We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.



# 2016 PROSPECTING, CHANNEL SAMPLING AND SOIL SAMPLING ON THE BAG LAKE PORTION OF THE FLINT NORTH PROPERTY, KENORA MINING DIVISION, NORTHWESTERN ONTARIO

NTS MAP SHEET 52F/05SW



# TABLE OF CONTENTS

|                                                          | I                                                                                                                                                                                                                                                | PAGE |                                         |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------|
| 1.0                                                      | INTRODUCTION                                                                                                                                                                                                                                     | 1    |                                         |
| 2.0                                                      | TERMS OF REFERENCE                                                                                                                                                                                                                               | 1    |                                         |
| 3.0                                                      | LOCATION AND ACCESS                                                                                                                                                                                                                              | 1    |                                         |
| 4.0                                                      | CLAIM HOLDINGS AND PROPERTY DISPOSITION                                                                                                                                                                                                          | 1    |                                         |
| 5.0                                                      | REGIONAL GEOLOGY                                                                                                                                                                                                                                 | 3    |                                         |
| 6.0                                                      | PROPERTY GEOLOGY                                                                                                                                                                                                                                 | 5    |                                         |
| 7.0                                                      | EXPLORATION HISTORY                                                                                                                                                                                                                              | 7    |                                         |
| 8.0                                                      | CURRENT PROGRAM                                                                                                                                                                                                                                  | 14   |                                         |
| 9.0                                                      | CONCLUSIONS AND RECOMMENDATIONS                                                                                                                                                                                                                  | 16   |                                         |
| 10.0                                                     | REFERENCES                                                                                                                                                                                                                                       | 19   |                                         |
| 11.0                                                     | STATEMENT OF QUALIFICATIONS                                                                                                                                                                                                                      | 20   |                                         |
|                                                          | List of Tables                                                                                                                                                                                                                                   |      |                                         |
| Table                                                    | 1 – Flint North Land Tenure Data                                                                                                                                                                                                                 |      | 2                                       |
|                                                          | List of Figures                                                                                                                                                                                                                                  |      |                                         |
| Figure<br>Figure<br>Figure<br>Figure<br>Figure<br>Figure | 1 – Regional Location Map 2 – Flint North Project Claim Groups Map 3 – Regional Geology Map 4 – Property Geology Map 5 – Bag Lake Claim Geology Map 6 – Work Area Map 7 – Jenson Area Sample Location Map 8 - Carbonate Area Sample Location Map |      | 2<br>3<br>5<br>6<br>7<br>15<br>17<br>18 |
|                                                          | List of Appendices                                                                                                                                                                                                                               |      |                                         |
|                                                          | dix II Personnel Involved with Prospecting Program Laboratory Certificates of Analysis dix IV Expenditures                                                                                                                                       |      |                                         |

#### 1.0 INTRODUCTION

During the period of September 19<sup>th</sup> to September 23<sup>rd</sup>, 2016, Metals Creek Resources (MEK) personnel conducted some manual stripping and subsequent channel sampling on the area of the Jenson-Johnson gold occurrence. Prospecting and soil sampling within the Bag Lake claim block was also initiated and collectively 50 rock samples and 25 soil samples were collected and analyzed for gold. The highest grade grab sample returned 10.59g/t gold and channeling returned 3.79g/t gold over 2.0m. The soil sampling resulted in a single sample anomaly on each line that requires follow-up. The Bag Lake claim group consists of 5 unpatented mining claims totaling 62 units, currently registered to and under an option/JV agreement with Endurance Gold Corp (EDG). The claims are located southeast of Sioux Narrows within the Kenora Mining District in Northwestern Ontario.

# 2.0 TERMS OF REFERENCE

Map projections are in UTM, North American Datum 83, Zone 15 and all referenced UTM coordinates are in this project unless stated otherwise. Contractions are "mm" = millimeter, "cm" = centimeter, "m" = meters, "km" = kilometers, "g" = gram, "kg" = kilogram, "in" = inch, "ft" = foot, "lb" = pound, "oz" = troy ounce, "oz/ton" = troy ounce per short ton, "g/t" is grams per metric tonne, and "ddh" = diamond drill hole.

# 3.0 LOCATION AND ACCESS

The Bag Lake claims are part of a collection of claim groups referred to as the 'Flint North Project' and is located within the Kenora Mining District in Northwestern Ontario, within the Dogpaw Lake Area. The claim groups are located within the NTS Map Sheet 52F/05SW as well as portions of 52F/05SE. The Bag Lake claims are located approximately 55 km southeast of the town of Kenora and centered at UTM (NAD83 Zone 15) 430,600mE and 5,464,000mN (Figures 1 & 2).

These claims can be accessed by pick-up truck by turning off of Highway onto the Cameron Lake Road. The all-season Cameron Lake road runs east from Highway 71 through the northern portion of the Bag Lake claim group allowing access to numerous forestry roads that branch both north and south into the claim group. All-terrain vehicle is best utilized on the forestry roads and trails and re-vegetation and soft conditions hinder pick-up access.

#### 4.0 CLAIM HOLDINGS AND PROPERTY DISPOSITION

The Bag Lake claims consist of 5 unpatented, staked claims, totaling 64 units and are part of the Flint North Project that consists of 10 mining claims totaling 115 units (Table 1, and Figure 2). The size and scale of the property was significantly scaled back since February 2016 to its current state. The claims are registered to and under an option/JV agreement with Endurance Gold Corporation. The work in this report focused only on the Bag Lake claims.

Table 1: Flint North Land Tenure Data

| Claim #        | Units | Recorded Owner                    | Recorded    | Expiry      |
|----------------|-------|-----------------------------------|-------------|-------------|
| 1221374        | 4     | Endurance Gold Corporation        | 2001-Sep-26 | 2016-Sep-26 |
| <u>3001238</u> | 9     | Endurance Gold Corporation        | 2002-Jul-02 | 2017-Jul-02 |
| 3001239        | 16    | Endurance Gold Corporation        | 2002-Jul-02 | 2017-Jul-02 |
| 3001241        | 16    | Endurance Gold Corporation        | 2002-Jul-02 | 2017-Jul-02 |
| <u>3003433</u> | 16    | Endurance Gold Corporation        | 2002-Sep-03 | 2016-Sep-03 |
| 3003583        | 10    | <b>Endurance Gold Corporation</b> | 2003-Apr-22 | 2017-Apr-22 |
| 3003672        | 8     | Endurance Gold Corporation        | 2002-Oct-15 | 2017-Oct-15 |
| <u>3010495</u> | 16    | <b>Endurance Gold Corporation</b> | 2002-Oct-15 | 2016-Oct-15 |
| <u>3010496</u> | 16    | <b>Endurance Gold Corporation</b> | 2002-Oct-15 | 2016-Oct-15 |
| <u>3012203</u> | 4     | Endurance Gold Corporation        | 2003-Apr-22 | 2017-Apr-22 |

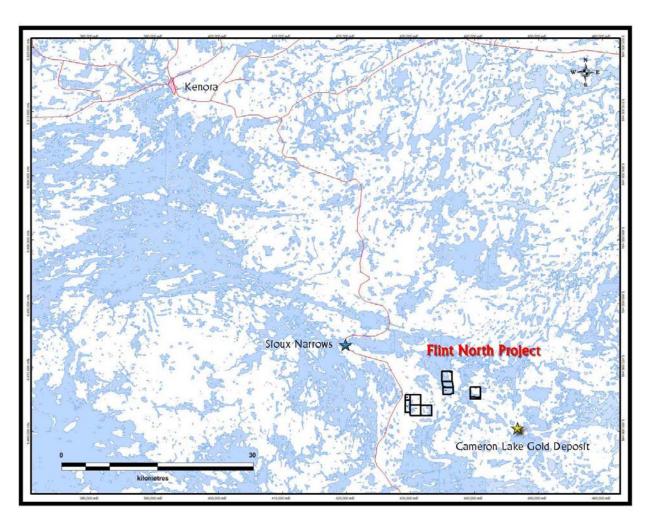



Figure 1: Regional Location Map

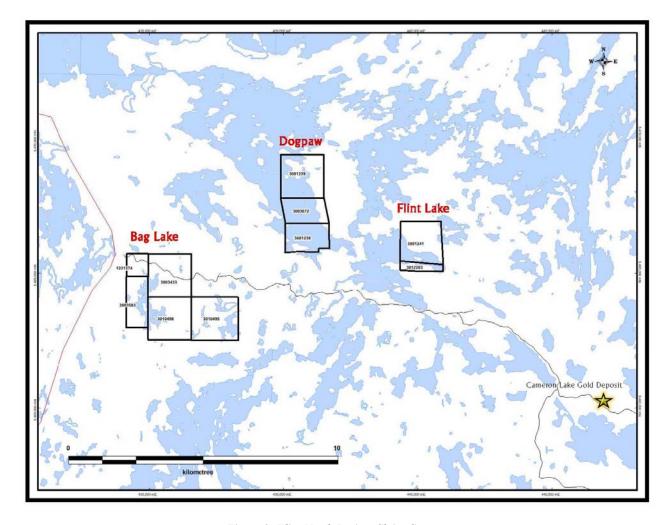



Figure 2: Flint North Project Claim GroupS

#### 5.0 REGIONAL GEOLOGY

Metals Creek Resources' Flint North Project lies within the Archean Superior Craton aged 2.6-2.9 billion years as well as within the central portion of the east-west trending Wabigoon Subprovince.

The Superior Province is subdivided into subprovinces characterized by four combinations of distinctive rock types: volcano-plutonic; metasedimentary; gneissic or plutonic; and high-grade gneiss. The Wabigoon Subprovince is characterized by greenschist facies metamorphic greenstone belts consisting of metavolcanic rocks as well as sedimentary rocks, surrounded and intruded by felsic plutonic rocks.

The Wabigoon Subprovince has been further broken down (informally) by Blackburn et al (1991), into three regions: a Western, a Central and an Eastern Region. The Flint Lake Property lies within the Western Wabigoon region, "a series of interconnected greenstone belts surrounding large elliptical granitoid batholiths.....Volcanic sequences comprise ultramafic (komatiitic), through mafic (tholeiitic, calc-alkalic, and minor alkalic and

komatiitic) types, to felsic (mostly calc-alkalic) rocks. Sedimentary sequences are mostly clastic rocks of alluvial fan-fluvial, resedimented (turbidite) and rare platformal facies. Minor chemical metasedimentary rocks are predominantly oxide iron formation." As well as granitoid batholiths, "Numerous smaller post-tectonic granitoid stocks intrude the greenstone belts. Mafic to ultramafic sills and stocks are marginal to batholiths or intrude the metavolcanic sequences." (Blackburn et al 1991, p. 305).

The Flint Lake Property overlies a significant portion of the Kakagi-Rowan Lakes Greenstone Belt. The belt is divided in two by the northwest-trending Pipestone-Cameron Deformation Zone. Although rock types and sequences on either side are similar, no unequivocal stratigraphic correlations have been made across the fault zone.

