We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Report on the Soil Geochemistry Sampling Survey, Prospecting, Mapping and Sampling For Knick Exploration Inc. On Claim 4217111 of its Triple Lake Property in the Timmins Area, Ontario

NTS 42A3

Gordon N. Henriksen P.Geo Knick Exploration Inc. October 10, 2016

Table of Contents

Page

Property Description, Location and Access
Geology-Mineralization
Regional Geology
Local Geology
Mineralization
History of Previous Work 7
Work Performed and Methods Used 10
Results and Interpretation 11
Conclusions and Recommendations

References

Certificate of Author

Figures

Figure 1: Triple Lake Location Map	3
Figure 2: Triple Lake Claim Map	4
Figure 3: Geological Map of Claim 4217111 of the Triple Lake Property	6
Tables	
Table 1: 2016 Triple Lake Prospecting (sample descriptions and results)	12
Table 2: 2016 Triple Lake Soil Sample Locations and Analytical Results	14
Table 3: 2016 Triple Lake Soil Sample Locations and	
Selected Analytical Results-subjective coding	18

Appendix I Certificates of Analysis

Triple Lake Project, Prospecting-Sampling, Map 1 and Map 2 (in pocket of paper format and included as separate files in the digital format of the report)

Report on the Soil Geochemistry Sampling Survey, Prospecting, Mapping and Sampling For Knick Exploration Inc. On Claim 4217111 of its Triple Lake Property in the Timmins Area, Ontario

NTS 42A3

Introduction:

Between August 8, 2016 and August 15, 2016 soil geochemistry surveying, prospecting, mapping and sampling for precious and base metals was performed on claim 421711 of the Triple Lake Property for Knick Exploration Inc. in McArthur Township, in the Timmins mining camp, north eastern Ontario, NTS 42A3.

The property, at present consisting of 7 claims, was acquired based on airborne electromagnetic and magnetic data from the Bartlett Dome Project 2007 MEGATEM II airborne survey covering the area immediately south of Timmins, Ontario and the Triple Lake area historic gold occurrences. The anomalies consist of isolated clustered electromagnetic responses referred to as CF-1 and CF-2. The historic Triple Lake gold occurrences are not well documented and the historical gold occurrences of claim 4217111 were the focus of the 2016 exploration work.

In the Triple Lake area, circa 1932, a 55 foot shaft was sunk on one vein. The operator, Triple Lake Porcupine Gold Mines Ltd, shipped 155 tons of ore that returned them \$2738.00 (1932 gold was \$20.67/ounce). Sampling of the vein in 1981 returned values of 0.8 oz/ton gold over 3 feet. This occurrence is situated on present claim 4217111.

On the southern portion of the Triple Lake area several veins were reported by A. Hubert in 1959. The veins were reported to have values up to 2.0 oz. /ton gold.

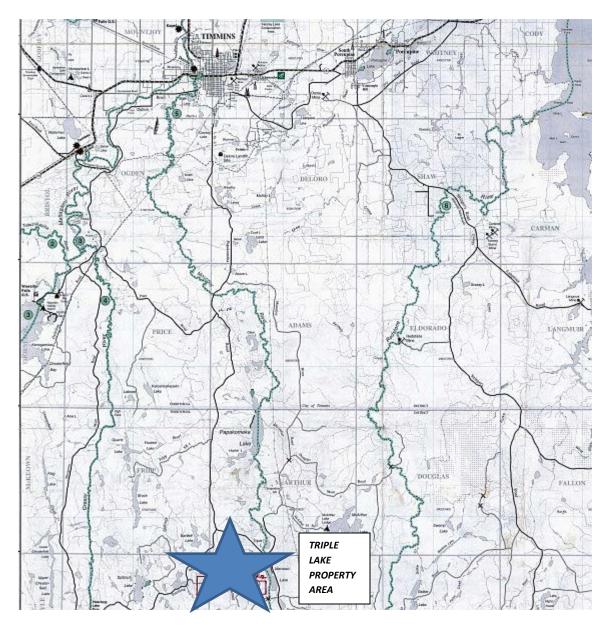
Re-logging and sampling of one hole, TL-87-01, located in the Timmins Core Library originally drilled by United Kingdom Energy Ltd. in McArthur Township was performed by Knick Exploration Inc. in 2012, as no record of the log was found in the Government Mining Offices. The hole was drilled to test a reverse circulation anomaly of 12.8g/t gold. The drill hole is situated on present claim 4217111.

This report is to show good faith in terms of subsection 73(1) of the mining act in accordance with compliancy of work commitment in regards to claim 4217111. A request for extension of filing was submitted April 12, 2016. The request was granted and the extension of filing date is to October 17, 201.

Soil geochemistry sampling survey, prospecting, mapping and sampling work related to this filing was performed by:

Robert Campbell Geologist	August 8, 9, 10, 11, 12, 13, 14 and 15, 2016
Gordon Henriksen Geologist	August 8, 9, 10, 11, 12, 13, 14 and 15, 2016

This work was carried out on claim 4217111, a 15 claim unit block.


Property Description, Location and Access:

The Triple Lake Property is comprised of one block of 7 claims-60claim units covering 960 hectares (6,998 acres). It is located in NTS sheet 42A03 approximately 32km due south of the city of Timmins in Bartlett, Musgrove and McArthur townships, Porcupine Mining Division, Ontario. The claims are numbered 1241857, 1241858, 3009047, 4217111 and 4217113. The work being reported was carried out on claim 4217111, a 15 claim unit block covering 240 hectares in McArthur Township. The claims are registered with the Ontario Ministry of Northern Development and Mines.

The claim is accessed by an all-weather gravel road which is the southern continuation of Pine Street in the City of Timmins. This road traverses the property north-south and numerous secondary logging roads provide excellent access throughout the property area.

Claim 4217111 is covered by mixed forest of which about 30% has recently been cut in the area east of the main gravel all-weather road which traverses the claim from the center of its western boundary to the center of its southern boundary trending southeastward. Triple Lake traverses the eastern half of the claim north-south and covers approximately 20% of the area. Outcrop is moderately abundant west of the all-weather road and is generally sparse east of the road.

Supplies, services and qualified manpower are readily available in Timmins.

Figure 1: Triple Lake Property Location Map (source The TIMMINS DISTRICT of the Ontario Ministry of Natural Resources, Map Sheet: 2-TIMMINS EAST)

3

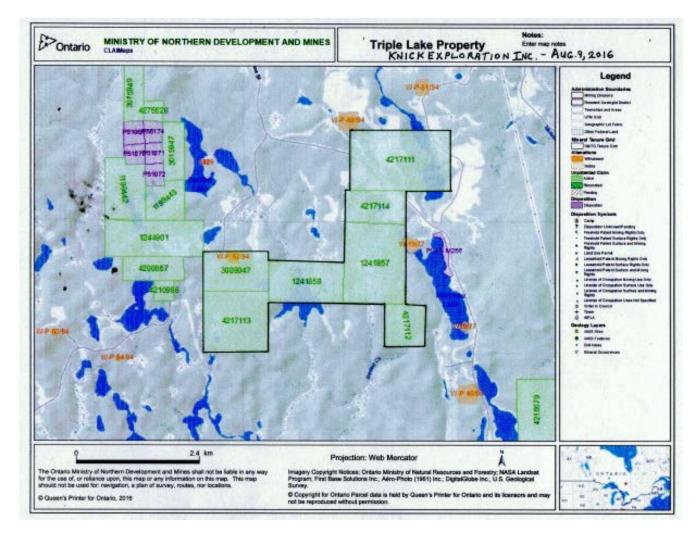
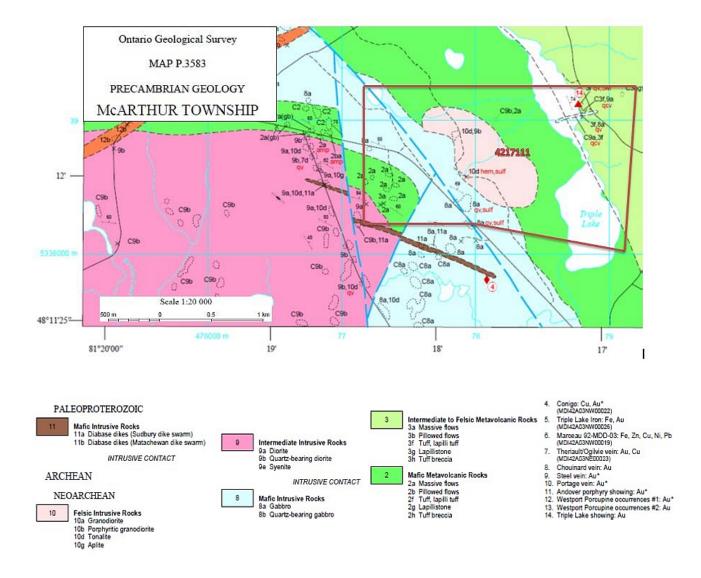


Figure 2: Triple Lake Property Claim Map, McArthur, Bartlett and Musgrove Township Area

Geology-Mineralization:

Regional Geology

The claims are located in the Abitibi Volcanic Belt of the Superior Province of the Canadian Shield. The Abitibi Belt extends for nearly 550km in a west-east direction from Timmins, Ontario to Chibougamau, Quebec. It is host to a variety of precious and base metal deposits including the Timmins, Kirkland Lake, Harker-Holloway, Noranda, Val d'Or and Chibougamau Mining camps.


