We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Report

Summer 2016 Regional Structural Study and Drilling Program Crescent Lake Project Falcon Lake and Zigzag Properties

CRESCENT LAKE AND FALCON LAKE AREAS THUNDER BAY MINING DIVISION, ONTARIO, CANADA NTS 52108

> Prepared For: Canadian Orebodies

> > Prepared by: Tim Birt Sunrise Canada Inc.

Date: October 11, 2016 Revised November-December 2016

1 Table of Contents

List	_ist of Tables3							
List	of Fig	gures	3					
2	Intro	duction	4					
3	Tern	ns of Reference	4					
4	Disc	laimer	4					
5	Prop	perties Description and Location	4					
6	Acce	essibility, Local Resources and Infrastructure	7					
7	Geo	logical Setting	8					
	7.1 7.2 7.3	Regional and Local Geology Properties Geology Alteration and Mineralization	9					
8	Histe	ory of Exploration on the Properties1	1					
9	Curr	ent Program1	4					
	9.1 9.2	Regional Structural Study 1 Drill Program 1						
10	Sam	pling Method and Approach1	5					
11	Sam	ple Preparation, Analysis and Security1	5					
12	Inter	pretations and Conclusions1	6					
13	Reco	ommendations1	7					
14	Refe	rences and Literature1	7					
15	Date	1	8					
16	State	ement of Qualifications1	8					
Арре		I – CRESCENT LAKE PROJECT AREA, ONTARIO, CANADA jional Structural Study Report)2	0					
Арре	endix	II – Schedule of Costs3	5					
Арре	endix	III – Work Schedule	7					
Арре	endix	IV – Certificates of Analysis3	9					
Арре	Appendix V – Stock Exchange Announcments							
Арре	Appendix VI – Drillhole Plans and Sections124							
Арре	endix	VII – Detailed Drill Logs13	Appendix VII – Detailed Drill Logs132					

List of Tables

Table 1 – Falcon Lake and Zigzag Properties Claims	7
Table 2 – Completed 2010-2011 drillholes	11
Table 3 – Significant results from 2010-2011 drilling	12
Table 4 – Historic Exploration - Falcon Lake and Zigzag Properties	13
Table 5 – Completed 2016 drillholes	15
Table 6 – Significant results from Falcon Lake 2016 drilling	16

List of Figures

Figure 1: Regional Location.	5
Figure 2: Crescent Lake Project - Falcon Lake and Zigzag Property locations	6
Figure 3: Setting up for drill hole FLDD001 on the Falcon Lake Property	8
Figure 4: Drill underway on drill hole FLDD001	9
Figure 5: Regional geology (modified from Pye, E.G., 1968)	10

2 Introduction

This report details the work conducted during a Regional Structural Study and drilling program completed in the month of June 2016. Fladgate Exploration Consulting Corporation (Fladgate) and Sunrise Canada Inc. provided field personnel to conduct operations. The regional work was completed on the Falcon Lake and Zigzag Properties, located northeast of Armstrong, Ontario, Canada. The drilling program was completed on the Falcon Lake Property. Sunrise Canada has an option agreement with Canadian Orebodies to acquire interest in the property as part of its focus in identifying and exploring for a lithium and rare metal elements occurrences.

This report was authored by Tim Birt, Chief Geologist of Sunrise Canada's parent entity, Argonaut Resources NL, an ASX (Australian Stock Exchange) listed public company.

3 Terms of Reference

This report was prepared by Sunrise Canada for the use of filing assessment as required under the Ontario Mining Act.

4 Disclaimer

This report is based on information from assessment reports, private reports and general geological reports and maps listed in the References and Literature Section. Although many authors of such reports appear to be qualified and the information appears to have been prepared to standards acceptable at the time, the presentation of the data does not meet present requirements and therefore the author is unable to ascertain the full quality of the information. The author does not take responsibility for the information provided from such sources.

5 Properties Description and Location

The Falcon Lake and Zigzag Properties are located within the Crescent Lake area. The Falcon Lake Property consists of 5 contiguous claims and the Zigzag Property consists of 7 contiguous claims (Table 1), of located approximately 90km northeast of Armstrong, Ontario, Canada (Figure 2).

Armstrong, Ontario is located approximately 250km north of Thunder Bay, Ontario, at the end of Highway 527, running along the west side of Lake Nipigon (Figure 1).

Figure 1: Regional Location.

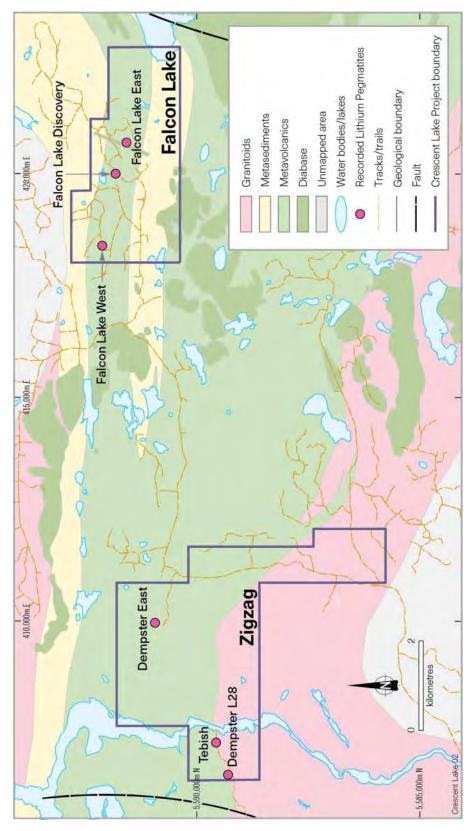


Figure 2: Crescent Lake Project - Falcon Lake and Zigzag Property locations.

Mining Claim	Township/Area	Units	Date Recorded	Date Due
4252441	Falcon Lake Area (G-0035)	8	Dec. 9, 2009	Dec. 9, 2016
4252442	Falcon Lake Area (G-0035)	4	Dec. 9, 2009	Dec. 9, 2016
4250593	Falcon Lake Area (G-0035)	16	July 17, 2009	July 17, 2017
4250594	Falcon Lake Area (G-0035)	16	July 17, 2009	July 17, 2017
4250595	Falcon Lake Area (G-0035)	16	July 17, 2009	July 17, 2017
4213186	Crescent Lake (G-0027)	16	24-Sep-2009	24-Sep-2017
4213187	Falcon Lake (G-0035)	14	24-Sep-2009	24-Sep-2017
4229526	Falcon Lake (G-0035)	12	24-Sep-2009	24-Sep-2017
4244211	Crescent Lake (G-0027)	12	27-Oct-2008	27-Oct-2016
4244212	Crescent Lake (G-0027)	16	27-Oct-2008	27-Oct-2016
4244213	Crescent Lake (G-0027)	16	27-Oct-2008	27-Oct-2016
4252421	Crescent Lake (G-0027)	16	9-Dec-2009	9-Dec-2016

Table 1 – Falcon Lake and Zigzag Properties Claims

6 Accessibility, Local Resources and Infrastructure

Main access to the site is achieved via the North Jackfish road, which is an extension of Airport Rd., leading northeast out of Armstrong, Ontario. The roads leading onto the Properties are logging roads.

The Jackfish Road is considered a gravel logging road and is in consistent use by local outdoorsmen and the Whitesand First Nation. Although it is fairly well-maintained, an off-road capable truck or SUV is recommended.

The North Road separates from the main Jackfish road at approximately the 76km marker, while the turnoff to the Falcon Lake Property itself is located at the 11km marker along the North Road. The network of roads can easily access most of the Falcon Lake Property by an off-road capable truck or ATV.

The North Road also leads to Zigzag Property claims 4229526 and 4213187. There is an old road at the 5km marker along the North road that can be used to access the Dempster East showing located on claim 4213186. This trail was limited to ATV use only and is now in need of maintenance and upgrade.

There is very limited access into the western portion of the Zigzag Property, however a drill access to the Tebishogeshik showing was re-established in 2010. This trail was limited to ATV and snowmobile use, and was considered a winter-use trail only. This trail is now in need of maintenance and upgrade.

7 Geological Setting

7.1 Regional and Local Geology

The properties are located within the Caribou Greenstone Belt, which trends east-north east along the top of Lake Nipigon. The Caribou Lake Greenstone Belt (MacDonald et al, 2009) extends eastward from the larger Onamon-Tashota Greenstone Belt, and lies along the northern margin of the Wabigoon Subprovince. As defined by the Sydney Lake-Lake St. Joseph Fault zone. The Caribou belt differs from the Marshall Lake portion of the Tashota belt in being dominated by mafic and ultramafic rock compositions, including komatiites, with lesser intermediate and felsic metavolcanic rocks. The Caribou belt also contains horizons of metasedimentary units, including abundant iron formation. Numerous Archean-aged mafic and ultramafic bodies intrude the metavolcanics.

In the area of the properties, a prominent south-south west trending arm of the belt wraps around the northwest end of a large, early, composite felsic pluton. The contacts of the pluton can be seen on regional vertical gradient magnetic maps, and is reported (Pye, 1968) to be composed of tonalite and granodiorite, with lesser granite, monzonite and diorite phases. The south-south west arm area is also cut by a series of prominent late south-south west trending faults (with left-lateral displacement) that dictate the odd shape of Crescent Lake.

Lying near the north end of the Nipigon Embayment, the area has also been affected by the Proterozoic Mid-Continental Rift event, expressed locally by outliers of Logan diabase sills that form prominent hills in the area, and can be seen on magnetic maps as strong highs or lows.

Figure 3: Setting up for drill hole FLDD001 on the Falcon Lake Property

Figure 4: Drill underway on drill hole FLDD001

7.2 Properties Geology

The Falcon Lake and Zigzag Properties are comprised mostly of a large volcanic package on the northern portion of the properties, and sediments to the south in the case of Falcon Lake and a large granitic intrusion in Zigzag's case (Figure 5). The volcanic and sedimentary units have been metamorphosed to at least a greenschist facies, with instances of garnet in some outcrops indicating metamorphism as high as amphibolite facies.

The metavolcanics throughout the properties occur in several different forms, mostly as massive basalts, whereas several outcrops show relatively unaltered pillow selvages. The metasediments are mostly poorly sorted greywackes and arkosic wackes.

Granitic intrusions are common, mostly in the form of pegmatite dykes as well as some simple granitic dykes. There are some instances of quartz and feldspar porphyries. In some areas, the pegmatites are truncated by Logan diabase sills.

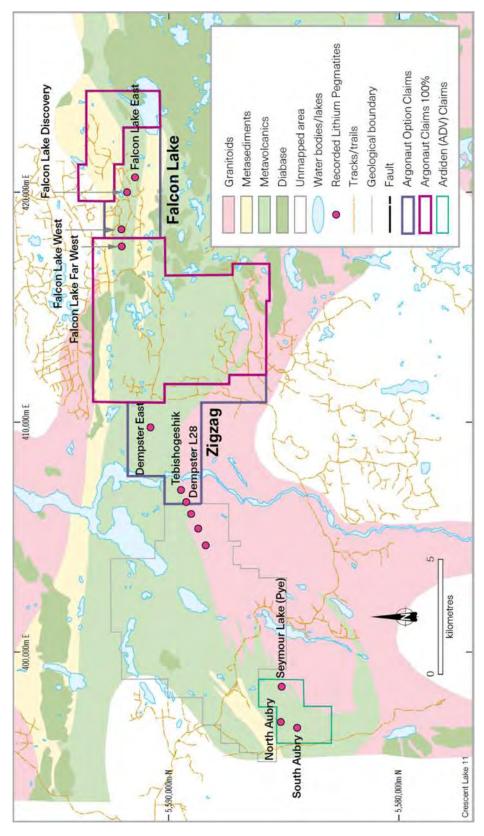


Figure 5: Regional geology (modified from Pye, E.G., 1968).

7.3 Alteration and Mineralization

The Falcon Lake Pegmatite Group consists of a series of pegmatite dykes that intrude within a 0.25 km x 4.5 km area between Funnel and Falcon Lakes including the Falcon Lake Discovery Pegmatite, Falcon Lake East Pegmatite and Falcon Lake West Pegmatite. These pegmatites are spodumene-subtype and have some of the highest reported tantalum-rich oxide values in Ontario, associated with manganotantalite and ferrotapiolite. These pegmatites are complex subtype, spodumene pegmatites which are enriched in Li with associated Be, Cs, Ga, Nb, Rb, Sn and Ta.

Crescent Lake Pegmatite Group consists of a series of pegmatite dykes that intrude mafic metavolcanic and meta-tonalitic rocks within a 1.2 km x 6 km area south of Crescent and Zig-Zag Lakes including the Tebishogeshik Pegmatite and the Dempster East Pegmatite. These pegmatites are complex-subtype, spodumene-subtype and have relatively high tantalum associated with oxide phases (columbite-tantalite group, ferrotapiolite and microlite), evolved garnet compositions and pervasive albitisation.

8 History of Exploration on the Properties

Canadian Orebodies conducted a drilling program (Table 2), targeting the Tebishogeshik and Falcon West showings and determine overall lithium and tantalum consistency across the known pegmatites (Thompson and Henderson, 2011¹ and ²).

Initial planning the for the Falcon Lake West drillholes was to twin historical drillholes drilled by British Canadian Lithium Mines. However, the exact collar locations of these historical drillholes were not accurately located. The orientation (azimuth and dip) of the historical holes were used for the drill program. The drillholes targeting Tebishogeshik were planned to test the strike extent outwards (east and west) from the known pegmatite outcrops observed during mapping.

Drillhole ID	Easting (NAD83)	Northing (NAD83)	Azimuth	Dip	Total Depth (m)	Pegmatite Intersection (m)
CO-10-001	418449	5592004	300	-45.0	103.3	20.2
CO-10-002	418422	5592003	300	-60.0	94.8	13.1
CO-10-003	418423	5592042	300	-60.0	65.0	11.0
CO-10-004	406924.00	5589431.00	347	-50.0	100.5	6.00
CO-10-005	406953.00	5589428.00	330	-50.0	50.9	2.00
CO-10-006*	406899.00	5589412.00	345	-60.0	50.5	2.50 + 3.50
CO-10-007*	406839.00	5589410.00	345	-55.0	50.0	0.30 + 6.30
CO-10-008	406761.00	5589387.00	350	-50.0	50.5	5.00
CO-10-009*	407144.00	5589476.00	345	-50.0	51.0	8.30 + 2.00
CO-10-010	407153.00	5589451.00	345	-55.0	81.0	4.00
CO-10-011*	407422.00	5589521.00	345	-50.0	50.2	4.50 + 2.55
* Duille als intens						+0.30 +1.10

Table 2 – Completed 2010-2011 drillholes

* Drillhole intersected pegmatite on more than one occasion.

Drillhole ID From To Width Li2O Ta₂O₅ Be Cs Nb Rb									
	(m)	(m)	(m)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
CO-10-001	69.3	83.3	14.0	0.99	52.5	145.4	166.0	62.5	2080.7
including	69.3	74.3	5.0	1.25	46.6	214.7	189.8	69.4	2862.0
Including	79.3	83.3	4.0	1.50	47.9	128.7	120.1	78.7	1657.5
CO-10-002	55.3	62.3	7.0	1.07	68.6	136.4	377.9	46.1	3477.1
CO-10-003	39.4	50.4	11.0	1.10	50.0	115.2	83.3	62.5	1377.1
including	44.4	50.4	6.0	1.52	48.5	156.6	84.7	79.9	1670.0
CO-10-005	10.73	21.10	10.37	36.07	132.40	32.65	803.35	0.27	86.92
including	10.73	14.48	3.75	79.05	71.93	58.91	870.93	0.45	192.79
CO-10-006	19.80	22.40	2.60	115.60	54.46	81.30	1201.5	0.74	123.87
							4		
CO-10-006	28.50	30.5	2.00	100.35	80.05	100.65	940.00	0.06	170.34
CO-10-007	12.45	18.55	6.10	114.07	56.55	69.33	1090.2	1.08	197.29
							5		
including	12.45	15.50	3.05	146.80	39.07	82.42	580.00	1.49	240.18
CO-10-008	11.50	18.42	6.92	35.83	123.97	67.30	1434.8	0.40	299.07
							8		
including	15.50	18.42	2.92	62.76	118.26	87.37	1522.7	0.58	399.82
							4		
CO-10-009	10.50	18.65	8.15	140.62	51.87	69.55	1079.2	0.35	188.17
							6		
CO-10-010	34.20	37.85	3.65	96.62	64.06	105.40	1102.1	0.93	237.68
							9		
CO-10-011	14.50	18.56	4.06	194.10	64.12	84.38	1618.2	0.27	106.08
							8		
CO-10-011	39.50	41.95	2.45	126.92	248.98	46.78	859.98	0.07	223.44

Table 3 – Significant results from 2010-2011 drilling

Canadian Orebodies completed mapping and sampling programs in 2009 (Thompson et al, 2010¹ and ²). These programs included mapping and sampling over the Falcon Lake and Zigzag Properties, as well as a trenching and channel sampling programs over the Falcon West showing, Dempster East and the Ketchican Beryl Occurrences. Regionally, mapping traverses were undertaken and grab samples collected form both properties.

Historical, documented exploration is summarized in Table 4 below.

Year	Operator	Work	Principal Reference
1956-1958	British Canadian	Line cutting and Drill Program	BCLM Report
	Lithium Mines Ltd.	totalling 22 holes	
1956-1960	Dempster	Line cutting, trenching and drill	Dempster Report
	Explorations Ltd.	program, totalling 24 holes.	
1978-1979	E&B Explorations	Grid cutting and Geochemistry	E&B Assessment
	Inc. & Cominco Ltd.	Program	Report
1982	Bird River Mines Co.	Channel Sampling	BRMC Report
	Ltd.		
2002	Platinova Resources	Grab samples and channel	Platinova Resources
		sampling.	Property Evaluation

Table 4 – Historic Exploration - Falcon Lake and Zigzag Properties

Several companies have conducted work in the area immediately surrounding (moreover to the West) of the Falcon Lake claims, however British Canadian Lithium Mines Ltd. (BCLM) was the only company to conduct work on the current Falcon Lake Property.

BCLM conducted a drill program in 1956 over the three major showings on the property: Falcon West, Falcon East, and Discovery. Three holes were drilled in the Discovery showing, six were drilled into Falcon East, and nine were drilled into the Falcon West showing, totaling eighteen holes on the property. As mentioned in the drilling report submitted by BCLM, there are four more holes whose locations are yet unknown. Excluding the four unknown holes, the eighteen holes drilled a total of 5,241.5 feet (~1,597.6m).

Initial work done on the Zigzag Property was performed by Dempster Explorations Ltd. in 1958, after original claims were staked by Frank Tebishogeshik in 1956, and optioned to Dempster Explorations. A local grid was cut in the area of the Tebishogeshik showing west of Zig Zag Lake (claim 4244211). Trenching and stripping of the primary dyke showing followed the line cutting, as well as one diamond drill hole. Drill programs were later carried out in 1958, 1959, and 1960 with a total of 23 holes drilled with a 7/8 packsack drill. Work ended after 1960 when lithium prices dropped below economical cutoffs.

E and B Explorations Inc. and Cominco Ltd. outlines several properties where work was completed in the Crescent and Falcon Lake areas in 1980. They conducted a line cutting and geochemistry program in 1979 on the Zigzag Property. A 19.18 mile grid was cut over the Tebishogeshik occurrence, and a 3.90 mile grid was cut over the Dempster East showing. Geochemistry was conducted over the Tebishogeshik collecting a total of 892 samples, while 132 samples were conducted over the Dempster East dyke.

Claim Group 'B' of E and B Explorations outlines most of the current Falcon Lake property. Work included a 22.43 mile grid cut by G.D. Hudson and Son, as well as a geochemistry program undertaken by E and B Explorations. A total of 1103 samples were taken for the geochemistry program.

Bird River Mines Co. Ltd. continued with work in 1982 with an extensive channel sampling program over the Dempster East and Tebishogeshik occurrences. A summary of their results show an average lithium return of 2,500 tons per vertical foot with an average grade of 1.60% Li. Results for tantalum, gallium, and beryllium were also returned with ½-7lbs/ton, ~ ½ lb/ton, and recoverable amounts, respectively. These results were based off of 36 channel samples totaling approximately 155 feet.

9 Current Program

9.1 Regional Structural Study

Sunrise Canada engaged a structural geology expert, Mike Watkeys, to evaluate the structural geology of the pegmatites at Crescent Lake project area including the Falcon Lake and Zigzag Properties. Access to the field area was restricted due to the condition of tracks caused by rain. The Canadian Orebodies drillcore from the 2010-2011 drill program was found to be stored in Timmins, so the opportunity to relog and obtain further structural reading was undertaken.

This study highlighted that the orientation and en echelon nature of the Falcon Lake West pegmatites indicates that they are infilling T fractures the developed in an east west striking sinistral transtensional strike-slip system. The pegmatites have varying dips and strikes. The steep dipping bodies may be intruding T fractures while shallower dipping bodies may be parallel to normal faults. The pegmatites may "blow" at the intersection of fractures giving potential shoots plunging sub-vertically and sub-horizontally. The regular spacing of about 700 m between bodies suggests that there should be another pegmatite halfway between Falcon Lake West and Falcon Lake Discovery (Watkeys, 2016).

This report is included as Appendix I.

9.2 Drill Program

The Summer 2016 drilling program consisted of six drillholes (Table 5), targeting the Falcon West showing. A total of 6 NQ diamond drillholes (FLDD001-006) were drilled for a total of 534 metres. The aim of this program was to verify and determine overall lithium and rare metal elements consistency across the known pegmatite.

The drilling was performed by Chibougamau Diamond Drilling Ltd., based out of Chibougamau, Quebec, Canada. The drill rig was mobilized to site from the nearby Landore Resources Camp on June 15th. Drilling commenced on June 16th, with drillhole FLDD01, and was completed on June 22rd, with drillhole FLDD006. Demobilization back to Landore Resources Camp was done over the course of the 23rd.

Drillhole planning involved targeting strike extension to the mineralisation intercepted in 2010 by Canadian Orebodies. Two sections of drilling, one containing FLDD001, 002 and 006 and the other FLDD003 and 004, tested extensions to the south from the 2010 drilling. FLDD005 tested the northern extension of the pegmatites.

Drillhole ID	Easting (NAD83)	Northing (NAD83)	Azimuth	Dip	Depth (m)	Pegmatite Intersection (m)
FLDD001	418396	5591985	300	-50	81	23.75
FLDD002	418433	5591963	300	-45	111	27.85
FLDD003	418394	5591944	300	-50	96	20.7
FLDD004	418413	5591931	300	-45	111	17.9
FLDD005	418447	5592055	300	-50	75	1.5
FLDD006	418367	5592002	300	-45	60	21.6

Table 5 – Completed 2016 drillholes

10 Sampling Method and Approach

Drillcore was logged for recovery, lithology, alteration, mineralisation and structure on site near the Falcon Lake property, Ontario, by Fladgate personnel. Drillcore was cut and sampled on nominal 1 metre intervals except at lithological contacts. All pegmatite was sampled as well as shoulder samples into metavolcanic lithologies. A total of 227 samples including QA/QC samples were submitted for analysis.

A QA/QC program was put in place that involved placing lithium standard material (SRM 181) every 20 samples accompanied by a granite blank every 20 samples. The blank material was obtained from Nelson Granite, in Vermilion Bay, Ontario.

The SRM 181 standard was sourced from the National Institute of Standards and Technology (NIST), part of the U.S. Department of Commerce.

11 Sample Preparation, Analysis and Security

The samples were cut and placed in standard clear sample bags with barcoded sample tickets. The samples were then placed in polywoven bags, in groups of ten. Samples were taken to the ALS Chemex Preparation Facility, Thunder Bay, inside these polywoven bags. Appropriate chain of custody was confirmed by personnel, who delivered the samples to the laboratory. Sample reception confirmed sample receipt with personnel and the samples became the custody of the lab for preparation and analysis.

Samples were dried, crushed, split, pulverised and pulp taken. These pulps were transferred for analysis at ALS Chemex hub laboratory, Vancouver, BC. Analysis undertaken included a four acid digest (sulphuric, nitric, perchloric and hydrofluoric) and Inductively Coupled Plasma (ICP) finish for 48 element utilising the ME-MS61 method. Samples reporting values over the method detection limit (>10000 ppm Li) were automatically analysed using the Li-OG63 method, which uses four acid digestion and ICP-AES finish.

12 Interpretations and Conclusions

Drilling at Falcon Lake West intersected spodumene bearing pegmatites in each drillhole. Down hole length intersections in the current drilling are comparitive to those intersected by BCLM in the 1950's. The drillhole (FLDD005) testing the northern strike extent indicated that the main pegmatite in thinning out to less than 2 metres width. The section of drillholes testing the southern strike extent

Zonation was observed in the two pegmatite bodies intercepted at Falcon Lake West. Generalized zonation down hole through the pegmatites shows a white quartz-albite-spodumene richwhite mica grading to a white pink quartz-albite-K feldspar- moderate spodumene-white mica then grading to a pink light orange K feldspar-quartz-albite-white mica-spodumene poor pegmatite. The pegmatites are altered proximal to diabase dykes and sills and usually and usually lithium poor. This is possibly due to the light rare metals being remobilised and removed for the pegmatite.

The current drill program demonstrates that the identified pegmatites have a strike extent of greater than 120 metres. Downhole widths exceed 20 metres which is consistent with interval widths encountered by BCLM drilling. Results from the current drilling returned significant intercepts from all drillholes (Table 6).

Hole ID	From	То	Width	Li₂O	Ta₂O₅	Be	Cs	Nb	Rb
	(m)	(m)	(m)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
FLDD001	48.0	69.7	21.7	1.09	84	157	157	85	2227
including	49.8	57.7	7.9	1.31	85	177	173	98	2195
FLDD002	35.6	51.2	15.6	0.91	109	145	114	81	2238
including	35.6	37.1	1.5	1.31	306	148	138	143	2476
and	40.2	51.2	11.0	1.05	109	185	119	94	2786
including	43.8	49.8	6.0	1.26	55	181	90	86	2220
	98.6	101.8	3.2	0.68	43	129	69	65	1741
including	99.6	100.6	1.0	1.12	44	125	75	70	1580
FLDD003	22.7	47.0	24.3	0.55	38	84	122	35	1391
including	25.7	36.9	11.2	0.89	37	105	90	45	1213
including	25.7	31.6	5.9	1.34	55	165	98	65	1638
FLDD004	48.7	50.5	1.8	0.49	200	162	750	60	3102
FLDD005	55.7	58.2	2.5	0.91	34	124	164	39	1218
including	55.7	57.2	1.5	1.42	56	205	233	64	1906
FLDD006	10.9	35.3	24.4	1.48	60	147	196	66	2013
including	20.4	29.4	9.0	1.95	57	167	194	77	2041

Table 6 – Significant results from Falcon Lake 2016 drilling

13 Recommendations

Current and historical drilling has identified the strike extent of the Falcon Lake West pegmatite at surface. The pegmatite does continue at depth, with intersection width at surface approximately the same as the drilled intersection at depth. Further repetitions of the pegmatites are possible as displayed by second, blind pegmatite intersected at Falcon Lake West.

Further investigation for repetitions of pegmatite occurrences within the structural corridor which controls the emplacement of the pegmatites within the Falcon Lake and Zigzag Properties should be undertaken. Prospecting should be undertaken on a traverse basis over the structural corridor.

14 References and Literature

Author	Year	Title
Anderson, C.D.	1989	Bird River Mines Company Ltd. – Strategic Metals, ZigZag Lake Prospect, Ontario.
BCLM	1956	British Canadian Lithium Mines Ltd., Diamond Drill hole logs.
Burns, R.F.	1980	EBJV Crescent Lake – Assessment Report on Claims.
Cullen, D.	2002	Platinova Resources Ltd. – Property Evaluation of the ZigZag Tantalum-Lithium Property.
Hoiles, R.G.	1958	Geological Report – The West Group of Claims of Dempster Explorations Ltd.
MacDonald, C.A., ter Meer, M., Lowe, D., Isaac, C. and Stott, G.M.	2009	Precambrian geology of the Caribou Lake greenstone belt, northwestern Ontario: Ontario Geological Survey, Preliminary Map P.3613, scale 1:50 000.
Pye, E.G.	1968	Geology of the Crescent Lake Area, District of Thunder Bay, Ontario. Department of Mines – Geological Report 55.
Thompson, M., Craig, B. and Henderson, A. ¹	2010	Assessment Report Fall 2009 Exploration Program, Falcon Property
Thompson, M., Craig, B. and Henderson, A. ²	2010	Assessment Report Fall 2009 Exploration Program, Zigzag Property

Thompson, M., and Henderson, A. ¹	2011	Assessment Report Winter 2010 Drilling Program, Falcon Lake Property
Thompson, M., and Henderson, A. ²	2011	Assessment Report Winter 2010/2011 Drilling Program, Zigzag Property
Watkeys, M	2016	Crescent Lake Project Area, Ontario, Canada (Structural Study Report)

15 Date

This report was completed on October 11, 2016. Revisions were conducted in late November and December 2016.

16 Statement of Qualifications

STATEMENT OF QUALIFICATIONS

I, Timothy Birt, of the CITY of ADELAIDE, in the STATE of SOUTH AUSTRALIA, hereby certify:

I am a graduate of Flinders University, Bedford Park, South Australia, with an Honours Bachelor of Science degree, majoring in Geology.

I have been employed as a Chief Geologist with Argonaut Resources NL since October, 2010.

Argonaut Resources NL and its Canadian subsidiary, Sunrise Canada Inc., currently in an option agreement with Canadian Orebodies on the Crescent Lake Project which consists of the Zig Zag and Falcon Lake properties.

I have no interest, either directly or indirectly, in the subject property.

This report is based on a study of all information made available to me, both published and unpublished, and on information collected in the field by myself and by Fladgate Exploration Consulting Corporation personnel, or provided to me during the period of June, 2016 to October, 2016.

Dated in Adelaide, South Australia, this 11th day of October, 2016.

Tim Birt

Appendices

Appendix I – CRESCENT LAKE PROJECT AREA, ONTARIO, CANADA (Regional Structural Study Report)

CRESCENT LAKE PROJECT AREA, ONTARIO, CANADA

by

M, K, Watkeys

EXECUTIVE SUMMARY

The orientation and *en echelon* nature of the Falcon Lake prospect pegmatites indicates that they are infilling T fractures the developed in an E-W striking sinistral transtensional strike-slip system. The pegmatites have varying dips and strikes. The steep dipping bodies may be intruding T fractures while shallower dipping bodies may be parallel to normal faults. The pegmatites may "blow" at the intersection of fractures giving potential shoots plunging sub-vertically, sub-horizontally NNE to SSW, and moderately N to NNW, NE, S to SSE and SW. The regular spacing of about 700 m between bodies suggests that there should be another pegmatite halfway between Falcon Lake and West Falcon Lake Discovery. Stress analysis suggests that the Falcon Lake and the Dempster prospects could lie along the same shear zone, opening up the possibility of bodies between these locations. The Tebishogesik Prospect comprises *en echelon*, left-stepping pegmatite lenses, dipping at about 59° SE, that developed in an ENE-striking dextral strike-slip system. The structural control on this prospect and adjacent prospects along the southern margin of the greenstone belt may be a result of contact strain between the greenstone belt and the adjacent granitic rocks

INTRODUCTION

This report is the outcome of an investigation Li-bearing pegmatites in the Crescent Area of the Caribou Lake greenstone belt, Ontario that was undertaken for Argonaut Resources NL. The requirements were:

- To observe and assess the structural geology of the Crescent Lake Project Area
- Prepare and deliver a report detailing the findings under with specific reference to potentially economic mineralisation and its relationship to observed or interpreted geological structure.

The instructions were that the study should concentrate on the Falcon Lake and the Tebishogesik Prospects (Fig. 1) to assist with siting exploration boreholes.

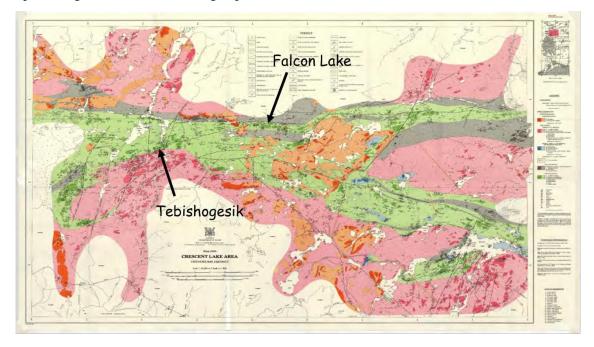


Figure 1: Locality of the Falcon Lake and Tebishogesik prospect on Pye's (1968) geological map

The study was undertaken in Thunder Bay and Timmins from 31st May-8th June 2016. Unfortunately it was not possible to go into the field because of the condition of access roads due to rain. I was provided with a structural database (COB_MappingStruct_V02_TB) of previous work that was compiled by Tim Birt (Argonaut Resources) for Map Info. Supplementary readings were obtained from borehole core stored in Timmins in the company of Tim Birt and Steve Greisen, a local contracted geologist.

Some general geology aspects

Pegmatites are notorious for bifurcating and consequently being somewhat apparently unconstrained with respect to orientation (Table 1). However there are certain basic principles of brittle deformation of rocks and dilation of fractures that may be used to predict their orientations. These are set out briefly in Appendix A.

Prospect	dip v	ariation	dip di	rection variation
N Aubrey	20	25	90	
S Aubrey	15	20	75	
Chappairs Lake	60		180	
Despard	10		20	350
Seymour Lake	0	5	270	
Falcon Lake Discovery	60		310	
Falcon Lake E	80		110	
Falcon Lake E	80		105	
Tebishogesik	55	70	165	170
Tebishogesik West	70	80	100	
Dempster East Dike N trend			45	
Dempster East Dike S trend			165	
Dempster L38 trend			65	
Dempster L40 trend			90	

Table 1: Dip, dip direction and trend variations in pegmatites of various prospects in the CrescentLake area (from Pye, 1968)

The pegmatites reported on here occur mainly in the late Archaean supracrustals (metavolcanics and metasedimentary assemblages) with a few in the Tebishogesik prospect in the granitic rocks. The foliation in these prospects and surrounding areas defines a fold axis plunging at $42^{\circ}/065^{\circ}$ (Fig. 2). This orientation falls within the range of fold axes for the first deformation reported by Pye (1968) and the foliation seems to correspond to S₁ of Macdonald *et al.* (2009). It is not clear whether the fold axes reported are those to which S₁ is axial planer or are fold axes resulting from deformation of the foliation. In addition the data here indicate that there are differences between the fold axes derived from the foliation in the supracrustals and in the granitic rocks, but these issues are beyond the scope of this study.

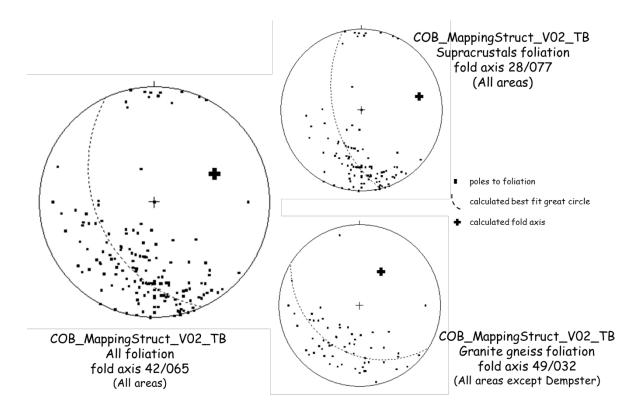


Figure 2: Stereonets for foliation in the Falcon Lake and Tebishogesik prospects and environs showing derived fold axes

FALCON LAKE PROSPECT

This comprises four prospects along a 4 km E-W corridor parallel to the regional strike of the foliation that dips steeply N and S (Figure 3a). No pegmatite orientation is available for Falcon Far West, but in the other prospects all the Li-bearing pegmatites strike approximately NNE-SSW (Table 2; Figure 3b).

Table 2: Dip and dip direction for Li-bearing pegmatites at Falcon Lake measured in core and from
Pye (1968)

Prospect	core dip		direction	
	01-100 001	43	112	
Falcon Lake West	01-100-002	82	138	
	01-100-003	52	104	
	Pye 1968	70 to 80	100	
Falcon Lake Discovery	Pye 1968	60	310	
Falcon Lake East	Pye 1968	steep	110	

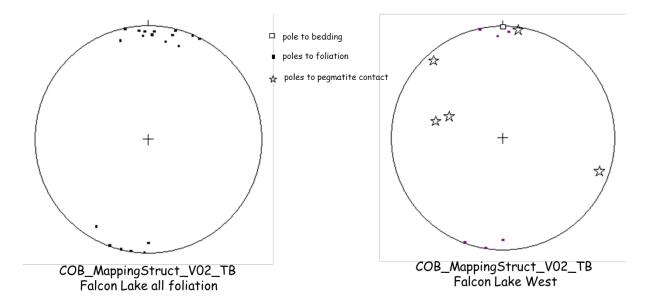
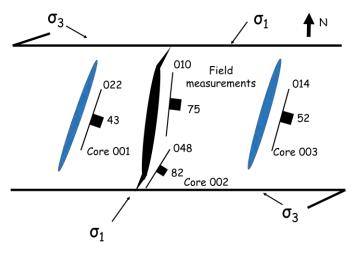



Figure 3: a) left plot shows foliation from all Falcon Lake prospects. b) right shows foliation and pegmatites from Falcon Lake West

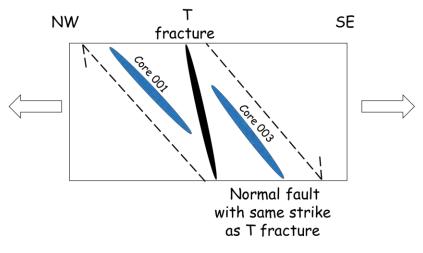

The *en echelon* orientation of the NNE- striking pegmatites within an E-W corridor suggests that these pegmatites are filling T fractures formed by an approximately E-W sinistral strike-slip system (see Appendix 1, Fig. A.1). However there is a variation in dip of those pegmatites, some with steep dips and others with more shallow dips towards the SE (Fig. 4). A pegmatite in Core 01-100-02 has a steep dip but with a different strike orientation to the other pegmatites. This is interpreted as being the tip of a sigmoidal pegmatite that is infilling an anticlockwise rotated T fracture (Fig. 4).

Figure 4: Schematic plan view of pegmatites measured in the field and in core in the Falcon Lake prospect. The black pegamtite is interpretated as being sigmoidal, infilling a rotated T fracture in a sinistral strike-slip system.. The blue pegamtites have a simialr strike to the sigmoidal pegamtite but shallower dips.

When viewed in section (Fig. 5), a possible interpretation is that the more shallow dipping pegmatites were intruded parallel to normal faults dipping towards the SE. Such faults are not usually represented in strike-slip systems (see Appendix 1) but may develop when that zone is transtensional either through the T fractures becoming rotational, domino-style normal faults or through normal faults with the same strike a T fractures as illustrated below.

Figure 5: Schematic cross-section illustrating the bimodal dips of pegmatites in the Falcon Lake prospect. The steeply dipping black pegmatite intruded a T fracture while the more shallowly dipping red pegmatites intruded parallel to normal faulting due to NW-SE extension produced in a transtensional sinistral strike-slip system.

The fact that the Falcon Lake prospect has pegmatites with similar strikes but different dips needs to be borne in mind when constructing cross-sections and estimating potential reserves. On top of that, the line of intersection between pegmatites is the potential position of a linear "blow" where the widening of the pegmatite will be a shoot following the plunge and plunge direction of the intersection. If the system here comprises a sinistral strike slip-system only, then that line of intersection will be subvertical where the T, R and R' fractures intersect (Fig 6 left, bottom and top). If the transtensional system only consists of a T fracture and conjugate normal faults, then that line of intersection will be sub-horizontal (Fig, 6, right bottom and top). However it seems that the system is transtensional and, therefore, a combination of the two. Therefore there are four additional potential directions where the R and R' shears intersect with the pair of conjugate shears (Fig. 6, top centre): moderately plunging N to NNW, NE, S to SSE and SW.

There appears to be a regular spacing of about 700 m between the Falcon Lake Far West and Falcon Lake West pegmatites, and a similar spacing between the Falcon Lake Discovery and Falcon Lake East pegmatites. This suggests that there should be another pegmatite equidistance between Falcon Lake West and Falcon Lake Discovery.

Assuming that the pegmatites are infilling the T fracture, by making some other assumptions it is possible to undertake stress analysis which will allow the prediction of the orientation and sense of movement of other fractures. The pegmatite defines the σ_1 - σ_2 plane (Appendix 1) and assuming that the strike-slip system relates to the regional compression that deformed the foliation, as a first approximation σ_2 can be taken to be the regional fold axis in Fig. 2 .As this deformation took place under ductile rather than brittle conditions, an angle of 50° is probably a better estimate of the angle between σ_1 and the conjugate shears rather than the 30° used in brittle deformation (Appendix 1).

Taking all of these assumptions into consideration, stress analysis was applied to a pegmatite at 68m depth in core 01-10-001 from Falcon Lake West (Fig. 7). This predicts a sinistral conjugate R shear with a dip of 82° SE and a strike of 062°, and a dextral conjugate R' shear with a dip of 40° NE and a strike of 302°, The latter orientation is close to NW-trending fractures on Pye's 1968 map while the former orientation is close to a trend that extends to the Dempster prospect.

It is suggested here that such conjugate shears are the product of regional E-W extension, responding to N-S compression, and forming a subtle neck in the Lake Caribou greenstone belt (Fig. 1, Fig. 8). This model accounts for the development of the Falcon Lake pegmatites and indicates that there may be other bodies in a corridor leading down to the Dempster prospect. The model predicts that there should be other bodies further SW, and such bodies occur around the Tebishogesik prospect. However, as will be shown, these bodies are associated with dextral and not sinistral strike-slip.

Figure 6: Illustration of intersections between fractures in a sinistral-strike-slip system (left, bottom block diagram and stereonet) and a conjugate normal fault system (right bottom block diagram and stereonet). The combination of the two in a sinistral transtensional strike-slip system (top block diagram) results in additional intersections as shown in the stereonet in the centre

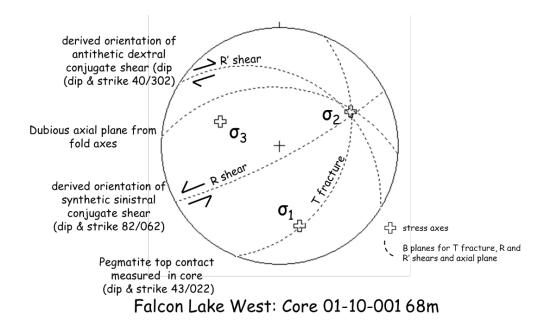


Figure 7: Stress analysis using orientation of a pegmatite in core at Falcon Lake West to derive the orientation of conjugate shears.

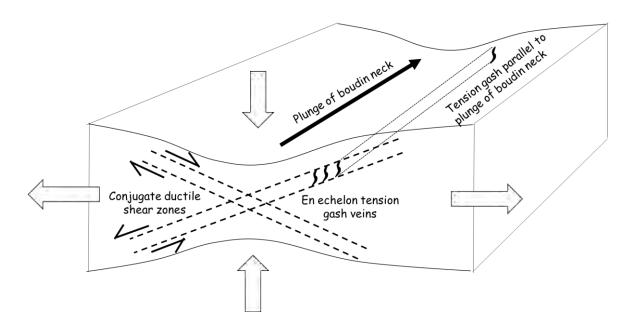


Figure 8: Model for the origin of the sinistral shear zone hosting the Falcon West pegmatite bodies which are shown in black. Note present surface of the Earth is shown as a vertical plane facing the viewer to assist with visualising downward extension of the pegmatites.

TEBISHOGESIK PROSPECT

This prospect occurs along the southern margin of the greenstone belt and into the adjacent granitic rocks (Fig. 1). Here the regional foliation dips steeply N and indicates the presence of folding plunging at 71° to 050° (Fig. 9). Both Pye (1968) and MacDonald *et al.* (2009) report steep plunges to folds adjacent to the granitic rocks and ascribe this deformation to intrusion of those bodies.

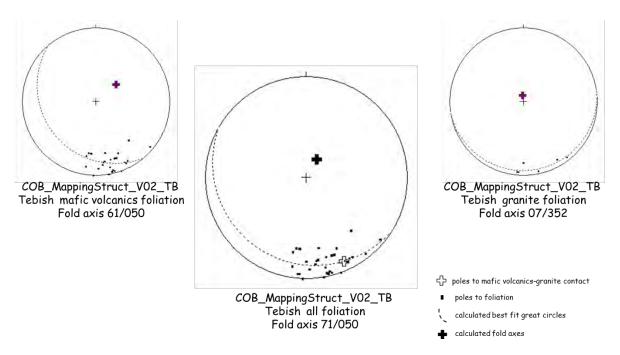


Figure 9: Stereonets plotting foliation in the Tebishogesik Prospect

The pegmatites of prospect comprise a series of WNW to W striking lenses that have a left-stepping *en echelon* pattern within and ENE-striking corridor (Fig. 10). The slight sigmoidal shape to the lenses indicate that they have been rotated clockwise. All of this reveals that the pegmatites intruded T fractures in a dextral strike-slip system, with the tips of the lenses giving the orientation of σ_1 .

