We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ASSESSMENT REPORT FOR A DIAMOND DRILLING PROGRAM ON THE GENEX PROPERTY, GODFREY TOWNSHIP, PORCUPINE MINING DISTRICT, ONTARIO

INTERNATIONAL EXPLORERS AND PROSPECTORS INC. 168 Algonquin Blvd East Timmins, Ontario

Charles Beaudry, M.Sc., P.Geo. 27 December, 2016

CONTENTS

S	2
	2
ntroduction	3
escription of Property and Access	3
egional and Property Geology	3
iamond Drilling Program and Results	8
GEN-16-01	9
GEN-16-02	9
GEN-16-03	9
GEN-16-04	.10
GEN-16-05	. 10
onclusions	.11
RES	
mineral districts: 1: Red Lake; 2: Confederation Lake; 3: Sturgeon Lake; 4: Timmins; 5: Kirkland Latillac; 7: Noranda; 8: Chibougamau; 9: Casa Berardi; 10: Normétal. Red star is location of Gerty. 2: Regional Geology of Blake River Assemblage-aged Kamiskotia Volcanic Complex (yellow and Kamiskotia Gabbroic Complex (blue and pink) (Ayer et all, 2005). 3: Geology of Genex Property showing historic drilling and diamond drilling collars and trace	nex 4 and 5
- ABLES	
	secription of Property and Access egional and Property Geology iamond Drilling Program and Results GEN-16-01 GEN-16-02 GEN-16-03 GEN-16-05 Onclusions graphy dix 1 dix 2 I. Mosaic map of the Superior Province showing major tectonic elements. From Percival (20) mineral districts: 1: Red Lake; 2: Confederation Lake; 3: Sturgeon Lake; 4: Timmins; 5: Kirkland Laillac; 7: Noranda; 8: Chibougamau; 9: Casa Berardi; 10: Normétal. Red star is location of Gerty. 2: Regional Geology of Blake River Assemblage-aged Kamiskotia Volcanic Complex (yellow and Kamiskotia Gabbroic Complex (blue and pink) (Ayer et all, 2005). 3: Geology of Genex Property showing historic drilling and diamond drilling collars and trace it program (Hocker, 2005).

1 Introduction

International Explorers and Prospectors Inc. (IEP) undertook a five-hole, 3,100 metre diamond drilling program on the Genex Property and results of the drilling are presented in this report. The objective of the drilling program was to investigate the potential of the property to host a low grade base and precious metal deposit on the property that could be amenable to open pit exploitation given the location and presence of substantial milling capacity in the Timmins region.

2 DESCRIPTION OF PROPERTY AND ACCESS

The Genex property is a group of four patents (P19290, P19292, P27215, P27216) that are part of the larger Kamiskotia project located in Godfrey, Jamieson and Robb townships, near Timmins, Ontario. The Genex property is located approximately 15km west downtown Timmins and is easily accessible by the Kamiskotia highway which leads to Kamiskotia lake and the old Kam Kotia mine. The turn off to the Genex property is across from the ski hill road and the property is located about 4km southwest of the turn off along an easily maintained bush road.

The Genex property is composed of patents and as such do not require Plans and Permits to be issued by DNPM to undertake mineral exploration activities. However IEP is in active and advanced discussions with First Nations to obtain agreement for a memorandum of understanding that will cover exploration activities on all the company's projects in the region, including the Genex and Kamiskotia projects.

3 REGIONAL AND PROPERTY GEOLOGY

The Genex project area is located in the southwestern part of the Abitibi greenstone Belt (Ayer et al, 2005). The Neoarchean-aged Abitibi terrane forms the southeast margin of the Superior Province of the Canadian Shield (Percival, 2007 and figure 1).

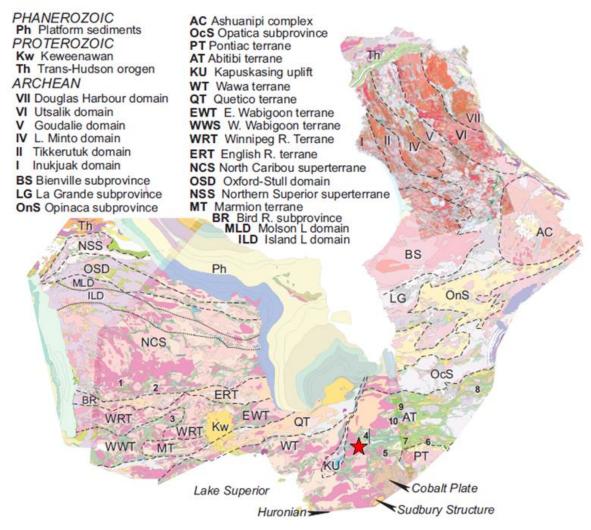
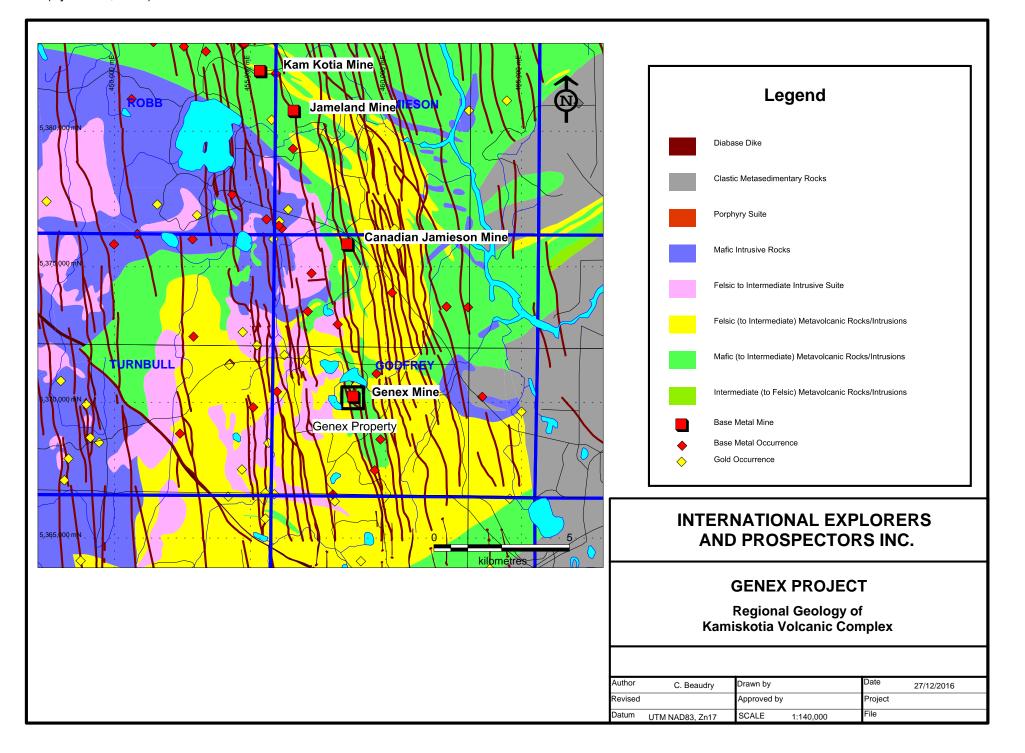



Figure 1: Mosaic map of the Superior Province showing major tectonic elements. From Percival (2007). Major mineral districts: 1: Red Lake; 2: Confederation Lake; 3: Sturgeon Lake; 4: Timmins; 5: Kirkland Lake; 6: Cadillac; 7: Noranda; 8: Chibougamau; 9: Casa Berardi; 10: Normétal. Red star is location of Genex Property.

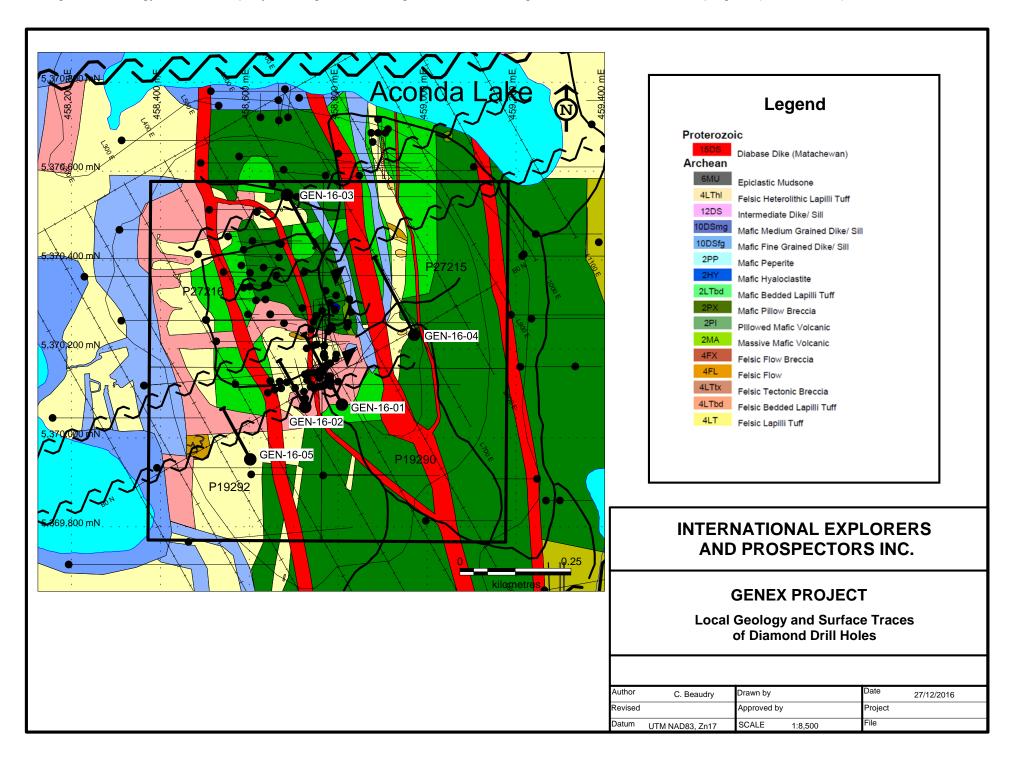
The Genex Property is underlain by volcanic rocks of the Kamiskotia Volcanic Complex (KVC; Barrie, 2000) and is the same age as the Blake River Assemblage found between the Porcupine-Destor and Cadillac-Larder Lake fault zones on either side of the Ontario-Quebec border (Ayer et al., 2005) (figure 2). The Blake River Assemblage has been divided into Lower and Upper parts with ages of 2704 to 2701 Ma and 2701 to 2696 Ma, respectively (Ayer et al., 2005). The KVC is composed of mafic and felsic tholeiitic volcanics that occur in a homoclinal sequence that spans the Lower and Upper Blake River assemblage period. The VMS deposits in the KVC all occur within a narrow interval of time correlative with the Upper Blake River between 2701.1 +-1.4 Ma to 2698.6 +-1.3 Ma (Ayer et al., 2002).

Figure 2: Regional Geology of Blake River Assemblage-aged Kamiskotia Volcanic Complex (yellow and green) and Kamiskotia Gabbroic Complex (blue and pink) (Ayer et all, 2005).

The rocks of the KVC are stratigraphically underlain and intruded by the plutonic rocks of the Kamiskotia Grabbroic Complex that is of similar age to the KVC and is thought to represent the sub-volcanic magma chamber to the KVC and heat engine to the hydrothermal system that generated the VMS deposits in the district.

The volcanic stratigraphy of the KVC have been folded into a large, regional anticline. In Godfrey Township units trend to the north and northwest, dip generally steeply to the east and northeast and form a monoclonal sequence aging to the east and northeast. The volcanic stratigraphy is cut by a number of important faults that trend either ENE or WNW and some of these, such as the Aconda Lake fault, may have been originally syn-volcanic in age and representing possible graben bounding structures.

Metamorphic grade is typically in the lower greenschist facies and rocks in Godfrey Township have been variably affected by hydrothermal alteration, generally of distal type but locally with intense chlorite and sericite alteration of proximal nature to Archean submarine VMS vents.


Within the KVC four VMS deposits were mined for copper and zinc. Table 1 sumarizes the historical production from these mines.

	Historical Production and Resources (not NI43-101 compliant)
Kam Kotia	6.4 million tonnes of ore at a grade of 1.11% Cu and 1.17% Zn (Luhta et al, 1990).
Jameland	461,000 tonnes at a grade of 0.99% Cu and 0.88% Zn, between 1969 and 1972 (Luhta et al, 1990).
Canadian Jamieson	826,000 tonnes at a grade of 2.3% Cu, 3.5% Zn and 24.2 g/t Ag (Binney and Barrie, 1991).
Genex	C and H zones estimated to contain 213,500 tonnes of indicated resources at 1.68% copper and another 145,100 tonnes of inferred resources at 1.72% copper using a lower cut-off grade of 1.5% copper (Middleton, 1975).

Table 1: Historical VMS mines in the Kamiskotia Volcanic Complex.

The Genex Property is underain by the old mine with the same name (figure 3). The Genex deposit was discovered in 1926. The property was explored intermittently until 1964 when it was purchased by Genex Mines Ltd. The company developed the deposit to production and sunk an 84 metre shaft with levels at 38 and 76 metres. Production was started in 1966 but stopped in 1967 following bankruptcy. During this time the mine produced 242 tonnes of copper concentrate grading between 21 and 27% Cu (Binney and Barrie, 1991). When the mine closed it had reported ore reserves of 42,000 tons (38,000 tonnes) grading 2.5% copper (Middleton, 1975).

Figure 3: Geology of Genex Property showing historic drilling and diamond drilling collars and traces of current program (Hocker, 2005).

There are no Current mineral resources or minerals reserves on the Genex Zone as defined in NI43-101. Middleton (1975) carried out a tonnage and grade calculation for the Genex Zone. The C and H zones combined were estimated to contain approximately 235,500 tons (213,500 tonnes) of indicated resources at 1.68% copper and another 160,000 tons (145,100 tonnes) of inferred resources at 1.72% copper using a lower cut-off grade of 1.5% copper. Using a 1.0% copper cut-off Middleton (1975) estimated the two zones to contain 999,000 tons (906,000 tonnes) at an unspecified grade but presumably above 1.0% copper.