The Abitibi Volcanic Belt is composed of a complex assemblage of interbedded volcanic and sedimentary rocks, intruded by a variety of ultramafic to felsic intrusives. The rocks are Archean in age and have been metamorphosed to the greenschist facies. Numerous Late Precambrian diabase dykes cut the rocks of the belt. The rock units generally strike west-east, have near vertical dips and are highly faulted and folded. Geological interpretation of the Abitibi Belt is complicated by the wide scattering of outcrop exposures in most areas and the complex underlying structural relationships.

Local Geology

The property is underlain by four main geological formations, from west to east they are:

The **Kenogamissi Batholith**, an intermediate to felsic intrusive mainly made up of diorite, quartz diorite and trondhjemite. The **Pacaud Assemblage**, comprised of mafic metavolcanics, which contains the **Muskasenda Lake Intrusion** consisting of gabbro and the **Deloro Assemblage**, made up of intermediate to felsic metavolcanics.

Strike of the assemblages in the area of the property is generally north-south.

Figure 3: Geology of Claim 4217111 of the Triple Lake Property (claim boundary taken from previous geo-referencing survey)

Mineralization:

In the northeast part of the property, claim 4217111, on the east side of Triple Lake, circa 1932, a 55 foot shaft was sunk on one vein. The operator, Triple Lake Porcupine Gold Mines Ltd, shipped 155 tons of ore that returned them \$2738.00 (1932 gold was \$20.67/ounce). Sampling of the vein in 1981 returned values of 0.8 oz. /ton gold over 3 feet.

5

On the southern portion of the Triple Lake area several veins were reported by A. Hubert in 1959. They reported values up to 2.0 oz/ton gold, claims 4217111 and 4217114.

In the southeast corner of the property in drill hole RMD-8-02, by Richmond Minerals Inc., 2008, a definite zone of polymetallic mineralization was intersected at a depth of 14.53m that has a down hole width of 2.42m of 0.78% copper including 1.22m of 1.41% copper, 9.3g silver, 0.11% zinc and 249ppb gold. In the same hole, at 91.34m a sample returned 254.3g silver over 0.31m. The zone appears related to but does not represent the source of the CF-2 airborne EM anomaly. A surface showing of 191ppb gold and 0.6% copper and drill hole RMD-8-02 are separated by approximately 125m, claim 4217112.

History of Previous Work

(Referenced from the Ministry of Mining Assessment Files)

Prior to **1926**, **John Spence** discovered a piece of quartz on the shore of Triple Lake. Mr. Spence dug into the bank uncovering a quartz vein. By 1926 a six foot pit had been sunk on the vein which strikes N50E and dips 60 degrees south.

By **1932** a **55 foot shaft** was sunk on one vein. The operator, Triple Lake Porcupine Gold Mines Ltd shipped 155 tons of ore that returned them \$2738.00, (1932 gold was \$20.67/ounce). "This is equivalent to a grade of 0.85 oz per ton gold and recovery of 132oz of gold. Present dollar value \$171,600 based on \$1,300 per ounce gold."

In 1926 there were two claims just north of the southern boundary of McArthur Township called the Lokner claims. The same area was covered by nine claims held by A. Hubert and O. Thomas in **1959.** They reported up to 2.06 oz/ ton gold from spotty mineralization.

Lacana Mining Corporation, in **1981** held 6 claims within the present property and performed geological mapping sampling trenching and geophysics. Sampling of the main quartz vein in **1981** returned values of **0.8 oz. /ton gold and 1 oz. /ton silver** over 3 feet. The old shaft was dewatered, but before sampling could be done the Ministry of Natural Resources filled the shaft with gravel. In 1982, Lacana drilled 5 diamond drill holes totaling 1393 feet. Hole MC-1-82, drilled below the shaft mineralized material, which assayed 01oz/ton gold over 3.5 feet. There was significant sub parallel fracturing in the hole indicating that the hole may have been drilled along a fault zone thus obscuring the mineralized zone. Holes MC-2,-3,-4 and-582 were drilled to test the western extension of the shaft zone.

United Kingdom Energy Inc. in 1987 performed a reverse circulation drilling covering a portion of the property which returned several highly anomalous results. The highest value was 12,895 ppb gold on the Triple Lake property. The gold anomaly was drilled however the company became insolvent. No record of the core log was found in the Ministry files. The core was located in the Timmins core library and was re-logged and sampled by Knick Exploration Inc. Abundant quartz veining was encountered in the hole however no significant gold assays were obtained in the sample results.

In **2006**, the Precambrian Geoscience Section (PGS) of the Ontario Geological Survey (OGS) started a multi-year project of geological mapping of the Bartlett Dome as part of an ongoing project to update geological mapping in the Timmins mining camp.

The summer of **2006**, the 1:20 000 scale bedrock mapping was focused on McArthur Township. The new geological map was released April 17, 2007, map P.3585 along with the MEGATEM II Airborne survey data for the Bartlett Dome project.

The **geological map** indicated several previously unrecognized features, including a **tonalite plug** on the property. The airborne data included the EM anomalies which are now referred to as **CF-1** and **CF-2**, claims 4217113 and 4217112 respectively.

Richmond Minerals Inc. performed limited ground geophysics in the CF-1 and CF-2 areas, in **2007.**

In the early winter of **2007** a personal two hour meeting with the senior geophysicist Jean Lemieux of Fugro Geophysics, G. N. Henriksen and P. Adomaitis was conducted to explain the finer points of the new MEGATEM II airborne EM technology and its interpretation. "It is also important to remember that the GEOTEM and MEGATEM systems have a very large footprint (in the order of 400 to 500 m) and will tend to homogenize the conductive responses into a single response." This means an anomaly is accurately located however precision is lost in favour of depth of penetration.

Detailed modeling of the CF-1 airborne anomaly by the senior geophysicist Jean Lemieux of Fugro Geophysics interpreted the source as the upper part of the anomaly to be sphere like and the lower part to be plate like. This interpretation fits the VMS model.

In the winter-spring of **2008** a limited follow up diamond drill program was carried out to test various geophysical targets for gold, silver and base metals. Total drilling completed was 1,135m, 893.18m as 4 holes on CF-1 and 241.84 on CF-2.

The source of the airborne EM anomaly on CF-1 was not located by the limited drilling.

On **CF-2** in drill hole RMD-8-02 a definite zone of polymetallic mineralization was intersected at a depth of 14.53m that has a down hole width of 2.42m of 0.78% copper including 1.22m of 1.41% copper, 9.3g silver, 0.11% zinc and 249ppb gold. In the same hole, at 91.34m a sample returned 254.3g silver over 0.31m. The zone appears related to but does not represent the source of the airborne EM anomaly. The surface showing of 191ppb gold and 0.6% copper and drill hole RMD-8-02 are separated by approximately125m.

Casing was left in holes proximal to airborne EM anomalies to enable future down hole geophysical surveys to define potential drill targets.

Work Performed and Methods Used

Soil Geochemistry Sampling Survey, Prospecting, Mapping and Sampling

Between August 8, 2016 and August 15, 2016 soil geochemistry surveying, prospecting, mapping and sampling for precious and base metals was performed by Gordon N. Henriksen and Robert A. Campbell. Preliminary mapping of the claim boundaries, roads, trails, claim posts, old workings, was performed using GPS NAD 83 coordinates in conjunction with and traditional pace and compass method as well as chaining where warranted.

A chain in conjunction with a GPS control "zero point" was used in the detailed mapping in the old trench workings. The mapping, prospecting and sampling performed was concentrated in the area of claim 4217111, predominately in the west part of the claim along strike of the Hubert North showing (Conigo North showing?).

