We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

SOIL SAMPLING

ON THE

LEESON-BRACKIN PROPERTY OF JUBILEE GOLD EXPLORATION LTD.

SAULT SAINT MARIE MINING DISTRICT

NORTHCENTRAL ONTARIO - NTS-42B/5

2016

William R. Troup Consulting Geologist

•

Mississauga, Ontario November, 2016

SUMMARY

Jubilee Gold Exploration holds a 100% interest in the Leeson-Brackin Gold Property, consisting of 24 patented claims, and 7 staked claims, located 22 kilometres east of the town of Missanabie, and approximately 120 kilometres north-east of Wawa, in North-Central Ontario. The property adjoins the past producing Renabie Gold Mine, and hosts a common mineralized structure with the Renabi property.

In July and August of 2016, a 6.5 kilometre core section of the original 2008 grid was re-cut, in order to retain control for continuing exploration on the property. Detail soil sampling was completed in the west-central section of the property and returned elevated gold values similar to the results of the preliminary sampling of 2015, confirming the presence of a new target area for future evaluation.

i

TABLE OF CONTENTS

	PAGE
SUMMARYi	
TABLE OF CONTENTSii	
INTRODUCTION1	
PROPERTY, LOCATION AND ACCESS1	
PROPERTY HISTORY – PATENTED CLAIMS1	
GEOLOGY OF THE LEESON-BRACKIN AREA4	
KNOWN GOLD OCCURRENCES IN THE LEESON-BRACKIN AREA5	
2015 SOIL GEOCHEMICAL SURVEY9	
OBSERVATIONS AND RECOMMENDATIONS	
REFERENCES12	
CERTIFICATE	

STATEMENT OF COSTS......16

LIST OF FIGURES

FIGURE 1:	Location map
FIGURE 2:	Claim Map
FIGURE 3:	Claim location Map Showing Area Mineral Occurrences

LIST OF APPENDICES

APPENDIX A RE: MMI LINE PROFILES OF RR VALUES FOR AU, AG, etc APPENDIX B...LABORATORY REPORTS AND CALCULATED RR VALUES APPENDIX C...FIELD NOTES APPENDIX D...SOIL GEOCHEMICAL MAP (Au) + DATA COMILATION MAP APPENDIX E...EXPENSES (Not Included).

JUBILEE GOLD, LEESON-BRACKIN PROPERTY

INTRODUCTION

Jubilee Gold Exploration Ltd. holds a block of patented and staked claims in Leeson Brackin and Stover townships, in the Sault Saint Marie Mining Division, of north-central Ontario (see Table 1). The patented claims adjoin the past-producing Renabie Gold Mine Property to the south. Previous work completed prior to 1990 identified a number of gold occurrences on the Leeson-Brackin property. One such gold zone (the 21 Zone) was open-pit mined by Texas Gulf for its silica-gold content in the period 1988-90.

PROPERTY LOCATION AND ACCESS

The Property consists of 24 patented mining claims, in the Renabie area of north-central Ontario, and an adjoining block of 83 claim units in 7 additional staked claims. The area is accessible by paved highway 651 which extends for approximately 60 kilometres northward from Highway 101 to the Town of Missanabie. An all-weather logging Road extends 22 kilometres eastwards from Missanabie into the patented claims of the Leeson-Brackin property. Secondary logging roads provide access to the east and west ends of the staked claim block.

The Renabie Gold Mine Property (past producer) immediately adjoins the Leeson-Brackin property to the north. The Renabie Property was mined intermittently from the 1940's to the mid 1980's, during which time it produced approximately a million ounces of gold.

PROPERTY HISTORY – PATENTED CLAIMS

The Patent Leeson-Brackin claim block is part of a larger claim block that was staked in 1939, following the discovery of the Renabie Gold Mine immediately to the north. A number of goldbearing veins were discovered on the Leeson-Brackin property by Canbrae Exploration in the period 1940 – 1941. Braminco Mines Limited subsequently acquired the property and carried out additional exploration during the period 1946-47. Figure 3 of this report (after G. Hogg, 2003) shows the relative locations of the various veins located on the property and in the immediate area, plus the location of our target areas of current interest.

Surface sampling and diamond drilling by Braminco lead to the following reported reserves for the property which would now be best classed as an Indicated Mineral Resource, and historical in nature.

No. 21 Vein – 100,000 tons @ 0.15 oz. Au/ton No. 7 Vein - 23,000 tons @ 0.13 oz. Au/ton B Vein - 5,000 tons @ 0.26 oz. Au/ton

Figure 2

TABLE 1

Township/Area	Claim Number
Leeson	S34468
Brackin	\$34471
Brackin	\$34543
Leeson	\$34797
Brackin	\$34798
Brackin	\$34799
Brackin	S34821
Brackin	S34822
Brackin	\$34823
Brackin	S34824
Leeson	S35117
Brackin	S35121
Brackin	\$35120
Brackin	S35088
Brackin	\$35123
Brackin	S35124
Brackin	S35145
Brackin	S35146
Brackin	S35148
Brackin	S35150
Brackin	\$35272
Brackin	\$35274
Brackin	S35979
Brackin	S35982
TOTAL	24

PATENTED MINING CLAIMS-LEESON BRACKIN PROPERTY

TABLE 2

Township/Area	Claim Number
Stover	4245160 (4 Units)
Stover	4245161 (12 Units)
Stover	4245162 (12 Units)
Brackin/Leeson	4245163 (14 Units)
Brackin/Leeson	4245165 (16 Units)
Brackin	4245164 (11 Units)
Brackin	4245166 (13 Units)
TOTAL	83 Units

STAKED CLAIMS-LEESON BRACKIN PROPERTY

The property was retained by Brominco but remained inactive until 1984, when it was optioned to Canreos Minerals Ltd. A 3,300 ton bulk sample was taken from the 21 vein and shipped to the Kidd Creek and Noranda smelters for testing as silica flux ore. Reportedly, the larger portion of this sample (3,000 tons) was shipped to Noranda, and returned 0.217 oz Au/ton and 71.9% silica.

Kidd Creek subsequently optioned the property, and by the end of 1987 had shipped 30,500 tons of auriferous flux from an open cut on the 21 vein.

A decline was driven into the 21-Zone to allow for further development. Additional drilling was reportedly directed at the No 7-Zone and B Veins. In February 1988, Canreos Minerals reported a combined resource (probable, possible and inferred) for the 21-Zone, No. 7-Zone and B-Zone totaling 290,827 short tons @ 0.084 o.p.t Au.

The Canreos Minerals option was terminated in 1990. In 1994, the property was purchased from Braminco Mines Limited by Young-Davidson Mines Limited. The claim group was reduced in size to a core group of 24 key claims to reduce yearly maintenance fees. Concopper Enterprises Limited purchased the property from Young-Davidson Mines Limited in 2003. In late 2008, Concopper established a control grid on the property, and completed ground magnetic and IP geophysical surveys. The adjoining Stover Township Claims were staked in May 2009. Concopper was re-organized with a name change to Micon Gold Inc. in early January 2011.

The Leeson-Brackin property is adjoined immediately to the north by the Renabi and Anglo Dominion properties. Both these properties are located in a similar geological environment as Leeson-Brackin, and both have seen past production. The Renabi mine produced 3,685,992 tons of ore at a recovered grade of 0.212 oz. Au/ton during initial operation from 1947 to 1970, when mining extended to a vertical depth of 3,500 feet.

The Renabi reopened in1987 under Corona Corporation and American Barrick, and between 1987 and 1991, the mine produced 1 million tons of ore grading 0.19 oz. Au/ton, during which time underground operations were e

tended to a depth of 4,500. The mine is now closed and the Renabi mine and town site has undergone extensive rehabilitation.

The adjoining Anglo Dominion property was originally known as the Nudalama property. During the period 1947 to 1951, a vertical shaft was sunk to 1,065 feet. No production was recorded, but a resource estimate of 579,320 tons grading 0.194 oz. Au/ton, was calculated to a depth of 750 feet, where the vein system plunged onto the Renabi property to the west. During the period 1985 to 1990, under Anglo Dominion's ownership, 111,600 tons of material grading 0.15 oz. Au/ton, was shipped to the Kidd Creek smelter as flux ore. Production was from the No. 1 Vein, which was developed by open pit and a decline to the 150 foot level. The operation closed in 1990.

Concopper established a control grid on the patented claim group in 2008, and completed a ground magnetometer and induced polarization (I.P.) geophysical survey. Concopper subsequently staked an additional 83 claim units adjoining the patented claims to the west, and completed soil geochemical sampling over select targets of initial interest across the enlarged property.

Concopper was re-organized into Micon Gold Inc., and in 2012 completed additional ground geophysical surveying, and soil geochemical sampling over portions of the staked claim group.

Micon Gold Inc. was subsequently re-organized into Jubilee Gold Exploration Ltd., and in 2013 follow-up soil sampling was completed over select geophysical targets from the 2012 survey.

In 2015, Jubilee completed preliminary soil sampling along pace and compass lines across a 1 kilometre section of a strong north-south trending IP chargeability anomaly, located in the southeastern section of the property. The survey returned a clustering of anomalous gold values in the area.

GEOLOGY OF THE LEESON-BRACKIN AREA

The area is underlain by granodioritic rocks which are in contact with mafic volcanics along the west boundary of the claim block. The main volcanic-granodiorite contact strikes southeasterly across the Renabi property and the western limit of the Leeson-Brackin property. The known auriferous vein systems of the area occur within the granodiorite, and typically exist as fine-grained, white sugary quartz with bands of disseminated pyrite and minor galena. Individual veins reportedly vary in thickness from a few inches to over 30 feet, and commonly exhibit excellent vertical continuity along distinct plunge lines. On the Leeson-Brackin claims, the No 21 and No 7 veins reportedly displayed a plunge of 30 degrees to the north.

D. McBride (1990), noted that the major vein systems in the area commonly lie within sharply folded locations along a variably sheared major structure (the "Frontenac Horizon") which extends in a southerly direction through the granodiorite complex, and which seems to represent a favorable depositional environment for silica, pyrite and gold. Auriferous veining has been found to be frequently present in areas of minor folding along this structure.

Gold deposits in the area reportedly occur commonly at or near the intersection of northerly and easterly trending fault structures. Individual deposits often have been referred to as pencil shaped, with a short strike length, and extending down plunge for considerable distance as a series of parallel overlapping, or on-echelon lenses.

KNOWN GOLD OCCURRENCES IN THE LEESON-BRACKIN AREA

Exploration in the general Missanabie area started in the late 1930's, and resulted in the discovery of the Renabie Mine which was placed in production in 1946. The surrounding area was explored by a number of companies in the period 1945-1950, following World War II. Canbrae Exploration discovered several significant gold occurrences south of the Renabie property on what is now the Jubilee property.

Brominco Mines acquired the Canbrae and adjacent property in 1946, and continued exploration on the group in 1947. No further work was completed on the property until 1983, when it was acquired by Canreos Minerals.

In the period 1983 to 1989, Canreos carried out ground geophysical surveying over what is now the Jubilee property. This was accompanied by geological mapping and prospecting, trenching and sampling and several diamond drill programs.

In February 1988, Canreos Minerals reported a combined resource (now historical) totaling 290,627 short tons @ 0.084 o.p.t. Au for the 21 Zone, 7 zone and B vein (average width 6.3 feet). This resource is now considered historical in nature and not compliant with 43-101 requirements.

Known gold occurrences on the Jubilee Property occur in granitic rocks, and are described briefly in the following section.

"21" Gold Zone

The "21 Zone is associated with a zone of shearing which strikes roughly north- 30° east, parallel to the Metavolcanic-granite contact located 250 metres to 300 metres to the west. The 21 Zone is the most significant of the gold zones encountered to date on the property. At surface and in the area of exposure, the "21" zone shear dips westerly at 50 to 60 degrees. The main mineralized section of the "21" zone has an apparent length of approximately 220 metres in a north-south orientation, and a width of approximately 10

metres. Within the mineralized horizon, mineralization appears concentrated in shoots plunging to the northwest at approximately 30 degrees. Gold occurs with quartz lenses and siliceous replacement within the shear, and is commonly associated with sulphides. Pyrite and galena are most common, but minor chalcopyrite and /or molybdenite are locally present. A 3000 ton bulk sample was taken from the surface of the "21" zone in late 1985, and shipped to the Horne smelter in Noranda for testing as a silica smelter flux. In 1985, a decline ramp was commenced for the purpose of collecting a similar 5000 ton bulk sample for shipment to the Kidd Creek smelter in Timmins. By 1988, 130,000 tons of open pit and development ore, containing 0.12 oz/ton Au, had reportedly been shipped to the Kidd Creek smelter in Timmins as flux ore (W. Brack. 1989). In February 1988, the resource of the 21 vein (probable, possible and inferred and now historical) was stated to be 102,920 short tons @ 0.108 o.p.t. Au (av. width 12.4').

The central 200 metre long section of the currently defined #21 Zone remains open and currently untested below the vertical depth of approximately 100 metres. Previous drilling near the south end of the defined section of the #21 zone encountered a wide section of shearing carrying anomalous gold (0.04 opt/105 feet core length). Further testing at depth is warranted.

"7" Zone

The main section of the #7 Zone is located about 200 metres southeast of the 21 Zone (or vein). The main section of the #7 Zone has been traced on surface for over 100 metres, with an apparent width of 4 metres. Silicification within the #7 shear zone has been reported to be less intense than within the main section of the 21 Zone. In 1987, a 4600 ton bulk sample was taken from a small open pit on the No. 7-Zone, and shipped to the Kidd Creek smelter. In February 1988, Canreos reported the resource of the No. 7 Zone (probable + possible + inferred, and now historical) at 176, 379 short tons @ 0.066 o.p.t Au, average width 24.8 feet).

