We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Black Creek Project James Bay Lowlands, Ontario

Soil Sampling Program

Prepared by:

Sharon Allan, Breanne Beh and Daniel LaFontaine Probe Metals Inc. 56 Temperance St. Suite 1000 Toronto, ON M5H 3V5

February 2017

Summary

The Black Creek property is part of the Archean Sachigo Volcanic Belt (SVB), located in the James Bay Lowlands of Ontario approximately 300 km north of the town of Nakina, Ontario (Fig. 1.1). The volcanic sequence, in the area of interest, has been intruded by mafic and ultramafic magmas and is in places overlain by a thin sequence of Paleozic sedimentary cover rocks. The area has attracted significant attention owing to the discovery of volcanogenic massive sulphide (VMS) deposits (Franklin, 2003) by Spider Resources in 2002. Following a period of intensive exploration, at least nine VMS occurrences, three Ni-Cu deposits and three significant chromite discoveries have been made near the Probe Metals claims. However, before the discoveries very little work was undertaken in the area by either government geological surveys or exploration companies, and as a result very little geological information is available.

The report covers 12 contiguous, unsurveyed and unpatented claim units that comprise 1 mineral claim license, #4208216. The claim block is situated adjacent to the sulphide and chromite oxides discoveries of Noront, Freewest and Spider/KWG (now Cliffs Natural Resources), and along strike within the volcanic package as inferred from airborne magnetic data.

This report details a geochemical sediment (soil) sampling program that was completed from September 29 to October 5 2016, on the Company's Ring of Fire properties, specifically Black Creek and Tamarack. The Black Creek project is the subject of this report, twenty (20) sites were sampled.

The area is believed to be underlain by a mixed sequence of ultramafic sills and intermediate volcanics with minor felsic volcanics, clastic metasedimentary rocks and iron formation belonging to the SVB as well as granodiorite, which forms the country rock to the SVB.

The sale of Probe Mines Limited. to Goldcorp on March 13, 2015 resulted in a new exploration spinoff company, Probe Metals Inc., that contained Probe Mine's chromite, nickel and copper properties in the Ring of Fire mineral belt in the James Bay lowlands.

SUMMARY	II
TABLE OF CONTENTS	III
LIST OF FIGURES	IV
LIST OF TABLES	IV
APPENDICES	IV
1. INTRODUCTION	1
1.1 TERMS OF REFERENCE	
1.2 DISCLAIMER	
1.3 PROPERTY LOCATION AND ACCESS	
1.4 LAND TENURE	
1.5 TOPOGRAPHY	
1.6 Previous Work	
2. GEOLOGY	8
2.1 REGIONAL GEOLOGY	8
2.1.1 Sachigo Subprovince	
2.1.1 Sachigo Subprovince	
Gneissic Tonalites	
Foliated Tonalite	
Massive Granodiorite-Granite	
Muscovite-Bearing Granite	
Diorite-Monzonite-Granodiorite	
2.1.3 Mafic Intrusive Rocks	
Big Trout Lake Intrusive Complex	
McFauld's Lake Ultramafic Sill	
2.2 Property Geology	13
2.2.1 Mafic Volcanics	
2.2.2 Felsic Volcanics	
2.2.3 Mineralization	
3. EXPLORATION	14
3.1 SOIL SURVEY	
3.2 SURVEY SPECIFICATIONS	
3.3 SAMPLE TREATMENT AND ANALYSIS	17
3.3.2 ACTIVATION LABS 2B INAA ANALYSIS	
3.4 DATA MANIPULATION	19
3.5 Results	20
4. RECOMMENDATIONS & CONCLUSIONS	20
5. REFERENCES	23

Table of Contents

List of Figures

Figure	1.1	Location Map	p.2
Figure	1.2	Claim Location Map	p.5
Figure	1.3	McFauld's Lake Area mineral occurrences	p.8
Figure	2.1	The Superior Province of Ontario	p.9
Figure	2.2	Regional Geology of the Eastern Sachigo subprovince	p.11
Figure	3.1	Location Map of Soil Sample Survey	p.17
Figure	3.2	Stacked Bar Chart of Response Ratios for MMI® Analyses BC Line 23	.p.21

List of Tables

Table	1.1	Land Tenure Information	p.4
Table	3.1	Soil Sample information	p.16
Table	3.2	Detection Limits for MMI® Analysis	p.18
Table	3.3	Detection Limits for 2B INAA Analysis	p.19
Table	3.4	Soil Sample Analytical Results and Response Ratios	p.22

Appendices

- APPENDIX I Large scale Sample Location Map (Scale 1:5,000)
- APPENDIX II Certificate of Analysis SGS
- APPENDIX III Certificate of Analysis Actlabs
- APPENDIX IV Large scale Results Maps (1:5,000)

1. Introduction

This report details the results of a soil sampling program. From September 29 to October 5 2016, Probe Metals completed soil sampling on its Ring of Fire properties, specifically Black Creek and Tamarack. The Black Creek project is the subject of this report, and twenty (20) sites were sampled.

The Black Creek property is part of the Archean Sachigo Volcanic Belt (SVB), located in the James Bay Lowlands of Ontario approximately 300 km north of the town of Nakina, Ontario (Fig. 1.1). The volcanic sequence, in the area of interest, has been intruded by mafic and ultramafic magmas and is in places overlain by a thin sequence of Paleozic sedimentary cover rocks. The area has attracted significant attention owing to the discovery of volcanogenic massive sulphide (VMS) deposits (Franklin, 2003) by Spider Resources in 2002. Excitement was first generated in the area following the unexpected diamond drilling discovery of VMS mineralization containing Cu, Pb and Zn and minor Au and Ag, over what were thought to represent kimberlite targets. Following a period of intensive exploration, at least nine VMS occurrences, three Ni-Cu deposits and four significant chromite discoveries have been made near the Probe Metals claims, one of which is Probe Metals` Black Creek deposit. However, before the discoveries very little work was undertaken in the area by either government geological surveys or exploration companies, and as a result very little geological information is available.

The report covers 12 contiguous unsurveyed and unpatented claim units that comprise 1 mineral claim license. The claim block is situated adjacent to the sulphide and chromite oxides discoveries of Noront, Freewest and Spider/KWG (now Cliffs Natural Resources) and along strike within the volcanic package as inferred from airborne magnetic data. The mineral claim license number is 4208216.

The area is underlain by a mixed sequence of ultramafic sills and intermediate volcanics with minor felsic volcanics, clastic metasedimentary rocks and iron formation belonging to the SVB as well as granodiorite, which forms the country rock to the SVB.

All costs are in Canadian dollars and the coordinate system used is UTM Datum NAD 83, Zone 16.

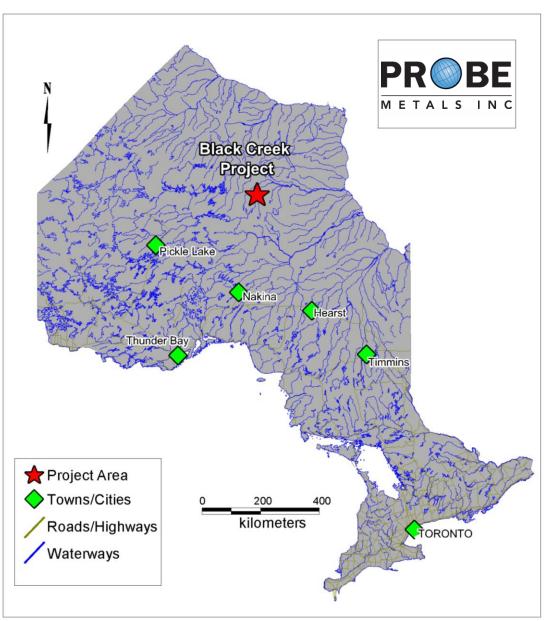


Figure 1.1 Location of the Black Creek Project, Ontario

1.1 Terms of Reference

This report uses standard System International (SI) units. The coordinate system used for georeferencing is UTM NAD 83 (Zone 16), with units of meters, and structural data is given in degrees, using the right hand rule convention (dip is always to the right of the strike measurement). For planar features strike measurement is always given first, followed by dip, and for linear features, such as fold axes, it is dip/dip angle. Some common abbreviations found in the text are defined as follows:

OGS	Ontario Geological Survey
UTM	Universal Trans Mercator (geographic)
NAD	North American Datum (geographic)
SVB	Sachigo Volcanic Belt
VMS	Volcanogenic Massive Sulphide (deposit type)
MMS	Magmatic Massive Sulphide (deposit type)
PGE	Platinum Group Elements
REE	Rare Earth Elements
g/t	grams per tonne (equivalent to ppm)
ppm/ppb	parts per million/billion
	Concentrations below detection (for ease in viewing geochemical data)
MSL	Mean Sea Level (0m)
EM	Electromagnetic (geophysics)
AEM	Airborne Electromagnetic (geophysics)
IP	Induced Polarization (geophysics)
TDEM	Time Domain Electromagnetics
γ	Gamma (1 gamma = 1 nanoTesla), magnetic units

1.2 Disclaimer

Land tenure information and assessment reports have been extracted from the Ontario Ministry of Northern Development and mines web site (<u>www.mndm.gov.on.ca/MNDM</u>), which contains the following disclaimer:

"Use this Internet service at your own risk. The Ministry of Northern Development and Mines disclaims all responsibility for the accuracy of information provided. Material in this service involves a new use of technology, which may cause errors and therefore the information may be inaccurate or incomplete.

The Ministry of Northern Development and Mines cannot and does not warrant the accuracy, completeness, timeliness, merchantability or fitness for a particular purpose of any information available through this service. Furthermore, the Ministry of Northern Development and Mines does not guarantee in any way that it is providing all the information that may be available. The Ministry of Northern Development and Mines shall not be liable to you or anyone else for any loss or injury caused in whole or part by the Ministry of Northern Development and Mines in procuring, compiling, or delivering this service and any information through the service. In no event will the Ministry of Northern Development and Mines be liable to you or anyone else for any decision made or action taken by you or anyone else in reliance on this service. Although the Ministry of Northern Development and Mines has used considerable efforts in preparing the information at this site, the Ministry of Northern Development and Mines does not warrant the accuracy, timeliness, or completeness of the information. Lastly, notwithstanding the foregoing, you agree that the liability of the Ministry of Northern Development and Mines, if any, arising out of any kind of legal claim (whether in contract, tort or otherwise) in any way connected with the service or its content shall not exceed the amount paid to the Ministry of Northern Development and Mines for use of the service."

Geological data and information used in this report have also been gathered from government reports and company websites and provided by Probe Metals Inc. The author has declined use of previous interpretations and relies only on the factual data contained within the published and unpublished documents.

A significant volume of material was taken from Company press releases, which contain the following disclaimer:

"The TSX Venture Exchange has not reviewed and does not accept responsibility for the adequacy or accuracy of this release".

This report is intended as a technical summary of available factual data for Probe Metals Inc. on its Black Creek Project. The author does not accept responsibility for use by third parties of the material contained in this report outside the scope of the stated objective.

1.3 Property Location and Access

The Black Creek Project ("BCP") falls within the Sachigo Volcanic Belt (SVB) of northern Ontario (Fig 2.2). The report details work performed on 12 contiguous claim units within the BCP staked as a rectangular block that comprises 1 mineral claim license. The claim blocks are situated adjacent to the sulphide and chromite oxides discoveries of Noront, Freewest and Spider/KWG (Fig. 1.3).

Access to the property is by way of float/ski-equipped fixed-wing aircraft or helicopter from one of a number of communities found along Highway 11. Local access to the properties can be achieved by helicopter, or snowmobile in winter. No water access exists for the properties.

For the current program, helicopter services were provided by Heli-Explore and float plane services by Nakina Air and Wilderness North. Accommodations were at the Miminiska Lake Lodge. Jet fuel was purchased either in drums from Nakina or from the Miminiska Lake airport.

1.4 Land Tenure

The 12 unsurveyed and unpatented claim units comprise one mineral license (Fig. 1.2, Table 1.1), which grant the title-holder mineral rights to the area. All claims are recorded in the name of Probe Metals Inc., and 100% ownership is currently maintained by Probe Metals. There are no outstanding or pending adverse environmental issues attached to the property. Regulatory permits are not required for the exploration activities outlined in this report.

Table 1.1 Land Tenure informatio	n
----------------------------------	---

					Assessment	Reserve	Total
Claim #	District	Township	Units	Due Date	Required	Credits	Required
4208216	POR	BMA 527 861	12	07/03/2017	4800	2310	2490

Figure 1.2 Claim Location Map

1.5 Topography

The claim block is found within the James Bay Lowlands of Ontario, an area characterized by a plain of low relief, which gently slopes towards James Bay to the northeast. Elevation in the property area is approximately 250m above means sea level (MSL), with local variations of typically less than 10m. An exception occurs along the Attawapiskat River, where elevations can change by up to 30m. Hydrographic features include the Attawapiskat and Muketei Rivers and numerous small streams. Owing to the thick clay deposits and low relief, the area is poorly drained, resulting in numerous lakes, swamps and muskeg areas. Lakes in the area can reach up to 5km in diameter, with the largest being McFauld's Lake itself, located approximately ten kilometers east of the property.

1.6 Previous Work

Prior to the discovery of VMS mineralization in the Sachigo Volcanic Belt (SVB) only limited physical examination of the area was undertaken by the Ontario Geological Survey (OGS), and consisted of regional-scale mapping (Thurston *et. al.*, 1975) and airborne magnetic surveys (OGS). Owing to topography, geological exposures are scarce and, within the claim boundaries, consist only of Ordovician sedimentary rocks. River cuts found to the west of the properties contain outcrops of mafic flows and mafic intrusives (subvolcanic?) found as layers within meta-granitoid rocks (Thurston *et. al.*, 1975). Volcanic horizons typically show subvertical to vertical dips. A provincial airborne magnetics survey provides the most accurate depiction of the subsurface geology, displaying an arcuate belt of layered rocks approximately 100km in length.

Interest in the diamond potential of the James Bay Lowlands triggered a number of regional-scale geochemical surveys in the area (OFR-6097 Spider 3; OFR-6108 James Bay), which evaluated heavy mineral geochemistry of stream sediments. However, the presence of Paleozoic rocks overlying the prospective volcanics tends to nullify the effect of surficial geochemistry for the area.

Most of the external information available regarding volcanic rocks in the McFauld's Lake area comes from exploration by Spider Resources on nearby mineral properties. Diamond drilling by Spider intersected a number of VMS occurrences, the most notable being McFauld's #1 and #3, which are located to the east-northeast of Probe Metals Black Creek properties (Fig 1.3). The VMS mineralization was first identified by De Beers Canada Exploration Inc. ("De Beers") in the Fall of 2002, while exploring for kimberlite. Reverse circulation drilling encountered base metal sulphides, i.e., chalcopyrite, sphalerite, associated with volcanic flows consisting of highly altered mafic and felsic lithologies (Franklin, 2003). Metal zonation in sulphide mineralization is poorly developed, however, Cu-rich stringer-style mineralization has been identified in the footwall, while Zn values tend to increase in the hanging wall direction (Franklin, 2003), suggesting that VMS processes are active.

On October 3rd, 2006, Probe Mines intersected a zone of copper mineralization on the west block of its Tamarack Project comprising massive pyrite with significant interstitial chalcopyrite. This zone, termed the "A-Zone" (Fig. 1.3) occurs within felsic fragmental volcanics, and is probably stratigraphically related to the Spider Resources mineralization.

In August of 2007 Noront intersected high-grade nickel-copper-platinum-palladium-gold mineralization in a coarse-grained peridotite near to Probe Metals' Black Creek project (Fig. 1.3). Drilling highlights of the Eagle One discovery included a mineralized intersection averaging 6.25% nickel, 2.75% copper, 1.85 g/t platinum, 10.23 g/t palladium, 3.0 g/t gold and 10.3 g/t silver over 46.6 meters. In October 2008 Noront released a preliminary economic assessment of the Noront Ni-Cu deposit which reported an estimated resource (indicated) of 1,834,000 tonnes averaging 1.96% Ni, 1.18% Cu and 5.1g/t combined platinum, palladium and gold. Evaluation of other geophysical targets by Noront resulted in the discovery of two additional Ni-Cu occurrences, Eagle Two and AT-12.

The identification of layered massive chromite was first made by Spider Resources in January 2006 while exploring for VMS mineralization. Noront Resources identified further chromite mineralization on its Black Bird 1 and 2 showings, while Freewest Resources returned significant intersections of massive chromite in its Black Thor and Black Label deposits (Fig. 1.3). Highlights from the Freewest drilling include a 124m intersection grading 30% Cr2O3. The chromite occurrences are all located along a singular magnetic high extending for approximately 20km in a northeast direction along which many of Probe's Black Creek claims occur.

Probe Mines completed a diamond drilling program between July and September 2009 which was designed to test a number of ground gravity and airborne magnetic targets identified on its claim 4208219 which also forms part of the Black Creek project. Nine holes were drilled, with four holes, MHV03, -04, -05 and -06 intersecting massive chromite layers of potential economic significance. The discovery was named the Black Creek deposit.

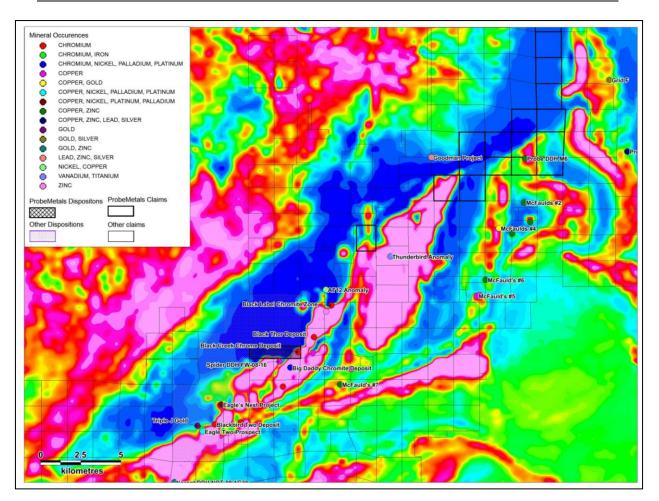


Figure 1.3 McFauld's Lake Area mineral occurrences

2. Geology

2.1 Regional Geology

The Black Creek project is located in the Superior Province of Northern Ontario, an area of 1,572,000 km², which represents 23% of the earth's exposed Archean crust (Thurston, 1991). The Superior Province is divided into numerous Subprovinces (Fig. 2.1), each bounded by linear faults and characterized by differing lithologies, structural/tectonic conditions, ages and metamorphic conditions. These Subprovinces can be classified as one of four types: 1) Volcano-plutonic, consisting of low-grade metamorphic greenstone belts, typically intruded by granitic magmas, and products of multiple deformation events; 2) Metasedimentary, dominated by clastic sediments and displaying low grade metamorphism at the subprovince boundary and amphibolite to granulite facies towards the centers; 3) Gneissic/plutonic, comprised of tonalitic gneiss containing early plutonic and volcanic mafic enclaves, and larger volumes of granitoid plutons, which range from sodic (early) to potassic (late); and 4) High-grade gneissic subprovinces, characterized by amphibolite to granulite facies igneous and metasedimentary gneisses intruded by

tonalite, granodioritic and syenitic magmas (Card and Ciesieliski, 1986). The Black Creek claim blocks lie within the Sachigo metasedimentary subprovince.