The Hubert North showing lies approximately 140m south of the southern boundary of Claim 4217111 on Claim 4217114. Previous sampling of the Hubert North showing by Knick Exploration Inc. returned values from 1.92g/t to 116.88g/t gold. Numerous old workings were located along strike of the Hubert North showing covering a strike length of 280m on Claim 4217111.

A grid small flagged grid with 25m stations was established in the northern area of the located old workings by using a GPS control "zero point" and chaining a base line at 345° for 150m. Cross lines at 50m separations and 125m long at 255° were then established by pace and compass method with GPS readings taken at the end of each line for better control. A "B"-horizon soil geochemistry survey was then performed on the cross lines with samples taken at 25m intervals. A 500m of cross line and 150m of base line totaling 650m of line was established.

Rock sample locations are plotted on the Triple Lake Project, Prospecting-Sampling, Map 1 at a scale of 1:10,000 and rock and "B"-horizon soil geochemical sample locations, outcrops, grid location, trenches, pits etc.; are plotted on the Triple Lake Project, Prospecting-Sampling, Map 2 at a scale of 1:1,000. Maps are included in the map pocket of the paper version of the report and as separate files in the digital version of the report.

A total of 18 rock samples were collected. All samples were analyzed for gold 9 of which were also analyzed for silver, copper, lead and zinc. A blank and a standard were submitted along with the rock samples for quality control. Expert Laboratory in Rouyn-Noranda, Quebec was used for rock sample analyses. Certificates of analyses are included in Appendix I of the paper version of the report and as separate files in the digital version of the report.

A total of 24 "B"-horizon soil samples were taken. The samples were delivered to the ALS laboratory in Val d'Or, Quebec for Au-ICP21 (ME-MS41L) multi-element analysis. Certificates of analyses are included in Appendix I of the paper version of the report and as separate files in the digital version of the report.

Results and Interpretation

An area of abundant old workings (trenches and pits) was located on Claim 4217111 approximately 140m north of the Hubert North showing where pprevious sampling by Knick Exploration Inc. returned values from 1.92g/t to 116.88g/t gold. The old workings located along strike of the Hubert North showing cover a strike length of 280m on Claim 4217111.

A total of 18 rock samples were taken on Claim 4217111 and analysed for gold 9 of which were also analyzed for silver, copper, lead and zinc. Seven samples returned greater than 5ppb gold. Two of the samples, numbers D-072205 and D-072219, returned 30ppb and 29ppb gold respectively. They are from the area of numerous historical workings and are considered anomalous based on the "nugget nature"-free gold mineralization in the area. Sample D-072210 from the same area returned an anomalous copper value of 1766 ppm and a gold assay of 13 ppb gold. Sample D-072218 taken from the Triple Lake Shaft showing assayed 2.33g/t gold, 5.3g/t silver and 0.19% copper re-confirming historical mineralization. Rock sample descriptions and assay result are in Table 1 below and certificates of analyses are included in Appendix I of the paper version of the report and as separate files in the digital version of the report.

			Table 1: 201	16 Triple Lake Prospecting Page 1	of 2				
Sample	NAD 83	NAD 83	Sample	Description	Au	Ag	Cu	Zn	Pb
Number	Easting	Northing	Туре		(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
D-072204	477545	5338230	grab, trench	50% sheared grey andesite, 50%	<5	0.2	85	31	22
			rubble	white quartz with 1% sulfides as					
				patches of Py & Po, 1% tourmaline					
D-072205	477506	5338303	grab, trench	sugary white quartz with 1% rose quartz,	30	0.3	137	15	17
			rubble	reacts with HCl, 3% dissem. sulfides					
D-072206	477497	5338311	grab, trench	sugary white quartz, ≤1% chlorite as	<5	0.5	128	20	19
			rubble	patches, 1% dissem. sulfides					
D-072207	477499	5338316	grab	90% quartz+carb., 10% sheared vol.,	12	0.2	105	21	15
			outcrop	vuggy-leached, 1 to 3% dissem.					
				sulfides					
D-072208	477494	5338344	grab, trench	sugary white quartz with 1% grey green	<5				
			rubble	patches, no apparent sulfides					
D-072209	477444	5338447	grab, angular	90% white quartz-glassy and hackley,	<5				
			rubble	10% intermediate volcanics, no					
				reaction with HCl, trace sulfides					
D-072210	477443	5338445	grab, 0.25m	white quartz with 10% grey green	13	0.3	1766	9	8
			boulder	patches, 3 to 4% dissem. sulfides					
				as Py, Cpy, Born., trace Malachite					
D-072211	477487	5338341	grab, trench	sugary white quartz and carb., 15% scaly	<5				
			rubble	seam of dark green chlorite, rusty stain,					
				no apparent sulfides					
D-072212	477510	5338297	grab, trench	felsic volcanic, light grey fresh surface,	<5	0.2	48	62	17
			rubble	light rusty brown weathered surface,					
				reacts with HCl, 3 to 5% fine dissem.					
				sulfides					
D-072213	477517	5338264	chip, 0.40m	sugary to glassy white quartz vein, 2%	<5				
			trench	minor interalations of stongly sheared					
				volcanics-schist, infrequent vug, no					
				reaction with HCl, strike 305°/steeplyNE					
				minor Fe staining, no apparent sulfides					

			Table 1: 201	6 Triple Lake Prospecting Page 2	of 2				
Sample	NAD 83	NAD 83	Sample	Description	Au	Ag	Cu	Zn	Pb
Number	Easting	Northing	Туре		(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
D-072214	477519	5338264	grab, trench	white to greywhite quartz, sugary to	<5				
			outcrop	glassy, no reaction with HCl, no					
				apparent sulfides					
D-072215	477975	5338566	grab, angular	90% white quartz, 10% diorite,	<5	< 0.2	34	14	11
			block	3% disseminated sulfides					
D-072216	477867	5338380	grab, 0.20m	white quartz with 5% green volcanic	15				
			boulder	fragments, angular, no reaction with HCl					
				trace sulfides, from nearby vol-diorite					
				contact area					
D-072217	477966	5338233	grab,	white quartz with green fragments,	<5	< 0.2	21	10	10
			block-float	3% sulfides at margins in chlorite,					
				trace Cpy in quartz					
D-072218	478775	5339110	grab,	white quartz vein (shaft area), 5%	2330	5.3	1904	12	25
			outcrop	sulfides as fracture filling, dissemin.,					
				patches and blebs (Py, Cpy and					
				Malachite)					
D-072219	477519	5338399	grab,	50% white quartz veinlets (sub-	29				
			outcrop	stockwork) and 50% feldspar (fine					
				grained "granite") quartz is 2 types-					
				glassy and sugary, hosted in intermed.					
				volcanics, no apparent sulfides					
D-072220	477537	5338399	grab, angular	70% intermediate volcanic, 20% quartz	7				
			rubble	veinlets with 10% feldspar veinlets,					
				trace sulfides					
D-072221	477426	5338427	grab, angular	white quartz in sheared volcanics,	<5				
			rubble	fractures react with HCl, trace sulfides					

The soil geochemistry survey was completed over and along strike of the old workings to locate anomalous metallic mineralization. A total of 24 "B"-horizon samples were taken and assayed for gold and multi-element scanned. No distinct trend is apparent in the results of the scanned samples. Of note sample TL-23 appears anomalously high in most elements relative to the other samples. The Triple Lake soil sample locations and analytical results are included in Table 2 below and certificates of analyses are included in Appendix I of the paper version of the report and as separate files in the digital version of the report.

Samples TL-4, TL-10, TL-14, TL-15, TL-21, TL-22 and TL-23 are slightly elevated in gold and are compared silver, arsenic, copper, zinc, cobalt and nickel results with color coding in Table 3: 2016 Triple Lake Soil Sample Locations and Selected Analytical Results-subjective coding.