The shear hosting the #7 Zone intersects the #21 Zone near its apparent south end, and trends in an easterly direction across the property, passing close to Zones "22", "B" and "C" described below. Soil sampling completed in 2009 and 2010, suggests the host shear may continue in an easterly direction across the property.

"A-Zone"

The "A" zone" is descried as a narrow zone of quartz enrichment located 200 metres north of the east extension of the "7- Zone" shear. Canbrae completed 6 drill holes in the area of the A-Zone in 1941. The best drill intersection reported was 0.29 opt Au over a core length of 4.25 feet.

"B" Vein

The "B" vein is located 400 metres east of the #7 zone, and 175 metres south of the "A" zone. The "A" and "B" zones appear to occupy a parallel northerly trending shear to that hosting the "21-Zone". The "B" vein appears to lie a possible 60 metres to the west of the projected south extension of the "A" vein, and is described as a quartz-sericite pipe, enriched locally in pyrite and galena. The pipe which has been exposed for approximately 50 metres on surface, reportedly plunges at 40° to the southwest. Gold occurs in areas of sulphide enrichment. Canbrae completed 12 holes in the area of the B-zone in 1941. In 1985 Canreos completed an additional 11 drill holes in the area. Better drill intersections included 0.136 opt Au over 20.5 feet, and 0.525 opt Au over a core length of 6.8 feet. Outside of the pipe, gold mineralization appears of low grade and erratic, and the tonnage potential of the B-Vein appears limited. In February 1988, the mineral inventory for the B-Zone (probable + possible + inferred and now historical) was reported at 11,528 short tons @ 0.153 o.p.t Au, av width 6.3 feet).

"C" Zone

The "C" zone is located 400 metres southeast of the "B' zone. Fissure veins and quartz filled fractures are reported to be quite common in the area. Chlorite alteration is said to predominate over sericite alteration in the area, and hematite enrichment locally accompanies anomalous gold values. Trenching and some 32 drill holes have previously been directed at the area, and indicate the presence of high grade but erratic gold values. Canbrae Exploration drilled 8 holes in the area in 1941. Canreos completed some 24 holes in 1987. The best drill intersection reported was 0.14 opt Au over 15 feet.

"D" Zone

The "D" Zone is located 1.8 kilometres southeast of the "21- Zone", and just east of the Leeson-Brackin property boundary. Pyrite and minor other sulphides are reportedly concentrated along with anomalous gold values in a northeast trending fold nose (axis trending between 115 and 150 and dipping 15 to 40 to the northwest (W. Brack 1988).

"22"Zone

The "22" zone is located 140 metres east-south-east of the #7 Zone open pit. Canbrae trenched the area and drilled one hole on the target in 1941. Surface trenching returned 0.10 opt Au over 11.0 feet, and drilling returned 0.08 opt Au over 8.0 feet. Mapping in this area in the 1980's, suggested the #22 Zone may represent part of an easterly trending structure not well tested by previous drilling. Soil geochemical sampling completed in 2009, returned elevated gold values from an area 200 metres further to the east. It seems possible that shearing in the area of the "22" zone may continue eastward into the area of this soil geochemical anomaly. Detail soil sampling in 2010 along trend of this target horizon offers support for the local presence of gold associated with an east-west trending structure.

Other Gold Zones And Occurrences

The "Springer-Vein" and "69-Vein"

The "Springer" and "69"Zones are present along a continuous horizon, located 1,300 metres south of the "7" zone. The mineralized trend strikes approximately 135°, and dips steeply to the southwest. Gold values of up to 0.19 opt over 0.75 metres have been reported from trench sampling of the "69" vein. A single drill hole completed in this area in1946 returned 2.86 o.p.t. Au over a 2.0 foot long core section. Seven holes drilled along trend to the north, in the area of the "Springer Zone", returned no economically significant gold values. The best drill intersection in this northern section of the trend was 0.71 opt Au over 0.5 feet.

"23-Zone"

The "23"-Zone is located 270 metres south of the "7" zone sample pit. It is described as a narrow quartz vein that returned a gold value of 0.030.p.t. from early 1940 vintage sampling. Soil sampling (MMI method) completed in 2009, returned elevated gold values of up to 16 times background from 30 metres to the south, and associated with a weak IP chargeability anomaly. Detail soil sampling is warranted in this area.

"45" Zone

The "45" Zone is located 600 metres south of the "7" zone pit. Minor gold mineralization apparently was encountered in a southeast trending quartz vein, dipping steeply to the south. Four drill holes were completed on the zone in 1987, and the best gold value obtained was 0.71 opt over 0.5 feet. Veining apparently was narrow and gold values quite erratic.

"72"-Zone

The "72"-Zone is located approximately 1,600 metres south-east of the "#7" vein , and 800 metres south of the "D" Zone. It is described by Brack (1988) as a 35 metre long and 3 metre wide quartz vein at the intersection an older north-south structure and a younger easterly trending structure (110°), and dips steeply to the south. Sulphide mineralization is indicated to be minor. Gold values of up to 0.19 opt over 0.7 metres were reported from early surface sampling. Diamond drilling reportedly returned only sub-economic gold values. Soil sampling completed in 2009 returned an elevated gold value of 54 ppb gold from a sample line 70 metres to the south, and associated with a weak chargeability anomaly. (The Background gold value in this area was 4 ppb).

"73-Vein" (North Extension)

The "73" vein – North Extension" is located near the south-west corner of the property. In the 1940's, grab samples from trenching and sampling of the "73-Vein" reportedly returned assays of up to 0.67 oz/t Au. Assays of up to 1.36 oz/t Au and 1.22 oz/t Ag over 3 ft were reported in early drilling by Macabie Mines Limited in 1980. Following further drilling, gold mineralization was concluded to be localized and erratic in distribution. In 2010, Micon Gold Inc. completed a single line of soil sampling across the area, near the south limit of the property which returned no significant gold values.

"75"-Vein

The "75" vein is located near the southeast boundary of the property. A single drill hole completed in 1987 returned 0.79 opt Au over a 0.7 foot core section, at a hole depth of 183.9'. Mineralization appears confined to a southerly trending narrow quartz vein.

"88-Zone"

The "88" Zone is located approximately 200 metres north-east of the "73" Zone, and near the eastern property boundary. The area also received early drilling. The vein was reported as being similar to the "73" Zone, and not of economic importance.

"98-Vein"

The "98" Zone is located 250 metres west of the "#7" zone pit. It was described as a narrow southerly trending quartz vein. An unsuccessful attempt was made to locate the showing in 2009; however, an isolated high soil gold-geochemical anomaly of 126 ppb was obtained just 60 metres south of the suspect location of the showing. Follow-up prospecting of the anomalous sample site produced no local explanation for the soil anomaly, and it is suspected it may be due to the presence of glacially transported material from the north.

2016 - SOIL-GEOCHEMICAL SURVEY

In July-August 2016, approximately 6.5 kilometres of the Concopper grid of 2008 was re-cut, to retain control for continuing exploration. Soil sampling was initiated along select grid lines in the south sector of the patented claim group. Five sample lines were directed westward across a kilometre long section of a strong northerly trending IP chargeability anomaly straddling the granite-greenstone contact near the west boundary of the property. The anomaly of interest trends roughly parallel to the strike of the #21 Gold Zone. Preliminary soil geochemical sampling completed in this area in 2015 returned elevated gold values from this area.

In 2016, a sixth and final sample line (Line 1700 South) was positioned north of the historic Springer Vein, and directed eastward for 450 metres across the property.

<u>General</u>

204 soil samples were collected along six lines, and samples were delivered by truck to SGS Laboratories in Sudbury, Ontario.

Analysis

The SGS field Laboratory in Sudbury shipped the samples to their Laboratory in Vancouver to be processed by the MMI Method for eight elements (Au, Ag, As, Cu, Zn, Pb, Mo and Co).

<u>Control</u>

SGS Laboratories processed a selection of duplicate samples, and also inserted laboratory standard and blank samples. In all instances, such check sampling supported the accuracy of the results.

Data Treatment and Presentation

Soil-gold geochemical results from the patented claim block are presented in map form in Appendix D of this report.

The MMI method of analyses is a proprietary technique first developed in Australia, but now commonly used in Canada. The "raw" geochemical data is collected, and for presentation purposes, for each sample, response Ratios (RR) are calculated for each element analyzed. The Response Ratio is a measure of how a particular assay relates to the background value for the sample population.

During the current survey, RR values for the various elements were calculated as follow:

- 1. Any assay below the detection limit (Au limit is 1 ppb) is assigned a value of ¹/₂ the detection limit.
- 2. The lower quartiles, of the population of geochemical analysis for individual elements in the survey, were selected and sample values in these lower quartiles were averaged.
- 3. For each sample, the geochemical analysis for each element was divided by the appropriate lower quartile averages calculated above, to produce Response Ratios for each of the five elements.

Response Ratios below 5 are normally considered of doubtful significance.

The RR values for elements of interest (in the current case gold) can then be presented in a series of map plots or bar charts. For the 2015 sampling, RR values are presented in a series of bar charts in Appendix A of this report.

Results of 2016 Soil Sampling

Anomalous gold values were obtained from a clustering of soil sample sites on each of four lines across a 500 metre section of a northerly trending induced polarization (I.P). chargeability anomaly identified by Concopper in 2008, in the southwest section of the property. Soil-Gold values in the range from 6 to 50 times background were encountered during the current survey. Elevated gold values of 6 to 36 times background were also obtained from a fifth sample line located 375 metres to the north (grid-line 625 South).

Soil gold-geochemical results obtained during the current program compare favorably with sample results obtained previously by Concopper near known gold occurrences elsewhere on the property. The chargeability anomaly targeted by our current survey occurs along the eastern side of the granite-volcanic contact located near the west side of the property. A series of historic gold occurrences (the 75 Vein, 72 Vein, 69 Vein and Springer vein) occur along a common westerly trending cross structure that appears to project into the most anomalous portion of our 2015-2016 sample area.

Sampling in 2016 on line 1700S, north of the historic Springer Gold Vein, and continuing eastward across the claim group, returned only background gold values.

OBSERVATIONS AND RECOMMENDATIONS

Soil geochemical sampling in 2016 confirmed the presence of an area of elevated gold values indicated previously by preliminary soil sampling in 2015, along a 500 metre long north-south trend near the western side of the property. Soil sampling also returned elevated gold values 375 metres further to the north along the same trend. Two historic gold occurrences (the #73 and #88 gold veins) in the southwest corner of the patented claim group, appear to lie along the projected south extension of this anomalous trend, and the historic #21 gold zone, located near the north property boundary, occurs along the projected north extension of this same trend.

The two kilometer long trend extending through our survey area of 2016 northward towards the historic #21 gold zone is recommended for detail evaluation. The grid section west of the base line, and extending from 1250 metres grid south to 1750 metres grid south, and the area near the base line on Line 625 metres grid south, warrant follow-up evaluation. Scattered outcrops were observed throughout these areas during recent soil sampling, and follow-up surface prospecting of these areas is recommended.

Figure 3

REFERENCES

Brack, Winfrid, PH.D., April 1989; Appraisal Report For The Canreos Minerals (1980) Property In Brackin and Leeson Townships, Missinaibi Area, Northern Ontario.

Campell, E.E., January 1948, Report on The Geology At Baltic Mines Limited (Covering Field Work Done In 1947.

Gardiner M. C. & Low, John H., Oct. 1947, Report of a Geological Survey of a portion of the No. 1 Group, Camex Mines Ltd., Brackin & Leeson Townships, Ontario.

Huston, C.C, Dec 31, 1947; Report On Braminco Mines, Limited,

Junior Mine Services Ltd., October 12, 1988; Canreos Minerals (1980) LTD. Monthly Report.

Junior Mine Services Ltd., November 7, 1988; Canreos Minerals (1980) LTD. Monthly Report.

Ontario Department of Mines Vol. LI, Part VIII, 1942, Bruce, E. L., Geology of the Renabie-Leeson Area.

Ontario Geological Survey Report 172, Gerald Bennett 1978; Geology of the Crooked Lake Area, District of Sudbury.

Ontario Geological Survey -1988; Geophysical/Geochemical Series, Map 81021, Wawa Area-District of Sudbury, Airborne Electromagnetic Survey/Total Intensity Magnetic Survey

McBride, Dr. Derek, P.Eng. January 17, 1985; Canreos Minerals (1980) Limited Braminco Option, Report On The 1984 Summer Diamond Drilling.

McBride, Dr. Derek, P.Eng. January 31, Missibay Mining Inc.1986; Canreos Minerals (1980) LTD. Report On The 1985 Drilling Program On the 7 and B Zones plus Paquette Claims Brackin Twp.

McBride, Dr. Derek E. P.Eng. November 19, 1990; The Braminco Property Brackin Township Review And Recommendations For Future Work.

McCombre, J., September 12, 1983; Report to Canreos Minerals (1980) LTD. On THE BRAMINCO MINES LTD. PROPERTY, Brackin and Leeson Townships, Missinabie Area, Porcupine Mining Division Ontario McCombre, J., December 3, 1983; Report to Canreos Minerals (1980) LTD. On THE PAQUETTE, CAMPBELL PROPERTIES, Brackin Township, Missinabie Area, Porcupine Mining Division Ontario

McCombre, J., January 30, 1984; Progress Report to December 31, 1983 on The "Canreos Property" Brackin & Leeson Townships, Porcupine Mining Division Ontario.

McCombre, J., March 7, 1984; Report to Canreos Minerals (1980) Limited on The Property of Jedburgh Resources Ltd. Brackin Township, Porcupine Mining District Northern Ontario.

McCombre, J., April 18, 1984; Progress Report to March 31, 1984 on The "Canreos Property" Brackin & Leeson Townships, Porcupine Mining Division Ontario.