2.1.1 Sachigo Subprovince

The Sachigo Subprovince represents the northernmost extent of exposed Archean basement rocks of the Superior Province (Fig 2.1, 2.2). To the west, the Sachigo is

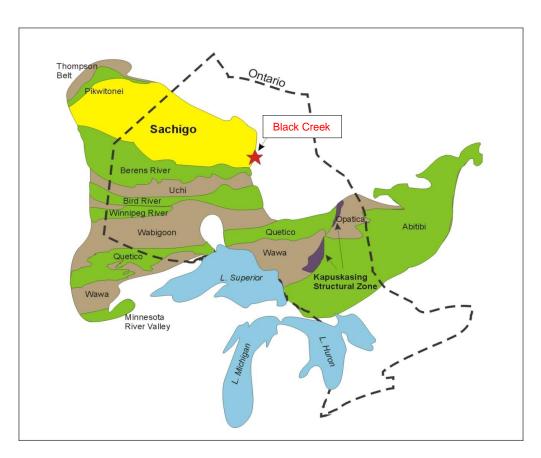


Figure 2.1 The Superior Province of Ontario

bounded by the Trans-Hudson-Orogen (THO) (1.8 Ga), while to the northwest the subprovince is in contact with granitoid and mafic/ultramafic rocks of the Thompson Belt, a collisional zone formed during the THO. To the east, the Sachigo is delimited by the Winisk River Fault, which separates the Superior Province from rocks of the THO Fox River Belt, while the southern limit of the Sachigo subprovince is defined by the Berens River subprovince, a granite-greenstone terrane.

Much less is known about the Sachigo subprovince than the more accessible granitegreenstone belts to the south, with most work concentrating on the handful of isolated greenstone belts found enclosed within the granitic and gneissic units (e.g. Bennet and Riley, 1969; Ayres, 1974; Card and Ciesielski, 1986; Thurston et al., 1991). However, a number of differences can be noted between the greenstone belts of the Sachigo subprovince and younger greenstone terranes to the south, and include some of the oldest ages for greenstones in the Superior Province (2.9 to 3.0 Ga) (Corfu and Wood, 1986; Thurston et al., 1991); and an unusual sequence of quartz-rich metasediments within a sequence of mafic and felsic volcanic rocks (Thurston et al., 1991). The Berens River granite-greenstone subprovince, immediately to the south of the Sachigo, is interpreted to represent a deeply eroded arc or micro continental core, while rocks of the Sachigo are considered remnants of widespread, early (3.0 Ga) sialic crust (Thurston et al., 1991). Geological similarities between the Sachigo, Berens River, and the Uchi subprovince, situated to the south of the Berens River subprovince, have prompted some researches to define an Uchi-Sachigo-Berens River superterrane (Card and Ciesielski, 1986; Thurston et al., 1991).

2.1.2 Felsic/Intermediate Intrusives

Granitic rocks represent the dominant lithologies in the Sachigo subprovince and include, from oldest to youngest: gneissic tonalites; foliated tonalites; a muscovite granodiorite–granite series; and a diorite-monzonite-granodiorite suite (Thurston et al., 1991).

Gneissic Tonalites

These intrusives are possibly the oldest example of plutonic rocks (Thurston et al., 1991), and can be divided into melanocratic (>20% amphibole) and leucocratic (<20% amphibole) series, although dominated by the latter. Rocks are heterogeneous, and are typically cut by several generations of granitic dykes, and may contain mafic inclusions up to kilometers in diameter (Thurston et al., 1991). The origin of these inclusions can be traced back to supracrustal xenoliths and tectonized mafic dykes. Tonalitic rocks of the Sachigo subprovince are batholithic in proportion, and display a general west to northwest strike in their layering, which shows divergence around younger intrusives and in the vicinity of shear zones. Contact relationships with greenstone terranes are almost invariably tectonic, while more gradational with other felsic intrusives (Thurston et al., 1991).

Foliated Tonalite

Foliated tonalites include amphibole-bearing and biotite-bearing varieties, and typically form irregular batholiths and stocks at the interface between greenstone terranes and massive tonalite in the Sachigo subprovince (Stone, 1989; Thurston et al., 1991). Amphibole-bearing tonalite typically contains less than 20% mafic minerals, usually as hornblende, while more felsic versions are dominated by biotite in their mafic assemblages. Rocks are generally medium- to coarse-grained, and relatively homogeneous, although megacrysts and clotty amphibole are common in hornblende tonalites and granodiorites (Thurston et al., 1991). The intrusions are well foliated, with foliation described by oriented lenticles of quartz, plagioclase, biotite and hornblende (Thurston et al., 1991).

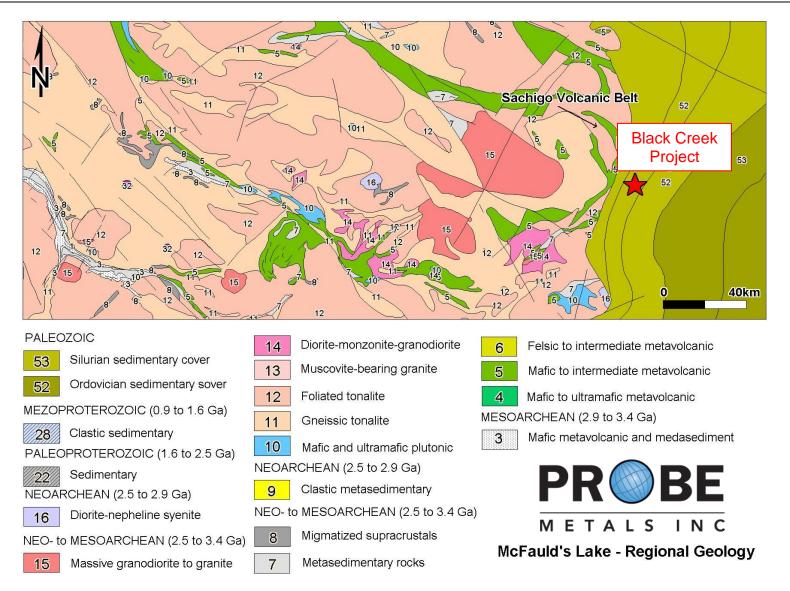


Figure 2.2 Regional geology of the Black Creek Project and McFauld's Lake area, Sachigo Volcanic Belt

Massive Granodiorite-Granite

Within the granodiorite to granite suite granodiorites predominate, with feldspar megacrystic granodiorite and biotite granodiorite forming the two most voluminous lithologies (Thurston et al., 1991). Megacrystic varieties are grey to pink, and contain feldspar megacrysts up to 2cm in length, and generally less than 15% mafic constituents including possible relict clinopyroxene (Thurston et al., 1991). Magnetite is common in this series and accounts for its high magnetic signature in regional aeromagnetics. Massive biotite granodiorites are a weakly foliated, pale pink rock, containing irregular pods of pegmatitic material (Thurston et al., 1991). Mafic minerals, dominated by biotite, typically make up less than 10% of the rock.

Muscovite-Bearing Granite

Members of this suite range from granodiorite to granite, and are coarse-grained to pegmatitic, often containing metasedimentary xenoliths. They include two-mica granites and leucogranites, which are usually associated with major shear zones in the Sachigo subprovince. Their young ages (2653 Ma), compared to two-mica granites in the southern Superior Province, smaller sizes and tectonic association suggest that these granites may have formed from melting of metasedimentary units during late block-to-block movement (Thurston et al., 1991).

Diorite-Monzonite-Granodiorite

These rocks represent the youngest felsic/intermediate intrusions in the Sachigo subprovince, and range between quartz diorite and quartz monzonite. Mafic mineral assemblages can be high, up to 30%, with hornblende typically dominant over biotite, and occasional pyroxene (Thurston et al., 1991). Rocks of this suite show a spatial association with mafic intrusives, and usually display a gradational transition to gabbroic compositions. The rocks are generally inclusion-rich, and this, coupled with the mafic mineralogy, suggests that they are mantle derived, similar to monzodiorite plutons in the southern Superior (Stern et al., 1989).

2.1.3 Mafic Intrusive Rocks

Pre-tectonic mafic intrusive rocks in the Sachigo subprovince are considered to be synvolcanic by Thurston et al. (1991), and comprise predominantly mafic to ultramafic sills. Post-tectonic magmatism in the northwestern Superior Province includes three diabase dyke swarms, comprising the 2171 Ma Marathon swarm, 1888 Ma Molson Swarm and the 1267 Ma MacKenzie Swarm.

Big Trout Lake Intrusive Complex

The Big Trout Lake intrusive complex represents the largest exposed mafic-ultramafic intrusion and consists of a folded 5000m thick sill containing a 500m thick lower ultramafic sequence of dunite, chromite and chromite-rich layers overlain by homogeneous

peridotite. Two batches of tholeiitic magma are indicated in the formation of the sill (Borthwick and Naldrett, 1984).

McFauld's Lake Ultramafic Sill

A mantle derived, highly magnetic ultramafic intrusion was emplaced along the margin of a regional scale granodiorite pluton which had been intruded into and caused a doming of the host Sachigo greenstone belt rocks. The sills are in contact with both lithologies of the SVB and the Archean granodiorite at its northern contact. The sill is magnetically distinct allowing it to be traced more or less uninterrupted, for tens of kilometres along the granodiorite margin. It appears that a series of conduits cutting across the granodiorite have acted as feeders to the main sill, and the Eagle One deposit is interpreted to be formed in one of these conduits.

2.2 Property Geology

Very little is known about the geology of the Black Creek Project and McFauld's Lake area, with most of the information obtained from recent drilling in the area of the VMS and MMS discoveries at the eastern extent of the volcanics (Franklin, 2003). Within the eastern section of the belt a thin (<40m) section of Paleozoic sedimentary rocks, comprised predominantly of limestone, overlies the volcanic package. The volcanic sequence at this location is comprised of highly altered mafic and felsic volcanic rocks, which have in some cases undergone extensive Mg-metasomatism to form talc-magnetite alteration. In most cases this replacement alteration has occurred to such a degree as to make primary lithologies indiscernible, with all units resembling basaltic flows (Franklin, 2003). The hydrothermal character of the talc-magnetite rock has been established to a fair degree of confidence through whole rock geochemical comparisons utilizing major and trace element characteristics, while precursor lithologies have been demonstrated to be a bimodal population of basaltic and rhylotic-dactic volcanic rocks (Franklin, 2003). The character of the felsic sequence suggests that there was significant heat available to the system, which indicates a greater potential for the formation of VMS mineralization in the volcanic strata.

The ultramafic units, which comprise the sill and feeder dykes along the contact of the volcanics, consist of fine- to medium grained, talc rich rocks displaying varying degrees of alteration. In feeder dykes, grain size typically increases and relic olivine can be observed.

Owing to the buried nature of the volcanics and ultramafic intrusives in this area, propertyscale structural data is unavailable, however, fine structural features are preserved in core samples, and comprise predominantly folding, varying from open to isoclinal. In layered sequences a weak S1 foliation is developed parallel to sub-parallel to layering, while rare S2 foliations could be discerned oblique to S1, typically 30-35° from the earlier foliation.

2.2.1 Mafic Volcanics

Mafic volcanics comprise a suite of calc-alkaline basalts and chloritic basalts, with some strata being composed of spherulitic varieties (Franklin, 2003). Very little descriptive data is available for the basalts, however, drill sections indicate that it dominates the volcanic sequence in both the hanging wall and footwall sections (Franklin, 2003). The calc-alkaline nature of the basaltic rocks is suggested by high LREE/HREE ratios, however, alteration makes this determination difficult.

2.2.2 Felsic Volcanics

Original logging of Spider Resources' diamond drill core from the McFauld's area indicated that felsic volcanic rocks were rare in the sequence, however, Franklin (2004) demonstrates geochemically that they occur in much greater quantities than first thought. Although obfuscated by alteration, felsic volcanics occur in both fragmental and massive flow varieties, and can be distinguished from basaltic members through their distinctive REE and immobile element patterns. Their enrichment in REE, and the flat patterns, are indicative of high temperature rhyolites, which are often associated with VMS terranes (Lesher et al., 1986; Franklin, 2003). In drill sections, the felsic volcanics do not correlate well with each other, suggesting they are laterally discontinuous. Within Probe's claims, diamond drilling has identified several felsic volcanic layers comprising predominantly coarse-grained lapilli tuffs and fragmental units, as well as fine-grained ash-fall tuffs. Alteration is present in these units, however preserved sections reveal the highly siliceous nature of the rocks.

2.2.3 Mineralization

Previous drilling on Probe Metals' Black Creek Project Claim 4208219 was successful in identifying a thick sequence of massive to disseminated chromite mineralization which was named the Black Creek deposit.

3. Exploration

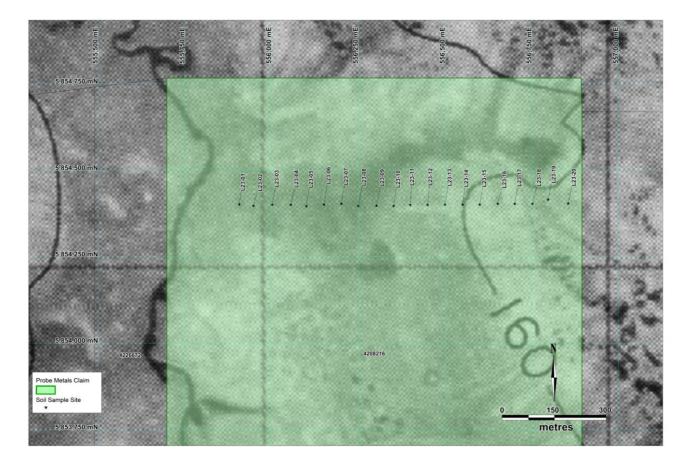
Owing to the property's proximity to numerous high-grade and significant discoveries of nickel-copper and chromite, Probe began exploration of these claims in 2009. Previous work on the claim was filed in work report W0960.00878 submitted in March 2009. Work performed included the completion of a VTEM airborne survey. An initial MMI sampling program was completed in September 2010 and filed under work report W1160.00466. The survey comprised 8 samples along an east-west traverse line. Additional MMI sampling was completed in 2012, comprising 48 samples, filed under work report W1360.00420.

3.1 Soil Survey

From September 29 to October 5 2016, Probe Metals completed soil sampling on its Ring of Fire properties, specifically Black Creek and Tamarack. The Black Creek project is the subject of this report, and twenty (20) sites were sampled.

3.2 Survey Specifications

In the James Bay Lowlands, the soil profile is not well developed and as such the interface between organic/inorganic horizons is considered the interface between less decomposed and more decomposed material. The sampling was completed by two 2 person teams consisting of in-house Probe Metals' geologists Breanne Beh and Daniel LaFontaine and two personnel from Haveman Brothers. Ms. Beh and Mr. Lafontaine also completed the logistical organization of the program and assisted Sharon Allan with the compilation of the results and the writing of this report.


Sampling methodology employed a handheld auger to collect the target material, placing the sample material into a small sized ziploc plastic bag. Each bag was numbered and a tyvec sample tag placed inside. The location of each site was recorded using a GPS (Global Positioning System). Comments on material sampled were recorded at each sample site. Equipment was cleaned prior to the next sample site. Duplicate samples were collected every forty samples. Samples were collected along a single east-west traverse line.

Two samples were collected at each site. Even numbered samples were sent to Activation Laboratories; while odd numbered samples were sent to SGS Canada. A total of twenty (20) sites were sampled and one (1) duplicated. As such a total of fort two (42) samples were collected. The locations of the samples are illustrated in Figure 3.1, with Appendix I containing a 1;5,000 scale location map and a table of sample location data is presented in Table 3.1.

Table 3.1 Soil Sample information

Sample	Sample				UTM	UTM	Physiograph			Depth				
MMI	ICP-MS	Site #	Sampler	Date	Easting	Northing	У	Slope	Drainage	(cm)	Organic %	Silt %	Moisture	Colour
WS01733	WS01734	L23-01	Daniel L./ Breanne B.	30/09/2016	555906	5854402	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black
WS01735	WS01736	L23-02	Daniel L./ Breanne B.	30/09/2016	555947	5854397	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black
WS01737	WS01738	L23-03	Daniel L./ Breanne B.	30/09/2016	556001	5854400	Wetland	Flat (0-5°)	Moist	90-100	100%		Moist	Brown black
WS01739	WS01740	L23-04	Daniel L./ Breanne B.	30/09/2016	556055	5854400	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black
WS01741	WS01742	L23-05	Daniel L./ Breanne B.	30/09/2016	556099	5854396	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black
WS01743	WS01744	L23-06	Daniel L./ Breanne B.	30/09/2016	556150	5854401	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black
WS01745	WS01746	L23-07	Daniel L./ Breanne B.	30/09/2016	556200	5854404	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black
WS01747	WS01748	L23-08	Daniel L./ Breanne B.	30/09/2016	556250	5854396	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black
WS01749	WS01750	L23-08	Daniel L./ Breanne B.	30/09/2016	556250	5854396	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black
WS01917	WS01918	L23-20	Reed L./Matt H.	30/09/2016	556854	5854404	Wetland	Flat	Seepage	130	100%		Saturated	Brown - Orange
WS01919	WS01920	L23-19	Reed L./Matt H.	30/09/2016	556796	5854415	Wetland	Flat	Seepage	130	90%	10%	Saturated	Brown - Orange
WS01921	WS01922	L23-18	Reed L./Matt H.	30/09/2016	556751	5854403	Wetland	Flat	Seepage	130	90%	10%	Saturated	Brown - Orange
WS01923	WS01924	L23-17	Reed L./Matt H.	30/09/2016	556700	5854403	Wetland	Flat	Seepage	130	60%	40%	Saturated	Brown - Orange
WS01925	WS01926	L23-16	Reed L./Matt H.	30/09/2016	556651	5854403	Wetland	Flat	Seepage	130	90%	10%	Saturated	Brown - Orange
WS01927	WS01928	L23-15	Reed L./Matt H.	30/09/2016	556599	5854401	Wetland	Flat	Seepage	130	80%	20%	Saturated	Brown - Orange
WS01929	WS01930	L23-14	Reed L./Matt H.	30/09/2016	556550	5854401	Wetland	Flat	Seepage	130	90%	10%	Saturated	Brown - Orange
WS01931	WS01932	L23-13	Reed L./Matt H.	30/09/2016	556499	5854401	Wetland	Flat	Seepage	130	90%	10%	Saturated	Brown - Orange
WS01933	WS01934	L23-12	Reed L./Matt H.	30/09/2016	556449	5854400	Wetland	Flat	Wet	130	100%		Saturated	Brown - Orange
WS01935	WS01936	L23-11	Reed L./Matt H.	30/09/2016	556399	5854400	Wetland	Flat	Wet	130	80%	20%	Saturated	Brown - Orange
WS02251	WS02252	L23-09	Daniel L./ Breanne B.	30/09/2016	556301	5854397	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black
WS02253	WS02254	L23-10	Daniel L./ Breanne B.	30/09/2016	556351	5854397	Wetland	Flat (0-5°)	Wet	130	100%		Wet	Brown black

Figure 3.1 Location Map of Soil Samples (Appendix I shows map at Scale of 1:5000)

3.3 Sample Treatment and Analysis

3.3.1 SGS Canada MMI® analysis

Mobile Metal Ion analysis represents an analytical technique that measures the concentration of adsorbed metal ions on charged mineral surfaces. The MMI® technique was developed to recognize hidden mineral deposits through the identification of chemical indicators, which are transferred by ground water from host lithologies/deposits to overlying soil horizons. The dissolution of mineral phases within mineral deposits by these ground waters produces charged metal species, which are attracted to oppositely charged mineral surfaces in the overlying soil horizon. A dilute acid solution is then used to remove only these adsorbed ions, producing a solution containing the chemical pathfinders. The power of MMI® lies in the relatively small distances over which charged metal species can be transported, providing near in-situ geochemical anomalies.each element in samples falling within the lower quartile of the population, taken on an element-by-element basis for the sample population.