Table 2: 2016	Triple Lake	Soil Sample	Locations and	Analytical Results

				Au-ICP21	ME-MS41L						
Sample	Grid	NAD 83	NAD 83	Au	Au	Ag	AI	As	В	Ba	Be
Number	Co-ordinates	Easting	Northing	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
TL-01	0+06N/0+11E	477546	5338398	< 0.001	0.0002	0.019	0.44	0.77	<10	13.8	0.10
TL-02	L0N/0+28W	477508	5338386	0.002	0.0003	0.036	1.53	1.91	<10	20.6	0.29
TL-03	0+03N/0+58W	477477	5338384	0.001	< 0.0002	0.048	1.50	1.79	<10	18.9	0.24
TL-04	L0N/0+83W	477451	5338379	< 0.001	0.0006	0.136	1.62	2.58	<10	15.1	0.26
TL-05	L0N/1+03W	477430	5338375	< 0.001	0.0004	0.031	0.88	1.41	<10	16.3	0.22
TL-06	L0N/1+25W	477409	5338372	0.002	0.0004	0.052	1.09	1.50	<10	19.0	0.19
TL-07	L0+50N/1+25W	477396	5338420	0.002	0.0003	0.039	1.51	2.04	<10	18.5	0.20
TL-08	L0+50N/1+00W	477423	5338425	0.001	0.0006	0.051	1.85	2.38	<10	10.1	0.33
TL-09	0+52N/0+79W	477443	5338430	-0.001	< 0.0002	0.037	1.22	1.49	<10	12.4	0.24
TL-10	0+46N/0+50W	477474	5338431	0.002	0.0023	0.051	1.35	1.07	<10	31.4	0.22
TL-11	0+49N/0+20W	477504	5338440	0.001	0.0002	0.047	0.84	0.91	<10	21.9	0.19
TL-12	0+53N/0+03W	477526	5338447	<0.001	0.0002	0.014	0.50	1.25	<10	13.3	0.11
TL-13	L1N/BL0	477515	5338486	0.002	0.0002	0.029	0.60	1.00	<10	22.0	0.14
TL-14	L1N/0+25W	477491	5338483	0.001	0.0007	0.067	0.90	1.19	<10	23.3	0.25
TL-15	L1N/0+50W	477468	5338479	0.010	0.0004	0.081	0.72	1.63	<10	22.6	0.12
TL-16	L1N/0+75W	477445	5338474	0.001	0.0002	0.052	0.91	0.66	<10	9.9	0.13
TL-17	L1N/1+00W	477422	5338470	0.001	0.0004	0.083	0.74	1.89	<10	16.6	0.16
TL-18	L1N/1+25W	477399	5338466	0.002	0.0005	0.026	1.28	1.06	<10	14.3	0.22
TL-19	L1+50N/1+25W	477397	5338511	<0.001	0.0003	0.068	1.26	1.67	<10	12.3	0.20
TL-20	L1+50N/1+00W	477415	5338515	<0.001	0.0005	0.081	1.07	3.37	<10	20.7	0.20
TL-21	L1+50N/0+75W	477436	5338520	0.001	0.0010	0.036	1.00	2.74	<10	21.5	0.19
TL-22	L1+50N/0+50W	477462	5338526	0.003	0.0007	0.134	1.41	1.73	<10	16.0	0.16
TL-23	L1+50N/0+25W	477483	5338531	0.001	0.0016	0.195	2.99	8.32	<10	64.9	1.01
TL-24	L1+50N/BL0	477504	5338535	0.001	0.0004	0.050	0.86	2.12	<10	19.2	0.16

				ME-MS41	ME-MS41L						
Sample	Grid	NAD 83	NAD 83	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
Number	Co-ordinates	Easting	Northing	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
TL-01	0+06N/0+11E	477546	5338398	0.051	0.09	0.022	16.05	1.235	13.2	0.418	3.26
TL-02	L0N/0+28W	477508	5338386	0.068	0.10	0.038	24.10	3.380	28.6	0.464	5.64
TL-03	0+03N/0+58W	477477	5338384	0.052	0.07	0.036	20.60	3.160	25.5	0.446	4.47
TL-04	L0N/0+83W	477451	5338379	0.074	0.07	0.087	17.60	3.760	33.7	0.462	9.37
TL-05	L0N/1+03W	477430	5338375	0.051	0.10	0.027	26.40	4.090	23.5	0.328	22.3
TL-06	L0N/1+25W	477409	5338372	0.057	0.10	0.053	19.85	4.450	27.7	0.492	6.54
TL-07	L0+50N/1+25W	477396	5338420	0.059	0.07	0.054	21.30	4.730	37.9	0.593	13.6
TL-08	L0+50N/1+00W	477423	5338425	0.080	0.05	0.085	15.90	2.690	37.7	0.474	7.07
TL-09	0+52N/0+79W	477443	5338430	0.037	0.11	0.024	23.50	3.980	26.9	0.383	5.22
TL-10	0+46N/0+50W	477474	5338431	0.058	0.10	0.030	18.35	5.490	28.8	0.435	10.9
TL-11	0+49N/0+20W	477504	5338440	0.070	0.11	0.037	15.40	2.100	19.3	0.474	4.9
TL-12	0+53N/0+03W	477526	5338447	0.040	0.13	0.012	28.80	2.870	20.1	0.334	8.01
TL-13	L1N/BL0	477515	5338486	0.038	0.17	0.019	26.10	4.590	53.5	0.428	7.38
TL-14	L1N/0+25W	477491	5338483	0.055	0.21	0.038	21.90	3.510	22.3	0.421	12.1
TL-15	L1N/0+50W	477468	5338479	0.112	0.06	0.063	21.20	5.240	28.2	0.587	12.7
TL-16	L1N/0+75W	477445	5338474	0.079	0.02	0.030	13.50	0.873	11.0	0.317	2.42
TL-17	L1N/1+00W	477422	5338470	0.059	0.10	0.037	31.10	3.960	25.8	0.391	10.25
TL-18	L1N/1+25W	477399	5338466	0.053	0.05	0.050	15.00	4.350	21.8	0.535	7.35
TL-19	L1+50N/1+25W	477397	5338511	0.055	0.06	0.043	14.00	2.510	22.1	0.411	2.92
TL-20	L1+50N/1+00W	477415	5338515	0.099	0.05	0.079	13.35	3.330	36.9	0.417	12.85
TL-21	L1+50N/0+75W	477436	5338520	0.105	0.06	0.108	16.65	3.590	27.5	0.712	12.25
TL-22	L1+50N/0+50W	477462	5338526	0.085	0.03	0.044	10.95	1.420	22.6	0.558	9.63
TL-23	L1+50N/0+25W	477483	5338531	0.213	0.13	0.410	44.20	28.700	63.3	0.809	29.8
TL-24	L1+50N/BL0	477504	5338535	0.068	0.08	0.050	14.80	2.690	26.9	0.516	5.79

				ME-MS41I	ME-MS41L						
Sample	Grid	NAD 83	NAD 83	Fe	Ga	Ge	Hf	Hg	In	K	La
Number	Co-ordinates	Easting	Northing	%	ppm	ppm	ppm	ppm	ppm	%	ppm
TL-01	0+06N/0+11E	477546	5338398	0.85	3.34	0.051	0.011	0.017	<0.005	0.01	6.75
TL-02	L0N/0+28W	477508	5338386	1.45	4.84	0.067	0.024	0.046	0.020	0.02	8.86
TL-03	0+03N/0+58W	477477	5338384	1.32	3.67	0.065	0.034	0.041	0.009	0.02	6.95
TL-04	L0N/0+83W	477451	5338379	1.75	4.82	0.059	0.026	0.096	0.019	0.02	6.78
TL-05	L0N/1+03W	477430	5338375	0.98	2.58	0.060	0.043	0.025	0.014	0.02	8.43
TL-06	L0N/1+25W	477409	5338372	1.15	2.73	0.047	0.040	0.035	0.010	0.02	8.06
TL-07	L0+50N/1+25W	477396	5338420	1.57	4.09	0.068	0.045	0.067	0.017	0.02	8.50
TL-08	L0+50N/1+00W	477423	5338425	2.24	6.29	0.066	0.029	0.098	0.020	0.02	6.80
TL-09	0+52N/0+79W	477443	5338430	0.99	2.46	0.061	0.029	0.032	0.007	0.02	8.87
TL-10	0+46N/0+50W	477474	5338431	1.06	2.99	0.066	0.031	0.038	0.006	0.02	8.32
TL-11	0+49N/0+20W	477504	5338440	1.04	4.52	0.070	0.010	0.039	0.007	0.02	6.58
TL-12	0+53N/0+03W	477526	5338447	0.68	1.90	0.072	0.022	0.010	< 0.005	0.01	10.75
TL-13	L1N/BL0	477515	5338486	0.79	1.87	0.068	0.022	0.014	0.005	0.02	9.74
TL-14	L1N/0+25W	477491	5338483	1.02	2.61	0.048	0.013	0.037	0.012	0.02	11.15
TL-15	L1N/0+50W	477468	5338479	1.60	4.15	0.045	0.012	0.034	0.011	0.02	8.52
TL-16	L1N/0+75W	477445	5338474	0.83	4.72	0.031	0.030	0.053	< 0.005	0.01	6.63
TL-17	L1N/1+00W	477422	5338470	1.11	2.60	0.044	0.023	0.028	0.010	0.01	9.58
TL-18	L1N/1+25W	477399	5338466	0.88	2.47	0.036	0.024	0.044	0.014	0.01	7.22
TL-19	L1+50N/1+25W	477397	5338511	1.39	4.49	0.034	0.031	0.039	0.013	0.01	5.97
TL-20	L1+50N/1+00W	477415	5338515	2.51	6.41	0.053	0.032	0.061	0.011	0.02	6.26
TL-21	L1+50N/0+75W	477436	5338520	1.66	4.99	0.052	0.012	0.044	0.020	0.02	7.69
TL-22	L1+50N/0+50W	477462	5338526	1.76	5.31	0.045	0.042	0.129	0.019	0.01	5.51
TL-23	L1+50N/0+25W	477483	5338531	4.39	7.21	0.104	0.022	0.167	0.052	0.03	13.00
TL-24	L1+50N/BL0	477504	5338535	1.63	4.00	0.044	0.014	0.038	0.017	0.02	6.79