Southeast of the deformation zone, the correlative Snake Bay and Katimiagamak Lake Groups are the lowermost units. They face towards the centre of the belt, and are composed of mafic volcanic flows intruded by mafic sills. They are overlain by a thick, predominantly pyroclastic, volcanic sequence of mixed chemical composition varying from mafic through felsic, but predominantly intermediate. At their southeastern end they pass into sedimentary rocks (Thompson Bay sediments). This Kakagi Lake Group is in turn intruded by differentiated ultramafic (peridotite and pyroxenite) to mafic (gabbro) sills, called the Kakagi Sills.

Northeast of the Pipestone-Cameron Fault, the correlative Rowan Lake Volcanics and Populus Lake Volcanics are the lowermost, mafic units. They are folded about a northeast-trending anticline at Rowan Lake, and overlain on their south limb by the Cameron Lake Volcanics. The latter sequence is of mixed chemical composition, similar to the Kakagi Lake Group, but not necessarily correlative across the Pipestone-Cameron Fault. The Cameron Lake Volcanics are in turn overlain by the Brooks Lake Volcanics - an upper mafic sequence.

A number of late, post-tectonic stocks intrude the greenstone belts on either side of the Pipestone-Cameron Fault. These include from north to south, the Flora Lake, Nolan Lake, Stephen Lake, Phinney, and Dash Lakes Stocks.

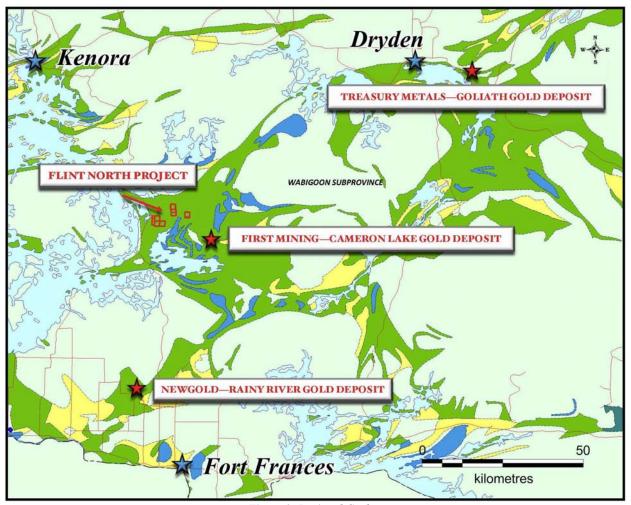



Figure 3: Regional Geology

#### 6.0 PROPERTY GEOLOGY

The Flint North Project claim groups are underlain by Rowan Lake and Snake Bay volcanics that are divided by the regional Pipestone-Cameron Fault.

The Bag Lake claims are underlain by Snake Bay volcanics that consist heavily of pillowed basalts with irregular bodies of gabbro to pyroxenite that appear intrusive in origin. The pillows are locally sheared with associated carbonate alteration and weak quartz veining. The pillows generally show good preservation over most of the claim group. Felsic intrusive dikes commonly cut the volcanics in a north-northwest fashion carrying anomalous gold values. Gold occurrences on the claim group are hosted within different environments: Knapp occurrence within sheared felsic intrusives, the Jenson-Johnson within a silicified gabbro, Bag South occurrence is quartz vein hosted within a diorite plug and the Cliff Zone is shear quartz/carbonate hosted. The mineralization to date on the claims tend to have orientations ranging from 120 to 140 degrees which tends to follow the regional fabric of the area.

The Flint Lake claim group is underlain by the Rowan Lake volcanic assemblage and consists mainly of mafic pillowed basalts with minor intermediate volcanics. Due to the relative close proximity to the regional Pipestone-Cameron Fault, numerous well developed shear zones with strong carbonate-chlorite and sericite alteration and locally host auriferous quartz veins like the deformation zone hosting the Flint Mine quartz vein. The shear zones generally conform the orientation of the Pipestone-Cameron Fault in a northwest-southeast fashion.

On the south shoreline of present Flint Lake claims are late intrusive dikes of granodioritic composition that are oriented in a north-south orientation and in the order of a 2-4m in width.

The Dogpaw claim group straddles the Pipestone-Cameron Fault encompassing both Rowan Lake volcanics to the north and Snake Bay volcanics to the south. Common within the claim group are pillowed basalts, and felsic to intermediate flows. Numerous well developed shear zones exist exhibiting variable carbonate, chlorite and sericite alteration; locally hosting quartz veining and pyrite mineralization. Many of the shear zones are likely splays off of the Pipestone-Cameron Lake fault and have significant implications for gold mineralization.

A variety of felsic intrusions occur within the volcanic sequence, both as dikes and sills. They have been described as quartz porphyry, feldspar porphyry and quartz-feldspar porphyry and are interpreted to predate the Stephen Lake Stock (Davies and Morin 1976a).

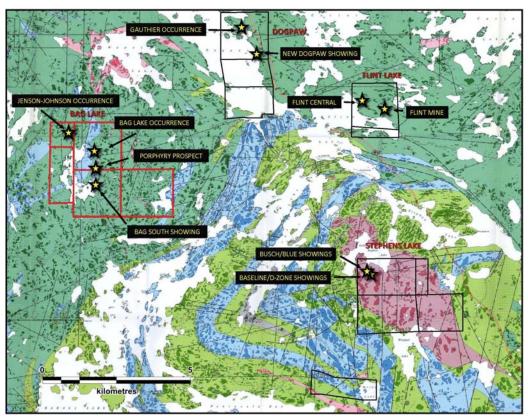



Figure 4: Property Geology Map

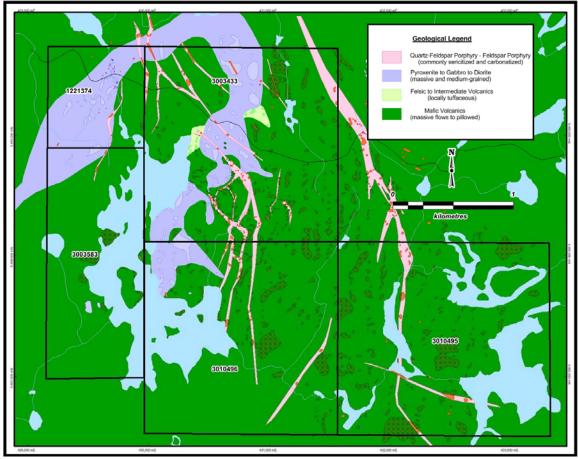



Figure 5: Bag Lake Claims Geology Map

# 7.0 EXPLORATION HISTORY

# **Property History**

The following property history has been compiled largely by Des Cullen P. Geo, 2007.

**1944: E.M. Robertson and Company** Gold mineralization was reported and diamond drilling was done on one of these groups of claims.

**1944:** Frobisher Exploration Company Ltd. Prospecting and drilling of 51 holes totaling (2344 ft total) on the discovery vein. Mostly trace amounts of gold over narrow widths were reported on assay: one high assay of 3.13 ounces gold per ton was reported over 1.8 feet.

**1944-5:** Harry Silverman and Albert Gauthier jointly held a group of claims at Dogpaw Lake, the major portions of which are included in parts of NAUC claims 3001239 and 4213379. Most of the work was done at two places, one on the west side of a small bay on the northeast shore of Dogpaw Lake (now known as the Gauthier Occurrence), and the other on the east side of the same bay. Sylvanite Gold Mines Ltd. optioned the property in 1944. Numerous carbonatized zones that were interpreted to

strike in various directions were outlined, sampled and assayed, and values ranging from trace amounts to 2.40 ounces gold per ton from a grab sample were obtained.

- **1960-2:** Noranda Mines Ltd. Geological mapping and drilling as follow-up to airborne geophysical survey. Six holes were drilled (1594 ft total).
- **1961: Selco Exploration Company Ltd.** geologically mapped a group of claims north of Bag Lake, parts of which are included in NAUC claims 1221374 and 3003583. The claims were optioned from W.A. Johnston and associates and have come to be known as the Jenson-Johnston Prospect. Diamond drilling of 7 holes (1637 ft total). Grab samples taken prior to the drilling at the main occurrence assayed from trace to 0.50 ounces gold per ton, and the highest value obtained from drill core was 0.23 ounces gold per ton over a 2.5 ft core length.
- **1973-4:** Chester Kuryliw did geological mapping and ground magnetic surveys over each of two of his claim groups, one at Dogpaw Lake, the other at Caviar and Flint Lakes.
- **1975:** Hudson Bay Exploration and Development Company Ltd. conducted an airborne electromagnetic survey directed at base metals at Stephen Lake area.
- **1980:** Gulf Minerals Canada Ltd. diamond drilled 9 holes (1058m total) in exploration for gold at the Knapp Prospect at the north end of Bag Lake.
- **1980:** Noranda Mines Ltd. did ground magnetometer and IP surveys and geological mapping on their claim group between Flint and Corbett Lakes.
- **1981: Noranda Mines Ltd.** completed ground magnetometer and IP survey over the Martin option generating several targets. The targets were drilled in a 7 diamond drillhole program. All drill holes were very short, under 100 feet, and intersected several quartz veins and zones of intense silicification. No assay results are listed.
- **1983: Rio Canex Inc.** diamond drilled 3 holes at the north end of Weisner Lake on the same zone that had been previously tested for base metals by Noranda (1960-2) and Goldray (1971, 1975). However, these 3 holes were considerably longer (1849m or 6066 ft total).
- **1983:** Southwind Resources Explorations Ltd. (551970 Ontario Ltd.) conducted ground magnetic and electromagnetic surveys on a claim group east of Weisner Lake, all but the eastern portion of which encompasses parts of NAUC claim 3011344.
- **1983-4: FTM Resources Inc.** did magnetic and VLF electromagnetic surveys, a geological survey, stripping and trenching, sampling for assay and soil sampling, all over a claim group that straddled Dogpaw Lake and included the Gauthier Occurrence on the east shore. Assays of 1762ppb gold and 1913ppb gold were obtained from one of the

new zones, and 0.686 and 0.275 ounces gold per ton from the older Gauthier Occurrence zone.