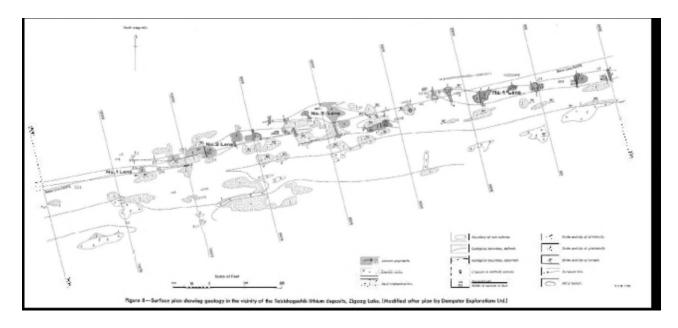


Figure 10: Map of the Tesbishogesik Prospect (from Pye, 1968)

The database provided had trends of pegmatites from this respect but no dips. Therefore dip and dip direction had to be measured from the core. However the core was not orientated so, knowing the plunge and plunge direction of the core, the core was orientated as best as possible using the foliation (Table 3).

Borehole	depth (m)	top/base of pegmatite	dip	direction	
4	60	base	65	135	
5	30	top 60		150	
6	12	base	base 70		
8	18.5	base	55	150	
9	27	top	50	150	
10	61.8	top	65	150	
11	23	top	55	155	
	30.5	top	55	165	

Table 3: Orientation of pegmatites from core, <u>Tebishogesik</u> Prospect. (N.B. measured by orienting core using the foliation therefore dip is $\pm 5^{\circ}$ and dip direction $\pm 10^{\circ}$.

Plotting the above readings together with the trend readings from the database revealed that the orientation of the pegmatites measured in the core corresponded with most of the pegmatites trends in the database (Fig. 11). The average dip of the pegmatites 59° SE, striking 059° .

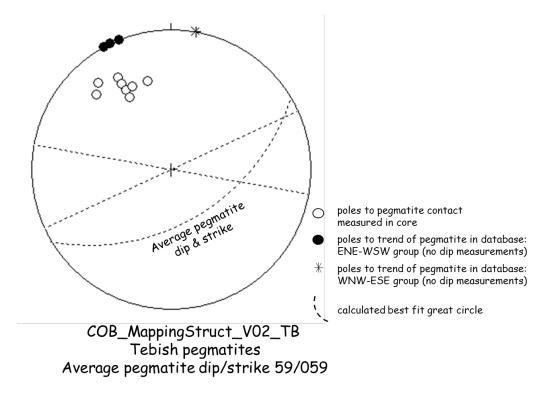


Figure 11: Stereonet plotting the trends of pegmatites from the database together with the orientation of pegmatites measured in core (Table 3), Tebishogesik Prospect.

As the pegmatites are infilling T fractures, it is possible to use the geometry shown in Appendix 1 to estimate the dip of the shear zone hosting the pegmatites. There are three possibilities (Fig. 12). The first is that that the ENE-striking shear is a strike-slip zone with no vertical movement. There second is that it is a normal shear zone dipping to the NW and the third is that it is a normal shear zone dipping to the SE.

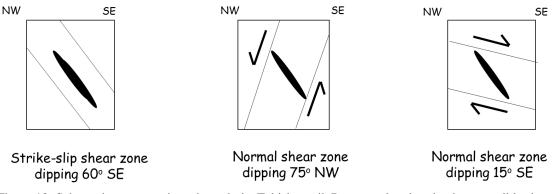


Figure 12: Schematic cross-sections through the Tebishogesik Prospect showing the three possible shear zone sense and orientations to account for the dip of the pegmatites.

With the present data it is not possible to state which of the three is correct. The second possibility would mean that the shear zone is following the contact with the granitic rocks. However in plan the trend of the prospects cuts across that contact. Therefore the first possibility may be more likely (Figure 13).

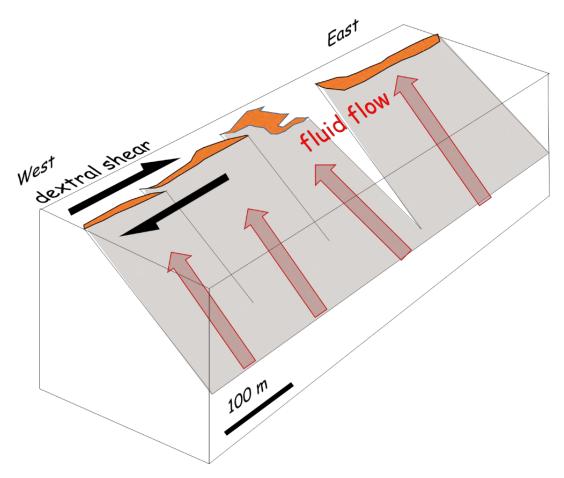


Figure 13: Schematic 3D sketch of the Tebishogesik Prospect viewed from the SW assuming that the pegmatites (orange in outcrop; pink in underground extension formed in a dextral strike-slip shear that dips SE.

It was pointed out earlier that the Tebishogesik Prospect is on a trend extending from the sinistral strikeslip shear forming the Falcon Lake pegmatites. Clearly the dextral strike-slip shear at Tebishogesik Prospect does not fit this model (Fig. 14). Either there have been errors in interpreting the shears at one of these localities, or there have to be two different shear zones. It is not possible to resolve this issue with the present available data. One explanation may be that at Tebishogesik there is a localised strain variation due to the development of a contact strain zone between the greens stones and the granites. Should this be the case then, as granite is more competent than greenstone, wider pegmatites may have developed within the granitic rocks.

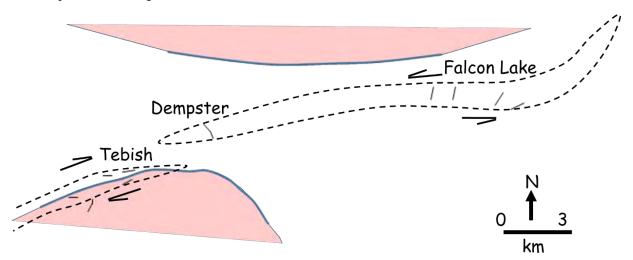
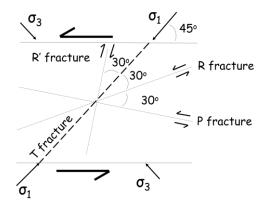


Figure 14: Schematic sketch of the enigmatic situation with the Falcon Lake- Dempster prospects sinistral shear zone and the Tebishogesik Prospect dextral shear zone.

References

MacDonald, C.A., ter Meer, M., Lowe, D., Isaac C. and Stott, T.M. 2009. Precambrian Geology of the Lake Caribou greenstone belt, northwestern Ontario. Ontario Geological Survey, Preliminary Map P3613, scale 1:50 000.


Pye, E.G. 1968. Geology of the Crescent Lake Area; Ontario Department of Mines, Geological Report 55, 72p.

Final Version 15th June 2016

APPENDIX 1: CONTROLS ON PEGMATITE AND CRYSTAL ORIENTATION

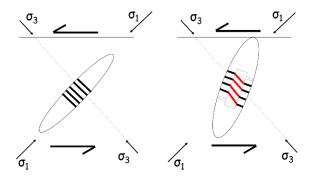

Pegmatites inject along fractures and during brittle failure of rocks there are a number of fractures that develop in reasonably predictable orientations which are illustrated below for a sinistral strike-slip system (Fig. A.1).

Figure A.1: Expected orientation of fractures formed during brittle deformation in a sinistral strike-slip system. For a dextral system, the pattern will be a mirror image. σ_1 = maximum compressional stress axis; σ_2 = intermediate compressional stress axis; σ_3 = minimum compressional stress axis. T fracture = tension or extension fracture; R fracture= synthetic conjugate shear; R' fracture= antithetic conjugate shear; P fracture = secondary synthetic shear.

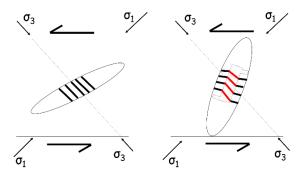

The T fracture is usually the initial fracture infilled by pegmatite. This fracture develops in the σ_1 - σ_2 plane, dilating in the direction of σ_3 . During dilation, crystal develop in the direction of σ_3 and therefore become orientated normal to the pegmatite contact (Fig. A.2a). As the pegmatite rotates during shearing, the orientation of the walls changes but the direction of crystal growth remains the same. Consequently the crystals within the pegmatite are not normal to the pegmatite walls (Fig. A.2b).

Figure A.2: a) Left diagram showing initial dilation of T fracture developed in a sinistral strike-slip system and accompanying crystal growth normal to pegmatite wall. b) Anticlockwise rotation of the pegmatite and early crystals during sinistral shearing. Later crystals grow parallel to σ_3 and are not normal to the pegmatite wall.

If the fluid injects a fracture other than the T fracture, then that fracture will dilate and crystals will grow in the direction of σ_3 . This direction will not be normal to the pegmatite wall (Fig. A.3a). With shearing and rotation of the pegmatite, the walls may become normal to σ_3 in which case the crystals growing at that time will be normal to the walls (Fig. A.3b). Observing this in the field leads to the deduction that the pegmatite may not have formed along the T fracture.

Figure A.3: a) Left diagram showing initial dilation of a R fracture developed in a sinistral strike-slip system and accompanying crystal growth which is oblique to the pegmatite walls. b) Anticlockwise rotation of the pegmatite and early crystals during sinistral shearing. When pegmatite walls are normal to σ_3 the later crystals grow normal to the pegmatite walls.

The dilation of fractures will result in slightly different structures depending on whether the fractures were originally overlapping or not. When overlapping, if the fractures are straight, bent and broken bridges will result whereas if they are curved, rotated bridges eventually develop (Fig. A.4). Fluid flow is along the dilated fractures, i.e. parallel to the strike of the bridges as in the shown orientation.

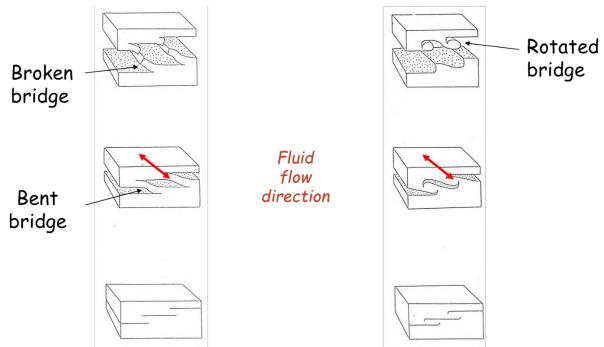
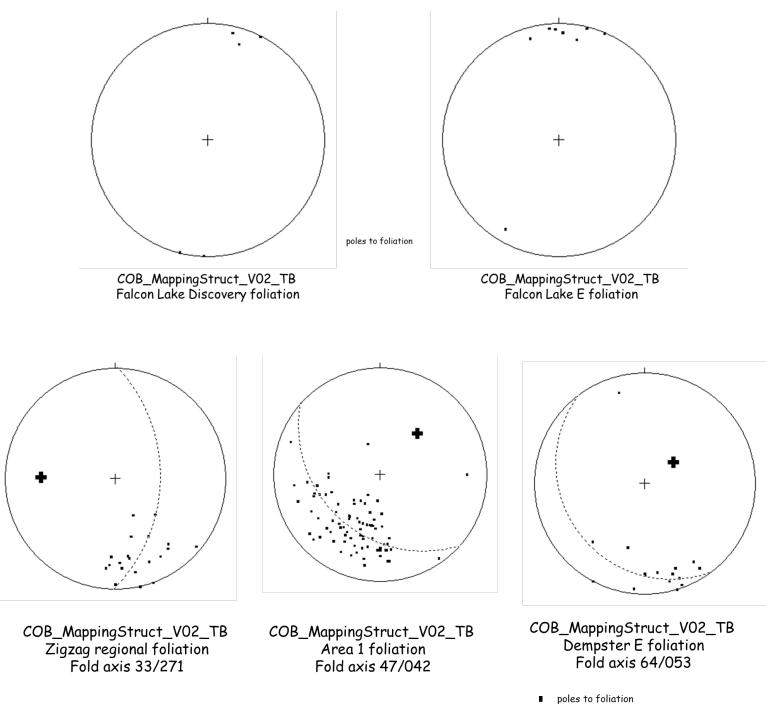



Figure A.4: Left column shows from bottom to top the dilation of overlapping straight fractures while the right column shows the dilation of overlapping curved fractures. After Nicholson and Pollard (1985) *J. Struct. Geol.*, **7**, 583-590.

APPENDIX 2: STEREONETS PLOTTED FROM THE DATABASE BUT NOT UTILISED IN THIS REPORT

- poies to ronation
- calculated best fit great circle
- calculated fold axis

Appendix II – Schedule of Costs

Description	Total Cost (CAD) including HST	Planning, drill and data compilation, reconnaissance	Regional Structural Study	Diamond Drilling Program
Personnel - Employees (Project Management)	\$18,867.19	\$6,289.06	\$5,031.25	\$7,546.88
Personnel -Contract- Professional (Geologist)	\$17,967.00	\$0.00	\$0.00	\$17,967.00
Personnel - Contract- Camp Logistics / Labor (Geotechnician)	\$9,322.50	\$0.00	\$2,796.75	\$6,525.75
Personnel Support - Accommodation	\$5,987.00	\$0.00	\$2,095.45	\$3,891.55
Personnel Support - Travel - domestic	\$1,673.55	\$0.00	\$1,004.13	\$669.42
Personnel Support - Communications	\$1,042.61	\$0.00	\$0.00	\$1,042.61
Geology - Specialist Consulting (Structural)	\$12,003.06	\$0.00	\$12,003.06	\$0.00
Drilling - Diamond Drilling	\$74,038.19	\$0.00	\$0.00	\$74,038.19
Drilling - Drill Assay	\$7,950.51	\$0.00	\$0.00	\$7,950.51
Drilling - Consumables	\$1,523.24	\$0.00	\$0.00	\$1,523.24
Field Support - Vehicles	\$5,807.05	\$580.71	\$1,742.12	\$3,484.23
Field Support - Fuel (vehicles)	\$2,163.02	\$216.30	\$1,081.51	\$865.21
Field Office/Camp - Food	\$3,090.74	\$0.00	\$0.00	\$3,090.74
Field Office/Camp	\$2,408.82	\$0.00	\$0.00	\$2,408.82
Field Office/ Camp - Equipment Rentals	\$649.75	\$0.00	\$0.00	\$649.75
Field Office/Camp - Office Consumables	\$556.65	\$0.00	\$0.00	\$556.65
Field Office/Camp - General Administration	\$130.73	\$0.00	\$0.00	\$130.73
TOTAL	\$165,181.60	\$7,086.07	\$25,754.26	\$132,341.27

Mining Claim	Showing / Occurrence	Planning, drill and data compilation, reconnaissance % allocated	Planning, drill and data compilation, reconnaissance expenditure allocated	Regional Structural Study % allocated	Regional Structural Study expenditure allocated	Diamond Drilling Program % allocated	Diamond Drilling Program expenditure allocated	Total allocated for claim
4252441	Falcon Lake West	20%	\$1,417.21	20%	\$5,150.85	40%	\$52,937	\$59,504.57
4252442				2.5%	\$643.86			\$643.86
4250593	Falcon Lake West	10%	\$708.61	15%	\$3,863.14	60%	\$79,405	\$83,976.51
4250594	Falcon Lake Discovery and East	20%	\$1,417.21	5%	\$1,287.71			\$2,704.93
4250595				5%	\$1,287.71			\$1,287.71
4213186	Dempster East	10%	\$708.61	10%	\$2,575.43			\$3,284.03
4213187				2.5%	\$643.86			\$643.86
4229526				2.5%	\$643.86			\$643.86
4244211	Tebishogeshik	30%	\$2,125.82	25%	\$6,438.57			\$8,564.39
4244212		10%	\$708.61	5%	\$1,287.71			\$1,996.32
4244213				5%	\$1,287.71			\$1,287.71
4252421				2.5%	\$643.86			\$643.86
Totals		100%	\$7,086.07	100%	\$25,754.26	100%	\$132,341.27	\$165,181.60

Appendix III – Work Schedule

Legend

Thu
Bay -

under - office Timmins - core logging Falcon Lake - field

		Fladgate Per	sonnel	Sunrise Canada Personnel/Consultants						
Date	Stephen Greiner	Jesse Koroscil	Mike Thompson/Neil Pettigrew/Other	Tim Birt	Lindsay Owler	Mike Watkeys				
26-May-16				1						
27-May-16	0.5			1						
28-May-16				1						
29-May-16				1						
30-May-16				1						
31-May-16		1	1	1		1				
01-Jun-16	1	1	1	1		1				
02-Jun-16	1	1	1	1		1				
03-Jun-16	1	1	1	1		1				
04-Jun-16	1	1	1	1		1				
05-Jun-16	1			1		1				
06-Jun-16				1		1				
07-Jun-16				1		1				
08-Jun-16				1						
09-Jun-16				1						
10-Jun-16				1						
11-Jun-16				1						
12-Jun-16				1						
13-Jun-16	0.5	0.5	0.5	1						
14-Jun-16	1	1		1						
15-Jun-16	1	1		1						
16-Jun-16	1	1		1						
17-Jun-16	1	1		1						
18-Jun-16	1	1		1						
19-Jun-16	1	1		1						
20-Jun-16	1	1		1						
21-Jun-16	1	1		1						
22-Jun-16	1	1		1						
23-Jun-16	1	1		1	1					

		Fladgate Per	sonnel	Sunrise Cana	ada Personnel,	/Consultants
Date	Stephen Greiner	Jesse Koroscil	Mike Thompson/Neil Pettigrew/Other	Tim Birt	Lindsay Owler	Mike Watkeys
24-Jun-16	1	1		1	1	
25-Jun-16	1	1			1	
26-Jun-16	1	1			1	
27-Jun-16	1	1			1	
28-Jun-16	1	1			1	
29-Jun-16	1					

Appendix IV – Certificates of Analysis

Project: Falcon Lake

P.O. No.: Sunrise01

Canada on 20-JUN-2016.

TIM BIRT

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

This report is for 38 Drill Core samples submitted to our lab in Thunder Bay, ON,

The following have access to data associated with this certificate:

SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

To: SUNRISE CANADA INC.

Page: 1 Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 5- JUL- 2016 This copy reported on 7-JUL-2016 Account: SCIGLQRR

SAMPLE PREPARATION ALS CODE DESCRIPTION WEI- 21 **Received Sample Weight** LOG- 22 Sample login - Rcd w/o BarCode CRU- 31 Fine crushing - 70% < 2mm CRU- QC Crushing QC Test PUL- QC Pulverizing QC Test SPL- 21 Split sample - riffle splitter PUL- 31 Pulverize split to 85% < 75 um LOG- 23 Pulp Login - Rcvd with Barcode

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	
ME- MS61	48 element four acid ICP- MS	
ME- MS81	Lithium Borate Fusion ICP- MS	ICP- MS
Li- OG63	Ore grade Li - 4ACID	ICP- AES
ME- OG62o	Ore Grade open beaker - ICPAES	ICP- AES

To: SUNRISE CANADA INC. ATTN: TIM BIRT

SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - A Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 5-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Method Analyte Units LOR WEI-21 Recvd Wt. kg ME-MS6 Ag R41 3001 2.35 0.05 R413002 2.09 0.01 R413003 1.66 0.03 R413004 2.75 <0.01 R413005 1.87 0.03 R413006 2.03 0.02 R413007 1.88 0.02 R413008 2.09 0.01 R413010 0.69 0.04 R413011 0.69 0.04 R413012 2.60 0.01 R413013 1.79 0.01 R413014 1.95 0.01 R413015 2.60 0.01 R413016 1.42 0.18 R413017 1.32 0.04 R413018 1.19 0.02 R413019 2.39 0.01 R413019 2.39 0.01 R413020 1.87 0.03 R413023 2.03 0.02 R413024 2.46 0	ME- MS61	ME- MS61											
Analyte Units LOR Recvd Wt. kg Ag ppm 841 3001 2.35 0.05 R41 3002 2.09 0.01 R41 3003 1.66 0.03 R41 3004 2.75 <0.01 R41 3005 1.87 0.03 R41 3006 2.03 0.02 R41 3007 1.88 0.02 R41 3006 2.09 0.01 R41 3007 1.88 0.02 R41 3008 2.09 0.01 R41 3010 -0.02 0.08 R41 3011 0.69 0.04 R41 3012 2.21 -0.01 R41 3013 1.79 0.01 R41 3014 1.95 0.01 R41 3015 2.60 0.01 R41 3016 1.42 0.18 R41 3017 1.32 0.04 R41 3018 1.19 0.02 R41 3019 2.39 0.01 R41 3020 1.30 0.02 R41 3021 1.87			ME- MS61										
Sample Description Units LOR kg 0.02 ppm 0.01 R413001 2.35 0.05 R413002 2.09 0.01 R413003 1.66 0.03 R413004 2.75 <0.01	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
LOK 0.02 0.01 R413001 2.35 0.05 R413002 2.09 0.01 R413003 1.66 0.03 R413004 2.75 <0.01	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
R413002 2.09 0.01 R413003 1.66 0.03 R413004 2.75 <0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
R413003 1.66 0.03 R413004 2.75 <0.01	7.48	1.1	60	2.19	0.11	6.70	0.20	12.15	51.5	112	55.4	83.4	10.65
R413004 2.75 <0.01 R413005 1.87 0.03 R413006 2.03 0.02 R413007 1.88 0.02 R413008 2.09 0.01 R413009 1.44 0.01 R413010 <0.02	6.96	2.2	70	115.5	0.18	0.29	<0.02	0.17	1.1	10	266	2.8	0.52
R413005 1.87 0.03 R413006 2.03 0.02 R413007 1.88 0.02 R413008 2.09 0.01 R413009 1.44 0.01 R413010 <0.02	6.86	0.8	50	139.5	0.44	0.36	0.06	0.08	0.3	9	301	1.7	0.36
R413006 2.03 0.02 R413007 1.88 0.02 R413008 2.09 0.01 R413009 1.44 0.01 R413010 <0.02	7.16	0.7	70	221	2.78	0.53	0.12	0.18	0.3	10	183.0	3.8	0.65
R413007 1.88 0.02 R413008 2.09 0.01 R413019 1.44 0.01 R413010 <0.02	7.08	1.1	50	233	19.65	0.38	0.07	0.13	0.2	11	122.5	1.3	0.64
R413008 2.09 0.01 R413009 1.44 0.01 R413010 <0.02	7.11	0.9	50	154.5	20.8	0.47	0.17	0.29	0.5	9	265	1.8	0.59
R413009 1.44 0.01 R413010 <0.02	6.62	0.7	30	158.5	2.32	0.31	0.08	0.05	0.1	9	117.5	1.0	0.43
R413010 <0.02 0.08 R413011 0.69 0.04 R413012 2.21 <0.01	7.39	0.4	50	178.5	20.7	0.46	0.11	0.14	0.3	10	182.0	1.5	0.58
R413011 0.69 0.04 R413012 2.21 <0.01	7.33	1.0	30	161.0	3.89	0.39	0.12	0.13	0.6	10	124.0	1.1	0.56
R413012 2.21 <0.01	7.34	4.7	<10	585	0.72	0.35	<0.02	0.31	1.6	194	47.2	6.8	0.55
R413013 1.79 0.01 R413014 1.95 0.01 R413015 2.60 0.01 R413016 1.42 0.18 R413017 1.32 0.04 R413018 1.19 0.02 R413019 2.39 0.01 R413020 1.30 0.02 R413021 1.96 <0.01	6.92	<0.2	900	1.34	0.07	1.02	0.02	145.5	3.8	10	2.51	8.8	1.49
R413014 1.95 0.01 R413015 2.60 0.01 R413016 1.42 0.18 R413017 1.32 0.04 R413018 1.19 0.02 R413019 2.39 0.01 R413020 1.30 0.02 R413021 1.96 <0.01	7.06	0.6	70	142.5	6.09	0.45	0.35	0.18	0.2	8	171.0	0.6	0.48
R413015 2.60 0.01 R413016 1.42 0.18 R413017 1.32 0.04 R413018 1.19 0.02 R413019 2.39 0.01 R413020 1.30 0.02 R413021 1.96 <0.01	7.07	0.9	60	164.5	5.17	0.35	0.11	0.13	0.3	8	194.5	4.1	0.45
R413016 1.42 0.18 R413017 1.32 0.04 R413018 1.19 0.02 R413019 2.39 0.01 R413020 1.30 0.02 R413021 1.96 <0.01	6.75	0.6	70	132.0	4.03	0.48	0.13	0.08	0.3	9	142.0	5.2	0.52
R413017 1.32 0.04 R413018 1.19 0.02 R413019 2.39 0.01 R413020 1.30 0.02 R413021 1.96 <0.01	7.24	7.1	110	146.0	4.81	0.48	0.22	0.21	1.0	13	227	14.6	0.56
R413018 1.19 0.02 R413019 2.39 0.01 R413020 1.30 0.02 R413021 1.96 <0.01	7.57	4.4	150	1.56	0.72	6.41	0.56	25.9	52.1	77	52.9	177.5	10.00
R413019 2.39 0.01 R413020 1.30 0.02 R413021 1.96 <0.01	7.18	1.7	90	92.0	4.93	0.56	0.04	0.36	1.0	7	157.5	13.2	0.71
R413020 1.30 0.02 R413021 1.96 <0.01	7.04	0.3	50	168.5	10.05	0.51	0.10	0.19	0.4	8	100.0	6.3	0.69
R4130211.96<0.01R4130221.870.03R4130232.030.02R4130242.46<0.01	7.30	10.1	120	124.0	2.36	0.81	0.03	0.11	1.0	20	221	2.4	0.44
R413022 1.87 0.03 R413023 2.03 0.02 R413024 2.46 <0.01	7.36	0.8	90	195.0	1.86	0.64	0.12	0.23	0.6	8	149.5	3.6	0.75
R413023 2.03 0.02 R413024 2.46 <0.01	7.27	0.5	60	178.0	3.09	0.54	0.17	0.10	0.2	10	89.5	3.4	0.54
R413024 2.46 <0.01	7.15	0.8	40	200	5.44	0.64	0.13	0.13	0.2	9	64.8	4.4	0.54
R4130251.790.02R4130262.37<0.01	6.79	1.0	60	164.0	4.15	0.74	0.25	0.20	0.6	9	77.7	9.8	0.53
R413026 2.37 <0.01 R413027 1.95 0.03 R413028 1.40 0.01 R413029 1.51 0.16 R413030 <0.02	7.24	0.5	70	175.5	3.51	0.90	0.04	0.09	0.2	8	45.5	5.2	0.57
R413027 1.95 0.03 R413028 1.40 0.01 R413029 1.51 0.16 R413030 <0.02	7.00	0.8	120	134.0	2.46	1.28	0.36	0.43	0.7	9	123.5	2.8	0.48
R413028 1.40 0.01 R413029 1.51 0.16 R413030 <0.02	7.02	1.1	210	152.0	12.50	1.21	0.11	0.27	0.4	8	165.5	4.4	0.45
R413029 1.51 0.16 R413030 <0.02	8.16	0.5	210	53.7	4.02	0.35	0.18	0.08	0.2	8	299	2.7	0.35
R413030<0.020.10R4130310.650.04R4130322.160.40R4130333.210.03R4130342.920.03R4130351.370.01	6.82	0.7	170	157.0	1.26	0.56	0.11	0.11	0.3	9	54.4	1.3	0.46
R4130310.650.04R4130322.160.40R4130333.210.03R4130342.920.03R4130351.370.01	7.76	1.1	150	170.5	0.96	0.67	0.07	1.12	17.5	15	50.8	243	1.32
R4130322.160.40R4130333.210.03R4130342.920.03R4130351.370.01	7.45	3.8	10	585	0.78	0.36	<0.02	0.33	1.5	191	47.7	6.7	0.56
R4130333.210.03R4130342.920.03R4130351.370.01	6.87	0.2	990	1.12	0.03	0.90	0.02	113.5	3.2	9	2.10	5.0	1.35
R4130342.920.03R4130351.370.01	7.69	3.4	140	3.53	0.43	6.32	0.87	9.85	65.5	151	24.1	390	9.82
R413035 1.37 0.01	6.85	0.8	10	128.0	0.46	0.18	0.20	0.16	0.2	11	57.3	0.9	0.56
	6.91	0.8	10	116.0	1.45	0.12	0.13	0.05	0.3	11	68.0	3.9	0.53
0.07 0.06	6.68	1.8	10	79.3	8.85	0.16	0.21	0.13	0.2	13	467	0.5	0.46
	7.43	0.3	930	0.41	0.06	1.25	0.07	65.9	5.5	10	2.14	2.1	1.34
R413037 1.20 0.07	6.73	0.4	160	0.58	0.08	1.30	0.08	9.18	1.7	8	2.83	2.1	1.44
R413038 1.29 <0.01	6.97	0.6	180	60.2	2.10	0.54	0.31	0.53	0.3	8	170.0	0.8	0.36

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - B Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 5-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description R413001 R413002 R413003 R413004 R413005 R413006	Units LOR	0.05	ppm 0.05	ppm	ppm	%	ppm	Li ppm	Mg %	Mn ppm	Mo ppm	Na %	Nb ppm	Ni ppm	P ppm	Pb ppm
R413002 R413003 R413004 R413005 R413006		17.80		0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
R413003 R413004 R413005 R413006			0.12	1.2	0.092	0.43	4.1	1270	4.27	1970	0.27	1.27	3.1	94.4	460	5.7
R413004 R413005 R413006		52.4	0.06	0.8	<0.005	2.50	<0.5	5960	0.04	318	0.18	2.59	49.4	14.2	1120	3.7
R413005 R413006		51.5	0.05	0.8	0.007	3.02	<0.5	4350	0.02	403	0.10	3.00	67.7	1.5	2040	4.1
R413006		69.7	<0.05	0.6	<0.005	1.65	<0.5	5920	0.02	647	0.16	2.87	109.0	2.6	2800	2.8
		70.0	<0.05	0.6	<0.005	1.37	<0.5	6850	0.02	481	0.17	2.72	86.1	1.6	1690	2.5
		68.5	0.05	0.4	<0.005	3.09	<0.5	7320	0.03	450	0.18	1.89	91.5	1.9	2340	6.1
R413007		55.6	<0.05	0.7	<0.005	1.52	<0.5	4380	0.01	287	0.12	3.65	68.6	1.3	1490	2.4
R413008		74.7	<0.05	0.7	<0.005	2.30	<0.5	7120	0.02	426	0.17	1.97	108.0	1.1	2210	5.5
R413009		68.7	<0.05	1.1	<0.005	1.27	<0.5	7810	0.02	343	0.12	2.70	109.5	1.1	1580	6.8
R413010		44.7	0.06	2.2	<0.005	0.22	<0.5	>10000	0.03	978	0.31	0.62	115.0	4.2	7430	4.7
R413011		18.15	0.19	6.6	0.010	3.95	77.4	28.8	0.27	238	0.96	2.59	6.0	7.1	410	40.0
R413012		57.5	0.07	2.0	<0.005	2.29	<0.5	3510	0.02	317	0.12	3.52	129.0	1.0	2320	4.0
R413013		57.9	0.05	1.4	<0.005	2.31	<0.5	6500	0.02	296	0.16	2.97	78.9	1.1	1720	4.3
R413014		56.9	<0.05	1.1	0.006	1.55	<0.5	4200	0.03	221	0.14	3.73	66.6	1.2	2100	3.2
R413015		54.3	0.07	1.3	<0.005	2.95	<0.5	5020	0.07	226	0.15	2.66	79.5	5.5	1880	8.5
R413016		22.0	0.07	2.9	0.073	0.56	11.2	490	3.80	2630	0.57	1.79	6.2	109.5	640	47.1
R413017		63.4	0.05	1.5	<0.005	1.89	<0.5	5690	0.07	346	0.17	2.80	107.0	1.4	1570	8.2
R413018		67.2	<0.05	0.8	< 0.005	1.39	<0.5	5960	0.06	346	0.13	2.59	88.7	1.0	1720	5.6
R413019		55.1	0.05	3.6	<0.005	3.66	<0.5	2720	0.12	220	0.15	3.13	107.0	9.3	2130	5.3
R413020		76.0	0.06	1.2	<0.005	2.17	<0.5	6000	0.08	366	0.14	1.93	178.0	0.8	2290	7.3
R413021		54.2	0.05	0.8	<0.005	1.98	<0.5	3030	0.04	272	0.16	3.60	67.9	0.7	1570	3.3
R413022		61.8	<0.05	0.7	<0.005	1.38	<0.5	4170	0.03	299	0.14	3.39	88.3	0.8	1580	3.0
R413023		61.6	<0.05	0.6	<0.005	1.63	<0.5	5440	0.02	410	0.14	2.65	89.2	0.7	2060	8.2
R413024		62.8	<0.05	0.3	<0.005	1.18	<0.5	4550	0.03	366	0.13	3.31	80.1	0.7	1540	4.1
R413025		57.9	0.07	0.3	<0.005	3.49	<0.5	4820	0.03	383	0.18	2.07	39.5	0.8	3930	12.1
R413026		59.7	0.05	1.2	<0.005	3.47	<0.5	4770	0.04	258	0.17	2.11	48.9	0.7	2880	4.1
R413027		40.4	0.06	0.2	<0.005	4.80	<0.5	1740	0.02	128	0.16	2.44	17.9	0.7	1510	9.2
R413028		43.7	0.06	0.2	<0.005	3.10	<0.5	490	0.03	203	0.15	3.35	64.0	0.8	1550	5.7
R413029		49.2	0.07	0.6	<0.005	2.47	0.5	359	0.37	302	0.21	4.14	69.2	27.6	1350	6.5
R413030		43.4	0.05	2.3	<0.005	0.23	<0.5	>10000	0.04	1020	0.29	0.62	115.5	4.0	7580	4.9
R413031		16.95	0.17	6.4	0.012	4.42	61.1	22.6	0.22	196	0.54	2.42	3.8	3.1	350	37.3
R413032		20.7	0.11	0.6	0.092	0.69	3.7	550	4.24	2210	0.35	1.43	3.4	155.5	320	33.7
R413033		64.8	<0.05	0.9	<0.005	0.97	<0.5	>10000	0.01	467	0.15	2.07	77.7	0.9	1120	4.6
R413034		57.4	<0.05	0.4	<0.005	1.87	<0.5	8120	0.01	460	0.17	2.28	66.4	1.1	1090	4.6
R413035		60.1	0.05	0.9	<0.005	2.19	<0.5	2950	0.01	416	0.15	2.27	85.1	0.7	1780	6.9
R413036		17.60	0.10	4.2	0.026	3.38	33.4	26.5	0.39	123	0.17	2.73	4.0	2.9	410	37.7
R413037		14.60	0.06	3.4	0.014	1.29	5.2	14.4	0.18	522	0.12	2.96	0.4	1.3	420	28.9
R413038		39.4	0.06	2.1	<0.005	1.61	<0.5	1030	0.04	251	0.11	4.75	79.9	1.0	3640	3.7

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - C Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 5-JUL-2016 Account: SCIGLQRR

Project: Falcon Lake

	Method	ME- MS61														
	Analyte	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	V
Sample Description	Units	ppm	ppm	%	ppm	%	ppm	ppm	ppm							
sample Description	LOR	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
R413001		229	<0.002	0.03	0.63	46.3	1	10.0	154.5	0.21	<0.05	0.46	0.727	1.69	0.1	336
R413002		3210	<0.002	0.01	0.37	0.1	<1	86.9	60.0	50.5	<0.05	2.30	0.005	21.9	2.5	1
R413003		3570	<0.002	<0.01	0.38	0.1	<1	52.6	56.0	89.3	<0.05	2.46	<0.005	23.7	5.1	1
R413004		1770	<0.002	<0.01	0.34	0.1	<1	67.6	41.2	>100	<0.05	1.70	<0.005	10.80	4.7	<1
R413005		1530	<0.002	<0.01	0.28	0.1	<1	84.3	38.0	38.1	<0.05	2.26	<0.005	8.67	5.2	<1
R413006		3060	<0.002	0.01	0.36	0.3	<1	56.9	23.8	44.1	<0.05	1.20	<0.005	20.3	5.8	<1
R413007		1710	<0.002	<0.01	0.24	<0.1	<1	61.8	18.0	47.5	<0.05	2.47	<0.005	10.35	3.7	<1
R413008		2530	<0.002	<0.01	0.39	0.2	<1	77.9	21.2	67.9	<0.05	2.43	<0.005	14.20	8.3	<1
R413009		1400	<0.002	<0.01	0.36	0.2	<1	59.8	20.5	63.9	<0.05	3.34	<0.005	7.26	8.7	<1
R413010		53.8	<0.002	0.03	0.83	0.7	1	109.0	13.6	58.1	<0.05	0.19	0.038	0.93	0.9	8
R413011		145.0	<0.002	0.01	0.05	3.2	<1	0.9	276	0.56	<0.05	39.4	0.146	0.93	3.1	19
R413012		2670	<0.002	<0.01	0.26	0.1	<1	63.1	48.0	88.4	<0.05	6.53	<0.005	15.10	11.4	<1
R413013		2470	<0.002	<0.01	0.44	<0.1	<1	43.1	23.8	87.8	<0.05	1.98	<0.005	15.35	4.4	<1
R413014		1620	<0.002	<0.01	0.42	0.1	1	42.2	27.3	65.3	<0.05	1.93	<0.005	8.85	4.9	<1
R413015		3090	<0.002	0.01	0.43	0.1	<1	37.6	56.0	88.5	<0.05	1.99	<0.005	18.50	5.8	<1
R413016		246	<0.002	0.14	2.58	36.1	1	16.0	169.0	0.47	<0.05	2.10	0.815	2.32	0.6	321
R413017		1910	<0.002	<0.01	0.34	0.2	1	44.1	41.4	>100	<0.05	2.38	<0.005	10.25	11.0	1
R413018		1420	<0.002	<0.01	0.32	0.1	<1	52.4	28.9	37.9	<0.05	3.17	<0.005	6.77	7.2	1
R413019		3700	<0.002	0.01	0.37	0.2	<1	36.3	73.0	>100	<0.05	3.64	<0.005	21.7	10.5	1
R413020		2210	<0.002	<0.01	0.43	0.3	<1	79.0	55.0	>100	<0.05	3.89	<0.005	10.50	22.5	<1
R413021		1980	<0.002	<0.01	0.26	<0.1	<1	44.2	45.0	30.2	<0.05	3.21	<0.005	10.50	5.4	<1
R413022		1360	<0.002	<0.01	0.23	0.1	<1	56.8	37.0	33.5	<0.05	3.26	<0.005	6.27	5.9	<1
R413023		1440	<0.002	<0.01	0.36	0.1	<1	47.0	38.1	39.5	<0.05	2.80	<0.005	7.40	8.1	<1
R413024		920	<0.002	<0.01	0.19	<0.1	<1	36.6	46.9	26.3	<0.05	1.92	<0.005	3.30	2.7	<1
R413025		2620	<0.002	<0.01	0.30	0.1	<1	52.6	71.0	24.4	<0.05	0.70	<0.005	14.35	2.4	<1
R413026		2990	<0.002	<0.01	0.31	0.2	<1	53.1	78.8	71.4	<0.05	0.96	<0.005	15.50	3.8	<1
R413027		3840	<0.002	<0.01	0.30	<0.1	<1	11.0	108.0	28.3	<0.05	0.25	<0.005	41.3	1.0	<1
R413028		2200	<0.002	<0.01	0.13	<0.1	<1	22.7	78.6	21.5	<0.05	0.88	<0.005	12.35	1.1	<1
R413029		1810	<0.002	0.27	0.35	2.5	<1	40.1	63.8	39.8	<0.05	3.11	0.036	10.25	3.8	19
R413030		53.0	<0.002	0.03	0.88	0.7	<1	106.5	14.0	57.9	<0.05	0.23	0.039	0.91	1.1	8
R413031		145.5	<0.002	0.01	<0.05	2.8	1	0.6	243	0.28	<0.05	32.0	0.118	0.96	2.8	16
R413032		96.5	0.003	0.70	1.08	41.5	2	13.5	100.5	4.45	<0.05	0.43	0.593	0.91	0.3	300
R413033		1190	<0.002	<0.01	0.45	<0.1	<1	71.6	8.5	45.5	<0.05	4.54	<0.005	7.22	5.0	<1
R413034		2000	<0.002	<0.01	0.29	0.1	<1	73.6	4.9	28.1	<0.05	2.85	<0.005	13.20	3.1	1
R413035		4810	<0.002	<0.01	1.23	0.2	<1	103.0	5.6	90.9	<0.05	1.35	<0.005	37.2	2.5	<1
R413036		109.5	<0.002	<0.01	<0.05	4.1	<1	0.5	374	0.48	<0.05	16.70	0.123	0.65	2.5	20
R413037		37.7	<0.002	<0.01	<0.05	7.0	1	0.5	134.5	0.11	<0.05	0.83	0.011	0.22	0.9	2
R413038		2680	<0.002	<0.01	0.52	0.1	<1	38.7	31.0	>100	0.07	1.33	<0.005	15.00	2.7	<1

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - D Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 5-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	ME- MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME-MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01
R413001 R413002 R413003 R413004 R413005		0.8 0.8 1.3 3.3 2.7	28.8 0.2 0.2 0.8 0.8	155 27 26 47 42	39.3 4.8 5.3 3.5 3.3	71.9	<0.5	10	178.0	0.20	<0.03	<0.03	65.3	0.10	0.5	0.01
R413006 R413007 R413008 R413009 R413010		3.0 1.7 3.5 2.7 7.5	2.2 0.1 0.8 0.7 0.5	38 30 46 41 67	2.0 4.6 5.6 9.8 24.5											
R413011 R413012 R413013 R413014 R413015		0.3 2.3 1.4 1.4 1.2	9.3 0.4 0.1 0.1 0.4	48 42 24 24 77	221 14.1 8.5 6.5 8.1											
R413016 R413017 R413018 R413019 R413020		0.4 1.6 2.6 1.6 3.8	26.5 0.3 0.5 0.3 1.3	328 30 34 18 33	107.5 9.2 6.0 21.7 9.6	88.5 118.0 90.7	0.5 <0.5 <0.5	10 20 10	152.5 221 146.0	0.07 0.06 0.37	<0.03 <0.03 <0.03	0.04 <0.03 <0.03	62.9 56.1 76.0	<0.05 0.05 0.37	1.1 3.4 0.8	0.01 0.01 0.02
R413021 R413022 R413023 R413024 R413025		1.7 2.3 2.3 2.3 1.9	0.1 0.4 1.1 0.2 2.1	23 25 21 15 18	6.1 4.9 5.2 1.2 2.0											
R413026 R413027 R413028 R413029 R413030		1.2 0.5 1.6 1.4 7.4	1.1 0.2 0.1 1.4 0.6	11 12 17 53 69	7.1 1.1 0.9 5.0 27.6											
R413031 R413032 R413033 R413034 R413035		0.3 2.5 1.7 1.7 4.8	5.1 21.5 0.1 0.1 0.4	38 555 67 29 102	213 14.1 6.8 2.1 4.8											
R413036 R413037 R413038		0.1 0.1 1.1	5.5 8.9 0.6	33 9 36	149.0 79.7 11.3	197.0	0.5	10	168.5	0.09	<0.03	<0.03	43.7	0.15	1.9	0.01

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 2 - E Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 5-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2	ME- MS81 Nd ppm 0.1	ME- MS81 Pr ppm 0.03	ME- MS81 Rb ppm 0.2	ME- MS81 Sm ppm 0.03	ME- MS81 Sn ppm 1	ME- MS81 Sr ppm 0.1	ME- MS81 Ta ppm 0.1	ME- MS81 Tb ppm 0.01	ME- MS81 Th ppm 0.05	ME- MS81 Tm ppm 0.01	ME- MS81 U ppm 0.05	ME- MS81 V ppm 5
R413001 R413002 R413003 R413004 R413005		<0.5	<0.01	86.0	<0.1	<0.03	1965	<0.03	78	38.1	111.5	0.03	1.49	<0.01	4.03	<5
R413006 R413007 R413008 R413009 R413010																
R413011 R413012 R413013 R413014 R413015																
R413016 R413017 R413018 R413019 R413020		<0.5 <0.5 <0.5	<0.01 <0.01 <0.01	92.6 84.1 157.0	0.1 <0.1 0.1	0.05 <0.03 0.03	2260 4380 2600	0.07 <0.03 0.14	50 42 90	41.1 46.3 41.9	117.5 105.5 267	0.01 0.01 0.10	3.49 3.28 4.37	0.01 <0.01 <0.01	17.05 11.00 25.6	<5 <5 <5
R413021 R413022 R413023 R413024 R413025																
R413026 R413027 R413028 R413029 R413030																
R413031 R413032 R413033 R413034 R413035																
R413036 R413037 R413038		<0.5	<0.01	63.9	0.5	0.10	3190	0.08	140	31.7	165.0	0.01	1.39	<0.01	2.86	<5

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 2 - F Total # Pages: 2 (A - F) Plus Appendix Pages Finalized Date: 5-JUL-2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 W ppm 1	ME- MS81 Y ppm 0.5	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 2	Li- OG63 Li % 0.005	
R413001 R413002 R413003 R413004 R413005		4	0.9	<0.03	4		
R413006 R413007 R413008 R413009 R413010						NSS	
R413011 R413012 R413013 R413014 R413015							
R413016 R413017 R413018 R413019 R413020		2 2 4	<0.5 <0.5 2.0	<0.03 <0.03 <0.03	6 21 6		
R413021 R413022 R413023 R413024 R413025							
R413026 R413027 R413028 R413029 R413030						2.920	
R413031 R413032 R413033 R413034 R413035						1.050	
R413036 R413037 R413038		1	0.8	<0.03	12		

Г

ALS Canada Ltd.