				ME-MS41	ME-MS41L						
Sample	Grid	NAD 83	NAD 83	Li	Mg	Mn	Мо	Na	Nb	Ni	Р
Number	Co-ordinates	Easting	Northing	ppm	%	ppm	ppm	%	ppm	ppm	%
TL-01	0+06N/0+11E	477546	5338398	3.6	0.09	34.5	1.01	0.004	0.991	5.13	0.024
TL-02	L0N/0+28W	477508	5338386	6.8	0.13	52.1	0.58	0.004	1.780	12.90	0.041
TL-03	0+03N/0+58W	477477	5338384	7.3	0.14	43.9	0.41	0.003	1.620	14.25	0.031
TL-04	L0N/0+83W	477451	5338379	6.8	0.15	85.1	0.45	0.005	1.685	13.15	0.032
TL-05	L0N/1+03W	477430	5338375	6.1	0.17	51.7	0.31	0.004	1.290	16.40	0.028
TL-06	L0N/1+25W	477409	5338372	6.5	0.16	52.1	0.30	0.004	1.580	16.25	0.029
TL-07	L0+50N/1+25W	477396	5338420	8.3	0.25	81.3	0.53	0.004	1.620	19.00	0.026
TL-08	L0+50N/1+00W	477423	5338425	7.8	0.16	50.9	0.61	0.003	1.805	10.60	0.051
TL-09	0+52N/0+79W	477443	5338430	6.4	0.16	48.6	0.30	0.004	1.355	16.65	0.038
TL-10	0+46N/0+50W	477474	5338431	7.4	0.16	57.7	0.41	0.004	1.260	20.10	0.027
TL-11	0+49N/0+20W	477504	5338440	7.6	0.11	49.1	2.32	0.004	1.290	7.81	0.018
TL-12	0+53N/0+03W	477526	5338447	5.2	0.15	50.0	0.31	0.004	1.040	13.50	0.035
TL-13	L1N/BL0	477515	5338486	5.6	0.29	130.0	0.26	0.005	0.759	22.70	0.044
TL-14	L1N/0+25W	477491	5338483	6.5	0.16	107.0	0.43	0.014	0.730	13.45	0.043
TL-15	L1N/0+50W	477468	5338479	5.4	0.16	407.0	0.77	0.012	1.130	11.10	0.042
TL-16	L1N/0+75W	477445	5338474	4.7	0.04	19.7	0.39	0.012	1.085	2.92	0.015
TL-17	L1N/1+00W	477422	5338470	5.5	0.17	90.9	0.60	0.013	1.085	17.75	0.030
TL-18	L1N/1+25W	477399	5338466	6.3	0.10	61.8	0.39	0.012	0.987	9.99	0.021
TL-19	L1+50N/1+25W	477397	5338511	5.4	0.11	45.7	0.57	0.012	1.615	10.70	0.027
TL-20	L1+50N/1+00W	477415	5338515	5.8	0.18	72.0	3.90	0.011	2.030	15.45	0.023
TL-21	L1+50N/0+75W	477436	5338520	8.6	0.19	68.3	1.35	0.014	1.305	13.95	0.037
TL-22	L1+50N/0+50W	477462	5338526	7.4	0.06	41.0	1.49	0.01	1.565	5.57	0.035
TL-23	L1+50N/0+25W	477483	5338531	9.3	0.14	2790.0	2.48	0.016	2.010	32.90	0.165
TL-24	L1+50N/BL0	477504	5338535	7.5	0.14	83.7	0.64	0.012	1.215	10.55	0.041

				ME-MS41I	ME-MS41L						
Sample	Grid	NAD 83	NAD 83	Pb	Pd	Pt	Rb	Re	S	Sb	Sc
Number	Co-ordinates	Easting	Northing	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
TL-01	0+06N/0+11E	477546	5338398	3.13	<0.001	< 0.002	2.070	< 0.001	0.01	0.021	0.771
TL-02	L0N/0+28W	477508	5338386	5.30	< 0.001	< 0.002	2.430	< 0.001	0.02	0.040	2.010
TL-03	0+03N/0+58W	477477	5338384	4.99	< 0.001	< 0.002	2.460	< 0.001	0.02	0.068	1.695
TL-04	L0N/0+83W	477451	5338379	5.25	< 0.001	< 0.002	2.290	< 0.001	0.03	0.071	1.775
TL-05	L0N/1+03W	477430	5338375	3.68	<0.001	< 0.002	2.210	< 0.001	0.01	0.016	1.410
TL-06	L0N/1+25W	477409	5338372	5.10	<0.001	< 0.002	2.920	< 0.001	0.01	0.028	1.420
TL-07	L0+50N/1+25W	477396	5338420	4.69	<0.001	< 0.002	2.690	< 0.001	0.02	0.031	2.390
TL-08	L0+50N/1+00W	477423	5338425	6.09	<0.001	< 0.002	2.690	< 0.001	0.04	0.069	1.790
TL-09	0+52N/0+79W	477443	5338430	3.64	<0.001	< 0.002	2.220	< 0.001	0.01	0.018	1.615
TL-10	0+46N/0+50W	477474	5338431	3.73	<0.001	< 0.002	2.610	< 0.001	0.02	0.048	1.555
TL-11	0+49N/0+20W	477504	5338440	4.58	< 0.001	< 0.002	2.850	< 0.001	0.02	0.032	1.000
TL-12	0+53N/0+03W	477526	5338447	2.61	< 0.001	< 0.002	1.590	< 0.001	0.01	0.029	1.075
TL-13	L1N/BL0	477515	5338486	2.76	<0.001	< 0.002	2.280	< 0.001	0.01	0.025	1.255
TL-14	L1N/0+25W	477491	5338483	3.90	<0.001	< 0.002	2.530	< 0.001	0.03	0.036	1.290
TL-15	L1N/0+50W	477468	5338479	3.50	<0.001	< 0.002	3.730	< 0.001	0.02	0.054	1.325
TL-16	L1N/0+75W	477445	5338474	5.16	<0.001	< 0.002	1.605	< 0.001	0.02	0.024	1.240
TL-17	L1N/1+00W	477422	5338470	3.81	<0.001	< 0.002	2.130	< 0.001	0.02	0.022	1.295
TL-18	L1N/1+25W	477399	5338466	3.37	<0.001	< 0.002	2.490	< 0.001	0.03	0.022	1.915
TL-19	L1+50N/1+25W	477397	5338511	4.65	< 0.001	< 0.002	2.230	< 0.001	0.03	0.058	1.700
TL-20	L1+50N/1+00W	477415	5338515	6.25	< 0.001	< 0.002	2.540	< 0.001	0.03	0.075	1.500
TL-21	L1+50N/0+75W	477436	5338520	6.16	<0.001	<0.002	3.130	< 0.001	0.04	0.057	1.475
TL-22	L1+50N/0+50W	477462	5338526	7.17	<0.001	<0.002	1.985	< 0.001	0.04	0.071	1.895
TL-23	L1+50N/0+25W	477483	5338531	14.70	<0.001	<0.002	3.680	<0.001	0.08	0.133	3.490
TL-24	L1+50N/BL0	477504	5338535	4.04	<0.001	<0.002	3.250	<0.001	0.03	0.048	1.265