.

In the MMI® analysis, target elements are extracted using weak solutions of organic and inorganic compounds rather than conventional aggressive acid or cyanide-based digests. MMI® solutions contain strong ligands, which detach and hold metal ions that were loosely bound to soil particles by weak atomic forces in aqueous solution. This extraction does not dissolve the bound forms of the metal ions. Thus, the metal ions in the MMI® solutions are the chemically active or 'mobile' component of the sample. Because these mobile, loosely bound complexes are in very low concentrations, measurement is by conventional ICP-MS and the latest evolution of this technology, ICP-MS Dynamic Reaction CellTM (DRC IITM), allowing very low detection limits to be reported (Table 3.2).

ANALYTE	METHOD	DETECTION	UNITS	ANALYTE	METHOD	DETECTION	UNITS
Ag	MMI-M5	1	ppb	Nb	MMI-M5	0.5	ppb
AI	MMI-M5	1	ppm	Nd	MMI-M5	1	ppb
As	MMI-M5	10	ppb	Ni	MMI-M5	5	ppb
Au	MMI-M5	0.1	ppb	Р	MMI-M5	0.1	ppm
Ва	MMI-M5	10	ppb	Pb	MMI-M5	10	ppb
Bi	MMI-M5	1	ppb	Pd	MMI-M5	1	ppb
Ca	MMI-M5	10	ppm	Pr	MMI-M5	1	ppb
Cd	MMI-M5	1	ppb	Pt	MMI-M5	1	ppb
Ce	MMI-M5	5	ppb	Rb	MMI-M5	5	ppb
Co	MMI-M5	5	ppb	Sb	MMI-M5	1	ppb
Cr	MMI-M5	100	ppb	Sc	MMI-M5	5	ppb
Cs	MMI-M5	0.5	ppb	Sm	MMI-M5	1	ppb
Cu	MMI-M5	10	ppb	Sn	MMI-M5	1	ppb
Dy	MMI-M5	1	ppb	Sr	MMI-M5	10	ppb
Er	MMI-M5	0.5	ppb	Та	MMI-M5	1	ppb
Eu	MMI-M5	0.5	ppb	Tb	MMI-M5	1	ppb
Fe	MMI-M5	1	ppm	Те	MMI-M5	10	ppb
Ga	MMI-M5	1	ppb	Th	MMI-M5	0.5	ppb
Gd	MMI-M5	1	ppb	Ti	MMI-M5	3	ppb
Hg	MMI-M5	1	ppb	TI	MMI-M5	0.5	ppb
In	MMI-M5	0.5	ppb	U	MMI-M5	1	ppb
К	MMI-M5	0.1	ppm	W	MMI-M5	1	ppb
La	MMI-M5	1	ppb	Y	MMI-M5	5	ppb
Li	MMI-M5	5	ppb	Yb	MMI-M5	1	ppb
Mg	MMI-M5	1	ppm	Zn	MMI-M5	20	ppb
Mn	MMI-M5	10	ppb	Zr	MMI-M5	5	ppb
Мо	MMI-M5	5	ppb				

Table 3.2 Detection Limits for MMI® Analysis

3.3.2 Activation Labs 2B INAA analysis

Given the sample medium collected in the James Bay Lowlands is not true soil but rather largely vegetative matter; it was decided to utilize a geochemical analysis available for organic instead of inorganic material. The analysis chosen was 2B INAA.

Ground vegetation samples weighing 6 to 15 g are compressed under 30 tons of pressure to form a briquette (smaller samples are weighed in vials). Briquettes are stacked with flux wires and an internal standard (1 for 29 samples) and irradiated at a thermal flux of 7 x 10 12 n cm-2 s-1 for 15 minutes. After a 7-day period, to allow Na-24 to decay, the samples are counted on a high purity Ge detector with resolution of better than 1.7 KeV for the 1332 KeV Co-60 photopeak. Using the flux wires, the decay-corrected activities are compared to a calibration developed from multiple certified international reference materials. The standard present is only a check on accuracy and is not used for calibration purposes. From 10-30% of the samples are rechecked by re-measurement. For values exceeding the upper limits, assays are recommended. One standard is analyzed for every 29 samples. The detection limits of the elements analyzed are illustrated in Table 3.3 (www.actlabs.com).

Element	Detection Limit	Element	Detection Limit		Element	Detection Limit	Element	Detection Limit
Ag	0.3	Cs	0.05		Мо	0.05	Sr	100
As	0.01	Eu	0.05		Na	1	Та	0.05
Au	0.1 ppb	Fe	0.01%		Nd	0.3	Tb	0.1
Ba	5	Hf	0.05		Ni	2	Th	0.1
Br	0.01	Hg	0.05		Rb	1	U	0.01
Ca	0.01%	Ir	0.1 ppb		Sb	0.005	W	0.05
Ce	0.1	K	0.01%		Sc	0.01	Yb	0.005
Со	0.1	La	0.01]	Se	0.1	Zn	2
Cr	0.3	Lu	0.001]	Sm	0.001		

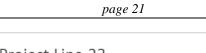
Table 3.3 Detection Limits for 2B INA	AA Analysis
---------------------------------------	-------------

3.4 Data Manipulation

Data received is provided in ppm or ppb. For the MMI® analysis these were converted to response ratios to further analyse the data. Response ratios (or peak to background ratios) are calculated by dividing each sample value by the predetermined background value for that element. The background value was calculated by 1) determining the lowest 25% of the data for all the samples analysed in the survey area for the particular element; 2) as values less than the detection limit were included, these were deemed to be a value half of the detection limit as an estimate value, 3) the lowest quartile (25%) of the data was calculated - this is the background value for that element. MMI® results are typically

displayed in a stacked bar chart form representing the total standard scores of all MMI®s analysed per sample, with each chart illustrating the samples along a traverse.

For the INAA data, the 95th percentile for select elements was calculated and used to identify anomalous sites


3.5 Results

The response ratios for all elements are plotted in the bar chart illustrated in Figure 3.2. Table 3.3 summarizes the analytical results and corresponding response ratios calculated. The Certificate of Analysis from SGS is provided in Appendix II and those from Actlabs in Appendix III. For the both MMI and INAA data, absolute values for select elements were plotted as graduated ranges. Large scale maps illustrating the results are provided in Appendix IV.

For the MMI analyses, site 1 returned anomalous values for Ag, Zn and Ni. Site 6 was also anomalous for Ag, while sites 4 and 17 were also anomalous for Zn and Ni respectively. Site 18 was anomalous for Pb. For the INAA analysis, sites 1 to 3 were anomalous for Cr.

4. Recommendations & Conclusions

The Black Creek Project merits further investigation and as such, these work expenditures are being filed to keep the claim in good standing.

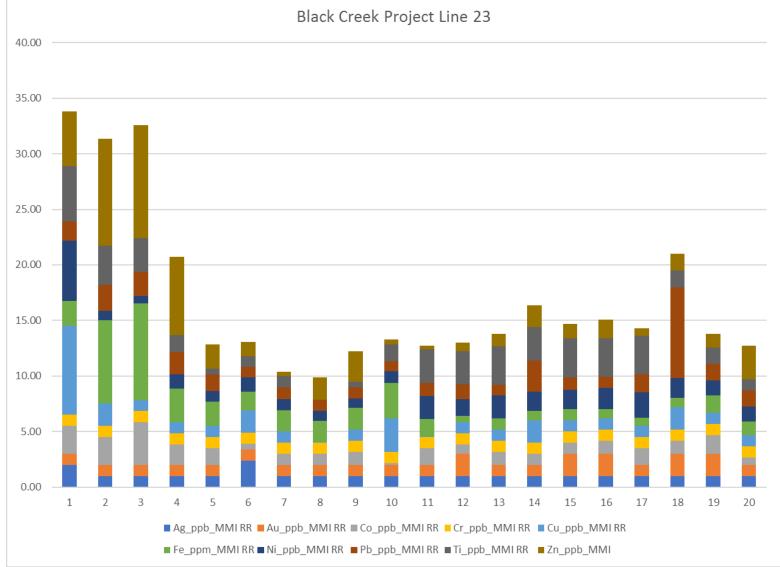


Figure 3.2 Stacked Bar Chart of Response ratios for MMI® Analyses BC Line 23

page 22

Table 3.4 Soil Sample Analytical Results and Response Ratios

		Ag_ppb	M Ag_ppb_	Au_ppb_N	Au_ppb_N	Co_ppb_M Co	ppb_M	Cr_ppb_	Cr_ppb_M	Cu_ppb_M	Cu_ppb_M	Fe_ppm_M	Fe_ppm_M	Ni_ppb_M	Ni_ppb_M	Pb_ppb_M	Pb_ppb_M	Ti_ppb_M	Ti_ppb_M	Zn_ppb_M	Zn_ppb_M
Sample MN -	Site #	✓ MI				MI 🔽 M		ммі 👻							MI RR 💌					MIRR 💌	MI 💌
WS01733	L23-01		0.5 2.	0.0	5 1.00	15	2.50	0.5	1.00	080	8.00	41	2.25	69	5.41	89	1.75	5 100	5.00	910	
WS01735	L23-02	0	.25 1.0	0.0	5 1.00	15	2.50	0.5	1.00	20	2.00	137	7.51	. 11	0.86	120	2.36	6 70	3.50	1780	9.62
WS01737	L23-03	0	.25 1.	0.0	5 1.00	23	3.83	0.5	1.00	10	1.00	159	8.71	. 8	0.63	112	2.23	1 60	3.00	1890	10.22
WS01739	L23-04	0	.25 1.	0.0	5 1.00	11	1.83	0.5	1.00	10	1.00	55	3.01	. 17	1.33	101	1.99	9 30	1.50	1300	7.03
WS01741	L23-05	0	.25 1.0	0.0	5 1.00	9	1.50	0.5	1.00	10	1.00	40	2.19	12	0.94	78	1.54	4 10	0.50	400	2.16
WS01743	L23-06		0.6 2.4	40 0.0	5 1.00	3	0.50	0.5	1.00	20	2.00	31	1.70	16	1.25	48	0.95	5 20	1.00	230	1.24
WS01745	L23-07	0	.25 1.	0.0	5 1.00	6	1.00	0.5	1.00	10	1.00	35	1.92	13	1.02	54	1.06	6 20	1.00	70	0.38
WS01747	L23-08	0	.25 1.0	0.0	5 1.00	6	1.00	0.5	1.00	0.5	0.05	35	1.92	11	0.86	51	1.00	0.5	0.03	370	2.00
WS02251	L23-09	0	.25 1.	0.0	5 1.00	7	1.17	0.5	1.00	10	1.00	36	1.97	11	0.86	49	0.97	7 10	0.50	510	2.76
WS02253	L23-10	0	.25 1.	0.0	5 1.00) 1	0.17	0.5	1.00	30	3.00	58	3.18	14	1.10	45	0.89	9 30	1.50	80	0.43
WS01935	L23-11	0	.25 1.	0.0	5 1.00	9	1.50	0.5	1.00	0.5	0.05	29	1.59	26	2.04	62	1.22	2 60	3.00	60	0.32
WS01933	L23-12	0	.25 1.	00 0.	1 2.00	5	0.83	0.5	1.00	10	1.00	11	0.60	19	1.49	67	1.32	2 60	3.00	140	0.76
WS01931	L23-13	0	.25 1.	0.0	5 1.00	7	1.17	0.5	1.00	10	1.00	19	1.04	26	2.04	48	0.95	5 70	3.50	200	1.08
WS01929	L23-14	0	.25 1.	0.0	5 1.00	6	1.00	0.5	1.00	20	2.00	16	0.88	22	1.73	141	2.78	8 60	3.00	370	2.00
WS01927	L23-15	0	.25 1.	00 0.	1 2.00	6	1.00	0.5	1.00	10	1.00	19	1.04	22	1.73	57	1.12	2 70	3.50	240	1.30
WS01925	L23-16	0	.25 1.0	00 0.	1 2.00	7	1.17	0.5	1.00	10	1.00	16	0.88	24	1.88	50	0.99	9 70	3.50	310	1.68
WS01923	L23-17	0	.25 1.	0.0	5 1.00	9	1.50	0.5	1.00	10	1.00	14	0.77	29	2.27	81	1.60	0 70	3.50	120	0.65
WS01921	L23-18	0	.25 1.	00 0.	1 2.00	7	1.17	0.5	1.00	20	2.00	16	0.88	23	1.80	413	8.14	4 30	1.50	280	1.51
WS01919	L23-19	0	.25 1.	00 0.	1 2.00	10	1.67	0.5	1.00	10	1.00	29	1.59	17	1.33	76	1.50	0 30	1.50	220	1.19
WS01917	L23-20	0	.25 1.	0.0	5 1.00) 4	0.67	0.5	1.00	10	1.00	23	1.26	17	1.33	73	1.44	4 20	1.00	560	3.03
		0	.25	0.0	5	6		0.5		10		18.25		12.75		50.75	5	20		185	
		0.!	505	0.	1	15.4		0.5		32.5		138.1		31		154.6	i	71.5	i	1785.5	

5. References

- Ayres, L.D., 1974, Geology of the Trout Lake Area; Ontario Division of Mines, Geological Report 113, 199p.
- Bennett, T., and Riley, R.A., 1969, Operation Lingman Lake; Ont. Dept. of Mines, Miscellaneous Paper 27, 52p
- Berger, B.R., 1993, Geology of Adrian and Marks Townships, Ontario Geological Survey, Open File Report 5862, 90 p.
- Borthwick, A.A., and Naldrett, A.J., 1984, Platinum-group elements in layered intrusions; in Geoscience Research Grant Program, Summary of Research, 1983-1984, OGS Misc. Paper 121, p.13-15
- Burwasser, G.J., 1977, Quaternary geology of the city of Thunder Bay and vicinity, Ontario Geological Survey, Geological Report 164, 70p.
- Card, K.D., and Ciesieleski, A., 1986, DNAG#1. Subdivisions of the Superior Province of the Canadian Shield, Geoscience Canada, v. 13, p.5-13.
- Carter, M.W., 1990, Geology of Goldie and Horne Townships, Ontario Geological Survey, Open File Report 5720, 189p.
- Franklin, J.F., 2003, Preliminary review of a VMS occurrence McFauld's Lake Area, N.W. Ontario, company report, Spider Resources Inc. (<u>www.spiderresources.com</u>), 27pp.
- Lavigne, M.J., Aubut, A.J., and Scott, J., 1990, Base metal mineralization in the Shebandowan Greenstone Belt, in Field Trip Guidebook, 36th Annual Meeting, Institute on Lake Superior Geology, v.36, pt.2, p.67-97.
- Ontario Geological Survey, 1991, Airborne electromagnetic and total intensity magnetic survey, Shebandowan Area, Maps 81556-94, scale 1:20 000.
- Rogers, M.C., and Berger, B.R., 1995Precambrian Geology, Adrian, Marks, Sackville, Aldina and Duckworth Townships, Ontario Geological Survey, Report 295, 66 p.
- Sawkins, F.J., 1976, Massive sulphide deposits in relation to geotectonics, in Strong, D.F., ed., Metallogeny and plate tectonics, Geological Association of Canada, Special Paper 14, p.221-240
- Sawyer, E.W., 1983, The structural history of part of the Archean Quetico metasedimentary belt, Superior Province, Canada, Precamb. Res., v.22, p.271-294.

- Shegelski, R.J., 1980, Archean cratonization, emergence and red bed development, Lake Shebandowan area, Canada, Precambrian Research, v. 12, p.331-347
- Solomon, M., 1976, "Volcanic" massive sulphide deposits and their host rocks a review and explanation, in Wolf, K.H., ed., Handbook of Stratabound and Stratiform Ore Deposits, Elsevier, Amsterdam, v.2, p.21-50.
- Stern, R.A., Hansen, G.N., and Shirey, S.B., 1989, Petrogenesis of mantle-derived LILEenriched Archean monzodiorites and trachyandesite (sanukitoids) in the southwestern Superior Province; Can. Jour. Earth Sci., v.26, p.1688-1712
- Stone, D., 1989, Geology of the Berens River Subprovince: Zcobham Lake and Nungesser Lake areas: in Summary of Field work and Otrher Activities 1989, OGS, Misc. Paper 146, p. 22-31
- Stott, G.M., 1985, A structural analysis of the central part of the Archean Shebandowan greenstone belt and a crescent-shaped granitoid pluton, northwestern Ontario, unpublished Ph.D. Thesis, University of Toronto, Ontario, 285p.
- Thurston, P.C., 1991, Archean geology of Ontario: Introduction, *in* Geology of Ontario, Ontario Geological Survey, Special Volume 4, Part 1, p.73-78
- Thurston, P.C., L.A. Osmani, and Stone, D., 1991, Northwestern Superior Province: Review and Terrane Analysis; in Geology of Ontario, Ontario Geological Survey, Special Volume 4, pt. 1, p. 81-139
- Thurston, P.C., Sage, R.P., and Siragusa, G.M., 1975, Operation Winisk Lake, District of Kenora, Patricia portion, , Ontario Geological Survey, Open File Report 5720
- Williams, H.R., Stott, G.M., Heather, K.B., Muir, T.L., and Sage, R.P., 1991, Wawa Subprovince, in Geology of Ontario, Ontario Geological Survey, Special Volume 4, pt. 1, p485-542.