Т

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

		CERTIFICATE COMMENTS		
		ANALYTICAL CO	MMENTS	
Applies to Method:	NSS is non- sufficient sample. ALL METHODS			
Applies to Method:	REE's may not be totally soluble in thi ME- MS61	s method.		
		LABORATORY AD		
Applies to Method:	Processed at ALS Thunder Bay located CRU- 31 PUL- 31	l at 1160 Commerce Street, Thunder B CRU- QC PUL- QC	3ay, ON, Canada. LOG- 22 SPL- 21	LOG- 23 WEI- 21
Applies to Method:	Processed at ALS Vancouver located a Li- OG63	t 2103 Dollarton Hwy, North Vancouv ME- MS61	er, BC, Canada. ME- MS81	ME- OG62o

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 1 Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

CERTIFICATE TB16100848

Project: Falcon Lake

P.O. No.: Sunrise02

This report is for 108 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 24- JUN- 2016.

The following have access to data associated with this certificate:

TIM BIRT

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
CRU- 31	Fine crushing - 70% < 2mm
CRU- QC	Crushing QC Test
PUL- QC	Pulverizing QC Test
SPL- 21	Split sample - riffle splitter
PUL- 31	Pulverize split to 85% < 75 um
LOG- 23	Pulp Login - Rcvd with Barcode

	ANALYTICAL PROCEDURE	ES
ALS CODE	DESCRIPTION	
ME- MS61	48 element four acid ICP- MS	
ME- MS81	Lithium Borate Fusion ICP- MS	ICP- MS
Li- OG63	Ore grade Li - 4ACID	ICP- AES
ME- OG620	Ore Grade open beaker - ICPAES	ICP- AES

To: SUNRISE CANADA INC. ATTN: TIM BIRT

SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 2 - A Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01
R413039		2.10	0.05	7.42	1.2	190	3.37	0.17	6.74	0.21	4.63	52.4	108	49.5	151.0	9.49
R413040		1.11	<0.01	8.01	1.0	40	85.5	0.07	0.78	0.05	0.67	2.2	9	128.5	37.0	0.58
R413041		1.64	<0.01	7.27	0.6	40	205	0.16	0.33	0.05	0.12	0.3	13	131.0	3.8	0.33
R413042		1.52	0.07	7.95	1.2	50	97.6	0.11	0.83	<0.02	0.51	5.2	19	146.5	16.8	0.98
R413043		2.38	0.08	7.57	0.9	50	0.88	0.17	7.02	0.04	4.79	61.5	111	5.66	216	9.13
R413044		2.52	0.05	7.62	0.8	80	0.45	0.19	7.52	<0.02	4.42	54.5	100	48.6	140.0	9.66
R413045		2.41	0.09	7.89	0.4	90	0.99	0.33	7.55	0.03	5.10	63.2	107	187.0	234	9.38
R413046		1.68	<0.01	6.62	0.8	50	267	0.08	0.52	0.26	0.20	1.4	10	303	6.6	0.41
R413047		1.93	<0.01	6.57	0.7	20	166.0	0.09	0.39	0.08	0.22	0.3	10	113.5	1.4	0.31
R413048		1.68	0.05	6.24	0.5	40	178.0	0.04	0.34	0.12	0.09	0.3	11	151.5	1.3	0.29
R413049		1.80	<0.01	7.23	0.5	80	164.5	0.06	0.62	<0.02	0.49	0.7	11	102.0	3.2	0.71
R413050		<0.02	0.06	6.81	3.4	<10	554	0.71	0.34	<0.02	0.45	1.5	186	46.0	6.8	0.57
R413050		1.46	0.02	6.83	0.4	930	1.25	0.04	1.03	<0.02	104.5	2.9	12	2.13	5.1	1.41
R413052		2.10	<0.01	7.14	1.6	60	129.0	0.07	0.44	0.05	0.21	0.3	14	110.0	1.4	0.44
R413052		2.15	<0.01	6.85	1.0	40	164.5	0.12	0.30	0.04	0.10	0.2	11	112.0	1.6	0.47
												-		-	-	
R413054		1.92	< 0.01	7.26	1.0	30	179.0	0.74	0.32	0.06	0.15	0.2	12	50.5	1.4	0.51
R413055		1.94	< 0.01	6.71	0.8	20	176.5	5.80	0.39	0.14	0.14	0.2	17	68.2	1.5	0.60
R413056		2.22	< 0.01	7.39	1.5	30	283	17.10	0.67	0.26	0.25	0.3	12	134.5	1.0	0.74
R413057		2.13	< 0.01	7.25	1.0	50	154.5	2.68	0.45	0.10	0.13	0.4	14	66.4	1.3	0.68
R413058		1.30	<0.01	7.11	0.6	70	174.0	0.58	0.35	0.02	0.15	0.3	13	91.9	1.7	0.50
R413059		1.58	<0.01	7.38	0.6	110	183.0	0.78	0.68	0.25	0.55	0.7	11	128.5	6.4	0.70
R413060		2.51	0.06	7.25	0.5	50	1.59	0.19	6.39	0.10	4.53	52.9	101	56.6	182.5	10.65
R413061		2.43	0.05	7.31	1.3	120	0.83	0.21	6.01	0.16	4.69	53.2	99	62.6	153.5	10.75
R413062		1.11	<0.01	6.92	3.4	140	311	0.27	1.00	<0.02	0.52	4.2	15	68.4	5.6	0.96
R413063		1.97	0.05	7.16	0.4	160	5.26	0.13	6.38	0.18	4.20	48.2	94	112.5	127.0	10.45
R413064		1.92	0.04	6.95	0.4	260	5.31	0.23	5.42	0.19	3.87	48.2	97	196.0	54.5	10.35
R413065		2.34	0.02	7.57	0.9	200	83.3	0.16	0.68	0.04	0.58	2.0	10	99.5	12.2	0.81
R413066		1.07	<0.01	7.44	0.7	150	224	0.35	0.82	0.09	0.95	0.5	7	47.5	11.1	0.32
R413067		1.99	<0.01	7.23	0.5	200	135.5	0.64	0.82	0.17	0.67	0.8	9	85.5	13.0	0.58
R413068		2.08	<0.01	7.40	1.9	330	143.0	1.40	0.85	0.14	0.65	0.7	9	362	5.6	0.35
R413069		2.14	<0.01	6.74	1.8	280	167.5	3.79	0.67	0.11	0.33	0.8	9	415	3.3	0.34
R413070		<0.02	0.05	6.98	3.9	<10	581	0.76	0.35	<0.02	0.26	1.5	197	47.8	6.7	0.57
R413070		0.95	0.04	7.22	<0.2	1000	1.77	0.04	1.30	0.03	81.4	3.8	18	1.87	5.4	1.43
R413072		2.00	<0.01	6.77	2.2	220	202	1.05	0.55	0.15	0.45	1.6	16	188.0	1.4	0.43
R413072		1.06	<0.01	6.90	1.0	190	202	0.53	0.54	0.25	0.24	0.4	8	321	1.2	0.33
R413074		1.98	<0.01	6.81	0.6	320	160.5	0.45	1.28	<0.02	0.46	1.2	11	68.4	7.1	0.46
R413074 R413075		1.98	<0.01 <0.01	6.69	0.6 0.2	320 290	160.5	0.45 0.18	1.28	<0.02 <0.02	0.46	1.2	11 12	68.4 39.4	2.8	0.46 0.52
R413075 R413076		2.24 1.42	<0.01 <0.01	6.69 7.13	0.2 1.6	290 240	143.0	0.18	0.98	<0.02 0.04	0.46	1.3 3.3	12	39.4 111.0	2.8 11.1	0.52 0.92
R413076 R413077		2.31	<0.01 0.07	7.13		240 130		0.21	0.98 6.37	0.04 0.15	0.83	3.3 49.0	16	101.5	98.4	0.92 10.15
R413077 R413078		2.31	0.07	7.60 7.61	1.1 0.6	130	1.66 1.63	0.31	6.37 6.35	0.15	11.85	49.0 49.0	126	101.5 55.0	98.4 172.5	10.15
K413U/8		2.47	0.11	1.01	0.0	160	1.03	0.17	0.30	0.12	12.40	49.0	011	0.66	172.5	10.15

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - B Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method	ME- MS61														
	Analyte	Ga	Ge	Hf	In	К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb
Sample Description	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	LOR	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
R413039		16.65	0.07	0.4	0.064	0.83	1.7	500	3.00	1770	0.14	1.18	1.5	82.2	250	2.2
R413040		46.1	0.06	1.2	<0.005	1.35	<0.5	1580	0.13	149	0.12	5.22	115.0	3.4	3700	4.9
R413041		56.0	0.08	2.8	<0.005	1.15	<0.5	7640	0.02	224	0.14	3.72	185.5	0.9	6620	7.8
R413042		51.6	0.09	1.4	<0.005	1.05	<0.5	4700	0.25	304	0.10	3.82	104.5	8.6	5710	3.1
R413043		17.50	0.06	0.5	0.075	0.27	1.7	920	2.65	1640	0.19	1.57	1.5	87.5	240	1.3
R413044		16.25	0.06	0.6	0.063	0.25	1.6	1010	3.00	1730	0.12	1.57	1.3	81.2	230	0.8
R413045		18.40	0.07	0.5	0.079	0.53	1.8	790	2.98	1970	0.13	1.37	1.5	93.3	260	1.7
R413046		43.0	0.10	2.3	<0.005	2.77	<0.5	3630	0.05	215	0.40	3.36	134.0	3.6	6700	14.3
R413047		49.5	0.10	7.2	<0.005	1.36	<0.5	4530	0.02	230	0.19	4.11	142.0	3.6	5330	3.9
R413048		43.0	0.09	3.1	<0.005	1.94	<0.5	3300	0.01	218	0.16	4.25	131.0	1.0	5350	3.1
R413049		57.6	0.10	0.9	<0.005	1.87	<0.5	4600	0.13	313	0.12	2.62	54.9	1.3	1130	3.9
R413050		41.8	0.10	2.1	<0.005	0.22	<0.5	>10000	0.03	1010	0.35	0.61	115.5	4.2	7180	5.0
R413051		17.15	0.17	5.7	0.015	3.93	56.1	38.7	0.25	232	0.34	2.67	5.1	5.7	320	34.2
R413052		52.5	0.11	0.9	<0.005	2.74	<0.5	5750	0.02	323	0.18	2.68	63.6	0.7	1370	4.4
R413053		52.9	0.09	0.6	<0.005	2.43	<0.5	5220	0.02	389	0.14	3.04	69.9	0.8	1580	4.9
R413054		60.8	0.10	0.3	<0.005	2.21	<0.5	6140	0.02	340	0.13	2.94	66.8	1.7	1300	4.2
R413055		57.1	0.10	0.2	<0.005	2.24	<0.5	4840	0.02	368	0.15	2.73	76.9	0.8	1680	3.5
R413056		77.9	0.09	0.8	<0.005	2.58	<0.5	6430	0.03	891	0.15	1.90	167.5	0.7	3920	4.9
R413057		64.5	0.09	0.2	<0.005	1.87	<0.5	6860	0.02	409	0.16	2.48	73.5	2.2	1290	3.2
R413058		55.1	0.11	0.4	<0.005	2.71	<0.5	3320	0.03	339	0.66	3.33	79.4	0.9	1440	3.9
R413059		56.5	0.11	0.7	<0.005	3.31	<0.5	2400	0.07	833	0.13	2.81	73.0	0.9	3750	10.0
R413060		17.30	0.09	0.5	0.065	0.38	1.6	1740	4.57	1940	0.37	1.17	1.5	81.8	250	4.3
R413061		17.35	0.08	0.5	0.071	0.80	1.6	540	4.37	1700	0.14	1.55	1.4	81.2	260	5.1
R413062		56.5	0.07	1.9	<0.005	1.86	<0.5	253	0.22	241	0.21	3.50	76.0	5.2	1740	3.7
R413063		18.85	0.09	0.5	0.068	1.09	1.5	460	3.69	1880	0.15	1.06	1.8	77.8	280	5.5
R413064		18.75	0.09	0.5	0.058	1.60	1.3	406	4.13	1580	0.08	1.12	1.5	75.0	250	3.4
R413065		64.3	0.08	1.3	<0.005	2.99	<0.5	377	0.12	220	0.31	3.49	59.3	6.0	1560	69.2
R413066		56.8	0.08	0.9	<0.005	1.72	0.5	144.5	0.08	138	0.86	5.36	82.2	1.5	2060	4.6
R413067		65.7	0.07	0.7	<0.005	2.26	<0.5	425	0.09	240	0.24	3.70	55.5	1.2	2020	3.5
R413068		45.3	0.11	1.4	0.007	5.16	<0.5	163.5	0.05	158	0.20	2.74	43.3	0.8	2630	7.4
R413069		37.6	0.11	0.9	<0.005	5.27	<0.5	124.0	0.03	133	0.27	2.55	75.1	1.3	2990	7.9
R413070		43.0	0.09	2.0	<0.005	0.23	<0.5	>10000	0.04	1040	0.37	0.63	115.5	4.2	7410	5.0
R413071		18.00	0.14	4.3	0.018	3.41	43.4	33.8	0.31	270	0.45	3.14	6.9	4.9	350	31.7
R413072		56.9	0.09	0.9	<0.005	3.02	<0.5	272	0.03	230	0.15	3.74	98.9	1.3	2420	4.8
R413073		45.5	0.11	1.3	0.006	3.95	<0.5	182.5	0.02	227	0.11	3.89	113.5	1.0	3150	6.8
R413074		60.3	0.10	1.0	<0.005	2.27	<0.5	319	0.08	268	0.13	3.22	80.9	0.8	1500	3.9
R413075		61.1	0.10	0.3	<0.005	1.78	<0.5	237	0.11	219	0.12	3.29	64.6	0.7	1170	2.0
R413076		50.8	0.08	0.5	<0.005	1.10	0.5	161.5	0.22	232	0.14	4.64	56.6	6.0	1260	5.8
R413077		18.90	0.09	0.9	0.074	0.78	4.4	360	3.27	1840	0.27	1.74	3.7	106.0	500	18.4
R413078		18.90	0.09	1.1	0.079	0.72	4.8	332	3.28	1700	0.24	1.97	4.5	100.0	510	10.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 2 - C Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1
R413039 R413040 R413041 R413042 R413043		230 2760 2550 2410 66.9	<0.002 <0.002 <0.002 <0.002 <0.002	0.07 0.01 0.01 0.01 0.21	0.83 0.24 0.22 0.19 0.65	44.7 1.0 0.1 4.0 48.0	1 <1 <1 <1 2	20.5 70.1 80.6 81.0 47.7	124.0 53.0 45.0 52.0 95.8	3.91 >100 >100 >100 0.52	0.05 <0.05 <0.05 <0.05 0.07	0.14 1.31 1.22 1.15 0.14	0.457 0.012 <0.005 0.040 0.459	1.63 17.40 18.10 15.60 0.43	<0.1 4.6 6.2 4.0 0.1	287 6 <1 25 283
R413044 R413045 R413046 R413047 R413048		55.0 343 6280 2750 3430	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.21 0.12 0.22 0.01 0.01 0.01	0.60 0.63 0.24 0.21 0.23	48.0 44.2 46.6 0.6 0.1 0.1	1 1 1 1 1	48.3 37.1 60.5 70.7 50.5	71.1 75.8 24.4 16.9 19.0	0.32 0.23 0.80 >100 >100 >100	0.07 0.06 0.12 <0.05 <0.05 <0.05	0.13 0.14 0.85 1.37 1.07	0.439 0.469 0.485 0.008 <0.005 <0.005	0.43 0.41 4.14 50.6 18.85 25.9	0.1 <0.1 3.9 9.7 5.3	283 287 292 4 <1 <1
R413049 R413050 R413051 R413052 R413053		2400 49.1 132.5 2800 2550	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.01 0.03 0.01 <0.01 <0.01 <0.01	0.25 0.81 <0.05 0.30 0.37	0.1 0.6 2.9 <0.1 <0.1	1 1 1 1 1	108.0 102.5 1.0 68.8 61.1	46.5 12.7 289 28.5 22.6	30.8 61.8 0.57 41.0 35.2	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	3.39 0.19 30.4 3.48 3.69	<0.003 <pre><0.005 0.039 0.141 <0.005 <0.005</pre>	16.20 1.01 0.85 20.1 17.65	5.1 1.4 2.5 5.5 5.8	<1 8 16 <1 <1
R413054 R413055 R413056 R413057 R413058		1830 1880 2660 1600 2480	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.01 <0.01 0.01 <0.01 <0.01	0.26 0.20 0.35 0.30 0.20	<0.1 0.1 0.2 0.1 <0.1	1 1 1 1 1	58.9 45.0 89.5 53.7 60.1	20.9 22.6 26.0 34.9 48.9	26.1 25.9 >100 26.1 30.6	<0.05 <0.05 <0.05 <0.05 <0.05	2.93 2.64 2.49 2.56 2.91	<0.005 <0.005 <0.005 <0.005 <0.005	11.60 11.95 17.10 10.45 16.75	4.6 3.8 8.7 3.2 5.0	<1 <1 <1 <1 <1
R413059 R413060 R413061 R413062 R413063		3320 130.0 173.0 1340 226	<0.002 0.003 <0.002 <0.002 <0.002	0.01 0.05 0.03 0.01 0.02	0.20 0.37 0.43 0.13 0.25	0.1 43.2 43.6 2.3 40.1	<1 2 1 1 2	74.0 8.5 4.5 75.3 27.3	62.8 178.0 102.0 59.4 76.2	52.1 0.40 0.13 >100 1.13	<0.05 <0.05 0.08 <0.05 <0.05	3.73 0.15 0.14 1.54 0.12	<0.005 0.481 0.498 0.030 0.460	22.6 1.10 0.70 4.43 1.61	6.1 0.1 4.0 <0.1	1 297 298 14 289
R413064 R413065 R413066 R413067 R413068		434 2140 980 1680 5200	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.01 0.01 0.01 0.01 0.01 0.01	0.25 0.28 0.21 0.24 0.31	39.8 0.9 0.1 0.3 0.1	1 1 1 1 1 1	28.6 47.5 26.4 36.7 21.4	82.0 84.9 65.3 155.5 119.0	0.90 99.1 98.4 80.9 86.1	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	0.11 0.68 1.63 1.28 1.36	0.464 0.011 <0.005 <0.005 <0.005	3.27 10.15 4.48 7.56 31.4	<0.1 2.5 4.6 3.6 3.6	293 5 1 1 <1
R413069 R413070 R413071 R413072 R413073		5770 60.3 120.0 2920 4530	<0.002 <0.002 <0.002 <0.002 <0.002	0.01 0.03 0.01 0.01 0.01	0.31 0.85 <0.05 0.25 0.26	0.1 0.6 3.1 0.1 0.1	1 <1 1 1 1	17.0 106.5 1.2 35.5 21.1	73.2 13.2 419 92.0 54.7	>100 63.9 0.87 >100 >100	<0.05 <0.05 <0.05 <0.05 <0.05	1.66 0.21 22.7 3.63 2.36	<0.005 0.040 0.155 <0.005 <0.005	32.6 1.08 0.77 15.70 27.8	4.2 2.0 1.6 8.0 8.3	<1 8 19 <1 <1
R413074 R413075 R413076 R413077 R413078		1400 890 550 258 153.5	<0.002 <0.002 <0.002 <0.002 0.002	0.01 0.01 0.01 0.04 0.06	0.21 0.22 0.43 0.33 0.24	0.2 0.2 1.7 37.2 37.8	1 1 2 2	66.5 48.7 32.0 12.4 3.5	172.5 150.0 115.0 134.5 126.5	82.9 50.5 42.1 0.46 0.41	<0.05 <0.05 <0.05 <0.05 <0.05	2.21 1.22 2.12 0.52 0.50	<0.005 <0.005 0.039 0.807 0.804	5.27 2.06 2.42 2.18 0.92	7.1 3.2 1.8 0.1 0.1	<1 <1 15 335 329

www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - D Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units	ME- MS61 W ppm	ME- MS61 Y ppm	ME- MS61 Zn ppm	ME- MS61 Zr ppm	ME- MS81 Ba ppm	ME- MS81 Ce ppm	ME- MS81 Cr ppm	ME- MS81 Cs ppm	ME- MS81 Dy ppm	ME- MS81 Er ppm	ME- MS81 Eu ppm	ME- MS81 Ga ppm	ME- MS81 Gd ppm	ME- MS81 Hf ppm	ME- MS81 Ho ppm
Sample Description	LOR	0.1	0.1	2	0.5	0.5	0.5	10	0.01	0.05	0.03	0.03	0.1	0.05	0.2	0.01
R413039		0.7	18.9	161	7.2											
R413040		1.1	1.0	31	5.8	40.1	0.8	10	122.0	0.11	0.10	0.05	42.3	0.18	1.2	0.03
R413041		1.0	0.1	51	13.9	36.0	<0.5	10	128.0	< 0.05	< 0.03	< 0.03	51.9	< 0.05	2.2	<0.01
R413042		1.0	1.7	61	7.9	42.1	0.6	30	146.0	0.21	0.21	0.06	48.9	0.24	1.4	0.06
R413043		0.7	20.9	111	11.1											
R413044		0.6	19.0	92	10.4											
R413045		0.6	21.9	127	10.3											
R413046		0.7	0.4	116	10.9	46.8	<0.5	10	323	0.05	0.05	< 0.03	41.6	0.07	2.3	0.01
R413047		0.6	0.2	79	41.4	19.5	<0.5	10	117.5	<0.05	< 0.03	< 0.03	49.1	< 0.05	6.3	<0.01
R413048		0.8	0.1	44	18.4	35.1	<0.5	30	149.0	<0.05	<0.03	<0.03	40.4	<0.05	3.7	<0.01
R413049		1.4	0.6	71	6.8											
R413050		9.0	0.5	65	24.2											
R413051		0.3	6.3	37	199.0											
R413052		1.4	0.3	26	6.9											
R413053		1.6	0.2	32	4.1											
R413054		2.0	0.1	31	1.9											
R413055		2.4	0.4	30	0.8											
R413056		4.4	1.6	62	4.8	33.0	1.1	10	132.5	0.49	0.04	<0.03	75.1	0.36	0.8	0.03
R413057		2.5	0.3	25	1.1											
R413058		2.5	0.2	34	3.0											
R413059		1.9	1.5	53	4.6											
R413060		0.8	19.4	104	9.7											
R413061		1.1	20.0	126	9.1											
R413062		2.6	0.9	44	12.4	126.5	0.5	20	63.5	0.11	0.05	0.08	65.2	0.11	1.7	0.03
R413063		18.8	18.3	122	11.7											
R413064		1.6	17.5	112	11.7											
R413065		1.6	0.7	28	6.7											
R413066		1.3	0.9	8	5.5											
R413067		1.3	0.8	27	3.6											
R413068		0.8	0.3	15	7.1											
R413069		1.1	0.3	10	4.7	252	<0.5	10	399	0.07	<0.03	<0.03	34.2	0.05	0.7	<0.01
R413070		10.5	0.5	67	24.4											
R413071		0.4	7.9	42	152.5											
R413072		1.6	0.3	35	5.6	219	<0.5	20	189.5	0.07	<0.03	<0.03	60.6	0.08	0.9	<0.01
R413073		1.7	0.4	20	7.4	182.5	<0.5	10	319	0.09	<0.03	<0.03	43.0	0.10	1.1	<0.01
R413074		1.4	0.6	16	5.6											
R413075		1.5	0.7	13	1.9											
R413076		1.5	0.9	21	4.8											
R413077		3.0	26.3	128	25.6											
R413078		4.0	27.9	124	31.0											

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - E Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method Analyte Units	ME- MS81 La ppm	ME- MS81 Lu ppm	ME- MS81 Nb ppm	ME- MS81 Nd ppm	ME- MS81 Pr ppm	ME- MS81 Rb ppm	ME- MS81 Sm ppm	ME- MS81 Sn ppm	ME- MS81 Sr ppm	ME- MS81 Ta ppm	ME- MS81 Tb ppm	ME- MS81 Th ppm	ME- MS81 Tm ppm	ME- MS81 U ppm	ME- MS81 V ppm
Sample Description	LOR	0.5	0.01	0.2	0.1	0.03	0.2	0.03	1	0.1	0.1	0.01	0.05	0.01	0.05	5
R413039 R413040 R413041 R413042 R413043		<0.5 <0.5 <0.5	<0.01 <0.01 0.02	112.0 172.5 100.0	0.6 0.1 0.5	0.10 <0.03 0.07	2720 2600 2490	0.14 <0.03 0.15	322 301 499	26.9 25.9 28.5	224 338 173.0	0.02 <0.01 0.04	1.47 1.41 1.28	0.01 <0.01 0.03	3.67 6.15 3.86	8 <5 28
R413044 R413045 R413046 R413047 R413048		<0.5 <0.5 <0.5	<0.01 <0.01 <0.01	124.5 128.0 130.5	0.2 0.2 0.1	0.03 0.03 <0.03	6670 2860 3590	0.03 <0.03 <0.03	340 455 606	25.8 18.0 19.8	273 230 216	<0.01 <0.01 <0.01	1.09 1.71 1.28	<0.01 <0.01 <0.01	3.98 9.50 5.35	7 <5 <5
R413049 R413050 R413051 R413052 R413053																
R413054 R413055 R413056 R413057 R413058		0.6	<0.01	160.5	0.5	0.13	2870	0.25	127	27.0	113.5	0.11	3.02	0.01	9.41	<5
R413059 R413060 R413061 R413062 R413063		<0.5	<0.01	77.6	0.3	0.06	1315	0.09	125	54.8	98.8	0.01	1.53	0.01	3.83	15
R413064 R413065 R413066 R413067 R413068																
R413069 R413070 R413071 R413072 R413073		<0.5 <0.5 <0.5	<0.01 <0.01 <0.01	72.7 105.5 103.0	0.2 0.2 0.1	0.03 0.04 <0.03	5520 3110 4480	0.04 0.07 0.05	29 82 42	70.4 85.4 54.0	143.5 150.5 185.0	0.02 0.02 0.02	1.69 5.04 2.13	<0.01 <0.01 <0.01	4.10 8.27 7.68	<5 <5 <5
R413074 R413075 R413076 R413077 R413078																

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 2 - F Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 W ppm 1	ME- MS81 Y ppm 0.5	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 2	Li- OG63 Li % 0.005	
R413039 R413040 R413041 R413042 R413043		<1 <1 1	1.0 <0.5 1.9	0.09 <0.03 0.20	6 11 11		
R413044 R413045 R413046 R413047 R413048		<1 <1 <1	<0.5 <0.5 <0.5	0.04 0.03 <0.03	11 38 23		
R413049 R413050 R413051 R413052 R413053						2.840	
R413054 R413055 R413056 R413057 R413057 R413058		4	2.1	0.03	5		
R413059 R413060 R413061 R413062 R413063		3	0.8	0.07	13		
R413064 R413065 R413066 R413067 R413068							
R413069 R413070 R413071 R413072 R413073		1 2 1	<0.5 <0.5 <0.5	<0.03 <0.03 <0.03	3 5 6	2.780	
R413074 R413075 R413076 R413077 R413078							

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 3 - A Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method Analyte Units	WEl- 21 Recvd Wt. kg	ME- MS61 Ag ppm	ME- MS61 Al %	ME- MS61 As ppm	ME- MS61 Ba ppm	ME- MS61 Be ppm	ME- MS61 Bi ppm	ME- MS61 Ca %	ME- MS61 Cd ppm	ME- MS61 Ce ppm	ME- MS61 Co ppm	ME- MS61 Cr ppm	ME- MS61 Cs ppm	ME- MS61 Cu ppm	ME- MS61 Fe %
Sample Description	LOR	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
R413079		1.98	0.06	7.81	0.2	130	2.13	0.12	6.35	0.15	12.30	47.3	118	98.5	77.3	10.65
R413079		2.05	<0.01	7.48	2.0	290	114.0	0.72	0.33	0.03	1.95	1.8	13	64.4	3.6	0.73
R413081		2.00	<0.01	7.36	1.6	350	178.0	0.17	0.63	0.00	2.70	0.7	10	37.1	3.5	0.57
R413082		2.35	<0.01	7.34	1.6	280	97.2	0.32	0.58	0.14	2.70	0.8	10	37.5	5.6	0.59
R413083		2.01	<0.01	7.21	1.5	120	120.0	1.16	0.71	0.05	0.24	0.4	11	70.5	4.1	0.45
R413084		1.92	0.02	7.67	2.1	80	125.0	8.21	0.64	0.04	0.24	0.3	12	74.9	3.7	0.64
R413085		2.27	<0.01	7.90	1.9	110	140.5	0.71	0.55	0.08	0.73	0.7	9	62.5	4.3	0.56
R413086		2.51	0.09	7.37	1.7	150	3.09	0.80	6.62	0.16	22.6	50.4	78	12.95	336	9.49
R413087		2.34	0.05	8.35	0.8	90	7.39	0.15	5.72	0.20	11.40	49.4	128	402	122.0	8.24
R413088		0.61	0.01	7.18	0.5	30	62.9	0.13	1.66	<0.02	2.12	9.2	24	346	45.9	1.56
R413089		2.35	0.04	8.42	0.5	110	2.06	0.12	5.47	0.21	12.10	51.9	130	444	112.5	8.24
R413090		<0.02	0.26	6.08	4.2	10	559	0.71	0.33	<0.02	0.25	1.4	178	47.5	12.6	0.49
R413091		0.79	0.04	6.89	0.4	890	1.47	0.04	1.18	0.02	121.5	3.1	10	2.15	6.8	1.30
R413092		2.32	0.05	8.32	0.8	100	2.31	0.11	5.73	0.28	12.60	56.5	124	150.0	137.5	8.41
R413093		2.37	0.05	8.25	0.5	90	1.53	0.10	6.01	0.13	12.25	52.5	119	174.5	127.5	9.17
R413094		1.14	0.03	8.36	0.8	140	6.13	0.17	5.51	0.11	12.90	53.4	118	391	97.2	8.42
R413095		1.26	0.01	7.27	<0.2	10	192.0	0.36	0.55	<0.02	0.19	0.8	7	34.0	14.0	0.25
R413096		1.31	0.02	7.96	0.7	10	133.5	0.06	0.68	< 0.02	0.51	1.9	9	45.0	19.7	0.51
R413097		1.73	0.05	8.67	1.1	140	11.35	0.17	5.61	0.16	12.65	56.6	136	>500	117.5	10.05
R413098		1.92	0.06	8.30	0.5	90	5.70	0.15	5.81	0.14	12.15	59.8	127	454	133.5	9.70
R413099		0.59	0.04	5.54	2.2	20	26.9	2.78	0.67	0.03	1.54	6.8	21	227	31.0	1.29
R413100		2.37 2.47	0.06 0.04	8.30 8.30	0.5	80 60	2.78 2.13	0.15 0.13	6.13 6.22	0.25 0.16	12.10 12.75	62.1 58.3	122 127	196.0 88.4	139.0 121.5	9.33 9.07
R413101 R413102		2.47	0.04	8.30 8.58	1.3 45.7	60 40	2.13 8.84	0.13	6.93	0.16	12.75	58.3 73.1	127	88.4 50.6	70.8	9.07 9.06
R413102 R413103		2.14	0.04	8.35	43.7 61.9	70	3.30	0.20	7.36	0.10	15.20	95.8	123	125.0	93.3	9.00 9.86
R413104		2.38	0.04	8.08	195.5	80	2.58	0.55	7.82	0.14	15.45	184.5	115	7.31	52.4	10.25
R413105		2.09	0.04	8.53	75.2	100	16.65	0.24	5.30	0.14	11.35	97.0	127	>500	35.4	9.36
R413106		2.24	0.08	8.15	4.3	70	22.8	0.21	5.26	0.25	9.78	50.7	102	347	138.5	8.30
R413107		2.50	0.04	7.69	1.3	80	1.36	0.10	6.63	0.13	11.85	50.1	109	117.0	69.2	10.80
R413108		2.01	0.05	7.55	1.7	50	4.88	0.17	5.94	0.19	10.85	50.1	108	371	99.9	10.55
R413109		2.17	<0.01	6.88	1.3	40	136.0	0.06	0.37	<0.02	0.21	1.3	10	59.4	1.7	0.62
R413110		<0.02	0.12	6.82	3.7	10	588	0.68	0.36	<0.02	0.32	1.4	174	49.0	9.5	0.54
R413111		0.91	0.07	7.07	0.5	970	1.29	0.03	1.13	0.04	96.6	3.3	13	1.98	5.5	1.29
R413112		1.98	<0.01	7.56	0.6	70	141.0	0.65	0.39	<0.02	0.18	0.6	13	50.8	1.4	0.69
R413113		2.40	<0.01	6.59	0.7	40	289	1.51	0.41	0.08	0.12	0.4	15	64.2	2.3	0.47
R413114		2.61	<0.01	8.11	2.3	30	225	0.04	0.43	0.12	0.13	0.2	10	78.0	1.8	0.48
R413115		2.58	<0.01	7.81	0.5	50	144.0	0.30	0.40	0.06	0.23	0.8	13	53.6	5.3	0.55
R413116		2.76	0.04	7.70	0.5	20	3.85	0.12	6.31	0.21	11.75	48.5	109	135.5	90.5	10.95
R413117		3.12	0.04	7.65	0.7	10	0.69	0.08	6.60	0.12	11.70	50.6	105	6.03	125.0	10.80
R413118		2.71	0.05	6.82	1.7	20	0.77	0.10	6.32	0.12	11.30	49.3	105	30.5	111.0	10.25

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 3 - B Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61						
	Analyte	Ga	Ge	Hf	In	К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb
Sample Description	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Beschption	LOR	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
R413079		21.9	0.07	1.1	0.078	0.76	4.8	660	3.52	1780	0.23	1.54	4.8	99.8	500	3.9
R413080		53.2	0.08	0.9	<0.005	2.92	0.8	159.0	0.16	331	0.13	4.01	70.7	2.3	1560	5.9
R413081		53.8	0.08	1.9	<0.005	2.70	1.0	172.5	0.11	316	0.09	4.12	86.4	0.8	1520	5.3
R413082		48.9	0.10	1.3	0.011	2.43	0.9	188.0	0.14	268	0.45	4.41	78.8	2.6	1480	15.0
R413083		54.4	0.08	0.3	<0.005	2.41	<0.5	2270	0.07	261	0.22	3.54	59.3	0.9	1370	7.4
R413084		61.8	0.08	0.5	<0.005	2.14	<0.5	5180	0.07	422	0.20	2.99	70.4	0.7	1730	8.4
R413085		53.7	0.08	0.6	<0.005	2.49	0.5	2160	0.08	320	0.15	4.04	65.9	1.2	1550	11.4
R413086		20.9	0.05	2.9	0.074	0.52	10.0	145.5	3.57	1470	0.53	1.79	6.5	106.0	630	5.4
R413087		21.8	0.05	1.3	0.094	0.69	4.1	261	2.36	1780	0.22	2.44	4.8	90.3	630	5.3
R413088		32.2	<0.05	2.6	0.014	0.43	0.8	120.5	0.39	350	0.15	5.18	35.5	15.2	2040	3.9
R413089		21.6	<0.05	1.4	0.096	0.85	4.3	375	2.47	1800	0.26	2.35	4.4	97.0	490	2.4
R413090		39.1	0.07	2.3	<0.005	0.21	<0.5	>10000	0.03	960	0.32	0.57	111.5	4.0	6960	5.6
R413091		17.65	0.11	5.3	0.012	3.55	65.9	37.0	0.28	233	0.33	2.80	4.6	4.1	350	31.6
R413092		22.4	0.06	1.3	0.115	0.66	4.5	700	2.50	1800	0.25	2.40	4.7	95.4	620	2.4
R413093		21.6	0.06	1.3	0.105	0.55	4.3	670	2.47	1980	0.19	2.12	4.4	91.7	510	3.2
R413094		21.2	0.05	1.1	0.093	1.03	4.7	1450	2.51	2040	0.28	1.59	4.6	94.5	480	4.2
R413095		45.2	<0.05	6.6	<0.005	0.31	<0.5	447	0.02	186	0.12	6.26	77.7	1.4	4770	4.1
R413096		51.7	<0.05	8.9	<0.005	0.55	<0.5	520	0.07	178	0.08	6.14	89.9	2.8	4590	4.1
R413097		24.0	0.08	1.3	0.085	0.98	4.5	1260	2.67	2120	0.27	1.94	6.2	102.5	1060	4.7
R413098		22.6	0.05	1.4	0.106	0.71	4.2	820	2.66	2200	0.26	1.88	4.7	106.0	520	2.3
R413099		44.6	<0.05	1.5	0.006	0.85	0.6	149.5	0.27	245	0.14	2.55	35.6	11.8	1050	3.5
R413100		21.9	0.06	1.3	0.101	0.58	4.3	790	2.52	2160	0.40	1.98	4.9	107.5	490	1.7
R413101		21.1	0.05	1.1	0.103	0.39	4.5	237	2.19	2100	0.49	2.25	4.3	101.0	480	1.8
R413102		22.3	0.06	1.0	0.100	0.29	4.9	218	2.01	2130	0.32	2.20	7.6	98.3	700	1.9
R413103		23.6	0.07	1.1	0.118	0.46	6.2	317	2.20	2010	0.39	1.64	5.6	110.5	450	1.3
R413104		22.1	0.08	1.4	0.116	0.46	6.3	288	2.17	1940	0.52	1.20	4.6	101.0	500	1.4
R413105		24.3	0.08	1.4	0.072	0.97	4.1	570	2.57	1680	0.47	2.14	12.9	83.2	1600	6.3
R413106		26.3	<0.05	2.0	0.074	0.54	3.5	500	2.18	1480	0.41	2.68	13.2	77.5	2220	3.8
R413107		19.35	0.06	1.1	0.087	0.40	4.3	770	3.73	1680	0.23	1.65	3.8	84.9	480	1.8
R413108		21.7	0.06	1.0	0.078	0.68	3.9	2720	4.06	1660	0.22	1.22	6.3	86.2	1440	3.6
R413109		50.8	<0.05	0.8	<0.005	1.67	<0.5	4790	0.04	380	0.11	3.28	59.6	1.5	1490	4.6
R413110		40.8	0.08	2.0	< 0.005	0.22	< 0.5	>10000	0.03	1040	0.39	0.61	113.0	3.9	7390	5.1
R413111		18.15	0.12	5.9	0.017	3.92	51.1	36.1	0.26	204	0.30	2.74	5.1	2.7	400	33.9
R413112		63.5	0.05	0.3	<0.005	1.57	<0.5	6840 7060	0.02	460	0.16	2.99	83.8	1.0	1440	4.4
R413113		47.9	<0.05	0.6	<0.005	1.30	<0.5	7060	0.02	407	0.15	2.56	69.5	0.8	1720	6.5
R413114		69.4	<0.05	0.4	<0.005	2.02	<0.5	7790	0.01	615	0.10	4.27	80.0	0.6	2580	6.3
R413115		60.6	0.05	1.3	<0.005	1.82	<0.5	6800	0.04	436	0.15	3.49	72.0	1.4	1550	5.9
R413116		20.2	0.07	1.0	0.089	0.44	4.3	1630	3.90	1840	0.23	1.46	4.2	93.2	470	4.4
R413117		19.50	0.06	0.9	0.085	0.19	4.3	990	3.59	1670	0.22	1.65	3.8	84.6	470	3.7
R413118		18.15	0.05	0.8	0.086	0.23	4.1	1160	3.40	1590	0.26	1.33	3.7	85.2	450	2.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 3 - C Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61
	Analyte	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Те	Th	Ti	TI	U	v
Sample Description	Units LOR	ppm 0.1	ppm 0.002	% 0.01	ppm 0.05	ppm 0.1	ppm 1	ppm 0.2	ррт 0.2	ppm 0.05	ppm 0.05	ppm 0.01	% 0.005	ppm 0.02	ppm 0.1	ppm 1
R413079		264	<0.002	0.02	0.28	38.5	2	16.7	106.5	0.38	<0.05	0.51	0.827	1.71	0.1	342
R413080		1650	<0.002	0.01	0.31	1.0	<1	39.0	79.6	62.2	<0.05	1.77	0.020	6.77	3.9	8
R413081		1140	<0.002	0.01	0.30	0.1	1	28.3	99.0	44.0	<0.05	3.41	<0.005	3.32	7.7	<1
R413082		1280	<0.002	0.01	0.32	0.1	<1	24.8	96.7	57.6	<0.05	2.85	<0.005	4.04	4.6	<1
R413083		1770	0.002	<0.01	0.52	<0.1	<1	43.3	69.6	30.0	<0.05	2.24	<0.005	6.80	2.6	<1
R413084		1580	<0.002	<0.01	0.66	<0.1	<1	32.0	52.3	36.2	<0.05	2.10	<0.005	5.76	4.1	<1
R413085		1850	< 0.002	< 0.01	0.53	0.1	<1	28.6	56.3	38.8	<0.05	2.60	<0.005	6.66	4.0	1
R413086		91.4	< 0.002	0.05	0.32	32.1	2	2.9	161.0	0.91	< 0.05	1.93	0.781	0.60	0.7	306
R413087		520	0.003	0.14	0.49	38.0	2	24.4	117.5	1.15	< 0.05	0.40	0.890	6.34	0.1	341
R413088		1070	<0.002	0.04	0.26	6.5	1	51.9	41.0	>100	<0.05	0.68	0.134	8.61	2.2	51
R413089		770	< 0.002	0.17	0.31	37.2	2	7.2	113.0	0.69	0.06	0.41	0.900	9.10	0.1	338
R413090		49.0	< 0.002	0.03	0.92	0.6	<1	113.0	13.2	63.9	0.06	0.15	0.035	0.90	0.7	7
R413091		122.0	< 0.002	0.01	0.07	2.8	1	1.0	313	0.49	< 0.05	33.0	0.129	0.75	2.1	18
R413092		107.5	0.003	0.19	0.27	41.5	2	5.2	110.5	0.50	<0.05	0.43	0.897	0.83	0.1	341
R413093		144.5	<0.002	0.17	0.25	43.5	3	2.6	109.5	0.29	<0.05	0.39	0.878	1.48	0.1	342
R413094		1330	0.004	0.09	0.29	37.2	2	20.6	127.5	0.60	<0.05	0.46	0.863	10.05	0.1	331
R413095		560	< 0.002	0.02	0.11	0.3	<1	126.5	31.6	>100	< 0.05	1.27	0.008	2.23	7.9	3
R413096		1060	< 0.002	0.02	0.12	0.8	1	103.0	36.0	>100	< 0.05	2.41	0.017	5.55	7.1	7
R413097		1150	0.003	0.16	0.30	42.4	2 2	47.6	133.5 98.8	3.88	0.05	0.45	0.920	10.60	0.2	359 368
R413098		680	0.002	0.17	0.25	40.9		11.7		1.52	<0.05	0.39	0.895	7.75	0.1	
R413099		2550	< 0.002	0.04	0.15	3.7	1	65.3	53.0	83.2	0.09	0.61	0.092	13.35	5.6	37
R413100		470	0.003	0.16	0.39	41.3	2	9.9	104.0	2.14	<0.05	0.41	0.853	4.44	0.2	337
R413101		60.6 47.4	0.002 0.003	0.15 0.11	0.47 0.78	44.5	2 3	7.0	119.5	0.49 26.7	<0.05	0.42 0.42	0.862 0.881	0.53	0.1	335 337
R413102 R413103		47.4 71.3	0.003	0.11	0.78	44.4 44.1	3 2	32.0 21.4	110.5 86.6	26.7 12.80	<0.05 0.12	0.42	0.879	0.51 0.85	0.2 0.2	337 348
		88.7	0.003	0.20	0.63	45.1	3	17.1	101.0	0.59	0.12	0.40	0.848	0.33	0.2	330
R413104 R413105		2320	0.003	0.19	0.65	45.1 36.2	3 1	63.6	113.0	47.8	<0.05	0.42	0.848	0.33 16.70	0.1	313
R413105		880	0.002	0.13	0.36	32.1	1	43.6	105.5	52.0	<0.05	0.49	0.660	7.99	1.2	264
R413107		244	0.002	0.02	0.30	41.9	2	4.7	157.5	0.44	<0.05	0.37	0.000	2.00	0.1	316
R413108		960	< 0.002	0.07	0.48	38.6	3	25.2	163.0	4.38	<0.05	0.36	0.762	7.20	0.2	307
R413109		1620	<0.002	<0.01	0.19	0.4	1	59.9	42.0	59.0	<0.05	3.18	0.008	10.50	7.4	3
R413110		50.5	<0.002	0.03	0.87	0.6	<1	115.5	12.7	63.8	<0.05	0.19	0.038	0.92	0.9	8
R413111		134.5	<0.002	0.01	0.06	2.9	1	1.0	309	0.44	<0.05	27.2	0.128	0.89	1.7	17
R413112		1520	<0.002	<0.01	0.28	0.1	<1	55.3	37.7	29.8	<0.05	3.66	<0.005	8.55	4.7	1
R413113		1400	<0.002	<0.01	0.33	<0.1	<1	34.9	38.0	70.7	<0.05	3.18	<0.005	9.76	3.9	1
R413114		2170	<0.002	<0.01	0.26	0.1	1	48.8	37.1	47.3	< 0.05	4.77	<0.005	14.60	6.5	1
R413115		1880	<0.002	<0.01	0.27	0.3	<1	65.7	42.1	48.0	<0.05	2.95	0.007	11.30	7.1	2
R413116		530	0.003	0.09	0.28	39.3	2	26.1	117.0	0.54	<0.05	0.39	0.787	3.89	0.1	317
R413117		28.7	0.002	0.14	0.33	40.7	2	3.8	148.5	0.29	<0.05	0.38	0.779	0.41	0.1	312
R413118		99.5	0.002	0.10	0.44	36.0	2	5.7	143.5	0.27	<0.05	0.34	0.719	1.45	0.2	289