The Genex deposit, like the other VMS deposits in the Kamiskotia district, is hosted in a sub-marine volcanic sequence composed of bimodal mafic and felsic volcanic flows and intruded by sub-volcanic dikes and sills of mafic and intermediate composition (Hathway et al., 2005). Stratigraphy strikes nearly north-south and dips are steep to the east and west and units young towards the east.

The deposit consists of stringer-type base metal mineralization in the A and H zones, cutting the volcanics at high angle to the stratigraphy and a stratiform lense, the C zone located at the upper contact of a pillowed unit within the flowtop hyaloclastic breccia. A second parallel stringer zone, here named the Aconda Lake stringer zone is located approximately 500 metres further north.

Both stringer zones have been mapped by geophysics. An induced polarization survey completed in 2014 detected the stringer sulphide mineralization and indicates that the A-H stringer zone terminates approximately at the stratigraphic level of the C-Zone whereas the Aconda Lake stringer zone extends upwards a further 550 m upsection towards the east, at least to the contact between the volcanics and an overlying thick epiclastic sedimentary unit (Hocker et al, 2005).

4 DIAMOND DRILLING PROGRAM AND RESULTS

Five diamond drill holes totaling 1,311 metres were undertaken on the Genex property in from the 1st to the 13th of December 2016. Holes were targeted on a combination of geophysics (Induced Polarization) and historical exploration results. The primary objective of the drilling was to evaluate the distribution of base metals and gold in the syn-volcanic VMS-related stringer zones which were the object of a mining operation during the mid-60's.

Table 2 summarizes the statistics of the holes. Refer to Appendix 1 for the diamond drill logs and Appendix 2 for the location plan and vertical cross sections for each of the holes.

Hole_ID	UTM_East	UTM_North	Grid East	Grid North	Azimuth	Dip	Length_m	Start_Date	Finish_Date
GEN-16-01	458808	5370075	4+75E	0+70S	343	-54	300	Dec 1, 2016	Dec 5, 2016
GEN-16-02	458724	5370073	4+05E	0+25S	333	-66	264	Dec 5, 2016	Dec 8, 2016
GEN-16-03	458688	5370543	6+00E	4+00N	144	-54	207	Dec 8, 2016	Dec 10, 2016
GEN-16-04	458972	5370232	6+85E	0+15S	328	-51	300	Dec 10, 2016	Dec 13, 2016
GEN-16-05	458606	5369952	2+50E	0+75S	330	-60	240	Dec 13, 2016	Dec 15,2016

4.1 GEN-16-01

Hole GEN-16-01 was collared immediately to the south and west of the old shaft and was targeted to test the broad, low grade copper and zinc mineralization referred to by Middleton (1975) who described low-grade copper halos around the historic A and H zone resource blocks that extended up to 70m in width.

The hole was drilled to a depth of 300m and entered bedrock at 3.4m in massive to brecciated mafic to intermediate volcanic rock. From 86.6m to 142.5m the hole intersected intercalled intermediate and felsic volcanics down to a major fault zone over 3.6m and then through massive to brecciated mafic volcanics to the end of the hole except for a diabase dyke from 156.4m to 178.9m.

The mafic and felsic volcanics are variably altered to sericite (bleaching; buff color) and chlorite, is cut by numerous and variably abundant quartz-carbonate veins and contains variable low grade sulphide mineralization throughout, locally up to 5% combine. Sulphides are composed of pyrite, pyrrhotite, chalcopyrite and sphalerite.

4.2 GEN-16-02

Hole GEN-16-02 was collared approximately 75m west of hole GEN-16-01 and was targeted on a deeper part of an east-northeast trending IP anomaly thought to be the down plunge extension of the H and A zones to the west.

The hole entered bedrock at 4.5m and intersected a sequence of massive, pillowed and brecciated mafic volcanics down to 264.0m. Alteration is variable and mainly composed of chlorite and sericite with variably abundant quartz-carbonate veins. Sulphides are present throughout and range in abundance from trace to 10% locally and composed of pyrite, chalcopyrite and sphalerite.

The distribution of sulphides intersected in the hole is probably sufficient to explain the IP anomaly.

4.3 GEN-16-03

Hole GEN-16-03 was collared towards 150 degrees and targeted the northern stringer zone/IP anomaly. The hole entered bedrock at 3.0m and, except for a narrow zone of lapilli tuff intersected from 82.7m to 88.6m, the hole is essentially composed of pillowed and massive mafic volcanics. The hole ended at 207.0m.

The rocks are variably chlorizited and sericitized and contain variable sulphides, generally 1 to 3% of pyrite, chalcopyrite and sphalerite but locally up to 15% combined.

The distribution of sulphides observed in the hole is probably sufficient to explain the IP anomaly.

4.4 GEN-16-04

Hole GEN-16-04, intersected intercalated pillowed and massive mafic volcanics from the bedrock interface, reached at 6.5m. The rocks are variably sericitized and chloritized and locally contain semi-massive sulphides disseminated and in stringers. Between 15.0m and 33.8m the rocks contains an average of 15% sulphides composed of pyrite, pyrrhotite, sphalerite and trace chalcopyrite. Between 202.6m and 252.5m the rocks contains and average of 2 to 3% of combined pyrite, sphalerite and chalcopyrite. The hole ended at 300.0m.

4.5 GEN-16-05

Hole GEN-16-05 was collared about 150m to the southwest of hole GEN-16-02 and was targeted on some significant base metal intersections previously encountered in some historic drill holes.

The hole encountered bedrock at a depth of 2.8m and intersected an intercalated sequence of massive, pillowed and brecciated mafic volcanics down to 240.0m.

The rocks are variably chloritized and sericitized and contains variable sulphides, generally averaging 1 to 2% but locally up to 7% and including pyrite, sphalerite and chalcopyrite.

5 Conclusions

The diamond drilling program has confirmed the wide intersections of low grade copper and zinc mineralization described by Middleton (1975) and results provide encouragement that an open pit resource could be delineated on the Genex Property. Samples have been submitted to the laboratory for analysis and results are pending.

29 December, 2016

Charles Beaudry, M.Sc., P.Geo. (1202)

BIBLIOGRAPHY

Ayer, J.A., Amelin, Y, Corfu, F., Kamo, S.L., Ketchum, J.W.F., Kwok, K. and Trowell, N. 2002. Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology: autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation; Precambrian Research, v.115, p.63-95.

Ayer, J.A., Thurston, P.C., Bateman, R., Gibson, H.L., Hamilton, M.A., Hathway, B., Hocker, S.M., Hudak, G., Lafrance, B., Ispolatov, V., MacDonald, P.J., Péloquin, A.S., Piercey, S.J., Reed, L.E., Thompson, P.H. and Izumi, H. 2005. Digital compilation of maps and data from the greenstone architecture project in the Timmins-Kirkland Lake region: Discover Abitibi initiative; Ontario Geological Survey, Miscellaneous Release--Data 155.

Barret, T.J., and MacLean, W.H., 1991. Chemical, mass and oxygen isotope changes during extreme hydrothermal alteration of an Archean rhyolite, Noranda, Quebec. Economic Geology, vol. 86, pp. 406-414.

Barrie, C.T., 2000. Geology of the Kamiskotia area. Ontario Geological Survey, Study S059. 94p.

Barrie, C.T. and Pattison, J. 1999. Fe-Ti basalts, high silica rhyolites, and the role of magmatic heat in the genesis of the Kam-Kotia volcanic-associated massive sulfide deposit, Western Abitibi Subprovince, Canada; in Hannington, M. D. and Barrie, C.T. (eds.), Economic Geology Monograph 10, The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada, p.577-592.

Binney, P. and Barrie, C.T. 1991. Kamiskotia area; in Geology and Ore Deposits of the Timmins District, Ontario (Field Trip 6), Geological Survey of Canada, Open File 2161, p.52-65.

Hathway, B., Hudak, G. and Hamilton, M.A. 2005. Geological setting of volcanogenic massive sulphide mineralization in the Kamiskotia area: Discover Abitibi Initiative; Ontario Geological Survey, Open File Report 6155, 81p.

Hocker, S.M., Thurston, P.C. and Gibson, H.L. 2005. Volcanic stratigraphy and controls on mineralization in the Genex Mine area, Kamiskotia area: Discover Abitibi Initiative; Ontario Geological Survey, Open File Report 6156, 143p.

Luhta, L.E., Sangster, P., Ireland, J., Hamblin, C., and Bradshaw, M., 1990. Timmins Resident Geologist District 1990: in Report of Activities 1989, Resident Geologists, Ontario Geological Survey, Miscelaneous Paper 147, p. 3-40.

Middleton, R.S. 1975. Magnetic, petrochemical and geological survey of Turnbull and Godfrey Townships, District of Cochrane; Ontario Division of Mines, Open File Report 5118, 267p.

Percival, J.A. 2007. Geology and metallogeny of the Superior Province, Canada, in Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 903-928.

Diamond Drilling Logs

DDH: GEN-16-01 Claims title: P19290(48%), P27215(52%)

Godfrey

05/12/2016

Section: 4+75E

Township:

End date:

Level:

Contractor:

NPLH Drilling

Range: 3 Lot:

Work place:

Author: C. Beaudry Start date: 01/12/2016

Description date:

-Collar-

343.00° -54.00°

Length: 300.00 NAD83 Z17

AcondaGrid

East North

Elevation

458808 4+75E

5370075 0+70S 340 340

-Down hole survey-

Azimuth:

Dip:

Туре	Depth	Azimuth	Dip	Invalid
Reflex	30.00	344.60°	-54.70°	No
Reflex	60.00	345.80°	-54.70°	No
Reflex	90.00	346.10°	-54.50°	No
Reflex	120.00	346.30°	-54.10°	No
Reflex	150.00	346.80°	-53.40°	No
Reflex	180.00	345.30°	-53.20°	No

Туре	Depth	Azimuth	Dip	Invalid
Reflex	210.00	350.10°	-53.10°	No
Reflex	240.00	349.90°	-52.90°	No
Reflex	270.00	348.20°	-52.80°	No
Reflex	300.00	347.80°	-52.50°	No

Number of samples:

132 14

Number of QAQC samples: Total sampled length:

173.50

-Description: —

Core size: NQ

Cemented: No

Stored: Yes

		Description
0.00	3.40	Overburden
		Overburden (Casing left in hole)
3.40	81.60	Mafic-Intermediate Volcanic
		Massive to brecciated, variably chloritized, amygdular, mafic to intermediate volcanic. Rock cut by variable percentage of sulphide stringers, locally with chalcopyrite and/or sphalerite.
3.40	15.20	Med/dk grey Trace Sulphides; Not Magnetic; 15-20% carbonate to qtz pods+stringers+veins; Strong chlorite alteration in patches; round to oblong shaped carbonate filled
		amygdules; patches of angular breccia strongly chloritized; structures 60 deg tca; vuggy; rusted fracture surfaces.
15.20	20.20	Med to dk grey; Trace to localized 0.5% py; Not magnetic; up to 1% carb to qtz stringers; weakly banded 40 deg tca; surface fractures rusted; rounded carbonate filled vesicles.
20.20	25.50	Med to dk grey to green to black; trace sulphides; not magnetic;10 cm brecciated carb to qtz veinlets with no sharp contacts (22.5-23.4); creamy to lt grey patchy lace of poss.
		Carbonate; round to oblong carb to qtz filled vesicles; possibly flow banding from 21.7 to 22.5m; strongly chloritized;.
25.50	30.40	Medium to dk grey; trace to localized 2% sulphides (py+-chalcopy) 26.95 to 27m; not magnetic; 1% carbonate stringers to small veinlets; general fabric 30-35 deg tca; strongly chloritized.
30.40	32.70	Dark grey with It creamy grey spiderwebbed or lace (poss carbonate); trace sulphides overall with minor py in amygdules; not magnetic; 2% carbonate to quartz pods and or
		stringers; rimmed amygdules; rusted fracture surfaces.
32.70	37.50	Dark grey; less than 1% py with occasional blob; not magnetic; less than 1% carbonate to qtz pods or stringers; strongly chloritized; strongly broken 34.5 to 37m no indication of fault.
37.50	56.60	Dark grey green with lighter weakly bleached fragments and breccia; sulphide filled vesicles near upper and lower contacts (up to 5% locally) py +chalcopy+poss sph; not magnetic; 3-5% carb to qtz stringers veinlets in mid section; very strong patches (interstital) chlorite; wk bleaching poss. Carbonate.
56.60	79.10	Medium to dk grey; trace to localized vein with 0.5% py + sph + poss chalcopy 60.8 to 60.9m;1% py 56.6-58.5m; 2-3% py+chalcopy+poss sph 58.5-63m; carbonate with qtz veins
		58.8-58.9m and 59.1-59.2m (very broken); Not magnetic; poss sericite patches 61-61.5m; narrow 4-5cm bands of small fragmented breccia with fabric at 50 deg tca; sericite with carbonate stringers 73.2-73.5m; fault with gouge 77.7-77.9m; fractures subparellel tca 75.6-77.2m.
79.10	81.60	Medium grey matrix with fragments of lighter grey and strong patchy poss. Albite alteration throughout; up to 20% localized py+sph+trace chalcopy; no significant veining; not
		magnetic; qtz or carbonate rimmed amygdules with chlorite centers; strong interstitial chlorite.
81.60	118.10	Intermediate-Felsic Volcanic
		Strongly altered and bleach intermediate to felsic volcanic rock. Beige to light green color. Wekly brecciated in places. Few percent qz phenocrysts or amygdules, usually <1mm but
		occasionally up to 1cm. Some carbonate veining. Foliation at 50 deg tca.
81.60	95.10	Gradual contact to much lighter bleached (poss. Albite or carbonate bleaching) beige to It grey to creamy with areas of med green to grey; trace sulphides py; less than 1%
		carbonate to qtz veinlets or stringers; not magnetic; weakly brecciated throughout; many green to dk green rimmed qtz filled vesicles ranging in size from pin point to 1cm (qtz eyes).
95.10	106.40	Same as unit directly above only greener in color and general fabric is 50 deg tca; moderate chlorite in fractures; poss. Felsic fragments +-amygdules.
106.40	110.10	Gradual contact to much lighter bleached (poss. Albite or carbonate bleaching) beige to It grey to creamy with areas of med green to grey; trace sulphides py; less than 1%
		carbonate to qtz veinlets or stringers; not magnetic; weakly brecciated throughout; many green to dk green rimmed qtz filled vesicles ranging in size from pin point to 1cm (qtz eyes);
		fabric at 40 deg tca.
110.10	113.00	Very fine grained; green to beige with moderate bleaching (poss carbonate or albite);trace sulphides; 6-8% carb and qtz veinlets; not magnetic; fabric 50 deg tca.
113.00	115.00	Similar to above unit but less altered, very fine grained; med green to beige (more green less beige) with bleaching (poss carbonate or albite);trace sulphides; not magnetic.
115.00	118.10	Light to med green grey; trace sulphides; less than 1% carb to qtz veinlets; not magnetic; strong areas of interstitial chlorite; patches of strong carbonate bleaching; pinpoint to 0.5