Statement of Qualifications

Sharon Allan

I reside at 91 Empress Ave, Toronto, Ontario, M2N 3T5

l graduated with a Bachelor of Science (Joint Major in Earth and Environmental Sciences) from McGill University, Montreal, Quebec in 1998.

I have worked as a geologist on a continuous basis since 1998.

I hold a valid Ontario's Prospector's License (license number 1003048)

I am a member of the Association of Professional Geoscientists of Ontario (APGO), membership # 1529.

Dated: March 22, 2017

au

Statement of Qualifications

Breanne Beh

I reside at 93 Lawrence Ave, Thunder Bay, Ontario, P7A 6X7.

I graduated with a Bachelor of Science in Geology from the University of Calgary, Calgary, Alberta in 2010.

I graduated with a Masters of Science in Geology from Lakehead University, Thunder Bay, Ontario in 2013.

I have been employed on a continuous basis as a geologist since April 2012.

I hold a valid Ontario Prospector's Licence (licence number 1011755).

I am a member of the Association of Professional Geoscientists of Ontario (APGO), membership # 2648.

Dated: March 23, 2017

BueBA

Statement of Qualifications

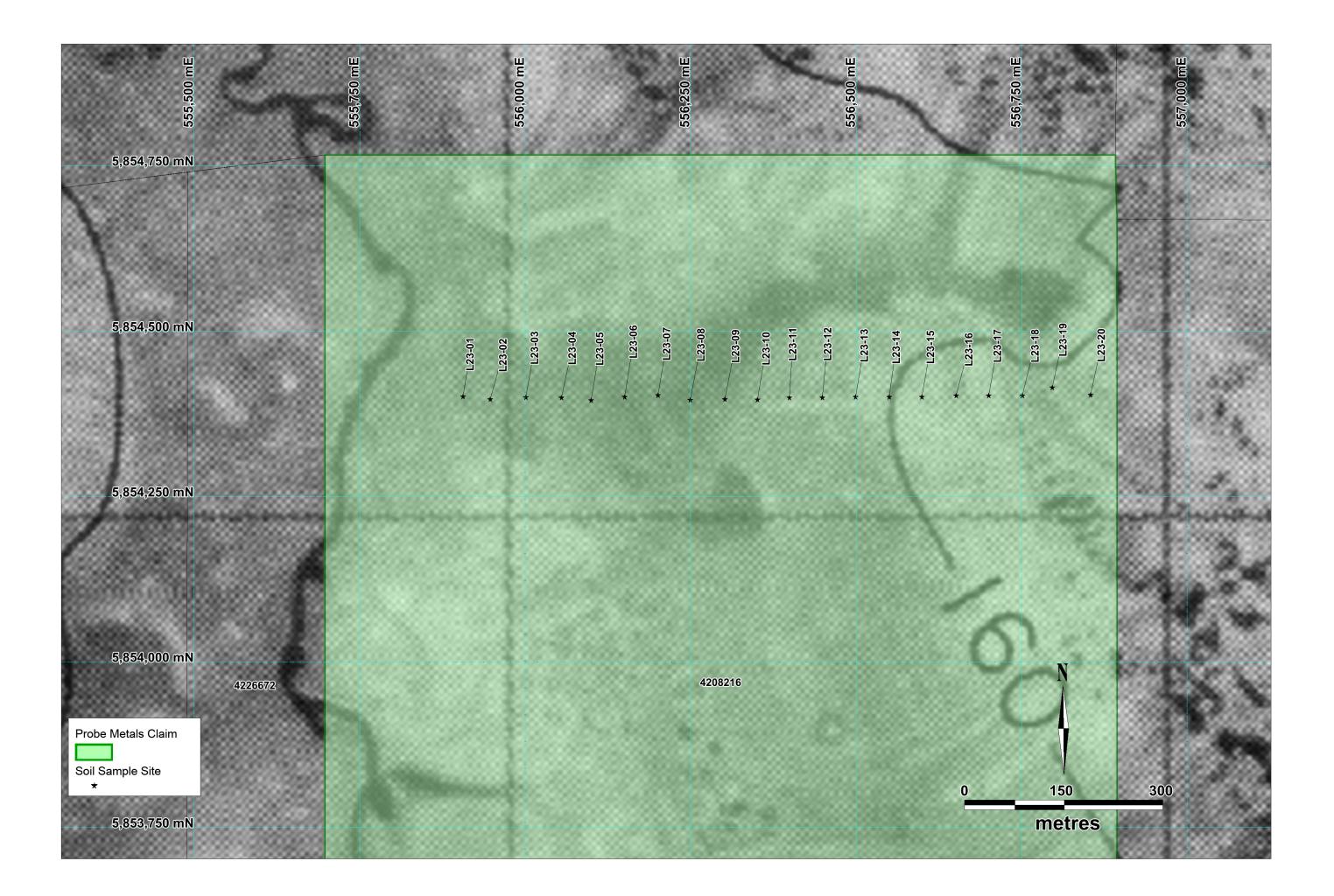
Daniel LaFontaine

I reside at 93 Lawrence Ave, Thunder Bay, Ontario, P7A 6X7.

I graduated with a Bachelor of Science in Geology from Lakehead University, Thunder Bay, Ontario in 2013.

I graduated with a Masters of Science in Geology from Lakehead University, Thunder Bay, Ontario in 2016.

I have been employed seasonally as a geology summer student from 2011 to 2014. I have been employed on a continuous basis as a geoscientist since May 2015.


I hold a valid Ontario Prospector's Licence (licence number 1011756).

Dated: March 23, 2017

1/_{

APPENDIX I

Soil Sampling Location map 1:5,000

APPENDIX II

Soil Sampling – MMI analysis SGS Certificates of Analysis

Certificate of Analysis Work Order : VC163208 [Report File No.: 0000019565]

Date: October 25, 2016

To: SHARON ALLAN PROBE METALS INC 56 TEMPERANCE ST SUITE 1000 TORONTO ON M5H 3V5 P.O. No.: West Porcupine-GTA/334 Samples (1 of 4) Project No.: -Samples: 84 Received: Oct 11, 2016 Pages: Page 1 to 22 (Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	Description						
84	G_LOG02	Pre-preparation processing, sorting, logging, boxing						
84	GE_MMI_M	Mobile Metal ION standard package/ICP-MS						
Storage: Pulp & Reject								

REJECT STORAGE

DISCARD

Certified By : John Chiang QC Chemist

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

 Report Footer:
 L.N.R. = Listed not received
 I.S. = Insufficient Sample

 n.a.
 = Not applicable
 - = No result

 *INF
 = Composition of this sample makes detection impossible by this method

 M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

 Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

 Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 2 of 22

Report File No.: 0000019565

	Element Method Det.Lim.	Ag GE_MMI_M 0.5	AI GE_MMI_M 1	As GE_MMI_M 10	Au GE_MMI_M 0.1	Ba GE_MMI_M 10	Bi GE_MMI_M 0.5	Ca GE_MMI_M 2	Co GE_MMI_M 1
	Units	ppb	ppm	ppb	ppb	ppb	ppb	2 ppm	ppb
WS01917		<0.5	21	<10	<0.1	100	1.0	114	8
WS01919		<0.5	39	<10	0.1	140	0.6	218	10
WS01921		<0.5	22	<10	0.1	150	1.5	189	9
WS01923		<0.5	36	<10	<0.1	140	0.8	195	6
WS01925		<0.5	39	<10	0.1	110	0.7	118	7
WS01927		<0.5	38	<10	0.1	110	0.8	111	10
WS01929		<0.5	29	<10	<0.1	130	1.0	136	ç
WS01931		<0.5	41	<10	<0.1	130	0.6	144	8
WS01933		<0.5	24	<10	0.1	110	<0.5	143	3
WS01935		<0.5	52	20	<0.1	140	<0.5	232	3
WS01937		<0.5	19	<10	<0.1	110	<0.5	72	Ę
WS01939		<0.5	16	<10	<0.1	90	0.6	66	(
WS01941		<0.5	20	<10	<0.1	160	<0.5	72	:
WS01943		<0.5	12	<10	<0.1	270	<0.5	137	
WS01945		<0.5	18	<10	<0.1	230	<0.5	147	18
WS01947		<0.5	12	<10	<0.1	170	<0.5	81	
WS01949		<0.5	17	<10	<0.1	150	<0.5	95	Ç
WS02001		<0.5	13	<10	<0.1	180	<0.5	214	(
WS02004		<0.5	7	<10	0.1	120	<0.5	99	į
WS02005		<0.5	6	<10	<0.1	160	<0.5	84	
WS02007		<0.5	7	<10	<0.1	130	<0.5	138	-
WS02009		<0.5	15	<10	<0.1	120	<0.5	86	Ę
WS02011		<0.5	19	<10	0.1	80	<0.5	145	8
WS02013		<0.5	7	<10	<0.1	70	<0.5	226	3
WS02015		<0.5	10	<10	0.1	60	<0.5	258	,
WS02017		<0.5	6	<10	<0.1	50	<0.5	247	<'
WS02019		<0.5	17	<10	0.1	50	<0.5	78	Ę
WS02021		<0.5	21	<10	<0.1	60	<0.5	95	9
WS02023		<0.5	9	<10	0.1	60	<0.5	217	2
WS02025		<0.5	8	<10	<0.1	50	<0.5	184	<'
WS02027		<0.5	13	<10	<0.1	60	<0.5	131	4
WS02029		<0.5	14	10	0.1	60	<0.5	96	
WS02031		<0.5	11	10	<0.1	140	<0.5	159	:
WS02033		<0.5	6	<10	0.1	70	<0.5	79	<'
WS02035		<0.5	4	<10	<0.1	100	<0.5	102	2
WS02037		<0.5	11	<10	<0.1	110	<0.5	125	Ę
WS02039		<0.5	6	<10	<0.1	190	<0.5	121	2
WS02041		<0.5	9	<10	0.1	120	<0.5	76	
WS02043		<0.5	30	10	0.1	140	<0.5	68	:
WS02045		<0.5	33	<10	<0.1	90	<0.5	137	

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 3 of 22

Report File No.: 0000019565

	Element Method	Ag GE_MMI_M	AI GE_MMI_M	As GE_MMI_M	Au GE_MMI_M	Ba GE_MMI_M	Bi GE_MMI_M	Ca GE_MMI_M	Cd GE_MMI_M
	Det.Lim. Units	0.5 ppb	1 ppm	10 ppb	0.1 ppb	10 ppb	0.5 ppb	2 ppm	1 ppb
WS02047		<0.5	49	<10	<0.1	110	<0.5	67	1
WS02049		<0.5	44	<10	<0.1	110	<0.5	67	1
WS02051		<0.5	34	<10	<0.1	130	<0.5	58	3
WS02053		<0.5	27	<10	0.1	100	<0.5	55	9
WS02055		<0.5	19	<10	<0.1	100	<0.5	86	3
WS02057		<0.5	17	<10	<0.1	70	<0.5	304	3
WS02059		<0.5	9	<10	0.2	270	<0.5	255	3 7
WS02061		<0.5	6	<10	0.1	220	<0.5	246	<1
WS02063		<0.5	9	10	<0.1	200	<0.5	118	1
WS02065		<0.5	5	<10	0.1	80	<0.5	79	<1
WS02067		<0.5	6	<10	<0.1	70	<0.5	162	1
WS02069		<0.5	13	<10	<0.1	50	<0.5	155	3
WS02071		<0.5	10	<10	<0.1	60	<0.5	282	3
WS02073		0.5	36	<10	<0.1	50	<0.5	173	4
WS02075		<0.5	13	<10	<0.1	40	<0.5	80	
WS02077		<0.5	10	<10	<0.1	50	<0.5	75	2
WS02079		<0.5	9	<10	<0.1	40	<0.5	73	4
WS02081		<0.5	6	<10	<0.1	40	<0.5	99	
WS02083		<0.5	6	<10	<0.1	60	<0.5	89	2
WS02085		<0.5	6	<10	<0.1	70	<0.5	191	1
WS02087		<0.5	8	<10	<0.1	70	<0.5	163	2
WS02089		<0.5	13	<10	0.1	50	<0.5	150	<1
WS02091		<0.5	21	<10	0.1	80	<0.5	145	<1
WS02093		<0.5	14	<10	<0.1	90	<0.5	84	<1
WS02095		<0.5	20	10	<0.1	110	<0.5	86	<1
WS02097		<0.5	27	<10	0.1	130	<0.5	108	1
WS02099		0.5	36	<10	<0.1	90	<0.5	172	3
WS02101		<0.5	15	<10	<0.1	60	<0.5	92	2
WS02103		<0.5	19	<10	<0.1	60	<0.5	76	5
WS02105		<0.5	22	<10	<0.1	90	<0.5	121	4
WS02107		<0.5	27	<10	<0.1	120	<0.5	89	7
WS02109		<0.5	27	<10	<0.1	140	<0.5	63	7
WS02111		<0.5	39	<10	<0.1	100	<0.5	65	4
WS02113		<0.5	30	<10	<0.1	90	<0.5	76	9
WS02115		<0.5	20	<10	<0.1	90	<0.5	66	
WS02117		<0.5	23	<10	<0.1	80	<0.5	54	3
WS02119		<0.5	22	<10	<0.1	70	<0.5	111	
WS02121		<0.5	23	<10	<0.1	70	<0.5	71	5 5
WS02123		<0.5	21	<10	<0.1	110	<0.5	73	5
WS02125		<0.5	28	<10	<0.1	110	< 0.5	77	5 7

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 4 of 22

Report File No.: 0000019565

Element	Ag	Al	As	Au	Ва	Bi	• •	Cd
Method	GE_MMI_M							
Det.Lim.	0.5	1	10	0.1	10	0.5	2	1
Units	ppb	ppm	ppb	ppb	ppb	ppb	ppm	ppb
WS02127	<0.5	40	<10	<0.1	130	<0.5	103	13
WS02129	<0.5	8	<10	<0.1	30	<0.5	89	2
WS02131	<0.5	8	10	0.1	20	<0.5	177	2
WS02133	<0.5	21	<10	0.1	40	<0.5	173	2
*Rep WS01929	<0.5	28	<10	0.1	130	0.8	138	10
*Rep WS02021	<0.5	19	<10	<0.1	60	<0.5	91	8
*Rep WS02045	<0.5	33	<10	0.1	100	<0.5	147	10
*Rep WS02069	<0.5	13	<10	0.1	50	<0.5	154	3
*Rep WS02099	<0.5	33	<10	<0.1	80	<0.5	155	3
*Rep WS02117	<0.5	22	<10	<0.1	80	<0.5	48	8
*Std MMISRM19	28.0	25	10	5.2	1340	<0.5	746	38
*Std AMIS0169	9.4	55	<10	0.7	590	<0.5	34	1
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	<2	<1
*BIk BLANK	<0.5	<1	<10	0.1	<10	<0.5	<2	<1
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	<2	<1
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	<2	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 5 of 22

Report File No.: 0000019565

	Element Method Det.Lim. Units	Ce GE_MMI_M 2 ppb	Co GE_MMI_M 1 ppb	Cr GE_MMI_M 100 ppb	Cs GE_MMI_M 0.2 ppb	Cu GE_MMI_M 10 ppb	Dy GE_MMI_M 0.5 ppb	Er GE_MMI_M 0.2 ppb	Eu GE_MMI_M 0.2 ppb
WS01917		14	4	<100	0.5	10	1.8	1.1	0.4
WS01919		22	10	<100	<0.2	10	4.3	2.0	1.2
WS01921		20	7	<100	1.0	20	3.2	1.5	0.8
WS01923		26	9	<100	<0.2	10	3.4	1.8	3.0
WS01925		28	7	<100	0.2	10	2.7	1.8	0.7
WS01927		27	6	<100	0.2	10	3.1	1.3	3.0
WS01929		26	6	<100	0.4	20	2.9	1.8	3.0
WS01931		27	7	<100	0.2	10	3.4	1.7	0.6
WS01933		16	5	<100	0.3	10	2.1	0.8	0.4
WS01935		31	9	<100	<0.2	<10	5.1	2.8	1.3
WS01937		11	5	<100	<0.2	20	1.1	0.7	<0.2
WS01939		12	4	<100	0.2	10	1.4	0.9	0.3
WS01941		8	4	<100	<0.2	<10	1.0	0.5	0.
WS01943		<2	1	<100	<0.2	20	<0.5	<0.2	<0.
WS01945		<2	<1	<100	<0.2	30	<0.5	0.4	<0.
WS01947		<2	<1	<100	<0.2	30	<0.5	<0.2	<0.
WS01949		<2	1	<100	<0.2	10	<0.5	0.4	<0.
WS02001		<2	1	<100	<0.2	20	<0.5	0.2	<0.
WS02004		<2	2	<100	<0.2	20	<0.5	0.3	<0.
WS02005		<2	3	<100	<0.2	20	<0.5	<0.2	<0.
WS02007		<2	6	<100	<0.2	10	<0.5	<0.2	<0.
WS02009		<2	10	<100	<0.2	<10	<0.5	0.3	<0.
WS02011		<2	8	<100	<0.2	20	0.8	0.5	<0.
WS02013		<2	10	<100	<0.2	20	<0.5	<0.2	<0.
WS02015		<2	4	<100	<0.2	10	0.5	0.3	<0.
WS02017		2	4	<100	<0.2	40	<0.5	<0.2	<0.
WS02019		11	4	<100	<0.2	10	1.4	0.8	0.
WS02021		14	5	<100	0.4	20	1.7	0.6	0.
WS02023		3	2	<100	0.3	30	<0.5	<0.2	<0.
WS02025		2	5	<100	<0.2	40	<0.5	<0.2	<0.
WS02027		<2	7	<100	<0.2	40	<0.5	0.3	<0.
WS02029		<2	6	<100	<0.2	30	<0.5	<0.2	<0.
WS02031		<2	5	<100	<0.2	20	<0.5	<0.2	<0.
WS02033		<2	4	<100	<0.2	20	<0.5	<0.2	<0.
WS02035		<2	3	<100	<0.2	10	<0.5	<0.2	<0.1
WS02037		<2	2	<100	<0.2	10	<0.5	<0.2	<0.
WS02039		<2	2	<100	<0.2	30	<0.5	<0.2	<0.1
WS02041		<2	2	<100	<0.2	20	<0.5	<0.2	<0.1
WS02043		<2	1	<100	<0.2	<10	<0.5	<0.2	<0.
WS02045		22	9	<100	<0.2	<10	3.4	1.9	0.

