | 0.219  | 0.028  | 0.22   | <2     | 12     | 28     | 0.25   | 4      | < 2    | < 10   | 101    | < 10   | 8      | 10     |
| 18500          | 0.24   | 0.114  | 0.016  | 0.25   | < 2    | 2      | 11     | 0.06   | < 1    | < 2    | < 10   | 15     | < 10   | 3      | 10     |
| 18502          | 1.73   | 0.399  | 0.021  | 0.20   | <2     | 10     | 51     | 0.22   | 2      | < 2    | < 10   | 95     | < 10   | 7      | 2      |
| 18503          | 1.69   | 0.312  | 0.024  | 0.14   | < 2    | 9      | 39     | 0.21   | 4      | < 2    | < 10   | 84     | < 10   | 6      | 11     |
| 18504          | 1.74   | 0.235  | 0.049  | 0.09   | <2     | 17     | 12     | 0.27   | 3      | < 2    | < 10   | 140    | < 10   | 19     | 11     |
| 18505          | 1.67   | 0.339  | 0.025  | 0.13   | <2     | 10     | 39     | 0.21   | 1      | < 2    | < 10   | 90     | < 10   | 7      | 10     |
| 18506          | 1.48   | 0.270  | 0.049  | 0.03   | <2     | 17     | 11     | 0.28   | 5      | < 2    | < 10   | 183    | < 10   | 22     | 8      |
| 18507          | 1.46   | 0.476  | 0.027  | 0.46   | 3      | 10     | 54     | 0.22   | 2      | < 2    | < 10   | 88     | < 10   | 9      | 8      |

Page 9/11

Report: A15-00441

| Analyte Symbol           | Th     | Ag     | Cd     | Cu       | Mn     | Мо     | Ni     | Pb     | Zn     | AI     | As     | В      | Ba     | Be     | Bi       | Ca     | Co     | Cr     | Fe     | Ga     | Hg     | К      | La     |
|--------------------------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol              | ppm    | ppm    | ppm    | ppm      | ppm    | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm      | %      | ppm    | ppm    | %      | ppm    | ppm    | %      | ppm    |
| Lower Limit              | 20     | 0.2    | 0.5    | 1        | 5      | 1      | 1      | 2      | 2      | 0.01   | 2      | 10     | 10     | 0.5    | 2        | 0.01   | 1      | 1      | 0.01   | 10     | 1      | 0.01   | 10     |
| Method Code              | AR-ICP | AR-ICP | AR-ICP | AR-ICP   | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP   | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| GXR-4 Meas               | < 20   | 3.3    | < 0.5  | 6330     | 142    | 315    | 36     | 39     | 68     | 2.75   | 103    | < 10   | 37     | 1.4    | 21       | 0.93   | 13     | 53     | 2.88   | 10     | <1     | 1.86   | 53     |
| GXR-4 Cert               | 22.5   | 4.0    | 0.860  | 6520     | 155    | 310    | 42.0   | 52.0   | 73.0   | 7.20   | 98.0   | 4.50   | 1640   | 1.90   | 19.0     | 1.01   | 14.6   | 64.0   | 3.09   | 20.0   | 0.110  | 4.01   | 64.5   |
| GXR-4 Meas               | < 20   | 3.4    | < 0.5  | 6450     | 141    | 319    | 37     | 41     | 69     | 2.77   | 105    | < 10   | 38     | 1.4    | 20       | 0.94   | 13     | 55     | 2.92   | 10     | <1     | 1.89   | 52     |
| GXR-4 Cert               | 22.5   | 4.0    | 0.860  | 6520     | 155    | 310    | 42.0   | 52.0   | 73.0   | 7.20   | 98.0   | 4.50   | 1640   | 1.90   | 19.0     | 1.01   | 14.6   | 64.0   | 3.09   | 20.0   | 0.110  | 4.01   | 64.5   |
| GXR-6 Meas               | < 20   | 0.3    | < 0.5  | 70       | 1070   | 3      | 22     | 88     | 123    | 7.23   | 244    | < 10   | 1110   | 0.9    | <2       | 0.14   | 13     | 79     | 5.30   | 20     | <1     | 1.26   | < 10   |
| GXR-6 Cert               | 5.30   | 1.30   | 1.00   | 66.0     | 1010   | 2.40   | 27.0   | 101    | 118    | 17.7   | 330    | 9.80   | 1300   | 1.40   | 0.290    | 0.180  | 13.8   | 96.0   | 5.58   | 35.0   | 0.0680 | 1.87   | 13.9   |
| GXR-6 Meas               | < 20   | 0.3    | < 0.5  | 72       | 1100   | 2      | 23     | 93     | 127    | 7.39   | 237    | < 10   | 1140   | 0.9    | < 2      | 0.15   | 13     | 81     | 5.45   | 20     | 2      | 1.29   | < 10   |
| GXR-6 Cert               | 5.30   | 1.30   | 1.00   | 66.0     | 1010   | 2.40   | 27.0   | 101    | 118    | 17.7   | 330    | 9.80   | 1300   | 1.40   | 0.290    | 0.180  | 13.8   | 96.0   | 5.58   | 35.0   | 0.0680 | 1.87   | 13.9   |
| SAR-M (U.S.G.S.)<br>Meas | < 20   | 3.2    | 5.5    | 346      | 4930   | 13     | 41     | 1020   | 1010   | 1.22   | 43     |        | 242    | 1.1    | 2        | 0.31   | 11     | 93     | 2.76   | < 10   |        | 0.32   | 52     |
| SAR-M (U.S.G.S.)<br>Cert | 17.2   | 3.64   | 5.27   | 331.0000 | 5220   | 13.1   | 41.5   | 982    | 930.0  | 6.30   | 38.8   |        | 801    | 2.20   | 1.94     | 0.61   | 10.70  | 79.7   | 2.99   | 17     |        | 2.94   | 57.4   |
| SAR-M (U.S.G.S.)<br>Meas | < 20   | 3.8    | 5.3    | 339      | 4710   | 14     | 41     | 1000   | 997    | 1.26   | 43     |        | 253    | 1.1    | < 2      | 0.33   | 10     | 87     | 2.74   | < 10   |        | 0.33   | 53     |
| SAR-M (U.S.G.S.)<br>Cert | 17.2   | 3.64   | 5.27   | 331.0000 | 5220   | 13.1   | 41.5   | 982    | 930.0  | 6.30   | 38.8   |        | 801    | 2.20   | 1.94     | 0.61   | 10.70  | 79.7   | 2.99   | 17     |        | 2.94   | 57.4   |
| 18311 Orig               | < 20   | < 0.2  | < 0.5  | 54       | 592    | <1     | 80     | <2     | 34     | 1.91   | < 2    | < 10   | 37     | < 0.5  | <2       | 3.01   | 24     | 316    | 3.40   | < 10   | <1     | 0.12   | < 10   |
| 18311 Dup                | < 20   | < 0.2  | < 0.5  | 54       | 609    | <1     | 82     | <2     | 34     | 1.95   | < 2    | < 10   | 39     | < 0.5  | < 2      | 3.08   | 25     | 322    | 3.42   | < 10   | <1     | 0.12   | < 10   |
| 18327 Orig               | < 20   | 0.3    | < 0.5  | 75       | 1140   | 3      | 119    | 5      | 200    | 1.34   | 117    | < 10   | 43     | < 0.5  | <2       | 5.13   | 36     | 142    | 2.83   | < 10   | <1     | 0.17   | 11     |
| 18327 Dup                | < 20   | 0.3    | < 0.5  | 77       | 1150   | 2      | 118    | 5      | 202    | 1.36   | 119    | < 10   | 42     | < 0.5  | <2       | 5.19   | 35     | 145    | 2.87   | < 10   | <1     | 0.18   | 11     |
| 18344 Orig               | < 20   | < 0.2  | < 0.5  | 78       | 827    | 1      | 67     | 4      | 138    | 2.68   | 8      | < 10   | 142    | < 0.5  | <2       | 2.44   | 25     | 178    | 3.44   | < 10   | <1     | 1.10   | < 10   |
| 18344 Dup                | < 20   | < 0.2  | < 0.5  | 77       | 826    | 1      | 65     | 3      | 138    | 2.70   | 6      | < 10   | 150    | < 0.5  | <2       | 2.44   | 24     | 178    | 3.42   | < 10   | <1     | 1.10   | < 10   |
| 18361 Orig               | < 20   | < 0.2  | < 0.5  | 164      | 649    | <1     | 44     | <2     | 84     | 1.72   | 3      | < 10   | 39     | < 0.5  | < 2      | 1.78   | 41     | 68     | 3.22   | < 10   | <1     | 0.09   | < 10   |
| 18361 Dup                | < 20   | < 0.2  | < 0.5  | 171      | 660    | <1     | 45     | <2     | 87     | 1.76   | 3      | < 10   | 41     | < 0.5  | <2       | 1.84   | 41     | 70     | 3.29   | < 10   | <1     | 0.09   | < 10   |
| 18387 Orig               | < 20   | < 0.2  | < 0.5  | 161      | 931    | <1     | 45     | 2      | 86     | 2.07   | 2      | < 10   | 37     | < 0.5  | <2       |        | 35     | 85     | 4.16   | < 10   | <1     | 0.10   | < 10   |
| 18387 Dup                | < 20   | < 0.2  | < 0.5  | 162      | 933    | <1     | 45     | <2     | 85     | 2.08   | 2      | < 10   | 36     | < 0.5  | < 2      |        | 35     | 85     | 4.17   | < 10   | <1     | 0.10   | < 10   |
| 18404 Orig               | < 20   | < 0.2  | < 0.5  | 97       | 870    | <1     | 46     | <2     | 82     | 3.08   | 5      | < 10   | 102    | < 0.5  | <2       |        | 45     | 67     | 5.15   | 10     | <1     | 0.40   | < 10   |
| 18404 Dup                | < 20   | < 0.2  | < 0.5  | 97       | 861    | <1     | 45     | <2     | 81     | 3.04   | 3      | < 10   | 85     | < 0.5  | < 2      |        | 44     | 65     | 5.08   | 10     | <1     | 0.40   | < 10   |
| 18418 Orig               | < 20   | < 0.2  | < 0.5  | 74       | 615    | <1     | 37     | <2     | 61     | 1.87   | 9      | < 10   | 84     | < 0.5  | <2       |        | 38     | 66     | 3.40   | < 10   | <1     | 0.09   | < 10   |
| 18418 Dup                | < 20   | < 0.2  | < 0.5  | 72       | 595    | <1     | 36     | <2     | 59     | 1.80   | 7      | < 10   | 83     | < 0.5  | <2       |        | 35     | 63     | 3.34   | < 10   | <1     | 0.09   | < 10   |
| 18435 Orig               | < 20   | < 0.2  | < 0.5  | 161      | 800    | <1     | 49     | <2     | 58     | 2.51   | 6      | < 10   | 51     | < 0.5  | <2       |        | 33     | 155    | 3.57   | < 10   | <1     | 0.08   | < 10   |
| 18435 Dup                | < 20   | < 0.2  | < 0.5  | 178      | 923    | <1     | 54     | <2     | 64     | 2.78   | 7      | < 10   | 56     | < 0.5  |          |        | 35     | 177    | 4.07   | < 10   | <1     | 0.09   | < 10   |
| 18456 Orig               | < 20   | < 0.2  | < 0.5  | 136      | 695    | <1     | 59     | 4      | 162    | 3.13   | < 2    | < 10   | 25     | < 0.5  | < 2      |        | 46     | 111    | 6.97   | 10     | <1     | 0.17   | < 10   |
| 18456 Dup                | < 20   | 0.2    | < 0.5  | 136      | 689    | <1     | 57     | 3      | 162    | 3.08   | < 2    | < 10   | 23     | < 0.5  | < 2      | 1.70   | 46     | 111    | 6.82   | 10     | <1     | 0.17   | < 10   |
| 18473 Orig               | < 20   | < 0.2  | < 0.5  | 120      | 744    | <1     | 33     | < 2    | 52     | 3.24   | 3      | < 10   | 47     | < 0.5  | < 2      | 3.08   | 28     | 59     | 3.90   | < 10   | <1     | 0.11   | < 10   |
| 18473 Dup                | < 20   | < 0.2  | < 0.5  | 127      | 741    | 1      | 32     | < 2    | 52     | 3.22   | 6      | < 10   | 47     | < 0.5  | -        |        | 29     | 60     | 3.89   | < 10   | <1     | 0.10   | < 10   |
| 18487 Orig               | < 20   | < 0.2  | < 0.5  | 151      | 699    | <1     | 71     | <2     | 95     | 3.46   | < 2    | < 10   | 26     | < 0.5  | <u> </u> |        | 57     | 86     | 6.16   | < 10   | <1     | 0.12   | < 10   |
| 18487 Dup                | < 20   | < 0.2  | < 0.5  | 145      | 686    | <1     | 67     | < 2    | 89     | 3.34   | < 2    | < 10   | 35     | < 0.5  |          |        | 54     | 78     | 5.85   | < 10   | <1     | 0.11   | < 10   |
| 18504 Orig               | < 20   | < 0.2  | < 0.5  | 127      | 712    | <1     | 24     | < 2    | 31     | 1.72   | < 2    | < 10   | 32     | < 0.5  |          |        | 24     | 74     | 4.30   | < 10   | <1     | 0.10   | < 10   |
| 18504 Dup                | < 20   | < 0.2  | < 0.5  | 128      | 696    | <1     | 24     | <2     | 31     | 1.71   | < 2    | < 10   | 30     | < 0.5  | _        |        | 24     | 77     | 4.25   | < 10   | <1     | 0.10   | < 10   |
| Method Blank             | < 20   | < 0.2  | < 0.5  | <1       | <5     | <1     | <1     | <2     | <2     | < 0.01 | < 2    | < 10   | 10     | < 0.5  | < 2      | < 0.01 | <1     | <1     | < 0.01 | < 10   | <1     | < 0.01 | < 10   |
| Method Blank             | < 20   | < 0.2  | < 0.5  | <1       | < 5    | < 1    | <1     | < 2    | <2     | < 0.01 | < 2    | < 10   | 10     | < 0.5  | < 2      | < 0.01 | <1     | <1     | < 0.01 | < 10   | <1     | < 0.01 | < 10   |