Project: Kamiskotia, Genex DDH: GEN-16-01 2 / 10

		Description
		cm carbonate filled vesicles.
118.10	142.50	Felsic Volcanic
		Massive, medium green to medium grey-green felsic volcanic. Locally 2-3cm of mineralized veinlet chalcopyrite with pyrite and sphaleritein chloritized rock. Contacts at 50 deg tca.
		Non magnetic. Flow banding at 50 deg tca. Felsic fragments subrounded to rounded with larger pods of carbonate.
118.10	127.40	Medium green to med grey green; 2-3cm of mineralized veinlet chalcopy +py+ poss sph + chlorite with contact at 50 deg tca; not magnetic; poss. Flow banding at 50 deg tca; felsic
		fragments subrounded to rounded with larger pods of carbonate.
127.40	142.50	
142.50	146.40	Fault Zone
		Zone of sheeted qz-carbonate veins at low angle tca with fracturing along core axis. Some fault gouge.
142.50	143.70	
143.70	144.90	Grey in color with entrained vein and lithic fragments in size from fine grain to >1cm (angular to rounded); no significant mineralization; no significant veining; no significant alteration; fault gouge at 144.9.
144.90	146.40	Sheeted qtz/carbonate vein subparallel tca with fractures and breaks along core axis; fault gouge at 143.7; no significant mineralization; fault gouge at 146.4.
146.40	156.40	Mafic Volcanic
		Massive to locally brecciated, amygdular, variably bleached mafic volcanic. Rock is locally strongly magnetic. Mineralization in folowing intervals: 146.4-151.7m 2% chalcopy + 0.25%
		py + sph + po; 151.7-152.5m 8-9% py + 1% chalcopy + <1% po + sph; 152.5-156.4m 1% sulphides py + chalcopy + po.
146.40	148.20	
148.20	156.40	
		structures/fabric 55 deg tca; vy strongly bleached to a buff creamy white 151.7-152.5m with jagged contacts; 10% qtz/carbonate stringers/veinlets. Mineralization over entire unit:
		146.4-151.7m 2% chalcopy + 0.25% py + sph + po; 151.7-152.5m 8-9% py + 1% chalcopy + <1% po + sph; 152.5-156.4m 1% sulphides py + chalcopy + po. Not magnetic.
156.40	178.90	Diabase Dyke
170.00	200.00	Medium grained diabase. No significant mineralization. No significant veining. Strongly magnetic
178.90	300.00	Mafic Volcanic
178.90	188.20	Massive mafic volcanic. Porphyroblastic, variably magnetic, variably carbonatized. Variably mineralized, locally with chalcopyrite and/or sphalerite. Very dark grey hard and glossy (possibly silicified); upper contact intermixing with very fine diabase for 1.2-1.4m; magnetic with weak to strong areas; strong overall carbonate
170.90	100.20	alteration (fizzes when hit with acid); wk bleaching rims around fractures and fragments; very strong green chlorite? alteration; 6-8% qtz stringers/veinlets; 2-4% very fine sulphides
		py + po with trace chalcopy.
188.20	195.00	
	100.00	stringers/veinlets; <1% carbonate with minor qtz stringers/veinlets; 190.8-191.0m 1cm qtz/carbonate veinlet subparallel tca with fractures/breaks along core axis; 3-5% very fine
		sulphides mainly py with trace chalcopy + po.
195.00	196.10	
		small grain at 195.7.
196.10	205.10	Less alteration; still has carbonate alteration but very weak with little to no bleaching; porphyroblastic texture with carb crystals from 200.6-201.4m; 1% py +/- po with magnetite

Project: Kamiskotia, Genex DDH: GEN-16-01 3 / 10

		Description
		grains visible in fractures; dark black rimmed with 2mm purple chilled edge dyke at 45 deg tca with irregular contacts and plag crystals along center of dyke ranging in size from
I		<1mm to 4mm – magnetic; few fractures and joints at 45-55 deg tca throughout.
205.10	205.90	Moderately bleached by carbonate; 50 deg tca; 50;% qtz/carb veinlets/stringers; 4-6% py with <=1% po and trace chalcopy; magnetic.
205.90	210.20	Still has carbonate alteration but very weak with little to no bleaching; 1% vy fg to small blebs py +/- po with magnetite grains visible in fractures/joints;few fractures and joints at 45-55 deg tca throughout; magnetic.
210.20	223.40	Porphyroblastic texture with carbonate crystals; no bleaching; strongly magnetic; 1% qtz veinlets with minor carbonate (some stained pink poss. By hematite); magnetite throughout but larger grains visible along veinlets/joints/fractures; 1-3% vy fg to fg po + py with trace chalcopy and sph?
223.40	228.50	Same as above with altering pophyrobalstic texture and fg texture; same constituents.
228.50	276.00	Fine grained mod to strong carbonate altered no bleaching; magnetic with weak to strong areas; pink hematite stained mostly carbonate with qtz veins @ 236 (4cm)/239.4 (8cm); 255.3 (8cm)/256.3 (5cm)/256.6 (6cm); 20 cm bx qtz vein with 10% carb @ 241.1; additional 3-5% carbonate veinlets/stringers; magnetite crystals visible in all veinlets and stringers; <=1% vy fg py + po with trace blebs of chalcopy throughout; small unit 270.4-271 with shear 60 deg tca/ 4-5% fg py and 4% fg po mainly along fractures and shear planes.
276.00	277.80	Fine grained mod to strong carbonate altered no bleaching; magnetic very weakly magnetic with areas of no apparent magnetics; 3-4% carbonate fractures/stringers; 2-3% fg py with trace-1% visible po.
277.80	285.20	Porphyroblastic texture but finer grain size than previous; wk to moderate carbonate alteration with area of wk bleaching; 4-5% vy fg to fg py (occasional blebs)with 4-5% vy fg to fg po (occasional blebs); not magnetic to very weak patchy magnetic (still some magnetite crystals visible along veinlets/fractures but much fewer); <1% carbonate lenses/veinlets/stringers with minor qtz.
285.20	290.50	Porphyroblastic texture (larger crystal size similar to 210.2-223.4); vy weak carbonate alteration; no bleaching; 2-4% vy fg py + vy fg po; few magnetite crystals visible along fractures/joints; no significant veining; not magnetic overall (vy small intervals with vy weak magnetics).
290.50	294.90	Porphyroblastic texture same as 285.2-290-5 unit; weak areas of carbonate bleaching; not apparently magnetic (few magnitite crystals visible along fracture/joints); no significant veining; 2-3% vy fg to fg py with many exhibiting cubic structure; has po also hard to estimate because too fine grained; trace chalcopy.
294.90	300.00	Porphyroblastic texture same larger crystal size; bx with sub-angular to angular lighter colored fragments from 297.9-299.3; vy weak areas of carbonate bleaching; <=1% vy fg py with trace po.

Project: Kamiskotia, Genex DDH: GEN-16-01 4 / 10

	Assay					
From	То	Sample number	Description			
37.00	37.50	25301				
37.50	39.00	25302				
39.00	40.50	25303				
40.50	42.00	25304				
42.00	43.50	25305				
43.50	45.00	25306				
45.00	46.50	25307				
46.50	48.00	25308				
58.50	60.00	25309				
60.00	61.50	25311				
61.50	63.00	25312				
63.00	64.50	25313				
78.00	79.10	25314				
79.10	80.60	25315				
80.60	81.60	25316				
126.10	127.10	25317				
127.10	127.40	25318				
127.40	128.40	25319				
128.40	129.90	25321				
129.90	131.40	25322				
131.40	132.90	25323				
132.90	134.40	25324				
134.40	135.90	25325				
135.90	137.40	25326				
137.40	138.90	25327				
138.90	140.40	25328				
140.40	141.90	25329				
141.90	142.50	25331				
142.50	143.70	25332				
143.70	144.90	25333				
144.90	146.40	25334				

	Assay					
From	То	Sample number	Description			
146.40	147.90	25335				
147.90	149.20	25336				
149.20	150.70	25337				
150.70	151.70	25338				
151.70	152.50	25339				
152.50	153.00	25341				
153.00	154.50	25342				
154.50	155.30	25343				
155.30	156.40	25344				
156.40	157.90	25345				
178.90	180.40	25346				
180.40	181.90	25347				
181.90	183.40	25348				
183.40	184.20	25349				
184.20	185.20	25351				
185.20	186.70	25352				
186.70	188.20	25353				
188.20	189.70	25354				
189.70	191.20	25355				
191.20	192.50	25356				
192.50	193.80	25357				
193.80	195.00	25358				
195.00	196.10	25359				
196.10	197.60	25361				
197.60	199.10	25362				
199.10	200.60	25363				
200.60	202.10	25364				
202.10	203.60	25365				
203.60	205.10	25366				
205.10	205.90	25367				
205.90	207.40	25368				

	Assay					
From	То	Sample number	Description			
207.40	208.70	25369				
208.70	210.20	25371				
210.20	211.70	25372				
211.70	213.20	25373				
213.20	214.70	25374				
214.70	216.20	25375				
216.20	217.70	25376				
217.70	219.20	25377				
219.20	220.70	25378				
220.70	222.20	25379				
222.20	223.40	25381				
223.40	224.90	25382				
224.90	226.40	25383				
226.40	227.50	25384				
227.50	228.50	25385				
228.50	230.00	25386				
230.00	231.50	25387				
231.50	233.00	25388				
233.00	234.50	25389				
234.50	236.00	25391				
236.00	237.50	25392				
237.50	239.00	25393				
239.00	240.00	25394				
240.00	241.00	25395				
241.00	241.80	25396				
241.80	243.30	25397				
243.30	244.80	25398				
244.80	246.30	25399				
246.30	247.40	25401				
247.40	248.90	25402				
248.90	250.00	25403				

	Assay			
From	То	Sample number	Description	
250.00	251.10	25404		
251.10	252.50	25405		
252.50	253.70	25406		
253.70	255.20	25407		
255.20	256.10	25408		
256.10	256.90	25409		
256.90	258.40	25411		
258.40	259.90	25412		
259.90	261.40	25413		
261.40	262.90	25414		
262.90	264.40	25415		
264.40	265.90	25416		
265.90	267.40	25417		
267.40	268.90	25418		
268.90	270.40	25419		
270.40	271.40	25421		
271.40	272.90	25422		
272.90	273.80	25423		
273.80	274.90	25424		
274.90	276.00	25425		
276.00	276.90	25426		
276.90	277.80	25427		
277.80	279.20	25428		
279.20	280.70	25429		
280.70	282.20	25431		
282.20	283.70	25432		
283.70	285.20	25433		
285.20	286.70	25434		
286.70	288.20	25435		
288.20	289.70	25436		
289.70	290.50	25437		

	Assay			
From	То	Sample number	Description	
290.50	291.50	25438		
291.50	292.70	25439		
292.70	294.00	25441		
294.00	294.90	25442		
294.90	296.40	25443		
296.40	297.90	25444		
297.90	299.30	25445		
299.30	300.00	25446		
1				

	Geochemistry			
From	То	Sample number	Description	
17.80 51.30	18.00	25251		
51.30	51.50	25252		
87.30	87.40	25253		
111.60	111.80	25254		
123.30	123.50	25255		
138.00	138.15	25256		
159.00	159.15	25257		

East

Elevation

DDH: GEN-16-02

P19292(78%), P27216(22%) Claims title:

Godfrey

05/12/2016

08/12/2016

Section: 4+05E

Township:

End date:

Level:

NAD83 Z17

Contractor:

NPLH Drilling

Range: 3 Lot:

Author: C. Beaudry Start date:

Description date:

Work place:

-Collar-

333.00° Azimuth: Dip: -66.00° Length: 264.00

North

458724 4+05E 5370073 0+25S 340 340

-Down hole survey-

Туре	Depth	Azimuth	Dip	Invalid
Reflex	30.00	328.90°	-61.70°	No
Reflex	60.00	329.70°	-61.40°	No
Reflex	90.00	329.60°	-61.50°	No
Reflex	120.00	330.10°	-61.50°	No
Reflex	150.00	332.30°	-61.30°	No
Reflex	180.00	332.00°	-61.10°	No

Туре	Depth	Azimuth	Dip	Invalid
Reflex	210.00	332.80°	-60.70°	No
Reflex	240.00	335.50°	-59.50°	No