McCombre, J., July 30, 1984; Progress Report to June 30, 1984 on The "Canreos Property" Brackin & Leeson Townships, Porcupine Mining Division Ontario

McCombe, J.E. P. Eng., Tenoga Consultants Inc., January 30, 1985; Progress Report To December 31, 1984, On The "Canreos Property" Brackin and Leeson Townships, Porcupine Mining District, Ontario.

McCombe, J.E., P.Eng., June 1985; Canreos Mines (1980) LTD. Report On The 1985 Drilling program on the 7 and B Zones Plus The Paquette Claims Brackin Twp.

McCombe, J.E., P.Eng., June 24, 1985; Report On The Canreos Minerals (1980) Property" Brackin and Leeson Townships, Porcupine Mining District, Ontario OMEP Designation OM84-5-C-237

McCombe, J.E., January 20, 1986; Report on The "Canreos Property" Brackin & Leeson Townships, Porcupine Mining Division Ontario.

McCombe, J.E., January 31, 1986; Progress Report to December 31, 1986 on The "Canreos Property" Brackin & Leeson Townships, Porcupine Mining Division Ontario

McCombe, J., April 1987 Tenoga Consultants Inc.; Report to Canreos Minerals (1980) Limited On A Diamond Drilling Programme Canreos Patents and East Group, Brackin Township Sault Ste. Marie Mining Division

McCombe, J., July 17, 1987 Tenoga Consultants Inc.; Report to Canreos Minerals (1980) Limited On Property Held in Brackin & Leeson Townships, Missinabie Area, Sault Ste. Marie Mining Division, Northern Ontario.

Slack, John, April 7, 1988; Canreos Minerals (1980) Ltd. Braminco Property 1987-1988 Exploration Program.

TENOGA CONSULTANTS INC., April 1987; Report to Canreos Minerals (1980) Limited on a Diamond Drilling Program Jedburgh Option Brackin Township Sault Ste. Marie Mining Division. (note logs only available)

Troup, W. R. 2011, Micon Gold Inc. Exploration on the Leeson-Brackin Property, 2009-2010.

Winter, L.D.S., P. Geo., Dan Patrie Exploration Ltd., November 28, 2008, Geophysical Report on The Leeson-Brackin Property, for Concopper Enterprises Inc.

Miscellaneous loose drill logs and sections and maps Canreos Mines etc. – Toronto office of Concopper.

Miscellaneous Assessment Files, Ontario Ministry of Natural Resources, Division of Mines (Timmins Office)

William R Troup.

William R. Troup Mississauga Ontario

November 2016

CERTIFICATE OF QUALIFICATIONS

I, William R. Troup of Mississauga, Ontario, hereby certify and declare the following:

- 1. I am a Consulting Geologist.
- 2. I graduated from the University of Waterloo with an MSc Degree in Geology in 1975.
- 3. I have been practicing my profession for the past 41 years.
- 4. I am a fellow in the Geological Association of Canada.
- 5. I supervised and participated in the 2016 soil sampling program on the Leeson-Brackin property, in north-central Ontario.
- 6. The opinions expressed in this report are based on my personal observations, and on a review of public geological and geophysical reports on the area.

William R Troup

William R. Troup, MSc. BSc. F.G.A.C. P. Geol

Mississauga, Ontario November 30, 2016

STATEMENT OF EXPLORATION EXPENDITURES

LEESON-BRACKIN - JUNE TO DECEMBER 2016

CONTRACT EXPLORATION SERVICES	
Alcanex Ltd., Geological Services\$1	3,345.01
-Preparation for line cutting + soil sampling\$7,043.00	
- Data Compilation & Reporting on soil sampling\$6,302.01	
DAN PATRIE EXPLORATION SERVICES	9,718.00
SGS Laboratories <u>\$6</u> -MMI sample analysis.\$1,918.74+\$2,743.19+\$1,992.08	<u>5,654.01</u>

TOTAL \$29,717.00

William R Froup.