QC

Page 10/11

Report: A15-00441

|                          |        |        |         |        |        |        |        |        |        |        |        |        | Repo   |        |        |
|--------------------------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol           | Mg     | Na     | P       | s      | Sb     | Sc     | Sr     | Ti     | Te     | TI     | U      | v      | w      | Y      | Zr     |
| Unit Symbol              | %      | %      | %       | %      | ppm    | ppm    | ppm    | %      | ppm    |
| Lower Limit              | 0.01   | 0.001  | 0.001   | 0.01   | 2      | 1      | 1      | 0.01   | 1      | 2      | 10     | 1      | 10     | 1      | 1      |
| Method Code              | AR-ICP | AR-ICP | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| GXR-4 Meas               | 1.61   | 0.138  | 0.114   | 1.69   | 5      | 6      | 76     | 0.14   | 6      | < 2    | < 10   | 77     | 16     | 12     | 10     |
| GXR-4 Cert               | 1.66   | 0.564  | 0.120   | 1.77   | 4.80   | 7.70   | 221    | 0.29   | 0.970  | 3.20   | 6.20   | 87.0   | 30.8   | 14.0   | 186    |
| GXR-4 Meas               | 1.63   | 0.136  | 0.117   | 1.70   | 4      | 7      | 78     | 0.14   | 1      | 2      | < 10   | 79     | 15     | 12     | 10     |
| GXR-4 Cert               | 1.66   | 0.564  | 0.120   | 1.77   | 4.80   | 7.70   | 221    | 0.29   | 0.970  | 3.20   | 6.20   | 87.0   | 30.8   | 14.0   | 186    |
| GXR-6 Meas               | 0.41   | 0.088  | 0.031   | 0.01   | 3      | 18     | 31     |        | 3      | < 2    | < 10   | 174    | < 10   | 5      | 14     |
| GXR-6 Cert               | 0.609  | 0.104  | 0.0350  | 0.0160 | 3.60   | 27.6   | 35.0   |        | 0.0180 | 2.20   | 1.54   | 186    | 1.90   | 14.0   | 110    |
| GXR-6 Meas               | 0.42   | 0.087  | 0.032   | 0.02   | 4      | 18     | 32     |        | < 1    | < 2    | < 10   | 177    | < 10   | 5      | 12     |
| GXR-6 Cert               | 0.609  | 0.104  | 0.0350  | 0.0160 | 3.60   | 27.6   | 35.0   |        | 0.0180 | 2.20   | 1.54   | 186    | 1.90   | 14.0   | 110    |
| SAR-M (U.S.G.S.)<br>Meas | 0.35   | 0.038  | 0.060   |        | 5      | 3      | 35     | 0.06   | 4      | < 2    | < 10   | 37     | < 10   | 22     |        |
| SAR-M (U.S.G.S.)<br>Cert | 0.50   | 1.140  | 0.07    |        | 6.0    | 7.83   | 151    | 0.38   | 0.96   | 2.7    | 3.57   | 67.2   | 9.78   | 28.00  |        |
| SAR-M (U.S.G.S.)<br>Meas | 0.36   | 0.040  | 0.061   |        | 5      | 4      | 35     | 0.06   | 3      | < 2    | < 10   | 38     | < 10   | 24     |        |
| SAR-M (U.S.G.S.)<br>Cert | 0.50   | 1.140  | 0.07    |        | 6.0    | 7.83   | 151    | 0.38   | 0.96   | 2.7    | 3.57   | 67.2   | 9.78   | 28.00  |        |
| 18311 Orig               | 2.07   | 0.175  | 0.030   | 0.17   | 3      | 11     | 16     | 0.20   | 4      | < 2    | < 10   | 82     | < 10   | 6      | 3      |
| 18311 Dup                | 2.12   | 0.180  | 0.030   | 0.17   | 3      | 12     | 17     | 0.21   | 3      | < 2    | < 10   | 84     | < 10   | 7      | 4      |
| 18327 Orig               | 1.22   | 0.113  | 0.041   | 1.24   | < 2    | 10     | 34     | 0.18   | 1      | < 2    | < 10   | 77     | < 10   | 7      | 29     |
| 18327 Dup                | 1.24   | 0.110  | 0.042   | 1.24   | 2      | 10     | 34     | 0.18   | < 1    | < 2    | < 10   | 77     | < 10   | 7      | 29     |
| 18344 Orig               | 1.47   | 0.274  | 0.026   | 0.87   | < 2    | 12     | 39     | 0.22   | 2      | < 2    | < 10   | 94     | < 10   | 7      | 16     |
| 18344 Dup                | 1.47   | 0.275  | 0.026   | 0.86   | < 2    | 12     | 39     | 0.22   | < 1    | < 2    | < 10   | 94     | < 10   | 7      | 16     |
| 18361 Orig               | 1.58   | 0.190  | 0.027   | 0.57   | < 2    | 13     | 17     | 0.25   | 5      | < 2    | < 10   | 123    | < 10   | 8      | 6      |
| 18361 Dup                | 1.62   | 0.199  | 0.027   | 0.58   | < 2    | 13     | 18     | 0.25   | < 1    | < 2    | < 10   | 126    | < 10   | 8      | 6      |
| 18387 Orig               | 1.82   | 0.210  | 0.023   | 0.87   | < 2    | 13     | 18     | 0.25   | 4      | < 2    | < 10   | 112    | < 10   | 9      | 6      |
| 18387 Dup                | 1.82   | 0.206  | 0.023   | 0.86   | 2      | 13     | 17     | 0.25   | 4      | < 2    | < 10   | 112    | < 10   | 9      | 5      |
| 18404 Orig               | 1.98   | 0.390  | 0.025   | 0.95   | < 2    | 17     | 35     | 0.35   | 3      | < 2    | < 10   | 160    | < 10   | 12     | 6      |
| 18404 Dup                | 1.94   | 0.382  | 0.024   | 0.92   | 2      | 17     | 35     | 0.35   | 1      | < 2    | < 10   | 157    | < 10   | 11     | 6      |
| 18418 Orig               | 1.72   | 0.204  | 0.028   | 0.08   | 2      | 14     | 16     | 0.31   | 3      | < 2    | < 10   | 140    | < 10   | 9      | 5      |
| 18418 Dup                | 1.65   | 0.204  | 0.028   | 0.08   | < 2    | 14     | 15     | 0.30   | 1      | < 2    | < 10   | 137    | < 10   | 9      | 5      |
| 18435 Orig               | 1.87   | 0.309  | 0.020   | 0.51   | 2      | 12     | 31     | 0.21   | 3      | < 2    | < 10   | 93     | < 10   | 8      | 3      |
| 18435 Dup                | 2.12   | 0.340  | 0.021   | 0.56   | 3      | 14     | 34     | 0.25   | 1      | < 2    | < 10   | 105    | < 10   | 8      | 4      |
| 18456 Orig               | 2.00   | 0.288  | 0.026   | 3.31   | 3      | 15     | 28     | 0.31   | 3      | < 2    | < 10   | 131    | < 10   | 11     | 10     |
| 18456 Dup                | 1.97   | 0.279  | 0.025   | 3.23   | 3      | 15     | 28     | 0.31   | 2      | < 2    | < 10   | 131    | < 10   | 11     | 10     |
| 18473 Orig               | 1.90   | 0.393  | 0.024   | 0.15   | < 2    | 13     | 37     | 0.22   | < 1    | < 2    | < 10   | 118    | < 10   | 7      | 3      |
| 18473 Dup                | 1.89   | 0.391  | 0.024   | 0.15   | 3      | 13     | 37     | 0.21   | < 1    | < 2    | < 10   | 117    | < 10   | 7      | 3      |
| 18487 Orig               | 1.36   | 0.508  | 0.023   | 2.51   | < 2    | 12     | 58     | 0.20   | < 1    | < 2    | < 10   | 97     | < 10   | 8      | 6      |
| 18487 Dup                | 1.27   | 0.492  | 0.022   | 2.54   | 3      | 11     | 57     | 0.19   | 2      | < 2    | < 10   | 92     | < 10   | 7      | 6      |
| 18504 Orig               | 1.75   | 0.238  | 0.049   | 0.09   | 2      | 17     | 12     | 0.28   | 4      | < 2    | < 10   | 140    | < 10   | 19     | 11     |
| 18504 Dup                | 1.73   | 0.233  | 0.050   | 0.09   | <2     | 17     | 12     | 0.26   | 1      | < 2    | < 10   | 139    | < 10   | 19     | 10     |
| Method Blank             | < 0.01 | 0.013  | < 0.001 | < 0.01 | < 2    | < 1    | < 1    | < 0.01 | < 1    | < 2    | < 10   | < 1    | < 10   | < 1    | < 1    |
| Method Blank             | < 0.01 | 0.014  | < 0.001 | < 0.01 | <2     | < 1    | < 1    | < 0.01 | < 1    | < 2    | < 10   | < 1    | < 10   | < 1    | < 1    |
| Method Blank             | < 0.01 | 0.015  | < 0.001 | < 0.01 | < 2    | < 1    | < 1    | < 0.01 | < 1    | < 2    | < 10   | < 1    | < 10   | < 1    | < 1    |

Page 11/11

Quality Analysis ...



### Innovative Technologies

Date Submitted:12-Jan-15Invoice No.:A15-00195Invoice Date:15-Jan-15Your Reference:Mistango14-1745

Swastika Labs 1 Cameron Ave P.O. Box 10 Swastika ON P0K 1T0 Canada

ATTN: Lydia Deschenes

# CERTIFICATE OF ANALYSIS

1 Pulp samples were submitted for analysis.

The following analytical package was requested:

REPORT A15-00195

Code 4B (1-10) Major Elements Fusion ICP(WRA)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Total includes all elements in % oxide to the left of total.

CERTIFIED BY:

Emmanuel Eseme , Ph.D.

Emmanuel Eseme , Ph.D. Quality Control



ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Page 1/3

### Activation Laboratories Ltd. Report: A15-00195

| Analyte Symbol | SiO2    | AI2O3   | Fe2O3(T | MnO     | MgO     | CaO     | Na2O    | K20     | TiO2    | P2O5    | LOI     | Total   | Ba      | Sr      | Y       | Sc      | Zr      | Be      | V       |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|                |         |         | )       |         | -       |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Unit Symbol    | %       | %       | %       | %       | %       | 96      | %       | %       | %       | %       | %       | %       | ppm     |
| Lower Limit    | 0.01    | 0.01    | 0.01    | 0.001   | 0.01    | 0.01    | 0.01    | 0.01    | 0.001   | 0.01    |         | 0.01    | 2       | 2       | 1       | 1       | 2       | 1       | 5       |
| Method Code    | FUS-ICP |
| SK-14-05-001   | 52.49   | 13.05   | 12.07   | 0.246   | 7.55    | 10.89   | 1.59    | 0.52    | 0.825   | 0.07    | 1.46    | 100.8   | 108     | 119     | 15      | 42      | 52      | <1      | 283     |

Results

Page 2/3

Activation Laboratories Ltd.

Report: A15-00195

| QC                |         |         |              |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
|-------------------|---------|---------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Analyte Symbol    | SiO2    | AI2O3   | Fe2O3(T<br>) | MnO     | MgO     | CaO     | Na2O    | K2O     | TiO2    | P205    | LOI     | Total   | Ba      | Sr      | Y       | Sc      | Zr      | Be      | v       |
| Unit Symbol       | %       | %       | %            | %       | %       | %       | %       | %       | %       | %       | %       | %       | ppm     |
| Lower Limit       | 0.01    | 0.01    | 0.01         | 0.001   | 0.01    | 0.01    | 0.01    | 0.01    | 0.001   | 0.01    |         | 0.01    | 2       | 2       | 1       | 1       | 2       | 1       | 5       |
| Method Code       | FUS-ICP | FUS-ICP | FUS-ICP      | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP | FUS-ICP |
| NIST 694 Meas     | 11.08   | 1.87    | 0.73         | 0.013   | 0.34    | 42.53   | 0.88    | 0.54    | 0.117   | 30.16   |         |         |         |         |         |         |         |         | 1643    |
| NIST 694 Cert     | 11.2    | 1.80    | 0.790        | 0.0116  | 0.330   | 43.6    | 0.860   | 0.510   | 0.110   | 30.2    |         |         |         |         |         |         |         |         | 1740    |
| DNC-1 Meas        | 46.84   | 18.78   | 9.86         | 0.145   | 10.14   | 11.46   | 1.93    | 0.22    | 0.485   | 0.06    |         |         | 110     | 148     | 17      | 31      | 36      |         | 160     |
| DNC-1 Cert        | 47.15   | 18.34   | 9.97         | 0.150   | 10.13   | 11.49   | 1.890   | 0.234   | 0.480   | 0.070   |         |         | 118     | 144.0   | 18.0    | 31      | 38      |         | 148     |
| GBW 07113 Meas    | 72.18   | 12.75   | 3.27         | 0.143   | 0.15    | 0.61    | 2.39    | 5.38    | 0.283   | 0.04    |         |         | 493     | 41      | 45      | 5       | 401     | 4       | 6       |
| GBW 07113 Cert    | 72.8    | 13.0    | 3.21         | 0.140   | 0.160   | 0.590   | 2.57    | 5.43    | 0.300   | 0.0500  |         |         | 506     | 43.0    | 43.0    | 5.00    | 403     | 4.00    | 5.00    |
| W-2a Meas         | 52.81   | 15.30   | 10.87        | 0.166   | 6.29    | 11.09   | 2.25    | 0.64    | 1.084   | 0.16    |         |         | 181     | 200     | 21      | 36      | 89      | <1      | 286     |
| W-2a Cert         | 52.4    | 15.4    | 10.7         | 0.163   | 6.37    | 10.9    | 2.14    | 0.626   | 1.06    | 0.130   |         |         | 182     | 190     | 24.0    | 36.0    | 94.0    | 1.30    | 262     |
| SY-4 Meas         | 49.64   | 20.62   | 6.12         | 0.107   | 0.51    | 8.15    | 7.00    | 1.68    | 0.290   | 0.13    |         |         | 346     | 1192    | 117     | 1       | 524     | 3       | 10      |
| SY-4 Cert         | 49.9    | 20.69   | 6.21         | 0.108   | 0.54    | 8.05    | 7.10    | 1.66    | 0.287   | 0.131   |         |         | 340     | 1191    | 119     | 1.1     | 517     | 2.6     | 8.0     |
| BIR-1a Meas       | 47.54   | 15.67   | 11.53        | 0.172   | 9.56    | 13.70   | 1.80    | 0.02    | 0.983   | 0.02    |         |         | 13      | 110     | 16      | 43      | 16      | <1      | 346     |
| BIR-1a Cert       | 47.96   | 15.50   | 11.30        | 0.175   | 9.700   | 13.30   | 1.82    | 0.030   | 0.96    | 0.021   |         |         | 6       | 110     | 16      | 44      | 18      | 0.58    | 310     |
| SK-14-05-001 Orig | 52.32   | 13.32   | 11.95        | 0.247   | 7.48    | 10.83   | 1.59    | 0.53    | 0.821   | 0.07    | 1.46    | 100.6   | 108     | 123     | 15      | 42      | 53      | <1      | 283     |
| SK-14-05-001 Dup  | 52.67   | 12.78   | 12.19        | 0.246   | 7.63    | 10.95   | 1.58    | 0.52    | 0.829   | 0.07    | 1.46    | 100.9   | 107     | 116     | 15      | 41      | 51      | <1      | 283     |

Page 3/3

Quality Analysis ...



### Innovative Technologies

| Date Submitted: | 29-May-15        |
|-----------------|------------------|
| Invoice No.:    | A15-03836        |
| Invoice Date:   | 05-Jun-15        |
| Your Reference: | MISTANGO 15-1245 |

Swastika Labs Box 10, 1 Cameron Ave. Swastika ON P0K 1T0 Canada

ATTN: Colleen Chouinard

# CERTIFICATE OF ANALYSIS

18 Pulp samples were submitted for analysis. The following analytical package was requested:

Code 1F2 Total Digestion ICP(TOTAL)

REPORT A15-03836

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes: Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D.

Quality Control



ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Page 1/5

Results

| Analyte Symbol | Ag     | AI     | As     | Ва     | Ве     | BI     | Ca     | Cđ     | Co     | Cr     | Cu     | Fe     | Ga     | Hg     | к      | Mg     | LI     | Mn     | Mo     | Na     | NI     | Р      | Pb     |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol    | ppm    | %      | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | %      | %      | ppm    | ppm    | ppm    | %      | ppm    | %      | ppm    |
| Lower Limit    | 0.3    | 0.01   | 3      | 7      | 1      | 2      | 0.01   | 0.3    | 1      | 1      | 1      | 0.01   | 1      | 1      | 0.01   | 0.01   | 1      | 1      | 1      | 0.01   | 1      | 0.001  | 3      |
| Method Code    | TD-ICP |
| 283651         | < 0.3  | 6.73   | 6      | 191    | <1     | < 2    | 7.04   | < 0.3  | 53     | 122    | 109    | 6.97   | 17     | <1     | 0.71   | 2.81   | 18     | 1230   | <1     | 1.68   | 66     | 0.030  | 10     |
| 283652         | < 0.3  | 6.75   | 4      | 164    | <1     | < 2    | 6.45   | < 0.3  | 62     | 113    | 156    | 7.80   | 17     | <1     | 0.77   | 2.92   | 17     | 1170   | < 1    | 1.72   | 67     | 0.029  | 12     |
| 283653         | < 0.3  | 7.41   | < 3    | 288    | <1     | < 2    | 5.69   | < 0.3  | 65     | 103    | 127    | 7.46   | 16     | <1     | 0.81   | 3.38   | 23     | 1160   | < 1    | 2.01   | 69     | 0.030  | < 3    |
| 283654         | < 0.3  | 7.38   | < 3    | 287    | <1     | < 2    | 5.61   | < 0.3  | 61     | 123    | 131    | 7.68   | 16     | <1     | 0.74   | 3.34   | 18     | 1140   | < 1    | 2.01   | 70     | 0.030  | < 3    |
| 283655         | < 0.3  | 7.04   | 4      | 141    | <1     | < 2    | 6.28   | < 0.3  | 63     | 132    | 129    | 7.46   | 16     | <1     | 0.72   | 3.13   | 19     | 1170   | < 1    | 1.82   | 72     | 0.027  | < 3    |
| 283656         | < 0.3  | 6.87   | < 3    | 164    | <1     | < 2    | 7.01   | < 0.3  | 65     | 132    | 131    | 8.95   | 17     | <1     | 0.42   | 3.37   | 12     | 1280   | < 1    | 1.68   | 74     | 0.026  | < 3    |
| 283657         | < 0.3  | 6.77   | < 3    | 111    | <1     | < 2    | 5.19   | < 0.3  | 60     | 120    | 115    | 9.32   | 16     | <1     | 0.52   | 3.34   | 21     | 1220   | < 1    | 1.76   | 64     | 0.027  | < 3    |
| 283658         | < 0.3  | 7.01   | < 3    | 125    | <1     | < 2    | 5.76   | < 0.3  | 55     | 440    | 104    | 9.34   | 15     | <1     | 0.48   | 3.93   | 24     | 1390   | < 1    | 1.84   | 74     | 0.026  | < 3    |
| 283659         | < 0.3  | 6.12   | < 3    | 44     | <1     | < 2    | 4.49   | < 0.3  | 71     | 173    | 147    | 11.3   | 15     | <1     | 0.54   | 2.85   | 19     | 1020   | < 1    | 1.61   | 74     | 0.025  | < 3    |
| 283660         | < 0.3  | 5.87   | 6      | 104    | <1     | < 2    | 4.44   | < 0.3  | 63     | 186    | 141    | 10.6   | 14     | <1     | 0.44   | 2.78   | 16     | 1060   | <1     | 1.53   | 65     | 0.026  | < 3    |
| 283661         | < 0.3  | 6.30   | < 3    | 41     | <1     | < 2    | 4.62   | < 0.3  | 69     | 174    | 160    | 11.6   | 16     | < 1    | 0.46   | 2.86   | 18     | 1130   | < 1    | 1.54   | 71     | 0.025  | < 3    |
| 283662         | < 0.3  | 7.11   | < 3    | 221    | <1     | < 2    | 5.90   | < 0.3  | 56     | 104    | 91     | 7.95   | 15     | <1     | 0.70   | 3.75   | 28     | 1440   | < 1    | 1.88   | 62     | 0.025  | < 3    |
| 283663         | < 0.3  | 6.46   | 3      | 173    | <1     | < 2    | 5.41   | < 0.3  | 60     | 121    | 98     | 10.7   | 16     | <1     | 0.56   | 3.33   | 23     | 1310   | <1     | 1.30   | 68     | 0.024  | < 3    |
| 283664         | < 0.3  | 6.80   | < 3    | 188    | <1     | < 2    | 5.16   | < 0.3  | 48     | 132    | 103    | 9.47   | 16     | <1     | 0.59   | 3.91   | 26     | 1320   | < 1    | 1.65   | 58     | 0.025  | < 3    |
| 283665         | < 0.3  | 7.16   | 4      | 167    | <1     | < 2    | 5.08   | < 0.3  | 54     | 84     | 125    | 9.85   | 14     | < 1    | 0.42   | 3.44   | 24     | 1230   | < 1    | 2.06   | 62     | 0.030  | 3      |
| 283666         | < 0.3  | 6.97   | 4      | 136    | <1     | < 2    | 4.55   | < 0.3  | 68     | 99     | 142    | 9.82   | 16     | <1     | 0.47   | 3.20   | 26     | 1180   | < 1    | 1.92   | 67     | 0.027  | < 3    |
| 283667         | < 0.3  | 7.25   | < 3    | 164    | <1     | < 2    | 5.50   | < 0.3  | 61     | 91     | 141    | 8.59   | 17     | <1     | 0.58   | 3.59   | 19     | 1250   | < 1    | 1.89   | 65     | 0.028  | < 3    |
| 283668         | < 0.3  | 7.42   | 3      | 172    | <1     | < 2    | 6.86   | < 0.3  | 62     | 107    | 126    | 7.77   | 16     | <1     | 0.53   | 3.41   | 17     | 1240   | < 1    | 1.60   | 66     | 0.031  | < 3    |