				ME-MS41	ME-MS41L						
Sample	Grid	NAD 83	NAD 83	Se	Sn	Sr	Та	Те	Th	Ti	TI
Number	Co-ordinates	Easting	Northing	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
TL-01	0+06N/0+11E	477546	5338398	0.2	0.29	4.66	< 0.005	<0.01	1.350	0.041	0.021
TL-02	L0N/0+28W	477508	5338386	0.4	0.35	5.66	0.035	0.01	2.290	0.060	0.032
TL-03	0+03N/0+58W	477477	5338384	0.3	0.31	4.48	0.026	0.02	1.955	0.054	0.034
TL-04	L0N/0+83W	477451	5338379	0.5	0.35	4.55	0.033	0.01	1.940	0.054	0.033
TL-05	L0N/1+03W	477430	5338375	<0.1	0.24	5.45	< 0.005	<0.01	2.250	0.046	0.031
TL-06	L0N/1+25W	477409	5338372	0.2	0.31	5.18	0.02	0.01	2.760	0.050	0.027
TL-07	L0+50N/1+25W	477396	5338420	0.3	0.35	5.42	0.025	0.01	2.570	0.065	0.036
TL-08	L0+50N/1+00W	477423	5338425	0.7	0.44	4.41	0.028	<0.01	1.480	0.067	0.031
TL-09	0+52N/0+79W	477443	5338430	0.3	0.26	5.70	0.028	0.04	1.965	0.046	0.035
TL-10	0+46N/0+50W	477474	5338431	0.3	0.32	5.88	0.009	<0.01	1.530	0.044	0.046
TL-11	0+49N/0+20W	477504	5338440	0.5	0.43	6.12	< 0.005	0.02	0.872	0.054	0.031
TL-12	0+53N/0+03W	477526	5338447	0.1	0.22	5.82	< 0.005	<0.01	3.080	0.042	0.023
TL-13	L1N/BL0	477515	5338486	0.1	0.19	7.66	< 0.005	<0.01	2.160	0.037	0.024
TL-14	L1N/0+25W	477491	5338483	0.4	0.23	8.26	< 0.005	0.05	0.712	0.030	0.036
TL-15	L1N/0+50W	477468	5338479	0.4	0.31	4.62	< 0.005	0.02	1.845	0.053	0.040
TL-16	L1N/0+75W	477445	5338474	0.4	0.44	2.79	0.011	0.01	1.635	0.038	0.024
TL-17	L1N/1+00W	477422	5338470	0.4	0.24	5.41	< 0.005	0.01	1.990	0.045	0.037
TL-18	L1N/1+25W	477399	5338466	0.4	0.25	4.26	0.014	0.02	2.140	0.033	0.023
TL-19	L1+50N/1+25W	477397	5338511	0.4	0.31	3.62	0.029	0.06	1.810	0.061	0.025
TL-20	L1+50N/1+00W	477415	5338515	0.7	0.56	4.26	< 0.005	0.04	1.740	0.095	0.033
TL-21	L1+50N/0+75W	477436	5338520	0.6	0.57	4.64	<0.005	0.04	1.255	0.057	0.040
TL-22	L1+50N/0+50W	477462	5338526	0.6	0.54	3.01	0.018	0.04	1.930	0.054	0.034
TL-23	L1+50N/0+25W	477483	5338531	1.9	0.64	8.39	0.027	0.09	1.425	0.062	0.093
TL-24	L1+50N/BL0	477504	5338535	0.4	0.29	5.15	<0.005	0.02	1.330	0.052	0.028

				ME-MS41I	ME-MS41L	ME-MS41L	ME-MS41L	ME-MS41L	ME-MS41L
Sample	Grid	NAD 83	NAD 83	U	V	W	Y	Zn	Zr
Number	Co-ordinates	Easting	Northing	ppm	ppm	ppm	ppm	ppm	ppm
TL-01	0+06N/0+11E	477546	5338398	0.323	16.0	0.064	1.585	11.0	0.34
TL-02	L0N/0+28W	477508	5338386	0.421	25.3	0.109	3.260	12.1	1.02
TL-03	0+03N/0+58W	477477	5338384	0.354	20.6	0.085	2.330	22.3	0.94
TL-04	L0N/0+83W	477451	5338379	0.346	28.1	0.094	2.130	22.3	1.15
TL-05	L0N/1+03W	477430	5338375	0.337	17.6	0.269	3.310	11.8	1.37
TL-06	L0N/1+25W	477409	5338372	0.342	19.7	0.088	2.630	16.5	1.23
TL-07	L0+50N/1+25W	477396	5338420	0.369	28.0	0.106	3.020	19.5	1.72
TL-08	L0+50N/1+00W	477423	5338425	0.420	35.5	0.133	1.925	15.8	0.85
TL-09	0+52N/0+79W	477443	5338430	0.360	18.1	0.116	3.070	15.4	0.71
TL-10	0+46N/0+50W	477474	5338431	0.348	18.0	0.073	2.730	15.3	0.78
TL-11	0+49N/0+20W	477504	5338440	0.326	21.1	0.099	1.835	13.8	0.43
TL-12	0+53N/0+03W	477526	5338447	0.467	12.8	0.052	3.220	9.8	0.78
TL-13	L1N/BL0	477515	5338486	0.395	15.9	0.039	3.590	14.3	0.70
TL-14	L1N/0+25W	477491	5338483	0.541	18.9	0.074	3.340	15.9	0.39
TL-15	L1N/0+50W	477468	5338479	0.350	28.0	0.085	1.450	17.5	0.49
TL-16	L1N/0+75W	477445	5338474	0.257	18.0	0.048	1.200	9.4	0.73
TL-17	L1N/1+00W	477422	5338470	0.410	18.0	0.068	3.060	15.0	0.72
TL-18	L1N/1+25W	477399	5338466	0.289	15.5	0.064	1.565	14.9	0.98
TL-19	L1+50N/1+25W	477397	5338511	0.295	24.8	0.076	1.760	10.0	1.06
TL-20	L1+50N/1+00W	477415	5338515	0.304	44.9	0.138	1.470	18.5	1.14
TL-21	L1+50N/0+75W	477436	5338520	0.423	25.8	0.293	1.895	25.9	0.54
TL-22	L1+50N/0+50W	477462	5338526	0.261	32.8	0.293	1.125	14.9	1.30
TL-23	L1+50N/0+25W	477483	5338531	0.837	56.3	0.215	5.870	60.9	0.72
TL-24	L1+50N/BL0	477504	5338535	0.304	25.9	0.077	1.415	21.1	0.43

				Au-ICP21	ME-MS41L	ME-MS41L	ME-MS41L	ME-MS41L	ME-MS41L	ME-MS41L	ME-MS41L
Sample	Grid	NAD 83	NAD 83	Au	Au	Ag	As	Cu	Zn	Со	Ni
Number	Co-ordinates	Easting	Northing	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
TL-01	0+06N/0+11E	477546	5338398	< 0.001	0.0002	0.019	0.77	3.26	11.0	1.235	5.13
TL-02	L0N/0+28W	477508	5338386	0.002	0.0003	0.036	1.91	5.64	12.1	3.380	12.90
TL-03	0+03N/0+58W	477477	5338384	0.001	< 0.0002	0.048	1.79	4.47	22.3	3.160	14.25
TL-04	L0N/0+83W	477451	5338379	<0.001	0.0006	0.136	2.58	9.37	22.3	3.760	13.15
TL-05	L0N/1+03W	477430	5338375	<0.001	0.0004	0.031	1.41	22.3	11.8	4.090	16.40
TL-06	L0N/1+25W	477409	5338372	0.002	0.0004	0.052	1.50	6.54	16.5	4.450	16.25
TL-07	L0+50N/1+25W	477396	5338420	0.002	0.0003	0.039	2.04	13.6	19.5	4.730	19.00
TL-08	L0+50N/1+00W	477423	5338425	0.001	0.0006	0.051	2.38	7.07	15.8	2.690	10.60
TL-09	0+52N/0+79W	477443	5338430	<0.001	< 0.0002	0.037	1.49	5.22	15.4	3.980	16.65
TL-10	0+46N/0+50W	477474	5338431	0.002	0.0023	0.051	1.07	10.9	15.3	5.490	20.10
TL-11	0+49N/0+20W	477504	5338440	0.001	0.0002	0.047	0.91	4.9	13.8	2.100	7.81
TL-12	0+53N/0+03W	477526	5338447	<0.001	0.0002	0.014	1.25	8.01	9.8	2.870	13.50
TL-13	L1N/BL0	477515	5338486	0.002	0.0002	0.029	1.00	7.38	14.3	4.590	22.70
TL-14	L1N/0+25W	477491	5338483	0.001	0.0007	0.067	1.19	12.1	15.9	3.510	13.45
TL-15	L1N/0+50W	477468	5338479	0.010	0.0004	0.081	1.63	12.7	17.5	5.240	11.10
TL-16	L1N/0+75W	477445	5338474	0.001	0.0002	0.052	0.66	2.42	9.4	0.873	2.92
TL-17	L1N/1+00W	477422	5338470	0.001	0.0004	0.083	1.89	10.25	15.0	3.960	17.75
TL-18	L1N/1+25W	477399	5338466	0.002	0.0005	0.026	1.06	7.35	14.9	4.350	9.99
TL-19	L1+50N/1+25W	477397	5338511	<0.001	0.0003	0.068	1.67	2.92	10.0	2.510	10.70
TL-20	L1+50N/1+00W	477415	5338515	<0.001	0.0005	0.081	3.37	12.85	18.5	3.330	15.45
TL-21	L1+50N/0+75W	477436	5338520	0.001	0.0010	0.036	2.74	12.25	25.9	3.590	13.95
TL-22	L1+50N/0+50W	477462	5338526	0.003	0.0007	0.134	1.73	9.63	14.9	1.420	5.57
TL-23	L1+50N/0+25W	477483	5338531	0.001	0.0016	0.195	8.32	29.8	60.9	28.700	32.90
TL-24	L1+50N/BL0	477504	5338535	0.001	0.0004	0.050	2.12	5.79	21.1	2.690	10.55
subjective	coding:										
	relative-highest		medium		lowest highs						