W. Troup Geological Consultant.

November 2016

APPENDIX A

MMI LINE PROFILES OF RR VALUES FOR AU, AG, etc

APPENDIX B

LABORATORY REPORTS AND CALCULATED RR VALUES

Certificate of Analysis Work Order: VC162367 Date: August 15, 2016 The BILL TROUP Date: Selection BO RICHMOND STW SUB RICEMOND ON MSH 253 Date: Selection Monoration Monoration BO RICHMOND STW SUB RICEMOND ON MSH 253 Date: Selection Correst 2005 Correst 2005 Date: Selection Correst 2005 Go G Samples Monoration Monoration Correst 2007 Selection Propersparation processing, sorting, logging, boxing Mobile Metal ION standard package/ICP-MS Selections to selection their score of secreditation which can be found at http://www.scc.awaheser/baalcandage Selections to selection their score of secreditation which can be found at http://www.scc.awaheser/baalcandage Metal contents to the couplestant of the score of secreditation which can be found at http://www.scc.awaheser/baalcandage Metal contents to the couplestant of the sample makes detection impossible by the mathed to make a the to an test at the score of secreditation which can be found at http://www.scc.awaheser/baalcandage Metal contents to the couplestant of the sample makes detection impossible by the mathed to mathed to mathed to mathed	Sec Adjust 15, 2016 Term BILL TROUP JUBILE GOLD EXPORTION LTD SO RICHMOND STW SUITE 605 TORONTO ON MSH 259 Mo. Of Samples Mo. Of Samples Method Summary Mo. Of Samples B0 RECTIFIEd No. Description B0 B1 B1 B1 B2		4			
Work Order: VC16236F [Report File No.: 0000018471] Dete: August 15, 2016 DJUBLEE GOLD EXPLORATION LTD SUITE 605 TORONTO ON M6H 259 P.O. No.: Line 1315, 1190 South L-B Property Project No.: Signification in the same file of the same fi	Work Order: VC162367 [Report File No.: 0000018471] Date: August 15, 2016 TS: BILL TROUP JUBILEG COLD EXPLORATION LTD SUITE 605 TORONTO ON M6H 259 P.O. No:: Line 1315, 1190 South L-B Property. Project No:: 40, 32, 016 Methods Summary Receives: 40, 93, 2016 Project No:: 50 (Inclusive of Cover Sheet) Motion Summary Method Code Description 60 G_LOGO2 Pro-preparation processing, sorting, logging, boxing Mobile Metal ION standard package/ICP-MS Staffield By: John Chiang- QC Chemist Staffield By: John Chiang- QC Chemist Staffield By: John Chiang- QC Chemist Staffield By: Line Institution Shinger Mobile Metal ION standard package/ICP-MS John Chiang- QC Chemist Staffield By: Line Institution which can be found at http://www.scc.cales/searchiputcan/bgs Mobile Metal ION standard package/ICP-MS John Chiang- QC Chemist Staffield By: Line Institution which can be found at http://www.scc.cales/searchiputcan/bgs Mile a rased/ domotes poto pon conversion, % dowe subcomation John Chiang- QC Chemist Mile a composition of this sample makes detection imposible by this method John Chiang- QC Chemist Mile a conversion which can be found et http://wwww.scc.cales/searchiputcan/bgs			Certific	ate of Analysis	
Report File No.: 0000018471] Date: August 15, 2016 Sulling Cold Exploration LTD BURKINGON TOW SURGEROUT ON MSH 259 P.O. No:: Line 1315,1190 South L-B Property: Samples: 60 Samples: 60 (Inclusive of Cover Sheet) Methods Summary Description 60 G.LOGO2 G.G.LOGO2 G.G.LOGO2 G.G.LOGO2 G.G.COGO2 G.G.LOGO2	Report File No.: 0000018471] Date: August 15, 2016 Sublice GOLD EXPLORATION LTD BURCHMOND ST W SUBLICE OF TORONTO ON MSH 259 P.O. No:: Line 1315, 1190 South L-B Property: Samples: 60 (Inclusive of Cover Sheet) Methods Summary Exploring Method Code GO G_LOGO2 FOR GE_MM_M Description Pre-preparation processing, sorting, logging, boxing Mobile Metal ION standard package/ICP-MS Soft Minerals Services Geochemistry Vancouver conforms to the requirements of SO/EC 17225 for specific tests as listed on their accope of accreditation which can be found at http://www.scc.cakenseetchpalcantegs Report Foder: LNR:: LNR:: Listed on freelved makes detection which can be found at http://www.scc.cakenseetchpalcantegs Report Foder: LNR:: Listed on freelved makes detection which can be found at http://www.scc.cakenseetchpalcantegs Report Foder: LNR:: Listed on freelved makes detection which can be found at http://www.scc.cakenseetchpalcantegs Report Foder: LNR:: Listed on freelved makes detection which can be found at http://www.scc.cakenseetchpalcantegs Report Foder: LNR:: Listed on freelved makes detection which can be found at http://www.scc.cakenseetchpalcantegs Report Foder: LNR:: Listed on freelved makes detection which can be found at http://www.scc.cakenseetchpalcantegs Report Foder: LNR:: Listed on freelved makes detection which can be found at h			Work O	der : VC162367	
Date: August 15, 2016 To: BILL TROUP JUBILE EGOLD EXPLORATION LTD Sample:: BO RICHMOND ST W Sample:: SO RICHMOND ST W Sample:: BO RICHMOND ST W Mobile Metal ION standard package/ICP-MS Mobile Metal ION standard package/ICP-MS John Chiang SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISD/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.cales/search/palcan/gs SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISD/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.cales/search/palcan/gs SGS Minerals Services Geochemistry Vancouv	Date: August 15, 2016 To: BILL TROUP JUBILE COLD EXPLORATION LTD So RICHMOND ST W So RICHMOND ST W Samples: BO G Samples Method Code Description GO G LOGO2 Pre-preparation processing, sorting, logging, boxing BO RICHMOND SAMPLE Mobile Metal ION standard package/ICP-MS SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accredition which can be found at http://www.scc.calenisearchyalcantgs SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accredition which can be found at http://www.scc.calenisearchyalcantgs SGS Minerals Services Geochemistry Vancouver conforms to the requirements of			[Report Fil	e No.: 0000018471]	
To: BILL TROUP JUBILEE GOLD EXPLORATION LTD 80 RICHMOND STW SUITE 605 TORONTO ON MSH 2S9 Methods Summaxy No. Of Samples Method Code 60 G_LOGO2 7000 The file By: John Chiang QC hemist SGS Minerals Services Geochamistry Vancouver conforms to the requirements of SO/EC 17026 for specific tests as listed on their scope of accreditation which can be found at http://www.sccc.aken/searchipalcanAge SGS Minerals Services Geochamistry Vancouver conforms to the requirements of SO/EC 17026 for specific tests as listed on their scope of accreditation which can be found at http://www.sccc.aken/searchipalcanAge Report Footer: <td< td=""><td>To: BILL TROUP JUBILEE GOLD EXPLORATION LTD 80 RICHMOND STW SUITE 605 P.O. No: Line 1315,1190 South L-B Property Wood Strummary Progress Registration of the sample makes detection impossible for appecting the sample makes detection impossible for the sample makes detection impossible by this functional sample functional sample</td><td>Date: August 15, 2016</td><td>6</td><td></td><td></td><td></td></td<>	To: BILL TROUP JUBILEE GOLD EXPLORATION LTD 80 RICHMOND STW SUITE 605 P.O. No: Line 1315,1190 South L-B Property Wood Strummary Progress Registration of the sample makes detection impossible for appecting the sample makes detection impossible for the sample makes detection impossible by this functional sample	Date: August 15, 2016	6			
Methods Summary No. Of Samples Method Code Description 60 G_LOGO2 Pre-preparation processing, sorting, logging, boxing 60 GE_MMILM Pre-preparation processing, sorting, logging, boxing Mobile Metal ION standard package/ICP-MS Certified By: John Chiang John Chiang OC Chemist Certified By: John Chiang SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17026 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/unisserch/pulcan/sgs Report Footer: L.N.R. = Listed not received 1.S. = Insufficient Sample na. extra test denotes pob to procoversion, % denotes pom to % conversion Methods marked with an asterisk (e.g. "NAA080') were subcontracted Methods marked with an asteriak (e.g., "AAA080') were subcontracted Line Insufficient Sample Methods marked with an asteriak (e.g., "GL) denote assess performed using accredited test methods Methods marked of strue accessible at the //www.scc.ca/unisser/chi/ulcan/sgs This document is issued by the Congany under is General Conditions of Save accessible at the //www.scc.ca/unisser/chi/ulcan test at the denotes pob to pro-conversion, % denotes pop to % conversion Methods marked at the denotes pob to pro-company congets no the instandor or instandor or instandor of the sample in waters ages performed using accoredited its method	Methods Summary No. Of Samples Method Code Description 60 G_LOGO2 Pre-preparation processing, sorting, logging, boxing 60 GE_MMILM Pre-preparation processing, sorting, logging, boxing Mobile Metal ION standard package/ICP-MS Certified By: John Chiango CC Chemist SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.cu/en/searchpalcant/sgs Report Footer: L.N.R. = Listed not received 1.5. = Insufficient Sample n.a. = Not applicable 1.5. = Insufficient Sample Mathods matched with an asteriak (e.g. *NA085V) were subcontracted Mater a result denotes pib to ppm conversion, % denotes ppm to % conversion Mathods matched with an asteriak (e.g. *NA085V) were subcontracted List, accreditation is assess profitement using accredited test methods Mathods matched with an asteriak (e.g. *NA085V) were subcontracted List, demontion assess profitement using accredited test methods Mathods matched with the @symbol (e.g. @Co) denote assesses profitement using accredited test methods This document is issued by the sample's network of the sample's network of the sample's network accredited test methods Mathods matched with an asteriak (e.g. *NA085V) were subcontracted List, denotinteand contintest accredited test methods	To: BILL TROUP JUBILEE GOLD 80 RICHMOND S SUITE 605 TORONTO ON	EXPLORATION LTD ST W M5H 2S9		P.O. No.: Line 1315,1190 So Project No.: - Samples: 60 Received: Aug 3, 2016 Pages: Page 1 to 3 (Inclusive of Cove	uth L-B Property r Sheet)
No. Of Samples Method Code Description 60 G_LOG02 Pre-preparation processing, sorting, logging, boxing 60 GE_MMI_M Mobile Metal ION standard package/ICP-MS 60 GE_MMI_M Mobile Metal ION standard package/ICP-MS 60 GE_MMI_M Mobile Metal ION standard package/ICP-MS 60 GE_MMI_M Gentified By: John Chiang John Chiang QC Chemist John Chiang QC Chemist SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/pulcan/Sgs Report Footer: LN.R. = Listed not recolved 15. = Insufficient Sample "NF Composition of this sample makes detection impossible by this method M after a result denotes pob to pom conversion, % denotes pom to % conversion Methods marked with an asterisk (o.g. "NAA08V) were subcontracted The document is issued by the Company under is General Conditions of Service accessible at http://www.sqc.cm/en/Imms-and-Condition samp. Attento a sample) to the immethod Mafter a result denotes pob to pom conversion, % denotes pom to % conversion Methods marked with an asterisk (o.g. "NAA08V) were subcontracted The document is issued by the Company under is General Conditions of Service accessi	No. Of Samples Method Code Description 60 G_LOG02 Pre-preparation processing, sorting, logging, boxing 60 GE_MMI_M Mobile Metal ION standard package/ICP-MS 60 GE_MMI_M Mobile Metal ION standard package/ICP-MS 60 GE_MMI_M Mobile Metal ION standard package/ICP-MS 60 GE_MMI_M Gentle Metal ION standard package/ICP-MS 60 GEntle Metal ION standard package/ICP-MS John Chiang_OC 60 Gentle Metal ION standard package/ICP-MS John Chiang_OC 60 Gentle Metal ION standard package/ICP-MS John Chiang_OC 56S Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/pal/can/Sgs 8Report Footer: L.N.R. = Listed not received 15. = Insufficient Sample n.a. = Not applicable 9.1 NF Coroposition of this sample makes det	Methods Summary				
Report Fooler: L.N.R. = Lised not received n.a. = Not applicable L.S. = Insufficient Sample - = No result "WF = Composition of this sample makes detection impossible by this method M after a result denotes pp to ppm conversion, % denotes ppm to % conversion Methods marked with the @symbol (e.g. @Co) denote assays performed using accredited test methods	Report Footer: LN.R. = Lisied not received n.R. = Not applicable LS. = Insufficient Sample n.R. = Not applicable Report Footer: LN.R. = Lisied not received n.R. = Not applicable LS. = Insufficient Sample n.R. = Not applicable NFF = Composition of this sample makes detection impossible by this method M after a result denotes pab to prom conversion. % denotes paper to % conversion Medico marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods This document is issued by the Company using a Grant Conditions of Service accessible at <u>http://www.scc.cai/on/scarce/documents.com</u> Attention is drawn to the limitation of labeling, international constituence applies and the makes detection impossible by this method M after a result denotes pab to prom conversion. % denotes paper to % conversion Medico marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods This document is issued by the Company using a Grant Conditions of Service accessible at <u>http://www.scc.com/orkition secure</u> (com and company using a three limitation of labeling, international conditions issues defined them. WARENNOK The sample(s) to which the findings incoded herein. (the "Fridings") relate was (verei) drawn and / or provided by the Cimpany using at the Client's detection. The Findings constitute on warrately of the sample's method. detection. The Findings Docubition is drawn to the limitation of labeling. Internation. The Findings lister as to be extended. The findings provided by the client or the a them party accent at the comment.	No. Of Samples	Method Code G_LOG02 GE_MMI_M	Description Pre-preparation pro Mobile Metal ION st	essing, sorting, logging, boxing andard package/ICP-MS	
Report Footer: LN.R. = Listed not received LS. = Insufficient Sample Not applicable = No result 'NF = Composition of this sample makes detection impossible by this method Methods marked with the designed with the @ symbol (e.g. @Cu) denote accessible at http://www.spc.cm/littlemarked . The document is issued by the Company under is General Conditions of Service accessible at http://www.spc.cm/littlemarked . The document is issued by the Company under is General Conditions of Service accessible at http://www.spc.cm/littlemarked . The document is issued by the Company under is General Conditions of Service accessible at http://www.spc.cm/littlemarked . Water are suid denotes ppt to be emproved in the @ symbol (e.g. @Cu) denote assays performed using accredited lest methods The document is issued by the Company under is General Conditions of Service accessible at http://www.spc.cm/littlemarked . Attention is drawn to the limitation of lisability, indemnification issues defined therein. Water is issued by the Company under is General Conditions of Service accessible at http://www.spc.cm/littlemarked . Attention is drawn to the limitation of lisability, indemnification and juritidation issues defined therein. Water is issued by the Company under is General Conditions of Service accessible at <a "bred="" "wrv="" -="-" =="" =<="" href="http://www.spc.cm/littlemarked</td><td>Report Footer: L.N.R. = Lisled not received 1.S. = Insufficient Sample N.R. = Not applicable = No result " no="" result="" td="" wrv=""><td></td><td></td><td></td><td></td><td></td>						
SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs Report Footer: L.N.R. = Listed not received n.a. = Not applicable I.S. = Insufficient Sample - Ion recuit "INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion Methods marked with an asterisk (e.g. "NAA06V) were subcontracted Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods This document is issued by the Company under its General Conditions of Service accessible at <a attention="" drawn="" href="http://www.sgs.com/en/IPTems-and-Conditions.aspx." indemond="" is="" liability,="" limitation="" of="" td="" the="" therein.<="" to=""> WARNING The sample(s) to which the findings reported therein (the "Findings" presentativity of the goods and atricity rotate to the sample (s). The Company accepts no liability with regard to the origin or source from the integel (s) tares and to be extracted. The findings reported by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's protected by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the sample's representativity of the opods and atricity rotate to the sample(s). The Company accepts no liability with regard to the origin or source from viels the sample's protected by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the sample's representativity of the sample's representatinity of the sample's representativity of the sample's re	SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs Report Footer: L.N.R. = Listed not received n.a. = Not applicable I.S. = Insufficient Sample n.a. = Not applicable "INF = Composition of this sample makes detection impossible by this method M after a result denotes pb to ppm conversion, % denotes ppm to % conversion Methods marked with an asterisk (e.g. "NAADBV) were subcontracted Element is issued by the Company under is General Conditions of Service accessible at http://www.sgc.condition.sesc . Attention is drawn to the limitation of liability, indemed therein. WARNING. The sample(s) to which the findings reported therein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's directual settiment.			с	ertified By : John Ch QC Cher	ang mist
Report Footer: L.N.R. = Listed not received n.a. = Not applicable I.S. = Insufficient Sample - = No result "INF = Composition of this sample makes detection impossible by this method M after a result identises pib to ppm conversion, % denotes ppm to % conversion Methods marked with an asterisk (e.g. "NAA08V) were subcontracted Elements marked with an asterisk (e.g. "QCU) denote assays performed using accredited test methods This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/vr/Terms-and-Conditions.aspx . Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings reported therein (the "Findings") relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) tartes and to be extracted. The findings reported by the Cleint of by a third party acting at the Client's direction. The Findings constitute no warranty of the sample" reported by the Cleint or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample" reported by the Client or by a third party acting at the origin or source from which the sample(s) tartes and to be extracted. The findings report on the sample sample (s). The Company accepts no liability with regard to the origin or source from not intended for commercial or commercial accentituement.	Report Footer: L.N.R. = Listed not received n.a. = Not applicable I.S. = Insufficient Sample - = No result "INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion Methods marked with an asterisk (e.g. *NAA08V) were subcontracted Elements marked with an asterisk (e.g. *QCU) denote assays performed using accredited test methods This document is issued by the Company under is General Conditions of Service accessible at <u>http://www.sga.com/en/Terms-and-Conditions.sec</u> . Attention is drawn to the limitation of liability, indemnification and juridiction issued denote therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate twas (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warrary of the sample's representativity of the goods and atricity relate to the sample (s). The commercial or continuent as editionential settlement.		Services Geochemistry Var accredit	ncouver conforms to the re ation which can be found a	quirements of ISO/IEC 17025 for specific to http://www.scc.ca/en/search/palcan/sgs	ests as listed on their scope of
Mater a result denotes ppt to ppm conversion imposate of unando Mater a result denotes ppt to ppm conversion imposate of unando Mater a result denotes ppt to ppm conversion Methods marked with an asterisk (e.g. *NAA06V) were subcontracted Elements marked with an asterisk (e.g. *NAA06V) were subcontracted Elements marked with an asterisk (e.g. *NAA06V) were subcontracted Elements issued by the Company under its General Conditions of Service accessible at http://www.ggs.com/en/Terms-and-Conditions.aspx . Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.	Inter = Composition of this sample interesting, % denotes point imposation by uninteresting M after a result denotes point to point conversion, % denotes point of % conversion Methods marked with an asterisk (e.g. *NAAD8V) were subcontracted Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.assay</u> . Attention is drawn to the limitation of liability, indemnification and juridiction issued general Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.assay</u> . Attention is drawn to the limitation of liability, indemnification and juridiction issued general therein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and atricity rolate to the arc no intended for commercial or continuous for commercial or continuous de commercial a relatiment.	SGS Minerals				
This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx . Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warrantly of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) isfares aid to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement	This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.asex . Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) isfares and to be extracted. The the samples provided by the client and are not intended for commercial or contractual stellament	SGS Minerals	L.N.R. = Listed not receive n.a. = Not applicable	ed	I.S. = Insufficient Sample = No result	
purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent or the law .	purposes. Any unauthorized alteration, forgery of falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the rules exists of the eaw.	SGS Minerals	L.N.R. = Listed not receiv n.a. = Not applicable *INF = Composition of tr M after a result denotes ppt Methods marked with an ats Elements marked with the @	ed his sample makes detection o to ppm conversion, % den erisk (e.g. *NAA08V) were s 2 symbol (e.g. @Cu) denote	I.S. = Insufficient Sample - = No result mpossible by this method tes ppm to % conversion ubcontracted assays performed using accredited test meth	rods

Final : VC162367 Order: Line 1315,1190 South L-B Property Report File No.: 0000018471

Page 2 of 3

n

Member of the SGS Group (Société Générale de Surveillance)

Element Method Det.Lim. Units	Au GE_MMI_M 0.1 ppb	Ag GE_MMI_M 0.5 pob	As GE_MMI_M 10 ppb	Cu GE_MMI_M 10	Zn GE_MMI_M 10	Pb GE_MMI_M 5	Mo GE_MMI_M 2	Co GE_MMI_M 1
1315-0+00	12	5.2	20	200	400	ppu	ppp	рро
1315-12W (12 Metres West)	07	2.6	20	200	490	419	2	51
1315-25W	0.7	1.0	20	200	200	129	<2	101
1315-37W	<0.1	<0.5	50	170	990	514	5	105
1315-50W	0.1	-0.5	>10	10	140	12	<2	204
1315-62W	0.2	<0.5	30	60	410	174	3	121
1315-75W	11	8.8	20	00	340	89	2	244
1315-87W	1.0	11.4	20	230	520	1120	8	165
1315-100W	0.5	57	20	220	330	722	8	400
1315-112W	0.3	6.6	10	110	990	722	4	384
1315-125W	0.5	7.2	10	110	220	280	8	94
1315-137W	<0.1	1.2	20	430	430	310	14	260
1315-150W	0.1	1.7	20	120	750	862	2	59
1315-162W	0.1	7.4	50	100	0001	964	4	86
1315-175W	0.4	5.2	-10	140	550	803	7	55
1315-187W	0.4	3.2	<10	140	230	515	4	93
1315-187WA	0.4	5.8	<10	590	290	192	36	95
1315-200W	0.4	2.8	40	010	100	201	28	52
1315-212W	0.3	0.5	60	210	690	828	5	88
1315-225W	0.8	A.7	10	310	240	249	4	94
1315-237W	15	33	20	430	120	92	2	47
1315-250W	0.6	4.0	20	9030	50	44	19	78
1315-262W	0.2	4.0	<10	3070	90	51	8	44
315-275W	13	3.3	<10	200	40	10	4	44
315-287W	0.2	27	<10	5150	70	144	35	105
315-300W	<0.1	0.9	30	790	50	1/	3	138
315-312W	0.4	27	20	4220	130	162	9	41
315-325W	0.3	2.4	20	4330	420	14/	16	84
315-350W	0.3	0.0	10	3470	170	69	13	71
315-362W	25	0.5	<10	29700	80	16	14	41
315-387W	0.1	1.0	<10	20700	80	1/5	147	34
315-400W	16	9.8	10	2000	150	143	70	155
190-0+00	19-	6.7	20	1030	110	1680	174	71
190-12W -	0.5	17	20	150	220	/10	5	75
190-25W -	<0.1	22	20	40	330	136	2	79
190-37W	<0.1	7.0	30	110	610	553	5	46
190-50W -	0.4	13.8	50	110	100	/34	6	53
190-62W	0.2	5.0	<10	120	790	4/0	8	65
190-75W	<0.1	16	30	70	350	/66	<2	208
100.97W	-0.1	0.0	00	10	300	403	3	87

This document is issued by the Company under its General Conditions of Service accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

31

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Final : VC162367 Order: Line 1315,1190 South L-B Property Report File No.: 0000018471 Page 3 of 3