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 3 - D Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	ME- MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME- MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01
R413079 R413080 R413081 R413082 R413083		1.9 1.4 1.9 1.4 1.6	27.9 1.4 1.3 1.0 0.1	143 19 30 51 33	34.7 6.4 17.2 9.4 1.4											
R413084 R413085 R413086 R413087 R413088		1.7 1.4 0.3 4.6 1.0	0.3 0.3 24.5 24.5 4.5	32 37 123 155 36	3.0 4.2 104.0 34.7 11.6	30.5	2.3	30	344	0.86	0.58	0.22	29.7	0.78	2.6	0.18
R413089 R413090 R413091 R413092 R413093		1.5 8.5 0.3 1.0 0.7	24.4 0.5 6.6 26.3 28.4	161 68 40 165 147	37.8 25.9 177.5 38.8 36.9											
R413094 R413095 R413096 R413097 R413098		2.1 1.2 1.3 1.8 0.9	27.3 0.3 0.8 28.3 27.2	140 68 45 155 143	35.2 20.0 35.4 39.6 43.1	4.6 9.6 127.5	<0.5 0.5 12.0	10 10 170	32.3 41.9 525	<0.05 0.13 4.57	<0.03 0.08 3.21	<0.03 0.07 1.03	41.9 46.9 21.0	<0.05 0.13 4.01	6.5 9.4 2.5	0.01 0.02 1.03
R413099 R413100 R413101 R413102 R413103		1.0 0.9 1.4 1.4 1.7	2.4 27.0 28.1 28.9 30.2	51 134 128 120 119	11.7 38.2 29.6 24.7 31.2											
R413104 R413105 R413106 R413107 R413107 R413108		2.2 2.0 1.7 0.9 1.0	31.5 24.1 22.9 29.0 27.6	124 168 150 104 119	31.9 33.7 26.7 31.8 26.6	84.7	10.4	150	741	4.14	2.54	0.85	20.7	3.46	2.5	0.89
R413109 R413110 R413111 R413112 R413113		1.7 7.1 0.4 2.5 1.0	0.4 0.5 6.7 0.2 0.2	27 69 37 30 16	5.2 23.2 197.0 1.5 3.2											
R413114 R413115 R413116 R413117 R413118		2.0 1.5 0.6 0.3 0.5	0.1 0.5 29.3 28.6 26.8	22 38 121 111 119	2.2 10.2 24.7 21.9 21.9											

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 3 - E Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2	ME- MS81 Nd ppm 0.1	ME- MS81 Pr ppm 0.03	ME- MS81 Rb ppm 0.2	ME- MS81 Sm ppm 0.03	ME- MS81 Sn ppm 1	ME- MS81 Sr ppm 0.1	ME- MS81 Ta ppm 0.1	ME- MS81 Tb ppm 0.01	ME- MS81 Th ppm 0.05	ME- MS81 Tm ppm 0.01	ME- MS81 U ppm 0.05	ME- MS81 V ppm 5
R413079 R413080 R413081 R413082 R413083																
R413084 R413085 R413086 R413087 R413088		0.8	0.09	34.9	1.7	0.34	1075	0.53	84	28.6	284	0.10	0.79	0.08	2.18	52
R413089 R413090 R413091 R413092 R413093																
R413094 R413095 R413096 R413097 R413098		<0.5 <0.5 4.3	<0.01 0.01 0.46	78.1 81.8 5.9	0.2 0.4 9.4	<0.03 0.07 1.81	579 1060 1350	0.04 0.12 3.16	196 190 46	30.8 25.7 112.0	712 536 4.4	<0.01 0.02 0.73	1.62 2.10 0.48	<0.01 0.01 0.47	7.07 6.78 0.24	<5 8 393
R413099 R413100 R413101 R413102 R413103																
R413104 R413105 R413106 R413107 R413107 R413108		3.8	0.39	12.5	8.1	1.59	1980	2.55	59	89.4	44.6	0.62	0.53	0.42	0.60	330
R413109 R413110 R413111 R413112 R413113																
R413114 R413115 R413116 R413117 R413118																

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 3 - F Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 W ppm 1	ME- MS81 Y ppm 0.5	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 2	Li- OG63 Li % 0.005		
R413079 R413080 R413081 R413082 R413083								
R413084 R413085 R413086 R413087 R413088		1	4.5	0.51	20			
R413089 R413090 R413091 R413092 R413093						2.900		
R413094 R413095 R413096 R413097 R413098		1 1 1	<0.5 0.8 25.9	0.04 0.12 3.15	23 38 83			
R413099 R413100 R413101 R413102 R413103								
R413104 R413105 R413106 R413107 R413107		2	23.4	2.70	74			
R413109 R413110 R413111 R413112 R413113						2.920		
R413114 R413115 R413116 R413117 R413118								

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 4 - A Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method	WEI- 21	ME- MS61													
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu	Fe
Sample Description	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%
Sample Beschption	LOR	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
R413119		1.22	0.05	7.08	0.7	50	4.13	0.13	7.17	0.21	12.65	46.9	106	24.8	77.0	10.45
R413120		1.19	0.05	7.98	0.5	20	87.8	0.05	1.32	0.03	1.23	5.1	17	109.5	15.1	1.13
R413121		0.59	0.08	7.11	0.4	90	17.35	0.35	4.76	0.21	11.70	48.4	117	>500	149.5	10.25
R413122		2.29	0.03	6.89	0.8	40	129.0	0.01	0.44	<0.02	0.19	0.8	12	36.9	4.5	0.52
R413123		2.35	0.06	7.54	0.3	30	1.81	0.07	7.02	0.16	13.70	49.2	113	14.60	96.3	10.85
R413124		2.49	0.06	7.74	0.8	120	0.55	0.05	6.01	0.13	11.95	51.3	120	35.1	122.5	10.40
R413125		2.42	0.04	7.44	2.8	70	0.95	0.09	7.32	0.14	15.55	48.2	114	19.25	98.0	10.05
R413126		2.43	0.06	7.28	0.6	60	0.49	0.09	6.64	0.11	12.35	47.3	112	29.1	115.0	10.30
R413127		2.75	0.08	7.38	0.9	120	4.56	0.11	6.19	0.18	11.90	48.9	131	165.0	120.5	10.55
R413128		2.21	0.03	6.96	3.9	120	109.0	0.06	0.58	0.21	0.39	3.4	15	87.8	7.2	0.61
R413129		2.01	0.03	7.14	0.4	110	129.0	0.04	0.62	0.19	0.16	0.3	9	71.6	2.9	0.30
R413130		<0.02	0.17	5.87	4.0	<10	542	0.81	0.31	<0.02	0.29	1.4	184	48.8	8.3	0.47
R413131		0.91	0.04	6.66	0.2	960	1.24	0.01	0.94	0.02	134.0	2.8	11	2.30	4.6	1.35
R413132		2.12	0.03	7.36	0.2	170	186.0	0.22	1.05	0.51	0.67	1.3	12	130.5	6.3	0.64
R413133		2.06	0.03	6.71	0.3	170	162.5	0.06	0.49	0.08	0.13	0.4	9	98.3	9.8	0.34
R413134		2.11	0.02	6.33	0.7	120	239	0.03	0.33	<0.02	0.72	0.5	10	81.5	19.5	0.34
R413135		1.39	0.02	6.83	0.4	70	178.0	0.01	0.34	0.10	1.42	1.0	12	68.0	3.9	0.45
R413136		2.62	0.10	7.54	0.9	250	2.83	0.15	5.62	0.11	4.43	56.7	114	76.1	110.0	7.95
R413137		2.35	0.08	7.46	0.2	200	7.03	0.15	5.48	0.06	5.35	60.2	112	195.5	114.5	8.75
R413138		1.03	0.03	6.62	0.6	110	247	1.64	0.69	0.08	1.67	1.2	11	46.3	8.4	0.52
R413139		1.97	0.02	7.42	0.7	260	118.5	0.06	0.58	0.13	0.74	1.2	10	66.3	10.2	0.63
R413140		2.16	0.03	7.44	0.7	310	118.5	1.16	0.78	0.12	0.37	0.6	11	197.5	2.3	0.50
R413141		2.07	0.04	6.80	0.2	350	216	0.15	0.84	0.11	0.42	0.7	13	152.5	1.5	0.63
R413142		2.01	0.02	6.99	1.8	240	157.5	0.13	0.65	0.08	0.75	1.5	9	40.2	1.8	0.51
R413143		2.15	0.03	6.91	2.8	210	100.5	0.12	0.66	0.16	1.18	2.0	10	66.5	2.8	0.41
R413144		2.06	0.01	6.34	0.4	60	176.5	0.06	0.40	0.03	1.36	0.2	12	13.10	2.1	0.22
R413145		2.41	0.02	6.22	0.7	70	162.0	0.08	0.59	0.08	1.10	0.9	14	21.9	3.6	0.30
R413146		2.40	0.06	7.58	1.0	190	2.59	0.15	6.00	0.14	4.51	61.2	110	195.0	120.5	9.10

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - B Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method	ME- MS61														
	Analyte	Ga	Ge	Hf	In	К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	LOR	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
R413119		19.40	0.06	0.7	0.098	0.52	4.7	650	2.67	1860	0.14	0.96	4.0	77.0	480	1.3
R413120		51.1	0.05	4.5	<0.005	0.49	<0.5	1920	0.21	440	0.09	5.59	59.5	8.0	4440	5.7
R413121		20.1	0.06	0.7	0.064	1.95	4.2	1260	2.82	1580	0.12	0.78	4.4	83.2	500	4.6
R413122		51.0	0.05	1.5	<0.005	1.39	<0.5	4060	0.04	323	0.05	3.75	64.6	1.5	1240	5.7
R413123		19.40	0.07	0.9	0.089	0.28	5.2	820	3.08	1580	0.24	1.64	4.2	85.0	490	1.3
R413124		19.40	0.07	1.2	0.095	0.52	4.3	1220	2.60	1560	0.23	1.84	3.9	90.4	480	1.3
R413125		19.05	0.05	1.2	0.107	0.44	6.7	300	2.34	1610	0.16	1.57	3.8	81.7	470	1.0
R413126		18.15	< 0.05	1.0	0.086	0.38	4.5	314	2.82	1600	0.21	1.66	3.7	82.6	460	1.9
R413127		18.80	0.07	1.1	0.088	0.58	4.4	860	2.87	1530	1.04	1.28	3.7	87.7	490	5.6
R413128		50.6	<0.05	1.6	<0.005	2.19	<0.5	3170	0.11	289	<0.05	3.28	57.5	2.9	1610	3.7
R413129		49.9	<0.05	3.0	0.022	1.95	<0.5	3460	0.02	295	0.07	3.62	59.6	0.8	1500	3.5
R413130		38.1	0.05	1.8	<0.005	0.21	<0.5	>10000	0.03	880	0.26	0.58	103.0	3.8	6980	3.8
R413131		16.50	0.12	6.2	0.014	4.14	73.0	42.7	0.23	220	0.17	2.49	4.5	2.2	350	32.9
R413132		54.1	0.05	1.8	<0.005	3.48	<0.5	1870	0.08	1260	< 0.05	2.51	57.6	1.5	5290	4.6
R413133		50.9	0.06	2.9	<0.005	2.45	<0.5	1450	0.04	191	0.05	3.60	56.3	0.8	1650	3.0
R413134		39.6	0.07	4.1	<0.005	1.84	0.5	600	0.04	152	<0.05	4.16	60.7	1.1	1310	2.0
R413135		39.4	0.07	4.3	<0.005	1.28	0.8	383	0.07	203	0.06	5.26	62.5	1.7	1530	2.7
R413136		17.20	0.08	0.5	0.081	0.87	1.6	260	2.85	1700	2.01	1.64	1.5	96.4	230	8.0
R413137		20.1	<0.05	0.5	0.091	0.97	2.0	283	2.74	1770	1.20	1.84	7.8	98.3	600	5.1
R413138		37.1	0.07	2.0	<0.005	1.90	0.8	73.5	0.12	301	0.45	4.67	89.6	3.4	1400	4.6
R413139		62.8	0.08	0.2	0.012	2.64	<0.5	262	0.10	235	0.11	3.76	60.5	1.3	910	5.7
R413140		51.1	0.10	0.5	<0.005	4.90	<0.5	237	0.05	231	0.14	2.67	56.1	0.8	1820	5.8
R413141		55.9	0.08	0.3	0.006	3.92	<0.5	322	0.06	275	0.14	2.41	75.0	0.8	1670	4.0
R413142		57.8	0.09	0.7	0.009	1.83	0.5	265	0.09	237	0.18	4.03	64.0	1.0	1200	7.6
R413143		49.9	0.09	2.6	0.007	2.10	0.6	204	0.08	259	0.27	4.19	61.0	1.0	1570	10.9
R413144		40.1	0.08	3.8	0.005	0.65	0.7	62.3	0.01	89	0.14	5.72	86.9	0.7	1920	3.0
R413145		39.2	0.08	4.1	0.009	0.85	0.7	100.5	0.04	176	0.37	5.07	43.7	1.4	1890	3.2
R413146		17.75	0.11	0.5	0.084	0.93	1.5	210	2.80	1880	0.17	1.94	1.7	100.5	230	7.1
1																

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - C Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method	ME- MS61 Rb	ME- MS61 Re	ME- MS61 S	ME- MS61 Sb	ME- MS61 Sc	ME- MS61 Se	ME- MS61 Sn	ME- MS61 Sr	ME- MS61 Ta	ME- MS61 Te	ME- MS61 Th	ME- MS61 Ti	ME- MS61 Tl	ME- MS61 U	ME- MS61 V
	Analyte Units	ко ppm	ке ppm	S %	so ppm	sc ppm	se ppm	sn ppm	sr ppm	ra ppm	ppm	ppm	%	ppm	U ppm	v ppm
Sample Description	LOR	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
R413119		153.5	<0.002	0.03	0.63	37.8	2	46.4	140.0	1.14	<0.05	0.38	0.761	1.47	0.9	297
R413120		900	< 0.002	0.01	0.22	3.1	1	40.7	31.2	55.4	< 0.05	2.10	0.069	7.18	6.9	25
R413121		3590	< 0.002	0.05	0.72	38.9	2	130.0	93.0	0.95	< 0.05	0.35	0.770	31.9	0.2	306
R413122 R413123		1520 94.5	<0.002 0.002	<0.01 0.05	0.26 0.30	0.3 40.0	<1 1	53.5 13.9	24.1 59.9	36.2 0.49	<0.05 <0.05	3.66 0.42	0.009 0.788	10.55 1.06	7.2 0.1	3 306
R413124		71.8	0.002	0.14	0.27	41.1	2	2.0	75.3	0.27	<0.05	0.41	0.825	0.36	0.1	323
R413125		65.5	0.002	0.09	0.29	39.3	3	11.4	81.7	0.28	<0.05	0.40	0.786	0.22	0.1	302
R413126		41.6	0.002	0.05	0.24	37.2	2	4.7	71.2	0.25	<0.05	0.40	0.790	0.28	0.1	306
R413127		500	0.002	0.07	0.27	37.3	2	18.1	67.2	0.40	<0.05	0.39	0.802	4.74	0.1	321
R413128		2840	<0.002	<0.01	0.19	0.8	1	77.6	90.0	63.4	<0.05	2.12	0.020	20.1	4.9	7
R413129		2630	<0.002	<0.01	0.19	0.1	1	73.1	92.5	71.1	<0.05	2.39	<0.005	18.85	6.4	<1
R413130		59.1	<0.002	0.02	0.83	0.5	1	102.5	10.6	55.0	<0.05	0.15	0.036	0.94	0.9	7
R413131		139.5	< 0.002	< 0.01	0.05	3.1	1	0.9	237	0.42	< 0.05	35.8	0.146	0.86	2.7	17
R413132 R413133		4930 3210	<0.002 <0.002	<0.01 <0.01	0.14 0.19	0.5 <0.1	1 1	121.0 63.4	147.0 101.0	58.6 51.4	<0.05 <0.05	3.65 2.96	0.006 <0.005	33.8 22.3	5.9 6.7	3 <1
R413134		2350	<0.002	<0.01	0.25	0.1	1	41.0	58.0	67.4	<0.05	2.51	<0.005	15.85	5.3	1
R413135		1670	< 0.002	< 0.01	0.24	0.3	1	28.1	39.0	98.3	< 0.05	1.71	< 0.005	11.30	6.6	1
R413136		184.5	0.005	0.11	0.39	43.6	2	6.6	106.0	0.21	0.07	0.14	0.490	1.74	0.1	290
R413137		173.5	0.005	0.13	0.32	46.0	2	15.3	119.0	2.32	0.06	0.13	0.492	1.78	0.2	293
R413138		1430	0.002	0.01	0.15	1.0	1	17.8	34.4	>100	0.07	2.34	0.014	7.85	8.0	8
R413139		1650	0.003	0.01	0.22	0.2	1	42.1	93.8	23.9	<0.05	1.24	<0.005	7.84	1.7	1
R413140		4110	0.002	< 0.01	0.24	0.2	1	26.2	139.5	70.0	0.07	0.96	< 0.005	24.6	2.2	<1
R413141 R413142		2810 990	0.002 0.003	<0.01 0.01	0.21 0.20	0.2 0.1	1 1	35.7 33.3	148.0 129.5	44.8 57.7	<0.05 <0.05	0.56 2.76	<0.005 <0.005	15.80 3.78	1.7 3.3	<1 <1
R413143		990 1620	0.003	0.01	0.20	0.1	1	28.7	89.9	72.2	< 0.05	2.76	<0.005	3.78 7.59	5.3 5.1	<1
R413144		480	0.002	0.01	0.14	<0.1	1	10.6	25.4	>100	<0.05	2.88	<0.005	1.70	8.7	<1
R413145		730	0.003	0.01	0.16	0.4	1	17.1	32.0	66.8	<0.05	2.61	0.006	2.57	6.4	4
R413146		250	0.004	0.10	0.35	45.1	2	16.6	158.5	0.39	0.06	0.12	0.495	2.36	0.1	291

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 4 - D Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	ME- MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME- MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01
R413119 R413120 R413121 R413122 R413122 R413123		1.4 1.0 1.1 1.3 0.8	27.7 3.1 27.3 0.9 29.7	208 49 134 29 128	16.5 41.8 17.5 15.9 26.2	82.2	11.6	150	518	4.63	2.88	1.12	18.7	3.85	2.5	1.02
R413124 R413125 R413126 R413127 R413128		1.2 1.1 0.9 4.7 1.0	28.5 30.1 27.8 27.4 0.9	122 141 117 131 73	38.6 32.3 27.9 30.3 12.7											
R413129 R413130 R413131 R413131 R413132 R413133		0.6 7.3 0.3 1.6 0.8	0.1 0.5 5.8 0.6 0.2	28 63 39 47 30	21.4 20.9 221 14.1 21.6											
R413134 R413135 R413136 R413137 R413137 R413138		0.7 0.6 0.5 1.5 0.9	0.4 0.7 17.5 18.3 1.0	34 26 120 94 14	25.5 22.4 13.4 10.1 11.6	111.5	1.8	10	44.4	0.21	0.12	0.10	36.1	0.13	3.8	0.03
R413139 R413140 R413141 R413142 R413143		1.3 1.1 1.8 1.0 0.6	0.6 0.6 1.5 0.4 0.3	26 26 39 49 107	0.7 2.9 1.6 4.3 14.8											
R413144 R413145 R413146		0.6 0.5 0.7	0.2 0.4 18.1	11 50 159	19.2 21.8 11.4	58.5	3.7	20	12.40	0.11	<0.03	0.09	41.5	0.09	4.5	0.01

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - E Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2	ME- MS81 Nd ppm 0.1	ME- MS81 Pr ppm 0.03	ME- MS81 Rb ppm 0.2	ME- MS81 Sm ppm 0.03	ME- MS81 Sn ppm 1	ME- MS81 Sr ppm 0.1	ME- MS81 Ta ppm 0.1	ME- MS81 Tb ppm 0.01	ME- MS81 Th ppm 0.05	ME- MS81 Tm ppm 0.01	ME- MS81 U ppm 0.05	ME- MS81 V ppm 5
R413119 R413120 R413121 R413122 R413122 R413123		4.3	0.46	4.3	9.1	1.72	3880	2.96	126	52.8	1.0	0.71	0.42	0.46	0.15	352
R413124 R413125 R413126 R413127 R413128																
R413129 R413130 R413131 R413132 R413132 R413133																
R413134 R413135 R413136 R413137 R413137 R413138		0.8	0.01	76.4	0.9	0.23	1525	0.20	21	33.0	183.0	0.03	2.21	0.02	6.90	9
R413139 R413140 R413141 R413142 R413143																
R413144 R413145 R413146		1.7	0.01	62.1	1.6	0.43	513	0.26	18	27.4	80.1	0.02	3.37	<0.01	8.24	<5

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - F Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 16-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 W ppm 1	ME- MS81 Y ppm 0.5	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 2	Li- OG63 Li % 0.005				
R413119 R413120 R413121 R413122 R413122 R413123		1	26.5	3.04	81					
R413124 R413125 R413126 R413127 R413127										
R413129 R413130 R413131 R413132 R413133						2.830				
R413134 R413135 R413136 R413137 R413137		1	1.1	0.04	19					
R413139 R413140 R413141 R413142 R413143										
R413144 R413145 R413146		1	<0.5	<0.03	21					

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 16- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

		CERTIFICATE COMM	IENTS	
			CAL COMMENTS	
Applies to Method:	REE's may not be totally soluble in th ME- MS61	is method.		
		LABORAT	ORY ADDRESSES	
Applies to Method:	Processed at ALS Thunder Bay locate CRU- 31 PUL- 31	d at 1160 Commerce Street, CRU- QC PUL- QC	Thunder Bay, ON, Canada. LOG- 22 SPL- 21	LOG- 23 WEI- 21
Applies to Method:	Processed at ALS Vancouver located Li- OG63	at 2103 Dollarton Hwy, North ME- MS61	Vancouver, BC, Canada. ME- MS81	ME- OG62o
Applies to Method.				ME 00020

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 1 Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

CERTIFICATE TB16103425

Project: Falcon Lake

P.O. No.: Sunrise03

This report is for 81 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 28- JUN- 2016.

The following have access to data associated with this certificate:

TIM BIRT

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
CRU- 31	Fine crushing - 70% < 2mm
CRU- QC	Crushing QC Test
PUL- QC	Pulverizing QC Test
SPL- 21	Split sample - riffle splitter
PUL- 31	Pulverize split to 85% < 75 um
LOG- 23	Pulp Login - Rcvd with Barcode

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	
ME- MS61	48 element four acid ICP- MS	
ME- MS81	Lithium Borate Fusion ICP- MS	ICP- MS
Li- OG63	Ore grade Li - 4ACID	ICP- AES
ME- OG620	Ore Grade open beaker - ICPAES	ICP- AES

TO: SUNRISE CANADA INC. ATTN: TIM BIRT

SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

***** See Appendix Page for comments regarding this certificate *****

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 2 - A Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	1															
Comunita Documentaria	Method Analyte Units	WEI- 21 Recvd Wt. kg	ME- MS61 Ag ppm	ME- MS61 Al %	ME- MS61 As ppm	ME- MS61 Ba ppm	ME- MS61 Be ppm	ME- MS61 Bi ppm	ME- MS61 Ca %	ME- MS61 Cd ppm	ME- MS61 Ce ppm	ME- MS61 Co ppm	ME- MS61 Cr ppm	ME- MS61 Cs ppm	ME- MS61 Cu ppm	ME- MS61 Fe %
Sample Description	LOR	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
R413147		2.51	0.08	7.44	0.8	140	1.43	0.17	6.31	0.15	13.05	48.4	111	66.7	127.0	10.70
R413148		2.07	0.03	7.38	1.2	20	161.5	0.08	0.85	< 0.02	0.99	4.1	14	84.0	25.7	1.10
R413149		2.53	0.08	7.72	0.7	130	1.58	0.16	5.77	0.15	13.95	50.1	112	51.8	137.5	10.20
R413150		<0.02	0.08	7.11	4.2	10	587	0.76	0.37	<0.02	0.32	1.6	191	51.7	20.0	0.56
R413151		1.20	0.06	6.79	<0.2	950	1.28	0.04	1.00	<0.02	144.0	3.6	9	2.04	7.2	1.49
R413152		2.19	0.07	8.39	0.4	130	42.6	0.21	5.40	0.28	14.60	45.6	120	>500	137.5	7.79
R413153		1.56	0.01	7.49	0.5	70	311	0.07	0.48	< 0.02	0.40	1.2	6	196.0	18.0	0.44
R413154		2.33	0.12	8.45	0.9	150	4.86	0.18	5.48	0.27	15.80	56.4	134	314	188.0	8.74
R413155		2.38	0.17	8.34	1.0	100	1.43	0.16	5.75	0.20	13.70	49.1	129	54.0	138.5	7.84
R413156		2.18	0.08	8.21	1.8	110	2.08	0.10	5.27	0.23	13.95	48.9	125	54.5	139.0	7.82
R413157		2.19	0.05	8.10	1.2	80	2.15	0.11	5.49	0.20	15.30	50.3	124	45.2	107.0	7.98
R413158		1.41	0.08	8.15	0.5	80	3.60	0.14	5.80	0.28	15.45	53.4	115	63.8	127.0	8.85
R413159		2.15	<0.01	7.18	15.3	150	106.5	0.10	0.87	0.08	0.52	9.9	5	54.9	8.2	0.61
R413160		1.91	0.01	7.29	0.7	220	146.0	0.65	0.74	0.05	0.21	0.5	3	45.7	7.7	0.59
R413161		2.11	<0.01	7.36	0.6	240	170.5	1.90	1.35	<0.02	0.10	0.4	5	62.6	3.3	0.61
R413162		1.71	<0.01	7.20	0.5	170	199.5	0.37	1.48	<0.02	0.14	0.4	4	48.7	3.8	0.55
R413163		1.37	<0.01	7.14	0.9	150	113.5	0.05	0.72	0.08	0.76	0.7	6	52.0	6.3	0.59
R413164		2.19	0.07	8.39	5.9	100	4.06	0.16	5.62	0.24	13.90	60.0	123	65.2	115.5	9.98
R413165		2.48	0.08	8.88	0.7	100	1.11	0.14	6.79	0.18	15.50	58.6	135	49.4	147.0	10.55
R413166		2.30	0.05	7.89	0.8	80	1.29	0.12	5.99	0.14	12.50	54.7	113	38.6	119.0	9.39
R413167		2.54	0.06	7.95	1.0	80	1.40	0.12	6.35	0.25	14.60	54.6	112	7.30	85.3	9.63
R413168		2.27	0.07	7.58	0.9	170	15.90	0.15	4.26	<0.02	13.50	48.5	120	>500	111.0	9.82
R413169		1.47	<0.01	7.61	2.2	80	118.5	0.31	1.32	<0.02	1.64	6.0	16	79.1	11.3	1.41
R413170		<0.02	0.08	6.57	3.7	<10	554	0.72	0.34	<0.02	0.25	1.4	184	48.0	7.3	0.51
R413171		1.01	0.04	7.19	0.3	980	1.30	0.04	1.05	0.02	137.5	2.8	6	3.18	5.8	1.29
R413172		2.66	0.08	7.61	0.7	100	2.79	0.13	5.96	0.32	12.95	50.1	104	70.9	117.5	11.00
R413173		1.47	0.06	7.51	1.3	180	1.52	0.08	6.57	0.11	24.1	53.1	74	49.5	162.5	9.96
R413174		2.19	0.07	7.32	2.9	120	4.21	0.14	5.52	0.11	12.40	51.8	112	279	102.5	10.70
R413175		1.34	<0.01	7.40	0.8	140	183.5	0.06	0.71	0.05	0.82	1.1	3	27.5	2.8	0.48
R413176		0.61	0.14	7.15	4.7	100	13.80	0.16	5.85	<0.02	21.5	51.3	73	16.80	153.0	9.01
R413177		2.07	<0.01	7.27	1.8	200	165.0	0.08	0.74	0.13	0.81	1.9	5	86.6	2.9	0.49
R413178		1.98	<0.01	7.06	0.9	280	102.0	0.06	0.75	0.03	0.26	0.6	4	91.9	1.2	0.35
R413179		1.88	<0.01	7.60	0.5	390	93.4	0.06	1.12	<0.02	0.15	0.6	4	53.2	1.5	0.39
R413180		2.10	<0.01	7.18	0.9	310	166.5	0.05	0.82	<0.02	0.33	0.5	4	69.0	2.4	0.42
R413181		2.53	<0.01	6.60	0.8	110	223	0.06	0.54	0.08	1.68	0.5	5	124.0	3.9	0.27
R413182		2.29	0.09	7.69	0.3	240	2.75	0.11	5.85	0.04	11.10	66.2	106	58.0	140.0	10.35
R413183		2.13	0.02	7.93	0.3	400	4.02	0.36	3.42	0.07	111.5	20.7	58	144.0	24.6	4.76
R413184		2.01	0.02	7.66	0.6	200	141.5	0.08	1.00	0.04	16.95	6.6	9	43.0	5.8	1.07
R413185		1.97	<0.01	7.49	0.3	520	130.5	0.06	0.81	<0.02	1.88	1.6	4	84.9	3.3	0.78
R413186		2.00	<0.01	7.57	1.6	320	152.0	0.06	0.92	0.06	1.73	1.1	4	82.7	4.0	0.67
		2.00				020		0.00	0.02	0.00			•	02		0.0.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 2 - B Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	1															
	Method	ME- MS61														
	Analyte	Ga	Ge	Hf	In	К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb
	Units	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
Sample Description	LOR	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
R413147		18.30	<0.05	0.9	0.093	0.79	4.4	158.0	2.96	1770	0.45	1.37	3.9	80.5	500	2.2
R413148		53.3	<0.05	3.0	< 0.005	0.59	<0.5	87.2	0.20	502	0.19	5.44	69.5	7.7	1950	6.4
R413149		19.55	<0.05	1.0	0.090	0.63	4.6	194.5	2.84	1900	0.87	1.78	4.2	82.9	480	5.1
R413150		45.2	<0.05	2.3	<0.005	0.22	<0.5	>10000	0.04	1040	0.45	0.61	120.5	4.4	7130	4.9
R413151		17.50	0.27	6.5	0.016	4.03	76.4	20.9	0.26	234	0.28	2.54	5.6	2.9	420	37.3
R413152		23.7	0.06	0.8	0.069	1.25	5.0	850	2.43	1600	0.19	1.80	10.0	75.4	1530	4.3
R413153		61.6	0.08	2.8	<0.005	1.89	<0.5	4020	0.05	207	0.15	4.52	122.0	2.3	6570	5.4
R413154		22.0	<0.05	1.2	0.111	1.12	5.3	570	2.43	1640	0.48	2.00	5.7	92.9	630	5.4
R413155		20.7	0.08	1.1	0.103	0.63	4.7	530	2.30	1640	0.31	2.16	4.2	88.3	500	4.3
R413156		21.1	0.08	1.4	0.102	0.64	4.8	610	2.43	1590	0.47	2.46	4.3	90.9	510	3.6
R413157		20.8	<0.05	1.2	0.108	0.47	5.2	520	2.26	1720	0.68	2.43	5.0	89.9	490	3.4
R413158		21.7	<0.05	1.1	0.099	0.56	5.1	520	2.27	2140	0.73	1.98	4.8	89.4	600	11.7
R413159		53.3	0.05	1.2	<0.005	2.50	<0.5	780	0.06	278	0.12	3.78	70.8	2.3	1870	6.4
R413160		59.5	0.09	0.3	<0.005	2.52	<0.5	570	0.05	316	0.08	3.69	77.8	0.9	1460	4.0
R413161		63.8	0.13	0.4	<0.005	3.14	<0.5	580	0.03	327	0.10	2.89	64.6	0.8	1550	3.9
R413162		66.5	0.10	0.3	<0.005	2.10	<0.5	530	0.04	293	0.09	3.28	76.5	0.8	1100	2.9
R413163		50.4	0.15	1.1	<0.005	2.65	<0.5	470	0.07	187	0.23	4.10	56.7	1.7	1430	7.5
R413164		22.7	<0.05	1.2	0.125	0.67	4.8	550	2.73	2310	0.36	2.05	4.8	97.0	490	6.3
R413165		21.8	0.08	1.1	0.104	0.57	5.4	490	2.77	2190	0.45	2.41	4.5	102.5	530	4.3
R413166		20.5	<0.05	1.0	0.102	0.44	4.6	383	2.20	2040	0.46	2.14	4.2	92.9	460	2.8
R413167		19.60	<0.05	0.8	0.101	0.46	5.1	309	1.99	2080	0.37	1.81	4.4	99.0	470	4.8
R413168		25.1	<0.05	0.8	0.040	1.83	4.4	1000	2.31	1700	0.17	1.51	6.0	85.1	2000	19.9
R413169		57.7	<0.05	1.8	<0.005	0.95	0.7	386	0.27	272	0.11	4.76	62.8	10.6	1430	15.1
R413170		44.1	<0.05	2.1	<0.005	0.21	<0.5	>10000	0.03	961	0.28	0.59	114.5	3.9	6710	4.7
R413171		18.45	0.24	6.4	0.014	4.20	74.4	22.9	0.23	221	0.23	2.69	5.1	2.4	330	39.9
R413172		19.90	<0.05	0.9	0.092	0.58	4.5	1030	3.82	1940	0.32	1.59	4.2	85.4	470	19.6
R413173		20.3	<0.05	2.9	0.078	0.54	9.6	327	3.81	1810	0.38	2.04	5.6	112.0	610	2.3
R413174		19.60	<0.05	0.9	0.088	0.90	4.0	720	3.74	1830	0.23	1.69	3.8	84.0	460	4.6
R413175		58.0	<0.05	3.5	<0.005	1.31	<0.5	308	0.10	150	0.11	4.72	70.9	1.5	1170	4.0
R413176		24.6	<0.05	2.8	0.033	0.40	8.2	273	3.56	1800	0.45	2.14	7.9	106.0	620	54.1
R413177		44.2	<0.05	5.5	<0.005	2.50	<0.5	276	0.08	152	0.12	4.59	81.7	3.2	3040	5.0
R413178		51.6	0.06	5.3	<0.005	2.81	<0.5	222	0.04	161	0.08	3.90	80.4	1.0	1950	4.9
R413179		68.8	0.05	2.3	<0.005	2.41	<0.5	315	0.07	297	0.08	3.53	58.3	0.7	1140	3.9
R413180		55.8	0.07	2.7	<0.005	2.44	<0.5	178.0	0.05	214	0.09	3.88	59.4	0.8	1150	3.6
R413181		39.4	0.09	2.8	<0.005	1.93	1.1	155.0	0.03	103	0.16	5.21	53.5	1.4	2820	3.5
R413182		18.95	< 0.05	0.6	0.117	1.12	5.4	266	3.69	2050	0.20	1.60	1.4	96.7	240	2.6
R413183		20.3	0.13	5.0	0.050	1.04	49.8	235	2.20	921	0.07	3.32	11.9	29.8	1410	4.7
R413184		51.2	0.07	1.8	<0.005	2.08	6.4	168.5	0.26	305	0.10	4.26	39.0	3.5	2610	2.6
R413185		63.7	0.07	0.5	<0.005	3.68	1.1	196.5	0.12	245	0.09	2.88	38.1	0.9	1000	2.1
R413186		63.2	0.08	1.5	<0.005	2.35	0.8	229	0.11	328	0.12	3.84	40.4	0.9	1230	2.4

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - C Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method	ME- MS61														
	Analyte	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Та	Te	Th	Ti	TI	U	V
Sample Description	Units	ppm	ppm	%	ppm	%	ppm	ppm	ppm							
pp	LOR	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
R413147		187.5	0.002	0.22	0.63	41.7	1	7.2	95.9	0.69	0.06	0.41	0.789	1.52	0.1	310
R413148		930	<0.002	0.04	0.59	3.1	<1	73.4	22.9	>100	< 0.05	2.55	0.060	5.20	5.3	25
R413149		111.5	0.006	0.27	0.50	43.3	2	6.8	97.5	0.60	0.07	0.41	0.816	0.75	0.1	325
R413150		45.6	<0.002	0.03	0.85	0.8	<1	122.5	14.2	65.5	<0.05	0.19	0.039	0.91	1.7	8
R413151		131.5	<0.002	0.01	<0.05	3.4	<1	0.8	253	0.51	<0.05	38.9	0.161	0.79	2.6	19
R413152		2480	<0.002	0.14	0.20	41.9	1	40.9	116.0	21.2	<0.05	0.54	0.851	22.4	0.4	322
R413153		3880	<0.002	0.01	0.11	0.5	<1	104.0	40.4	>100	<0.05	0.83	0.009	25.5	5.0	4
R413154		740	0.002	0.30	0.26	47.7	2	16.8	126.5	5.88	<0.05	0.46	0.892	6.41	0.2	347
R413155		90.4	0.002	0.17	0.30	44.2	2	2.9	112.5	0.59	0.09	0.42	0.863	0.34	0.1	338
R413156		87.0	0.002	0.17	0.20	42.8	2	4.5	123.0	0.37	<0.05	0.41	0.831	0.41	0.1	329
R413157		98.4	0.003	0.17	0.16	42.5	2	4.1	114.0	0.39	0.06	0.43	0.869	0.42	0.1	330
R413158		241	0.004	0.17	0.29	46.5	1	13.0	113.5	1.01	<0.05	0.43	0.859	1.86	0.1	335
R413159		2060	<0.002	0.01	0.14	0.3	<1	41.7	73.1	58.0	<0.05	3.48	0.006	12.95	6.5	2
R413160		1620	<0.002	0.01	0.16	0.1	<1	42.1	110.5	30.6	<0.05	2.29	<0.005	9.26	4.2	1
R413161		2510	<0.002	<0.01	0.18	0.1	<1	72.6	145.5	31.5	<0.05	1.51	<0.005	14.20	2.3	<1
R413162		1530	<0.002	<0.01	0.12	<0.1	<1	61.3	108.5	26.0	<0.05	2.71	<0.005	7.09	3.5	<1
R413163		2070	<0.002	0.01	0.15	0.2	<1	26.8	65.9	30.3	<0.05	3.38	0.006	12.55	5.8	2
R413164		277	0.002	0.21	0.30	48.2	2	15.8	114.0	0.94	<0.05	0.41	0.881	2.13	0.2	382
R413165		118.0	0.002	0.21	0.25	48.4	2	2.8	126.0	0.36	<0.05	0.47	0.911	0.49	0.1	360
R413166		76.3	0.002	0.14	0.22	41.5	1	5.0	107.0	0.27	<0.05	0.39	0.814	0.26	0.1	321
R413167		85.7	0.002	0.18	0.26	43.7	1	5.3	109.0	0.30	0.05	0.37	0.840	0.44	0.1	321
R413168		3430	<0.002	0.06	0.32	43.4	1	102.0	114.5	6.01	<0.05	0.43	0.806	29.4	0.4	321
R413169		1010	<0.002	0.01	0.14	3.9	<1	76.7	57.5	55.4	< 0.05	2.73	0.089	4.57	5.6	34
R413170		42.8	<0.002	0.02	1.31	0.7	<1	114.0	14.0	62.8	<0.05	0.18	0.037	0.90	1.8	8
R413171		139.5	<0.002	0.01	<0.05	3.3	<1	0.9	254	0.44	<0.05	38.4	0.155	0.86	2.4	16
R413172		279	0.002	0.09	0.28	42.8	1	18.3	155.0	0.98	<0.05	0.39	0.778	1.44	0.1	311
R413173		211	0.002	0.12	0.48	37.3	1	23.7	189.5	0.42	<0.05	1.82	0.839	0.97	0.6	321
R413174		660	<0.002	0.07	0.27	44.3	1	24.6	144.0	0.48	< 0.05	0.37	0.795	6.72	0.1	316
R413175		1160	< 0.002	0.01	0.18	0.2	<1	46.6	113.5	100.0	< 0.05	1.71	0.006	4.55	4.8	2
R413176		108.0	0.002	0.09	0.47	35.7	1	132.5	153.0	6.84	<0.05	1.71	0.779	1.12	0.7	304
R413177		3040	<0.002	0.01	0.14	0.7	<1	33.4	75.7	>100	<0.05	1.52	0.017	18.30	6.2	6
R413178		3100	<0.002	0.01	0.13	0.1	<1	48.4	157.0	94.0	<0.05	2.04	<0.005	18.20	6.8	1
R413179		1820	<0.002	0.01	0.12	<0.1	<1	110.5	264	51.2	< 0.05	2.85	<0.005	8.63	6.0	<1
R413180		2190	<0.002	0.01	0.13	<0.1	<1	63.1	172.0	57.9	< 0.05	2.12	< 0.005	12.00	5.4	<1
R413181		2750	<0.002	0.01	0.14	0.2	<1	21.5	38.1	>100	<0.05	1.06	<0.005	18.65	4.3	1
R413182	Τ	195.5	0.002	0.25	0.34	50.3	1	39.4	90.9	0.42	<0.05	0.13	0.493	1.29	0.1	300
R413183		417	<0.002	0.01	0.14	13.9	1	10.1	380	1.34	0.30	9.34	0.360	4.13	2.9	100
R413184		1160	<0.002	0.02	0.19	1.4	<1	31.4	80.4	51.8	< 0.05	2.73	0.037	3.67	6.4	7
R413185		1880	< 0.002	0.01	0.20	0.3	<1	36.8	164.5	37.8	< 0.05	1.17	< 0.005	6.50	1.9	<1
R413186		1400	<0.002	<0.01	0.20	0.2	<1	45.4	170.0	41.4	<0.05	2.53	<0.005	4.70	3.9	<1

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - D Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	ME- MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME-MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01
R413147 R413148 R413149 R413150 R413151		0.9 1.6 1.1 15.7 0.3	28.7 2.1 29.1 0.5 8.0	117 41 128 74 44	25.0 22.8 32.5 27.8 236	19.4	1.0	20	79.0	0.35	0.22	0.09	49.7	0.34	2.8	0.07
R413152 R413153 R413154 R413155 R413156		2.6 1.2 1.4 0.8 0.9	26.5 0.3 29.4 26.9 26.5	179 61 167 143 146	17.0 14.2 37.6 35.0 47.6	130.5 81.0	12.7 0.5	160 10	1200 187.0	4.66 0.06	2.95 <0.03	1.09 <0.03	24.9 58.1	4.04 0.06	2.3 3.1	1.03 <0.01
R413157 R413158 R413159 R413160 R413161		1.0 4.0 1.4 2.2 1.9	27.3 29.8 0.7 0.2 0.2	134 180 20 17 15	40.7 34.7 8.3 1.6 2.0											
R413162 R413163 R413164 R413165 R413166		2.2 0.9 3.6 1.1 0.8	0.2 0.7 30.9 31.7 30.8	15 17 178 165 126	1.4 10.4 34.3 33.7 30.9											
R413167 R413168 R413169 R413170 R413171		0.7 1.9 1.1 7.2 0.3	29.5 28.2 2.9 0.4 5.9	153 269 79 64 40	20.7 20.1 17.9 27.1 222	182.0	12.5	160	787	4.83	3.12	1.04	25.4	3.95	2.2	1.10
R413172 R413173 R413174 R413175 R413176		1.3 0.6 0.7 0.5 0.9	29.4 26.4 29.8 0.6 25.0	216 130 129 36 410	35.4 109.5 24.5 19.3 99.5	156.5	0.8	10	25.4	0.15	0.05	0.04	55.1	0.08	2.2	0.01
R413177 R413178 R413179 R413180 R413181		0.6 0.5 0.5 0.5 0.5	0.6 0.2 0.2 0.1 0.6	58 26 37 20 26	34.1 35.7 16.1 19.5 14.3	212	0.8	10	76.4	0.10	0.05	<0.03	42.0 36.7	0.11	4.6 3.7	0.01
R413182 R413183 R413184 R413185 R413186		0.7 0.4 0.7 0.9 0.8	21.6 21.2 8.3 1.0 1.1	122 62 17 27 50	14.2 210 40.6 5.6 13.1											