AcondaGrid

Number of samples: 148 Number of QAQC samples: 15 Total sampled length: 203.10

-Description: —

Core size: NQ Cemented: No Stored: Yes

		Description
0.00	4.50	Overburden
		Overburden (Casing left in hole)
4.50	60.90	Massive Mafic Volcanic
		Massive and locally brecciated dark grey mafic volcanic. Rock is altered with chlorite and talc. Brecciated intervals are filled with carbonate. Some vesicles locally.
4.50	6.00	Fine grained Dark grey/blue; weak breccia/fragmental 4.5-5m; 5.2-5.4m rimmed (by carb/qtz) vesicles which appear to be filled with rock matrix material; fine grained redfeathery carbonate fractures from 5.4-5.7m which are bounded by talcose olive green (olivene? Altered into talc?) veinlet/sharp upper contact 30-35 deg tca and an irregular olive green veinlet? At lower contact; 5.95-6m red (poss Kspar?) in somewhat of a veinlet or large bleb 3-4cm; not magnetic; no significant veins; no significant sulphides.
6.00	13.00	Brecciated/fragmental; strongly bleached/light colored fragments as well as qtz fragments in a dark grey/black/blue matrix; no significant veining; not magnetic; 3-5% (poss. Higher)
0.00	13.00	py no other sulphides were seen.
13.00	26.30	Same as above; olive green in most fragments (olivene? Altered into talc); red mineral speckled/patchy (poss Kspar?); no significant veining; not magnetic; 1-2% (possibly higher) py no other sulphides were seen.
26.30	40.10	Same as above; has beige/olive green (olivene? Altered into talc?) fragments ?; patches of red mineral (poss Kspar?); 1-3% py no other sulphides were seen; no significant veining; not magnetic.
40.10	44.10	Dark grey/black/blue with slightly lighter areas; not very fragmented; at 41.5m there is a qtz core vein with what appears to be in-situ brecciation by carbonate fracturing and filling of
		matrix rock total width is approx 10 cm.;at 42.5m a 1cm carbonate (minor qtz) veinlet/joint cuts core at 50 deg tca followed by a shear or layering at 50 deg tca with what appears to be qtz filled vesicles (some having a carb seed center) at 43.4 shear/layering ends and matrix has many qtz filled vesicles and a black veinlet filled with py at 60 deg tca at 43.7m; from 43.7-44 the shear/layering is back at 45 deg tca with more qtz (carb minor) vesicles; not magnetic; no significant veining other than what was described; <=1% py no other sulphides were seen.
44.10	52.20	Strongly brecciated/fragmented dark matrix with light colored (bleached?) fragments and qtz fragments; no significant veining; not magnetic; 1% py mainly in dark fine grained filled fractures/interstitial spaces.
52.20	55.20	Dark grey/blue with less brecciation/fragmentation; interstitial talc with minor chlorite; no significant veining; not magnetic; 1-3% py no other sulphides were seen.
55.20	60.90	Same as above stronger mineralization; interstitial talc and chlorite (chl increasing); occasional fracture filled and small blebs of sericite + sericite/carb or qtz fragments/vesicles; 2% py + 2% po + vg @ 57.7m/57.8m/60.55m/60.85m; no significant veining; not magnetic.
60.90	76.10	Pillowed Mafic Volcanic
		Pillowed mafic volcanic. Variably altered with chlorite and talc and locally sericite. Some vesicles locally. Trace to 2% sulphides on average (py+po).
60.90	70.20	Medium to dark grey with black selvages (some lighter vy wkly bleached areas); small filled vesicles; chloritic selvages; patchy magnetite crystals(filled vesicles); rusted along some fractures; <1% qtz/carb veinlets; 1-2% sulphides (py + po in fairly equal proportions).
70.20	76.10	Moderate to strong bleaching of pillows; vy fg selvages with pillows having a bx or fragmental appearance; 70.4-71.9m has shear or layering varying deg of angle tca from 40 to 70 deg with fine laminations of sericitic alteration with a 7cm layered qtz/carb vein (rusted) at 50 deg tca; occasional vesicle (some magnetite filled); ff/interstitial chlorite; <1% qtz veinlets; patchy wk magnetic; trace-0.5% py + po.
76.10	86.10	Massive Mafic Volcanic
76.10	80.10	Massive mafic volcanic. Local strong bleaching. Magnetic. Vesicular. 1-2% sulphides (py+po). Dark grey with areas of light to med beige/yellow-green-beige; Coarser grained and less altered than unit above; no pillows; fabric is 50 deg tca; ff/interstitial chlorite; dk beige with

Project: Kamiskotia, Genex DDH: GEN-16-02 2 / 10

		Description
		red (kspar?) selvage at 76.2-76.3m and ff/small veinlets/blebs; ff sericite; significant amount of qtz to qtz/carb filled vesicles; and fragments; no significant veining; no significant magnetics; <1% py+po.
80.10	86.10	Finer grained med to dark grey with lighter buff/grey areas; many qtz blebs (poss filled vesicles); yellow-green/buff fragments that are hard and seem silicified; ff sericite; <1% qtz veining; no significant magnetics; 2-3% py+po with vg at 83.4m.
86.10	128.50	Pillowed Mafic Volcanic
		Pillowed mafic volcanic. Rock is moderatly to strongly bleached, locally chloritized. Well developed thin pillow selvages giving appearance of a breccia. Fresha reas are nearly black and bleached area are buff/grey. Some qz-carbonate filled vesicles. Trace to 10% sulphides (mainly py+po but locally with chalcopyrite and/or sphalerite.
86.10	97.60	Medium to dark grey with mod bleached and mineralized unit (86.1-86.4m); ff to blebby sericite; patchy magnetite filled vesicles/coarse grains; no significant veining; 92.6-96.4m strongly broken with rusted fractures; no apparent fault features; 1% chalcopy + 1% py + 1% po; mod-strong qtz fragments/vesicles.
97.60	116.90	Color varies from almost buff white to nearly black; large expanses of chlorite intermixed with pillows/pillow fragments that have been strongly bleached and altered; areas of in-situ fluid fracturing are alternated with the expansive chlorite and pillow fragments; there are numerous large fragments that have altered entirely to sericite as well as sericite ff; the bleaching and fluid fracturing appears to be a dolomite? or ankerite?; trace qtz veining; 5-7% sulphides (up to 3% chalcopy + 2% py + 2% po + 1 % sph); selvage area with sub-angular to sub-rounded fragments (poss fault?) 112.1-112.6.
116.90	128.50	Very fine grained to fine grained med to light grey pillow/fragments with dark grey/black selvage/interstitial chlorite; significant fluid fracturing (many areas with parallel stress fracturing/filling); occasional vesicles; selvage area with sub-angular to sub-rounded fragments (poss fault?) 114-114.15m/118.1-118.3m/118.6-118.8m/126.3-126.7m/127.8-127.85m; ; <1% qtz joints/veinlets; <1% chalco + py+po.
128.50	148.10	Massive Mafic Volcanic
		Massive mafic volcanic. Rock is chloritized with <=3% qz veinlets and up to 10% sulphides (py+chalcopyrite-sphalerite).
128.50	132.10	Light to med grey with dark grey/black ff/interstitial chlorite; weak to moderate patchy to semi-pervasive poss dolomite/ankerite bleaching; areas of brecciation; ff sericite alteration; 1-2% qtz veins/blebs/fragments; 1% chalcopy + 1% py +0.5% po + 0.5% sph.
132.10	135.80	Same as above unit; strong ff/interstitial chlorite; no significant veining; trace-<1% py+sph.
135.80	137.80	Same as above unit; strong ff/interstitial chlorite; 3% qtz/pieces of qtz veinlets/veins; 10% sulphides (6% chalcopy + 2% py +2% sph)
137.80	145.00	Same as above unit; strong ff/interstitial chlorite; <1% qtz veinlets/stringers; <1% chalcopy + py + sph
145.00	148.10	Same as above unit; strong ff/interstitial chlorite; 1% qtz veinlets/stringers; 5-7% sulphides (3-4% chalcopy + 2% py +1% sph).
148.10	183.30	Pillowed Mafic Volcanic
		Pillowed mafic volcanic. Medium to dark grey rock. Strongly chloritized with hairline fractures filled with qz-carbonate. Trace to 3% sulphides (mainly py but some chalcopyrite and sphalerite).
148.10	164.10	Medium to dark grey mafic pillows; possibly pillow flow; has many filled/altered fractures with some breccia; strongly chloritized; wk patchy bleaching; not magnetic; no significant veining; many hairline 0-2mm fractures with qtz/carb; 2-3% sulphides (2% py + 0.5% chalcopy + trace po + trace sph?); sulphides lie in stringers subparallel tca.
164.10	183.30	
		veisicles; not magnetic; 2-3% carb with minor qtz narrow veinlets/stringers (most at 50 deg tca); no significant sulphides.
183.30	264.00	Massive Mafic Volcanic
		Massive mafic volcanic. Medium grey with few buff-colored patches. Occasional selvages and some brecciation. Moderate to abundant carbonate-qz-chlorite vesicles. Tr to 2%

Project: Kamiskotia, Genex DDH: GEN-16-02 3 / 10

Γ			
			Description
		5	sulphides (mainly py but some chalcopyrite and trace sphalerite).
	183.30	216.30	Medium grey with sparse buff patches; appears to be a mafic flow with some visible selvages possible patches of massive and some areas of brecciation; significant amount of carb
			+ qtz + chlorite vesicles; strong sparse patchy carbonate bleaching; not magnetic; 216-216.3m carbonate with minor qtz vein (layered) strong contacts at 60 deg tca; remainder 1%
			carb/qtz veinlets/stringers; trace-1%?? sulphides po+py+sph.
	216.30	226.30	Light to med grey with patches of weak buff/grey carbonate bleaching; strong chlorite alteration in few fractures; ff carbonate; not magnetic; no significant veining; sparse sulphide
			stringers at 20 deg tca; <1% sulphides py + chalcopy + trace sph?
	226.30	241.60	Light to dark grey; strong chlorite interstitially/ff; strongly fractured with qtz +/- carb; strong areas of brecciation; significant amount of chlorite + carbonate + qtz filled vesicles; not
			magnetic; veinlets and fabric at 40 deg tca; 1-2% mostly qtz (minor carbonate) veinlets; 1-2% sulphides py + chalcopy + sph stringers near parallel tca and also with veinlets at 40
			deg tca.
	241.60	255.30	Medium grey/green; few vesicles; weak patchy brecciation; strongly fracture filled with carbonate (dolomite +/- ankerite); moderate chlorite alteration with narrow patchy strong; not
			magnetic; 1% carbonate (minor qtz) veinlets; <1% sulphides (stringersat 20 deg tca) py+chalcopy+sph.
	255.30	257.50	Light buff to med grey; narrow vesicular areas and brecciated areas; strongly bleached (patchy) 256-257m; strong ff/vesicular filled chlorite; not magnetic; 3-4% carbonate veinlets
			(dolomite/ankerite) with minor qtz; 3-4% sulphides stringers at 20 deg tca py+sph+po+chalcopy.
	257.50	258.00	Lost core.
	258.00	258.40	Light buff to med grey; spherioles and strongly bleached 258-258.3m; strong ff chlorite; strong sericite; not magnetic; 25% carbonate vein along core axis (only on top doesn't
			penetrate through core) (dolomite/ankerite) with minor qtz; 3-5% sulphides within carbonate vein py+sph+po+chalcopyrite.
	258.40	264.00	Medium to dark grey/green; few spherioles (qtz/dolomit or akerite); few qtz filled vesicles; strong patchy chlorite; not magnetic; no significant veining; <.0.5% sulphides py + sph.
1	I		

Project: Kamiskotia, Genex DDH: GEN-16-02 4 / 10

	Assay			
From	То	Sample number	Description	
4.50	6.00	25447		
6.00	7.50	25448		
7.50	9.00	25449		
9.00	10.50	25450		
10.50	12.00	25451		
12.00	13.00	25452		
13.00	14.50	25453		
14.50	16.00	25454		
16.00	17.50	25455		
17.50	19.00	25456		
19.00	20.50	25458		
20.50	22.00	25459		
22.00	23.50	25460		
23.50	25.00	25461		
25.00	26.30	25462		
26.30	27.80	25463		
27.80	29.30	25464		
29.30	30.80	25465		
30.80	32.30	25466		
32.30	33.80	25468		
33.80	35.30	25469		
35.30	36.80	25470		
36.80	38.30	25471		
38.30	39.20	25472		
39.20	40.10	25473		
40.10	41.10	25474		
41.10	42.60	25475		
42.60	44.10	25476		
44.10	45.60	25478		
45.60	47.10	25479		
47.10	48.60	25480		

	Assay			
From	То	Sample number	Description	
48.60	49.10	25481		
49.10	51.10	25482		
51.10	52.20	25483		
52.20	53.70	25484		
53.70	55.20	25485		
55.20	56.70	25486		
56.70	58.20	25488		
58.20	59.70	25489		
59.70	60.90	25490		
60.90	62.40	25491		
62.40	63.90	25492		
63.90	65.40	25493		
65.40	66.90	25494		
66.90	68.40	25495		
68.40	69.50	25496		
69.50	70.20	25498		
70.20	71.70	25499		
71.70	73.20	25500		
73.20	74.70	19501		
74.70	76.10	19502		
76.10	77.60	19503		
77.60	79.10	19504		
79.10	80.10	19505		
80.10	81.60	19506		
81.60	83.10	19508		
83.10	84.60	19509		
84.60	86.10	19510		
86.10	87.60	19511		
87.60	89.10	19512		
89.10	90.60	19513		
90.60	92.10	19514		

	Assay			
From	То	Sample number	Description	
92.10	93.60	19515		
93.60	95.10	19516		
95.10	96.60	19518		
96.60	97.60	19519		
97.60	99.00	19520		
99.00	100.50	19521		
100.50	102.00	19522		
102.00	103.50	19523		
103.50	105.00	19524		
105.00	106.50	19525		
106.50	108.00	19526		
108.00	109.50	19528		
109.50	111.00	19529		
111.00	112.50	19530		
112.50	114.00	19531		
114.00	115.50	19532		
115.50	116.90	19533		
116.90	118.40	19534		
118.40	119.90	19535		
119.90	120.40	19536		
120.40	122.90	19538		
122.90	124.40	19539		
124.40	125.90	19540		
125.90	127.40	19541		
127.40	128.50	19542		
128.50	130.00	19543		
130.00	131.00	19544		
131.00	132.10	19545		
132.10	133.60	19546		
133.60	134.70	19548		
134.70	135.80	19549		