Page 2/5

Report: A15-03836

| Analyte Symbol | Sb     | S      | Sc     | Sr     | те     | TI     | TI     | U      | v      | W      | Y      | Zn     | Zr     |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol    | ppm    | %      | ppm    | ppm    | ppm    | %      | ppm    |
| Lower Limit    | 5      | 0.01   | 4      | 1      | 2      | 0.01   | 5      | 10     | 2      | 5      | 1      | 1      | 5      |
| Method Code    | TD-ICP |
| 283651         | < 5    | 1.91   | 34     | 155    | < 2    | 0.42   | < 5    | < 10   | 210    | <5     | 12     | 150    | 28     |
| 283652         | < 5    | 2.57   | 37     | 129    | < 2    | 0.49   | < 5    | < 10   | 240    | < 5    | 12     | 156    | 31     |
| 283653         | < 5    | 2.06   | 40     | 134    | < 2    | 0.52   | < 5    | < 10   | 249    | < 5    | 13     | 184    | 34     |
| 283654         | < 5    | 2.31   | 39     | 126    | < 2    | 0.51   | < 5    | < 10   | 244    | < 5    | 13     | 189    | 36     |
| 283655         | < 5    | 2.12   | 37     | 116    | < 2    | 0.45   | < 5    | < 10   | 221    | < 5    | 13     | 147    | 32     |
| 283656         | < 5    | 2.80   | 38     | 104    | 4      | 0.44   | < 5    | < 10   | 222    | < 5    | 13     | 135    | 31     |
| 283657         | < 5    | 3.45   | 38     | 102    | 5      | 0.49   | < 5    | < 10   | 234    | < 5    | 13     | 84     | 35     |
| 283658         | < 5    | 3.05   | 39     | 101    | 6      | 0.42   | < 5    | < 10   | 211    | < 5    | 15     | 83     | 30     |
| 283659         | < 5    | 6.75   | 34     | 91     | 8      | 0.47   | < 5    | < 10   | 220    | < 5    | 12     | 61     | 34     |
| 283660         | < 5    | 5.74   | 33     | 90     | 10     | 0.46   | < 5    | < 10   | 214    | < 5    | 12     | 63     | 37     |
| 283661         | < 5    | 6.79   | 35     | 92     | 4      | 0.46   | < 5    | < 10   | 226    | < 5    | 12     | 62     | 36     |
| 283662         | < 5    | 1.78   | 39     | 106    | 5      | 0.47   | < 5    | < 10   | 230    | < 5    | 14     | 90     | 28     |
| 283663         | < 5    | 4.14   | 36     | 79     | < 2    | 0.41   | < 5    | < 10   | 211    | < 5    | 13     | 93     | 32     |
| 283664         | < 5    | 3.38   | 39     | 88     | < 2    | 0.44   | < 5    | < 10   | 222    | < 5    | 13     | 98     | 35     |
| 283665         | < 5    | 4.34   | 39     | 108    | 3      | 0.54   | < 5    | < 10   | 256    | < 5    | 14     | 78     | 40     |
| 283666         | < 5    | 4.58   | 38     | 101    | 6      | 0.51   | < 5    | < 10   | 243    | < 5    | 13     | 76     | 43     |
| 283667         | < 5    | 2.03   | 39     | 107    | < 2    | 0.49   | < 5    | < 10   | 248    | <5     | 14     | 105    | 42     |
| 283668         | < 5    | 1.44   | 40     | 103    | 8      | 0.49   | < 5    | < 10   | 227    | < 5    | 14     | 124    | 41     |

Results

Page 3/5

Report: A15-03836

| QC                         |        |        |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |         |        |        |        |         |        |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---------|--------|--------|--------|---------|--------|
| Analyte Symbol             | Ag     | Al     | As     | Ва     | Ве     | BI     | Ca     | Cd     | Co     | Cr     | Cu      | Fe     | Ga     | Hg     | К      | Mg     | u      | Mn      | Мо     | Na     | N      | P       | Pb     |
| Unit Symbol                | ppm    | %      | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    | ppm     | %      | ppm    | ppm    | %      | %      | ppm    | ppm     | ppm    | %      | ppm    | %       | ppm    |
| Lower Limit                | 0.3    | 0.01   | 3      | 7      | 1      | 2      | 0.01   | 0.3    | 1      | 1      | 1       | 0.01   | 1      | 1      | 0.01   | 0.01   | 1      | 1       | 1      | 0.01   | 1      | 0.001   | 3      |
| Method Code                | TD-ICP  | TD-ICP | TD-ICP | TD-ICP | TD-ICP | TD-ICP | TD-ICP | TD-ICP  | TD-ICP | TD-ICP | TD-ICP | TD-ICP  | TD-ICP |
| GXR-1 Meas                 | 31.1   | 2.19   | 407    | 671    | 1      | 1380   | 0.88   | 1.9    | 8      | 13     | 1180    | 23.4   | 12     | 6      | 0.04   | 0.21   | 8      | 839     | 14     | 0.05   | 45     | 0.058   | 716    |
| GXR-1 Cert                 | 31.0   | 3.52   | 427    | 750    | 1.22   | 1380   | 0.960  | 3.30   | 8.20   | 12.0   | 1110    | 23.6   | 13.8   | 3.90   | 0.050  | 0.217  | 8.20   | 852     | 18.0   | 0.0520 | 41.0   | 0.0650  | 730    |
| DH-1a Meas                 |        |        |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |         |        |        |        |         |        |
| DH-1a Cert                 |        |        |        |        |        |        |        |        |        |        |         |        |        |        |        |        |        |         |        |        |        |         |        |
| GXR-4 Meas                 | 3.4    | 6.05   | 112    | 171    | 2      | 14     | 1.07   | < 0.3  | 15     | 60     | 6450    | 3.05   | 16     | <1     | 2.41   | 1.69   | 11     | 151     | 303    | 0.51   | 42     | 0.130   | 42     |
| GXR-4 Cert                 | 4.0    | 7.20   | 98.0   | 1640   | 1.90   | 19.0   | 1.01   | 0.860  | 14.6   | 64.0   | 6520    | 3.09   | 20.0   | 0.110  | 4.01   | 1.66   | 11.1   | 155     | 310    | 0.564  | 42.0   | 0.120   | 52.0   |
| SDC-1 Meas                 |        | 7.67   | 4      | 630    | 3      |        | 1.07   |        | 19     | 42     | 27      | 4.78   | 20     | <1     | 2.45   | 0.99   | 33     | 854     |        | 1.51   | 36     | 0.053   | 21     |
| SDC-1 Cert                 |        | 8.34   | 0.220  | 630    | 3.00   |        | 1.00   |        | 18.0   | 64.00  | 30.000  | 4.82   | 21.00  | 0.20   | 2.72   | 1.02   | 34.00  | 880.00  |        | 1.52   | 38.0   | 0.0690  | 25.00  |
| GXR-6 Meas                 | < 0.3  | 12.9   | 243    | > 1000 | 1      | < 2    | 0.17   | < 0.3  | 14     | 49     | 67      | 5.78   | 27     | <1     | 1.75   | 0.61   | 32     | 1060    | < 1    | 0.09   | 28     | 0.036   | 90     |
| GXR-6 Cert                 | 1.30   | 17.7   | 330    | 1300   | 1.40   | 0.290  | 0.180  | 1.00   | 13.8   | 96.0   | 66.0    | 5.58   | 35.0   | 0.0680 | 1.87   | 0.609  | 32.0   | 1010    | 2.40   | 0.104  | 27.0   | 0.0350  | 101    |
| DNC-1a Meas                |        |        |        | 97     |        |        |        |        | 56     | 154    | 93      |        | 12     |        |        |        | 4      |         |        |        | 257    |         | 5      |
| DNC-1a Cert                |        |        |        | 118    |        |        |        |        | 57.0   | 270    | 100.00  |        | 15     |        |        |        | 5.20   |         |        |        | 247    |         | 6.3    |
| SBC-1 Meas                 |        |        | 19     | 741    | 3      | < 2    |        | < 0.3  | 25     | 67     | 34      |        | 26     |        |        |        | 154    |         | 2      |        | 88     |         | 26     |
| SBC-1 Cert                 |        |        | 25.7   | 788.0  | 3.20   | 0.70   |        | 0.40   | 22.7   | 109    | 31.0000 |        | 27.0   |        |        |        | 163.0  |         | 2.40   |        | 82.8   |         | 35.0   |
| OREAS 45d (4-Acid)<br>Meas |        | 7.28   | 11     | 178    | <1     | < 2    | 0.19   |        | 34     | 553    | 363     | 13.9   | 20     |        | 0.38   | 0.24   | 22     | 490     | 3      | 0.09   | 247    | 0.033   | 20     |
| OREAS 45d (4-Acid)<br>Cert |        | 8.150  | 13.80  | 183.0  | 0.79   | 0.31   | 0.185  |        | 29.50  | 549.0  | 371.0   | 14.520 | 21.20  |        | 0.412  | 0.245  | 21.50  | 490.000 | 2.500  | 0.101  | 231.0  | 0.042   | 21.8   |
| 283662 Orig                | < 0.3  | 7.00   | < 3    | 229    | <1     | < 2    | 5.86   | < 0.3  | 54     | 113    | 88      | 7.88   | 15     | <1     | 0.68   | 3.72   | 28     | 1420    | <1     | 1.87   | 62     | 0.025   | < 3    |
| 283662 Dup                 | < 0.3  | 7.22   | < 3    | 212    | < 1    | < 2    | 5.93   | < 0.3  | 57     | 94     | 94      | 8.02   | 15     | <1     | 0.71   | 3.78   | 29     | 1450    | <1     | 1.90   | 62     | 0.025   | < 3    |
| Method Blank               | < 0.3  | 0.07   | < 3    | <7     | < 1    | < 2    | < 0.01 | < 0.3  | <1     |        | <1      | < 0.01 | <1     | <1     | < 0.01 | < 0.01 | <1     |         | <1     | < 0.01 | <1     | < 0.001 | < 3    |
| Method Blank               | < 0.3  | < 0.01 | < 3    | < 7    | <1     | < 2    | < 0.01 | < 0.3  | <1     |        | 2       | < 0.01 | < 1    | <1     | < 0.01 | < 0.01 | <1     |         | < 1    | < 0.01 | <1     | < 0.001 | < 3    |

QC

| Analyte Symbol             | Sb     | S      | Sc     | Sr     | те     | ті     | ті     | U      | v      | w      | Y      | Zn     | Zr     |
|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol                | ppm    | %      | ppm    | ppm    | ppm    | %      | ppm    |
| Lower Limit                | 5      | 0.01   | 4      | 1      | 2      | 0.01   | 5      | 10     | 2      | 5      | 1      | 1      | 5      |
| Method Code                | TD-ICP |
| GXR-1 Meas                 | 11     | 0.25   | < 4    | 283    | 7      | 0.03   | < 5    | 40     | 86     | 153    | 28     | 718    | 25     |
| GXR-1 Cert                 | 122    | 0.257  | 1.58   | 275    | 13.0   | 0.036  | 0.390  | 34.9   | 80.0   | 164    | 32.0   | 760    | 38.0   |
| DH-1a Meas                 |        |        |        |        |        |        |        | 2320   |        |        |        |        |        |
| DH-1a Cert                 |        |        |        |        |        |        |        | 2629   |        |        |        |        |        |
| GXR-4 Meas                 | < 5    | 1.79   | 8      | 215    | 13     | 0.29   | < 5    | < 10   | 88     | 42     | 13     | 68     | 35     |
| GXR-4 Cert                 | 4.80   | 1.77   | 7.70   | 221    | 0.970  | 0.29   | 3.20   | 6.20   | 87.0   | 30.8   | 14.0   | 73.0   | 186    |
| SDC-1 Meas                 | < 5    |        | 16     | 174    |        | 0.10   | < 5    | < 10   | 32     | < 5    |        | 99     | 32     |
| SDC-1 Cert                 | 0.54   |        | 17.00  | 180.00 |        | 0.606  | 0.70   | 3.10   | 102.00 | 0.80   |        | 103.00 | 290.00 |
| GXR-6 Meas                 | < 5    | 0.02   | 28     | 39     | < 2    |        | < 5    | < 10   | 115    | < 5    | 12     | 129    | 60     |
| GXR-6 Cert                 | 3.60   | 0.0160 | 27.6   | 35.0   | 0.0180 |        | 2.20   | 1.54   | 186    | 1.90   | 14.0   | 118    | 110    |
| DNC-1a Meas                | < 5    |        | 32     | 131    |        | 0.29   |        |        | 141    |        | 14     | 59     | 32     |
| DNC-1a Cert                | 0.96   |        | 31     | 144.0  |        | 0.29   |        |        | 148.00 |        | 18.0   | 70.0   | 38.000 |
| SBC-1 Meas                 | < 5    |        | 20     | 174    |        | 0.47   | < 5    | < 10   | 210    | 6      | 29     | 184    | 97     |
| SBC-1 Cert                 | 1.01   |        | 20.0   | 178.0  |        | 0.51   | 0.89   | 5.76   | 220.0  | 1.60   | 36.5   | 186.0  | 134.0  |
| OREAS 45d (4-Acid)<br>Meas | < 5    | 0.05   | 55     | 31     |        | 0.22   | < 5    | < 10   | 133    | 5      | 11     | 41     | 85     |
| OREAS 45d (4-Acid)<br>Cert | 0.82   | 0.049  | 49.30  | 31.30  |        | 0.773  | 0.27   | 2.63   | 235.0  | 1.62   | 9.53   | 45.7   | 141    |
| 283662 Orlg                | < 5    | 1.76   | 39     | 105    | 6      | 0.48   | < 5    | < 10   | 232    | < 5    | 14     | 90     | 29     |
| 283662 Dup                 | <5     | 1.81   | 40     | 107    | 4      | 0.47   | < 5    | < 10   | 227    | < 5    | 14     | 91     | 28     |
| Method Blank               | < 5    | < 0.01 | < 4    | 2      | < 2    | < 0.01 | < 5    | < 10   | < 2    | < 5    | <1     | < 1    | < 5    |

Page 4/5

### Report: A15-03836

| Analyte Symbol | Sb     | S      | Sc     | Sr     | те     | TI     | TI     | U      | v      | w      | Y      | Zn     | Zr     |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol    | ppm    | %      | ppm    | ppm    | ppm    | %      | ppm    |
| Lower Limit    | 5      | 0.01   | 4      | 1      | 2      | 0.01   | 5      | 10     | 2      | 5      | 1      | 1      | 5      |
| Method Code    | TD-ICP |
| Method Blank   | < 5    | < 0.01 | < 4    | <1     | < 2    | < 0.01 | < 5    | < 10   | < 2    | < 5    | <1     | <1     | < 5    |

Page 5/5



Company:

Project:

Attn:

# Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Sackville

Donald Kasner

### Certificate Number: 15-1245

Report Date:

26-May-15

*We hereby certify* the following Assay of 18 core samples submitted 25-May-15 by Donald Kasner

**Mistango River Resources** 

| Sample<br>Number | Au<br>FA-MP<br>g/Mt | Au Chk<br>FA-MP<br>g/Mt |  |
|------------------|---------------------|-------------------------|--|
| 283651           | < 0.01              |                         |  |
| 283652           | < 0.01              |                         |  |
| 283653           | < 0.01              |                         |  |
| 283654           | < 0.01              |                         |  |
| 283655           | < 0.01              |                         |  |
| 283656           | < 0.01              |                         |  |
| 283657           | < 0.01              |                         |  |
| 283658           | < 0.01              |                         |  |
| 283659           | 0.01                |                         |  |
| 283660           | < 0.01              | < 0.01                  |  |
| Blank Value      | < 0.01              |                         |  |
| OxH97            | 1.28                |                         |  |
| 283661           | < 0.01              |                         |  |
| 283662           | < 0.01              |                         |  |
| 283663           | < 0.01              |                         |  |
| 283664           | < 0.01              |                         |  |
| 283665           | < 0.01              |                         |  |
| 283666           | < 0.01              |                         |  |
| 283667           | < 0.01              |                         |  |
| 283668           | < 0.01              |                         |  |

Certified by Jrg Lin, M Sc.