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 2 - E Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2	ME- MS81 Nd ppm 0.1	ME- MS81 Pr ppm 0.03	ME- MS81 Rb ppm 0.2	ME- MS81 Sm ppm 0.03	ME- MS81 Sn ppm 1	ME- MS81 Sr ppm 0.1	ME- MS81 Ta ppm 0.1	ME- MS81 Tb ppm 0.01	ME- MS81 Th ppm 0.05	ME- MS81 Tm ppm 0.01	ME- MS81 U ppm 0.05	ME- MS81 V ppm 5
R413147 R413148 R413149 R413150 R413151		<0.5	0.03	71.6	0.7	0.15	1005	0.26	105	20.9	106.0	0.04	2.65	0.04	5.22	25
R413152 R413153 R413154 R413155 R413155 R413156		5.0 <0.5	0.42 <0.01	10.4 118.0	10.8 0.3	1.92 0.06	2870 4120	3.26 0.06	42 547	97.5 40.0	20.7 342	0.74 0.01	0.50 1.50	0.44 <0.01	0.44 11.25	340 <5
R413157 R413158 R413159 R413160 R413161																
R413162 R413163 R413164 R413165 R413166																
R413167 R413168 R413169 R413170 R413171		4.7	0.48	6.2	10.7	1.91	4060	3.43	96	94.8	7.8	0.77	0.42	0.46	0.38	331
R413172 R413173 R413174 R413175 R413176		<0.5	<0.01	67.5	0.5	0.10	1255	0.11	111	108.5	103.5	0.01	1.89	<0.01	5.34	<5
R413177 R413178 R413179 R413180 R413181		<0.5	<0.01	80.7	0.5	0.08	3220 2790	0.12	80 165	62.6 33.0	129.0 151.0	0.01 <0.01	1.60	<0.01	6.25	6 <5
R413182 R413183 R413184 R413185 R413185 R413186																

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 2 - F Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 W ppm 1	ME- MS81 Y ppm 0.5	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 2	Li- OG63 Li % 0.005			
R413147 R413148 R413149 R413150 R413151		2	2.2	0.22	23	2.930			
R413152 R413153 R413154 R413155 R413155 R413156		3 5	25.9 <0.5	3.02 0.03	84 15				
R413157 R413158 R413159 R413160 R413161									
R413162 R413163 R413164 R413165 R413166									
R413167 R413168 R413169 R413170 R413171		3	27.1	3.12	82	2.910			
R413172 R413173 R413174 R413175 R413175 R413176		1	0.7	<0.03	14				
R413177 R413178 R413179 R413180 R413181		1	0.6	0.07	29 19				
R413182 R413183 R413184 R413185 R413185									

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 3 - A Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

		N/51 - 21		115 11661												
	Method	WEI- 21 Recvd Wt.	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61 Bi	ME- MS61	ME- MS61 Cd	ME- MS61 Ce	ME- MS61 Co	ME- MS61 Cr	ME- MS61 Cs	ME- MS61 Cu	ME- MS61 Fe
	Analyte		Ag	Al %	As	Ba	Be		Ca %							ге %
Sample Description	Units LOR	kg 0.02	ppm 0.01	0.01	ppm 0.2	ppm 10	ppm 0.05	ppm 0.01	0.01	ppm 0.02	ppm 0.01	ppm 0.1	ppm 1	ppm 0.05	ppm 0.2	0.01
R413187		1.36	0.03	7.14	1.1	260	155.5	0.10	0.45	0.08	3.05	0.8	4	67.6	2.9	0.47
R413188		1.60	0.07	7.54	1.3	170	13.70	0.06	6.39	0.13	24.5	53.5	78	30.2	193.5	9.88
R413189		1.07	0.01	7.68	2.2	260	44.5	0.10	0.72	<0.02	1.46	3.5	4	35.7	8.6	1.08
R413190		<0.02	0.07	6.78	4.2	<10	587	0.74	0.35	<0.02	0.24	1.6	181	52.6	26.0	0.52
R413191		0.93	0.04	7.03	<0.2	970	1.38	0.03	1.01	0.02	100.5	3.3	6	2.43	5.9	1.31
R413192		2.35	0.09	6.90	1.1	160	1.08	0.05	6.11	0.14	22.4	50.0	75	8.85	186.5	9.38
R413193		2.83	0.07	7.88	1.0	70	1.47	0.19	8.20	0.16	6.12	53.8	147	5.85	144.0	8.53
R413194		1.55	<0.01	7.61	2.4	40	91.8	1.62	0.45	<0.02	0.13	0.5	5	258	2.9	0.71
R413195		1.49	0.01	6.85	1.5	60	304	2.94	0.63	<0.02	0.18	0.9	4	211	18.6	0.64
R413196		2.43	0.05	7.43	0.8	100	2.34	0.27	7.59	0.16	5.73	51.7	144	60.2	129.0	8.58
R413197		1.50	0.06	7.80	0.9	100	1.57	0.12	7.52	0.22	9.07	49.7	129	5.88	72.1	9.15
R413198		2.45	<0.01	7.01	0.8	90	149.5	1.10	0.54	0.03	0.30	0.7	5	229	7.1	0.44
R413199		2.26	0.02	8.16	1.3	90	19.95	0.36	7.57	<0.02	9.28	49.6	125	102.0	116.5	8.85
R413200		2.41	0.02	7.14	1.5	30	68.3	0.32	0.31	<0.02	0.11	0.6	5	244	3.5	0.48
R413201		2.25	<0.01	7.54	0.8	10	187.5	0.24	0.35	<0.02	0.18	0.3	4	223	1.0	0.53
R413202		2.21	<0.01	7.02	0.8	20	201	0.53	0.26	<0.02	0.04	0.2	4	182.0	1.2	0.48
R413203		2.25	0.01	7.29	0.8	10	163.0	2.22	0.28	<0.02	0.09	0.2	4	305	0.6	0.50
R413204		2.26	0.01	7.38	1.2	10	182.0	2.28	0.25	< 0.02	0.07	0.2	5	272	0.5	0.55
R413205		1.78	0.01	6.87	0.8	10	116.5	1.60	0.23	< 0.02	0.03	0.2	3	194.0	1.0	0.43
R413206		1.64	0.01	7.13	1.3	70	194.5	11.45	0.28	<0.02	0.45	0.5	3	285	1.6	0.61
R413207		2.31	<0.01	7.53	1.5	10	207	23.7	0.28	<0.02	0.24	0.2	5	265	0.9	0.60
R413208		2.42	<0.01	7.13	0.7	10	181.0	8.94	0.21	< 0.02	0.09	0.1	5	156.0	0.8	0.56
R413209		2.09	0.15	6.93	0.9	10	133.0	5.90	0.18	0.08	0.07	0.2	6	303	0.8	0.55
R413210		<0.02 1.16	0.18	7.35 7.18	4.4	10 930	574 1.38	0.73 0.05	0.39 1.09	<0.02 0.04	0.31 124.0	1.5 2.7	182 7	51.5 2.50	10.9 5.4	0.56
R413211		-	0.09	-	0.5						-				-	1.44
R413212		2.14	0.03	7.69	1.6	10	220	11.60	0.26	0.13	0.21	0.2	5	195.0	0.9	0.68
R413213		2.27	< 0.01	7.11	1.6	10	158.0	5.17	0.24	0.05	0.24	0.1	4	132.5	0.5	0.52
R413214		2.35	0.01	7.65	1.7	40	113.5	10.50	0.20	< 0.02	0.07 0.09	0.2	5	219	0.6	0.63
R413215		2.33 2.17	<0.01 <0.01	7.29 7.37	1.6 1.2	20 10	165.5 152.0	10.25 0.56	0.24 0.19	0.04 0.09	0.09	0.2 0.2	4 6	188.0 110.0	0.6 0.5	0.64 0.65
R413216																
R413217		2.01 2.11	0.01	7.24 6.55	1.9 0.9	10 50	173.5 146 5	5.84	0.22 0.31	<0.02 <0.02	0.06 0.07	0.2 0.2	6 4	177.0 232	1.0 0.8	0.71 0.58
R413218 R413219		2.11 2.15	<0.01 <0.01	6.55 7.10	0.9 1.1	50 10	146.5 190.0	3.49 17.95	0.31	<0.02 <0.02	0.07	0.2	4 5	232 294	0.8 0.8	0.58 0.62
R413219 R413220		2.15	<0.01 0.03	7.10	1.1	40	190.0	17.95	0.34	<0.02 <0.02	0.15	0.1	5 6	294 317	0.8	0.62
R413220 R413221		2.30	<0.03	7.48	1.2	40 10	177.5	2.93	0.23	0.02	0.08	0.2	6	151.0	0.7	0.72
R413222		1.98	0.01	7.05	0.8	70	145.0	0.13	0.33	0.06	0.27	0.5	7	95.4	2.0	0.63
R413222 R413223		2.37	0.01	7.05	0.8 1.5	190	145.0 32.0	0.13	0.33 5.57	0.06	0.27 9.91	0.5 44.7	142	95.4 36.2	2.0 83.1	0.63 8.87
R413223 R413224		1.89	0.05	6.87	1.0	140	1.12	0.21	7.74	0.39	8.33	44.7	142	8.75	93.0	8.33
R413224 R413225		2.47	0.03	6.98	0.6	140	0.99	0.13	9.24	0.08	8.95	45.2	117	4.39	158.5	8.05
R413225		2.54	0.08	7.34	0.6	130	0.60	0.14	8.97	0.00	8.60	40.2 52.4	112	4.95	175.5	9.95
		2.0 .	0.00		0.0		0.00	0	0.0.	00	0.00	02				0.00

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 3 - B Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method	ME- MS61														
	Analyte	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Мо	Na	Nb	Ni	Р	Pb
Sample Description	Units LOR	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm
· · ·	LUK	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	0.5
R413187		49.1	0.09	4.6	<0.005	2.31	1.3	148.0	0.09	254	0.14	4.59	51.0	1.1	1330	3.5
R413188		22.9	0.05	2.6	0.091	0.65	9.7	161.0	3.71	1480	0.50	1.85	6.4	113.0	600	3.3
R413189		59.1	<0.05	2.3	<0.005	1.44	0.8	190.0	0.28	281	0.11	4.47	15.9	3.5	620	2.1
R413190		49.0	0.05	2.2	<0.005	0.22	<0.5	>10000	0.03	974	0.30	0.62	121.5	4.4	7150	4.8
R413191		18.10	0.22	5.8	0.015	4.14	52.3	20.3	0.22	235	0.21	2.71	5.6	2.1	300	37.3
R413192		18.65	<0.05	2.5	0.075	0.48	8.9	70.8	3.43	1480	0.45	1.67	5.0	106.5	580	4.3
R413193		15.90	<0.05	0.4	0.063	0.54	2.3	339	4.30	1640	0.14	0.96	1.9	141.0	230	3.9
R413194		79.4	<0.05	1.0	<0.005	1.87	<0.5	9880	0.06	378	0.09	2.15	53.9	2.9	1340	5.7
R413195		66.2	<0.05	0.7	<0.005	1.67	<0.5	3740	0.07	227	0.09	2.80	72.2	3.9	1320	5.9
R413196		15.65	<0.05	0.4	0.065	0.68	2.0	640	4.66	1580	0.13	1.18	1.8	130.0	210	4.9
R413197		17.65	<0.05	0.6	0.071	0.32	3.3	570	3.78	1860	0.14	1.33	2.7	117.5	350	10.4
R413198		55.7	<0.05	2.6	<0.005	1.34	<0.5	3890	0.05	291	0.11	4.35	78.0	2.9	1400	4.2
R413199		24.3	<0.05	0.5	0.034	0.52	3.4	1130	3.40	2080	0.12	0.87	5.8	117.0	400	0.8
R413200		57.8	<0.05	0.6	<0.005	2.82	<0.5	7270	0.04	342	0.13	2.64	53.9	2.2	1370	5.0
R413201		70.5	<0.05	1.1	<0.005	2.17	<0.5	7320	0.02	489	0.08	2.78	95.3	1.9	1950	3.6
R413202		66.3	<0.05	0.5	<0.005	1.21	<0.5	7740	0.03	387	0.09	2.98	76.2	1.7	1520	2.2
R413203		70.6	0.06	0.8	<0.005	2.53	<0.5	8690	0.02	421	0.09	2.03	77.8	1.1	1790	4.2
R413204		69.5	0.09	0.7	<0.005	2.32	<0.5	9110	0.02	398	0.08	2.02	82.4	1.3	1500	3.7
R413205		60.4	0.09	1.1	<0.005	1.71	<0.5	7560	0.02	332	0.09	2.84	65.0	0.9	1470	3.7
R413206		62.0	0.09	0.9	<0.005	2.32	<0.5	5520	0.04	301	0.10	2.99	74.1	1.8	1570	4.0
R413207		75.8	0.12	1.0	<0.005	2.42	<0.5	9560	0.02	475	0.11	1.84	88.0	0.9	1910	4.6
R413208		68.6	0.08	0.6	<0.005	1.16	<0.5	9660	0.01	456	0.12	2.35	78.9	1.1	1310	6.2
R413209		64.1	0.13	1.0	<0.005	1.90	<0.5	8760	0.01	520	0.11	2.41	75.4	1.2	1640	5.0
R413210		43.2	<0.05	2.3	<0.005	0.22	<0.5	>10000	0.04	1030	0.34	0.60	112.0	4.4	7360	5.8
R413211		18.25	0.23	6.6	0.017	4.04	67.4	36.4	0.25	217	0.24	2.67	4.4	2.7	360	38.4
R413212		74.4	0.06	0.8	<0.005	1.23	<0.5	9750	0.01	544	0.14	2.41	90.9	1.2	1730	4.4
R413213		63.3	0.09	0.7	<0.005	2.44	<0.5	5230	0.01	480	0.10	3.04	81.9	1.1	1670	4.8
R413214		67.5	0.08	1.2	<0.005	1.98	<0.5	9810	0.01	567	0.14	2.17	57.6	1.1	1440	4.1
R413215		66.7	0.07	0.6	<0.005	2.16	<0.5	7430	0.02	565	0.12	2.40	71.4	1.3	1480	4.0
R413216		62.9	0.10	0.5	<0.005	2.33	<0.5	8090	0.01	604	0.15	2.45	80.1	1.3	1340	4.2
R413217		76.5	0.05	0.6	<0.005	1.32	<0.5	>10000	0.02	673	0.12	1.43	70.5	1.4	1860	2.9
R413218		56.7	0.10	1.0	<0.005	2.78	<0.5	1490	0.02	409	0.11	3.56	64.0	1.1	1950	3.4
R413219		66.7	0.10	1.3	<0.005	2.03	<0.5	5690	0.02	612	0.11	2.64	83.3	1.0	2620	4.3
R413220		69.4	0.11	1.0	<0.005	2.64	<0.5	8700	0.02	448	0.17	1.57	51.1	1.0	1380	3.7
R413221		66.5	0.07	0.3	<0.005	1.65	<0.5	9780	0.02	575	0.11	2.27	60.9	1.2	1300	2.8
R413222		51.9	0.11	0.5	<0.005	2.84	<0.5	3800	0.09	361	0.11	3.09	70.4	1.7	1420	5.7
R413223		23.4	0.05	0.7	0.092	0.83	4.0	790	4.20	2320	0.23	1.70	6.0	112.0	380	3.6
R413224		15.60	<0.05	0.5	0.067	0.64	3.3	192.0	3.50	1890	0.24	1.17	2.4	105.0	340	3.5
R413225		16.15	<0.05	0.6	0.082	0.46	3.7	197.0	3.37	1940	0.53	1.32	2.3	103.5	310	1.9
R413226		16.40	< 0.05	0.6	0.081	0.47	3.4	170.0	3.84	2270	0.18	1.53	2.6	98.4	360	1.5

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: 3 - C Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

	Method Analyte	ME- MS61 Rb	ME- MS61 Re	ME- MS61 S	ME- MS61 Sb	ME- MS61 Sc	ME- MS61 Se	ME- MS61 Sn	ME- MS61 Sr	ME- MS61 Ta	ME- MS61 Te	ME- MS61 Th	ME- MS61 Ti	ME- MS61 TI	ME- MS61 U	ME- MS61 V
	Units	ppm	ppm	%	ppm	%	ppm	ppm	ppm							
Sample Description	LOR	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1	1
R413187		1430	<0.002	0.01	0.23	0.2	<1	27.7	95.9	59.0	<0.05	2.64	<0.005	5.44	7.1	1
R413188		107.5	0.002	0.04	0.31	37.6	1	9.7	164.0	2.08	<0.05	1.81	0.821	0.62	0.6	319
R413189		438	<0.002	0.01	0.20	0.7	<1	50.3	150.5	32.1	< 0.05	1.05	0.016	1.07	3.3	6
R413190		45.8	<0.002	0.03	1.03	0.8	<1	123.0	14.1	67.9	<0.05	0.14	0.038	0.99	0.7	8
R413191		126.5	<0.002	0.01	<0.05	3.3	<1	0.8	242	0.56	<0.05	26.8	0.170	0.78	2.3	15
R413192		32.0	0.003	0.04	0.08	33.9	1	1.8	154.5	0.59	<0.05	1.57	0.773	0.32	0.5	298
R413193		48.5	<0.002	0.09	0.47	46.7	1	7.5	127.0	0.56	< 0.05	0.32	0.441	0.31	0.1	262
R413194		1970	<0.002	< 0.01	1.28	0.3	<1	93.4	29.7	39.3	< 0.05	1.17	<0.005	12.65	3.8	1
R413195		1850	< 0.002	< 0.01	0.86	0.3	<1	105.5	41.0	52.3	< 0.05	1.53	< 0.005	10.25	1.7	2
R413196		185.5	0.002	0.07	0.60	47.0	1	9.9	142.5	0.40	<0.05	0.20	0.422	1.57	0.1	257
R413197		64.9	<0.002	0.01	0.51	43.9	1	7.1	124.5	0.27	<0.05	0.39	0.618	0.36	0.1	297
R413198		1590	<0.002	<0.01	0.40	0.2	<1	49.7	20.3	>100	<0.05	2.21	<0.005	10.55	2.4	2
R413199		470	<0.002	0.01	0.87	43.6	1	112.5	151.5	3.43	<0.05	0.37	0.603	3.68	0.1	292
R413200		3150	<0.002	<0.01	0.33	0.2	<1	74.9	12.5	47.9	<0.05	2.06	< 0.005	23.2	3.9	1
R413201		2400	<0.002	<0.01	0.35	0.2	<1	69.5	14.1	55.2	<0.05	4.27	<0.005	16.20	10.2	1
R413202		1440	<0.002	<0.01	0.38	0.1	<1	79.2	11.0	69.6	<0.05	2.74	<0.005	9.20	3.3	<1
R413203		2980	<0.002	<0.01	0.47	0.1	<1	70.8	7.9	55.3	<0.05	1.79	<0.005	21.1	5.1	<1
R413204		2710	<0.002	<0.01	0.40	0.1	<1	76.7	8.2	45.3	<0.05	2.62	<0.005	19.10	4.9	<1
R413205		2060	<0.002	<0.01	0.37	<0.1	<1	61.2	9.1	62.3	<0.05	2.70	<0.005	14.55	5.1	<1
R413206		2650	<0.002	<0.01	0.42	0.1	<1	60.5	16.4	73.9	<0.05	3.51	<0.005	17.70	5.3	<1
R413207		2680	<0.002	<0.01	0.57	0.2	<1	63.8	10.5	55.7	<0.05	2.07	<0.005	18.25	7.7	<1
R413208		1370	<0.002	<0.01	0.49	0.1	<1	66.8	9.4	39.3	<0.05	3.06	< 0.005	8.82	5.7	<1
R413209		2290	<0.002	<0.01	0.60	0.1	<1	48.3	9.8	49.7	<0.05	3.95	<0.005	16.40	9.0	<1
R413210		47.7	<0.002	0.03	0.94	0.7	<1	118.0	15.0	63.5	<0.05	0.18	0.037	0.97	1.6	8
R413211		140.5	<0.002	0.01	0.05	3.0	1	0.9	256	0.47	<0.05	35.3	0.128	0.89	2.3	16
R413212		1430	<0.002	<0.01	0.61	0.1	<1	53.1	10.2	59.7	<0.05	2.78	<0.005	9.70	6.7	<1
R413213		2410	<0.002	<0.01	0.45	0.1	<1	55.0	10.0	42.2	<0.05	2.57	<0.005	17.15	6.5	<1
R413214		2300	<0.002	<0.01	0.59	0.1	<1	65.0	10.6	37.9	< 0.05	2.13	<0.005	16.50	4.7	<1
R413215		2310	< 0.002	<0.01	0.47	<0.1	<1	65.2	11.0	34.8	< 0.05	2.41	< 0.005	16.15	6.5	<1
R413216		2130	<0.002	<0.01	0.31	<0.1	<1	49.9	7.9	30.1	<0.05	2.25	<0.005	14.60	4.0	<1
R413217		1450	<0.002	<0.01	0.50	0.1	<1	62.9	8.4	68.0	<0.05	1.20	< 0.005	9.69	2.2	<1
R413218		2800	<0.002	<0.01	0.28	0.1	<1	45.9	11.2	54.8	<0.05	2.14	<0.005	19.75	4.0	<1
R413219		2460	<0.002	<0.01	0.40	0.2	<1	71.0	11.7	100.0	<0.05	1.54	<0.005	17.45	5.4	<1
R413220		2880	<0.002	<0.01	0.52	0.1	<1	64.0	10.9	71.4	< 0.05	0.93	< 0.005	21.5	3.6	<1
R413221		1600	<0.002	<0.01	0.35	<0.1	<1	48.5	9.9	31.8	<0.05	1.13	<0.005	11.10	1.4	<1
R413222		2460	<0.002	<0.01	0.15	0.1	<1	44.1	21.8	34.3	<0.05	2.91	<0.005	16.90	3.2	1
R413223		194.0	<0.002	0.14	0.62	42.6	1	46.5	132.0	2.43	<0.05	0.39	0.614	0.97	0.5	305
R413224		78.7	<0.002	0.08	0.50	36.9	1	2.5	125.0	0.25	<0.05	0.33	0.520	0.37	0.1	259
R413225		73.8	<0.002	0.11	0.75	37.4	1	6.0	110.5	0.20	< 0.05	0.31	0.525	0.26	0.1	262
R413226		48.4	0.002	0.35	0.63	40.2	2	4.1	99.1	0.22	<0.05	0.36	0.592	0.19	0.1	294

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 3 - D Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	ME- MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME-MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01
R413187 R413188 R413189 R413190 R413191		0.7 0.6 0.4 8.2 0.4	1.2 26.3 0.6 0.5 4.9	97 113 30 68 39	29.6 91.2 13.2 26.7 201											
R413191 R413192 R413193 R413194 R413195 R413196		0.4 0.2 1.2 2.5 3.9 0.5	24.0 16.5 0.6 0.5 16.1	122 138 40 44 118	97.0 6.0 8.4 5.2 5.5											
R413197 R413197 R413198 R413199 R413200 R413201		0.8 1.0 7.4 1.0 2.6	22.2 0.4 22.0 0.3 0.9	128 29 175 33 56	13.8 16.6 12.1 3.6 9.1	94.3	<0.5	10	196.5	0.05	0.03	<0.03	47.5	<0.05	2.2	0.01
R413202 R413203 R413204 R413205 R413205		1.4 2.1 2.1 1.2 1.5	0.1 0.5 0.4 0.1 0.3	44 53 52 47 48	2.3 5.8 5.1 6.2 5.6											
R413207 R413208 R413209 R413210		2.7 2.1 1.9 7.2	1.2 0.4 0.3 0.5	54 54 52 70	7.2 4.5 8.0 25.9											
R413211 R413212 R413213 R413214 R413215 R413216		0.4 2.3 2.5 1.7 2.2 2.3	6.3 0.6 0.3 0.1 0.2 0.1	42 62 59 47 69 38	233 5.2 5.3 6.0 5.0 3.3											
R413217 R413218 R413219 R413220 R413221		2.4 2.2 2.6 1.7 2.1	0.2 0.3 0.8 0.5 0.1	56 48 64 45 35	3.2 7.2 7.8 5.2 1.4	6.4	1.2	10	290	0.21	<0.03	<0.03	61.7	0.16	1.8	0.01
R413222 R413223 R413224 R413225 R413226		1.7 2.8 1.6 1.4 1.3	0.5 20.1 21.0 20.2 21.9	39 316 101 89 111	3.9 18.1 10.2 12.9 15.1											

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 3 - E Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2	ME- MS81 Nd ppm 0.1	ME- MS81 Pr ppm 0.03	ME- MS81 Rb ppm 0.2	ME- MS81 Sm ppm 0.03	ME- MS81 Sn ppm 1	ME- MS81 Sr ppm 0.1	ME- MS81 Ta ppm 0.1	ME- MS81 Tb ppm 0.01	ME- MS81 Th ppm 0.05	ME- MS81 Tm ppm 0.01	ME- MS81 U ppm 0.05	ME- MS81 V ppm 5
R413187 R413188 R413189 R413190 R413191																
R413192 R413193 R413194 R413195 R413196																
R413197 R413198 R413199 R413200 R413201		<0.5	<0.01	75.3	0.2	0.03	1615	<0.03	135	17.4	121.5	<0.01	2.42	<0.01	2.37	<5
R413202 R413203 R413204 R413205 R413206																
R413207 R413208 R413209 R413210 R413211																
R413212 R413213 R413214 R413215 R413216																
R413217 R413218 R413219 R413220 R413221		0.6	<0.01	65.3	0.5	0.15	2550	0.21	80	11.5	74.8	0.05	1.61	<0.01	5.13	<5
R413222 R413223 R413224 R413225 R413226																

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 3 - F Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 W ppm 1	ME- MS81 Y ppm 0.5	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 2	Li- OG63 Li % 0.005	
R413187 R413188 R413189 R413190 R413191						2.950	
R413192 R413193 R413194 R413195 R413195							
R413197 R413198 R413199 R413200 R413201		1	<0.5	0.03	14		
R413202 R413203 R413204 R413205 R413206							
R413207 R413208 R413209 R413210 R413211						2.870	
R413212 R413213 R413214 R413215 R413216							
R413217 R413218 R413219 R413220 R413221		3	1.0	<0.03	9	1.310	
R413222 R413223 R413224 R413225 R413226							

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - A Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01
R413227	LON	2.48	0.06	7.45	0.8	140	0.46	0.13	7.65	0.12	9.22	56.5	113	5.85	166.0	10.10

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - B Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME-MS61 P ppm 10	ME- MS61 Pb ppm 0.5
R413227		17.35	<0.05	0.7	0.077	0.44	3.6	156.0	3.69	2230	0.20	1.72	2.8	105.5	380	2.0

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - C Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME-MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 Tl ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1
R413227	LON	50.2	<0.002	0.35	0.61	43.0	2	2.0	121.0	0.33	<0.05	0.38	0.620	0.16	0.1	301

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - D Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	ME- MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME-MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01
R413227	2011	0.6	22.7	115	15.8	0.5	0.5			0.05	0.05	0.05		0.05	0.2	

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - E Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2	ME- MS81 Nd ppm 0.1	ME- MS81 Pr ppm 0.03	ME- MS81 Rb ppm 0.2	ME- MS81 Sm ppm 0.03	ME- MS81 Sn ppm 1	ME- MS81 Sr ppm 0.1	ME- MS81 Ta ppm 0.1	ME- MS81 Tb ppm 0.01	ME- MS81 Th ppm 0.05	ME- MS81 Tm ppm 0.01	ME- MS81 U ppm 0.05	ME- MS81 V ppm 5
R413227																

To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA

Page: 4 - F Total # Pages: 4 (A - F) Plus Appendix Pages Finalized Date: 20-JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

Sample Description	Method Analyte Units LOR	ME- MS81 W ppm 1	ME- MS81 Y ppm 0.5	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 2	Li- OG63 Li % 0.005	
R413227							

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com To: SUNRISE CANADA INC. SUITE 4, LEVEL 9 341 GEORGE ST. SYDNEY NSW 2000 AUSTRALIA Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 20- JUL- 2016 Account: SCIGLQRR

Project: Falcon Lake

		CERTIFICATE COMMENTS		
Applies to Method:	REE's may not be totally soluble in thi ME- MS61	ANALYTICAL CO s method.	MMENTS	
Applies to Method:	Processed at ALS Thunder Bay located CRU- 31 PUL- 31	LABORATORY AE at 1160 Commerce Street, Thunder CRU- QC PUL- QC		LOG- 23 WEI- 21
Applies to Method:	Processed at ALS Vancouver located a Li- OG63	t 2103 Dollarton Hwy, North Vancouv ME- MS61	ver, BC, Canada. ME- MS81	ME- OG62o

Appendix V – Stock Exchange Announcments

11 MARCH 2016

Crescent Lake Lithium Project Drill Intercepts and Geology

Argonaut Resources NL (ASX: ARE) (*Argonaut* or the *Company*) is pleased to announce historic drilling intercepts for the Crescent Lake Lithium Project in Ontario, Canada. The project features two prospective areas: Falcon Lake and Zigzag.

Highlights

• Highlights of previous drilling at the Crescent Lake Lithium Project include:

Falcon Lake

- ¬ 8.1m at 1.48% LiO₂ from 2.7m in drill hole W-3
- ¬ **10.5m at 1.15% LiO₂** from 34.5m in drill hole W-9
- ¬ **14m at 0.99% LiO₂** from 69.3m in drill hole CO-10-001
- ¬ 7m at 1.07% LiO₂ from 55.3m in drill hole CO-10-002
- ¬ 11m at 1.10% LiO₂ from 39.4m in drill hole CO-10-003

Zigzag

- ¬ 6.1m at 1.08% LiO₂ from 12.4m in drill hole CO-10-007
- Adjacent 23m and 10m thick pegmatites at Falcon Lake West deposit (Figure 2).
- 3 to 4 stacked pegmatites over 670m at the Tebish occurrence.
- The deposits are hard rock pegmatite deposits containing spodumene mineralisation.
- The areas surrounding these known deposits are yet to be systematically explored.
- There is excellent potential to define deposit extensions and additional deposits.
- The deposits are well located close to the North American rail network and a major port.

Argonaut Resources NL ABN 97 008 084 848

Registered Office

Suite 4, Level 9 341 George Street Sydney, NSW, 2000, Australia T +61 2 9299 9690 F +61 2 9299 9629 E sydney@argonautresources.com

Adelaide Office

Level 1 63 Waymouth Street Adelaide, SA, 5000, Australia T +61 8 8231 0381 F +61 8 8231 6092 E adelaide@argonautresources.com

Crescent Lake Project (Argonaut acquiring 100%)

On 4 March 2016, Argonaut released details of the acquisition of the Crescent Lake Lithium Project to the ASX.

Previous Exploration

The areas were drilled in the 1950s, during a Canadian lithium exploration boom, and then again in 2010-11. Neither drilling program was extensive. Drilling data from the 1950s was reported prior to modern JORC and NI43-101 standards being established. This late 1950s diamond core drilling was undertaken by British Canadian Lithium Mining Corporation. The 2010-11 era drilling at Falcon Lake and Zigzag is reported to NI43-101 standards.

All previous drilling has focused on surface or nearsurface lithium bearing pegmatites.

Falcon Lake

There are four known pegmatite occurrences in the Falcon Lake area, with the Falcon Lake West deposit being the main focus of previous exploration programs. The Falcon Lake West deposit comprises two southeasterly dipping pegmatite deposits with approximate true widths of 23m and 10m (Figure 2).

There is little evidence in the historical database of systematic exploration for strike extensions to the Falcon Lake West deposit. An independent technical report dated 2011 recommends a program of exploration for 'blind extensions... where the landscape is dominated by thick overburden (cover) and outcrop is sparse'.

Highlights of previous drill results for Falcon Lake West and another pegmatite occurrence in the area – Falcon Lake East – are shown in Tables 1 and 2. Detailed drilling results are shown in Appendix 1.

Table 1 Falcon Lake West significant intercepts.

Falcon Lake West:										
W-1:	• 4.2m at 1.28% LiO ₂ from 7.6m									
	• 5.1m at 1.21% LiO ₂ from 52.8m									
	• 6.1m at 1.20% LiO ₂ from 59.1m									
	• 9.4m at 0.57% LiO ₂ from 65.8m									
W-3:	 8.1m at 1.48% LiO₂ from 2.7m including 6.1m at 1.71% LiO₂ from 2.74m 									
	• 1.82m at 1.75% LiO ₂ from 16.2m									
W-9:	• 10.5m at 1.15% LiO₂ from 34.5m including ¬ 6.2m at 1.43% LiO₂ from 38.8m									
	 24.7m at 0.42% LiO₂ from 81.8m including ¬ 3.7m at 1.08% LiO₂ from 98.8m 									
CO-10-001:	 14m at 0.99% LiO₂ from 69.3m including ¬ 5m at 1.25% LiO₂ from 69.3m and ¬ 4.5m at 1.50% LiO₂ from 79.3m 									
CO-10-002:	• 7m at 1.07% LiO ₂ from 55.3m									
CO-10-003:	 11m at 1.10% LiO₂ from 39.4m including ¬ 6m at 1.52% LiO₂ from 44.4m 									

Table 2 Falcon Lake East significant intercepts.

Falcon Lake	Falcon Lake East:									
E-4:	• 4.9m at 1.13% LiO ₂ from 48.3m									

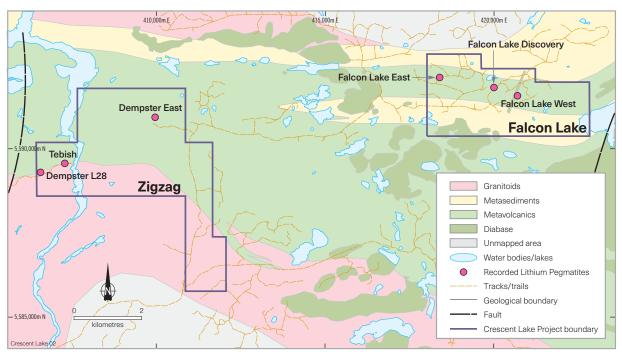


Figure 1 Claim locations, pegmatite occurrences and geology.

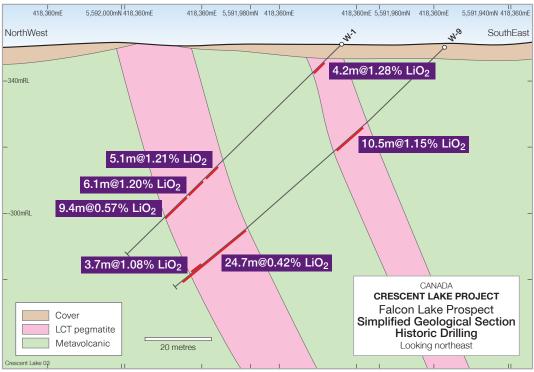


Figure 2 Falcon Lake West geological cross section.

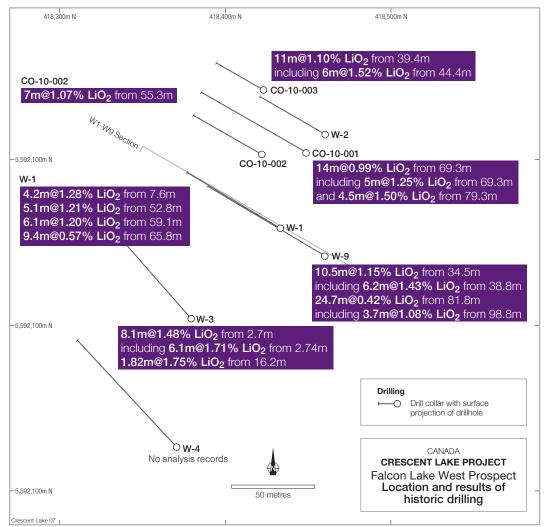


Figure 3 Falcon Lake West drill collar locations.

Zigzag

There are three main lithium pegmatite occurrences in the Zigzag area (Figure 1): Tebishogeshik (*Tebish*), Dempster L28 and Dempster East. Lithium bearing pegmatites were first discovered in the area east of Zigzag Lake in 1955.

The Tebish occurrence is a stack of 3-4 pegmatites which have been intercepted by wide-spaced drilling over a strike length of 670m. The system strikes eastnortheast and dips approximately 40 degrees to the south. Given the broad drill spacing and structural continuity, lithium grades within the pegmatite stack are poorly understood. Additional drilling is required to determine the orientation and extent of high grade spodumene mineralisation within the lenses.

There is significant exploration potential for strike extensions.

Table 3 Zigzag significant intercepts.

	Tebish:											
CO-10-005:	•	3.7m at 0.45% LiO2 from 10.7m including - 2.6m at 0.74% LiO2 from 19.8m										
CO-10-007:	•	6.1m at 1.08% LiO ₂ from 12.4m including ¬ 3m at 1.49% LiO2 from 12.4m										
CO-10-008:	•	6.9m at 0.40% LiO2 from 11.5m including ¬ 2.9m at 0.58% LiO ₂ from 15.5m										

Deposit Geology

The Crescent Lake lithium deposits are hard rock, 'complex-type/spodumene sub-type' pegmatite deposits. The pegmatites also feature elevated tantalum and are geologically comparable to the lithium tantalum pegmatites being mined at Tanco in Manitoba, Canada and Greenbushes in Western Australia.

The known deposits outcrop/subcrop and are potentially suitable for open-cut mining.

Exploration Potential

Argonaut considers the claim areas under option to have strong potential for the discovery of additional deposits. The areas surrounding outcropping spodumene pegmatites are yet to be systematically explored by surface sampling. Volcanic and sedimentary cover is interpreted to obscure certain areas surrounding the know occurrences.

Significant opportunity exists to define:

- additional mineralised pegmatites;
- stacked pegmatites associated with known occurrences;
- strike extensions to known pegmatites; and
- down-dip extensions to the existing drill intercepts.

In recent years, assay techniques designed to highlight sub-surface lithium bearing pegmatites have been developed and demonstrated to be effective in the Crescent Lake environment. Claim areas under option are yet to be explored using this technique.

The project benefits from its location in a geological province hosting several lithium mines and deposits, a high quality database of previous work and access to experienced local geological contractors.

Regional Lithium Deposits

Many internationally significant and geologically comparable hard rock lithium deposits occur in Ontario, Quebec and Manitoba Provinces, Canada (Figure 4). Lithium deposits are frequently hosted on or near the margins of geological sub-domains within the Archean age Superior Province (Figure 4).

Tanco: is an underground lithium, caesium and tantalum mine located in Manitoba Province, 500km west of Crescent Lake. The Tanco orebody is hosted by a complex-type lithium pegmatite.

Separation Rapids: is a complex-type lithium pegmatite deposit located 440km west of Crescent Lake within the same geological sub-province.

Georgia Lake: spodumene pegmatite deposit located 60km south of the Crescent Lake Project.

Seymour Lake: is a lithium-beryllium-tantalum pegmatite deposit located approximately 10km west of the Crescent Lake Project.

Location and Infrastructure

The Crescent Lake Lithium Project is located 250km north-northwest of Thunder Bay in Ontario, Canada (Figure 5).

The project consists of 12 claim areas in two clusters. The Falcon Lake area is approximately 10km east of the Zigzag area (Figure 1).

These areas are accessible by road from Thunder Bay via Armstrong Station. A class-one railway line runs within 20km of the project area, and Armstrong (railway) Station is located 75km to the south-west. The rail network interconnects with the US.

The Port of Thunder Bay is a major facility that ships grain, coal, liquids and general cargo via the Great Lakes to the Atlantic Ocean (Figure 5).

Electricity substations and gas pipelines are located between Lake Superior and Lake Nipigon, 50-60km south of the project area.

Lindsay Owler

Director and CEO

Argonaut Resources NL

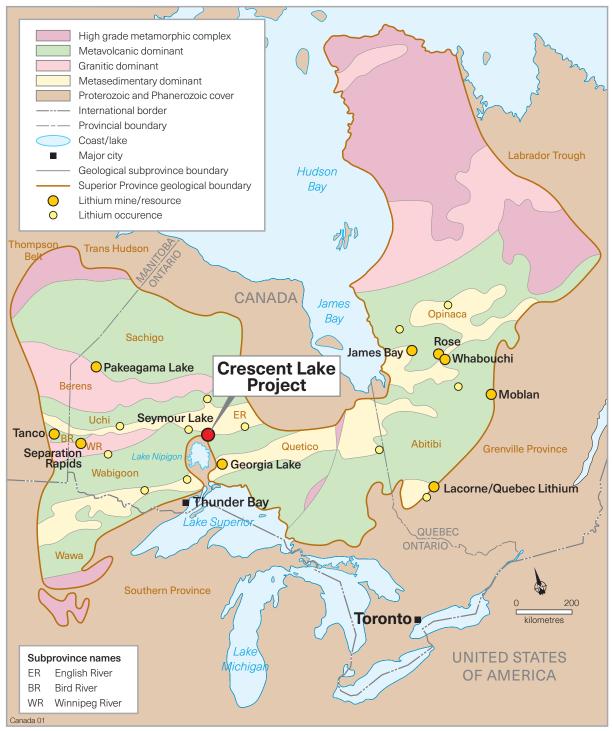


Figure 4 Geology of the Superior Province showing lithium occurrences.

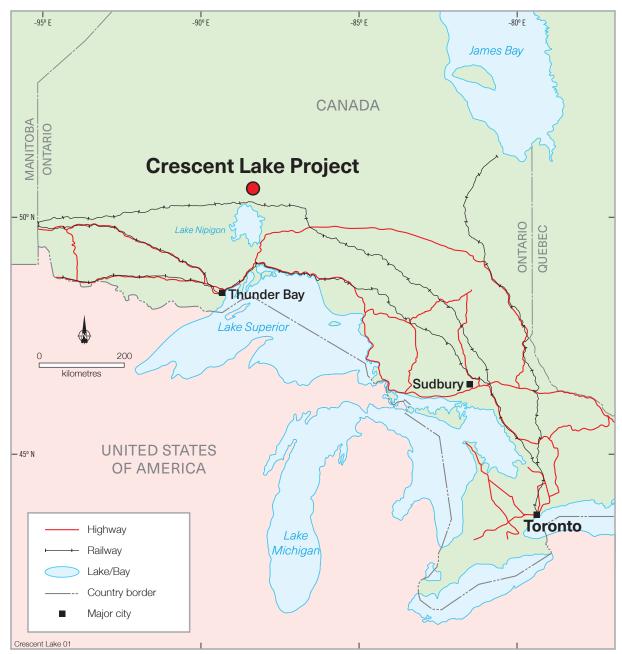


Figure 5 Crescent Lake Project location.

Sections of information contained in this report that relate to Exploration Results were compiled or supervised by Mr Lindsay Owler BSc, MAusIMM who is a Member of the Australasian Institute of Mining and Metallurgy and is a full time employee of Argonaut Resources NL. Mr Owler holds shares and options in Argonaut Resources NL, details of which are disclosed in the Company's 2015 Annual Report. Mr Owler has sufficient experience which is relevant to the style of mineral deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Mr Owler consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data – Crescent Lake Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The Tebishogeshik and Falcon Lake West prospects were sampled using diamond drill holes in a 2010 drilling campaign undertaken by Canadian Orebodies (COB). A total of 11 drill holes were drilled for a total of 747.7 metres. Drillcore was logged for lithology, weathering, alteration, mineralisation and structure. Sampling was conducted as half core (NQ). Sampling followed contractor's procedures and industry best practice QA/QC procedures. Drillcore was sampled on nominal 1 metre intervals except at lithological contacts. All pegmatite was sampled, generally at 1m intervals, as well as any granite that was observed. Samples were dried, crushed, split, pulverised and pulp taken for four acid digest followed by ICP-MS and ICP-AES techniques. Samples with sulphide mineralization present were analyzed using the ME-MS41 method and additionally analysed for precious metals. Samples reporting values over the method detection limit (>10000 ppm Li) were automatically analyzed using the Li-OG63 method, which uses four acid digestion and ICP-AES finish.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Diamond core only, NQ core size for 2010 program.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drillcore recoveries were logged per drilling run. Drillcore logged and measured to check run length measurement against driller's records. Diamond drillcore has high recoveries with negligible core loss recorded.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drillcore has been logged for geological (lithology, mineralisation, alteration) and geotechnical (RQD, recovery) information. All core logging was digitally documented using GEMS Logger software. All holes are logged.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Selected drillcore was cut in half using core saws at Fladgate Exploration facility, and half core (NQ size) collected for sampling, ensuring the same side of the drillcore was consistently sampled. Samples were prepared at and crushed with a subsample split for pulverising. Regular sizing checks were undertaken and reported. Sample sizes are appropriate to the grain size of the material being sampled.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were submitted to a four acid digest (sulphuric, nitric, perchloric and hydrofluoric) and Inductively Coupled Plasma (ICP) finish to ALS Chemex, Thunder Bay, Ontario. QAQC procedures include a chain of custody protocol, systematic submittal of 10 to 20% QA/QC samples including externally sourced blanks and certified reference samples into the flow of samples submitted to the laboratory.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections are reported by Fladgate Exploration and checked by ARE. Historic drillholes have been twinned by the 2010 program to verify historic intercepts. Data entry and verification is undertaken by Fladgate Exploration following an established protocol into GEMS Logger software, all data is stored in a digital database. No statistical adjustments to data have been applied.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drillhole locations have been surveyed by averaged handheld GPS measurements with an accuracy of +/- 3m. Down hole surveys were collected every 20 to 30 metres using Ranger Surveys. The grid system for the Crescent Lake Project is UTM NAD83, zone 16.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Wide spaced exploration drilling.No resources or reserves reported.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mapping undertaken in 2009 and 2010 at prospect scale to refine local structural fabric and thus to drill perpendicular to the interpreted structural orientation. No orientation based bias had been identified in the data to this point.
Sample security	The measures taken to ensure sample security.	 The chain of custody for sample dispatch was implemented and is as follows: After splitting, samples were taken directly to the analytical facility inside polywoven bags. Appropriate chain of custody was confirmed by Fladgate personnel, who delivered the samples to the laboratory. Sample reception confirmed sample receipt with Fladgate and the samples became the custody of the lab for preparation and analysis.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Historic and 2010 drill program results were review by senior Fladgate personnel and documented in a 2011 43-101 compliant report.