	Assay				
From	То	Sample number	Description		
135.80	136.80	19550			
136.80	137.80	19551			
137.80	139.30	19552			
139.30	140.80	19553			
140.80	142.30	19554			
142.30	143.80	19555			
143.80	145.00	19556			
145.00	145.80	19558			
145.80	146.60	19559			
146.60	147.40	19560			
147.40	148.10	19561			
148.10	149.10	19562			
149.10	150.20	19563			
150.20	151.70	19564			
151.70	153.20	19565			
153.20	154.70	19566			
154.70	156.20	19568			
156.20	157.70	19569			
157.70	159.20	19570			
159.20	160.70	19571			
160.70	161.80	19901			
161.80	163.00	19902			
163.00	164.10	19572			
164.10	165.60	19573			
165.60	167.10	19574			
174.00	175.50	19575			
225.00	226.30	19576			
226.30	227.80	19578			
227.80	229.30	19579			
229.30	230.80	19580			
230.80	232.30	19581			

Project: Kamiskotia, Genex

8 / 10

Assay					
From	То	Sample number	Description		
232.30	233.80	19582			
233.80	235.30	19583			
235.30	236.80	19584			
236.80	238.30	19585			
238.30	239.80	19586			
239.80	240.80	19588			
240.80	241.60	19589			
241.60	243.00	19590			
243.00	244.50	19591			
244.50	246.00	19592			
246.00	247.50	19593			
247.50	249.00	19594			
249.00	250.50	19595			
250.50	252.00	19596			
252.00	253.50	19598			
253.50	254.50	19599			
254.50	255.30	19600			
255.30	256.00	19903			
256.00	257.50	19904			
257.50	258.40	19905			
258.40	259.50	19601			
259.50	261.00	19602			
261.00	262.50	19603			
262.50	264.00	19604			

Geochemistry				
From	То	Sample number	Description	

Project: Kamiskotia, Genex DDH: GEN-16-02 10 / 10

Claims title: P27216(100%) Section: 6+00E DDH: GEN-16-03 Township: Level: Godfrey Range: Work place: 3 Lot: NPLH Drilling Contractor: Author: C. Beaudry Start date: Description date: 08/12/2016 End date: 10/12/2016 -Collar-NAD83 Z17 AcondaGrid Azimuth: 144.00° East 458688 6+00E Dip: -54.00° 5370543 4+00N North Length: 207.00 340 340 Elevation

-Down hole survey-

Туре	Depth	Azimuth	Dip	Invalid
Reflex	30.00	149.20°	-54.80°	No
Reflex	60.00	150.30°	-54.60°	No
Reflex	90.00	150.40°	-54.60°	No
Reflex	120.00	151.30°	-54.50°	No
Reflex	150.00	153.40°	-54.10°	No
Reflex	180.00	152.70°	-54.00°	No

Туре	Depth	Azimuth	Dip	Invalid

Number of samples: 79
Number of QAQC samples: 8
Total sampled length: 107.00

-Description: —

Core size: NQ Cemented: No Stored: Yes

		Description
0.00	3.00	Overburden
		Overburden (Casing left in hole)
3.00	82.70	Pillowed Mafic Volcanic
		Pillowed mafic volcanic. Medium to dark grey/green.
3.00	54.20	Medium to dark grey; strongly chloritized; pillows and selvages are evident with brecciation; weakly bleached pillow fragments; patchy areas of strong silicification; patchy qtz and carb filled vesicles; overall <1% qtz veinlets/stringers with 9.3-9.6m (30%), 16-16.8m (30%) brecciated qtz veins, 29.9-30.2m (30%) layered qtz vein and 1cm qtz vein parallel tca 32.8-34m; not magnetic.
54.20	82.70	Medium green/grey; patchy breccia (various angular fragments); strong patchy sericite 58.4-60.5m, and along vein contacts at 59m and 70.6-71.3m; weak to strong bleaching 74.4-76m with 58.4-63m very strong and patchy and 76-87 weak overall with strong patchy; strong pervasive chlorite with very strong ff/interstitial chlorite; sparse
		chlorite/qtz/carbonate filled vesicles; fabric 71-77m at 45-50 deg tca; 4cm clay seam at 71m; not magnetic; 30cm qtz (minor carbonate/chlorite) with 40 deg tca upper co.ntact and 50 deg tca lower contact at 54.2-54.5m; 3 qtz veinlets (minor carbonate edges and hydromuscovite); 70.6-71.3m two qtz veins with ff sericite/ff chlorite.
82.70	88.60	Lapilli Tuff
		Light to medium grey, bedded lappilli tuff. Weak patchy carbonate bleaching; very strong ff/interstitial chlorite; strong ff sericite; narrow areas of breccia; no significant veining; not
		magnetic.
82.70	88.60	Light to medium grey; weak patchy carbonate bleaching; very strong ff/interstitial chlorite; strong ff sericite; narrow areas of breccia; no significant veining; not magnetic.
88.60	136.00	Pillowed Mafic Volcanic
		Pillowed, coarse grained volcanic. Very sharp upper and lower contacts; upper contact is 90 deg tca, 6-8cm, has strong carbonate bleaching and part of a carbonate vein that just skims one side of core; lower contact is sharp/jagged/offset 80 deg tca; very strong ff/interstitial chlorite; strong patchy leucoxene; strongly silicified; patchy vesicles (some rimmed in
		carbonate with darker chlorite? center); 6% sericitized very hard quartz veinlets/veins; no significant mineralization; not magnetic.
88.60	119.90	Fine grained; grades from med green to dark green downhole; very strong pervasive chlorite; strong semi-pervasive carbonate 88.6-118m; sparse carbonate filled vesicles; most stringers/joints at 45-55 deg tca; strong leucoxene 119-119.9m; sulphides found in carbonate stringers/veinlets.
119.90	124.00	Pillowed to coarse grained flow; very sharp upper and lower contacts; upper contact is 90 deg tca, 6-8cm, has strong carbonate bleaching and part of a carbonate vein that just skims one side of core; lower contact is sharp/jagged/offset 80 deg tca; very strong ff/interstitial chlorite; strong patchy leucoxene; strongly silicified; patchy vesicles (some rimmed in carbonate with darker chlorite? center); 6% sericitized very hard quartz veinlets/veins; no significant mineralization; not magnetic.
124.00	125.00	Moderate carbonate bleaching.
125.00	125.50	Shear at 30 deg tca.
125.60	125.80	Possible fault with breccia; 15-20 deg tca.
131.30	131.80	
134.00	134.70	Shear at 70 deg tca.
134.70	135.50	Shear at 25-35 deg tca.
135.50	136.00	Altered fault zone 70 deg tca.
136.00	207.00	Pillowed and Massive Mafic Volcanic

2/7

Project: Kamiskotia, Genex DDH: GEN-16-03

		Description					
140 20	Pillowed and massive mafic volcanic. Dark green; upper contact 60 deg tca; strong pervasive chlorite; patchy amygdals; weak grading to strong semi-pervasive carbonate alteratio (fizzes with acid); sparse/patchy strong leucoxene; many hairline to 2mm carbonate stringers/joints most at 40 deg tca; not magnetic; most sulphides within stringers/veinlets/fractu						
148.30 166.60	148.40 184.30	Pillow top breccia? With top 30cm at 30 deg tca; weakly mineralized with 1% very fine grained to fine grained py. Epidote alteration within/rimming veins/veinlets/fractures; 183.9-184.3m qtz/epidote vein 30 deg tca (unit is 50% vein).					
00.00	104.50	Epidote alteration within/mining veins/veinlets/nactures, 105.5-104.5m qt2/epidote vein 50 deg toa (driit is 50 % vein).					

Project: Kamiskotia, Genex DDH: GEN-16-03 3 / 7

	Assay					
From	То	Sample number	Description			
3.60	5.10	19605	1-2% sph + cpy+py+po			
5.10	6.60	19606	1% sph+py			
6.60	8.10	19607	<1% sph+py			
8.10	9.60	19608	3-4% sph+cpy+py			
9.60	11.10	19609	<1% cpy+sph+py			
11.10	12.60	19610	<1% sph+py			
12.60	14.10	19611	1% sph+py+cpy			
14.10	15.00	19612	1% sph+trace py+trace cpy+poss. Trace po			
15.00	15.50	19906	1% sph+ trace py			
15.50	16.80	19907	10-12% cpy+sph+py			
16.80	18.20	19908	<1% sph+cpy+py			
18.20	19.70	19909	1-2% cpy+sph+py			
19.70	21.20	19910	2-3% cpy+sph+py			
21.20	22.70	19911	1% py+sph+tr po			
22.70	24.20	19912	2-3% py+sph			
24.20	25.70	19913	<1% py			
25.70	27.20	19914	2-3% sph+cpy+py			
27.20	28.00	19915	2-3% sph+cpy+py			
28.00	29.30	19917	1% cpy+sph+ trace py			
29.30	30.20	19918	2-3% cpy+sph+py			
40.40	41.40	19919	4-5% sph+cpy+py			
41.40	42.60	19920	6-8% sph+py+cpy			
42.60	43.80	19921	1-2% sph+py+trace cpy			
43.80	45.10	19922	2-3% sph+py+trace cpy			
45.10	46.20	19923	2-3% py+sph+trace cpy			
46.20	46.80	19924	3-4% cpy+sph+py			
46.80	48.10	19925	1-2% cpy+sph+py			
48.10	49.60	19927	3-4% cpy+sph+py			
49.60	51.10	19928	1-2% py+po			
51.10	52.60	19929	1-2%sph+py+cpy			
52.60	53.30	19930	3-4% sph+cpy+py			

	Assay				
From	То	Sample number	Description		
53.30	54.80	19931	trace py		
54.80	56.10	19932	<1% py		
56.10	57.40	19933	1% sph+py+cpy		
57.40	58.40	19934	<1% sph+py		
58.40	59.40	19935	7-8% sph+py+cpy		
59.40	60.50	19937	12-15% sph+cpy+py		
60.50	62.00	19938	2-3% py+cpy+trace sph		
62.00	63.00	19939	3-4% sph+cpy+py		
63.00	64.50	19940	2-3% cpy+py+trace sph		
64.50	66.00	19941	1-3% cpy+py		
66.00	67.50	19942	<=1% py+sph		
67.50	69.00	19943	<1% py+trace cpy		
69.00	70.50	19944	trace py		
70.50	71.40	19945	trace mineralization		
71.40	72.90	19613			
72.90	74.40	19614	<1% py		
74.40	75.90	19616	<1% py		
75.90	77.40	19617	<1% py		
77.40	78.90	19618	2-3% very fine grained to fine grained py		
78.90	80.40	19619	1% very fine grained py+sph+trace cpy		
80.40	81.70	19620	trace py		
81.70	82.70	19621	<1% very fine grained py+very fine grained sph		
82.70	84.20	19622	1% very fine grained to fine grained py+trace sph		
84.20	85.70	19623	trace very fine grained po/py/sph		
85.70	87.20	19624	2-3% very fine grained po+very fine grained py		
87.20	88.60	19626	3-4% very fine grained py+very fine grained sph+trace po		
88.60	90.10	19627	trace py		
90.10	91.60	19628	<1% very fine grained sph/py/po		
91.60	92.90	19629	1-2% very fine grained to coarse grained py		
177.40	178.90	19630	1% very fine grained py + cpy		
178.90	180.40	19631	1% very fine grained py + tr cpy		

			Assay	
From	То	Sample number	Description	
180.40	181.90	19632	1-2% very fine grained py	
181.90	183.40	19633	1% very fine grained to fine grained py	
183.40	184.30	19634	<1% fine grained to blebby py	
184.30	185.80	19636	<1% fine grained to blebby py	
185.80	187.30	19637	trace py	
187.30	188.80	19638	trace py	
188.80	190.30	19639	trace py + trace sph	
190.30	191.80	19640	<1% py	
191.80	193.30	19641	2% cpy +py+sph+trace po	
193.30	194.80	19642	<1% py+cpy	
194.80	196.30	19643	2% cpy+py+trace sph	
196.30	197.80	19644	<=1% cpy+py	
197.80	199.30	19646	<1% cpy+trace py	
199.30	200.80	19647	1% sph+py+cpy	
200.80	202.30	19648	trace py	
202.30	203.80	19649	trace cpy	
203.80	205.30	19650	1% py+sph+cpy	

			Geochemistry	
From	То	Sample number	Description	
14.30	14.40	25261		
54.30	54.40	25262		
85.00	85.15	25268		
99.00	99.17	25269		
163.50	163.60	25275		

DDH: GEN-16-04 Claims title: P27215(100%) Section:

Township: Godfrey

6+85E Level:

Range:

3

Work place:

Contractor: NPLH Drilling Author: C. Beaudry

Lot:

Start date: 10/12/2016 End date: 13/12/2016 Description date:

-Collar-

328.00° Azimuth: -51.00° Length: 300.00

NAD83 Z17

AcondaGrid

East North Elevation

6+85E 458797 5370144 0+15S 340 340

-Down hole survey-

Dip:

Туре	Depth	Azimuth	Dip	Invalid
Reflex	30.00	329.20°	-53.60°	No
Reflex	60.00	329.10°	-53.00°	No
Reflex	90.00	331.70°	-52.40°	No
Reflex	120.00	330.90°	-52.20°	No
Reflex	150.00	334.20°	-51.70°	No
Reflex	180.00	337.60°	-49.90°	No

Туре	Depth	Azimuth	Dip	Invalid
Reflex	210.00	338.80°	-49.60°	No
Reflex	240.00	340.10°	-49.00°	No
Reflex	270.00	341.40°	-48.70°	No
Reflex	300.00	342.40°	-48.70°	No

Number of samples: Number of QAQC samples:

Total sampled length: 230.40

-Description: —

Core size: NQ

162

17

Cemented: No

Stored: Yes

		Description
0.00	6.50	Overburden
		Overburden (Casing left in hole)
6.50	33.80	Pillowed Mafic Volcanic
		Mafic pillowed volcanic. Medium grey to med grey/green; Intense interstitial chlorite alteration; weak overall carbonate bleaching (reacts to acid) with moderate patches of bleaching;
		strongly silicified; patchy amygdules; <1% qtz/carb veinlets/stringers; not magnetic; sulphides not only concentrated in stringers but also disseminated into wall rock.
15.00	17.00	Foliation at 35 deg tca.
19.30	21.30	Foliation at 35 deg tca; weak breccia with amygdules.
22.30	23.00	Fault; 10 deg tca; brecciated; bounded by qz/carbonate veinlets; 25% very fine grained to cubic py.
23.50	27.40	Foiation at 40 deg tca with weak breccia.
27.50	33.80	Foliation at 45-50 deg tca.
33.80	168.80	Massive to Pillowed Mafic Volcanic
		Massive to pillowed mafic volcanic. Medium to dark green/grey; fine grained; some selvages evident; strong patchy silicification; strong pervasive chlorite (even stronger in selvages);
		weak patchy leucoxene; foliation at 30-40 deg tca; few sparse carbonate/qtz filled amygdals; 1% carbonate with qtz stringers/joints at 30-40 deg tca 33.8-105m and 50 deg tca
		105-156m with increased 3-4% carbonate veinlets/stringers 156-169.4m; semi massive cpy veins 3cm+2cm+2cm 165.2-165.8m; not magnetic.
33.80	36.60	Weak to moderate carbonate bleaching (reacts to acid). 3-5% very fine grained sph+py.
36.60	56.40	<1% very fine grained py+sph.
56.40	56.60	Fault zone; chlorite rich; 25 deg tca; 3cm carbonate/qtz veinlet at upper contact; brecciated.
57.60	72.00	Trace to <1% fine grained to cubic py + trace sph.
156.60	156.70	Fault zone; 50 deg tca; brecciated and mineralized.
168.80	182.50	Pillowed Mafic Volcanic
		Pillowed mafic volcanic. Dark green; fine grained; strong pervasive chlorite; some selvages evident; <1% carbonate stringers with minor quartz most at 50 deg tca; not magnetic.
182.50	216.00	Massive Mafic Volcanic
		Massive mafic volcanic. Light to med grey/green; fine grained; sericite with bleaching into wallrock; moderate semi pervasive chlorite; very strong patchy silicification; 10-15% carbonate
		veinlets/stringers with minor quartz; not magnetic.
201.60		
216.00	266.00	Massive to Pillowed Mafic Volcanic
		Massive to pillowed mafic volcanic. Medium to dark green/grey; fine grained; weak to moderate semi pervasive carbonate (reacts to acid); very strong patchy silicification; weak sparse
		patchy bleaching; strong semi pervasive chlorite; <1% carbonate veinlets/stringers with minor quartz most at 55-60 deg tca; not magnetic.
230.30		
248.50		
266.00	300.00	Massive Mafic Volcanic
		Massice mafic volcanic. Medium to dark green; fine grained; strong pervasive chlorite; strong patchy silicification; mod to strong semi pervasive carbonate (reacts to acid); most

Project: Kamiskotia, Genex DDH: GEN-16-04 2 / 10

		Description
		tringers/joints at 50 deg tca; sulphide stringers vary from 35-80 deg tca; overall <1% carbonate veinlets/stringers with minor qtz; not magnetic.
266.70	267.30	2 qz veins/veinlets 2-3 cm each at 40 and 20 deg tca.
270.50	272.20	Weak selective bleaching; strong albite.
272.20	272.35	Sparse hematite.
I		

Project: Kamiskotia, Genex DDH: GEN-16-04 3 / 10

	Assay				
From	То	Sample number	Description		
12.00	13.50	19947	1-2% sph+po+py		
13.50	15.00	19948	<1% py+trace sph		
15.00	16.50	19949	25-30% very, very fine grained py + po		
16.50	18.00	19950	10-15% very, very fine grained py + po		
18.00	19.50	19951	15-20% very, very fine grained po + sph + py		
19.50	21.00	19952	25-30% very, very fine grained py + po+sph		
21.00	22.30	19953	10-15% very, very fine grained py+sph + po		
22.30	23.00	19954	25% very fine grained to cubic py		
23.00	24.50	19955	15-20% very, very fine grained py+sph		
24.50	26.00	19956	15-20% very fine grained sph + py		
26.00	27.50	19958	15-20% very fine grained sph + py + including 1-2% cpy		
27.50	29.00	19959	8-10% very fine grained sph+py+trace cpy		
29.00	30.50	19960	10-15% very fine grained sph+py		
30.50	31.60	19961	10-15% very fine grained sph+py+trace cpy		
31.60	32.70	19962	10% very fine grained sph + 5% very fined grained py		
32.70	33.80	19963	5-7% very fine grained sph+py		
33.80	35.30	19964			
35.30	36.60	19965			
72.00	73.50	17001	trace py +cpy		
73.50	74.40	17002	1-3% fine grained to cubic py + sph+trace cpy		
74.40	75.90	17003	<1% sph+trace py		
98.00	99.50	17004	<=1% py+sph+trace cpy		
99.50	101.00	17005	1-2% very fine grained py + sph		
101.00	102.00	17006	2-3% very fine grained py+cpy+sph		
102.00	103.50	17007	3-5% very fine grained py+sph+trace cpy		
103.50	105.00	17008	<1% py+trace cpy		
105.00	106.50	17009	2-3% very fine grained py+sph+ trace cpy		
106.50	108.00	17011	<1% py+cpy+sph+po(?)		
108.00	109.50	17012			
109.50	110.50	17013			
110.50	111.40	17014	3-4% cpy+py+sph		

	Assay				
From	То	Sample number	Description		
111.40	112.60	17451			
112.60	114.00	17015	<1% sph+py+trace cpy		
114.00	115.50	17016	no significant mineralization		
115.50	117.00	17017	1% py+sph		
117.00	118.50	17018	2-4% fine grained to cubic py + sph+cpy		
118.50	120.00	17019	<1% sph+py		
120.00	121.50	17021	1% py+sph+trace cpy		
121.50	123.00	17453	2-3% very fined grained py+sph+cpy		
123.00	124.50	17454			
124.50	125.70	17455			
125.70	126.80	17456	3-4% very fine grained sph+py+cpy		
126.80	128.10	17457	<=1% py+sph		
128.10	129.20	17458	1-2% py+sph		
129.20	130.70	17459	2-3% very fine grained to fine grained py+sph+cpy		
130.70	132.00	17460			
132.00	133.50	17461			
133.50	135.00	17463			
135.00	136.50	17464	2-4% py+trace cpy		
136.50	138.00	17465	2-4% very fine grained to fine grained py+sph+trace cpy		
138.00	139.50	17466	4-5% very,very fine grained sph+py+po		
139.50	140.60	17467	2-3% very fine grained py+sph		
140.60	141.70	17468			
141.70	143.20	17469	2-4% vfg py+trace cpy		
143.20	144.70	17022	1% vfg py+sph+cpy		
144.70	146.20	17023	<=1% vfg py+sph+trace cpy		
146.20	147.70	17024			
147.70	149.20	17025	<1% vfg py+trace sph		
149.20	150.70	17026			
150.70	152.00	17027	<=1% vfg py		
152.10	153.60	17470	3-5% vfg to cubic py		
153.60	155.10	17471	1-2% fg to cubic py + cpy		
ı					

Project: Kamiskotia, Genex

5 / 10

	Assay				
From	То	Sample number	Description		
155.10	156.60	17473	1-3% fg cpy+py		
156.60	158.10	17474	1-3% cubic to blebby py		
158.10	159.60	17475	1-2% fg sph+py		
159.60	161.10	17476	carbonate vein with 5% py+cpy+sph, rest 1-2% sph+py+cpy		
161.10	162.60	17477	2-3% cpy+py+sph		
162.60	164.10	17478	2-4% py+cpy+sph		
164.10	165.00	17479	2-3% cpy+py+sph		
165.00	165.80	17480	9-10% cpy+minor py+minor sph		
165.80	167.30	17028	1% cpy + minor py		
167.30	168.80	17029	<1% cpy with trace py		
168.80	170.30	17031			
170.30	171.80	17032			
171.80	173.30	17033			
173.30	174.80	17034			
174.80	176.30	17035			
176.30	177.80	17036			
177.80	179.30	17037			
179.30	180.50	17038			
180.50	181.50	17039			
181.50	182.50	17481			
182.50	183.90	17483	<=1% fine grained py+sph		
183.90	184.80	17484	2-3% fg py+sph+tr cpy		
184.80	186.30	17041			
186.30	187.80	17042	tr py		
187.80	189.30	17043	<=1% py		
189.30	190.80	17044	<1% vfg py		
190.80	192.30	17045	<1% vfg py		
192.30	193.80	17046	1-2% vfg py		
193.80	195.30	17047	1-2% vfg py		
195.30	196.80	17048	1% vfg py+tr sph+tr cpy		
196.80	198.30	17485	tr py		

Project: Kamiskotia, Genex

6 / 10

1	Assay					
From	То	Sample number	Description			
198.30	199.80	17486				
199.80	201.10	17487	tr to <1% py			
201.10	202.60	17488	tr py			
202.60	204.10	17489	1-2% fg py			
204.10	205.60	17490	6-7% fg py			
205.60	207.10	17491	7-8% vfg-fg py			
207.10	208.60	17493	8-9% vfg-fg py			
208.60	210.10	17494	8-9% vfg-fg py			
210.10	211.60	17495	8-9% vfg-fg py+sph			
211.60	213.10	17496	9-10% vfg py+sph			
213.10	214.60	17497	12-15% sph+vfg py			
214.60	216.00	17498	12-15% vfg py +sph			
216.00	217.50	17499	4-6% sph+py			
217.50	219.00	17500	4-6% vfg py+sph			
219.00	220.50	17049	3-4%vfg py +cpy			
220.50	222.00	17251	1-2% vfg py+sph			
222.00	223.50	17252	1% vfg py+sph			
223.50	225.00	17253	1-2% vfg py			
225.00	226.50	17254	1-2% vfg py			
226.50	228.00	17255	1-2% vfg py			
228.00	229.50	17256	2-3% vfg py+tr sph			
229.50	231.00	17257	2-3% vfg py			
231.00	232.50	17258	2-3% vfg py			
232.50	234.00	17401	3-4% vfg py +sph			
234.00	235.50	17403	3-4% sph+vfg py			
235.50	236.50	17404	3-4% py +sph			
236.50	237.50	17405	237.1-237.5 <1% py; 236.5-236.9 3% py; 236.9-237.1 40%			
			py;			
237.50	239.00	17406	2-3% py+sph?			
239.00	240.50	17407	4-6% sph+vfg py			
240.50	242.00	17408	3-4% vfg py +sph			

Project: Kamiskotia, Genex

7 / 10

	Assay				
From	То	Sample number	Description		
242.00	243.50	17259	1% vfg py		
243.50	245.00	17261	1-2% vfg py		
245.00	246.50	17262	<=1% sph+vfg py		
246.50	248.00	17263	1-2% vfg py		
248.00	249.50	17264	1% vfg py		
249.50	251.00	17265	3-4% vfg py+sph+tr cpy		
251.00	252.50	17266	3-4% vfg py+cpy+sph		
252.50	254.00	17267	1% vfg py		
254.00	255.50	17268	<1% vfg py +sph		
255.50	257.00	17269	tr py		
257.00	258.50	17271	tr py		
258.50	260.00	17272	no significant mineralization		
260.00	261.50	17273	tr py		
261.50	263.00	17274	tr py+hairline stringer hematite at 262.7		
263.00	264.50	17275	<=1% vfg py +cpy		
264.50	266.00	17276	<1% vfg py		
266.00	267.50	17409	<1% py+tr cpy+ tr po		
267.50	269.00	17410	2-3% vfg py +sph		
269.00	270.50	17411	6-7% vfg py +sph		
270.50	272.00	17413	6-7% sph+vfg py		
272.00	273.50	17414	4-5% sph +py		
273.50	275.00	17415	2-3% fg py+sph		
275.00	276.50	17416	no significant mineralization		
276.50	278.00	17417	1-2% fg py		
278.00	279.50	17418	1-2% fg py+sph		
279.50	281.00	17419	<=1% fg py		
281.00	282.50	17420	1% fg py		
282.50	284.00	17421	1-2% fg bpy		
284.00	285.50	17423	1% fg py		
285.50	286.80	17424	<1% vfg py		
286.80	288.00	17425	5-6% vfg to cubic py+sph		

	Assay					
From	То	Sample number	Description			
288.00	289.50	17426	<=1% vfg py			
289.50	291.00	17277	1-2% vfg py +sph			
291.00	292.50	17278	1-2% fg py			
292.50	294.00	17279	1-2% vfg py+sph			
294.00	295.50	17281	2-3% vfg py+sph+cpy			
295.50	297.00	17282	<=1% vfgpy			
297.00	298.50	17283	<1% vfg py			
298.50	300.00	17284	1-3% vfg py			

	Geochemistry				
From	То	Sample number	Description		
65.20 117.60	65.36	25279			
117.60	117.70	25284			
168.20	168.30	25285			
194.10	194.20	25288			
258.50	258.65	25293			
289.80	290.00	25297			

DDH: GEN-16-05 Claims title: P19292(100%)

Section: 2+50E

Township: Range:

End date:

Godfrey

15/12/2016

3

Level: Work place:

Contractor:

NPLH Drilling

Lot:

Author: C. Beaudry Start date: 13/12/2016

Description date:

-Collar-

330.00° Azimuth:

Dip: -60.00° Length: 240.00

NAD83 Z17

AcondaGrid

East North

Elevation

458606 2+50E 5369952 0+75S

340 340

Down hole survey

Туре	Depth	Azimuth	Dip	Invalid
Reflex	30.00	329.70°	-60.20°	No
Reflex	60.00	331.60°	-60.00°	No
Reflex	90.00	332.40°	-59.90°	No
Reflex	120.00	333.60°	-59.60°	No
Reflex	150.00	334.90°	-59.40°	No
Reflex	180.00	334.80°	-59.20°	No

Depth	Azimuth	Dip	Invalid
210.00	337.10°	-58.40°	No
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	

Number of samples: Number of QAQC samples: 52 3

Total sampled length:

74.06

-Description: -

Core size: NQ

Cemented: No

Stored: Yes

2.80 23.20 Overburden (Casing left in hole) 2.80 23.20 Mixed Mafic Pillow Breccia and Hyaloclastic Tuff Strongly altered mix of pillow breccia and hyaloclastic tuff. Multi-colored buff to dark green/grey; varies in sizes from fine grained to large fragments of pillows; many smaller fragments draw dark grey in a lighter matrix angular; very strong patchy sericite; severe rusting of carbonates and possibly sulphides; very strong patchy to semi-pervasive (not carbonate doesn't fizz); patchy amygdals; very strong patchy sericite; severe rusting of carbonates and possibly sulphides; very strong patchy to semi-pervasive (not carbonate doesn't fizz); patchy amygdals; very strong patchy semi-pervasive chlorite mostly the smaller fragments with ff/interstitial; very strong patchy silicification; no significan not magnetic; most fabric or structures (elongated amygdals) are at 60 deg tca. 3.10	bleaching
23.20 Mixed Mafic Pillow Breccia and Hyaloclastic Tuff Strongly altered mix of pillow breccia and hyaloclastic tuff. Multi-colored buff to dark green/grey; varies in sizes from fine grained to large fragments of pillows; many smaller fragree dark grey in a lighter matrix angular to sub angular; very strong patchy sericite; severe rusting of carbonates and possibly sulphides; very strong patchy to semi-pervasive (not carbonate doesn't fizz); patchy amygdals; very strong semi-pervasive chlorite- mostly the smaller fragments with ff/interstitial; very strong patchy silicification; no significan not magnetic; most fabric or structures (elongated amygdals) are at 60 deg tca. 3.10 10.00 Bleached pillow fragments; sub rounded to angular. Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. Altered Mafic Pillowed Volcanic Fine grained mafic pillowed Volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy chlorite; very strong patchy blead (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic Sericitic with chlorite ff sub parallel tca. Moderate/strong ablite alteration. Sheared at 50-55 deg tca. Moderate/strong ablite alteration. Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and Tuff Mafic hyaloclastic breccia and Tuff Mafic hyaloclastic breccia and Tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	bleaching
Strongly altered mix of pillow breccia and hyaloclastic tuff. Multi-colored buff to dark green/grey; varies in sizes from fine grained to large fragments of pillows; many smaller frare dark grey in a lighter matrix angular to sub angular; very strong patchy sericite; severe rusting of carbonates and possibly sulphides; very strong patchy to semi-pervasive (not carbonate doesn't fizz); patchy amygdals; very strong patchy sericite; severe rusting of carbonates and possibly sulphides; very strong patchy to semi-pervasive chlorite- mostly the smaller fragments with ff/interstitial; very strong patchy silicification; no significan not magnetic; most fabric or structures (elongated amygdals) are at 60 deg tca. 3.10 10.00 Bleached pillow fragments; sub rounded to angular. Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. Bleached pillow fragments; sub rounded to angular. Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. Altered Mafic Pillowed Volcanic Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy chlorite; very strong patchy blead (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy sericite; mod b	bleaching
are dark grey in a lighter matrix angular to sub angular; very strong patchy sericite; severe rusting of carbonates and possibly sulphides; very strong patchy to semi-pervasive (not carbonate doesn't fizz); patchy amygdals; very strong semi-pervasive chlorite- mostly the smaller fragments with ff/interstitial; very strong patchy silicification; no significan not magnetic; most fabric or structures (elongated amygdals) are at 60 deg tca. 3.10 10.00 Bleached pillow fragments; sub rounded to angular. 15.00 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. 15.00 20.70 Bleached pillow fragments; sub rounded to angular. 20.70 23.20 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. Altered Mafic Pillowed Volcanic Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy bleac (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. 24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.00 33.30 Moderate/strong ablite alteration. 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	bleaching
(not carbonate doesn't fizz); patchy amygdals; very strong semi-pervasive chlorite- mostly the smaller fragments with ff/interstitial; very strong patchy silicification; no significan not magnetic; most fabric or structures (elongated amygdals) are at 60 deg tca. 3.10 10.00 Bleached pillow fragments; sub rounded to angular. 10.00 15.00 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. 15.00 20.70 Bleached pillow fragments; sub rounded to angular. 20.70 23.20 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. Altered Mafic Pillowed Volcanic Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy bleac (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. 44.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	_
not magnetic; most fabric or structures (elongated amygdals) are at 60 deg tca. 3.10 10.00 Bleached pillow fragments; sub rounded to angular. 10.00 15.00 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. 15.00 20.70 Bleached pillow fragments; sub rounded to angular. 20.70 23.20 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. Altered Mafic Pillowed Volcanic Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy chlorite; very strong patchy bleac (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. Moderate/strong ablite alteration. 24.00 25.00 Moderate/strong ablite alteration. 36.30 Sheared at 50-55 deg tca. Mafic hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	t veining;
3.10 10.00 Bleached pillow fragments; sub rounded to angular. 10.00 15.00 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. 15.00 20.70 Bleached pillow fragments; sub rounded to angular. 20.70 23.20 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. 23.20 34.40 Altered Mafic Pillowed Volcanic Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy chlorite; very strong patchy blead (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. 24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
10.00 15.00 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. 15.00 20.70 Bleached pillow fragments; sub rounded to angular. 20.70 23.20 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. 23.20 34.40 Altered Mafic Pillowed Volcanic Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy chlorite; very strong patchy bleac (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. 24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
15.00 20.70 Bleached pillow fragments; sub rounded to angular. 20.70 23.20 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. 23.20 34.40 Altered Mafic Pillowed Volcanic Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy chlorite; very strong patchy blead (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. 24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
23.20 34.40 Dark green/grey angular fragments (small) in a mod/strong bleached or lighter grey matrix; Possibly a tuff or felsic rock. 23.20 34.40 Altered Mafic Pillowed Volcanic Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy chlorite; very strong patchy blead (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. 24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
23.20 34.40 Altered Mafic Pillowed Volcanic Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy chlorite; very strong patchy blead (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. 24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
Fine grained mafic pillowed volcanic. Multi-colored from purple/buff to buff to med/dark green-grey; strong patchy chlorite; very strong patchy chlorite; very strong patchy blead (doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. 24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
(doesn't fizz); very strong patchy sericite; pillow fragments sub angular; patchy breccia; no significant veining; not magnetic 23.20 24.00 Sericitic with chlorite ff sub parallel tca. 24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
23.20 24.00 Sericitic with chlorite ff sub parallel tca. 24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	hing
24.00 25.00 Moderate/strong ablite alteration. 29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
29.20 30.30 Sheared at 50-55 deg tca. 33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
33.00 33.30 Moderate/strong ablite alteration. 34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
34.40 45.80 Hyaloclastic Breccia and Tuff Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
Mafic hyaloclastic breccia and tuff. Variable color from Intermediate grey buff, to dark grey to medium/dark green. 34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
34.40 36.30 Pillow flow breccia; very strong patchy to semi-pervasive chlorite; smaller angular breccia mixed with angular to sub angular pillow fragments; strong patchy sericite; mod b	
II and the state of the state o	eaching
36.30 45.80 70 deg tca shear; It grey fine grained matrix with strong ff/interstitial chlorite; amygdals mixed with spherioles and round to sub angular small fragments; no significant veining	ng; not
magnetic; trace py.	
45.80 53.30 Silicified Pillowed Mafic Volcanic	
Pillowed mafic volcanic. Intermediate to medium grey; moderate silicification; carb to qtz filled amygdals; weak sparse breccia; sulphide stringers at 35 deg tca; strong patchy	to
semi-pervasive chlorite; mod patchy sericite bleaching; no significant veining; not magnetic .	
53.30 99.00 Pillowed Mafic Volcanic	
Fine grained mafic pillowed volcanic. Medium grey with dark green/grey intervals; strong patchy amygdals; strong patchy silicification; weak sparse ff sericite; overall strong	
ff/selvage/interstitial chlorite; overall <1% carbonate to qtz veinlets/stringers; not magnetic.	
54.30 57.80 Very strong chlorite interval.	
57.80 58.20 Quartz/carbonate/albite vein approx 30% of interval with parts vuggy and rusted.	

Project: Kamiskotia, Genex DDH: GEN-16-05 2 / 6

	Description							
59.60	60.50	Strongly broken interval with rust .						
65.40	65.70	Quartz/carbonate/albite bx vein approx 40% of interval with parts vuggy and rusted.						
67.10	67.60	Strongly broken interval with rust. Rusted carbonates and rusted sulphides; vuggy.						
69.00	69.70	Strongly broken interval.						
71.20	72.40	Shear at 50 deg tca.						
73.90	75.00	Shear at subparallel tca: may not be shear may be fracturing.						
85.50	87.00	Rusted carbonates and rusted sulphides; vuggy.						
92.70	95.80	Rusted carbonates and rusted sulphides; vuggy.						
95.80	97.50	Very strong chlorite interval.						
99.00	101.83	Massive Mafic Volcanic						
		Massive mafic volcanic. Light grey to black and variably chloritized; locally limonitic.						
99.00	100.20	Chloritized and limonitic; fractures at 70deg tca.						
100.20	100.50	Light grey, gritty; fracturing at 70deg tca; 1% py and limonite, tr sphalerite.						
100.50	101.83	Chloritized; black color; banding at 70deg tca; 1.2cm wide chalcopyrite vein.						
101.83	130.00	Mafic to Intermediate Volcanic Breccia						
		Mixed fragment volcanic breccia. Fragments are mafic to intermediate in composition. Variably chloritized with elongtated fragments parallel tca.						
101.83	104.66	Interflow breccia, mixed fragments, chloritized patches and fragment rims; fracturing at 70deg tca; minor py as fractre filling.						
104.66	123.75	Apparent younging to south (top of hole).						
123.75	130.00	Chloritized, intermediate composition. Sharp upper contact at 70deg tca. 1cm wide chalcopyrite vein ar 129.36m.						
130.00	240.00	Massive and Pillowed Mafic Volcanic						
		Massive and pillowed mafic volcanic with local intervals of lapilli tuff.						
135.32	136.00	Younging towards the south (top of hole).						
185.45	186.00	Dark grey fine grained elongated fragments in lapilli tuff with elongation parallel tca.						
199.80	207.50	Fine grained, grey pillow rim followed by sedimentary appearing unit with mixed fragments consisting of large bleached mafic with sulphides and few smaller appearing felsic with						
		clear qz phenocrysts and alternating between bleached to chloritized fragments and patches; wekly magnetic at 213m.						
1								

Project: Kamiskotia, Genex DDH: GEN-16-05 3 / 6

	Assay				
From	То	Sample number	Description		
45.80	47.30	17285	1-2% fg py		
47.30	48.80	17286	<1% fg py		
48.80	50.30	17287	<=1% fg py + trace sph		
50.30	51.80	17288	1-2% fg py		
51.80	53.30	17289	1-2% fg py		
53.30	54.80	17290	<=1% fg py + cpy		
54.80	56.00	17291	tr py		
56.00	57.00	17427	5% py		
57.00	58.20	17428	10-12% py + tr cpy		
58.20	59.60	17429	tr py		
59.60	61.00	17430	tr py + 1-2% sph?		
61.00	62.50	17431	tr py + tr sph		
62.50	64.00	17432	<=1% sph		
64.00	65.40	17433	1% fracture filling sph		
65.40	66.90	17434	1% fracture filling sph		
66.90	68.40	17435	<1% fracture filling hematite		
68.40	69.90	17436	tr sph		
69.90	71.20	17438	2-3% py+sph+tr cpy		
71.20	72.40	17439	<=1% py+sph+ tr cpy		
72.40	73.90	17440	3-4% cpy+tr py+tr sph		
73.90	75.20	17441	1-2% cpy+sph+py		
75.20	76.70	17442	1-2% cpy+py		
76.70	78.00	17443	3-4% cpy+py+hematite		
78.00	79.50	17292	<=1% py+cpy+sph		
79.50	81.00	17293	no significant mineralization		
81.00	82.50	17294	tr py		
82.50	84.00	17296	<=1% py+cpy+sph		
84.00	85.50	17297	4% py+sph+tr cpy		
85.50	87.00	17444	2-3% py+sph+ cpy		
87.00	88.50	17445	1-2% py+cpy+sph		
88.50	90.00	17446	2-3% py+sph+tr cpy		

			Assay	
From	То	Sample number	Description	
90.00	91.50	17448	3-5% sph+py+tr cpy	
91.50	93.00	17449	1-2% sph+py	
93.00	94.50	17450	3-4% sph+py	
94.50	96.00	17551	1-2% sph+py+tr po	
96.00	97.50	17552	5-7% py+sph	
97.50	99.00	17553	2-3% py+tr cpy	
159.95	161.25	A17351	Multiple mm qtz veins plus 2 qtz veins 2 cm wide with 1% py	
			and tr chalcopyrite, qz veins vary from 50 to 60deg tca.	
179.22	180.72	A17352	Minor py and tr chalcopyrite.	
193.30	194.60	A17353	8 bands of massive py veins 1 cm wide. At 193.9m, qz vein	
			with chalcopyrite.	
194.60	196.75	A17354	6 bands of massive py veins 1 cm wide at various angles tca	
			along with some pale grey py.	
202.10	203.10	A17355	5 cm wide bands of py.	
213.10	214.10	A17356	Bleached mafic; 2% chalcopyrite and 4% py in bands; 1%	
			pale py.	
214.10	215.70	A17357	Bleached mafic; 0.5% chalcopyrite and 7% py; minor pale py.	
216.26	217.42	A17358	Bleached mafic; 5% chalcopyrite and 6% py; 1% pale grey	
			py; mixture of bleached,chlotitic and felsic fragment.	
219.00	220.40	A17359	Bleached; 3% py and tr chalcopyrite.	
221.10	222.60	A17360	3% chalcopyrite and 6 % py.	
222.60	223.55	A17361	2% py.	
225.90	227.50	A17362	Silicified; 2% py.	
227.50	228.90	A17363	1% py and tr chalcopyrite.	
229.00	230.50	A17364	2% py.	
230.50	232.00	A17365	2% py; silicified.	