Fax: (807) 622-7571

Date Received: 06/22/2015

Date Completed: 07/09/2015

Sample #: 110

Reference:

Job #: 201542410

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

#### Thursday, July 9, 2015

#### **Final Certificate**

Mistango River Resources 4 Al Wende PO Box 546 Kirkland Lake, ON, CAN P2N3J5 Ph#: (705) 567-5351 Fax#: (705) 567-5557 Email: drkkasner@yahoo.ca, iiliev74@yahoo.ca

| Acc #  | Client ID  | Au<br>g/t (ppm) |  |
|--------|------------|-----------------|--|
| 209488 | 283669     | <0.005          |  |
| 209489 | 283670     | <0.005          |  |
| 209490 | 283671     | <0.005          |  |
| 209491 | 283672     | <0.005          |  |
| 209492 | 283673     | <0.005          |  |
| 209493 | 283674     | <0.005          |  |
| 209494 | 283675     | <0.005          |  |
| 209495 | 283676     | <0.005          |  |
| 209496 | 283677     | <0.005          |  |
| 209497 | 283678     | <0.005          |  |
| 209498 | 283678 Dup | <0.005          |  |
| 209499 | 283679     | <0.005          |  |
| 209500 | 283680     | <0.005          |  |
| 209501 | 283681     | <0.005          |  |
| 209502 | 283682     | <0.005          |  |
| 209503 | 283683     | <0.005          |  |
| 209504 | 283684     | <0.005          |  |
| 209505 | 283685     | <0.005          |  |
| 209506 | 283686     | <0.005          |  |
| 209507 | 283687     | <0.005          |  |
| 209508 | 283688     | <0.005          |  |
| 209509 | 283688 Dup | <0.005          |  |
| 209510 | 283689     | <0.005          |  |
| 209511 | 283690     | <0.005          |  |
| 209512 | 283691     | <0.005          |  |

### APPLIED SCOPES: ALP1, ALFA1, ALMA1

#### Validated By:

Jesse Deschutter

Assistant Manager - Thunder Bay

Andrew Oleski Lab Manager - Thunder Bay

Certified By:

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 6



Fax: (807) 622-7571 assay@accurassay.com

Date Received: 06/22/2015

Date Completed: 07/09/2015

Sample #: 110

Reference:

Job #: 201542410

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com

Thursday, July 9, 2015

#### **Final Certificate**

Mistango River Resources 4 Al Wende PO Box 546 Kirkland Lake, ON, CAN P2N3J5 Ph#: (705) 567-5351 Fax#: (705) 567-5557 Email: drkkasner@yahoo.ca, iiliev74@yahoo.ca

| Acc #  | Client ID  | Au<br>g/t (ppm) |  |
|--------|------------|-----------------|--|
| 209513 | 283692     | <0.005          |  |
| 209514 | 283693     | <0.005          |  |
| 209515 | 283694     | <0.005          |  |
| 209516 | 283695     | <0.005          |  |
| 209517 | 283696     | <0.005          |  |
| 209518 | 283697     | <0.005          |  |
| 209519 | 283698     | <0.005          |  |
| 209520 | 283698 Dup | <0.005          |  |
| 209521 | 283699     | <0.005          |  |
| 209522 | 283700     | <0.005          |  |
| 209523 | 284501     | <0.005          |  |
| 209524 | 284502     | <0.005          |  |
| 209525 | 284503     | <0.005          |  |
| 209526 | 284504     | <0.005          |  |
| 209527 | 284505     | <0.005          |  |
| 209528 | 284506     | <0.005          |  |
| 209529 | 284507     | <0.005          |  |
| 209530 | 284508     | <0.005          |  |
| 209531 | 284508 Dup | <0.005          |  |
| 209532 | 284509     | <0.005          |  |
| 209533 | 284510     | <0.005          |  |
| 209534 | 284511     | <0.005          |  |
| 209535 | 284512     | <0.005          |  |
| 209536 | 284513     | <0.005          |  |
| 209537 | 284514     | <0.005          |  |

#### APPLIED SCOPES: ALP1, ALFA1, ALMA1

#### Validated By:

Assistant Manager - Thunder Bay

Certified By: Andrew Oleski Lab Manager - Thunder Bay

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.



Fax: (807) 622-7571 assay@accurassay.com

Date Received: 06/22/2015

Date Completed: 07/09/2015

Sample #: 110

Reference:

Job #: 201542410

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com

Thursday, July 9, 2015

#### **Final Certificate**

Mistango River Resources 4 Al Wende PO Box 546 Kirkland Lake, ON, CAN P2N3J5 Ph#: (705) 567-5351 Fax#: (705) 567-5557 Email: drkkasner@yahoo.ca, iiliev74@yahoo.ca

| Acc #  | Client ID  | Au<br>g/t (ppm) |  |
|--------|------------|-----------------|--|
| 209538 | 284515     | <0.005          |  |
| 209539 | 284516     | <0.005          |  |
| 209540 | 284517     | <0.005          |  |
| 209541 | 284518     | <0.005          |  |
| 209542 | 284518 Dup | <0.005          |  |
| 209543 | 284519     | <0.005          |  |
| 209544 | 284520     | <0.005          |  |
| 209545 | 284521     | <0.005          |  |
| 209546 | 284522     | <0.005          |  |
| 209547 | 284523     | <0.005          |  |
| 209548 | 284524     | <0.005          |  |
| 209549 | 284525     | <0.005          |  |
| 209550 | 284526     | < 0.005         |  |
| 209551 | 284527     | <0.005          |  |
| 209552 | 284528     | 0.005           |  |
| 209553 | 284528 Rep | 0.005           |  |
| 209554 | 284529     | <0.005          |  |
| 209555 | 284530     | 0.006           |  |
| 209556 | 284531     | <0.005          |  |
| 209557 | 284532     | <0.005          |  |
| 209558 | 284533     | <0.005          |  |
| 209559 | 284534     | <0.005          |  |
| 209560 | 284535     | <0.005          |  |
| 209561 | 284536     | <0.005          |  |
| 209562 | 284537     | <0.005          |  |

#### APPLIED SCOPES: ALP1, ALFA1, ALMA1

#### Validated By:

Jesse Deschutter

Assistant Manager - Thunder Bay

Andrew Oleski Lab Manager - Thunder Bay

Certified By:

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Page 3 of 6



Fax: (807) 622-7571

Date Received: 06/22/2015

Job #: 201542410

Date Completed: 07/09/2015

Sample #: 110

Reference:

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, July 9, 2015

### **Final Certificate**

Mistango River Resources 4 Al Wende PO Box 546 Kirkland Lake, ON, CAN P2N3J5 Ph#: (705) 567-5351 Fax#: (705) 567-5557 Email: drkkasner@yahoo.ca, iiliev74@yahoo.ca

| Acc #  | Client ID  | Au<br>g/t (ppm) |
|--------|------------|-----------------|
| 209563 | 284538     | <0.005          |
| 209564 | 284538 Dup | 0.008           |
| 209565 | 284539     | <0.005          |
| 209566 | 284540     | <0.005          |
| 209567 | 284541     | <0.005          |
| 209568 | 284542     | <0.005          |
| 209569 | 284543     | <0.005          |
| 209570 | 284544     | <0.005          |
| 209571 | 284545     | <0.005          |
| 209572 | 284546     | <0.005          |
| 209573 | 284547     | <0.005          |
| 209574 | 284548     | <0.005          |
| 209575 | 284548 Dup | <0.005          |
| 209576 | 284549     | <0.005          |
| 209577 | 284550     | <0.005          |
| 209578 | 284551     | <0.005          |
| 209579 | 284552     | <0.005          |
| 209580 | 284553     | <0.005          |
| 209581 | 284554     | <0.005          |
| 209582 | 284555     | <0.005          |
| 209583 | 284556     | 0.006           |
| 209584 | 284557     | <0.005          |
| 209585 | 284558     | <0.005          |
| 209586 | 284558 Dup | <0.005          |
| 209587 | 284559     | <0.005          |

#### APPLIED SCOPES: ALP1, ALFA1, ALMA1

#### Validated By:

Jesse Deschutter

Assistant Manager - Thunder Bay

| A.Q.                      |
|---------------------------|
| Andrew Oleski             |
| Lab Manager - Thunder Bay |

Certified By:

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Page 4 of 6



Fax: (807) 622-7571 assay@accurassay.com

Date Received: 06/22/2015 Date Completed: 07/09/2015

Reference:

Sample #: 110

Job #: 201542410

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com

Thursday, July 9, 2015

#### **Final Certificate**

Mistango River Resources 4 Al Wende PO Box 546 Kirkland Lake, ON, CAN P2N3J5 Ph#: (705) 567-5351 Fax#: (705) 567-5557 Email: drkkasner@yahoo.ca, iiliev74@yahoo.ca

| Acc #  | Client ID  | Au<br>g/t (ppm) |  |
|--------|------------|-----------------|--|
| 209588 | 284560     | 0.008           |  |
| 209589 | 284561     | <0.005          |  |
| 209590 | 284562     | <0.005          |  |
| 209591 | 284563     | <0.005          |  |
| 209592 | 284564     | <0.005          |  |
| 209593 | 284565     | <0.005          |  |
| 209594 | 284566     | <0.005          |  |
| 209595 | 284567     | 0.007           |  |
| 209596 | 284568     | 0.007           |  |
| 209597 | 284568 Dup | 0.006           |  |
| 209598 | 284569     | 0.008           |  |
| 209599 | 284570     | <0.005          |  |
| 209600 | 284571     | 0.014           |  |
| 209601 | 284572     | 0.007           |  |
| 209602 | 284573     | <0.005          |  |
| 209603 | 284574     | <0.005          |  |
| 209604 | 284575     | <0.005          |  |
| 209605 | 284576     | <0.005          |  |
| 209606 | 284577     | <0.005          |  |
| 209607 | 284578     | <0.005          |  |
| 209608 | 284578 Dup | <0.005          |  |

#### APPLIED SCOPES: ALP1, ALFA1, ALMA1

Validated By:

J Jesse Deschutter Assistant Manager - Thunder Bay

Andrew Oleski

Lab Manager - Thunder Bay

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested. The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Certified By:

Page 5 of 6



Fax: (807) 622-7571

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

| Thursday, July 9, 2015                       | Final Certificate          |
|----------------------------------------------|----------------------------|
| Mistango River Resources                     | Date Received: 06/22/2015  |
| 4 Al Wende PO Box 546                        | Date Completed: 07/09/2015 |
| Kirkland Lake, ON, CAN                       | Job #: 201542410           |
| P2N3J5                                       | Reference:                 |
| Ph#: (705) 567-5351                          | Sample #: 110              |
| Fax#: (705) 567-5557                         | Sample #. 110              |
| Email: drkkasner@yahoo.ca, iiliev74@yahoo.ca |                            |

#### Control Standards

| QC Type | QC Performance (ppm) | Mean (ppm) | Std Dev (ppm) |
|---------|----------------------|------------|---------------|
| AR02    | 1.820                | 1.575      | 0.088         |
| AR02    | 1.686                | 1.575      | 0.088         |
| KL01    | 0.394                | 0.394      | 0.011         |
| AR02    | 1.604                | 1.575      | 0.088         |

#### APPLIED SCOPES: ALP1, ALFA1, ALMA1

## Validated By:

J Jesse Deschutter Assistant Manager - Thunder Bay Certified By:

Andrew Oleski Lab Manager - Thunder Bay

Authorized By:

.. Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

-0196-07/09/2015 10:43 AM

Page 6 of 6



Final Certificate

Monday, July 20, 2015

Mistango River Resources 4 Ai Wende PO Box 546 Kinkland Lake, ON, CAN P2N3J5 Phil: (705) 567-5351 Fax#: (705) 567-5557 Email: driktasner@yahoo.ca, Illev74@yahoo.ca

Date Received: 06/22/2015 Date Completed: 07/09/2015 Job #: 201542410 Reference: Sample #: 110