Section 2 Reporting of Exploration Results – Crescent Lake Project

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All claims are in good standing and are 100% owned by Canadian Orebodies. No known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Dempster Explorations Ltd. (late 1950's – 1960) – Line cutting, trenching and shallow diamond drillholes. Drilling in Zigzag (Drillholes 2-10 and 23-29). British Canadian Lithium Mines Ltd (1956 – 1958) – Line cutting and Drill Program totalling 22 diamond drillholes. Drill in
		 Falcon Lake (Drillholes D1-3, E1-6, W1-9). Panther International (1959) – Diamond drilling in vicinity of Zigzag and Falcon Lake.
		 Bird River Mines Co. Ltd. (1975 – 1982) – Grid cutting, geochemistry and geophysics in Zigzag area.
		 Mattagami Lake Mines Ltd. (1977) – Geophysical surveys in Falcon Lake area.
		 E&B Explorations Inc. and Cominco Ltd. (1978 – 1980) – Line cutting, geochemical sampling, geological mapping, channel sampling in Zig Zag and Falcon Lake areas.
		 Complex Minerals Corp. (1997) – Geophysics and mechanical trenching in Zigzag area.
		 Platinova Resource Ltd. (2002) – Historic result confirmation and exploration targeting program.
		 Canadian Orebodies (2009 – present) – Line cutting, geochemical sampling, geological mapping, channel sampling in Zig Zag and Falcon Lake areas. Drill Program totalling 11 diamond drillholes (drillholes COB-10-001-011).
Geology	Deposit type, geological setting and style of mineralisation.	 Crescent Lake Pegmatite Group consists of a series of pegmatite dykes that intrude mafic meta-volcanic and meta-tonalitic rocks within a 1.2 km x 6 km area south of Crescent and Zig-Zag Lakes including the Tebishogeshik Pegmatite and the Dempster East Pegmatite. These pegmatites are complex-subtype, spodumene-subtype and have relatively high tantalum associated with oxide phases (columbite-tantalite group, ferrotapiolite and microlite), evolved garnet compositions and pervasive albitisation. The Falcon Lake Pegmatite Group consists of a series of pegmatite dykes that intrude amphibolitized mafic meta-volcanic rocks within a 0.25 km x 4.5 km area between Funnel and Falcon Lake East Pegmatite and Falcon Lake West Pegmatite. These pegmatites are spodumene-subtype and have some of the highest reported tantalum-rich oxide values
		in Ontario, associated with manganotantalite and ferrotapiolite.The mineralisation is dominantly spodemene (Li) with elevated Ta, Rb, Be and Cs.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See Table – Crescent Lake Project Drillholes
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length-weighted average grades reported. No upper limit has been applied to lithium grades in these exploration results. A cut-off grade of 0.2% Li and a maximum internal dilution of 3m (downhole width) are used as a guideline when delineating the drilled thickness intervals of mineralisation. All metal grades reported are single element.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Down hole length, true width not known.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Refer to figures within report and within a 43-101 compliant report by Fladgate Exploration in 2011.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Well documented in a 43-101 compliant report by Fladgate Exploration in 2011.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Well documented in a 43-101 compliant report by Fladgate Exploration in 2011.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Detailed geological mapping, interpretation and structural analysis to be completed on these prospects. Enzyme leach soil sampling over project area. Target testing contingent on positive results, interpretation and exploration ranking. All future exploration work is commercially sensitive and will not be released to the market until results are available.

Appendix 1a – Modern Drill Intercepts

Hole	East	North	RL	Dip	Azimuth	Total Depth	From	То	Interval	LiO ₂	Ta ₂ 0 ₅ (ppm)	Be (ppm)	Cs (ppm)	Nb (ppm)	Rb (ppm)	Prospect Area
CO-10-001	418449	5592004	353	-45	300	103.30	69.3	83.3	14.0	0.99	53	145	166	63	2081	Falcon Lake West
including							69.3	74.3	5.0	1.25	47	215	190	69	2862	
and							79.3	83.8	4.5	1.50	48	129	120	79	1658	
CO-10-002	418422	5592003	355	-60	300	94.75	55.3	62.3	7.0	1.07	69	136	378	46	3477	Falcon Lake West
CO-10-003	418423	5592042	359	-60	300	65.00	39.4	50.4	11.0	1.10	50	115	83	63	1377	Falcon Lake West
including							44.4	50.4	6.0	1.52	49	157	85	80	1670	
CO-10-004	406924	5589431	347	-50	347	100.50	10.7	21.1	10.4	0.27	87	36	132	33	803	Tebishogeshik
CO-10-005	406953	5589428	346	-50	330	50.90	10.7	14.5	3.8	0.45	193	79	72	59	871	Tebishogeshik
including							19.8	22.4	2.6	0.74	124	116	55	81	1202	
CO-10-006	406899	5589412	353	-60	345	50.50	28.5	30.5	2.0	0.06	170	100	80	101	940	Tebishogeshik
CO-10-007	406839	5589410	354	-55	345	50.00	12.5	18.6	6.1	1.08	197	114	57	69	1090	Tebishogeshik
including							12.5	15.5	3.0	1.49	240	147	39	82	580	
CO-10-008	406761	5589387	359	-50	350	50.50	11.5	18.4	6.9	0.40	299	36	124	67	1435	Tebishogeshik
including							15.5	18.4	2.9	0.58	400	63	118	87	1523	
CO-10-009	407144	5589476	345	-50	345	51.00	10.5	18.7	8.2	0.35	188	141	52	70	1079	Tebishogeshik
CO-10-010	407153	5589451	345	-55	345	81.00	34.2	37.9	3.6	0.93	238	97	64	105	1102	Tebishogeshik
CO-10-011	407422	5589521	340	-50	345	50.20	14.5	18.6	4.1	0.27	106	194	64	84	1618	Tebishogeshik
and							39.5	42.0	2.5	0.07	223	127	249	47	860	

Notes

1 Calculated using 0.2% Li lower cut threshold, no upper cut threshold, maximum 4 metres internal dilution

2 Analysis by ALS Chemex - Methods ME-MS61 48 element suite, Li-OG63 for Li >1%

3 Coordinate System: NAD83, Zone 16

4 LiO₂% calculated as (Li ppm/1,000,000) x 2.153 x 100%

Appendix 1b – Historic Drill Intercepts

Hole	East	North	RL	Dip	Azimuth	Total Depth	From	То	Interval	LiO ₂ (%)	Prospect Area	Comment
D-1	420009	5591836	340	-45	325	86.87					Falcon Lake Discovery	No analysis records
D-2	419934	5591915	340	-45	148	77.27					Falcon Lake Discovery	No analysis records
D-3	419983	5591781	340	-45	298	152.71					Falcon Lake Discovery	No analysis records
E-1	420647	5591401	370	-45	330	97.54	52.6	54.6	2.0	0.22	Falcon Lake East	Selectively sampled
E-2	420691	5591433	370	-45	298	81.08					Falcon Lake East	Selectively sampled
E-3	420722	5591482	370	-45	298	68.89					Falcon Lake East	Selectively sampled
E-4	420750	5591538	370	-45	298	64.62	48.3	53.2	4.9	1.13	Falcon Lake East	Selectively sampled
E-5	420654	5591384	370	-45	298	64.92					Falcon Lake East	Selectively sampled
E-6	420624	5591333	370	-45	298	67.97					Falcon Lake East	Selectively sampled
W-1	418433	5591960	350	-45	300	91.14	7.6	11.8	4.2	1.28	Falcon Lake West	Selectively sampled
							52.8	57.8	5.1	1.21		Selectively sampled
							59.1	65.2	6.1	1.20		Selectively sampled
							65.8	75.1	9.4	0.57		Selectively sampled
W-2	418462	5592014	350	-45	300	66.29	40.8	49.1	8.3	1.23	Falcon Lake West	Selectively sampled
W-3	418380	5591905	350	-45	318	104.85	2.7	10.9	8.1	1.48	Falcon Lake West	Selectively sampled
including							2.7	8.8	6.1	1.72		
							16.2	18.0	1.82	1.75		Selectively sampled
W-4	418369	5591827	350	-45	318	115.22					Falcon Lake West	No analysis records
W-9	418460	5591844	350	-45	300	109.42	34.5	45.0	10.5	1.15	Falcon Lake West	Selectively sampled
including							38.8	45.0	6.2	1.43		Selectively sampled
							81.8	106.5	24.7	0.42		Selectively sampled
including							98.9	102.6	3.8	1.08		Selectively sampled
2	408246	5590044	350	-45	180	13.10					Zigzag	No analysis records
3	408187	5590026	350	-60	180	17.70					Zigzag	No analysis records
4	407641	5589889	350	-60	180	18.60					Zigzag	No analysis records
5	407593	5589874	350	-45	180	19.50					Zigzag	No analysis records
6	408312	5590059	350	-45	168	21.30					Zigzag	No analysis records
7	408441	5590085	350	-60	168	22.80					Zigzag	No analysis records
8	408375	5590066	350	-45	168	17.00					Zigzag	No analysis records
9	408781	5590096	350	-45	168	16.50					Zigzag	No analysis records
10	408913	5590155	350	-50	168	18.30					Zigzag	No analysis records
23	407418	5589519	350	-45	166	12.20					Tebishogeshik	No analysis records
24	407420	5589510	350	-45	166	15.20					Tebishogeshik	No analysis records
25	408696	5590059	350	-45	180	21.30					Zigzag	No analysis records
26	408691	5590034	350	-45	180	18.30					Zigzag	No analysis records
27	408689	5590015	350	-45	180	21.30					Zigzag	No analysis records
28	408685	5589992	350	-45	180	21.30					Zigzag	No analysis records
29	408683	5589970	350	-45	180	21.30					Zigzag	No analysis records

Notes

1 Calculated using 0.2% Li lower cut threshold, no upper cut threshold, maximum 2 metres internal dilution

2 Analysis selective and by unknown lab

3 Coordinate System: NAD83, Zone 16

27 JULY 2016

Strong Lithium Intercepts From Crescent Lake

Argonaut Resources NL (ASX: ARE) (*Argonaut* or the *Company*) is pleased to announce initial drilling results from the recent program at its Crescent Lake project in Ontario, Canada.

Highlights

- Initial results from a six-hole program of drilling at the Falcon Lake West deposit (Figure 3) confirm thick spodumene-bearing pegmatites.
- The first batch of samples received featured an intercept of:
 - ¬ 21.7m at 1.09% Li₂O from 48.0m; including
 - ¬ 7.9m at 1.31% Li₂O from 49.8m in drill hole FLDD001.
- Further drill results are imminent.
- Preparations are underway for follow-up exploration in the Crescent Lake area.

Crescent Lake Drilling

Crescent Lake is located 250km NNE of Thunder Bay in Ontario, Canada (Figure 3).

Earlier in the month, Argonaut completed a six-hole program of diamond core drilling at the Falcon Lake West deposit. The program targeted two pegmatite units, one of which outcrops boldly.

Highlights from the first batch of analytical results include:

- 21.7m at 1.09% Li2O from 48.0m; including
- 7.9m at 1.31% Li₂O from 49.8m in drill hole FLDD001.

Further details are shown in Appendix 1.

Visually, core generated during the program confirmed the presence of the two targeted spodumene-bearing pegmatites. The lower pegmatite unit is up to 24m thick and the upper pegmatite unit is up to 15m thick. Spodumene mineralisation was logged throughout the pegmatite intervals. Spodumene concentrations vary from moderate to intense.

Initial laboratory results confirm the deposit's lithium grades. Further results will be reported within two weeks.

Argonaut Resources NL ABN 97 008 084 848 Registered Office

Suite 4, Level 9 341 George Street Sydney, NSW, 2000, Australia T +61 2 9299 9690 F +61 2 9299 9629 E sydney@argonautresources.com

Adelaide Office

Level 1 63 Waymouth Street Adelaide, SA, 5000, Australia T +61 8 8231 0381 F +61 8 8231 6092 E adelaide@argonautresources.com

Next Steps

Pegmatite emplacement and geometry is strongly influenced by structural geology. Argonaut engaged an international structural geology expert to consider the spodumene pegmatites at Crescent Lake. The resultant report has outlined two elongate zones that warrant detailed exploration for undiscovered pegmatites.

Argonaut is preparing to investigate these target zones with the aim of adding to the inventory of known lithium mineralisation at Crescent Lake. Contingent drilling to define pegmatite thicknesses and grades is intended to follow this near-term program.

Background

Argonaut is focused on fast-tracking development of its lithium assets. The Company now has rights to two Canadian projects and one South Australian lithium exploration target.

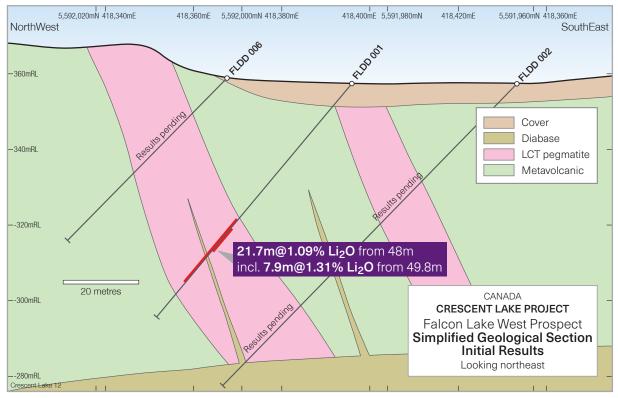


Figure 1 Falcon Lake West – Interpretive geological cross section showing initial drill intercepts.

Crescent Lake Project, Canada (Argonaut acquiring 100%)

On 4 March 2016, Argonaut released details of the acquisition of the Falcon Lake and Zigzag blocks within the Crescent Lake Lithium Project area in Ontario, Canada (Figure 3).

Argonaut later announced that it had pegged additional claims in the area between Falcon Lake and Zigzag (Figure 4). These 100% held claims cover prospective, underexplored areas.

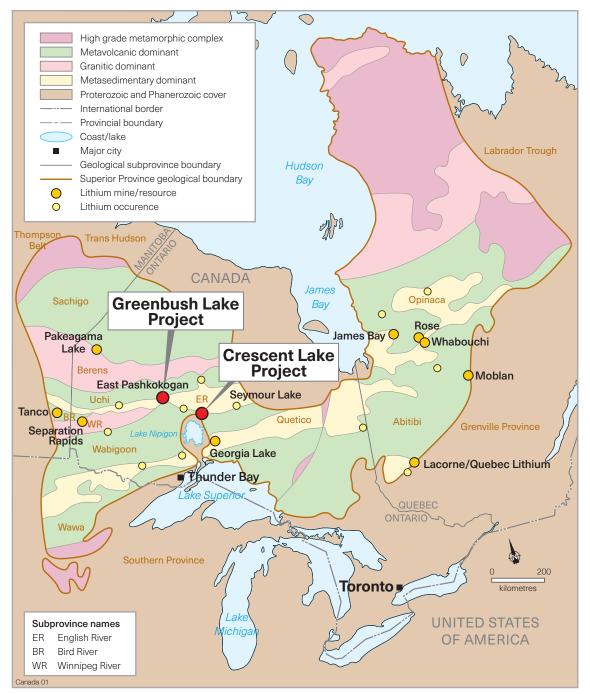


Figure 3 Geology of the Superior Province, Canada, showing Greenbush Lake, Crescent Lake and regional lithium occurrences.

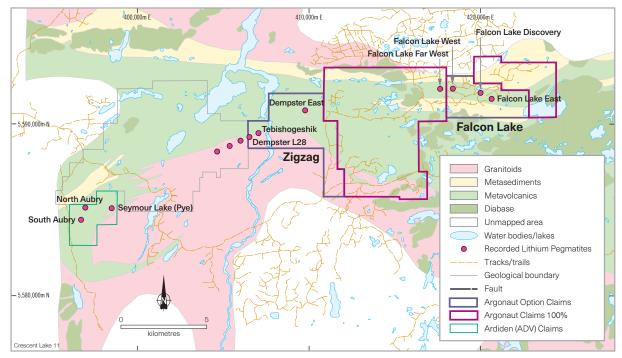


Figure 4 Crescent Lake claim locations, spodumene pegmatite occurrences and geology.

Highlights of previous drilling at the Crescent Lake Lithium Project, released to the ASX on 11 March 2016, include:

Falcon Lake Area

- 8.1m at 1.48% Li20 from 2.7m in drill hole W-3
- 10.5m at 1.15% Li₂O from 34.5m in drill hole W-9
- 14m at 0.99% Li20 from 69.3m in drill hole CO-10-001
- 7m at 1.07% Li₂O from 55.3m in drill hole CO-10-002
- 11m at 1.10% Li₂O from 39.4m in drill hole CO-10-003

Zigzag Area

• 6.1m at 1.08% Li20 from 12.4m in drill hole CO-10-007

Other Crescent Lake Lithium Project highlights include:

- Adjacent 23m and 10m thick pegmatites at Falcon Lake West deposit (Figure 4).
- Three to four stacked spodumene bearing pegmatites over 670m at the Tebish occurrence.
- The deposits are hard rock pegmatite deposits containing spodumene mineralisation.
- The areas surrounding these known deposits are yet to be systematically explored.
- There is excellent potential to define deposit extensions and additional deposits.
- The deposits are well located, close to the North American rail network and a major port.

Greenbush Lake, Canada (Argonaut 100%)

The Greenbush Lake Project is located approximately 150km north-west of Argonaut's Crescent Lake Lithium Project in Ontario, Canada (Figure 3) and features a large, outcropping spodumene pegmatite with grades of up to 2.46% Li₂O within an area confirmed as having the requisite geological components for lithium pegmatite emplacement.

The known lithium pegmatite occurrence is 15m wide by 30m in exposed strike length. The actual strike length of the known pegmatite has not yet been determined as the exposure continues under thin sedimentary cover to the north and under lake waters to the south. The pegmatite has not been drilled.

Argonaut purchased a 100% interest in three mineral claims for CAD100,000. The claims are subject to a 2% net smelter royalty.

Three phases of exploration have been undertaken in the area of the lithium occurrence.

- 1. The Ontario Department of Mines discovered the pegmatite around 1965 and took a chip sample across the full width (50 feet) of the outcrop. Analysis of the chip sample returned 1.25% Li₂O.
- 2. Placer Development Ltd explored the area for tantalum in 1980. A magnetic survey attempting to define the extent of the pegmatite was unsuccessful, however an assay of the outcrop returned 2.46% Li₂O.
- 3. Canadian Orebodies Inc. undertook an exploration program in 2009. Highlights of a rock-chip sampling program are shown in Table 1.

Description	Li ₂ O (%)						
Outcrop	1.19						
Float	1.96						
Float	0.85						
Float	0.95						
Outcrop	1.58						

Table 1: 2009 Rock-chip sample highlights, Greenbush Lake Project

Lake Blanche, South Australia (Argonaut 100%)

On 4 April 2016, Argonaut announced it has secured two exploration licences covering Lake Blanche, a salt lake with the potential to host lithium brines and potash in the north of South Australia.

Lake Blanche is a closed to restricted basin covering an area of 1,700 square kilometres. The licence areas cover almost 2,000 square kilometres. The lake has a broad catchment that includes the Mt Babbage and Mt Painter Inliers which are recorded as containing elevated rare elements including lithium and tantalum (Figure 5).

Economic concentrations of lithium in brine generally occur in circumstances where ground waters percolate through neighbouring lithium bearing rocks into a closed, continental basin that has not been subject to marine flooding throughout its geological history. These geological criteria appear to be met at Lake Blanche.

An arc of lakes, including Lake Blanche, to the north of the Flinders Ranges has been independently defined as prospective by Geoscience Australia in a 2013 report titled 'A Review of Australian Salt Lakes and Assessment of their Potential for Strategic Resources'. Argonaut, having assessed the potential of each lake on merit, determined that Lake Blanche has the best potential for economic lithium grades.

In the event economic concentrations of lithium are contained in Lake Blanche's brines, the lake has the potential to be an internationally significant source.

No previous lithium brine exploration has been recorded in the Lake Blanche area although historic brine exploration has been undertaken at Lake Frome, to the southeast.

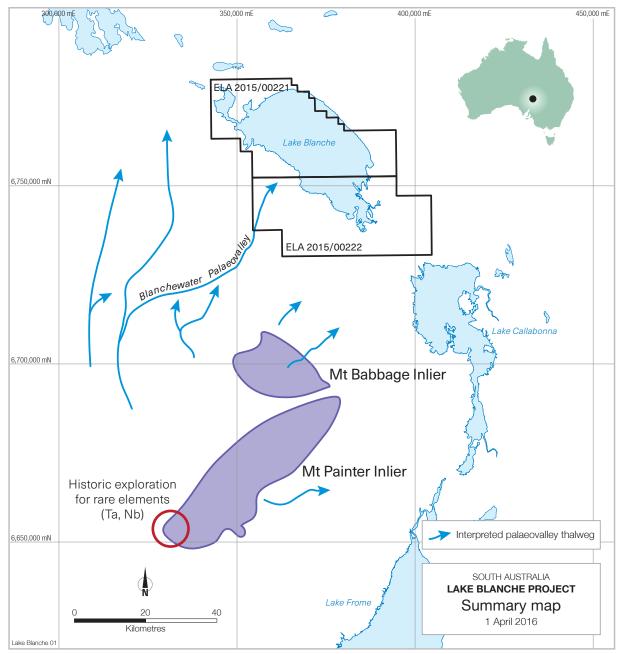


Figure 4 Lake Blanche and exploration licence locations with relevant geological/hydrological features.

Lindsay Owler

Director and CEO Argonaut Resources NL

Sections of information contained in this report that relate to Exploration Results were compiled or supervised by Mr Lindsay Owler BSc, MAusIMM who is a Member of the Australasian Institute of Mining and Metallurgy and is a full time employee of Argonaut Resources NL. Mr Owler holds shares and options in Argonaut Resources NL, details of which are disclosed in the Company's 2015 Annual Report and an announcement to the ASX dated 23 May 2016. Mr Owler has sufficient experience which is relevant to the style of mineral deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Mr Owler consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Appendix 1 – Crescent Lakes initial intercepts

Hole	East	North	RL	Dip	Azimuth	Total Depth	From	То	Interval	Li ₂ O (%)	Ta (ppm)	Prospect Area	Comment
FLDD001	418396	5591985	357	-50	300	81.00	48.0	69.7	21.7	1.09	69	Falcon Lake West	
including							49.8	57.7	7.9	1.31	70	Falcon Lake West	
FLDD002	418433	5591963	356	-45	300	111.00						Falcon Lake West	Results Pending
FLDD003	418394	5591944	358	-50	300	96.00						Falcon Lake West	Results Pending
FLDD004	418413	5591931	359	-45	300	111.00						Falcon Lake West	Results Pending
FLDD005	418447	5592055	364	-50	300	75.00						Falcon Lake West	Results Pending
FLDD006	418367	5592002	358	-45	300	60.00						Falcon Lake West	Results Pending

Notes

1 Calculated using 0.2% Li₂O lower cut threshold, no upper cut threshold, maximum 4 metres internal dilution

2 Analysis by ALS Chemex - Methods ME-MS61 48 element suite, Li-OG63 for Li >1%

3 Coordinate System: NAD83, Zone 16

4 Li₂O% calculated as (Li ppm/1,000,000) x 2.153 x 100%

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data – Crescent Lake Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The Falcon Lake West prospect was sampled using diamond drill holes in a June 2016 drilling campaign. A total of 6 drill holes (FLDD001-006) were drilled for a total of 534 metres. Drillcore was logged for lithology, weathering, alteration, mineralisation and structure. Sampling was conducted as half core (NQ). Sampling followed ARE procedures and industry best practice QA/QC procedures. Drillcore was sampled on nominal 1 metre intervals except at lithological contacts. All pegmatite was sampled, generally at 1 m intervals, as well as shoulder samples into metavolcanic lithologies. Samples were dried, crushed, split, pulverised and pulp taken for four acid digest followed by ICP-MS and ICP-AES techniques. Samples with sulphide mineralization present were analysed using the ME-MS61 method and additionally analysed for precious metals. Samples reporting values over the method detection limit (>10000 ppm Li) were automatically analysed using the Li-OG63 method, which uses four acid digestion and ICP-AES finish.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Diamond core only, NQ core size for 2016 program
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drillcore recoveries were logged per drilling run. Drillcore logged and measured to check run length measurement against driller's records. Diamond drillcore has high recoveries with negligible core loss recorded.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drillcore has been logged for geological (lithology, mineralisation, alteration) and geotechnical (RQD, recovery) information. All core logging was digitally documented using spreadsheets. All holes are logged and photographed.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Selected drillcore was cut in half using core saws at field camp, and half core (NQ size) collected for sampling, ensuring the same side of the drillcore was consistently sampled. Samples were prepared at and crushed with a subsample split for pulverising. Regular sizing checks were undertaken and reported. Sample sizes are appropriate to the grain size of the material being sampled.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were submitted to ALS Chemex, Thunder Bay, Ontario for preparation. Analysis undertaken included a four acid digest (sulphuric, nitric, perchloric and hydrofluoric) and Inductively Coupled Plasma (ICP) finish at ALS Chemex hub laboratory, Vancouver, BC. QAQC procedures include a chain of custody protocol, systematic submittal of 10 to 20% QA/QC samples including externally sourced blanks and certified reference samples into the flow of samples submitted to the laboratory.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections are reported by ARE. Interpreted positions of historic drillholes have been have been used to test and verify historic intercepts. Actual collar positions of pre 2010 drilling could not be determined. Data entry and verification is undertaken by Fladgate Exploration following an established protocol into spreadsheets, all data is stored in a digital format. No statistical adjustments to data have been applied.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drillhole locations have been surveyed by averaged handheld GPS measurements with an accuracy of +/- 3m. Down hole surveys were collected every 20 to 30 metres using Reflex survey instrument. The grid system for the Crescent Lake Project is UTM NAD83, zone 16. SRTM elevation data was used to provide topographic control where appropriate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Wide spaced exploration drilling.No resources or reserves reported.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mapping undertaken in 2009 and 2016 at prospect scale to refine local structural fabric and thus to drill perpendicular to the interpreted structural orientation. No orientation based bias had been identified in the data to this point.
Sample security	The measures taken to ensure sample security.	The chain of custody for sample dispatch was implemented and is as follows: After splitting, samples were taken directly to the analytical facility inside polywoven bags. Appropriate chain of custody was confirmed by ARE and Fladgate personnel, who delivered the samples to the laboratory. Sample reception confirmed sample receipt with Fladgate and the samples became the custody of the lab for preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling and analytical techniques reviewed prior to program and deemed appropriate for type of mineralisation. ARE staff reviewed and supervised sampling techniques on site.

Section 2 Reporting of Exploration Results – Crescent Lake Project

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All claims are in good standing and are 100% owned by Canadian Orebodies No known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Dempster Explorations Ltd. (late 1950's – 1960) – Line cutting, trenching and shallow diamond drillholes. Drilling in Zigzag (Drillholes 2-10 and 23-29). British Canadian Lithium Mines Ltd (1956 – 1958) – Line cutting and Drill Program totalling 22 diamond drillholes. Drill in Falcon Lake (Drillholes D1-3, E1-6, W1-9) Panther International (1959) – Diamond drilling in vicinity of Zigzag and Falcon Lake. Bird River Mines Co. Ltd. (1975 –1982) – Grid cutting, geochemistry and geophysics in Zigzag area. Mattagami Lake Mines Ltd. (1977) – Geophysical surveys in Falcon Lake area. E&B Explorations Inc. and Cominco Ltd. (1978 – 1980) – Line cutting, geochemical sampling, geological mapping, channel sampling in Zig Zag area. Complex Minerals Corp. (1997) – Geophysics and mechanical trenching in Zigzag area. Platinova Resource Ltd. (2002) – Historic result confirmation and exploration targeting program. Canadian Orebodies (2009 – present) – Line cutting, geochemical sampling, channel sampling in Zig Zag and Falcon Lake areas. Drill Program totalling 11 diamond drillholes (drillholes (COB-10-001-011).
Geology	Deposit type, geological setting and style of mineralisation.	 Crescent Lake Pegmatite Group consists of a series of pegmatite dykes that intrude mafic meta-volcanic and meta-tonalitic rocks within a 1.2 km x 6 km area south of Crescent and Zig-Zag Lakes including the Tebishogeshik Pegmatite and the Dempster East Pegmatite. These pegmatites are complex-subtype, spodumene-subtype and have relatively high tantalur associated with oxide phases (columbite-tantalite group, ferrotapiolite and microlite), evolved garnet compositions and pervasive albitisation. The Falcon Lake Pegmatite Group consists of a series of pegmatite dykes that intrude amphibolitized mafic meta-volcanic rocks within a 0.25 km x 4.5 km area between Funnel and Falcon Lake East Pegmatite and Falcon Lake West Pegmatite. These pegmatites are spodumene-subtype and have some of the highest reported tantalum-rich oxide values in Ontario, associated with manganotantalite and ferrotapiolite. The mineralisation is dominantly spodemene (Li) with elevated Ta, Rb, Be and Cs.

Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See Appendix 1
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length-weighted average grades reported. No upper limit has been applied to lithium grades in these exploration results. A cut-off grade of 0.2% Li₂O and a maximum internal dilution of 4m (downhole width) are used as a guideline when delineating the drilled thickness intervals of mineralisation. All metal grades reported are single element.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Down hole length, true width not known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to figures within report and within a 43-101 compliant report by Fladgate Exploration in 2011.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Results for this drilling have been comprehensively reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	There is no other exploration data which is considered material to the results reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Detailed geological mapping, interpretation and prospecting to be completed on these prospects. Target testing contingent on positive results, interpretation and exploration ranking. All future exploration work is commercially sensitive and will not be released to the market until results are available.

29 SEPTEMBER 2016

Excellent Lithium Intercepts from Crescent Lake

Argonaut Resources NL (ASX: ARE) (*Argonaut* or the *Company*) is pleased to announce drilling results from the Crescent Lake project in Ontario, Canada.

Highlights

- Final results from a six-hole program of drilling at the Falcon Lake West deposit (Figure 2) feature potentially economic intercepts through thick, spodumene-bearing pegmatites.
- Highlights from final analysis include:
 - 24.4m at 1.48% Li₂O from 10.9m; including
 9.0m at 1.95% Li₂O from 20.4m in drill hole FLDD006.
- Earlier results from this program featured an intercept of:
 - ¬ 21.7m at 1.09% Li₂O from 48.0m; including
 7.9m at 1.31% Li₂O from 49.8m in drill hole FLDD001.
- A program of mapping to identify additional pegmatites (Figure 2) is planned to commence in October.

Argonaut Resources NL ABN 97 008 084 848 Registered Office

Suite 4, Level 9 341 George Street Sydney, NSW, 2000, Australia T +61 2 9299 9690 F +61 2 9299 9629 E sydney@argonautresources.com

Adelaide Office

Level 1 63 Waymouth Street Adelaide, SA, 5000, Australia T +61 8 8231 0381 F +61 8 8231 6092 E adelaide@argonautresources.com

Crescent Lake Drilling

Crescent Lake is located 250km NNE of Thunder Bay in Ontario, Canada (Figure 4).

In July, Argonaut completed a six-hole program of diamond core drilling at the Falcon Lake West deposit. The program targeted two pegmatite units, one of which outcrops boldly. The Falcon Lake West deposit is one of four identified target areas featuring spodumene-bearing pegmatites in the eastern portion of the Crescent Lake project area (Figure 5).

The Crescent Lake pegmatite swarm is hosted within an east-west oriented greenstone belt.

Highlights from final analysis of the 2016 drilling program include:

- 24.4m at 1.48% Li₂O from 10.9m; including 9.0m at 1.95% Li₂O from 20.4m in drill hole FLDD006.
- 11m at 1.05% Li₂O from 40.2m; including 6m at 1.26% Li₂O from 43.8m in drill hole FLDD0002.

Highlights from the first batch of analytical results include:

• 21.7m at 1.09% Li₂O from 48.0m; including 7.9m at 1.31% Li₂O from 49.8m in drill hole FLDD001.

Further details are shown in Appendix 1.

This program confirmed that grades and thicknesses in the Falcon Lake area are potentially economic.

The area is well located, close to road and rail with nearby gas and electricity infrastructure.

Next Steps

Argonaut has outlined regional target zones that warrant detailed exploration for undiscovered pegmatites. These zones are elongate, structurally controlled zones within and at the margins of the greenstone belt that the hosts the known spodumene pegmatites in the area.

Argonaut will map these target zones with the aim of adding to the inventory of known lithium mineralisation at Crescent Lake. Contingent drilling to define pegmatite thicknesses and grades is intended to follow this mapping program.

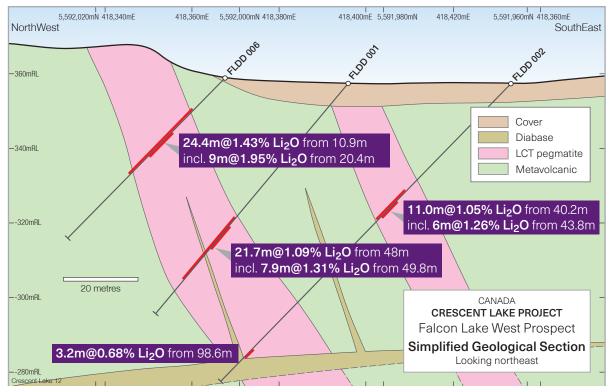


Figure 1 Falcon Lake West – Interpretive geological cross section showing final drill intercepts.

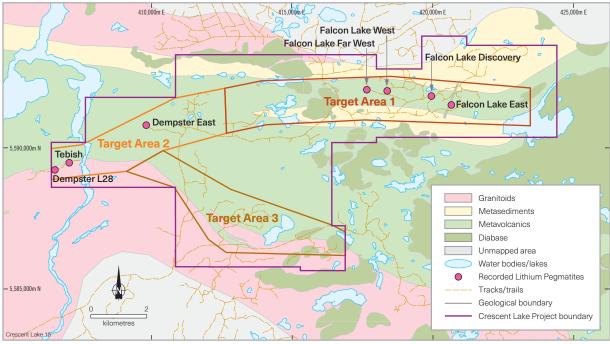


Figure 2 Crescent Lake target zones with claim holding, geology and known pegmatites.

Background

Argonaut now has rights to two Canadian projects and one South Australian lithium exploration target.

Crescent Lake Project, Canada

(Argonaut acquiring 100%)

On 4 March 2016, Argonaut released details of the acquisition of the Falcon Lake and Zigzag blocks within the Crescent Lake Lithium Project area in Ontario, Canada (Figure 5).

Argonaut later announced that it had pegged additional claims in the area between Falcon Lake and Zigzag (Figure 5). These 100% held claims cover prospective, underexplored areas.

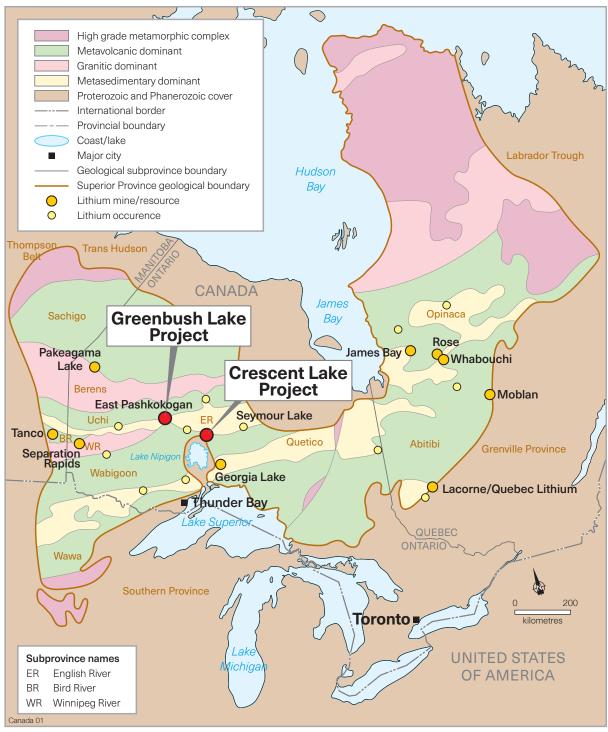


Figure 4 Geology of the Superior Province, Canada, showing Greenbush Lake, Crescent Lake and regional lithium occurrences.

Crescent Lake Lithium Project highlights include:

- Adjacent 23m and 10m thick pegmatites at Falcon Lake West deposit.
- Three to four stacked spodumene bearing pegmatites over 670m at the Tebish occurrence.
- The deposits are hard-rock pegmatite deposits containing spodumene mineralisation.
- The areas surrounding these known deposits are yet to be systematically explored.
- There is excellent potential to define deposit extensions and additional deposits.
- The deposits are well located close to the North American rail network and a major port.

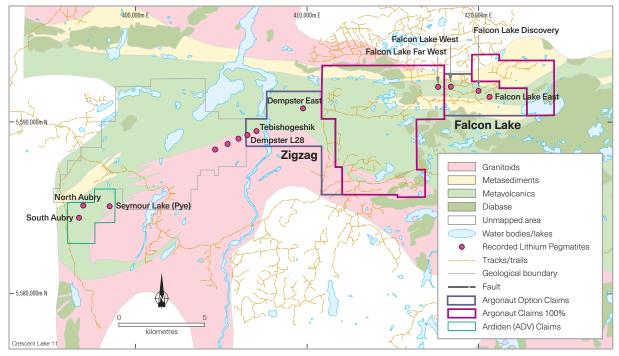


Figure 5 Crescent Lake claim locations, spodumene pegmatite occurrences and geology.

Greenbush Lake, Canada

(Argonaut 100%)

The Greenbush Lake Project is located approximately 150km north-west of Argonaut's Crescent Lake Lithium Project in Ontario, Canada (Figure 4) and features a large, outcropping spodumene pegmatite with grades of up to 2.46% Li₂O within an area confirmed as having the requisite geological components for lithium pegmatite emplacement.

The known lithium pegmatite occurrence is 15m wide by 30m in exposed strike length. The actual strike length of the known pegmatite has not yet been determined as the exposure continues under thin sedimentary cover to the north and under lake waters to the south. The pegmatite has not been drilled.

Argonaut purchased a 100% interest in three mineral claims for CAD100,000. The claims are subject to a 2% net smelter royalty.

Three phases of exploration have been undertaken in the area of the lithium occurrence.

- 1. The Ontario Department of Mines discovered the pegmatite around 1965 and took a chip sample across the full width (50 feet) of the outcrop. Analysis of the chip sample returned 1.25% Li₂O.
- 2. Placer Development Ltd explored the area for tantalum in 1980. A magnetic survey attempting to define the extent of the pegmatite was unsuccessful, however an assay of the outcrop returned 2.46% Li₂O.
- 3. Canadian Orebodies Inc. undertook an exploration program in 2009. Highlights of a rock-chip sampling program are shown in Table 1.

Description	Li ₂ O (%)
Outcrop	1.19
Float	1.96
Float	0.85
Float	0.95
Outcrop	1.58

Table 1 2009 Rock-chip samplehighlights, Greenbush Lake Project.

Lake Blanche, South Australia

(Argonaut 100%)

On 4 April 2016, Argonaut announced it has secured two exploration licences covering Lake Blanche, a salt lake with the potential to host lithium brines and potash in the north of South Australia. These exploration licence have now been granted.

Lake Blanche is a closed to restricted basin covering an area of 1,700 square kilometres. The licence areas cover almost 2,000 square kilometres. The lake has a broad catchment that includes the Mt Babbage and Mt Painter Inliers which are recorded as containing elevated rare elements including lithium and tantalum (Figure 6).

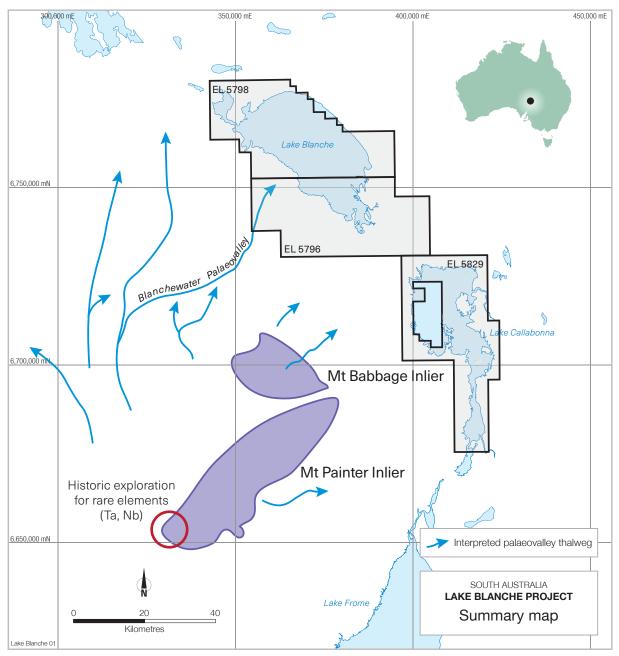


Figure 6 Lake Blanche and exploration licence locations with relevant geological/hydrological features.

Economic concentrations of lithium in brine generally occur in circumstances where ground waters percolate through neighbouring lithium bearing rocks into a closed, continental basin that has not been subject to marine flooding throughout its geological history. These geological criteria appear to be met at Lake Blanche.

An arc of lakes, including Lake Blanche, to the north of the Flinders Ranges has been independently defined as prospective by Geoscience Australia in a 2013 report titled 'A Review of Australian Salt Lakes and Assessment of their Potential for Strategic Resources'. Argonaut, having assessed the potential of each lake on merit, determined that Lake Blanche has the best potential for economic lithium grades.

In the event economic concentrations of lithium are contained in Lake Blanche's brines, the lake has the potential to be an internationally significant source.

Argonaut has also pegged the majority of Lake Callabonna to the southeast. This tenement a strategic holding in the event of exploration success and Lake Blanche.

No previous lithium brine exploration has been recorded in the Lake Blanche area although historic brine exploration has been undertaken at Lake Frome, to the southeast.