	Element Method	Au	Ag	As	Cu	Zn	Pb	Мо	Co
		GE_MMI_M							
	Det.Lim.	0.1	0.5	10	10	10	5	2	1
	Units	ppb	ppb	ppb	ppb	ppb	ppb	ppp	ddd
1190-100W		0.1	1.4	40	140	1310	1090	6	55
1190-112W		<0.1	1.9	10	140	540	697	4	106
1190-125W		0.2	12.0	30	120	300	228	7	65
1190-150W		0.2	5.8	40	210	490	266	26	64
1190-162W		<0.1	1.8	30	150	1400	1800	5	120
1190-175W		<0.1	5.5	20	250	650	823	6	55
1190-187W		0.3	13.0	<10	270	160	117	4	42
1190-200W		0.5	20.0	<10	1940	110	167	4	50
1190-212W		0.9	10.9	<10	1160	70	25	3	51
1190-225W		0.3	3.6	<10	180	300	123	4	57
1190-237W		0.2	4.0	10	250	400	153	3	31
1190-250W		<0.1	2.1	20	140	540	538	3	42
1190-262W		0.6	7.1	<10	1920	50	102	3	63
1190-275W		<0.1	2.0	<10	130	440	313	2	37
1190-287W		<0.1	1.6	30	230	640	117	4	52
1190-300W		<0.1	0.5	30	140	590	3690	10	52
1190-312W		0.4	2.7	<10	460	30	19	<2	19
1190-350W		0.2	2.0	30	3290	60	122	17	41
1190-362W		1.1	4.7	<10	8570	710	442	8	122
1190-375W		<0.1	6.0	<10	3880	150	126	<2	41
*Rep 1315-62W		0.2	<0.5	<10	30	280	112	<2	244
*Rep 1315-212W		0.3	9.9	60	280	220	281	5	79
*Rep 1190-37W		<0.1	7.0	40	120	200	775	6	57
*Rep 1190-150W		0.2	5.6	40	190	480	256	24	60
*Rep 1190-250W		<0.1	1.5	20	110	670	621	3	45
*Std AMIS0169		0.5	9.1	<10	3280	160	99	3	81
*BIk BLANK		<0.1	<0.5	<10	<10	<10	<5	<2	<1
*BIk BLANK		<0.1	<0.5	<10	<10	<10	<5	<2	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or sources from which the sample(s) lavere said to be extracted. The findings report on the sample provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or faisification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Member of the SGS Group (Société Générale de Surveillance)

CCC
202

Certificate of Analysis Work Order : VC162967 [Report File No.: 0000019268]

Date: October 04, 2016		
To: William Troup JUBILEE GOLD EXPLORATIO PO BOX 37029 NORTH YORK ON M2M 4J8	ON LTD	P.O. No.: L-B Project 625-01_51, 1700-01_36 Project No.: - Samples: 84 Received: Sep 21, 2016 Pages: Page 1 to 4 (Inclusive of Cover Sheet)
Methods Summary No. Of Samples Method Code 84 G_LOG02 84 GE_MMI_M Storage: Pulp & Reject REJECT STORAGE :	<u>Description</u> Pre-preparation Mobile Metal IOI DISCARD	processing, sorting, logging, boxing N standard package/ICP-MS
SGS Minerals Services Geod	hemistry Vancouver conforms to t accreditation which can be fou	Certified By : John Chiang QC Chemist the requirements of ISO/IEC 17025 for specific tests as listed on their scope of and at http://www.scc.ca/en/search/palcan/sgs
Report Footer: L.N.R. = List n.a. = No *INF = Con M after a result	ed not received applicable nposition of this sample makes deter (t denotes ppb to ppm conversion, %	I.S. = Insufficient Sample = No result ction impossible by this method is denotes ppm to % conversion were subcontracted
Methods mark Elements mark This document is issued by the Company under i liability, indemnification and jurisdiction issues de WARNING: The sample(s) to which the findings n direction. The Findings constitute no warranty of or source from which the sample(s) Is/are said to purposes. Any unauthorized alteration, forgery or	eq with an asterisk (e.g. "NAA08V) w ed with the @ symbol (e.g. @Cu) de s General Conditions of Service accessib ined therein. corded herein (the "Findings") relate was he sample's representativity of the goods be extracted. The findings report on the s falsification of the content or appearance	Vere subcontracted anote assays performed using accredited test methods anote assays performed using accredited test methods is (were) drawn and / or provided by the Client or by a third party acting at the Client's and strictly relate to the sample (s). The Company accepts no liability with regard to the origin amples provided by the client and are not intended for commercial or contractual settlement of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .
SGS Canada Inc. Minerals	Suite E - 3260 Production Way	/ Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Member of the SGS Group (Société Générale de Surveillance)

Final : VC162967 Order: L-B Project 625-01_51, 1700-01_36 Report File No.: 0000019268

Eler	Element	Element Au		Ag	As	Cu	Zn	Pb	Mo	CE MML M
Met	thod	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	
Det.	Det.Lim. 0.1 Units ppb	0.1	0.5	10	10	10	5	2	1	
ι		ppb	ppb	ppb	ppp	ppp	ppp	hhn		
625₋01	merecentration	0.1	1.1	20	300	390	199	<2	22	
625-02		0.1	3.5	100	210	740	406	5	48	
625-03		0.5	4.8	40	480	390	430	10	131	
625-04		0.3	3.7	20	340	350	358	6	96	
625-05	-	9.3	9.7	10	1030	80	38	28	56	
625-06		0.7	1.9	30	750	180	332	9	124	
625-07		0.7	2.5	40	170	130	206	4	53	
625-09		0.7	1.6	20	200	120	151		60	
625-10		0.7	4.6	10	450	40	64	14	61	
625-12		<0.1	2.7	50	190	1160	675	18	72	
625-13		0.1	3.2	30	370	960	299	15	248	
625-14		0.3	1.6	20	510	90	47	8	192	
625-15		0.5	2.5	<10	310	30	13	<2	50	
625-16		0.7	7.2	<10	680	20	10	<2	57	
625-17		0.6	0.5	40	110	60	180	7	42	
625-18		0.1	1.7	10	160	70	200	5	31	
625-19		0.2	0.6	20	110	180	99	9	27	
625-20		1.8	1.2	50	370	410	173	8	76	
625-20		<0.1	4.4	<10	440	40	69	4	118	
625-22		<0.1	3.7	<10	1060	140	160	14	65	
625-23		0.1	4.5	<10	780	110	143	11	36	
625-24		0.5	12.2	<10	2970	90	412	6	92	
625-25		<0.1	2.8	<10	620	1040	372	33	120	
625-26	Contract of Contract	2.2	3.7	<10	740	40	131	24	52	
625-27	· · · · · · · · · · · · · · · · · · ·	<0.1	4.4	40	340	260	308	97	30	
625-28	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	0.1	1.5	40	390	300	98	40	56	
625-29	permise counteres	0.1	2.3	20	390	350	419	7	55	
625-30	1000 - 1000 ^{- 1} 000 - 1000 - 1000 - 1000	<0.1	11.2	20	240	110	123	4	74	
625-31		<0.1	2.3	30	590	540	126	11	356	
625-32	and a second	0.2	2.5	20	890	590	216	6	42	
625-33	a la ser a contra tita	<0.1	1.7	20	590	680	277	4	148	
625-34	and a second	1.6	1.9	20	510	720	79	3	134	
625-35		<0.1	2.3	60	370	690	375	14	39	
625-36		<0.1	2.3	20	1220	930	100	5	169	
625-37		<0.1	1.1	10	480	150	102	<2	46	
625-38		<0.1	6.2	60	550	530	212	7	112	
625-39	negasia. Na Perintek ete	<0.1	1.8	<10	1080	100	55	<2	675	
625-40		<0.1	2.9	50	540	290	308	6	101	
625-41		<0.1	1.3	20	560	90	70	5	29	
625-42	YELLA CONTRACTOR	<0.1	3.8	30	320	1010	189	6	59	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) isfare said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Member of the SGS Group (Société Générale de Surveillance)

Page 2 of 4

-

Final : VC162967 Order: L-B Project 625-01_51, 1700-01_36

aport File No.: 0000019258									
E I D	Element Method Det.Lim. Units	Au GE_MMI_M 0.1 ppb	Ag GE_MMI_M 0.5 ppb	As GE_MMI_M 10 ppb	Cu GE_MMI_M 10 ppb	Zn GE_MMI_M 10 ppb	Pb GE_MMI_M 5 ppb	Mo GE_MMI_M 2 ppb	Co GE_MMI_M 1 ppb
		<01	42	10	480	690	555	5	331
625-43		-0.1	5.1	10	310	200	215	5	51
625-44		-0.1	18.0	50	920	950	322	12	302
625-46		-0.1	5.5	40	2390	550	222	16	136
625-47		<0.2	0.0	<10	390	10300	452	<2	171
625-48		<0.1	9.0	20	230	1020	277	3	46
625-49		<0.1	5.0	20	1450	7420	462	10	133
625-50		<0.1	5.0	<10	1910	220	226	7	98
625-51		<0.1	1.0	70	70	90	272	2	33
1700-01		<u><0.1</u>	1.0	20	310	120	125	3	43
1700-02		<0.1	2.3	20	400	130	144	2	46
1700-03		<0.1	2.5	30	80	90	48	<2	49
1700-04	and the second sec	<0.1	1.0	60	330	700	530	5	53
1700-05		<0.1	1.5	10	270	170	154	4	50
1700-06		<u></u>	2.2	30	190	340	192	8	46
1700-07		0.2	0.7	<10	60	270	423	<2	51
1700-08		<0.1	0.7	40	210	2280	2770	7	44
1700-09		<0.1	17	20	80	100	80	3	29
1700-10		<0.1	1.7	10	230	150	205	3	43
1700-11		<0.1	3.9	30	200	420	196	9	42
1700-12		0.2	3.9	30	530	360	223	9	163
1700-13		0.1	3.0	30	410	150	37	6	95
1700-14		<0.1	1.0	20	330	590	150	5	433
1700-15		<0.1	4.2	10	350	50	299	5	41
1700-16		<0.1	1.0	-10	190	170	232	4	161
1700-17		<0.1	2.0	~10	130	1390	843	5	26
1700-18		<0.1	<0.0	20	340	200	96	7	46
1700-19		<0.1	2.5	50	200	390	487	5	36
1700-20	and the second	<0.1	1.3	10	100	770	244	9	561
1700-21		<0.1	1.9	20	300	350	221	12	114
1700-22		0.2	2.0	20	430	110	378	4	65
1700-23		<0.1	4.9	20	430	130	205	6	154
1700-24		<0.1	13.0	40	170	120	351	4	107
1700-25	and a second state of the Contemport of the Contemport	<0.1	18.9	20	170	190	659	5	62
1700-26		<0.1	1.4	30	340	140	273	7	69
1700-27	CONTRACTOR OF THE PROPERTY OF	<0.1	3.1	30 20	180	730	609	5	46
1700-28	our an east of the second second	0.2	2.2	30	100	230	163	7	42
1700-29		<0.1	1.4	50	100	3790	956	11	49
1700-30		<0.1	0.7	20	140	470	471	8	37
1700-31		<0.1	1.9	50	190	34/0	293	<2	20
1700-32		<0.1	1.2	30	200	540	233	میں جس میں کے بالا کا ایک رسیم مرکزی کے دوسیوں کی میں میں	Laurence and the second second

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) issue sample (s) issue said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Member of the SGS Group (Société Générale de Surveillance)

Page 3 of 4

Final : VC162967 Order: L-B Project 625-01_51, 1700-01_36

Report File No.: 0000019268						مرجعها والمرجوع والأقف ومحافظت والمرجع والمرد		for the second second second second
Element Method Det.Lim. Units	Au GE_MMI_M 0.1 ppb	Ag GE_MMI_M 0.5 ppb	As GE_MMI_M 10 ppb	Cu GE_MMI_M 10 ppb	Zn GE_MMI_M 10 ppb	Pb GE_MMI_M 5 ppb	Mo GE_MMI_M 2 ppb	Co GE_MMI_M 1 ppb
	<0.1	1.0	50	240	2010	1120	9	50
1/00-33	<0.1	22	20	150	1530	317	9	204
1700-34	0.1	13.2	20	510	90	125	6	108
1700-35	0.2	5.0	10	300	450	103	5	76
1700-36	~0.1	1.8	20	200	120	158	8	68
*Rep 625-09	0.5	1.0	20	280	80	120	5	57
*Rep 625-30	<0.1	12.0	20	1180	980	140	5	215
*Rep 625-36	<0.1	2.7	20	200	160	104	<2	38
*Rep 1700-03	<0.1	1.5	30	200	100	324	4	37
*Rep 1700-16	<0.1	1.9	10	370	40	1000	9	49
*Rep 1700-33	<0.1	1.1	50	240	2170	1030	10	351
*Std MMISRM19	5.2	26.2	<10	2090	2270	1010	10	84
*Std AMIS0169	0.4	9.8	10	3630	190	103	4	-1
*DIL BI ANK	<0.1	<0.5	<10	<10	<10	<5	<2	
	<0.1	<0.5	<10	<10	<10	<5	<2	</td
	<0.1	<0.5	<10	<10	<10	<5	<2	1
*BIK BLANK	<0.1	<0.5	<10	<10	<10	<5	<2	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) listare said to be extracted. The findings roport on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 4 of 4

00	
CIE	

Certificate of Analysis Work Order : VC162969 [Report File No.: 0000019269]