| Acc #   | Client ID | Ag<br>ppm | AI<br>% | As<br>ppm | Be<br>ppm | Be  | Bi | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr  | Cu<br>ppm | Fe<br>% | к<br>% | Li<br>ppm | Mg<br>% | Mn<br>ppm | Mo | Ni<br>ppm | P   | Pb<br>ppm | 8b<br>ppm | Se<br>ppm | 8n<br>ppm | 8r<br>ppm      | Ti<br>ppm | TI<br>ppm | V<br>ppm | W   | Y<br>ppm | Zn  |
|---------|-----------|-----------|---------|-----------|-----------|-----|----|---------|-----------|-----------|-----|-----------|---------|--------|-----------|---------|-----------|----|-----------|-----|-----------|-----------|-----------|-----------|----------------|-----------|-----------|----------|-----|----------|-----|
| 209488  | 283669    | <1        | <0.01   | 28        | 5         | \$2 | <1 | 4.92    | 5         | 69        | 969 | 10        | 7.90    | <0.01  | 35        | 5.88    | 1218      | <1 | 339       | 192 | 9         | <5        | <5        | <10       | 43             | 2530      | 2         | 177      | 12  | 10       | 94  |
| 209489  | 283670    | <1        | <0.01   | 13        | 203       | 2   | <1 | 4.70    | 5         | 65        | 776 | 70        | 8.28    | <0.01  | 48        | 4.98    | 1301      | 3  | 275       | 199 | 8         | <5        | <5        | <10       | 56             | 2933      | <2        | 188      | 17  | 10       | 99  |
| 209490  | 283871    | <1        | 0.68    | 7         | 536       | <2  | <1 | 1.83    | <4        | 44        | 201 | 195       | 4.87    | <0.01  | 38        | 1.89    | 750       | 10 | 140       | 253 | 7         | <5        | <5        | <10       | 105            | 1976      | 3         | 93       | 25  | 9        | 298 |
| 209491  | 283672    | <1        | 0.67    | 23        | 1655      | \$2 | <1 | 2.38    | <4        | 52        | 39  | 230       | 2.59    | <0.01  | 38        | 0.88    | 747       | 12 | 101       | 255 | 5         | <5        | <5        | <10       | $\overline{n}$ | 1606      | <2        | 56       | 40  | 8        | 702 |
| 209492  | 283673    | <1        | 1.38    | 12        | 1715      | <2  | <1 | 1.68    | <4        | 15        | 17  | 28        | 2.62    | <0.01  | 22        | 0.54    | 696       | 5  | 43        | 241 | 8         | <5        | <5        | <10       | 118            | 1414      | 4         | 33       | 30  | 4        | 85  |
| 209493  | 283674    | <1        | 1.62    | 12        | 1648      | <2  | <1 | 0.55    | <4        | 11        | 25  | 14        | 2.17    | <0.01  | 28        | 0.54    | 442       | 4  | 38        | 181 | 10        | <5        | <5        | <10       | 94             | 1282      | 4         | 33       | 10  | 4        | 52  |
| 209494  | 283675    | <1        | 1.62    | 18        | 1266      | \$2 | <1 | 1.37    | <4        | 15        | 24  | 20        | 2.33    | <0.01  | 20        | 0.44    | 503       | 8  | 40        | 283 | 9         | <5        | <5        | <10       | 113            | 1055      | <2        | 38       | <10 | 5        | 28  |
| 209495  | 283676    | <1        | 2.49    | 9         | 1314      | \$  | <1 | 0.52    | <4        | 11        | 27  | 13        | 1.71    | <0.01  | 12        | 0.39    | 262       | 7  | 45        | 209 | 26        | <5        | <5        | <10       | 122            | 910       | <2        | 40       | 18  | 5        | 48  |
| 209498  | 283677    | <1        | 1.18    | 5         | 485       | \$  | <1 | 1.55    | <4        | 9         | 33  | 11        | 1.42    | <0.01  | 19        | 0.42    | 359       | 4  | 30        | 181 | 11        | <5        | <5        | <10       | 115            | 898       | <2        | 27       | 25  | 5        | 103 |
| 209497  | 283678    | <1        | 1.37    | 9         | 382       | <2  | <1 | 1.87    | <4        | 7         | 37  | 14        | 2.34    | <0.01  | 32        | 0.42    | 374       | 8  | 49        | 181 | 9         | <5        | <5        | <10       | 152            | 1008      | 3         | 31       | 14  | 5        | 38  |
| 209498D | 283678    | <1        | 1.58    | 7         | 381       | <2  | <1 | 1.85    | <4        | 6         | 37  | 14        | 2.34    | <0.01  | 33        | 0.42    | 370       | 8  | 48        | 193 | 10        | <5        | <5        | <10       | 153            | 1013      | <2        | 31       | 18  | 4        | 34  |
| 209499  | 283679    | <1        | 1.20    | 9         | 351       | <2  | <1 | 0.73    | <4        | 29        | 23  | 48        | 5.78    | <0.01  | 49        | 0.47    | 342       | 8  | 32        | 239 | 8         | <5        | <5        | <10       | 137            | 990       | <2        | 30       | 12  | 4        | 49  |
| 209500  | 283680    | <1        | 1.52    | 12        | 298       | <2  | <1 | 1.70    | <4        | 7         | 28  | 11        | 1.51    | <0.01  | 15        | 0.37    | 261       | 4  | 33        | 289 | 7         | <5        | <5        | <10       | 209            | 980       | <2        | 34       | 28  | 4        | 84  |
| 209501  | 283681    | <1        | 1.64    | 2         | 271       | 4   | <1 | 2.01    | <4        | 8         | 27  | 15        | 1.78    | <0.01  | 19        | 0.44    | 377       | 4  | 31        | 261 | 7         | 5         | <5        | <10       | 189            | 1135      | <2        | 35       | <10 | 4        | 79  |
| 209502  | 283682    | <1        | 4.61    | 2         | 277       | <2  | <1 | 1.72    | <4        | 8         | 13  | 22        | 2.27    | <0.01  | 38        | 0.66    | 288       | 1  | 29        | 338 | 6         | 8         | <5        | <10       | 205            | 1278      | <2        | 38       | <10 | 6        | 82  |
| 209503  | 283683    | <1        | 1.40    | 3         | 283       | \$2 | <1 | 1.08    | <4        | 7         | 28  | 13        | 2.19    | <0.01  | 33        | 0.49    | 208       | 4  | 23        | 244 | 5         | <5        | <5        | <10       | 185            | 1185      | 3         | 33       | 23  | 4        | 70  |
| 209504  | 283684    | <1        | 1.87    | 4         | 200       | <2  | <1 | 1.00    | <4        | 7         | 24  | 13        | 3.27    | <0.01  | 35        | 0.44    | 198       | 7  | 28        | 240 | 4         | <5        | <5        | <10       | 198            | 812       | 6         | 34       | 28  | 4        | 74  |
| 209505  | 283685    | <1        | 2.38    | 5         | 157       | <2  | <1 | 1.32    | <4        | 4         | 32  | 9         | 2.08    | <0.01  | 28        | 0.41    | 152       | 5  | 35        | 228 | 3         | <5        | <5        | <10       | 229            | 720       | 5         | 34       | 20  | 4        | 44  |
| 209508  | 283686    | <1        | 1.59    | 112       | 179       | <2  | 2  | 0.48    | 9         | 48        | 23  | 23        | 14.28   | <0.01  | 38        | 0.49    | 290       | 22 | 41        | 198 | 13        | <5        | <5        | <10       | 133            | 765       | <2        | 29       | <10 | 5        | 49  |
| 209507  | 283687    | <1        | 2.48    | 8         | 151       | <2  | <1 | 1.38    | <4        | 8         | 32  | 8         | 2.01    | <0.01  | 24        | 0.47    | 177       | 7  | 31        | 228 | 3         | <5        | <5        | <10       | 239            | 779       | <2        | 32       | 20  | 5        | 50  |

PROCEDURE CODES: ALP1, ALFA1, ALMA1

The results included on this report relate only to the items tested.

Certified By: Jacobyle, 10 Openders, Assayer

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Page 1 of 7

-0196-07/20/2015 4:53 PM



Monday, July 20, 2015

Mistango River Resources 4 Al Wende PO Box 546 Kinkland Lake, ON, CAN P2N3J5 Phil: (705) 567-5351 Paxif: (705) 567-5557 Email: drikkasner@yahoo.ca, Illev74@yahoo.ca

Date Received: 06/22/2015 Date Completed: 07/09/2015 Job #: 201542410 Reference: Sample #: 110

| Acc #   | Client ID | Ag | AI<br>% | Aa<br>ppm | Be  | Be  | Bi<br>ppm | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu | Fe<br>% | к<br>% | Li<br>ppm | Mg<br>% | Mn<br>ppm | Mo<br>ppm | Ni<br>ppm | P<br>ppm | Pb<br>ppm | 8b<br>ppm | Se<br>ppm | 8n<br>ppm | 8r<br>ppm | Ti<br>ppm | TI<br>ppm | V<br>ppm | W   | Y<br>ppm | Zn |
|---------|-----------|----|---------|-----------|-----|-----|-----------|---------|-----------|-----------|-----------|----|---------|--------|-----------|---------|-----------|-----------|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----|----------|----|
| 209508  | 283688    | <1 | 2.49    | 2         | 177 | <2  | <1        | 1.72    | <4        | 4         | 34        | 10 | 1.37    | <0.01  | 15        | 0.40    | 198       | 5         | 30        | 211      | <1        | <5        | <5        | <10       | 250       | 632       | \$2       | 31       | 17  | 5        | 68 |
| 209509D | 283688    | <1 | 1.50    | 11        | 168 | 2   | <1        | 1.62    | <4        | 4         | 30        | 10 | 1.31    | 0.02   | 13        | 0.38    | 190       | 3         | 29        | 188      | 6         | <5        | <5        | <10       | 250       | 603       | 4         | 29       | 22  | 4        | 67 |
| 209510  | 283689    | <1 | 1.93    | 3         | 162 | <2  | <1        | 1.38    | -4        | 7         | 32        | 13 | 2.50    | 0.08   | 11        | 0.38    | 198       | 6         | 33        | 198      | 2         | <5        | <5        | <10       | 245       | 832       | \$2       | 31       | 13  | 4        | 48 |
| 209511  | 283690    | <1 | 1.81    | 17        | 169 | 2   | <1        | 1.28    | <4        | 11        | 30        | 14 | 3.79    | 0.04   | 21        | 0.39    | 210       | 6         | 28        | 201      | 8         | <5        | <5        | 15        | 235       | 594       | 2         | 30       | 28  | 4        | 71 |
| 209512  | 283691    | <1 | 0.77    | 19        | 208 | <2  | <1        | 1.38    | -44       | 8         | 41        | 9  | 2.48    | 0.31   | 25        | 0.33    | 189       | 5         | 28        | 218      | 7         | <5        | <5        | <10       | 238       | 697       | 4         | 32       | 22  | 4        | 60 |
| 209513  | 283692    | <1 | 2.61    | 17        | 183 | 4   | <1        | 0.85    | <4        | 9         | 34        | 8  | 3.15    | <0.01  | 22        | 0.43    | 151       | 7         | 31        | 261      | 5         | <5        | 6         | <10       | 230       | 727       | 4         | 37       | 25  | 5        | 46 |
| 209514  | 283693    | <1 | 2.28    | 37        | 188 | \$2 | <1        | 0.62    | 6         | 25        | 21        | 24 | 10.33   | <0.01  | 27        | 0.54    | 237       | 15        | 15        | 241      | 8         | <5        | <5        | 17        | 195       | 646       | \$2       | 24       | 25  | 5        | 41 |
| 209515  | 283694    | <1 | 3.45    | 7         | 209 | 2   | <1        | 1.95    | <4        | 4         | 24        | 8  | 1.86    | <0.01  | 26        | 0.59    | 275       | 3         | 24        | 265      | 5         | <5        | <5        | <10       | 279       | 719       | 5         | 30       | 14  | 5        | 45 |
| 209516  | 283695    | <1 | 0.88    | 3         | 174 | \$2 | <1        | 1.84    | <4        | 2         | 27        | 7  | 1.04    | <0.01  | 17        | 0.42    | 268       | <1        | <1        | 178      | 2         | <5        | <5        | <10       | 220       | 625       | \$2       | 18       | 18  | 4        | 33 |
| 209517  | 283696    | <1 | 2.02    | 17        | 220 | <2  | <1        | 2.00    | <4        | 4         | 37        | 10 | 1.28    | <0.01  | 16        | 0.52    | 289       | 4         | 2         | 210      | <1        | <5        | <5        | <10       | 278       | 824       | \$2       | 23       | 12  | 5        | 45 |
| 209518  | 283697    | <1 | 1.68    | 8         | 218 | 4   | <1        | 1.59    | <4        | 3         | 24        | 11 | 1.39    | <0.01  | 21        | 0.58    | 240       | 3         | 2         | 220      | 2         | <5        | <5        | <10       | 265       | 809       | 4         | 25       | 21  | 4        | 61 |
| 209519  | 283698    | <1 | 2.50    | 4         | 241 | 4   | <1        | 1.98    | <4        | 3         | 28        | 10 | 1.50    | 0.04   | 30        | 0.58    | 310       | 3         | 2         | 223      | 5         | <5        | 8         | <10       | 249       | 735       | \$2       | 22       | 14  | 5        | 55 |
| 209520D | 283698    | <1 | 1.88    | 2         | 239 | 2   | <1        | 1.97    | <4        | 2         | 25        | 9  | 1.49    | 0.03   | 30        | 0.54    | 312       | 3         | 2         | 195      | <1        | <5        | <5        | <10       | 247       | 739       | 2         | 21       | 14  | 5        | 56 |
| 209521  | 283699    | <1 | 1.90    | 8         | 158 | 2   | <1        | 2.04    | <4        | 2         | 33        | 9  | 0.88    | 0.05   | 12        | 0.42    | 261       | 4         | <1        | 201      | 1         | <5        | <5        | <10       | 252       | 631       | 7         | 18       | <10 | 5        | 34 |
| 209522  | 283700    | <1 | 0.15    | <2        | 168 | 2   | <1        | 1.87    | -4        | 4         | 11        | 7  | 1.40    | <0.01  | 22        | 0.50    | 241       | <1        | 1         | 171      | 1         | <5        | <5        | <10       | 198       | 827       | 2         | 19       | 11  | 4        | 38 |
| 209523  | 284501    | <1 | 0.23    | 6         | 172 | 2   | <1        | 1.41    | <4        | 4         | 24        | 8  | 1.19    | <0.01  | 14        | 0.42    | 190       | <1        | <1        | 175      | <1        | <5        | <5        | <10       | 241       | 852       | 4         | 19       | 17  | 4        | 41 |
| 209524  | 284502    | <1 | 5.09    | 11        | 258 | 4   | <1        | 1.91    | <4        | 5         | 27        | 12 | 1.67    | <0.01  | 25        | 0.71    | 225       | 4         | 4         | 263      | 5         | <5        | <5        | <10       | 248       | 1150      | 4         | 23       | 18  | 7        | 50 |
| 209525  | 284503    | <1 | 5.98    | 2         | 245 | 4   | <1        | 2.07    | -4        | 5         | 35        | 13 | 1.99    | <0.01  | 35        | 0.86    | 199       | 5         | 3         | 303      | 2         | 5         | 6         | 13        | 345       | 1315      | 2         | 28       | 18  | 7        | 57 |
| 209526  | 284504    | <1 | 4.61    | 8         | 273 | 4   | <1        | 1.82    | <4        | 7         | 28        | 9  | 2.24    | 0.03   | 34        | 0.87    | 202       | 4         | 3         | 274      | 3         | <5        | <5        | 19        | 308       | 1165      | 11        | 24       | 14  | 6        | 55 |
| 209527  | 284505    | <1 | 3.91    | 8         | 252 | 2   | <1        | 1.93    | -44       | 6         | 43        | 11 | 2.50    | 0.02   | 33        | 0.81    | 207       | 5         | 3         | 280      | 8         | <5        | 5         | <10       | 310       | 1228      | 2         | 30       | 14  | 6        | 98 |

PROCEDURE CODES: ALP1, ALFA1, ALMA1

The results included on this report relate only to the items tested. The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory. Page 2 of 7