Lindsay Owler

Director and CEO

Argonaut Resources NL

Sections of information contained in this report that relate to Exploration Results were compiled or supervised by Mr Lindsay Owler BSc, MAusIMM who is a Member of the Australasian Institute of Mining and Metallurgy and is a full time employee of Argonaut Resources NL. Mr Owler holds shares and options in Argonaut Resources NL, details of which are disclosed in the Company's 2015 Annual Report and an announcement to the ASX dated 23 May 2016. Mr Owler has sufficient experience which is relevant to the style of mineral deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves". Mr Owler consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Appendix 1 – Crescent Lakes intercepts

Hole	East	North	RL	Dip	Azimuth	Total Depth	From	То	Interval	Li	Prospect Area
FLDD001	418396	5591985	357	-50	300	81.0	47.0	73.2	26.2	0.94	Falcon Lake West
including							49.8	57.7	7.9	1.31	
FLDD002	418433	5591963	356	-45	300	111.0	34.0	52.2	18.2	0.82	Falcon Lake West
including							35.6	37.1	1.5	1.31	
and							40.2	51.2	11.0	1.05	
including							43.8	49.8	6.0	1.26	
							98.6	101.8	3.2	0.68	
including							99.6	100.6	1.0	1.12	
FLDD003	418394	5591944	358	-50	300	96.0	12.3	18.7	6.4	0.16	Falcon Lake West
							22.7	47.0	24.3	0.55	
including							25.7	36.9	11.2	0.89	
including							25.7	31.6	5.9	1.34	
FLDD004	418413	5591931	359	-45	300	111.0	48.7	61.5	12.8	0.17	Falcon Lake West
							48.7	50.5	1.8	0.49	
							63.5	68.0	4.5	0.17	
FLDD005	418447	5592055	364	-50	300	75.0	55.7	58.2	2.5	0.91	Falcon Lake West
including							55.7	57.2	1.5	1.42	
FLDD006	418367	5592002	358	-45	300	60.0	10.9	35.3	24.4	1.48	Falcon Lake West
including							11.9	34.3	22.4	1.59	
including							13.9	33.4	19.5	1.73	
including							20.4	29.4	9.0	1.95	

NOTES

1 Calculated using 0.1% Li₂O lower cut threshold, no upper cut threshold, maximum 4 metres internal dilution.

2 Analysis by ALS Chemex – Methods ME-MS61 48 element suite, Li-OG63 for Li >1%.

3 Coordinate System: NAD83, Zone 16.

4 Li₂O% calculated as (Li ppm/1,000,000) x 2.153 x 100%.

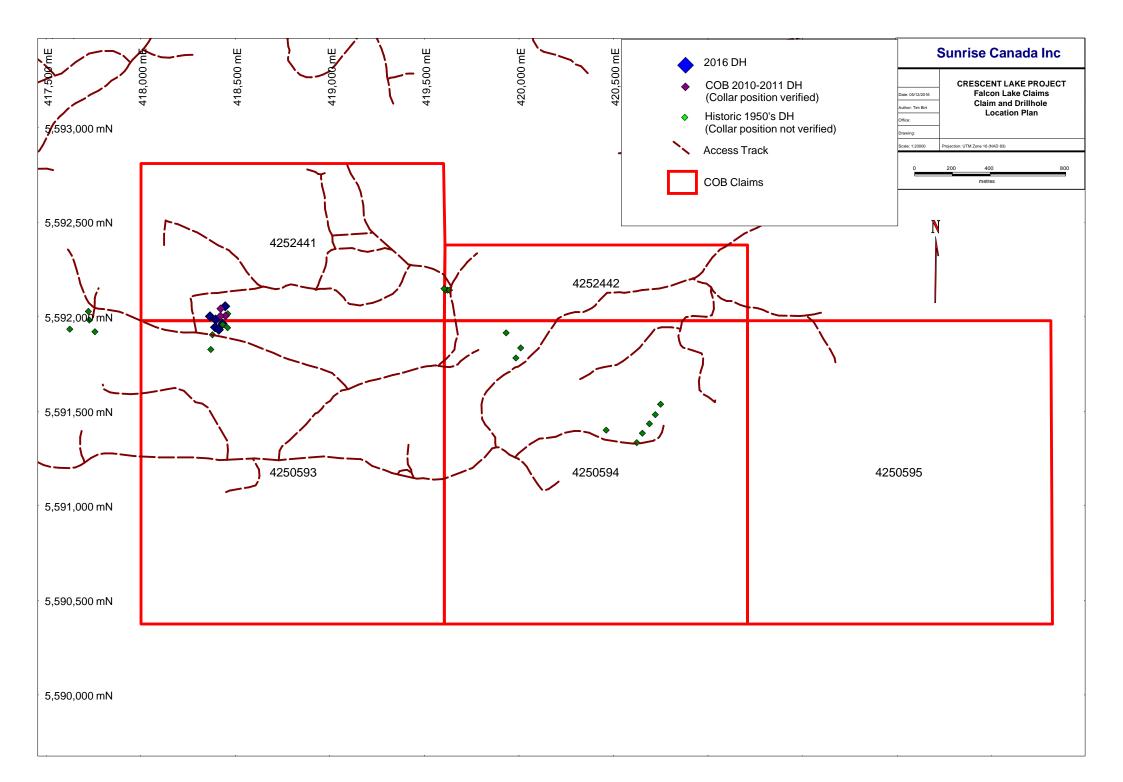
JORC Code, 2012 Edition – Table 1

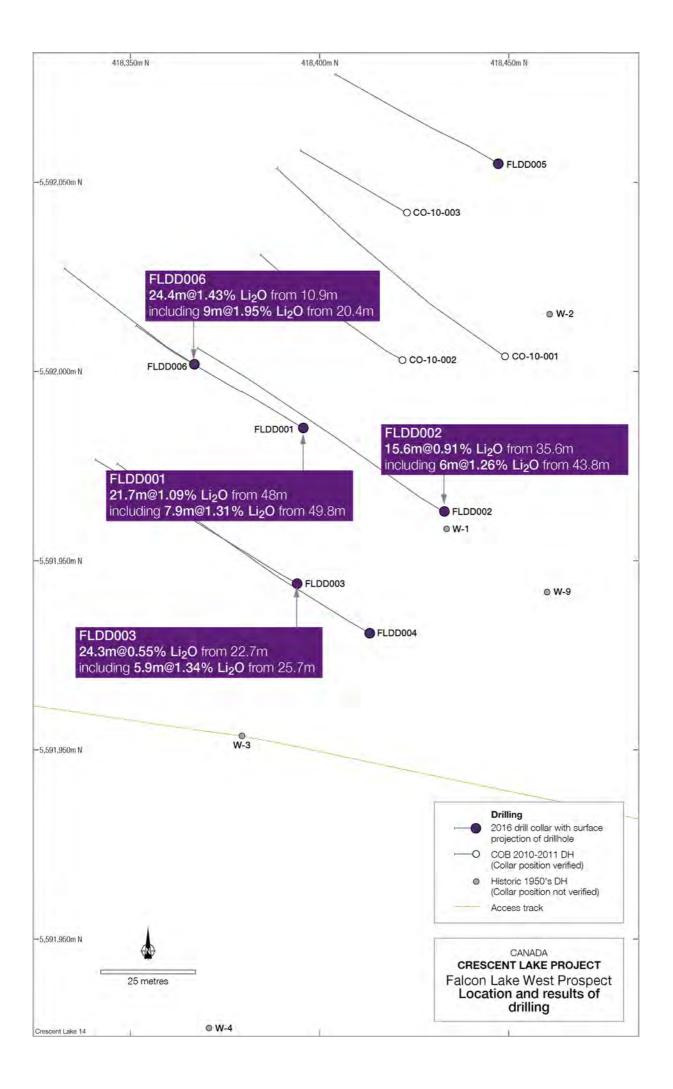
Section 1 Sampling Techniques and Data – Crescent Lake Project

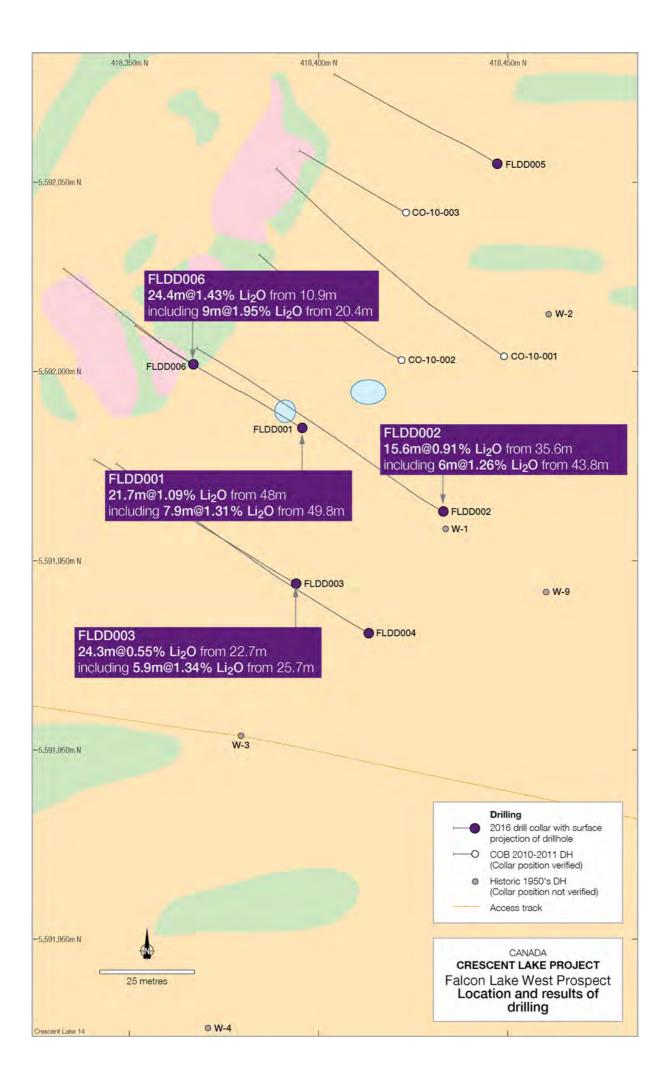
(Criteria in this section apply to all succeeding sections.)

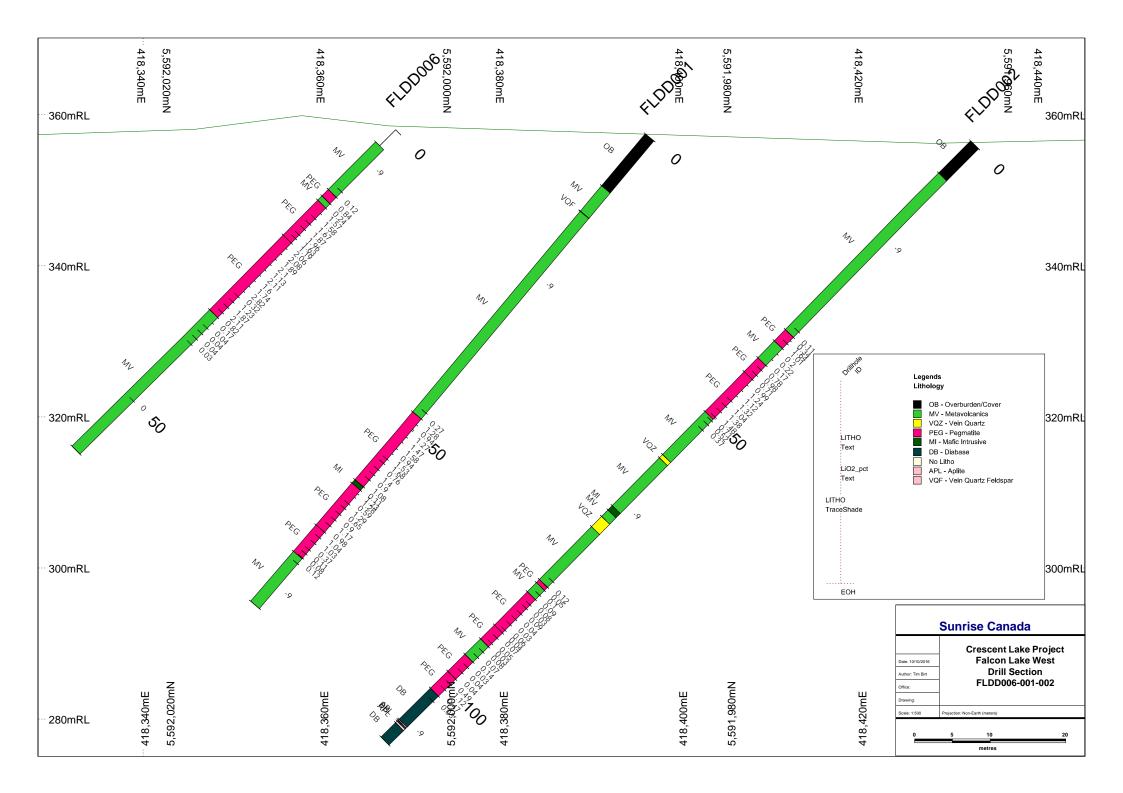
Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The Falcon Lake West prospect was sampled using diamond drill holes in a June 2016 drilling campaign. A total of 6 drill holes (FLDD001-006) were drilled for a total of 534 metres. Drillcore was logged for lithology, weathering, alteration, mineralisation and structure. Sampling was conducted as half core (NQ). Sampling followed ARE procedures and industry best practice QA/QC procedures. Drillcore was sampled on nominal 1 metre intervals except at lithological contacts. All pegmatite was sampled, generally at 1 m intervals, as well as shoulder samples into metavolcanic lithologies. Samples were dried, crushed, split, pulverised and pulp taken for four acid digest followed by ICP-MS and ICP-AES techniques. Samples with sulphide mineralization present were analysed using the ME-MS61 method and additionally analysed for precious metals. Samples reporting values over the method detection limit (>10000 ppm Li) were automatically analysed using the Li-OG63 method, which uses four acid digestion and ICP-AES finish.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	Diamond core only, NQ core size for 2016 program
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drillcore recoveries were logged per drilling run. Drillcore logged and measured to check run length measurement against driller's records. Diamond drillcore has high recoveries with negligible core loss recorded.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drillcore has been logged for geological (lithology, mineralisation, alteration) and geotechnical (RQD, recovery) information. All core logging was digitally documented using spreadsheets. All holes are logged and photographed.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Selected drillcore was cut in half using core saws at field camp, and half core (NQ size) collected for sampling, ensuring the same side of the drillcore was consistently sampled. Samples were prepared at and crushed with a subsample split for pulverising. Regular sizing checks were undertaken and reported. Sample sizes are appropriate to the grain size of the material being sampled.

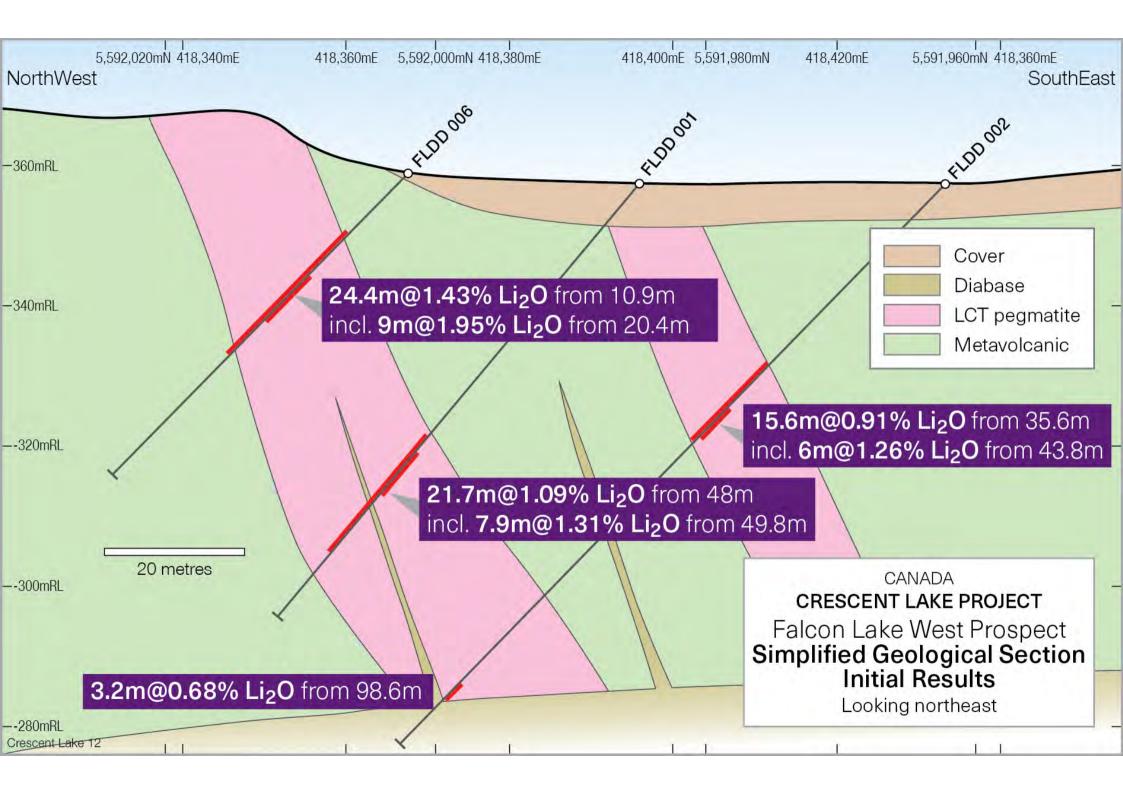
Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were submitted to ALS Chemex, Thunder Bay, Ontario for preparation. Analysis undertaken included a four acid digest (sulphuric, nitric, perchloric and hydrofluoric) and Inductively Coupled Plasma (ICP) finish at ALS Chemex hub laboratory, Vancouver, BC. QAQC procedures include a chain of custody protocol, systematic submittal of 10 to 20% QA/QC samples including externally sourced blanks and certified reference samples into the flow of samples submitted to the laboratory.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections are reported by ARE. Interpreted positions of historic drillholes have been have been used to test and verify historic intercepts. Actual collar positions of pre 2010 drilling could not be determined. Data entry and verification is undertaken by Fladgate Exploration following an established protocol into spreadsheets, all data is stored in a digital format. No statistical adjustments to data have been applied.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drillhole locations have been surveyed by averaged handheld GPS measurements with an accuracy of +/- 3m. Down hole surveys were collected every 20 to 30 metres using Reflex survey instrument. The grid system for the Crescent Lake Project is UTM NAD83, zone 16. SRTM elevation data was used to provide topographic control where appropriate.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Wide spaced exploration drilling.No resources or reserves reported.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mapping undertaken in 2009 and 2016 at prospect scale to refine local structural fabric and thus to drill perpendicular to the interpreted structural orientation. No orientation based bias had been identified in the data to this point.
Sample security	The measures taken to ensure sample security.	 The chain of custody for sample dispatch was implemented and is as follows: After splitting, samples were taken directly to the analytical facility inside polywoven bags. Appropriate chain of custody was confirmed by ARE and Fladgate personnel, who delivered the samples to the laboratory. Sample reception confirmed sample receipt with Fladgate and the samples became the custody of the lab for preparation and analysis.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 Sampling and analytical techniques reviewed prior to program and deemed appropriate for type of mineralisation. ARE staff reviewed and supervised sampling techniques on site.

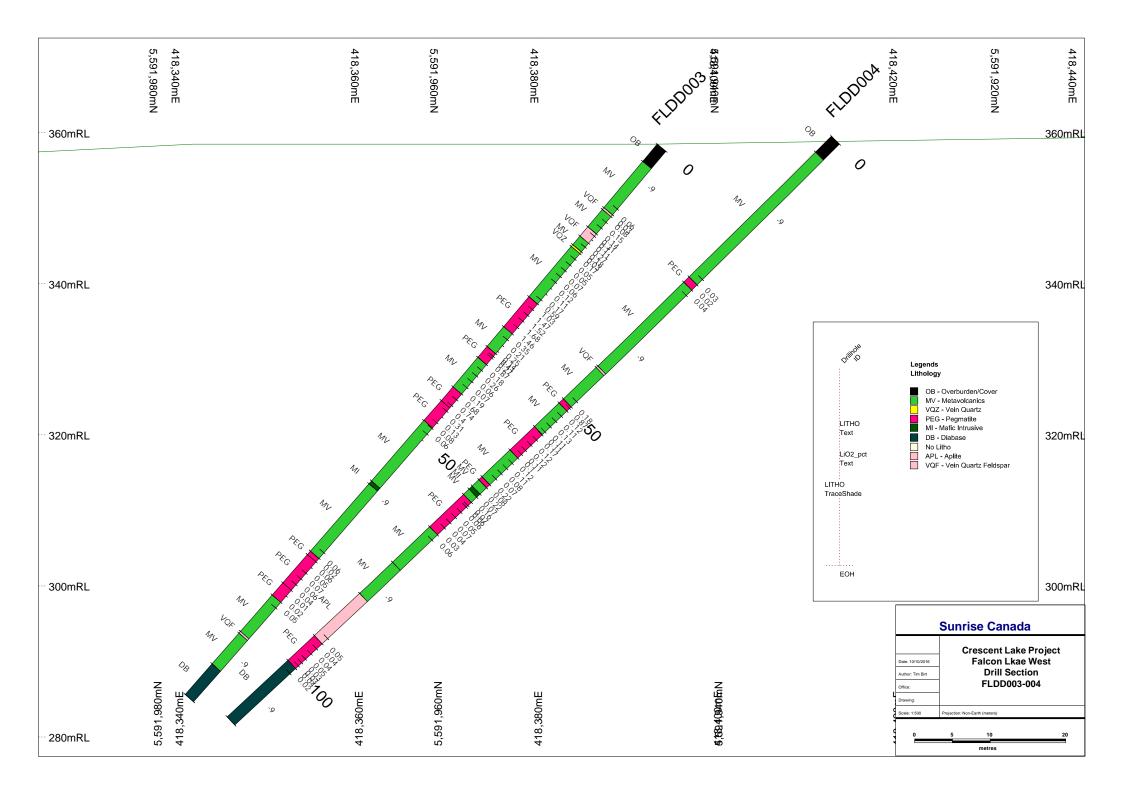

Section 2 Reporting of Exploration Results – Crescent Lake Project

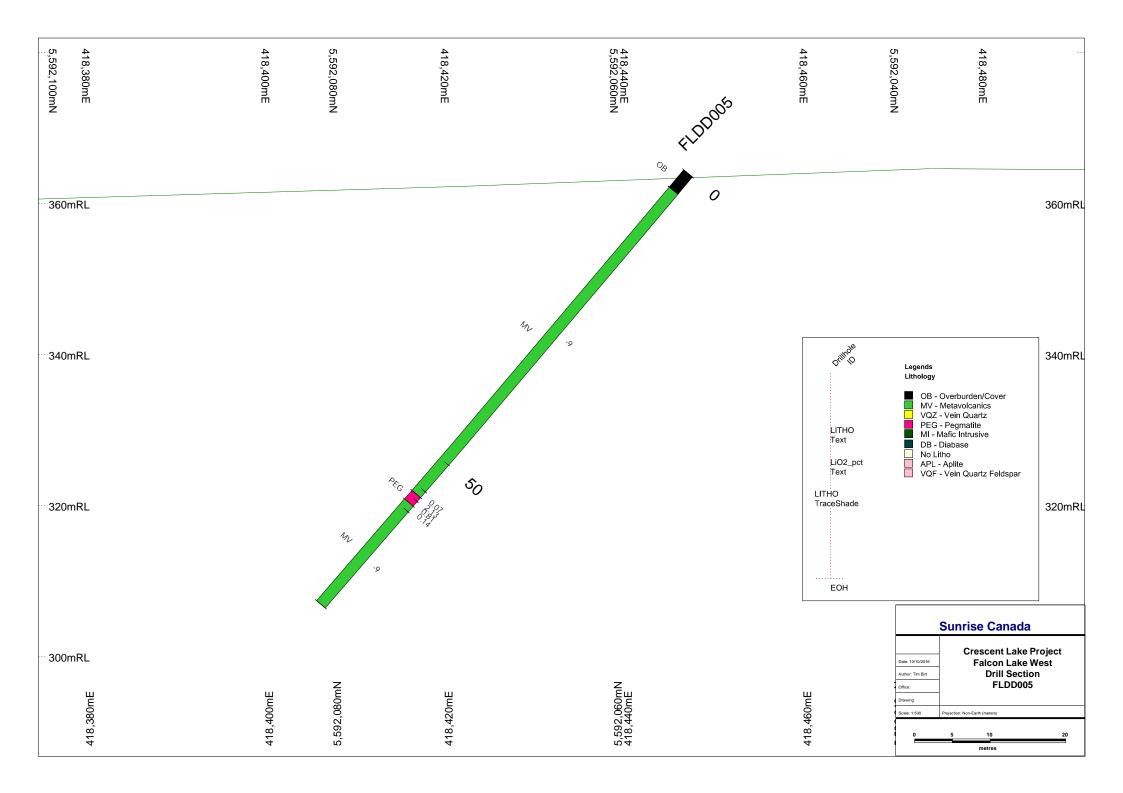

(Criteria listed in the preceding section also apply to this section.)


Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 All claims are in good standing and are 100% owned by Canadian Orebodies No known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Dempster Explorations Ltd. (late 1950's – 1960) – Line cutting, trenching and shallow diamond drillholes. Drilling in Zigzag (Drillholes 2-10 and 23-29). British Canadian Lithium Mines Ltd (1956 – 1958) – Line cutting and Drill Program totalling 22 diamond drillholes. Drill in Falcon Lake (Drillholes D1-3, E1-6, W1-9) Panther International (1959) – Diamond drilling in vicinity of Zigzag and Falcon Lake. Bird River Mines Co. Ltd. (1975 –1982) – Grid cutting, geochemistry and geophysics in Zigzag area. Mattagami Lake Mines Ltd. (1977) – Geophysical surveys in Falcon Lake area. E&B Explorations Inc. and Cominco Ltd. (1978 – 1980) – Line cutting, geochemical sampling, geological mapping, channel sampling in Zig Zag area. Complex Minerals Corp. (1997) – Geophysics and mechanical trenching in Zigzag area. Platinova Resource Ltd. (2002) – Historic result confirmation and exploration targeting program. Canadian Orebodies (2009 – present) – Line cutting, geochemical sampling, geological mapping, channel sampling in Zig Zag and Falcon Lake areas.
Geology	Deposit type, geological setting and style of mineralisation.	 Crescent Lake Pegmatite Group consists of a series of pegmatite dykes that intrude mafic meta-volcanic and meta-tonalitic rocks within a 1.2 km x 6 km area south of Crescent and Zig-Zag Lakes including the Tebishogeshik Pegmatite and the Dempster East Pegmatite. These pegmatites are complex-subtype, spodumene-subtype and have relatively high tantalum associated with oxide phases (columbite-tantalite group, ferrotapiolite and microlite), evolved garnet compositions and pervasive albitisation. The Falcon Lake Pegmatite Group consists of a series of pegmatite dykes that intrude amphibolitized mafic meta-volcanic rocks within a 0.25 km x 4.5 km area between Funnel and Falcon Lake East Pegmatite and Falcon Lake West Pegmatite. These pegmatites are spodumene-subtype and have some of the highest reported tantalum-rich oxide values in Ontario, associated with manganotantalite and ferrotapiolite. The mineralisation is dominantly spodemene (Li) with elevated Ta, Rb, Be and Cs.


Criteria	JORC Code explanation	Commentary
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See Appendix 1
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Length-weighted average grades reported. No upper limit has been applied to lithium grades in these exploration results. A cut-off grade of 0.2% Li₂O and a maximum internal dilution of 4m (downhole width) are used as a guideline when delineating the drilled thickness intervals of mineralisation. All metal grades reported are single element.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Down hole length, true width not known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to figures within report and within a 43-101 compliant report by Fladgate Exploration in 2011.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Results for this drilling have been comprehensively reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	There is no other exploration data which is considered material to the results reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Detailed geological mapping, interpretation and prospecting to be completed on these prospects. Target testing contingent on positive results, interpretation and exploration ranking. All future exploration work is commercially sensitive and will not be released to the market until results are available.


Appendix VI – Drillhole Plans and Sections





Appendix VII – Detailed Drill Logs

								Total						
	Easting	Northing		Core				Depth	Date	Date				Location of Core
Drillhole ID ((NAD83_Z16)	(NAD83_Z16)	Elevation (m)	Size	Drilling Company	Azimuth	Dip	(m)	commenced	completed	Date Logged	Logged By	Overburden depth	Storage
FLDD001	418396	5591985	357	NQ	Chibougamau Diamond Drilling Ltd	300	-50	81	16/06/2016	17/06/2016	19/06/2016	Stephen Greiner	9	Falcon Lake

DH ID	FROM M	то м	LITHOLOGY	Code	Description	Colour	Alb %	Qtz %	Spod %	Kfel %	Mica %	Other	Alteration	Mineralisation
FLDD001	0	9	Overburden	OB		coloui	/ <u>_</u> /	- qui_/0	spou_/	inci_/	inica_/o	oulei	Attendion	
FLDD001	9	13.37	Mafic Metavolcanics	MV	Strongly foliated, gtartz-chlorite altered mafic metavolcanics. Foliation is roughly 30 degrees to core axis.	Dark green							Qtz/Chl	
					Small (5cm), medium grained to coarse grained VQF vein running very slightly oblique (~5 degrees) to foliation. Contact at									
					roughly 40 degrees to core axis. Contact shows a weak chill margin w/ stronger chlorite alteration w/ in meta volcanics.									
FLDD001	13.37	13.42	Quartz Feldspar Vein	VQF	Weak kspar alteration. Trace Tourmaline.	Grey	10	85	0	5	0	<1	Potassic	
FLDD001	13.42	48	Mafic Metavolcanics	MV	Strongly foliated, quartz-chlorite altered mafic metavolcanics. Foliation is roughly 30 degrees to core axis. Sparse intermittents sections hosting weak hamatite alteration which follow foliation. Foliation consistent at roughly 30 degrees to core axis. Very rare qtz-carb veinlets occur throughout. Small boudinaged zones again at roughly 30 degrees to core axis occur centered at 30.2m, 30.6m, 32.2 and 33.4. A single qtz vein occur from 29.3 fot 29.46. End of zone is in contact	Dark green							Qtz/Chl/Hem/Carb	
FLDD001	48	59.8	Pegmatite	PEG	A section of the pegmatite with moderate kspar composition in comparison to other zones. Grain size is variable throughout ranging from coarse grained (1cm) to almost megacrystic (10+cm). Some noticable grain orientation from 51.5 to 55.4 at roughly 10 degrees off core axis. kspar rich subzones are usually spodumene poor. Quartz seems to grow intertitial and in more association with spodumene.	Pink-grey- light green	5	35	30	30	<1	<1	Potassic	Spodumene
FLDD001	59.8	60.4	Mafic Intrusive	MI	A small, very fine grained mafic dyke.	Black								
FLDD001	60.4	67.7	Pegmatite	PEG	A section of pematite w/ intermittent zones of coarse grained quartz/albite/spodumene adjacent to megacrystic (30+cm) quartz/albite/skpar/spodumene. Spodumene is a light green and tend to be rimmed w/ the smokey grey quartz.	Pink-grey-ligh green	t 10	40	40	10	<1	<1	Potassic	Spodumene
FLDD001	67.7	72.3	Pegmatite	PEG	A far more kspar/albite rich, megacrystic section of the pegmatite. The section again shows intermittent areas of grain size variability with coarse grained sections adjacent to megacrystic sections. Overall all the area is far more kspar rich.	Pink-grey-ligh green-white	t 40	15	15	30	<1		Potassic	Spodumene
					Strongly foliated, quartz-chlorite altered mafic metavolcanics. Again foliation is roughly 30 to 35 degrees to core axis. Small quarts bands occur along foliation and range from 2mm's to 3cm's thick. Some boudinage is seen around 76.9m. Weak									
FLDD001	72.3	81	Mafic Metavolcanics	MV	carbonate alteration occurs along foliation and fracture planes.	Dark green							Qtz/chl/carb	

DH_ID	FROM_M	то_м	Length_M	Sample_ID	STD_Blank_ID	Litho_Comments	Sampled By
FLDD001	47	48	1	R413001		Shoulder of pegmatite within mafic metavolcanics. Upper contact.	Stephen Greiner
FLDD001	48	49	1	R413002		Section downhole from contact of pegmatite with metavolcanics.	Stephen Greiner
FLDD001	49	49.8	0.8	R413003		More kspar rich section	Stephen Greiner
FLDD001	49.8	51.1	1.1	R413004		Sample with variable composition. Samples would be to small to section out.	Stephen Greiner
FLDD001	51.1	52	0.9	R413005		A more kspar poor/quartz-spodumene rich section.	Stephen Greiner
FLDD001	52	53.1	1.1	R413006		A more megacrystic section. Variable composition with strong spodumene, kspar and moderate quartz.	Stephen Greiner
FLDD001	53.1	54	0.9	R413007		A very coars graine section, more kspar poor.	Stephen Greiner
FLDD001	54	55	1	R413008		Very coarse grained grading into megacrystic. Podumene rich.	Stephen Greiner
FLDD001	55	55.7	0.7	R413009		Very coarse grained spodumene rich/kspar poor section.	Stephen Greiner
FLDD001				R413010	Standard		Stephen Greiner
FLDD001				R413011	Blank		Stephen Greiner
FLDD001	55.7	56.8	1.1	R413012		Variable composition w/ moderate kspar and albite.	Stephen Greiner
FLDD001	56.8	57.7	0.9	R413013		spodumene rich/kspar poor section.	Stephen Greiner
FLDD001	57.7	58.6	0.9	R413014		Variable composition w/ moderate kspar and albite.	Stephen Greiner
FLDD001	58.6	59.8	1.2	R413015		Very coarse grained to megacrystic. Variable composition w/ weak kspar, strong albite and moderate spodumene.	Stephen Greiner
FLDD001	59.8	60.4	0.6	R413016		Mafic dyke	Stephen Greiner
FLDD001	60.4	61	0.6	R413017		Megacrystic section w/ strong albite, moderate quartz/spodumene	Stephen Greiner
FLDD001	61	61.6	0.6	R413018		Coarse grained section crossing into a megacrystic section w/ low kspar and moerate quartz/albite/spodumene.	Stephen Greiner
FLDD001	61.6	62.8	1.2	R413019		An entirely megacrystic section rich in kspar/albite and poor in spodumene.	Stephen Greiner
FLDD001	62.8	63.6	0.8	R413020		A megacrystic section which is spodumene rich.	Stephen Greiner
FLDD001	63.6	64.6	1	R413021		A coarse grained section which is spodumene rich/kspar poor	Stephen Greiner
FLDD001	64.6	65.6	1	R413022		A coarse grained section which is spodumene rich/kspar poor	Stephen Greiner
FLDD001	65.6	66.6	1	R413023		A coarse grained section which is spodumene rich/kspar poor	Stephen Greiner
FLDD001	66.6	67.7	1.1	R413024		A coarse grained section which is spodumene rich/kspar poor	Stephen Greiner
FLDD001	67.7	68.7	1	R413025		A magacrystic section with relatively equal amounts of quartz/spodumene/kspar	Stephen Greiner
FLDD001	68.7	69.7	1	R413026		A magacrystic section with relatively equal amounts of quartz/spodumene/kspar	Stephen Greiner
FLDD001	69.7	70.8	1.1	R413027		A megacrystic section strong in albite/kspar and poor in spodumene	Stephen Greiner
FLDD001	70.8	71.5	0.7	R413028		A coarse grained section rich in kspar/quartz w/ moderate spodumene	Stephen Greiner
FLDD001	71.5	72.2	0.7	R413029		A coarse grained section rich in kspar/quartz w/ moderate spodumene at contact w/ metavolcanics.	Stephen Greiner
FLDD001				R413030	Standard		Stephen Greiner
FLDD001				R413031	Blank		Stephen Greiner
FLDD001	72.2	73.2	1	R413032		Shoulder sample from pegmatite w/ in metavolcanics	Stephen Greiner

		1		1 1			1	Total	Date	1				
Drillhole	Easting	Northing		Core				Depth	commence	Date	Date			Location of Core
ID ((NAD83_Z16)	(NAD83_Z16)	Elevation (m)	Size	Drilling Company	Azimuth	Dip	(m)	d	completed	Logged	Logged By	Overburden depth	Storage
FLDD002	418433	5591963	356	NQ	Chibougamau Diamond Drilling Ltd	300	-45	111	17/06/2016	18/06/2016	21/06/2016	Stephen Greiner	6	Falcon Lake

DH_ID	FROM_M	TO_M	LITHOLOGY	Code	Description	Colour	Alb_%	6 Qtz_%	Spod_%	Kfel_%	Mica_%	Other	Alteration	Mineralisation
LDD002	0	6	Overburden	OB	Para da fallatad arrata dalarita alternativa filmante alternita. Mirak ante alternativa alternativa da sur fallativa alterna									
					Strongly foliated quartz-chlorite altered mafic metavolcanics. Weak carbonate alteration along some foliation planes.									
LDD002	c	35	Mafic Metavolcanics	мv	Rare intermittent foliations hosting hematite alteration. Trace pyrite and pyrhotite occur in some localities. On average the foliation is roughly 30 degrees to the core access.	Dark green							Qtz/chl/hem	py/po
LDD002	0	35	Walle Wetavoicallies	IVIV	the foliation is foughly 50 degrees to the core access.	Darkgreen							Qtz/cni/nem	py/po
					A very coarse grained to pegmatitic dyke. The dyke is quartz and albite rich with weak kspar. Spodumene is moderate in									
					concentration at about 25% to 30%. Spodumene is a very light green with grain size ranging from 0.5cm to 3+cm. Fine									
					grained trace amounts of a bluish/green mineral (Holmsquisite?) is sometimes seen along spodumene rims. Spodumene									
					seems to have a preferential orientation moderately oblique to the core axis. Spodumene also concentrates more in the	Grey-white-								Spodumene/
LDD002	35	37.1	Pegmatite	PEG	center and towards the footwall, however does not occur directly along the contact of the footwall.	light green	30	40	30	0	<1	<1		Holmsquisite?
					Strongly foliated mafic metavolcanics with quartz-chlorite-weak carb alteration. Foliation is roughly 35 degrees to core									
LDD002	37.1	40.2	Metavolcanics	MV	axis. Weak pyrite/pyhrotite along some foliation and fracture planes.	Dark green							Qtz/chl/carb	py/po
					A section just below the foot wall which is more quartz/albite rich. Tourmaline occurs along the contact. Grain size ranges									
					from 1cm to 3+ cm. The section here has variable spodumene and appears to show some internal flow banding. The flow									
					appears to be a secondary quartz pulse situated after the smokey quartz formed. The smokey quartz again forms more	White-light								
LDD002	40.2	42.8	Pegmatite	PEG	insitu with spodumene and albite. Weak potassic alteration is seen w/ in some of the more promenant flow banding.	green-grey	25	55	15	5	<1	<1	kspar	Spodumene
					A section of the dyke running down to the foot wall which is more spodumene/kspar rich. The section does not show the									
					clear quartz banding as seen above and consists mainly of smokey quartz. The grain size ranges from very coarse grained									
					to megacrystic. Spodumene occurs as 1cm to 10cm crystals and again in association w/ smokey quartz along the grain									
					boundaries. kspar exists as very coarse grained to megacrystic. A small section from 48.5 to 48.7 shows strong iron									
					oxidation and appears to have some fine grained tantalite. The lower contact shows weak chlorite alteration into the	Pin-grey-light								Spodumene/Tar
LDD002	42.8	50.2	Pegmatite	PEG	footwall.	green	5	40	20	35	<1	<1	kspar	talite
					Quartz-chlorite altered mafic volcanics. Previous logs have defined this unit as a basalt. The section here is far less									
					deformed than the headwall however still shows a similar foliation. Foliation strength decreases away from the contact of									
					the pegmatite. The medium grained sections are chlorite and ampibole rich. Trace pyrite and pyrhotite occur along weak									
LDD002	50.2	58.2	Mafic Metavolcanics	MV	quartz veins. The unit is moerately magnetic.	Green							chl	py/po/mag
					A irregular quartz tourmaline vein occurs within the metavolcanics slightly breciating the host. Albite and phyrotite occur									
LDD002	58.2	58.8	Quartz vein	VQZ	along the contact.	white								ро
					Quartz-chlorite altered mafic volcanics the same as interval 50.2 to 58.8. Again a weak foliation is present but is far less									
LDD002		67.7	Mafic Metavolcanics	MV	than the upper units. The unit is moderately magnetic.	green							chl	py/po/mag
LDD002	67.7	68.5	Mafic Intrusive	MI	A very fine grained mafic dyke.									
					Fine grained, quartz-chlorite altered mafic metavolcanic. The same as the previous, less deformed units. Foliation									
LDD002	68.5	69.7	Metavolcanics	MV	strength increases downhole towards a bull quartz vein contact.	green							qtz/chl	ру
					A large quartz vein occurs along foliation. Chlorite-pyrite-tourmaline-other amphiboles occurs along the contacts with the									
LDD002	69.7	71.6	Quarts vein	VQZ	metavolcanics.	white								ру
					Strongly foliated mafic metavolcanics with multiple small quarts veins along foliation hosting pyrite mineralization at									
LDD002	71 6	81.45	Mafic Metavolcanics	MV	roughly 3% of vein. Less frequent carbonate veining occurs again along foliation and hosts trace pyrite.	Dark green							qtz/chl	D 14
LDD002	/1.0	81.45		IVIV	rouging 3 % of venil. Less frequent carbonate vening occurs again along fonation and hosts trace pyrite.	Darkgreen							412/011	ρy
					A small very coarse grained to pegmatitic vein. Vein is quartz/albite rich with weak to moderate kspar alteration.									
					Spodumene content is roughly 15%. The headwall contact cuts foliation at roughly 20 degrees and is at roughly 50									
					degrees to the core access. The footwall contact follows foliation an has a two cm alteration halo. The headwall contact	Grey-green-								
LDD002	81.45	82	Pegmatite	PEG	has a much smaller alteration halo of 0.5cm w/ fg tourmaline occuring along the contact.	white-pink	25	40	15	20	<1	<1	potassic	spodumene
		-	8		Moderately foliatiated mafic metavolcanics w/ small quartz veining along foliation. A small quartz/kspar vein seems to							-		
LDD002	82	83.7	Mafic Metavolcanics	MV	have pushed through roughly along foliation which is then crosscut by the dyke above.								qtz/chl	
													1.7.	
					The first half of the dyke from the headwall. The section of the dye here is generally very coarse grained to megacrystic.									
					Again zoning is seen w/ spodumene forming more in association w/ smokey quartz along its grain boundaries. Large kspar	grey-green-								
LDD002	83.7	89.9	Pegmatite	PEG	zones are often relatively void of spodumene. Trace oxides do seem present but are difficuly to discern.	pink	10	30	15	45	<1	<1	potassic	spodumene
			•											
					The section here runs down to the footwall and is similar to some sections seen in FLDD-001 in which the grain size on									
					average is smaller and is weaker in kspar alteration. Again smokey quartz occurs in association w/ spodumene and occurs									
					along its grain boundaries, however in these sections the grain size of quartz and spodumene is dominantly coarse to very									
					coarse (0.5cm to 2cm) where albite and kspar are very coarse to megacrystic. Again the spodumene is zoned away from									Spodumene/
					the kspar. Overall, however the dyke is relativlely homogeneous. Note both upper and lower contacts are vey sharp with	green-grey-								tantalite/other
LDD002	89.9	92.5	Pegmatite	PEG	little alteration in to the host. Both cut foliation.	pink-white	5	40	30	25	<1	<1	potassic	oxides
LDD002	92.5	95.4	Mafic Metavolcanics	MV	Strongly foliated,. Qtz/chl altered mafic metavolcanics w/ quartz veining occuring along foliation. Some boudinage seen at						I		qtz/chl	
					The first half of this dyke varies from the lower half in its kspar:spodumene ratio. Overall this section is very coarse	1	1	1						
					grained w/ spodumene occuring in a range of 0.5cm to 5cm. Here the spodumene is rimmed for the most part by smokey		1	1						
					quartz however it is also often adjacent to kspar. The colour of the spodumene is a much darker green than those seen in		1	1	1	1	1		1	1
DD002	95.4	98.6	Pegmatite	PEG	the lower half. kspar:spodumene is roughly 4:1.	pink	5	20	15	60	<1	<1	potassic	spodumene
					The lower half of this dyke is more kspar poor and spodumene rich. Similar to the lower section of the dyke above, the	1	1	1			1			1
					grainsize is generally smaller w/ spodumene completely rimmed w/ smokey quartz. The colour of the spodumene is white									
					w/ a bluish/green alteration halo around its rims. Kspar is seeming to be segregating/neucleating out into separate zones.	Light green-								
_DD002		101.8	Pegmatite	PEG			10	40	15	35			potassic/other	spodumene

DH_ID	FROM_M	TO_M	LITHOLOGY	Code	Description	Colour	Alb_%	Qtz_%	Spod_%	6 Kfel_%	6 Mica_%	6 Other	Alteration	Mineralisation
					A late, massive, diabase sill crosscuts the pegmatite dyke. A clear very fine grained cill margin is present and the sill grades to									
FLDD002	101.8	107.65	Diabase	DB	medium grained downhole. The composition is gabbroic.	grey-black								
					A small aplite vein cuts the diabase and is kspar rich. Upper contact is sharp where lower contact is irregular. Most likely is a									
FLDD002	107.65	107.8	Aplite	APL	zenolith from the pegmatite which is highly altered.	Pink		10		90			potassic	
FLDD002	107.8	108	Diabase	DB	Massive diabase	grey-black								
					A small aplite vein cuts the diabase and is kspar rich. Upper contact is sharp where lower contact is irregular. Most likely is a									
FLDD002	108	108.3	Aplite	APL	zenolith from the pegmatite which is highly altered.	pink-green					1			
FLDD002	108.3	111	Massive diabase	DB	Massive diabase	grey-black								