- **1983, 86: FGM Management and Gold Corporation** sampled for gold on a group of claims at Dogpaw Lake that include parts or all of NAUC claim 3001239. These incorporate the Gauthier Occurrence, previously investigated by FTM Resources Ltd. in 1983-1984. No sample location map is available in the Assessment Files; however, assays above 1 ounce gold per ton were obtained from 4 samples, including one of 3.95 ounce gold per ton from a quartz vein. Three holes were diamond drilled (699 ft total), all to intersect a northwest-trending shear at the Gauthier Occurrence: best assay reported was 0.062 ounce gold per ton for a 1.4 ft core length.
- **1983, 84: Frances Resources Ltd.** stripping, preparation of portal and shaft sinking on the number 3 vein in the Wensley Occurrence previously held by Noranda and Roy A. Martin and called the Martin Option. The portal lies on NAUC claim 4210010.
- **1984:** Rolls Resources Ltd. (539258 Ontario Ltd.) ground magnetic and electromagnetic surveys over a claim group at and southeast of Little Stephen Lake that included parts of NAUC claims 3011344, 3011345 and 3011346.
- **1984: Sault Meadows Energy Corporation** flew airborne magnetic and electromagnetic surveys over three widely separated areas at the north end of Emm Bay, between Flint and Caviar Lakes, and between Cedartree and Wicks Lakes that covered a number of NAUC claims in those areas.
- **1984-5:** Flint Rock Mines Ltd. completed geological mapping and airborne electromagnetic and magnetic surveys directed at gold exploration over a claim group between Little Stephen and Weisner Lakes.
- **1984, 86: Micham Exploration Inc.** completed an airborne electromagnetic and magnetic surveys, geological mapping and follow-up diamond drilling directed at gold exploration on a group of claims between Dogpaw, Caviar and Flint Lakes, that included the Flint Lake Mine Occurrence. The claims are included in all or parts of NAUC claims 4213379, 3003672, 3001238, 4213380, 4213381 and 3001241. A new gold showing north of the mine assayed 263 ppb gold; while a 902 ppb assay was obtained from an outcrop adjacent to a regionally extensive Proterozoic age diabase dike located close to the south end of Dogpaw Lake. The drilling consisted of four holes (543 ft total) all drilled to test the zone that hosts the Flint Lake Mine Occurrence: trace amounts of gold were typically assayed, the best assay being 0.014 ounce gold per ton over a 2 ft core length. Eighteen samples of "cobbed ore" taken from the old stockpile at the mine assayed from trace to 8.36 ounces gold per ton, for an average of 2.70 ounces per ton.
- **1985-9: Dunfrazier Gold Corporation Inc.** acquired by staking a large claim holding now included in portions or all of NAUC claims 1221374, 3003433, 3010496, 4213375, 4213377, 3010495 and 3003583. Over a 5-year period, geological, magnetic and biogeochemical surveys were conducted over all or portions of the ground, and follow-up

diamond drilling, trenching and sampling for assay done, all directed at gold exploration. Ogden (1985a) identified numerous targets and was of the opinion that strong north trending zones had not been recognized in previous work including drilling by Gulf Minerals Canada Ltd. in 1980. In 1985, 10 holes (3920 ft total) were drilled on various targets (Ogden 1985b). Four holes were drilled on the Knapp prospect, previously drilled by Gulf: Ogden targeted two of these holes to test one of the northerly lineaments. Anomalous gold values were obtained on assay, the highest being 1200 ppb over a 2.7 ft core length and 6795 ppb over a 2.5 ft length.

**1987-8:** Granges Exploration Ltd. opened up a trench on present NAUC claim 1221374, from which 6 samples were taken for assay, the highest returning 14.30 grams per tonne across 1m. Subsequently the company did electromagnetic and magnetic surveys across a claim group that included NAUC claims 1221374 and 3003583. Diamond drilling of 12 holes (1390m total) was done to test northerly-trending geophysical targets. Seven of the holes were drilled in the vicinity of the Jenson-Johnston Prospect, which was previously examined and drilled by Selco in 1961, south of, but close to the Cameron Lake Road. The rest were located to the south, on the west side of Bag Lake: two of the holes lay just outside and to the west of the NAUC claim group. The drilling confirmed gold at the original occurrence, with a best assay of 34.90 grams per tonne for a core length of 0.25 m.

**1988: Joe Hinzer and John Ternowesky** conducted an airborne magnetic and electromagnetic survey over a claim group that extended from the north end of Mongus Lake north-northwestward to Little Stephen Lake and included Weisner Lake.

**1988 Teeshin Resources** completed a large exploration program including diamond drilling and 350 feet of drifting on the number 3 vein on the Wensley Occurrence, now NAUC claim 4210010. Conclusions of the program were that the gold is in the vein only and so limited to narrow, uneconomic widths. Further exploration was recommended to further investigate the potential of the vein down dip and along strike.

**1997-8: Avalon Ventures Ltd.**, conducted: a ground magnetometer survey, an induced polarization/resistivity survey, geological mapping, rock geochemistry and soil sampling (mobile metal ion technology), on a claim group that covers part or all of NAUC claims 4213381 and 3001241.

**1997-9: Starcore Resources Ltd.** conducted a ground magnetometer survey, an induced polarization/resistivity survey, geological mapping, rock geochemistry and soil sampling (mobile metal ion technology) on a claim group that covers parts or all of NAUC claims 3001238, 3001239, 4213379, 4213380 and 3003672.

**1997-8, 2000: Hornby Bay Exploration Ltd.** conducted an airborne electromagnetic and magnetic survey over a large claim group that encompassed most of Kakagi Lake, eastward to Cameron Lake and northwestward to Cedartree Lake. A prospecting reconnaissance of the entire area was done in 1997-1998. However, no gold values were obtained on assay of samples taken on present NAUC ground. Detailed geological

mapping was done in small selected areas in 2000, including west of Wicks Lake on leased claim CLM368.

**1998: Ken Fenwick**, as part of a prospecting program on his claims in the vicinity of Highway 71 that included NAUC claims 1221374 and 3003583, obtained gold assays of 1100 ppb and 1500 ppb from shear zones close to the Cameron Lake road in proximity to the Jenson-Johnston Prospect.

**2000: Hornby Bay Exploration Limited** completed a short, four day, geological mapping program over the Wensley Occurrence covering NAUC claim 4210010. High grade gold assays were returned from grab samples in the area as well as elevated PGM values.

**2003: 6172342 Canada Ltd.**, as part of a prospecting program on their claims in the vicinity of northeast Bag Lake, (that currently include NAUC claims 1221374 and 3003433), grab sampling obtained gold assays ranging between 123 ppb and 47746 ppb, from twenty-two samples.

**2004: 6172342 Canada Ltd.,** as part of a short reconnaissance mapping program on their claim 3001275 (now NAUC's claim 4215379) in the vicinity of central Cedartree Lake and the historical Robertson Occurrence - grab sampling obtained no significant gold or PGE assays, from thirty samples.

**2003-2004:** Endurance Gold Corp. completed a series of exploration programs on the Flint Lake Property between the summer of 2003 and the fall of 2004 (following compilation work by Cunniah Lake Inc.). The work comprised prospecting, geological mapping, sampling, diamond drilling, line cutting, humus sampling, and airborne geophysics. Two new showings were discovered during this work, the Starlyght and the New Dogpaw Showings. Exploration completed by Endurance Gold Corp. on the Starlyght Showing fifteen grab samples taken in the area returned assayed gold values ranging from 3,189 ppb to 47,290 ppb. During the period February 28 through March 19, 2004, a seven hole, 850.4 metre diamond drilling program was completed on the Starlyght Showing and returned results up to 4.71 g/t Au over 0.3 metres.

**2007: North American Uranium Corp.** completed a 3 hole diamond drilling program during March 2007, in the vicinity of the Starlyght and Weisner Lake North Showings for a total of 765.0 meters. Two of the holes were laid out to test the Starlyght Occurrence while the third tested the Weisner Lake North Showing. The holes were oriented to test and intersect gold mineralization related to a strong, complex fracture-alteration system trending roughly north-south within the granodioritic Stephen Lake Stock. All three holes intersected zones of variably altered and mineralized granitic rocks, with altered-mineralized zones exhibiting variable silicification, iron-carbonate, potassium feldspar, sericite, epidote, chlorite and variable pyrite. Highlighted assays included 1.178g/t Au over 7.7m in hole DP-07-08, 1.4g/t Au over 5.0m in hole DP-07-09, and 0.564g/t Au over 3.8m in hole DP-07-10.

**2008: Metals Creek Resources Corp.** initiated a 2 week prospecting and mapping program to evaluate the property for gold potential, to become familiar with historic showings and to compile a basic geology map on the recently cut grid on the shore of Dogpaw Lake.

**2009:** Metals Creek Resources Corp. conducted a phase of prospecting of its northern claim block that encompassed areas around Flint and Caviar Lakes, Dogpaw Lake, as well as Bag Lake. With the prospecting, the Flint Lake mine site was located and highgrade gold values up to 133.206 g/t Au were reproduced, as historic assay certificates from the area had returned up to 8.36 oz/t Au in grab samples from Nuinsco Resources Ltd in 1986. Visible outcrop from the historic trenching was mapped. A majority of the quartz veining was historically blasted and removed from the trench and placed into muck piles at the northwestern end of the dugout area. Mapping was performed mainly of the wall rock with little exposed rock on the bottom of the trench. North-south traverses were conducted along the Flint Lake claim block for the purpose of prospecting and to map in lithologies to gain a better understanding of the geology on the property. Numerous historic, small pits were located as well as shear zones, most with similar geology to that of the Flint Lake Mine site. The area around another historic showing named Flint Lake North, approximately 1.6km northwest of the Flint Lake Mine site, was prospected with a fair amount of success. The original blasted trench and rubble piles were located and sampled as well as a new showing to the southeast towards the Flint Lake Mine site. The newly discovered area appears to be a silicified mafic volcanic hosted by a strongly iron carbonated shear zone containing up to 15% pyrite locally.

Prospecting was also done along strike of the Bag Lake South showing and returned favourable lithologies as a widening quartz-carbonate flooded shear zone was sampled roughly 100m to the northwest. The original Bag Lake South showing, which in 2008 returned gold values of 15.906g/t, was manually stripped to expose a 20cm to 1.0m wide quartz vein and anything that was possible of what appeared to be a larger silicified dioritic body. Channel cuts were taken every 5 meters along the trench with samples being broken out by rock type. Samples were taken of massive mafic volcanics, sheared mafic volcanics, massive quartz veining and silicified diorite.

One day was spent examining thin quartz veins at the southern end of Dogpaw Lake as well as prospecting around the historically worked Gauthier Occurrence. The quartz veins at the south end of Dogpaw Lake were sampled in 2008 with some sporadic gold values obtained. Due to the height of the water in 2009, mapping of these areas was difficult as most of the previous sampling was covered by water. Areas that were visible showed larger, rusty, carbonatized shear zones hosting thin, boudin-like quartz veins ranging from 5cm up to 0.7m wide.

**2012: Metals Creek Resources Corp.** conducted a mechanical trenching program in the areas of the Flint Lake high-grade quartz veins and the Stephens Lake Stock. Five trenches were completed at Flint Lake and six at Stephens Lake. Washing and channel sampling of the trenches was done in both locations. Assay results of 7.80g/t Au over 3.1m were attained from quartz flooding in the vicinity of the Flint Lake mine. The lower-grade and more pervasive mineralization was obtained from the Stephens Lake trenching, yielding 1.43g/t Au over 21.0m.

**2013: Metals Creek Resources Corp.** conducted a phase of prospecting focusing mainly along claim boundaries of its northern claim block encompassing the areas around Flint Lake, Caviar Lake, Dogpaw Lake, as well as Bag Lake. This small work program consisted of 13 grab samples, two of which returned anomalous results of 0.435g/t Au and 0.187g/t Au on the shores of Caviar Lake and Dogpaw Lake respectively, where follow-up work was recommended.