-0196-07/20/2015 4:53 PM

Certified By: Jane Fuge, 19 Operators, Assayer



Monday, July 20, 2015

| 4 Al Wend<br>Kirkland Li<br>P2N3J5<br>Ph#: (705)<br>Fax#: (705 | River Resourc<br>le PO Box 546<br>alke, ON, CAN<br>) 567-5351<br>5) 567-5557<br>kasner@yaho | 5                                                                                                                                                                                                                                                                                                                                                               | 74@yah  | 00.Ca     |     |    |           |         |           |           |           |           |         |        |           |         |           |    |           |          |           | ate Con<br>Ref | celved: (<br>pleted: (<br>Job #: 2<br>lerence:<br>mple #: 1 | 07/09/20<br>2015424 | 15        |           |           |          |     |          |           |
|----------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-----|----|-----------|---------|-----------|-----------|-----------|-----------|---------|--------|-----------|---------|-----------|----|-----------|----------|-----------|----------------|-------------------------------------------------------------|---------------------|-----------|-----------|-----------|----------|-----|----------|-----------|
| Acc #                                                          | Client ID                                                                                   | Ag<br>ppm                                                                                                                                                                                                                                                                                                                                                       | Al<br>% | As<br>ppm | Be  | Be | Bi<br>ppm | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu<br>ppm | Fe<br>% | K<br>% | Li<br>ppm | Mg<br>% | Mn<br>ppm | Mo | Ni<br>ppm | P<br>ppm | Pb<br>ppm | 8b<br>ppm      | Se<br>ppm                                                   | 8n<br>ppm           | 8r<br>ppm | Ti<br>ppm | TI<br>ppm | V<br>ppm | W   | Y<br>ppm | Zn<br>ppm |
| 09528                                                          | 284508                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 4.64    | 6         | 262 | 4  | 4         | 2.04    | -4        | 7         | 41        | 12        | 2.60    | <0.01  | 35        | 0.88    | 215       | 7  | 2         | 289      | 8         | <5             | -6                                                          | <10                 | 322       | 1263      | 9         | 81       | 17  | 6        | 77        |
| 09529                                                          | 284507                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 3.34    | 5         | 284 | 2  | \$1       | 1.31    | -4        | 7         | 53        | 13        | 2.35    | 0.33   | 29        | 0.71    | 198       | 8  | 2         | 243      | 8         | <5             | 8                                                           | <10                 | 288       | 1003      | 8         | 24       | 18  | 6        | 92        |
| 09530                                                          | 284508                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 3.00    | 7         | 203 | 4  | 4         | 1.21    | <4        | 8         | 38        | 11        | 2.44    | 0.13   | 30        | 0.72    | 189       | 7  | 3         | 244      | 7         | 6              | <5                                                          | <10                 | 239       | 1019      | 2         | 22       | 28  | 5        | 61        |
| 09531D                                                         | 284508                                                                                      | \$1                                                                                                                                                                                                                                                                                                                                                             | 2.63    | 8         | 215 | 2  | - 1       | 1.30    | -4        | 7         | 39        | 11        | 2.58    | 0.24   | 33        | 0.71    | 199       | 8  | 4         | 235      | 12        | <5             | <5                                                          | 10                  | 249       | 1049      | 2         | 23       | <10 | 5        | 70        |
| 09532                                                          | 284509                                                                                      | \$1                                                                                                                                                                                                                                                                                                                                                             | 2.94    | 4         | 255 | 2  | -12       | 1.77    | -4        | 7         | 30        | 13        | 2.32    | 0.28   | 43        | 0.82    | 266       | 6  | 4         | 387      | 5         | <5             | <5                                                          | <10                 | 252       | 1734      | 2         | 40       | 24  | 6        | 80        |
| 09533                                                          | 284510                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 2.91    | 5         | 264 | 2  | 4         | 2.82    | <4        | 5         | 44        | 13        | 1.73    | 0.28   | 24        | 0.53    | 345       | 5  | 3         | 292      | 3         | <5             | <5                                                          | <10                 | 308       | 1188      | 2         | 37       | <10 | 6        | 49        |
| 09534                                                          | 284511                                                                                      | <t< td=""><td>2.81</td><td>7</td><td>302</td><td>2</td><td>- 1</td><td>1.93</td><td>&lt;4</td><td>4</td><td>38</td><td>11</td><td>1.19</td><td>0.29</td><td>21</td><td>0.47</td><td>250</td><td>4</td><td>2</td><td>265</td><td>7</td><td>&lt;5</td><td>&lt;5</td><td>15</td><td>312</td><td>848</td><td>4</td><td>34</td><td>17</td><td>6</td><td>42</td></t<> | 2.81    | 7         | 302 | 2  | - 1       | 1.93    | <4        | 4         | 38        | 11        | 1.19    | 0.29   | 21        | 0.47    | 250       | 4  | 2         | 265      | 7         | <5             | <5                                                          | 15                  | 312       | 848       | 4         | 34       | 17  | 6        | 42        |
| 09535                                                          | 284512                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 3.61    | 3         | 270 | 2  | 4         | 1.81    | <4        | 5         | 31        | 15        | 1.79    | 0.15   | 32        | 0.70    | 275       | 5  | 2         | 257      | 5         | <5             | 8                                                           | <10                 | 327       | 1241      | 2         | 29       | 34  | 5        | 61        |
| 09536                                                          | 284513                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 6.34    | 5         | 295 | \$ | \$1       | 1.83    | -4        | 4         | 30        | 8         | 1.80    | <0.01  | 34        | 0.91    | 305       | 5  | 4         | 282      | 5         | <5             | <5                                                          | <10                 | 318       | 988       | 2         | 25       | 21  | 7        | 50        |
| 09537                                                          | 284514                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 4.43    | 5         | 275 | 2  | 4         | 1.82    | <4        | 6         | 37        | 11        | 1.89    | <0.01  | 34        | 0.84    | 367       | 6  | 3         | 253      | <1        | <5             | <6                                                          | <10                 | 314       | 1210      | 4         | 23       | 24  | 6        | 49        |
| 09538                                                          | 284515                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 4.03    | 3         | 300 | 2  | -         | 2.01    | -4        | 5         | 32        | 4         | 1.66    | <0.01  | 28        | 0.79    | 372       | 4  | 3         | 253      | 6         | <5             | <5                                                          | <10                 | 282       | 1259      | 2         | 25       | 28  | 6        | 53        |
| 09539                                                          | 284518                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                               | 5.48    | 5         | 383 | 2  | \$1       | 2.39    | <4        | 6         | 33        | 17        | 1.50    | 0.08   | 28        | 0.78    | 330       | 4  | 4         | 327      | 5         | <5             | <5                                                          | <10                 | 294       | 1625      | 4         | 38       | 14  | 6        | 65        |
| 09540                                                          | 284517                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 5.10    | 9         | 384 | 2  | -         | 2.88    | -4        | 7         | 30        | 12        | 1.94    | 0.08   | 34        | 0.77    | 485       | 5  | 3         | 295      | 2         | <5             | <5                                                          | <10                 | 309       | 1553      | 6         | 31       | 44  | 7        | 53        |
| 209541                                                         | 284518                                                                                      | \$1                                                                                                                                                                                                                                                                                                                                                             | 2.91    | 9         | 208 | 2  | 4         | 2.30    | 4         | 15        | 20        | 113       | 7.50    | 0.19   | 84        | 1.53    | 1502      | 12 | 10        | 302      | 12        | 6              | <5                                                          | 12                  | 147       | 1380      | 3         | 37       | 22  | 8        | 164       |
| 09542D                                                         | 284518                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 2.19    | 4         | 212 | 2  | -         | 2.33    | 5         | 17        | 23        | 114       | 7.64    | 0.25   | 85        | 1.47    | 1548      | 12 | 9         | 299      | 17        | <5             | -6                                                          | 11                  | 148       | 1393      | 2         | 38       | 25  | 7        | 169       |
| 09543                                                          | 284519                                                                                      | \$1                                                                                                                                                                                                                                                                                                                                                             | 2.87    | 6         | 437 | 2  | -         | 3.26    | <4        | 5         | 35        | 7         | 1.23    | 0.32   | 21        | 0.45    | 476       | 4  | <1        | 278      | 5         | <5             | <5                                                          | <10                 | 257       | 1238      | 2         | 31       | <10 | 6        | 65        |
| 09544                                                          | 284520                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                              | 2.54    | 2         | 493 | 2  | -         | 3.91    | -4        | 5         | 33        | 9         | 2.32    | 0.28   | 35        | 0.58    | 866       | 4  | <1        | 263      | 7         | <5             | <5                                                          | <10                 | 285       | 1413      | 4         | 25       | 29  | 6        | 38        |
| 09545                                                          | 284521                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                               | 2.18    | 10        | 408 | 2  | -         | 3.46    | -4        | 5         | 24        | 5         | 2.55    | 0.13   | 33        | 0.58    | 853       | 5  | 2         | 245      | 5         | <5             | <5                                                          | 10                  | 272       | 1500      | 4         | 24       | <10 | 5        | 38        |
| 09548                                                          | 284522                                                                                      | \$1                                                                                                                                                                                                                                                                                                                                                             | 3.24    | 6         | 432 | 2  | 4         | 3.55    | <4        | 5         | 24        | 5         | 2.57    | <0.01  | 33        | 0.62    | 891       | 3  | 1         | 283      | 3         | <5             | <5                                                          | <10                 | 258       | 1438      | 7         | 25       | 21  | 6        | 32        |
| 09547                                                          | 284523                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                               | 3.54    | 2         | 392 | 4  | <1        | 2.80    | -4        | 4         | 28        | 5         | 2.09    | <0.01  | 27        | 0.49    | 751       | 4  | 3         | 228      | 4         | <5             | <5                                                          | <10                 | 266       | 1263      | 3         | 23       | <10 | 5        | 27        |

PROCEDURE CODES: ALP1, ALFA1, ALMA1

The results included on this report relate only to the items tested. The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

-0196-07/20/2015 4:53 PM

Certified By: Jacob Royles, VP Openatoria, Assayer

Page 3 of 7



Monday, July 20, 2015

Mistango River Resources 4 Al Wende PO Box 546 Kintland Lake, ON, CAN P2NJJ5 Phif: (705) 567-5351 Faxif: (705) 567-5557 Email: drikkasner@yahoo.ca, Illev74@yahoo.ca

Date Received: 06/22/2015 Date Completed: 07/09/2015 Job #: 201542410 Reference: Sample #: 110

| Acc #  | Client ID | Ag<br>ppm | A)<br>% | As<br>ppm | Be  | Be<br>ppm | Bi<br>ppm | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu  | Fe<br>% | к<br>% | Li | Mg<br>% | Mn<br>ppm | Mo | Ni<br>ppm | P    | Pb<br>ppm | 8b<br>ppm | Se<br>ppm | 8n<br>ppm | 8r<br>ppm | Ti<br>ppm | TI<br>ppm | V<br>ppm | W  | Y  | Zn<br>ppm |
|--------|-----------|-----------|---------|-----------|-----|-----------|-----------|---------|-----------|-----------|-----------|-----|---------|--------|----|---------|-----------|----|-----------|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----|----|-----------|
| 09548  | 284524    | <1        | 1.43    | 5         | 627 | <2        | <1        | 3.30    | -4        | 4         | 32        | 4   | 2.27    | <0.01  | 38 | 0.47    | 1102      | 6  | 39        | 257  | 5         | 8         | <5        | <10       | 220       | 1342      | 8         | 35       | 27 | 4  | 31        |
| 09549  | 284525    | <1        | 1.73    | 2         | 441 | <2        | <1        | 3.80    | <4        | 11        | 63        | 20  | 2.71    | <0.01  | 36 | 0.74    | 822       | 8  | 47        | 551  | 4         | <5        | 8         | <10       | 428       | 2261      | <2        | 58       | 28 | 5  | 38        |
| 109550 | 284528    | <1        | 1.42    | 6         | 151 | <2        | <1        | 4.67    | -4        | 20        | 74        | 39  | 3.84    | <0.01  | 23 | 1.52    | 852       | 7  | 58        | 1089 | 14        | <5        | <5        | <10       | 680       | 3518      | \$2       | 90       | 15 | 10 | 58        |
| 09551  | 284527    | <1        | 5.72    | 7         | 445 | <2        | <1        | 4.59    | <4        | 18        | 49        | 39  | 4.50    | 0.25   | 30 | 1.74    | 1180      | 10 | 51        | 1140 | 11        | <5        | <5        | <10       | 622       | 3498      | \$2       | 88       | 26 | 15 | 52        |
| 09552  | 284528    | <1        | 2.88    | 9         | 338 | <2        | <1        | 6.71    | <4        | 33        | 118       | 82  | 5.62    | 0.09   | 43 | 2.62    | 1201      | 8  | 93        | 1794 | 7         | <5        | <5        | 21        | 698       | 5758      | \$2       | 144      | 38 | 18 | 78        |
| 0553R  | 284528    | <1        | 2.77    | 3         | 331 | <2        | <1        | 6.76    | <4        | 33        | 117       | 62  | 5.61    | 0.16   | 42 | 2.66    | 1205      | 7  | 89        | 1818 | 13        | <5        | <5        | 17        | 703       | 5799      | 4         | 144      | 17 | 17 | 78        |
| 39554  | 284529    | <1        | 2.87    | 7         | 330 | <2        | <1        | 4.77    | <4        | 18        | 84        | 38  | 3.81    | <0.01  | 33 | 1.53    | 1000      | 9  | 70        | 854  | 17        | <5        | <5        | 13        | 538       | 2803      | 4         | 74       | 15 | 9  | 58        |
| 39555  | 284530    | <1        | 4.44    | 8         | 91  | <2        | <1        | 6.27    | 4         | 40        | 84        | 88  | 6.09    | 0.11   | 51 | 3.25    | 1104      | 8  | 75        | 2484 | 12        | <5        | <5        | 18        | 728       | 7164      | 4         | 179      | 17 | 23 | 87        |
| W656   | 284531    | <1        | 5.09    | 7         | 210 | <2        | <1        | 6.40    | 4         | 43        | 163       | 58  | 6.82    | 0.18   | 44 | 3.89    | 1145      | 4  | 110       | 2423 | 8         | <5        | <5        | 12        | 753       | 6878      | 4         | 188      | 26 | 25 | 95        |
| 9657   | 284532    | <1        | 5.45    | 4         | 231 | <2        | <1        | 6.58    | 4         | 48        | 279       | 16  | 7.27    | 0.16   | 50 | 4.74    | 1258      | 4  | 177       | 2376 | 11        | <5        | <5        | 20        | 685       | 6686      | 2         | 200      | 19 | 25 | 105       |
| 09558  | 284533    | <1        | 5.74    | 2         | 205 | 2         | <1        | 5.91    | 4         | 49        | 254       | 19  | 7.39    | 0.09   | 68 | 5.05    | 1289      | 4  | 166       | 2616 | 8         | <5        | <5        | <10       | 764       | 7222      | 2         | 211      | 11 | 25 | 88        |
| 39559  | 284534    | <1        | 2.54    | 4         | 364 | <2        | <1        | 1.39    | <4        | 7         | 38        | 14  | 1.61    | <0.01  | 29 | 1.02    | 298       | 4  | 38        | 399  | 5         | <5        | 7         | <10       | 350       | 1593      | 4         | 42       | 14 | 5  | 38        |
| 09580  | 284535    | <1        | 3.51    | 12        | 503 | <2        | <1        | 1.19    | <4        | 5         | 38        | 171 | 1.84    | 0.03   | 32 | 0.67    | 299       | 7  | 338       | 232  | 6         | <5        | 8         | 10        | 374       | 1142      | 2         | 32       | 14 | 4  | 44        |
| 0561   | 284538    | <1        | 2.54    | 10        | 518 | <2        | <1        | 1.41    | -4        | 4         | 30        | 17  | 1.08    | <0.01  | 25 | 0.52    | 190       | 5  | 33        | 257  | 6         | <5        | <5        | 18        | 310       | 1157      | 2         | 28       | 14 | 4  | 39        |
| 39582  | 284537    | <1        | 2.75    | 8         | 871 | <2        | <1        | 2.28    | <4        | 4         | 33        | 10  | 1.32    | <0.01  | 28 | 0.62    | 319       | 6  | 31        | 260  | 4         | <5        | <5        | <10       | 340       | 1388      | 2         | 29       | 15 | 4  | 45        |
| 09583  | 284538    | <1        | 2.79    | 8         | 733 | <2        | <1        | 2.82    | <4        | 4         | 32        | 12  | 1.45    | <0.01  | 27 | 0.65    | 410       | 7  | 39        | 264  | 8         | <5        | <5        | <10       | 411       | 1374      | 2         | 31       | 27 | 5  | 44        |
| 19584D | 284538    | <1        | 2.84    | 8         | 728 | <2        | <1        | 2.78    | <4        | 4         | 27        | 12  | 1.43    | <0.01  | 28 | 0.65    | 408       | 7  | 39        | 272  | 4         | <5        | <5        | 14        | 407       | 1356      | 2         | 31       | 29 | 5  | 46        |
| 39565  | 284539    | <1        | 2.61    | 4         | 631 | <2        | <1        | 4.53    | <4        | 30        | 149       | 55  | 4.40    | <0.01  | 41 | 2.91    | 875       | 5  | 111       | 1582 | 10        | <5        | <5        | 18        | 654       | 4594      | 4         | 121      | 10 | 14 | 65        |
| 09566  | 284540    | <1        | 5.20    | 8         | 227 | 2         | <1        | 6.01    | 4         | 49        | 286       | 84  | 6.67    | 0.07   | 57 | 5.34    | 1258      | 2  | 197       | 2402 | 10        | <5        | <5        | <10       | 637       | 6634      | 4         | 177      | 24 | 26 | 91        |
| 39567  | 284541    | <1        | 4.89    | 5         | 198 | 2         | <1        | 6.29    | 4         | 50        | 370       | 71  | 6.61    | 0.18   | 53 | 5.66    | 1235      | 1  | 249       | 2197 | 11        | <5        | <5        | <10       | 654       | 6323      | 4         | 167      | 28 | 25 | 88        |
|        |           |           |         |           |     |           |           |         |           |           |           |     |         |        |    |         |           |    |           |      |           |           |           |           |           |           |           |          |    |    |           |

PROCEDURE CODES: ALP1, ALFA1, ALMA1

The results included on this report relate only to the items tested. The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Certified By: Jacob Gal, VP Operators, Assays

Page 4 of 7

-0196-07/20/2015 4:53 PM



Monday, July 20, 2015

Mistango River Resources 4 Al Wende PO Box 546 Kintiand Lake, ON, CAN P2K3J5 Phil: (705) 567-5351 Fastr: (705) 567-5557 Email: difkasner@yahoo.ca, Illev74@yahoo.ca