 Table 3: 2016 Triple Lake Soil Sample Locations and Selected Analytical Resultssubjective coding

Rock sample locations are plotted on the Triple Lake Project, Prospecting-Sampling, Map 1 at a scale of 1:10,000 and rock and "B"-horizon soil geochemical sample locations, outcrops, grid location, trenches, pits etc.; are plotted on the Triple Lake Project, Prospecting-Sampling, Map 2 at a scale of 1:1,000. Maps are included in the map pocket of the paper version of the report and as separate files in the digital version of the report.

Conclusions and Recommendations

The soil geochemistry surveying, prospecting, mapping and sampling for precious and base metals performed on claim 421711 of the Triple Lake Property was successful in locating historical workings, quartz veining, shear zones, anomalous mineralization as well as claim posts, claim lines. An area of abundant old workings (trenches and pits) was located on Claim 4217111 approximately 140m north of the Hubert North showing where previous sampling by Knick Exploration Inc. returned values from 1.92g/t to 116.88g/t gold. The old workings located along strike of the Hubert North showing cover a strike length of 280m on Claim 4217111. Of 18 rock samples analysed for gold, 9 of which were also analyzed for silver, copper, lead and zinc, seven samples returned greater than 5ppb gold. Two of the samples, numbers D-072205 and D-072219, returned 30ppb and 29ppb gold respectively. They are from the area of historical workings and are considered anomalous based on the "nugget nature"- gold mineralization noted elsewhere on the property. Sample D-072210 from the same area returned an anomalous copper value of 1766 ppm and a gold assay of 13 ppb gold. Sample D-072218 taken from the Triple Lake Shaft showing assayed 2.33g/t gold, 5.3g/t silver and 0.19% copper re-confirming historical mineralization.

The soil geochemistry survey was completed over and along strike of the old workings to locate anomalous metallic mineralization. From the 24 "B"-horizon samples taken and assayed for gold and multi-element scanned no distinct trend is apparent in the results of the scanned samples. Of note sample TL-23 appears anomalously high in most elements relative to the other samples. Samples TL-4, TL-10, TL-14, TL-15, TL-21, TL-22 and TL-23 are slightly elevated in gold and are compared silver, arsenic, copper, zinc, cobalt and nickel results with color coding in Table 3.

Further work is warranted on the property. Taking in the nature of the "nugget" gold mineralization noted on the property, a program of mechanical stripping in the area of abundant old workings to properly expose the veining and sheared host rock and systematically channel sample the exposures of gold is recommend.

Respectively submitted,

Gordon Henriksen P.Geo Knick Exploration Inc. V.P.

October 10, 2016

References

NI 43-101 Technical Report-Triple Lake Property, Eastern Ontario, Timmins Area, Timmins Mining Camp, March 2 2011, Knick Exploration Inc., by Donald Théberge, P. Eng., M.B.A. Report on the Diamond Drill Program on the CF-1 and CF-2 Properties of the Triple Lake Project, Bartlett and Musgrove Townships, Ontario, NTS 42A3, Sept. 22, 2008, by G. Henriksen P. Geo., for Richmond Minerals Inc. Report on the Ground Total Field Magnetic, VLF-Electromagnetic and Horizontal Loop Electromagnetic Surveys and Sampling, CF-2 Property, Bartlett and Musgrove Townships, Ontario, NTS 42A3, Jan. 29, 2008, by G. Henriksen P. Geo., for Richmond Minerals Inc. Report on the Ground Total Field Magnetic, VLF-Electromagnetic and Horizontal Loop Electromagnetic Surveys and Sampling, CF-1 Property, Bartlett and Musgrove Townships, Ontario, NTS 42A3, Jan. 29, 2008, by G. Henriksen P. Geo., for Richmond Minerals Inc., Airborne Magnetic and Electromagnetic Survey, Bartlett Dome Area, April 17, 2007 OGS/GSC: Block 1 (42A03) Scale 1:50.000 Maps 81982 to 81985 81982/OF5512 to8198/OF5515 Scale 1:20,000 Maps 81989/OF5519 81991/OF5521 OGS Data Set # 1057 Magnetic and Electromagnetic Data Grid and Profile Data (ASCII and Geosoft Formats) and Vector Data Precambrian Geology of McArthur Township, April 17, 2007 by M.G. Houlé, Scale 1:20,000 Map P.3583 Moneta Porcupine Mines Inc., Press release, August 13, 1996 Falconbridge Ltd. Metallurgical Technology, Inter-office memo, January 24, 1992 From J.D. Scott to M.Y. Houle, subject: Mineralogy and petrology of a mineralized shear in DDH F-21 Moneta- Fripp property Report on the Overburden Drilling on the Triple Lake property in McArthur Township, Porcupine Mining Division, February 15, 1987 for United Kingdom Energy Inc. by William E. MacRare Geophysical Report, McArthur Township, Exics Exploration Ltd, October 27, 1985 by J.S., Grant for R. Lavoie O.D.M. Geological Compilation Series, Timmins-Kirkland Lake Sheet, Map No. 2205, Cochrane Sudbury and Timiskaming Districts, 1973 by D.R. Pyke, L. D. Ayres and D. G. Innes

Gordon N. Henriksen 877 Riverside Drive, Wakefield, Quebec Tel: (819) 459-2600 Cell: (819) 210-1406

CERTIFICATE of AUTHOR

I, Gordon N. Henriksen, P. Geo., do hereby certify that:

- 1. I am currently employed as an independent consulting geologist.
- 2. I graduated with a degree, BSc, Specialization Geology from Concordia University in 1986.
- 3. I am a Professional Geologist registered in the Province of Quebec (RN #451) with the Order of Professional Geologists of Quebec.
- 4. I have held an Ontario Prospectors permit for +25 years.
- 5. I have been employed in my profession for a total of 30 years by various mining companies since graduation and have worked extensively in exploration in Quebec, Ontario, Labrador, B.C., Mexico and Alaska.
- 6. I have read the definition of "qualified person" set out in the National Instrument 43-101 (NI 43-101) and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purpose of NI 43-101.
- 7. I have had prior involvement with the property that is the subject of this report.
- 8. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical report, the omission to disclose which makes the Technical Report misleading.
- 9. I currently hold 1,238,315 free trading shares of Knick Exploration Inc.
- 10. I have not done an extensive review of all available government files on the history of this property as this is a general assessment report of the work completed between August 8, 2016 and August 15, 2016.

Dated this 10th Day of October 10, 2016

Igerdon MA

Gordon N. Henriksen, P. Geo.

APPENDIX I

Certificates of Analysis

(Rock and Geochemical "B"-horizon Samples)

Laboratoire Expert Inc.