**2014: Metals Creek Resources Corp.** conducted two prospecting programs to examine previously underexplored areas within Metals Creek's claim boundaries where favourable lithologies have been historically encountered. These areas included felsic intrusive units, which have previously shown to be anomalous in gold over vast areas, as well as smaller shear zones with the possibility of mineralized and auriferous quartz veining, stock working or blowouts. These programs were a direct attempt at more systematic sampling program to show any bulk tonnage, and to a lesser degree, high grade potential on the northern section of the property. Sporadic anomalous to low-grade values were encountered within the felsic intrusive units at Bag Lake, as well as in local shear zones east of the Flint Lake trenching.

2015: Metals Creek Resources Corp. conducted three separate prospecting programs to examine previously underexplored areas within the Metals Creek claim boundary, which have not historically been ground truthed by MEK personnel. These areas included felsic intrusive units uncovered in 2014, which have previously shown to be anomalous in gold over vast areas. The prospecting also targeted smaller shear zones within the Bag Lake area with the possibility of mineralized and auriferous quartz veining, stock working or blowouts. These programs were a direct attempt at more systematic sampling program to show any bulk tonnage, and to a lesser degree, high grade potential on the northern section of the property. Sporadic anomalous to low-grade values were encountered within the felsic intrusive units at Bag Lake and minor anomalous gold values returned from the south ends of Dogpaw and Caviar Lakes. Traverses were conducted on the eastern portion of the claim block (east of Flint Mine) returning no anomalous values.

**2016: Metals Creek Resources Corp.** conducted a program of soils and prospecting focusing on the Flint Lake and Dogpaw claims blocks. Prospecting mainly focused on expanding on historic anomalous samples as well as the lakeshore of Flint and Dogpaw Lakes for structures instead of quartz veining. In addition to prospecting, soil sampling was carried out along strike of gold occurrences where outcrop was less to non-existent. A total of 58 rock and 36 soils were collected for gold assay. Weak gold in soil anomalies were generated along strike of the gold occurrences and warrant trenching. A program of prospecting and soil sampling on the Bag Lake claim group was initiated to test areas north of the Cameron Lake road as well as west of Bag Lake in an attempt to follow-up of gold-in-soil anomalies generated in 2005 by Northern Mineral Exploration Services. The Jenson-Johnson gold occurrence was located and sampled by grabs along strike to test the mineralization and gold grade continuity.

#### 8.0 CURRENT PROGRAM

During the period of September 19th to September 23rd, 2016, Metals Creek Resources personnel conducted a program of prospecting, soil sampling as well as manual stripping and channel sampling focusing mainly in the vicinity of the Jenson-Johnson gold occurrence located between the Cameron Lake Road and Bag Lake. The purpose of the program was to follow up on sampling conducted in August 2016 that yielded promising gold grades to 28.66g/t as well as try to expand the occurrence of gold mineralization through prospecting and soil sampling. All rock and soil sample locations were flagged in the field and recorded by handheld Garmin GPS.

# Prospecting

Prospecting took place north, south and on the Jenson-Johnson occurrence resulting in the collection of 36 samples. The sampling mainly took place in three locations; the southern end of the occurrence to tighten up sampling density, a northern occurrence on the edge of a creek that had not previously been sampled by MEK as well as north of the Cameron Lake road. The samples on the southern end of the occurrence consisted of silicous and mineralized gabbro with 1-3% pyrite + pyrrhotite. Sampling to the north along the western edge of a creek saw a collection of quartz-carbonate veining with mineralization in the order of 1-2% pyrite. Minor prospecting north of the Cameron Lake Road was initiated to try and find quartz-carbonate veins or mineralized gabbros that might resemble that of the Jenson-Johnson occurrence. Some quartz-carbonate veining as well as felsic intrusive dikes were identified and sampled there.

A little additional prospecting took place on the southeast corner of the claim block (claim 3010495) to test and evaluate a carbonate zone. The zone consists of moderate pervasive carbonate alteration. Five grab samples were collected here; SAS16-34 through SAS16-38. NOTE: no sample SAS16-33 exists.

#### Stripping and Channel Sampling

Some manual stripping was done in and around some historic trenches to expose mineralization as well as wall rock. Only 9 channel samples were cut, mostly across the wall rock consisting of weakly to moderately altered and mineralized gabbro. Trenches JJTR1 and JJTR2 were channeled, but trench JJTR3 was sampled with grab samples. See accompanying maps in Appendix V.

#### Soil Sampling

Three short recce soil lines were conducted in the vicinity of the Jenson-Johnson occurrence to see if soil sampling could detect potential mineralization along strike. The soil samples were collected at 5m spacings on east-west lines in areas of no outcrop both north and south of known surface mineralization. The tight sample spacing was done as a result of the narrow nature of the mineralization. The southern soil line is located approximately 20m south of the surface exposure of mineralization (sample series JJS).

The middle soil line in located approximately 40m north of the northern exposure of mineralization (sample series JJN) with the northern most line located north of the Cameron Lake Road where the mineralization is thought to strike (sample series JJNR). A total of 25 samples were collected.

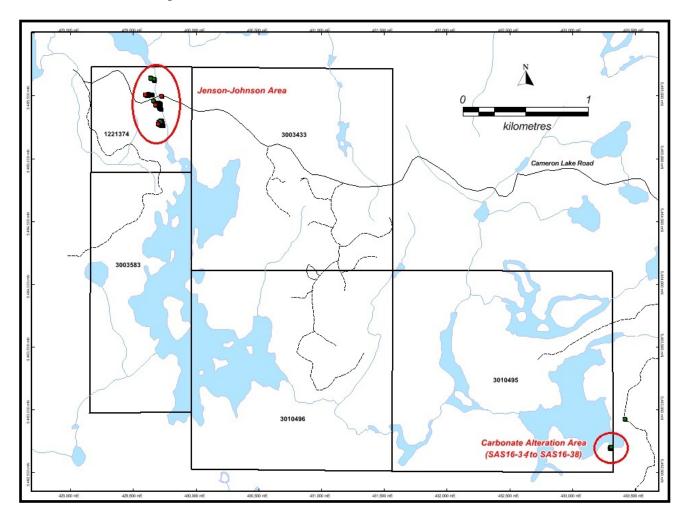



Figure 6: Work Area Map

#### 9.0 CONCLUSION AND RECOMMENDATIONS

After compiling the results of the prospecting, channeling and soil sampling it is evident that the Jenson-Johnson gold occurrence has significant gold grades and potential for expansion both north and south of what is presently exposed on surface. A total of 41 grab samples were collected and sent for gold assay mainly from the Jenson-Johnson area.

The prospecting in the immediate vicinity of the exposed mineralization has proven that the grade is associated with mineralized quartz veining and silicification cutting the host gabbro, returning gold grades to 10.59g/t. Sampling to the north along the western edge of the creek has identified an anomalous zone within quartz veining that has a slight change in strike direction from 6-9° to 355°. Gold grades in this area ranged from 0.014g/t to 6.438g/t gold and averaged 0.70g/t gold. A compilation of the historic drilling on Jenson-Johnson should be completed and a short diamond drill program should be completed.

Prospecting north of the road located quartz-carbonate veins that returned weakly anomalous gold grades of 0.068g/t and 0.16g/t gold. Although these grades are not of economic grades, they are similar grade to some in the Jenson-Johnson north area and due to the location warrant further prospecting and stripping to potentially expose better mineralization.

Prospecting and sampling of the carbonate alteration in the southeast corner of the claim block returned grades of <0.005 to 0.042g/t gold. No further work is recommended here.

The small scale soil sampling program was conducted over three short recce lines to cross what was thought was the strike extension to the north and south of exposed mineralization. Sample spacings were at 5m due to the narrow width of the mineralized zone resulting in the collection of 25 soils. The results are rather interesting, in that they show an anomalous gold sample in the center of each line sampled. The anomalous samples from the three soil lines are 219ppb, 89ppb and 25ppb gold from south to north respectively. These soils may show that the mineralized zone is striking beyond what is exposed in outcrop. Additional east-west oriented soil lines at a nominal 25m separation are recommended to test a minimum of 150m both north and south of the soils conducted in this report. Soil samples should remain at a high density of 5m spacing. In addition to the soils, a high density ground magnetic survey should be conducted on the east-west lines to identify the silicous zone cutting the host magnetic gabbro.

Four individual trenches were manually cleaned out and channeled for an idea of widths and grades of the host gabbro. Two of the trenches are considered one trench and go by the same trench number (JJTR1). Only one of the eight samples actually channeled across the mineralized occurrence. The actual Jenson-Johnson mineralized horizon had very poor exposure in most cases and didn't allow for decent channeling. Trench JJTR3 was not channeled but had 8 grab samples taken from it averaging 3.67g/t gold. The actual mineralized horizon yielded 5.94g/t gold over 1.2m in trench JJTR2. Including the

wallrock sampling, trench JJTR2 returned 3.79g/t gold over 2.0m. Trench JJTR1 returned 0.13g/t gold over 2.0m and 0.42g/t gold over 3.25m. Therefore after the compilation of the sampling, it can be concluded that not only is the actual mineralized horizon gold bearing, but the host gabbro is anomalous in gold and further work should be carried out to expand the channeling in the host gabbro to text for mineralized expanse. See trench maps in Appendix V.