Date: October 04, 201	16				
To: William Troup JUBILEE GOLD PO BOX 37029 NORTH YORK (EXPLORATIO	DN LTD	P.O. No.: Project No.: Samples: Received: Pages:	L-B Project1700-37,1000-01 - 61 Sep 21, 2016 Page 1 to 3 (Inclusive of Cover Sheet)	_25,1500-01_35
Methods Summary					
No. Of Samples 61 61 Storage: Pulp & Rejer	Method Code G_LOG02 GE_MMI_M	<u>Description</u> Pre-preparation p Mobile Metal ION	processing, sorting, I standard package/	logging, boxing ICP-MS	
Storage: Pulp & Reject REJECT STORAGE	:	DISCARD			
			Certified By :	John Chiang QC Chemist	
SGS Minerals	s Services Geoc	hemistry Vancouver conforms to th accreditation which can be four	e requirements of ISO/h nd at http://www.scc.ca/	EC 17025 for specific tests as instee en/search/palcan/sgs	a on unen scope or
Report Footer:	L.N.R. = List n.a. = Not	ed not received applicable	I.S. = =	Insufficient Sample No result	
	*INF = Con	nposition of this sample makes detec	tion impossible by this me denotes ppm to % conve	etnoa rsion	
	Methods marke	d with an asterisk (e.g. *NAA08V) we	ere subcontracted		
	Elements mark	ed with the @ symbol (e.g. @Cu) der	note assays performed us	sing accredited test methods	
This document is issued by the liability, indemnification and jur	Company under it isdiction issues def	s General Conditions of Service accessible ined therein.	e at <u>http://www.sgs.com/en/1</u>	Ferms-and-Conditions.aspx. Attention is dr	rawn to the limitation of
WARNING: The sample(s) to w direction. The Findings constitu or source from which the samp purposes. Any unauthorized al	which the findings re ute no warranty of the e(s) is/are said to teration, forgery or	corded herein (the "Findings") relate was (he sample's representativity of the goods a be extracted. The findings report on the sa falsification of the content or appearance of the same same same same same same same sam	were) drawn and / or provid and strictly relate to the samp mples provided by the client of this document is unlawful a	ed by the Client or by a third party acting a lole (s). The Company accepts no liability w and are not intended for commercial or co and offenders may be prosecuted to the ful	at the Client's vith regard to the origin nutractual settlement illest extent of the law
SGS Canada	Inc. Minerals	Suite E - 3260 Production Way	Burnaby BC t(604)	638-2349 f(604) 444-5486 www	w.ca.sgs.com
				Member of the SC	GS Group (Société Générale de Surveillance)

Final : VC162969 Order: L-B Project1700-37,1000-01_25,1500-01_35

Page 2 of 3

Element Method	GE MMI M	Ag GE MMI M	As GE MMI M	Cu GE_MMI_M	Zn GE_MMI_M	Pb GE_MMI_M	Mo GE_MMI_M	Co GE_MMI_M
Det Lim.	0.1	0.5	10	10	10	5	2	1
Units	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
1700-37	0.3	9.6	20	220	230	250	16	214
1000-01	0.4	3.6	40	250	210	288	11	50
1000-02	0.1	3.0	30	230	310	446	9	105
1000-03	0.5	1.7	30	190	200	353	11	38
1000-04	0.2	7.6	50	560	660	628	47	219
1000-05	0.6	3.0	20	650	440	130	32	101
1000-06	0.2	4.5	20	370	50	42	5	63
1000-07	0.3	4.2	40	790	270	203	10	114
1000-08	0.2	5.9	10	780	300	83	7	181
1000-09	<0.1	2.2	10	380	910	380	7	182
1000-10	<0.1	2.3	60	290	290	154	6	92
1000-11	0.2	5.1	60	390	1040	387	6	214
1000-12	0.2	3.7	20	680	60	64	5	116
1000-13	<0.1	3.1	10	300	80	58	8	55
1000-14	0.1	7.8	<10	590	90	40	5	217
1000-15	0.3	10.6	<10	1940	140	57	11	371
1000-16	0.3	15.0	<10	910	70	9	4	31
1000-17	<0.1	6.4	<10	490	260	61	8	111
1000-18	0.2	3.2	<10	130	60	14	4	31
1000-19	<0.1	5.1	<10	360	180	19	8	46
1000-20	0.2	8.3	<10	1640	50	102	42	80
1000-21	0.5	12.1	10	2320	180	191	44	104
1000-22	0.3	11.0	<10	2410	130	107	12	101
1000-23	0.4	17.9	20	4920	130	74	26	211
1000-24	0.5	15.0	<10	6500	120	95	14	312
1000-25	0.1	2.2	20	400	570	305	7	118
1500-01	0.7	4.7	20	410	650	170	9	82
1500-02	<0.1	4.1	60	120	1200	638	6	99
1500-03	1.2	5.8	50	160	800	948	7	65
1500-04	<0.1	6.6	20	140	460	623	3	99
1500-05	0.2	4.0	30	130	270	445	4	60
1500-06	0.2	2.7	30	260	570	131	5	81
1500-07	0.2	4.6	20	340	770	216	10	56
1500-08	0.2	5.2	20	360	780	100	13	243
1500-09	0.6	18.8	30	400	680	247		104
1500-10	0.1	14.0	<10	130	660	313	<2	32
1500-11	0.3	5.9	50	130	690	671	7	53
1500-12	<0.1	7.9	50	140	100	287	6	20
1500-13	<0.1	0.8	10	70	510	607	4	398
1500-14	0.4	6.5	20	190	30	208	3	76

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Final : VC162969 Order: L-B Project1700-37,1000-01_25,1500-01_35 Report File No.: 0000019269 Page 3 of 3

E	lement Wethod	Au GE_MMI_M	Ag GE_MMI_M	As GE_MMI_M	Cu GE_MMI_M	Zn GE_MMI_M	Pb GE_MMI_M	Mo GE_MMI_M	Co GE_MMI_M
U	Units	ppb	dad	01 daa	01 daa	10 ppb	5 ppb	2 ppb	1 nnh
1500-15		<0.1	6.2	40	150	240	240	ppo	ppo
1500-16		0.1	11.1	40	100	340	340	0	181
1500-17		1.1	3.5	50	420	120	330	4	93
1500-18		0.5	2.1	30	110	190	234	13	/5
1500-19	en e	0.0	7.6	10	110	60	92	0	51
1500-20	**************************************	0.1	22	70	390	280	233	4	95
1500-21	www.co.co.co.co.co.co.co.co.co.co.co.co.co.	0.0	1.2	30	120	200	572		108
1500-22		21	7.4	<10	320	140	075	7	63
1500-23		0.3	1.1	<10	1280	140	15	-2	57
1500-24		0.3	89	<10	1870	<10	52	~2	50
1500-25		0.3	0.5	10	30	80	350	4	09
1500-26		0.8	4.5	<10	830	30	17	14	20
1500-27		<0.1	0.7	<10	110	170	212	3	95
1500-28		<0.1	3.4	30	360	720	178	38	62
1500-29		18	13	20	770	50	83	12	74
1500-30		0.4	3.0	20	350	580	324	13	124
1500-31		0.3	4.3	10	310	40	127	2	30
1500-32	1	<0.1	3.2	30	190	630	484	4	109
1500-33		0.1	3.5	20	1770	90	57	8	629
1500-34		0.2	5.3	30	3420	110	190	19	141
1500-35		1.2	1.7	<10	430	120	220	5	28
*Rep 1000-09		<0.1	2.0	<10	270	990	456	7	152
*Rep 1500-10	1	<0.1	11.7	10	130	500	284	<2	30
*Rep 1500-19		0.2	6.9	20	140	80	241	3	77
*Rep 1500-28	1	0.1	3.3	30	290	670	182	37	54
*Std MMISRM19		5.3	27.3	10	2280	2690	1200	12	372
*BIk BLANK		<0.1	<0.5	<10	<10	<10	<5	<2	<1
*BIk BLANK	and the second	<0.1	<0.5	<10	<10	<10	<5	<2	<1
*BIK BLANK		<0.1	<0.5	<10	<10	<10	<5	<2	c1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Member of the SGS Group (Société Générale de Surveillance)

CALCULATED RESPONSE RATIOS (RR VALUES)

	AuRR	AgRR	AsRR	CuRR	ZnRR	PbRR	MoRR	CoRR
625-625W	1	3	0	10	2	2	1	2
625-612W	1	2	2	7	67	4	2	2
625-600W	1	5	2	1	9	2	0	1
625-575W	1	0	0	2	93	4	0	3
625-562W	4	2	4	12	5	2	4	2
625-550W	1	9	5	4	8	3	3	6
625-537W	4	2	1	1	1	2	1	1
625-525W	1	2	1	2	6	5	1	6
625-512W	1	2	3	1	9	1	1	1
625-500W	1	0	2	2	0	0	1	0
625-487W	1	1	5	2	2	3	1	2
625-475W	1	0	0	5	0	0	0	14
625-462W	1	3	6	2	4	2	1	2
625-450W	1	0	1	2	1	1	0	1
625-437W	1	1	2	6	8	1	1	4
625-425W	1	1	6	1	6	3	3	0
625-412W	32	1	2	2	6	0	0	2
625-400W	1	0	2	3	6	2	1	3
625-387W	4	1	2	4	5	2	1	0
625-375W	1	1	3	3	4	1	2	7
625-362W	1	6	2	1	0	1	1	1
625-350W	2	1	2	2	3	4	1	1
625-337W	2	0	4	2	2	1	10	1
625-325W	1	2	4	1	2	3	24	0
625-312W	44	1	0	3	0	1	6	1
625-300W	1	1	0	3	9	3	8	2
625-287W	10	6	0	15	0	4	1	1
625-275W	2	2	0	4	1	1	2	0
625-262W	1	1	0	5	1	1	3	1
625-250W	1	2	0	2	0	0	1	2
625-237W	36	0	5	1	3	1	2	1
625-225W	4	0	2	0	1	1	2	0
625-212W	2	0	1	0	0	2	1	0
625-200W	12	0	4	0	0	1	1	0
625-187W	14	3	0	3	0	0	0	1
625-175W	10	1	0	1	0	0	0	1
625-162W	6	0	2	2	0	0	2	4
625-150W	2	1	3	1	8	2	3	5
625-137W	1	1	5	1	10	6	4	1
625-112W	14	2	1	2	0	0	3	1
625-100W	12	0	2	1	1	1	1	1

	AuRR	AgRR	AsRR	CuRR	ZnRR	PbRR	MoRR	CoRR	
625-75W	1	L4	1	4	0	1	2	1	1
625-62W	1	4	1	3	3	1	3	2	2
625-50W	18	36	5	1	5	0	0	7	1
625S-37W		6	1	2	1	3	3	1	2
625S-25W	1	LO	2	4	2	3	4	2	2
625S-12W		2	1	10	1	6	4	1	1
625S-0		2	0	2	1	3	2	0	0
	AuRR	AgRR	AsRR	CuRR	ZnRR	PbRR	MoRR	CoRR	
1000S-300W		2	1	2	2	5	3	1	2
1000S-287W	1	LO	7	0	34	1	0	3	6
1000S-275W		8	9	2	25	1	0	6	4
1000S-262W		6	5	0	12	1	1	3	2
1000S-250W	1	LO	6	1	12	1	1	11	2
1000S-237W		4	4	0	8	0	1	10	1
1000S-225W		1	2	0	1	1	0	2	1
1000S-212W		4	1	0	0	0	0	1	0
1000S-200W		1	3	0	2	2	0	2	2
1000S-187W		6	7	0	4	0	0	1	0
1000S-175W		6	5	0	10	1	0	2	7
1000S-162W		2	4	0	3	0	0	1	4
1000S-150W		1	1	1	1	0	0	2	1
1000S-137W		4	1	2	3	0	0	1	2
1000S-125W		4	2	6	2	9	3	1	4
1000S-112W		1	1	6	1	2	1	1	1
1000S-100W		1	1	1	1	8	4	1	3
1000S-87W		4	3	1	4	2	0	1	3
1000S-75W		6	2	4	4	2	2	2	2
1000S-62W		4	2	2	1	0	0	1	1
1000S-50W	1	12	1	2	3	4	1	8	2
1000S-37W		4	4	5	2	6	6	11	4
1000S-25W	1	LO	0	3	1	1	3	2	0
1000S-12W		2	1	3	1	2	4	2	2
1000S-0		8	1	4	1	1	2	2	1

	AuRR	AgRR	Asl	R	CuRR	ZnRR	PbRR	MoRR	CoRR
1190-375W		0	3	1	28	1	1	0	1
1190-362W		12	3	1	61	6	4	3	2
1190-350W		2	1	6	24	0	1	6	1
1190-312W		4	1	1	3	0	0	0	0
1190-300W		0	0	6	1	5	30	3	1
1190-287W		0	1	6	2	5	1	1	1
1190-275W		0	1	1	1	3	3	1	1
1190-262W		6	4	1	14	0	1	1	1
1190-250W		0	1	4	1	5	5	1	1
1190-237W		2	2	2	2	3	1	1	1
1190-225W		3	2	1	1	2	1	1	1
1190-212W		10	6	1	8	1	0	1	1
1190-200W		5	11	1	14	1	1	1	1
1190-187W		3	7	1	2	1	1	1	1
1190-175W		0	3	4	2	5	7	2	1
1190-162W		0	1	6	1	11	15	2	2
1190-150W		2	3	8	2	4	2	9	1
1190-125W		2	6	6	1	2	2	2	1
1190-112W		0	1	2	1	4	6	1	2
1190-100W		1	1	8	1	10	9	2	1
1190-87W		0	1	6	2	3	4	2	2
1190-75W		0	1	6	1	3	3	1	2
1190-62W		2	3	1	1	3	6	0	4
1190-50W		4	7	10	1	6	4	3	1
1190-37W		0	4	7	1	1	6	2	1
1190-25W		0	1	12	1	5	5	2	1
1190-12W		5	1	4	0	3	1	1	2
1190-0+00		21	4	4	1	5	6	2	1