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 6 of 22

Report File No.: 0000019565

GE_MMI	M							
		GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
, i i i i i i i i i i i i i i i i i i i	2 opb	1 ppb	100 ppb	0.2 ppb	10 ppb	0.5 ppb	0.2 ppb	0.2 ppb
1								
	27	10	<100	0.3	<10	3.5	2.0	0.9
	29	10	<100	0.3	<10	3.3	1.8	0.8
	29	7	<100	0.6	20	3.8	1.8	1.0
	22	6	<100	<0.2	10	2.6	1.3	0.7
	17	6	<100	<0.2	20	2.3	1.1	0.4
	3	8	<100	<0.2	40	<0.5	0.4	<0.2
	<2	5	<100	<0.2	20	<0.5	0.3	<0.2
	2	2	<100	<0.2	40	<0.5	<0.2	<0.2
	<2	6	<100	<0.2	50	<0.5	<0.2	<0.2
	<2	4	<100	<0.2	40	<0.5	<0.2	<0.2
	<2	2	<100	<0.2	70	<0.5	<0.2	<0.2
	<2	6	<100	<0.2	10	<0.5	0.4	<0.2
	<2	4	<100	<0.2	20	<0.5	<0.2	<0.2
	6	4	<100	0.3	100	1.2	1.0	0.2
	8	4	<100	<0.2	<10	1.3	0.7	0.3
	8	3	<100	<0.2	<10	1.1	0.5	0.4
	8	3	<100	<0.2	10	1.0	0.7	0.3
	<2	4	<100	<0.2	50	<0.5	<0.2	<0.2
	<2	3	<100	<0.2	40	<0.5	<0.2	<0.2
	<2	3	<100	<0.2	40	<0.5	<0.2	<0.2
	4	3	<100	0.4	10	<0.5	0.2	<0.2
	5	4	<100	<0.2	30	0.6	0.4	<0.2
	6	9	<100	<0.2	70	<0.5	0.4	<0.2
	<2	7	<100	<0.2	50	<0.5	<0.2	<0.2
	<2	13	<100	<0.2	50	<0.5	<0.2	<0.2
	<2	10	<100	<0.2	60	<0.5	0.2	<0.2
	6	5	<100	<0.2	50	1.1	0.7	<0.2
	10	5	<100	<0.2	<10	1.5	0.8	0.3
	15	5	<100	<0.2	<10	1.7	0.9	0.0
	16	6	<100	<0.2	10	1.7	0.9	0.3
	17	7	<100	<0.2	30	2.3	1.0	0.0
	22	6	<100	0.3	20	2.1	1.0	0.4
	27	8	<100	<0.2	10	3.5	1.8	1.0
	20	8	<100	<0.2	<10	2.1	1.0	0.5
	_							
								0.2
								< 0.2
								0.3
								0.3
	_							<0.2
		12 14 15 15 15 14 19	14 6 15 5 15 5 14 5	14 6 <100 15 5 <100	14 6 <100 0.4 15 5 <100	14 6 <100 0.4 20 15 5 <100	14 6 <100 0.4 20 1.3 15 5 <100	14 6 <100 0.4 20 1.3 1.1 15 5 <100

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 7 of 22

Report File No.: 0000019565

Ele	ment	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
Ме	ethod	GE_MMI_M							
Det	t.Lim.	2	1	100	0.2	10	0.5	0.2	0.2
	Units	ppb							
WS02127		28	7	<100	<0.2	20	3.0	1.9	0.7
WS02129		<2	7	<100	<0.2	20	<0.5	0.3	<0.2
WS02131		2	12	<100	<0.2	30	<0.5	0.2	<0.2
WS02133		5	5	<100	0.6	40	1.3	0.9	0.3
*Rep WS01929		24	6	<100	0.5	20	3.2	1.3	0.7
*Rep WS02021		13	4	<100	0.5	10	1.9	0.8	0.3
*Rep WS02045		23	9	<100	<0.2	<10	3.7	2.1	0.6
*Rep WS02069		<2	6	<100	<0.2	10	<0.5	0.4	<0.2
*Rep WS02099		5	4	<100	<0.2	40	1.1	0.9	0.2
*Rep WS02117		14	5	<100	0.3	10	1.0	0.7	<0.2
*Std MMISRM19		20	469	<100	4.4	2200	13.6	7.8	2.5
*Std AMIS0169		715	91	<100	7.1	3980	25.4	11.3	10.2
*Blk BLANK		<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*BIk BLANK		<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*BIk BLANK		<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*BIk BLANK		<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 8 of 22

Report File No.: 0000019565

	Element	Fe	Ga	Gd	Hg	ln	K	La	L
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	1 nnm	0.5	0.5	1 nnh	0.1	0.5 ppm	1 nnh	1
	Units	ppm	ppb	ppb	ppb	ppb		ppb	ppb
WS01917		23	4.6	1.9	<1	<0.1	2.8	6	<1
WS01919		29	6.4	5.1	<1	<0.1	1.2	7	<1
WS01921		16	4.5	3.3	<1	0.2	2.4	7	<1
WS01923		14	5.4	3.9	1	<0.1	0.6	10	<1
WS01925		16	6.4	3.4	<1	<0.1	1.0	11	<1
WS01927		19	6.3	3.3	<1	<0.1	0.6	11	<1
WS01929		16	5.6	3.6	<1	<0.1	2.5	10	<1
WS01931		19	6.4	4.8	<1	<0.1	1.0	10	<1
WS01933		11	4.0	2.2	<1	<0.1	3.8	6	<1
WS01935		29	6.3	5.1	<1	<0.1	1.6	11	<1
WS01937		16	3.0	1.3	<1	<0.1	2.2	4	<1
NS01939		11	3.3	1.5	<1	<0.1	2.2	4	<1
WS01941		77	3.5	1.3	<1	<0.1	0.8	2	<1
NS01943		290	<0.5	<0.5	<1	<0.1	1.1	<1	<'
WS01945		267	1.7	<0.5	<1	<0.1	1.5	<1	<1
VS01947		355	1.1	<0.5	<1	<0.1	1.5	<1	<1
VS01949		308	1.6	<0.5	<1	<0.1	<0.5	<1	<'
VS02001		169	1.1	<0.5	<1	<0.1	1.3	<1	2
VS02004		320	<0.5	<0.5	<1	<0.1	<0.5	<1	2
WS02005		353	<0.5	<0.5	<1	<0.1	2.1	<1	<'
NS02007		285	0.5	<0.5	<1	<0.1	0.6	<1	1
WS02009		355	1.2	<0.5	<1	<0.1	0.7	<1	<'
WS02011		265	1.9	<0.5	<1	<0.1	<0.5	<1	<'
WS02013		111	0.9	<0.5	<1	<0.1	0.6	<1	<1
WS02015		54	0.9	<0.5	<1	<0.1	<0.5	<1	<1
VS02017		64	<0.5	<0.5	<1	<0.1	0.6	<1	<′
WS02019		13	2.9	1.5	<1	<0.1	1.3	4	<1
WS02021		15	3.8	1.8	<1	<0.1	3.9	6	<1
WS02023		103	0.8	<0.5	<1	<0.1	0.7	<1	<1
WS02025		168	0.8	<0.5	<1	<0.1	0.7	<1	<1
WS02023		274	0.0	<0.5	<1	<0.1	2.0	<1	2
WS02029		331	1.1	<0.5	<1	<0.1	5.9	<1	<1
VS02029		256	0.9	<0.5	<1	<0.1	3.4	<1	1
VS02033		355	<0.5	<0.5	<1	<0.1	0.5	<1	<1
VS02035		285	0.5	<0.5	<1	<0.1	<0.5	<1	1
VS02035 VS02037		205	<0.5	<0.5		<0.1	0.5	<1	2
					<1				
VS02039		331	0.9	< 0.5	<1	<0.1	0.7	<1	<
VS02041		363	0.9	< 0.5	<1	<0.1	0.7	<1	<1
NS02043 NS02045		274 28	4.3	<0.5	<1 <1	<0.1 <0.1	<0.5 <0.5	<1 6	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 9 of 22

Report File No.: 0000019565

	ement	Fe	Ga	Gd	Hg	ln	K	La	Li
	lethod	GE_MMI_M							
De	et.Lim.	1	0.5	0.5	1	0.1	0.5	1	1
	Units	ppm	ppb	ppb	ppb	ppb	ppm	ppb	ppb
WS02047		20	6.7	4.8	<1	<0.1	1.0	9	<1
WS02049		19	7.0	3.6	<1	<0.1	0.6	10	<1
WS02051		17	8.2	4.6	<1	<0.1	3.4	10	<1
WS02053		19	4.0	3.2	<1	<0.1	1.9	7	<1
WS02055		14	5.0	2.5	<1	<0.1	0.7	6	<1
WS02057		96	2.2	0.6	<1	<0.1	2.4	<1	1
WS02059		125	0.6	<0.5	<1	<0.1	5.6	<1	2
WS02061		140	0.6	<0.5	<1	<0.1	2.1	<1	3
WS02063		341	0.8	<0.5	<1	<0.1	1.9	<1	<1
WS02065		330	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
WS02067		240	0.7	<0.5	<1	<0.1	0.6	<1	<1
WS02069		203	1.0	<0.5	<1	<0.1	<0.5	<1	<1
WS02071		75	0.6	<0.5	<1	<0.1	1.3	<1	<1
WS02073		144	3.1	0.8	<1	<0.1	<0.5	2	<1
WS02075		16	3.0	1.5	<1	<0.1	1.7	3	<1
WS02077		8	2.2	1.4	<1	<0.1	0.7	3	<1
WS02079		8	2.0	1.4	<1	<0.1	0.6	3	<1
WS02081		313	1.1	<0.5	<1	<0.1	2.0	<1	<1
WS02083		294	0.8	<0.5	<1	<0.1	1.0	<1	<1
WS02085		90	0.8	<0.5	<1	<0.1	<0.5	<1	<1
WS02087		85	1.4	0.6	<1	<0.1	1.5	1	<1
WS02089		100	1.4	0.7	<1	<0.1	<0.5	1	<1
WS02091		209	1.8	<0.5	<1	<0.1	1.4	2	<1
WS02093		326	1.4	<0.5	<1	<0.1	1.9	<1	<1
WS02095		371	1.2	<0.5	<1	<0.1	<0.5	<1	<1
WS02097		338	2.3	<0.5	<1	<0.1	1.2	<1	<1
WS02099		168	4.0	1.4	<1	<0.1	0.7	1	<1
WS02101		19	2.8	1.3	<1	<0.1	1.5	4	<1
WS02103		17	2.9	1.8	<1	<0.1	2.5	5	<1
WS02105		16	3.6	1.7	<1	<0.1	0.6	6	<1
WS02107		18	5.1	2.6	<1	<0.1	1.5	6	<1
WS02109		16	5.1	2.9	<1	<0.1	2.2	8	<1
WS02111		16	6.4	3.9	<1	<0.1	<0.5	8	<1
WS02113		17	5.0	3.0	<1	<0.1	0.8	7	<1
WS02115		16	3.5	1.7	<1	<0.1	1.0	4	<1
WS02117		24	3.6	1.6	<1	<0.1	5.3	6	<1
WS02119		13	3.9	2.0	<1	<0.1	2.3	5	<1
WS02121		16	3.2	1.5	<1	<0.1	<0.5	6	<1
WS02123		16	4.6	1.7	<1	<0.1	2.3	5	<1
WS02125		16	4.5	2.6	<1	<0.1	0.6	7	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 10 of 22

Report File No.: 0000019565

Element	Fe	Ga	Gd	Hg	In	К	La	Li
Method	GE_MMI_M							
Det.Lim.	1	0.5	0.5	1	0.1	0.5	1	1
Units	ppm	ppb	ppb	ppb	ppb	ppm	ppb	ppb
WS02127	19	5.8	3.6	<1	<0.1	2.0	10	<1
WS02129	293	0.9	<0.5	<1	<0.1	0.6	<1	<1
WS02131	122	0.9	<0.5	<1	<0.1	1.7	<1	<1
WS02133	14	1.9	1.4	<1	<0.1	<0.5	1	<1
*Rep WS01929	15	5.5	3.2	<1	<0.1	2.5	9	<1
*Rep WS02021	14	3.1	1.7	<1	<0.1	4.0	5	<1
*Rep WS02045	28	4.2	3.9	<1	<0.1	<0.5	6	<1
*Rep WS02069	209	1.5	<0.5	<1	<0.1	0.6	<1	<1
*Rep WS02099	167	4.3	0.8	<1	<0.1	0.6	1	<1
*Rep WS02117	24	3.7	1.5	<1	<0.1	4.0	5	<1
*Std MMISRM19	7	<0.5	13.6	2	<0.1	91.7	3	<1
*Std AMIS0169	34	7.5	40.7	1	<0.1	43.8	395	<1
*BIk BLANK	1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*BIk BLANK	<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*BIk BLANK	1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*BIk BLANK	<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 11 of 22

Report File No.: 0000019565

	Element Method	Mg GE_MMI_M	Mn GE_MMI_M	Mo GE_MMI_M	Nb GE_MMI_M	Nd GE_MMI_M	Ni GE_MMI_M	P GE_MMI_M	Pb GE_MMI_M
	Det.Lim. Units	0.5 ppm	100 ppb	2 ppb	0.5 ppb	1 ppb	5 ppb	0.1 ppm	5 ppb
WS01917		5.5	<100	<2	2.9	9	17	0.9	73
WS01919		11.2	400	<2	1.0	15	17	1.5	76
WS01921		11.5	200	<2	0.7	14	23	1.7	413
WS01923		8.7	300	<2	<0.5	17	29	2.2	81
WS01925		6.3	<100	<2	1.4	16	24	1.6	50
WS01927		4.9	300	<2	1.3	15	22	1.7	57
WS01929		5.0	200	<2	0.9	16	22	2.3	141
WS01931		3.3	<100	<2	0.7	18	26	1.8	48
WS01933		4.5	100	<2	<0.5	11	19	1.8	67
WS01935		21.3	200	<2	<0.5	21	26	1.5	62
WS01937		8.7	500	<2	0.6	7	17	0.8	52
WS01939		5.5	400	<2	0.6	8	10	1.6	78
WS01941		3.8	<100	<2	1.0	3	12	1.6	27
WS01943		9.7	<100	<2	<0.5	<1	9	0.4	<5
WS01945		12.4	1000	17	<0.5	<1	11	0.4	23
WS01947		9.4	100	<2	<0.5	<1	8	0.5	<5
WS01949		10.6	1100	<2	<0.5	<1	8	0.6	12
WS02001		31.3	800	3	<0.5	<1	14	0.6	13
WS02004		16.4	600	<2	<0.5	<1	9	0.4	<5
WS02005		12.6	200	<2	<0.5	<1	10	0.5	<5
WS02007		12.1	2400	<2	<0.5	<1	10	0.4	9
WS02009		10.1	1200	<2	<0.5	<1	9	0.6	24
WS02011		14.0	2200	<2	1.9	<1	13	0.6	26
WS02013		21.2	4500	<2	<0.5	<1	16	0.5	38
WS02015		18.6	1900	2	<0.5	<1	17	0.4	18
WS02017		19.9	1800	<2	<0.5	<1	14	0.4	8
WS02019		4.1	<100	<2	<0.5	6	16	1.3	53
WS02021		5.2	200	<2	<0.5	10	18	1.8	107
WS02023		7.3	600	<2	<0.5	1	16	0.5	20
WS02025		10.2	1500	<2	<0.5	<1	16	0.6	8
WS02027		12.3	1200	<2	<0.5	<1	12	0.4	9
WS02029		12.7	1000	<2	<0.5	<1	12	0.5	9
WS02031		20.7	3800	<2	<0.5	<1	14	0.6	10
WS02033		10.4	1900	<2	<0.5	<1	9	0.4	<5
WS02035		13.9	3200	<2	0.5	<1	8	0.3	<5
WS02037		13.8	1700	2	<0.5	<1	12	0.5	11
WS02039		13.9	500	<2	<0.5	<1	12	0.4	9
WS02041		6.8	300	<2	<0.5	<1	8	0.5	12
WS02043		2.3	<100	<2	<0.5	<1	5	0.8	<5
WS02045		5.3	100	<2	<0.5	15	21	1.8	38

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 12 of 22

Report File No.: 0000019565

	Element	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb
	Method	GE_MMI_M							
	Det.Lim.	0.5	100	2	0.5	1	5	0.1	5
	Units	ppm	ppb	ppb	ppb	ppb	ppb	ppm	ppb
WS02047		4.6	<100	<2	<0.5	18	22	1.3	38
WS02049		4.8	<100	<2	<0.5	18	17	1.5	47
WS02051		7.4	<100	<2	<0.5	19	19	2.0	52
WS02053		4.7	400	<2	0.6	13	14	1.4	138
WS02055		9.1	400	<2	<0.5	11	19	1.4	31
WS02057		23.2	900	4	<0.5	1	16	0.2	17
WS02059		30.6	1000	<2	<0.5	<1	15	0.3	74
WS02061		24.4	1100	6	<0.5	<1	16	0.3	7
WS02063		17.6	200	2	<0.5	<1	14	0.6	5
WS02065		9.8	1000	5	<0.5	<1	9	0.3	<5
WS02067		18.5	1200	<2	<0.5	<1	13	0.2	6
WS02069		11.3	3500	<2	<0.5	<1	13	0.4	14
WS02071		13.3	1900	4	<0.5	<1	18	0.4	8
WS02073		12.6	2800	3	<0.5	4	18	0.4	39
WS02075		2.0	<100	<2	<0.5	6	11	1.3	58
WS02077		3.0	200	<2	<0.5	5	11	1.3	52
WS02079		3.4	200	<2	<0.5	5	12	0.8	56
WS02081		8.2	400	<2	<0.5	<1	8	0.4	11
WS02083		9.5	400	<2	<0.5	<1	9	0.4	12
WS02085		12.8	1800	<2	<0.5	<1	15	0.5	12
WS02087		14.3	900	<2	<0.5	2	13	0.5	79
WS02089		9.1	2600	3	<0.5	2	12	0.4	22
WS02091		14.7	2600	<2	<0.5	2	22	0.3	14
WS02093		12.3	400	<2	<0.5	<1	14	0.4	5
WS02095		10.7	300	<2	<0.5	<1	17	0.4	<5
WS02097		17.9	900	<2	<0.5	<1	22	0.3	12
WS02099		12.7	2200	4	<0.5	3	22	0.4	47
WS02101		4.8	<100	<2	<0.5	6	16	1.4	34
WS02103		3.9	200	<2	<0.5	9	14	1.3	83
WS02105		4.9	300	<2	<0.5	9	20	0.9	25
WS02107		10.8	700	<2	<0.5	11	27	1.2	69
WS02109		8.9	200	<2	<0.5	12	16	1.7	56
WS02111		6.3	<100	<2	<0.5	19	19	1.6	44
WS02113		10.8	<100	<2	<0.5	12	17	1.3	38
WS02115		9.4	200	<2	<0.5	7	14	0.6	25
WS02117		6.6	<100	<2	< 0.5	8	16	1.2	172
WS02119		8.8	<100	<2	<0.5	9	19	0.6	22
WS02121		4.9	<100	<2	<0.5	8	17	1.3	36
WS02123		9.4	300	<2	<0.5	8	16	0.8	107
WS02125		9.1	300	<2	<0.5	11	16	0.7	31