127, Boulevard Industriel Rouyn-Noranda, Québec Canada, J9X 6P2 Telephone : (819) 762-7100, Fax : (819) 762-7510

D-072217

D-072218

D-072219

D-072220

D-072221

<5

2136

29

7

<5

Client	: Knick Exploration									
Addressee	Gordon Henriksen			Folder	÷ 4585	3				
	536, 3rd Avenue			Your order number :						
	Vald'Or	Telephone : (819) 874-5252		Project : TRIPLE LAKE						
	Québec J9P 1S4		: (819) 874-5258	Total num	ber of samples :	18				
Designation	Au FA-GEO ppb 5	Au-Dup FA-GEO ppb 5	Au FA-GRAV g/t 0.03	Ag AAT-7 ppm 0.2	Ag-Dup AAT-7 ppm 0.2	Cu AAT-7 ppm 2	Cu-Dup AAT-7 ppm 2	Zn AAT-7 ppm 2		
0-072204	<5	7		0.2	0.2	85	84	31		
0-072205	30			0.3		137		15		
-072206	<5			0.5		128		20		
Blk-01	<5									
0-072207	12			0.2		105		21		
-072208	<5									
0-072209	<5									
E68-01	603									
D-072210	13			0.3		1766		9		
D-072211	<5									
0-072212	<5			0.2		48		62		
0-072213	<5									
0-072214	<5									
0-072215	<5			<0.2		34		14		
D-072216	15	11								

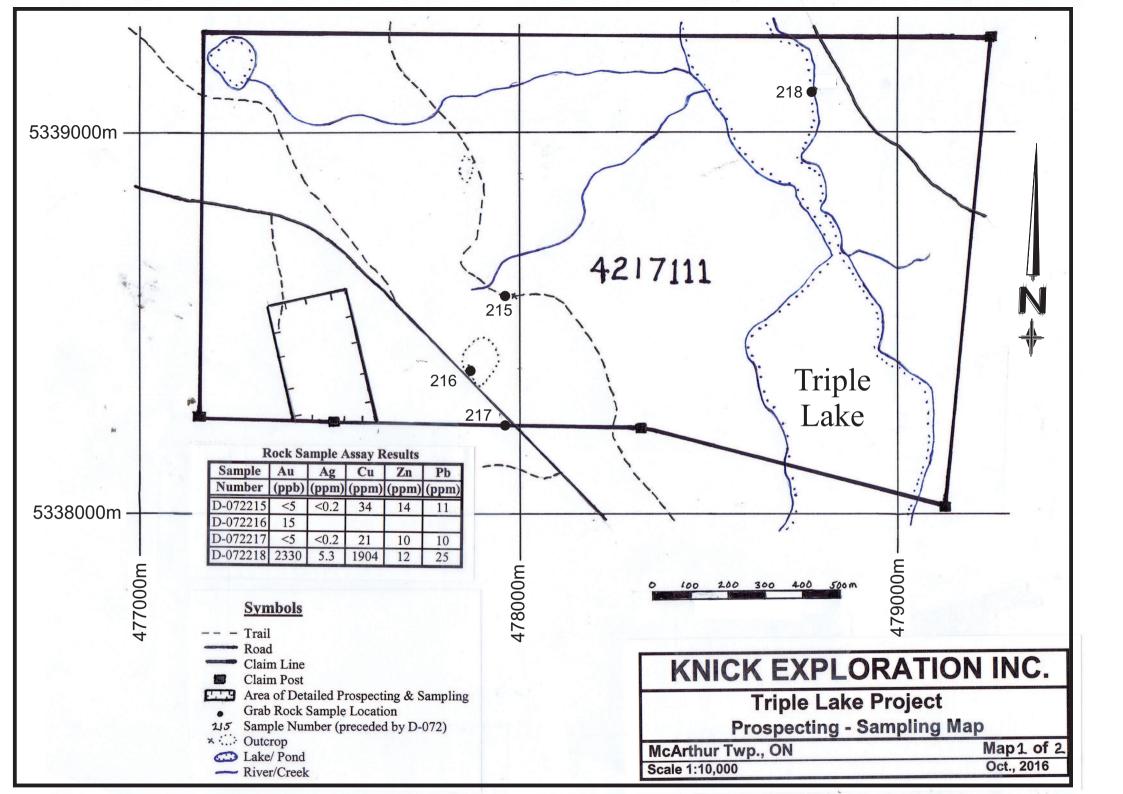
< 0.2

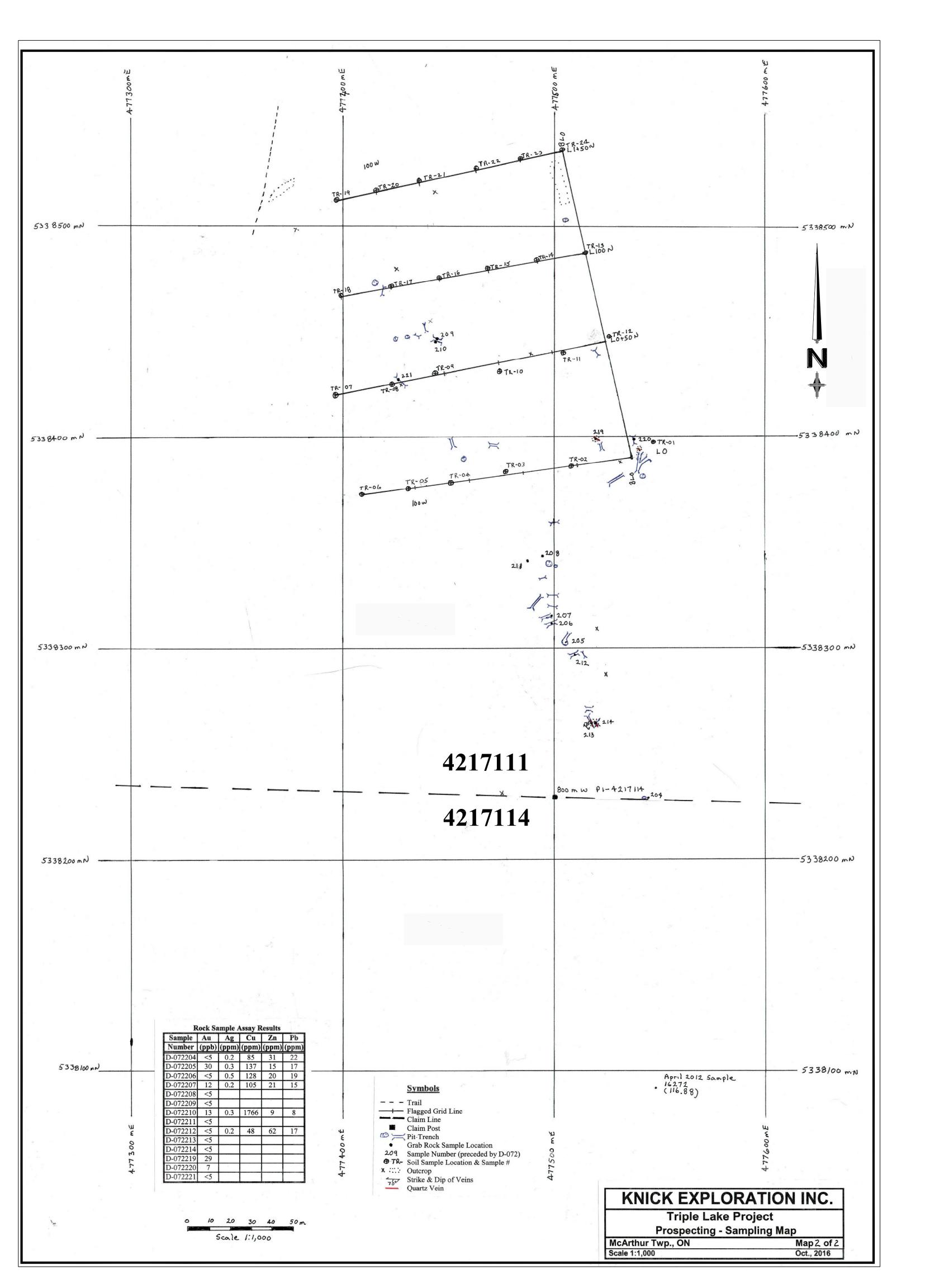
5.3

2.33

21

1904


10


12

Date : 2016/08/25

Laboratoire Expert Inc. 127, Boulevard Industriel Rouyn-Noranda, Québec Canada, J9X 6P2 Telephone : (819) 762-7100, Fax : (819) 762-7510 Client Knick Exploration

Client	: Knick Exploration		
Addressee	: Gordon Henriksen 536, 3rd Avenue		
	Vald'Or Québec		: (819) 874-5252
	J9P 1S4 Zn-Dup AAT-7	Fax Pb AAT-7	Pb-Dup
Designation	2	AA1-7 ppm 2	AAT-7 ppm 2
0-072204	33	22	23
0-072205 0-072206		17 19	
lk-01			
0-072207		15	
D-072208 D-072209			
E68-01		0	
D-072210 D-072211		8	
D-072212		17	
D-072213 D-072214			
D-072215		11	
D-072216 D-072217		10	
D-072217 D-072218		25	
D-072219 D-072220			
D-072220 D-072221			