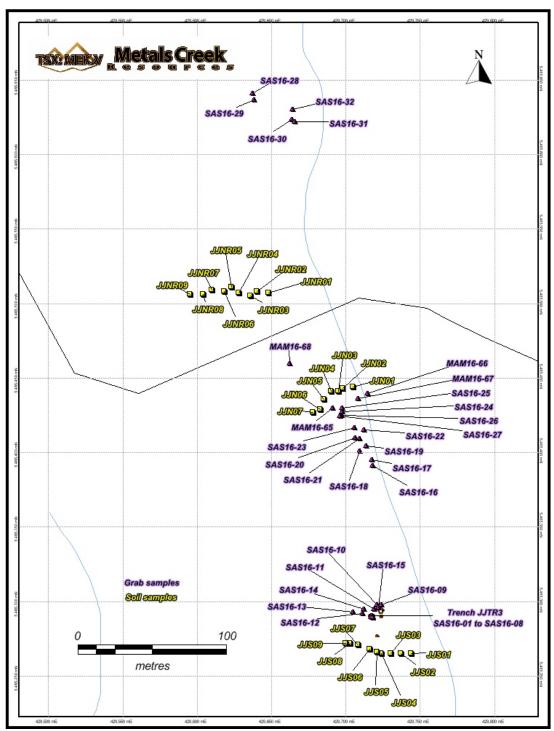



Figure 7: Jenson Area Sample Location Map

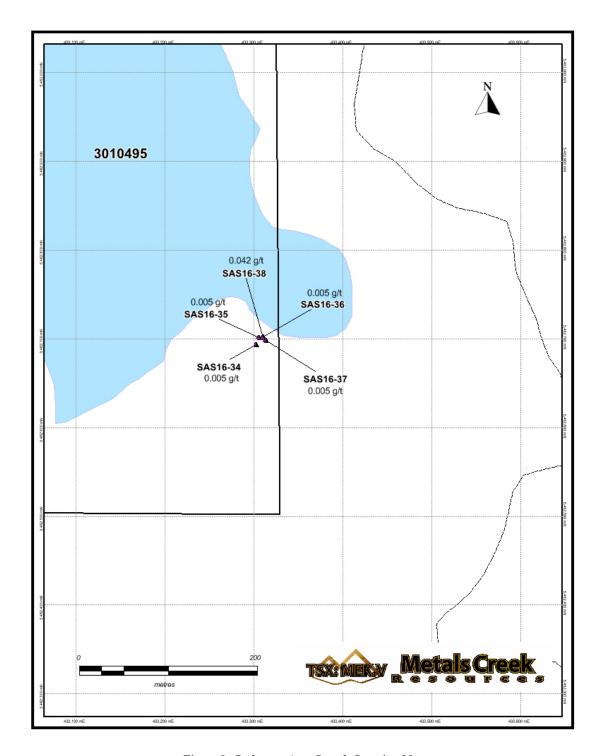



Figure 8: Carbonate Area Sample Location Map

#### 10.0 REFERENCES

- Buck, H. M. and Tims, A. 2005. Geological and Geochemical Report on the Bag Lake Grid of the Dogpaw Lake Property.
- Cullen, D. D. 2007. Technical Report on the Dogpaw Property, Kenora Mining Division; *report for* North American Uranium Corp., 50p.
- Jeffs, C. 2007. Geological Mapping Program, Dogpaw Lake Program, Kenora District; *report for* North American Uranium Corp., 16p.
- MacIsaac, M. 2007. March 2007 Diamond Drill Program, Dogpaw Lake Property, Kenora Mining Division; *report for* North American Uranium., 1, 5-7p.
- Ravnaas, C., Raoul, A. and Wilson, S. 2003. Kenora District; *in* Report of Activities 2002, Resident Geologist Program, Red Lake Regional Geologist, Ontario Geological Survey, Open File Report 6110, 51p.

.

# 11.0 STATEMENT OF QUALIFICATIONS

- I, Don Heerema Jr., hereby certify that:
  - 1. I am a practicing geologist in Thunder Bay, Ontario and reside at 26 Burriss St., Thunder Bay, Ontario, P7A 3C9.
  - 2. I am a graduate of Lakehead University with a HBSc. in Geology 2002.
  - 3. I am a Canadian Citizen.
  - 4. I have practiced my profession full time since graduation in 2002.
  - 5. I am a practicing member of the Association of Professional Geoscientists of Ontario. (Registration #1528)
  - 6. I do not have, nor do I expect to receive, directly or indirectly, any interest in the properties of Metals Creek Resources.

Signature:

Date: October 04, 2016

# APPENDIX I

List of Sample #'s, UTM Coordinates and Assay Values

**GRAB SAMPLES** 

| Sample   | Location                   | Easting  | Northing  | Elevation | Au g/t | Date   | Description                                                                                                           |
|----------|----------------------------|----------|-----------|-----------|--------|--------|-----------------------------------------------------------------------------------------------------------------------|
| SAS16-01 | Trench 3                   | 429717.1 | 5465290.3 | 374.8     | 4.096  | Sep-20 | Mineralized Gabbro, dark green, mgr, 5% py-po, rusty, trench#3                                                        |
| SAS16-02 | Trench 3                   | 429717.3 | 5465290.3 | 374.8     | 4.843  | Sep-20 | Mineralized Gabbro, dark green, mgr, 5% py-po, rusty, trench#3                                                        |
| SAS16-03 | Trench 3                   | 429717.7 | 5465290.7 | 372.1     | 0.909  | Sep-20 | Mineralized Gabbro, dark green, chlorite along fractures, rusty, 1-2% py                                              |
| SAS16-04 | Trench 3                   | 429718.2 | 5465290   | 369.3     | 3.631  | Sep-20 | Mineralized Gabbro, dark green, chlorite along fractures, rusty, 1-2% py                                              |
| SAS16-05 | Trench 3                   | 429717.2 | 5465289.5 | 370.5     | 0.616  | Sep-20 | Silicified zone, 1-2% diss. Pyrite, fgr, light grey, rusty, fractured                                                 |
| SAS16-06 | Trench 3                   | 429718.2 | 5465289   | 373.6     | 2.703  | Sep-20 | Altered gabbro-silified zone, light grey, fgr-mgr, 2-3% pyrite, rusty, fractured                                      |
| SAS16-07 | Trench 3                   | 429718   | 5465289.7 | 369.3     | 4.04   | Sep-20 | Quartz flooded zone, highly silicified, light grey, fgr, 2-3% diss pyrite, rusty                                      |
| SAS16-08 | Trench 3                   | 429717.8 | 5465289.4 | 368.8     | 8.506  | Sep-20 | Quartz stockwork withinsilicifed zone, light grey, rusty, 5% pyrite                                                   |
| SAS16-09 | North of TR1               | 429724   | 5465298   | 364.5     | 0.057  | Sep-20 | Mineralized Gabbro, dark green, mgr, 2-4% py-po, rusty, unaltered                                                     |
| SAS16-10 | North of TR1               | 429721   | 5465298   | 365.2     | 0.011  | Sep-20 | Mineralized Gabbro, dark green, mgr, 2-4% py-po, rusty, unaltered                                                     |
| SAS16-11 | North of TR1               | 429719   | 5465295   | 370.5     | 0.324  | Sep-20 | Mineralized zone, light grey, rusty, completely altered-silicified, 1.2m wide, 3-5% pyrite along fractures            |
| SAS16-12 | North of TR1               | 429711   | 5465292   | 367.1     | 0.297  | Sep-20 | Contact zone between barro and mineralized zone, carbonatized, quartz stringers, 1-4% pyrite                          |
| SAS16-13 | North of TR1               | 429705   | 5465293   | 367.6     | 2.087  | Sep-20 | Altered gabbro, locally silified, mgr,dark green, 1-2% py-po                                                          |
| SAS16-14 | North of TR1               | 429712   | 5465295   | 369.3     | 1.8    | Sep-20 | quartz veins-stockwork, carb altered, highly rusty, 1-2% pyrite                                                       |
| SAS16-15 | North of TR1               | 429722   | 5465296   | 369.3     | 10.594 | Sep-20 | Mineralized zone, highly silicious, 5-7% pyrite, qtz veins                                                            |
| SAS16-16 | Jenson Johnson North       | 429718.1 | 5465391.2 | 356       | 0.061  | Sep-21 | Weakly to moderately altered gabbro, medium grey to black, fgr-mgr, tr-1% diss pyrite, at contact with jenson johnson |
| SAS16-17 | Jenson Johnson North       | 429717.4 | 5465395.3 | 353.4     | 0.014  | Sep-21 | Weakly to moderately altered gabbro, dark grey to black, fgr-mgr, 2-3% diss pyrite, at contact with jenson johnson    |
| SAS16-18 | Jenson Johnson North       | 429709   | 5465401.2 | 352.2     | 0.021  | Sep-21 | 10cm q.v. withing alt. gabbro, 1-2% pyrite, local carb alt.                                                           |
| SAS16-19 | Jenson Johnson North       | 429713.4 | 5465404.7 | 352.7     | 0.072  | Sep-21 | qtz-carb vein, brownish white, several rafts of country rock,tr-1% py, near sample 902216                             |
| SAS16-20 | Jenson Johnson North       | 429706.3 | 5465409.8 | 352.2     | 0.277  | Sep-21 | qtz-carb vein, brownish white, several rafts of country rock,tr-1% py, strongly carbonatized, rusty                   |
| SAS16-21 | Jenson Johnson North       | 429709.1 | 5465409.3 | 351.9     | 0.057  | Sep-21 | qtz-carb vein,1% disseminated py, strongly carbonatized                                                               |
| SAS16-22 | Jenson Johnson North       | 429712.2 | 5465415   | 352.9     | 0.304  | Sep-21 | qtz-carb vein,tr diss py, strongly carbonatized                                                                       |
| SAS16-23 | Jenson Johnson North       | 429705.8 | 5465416.8 | 350       | 6.438  | Sep-21 | Quartz-carb zone1-2% diss pyrite, large 1x3m bounders sluffing of side of hill, rusty, qtz stockwork                  |
| SAS16-24 | Jenson Johnson North       | 429697.4 | 5465427.6 | 344.3     | 0.087  | Sep-21 | Mineralized zone, strong carb alt, silicified, 1-2% diss pyrite, fgr, qtz sweats                                      |
| SAS16-25 | Jenson Johnson North       | 429697.3 | 5465429.9 | 342.5     | 1.769  | Sep-21 | Mineralized zone, strong carb alt, silicified, 1-2% diss pyrite, fgr, qtz sweats, at contact with gabbro              |
| SAS16-26 | Jenson Johnson North       | 429697.1 | 5465425.1 | 342.9     | 0.868  | Sep-21 | Qtz veins within mineralized gabbro, 1-2% pyrite                                                                      |
| SAS16-27 | Jenson Johnson North       | 429696.1 | 5465424.4 | 342.9     | 0.783  | Sep-21 | Qtz veins within mineralized gabbro, 1-2% pyrite                                                                      |
| SAS16-28 | Jenson Johnson North       | 429637.3 | 5465641.2 | 341.6     | 0.304  | Sep-22 | Mineralized zone, highly silicious, 1-2% pyrite, carb alt, tourmaline veins                                           |
| SAS16-29 | North Of Cameron Lake road | 429638.1 | 5465636.9 | 341.4     | 0.062  | Sep-23 | Felsic dike, highly silicified, 1-2% pyrite                                                                           |
| SAS16-30 | North Of Cameron Lake road | 429663.7 | 5465623.4 | 340.1     | 0.068  | Sep-23 | qtz - carb zone qtz veins, light greenish grey, fgr, tr diss pyrite                                                   |
| SAS16-31 | North Of Cameron Lake road | 429665.9 | 5465622.3 | 339.2     | 0.16   | Sep-23 | qtz flooded zone, strong carb alt,1% pyrite                                                                           |
| SAS16-32 | North Of Cameron Lake road | 429664.2 | 5465630.2 | 340.5     | 0.023  | Sep-23 | felsic dike, carb altered, rusty, 1-2% diss pyrite                                                                    |
| SAS16-34 | Carb Zone eastern boundary | 433302.6 | 5462692.9 | 373.1     | 0.005  | Sep-23 | Carbonatized mafic volcanic, tr diss pyrite                                                                           |
| SAS16-35 | Carb Zone eastern boundary | 433305.2 | 5462701.3 | 370.9     | 0.005  | Sep-23 | Carbonatized mafic volcanic, tr diss pyrite                                                                           |
| SAS16-36 | Carb Zone eastern boundary | 433310.4 | 5462701.8 | 369       | 0.005  | Sep-23 | Carbonatized mafic volcanic, tr diss pyrite                                                                           |
| SAS16-37 | Carb Zone eastern boundary | 433313.3 | 5462698.4 | 370.2     | 0.005  | Sep-23 | Carbonatized mafic volcanic, tr diss pyrite                                                                           |
| SAS16-38 | Carb Zone eastern boundary | 433310   | 5462701.4 | 371.2     | 0.042  | Sep-23 | Carbonatized mafic volcanic, tr diss pyrite                                                                           |
| MAM16-65 | Jenson Johnson North       | 429691.1 | 5465429.7 | 345.5     | 0.095  | Sep-22 | Altered gabbro, silicified, 1-2% diss pyrite, next to felsic dike, 1-2cm quartz veins                                 |
| MAM16-66 | Jenson Johnson North       | 429714.6 | 5465439.6 | 338.8     | 0.082  | Sep-22 | Altered gabbro, silicified, 1-2% diss pyrite, next to silicified zone, 1-2cm quartz veins                             |
| MAM16-67 | Jenson Johnson North       | 429708.1 | 5465436.3 | 340.4     | 0.016  | Sep-22 | quartz porphyry, light brownish grey, carb altered,2mm QE, silicified, 1% diss py, next to gabbro                     |
| MAM16-68 | Jenson Johnson North       | 429662.3 | 5465459.9 | 344       | 0.019  | Sep-22 | felsic dike, silicious, locally carb altered, local QE, 1-2% diss pyrite, fgr                                         |