	Geochemistry				
From	То	Sample number	Description		

Project: Kamiskotia, Genex DDH: GEN-16-05 6 / 6

Maps

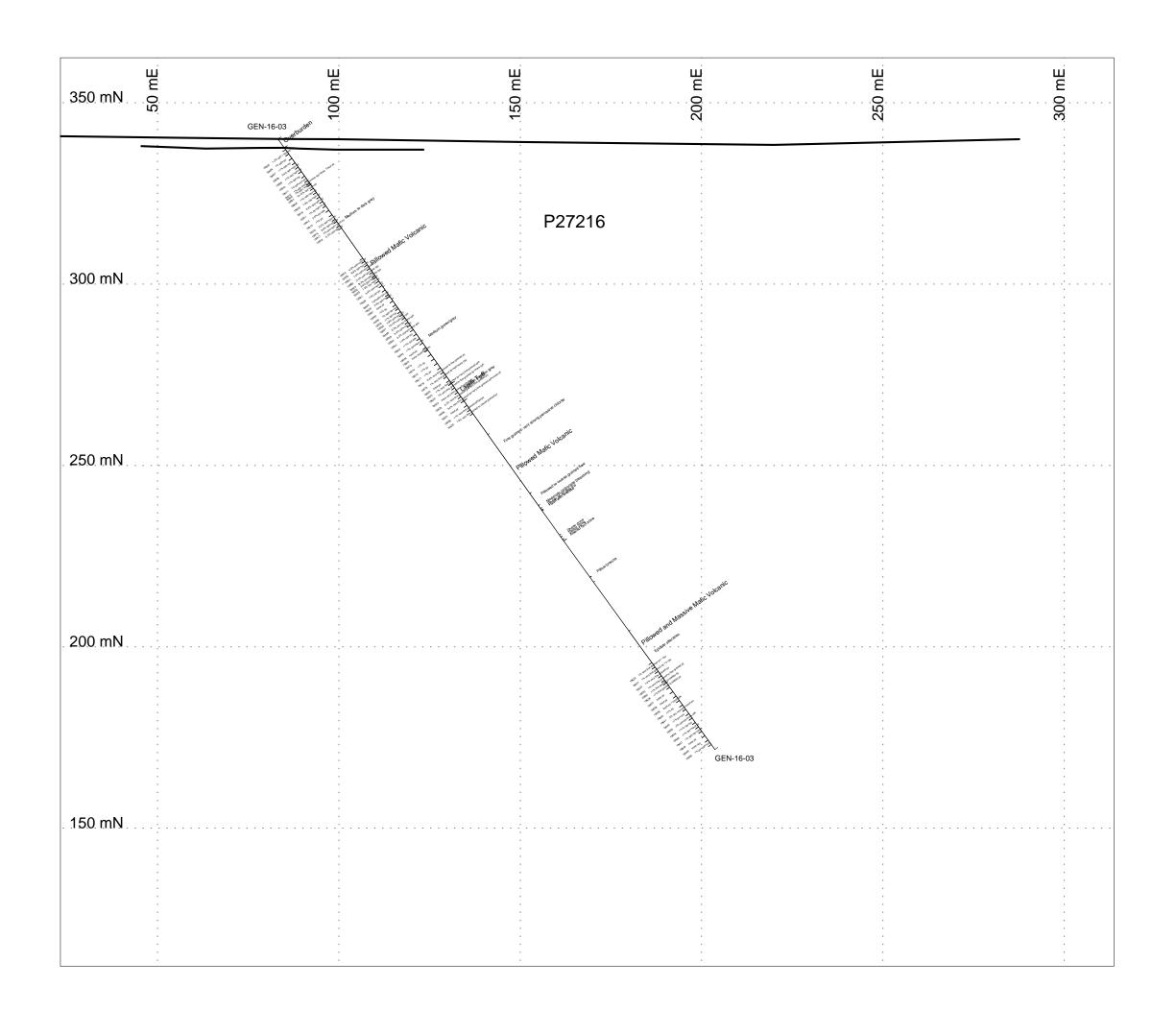
Maps are included in PDF format and can be printed or viewed using any PDF reader. In areas of cluttering it is possible to zoom and enlarge the area for better viewing.

- Map 1: Location of diamond drill holes
- Map 2: Vertical cross section hole GEN-16-01
- Map 3: Vertical cross section hole GEN-16-02
- Map 4: Vertical cross section hole GEN-16-03
- Map 5: Vertical cross section hole GEN-16-04
- Map 6: Vertical cross section hole GEN-16-05

GENEX PROJECT

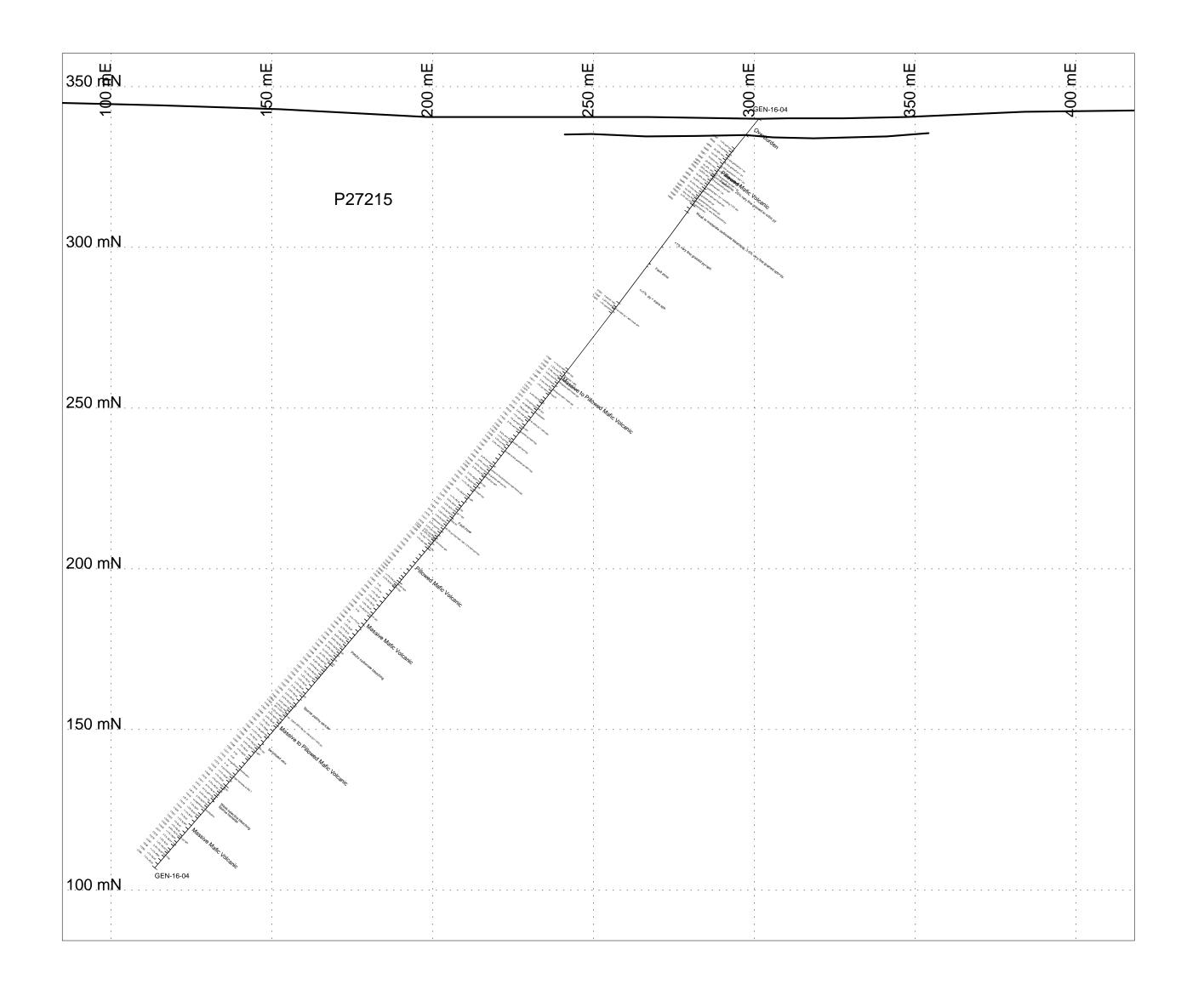
Location of Drill Holes

	40	0	40	80	120	160	200 m
Author:	С. В	eaudry	Drawn by	:		Date:	27/12/2016
Revised by:			Approved	Approved by:			Genex
Datum: լ	TM NAD8	3, ZN17	Scale:	1:4,0	000	File:	


350 m \ ≝	Щ		Щ	Щ	Е	Щ
00		00		GEN-16-1	01 O C C	400 r
300 mN		P27215	P1929	The state of the s		7
				To the state of th		
250 mN						,
200 mN		Otobolog C.				
150 mN						
130 11110	GEN-18-01	Solic Voltable Comments of the Control of the Contr				
100 mN	GEN-18-01	Ch. In Table Co.				

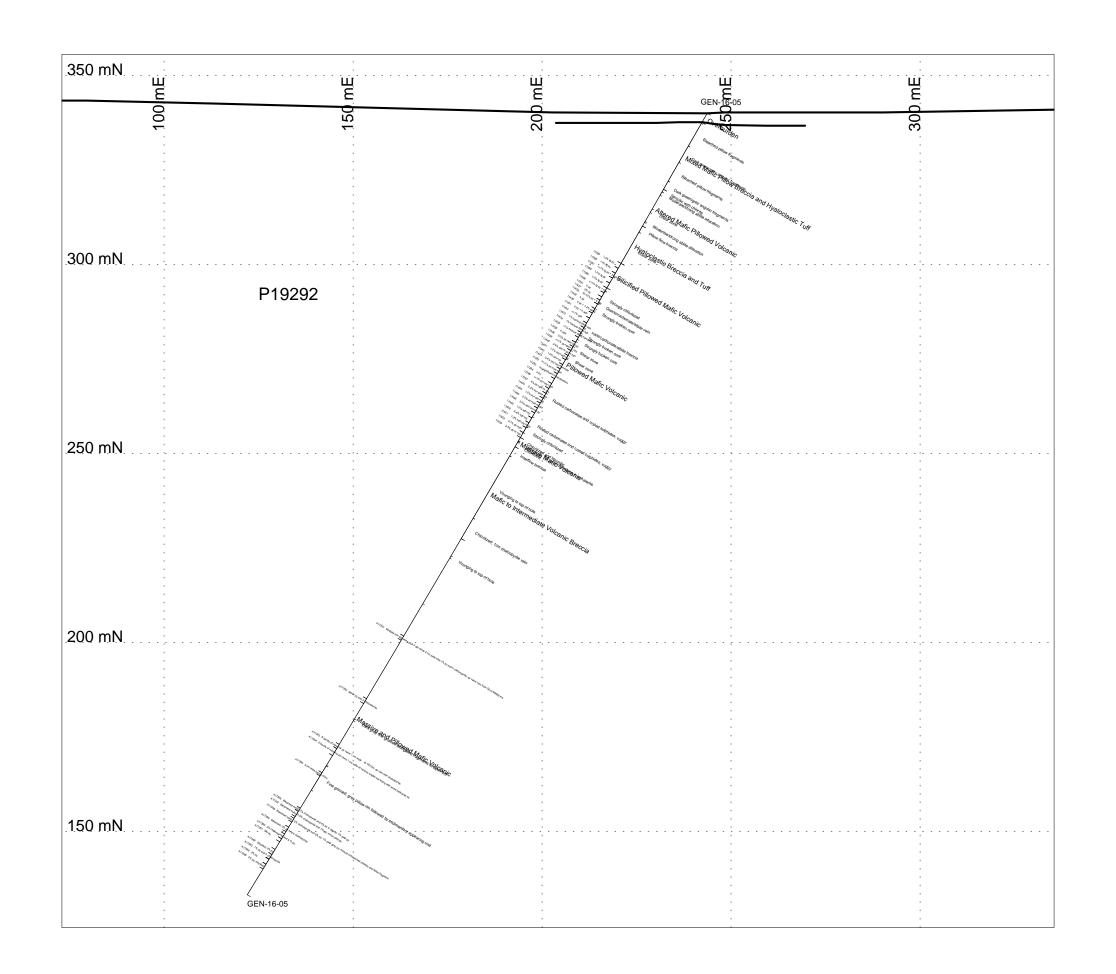
INTERNATIONAL EXPLORERS AND PROSPECTORS INC. GENEX PROJECT Diamond Drilling Section GEN-16-01 View towards 010 degrees 10 0 10 20 30 40 50 m Author: C. Beaudry Drawn by: Date: 27/12/2016 Revised by: Approved by: Project: Genex Datum: UTM NADB3, ZN17 Scale: 1:1,000 File:

	Щ Э Э	— — — — — — — — — — — — — — — — — — —	GEN-16-03	{ С	=
300 mN	P27216	P19292	A Company of the Comp		
250 mN			CONSISTED THE OWN CONTROL OF TH		
		Thomas on the fine of the state	The state of the s		
200 mN		To the season is one out of the season of th			
150 mN	MAGSSING MODEL TO THE MENT OF THE MODEL TO T	The substitute for Colleger & State Body OCANC 199 - Colleger & State Body 199 - Colleger & State Body			
100 mN	GLIN-10-Udopping				


INTERNATIONAL EXPLORERS AND PROSPECTORS INC. GENEX PROJECT Diamond Drilling Section GEN-16-02

View towards 060 degrees

GENEX PROJECT


Diamond Drilling Section GEN-16-03 View towards 060 degrees

GENEX PROJECT

Diamond Drilling Section GEN-16-04 View towards 060 degrees

	10	0	10	20	30	40	50 m
Author:	C. Bea	audry	Drawn by:			Date:	27/12/2016
Revised by:			Approved	by:		Project:	Genex
Datum: U	TM NAD83,	ZN17	Scale:	1:1,00	00	File:	

GENEX PROJECT

Diamond Drilling Section GEN-16-05 View towards 060 degrees

	10	0	10	20	30	40	50 m
Author:	C. Bea	udry	Drawn by:			Date:	27/12/2016
Revised by:		Approved by:			Project:	Genex	
Datum: UT	TM NAD83,	ZN17	Scale:	1: 1,00	00	File:	