DH_ID	FROM_M	TO_M L	ength_M	Sample_ID	STD_Blank_ID	Litho_Comments	Sampled By
FLDD002	34	35	1	R413039		Shoulder sample of headwall in contact with small pegmatitic dyke	Stephen Greiner
FLDD002	35	35.6	0.6	R413040		Zoned section of dyke poor in spodumene content	Stephen Greiner
FLDD002	35.6	36.2	0.8	R413041		First half of spodumene rich zone of pegmatite.	Stephen Greiner
FLDD002	36.2	37.1	0.9	R413042		Second half of spodumene rich zone of pegmatite including a small spodumene void section along contact to footwall.	Stephen Greiner
FLDD002	37.1	38.1	1	R413043		Shoulder sample into foot wall.	Stephen Greiner
FLDD002	38.1	39.1	1	R413044		Sampling through metavolcanics	Stephen Greiner
FLDD002	39.1	40.2	1.1	R413045		Shoulder sample of headwall above another pegmatitic dyke.	Stephen Greiner
FLDD002	40.2	41.1	0.9	R413046		Sample directly adjacent to foot wall containing the quartz flow banding.	Stephen Greiner
FLDD002	41.1	42	0.9	R413047		Sample containing the quartz flow banding	Stephen Greiner
FLDD002	42	42.8	0.8	R413048		Sample containing the quartz flow banding	Stephen Greiner
FLDD002	42.8	43.8	1	R413049		The more homogeneous section of the dyke.	Stephen Greiner
FLDD002			1	R413050	Standard		Stephen Greiner
FLDD002			1	R413051	Blank		Stephen Greiner
FLDD002	43.8	44.8	1	R413052		The more homogeneous section of the dyke.	Stephen Greiner
FLDD002	44.8	45.8	1	R413053		The more homogeneous section of the dyke.	Stephen Greiner
FLDD002	45.8	46.8	1	R413054		The more homogeneous section of the dyke.	Stephen Greiner
FLDD002	46.8	47.8	1	R413055		The more homogeneous section of the dyke.	Stephen Greiner
FLDD002	47.8	48.8	1	R413056		The section with a small zone of what appears to be tantalite rich. Still very similar to the previous.	Stephen Greiner
FLDD002	48.8	49.8	1	R413057		The more homogeneous section of the dyke.	Stephen Greiner
FLDD002	49.8	50.5	0.7	R413058		The more homogeneous section of the dyke.	Stephen Greiner
FLDD002	50.5	51.2	0.7	R413059		The section in contact with the footwall.	Stephen Greiner
FLDD002	51.2	52.2	1	R413060		Shoulder sample of the footwall	Stephen Greiner
FLDD002	80.4	81.4	1	R413061		Shoulder sample of headwall	Stephen Greiner
FLDD002	81.4	82	0.6	R413062		Small PEG dyke	Stephen Greiner
FLDD002	82	82.9	0.9	R413063		metavolcanics inbetween two PEG's	Stephen Greiner
FLDD002	82.9	83.7	0.9	R413064		metavolcanics inbetween two PEG's	Stephen Greiner
FLDD002	83.7	84.7	1	R413065		more spodumene rich section	Stephen Greiner
FLDD002	84.7	85.4	0.7	R413066		kspar rich section	Stephen Greiner
FLDD002	85.4	86.4	1	R413067		Spodumene rich section	Stephen Greiner
FLDD002	86.4	87.4	1	R413068		kspar rich section	Stephen Greiner
FLDD002	87.4	88.4	1	R413069		kspar rich section	Stephen Greiner
FLDD002				R413070	Standard		Stephen Greiner
FLDD002				R413071	Blank		Stephen Greiner
FLDD002	88.4	89.4	1	R413072		kspar rich section	Stephen Greiner
FLDD002	89.4	89.9	0.5	R413073		End of section identified in litho log	Stephen Greiner
FLDD002	89.9	90.9	1	R413074		Start of zone identified in litho log	Stephen Greiner
FLDD002	90.9	91.9		R413075		Sample through PEG	Stephen Greiner
FLDD002	91.9	92.5		R413076		End of PEG to contact w/ MV	Stephen Greiner
FLDD002	92.5	93.5	1	R413077		Shoulder into footwall	Stephen Greiner
FLDD002	93.5	94.5	1	R413078		MV's	Stephen Greiner
FLDD002	94.5	95.4	0.9	R413079		Shoulder into headwall.	Stephen Greiner
FLDD002	95.4	96.4		R413080		higher kspar to spodumene ratio	Stephen Greiner
FLDD002	96.4	97.4		R413081		higher kspar to spodumene ratio	Stephen Greiner
FLDD002	97.4	98.6	1.2	R413082		End of zoned PEG section identified in litho log.	Stephen Greiner
FLDD002	98.6	99.6		R413083		lower kspar to spodumene ratio	Stephen Greiner
FLDD002	99.6	100.6		R413084		lower kspar to spodumene ratio	Stephen Greiner
FLDD002	100.6	101.8	1.2	R413085		lower kspar to spodumene ratio	Stephen Greiner
FLDD002	101.8	102.8	1	R413086		shouler sample into diabase	Stephen Greiner

								Total	Date					
	Easting	Northing		Core				Depth	commence	Date	Date			Location of
Drillhole II	D (NAD83_Z16)	(NAD83_Z16)	Elevation (m)	Size	Drilling Company	Azimuth	Dip	(m)	d	completed	Logged	Logged By	Overburden depth	Core Storage
FLDD003	418394	5591944	358	NQ	Chibougamau Diamond Drilling Ltd	300	-50	96	18/06/2016	19/06/2016	23/06/2016	Stephen Greiner	3	Falcon Lake

DH_ID	FROM_M	TO_M	LITHOLOGY	Code	Description	Colour	Alb_%	Qtz_%	Spod_%	Kfel_%	Mica_%	Other	Alteration	Mineralisation
FLDD003	0	3	Overburden	OB										
					Very strongly foliated mafic metavolcanics with strong biotite banding (0.1cm to 1.5cm thick) forming a biotite schist.									
					Some bands are starting to show small 1-2mm garets implying amphibolite facies. Weak quartz veining (0.1-0.3mm)	dark green-								
FLDD003	3	11	Mafic Metavolcanics	MV	occurs both along foliation and crosscutting.	brown							chl-biotite	
					A small 0.3 cm quartz-feldspar vein hosting both clear an smokey quartz w/ minow amounts of albite. The contacts are									
					relatively clean and cut foliation at about 30 degrees. A very small alteration halo (0.2mm) is seen on the lower contact.									
FLDD003	11	11.3	Quartz Feldspar Vein	VQF	One small (0.5cm) spodumene crystal is present.	grey-white	10	90	<1	0	<1	:1		
					Very strongly foliated mafic metavolcanics with strong biotite banding (0.1cm to 1.5cm thick) forming a biotite schist.									
					Some bands are starting to show small 1-2mm garets implying amphibolite facies. Weak quartz veining (0.1-0.3mm)	Dark green-								
FLDD003	11.3	14.3	Mafic Metavolcanics	MV	occurs both along foliation and crosscutting.	brown							chl-biotite	
					A small 1.8m quartz feldspar vein w/ coarse grained spodumene near the footwall contact and trace medium grained blue	2								
					holmsquisite w/ in the quartz rich section towards the mid dyke to upper contact. Possible flow banding in the upper									Constant of
FLDD003	14.3	15.9	Quartz Feldspar Vein	VQF	quartz rich zone noticable by the orientation of smoey quartz. Spodumene seems to settle near the lower contact again rimmed by smokey quartz.	White-grey- green-blue	-	85	10	0	<1	.1		Spodumene/
FLDD003	14.3	15.9	Quartz Feldspar Vein	VQF	Very strongly foliated mafic metavolcanics with strong biotite banding (0.1cm to 1cm thick) forming a biotite schist. Some		5	85	10	U	<1	1		holmsquisite
					bands are starting to show small 1-2mm garets implying amphibolite facies. Weak quartz veining (0.1-0.3mm) occurs both									
FLDD003	15.9	17.4	Mafic Metavolcanics	мv	along foliation and crosscutting.	brown							chl-biotite	
FLDD005	15.9	17.4		IVIV	A small 0.3cm smokey quartz vein w/ moderate muscovite. Contacts are fairly irregular again with a small (.12cm)	brown							chi-biotite	
FLDD003	17.4	17.7	Quartz Vein	voz	alteration halo and cut foliation at roughly 10 degrees.	Grev	0	90	0	0	10			
FLDD003	17.4	17.7		VQZ	Very strongly foliated matic metavolcanics with moderate biotite banding (0.1cm 0.75cm thick) forming a biotite-chlorite	Grey	0	50	0	0	10			
					schist. Foliation dip decreases from the top of section towards the pegmatite contact changing from roughly 18 degrees to									
					core axis to roughly 30+ degrees to core axis. The lower section does not have the biotite rich banding. 10+ cm	dark green-								
FLDD003	17.7	26.4	Mafic Metavolcanics	MV	Quartz/smokey quartz veins occur at 23.1m, 23.7m and 23m	brown							chl-biotite	
LEDBOOD	17.7	20.4	Iviane ivietavoicames	IVIV	A relatively homogeneous 5.2m pegmatitic dyke only seeming to vary in grain size. Grain size grades from very coarse	brown							chi biotite	
					grain towards the contact to megacrystic in the center. One spodumene crystal is seen at 19cm x 1.5cm.kspar alteration is									
					very weak throughout however does seem to be more in association w/ the finer grained material towards the contacts.	Light gree-								
					Contacts are irregular at the headwall and sharp at the footwall. Both cut foliation. Spodumene is the lighter green and as									
FLDD003	26.4	31.6	Pegmatite	PEG	usual is rimmed by smokey quartz.	pink	10	40	30	20	<1	:1	potassic	Spodumene
1200000	20.4	51.0	regiliatite	120	Moderately foliated mafic metavolcanics. Quartz-chlorite altered unit w/ no biotite and roughly 30+ degree foliation angle		10	10	50	20			potublic	opouumene
FLDD003	31.6	35	Mafic Metavolcanics	MV	to core axis. Very weak quartz veining along foliation in this section.	Dark green							qtz-chl	
					Quartz rich pegmatite w/ minor spoumene. Spodumene crystals range from 0.5 to 3cm. Trace fine grained holmsquisite is								4	Spodumene/
FLDD003	35	36.9	Pegmatite	PEG	proximal to the spodumene. A zenolith occurs from 35.5 to 35.8.	grey-white	<1	80	15	0	5			holmsquisite
FLDD003	36.9	42	Mafic Metavolcanics	MV	Strongly foliated quartz/chlorite altered mafic volcanics w/ quartz veining along foliation.	Dark green				-	-		gtz-chl	
					A coarse grained to megacrystic pegmatite which is spodumene/smokey quartz rich from the headwall down to 44.2								4	
FLDD003	42	44.4	Pegmatite	PEG	meters. Upper contact is sharp altered zenolith is seen at 44.2. A highly altered zenolith exists at 44.2	Green-grey	25	40	25	10	<1	:1	potassic	Spodumene
						Green-grey-						-	p	
FLDD003	44.4	47.9	Pegmatite	PEG	Zoned unit of pegmatite which iskspar rich/spodumene poor. Lower contact is irregular w/ a 3cm alteration halo.	pink	15	25	10	60	<1	:1	potassic	spodumene
		-			Strongly foliated and guartz/chlorite altered metavolcanics. Foliation runs nearly parallel to core axis. Occasional sections	r								
FLDD003	47.9	58.48	Mafic Metavolcanics	MV	of biotite banding are present.	Dark green							qtz-chl	
FLDD003	58.48	59	Mafic dyke	MI	A very fine grained mafic dyke w/ a very small (0.2cm) alteration halo into the host.	Black								
			, .		Strongly foliated mafic volcanics w/ foliation nearly parallel to core axis. A couple small mafic dykes occur at 58.7 and									
					61.25. Biotite banding is seen in some locations. Another mafic dipping almost parallel to foliation is seen from 63.1 to									
FLDD003	59	70.8	Mafic Volcanics	MV	64.72. Two guartz veins also nearly parallel to core axis occur at 64.3 and 67.	Dark green							qtz-chl	
					A kspar rich very coarse grained zone rich in kspar and reletivelt void of spodumene. The zone here is in contact w/ the	, in the second se								
FLDD003	70.8	71.4	Pegmatite	PEG	headwall. Weak alteration halo seen on the contact	Pink-grey	10	25	<1	65	<1	:1	potassic	Spodumene
					A section moving down from the kspar zone, richer in spodumene and quartz. Again grainsize is very coarse grained to	Pink-dark								
FLDD003	71.4	76.36	Pegmatite	PEG	megacrystic. Spodumene grows in clusters rimmed by smokey quartz where kspar forms reletively separate.	green-grey	15	25	35	25	<1	:1	potassic	Spodumene
FLDD003	76.36	78.5	Pegmatite	PEG	zoned unit of pegmatite which iskspar rich/spodumene poor. Lower contact is irregular w/ a 3cm alteration halo.	Pink-grey	5	15	<1	80	<1	:1	potassic	
			, i i i i i i i i i i i i i i i i i i i		Strongle foliated, qtz-chlorite altered metavolcanics. Quartz veins both along foliation and cross cutting. In some areas the									
FLDD003	78.5	84.9	Mafic Metavolcanics	MV	quartz is beginning to brecciate the host (see 84.2m)	Dark green							atz-chl	
						Pink-grey-			1					
FLDD003	84.9	85.2	Quartz Feldspar Vein	VQF	a kspar rich VQF w/ strong alteration halo's at both contacts. A green clasts exists probably assimilated from the host.	green	5	15	0	70		10	potassic	1
								1	1					
1	85.2	90.6	Mafic Metavolcanics	мv	Strongle foliated, qtz-chlorite altered metavolcanics. Qyartz veining occurs along foliation. Some weak biotite bands	Dark green	1			1			qtz-chl-biotite	1
FLDD003														
FLDD003	05.2				A fine grained to medium grained diabase w/ a clear very fine grained chill. The top of the diabase holds multiple granitic									

DH_ID	FROM_M	то м	Length_M	Sample_ID	STD_Blank_ID	Litho_Comments	Sampled By
FLDD003			1	R413087			Stephen Greiner
FLDD003	11	11.3	0.3	R413088		Smokey quartz rich VQF	Stephen Greiner
FLDD003	11.3	12.3	1	R413089		Shoulder sample footwall. Biotite Rich metavolcanics	Stephen Greiner
FLDD003			0	R413090	Standard		Stephen Greiner
FLDD003			0	R413091	Blank		Stephen Greiner
FLDD003	12.3	13.3	1	R413092		Biotite rich metavolcanics. Sampling through to next dyke.	Stephen Greiner
FLDD003	13.3	14.3	1	R413093		Biotite rich metavolcanics. Sampling through to next dyke.	Stephen Greiner
FLDD003	14.3	14.7	0.4	R413094		Shoulder sample of headwall to VQF	Stephen Greiner
FLDD003	14.7	15.3	0.6	R413095		VQF/Holmsquisite/contact upper	Stephen Greiner
FLDD003	15.3	15.9	0.6	R413096		VQF/Spodumene/contact lower	Stephen Greiner
FLDD003	15.9	16.6	0.7	R413097		Footwall shoulder sample	Stephen Greiner
FLDD003	16.6	17.4	0.8	R413098		Sample through to another small VQF	Stephen Greiner
FLDD003	17.4	17.7	0.3	R413099		Small VQF	Stephen Greiner
FLDD003	17.7	18.7	1	R413100		footwall shoulder sample of small VQF	Stephen Greiner
FLDD003	18.7	19.7	1	R413101		Biotite rich metavolcanics. Sampling through to next dyke.	Stephen Greiner
FLDD003	19.7	20.7	1	R413102		Biotite rich metavolcanics. Sampling through to next dyke.	Stephen Greiner
FLDD003	20.7	21.7	1	R413103		Biotite rich metavolcanics. Sampling through to next dyke.	Stephen Greiner
FLDD003	21.7	22.7	1	R413104		Biotite rich metavolcanics. Sampling through to next dyke.	Stephen Greiner
FLDD003	22.7	23.7	1	R413105		Biotite rich metavolcanics. Sampling through to next dyke.	Stephen Greiner
FLDD003	23.7	24.7	1	R413106		Biotite poor metavolcanics w/ 2 small (20cm) VOZ vein/dykes.	Stephen Greiner
FLDD003	24.7	25.7	1	R413107		Biotite poor metavolcanics. Sampling through to next dyke.	Stephen Greiner
FLDD003	25.7	26.4	0.7	R413108		Shoulder sample of headwall to pegmatite dyke	Stephen Greiner
FLDD003	26.4	27.4	1	R413109		Upper contact	Stephen Greiner
FLDD003			0	R413110	Standard		Stephen Greiner
FLDD003			0	R413111	Blank		Stephen Greiner
FLDD003	27.4	28.4	1	R413112		PEG	Stephen Greiner
FLDD003	28.4	29.4	1	R413113		PEG	Stephen Greiner
FLDD003	29.4	30.5	1.1	R413114		PEG	Stephen Greiner
FLDD003	30.5	31.6	1.1	R413115		Lower contact	Stephen Greiner
FLDD003	31.6	32.6	1	R413116		Shoulder sample of footwall	Stephen Greiner
FLDD003	32.6	33.6	1	R413117		Sample through MV's	Stephen Greiner
FLDD003	33.6	34.6	1	R413118		Sample through MV's	Stephen Greiner
FLDD003	34.6	35	0.4	R413119		Shoulder sample of headwall	Stephen Greiner
FLDD003	35	35.5	0.5	R413120		pegmatite/upper contact	Stephen Greiner
FLDD003	35.5	35.8	0.3	R413121		MV zenolith	Stephen Greiner
FLDD003	35.8	36.9	1.1	R413122		PEG	Stephen Greiner
FLDD003	36.9	37.9	1	R413123		Shoulder of footwall	Stephen Greiner
FLDD003	37.9	38.9	1	R413124		Sampling through MV's	Stephen Greiner
FLDD003	38.9	39.9		R413125		Sampling through MV's	Stephen Greiner
FLDD003	39.9	40.9		R413126		Sampling through MV's	Stephen Greiner
FLDD003	40.9	42		R413127		Shoulder of headwall	Stephen Greiner
FLDD003	42	43		R413128		PEG/upper contact/Sppodumene rich	Stephen Greiner
FLDD003	43	44	1	R413129		PEG/Spodumene rich	Stephen Greiner
FLDD003			0	R413130	Standard		Stephen Greiner
FLDD003				R413131	Blank		Stephen Greiner
FLDD003	44	45		R413132		PEG/kspar rich	Stephen Greiner
FLDD003	45	46		R413133		PEG/kspar rich	Stephen Greiner
FLDD003	46	47		R413134		PEG/kspar rich	Stephen Greiner
FLDD003	47	48		R413135		PEG/kspar rich	Stephen Greiner
FLDD003	48	49		R413136		Shoulder sample of footwall	Stephen Greiner
FLDD003	69.8	70.8		R413137		Shoulder sample of headwall	Stephen Greiner
FLDD003	70.8	71.4	0.6	R413138		Sample of kspar rich zone from the headwall	Stephen Greiner

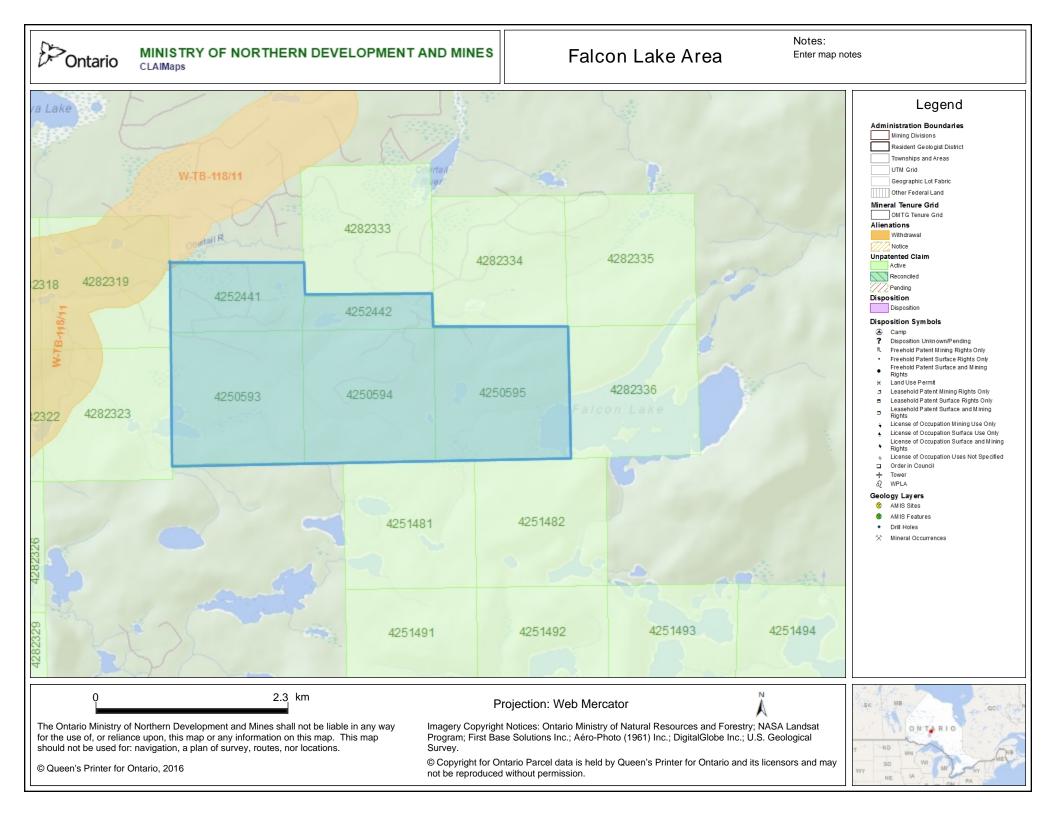
DH_ID	FROM_M	то_м	Length_M	Sample_ID	STD_Blank_ID	Litho_Comments	Sampled By
FLDD003	71.4	72.4	1	R413139		Sample of spodumene rich zone	Stephen Greiner
FLDD003	72.4	73.4	1	R413140		Sample of spodumene rich zone	Stephen Greiner
FLDD003	73.4	74.4	1	R413141		Sample of spodumene rich zone	Stephen Greiner
FLDD003	74.4	75.4	1	R413142		Sample of spodumene rich zone	Stephen Greiner
FLDD003	75.4	76.4	1	R413143		Sample of spodumene rich zone	Stephen Greiner
FLDD003	76.4	77.4	1	R413144		Sample of kspar rich zone	Stephen Greiner
FLDD003	77.4	78.5	1.1	R413145		Sample of kspar rich zone to the footwall	Stephen Greiner
FLDD003	78.5	79.5	1	R413146		Shoulder into the footwall.	Stephen Greiner

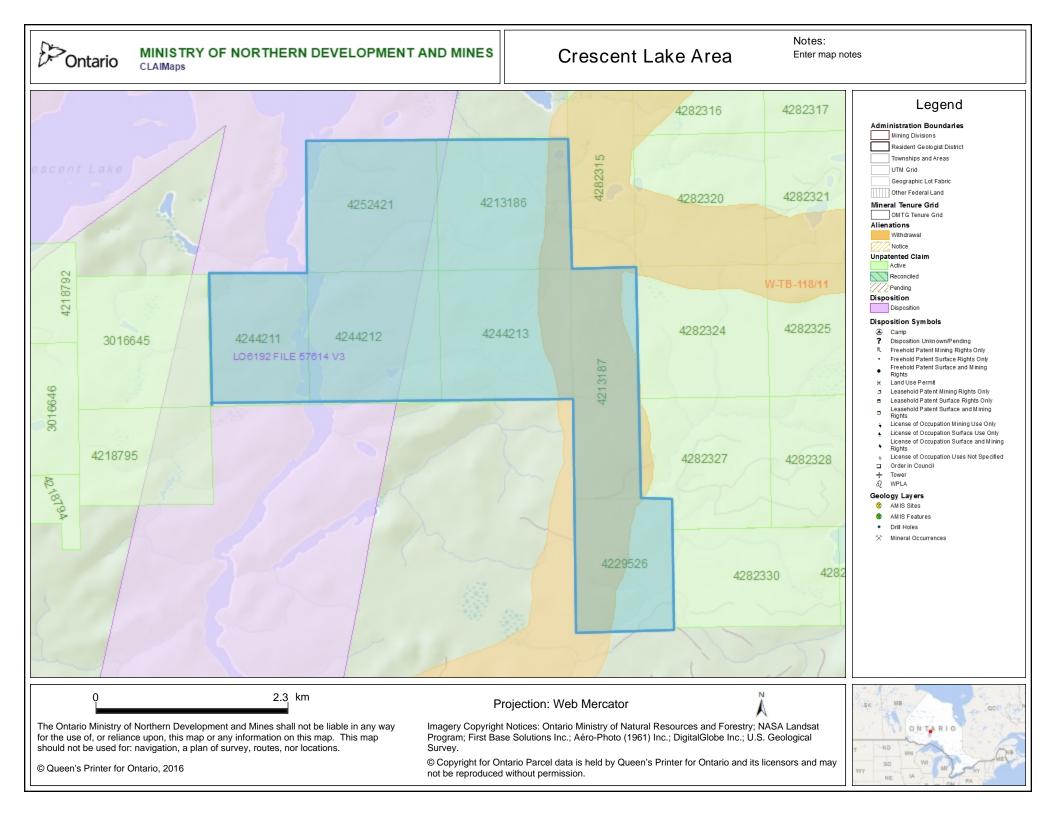
								Total						
	Easting	Northing		Core				Depth	Date	Date				Location of Core
Drillhole ID	(NAD83_Z16)	(NAD83_Z16)	Elevation (m)	Size	Drilling Company	Azimuth	Dip	(m)			Date Logged	Logged By	Overburden depth	Storage
FLDD004	418413	5591931	359	NQ	Chibougamau Diamond Drilling Ltd	300	-45	111	19/06/2016	20/06/2016	25/06/2016	Stephen Greiner	3	Falcon Lake

DH_ID	FROM_M	TO_M	LITHOLOGY	Code	Description	Colour	Alb_9	% Qtz_%	Spod_%	Kfel_%	Mica_%	Other	Alteration	Mineralisation
LDD004	0	3	Overburden	OB										
					Highly deformed, qtz/chlorite/biotite altered mafic metavolcanics.Quartz veining is seen at 12.1m and 15.2m. Strong biotite									
					banding occurs through up to around 24m. Two units w/ fine grained to coarse grained garnets occur from 14.6m to 15.1m									
					and from 20m to 21.9m. The top of this unit shows more quartz flooding than the bottom. Fine grained pyrite and pyrhotite									
					occur along both fracture planes and along some foliation planes. A small, slightly brecciated quartz vein elevated in pyhrotite	Dark green-								
LDD004	3	26.5	Mafic Metavolcanics	MV	occurs at 19.6m. A small fold hinge is seen at 9.9m.	brown							qtz-chl-biotite	py/po
					A small quartz rich pegmatite dyke w/ minor spodumene near the footwall contact. The quartz rich zone hole disseminated,	White-grey-								
LDD004	26.5	27.5	Pegmatite	PEG	blue holmsquisite. Both contacts are fairly sharp w/ a weak (0.1 to 0.3 cm) alteration halo.	green	<1	85	10	0	5	<1		Holmsquisite
					Quartz/chlorite/biotite altered mafic metavolcanics. Weak to moderate biotite banding is seen from 18.8m to 32m and from									
					42.5m to 43.4m. A moderate sized (5cm) quartz vein occurs along foliation at 31.5m. Weak pyrhotite (~1%) often occur	Dark green-								
LDD004	27.5	43.4	Mafic Metavolcanics	MV	disseminated w/ in the bands.	brown							qtz-chl-biotite	ро
					A small (30cm) VQF occurs cutting foliation. No Spodumene. Not sampled. Both upper and lower contacts show a roughly	White-grey-								
LDD004	43.4	43.7	Quarts Feldspar Vein	VQF	1cm chloritized alteration halo.	green	20	80	0	<1	0	<1		
					Quarts-chlorite-biotite altered mafic metavolcanics. Strong foliation and biotite banding occuring intermittently throughout									
					again w/ pyrhotite mineralization occuring along bands. Chalcopyrite is also seen seen in some bands and fracture planes. A									
					5cm smokey quartz vein occurs at 48.3m cutting foliation (See structure log) and other small intermittent veins occur	Dark green-								
LDD004	43.7	49.7	Mafic Metavolcanics	MV	throughout along foliation.	brown							qtz-chl-biotite	po/cpy
					A small (0.8m) spodumene bearing pegmatite dyke. Spodumene formation is centered in the dyke and is more quartz rich									
					along both contacts. Upper contact is fairly sharp and the lower contact is irregular. The footwall contact shows a larger									
					alteration halo then the headwall contact. Trace holmsquisite and tourmaline is seen in quartz rich sections towards the	light green-								spodumene/
LDD004	49.7	50.5	pegmatite	PEG	contacts. Grainsize is very coarse (1 to 5 cm). Spodumene seems to orientate nearly parallel to core axis.	grey-white	15	70	15	<1	0	<1		Holmsquisite
					Quartz-chlorite-biotite altered mafic metavolcanics. Banding seen intermittently throughout down to a pegmatite contact.	Dark green-								
LDD004	50.5	55	Mafic Metavolcanics	MV	Again bands show weak po/cpy mineralization.	brown								po/cpy
					A spar rich pegmatite dyke. The dyke is relatively homogeneous w/ weak spodumene poor zonations near both upper and									
					lower contacts. Again spodumene forms in association w/ guartz/smokey guartz and is coarse grained to very coarse grained									
					(0.5 to 4 cm). Upper contact is irregular and lower contact is sharp both cutting foliation. Upper contact shows a moderate	Pink-green-								
DD004	55	59.5	Pegmatite	PEG	(2cm) alteration halo.	grey	10	30	30	30	<1	<1	potassic	Spodumene
					Strongly foliated, guartz/chlorite/biotite altered mafic metavolcanics. Biotite banding occurs only proximal to the contact w/	0.1								
					the above pegmatite. A small quartz/smokey quartz breccia occurs at 64.2m. Again weak po mineralization occurs w/ in									
LDD004	59.5	64.6	Mafic Metavolcanics	MV	biotite bands.	Dark green							gtz-chl-biotite	po
					Another small (0.6 m) pegmatite dyke occurs cutting foliation w/ strong alteration halo into the host lithology. Both contact								4	F-
					are reletively sharp and cut foliation. Spodumene mineralization tends to zone more towards the upper contact. Note no	Pink-green-								
LDD004	64.6	65.2	Pegmatite	PEG	orientation.	white-grey	35	30	20	15	<1	<1	potassic	Spodumene
	65.2	66.4	Mafic Metavolcanics	MV	Quartz/chlorite altered mafic metavolcanics.	Dark green								
	66.4	67	Mafic intrusive	MI	A very fine grained mafic dyke cutting foliation.	Black								
	67	68	Mafic Metavolcanics	MV	Quartz/chlorite altered mafic metavolcanics.	Dark green								
					A kspar rich pegmatite cutting foliation w/ a sharp upper contact and irregular lower contact. Both contacts show a moderate									
					alteration halo.Again kspar/albite zones away from the Spodumene/smokey quartz. Possible flow banding is seen around									
					69.6. A small, very fine grained mafic dyke occurs from 68.7 to 68.9. Spodumene zones away from the lower contact.	Pink-green-								
DD004	68	74.2	Pegmatite	PEG	Spodumene is very coarse grained to megacrystic.	grey	10	25	30	35	<1	<1	potassic	Spodumene
						81								op o controllo
					A very strongly foliated mafic metavolcanis w/ what appears to be an aplite pushing through foliation. In some areas the									
					aplite begins to brecciate the host volcanics. The aplite is relatively early and is foliated along with the metavolcanics. Much of	Dark green-								
					the metavolcanics are extremely chloritized possibly indicating an early breccia before deformation. Biotite banding still exists		-							
DD004	74.2	81	Mafic Metavolcanics	MV	again hosting po/cpy mineralization. The highly chloritize zoned also host py/po mineralization.	pink							gtz-chl-biotite-potassic	py/po/cpy
					A weak to moderatly foliated, fine grained section of mafic volcanics. The section here is far more competent and only shows	dark green-							de en serre person	P77 P =7 = P7
DD004	81	87	Mafic Metavolcanics	MV	weak fluids running through. Probably a basalt layer. Weakly chloritized.	black								
					Strongly foliated aplite showing an irregular contact w/ the upper basaltic unit. A deformed zenolith is seen at 87.4 to 88ish.									
					Late quartz veins cut the aplite roughly along foliation at 91, 91.1, 91.8, 93.1, 93.3 and 94.8. A small kspar rich VQF cuts	Dark green-								
DD004	87	95.2	Aplite	APL	foliation at 88.8 (no strong alteration halo).	pink					1	1	potassic	1
			p	1	A kspar rich spodumene bearing pegmatite. The dyke shows the usual zonation of spodumene poor/feldspar rich zones	F				1	1	1	P - 133310	1
		1			proximal to the headwall contact as well as zonation between the spodumene/smokey quartz and albite/kspar. Overall	1					1	1		1
		1			grainsize is very coarse grained to megacrystic. Upper contact is very irregular and lower contact is not seen due to a late						1	1		
		1			diabase sill/dyke. Another small mate mafic dyke is seen from 98.9 to 99.5. Medium grained tourmaline is seen disseminated	Green-grey					1	1		
						loreen-Rich-		1		1				1
0004	05.2	100	Permatite	DEG		nink	10	25	25	40	-1	-1	notassic	coodumenc
DD004	95.2	100	Pegmatite	PEG	throughout. A late diabase sill showing a clear chill margin and grain size variation grading from very fine grained to medium grained away	pink	10	25	25	40	<1	<1	potassic	spodumene

DH_ID	FROM_M	то_м	Length_M	Sample_ID	STD_Blank_ID	Litho_Comments	Sampled By
FLDD004	25.5	26.5	1	R413147		Shoulder into headwall	Stephen Greiner
FLDD004	26.5	27.5	1	R413148		Small spodumene poor PEG	Stephen Greiner
FLDD004	27.5	28.5	1	R413149		Shoulder into footwall	Stephen Greiner
FLDD004			0	R413150	Standard		Stephen Greiner
FLDD004			0	R413151	Blank		Stephen Greiner
FLDD004	48.7	49.7	1	R413152		Headwall shoulder sample of small PEG dyke	Stephen Greiner
FLDD004	49.7	50.5	0.8	R413153		PEG dyke	Stephen Greiner
FLDD004	50.5	51.5	1	R413154		Footwall shoulder sample of small PEG dyke.	Stephen Greiner
FLDD004	51.5	52.5	1	R413155		Sampling through to next PEG	Stephen Greiner
FLDD004	52.5	53.5	1	R413156		Sampling through to next PEG	Stephen Greiner
FLDD004	53.5	54.5	1	R413157		Sampling through to next PEG	Stephen Greiner
FLDD004	54.5	55.05	0.55	R413158		Headwall/shoulder sample	Stephen Greiner
FLDD004	55.05	56.05	1	R413159		PEG/upper contact	Stephen Greiner
FLDD004	56.05	57.05	1	R413160		Sample through PEG	Stephen Greiner
FLDD004	57.05	58.05	1	R413161		Sample through PEG	Stephen Greiner
FLDD004	58.05	58.8		R413162		Sample through PEG	Stephen Greiner
FLDD004	58.8	59.5	0.7	R413163		PEG/lower contact	Stephen Greiner
FLDD004	59.5	60.5	1	R413164		Footwall/shoulder sample	Stephen Greiner
FLDD004	60.5	61.5	1	R413165		Sampling through metavolcanics	Stephen Greiner
FLDD004	61.5	62.5	1	R413166		Sampling through metavolcanics	Stephen Greiner
FLDD004	62.5	63.5	1	R413167		Sampling through metavolcanics	Stephen Greiner
FLDD004	63.5	64.6	1.1	R413168		Headwall/shoulder sample of small PEG	Stephen Greiner
FLDD004	64.6	65.2	0.6	R413169		Small PEG	Stephen Greiner
FLDD004			0	R413170	Standard		Stephen Greiner
FLDD004			0	R413171	Blank		Stephen Greiner
FLDD004	65.2	66.4	1.2	R413172		Footwall/shoulder sample of small PEG	Stephen Greiner
FLDD004	66.4	67	0.6	R413173		Mafic dyke	Stephen Greiner
FLDD004	67	68	1	R413174		Headwall/shoulder sample of next PEG	Stephen Greiner
FLDD004	68	68.6	0.6	R413175		Upper contact to mafic dyke	Stephen Greiner
FLDD004	68.6	68.9	0.3	R413176		mafic dyke	Stephen Greiner
FLDD004	68.9	69.9	1	R413177		kspar rich zone	Stephen Greiner
FLDD004	69.9	70.9	1	R413178		spodumene rich zone	Stephen Greiner
FLDD004	70.9	71.9	1	R413179		spodumene rich zone	Stephen Greiner
FLDD004	71.9	72.9	1	R413180		spodumene rich zone	Stephen Greiner
FLDD004	72.9	74.2	1.3	R413181		kspar rich zone to footwall contact	Stephen Greiner
FLDD004	74.2	75.2	1	R413182		Shoulder sample of footwall	Stephen Greiner
FLDD004	94.2	95.2	1	R413183		Shouler sample of headwall	Stephen Greiner
FLDD004	95.2	96.2	1	R413184		PEG dyke from upper contact/kspar rich zone	Stephen Greiner
FLDD004	96.2	97.2	1	R413185		spodumene rich zone	Stephen Greiner
FLDD004	97.2	98.2	1	R413186		Sampling through PEG	Stephen Greiner
FLDD004	98.2	98.9		R413187		Sampling through PEG	Stephen Greiner
FLDD004	98.9	99.5	0.6	R413188		Mafic dyke	Stephen Greiner
FLDD004	99.5	100	0.5	R413189		Sampling through PEG to lower contact	Stephen Greiner
FLDD004			0	R413190	Standard		Stephen Greiner
FLDD004			0	R413191	Blank		Stephen Greiner
FLDD004	100	101	1	R413192		Shoulder sample of footwall	Stephen Greiner

								Total						
	Easting	Northing		Core				Depth	Date	Date			Overburden	Location of Core
Drillhole ID	(NAD83_Z16)	(NAD83_Z16)	Elevation (m)	Size	Drilling Company	Azimuth	Dip	(m)	commenced	completed	Date Logged	Logged By	depth	Storage
FLDD005	418447	5592055	364	NQ	Chibougamau Diamond Drilling Ltd	300	-45	75	21/06/2016	22/06/2016	28/06/2016	Stephen Greiner	3	Falcon Lake


DH_ID	FROM_M	TO_M	LITHOLOGY	Code	Description	Colour	Alb_%	Qtz_%	Spod_%	Kfel_%	Mica_%	Other	Alteration	Mineralisation
FLDD005	0	3	Overburden	OB										
FLDD005	3	55.7	Mafic Metavolcanics		Fine grained, moderate to strongly foliated mafic metavolcanics. Foliation strength is slightly variable throughout. Strong quartz/carbonate flooding occurs from 31.2 to 36. Other segregated quartz veins occur roughly along foliation at 5.2, 6.9, 9, 19.6 23.6 and 45.8. Weak biotite banding is seen from 39.5 to 43 and from 51.5 to 53.1. Dz	ark green						c	tz-chl-carb	ру/ро
FLDD005	55.7	57.2	Pegmatite		A small 1.5 meter spodumene bearing pegmatitic dyke. Both upper and lower contacts are sharp, cut foliation and show a weak (1 to 3mm) alteration halo. Overall the dyke is albite rich w/ coarse grained to megacrystic spodumene. Medium grained tourmaline is disseminated throughout. As usual the spodumene is rimmed by smoey quartz. Both the upper and lower contacts show weak spodumene poor zonation. Coarse to very coarse grained muscovite is present in greater amounts Gr than seen in most other PEG's and is zoned away from the spodumene rich sections.	reen-grey- hite	40	35	15	5	5	<1		spodumene
FLDD005	57.2	75	Mafic Metavolcanics		Quartz/chlorite altered mafic metavolcanics. A continuation of the upper metavolcanics unit but differs in that it shows more quartz and quartz/carb veining. A large quartz/carb vein/breccia is seen around 62m. Multiple other quartz veins occur both along an cutting foliation. Another small quartz breccia is seen at 64.7. A fold hinge is seen at 64.3m.									ру/ро


DH_ID	FROM_M	то_м	Length_M	Sample_ID	STD_Blank_ID	Litho_Comments	Sampled By
FLDD005	54.7	55.7	1	R413193		Shoulder sample of headwall	Stephen Greiner
FLDD005	55.7	56.4	0.7	R413194		PEG dyke from upper contact to center.	Stephen Greiner
FLDD005	56.4	57.2	0.8	R413195		PEG dyke from center to lower contact.	Stephen Greiner
FLDD005	57.2	58.2	1	R413196		Shoulder sample of footwall	Stephen Greiner

								Total	Date					
	Easting	Northing		Core				Depth	commence	Date	Date			Location of
Drillhole I	(NAD83_Z16)	(NAD83_Z16)	Elevation (m)	Size	Drilling Company	Azimuth	Dip	(m)	d	completed	Logged	Logged By	Overburden depth	Core Storage
FLDD006	418367	5592002	358	NQ	Chibougamau Diamond Drilling Ltd	300	-45	60	20/06/2016	21/06/2016	27/06/2016	Stephen Greiner	3	Falcon Lake

DH_ID	FROM_M	TO_M	LITHOLOGY	Code	Description	Colour	Alb_%	Qtz_%	Spod_%	Kfel_%	Mica_%	Other	Alteration	Mineralisation
FLDD006	3	11.9	Mafic Metavolcanics	MV	Quartz-chlorite altered, moderately foliated volcanics. Quartz veining is seen intermittently along foliation.	Dark green							qtz-chl	
					A small (1.2m) spodumene bearing pegmatitic dyke. The lower contact is sharp w/ a small (0.5cm) alteration halo into the	green-grey-								
FLDD006	11.9	13.1	Pegmatite	PEG	host. The dyke is quartz rich w/ weak albite and weak.Weak Spodumene forming in the center of the dyke.	white	15	70	10	0	5	<1	muscovite	Spodumene
FLDD006	13.1	13.9	Mafic Metavolcanics	MV	Quartz-chlorite altered, moderately foliated volcanics. Quartz veining is seen intermittently along foliation.	Dark green							Qtz-chl	
					A kspar poor zone of a spodumene bearing pegmatite. The upper contact does not show any prominent zonation of									
					aspodumene away from the headewall. The dyke does show intermittent sections of grain size variation									Spodumene/
					w/quartz/spodumene rich, coarse to very coarse grained zones inbetween more albite rich/spodumene poor pegmatitic	Light gree-								holmsquisite/
FLDD006	13.9	20.4	Pegmatite	PEG	zones. Blue holsquisite and some other oxides are more noticable w/ in the albits zones.	grey-white	20	40	35	0	5			other oxides
					A more kspar rich section of the dyke moving down to the foot wall. Again The dyke does show intermittent sections of									
					grain size variation w/quartz/spodumene rich, coarse to very coarse grained zones inbetween more kspar									
					rich/spodumene poor pegmatitic to almost megacrystic zones. Late quartz rich flow banding seem apparent at 24.4, 28.8	Light green-								
					and 31. Similar to the upper contact, the lower contact does not show a distinct, spodumene poor zonation. Again the	Pink-grey-								
FLDD006	20.4	34.3	Pegmatite	PEG	footwall contact is reletively sharp, cuts foliation and shows a weak (0.5cm) alteration halo.	white	10	30	25	30	5		potassic	Spodumene
					A strongly foliated, quartz/chlorite/carbonate altered mafic metavolcanics. Quartz/carb veins are intermittent throughout	t		1			1		1	
FLDD006	34.3	60	Mafic Metavolcanics	MV	the entire zone and run along foliation. Minor pyrite / pyhrrotite mineralization occurs w/ in the quartz / carb veining.	Dark green							qtz-chl-carb	py/po

DH_ID	FROM_M	то_м	Length_M	Sample_ID	STD_Blank_ID	Litho_Comments	Sampled By
FLDD006	10.9	11.9	1	R413197		Shoulder sample into headwall/ Note very rubbly/not terribly representative	Stephen Greiner
FLDD006	11.9	13.1	1.2	R413198		Small PEG dyke/spodumene poor	Stephen Greiner
FLDD006	13.1	13.9	0.8	R413199		Shoulder sample of footwall of upper dyke and shoulder sample of heawall of lower dyke.	Stephen Greiner
FLDD006	13.9	14.9	1	R413200		Sample from upper contact through albite rich spodumene bearing PEG	Stephen Greiner
FLDD006	14.9	15.9	1	R413201		Sampling through PEG/albite/spodumene rich zone	Stephen Greiner
FLDD006	15.9	16.9	1	R413202		Sampling through PEG/albite/spodumene rich zone	Stephen Greiner
FLDD006	16.9	17.9	1	R413203		Sampling through PEG/albite/spodumene rich zone	Stephen Greiner
FLDD006	17.9	18.9	1	R413204		Sampling through PEG/albite/spodumene rich zone	Stephen Greiner
FLDD006	18.9	19.6	0.7	R413205		Sampling through PEG/albite/spodumene rich zone	Stephen Greiner
FLDD006	19.6	20.4	0.8	R413206		Sampling through PEG/albite/spodumene rich zone	Stephen Greiner
FLDD006	20.4	21.4	1	R413207		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	21.4	22.4	1	R413208		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	22.4	23.4	1	R413209		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006			0	R413210	Standard		Stephen Greiner
FLDD006			0	R413211	Blank		Stephen Greiner
FLDD006	23.4	24.4	1	R413212		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	24.4	25.4	1	R413213		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	25.4	26.4	1	R413214		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	26.4	27.4	1	R413215		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	27.4	28.4	1	R413216		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	28.4	29.4	1	R413217		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	29.4	30.4	1	R413218		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	30.4	31.4	1	R413219		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	31.4	32.4	1	R413220		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	32.4	33.4	1	R413221		Sample of kspar rich, spodumene bearing zone.	Stephen Greiner
FLDD006	33.4	34.3	0.9	R413222		kspar rich zone down to footwall contact	Stephen Greiner
FLDD006	34.3	35.3	1	R413223		Shoulder sample of footwall.	Stephen Greiner
FLDD006	35.3	36.3	1	R413224		Continue into metavolcanics to check extent of potential leaching	Stephen Greiner
FLDD006	36.3	37.3	1	R413225		Continue into metavolcanics to check extent of potential leaching	Stephen Greiner
FLDD006	37.3	38.3	1	R413226		Continue into metavolcanics to check extent of potential leaching	Stephen Greiner
FLDD006	38.3	39.3	1	R413227		Continue into metavolcanics to check extent of potential leaching	Stephen Greiner