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 13 of 22

Report File No.: 0000019565

Element	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb
Method	GE_MMI_M							
Det.Lim.	0.5	100	2	0.5	1	5	0.1	5
Units	ppm	ppb	ppb	ppb	ppb	ppb	ppm	ppb
WS02127	9.3	300	<2	<0.5	17	19	1.5	76
WS02129	11.5	2100	<2	<0.5	<1	11	0.5	15
WS02131	21.3	1800	<2	<0.5	<1	19	0.5	23
WS02133	23.7	1000	6	<0.5	4	17	0.7	22
*Rep WS01929	4.8	200	<2	0.7	16	20	2.2	138
*Rep WS02021	4.5	100	<2	<0.5	9	16	1.7	125
*Rep WS02045	5.6	100	<2	<0.5	15	23	1.7	40
*Rep WS02069	11.6	3700	<2	<0.5	<1	15	0.4	14
*Rep WS02099	12.0	1800	3	<0.5	2	19	0.5	54
*Rep WS02117	6.1	<100	<2	<0.5	8	13	1.3	127
*Std MMISRM19	201	7900	10	<0.5	16	2340	0.3	1250
*Std AMIS0169	26.0	3700	3	2.5	343	425	2.4	99
*BIk BLANK	<0.5	<100	<2	<0.5	<1	<5	<0.1	<5
*BIk BLANK	<0.5	<100	<2	<0.5	<1	<5	<0.1	<5
*BIk BLANK	<0.5	<100	<2	<0.5	<1	<5	<0.1	<5
*BIk BLANK	<0.5	<100	<2	0.7	<1	<5	<0.1	<5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 14 of 22

Report File No.: 0000019565

	Element Method Det.Lim. Units	Pd GE_MMI_M 1 ppb	Pr GE_MMI_M 0.5 ppb	Pt GE_MMI_M 0.1 ppb	Rb GE_MMI_M 1 ppb	Sb GE_MMI_M 0.5 ppb	Sc GE_MMI_M 5 ppb	Sm GE_MMI_M 1 ppb	Si GE_MMI_N ppl
WS01917		×۲۲ <1	×۲۲ 1.8	<0.1	9	0.5	<5	۶۹۶ 1	
WS01917 WS01919		<1	3.6	<0.1	3	<0.5	<5	4	<
WS01919		<1	3.0	<0.1	10	<0.5	<5	3	<
WS01921		<1	3.0	<0.1	3	<0.5	<5	4	<
WS01925		<1	3.6	<0.1	5	0.6	5	2	<
WS01923		<1	3.6	<0.1	4	<0.5	<5	3	<
WS01929		<1	3.5	<0.1	9	<0.5	<5	3	<
WS01923		<1	3.9	<0.1	4	<0.5	<5	3	<
WS01931		<1	2.2	<0.1	11	<0.5	<5	2	<
WS01935		<1	4.7	<0.1	3	<0.5	<5	5	<
WS01933		<1	1.4	<0.1	5	<0.5	<5	<1	<
WS01939		<1	1.8	<0.1	7	<0.5	<5	<1	<
WS01941		<1	1.1	<0.1	3	<0.5	<5	<1	<
WS01943		<1	<0.5	<0.1	2	<0.5	<5	<1	<
WS01945		<1	<0.5	<0.1	1	<0.5	<5	<1	<
WS01947		<1	< 0.5	<0.1	3	< 0.5	<5	<1	<
WS01949		<1	<0.5	<0.1	1	<0.5	<5	<1	<
WS02001		<1	<0.5	<0.1	1	<0.5	<5	<1	<
WS02004		<1	<0.5	<0.1	<1	< 0.5	<5	<1	<
WS02005		<1	<0.5	<0.1	3	<0.5	<5	<1	<
WS02007		<1	<0.5	<0.1	1	<0.5	<5	<1	<
WS02009		<1	<0.5	<0.1	2	<0.5	<5	<1	<
WS02011		<1	<0.5	<0.1	2	<0.5	<5	<1	<
WS02013		<1	<0.5	<0.1	3	<0.5	<5	<1	<
WS02015		<1	<0.5	<0.1	<1	<0.5	<5	<1	<
WS02017		<1	<0.5	<0.1	1	<0.5	<5	<1	<
WS02019		<1	1.3	<0.1	3	<0.5	<5	<1	<
WS02021		<1	1.9	<0.1	14	<0.5	<5	1	<
WS02023		<1	<0.5	<0.1	3	<0.5	<5	<1	<
WS02025		<1	<0.5	<0.1	2	<0.5	<5	<1	<
WS02027		<1	<0.5	<0.1	2	<0.5	<5	<1	<
WS02029		<1	<0.5	<0.1	14	<0.5	<5	<1	<
WS02031		<1	<0.5	<0.1	3	<0.5	<5	<1	<
WS02033		<1	<0.5	<0.1	1	<0.5	<5	<1	<
WS02035		<1	<0.5	<0.1	<1	<0.5	<5	<1	<
WS02037		<1	<0.5	<0.1	1	<0.5	<5	<1	<
WS02039		<1	<0.5	<0.1	2	<0.5	<5	<1	<
WS02041		<1	<0.5	<0.1	3	<0.5	<5	<1	<
WS02043		<1	<0.5	<0.1	1	<0.5	<5	<1	<
WS02045		<1	3.0	<0.1	3	<0.5	<5	3	<

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 15 of 22

Report File No.: 0000019565

	Element Method	Pd GE_MMI_M	Pr GE_MMI_M	Pt GE_MMI_M	Rb GE_MMI_M	Sb GE_MMI_M	Sc GE_MMI_M	Sm GE_MMI_M	Sn GE_MMI_M
	Det.Lim. Units	1 ppb	0.5 ppb	0.1 ppb	1 ppb	0.5 ppb	5 ppb	1 ppb	1 ppb
WS02047		<1	3.8	<0.1	6	<0.5	<5	3	<1
WS02049		<1	4.1	<0.1	6	<0.5	<5	4	<1
WS02051		<1	4.3	<0.1	13	<0.5	6	3	<1
WS02053		<1	3.4	<0.1	5	<0.5	<5	2	<1
WS02055		<1	2.1	<0.1	3	<0.5	<5	2	<1
WS02057		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
WS02059		<1	<0.5	<0.1	5	<0.5	<5	<1	<1
WS02061		<1	<0.5	<0.1	1	<0.5	<5	<1	<1
WS02063		<1	<0.5	<0.1	1	<0.5	<5	<1	<1
WS02065		<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
WS02067		<1	<0.5	<0.1	1	<0.5	<5	<1	<1
WS02069		<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
WS02071		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
WS02073		<1	0.8	<0.1	2	<0.5	<5	<1	<1
WS02075		<1	1.3	<0.1	5	<0.5	<5	<1	<1
WS02077		<1	1.2	<0.1	3	<0.5	<5	<1	<1
WS02079		<1	1.3	<0.1	3	<0.5	<5	<1	<1
WS02081		<1	<0.5	<0.1	3	<0.5	<5	<1	<1
WS02083		<1	<0.5	<0.1	4	<0.5	<5	<1	<1
WS02085		<1	<0.5	<0.1	1	<0.5	<5	<1	<1
WS02087		<1	<0.5	<0.1	5	<0.5	<5	<1	<1
WS02089		<1	0.6	<0.1	2	<0.5	<5	<1	<1
WS02091		<1	0.7	<0.1	5	<0.5	<5	<1	<1
WS02093		<1	<0.5	<0.1	5	<0.5	<5	<1	<1
WS02095		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
WS02097		<1	<0.5	<0.1	4	<0.5	<5	<1	<1
WS02099		<1	0.7	<0.1	2	<0.5	<5	<1	<1
WS02101		<1	1.5	<0.1	4	<0.5	<5	1	<1
WS02103		<1	2.3	<0.1	7	<0.5	<5	1	<1
WS02105		<1	2.0	<0.1	2	<0.5	<5	1	<1
WS02107		<1	2.3	<0.1	4	<0.5	<5	2	<1
WS02109		<1	2.8	<0.1	10	<0.5	<5	2	<1
WS02111		<1	3.9	<0.1	2	<0.5	<5	3	<1
WS02113		<1	2.7	<0.1	5	<0.5	<5	2	<1
WS02115		<1	1.3	<0.1	4	<0.5	<5	<1	<1
WS02117		<1	1.8	<0.1	16	<0.5	<5	<1	<1
WS02119		<1	1.8	<0.1	6	<0.5	<5	1	<1
WS02121		<1	2.0	<0.1	2	<0.5	<5	1	<1
WS02123		<1	1.8	<0.1	9	<0.5	<5	1	<1
WS02125		<1	2.7	<0.1	4	< 0.5	<5	2	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 16 of 22

Report File No.: 0000019565

Element	Pd	Pr	Pt	Rb	Sb	Sc	Sm	Sn
Method	GE_MMI_M							
Det.Lim.	1	0.5	0.1	1	0.5	5	1	1
Units	ppb							
WS02127	<1	3.8	<0.1	3	<0.5	<5	3	<1
WS02129	<1	<0.5	<0.1	3	<0.5	<5	<1	<1
WS02131	<1	<0.5	<0.1	5	<0.5	<5	<1	<1
WS02133	<1	0.8	<0.1	2	<0.5	<5	<1	<1
*Rep WS01929	<1	3.2	<0.1	10	<0.5	<5	3	<1
*Rep WS02021	<1	1.7	<0.1	14	<0.5	<5	2	<1
*Rep WS02045	<1	3.1	<0.1	3	<0.5	<5	3	<1
*Rep WS02069	<1	<0.5	<0.1	2	<0.5	<5	<1	<1
*Rep WS02099	<1	0.6	<0.1	3	<0.5	<5	<1	<1
*Rep WS02117	<1	1.6	<0.1	12	<0.5	<5	<1	<1
*Std MMISRM19	<1	2.4	<0.1	197	1.3	11	7	<1
*Std AMIS0169	<1	95.3	<0.1	251	0.8	51	57	<1
*Blk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 17 of 22

Report File No.: 0000019565

	Element	Sr	Та	Tb	Те	Th	Ti	TI	U
	Method	GE_MMI_M							
	Det.Lim.	10	1	0.1	10	0.5	10	0.1	0.5
	Units	ppb							
WS01917		140	1	0.3	160	2.6	20	<0.1	0.6
WS01919		300	<1	0.8	110	3.1	30	<0.1	1.1
WS01921		240	<1	0.5	<10	2.4	30	0.2	<0.5
WS01923		270	<1	0.5	20	3.5	70	<0.1	0.8
WS01925		150	<1	0.5	20	4.6	70	<0.1	1.0
WS01927		130	<1	0.4	30	5.6	70	<0.1	1.0
WS01929		140	<1	0.5	10	3.9	60	<0.1	0.8
WS01931		170	<1	0.6	<10	4.3	70	<0.1	1.2
WS01933		140	<1	0.3	10	2.0	60	<0.1	<0.5
WS01935		520	<1	0.7	<10	4.3	60	<0.1	1.5
WS01937		100	<1	0.2	<10	1.7	20	<0.1	<0.5
WS01939		100	<1	0.2	10	2.8	50	<0.1	<0.5
WS01941		140	<1	0.3	50	1.2	30	0.1	<0.5
VS01943		340	<1	<0.1	40	<0.5	<10	0.2	<0.5
VS01945		360	<1	<0.1	30	0.6	10	0.1	<0.5
VS01947		370	<1	<0.1	20	<0.5	20	0.1	<0.5
VS01949		380	<1	<0.1	20	<0.5	20	<0.1	<0.5
VS02001		840	<1	<0.1	<10	<0.5	10	<0.1	<0.5
VS02004		420	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
WS02005		390	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
NS02007		410	<1	<0.1	<10	<0.5	<10	0.1	<0.5
WS02009		290	<1	<0.1	<10	<0.5	30	0.1	<0.5
WS02011		400	<1	<0.1	<10	<0.5	30	<0.1	0.6
WS02013		480	<1	<0.1	<10	<0.5	20	<0.1	<0.5
WS02015		360	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
WS02017		360	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
WS02019		60	<1	0.2	<10	2.6	40	<0.1	0.5
WS02021		90	<1	0.2	<10	2.3	40	<0.1	<0.5
WS02023		180	<1	<0.1	<10	<0.5	10	<0.1	<0.5
WS02025		180	<1	<0.1	<10	<0.5	10	<0.1	<0.5
WS02027		220	<1	<0.1	<10	<0.5	20	<0.1	<0.5
WS02029		210	<1	<0.1	<10	<0.5	20	<0.1	<0.5
VS02031		440	<1	<0.1	<10	<0.5	20	0.1	<0.5
VS02033		270	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
VS02035		340	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
VS02037		490	<1	<0.1	<10	<0.5	10	<0.1	<0.5
WS02039		510	<1	<0.1	<10	<0.5	20	<0.1	<0.5
WS02041		300	<1	<0.1	<10	<0.5	10	<0.1	<0.5
WS02043		200	<1	<0.1	<10	<0.5	20	<0.1	1.1
WS02045		110	<1	0.5	<10	2.6	40	<0.1	0.8

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 18 of 22

Report File No.: 0000019565

	Element	Sr	Та	Tb	Te	Th	Ti	TI	U
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	10	l nab	0.1	10 ppb	0.5	10 nnh	0.1	0.5
	Units	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
WS02047		60	<1	0.6	<10	4.1	40	<0.1	1.1
WS02049		60	<1	0.5	<10	4.3	60	<0.1	1.0
WS02051		60	<1	0.6	<10	6.0	80	<0.1	0.9
WS02053		50	<1	0.4	20	3.7	40	0.1	<0.5
WS02055		100	<1	0.3	<10	3.4	30	<0.1	<0.5
WS02057		510	<1	<0.1	<10	<0.5	<10	<0.1	0.8
WS02059		700	<1	<0.1	<10	<0.5	10	0.1	<0.5
WS02061		540	<1	<0.1	<10	<0.5	<10	0.2	<0.5
WS02063		400	<1	<0.1	10	<0.5	20	<0.1	<0.5
WS02065		200	<1	<0.1	<10	<0.5	30	<0.1	<0.5
WS02067		330	<1	<0.1	10	<0.5	10	<0.1	<0.5
WS02069		190	<1	<0.1	<10	<0.5	10	<0.1	<0.5
WS02071		270	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
WS02073		170	<1	0.1	<10	0.6	30	<0.1	3.5
WS02075		60	<1	0.2	<10	1.0	30	<0.1	<0.5
WS02077		50	<1	0.2	<10	1.3	30	<0.1	<0.5
WS02079		60	<1	0.2	10	1.1	20	<0.1	<0.5
WS02081		160	<1	<0.1	<10	<0.5	10	<0.1	<0.5
WS02083		170	<1	<0.1	<10	<0.5	20	<0.1	<0.5
WS02085		210	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
WS02087		170	4	<0.1	<10	1.9	<10	<0.1	<0.5
WS02089		120	<1	<0.1	<10	1.1	20	<0.1	0.6
WS02091		180	<1	<0.1	<10	0.9	40	<0.1	1.4
WS02093		160	<1	<0.1	<10	<0.5	20	<0.1	<0.5
WS02095		180	<1	<0.1	<10	<0.5	30	0.1	<0.5
WS02097		230	<1	<0.1	<10	<0.5	40	<0.1	1.0
WS02099		170	<1	0.2	<10	0.6	30	<0.1	2.7
WS02101		110	<1	0.2	<10	1.4	30	<0.1	<0.5
WS02103		60	<1	0.3	<10	2.7	40	<0.1	<0.5
WS02105		90	<1	0.2	<10	1.6	30	<0.1	<0.5
WS02107		80	<1	0.3	<10	3.4	50	<0.1	0.7
WS02109		70	<1	0.4	<10	3.4	60	<0.1	0.6
WS02111		70	<1	0.6	<10	5.2	70	<0.1	0.5
WS02113		80	<1	0.3	<10	2.7	50	<0.1	< 0.5
WS02115		60	<1	<0.1	<10	1.9	30	<0.1	<0.5
WS02110 WS02117		60	<1	0.2	20	2.4	30	<0.1	<0.5
WS02119		80	<1	0.2	<10	1.8	20	<0.1	<0.5
WS02113		50	1	0.2	10	2.5	60	<0.1	0.6
WS02121 WS02123		80	<1	0.2	<10	1.9	30	<0.1	<0.5
WS02125		80	<1	0.2	<10	1.9	30	<0.1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 19 of 22

Report File No.: 0000019565

Element	Sr	Ta	Tb	Te	Th	Ti	TI	U
Method	GE_MMI_M							
Det.Lim.	10	1	0.1	10	0.5	10	0.1	0.5
Units	ppb							
WS02127	90	<1	0.4	<10	4.7	60	<0.1	0.5
WS02129	70	<1	<0.1	<10	<0.5	20	<0.1	<0.5
WS02131	140	<1	<0.1	<10	<0.5	10	<0.1	<0.5
WS02133	120	<1	0.2	<10	<0.5	20	<0.1	<0.5
*Rep WS01929	140	<1	0.5	<10	3.5	60	<0.1	0.7
*Rep WS02021	80	<1	0.3	<10	2.1	40	<0.1	<0.5
*Rep WS02045	130	<1	0.4	<10	2.3	40	<0.1	0.8
*Rep WS02069	210	<1	<0.1	<10	<0.5	10	<0.1	<0.5
*Rep WS02099	160	<1	0.1	<10	0.6	30	<0.1	2.8
*Rep WS02117	50	<1	<0.1	<10	2.0	40	<0.1	<0.5
*Std MMISRM19	4060	<1	2.2	40	17.4	<10	1.1	63.0
*Std AMIS0169	50	<1	5.2	<10	65.3	340	0.9	23.5
*BIk BLANK	10	<1	<0.1	<10	0.6	<10	<0.1	<0.5
*BIk BLANK	10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
*BIk BLANK	10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
*BIk BLANK	<10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Final : VC163208 Order: West Porcupine-GTA/334 Samples (1 of 4) Report File No.: 0000019565