# **CHANNEL SAMPLES**

| <u>Sample</u> | <b>Location</b> | Sample Length | <b>Easting</b> | <b>Northing</b> | <b>Elevation</b> | Au-g/t | <u>Description</u>                                                                                              |
|---------------|-----------------|---------------|----------------|-----------------|------------------|--------|-----------------------------------------------------------------------------------------------------------------|
| JJTR1-1       | Trench 1        | 1.2m          | 429723.3       | 5465290         | 359.4            | 0.222  | Altered Gabbro, local carb alteration, rusty, 1-2% diss pyrite, local magnetite, mottled texture                |
| JJTR1-2       | Trench 1        | 0.8m          | 429724.3       | 5465290         | 359.4            | 0.008  | Silicifed Gabbro, tr-1% diss pyrite, dark grey patches, mottled texture                                         |
| JJTR1-3       | Trench 1        | 0.5m          | 429722.9       | 5465294.2       | 360.1            | 0.013  | Altered Gabbro, local carb alteration, rusty, 1-2% diss pyrite, local magnetite, mottled texture                |
| JJTR1-4       | Trench 1        | 1.0m          | 429723.7       | 5465294         | 358.4            | 0.105  | Altered Gabbro, local carb alteration, rusty, 1-2% diss pyrite, local magnetite, mottled texture, qtz veinlets  |
| JJTR1-5       | Trench 1        | 1.0m          | 429724.7       | 5465294.1       | 359.2            | 1.138  | Altered Gabbro, local carb alteration, rusty, 1-2% diss pyrite, local magnetite, mottled texture, qtz veinlets  |
| JJTR1-6       | Trench 1        | 0.75m         | 429725.6       | 5465294.3       | 358.9            | 0.139  | Altered Gabbro, local carb alteration, rusty, tr-1% diss pyrite, local magnetite, mottled texture, qtz veinlets |
| JJTR2-1       | Trench 2        | 0.5m          | 429720.7       | 5465276.6       | 347.6            | 0.426  | Altered Gabbro, local carb alteration, rusty, tr diss pyrite, local magnetite, mottled texture, qtz veinlets    |
| JJTR2-2       | Trench 2        | 1.2m          | 429721.5       | 5465276.6       | 349.3            | 5.943  | Silicified zone, sheared-brecciated, light grey, 5% qtz veinlets, 2-5% pyrite, silicifed                        |
| JJTR2-3       | Trench 2        | 0.3m          | 429722.3       | 5465276.5       | 349.1            | 0.803  | Altered Gabbro, local carb alteration, rusty, tr diss pyrite, local magnetite, mottled texture, qtz veinlets    |

| <u>Soil</u> | <u>Type</u> | <u>Easting</u> | <b>Northing</b> | <b>Elevation</b> | <u>Au_ppb</u> | <u>Date</u> |
|-------------|-------------|----------------|-----------------|------------------|---------------|-------------|
| JJS01       | Soil        | 429744         | 5465265         | 335.6            | < 5           | Sep-21      |
| JJS02       | Soil        | 429737         | 5465265         | 356.6            | < 5           | Sep-21      |
| JJS03       | Soil        | 429730         | 5465265         | 353.7            | < 5           | Sep-21      |
| JJS04       | Soil        | 429724         | 5465265         | 356.7            | < 5           | Sep-21      |
| JJS05       | Soil        | 429721         | 5465266         | 358              | 219           | Sep-21      |
| JJS06       | Soil        | 429716         | 5465268         | 355              | < 5           | Sep-21      |
| JJS07       | Soil        | 429708         | 5465271         | 355.6            | < 5           | Sep-21      |
| JJS08       | Soil        | 429703         | 5465272         | 357.6            | < 5           | Sep-21      |
| JJS09       | Soil        | 429700         | 5465272         | 357.6            | < 5           | Sep-21      |
| JJN01       | Soil        | 429705         | 5465444         | 342.6            | < 5           | Sep-21      |
| JJN02       | Soil        | 429698         | 5465443         | 343.7            | 5             | Sep-21      |
| JJN03       | Soil        | 429695         | 5465441         | 347.4            | < 5           | Sep-21      |
| JJN04       | Soil        | 429690         | 5465441         | 350.2            | 7             | Sep-21      |
| JJN05       | Soil        | 429685         | 5465436         | 349.1            | 89            | Sep-21      |
| JJN06       | Soil        | 429683         | 5465429         | 345              | 6             | Sep-21      |
| JJN07       | Soil        | 429678         | 5465427         | 351.8            | < 5           | Sep-21      |
| JJNR01      | Soil        | 429648         | 5465507         | 330.6            | < 5           | Sep-22      |
| JJNR02      | Soil        | 429640         | 5465508         | 330.7            | < 5           | Sep-22      |
| JJNR03      | Soil        | 429636         | 5465505         | 337.2            | < 5           | Sep-22      |
| JJNR04      | Soil        | 429628         | 5465507         | 337.8            | < 5           | Sep-22      |
| JJNR05      | Soil        | 429623         | 5465511         | 347.5            | < 5           | Sep-22      |
| JJNR06      | Soil        | 429618         | 5465508         | 348.8            | 25            | Sep-22      |
| JJNR07      | Soil        | 429610         | 5465509         | 350.4            | < 5           | Sep-22      |
| JJNR08      | Soil        | 429604         | 5465506         | 344.6            | 15            | Sep-22      |
| JJNR09      | Soil        | 429595         | 5465506         | 349              | < 5           | Sep-22      |
|             |             |                |                 |                  |               |             |

#### Location

Soil line 20m south of trench#2

Soil line 20m noth of Most northerly outcrop of Jenson Johnson Showing Soil line 20m noth of Most northerly outcrop of Jenson Johnson Showing Soil line 20m noth of Most northerly outcrop of Jenson Johnson Showing Soil line 20m noth of Most northerly outcrop of Jenson Johnson Showing Soil line 20m noth of Most northerly outcrop of Jenson Johnson Showing Soil line 20m noth of Most northerly outcrop of Jenson Johnson Showing Soil line 20m noth of Most northerly outcrop of Jenson Johnson Showing Soil line north of Cameron Lake Road to test for Jenson Johnson extension. Soil line north of Cameron Lake Road to test for Jenson Johnson extension. Soil line north of Cameron Lake Road to test for Jenson Johnson extension. Soil line north of Cameron Lake Road to test for Jenson Johnson extension. Soil line north of Cameron Lake Road to test for Jenson Johnson extension. Soil line north of Cameron Lake Road to test for Jenson Johnson extension. Soil line north of Cameron Lake Road to test for Jenson Johnson extension. Soil line north of Cameron Lake Road to test for Jenson Johnson extension. Soil line north of Cameron Lake Road to test for Jenson Johnson extension.

# **APPENDIX II**

Personnel Involved with Prospecting Program and Report Writing

# <u>Personnel</u>

Michael MacIsaac

Alexander (Sandy) Stares

Don Heerema

# APPENDIX III

**Laboratory Certificates of Analysis** 



Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Thursday, September 29, 2016

**Final Certificate** 

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 09/23/2016

Date Completed: 09/29/2016

Job #: 201641983

Reference: Sample #: 4

| Acc#   | Client ID    | Au<br>g/t (ppm) |
|--------|--------------|-----------------|
| 211028 | MAM16-65     | 0.095           |
| 211029 | MAM16-66     | 0.082           |
| 211030 | MAM16-67     | 0.016           |
| 211031 | MAM16-68     | 0.019           |
| 211032 | MAM16-68 Dup | 0.019           |

APPLIED SCOPES: ALP1, ALFA1

Validated By:

Certified By:

Authorized By:

Jason Moøre, VP Operations, Assayer

Jason Moore, VP Operations, Assayer

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.



Tel: (807) 626-1630 www Fax: (807) 622-7571 assa

www.accurassay.com assay@accurassay.com

Thursday, September 29, 2016

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

# **Final Certificate**

Date Received: 09/23/2016

Date Completed: 09/29/2016

Job #: 201641983

Reference: Sample #: 4

**Control Standards** 

QC Type

Element

QC Performance (ppm)

Mean (ppm)

Std Dev (ppm

APPLIED SCOPES: ALP1, ALFA1

Validated By:

1

Jason Moøre, VP Operations, Assayer

Certified By:

Jason Moøre, VP Operations, Assayer

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.



www.accurassay.com assay@accurassay.com

Monday, October 3, 2016

**Final Certificate** 

Tel: (807) 626-1630

Fax: (807) 622-7571

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Date Received: 09/23/2016 Date Completed: 10/03/2016 Job #: 201641984

> Reference: Sample #: 32

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

| Acc#   | Client ID    | Au<br>g/t (ppm) | Au Grav<br>ppm |
|--------|--------------|-----------------|----------------|
| 211033 | SAS16-01     | 3.611           | 4.096          |
| 211034 | SAS16-02     | 4.843           | 4.473          |
| 211035 | SAS16-03     | 0.909           |                |
| 211036 | SAS16-04     | 3.379           | 3.631          |
| 211037 | SAS16-05     | 0.616           |                |
| 211038 | SAS16-06     | 2.703           | 2.553          |
| 211039 | SAS16-07     | 3.911           | 4.040          |
| 211040 | SAS16-08     | 8.506           | 8.236          |
| 211041 | SAS16-09     | 0.057           |                |
| 211042 | SAS16-10     | 0.011           |                |
| 211043 | SAS16-10 Dup | 0.080           |                |
| 211044 | SAS16-11     | 0.324           |                |
| 211045 | SAS16-12     | 0.297           |                |
| 211046 | SAS16-13     | 1.805           | 2.087          |
| 211047 | SAS16-14     | 1.800           | 1.801          |
| 211048 | SAS16-15     | >10.000         | 10.594         |
| 211049 | SAS16-16     | 0.061           |                |
| 211050 | SAS16-17     | 0.014           |                |
| 211051 | SAS16-18     | 0.021           |                |
| 211052 | SAS16-19     | 0.072           |                |
| 211053 | SAS16-20     | 0.277           |                |
| 211054 | SAS16-20 Dup | 0.276           |                |
| 211055 | SAS16-21     | 0.057           |                |
| 211056 | SAS16-22     | 0.304           |                |
| 211057 | SAS16-23     | 6.438           | 5.588          |
|        |              |                 |                |

APPLIED SCOPES: ALP1, ALFA1, ALAR1, ALFA7

Validated By:

Jason Moøre, VP Operations, Assayer

Certified By:

Jason, Moøre, VP Operations, Assayer

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Monday, October 3, 2016

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

# **Final Certificate**

Date Received: 09/23/2016

Date Completed: 10/03/2016

Job #: 201641984

Reference: Sample #: 32

| Acc#   | Client ID    | Au<br>g/t (ppm) | Au Grav<br>ppm |
|--------|--------------|-----------------|----------------|
| 211058 | SAS16-24     | 0.087           |                |
| 211059 | SAS16-25     | 1.638           | 1.769          |
| 211060 | SAS16-26     | 0.868           |                |
| 211061 | SAS16-27     | 0.783           |                |
| 211062 | SAS16-28     | 0.304           |                |
| 211063 | SAS16-29     | 0.062           |                |
| 211064 | SAS16-30     | 0.068           |                |
| 211065 | SAS16-30 Dup | 0.066           |                |
| 211066 | SAS16-31     | 0.160           |                |
| 211067 | SAS16-32     | 0.023           |                |

APPLIED SCOPES: ALP1, ALFA1, ALAR1, ALFA7

Validated By:

1100

Jason, Moøre, VP Operations, Assayer

Certified By:

Jason Moore, VP Operations, Assayer

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.



Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Monday, October 3, 2016

**Final Certificate** 

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 09/23/2016

Date Completed: 10/03/2016

Job #: 201641984

Reference: Sample #: 32

**Control Standards** 

QC Type

Element

QC Performance (ppm)

Mean (ppm)

Std Dev (ppm

WW06

Au

1.060

1.100

0.060

APPLIED SCOPES: ALP1, ALFA1, ALAR1, ALFA7

Validated By:

Certified By:

Authorized

Jason Moøre, VP Operations, Assayer

Jason, Moøre, VP Operations, Assayer

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.



www.accurassay.com assay@accurassay.com

Thursday, September 29, 2016

# **Final Certificate**

Tel: (807) 626-1630

Fax: (807) 622-7571

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 09/23/2016 Date Completed: 09/29/2016 Job #: 201641985

> Reference: Sample #: 5

| Acc#   | Client ID    | Au        |
|--------|--------------|-----------|
|        |              | g/t (ppm) |
| 211068 | SAS16-34     | <0.005    |
| 211069 | SAS16-35     | <0.005    |
| 211070 | SAS16-36     | <0.005    |
| 211071 | SAS16-37     | <0.005    |
| 211072 | SAS16-38     | 0.042     |
| 211073 | SAS16-38 Dup | 0.032     |

APPLIED SCOPES: ALP1, ALFA1

Validated By:

011000

Jason Moøre, VP Operations, Assayer

Certified By:

Jason, Moøre, VP Operations, Assayer

Authorized By

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.



Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Thursday, September 29, 2016

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

### **Final Certificate**

Date Received: 09/23/2016

Date Completed: 09/29/2016

Job #: 201641985

Reference: Sample #: 5

**Control Standards** 

QC Type

Element

QC Performance (ppm)

Mean (ppm)

Std Dev (ppm

APPLIED SCOPES: ALP1, ALFA1

Validated By:

Jason Moøre, VP Operations, Assayer

Certified By:

Jason Moøre, VP Operations, Assayer

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Friday, September 30, 2016

**Final Certificate** 

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 09/23/2016 Date Completed: 09/30/2016 Job #: 201641986

> Reference: Sample #: 6

| Au Grav<br>ppm | Au<br>g/t (ppm) | Client ID | Acc#   |
|----------------|-----------------|-----------|--------|
|                | 0.222           | JJTR1-1   | 211074 |
|                | 0.008           | JJTR1-2   | 211075 |
|                | 0.013           | JJTR1-3   | 211076 |
|                | 0.105           | JJTR1-4   | 211077 |
| 1.200          | 1.138           | JJTR1-5   | 211078 |
|                | 0.139           | JJTR1-6   | 211079 |

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Validated By:

Certified By:

,

Jason Moøre, VP Operations, Assayer

Jason, Moøre, VP Operations, Assayer

Authorized By

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.



Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Friday, September 30, 2016

**Final Certificate** 

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4

Ph#: (807) 345-4990

Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com Date Received: 09/23/2016

Date Completed: 09/30/2016

Job #: 201641986

Reference: Sample #: 6

**Control Standards** 

QC Type WW06 **Element** Au QC Performance (ppm)
1.182

Mean (ppm)

Std Dev (ppn

1.100

0.060

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Jason, Moøre, VP Operations, Assayer

Validated By:

Certified By:

Jason Moøre, VP Operations, Assayer

Authorized By

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Friday, September 30, 2016

**Final Certificate** 

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4

Ph#: (807) 345-4990 Fax#: (807) 345-5382

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 09/23/2016 Date Completed: 09/30/2016 Job #: 201641987

> Reference: Sample #: 3

| Acc#   | Client ID   | Au<br>g/t (ppm) | Au Grav<br>ppm |
|--------|-------------|-----------------|----------------|
| 211080 | JJTR2-1     | 0.426           |                |
| 211081 | JJTR2-2     | 5.799           | 7.300          |
| 211082 | JJTR2-2 Dup | 5.880           | 5.943          |
| 213322 | JJTR2-3     | 0.803           |                |

APPLIED SCOPES: ALP1, ALFA1, ALAR1, ALFA7

Validated By:

Andrew Oleski Lab Manager - Thunder Bay Certified By:

Jason Moore, VP Operations, Assayer

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.



Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Friday, September 30, 2016

**Final Certificate** 

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN

P7B 5Z4 Ph#: (807) 345-4990

Fax#: (807) 345-5382

Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 09/23/2016 Date Completed: 09/30/2016 Job #: 201641987

> Reference: Sample #: 3

**Control Standards** 

 QC Type
 Element
 QC Performance (ppm)
 Mean (ppm)
 Std Dev (ppm)

 GS37
 AuG
 2.809
 3.220
 0.210

APPLIED SCOPES: ALP1, ALFA1, ALAR1, ALFA7

Validated By:

( in )

Andrew Oleski Lab Manager - Thunder Bay Certified By:

Jason Moøre, VP Operations, Assayer

Authorized By:

Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

## Quality Analysis ...



## Innovative Technologies

**Date Submitted:** 23-Sep-16

Invoice No.: A16-09762
Invoice Date: 29-Sep-16

Your Reference:

Metals Creek Resources 1100 Memorial Ave. Suite 329 Thunder Bay Ontario P7B 4A3 Canada

ATTN: Mike MacIsaac (Inv)

# **CERTIFICATE OF ANALYSIS**

25 Soil samples were submitted for analysis.

The following analytical package(s) were requested: Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A16-09762

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

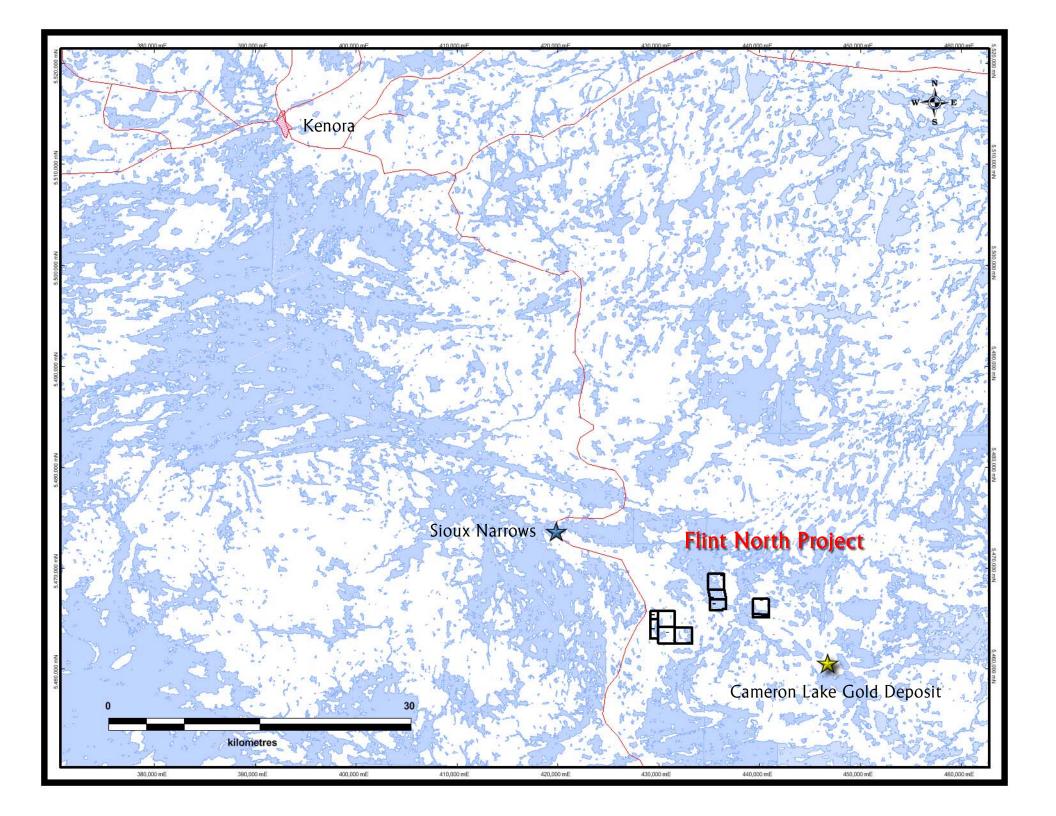
Elitsa Hrischeva, Ph.D. Quality Control

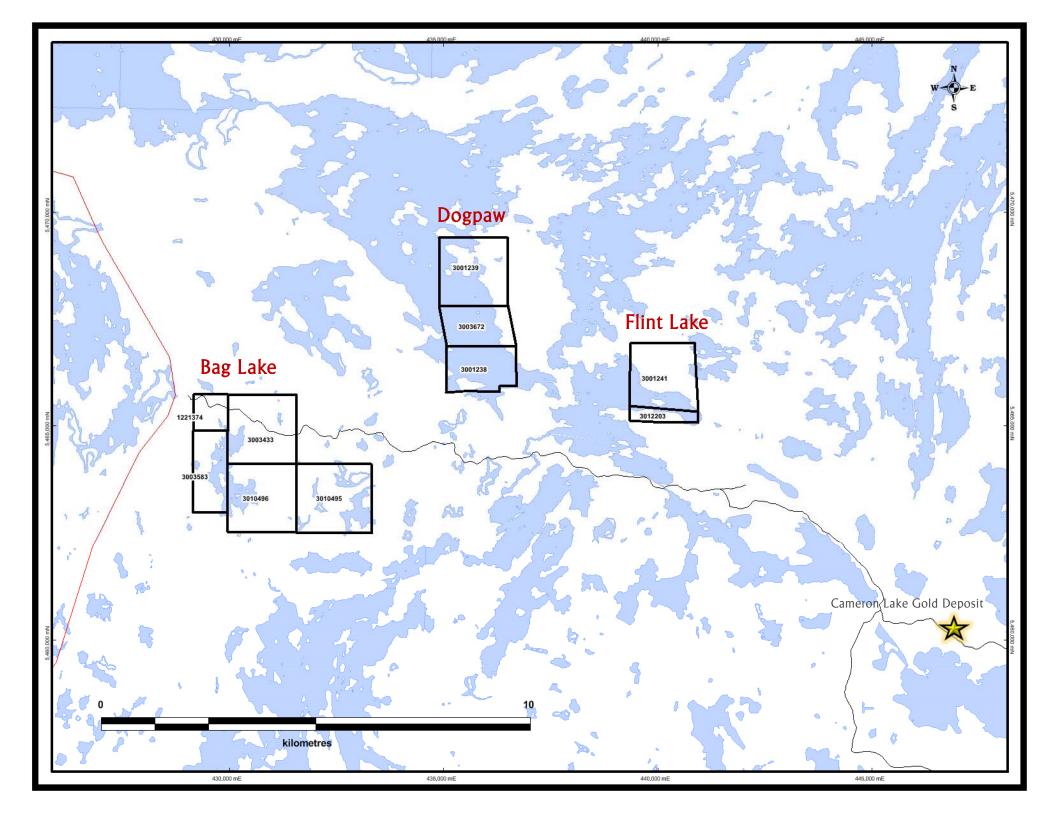
#### ACTIVATION LABORATORIES LTD.