Date Received: 06/22/2015 Date Completed: 07/09/2015 Job #: 201542410 Reference: Sample #: 110

| Bi Ca Co<br>om % ppr | Client ID Ag Al As<br>ppm % ppm | Cu<br>ppm | Co Cr<br>ppm ppm | K Li<br>% ppm | Mg<br>% | Mn<br>ppm | Mo 1<br>ppm pp | 4i P<br>m ppm | Pb<br>ppm | 8b<br>ppm | Se<br>ppm | 8n<br>ppm | 8r<br>ppm | Ti<br>ppm | TI<br>ppm | V<br>ppm | W   | Y  | Zn<br>ppm |
|----------------------|---------------------------------|-----------|------------------|---------------|---------|-----------|----------------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|-----|----|-----------|
| <1 6.33              | 284542 <1 5.33 6                | 63 E      | 46 293           | 0.10 62       | 4.79    | 1178      | 3 20           | 6 2233        | 10        | 8         | <5        | 11        | 538       | 6205      | \$2       | 162      | 38  | 25 | 84        |
| <1 1.50 s            | 284543 <1 5.69 6                | 11 1      | 4 38             | <0.01 29      | 0.83    | 295       | 7 3            | 2 298         | 4         | <5        | <5        | <10       | 405       | 1379      | 42        | 34       | 24  | 8  | 42        |
| <1 1.05 %            | 284544 <1 4.70 11               | 21 1      | 6 23             | <0.01 34      | 0.76    | 319       | 5 2            | 7 340         | 5         | <5        | <5        | <10       | 287       | 1482      | 2         | 38       | <10 | 7  | 36        |
| <1 7.89 9            | 284545 <1 5.76 4                | 175 4     | 45 197           | 0.02 61       | 1.66    | 1382      | 3 10           | 4 273         | 9         | <5        | <5        | 11        | 382       | 4208      | 2         | 204      | 30  | 15 | 45        |
| <1 7.30              | 284546 <1 9.93 4                | 95 5      | 38 170           | 0.10 44       | 2.40    | 1202      | 2 9            | 1 263         | <1        | <5        | <5        | <10       | 323       | 3849      | 2         | 192      | 24  | 18 | 55        |
| <1 6.48              | 284547 <1 5.22 10               | 40 E      | 50 234           | 0.01 34       | 2.85    | 1207      | 5 12           | 0 296         | 10        | <5        | <5        | 12        | 270       | 4926      | 2         | 248      | 26  | 14 | 66        |
| <1 6.68              | 284548 <1 8.57 3                | 79 E      | 49 232           | 0.02 41       | 3.18    | 1175      | 2 12           | 0 298         | <1        | <5        | <5        | 12        | 348       | 4492      | <2        | 230      | 24  | 17 | 69        |
| <1 6.60              | 284548 <1 7.21 4                | 76 E      | 47 228           | 0.16 41       | 3.24    | 1158      | 3 11           | 8 283         | <1        | <5        | <5        | 10        | 345       | 4438      | 3         | 228      | 33  | 18 | 63        |
| <1 7.74              | 284549 <1 5.74 2                | 93 E      | 48 235           | 0.20 45       | 2.98    | 1378      | 3 11           | 7 297         | 2         | <5        | <5        | <10       | 288       | 4543      | 2         | 230      | 10  | 17 | 76        |
| 1 3.01 %             | 284550 <1 1.81 9                | 7 1       | 7 35             | <0.01 23      | 0.72    | 342       | 4 2            | 4 252         | 4         | <5        | <5        | <10       | 229       | 1150      | <2        | 32       | 13  | 5  | 22        |
| <1 1.02 9            | 284551 <1 3.01 5                | 15 1      | 5 31             | <0.01 24      | 0.67    | 181       | 4 2            | 9 217         | 6         | <5        | <5        | <10       | 260       | 971       | 4         | 24       | 20  | 5  | 14        |
| <1 0.99 %            | 284552 <1 5.98 9                | 11 1      | 4 29             | <0.01 30      | 0.72    | 199       | 4 2            | 4 285         | 1         | <5        | <5        | <10       | 334       | 1151      | 4         | 27       | 13  | 7  | 48        |
| <1 2.44 %            | 284553 <1 8.44 8                | 22 1      | 15 71            | 0.01 31       | 0.77    | 334       | 7 4            | 8 288         | 8         | <5        | <5        | <10       | 343       | 1505      | 3         | 65       | 34  | 9  | 203       |
| <1 0.81 %            | 284554 <1 8.33 10               | 20 1      | 5 40             | <0.01 30      | 0.78    | 224       | 6 4            | 0 281         | 2         | <5        | <5        | <10       | 358       | 1118      | 8         | 35       | 25  | 7  | 140       |
| <1 0.80 %            | 284555 <1 5.32 6                | 82 1      | 7 51             | <0.01 20      | 0.62    | 173       | 9 5            | 2 253         | <1        | <5        | <5        | <10       | 230       | 804       | 2         | 32       | 31  | 7  | 64        |
| <1 0.71 s            | 284556 <1 5.04 6                | 85 1      | 10 44            | <0.01 29      | 0.79    | 227       | 7 3            | 9 257         | 4         | <5        | 8         | <10       | 248       | 887       | <2        | 30       | 28  | 7  | 164       |
| <1 0.45 %            | 284557 <1 3.90 10               | 12 1      | 6 39             | 0.09 23       | 0.66    | 201       | 5 3            | 0 231         | 11        | <5        | <5        | <10       | 276       | 1033      | 3         | 31       | 27  | 6  | 30        |
| <1 2.50 %            | 284558 <1 4.48 3                | 104 2     | 39 139           | <0.01 34      | 0.79    | 487       | 6 9            | 7 307         | 5         | <5        | <5        | <10       | 333       | 2817      | 4         | 134      | 16  | 10 | 186       |
| <1 2.54 %            | 284558 <1 4.28 8                | 102 2     | 38 139           | <0.01 33      | 0.78    | 479       | 6 9            | 4 307         | 10        | <5        | <5        | 12        | 328       | 2623      | <2        | 132      | 28  | 10 | 184       |
| <1 1.18 %            | 284559 <1 3.32 10               | 142 2     | 18 32            | <0.01 30      | 0.72    | 266       | 8 4            | 3 290         | 12        | <5        | <5        | <10       | 269       | 1373      | \$2       | 38       | 31  | 8  | 214       |
|                      |                                 |           |                  |               |         |           |                |               |           |           |           |           |           |           |           |          |     |    |           |

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By: Jason Boyles, VP Operators, Assayer

The results included on this report relate only to the items tested. The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Page 5 of 7

-0196-07/20/2015 4:53 PM



Monday, July 20, 2015

Mistango River Resources 4 Al Wende PO Box 546 Ivintand Lake, ON, CAN Prex, 105) 567-5351 Prex, 1705) 567-5557 Email: drikkasner@yahoo.ca, Illev74@yahoo.ca

Date Received: 06/22/2015 Date Completed: 07/09/2015 Job #: 201542410 Reference: Sample #: 110

| Acc #   | Client ID | Ag | AI<br>% | As<br>ppm | Ba<br>ppm | Be | Bi<br>ppm | Ca<br>% | Cd<br>ppm | Co<br>ppm | Cr<br>ppm | Cu  | Fe<br>% | к<br>% | Li<br>ppm | Mg<br>% | Mn<br>ppm | Mo | Ni<br>ppm | P<br>ppm | Pb<br>ppm | Sb<br>ppm | Se<br>ppm | 8n<br>ppm | 8r<br>ppm | Ti<br>ppm | TI<br>ppm | V<br>ppm | W<br>ppm | Y<br>ppm | Zn<br>ppm |
|---------|-----------|----|---------|-----------|-----------|----|-----------|---------|-----------|-----------|-----------|-----|---------|--------|-----------|---------|-----------|----|-----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|-----------|
| 209588  | 284560    | <1 | 2.87    | 4         | 857       | <2 | <1        | 0.91    | <4        | 12        | 71        | 19  | 2.33    | <0.01  | 71        | 1.64    | 453       | 5  | 55        | 345      | 5         | <5        | 5         | <10       | 189       | 2353      | 2         | 80       | 28       | 7        | 18        |
| 209589  | 284561    | <1 | 6.97    | 4         | 715       | <2 | <1        | 5.68    | 4         | 55        | 271       | 108 | 6.88    | 0.15   | 64        | 4.01    | 1376      | 4  | 143       | 375      | 3         | <5        | <5        | <10       | 253       | 5629      | 3         | 282      | 33       | 24       | 90        |
| 209590  | 284582    | <1 | 5.60    | <2        | 441       | <2 | <1        | 3.65    | 4         | 48        | 220       | 62  | 7.87    | 0.10   | 75        | 5.23    | 1641      | 5  | 94        | 460      | 1         | <5        | <5        | 13        | 228       | 5130      | 2         | 261      | 24       | 24       | 52        |
| 209591  | 284563    | <1 | 5.19    | 12        | 455       | <2 | <1        | 3.69    | <4        | 18        | 47        | 62  | 5.42    | 0.20   | 73        | 1.03    | 1231      | 13 | 49        | 321      | 12        | <5        | <5        | 10        | 144       | 2119      | \$2       | 50       | 32       | 7        | 68        |
| 209592  | 284564    | <1 | 2.54    | 6         | 207       | <2 | <1        | 3.30    | <4        | 12        | 27        | 53  | 5.76    | 0.12   | 60        | 0.82    | 1183      | 9  | 34        | 243      | 5         | <5        | <5        | 11        | 105       | 1433      | 4         | 38       | 18       | 6        | 65        |
| 209593  | 284565    | <1 | 5.28    | 4         | 405       | <2 | <1        | 3.37    | 4         | 17        | 41        | 65  | 5.45    | <0.01  | 57        | 0.84    | 1083      | 12 | 48        | 311      | 3         | <5        | <5        | <10       | 131       | 1762      | 2         | 49       | 20       | 8        | 59        |
| 209594  | 284566    | <1 | 4.24    | <2        | 384       | <2 | <1        | 1.62    | 4         | 31        | 40        | 260 | 7.88    | <0.01  | 73        | 1.32    | 1045      | 15 | 72        | 297      | 6         | <5        | <5        | <10       | 182       | 1729      | 2         | 50       | 28       | 7        | 62        |
| 209595  | 284567    | <1 | 6.07    | 8         | 264       | <2 | <1        | 4.83    | 4         | 45        | 424       | 114 | 7.65    | 0.14   | 47        | 4.39    | 1557      | 5  | 109       | 366      | <1        | <5        | <5        | <10       | 230       | 3911      | 2         | 228      | 38       | 23       | 77        |
| 209596  | 284568    | <1 | 6.86    | 10        | 227       | <2 | <1        | 4.60    | 5         | 60        | 315       | 118 | 8.89    | 0.25   | 69        | 5.83    | 1615      | 1  | 204       | 292      | <1        | <5        | <5        | <10       | 235       | 4487      | 4         | 262      | 32       | 20       | 90        |
| 209597D | 284568    | <1 | 6.11    | 19        | 209       | <2 | <1        | 4.37    | 5         | 57        | 297       | 109 | 8.47    | 0.28   | 65        | 5.58    | 1539      | 1  | 193       | 283      | 7         | <5        | <5        | <10       | 224       | 4289      | 10        | 248      | <10      | 18       | 87        |
| 209598  | 284569    | <1 | 6.78    | 17        | 311       | 2  | <1        | 4.82    | 5         | 48        | 339       | 102 | 7.23    | 0.30   | 58        | 5.02    | 1581      | <1 | 180       | 279      | 6         | <5        | <5        | 14        | 274       | 3534      | 6         | 233      | 13       | 19       | 89        |
| 209599  | 284570    | <1 | 7.16    | 23        | 303       | <2 | <1        | 4.31    | 4         | 55        | 339       | 113 | 8.11    | 0.34   | 104       | 5.02    | 1714      | 4  | 180       | 299      | 9         | <5        | <5        | <10       | 233       | 3808      | 4         | 251      | 39       | 18       | 88        |
| 209800  | 284571    | <1 | 3.70    | 9         | 190       | <2 | <1        | 2.33    | <4        | 14        | 51        | 22  | 2.54    | 0.01   | 32        | 1.12    | 498       | 4  | 47        | 499      | 7         | <5        | <5        | <10       | 195       | 1750      | 4         | 60       | 13       | 8        | 190       |
| 209601  | 284572    | <1 | 4.05    | 9         | 248       | <2 | <1        | 2.27    | <4        | 9         | 49        | 22  | 1.84    | 0.02   | 22        | 0.80    | 357       | 4  | 38        | 362      | 10        | <5        | <5        | <10       | 190       | 1502      | 2         | 47       | 30       | 7        | 111       |
| 209802  | 284573    | <1 | 2.28    | <2        | 325       | 2  | <1        | 2.09    | <4        | 7         | 45        | 23  | 1.52    | <0.01  | 21        | 0.58    | 299       | 5  | 45        | 306      | 18        | <5        | <5        | <10       | 180       | 1384      | 2         | 42       | 22       | 5        | 308       |
| 209603  | 284574    | <1 | 2.09    | 6         | 489       | <2 | <1        | 0.64    | <4        | 10        | 30        | 27  | 2.22    | <0.01  | 38        | 0.79    | 376       | 5  | 44        | 453      | 7         | <5        | <5        | <10       | 184       | 1604      | 2         | 45       | 15       | 5        | 66        |
| 209804  | 284575    | <1 | 2.15    | 5         | 480       | <2 | <1        | 1.28    | <4        | 11        | 35        | 24  | 2.13    | <0.01  | 34        | 0.81    | 441       | 7  | 48        | 468      | 4         | <5        | <5        | <10       | 197       | 1688      | 2         | 44       | 29       | 8        | 65        |
| 209605  | 284576    | <1 | 1.78    | 4         | 472       | 4  | <1        | 1.67    | <4        | 10        | 34        | 18  | 1.96    | <0.01  | 33        | 0.79    | 473       | 4  | 39        | 433      | 8         | <5        | <5        | <10       | 204       | 1576      | 4         | 41       | 27       | 5        | 58        |
| 209606  | 284577    | <1 | 1.95    | 7         | 374       | 4  | <1        | 1.78    | <4        | 9         | 39        | 21  | 1.63    | <0.01  | 25        | 0.66    | 359       | 4  | 38        | 343      | 11        | <5        | <5        | <10       | 211       | 1390      | 4         | 41       | 24       | 5        | 77        |
| 209607  | 284578    | <1 | 2.24    | 7         | 252       | <2 | <1        | 1.57    | <4        | 7         | 35        | 10  | 1.38    | <0.01  | 18        | 0.62    | 304       | 2  | 34        | 268      | 5         | <5        | <5        | <10       | 204       | 1139      | 2         | 38       | 23       | 5        | 45        |
|         |           |    |         |           |           |    |           |         |           |           |           |     |         |        |           |         |           |    |           |          |           |           |           |           |           |           |           |          |          |          |           |

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By: Jacobyle, 10 Openders, Jussy

The results included on this report relate only to the items tested. The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Page 6 of 7

-0196-07/20/2015 4:53 PM



Monday, July 20, 2015

|   |     | 1   |           |                                | ved: 05/22<br>ted: 07/09 |               |                   |                         |                             |                                |
|---|-----|-----|-----------|--------------------------------|--------------------------|---------------|-------------------|-------------------------|-----------------------------|--------------------------------|
|   |     |     |           | Job :<br>Referenci<br>Sample : |                          |               |                   |                         |                             |                                |
|   | ppm | ppm | 8b<br>ppm | n ppm                          | pm ppn                   | pm ppr        | pm ppm            |                         | ppm                         | W<br>ppm                       |
| 2 | 2   | 57  | 57 <1     | 57 <1 <                        | 57 <1 <5                 | 57 <1 <5 <5 · | 57 <1 <5 <5 <10 2 | 57 <1 <5 <5 <10 200 114 | 57 <1 <5 <5 <10 200 1144 <2 | 57 <1 <5 <5 <10 200 1144 <2 35 |

PROCEDURE CODES: ALP1, ALFA1, ALMA1

Certified By: June Byte, VP Openders, Auser

The results included on this report relate only to the items tested. The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

-0196-07/20/2015 4:53 PM

Y Zn ppm ppm 5 44

Page 7 of 7



Monday, July 6, 2015

Canada P7B 5X5

 1046 Gorham Street
 Tel: (807) 626-1630
 www.accurassay.com

 Thunder Bay, ON
 Fax: (807) 622-7571
 assay@accurassay.com

**Final Certificate** 

|                                              | Date Received: 06/22/2015  |
|----------------------------------------------|----------------------------|
| 4 Al Wende PO Box 546                        | Date Completed: 07/06/2015 |
| Kirkland Lake, ON, CAN<br>P2N3J5             | Job #: 201542411           |
| P2N333<br>Ph#: (705) 567-5351                | Reference:                 |
| Fax#: (705) 567-5557                         | Sample #: 3                |
| Email: drkkasner@yahoo.ca, iiliev74@yahoo.ca |                            |

| Acc #                           | Client ID  | Fe203<br>% | Si02<br>%  | AI203<br>% | Na20<br>% | Mg0<br>% | K20<br>% | Ca0<br>% | P205<br>% | Mn0<br>% | Ti02<br>% | Cr203<br>% | V2O5<br>% | L0I<br>% | Mass Balance<br>% |
|---------------------------------|------------|------------|------------|------------|-----------|----------|----------|----------|-----------|----------|-----------|------------|-----------|----------|-------------------|
| 209609                          | WR-8-84    | 3.51       | 68.68      | 16.42      | 2.99      | 0.66     | 2.89     | 2.15     | 0.07      | 0.03     | 0.26      | 0.10       | <0.01     | 0.87     | 98.63             |
| Control Standard<br>Performance |            |            |            |            |           |          |          |          |           |          |           |            |           |          |                   |
| Control Std Certified           |            |            |            |            |           |          |          |          |           |          |           |            |           |          |                   |
|                                 | Fe203<br>% | Si02<br>%  | AI203<br>% | Na20<br>%  | Mg0<br>%  | K20<br>% | Ca0<br>% |          | 205<br>%  | Mn0<br>% | Ti02<br>% | Cr203<br>% | V2O5<br>% | L0I<br>% | Mass Balance<br>% |
| NIST SR 690                     | 95.58      | 3.71       | 0.18       | 0.00       | 0.18      | 0.00     | 0.20     | 0        | .03       | 0.23     | 0.02      | 0.00       | 0.00      | 0.00     | 100.13            |
| NIST SR 692                     | 85.18      | 10.14      | 1.41       | 0.01       | 0.46      | 0.04     | 0.02     | 0        | .09       | 0.00     | 0.04      | 0.00       | 0.00      | 2.50     | 99.89             |
| APPLIED SCOPE                   | S: AL P1   | ALXR1      | AI MA      | <u>۵</u> 1 |           |          |          |          |           |          |           |            |           |          |                   |

Page 1 of 1

## APPLIED SCOPES: ALP1, ALXR1, ALMA1

| Validated By: | Certified By: | Authorized By: |
|---------------|---------------|----------------|
| $\boxtimes$   | $\boxtimes$   | $\boxtimes$    |
|               |               |                |

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.