Page 20 of 22

Eleme		Y	Yb	Zn	Zr
Metho		GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
Det.Lir Uni		ppb	0.2 ppb	10 ppb	2 ppb
WS01917	2.1	8	0.5	560	14
WS01919	2.7	20	1.7	220	7
WS01921	1.9	14	1.0	280	6
WS01923	1.7	15	0.9	120	8
WS01925	1.5	14	0.8	310	16
WS01927	1.7	13	1.0	240	14
WS01929	1.5	14	0.9	370	8
WS01931	1.1	17	1.0	200	12
WS01933	<0.5	11	0.9	140	10
WS01935	1.3	22	1.9	60	8
WS01937	0.7	6	0.2	450	5
WS01939	0.6	6	0.2	340	11
WS01941	0.9	5	0.5	30	5
WS01943	1.0	<1	<0.2	370	<2
WS01945	0.7	2	<0.2	410	<2
WS01947	0.6	<1	<0.2	440	<2
WS01949	<0.5	2	<0.2	1200	<2
WS02001	<0.5	2	<0.2	820	<2
WS02004	<0.5	<1	<0.2	210	<2
WS02005	<0.5	<1	<0.2	380	<2
WS02007	<0.5	1	<0.2	190	<2
WS02009	<0.5	1	<0.2	720	<2
WS02011	<0.5	3	0.3	110	6
WS02013	<0.5	1	<0.2	140	3
WS02015	<0.5	2	<0.2	20	<2
WS02017	<0.5	<1	<0.2	40	<2
WS02019	<0.5	6	0.4	200	9
WS02021	<0.5	8	0.2	260	8
WS02023	<0.5	2	<0.2	20	3
WS02025	<0.5	<1	<0.2	40	<2
WS02027	<0.5	<1	<0.2	630	<2
WS02029	<0.5	<1	<0.2	730	<2
WS02031	<0.5	<1	<0.2	660	<2
WS02033	<0.5	<1	<0.2	40	<2
WS02035	<0.5	<1	<0.2	40	<2
WS02037	<0.5	1	<0.2	10	<2
WS02039	<0.5	<1	<0.2	190	<2
WS02041	<0.5	<1	<0.2	250	<2
WS02043	<0.5	<1	<0.2	<10	3
WS02045	<0.5	17	1.6	90	6

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Final : VC163208 Order: West Porcupine-GTA/334 Samples (1 of 4) Report File No.: 0000019565

W Zr Element Yb Zn Method GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M Det.Lim. 0.5 0.2 10 2 Units ppb ppb ppb ppb ppb WS02047 <0.5 1.3 20 19 10 WS02049 <0.5 16 1.3 30 10 WS02051 <0.5 18 1.2 120 19 12 WS02053 <0.5 13 1.0 300 WS02055 11 8 < 0.5 0.8 200 3 <2 WS02057 < 0.5 <0.2 70 WS02059 <0.5 1 <0.2 740 <2 WS02061 <0.5 1 <0.2 130 <2 <2 WS02063 <0.5 <1 <0.2 60 <1 <2 WS02065 <0.5 <0.2 20 <2 WS02067 <0.5 <1 <0.2 130 WS02069 <0.5 2 <0.2 120 <2 WS02071 2 150 <2 <0.5 <0.2 3 WS02073 <0.5 6 0.8 310 6 WS02075 < 0.5 5 0.3 100 9 WS02077 < 0.5 5 0.3 170 WS02079 5 <0.2 260 8 <0.5 WS02081 <0.5 <1 40 3 <0.2 2 <1 WS02083 <0.5 <0.2 110 <2 WS02085 < 0.5 <1 <0.2 30 2 3 WS02087 < 0.5 <0.2 40 WS02089 <0.5 3 <0.2 20 3 3 3 0.2 WS02091 <0.5 320 WS02093 <0.5 <1 <0.2 170 <2 WS02095 < 0.5 <1 <0.2 120 <2 2 280 WS02097 <0.5 1 <0.2 4 WS02099 <0.5 7 0.7 40 WS02101 5 0.4 40 6 <0.5 WS02103 <0.5 7 0.5 330 14 <0.5 WS02105 9 0.4 210 6 WS02107 <0.5 11 0.6 580 12 WS02109 < 0.5 11 0.7 440 11 10 WS02111 <0.5 17 1.1 170 WS02113 <0.5 11 0.6 120 8 5 WS02115 < 0.5 7 04 250 9 WS02117 <0.5 7 0.3 350 5 WS02119 <0.5 7 0.3 130 9 WS02121 <0.5 7 0.5 220 WS02123 < 0.5 7 0.4 480 7 < 0.5 11 0.6 300 4 WS02125

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 21 of 22

Final : VC163208 Order: West Porcupine-GTA/334 Samples (1 of 4) Report File No.: 0000019565

W Yb Zn Zr Element GE_MMI_M Method GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M 0.5 Det.Lim. 0.2 10 2 Units ppb ppb ppb ppb ppb WS02127 <0.5 1.1 520 11 15 WS02129 <0.5 1 <0.2 450 <2 WS02131 <0.5 1 <0.2 60 <2 <2 WS02133 <0.5 6 0.5 270 *Rep WS01929 1.1 13 0.8 370 8 <0.5 *Rep WS02021 9 8 0.5 230 6 *Rep WS02045 <0.5 18 1.6 90 *Rep WS02069 <0.5 2 0.2 140 <2 3 *Rep WS02099 <0.5 6 0.7 40 380 7 *Rep WS02117 <0.5 7 0.2 5.9 2560 12 *Std MMISRM19 2.4 67 *Std AMIS0169 1.0 116 8.7 210 46 *BIk BLANK 0.7 <1 <0.2 <10 <2 <2 *Blk BLANK <1 <0.2 <10 <0.5 *BIk BLANK <1 <0.2 <10 <2 <0.5 <10 <2 *Blk BLANK <0.5 <1 <0.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 22 of 22

Certificate of Analysis Work Order : VC163209 [Report File No.: 0000019566]

Date: October 25, 2016

To: SHARON ALLAN PROBE METALS INC 56 TEMPERANCE ST SUITE 1000 TORONTO ON M5H 3V5 P.O. No.: West Porcupine-GTA/334 Samples (2 of 4) Project No.: -Samples: 84 Received: Oct 11, 2016 Pages: Page 1 to 22 (Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	Description
84	G_LOG02	Pre-preparation processing, sorting, logging, boxing
84	GE_MMI_M	Mobile Metal ION standard package/ICP-MS
Storage: Pulp & Re	eject_	

REJECT STORAGE

DISCARD

Certified By : John Chiang QC Chemist

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

 Report Footer:
 L.N.R. = Listed not received
 I.S. = Insufficient Sample

 n.a.
 = Not applicable
 - = No result

 *INF
 = Composition of this sample makes detection impossible by this method

 M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

 Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

 Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 2 of 22

Report File No.: 0000019566

	Element	Ag	Al	As	Au	Ba	Bi	Са	Cd
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	0.5 ppb	1 ppm	10 ррb	0.1 ppb	10 ppb	0.5 ppb	2 ppm	1 ppb
WS02135		<0.5	28	10	<0.1	40	< 0.5	172	4
WS02137		<0.5	33	20	<0.1	90	< 0.5	273	4
WS02139		<0.5	42	<10	<0.1	90	< 0.5	156	10
WS02141		<0.5	24	<10	<0.1	100	< 0.5	111	4
WS02143		<0.5	20	<10	<0.1	80	< 0.5	69	5
WS02145		<0.5	25	<10	<0.1	100	< 0.5	145	9
WS02147		<0.5	28	<10	<0.1	120	0.5	102	7
WS02149		<0.5	30	<10	<0.1	130	< 0.5	118	5
WS02151		<0.5	33	<10	<0.1	80	< 0.5	124	5 7
WS02153		<0.5	35	10	<0.1	120	< 0.5	132	
WS02155		<0.5	29	<10	<0.1	70	< 0.5	87	6
WS02157		<0.5	21	20	<0.1	80	<0.5	149	6 6 2
WS02159		<0.5	19	20	<0.1	80	3.0	81	11
WS02161		<0.5	39	<10	<0.1	110	1.1	67	10
WS02163		<0.5	29	<10	<0.1	90	1.1	52	7
WS02165		<0.5	24	10	<0.1	80	<0.5	70	6
WS02167		<0.5	34	<10	<0.1	100	< 0.5	66	7
WS02169		<0.5	16	<10	<0.1	70	< 0.5	82	6
WS02171		<0.5	23	10	<0.1	80	0.9	116	6
WS02173		<0.5	24	<10	<0.1	90	1.0	99	5
WS02175		<0.5	13	<10	<0.1	60	<0.5	80	6
WS02177		<0.5	23	<10	<0.1	80	< 0.5	181	9
WS02179		<0.5	38	20	<0.1	110	<0.5	258	6
WS02181		<0.5	18	<10	<0.1	50	<0.5	159	4
WS02183		<0.5	55	<10	<0.1	40	<0.5	133	15
WS02185		<0.5	23	<10	<0.1	40	<0.5	282	5
WS02183		<0.5	23	<10	<0.1	100	<0.5	123	4
WS02189		<0.5	25	10	<0.1	140	< 0.5	108	14
WS02191		<0.5	35	<10	<0.1	130	<0.5	114	6
WS02193		<0.5	20	10	<0.1	100	<0.5	88	3
WS02195		<0.5	24	<10	<0.1	80	<0.5	54	5
WS02193		<0.5	13	<10	<0.1	60	<0.5	146	6
WS02199		<0.5	17	<10	<0.1	70	<0.5	140	
WS02201		<0.5	19	<10	<0.1	70	<0.5	323	2
WS02201		<0.5	7	<10	<0.1	80	<0.5	122	4
WS02205		<0.5	29	<10	<0.1	100	<0.5	95	3
WS02207		<0.5	18	<10	<0.1	50	<0.5	47	4
WS02209		<0.5	23	<10	<0.1	80	<0.5	114	7
WS02203		<0.5	25	<10	<0.1	90	<0.5	114	4
WS02211 WS02213		<0.5	25	10	<0.1	90	<0.5	90	4

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 3 of 22

Report File No.: 0000019566

	Element	Ag	Al	As	Au	Ba	Bi	Ca	Cd
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	0.5 ppb	1 ppm	10 ppb	0.1 ppb	10 ppb	0.5 ppb	2 ppm	1 ppb
W000045	Cinto								
WS02215		<0.5 <0.5	25	<10	<0.1	80	<0.5 <0.5	78	6
WS02217			24	<10	<0.1	80		58	7
WS02219		<0.5	18	<10	<0.1	70	<0.5	62	6
WS02221		<0.5	29	<10	<0.1	110	<0.5	88	3
WS02223		< 0.5	39	<10	<0.1	80	< 0.5	36	<1
WS02225		<0.5	36	<10	<0.1	120	< 0.5	80	10
WS02227		<0.5	4	10	<0.1	60	<0.5	173	2
WS02229		<0.5	6	<10	<0.1	100	<0.5	174	1
WS02231		<0.5	7	<10	<0.1	60	<0.5	167	2
WS02233		<0.5	9	10	<0.1	60	<0.5	112	3
WS02235		<0.5	8	<10	<0.1	40	<0.5	38	<1
WS02237		<0.5	33	10	<0.1	100	<0.5	57	6
WS02239		<0.5	20	<10	<0.1	80	<0.5	97	5
WS02241		<0.5	26	<10	<0.1	90	<0.5	74	5
WS02243		<0.5	21	<10	<0.1	90	<0.5	80	5
WS02245		<0.5	19	<10	<0.1	100	<0.5	62	13
WS02247		<0.5	25	<10	<0.1	110	0.6	65	10
WS02249		<0.5	30	<10	<0.1	110	<0.5	77	9
WS02251		<0.5	27	10	<0.1	70	<0.5	207	4
WS02253		<0.5	28	<10	<0.1	140	<0.5	286	4
WS02255		<0.5	21	<10	<0.1	90	<0.5	55	4
WS02257		<0.5	19	10	<0.1	100	0.7	46	14
WS02259		<0.5	29	<10	<0.1	110	<0.5	68	5
WS02261		<0.5	28	10	<0.1	120	<0.5	92	5
WS02263		<0.5	100	<10	<0.1	550	0.9	26	<1
WS02265		<0.5	40	<10	<0.1	40	<0.5	335	4
WS02267		<0.5	10	<10	<0.1	70	<0.5	264	6
WS02269		<0.5	27	<10	<0.1	130	<0.5	110	6
WS02271		<0.5	33	<10	<0.1	70	<0.5	200	9
WS02273		<0.5	17	<10	<0.1	50	<0.5	34	9
WS02275		<0.5	32	<10	<0.1	100	<0.5	46	9
WS02277		<0.5	26	<10	<0.1	40	<0.5	334	3
WS02279		<0.5	31	<10	<0.1	120	<0.5	61	12
WS02281		<0.5	37	<10	<0.1	110	<0.5	262	6
WS02283		<0.5	36	<10	<0.1	120	<0.5	225	10
WS02285		<0.5	51	<10	<0.1	240	<0.5	54	12
WS02287		<0.5	38	<10	<0.1	70	<0.5	224	9
WS02289		<0.5	29	<10	<0.1	50	<0.5	201	6
WS02291		<0.5	10	<10	<0.1	70	< 0.5	364	13
WS02293		<0.5	32	<10	<0.1	100	<0.5	96	8

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 4 of 22

Report File No.: 0000019566

Element Method	Ag GE_MMI_M	AI GE_MMI_M	As CE MMI M			Bi GE_MMI_M	Ca GE_MMI_M	Cd GE_MMI_M
Det.Lim.	0.5	GE_IVIIVII_IVI 1	GE_MMI_M 10	G⊑_iviivii_ivi 0.1	G⊑_iviivii_ivi 10	0.5	G⊑_iviivii_ivi 2	G⊏_iviivii_ivi 1
Units	ppb	ppm	ppb	ppb	ppb	ppb	ppm	ppb
WS02295	<0.5	29	<10	<0.1	90	<0.5	56	6
WS02297	<0.5	31	<10	<0.1	100	<0.5	69	8
WS02299	<0.5	51	<10	<0.1	200	0.5	64	13
WS02301	<0.5	36	<10	<0.1	120	0.6	62	2
*Rep WS02143	<0.5	22	<10	<0.1	90	0.6	73	6
*Rep WS02171	<0.5	26	<10	<0.1	90	<0.5	125	7
*Rep WS02201	<0.5	18	10	<0.1	70	<0.5	329	2
*Rep WS02251	<0.5	27	<10	<0.1	80	<0.5	216	4
*Rep WS02283	<0.5	39	<10	<0.1	120	<0.5	209	12
*Std MMISRM19	27.7	20	<10	4.8	1200	<0.5	801	38
*Std AMIS0169	10.2	56	10	0.7	600	<0.5	40	2
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	<2	<1
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	<2	<1
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	<2	<1
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	<2	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 5 of 22

Report File No.: 0000019566

	Element Method	Ce GE_MMI_M	Co GE_MMI_M	Cr GE_MMI_M	Cs GE_MMI_M	Cu GE_MMI_M	Dy GE_MMI_M	Er GE_MMI_M	Eu GE_MMI_M
	Det.Lim.	2	0 <u></u> 1	100	0.2	0Ľ_//////_/// 10	0.5	0.2	0.2
	Units	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
WS02135		10	9	<100	2.3	20	1.9	1.2	0.3
WS02137		15	8	<100	1.3	10	3.0	1.8	0.7
WS02139		21	8	<100	0.7	<10	2.5	1.7	0.7
WS02141		18	5	<100	0.4	20	1.9	1.0	0.4
WS02143		10	4	<100	0.3	<10	1.3	0.5	0.2
WS02145		18	6	<100	0.6	10	2.5	1.2	0.5
WS02147		24	7	<100	0.5	20	2.6	1.3	0.6
WS02149		24	7	<100	0.3	10	3.4	1.7	0.6
WS02151		24	6	<100	0.8	<10	2.7	1.1	0.6
WS02153		25	7	<100	0.5	20	2.5	1.2	0.6
WS02155		14	7	<100	0.4	<10	1.4	0.9	<0.2
WS02157		11	6	<100	0.3	10	1.7	1.0	0.4
WS02159		15	5	<100	0.3	10	1.6	1.2	0.4
WS02161		20	6	<100	0.4	10	2.1	1.2	0.3
WS02163		15	7	<100	0.7	10	1.6	0.9	0.3
WS02165		17	6	<100	<0.2	10	2.0	0.7	0.3
WS02167		18	6	<100	0.3	<10	2.1	0.9	0.3
WS02169		11	4	<100	<0.2	10	1.1	0.7	0.2
WS02171		15	6	<100	0.9	<10	1.7	0.9	0.3
WS02173		20	6	<100	0.7	10	2.3	1.0	0.4
WS02175		10	5	<100	0.3	<10	1.3	0.6	<0.2
WS02177		15	8	<100	0.6	10	1.9	1.0	0.4
WS02179		10	11	<100	0.4	10	2.2	1.1	0.3
WS02181		6	4	<100	1.1	30	1.6	0.8	<0.2
WS02183		4	7	<100	0.5	20	0.9	0.8	<0.2
WS02185		2	5	<100	0.3	30	0.7	0.5	<0.2
WS02187		21	4	<100	0.3	20	2.7	1.3	0.6
WS02189		21	6	<100	0.6	20	2.9	1.5	0.5
WS02191		27	8	<100	0.5	<10	3.6	1.8	0.6
WS02193		14	5	<100	0.9	10	2.2	1.0	0.0
WS02195		9	4	<100	0.5	<10	0.9	0.6	<0.2
WS02197		4	5	<100	0.5	30	<0.5	0.4	<0.2
WS02199		6	4	<100	1.3	20	1.3	0.6	<0.2
WS02201		4	7	<100	1.0	20	0.8	0.3	<0.2
WS02201		3	3	<100	0.4	10	0.6	0.2	<0.2
WS02205		26	5	<100	0.4	20	2.1	0.2	<0.2 0.6
WS02203		12	5	<100	0.4	<10	1.3	0.8	0.0
WS02209		12	6	<100	0.4	<10	1.5	0.8	0.3
WS02209 WS02211		17	10	<100	0.4	<10		0.8	
WS02211 WS02213		10	7	<100	<0.3	<10	1.6 1.3	0.9	0.3