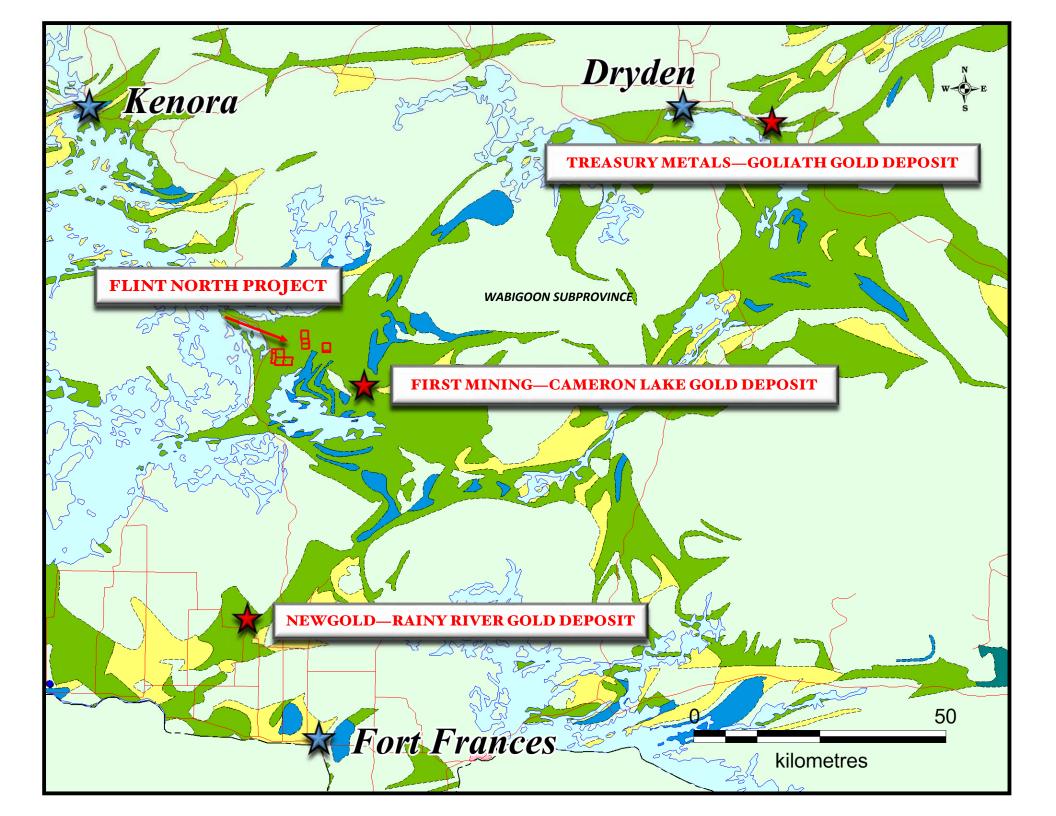
1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

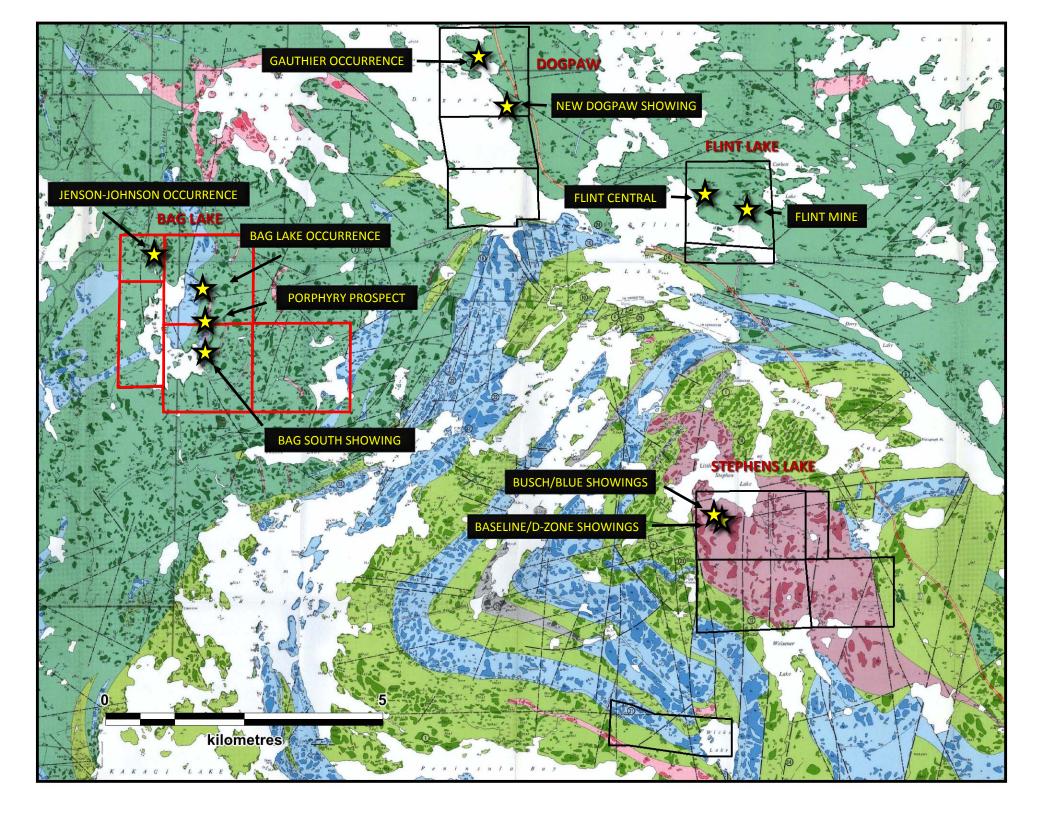
| Analyte Symbol | Au    |
|----------------|-------|
| Unit Symbol    | ppb   |
| Lower Limit    | 5     |
| Method Code    | FA-AA |
| JJN01          | < 5   |
| JJN02          | 5     |
| JJN03          | < 5   |
| JJN04          | 7     |
| JJN05          | 89    |
| JJN06          | 6     |
| JJN07          | < 5   |
| JJS01          | < 5   |
| JJS02          | < 5   |
| JJS03          | < 5   |
| JJS04          | < 5   |
| JJS05          | 219   |
| JJS06          | < 5   |
| JJS07          | < 5   |
| JJS08          | < 5   |
| JJS09          | < 5   |
| JJNR01         | < 5   |
| JJNR02         | < 5   |
| JJNR03         | < 5   |
| JJNR04         | < 5   |
| JJNR05         | < 5   |
| JJNR06         | 25    |
| JJNR07         | < 5   |
| JJNR08         | 15    |
| JJNR09         | < 5   |

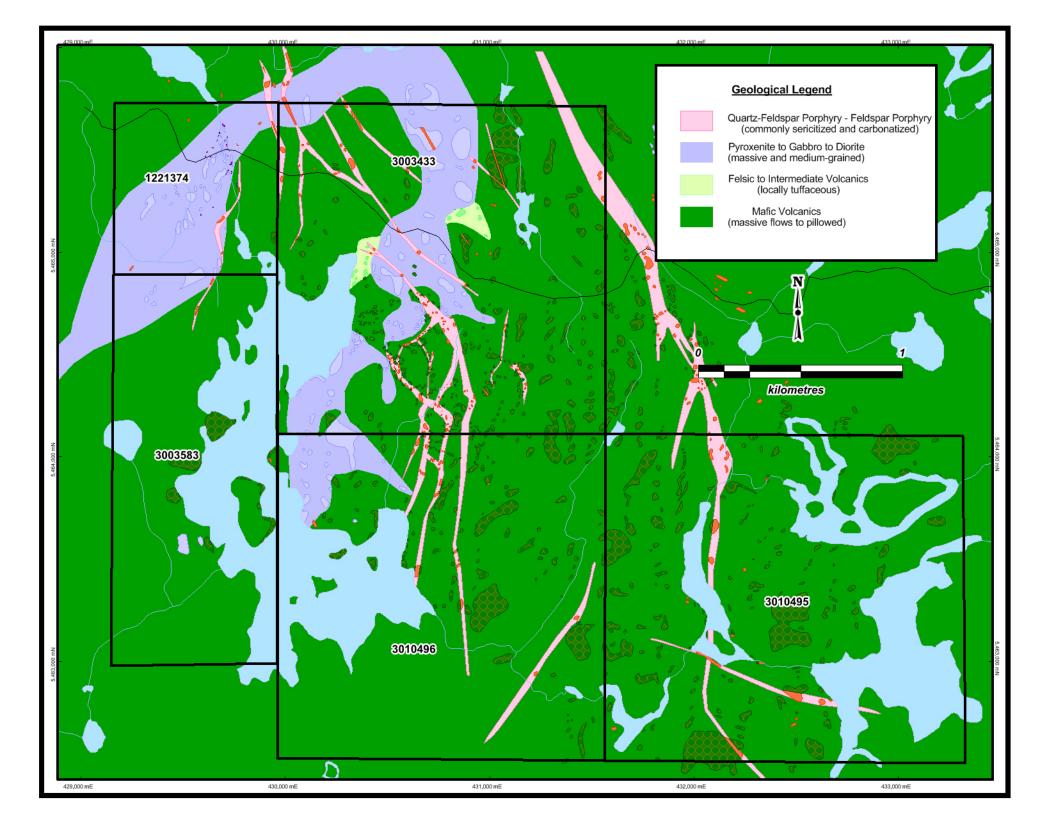
Report: A16-09762


## **APPENDIX IV**


Expenditures


Information withheld for client confidentiality.


## APPENDIX V


Attached Maps and Figures