	AuRR	AgRR	AsRR	CuRR	ZnRR	PbRR	MoRR	CoRR
1315-400W	18	5	2	13	1	14	58	1
1315-387W	1	1	1	15	1	1	23	3
1315-362W	28	0	1	205	1	1	49	1
1315-350W	3	0	2	13	1	0	5	1
1315-325W	3	1	4	25	1	1	4	1
1315-312W	4	1	4	31	3	1	5	2
1315-300W	0	0	6	1	1	1	3	1
1315-287W	2	1	1	6	0	0	1	3
1315-275W	14	2	1	37	1	1	12	2
1315-262W	2	0	1	2	0	0	1	1
1315-250W	6	2	2	28	1	0	3	1
1315-237W	17	2	4	68	0	0	6	2
1315-225W	9	3	2	3	1	1	1	1
1315-212W	3	5	12	2	2	2	1	2
1315-200W	2	1	8	2	7	7	2	2
1315-187W	4	2	1	4	2	2	12	2
1315-175W	4	3	1	1	2	4	1	2
1315-162W	1	4	10	1	4	7	2	1
1315-150W	1	2	6	1	8	5	5	1
1315-137W	0	1	4	1	6	7	1	1
1315-125W	5	4	2	3	3	3	5	5
1315-112W	3	4	2	1	2	2	3	2
1315-100W	5	3	4	1	8	6	1	8
1315-87W	11	6	4	2	3	6	3	8
1315-75W	12	5	6	2	4	9	3	3
1315-62W	1	0	2	0	2	1	1	5
1315-50W	2	0	6	0	3	1	1	2
1315-37W	0	0	1	0	1	0	0	4
1315-25W	2	1	10	1	8	4	2	2
1315-12W	8	1	4	1	2	1	0	2
1315-0+00	13	3	4	1	4	3	1	1

	AURR	ACRR	ASRR	CURR	ZNRR	PBRR	MORR	CORR
1500S-425W	24	0	0	2	1	2	1	0
1500S-412W	4	2	3	18	1	1	4	2
1500S-400W	2	1	2	9	0	0	2	13
1500S-387W	1	1	3	1	5	4	1	2
1500S-375W	6	2	1	1	0	1	0	0
1500S-362W	8	1	2	1	5	3	1	2
1500S-350W	36	0	2	4	0	0	3	1
1500S-337W	1	1	3	1	6	1	9	1
1500S-325W	1	0	0	0	1	2	0	2
1500S-312W	16	2	0	4	0	0	0	1
1500S-300W	6	0	1	0	0	3	3	0
1500S-287W	6	4	0	9	0	0	1	1
1500S-275W	6	0	0	6	0	0	0	1
1500S-262W	42	3	0	1	1	0	1	1
1500S-250W	2	1	3	0	3	5	1	1
1500S-237W	16	1	7	2	2	2	2	2
1500S-225W	3	3	1	0	0	2	1	1
1500S-212W	10	1	3	0	1	0	1	1
1500S200W	22	1	6	1	1	2	3	1
1500S187W	4	5	3	2	1	3	1	1
1500S-175W	1	3	4	0	3	3	1	3
1500S-162W	8	3	2	1	0	2	0	1
1500S-150W	1	0	1	0	4	6	1	8
1500S-137W	1	4	5	0	0	2	1	0
1500S-125W	6	3	5	0	6	6	1	1
1500S-112W	2	6	1	0	5	2	0	0
1500S-100W	12	9	3	2	6	2	3	2
1500S-87W	4	2	2	1	7	1	3	5
1500S-75W	4	2	2	1	7	2	2	1
1500S-62W	4	1	3	1	5	1	1	1
1500S-50W	4	2	3	0	2	4	1	1
1500S-37W	1	3	2	0	4	6	0	2
1500S-25W	24	3	5	0	7	9	1	1
1500S-12W	1	2	6	0	10	6	1	2
1500S-0	14	2	2	2	5	1	2	1

	AuRR	AgRR	AsRR	CuRR	ZnRR	PbRR	MoRR	CoRR	
1700S-450E	6	5 5	5 2	2	1	2	2	4	4
1700S-437E	1	. 2	2 1	L :	1	4	1	1	1
1700S-425E	4	. 6	5 2	2	2	0	1	1	2
1700S-412E	1	. 1	1 2	<u>2</u> () C	13	3	2	4
1700S-400E	1	. () 5	5	1 :	19	10	2	1
1700S-387E	1	. () з	3 :	1	3	2	0	0
1700S-375E	1	. 1	1 5	5	1	4	4	2	0
1700S-362E	1	. () 2	2 (D 3	34	9	2	1
1700S-350E	1	. () 5	5 (C	3	1	1	0
1700S-337E	4	1	1 3	3 (C	6	6	1	1
1700S-325E	1	. 1	1 3	3 :	1	1	2	1	1
1700S-312E	1	. (3 3	3 (C	1	6	1	1
1700S-300E	1	. 9	9 2	2 (C	1	3	1	2
1700S-287E	1	. 6	5 4	1 :	1	1	2	1	3
1700S-275E	1	. 2	2 2	2	2	1	3	1	1
1700S-262E	4	. 1	1 2	2	1	3	2	3	2
1700S-250E	1	. 1	1 2	2 :	1	7	2	2 2	11
1700S-237E	1	. () 1	L :	1	3	4	1	0
1700S-225E	1	. 1	1 5	5	1	1	0	1	1
1700S-212E	1	. () 2	2 () C	12	8	1	0
1700S-200E	1	. 1	1 C) :	1	1	2	1	3
1700S-187E	1	. () 1	L :	1	0	3	1	0
1700S-175E	1	. 2	2 2	2 :	1	5	1	1	9
1700S-162E	1	. (3 3	3 2	2	1	0	1	2
1700S-150E	2	: 1	1 3	3 2	2	3	2	2	3
1700S-137E	4	2	2 3	3 :	1	3	1	2	0
1700S-125E	1	. 2	2 1	L :	1	1	2	0	0
1700S-112E	1	. () 2	2 (C	0	0	0	0
1700S-100E	1	. () 4	1 :	1 2	20	27	1	0
1700S-87E	1	. () () (0	2	4	0	1
1700S-75E	4	4 1	1 3	3 :	1	3	1	2	1
1700S-62E	1	. () 1	L :	1	1	1	1	1
1700S-50E	1	. 1	16	5 3	1	6	5	1	1
1700S-37E	1	. (3 3	3 (C	0	0	0	1
1700S-25E	1	. 1	1 2	2	1	1	1	0	0
1700S-12E	4	. () 2	2	1	1	1	0	0
1700S-0	1	. (7 כ	7 (C	0	2	0	0

APPENDIX C

FIELD NOTES

SAPLE LOCATION LINES 6255, 10005, 15005, 17005

LINE 625 South Sample # & Line Station 62501-Base Line(B.L.) 0.00 62502-12.5 metres grid west 62503-25 netres west 62504-37.5 metres west 62505-50.0 metres west 62506-62.5 metres west 62507-75.0 metres west 62508-87.5 metres west 62509-100.0 metres west 62510-112.5 metres west 62511-125 metres west 62512-137.5 metres west 62513-150.0 metres west 62514-162.5 metres west 62515-175 metres west 62516-187.5 metres west 62517-200.0 metres west 62518-212.5 metres west 62519-225 metres west 62520-237.5 metres west 62521-250.0 metres west 62522-262.5 metres west 62523-275 metres west 62524-287.5 metres west 62525-300 metres west 62526-312.5 metres west 62527-325 metres west 62528-337.5 metres west 62529-350 metres west 62530-362.5 metres west 62531-375 metres west 62532-387.5 metres west 62533-400 metres west 62534-412.5 metres west 62535-425 metres west 62536-437.5 metres west 62537-450 metres west 62538-462.5 metres west 62539-475 metres west 62540-487.5 metres west 62541-500 metres west 62542-512.5 metres west 62543-525 metres west 62544-537.5 metres west 62545-550 metres west 62546-562.5 metres west 62547-575 metres west 62548-587.5 metres west 62549-600 metres west 62550-612.5 metres west 62551-625 metres west

LINE 1000 South Sample # & Line Station 100001-B.L 0+00 100002-12.5 metres west 100003-25 metres west 100004-37.5 metres west 100005-50 metres west 100006-62.5 metres west 100007-75 metres west 100008-87.5 metres west 100009-100 metres west 100010-112.5 metres west 100011-125 metres west 100012-137.5 metres west 100013-150 metres west 100014-162.5 metres west 100015-175 meytres west 100016-187.5 metres west 100017-200 metres west 100018-212.5 metres west 100019-225 metres west 100020-237.5 metres west 100021-250 metres west 100022-262.5 metres west 100023-275 metres west 100024-287.5 metres west 100025-300 metres west

LINE 1500 South Sample # & Line Station 150001-B.L. 0+00 150002-12.5 west 150003-25 metres west 150004-37.5 metres west 150005-50 metres west 150006-62.5 metres west 150007-75 metres west 150008-87.5 metres west 150009-100 metres west 150010-112.5 metres west 150011-125 metres west 150012-137.5 metres west 150013-150 metres west 150014-162.5 metres west 150015-175 metres west 150016-187.5 metres west 150017-200 metres west 150018-212.5 metres west 150019-225 metres west 150020-237.5 metres west 150021-250 metres west 150022-262.5 metres west 150023-275 metres west 150024-287.5 metres west 150025-300 metres west 150026-312.5 metres west 150027-325 metres west 150028-337.5 metres west 150029-350 metres west 150030-362.5 metres west 150031-375 metres west 150032-387.5 metres west 150033-400 metres west 150034-412.5 metres west 150035-425 metres west 150036-437.5 metres west 150037-450 metres west

LINE 1700 South Line Station 170001-B.L 0+00 17000-212.5 metres east 17003-25 metres east 17004-37.5 metres east 170005-50 metres east 170006-62.5 metres east 170007-75.0 metres east 170008-87.5 metres east 170009-100.0 metres east 170010-112.5 metres east 170011-125 metres east 170012-37.5 metres east 1170013-50.0 metres east 170014-162.5 metres east 170015-175.0 metres east 170016-187.5 metres east 170017-200.0 metres east 170018-212.5 metres east 170019-225 metres east 170020-237.5 metres east 170021-250.0 metres east 170022-262.5 metres east 170023-275.0 metres east 170024-287.5 metres east 170025-300.0 metres east 170026-312.5 metres east 170027-325 metres east 170028337.5 metres east 170029-350.0 metres east 170030-362.5 metres east 170031-375 metres east 170032-87.5 metres east 170033-00.0 metres east 170034-412.5 metres east 170035-425 metres east 170036-437.5 metres east 170037-450.0 metres east

Sample Name	Terrain	Bush	Sample	Easting	Northing	Depth (cm)
						()
62501	flat	log cut	silt	288716	5360481	30
62502	2 hill	log cut	silt/clay	288701	5360478	30
62503	6 hill	log cut	silt/clay	288689	5360472	30
62504	hill/rocky	log cut	silt	288671	5360470	30
62505	hill/rocky	log cut	silt	288665	5360464	30
62506	i flat/rocky	log cut	silt	288654	5360456	30
62507	' hill/rocky	log cut	silt	288643	5360450	30
62508	skip all rock					
62509	hill/rocky	log cut	silt/clay	288620	5360440	30
62510) hill/rocky	log cut	silt/clay	288609	5360431	20
62511	Skip all rock					
62512	hill/rock	log cut	silt	288588	5360422	20
62513	hill/rocky	log cut	silt/clay	288573	5360418	20
62514	flat/rocky	log cut	silt/clay	288567	5360418	20
62515	flat/rocky	log cut	silt	288552	5360406	30
62516	flat/rocky	log cut	silt	288541	5360404	30
62517	' hill/rocky	log cut	silt/clay	288529	5360396	30
62518	8 hill/rocky	log cut	clay	288521	5360391	30
62519	hill/rocky	log cut	silt/caly	288507	5360386	30
62520) flat/rocky	log cut	clay	288499	5360384	30
62521	flat/swamp	alders	silt/caly	288481	5360376	30
62522	flat/swamp	alders	clay	288471	5360371	80
62523	flat/swamp	alders	silt/clay	288461	5360366	100
62524	flat/swamp	alders	clay	288452	5360362	150
62525	flat/swamp	alders	humus/sand	288441	5360358	150
62526	i flat	alder/spruce	silt/clay	288427	5360351	30
62527	' hill/rocky	alder/spruce	silt	288413	5360347	30
62528	8 hill	alder/birch	silt/caly	288405	5360343	30
62529) hill/rock	birch/spruce	clay	288393	5360340	30
62530) hill/rock	birch/spruce	silt	288380	5360330	30
62531	. hill/rock	birch/spruce	silt	288366	5360325	30
62532	hill/rock	birch/spruce	silt	288358	5360319	30
62533	hill/rock	birch/spruce	silt	288347	5360316	30
62534	hill/rock	birch/spruce	silt	288336	5360313	30
62535	hill/rock	birch/spruce	silt	288324	5360307	30
62536	6 hill/rock	spruce	silt/clay	288313	5360298	30
62537	' hill/rock	birch/spruce	sand	288305	5360298	30
62538	8 Flat	spruce/poplar	sand/clay	288289	5360291	30
62539) hill	spruce/poplar	sand/silt	288280	5360287	30