Date Received: 05/21/2015 Date Completed: 06/23/2015 Job #: 201541898 Reference: Sample #: 4

Tuesday, June 23, 2015

Mistango River Resources 4 Ai Wende PO Box 546 Vintand Lake, ON, CAN P2N3J5 Phif: (705) 567-5351 Fax#: (705) 567-5557 Email: dnikasner@yahoo.ca, Illev74@yahoo.ca

| Acc #   | Client ID | Ag |      |    |     |    |    |      |    |    |     |     | Fe<br>% |      |    |      |      |    |     |     |   |    |    |    |     |      |    |     |     |    |    |
|---------|-----------|----|------|----|-----|----|----|------|----|----|-----|-----|---------|------|----|------|------|----|-----|-----|---|----|----|----|-----|------|----|-----|-----|----|----|
| 160327  | K-1       | <1 | 3.08 | 12 | 425 | <2 | <1 | 0.96 | <4 | 8  | 372 | 10  | 1.23    | 0.09 | 13 | 0.55 | 214  | <1 | 12  | 273 | 8 | <5 | 9  | 32 | 308 | 1158 | 34 | 20  | <10 | 4  | 42 |
| 160328  | 7-140.3   | <1 | 5.41 | 8  | 159 | <2 | <1 | 7.11 | 5  | 54 | 366 | 26  | 7.88    | 0.41 | 24 | 4.10 | 1433 | <1 | 133 | 329 | 9 | <5 | 8  | 35 | 154 | 5211 | <2 | 262 | 11  | 21 | 82 |
| 160329  | 7-128.2   | <1 | 3.73 | 13 | 224 | <2 | <1 | 4.93 | <4 | 6  | 375 | 44  | 1.69    | 0.05 | 18 | 0.63 | 733  | <1 | 13  | 237 | 3 | <5 | 11 | 31 | 228 | 1370 | 27 | 23  | <10 | 10 | 52 |
| 160330  | 7-67.3    | <1 | 4.22 | 7  | 207 | <2 | <1 | 5.88 | 7  | 65 | 168 | 523 | 11.35   | 0.12 | 27 | 3.01 | 2105 | <1 | 37  | 387 | 4 | <5 | 12 | 35 | 130 | 6508 | 43 | 329 | <10 | 24 | 84 |
| 160331D | 7-87.3    | <1 | 4.27 | 12 | 208 | 4  | <1 | 5.84 | 7  | 67 | 165 | 526 | 11.40   | 0.24 | 27 | 3.04 | 2112 | <1 | 38  | 393 | 9 | <5 | <5 | 32 | 127 | 6612 | 14 | 331 | <10 | 24 | 84 |

Page 1 of 1

Final Certificate

PROCEDURE CODES: ALP1, ALMA1, ALXR1

Certified By: Jacoby Str. VP Opendera, Assays

The results included on this report relate only to the items tested. The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

-0196-06/23/2015 2:46 PM

Quality Analysis ...



## Innovative Technologies

| Date Submitted: | 11-May-15 |
|-----------------|-----------|
| Invoice No.:    | A15-03287 |
| Invoice Date:   | 27-May-15 |
| Your Reference: |           |

Mistango River Resources. Box 546 Kirkland Lake Ontario P2N 3J5 Canada

ATTN: Donald Kasner

## CERTIFICATE OF ANALYSIS

6 Soil samples were submitted for analysis.

The following analytical package was requested:

REPORT A15-03287 Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1E3-Tbay Aqua Regia ICP(AQUAGEO)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes: If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3 Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

A Emmanuel Eseme, Ph.D.

Quality Control



ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Page 1/4

Results

Report: A15-03287

|                |       |        |        | _      |        | _      |        | _      |        | _      |        |        |        |        |        |        | _      |        | _      |        |        |        |        |
|----------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Analyte Symbol | Au    | Ag     | Cd     | Cu     | Mn     | Mo     | NI     | Pb     | Zn     | AI     | As     | в      | Ва     | Be     | BI     | Ca     | Co     | Cr     | Fe     | Ga     | Hg     | к      | La     |
| Unit Symbol    | ppb   | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | %      | ppm    | ppm    | %      | ppm    |
| Lower Limit    | 5     | 0.2    | 0.5    | 1      | 5      | 1      | 1      | 2      | 2      | 0.01   | 2      | 10     | 10     | 0.5    | 2      | 0.01   | 1      | 1      | 0.01   | 10     | 1      | 0.01   | 10     |
| Method Code    | FA-AA | AR-ICP |
| GR-01          | 11    | < 0.2  | < 0.5  | 79     | 320    | <1     | 80     | 6      | 68     | 2.88   | 5      | < 10   | 79     | < 0.5  | < 2    | 0.78   | 19     | 80     | 3.60   | < 10   | <1     | 0.09   | 16     |
| GR-02          | < 5   | < 0.2  | < 0.5  | 27     | 245    | < 1    | 38     | < 2    | 35     | 1.98   | 2      | < 10   | 37     | < 0.5  | < 2    | 0.90   | 10     | 50     | 2.54   | < 10   | < 1    | 0.06   | 15     |
| GR-03          | 10    | 0.4    | < 0.5  | 152    | 415    | 1      | 94     | 8      | 98     | 3.73   | 11     | < 10   | 76     | 0.6    | < 2    | 0.68   | 28     | 112    | 4.52   | 10     | < 1    | 0.12   | 17     |
| GR-04          | 28    | < 0.2  | < 0.5  | 215    | 1100   | 1      | 120    | 18     | 131    | 2.71   | 27     | < 10   | 132    | < 0.5  | < 2    | 0.92   | 36     | 178    | 5.54   | < 10   | < 1    | 0.40   | 41     |
| GR-05          | 6     | < 0.2  | < 0.5  | 26     | 259    | < 1    | 29     | < 2    | 36     | 1.65   | < 2    | < 10   | 58     | < 0.5  | < 2    | 1.01   | 10     | 42     | 2.82   | < 10   | <1     | 0.07   | 22     |
| GR-06          | 17    | 0.3    | < 0.5  | 89     | 637    | < 1    | 4      | 4      | 169    | 2.47   | < 2    | < 10   | 59     | < 0.5  | < 2    | 0.13   | 20     | 11     | 7.61   | 10     | < 1    | 1.16   | < 10   |

Page 2/4

Activation Laboratories Ltd.

Report: A15-03287

| Analyte Symbol | Mg     | Na     | Р      | S      | Sb     | Sc     | Sr     | TI     | Те     | ті     | U      | v      | w      | Y      | Zr     |
|----------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol    | %      | %      | %      | %      | ppm    | ppm    | ppm    | %      | ppm    |
| Lower Limit    | 0.01   | 0.001  | 0.001  | 0.01   | 2      | 1      | 1      | 0.01   | 1      | 2      | 10     | 1      | 10     | 1      | 1      |
| Method Code    | AR-ICP |
| GR-01          | 0.82   | 0.150  | 0.047  | 0.01   | 3      | 6      | 29     | 0.21   | 3      | < 2    | < 10   | 135    | < 10   | 7      | 10     |
| GR-02          | 0.51   | 0.186  | 0.063  | < 0.01 | < 2    | 4      | 28     | 0.19   | 3      | < 2    | < 10   | 136    | < 10   | 7      | 8      |
| GR-03          | 1.09   | 0.106  | 0.078  | 0.02   | 9      | 6      | 27     | 0.19   | 2      | < 2    | < 10   | 131    | < 10   | 7      | 7      |
| GR-04          | 1.81   | 0.113  | 0.100  | 0.01   | < 2    | 12     | 33     | 0.23   | 1      | < 2    | < 10   | 128    | < 10   | 16     | 10     |
| GR-05          | 0.47   | 0.217  | 0.073  | < 0.01 | < 2    | 4      | 38     | 0.20   | 9      | < 2    | < 10   | 177    | < 10   | 9      | 9      |
| GR-06          | 0.35   | 0.025  | 0.035  | 1.00   | 3      | 4      | 6      | 0.17   | < 1    | < 2    | < 10   | 39     | < 10   | 4      | 22     |

Results

Page 3/4

QC

|  | Activation | Laborat | tories | Ltd. |
|--|------------|---------|--------|------|
|--|------------|---------|--------|------|

| Analyte Symbol           | Au    | Ag     | Cđ     | Cu       | Mn     | Mo     | NI     | Pb     | Zn     | AI     | As     | в      | Ва     | Be     | BI     | Ca     | Co     | Cr     | Fe     | Ga     | Hg     | ĸ      | La     |
|--------------------------|-------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol              | ppb   | ppm    | ppm    | ppm      | ppm    | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | ppm    | ppm    | ppm    | %      | ppm    | ppm    | %      | ppm    | ppm    | %      | ppm    |
| Lower Limit              | 5     | 0.2    | 0.5    | 1        | 5      | 1      | 1      | 2      | 2      | 0.01   | 2      | 10     | 10     | 0.5    | 2      | 0.01   | 1      | 1      | 0.01   | 10     | 1      | 0.01   | 10     |
| Method Code              | FA-AA | AR-ICP | AR-ICP | AR-ICP   | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| GXR-1 Meas               |       | 29.7   | 1.8    | 1150     | 821    | 14     | 39     | 661    | 718    | 0.38   | 384    | < 10   | 397    | 0.7    | 1450   | 0.74   | 8      | 7      | 22.2   | < 10   | 4      | 0.03   | < 10   |
| GXR-1 Cert               |       | 31.0   | 3.30   | 1110     | 852    | 18.0   | 41.0   | 730    | 760    | 3.52   | 427    | 15.0   | 750    | 1.22   | 1380   | 0.960  | 8.20   | 12.0   | 23.6   | 13.8   | 3.90   | 0.050  | 7.50   |
| GXR-4 Meas               |       | 3.5    | < 0.5  | 6480     | 141    | 318    | 37     | 41     | 72     | 2.99   | 97     | < 10   | 38     | 1.3    | 11     | 0.88   | 12     | 54     | 2.99   | 10     | <1     | 1.76   | 48     |
| GXR-4 Cert               |       | 4.0    | 0.860  | 6520     | 155    | 310    | 42.0   | 52.0   | 73.0   | 7.20   | 98.0   | 4.50   | 1640   | 1.90   | 19.0   | 1.01   | 14.6   | 64.0   | 3.09   | 20.0   | 0.110  | 4.01   | 64.5   |
| GXR-6 Meas               |       | 0.3    | < 0.5  | 69       | 1050   | 1      | 22     | 94     | 128    | 7.68   | 197    | < 10   | 911    | 0.8    | < 2    | 0.15   | 11     | 79     | 5.62   | 20     | <1     | 1.20   | 10     |
| GXR-6 Cert               |       | 1.30   | 1.00   | 66.0     | 1010   | 2.40   | 27.0   | 101    | 118    | 17.7   | 330    | 9.80   | 1300   | 1.40   | 0.290  | 0.180  | 13.8   | 96.0   | 5.58   | 35.0   | 0.0680 | 1.87   | 13.9   |
| SAR-M (U.S.G.S.)<br>Meas |       | 3.2    | 5.2    | 334      | 4600   | 13     | 42     | 1070   | 1030   | 1.33   | 35     |        | 194    | 1.0    | < 2    | 0.31   | 10     | 87     | 2.81   | < 10   |        | 0.33   | 51     |
| SAR-M (U.S.G.S.)<br>Cert |       | 3.64   | 5.27   | 331.0000 | 5220   | 13.1   | 41.5   | 982    | 930.0  | 6.30   | 38.8   |        | 801    | 2.20   | 1.94   | 0.61   | 10.70  | 79.7   | 2.99   | 17     |        | 2.94   | 57.4   |
| OxD108 Meas              | 438   |        |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| OxD108 Cert              | 414   |        |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
| Method Blank             |       | < 0.2  | < 0.5  | 3        | < 5    | < 1    | <1     | < 2    | < 2    | < 0.01 | < 2    | < 10   | < 10   | < 0.5  | < 2    | < 0.01 | <1     | < 1    | < 0.01 | < 10   | <1     | < 0.01 | < 10   |
| Method Blank             | < 5   |        |        |          |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |

QC

| Analyte Symbol           | Mg     | Na     | P       | S      | Sb     | Sc     | Sr     | TI     | те     | П      | U      | v      | W      | Y      | Zr     |
|--------------------------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Unit Symbol              | %      | %      | %       | %      | ppm    | ppm    | ppm    | %      | ppm    |
| Lower Limit              | 0.01   | 0.001  | 0.001   | 0.01   | 2      | 1      | 1      | 0.01   | 1      | 2      | 10     | 1      | 10     | 1      | 1      |
| Method Code              | AR-ICP | AR-ICP | AR-ICP  | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP | AR-ICP |
| GXR-1 Meas               | 0.13   | 0.052  | 0.045   | 0.21   | 86     | 1      | 180    | < 0.01 | 13     | < 2    | 30     | 76     | 146    | 24     | 17     |
| GXR-1 Cert               | 0.217  | 0.0520 | 0.0650  | 0.257  | 122    | 1.58   | 275    | 0.036  | 13.0   | 0.390  | 34.9   | 80.0   | 164    | 32.0   | 38.0   |
| GXR-4 Meas               | 1.61   | 0.150  | 0.123   | 1.75   | 4      | 7      | 73     | 0.13   | 4      | < 2    | < 10   | 78     | 12     | 11     | 11     |
| GXR-4 Cert               | 1.66   | 0.564  | 0.120   | 1.77   | 4.80   | 7.70   | 221    | 0.29   | 0.970  | 3.20   | 6.20   | 87.0   | 30.8   | 14.0   | 186    |
| GXR-6 Meas               | 0.41   | 0.083  | 0.033   | 0.01   | 3      | 21     | 32     |        | 2      | < 2    | < 10   | 166    | < 10   | 5      | 6      |
| GXR-6 Cert               | 0.609  | 0.104  | 0.0350  | 0.0160 | 3.60   | 27.6   | 35.0   |        | 0.0180 | 2.20   | 1.54   | 186    | 1.90   | 14.0   | 110    |
| SAR-M (U.S.G.S.)<br>Meas | 0.35   | 0.039  | 0.065   |        | 5      | 4      | 31     | 0.05   | 3      | < 2    | < 10   | 37     | < 10   | 21     |        |
| SAR-M (U.S.G.S.)<br>Cert | 0.50   | 1.140  | 0.07    |        | 6.0    | 7.83   | 151    | 0.38   | 0.96   | 2.7    | 3.57   | 67.2   | 9.78   | 28.00  |        |
| OxD108 Meas              |        |        |         |        |        |        |        |        |        |        |        |        |        |        |        |
| OxD108 Cert              |        |        |         |        |        |        |        |        |        |        |        |        |        |        |        |
| Method Blank             | < 0.01 | 0.015  | < 0.001 | < 0.01 | < 2    | < 1    | <1     | < 0.01 | < 1    | < 2    | < 10   | < 1    | < 10   | < 1    | < 1    |
| Method Blank             |        |        |         |        |        |        |        |        |        |        |        |        |        |        |        |