Soil Sampling - Patrie, August 30 to September 9/ 2016

62540	flat	spruce/poplar	sand/silt	288269	5360281	30
62541	flat	spruc/birch	sand	288259	5360275	30
62542	hill	spruc/birch	sand	288243	5360268	30
62543	hill	alders	silt	288234	5360265	30
62544	hill	poplar	sand	288225	5360259	30
62545	skip all rock					
62546	hill	poplar	silt/clay	288198	5360250	30
62547	hill	swampy	silt/clay	288188	5360244	30
62548	flat/swamp	alders	humus	288175	5360242	20
62549	hill/rocky	spruce/poplar	silt	288169	5360235	30
62550	hilly/rock	spruce/poplar	silt/clay	288155	5360229	30
62551	flat/rocky	spruce/poplar	sand	288147	5360225	30
100001	hill/rocky	log cut	sand/caly	288862	5360144	30
100002	hill/rocky	log cut	sand/caly	288851	5360143	30
100003	hill/rocky	log cut	clay	288841	5360143	30
100004	hill/rocky	log cut	sand/caly	288824	5360127	30
100005	hill/rocky	log cut	sand/caly	288813	5360130	30
100006	hill/rocky	log cut	sand/caly	288807	5360120	30
100007	hill/rocky	log cut	sand/caly	288794	5360121	30
100008	hill/rocky	log cut	sand/caly	288784	5360114	30
100009	hill/rocky	log cut	loam/clay	288771	5360108	30
100010	hill/rocky	spruce/poplar	sand/clay	288759	5360102	30
100011	hill/rocky	spruce/poplar	sand	288749	5360093	30
100012	flat	alders/poplar	silt/clay	288732	5360093	30
100013	flat	alders/poplar	sand	288718	5360090	30
100014	flat/swamp	alders/poplar	sand/clay	288709	5360085	30
100015	flat/swamp	spruce/alders	clay	288701	5360082	30
100016	flat/swamp	spruce/alders	silt/caly	288690	5360070	30
100017	swamp/rocky	poplar	loam/clay	288677	5360072	30
100018	swamp/rocky	spruce/alders	silt/clay	288668	5360063	50
100019	swamp/rocky	cedar/alders	silt/clay	288657	5360060	30
100020	swamp/rocky	cedar/alders	loam/clay	288644	5360059	40
100021	swampy	alders/poplar	clay	288634	5360047	40
100022	swampy	alders/poplar	silt/clay	288618	5360041	30
100023	swampy	alders	sand/clay	288610	5360038	30
100024	swampy	alders	clay	288597	5360040	30
100025	hill/rocky	alders	sand/loam	288579	5360026	30
150001	hill	log cut	sand	289062	5359696	30
150002	hill/rocky	log cut	sand/clay	289057	5359687	30
150003	hill/rocky	log cut	sand	289037	5359688	30

150004 hill/rocky	log cut	sand	289028	5359679	30
150005 hill/rocky	log cut	sand	289018	5359679	30
150006 hill/rocky	log cut	silt/clay	289005	5359673	30
150007 flat	log cut	silt/clay	288995	5359670	30
150008 flat	log cut	silt/clay	288981	5359662	30
150009 flat	log cut	silt/clay	288975	5359657	30
150010 hill	log cut	silt	288960	5359653	30
150011 hill/rocky	poplar	silt	288946	5359644	30
150012 hill/rocky	poplar	silt	288929	5359643	30
150013 hill/rocky	poplar	silt	288922	5359637	30
150014 flat	poplar/spruce	silt/clay	288911	5359635	30
150015 flat/rocky	poplar/spruce	silt/clay	288896	5359627	30
150016 hill	spruce/poplar	silt	288884	5359625	30
150017 hill	log cut	sand	288878	5359618	30
150018 hill/rocky	log cut	silt/clay	288862	5359613	30
150019 hill	log cut	sand	288850	5359604	30
150020 hill/rocky	log cut	silt/clay	288838	5359601	30
150021 hill/rocky	log cut	sand/clay	288829	5359592	30
150022 flat/swampy	birch/spruce	loam/sand	288815	5359586	30
150023 flat/swampy	birch/spruce	silt/clay	288811	5359590	30
150024 flat/swampy	log cut	silt/clay	288795	5359585	30
150025 hill/rocky	log cut	loam/sand	288782	5359577	30
150026 flat/rocky	log cut	sand/clay	288765	5359567	30
150027 flat/rocky	log cut	silt/clay	288759	5359569	30
150028 flat/rocky	log cut	sand/clay	288744	5359569	30
150029 flat/rocky	log cut	clay	288740	5359555	30
150030 flat/rocky	log cut	sand	288719	5359541	30
150031 hill/rocky	log cut	sand/clay	288712	5359544	30
150032 hill/rocky	log cut	sand	288704	5359541	30
150033 hill/rocky	log cut	silt/clay	288689	5359535	30
150034 hill/rocky	log cut	silt/clay	288675	5359529	30
150035 flat/rocky		silt/loam	288666	5359529	30
150036 Skip swamp					
150037 skip swamp					
170001 hill/rocky	spruce/birch	silt	289142	5359517	30
170002 hill/rocky	spruce/birch	silt	289154	5359520	30
170003 hill/rocky	spruce/birch	silt/clay	289167	5359519	30
170004 hill/rocky	spruce/birch	silt	289179	5359529	30
170005 hill/rocky	spruce/birch	silt/clay	289191	5359531	30
170006 hill/rocky	spruce/birch	silt/clay	289201	5359536	30
170007 hill/rocky	spruce/birch	silt	289209	5359540	30
170008 hill/rocky	spruce/birch	loam/silt	289221	5359544	30
170009 hill/rocky	spruce/birch	silt/clay	289234	5359547	30
•		•			

Sample Name	Terrain	Bush	Sample	Easting	Northing	Depth (cm)	
17001	0 hill/rocky	spruce/birch	silt/clay	289241	5359550		30
17001	1 hill/rocky	spruce/poplar	silt/clay	289257	5359560		30
17001	2 hill/rocky	spruce/birch	silt/clay	289265	5359564		30
17001	3 hill/rocky	spruce/birch	silt/clay	289275	5359567		30
17001	4 hill/rocky	spruce/birch	silt/clay	289296	5359570		30
17001	5 hill/rocky	spruce/birch	silt/clay	289303	5359574		30
17001	6 hill/rocky	spruce/birch	silt/clay	289310	5359578		30
17001	7 hill/rocky	spruce/birch	loam	289322	5359586		30
17001	8 hill/rocky	spruce/birch	silt	289343	5359594		30
17001	9 hill/rocky	spruce/birch	silt/clay	289352	5359594		30
17002	0 hill/rocky	spruce/birch	silt/clay	289362	5359598		30
17002	1 hill/rocky	spruce/birch	silt/clay	289375	5359598		30
17002	2 hill/rocky	spruce/birch	silt/clay	289391	5359605		30
17002	3 hill/rocky	spruce/birch	silt/sand	289398	5359610		30
17002	4 hill/rocky	spruce/birch	silt/sand	289408	5359614		30
17002	5 hill/rocky	spruce/birch	silt/sand	289419	5359622		30
17002	6 hill/rocky	spruce/birch	silt/sand	289436	5359619		30
17002	7 hill/rocky	spruce/birch	silt/sand	289450	5359625		30
17002	8 hill/rocky	spruce/birch	silt	289460	5359640		30
17002	9 hill/rocky	spruce/birch	silt	289468	5359639		30
17003	0 hill/rocky	spruce/birch	silt	289482	5359641		30
17003	1 hill/rocky	spruce/birch	silt	289495	5359650		30
17003	2 hill/rocky	spruce/birch	silt	289502	5359650		30
17003	3 hill/rocky	spruce/birch	silt/sand	289519	5359655		30
17003	4 hill/rocky	spruce/birch	silt/sand	289524	5359660		30
17003	5 flat	log cut (road)	sand	289546	5359665		30
17003	6 hill/rocky	alder/poplar	silt/sand	289552	5359672		30
17003	7 hill	alder/poplar	silt/sand	289561	5359675		30

JUBILEE GOLD - LEESON-BRACKIN, SOIL SAMPLING - 2015

LINE 1315 SOUTH, Sa	mpled July 28 & 29, 2016, W. Troup	
Location	Sample Description	Comments, 0+00 near base line
0+00	mixed brown/grey sandy A/B	top of ridge dry-288996E/5359883N
12W (12Metres West)	mixed brown/grey sandy A/B	slope steep down to West/thick alder and young spruce
25W	grey sandy A/B	slope steep down to West/thick alder and young spruce
37W	grey sandy A/B	slope steep down to West/thick alder and young spruce
50W	grey sandy A/B	slope steep down to West/thick alder and young spruce
62W	brown/grey sandy A/B	slope steep down to West/thick alder and young spruce
75W	brown/grey sandy A/B	slope steep down to West/thick alder and young spruce
87W	brown sandy B	base of hill/dry
100W	brown sandy gritty B	damp
112W	brown sandy gritty B	damp
125W	brown silty sandy clay	East side of road, damp, white granite o/c in area
137W	mixed brown/grey sandy A/B	West side of road, road at 0288875E/5359833N
150W	mixed brown/grey sandy A/B	low flat
162W	grey/brown sandy A/B	low
175W	mixed brown/grey sandy A/B	low
187W	brown sandy silty A/B	low
187WA	brown sandy silty A/B	low
200W	brown sandy silty A/B	low
212W	brown sandy silty A/B	low
225W	grey brown silty sandy B	low
237W	brown black sandy clay	dark organic rich
250W	black sandy clay	low, wet, deep organics
262W	grey black clay rich	low, wet, deep organics
275W	grey black clay rich	low, wet, deep organics
287W	grey clay	low, wet, deep organics
300W	black grey clay	low, wet, deep organics
312W	black grey clay	low, wet, deep organics
325W	black grey clay	low, wet, deep organics
337W	NO SAMPLE	Deep Organics
350W	brown black clay or compact organics	Deep Organics
362W	brown-black organic rich ?	Deep Organics/old flag at site
375W	NO SAMPLE	Deep Organics/old flag at site
387W	grey sandy clay	East side of white granite o/c
400W	grey sandy clay	0288678E/5359672N

LINE 1190 SOUTH,	Sampled July 30 & 31, 2016, W. Troup	
Location	Sample Description	Comments, 0+00 near base line:0288975/5359980
0+00	brown sandy A/B	Close to top of ridge, slope steep down to west
12W	mixed brown/grey sandy A/B	granite boulders in area, steep slope down to west
25W	mixed brown/grey sandy A/B	granite boulders in area, steep slope down to west
37W	mixed brown/grey sandy A/B	granite boulders in area, steep slope down to west
50W	mixed brown/grey sandy A/B	granite boulders in area, steep slope down to west
62W	mixed brown/grey sandy A/B	granite boulders in area, steep slope down to west
75W	mixed brown/grey sandy A/B	granite boulders in area, steep slope down to west
87W	grey sandy A/B	base of steep slope/grnite o/c in area
100W	grey brown sandy B	gentle slope down to west
112W	silty sandy B	gentle slope down to west
125W	brown grey sandy A/B	flat, east side of road
137W	NO SAMPLE	ROAD
150W	grey sandy A/B	low ground, dry
162W	greysandy A/B	low
175W	grey-brown sandy A/B	low
187W	silty grey A/B	low
200W	brown clay	low
212W	grey silty sandy A/B	low
225W	grey clay	low
237W	brown grey sandy A/B	low
250W	brown grey sandy A/B	low
262W	grey black clay rich	low, wet, deep organics
275W	grey brown sandy A/B	low, white granite o/c in area
287W	grey brown sandy A/B	low, white granite o/c in area
300W	grey sandy silty A/B	low, white granite o/c in area
312W	sandy grey clay	low, wet, deep organics
325W	NO SAMPLE	low, wet, deep organics
337W	NO SAMPLE	Deep Organics
350W	grey silty sandy clay	Deep Organics
362W	grey black clay rich	low wet
375W	grey black sandy clay	Deep Organics

SOIL GEOCHEMICAL MAP-(Au)

DATA COMPILATION MAP

+

APPENDIX D

290,000E

LEGEND

- **Claim Boundary Outline**
- Roads
- **Rivers and Creeks**
- Low Wet Ground
- Swamp
- **Gold Occurrence**
- Past Drill Hole
- **Geological Contact**

SOIL GEOCHEMICAL SAMPLING

Standard Geochemical Sample Site & MMI Sample Site 2016 MMI Sample Site Anomalous 2016 Sample Site (Au) Outcrop Sample Site Soil - Au Geochem Anomaly **S35982** Mineral Claim

Exploration Target-2010

Scale 1:5,000 250

(metres)

JUBILEE GOLD EXPLORATION LTD. LEESON-BRACKIN TOWNSHIP PROPERTY

SOIL GEOCHEMICAL MAP

NAD83	Prepared By: DN
JTM Zone 17	Interpretation - WRT
per 2016	N.T.S 42B/5
)	Survey Date - 2009-2010 + 2015-2016
	Sheet No. G1

	LEGEND
	Township Line
•	Claim Boundary Outline
•	Roads
	Rivers and Creeks
	Low Wet Ground
	Swamp
	Gold Occurence
	Geological Contact
	Fault
	Past Hole (Compiled, location approximate)
	Proposed Hole
	Contingency Hole
	Old Trench
	GEOLOGY
	Volcanics, Mafic to Intermediate
	Granitic Rocks, Unsubdivided
	Granitic Rocks, Sheared and Hematitic
	Post Tectonic Felsic Intrusives
	Diorite
	Diabase
	GEOCHEMICAL SAMPLING
	Rock Sample
	Soil - Au Geochem Anomaly
	GEOPHYSICS
_	VLF
	IP Chargeability Anomaly (Strong to Moderate)
2	IP Chargeability Anomaly (Weak)
	Resistivity High
	Resistivity Low

W-(N)-E Grid North

Scale 1:5,000 250

(metres)

JUBILEE GOLD EXPLORATION LTD. LEESON-BRACKIN TOWNSHIP PROPERTY

DATA COMPILATION MAP

NAD83	Prepared By: DN
UTM Zone 17	Interpretation - WRT
ber 2016	N.T.S 42B/5
0	Survey Date - 2009-2010
	Sheet No. G1
-	