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 6 of 22

Report File No.: 0000019566

	Element Method	Ce GE_MMI_M	Co GE_MMI_M	Cr GE_MMI_M	Cs GE_MMI_M	Cu GE_MMI_M	Dy GE_MMI_M	Er GE_MMI_M	Eu GE_MMI_M
	Det.Lim.	GE_IVIIVII_IVI 2		GE_ININI_INI 100	G⊑_IVIIVII_IVI 0.2	G⊑_iviivii_ivi 10	0.5	0.2	GE_IVIIVII_IVI 0.2
	Units	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
WS02215		18	8	<100	0.4	<10	1.9	1.1	0.3
WS02217		16	6	<100	0.6	10	2.1	1.2	0.4
WS02219		13	4	<100	<0.2	20	1.4	0.6	0.3
WS02221		21	6	<100	0.5	20	2.7	1.2	0.7
WS02223		14	6	<100	0.3	<10	1.9	1.2	0.3
WS02225		25	9	<100	0.2	10	3.4	1.7	0.6
WS02227		2	8	<100	0.6	20	<0.5	<0.2	<0.2
WS02229		<2	12	<100	0.2	20	<0.5	<0.2	<0.2
WS02231		3	14	<100	<0.2	30	<0.5	<0.2	<0.2
WS02233		<2	15	<100	0.9	30	<0.5	0.3	<0.2
WS02235		<2	7	<100	0.5	20	<0.5	<0.2	<0.2
WS02237		19	8	<100	0.5	20	1.6	0.9	0.5
WS02239		13	7	<100	0.4	10	1.4	0.9	0.2
WS02241		16	7	<100	0.5	20	1.4	0.9	0.2
WS02243		14	7	<100	<0.2	20	1.6	1.0	0.4
WS02245		14	5	<100	0.5	20	1.2	0.7	0.2
WS02247		17	7	<100	0.6	20	2.1	1.1	0.4
WS02249		26	7	<100	0.6	20	2.6	1.3	0.7
WS02251		6	7	<100	1.0	10	2.3	1.3	0.3
WS02253		3	1	<100	0.3	30	0.8	0.5	<0.2
WS02255		8	12	<100	0.3	10	0.9	0.5	<0.2
WS02257		16	5	<100	0.6	20	1.4	0.6	0.2
WS02259		18	7	<100	0.3	20	2.0	0.9	0.5
WS02261		23	6	<100	0.3	30	2.1	1.0	0.6
WS02263		13	9	<100	1.1	20	0.6	0.2	<0.2
WS02265		13	21	<100	<0.2	160	2.1	1.4	0.3
WS02267		<2	17	<100	0.6	20	0.6	0.5	<0.2
WS02269		14	8	<100	0.4	<10	1.4	1.1	0.3
WS02271		12	9	<100	0.3	20	3.1	2.1	0.5
WS02273		10	6	<100	0.3	<10	1.1	0.6	<0.2
WS02275		20	7	<100	0.4	10	2.0	0.9	0.5
WS02277		8	7	<100	0.6	40	2.4	1.1	0.3
WS02279		20	8	<100	<0.2	10	2.4	1.0	0.5
WS02281		16	8	<100	0.2	<10	2.3	1.1	0.7
WS02283		21	9	<100	<0.2	<10	2.5	1.4	0.7
WS02285		40	10	<100	0.5	20	3.8	2.2	0.9
WS02287		9	15	<100	<0.2	10	2.5	1.7	0.4
WS02289		6	10	<100	<0.2	<10	1.6	1.3	<0.2
WS02291		<2	16	<100	0.2	<10	1.0	0.4	<0.2
WS02293		23	7	<100	0.3	<10	2.5	1.2	0.5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 7 of 22

Report File No.: 0000019566

Elemen	t Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
Metho	I GE_MMI_M	GE_MMI_M						
Det.Lim		1	100	0.2	10	0.5	0.2	0.2
Unit	s ppb	ppb						
WS02295	15	7	<100	0.3	10	1.4	0.5	0.3
WS02297	20	8	<100	0.5	<10	2.4	1.4	0.3
WS02299	22	8	<100	0.7	20	2.1	1.3	0.5
WS02301	18	6	<100	0.5	<10	1.7	1.2	0.4
*Rep WS02143	13	4	<100	0.3	<10	1.5	0.8	<0.2
*Rep WS02171	17	7	<100	0.5	<10	1.6	0.8	0.4
*Rep WS02201	4	7	<100	0.9	20	0.6	0.4	<0.2
*Rep WS02251	7	6	<100	0.9	10	2.4	1.5	0.3
*Rep WS02283	25	9	<100	<0.2	10	2.8	1.4	0.7
*Std MMISRM19	14	333	<100	4.1	2200	10.4	5.8	2.1
*Std AMIS0169	743	88	<100	7.5	3980	26.1	12.2	10.5
*Blk BLANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*Blk BLANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*Blk BLANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*BIk BLANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 8 of 22

Report File No.: 0000019566

	Element	Fe	Ga	Gd	Hg	In	к	La	Li
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim.	1	0.5	0.5	1	0.1	0.5	1	1
	Units	ppm	ppb	ppb	ppb	ppb	ppm	ppb	ppb
WS02135		70	2.7	2.3	<1	<0.1	2.2	4	<1
WS02137		88	5.8	3.2	<1	<0.1	3.6	6	<1
WS02139		72	6.5	3.0	<1	<0.1	2.6	7	<1
WS02141		24	6.2	2.3	<1	<0.1	3.0	7	<1
WS02143		35	4.1	1.4	<1	<0.1	0.6	4	<1
WS02145		16	4.7	2.6	<1	<0.1	2.0	8	<1
WS02147		26	5.4	3.1	<1	<0.1	1.1	9	<1
WS02149		20	6.2	4.5	<1	<0.1	<0.5	10	<1
WS02151		33	7.0	2.9	<1	<0.1	3.3	10	<1
WS02153		29	5.8	3.5	<1	<0.1	3.0	10	<1
WS02155		30	4.0	2.4	<1	<0.1	2.1	5	<1
WS02157		103	4.7	1.7	<1	<0.1	3.2	5	<1
WS02159		29	5.0	2.6	<1	0.3	0.6	6	<1
WS02161		27	6.8	1.8	<1	<0.1	2.9	8	<1
WS02163		31	4.7	1.6	<1	<0.1	0.8	5	<1
WS02165		18	4.8	2.2	<1	<0.1	0.8	7	<1
WS02167		63	7.0	2.2	<1	<0.1	0.8	7	<1
WS02169		10	3.2	1.4	<1	<0.1	<0.5	4	<1
WS02171		25	3.9	1.8	<1	<0.1	4.2	7	<1
WS02173		20	5.2	2.7	<1	<0.1	3.7	8	<1
WS02175		13	2.4	1.5	<1	<0.1	1.2	4	<1
WS02177		22	4.0	2.4	<1	<0.1	4.1	6	<1
WS02179		174	7.3	2.7	<1	<0.1	1.7	3	<1
WS02181		27	2.1	1.5	<1	<0.1	1.4	2	<1
WS02183		122	5.1	0.7	<1	<0.1	<0.5	1	<1
WS02185		32	1.4	0.6	<1	<0.1	0.6	<1	2
WS02187		21	4.6	3.0	<1	<0.1	2.7	9	<1
WS02189		24	4.1	3.3	<1	<0.1	4.2	8	<1
WS02191		35	4.9	3.2	<1	<0.1	4.0	11	<1
WS02193		24	4.4	2.6	<1	<0.1	1.8	5	<1
WS02195		30	3.8	0.9	<1	<0.1	3.9	3	<1
WS02197		93	1.9	< 0.5	<1	<0.1	0.9	1	<1
WS02199		47	1.8	1.0	<1	<0.1	<0.5	2	<1
WS02201		135	2.1	1.0	<1	<0.1	1.1	2	1
WS02203		11	1.0	0.7	<1	<0.1	1.1	1	<1
WS02205		47	6.7	2.9	<1	<0.1	2.2	11	<1
WS02205		23	3.3	1.4	<1	<0.1	1.7	5	<1
WS02207		33	4.1	2.0	<1	<0.1	3.7	6	<1
		33		2.0					
WS02211 WS02213		41	4.7	2.0	<1 <1	<0.1 <0.1	2.4 <0.5	6 5	<1 <1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 9 of 22

Report File No.: 0000019566

	Element Method	Fe GE_MMI_M	Ga GE_MMI_M	Gd GE_MMI_M	Hg GE_MMI_M	In GE_MMI_M	K GE_MMI_M	La GE_MMI_M	Li GE_MMI_M
	Det.Lim. Units	1 ppm	0.5 ppb	0.5 ppb	1 ppb	0.1 ppb	0.5 ppm	1 ppb	1 ppb
WS02215		27	6.3	2.2	<1	<0.1	2.9	7	<1
WS02217		14	3.8	2.4	<1	<0.1	0.6	7	<1
WS02219		11	2.6	1.7	<1	<0.1	<0.5	5	<1
WS02221		13	6.8	3.0	<1	<0.1	1.6	8	<1
WS02223		20	5.4	1.9	<1	<0.1	<0.5	5	<1
WS02225		21	5.8	3.9	<1	<0.1	<0.5	9	<1
WS02227		79	0.5	<0.5	<1	<0.1	<0.5	<1	<1
WS02229		66	0.7	<0.5	<1	<0.1	<0.5	<1	<1
WS02231		134	0.7	<0.5	<1	<0.1	<0.5	<1	<1
WS02233		280	1.1	<0.5	<1	<0.1	<0.5	<1	<1
WS02235		337	0.8	<0.5	<1	<0.1	<0.5	<1	<1
WS02237		28	5.7	2.7	<1	<0.1	1.8	8	<1
WS02239		26	4.2	1.5	<1	<0.1	1.9	5	<1
WS02241		42	4.8	1.9	<1	<0.1	2.2	7	<1
WS02243		19	4.6	2.2	<1	<0.1	<0.5	5	<1
WS02245		22	4.2	1.7	<1	<0.1	4.5	5	<1
WS02247		24	3.7	2.5	<1	<0.1	3.5	7	<1
WS02249		23	6.7	3.4	<1	<0.1	3.6	11	<1
WS02251		36	2.7	2.3	<1	<0.1	<0.5	2	<1
WS02253		58	2.4	0.8	<1	<0.1	2.3	<1	2
WS02255		128	4.6	0.9	<1	<0.1	0.6	3	<1
WS02257		16	3.9	2.1	<1	<0.1	4.5	6	<1
WS02259		17	6.1	2.2	<1	<0.1	0.8	7	<1
WS02261		19	4.9	3.1	<1	<0.1	2.0	9	<1
WS02263		139	15.8	0.6	<1	0.1	10.7	6	<1
WS02265		17	1.0	2.5	<1	<0.1	<0.5	5	<1
WS02267		39	0.9	<0.5	<1	<0.1	3.6	<1	<1
WS02269		130	5.9	1.8	<1	<0.1	1.0	6	<1
WS02271		11	2.5	2.7	<1	<0.1	<0.5	5	<1
WS02273		9	2.4	1.3	<1	<0.1	4.1	4	<1
WS02275		15	6.1	2.9	<1	<0.1	2.1	8	<1
WS02277		77	3.1	2.3	<1	<0.1	3.0	3	<1
WS02279		19	5.4	3.3	<1	<0.1	0.9	8	<1
WS02281		10	5.0	3.1	<1	<0.1	0.6	7	<1
WS02283		12	5.0	3.3	<1	<0.1	<0.5	7	<1
WS02285		29	8.5	4.8	<1	<0.1	2.3	16	<1
WS02287		10	4.5	2.5	<1	<0.1	0.8	3	<1
WS02289		4	2.7	1.8	<1	<0.1	<0.5	2	<1
WS02291		3	<0.5	0.7	<1	<0.1	1.8	<1	<1
WS02293		17	5.2	2.8	<1	<0.1	0.8	9	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 10 of 22

Report File No.: 0000019566

Element Method	Fe GE_MMI_M	Ga GE_MMI_M	Gd GE_MMI_M	5		K GE_MMI_M	La GE_MMI_M	Li GE_MMI_M
Det.Lim.	1	0.5	0.5	1	0.1	0.5	1	1
Units	ppm	ppb	ppb	ppb	ppb	ppm	ppb	ppb
WS02295	23	5.5	1.7	<1	<0.1	0.8	6	<1
WS02297	26	5.5	2.5	<1	<0.1	1.3	8	<1
WS02299	58	7.7	3.1	<1	<0.1	2.1	8	<1
WS02301	34	5.2	2.2	<1	<0.1	1.2	7	<1
*Rep WS02143	31	5.2	1.8	<1	<0.1	0.7	5	<1
*Rep WS02171	21	3.6	2.2	<1	<0.1	2.0	7	<1
*Rep WS02201	124	2.0	0.8	<1	<0.1	0.6	1	<1
*Rep WS02251	34	3.2	2.7	<1	<0.1	<0.5	2	<1
*Rep WS02283	13	5.9	3.4	<1	<0.1	<0.5	9	<1
*Std MMISRM19	7	<0.5	12.9	1	<0.1	92.2	2	<1
*Std AMIS0169	34	8.0	44.0	<1	<0.1	45.1	405	<1
*BIk BLANK	<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*BIk BLANK	<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*BIk BLANK	<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*BIk BLANK	<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 11 of 22

Report File No.: 0000019566

	Element	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb
	Method	GE_MMI_M							
	Det.Lim.	0.5	100	2	0.5	1	5	0.1	5
	Units	ppm	ppb	ppb	ppb	ppb	ppb	ppm	ppb
WS02135		19.4	2000	<2	1.0	7	17	1.3	146
WS02137		16.6	800	<2	0.7	11	15	1.4	113
WS02139		5.8	300	<2	0.9	14	14	1.6	73
WS02141		9.1	500	<2	0.5	10	23	2.1	67
WS02143		4.7	<100	<2	0.7	7	11	1.0	44
WS02145		6.1	<100	<2	0.6	11	25	1.6	41
WS02147		5.5	100	<2	<0.5	14	14	1.1	123
WS02149		4.3	100	<2	1.6	16	21	1.0	39
WS02151		4.6	<100	<2	1.2	15	17	0.9	67
WS02153		3.9	200	<2	0.9	15	19	1.2	36
WS02155		5.0	300	<2	1.1	9	17	0.8	30
WS02157		4.1	200	<2	<0.5	7	15	1.6	78
WS02159		6.6	100	<2	<0.5	11	15	2.6	291
WS02161		13.3	300	<2	0.6	12	22	2.2	175
WS02163		10.1	<100	<2	<0.5	9	12	1.0	67
WS02165		7.6	200	<2	<0.5	10	16	1.4	77
WS02167		4.4	<100	3	0.6	10	18	1.8	71
WS02169		6.5	300	<2	<0.5	7	12	1.0	75
WS02171		7.8	<100	<2	<0.5	8	15	0.9	74
WS02173		8.7	100	<2	<0.5	13	20	1.3	112
WS02175		3.9	100	<2	0.5	6	16	1.2	87
WS02177		5.5	100	<2	<0.5	8	20	1.5	50
WS02179		14.1	500	<2	<0.5	8	16	1.1	54
WS02181		22.5	2100	2	<0.5	4	15	0.6	46
WS02183		20.5	1100	<2	<0.5	3	9	0.6	36
WS02185		45.9	1600	2	<0.5	2	20	0.4	46
WS02187		8.7	900	<2	<0.5	14	16	1.1	85
WS02189		8.8	800	<2	<0.5	14	21	1.5	118
WS02191		6.2	300	<2	<0.5	19	16	1.1	49
WS02193		5.7	100	<2	<0.5	9	14	1.8	55
WS02195		6.1	600	<2	<0.5	5	11	1.1	25
WS02197		13.1	900	<2	<0.5	2	10	0.8	33
WS02199		11.2	500	<2	<0.5	4	13	0.5	33
WS02201		25.8	2800	<2	<0.5	2	24	0.5	30
WS02203		9.5	500	<2	<0.5	3	7	0.4	130
WS02205		4.6	100	<2	<0.5	15	18	2.0	42
WS02207		3.6	200	<2	<0.5	8	10	0.7	33
WS02209		5.5	200	<2	<0.5	10	17	1.4	52
WS02211		5.5	<100	<2	<0.5	9	22	1.7	26
WS02213		5.6	300	<2	<0.5	8	18	2.2	34

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 12 of 22

Report File No.: 0000019566

Element	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb
					GE_MMI_M			GE_MMI_M
					1	-		5
Units								ppb
					10		2.0	30
					11		1.4	39
				0.8	8		1.0	35
				<0.5	15	18	1.6	33
		<100		0.7	9	9	0.6	25
	13.2	200		<0.5	17	19	0.9	38
	12.7	800	<2	<0.5	<1	14	0.3	19
	19.5	1500	<2	<0.5	<1	13	0.5	12
	16.0	1600	<2	<0.5	2	12	0.5	10
	17.8	1800	<2	<0.5	<1	13	0.6	15
	5.6	200	<2	<0.5	<1	10	0.5	<5
	5.8	200	<2	<0.5	11	18	1.5	47
	5.8	100	<2	<0.5	8	16	1.7	26
	6.6	100	<2	<0.5	10	14	1.6	98
	9.8	300	<2	<0.5	9	17	0.9	24
	11.1	300			8	11	1.4	62
					11	15	1.1	80
								73
				<0.5	6		0.5	49
	57.5	1000		<0.5	2	14	0.5	45
	5.8	300		<0.5	5	16	1.3	16
		100			9	13		225
		300			11			48
								43
								7
								12
								262
								68
								48
								62
								57
								55
								51
								44
								39
								76
								115
								80
								43
	Element Method Det.Lim. Units	Method Det.Lim. GE_MMI_M 0.5 Units ppm 0.5 0.5 Units ppm 0.6.7 7.0 0.7.0 7.7 0.5 0.5 0.1 7.7 0.1 7.7 0.1 7.7 0.1 7.7 0.1 7.7 0.1 7.7 0.1 7.7 0.1 7.7 0.1 7.7 0.1 7.7 0.1 13.2 1.1.2 11.6.0 1.1.3 11.6.0 1.1.4 5.6 0.5.8 5.8 0.5.8 5.8 0.5.8 5.8 0.6.6 9.8 1.1.1 9.1 0.1 8.7 0.1 8.7	Method Det.Lim. Units GE_MMI_M 0.5 100 GE_MMI_M 100 0.5 100 0.7.0 <100	Method Det.Lim. Units GE_MMI_M 0.5 GE_MMI_M 100 GE_MMI_M 20 units ppm ppb ppb 0.6.7 <100	Method Det.lim. GE_MMI_M 0.5 GE_MMI_M 0.05 GE_MMI_M 0.05 GE_MMI_M 0.05 GE_MMI_M 0.05 Units ppm ppb ppb ppb 100 <2	Method Det.Lim. GE_MMI_M GE GUD Image: Ge G10 C CO GE GE GIO CO CO	Method Det.im. GE_MMLM 0.5 GE_MMLM 00 GE_MMLM 2 GE_MMLM 0.5 GE_MMLM 5 Durits ppm ppb ppb ppb ppb 100 C 0.05 1.0 222 100 C 0.05 1.01 222 101 C 0.05 1.01 1.02 101 C 0.05 1.01 1.01 101 C 0.05 1.01 1.01 101 1.00 C 0.05 1.01 1.01 101 1.02 0.05 C 1.01 1.01 101 1.00 C 0.05 C 1.01 101 1.00 C 0.05 C 1.01 101 1.00 C 0.05 C 1.01 101 1.00 C 0.05 1.01 1.01 101 1.00 C 0.05 1.01 1.01 101 0.00 <td< td=""><td>Method DetLin. GE_MMLM GE_MMLM GE_MMLM GE_MMLM GE_MMLM GE_MMLM Dottins pp 000 2 0.5 1 5 0.1 Units pp ppb ppb ppb ppb ppb ppb ppb ppf 1 7.0 <100</td> <2</td<>	Method DetLin. GE_MMLM GE_MMLM GE_MMLM GE_MMLM GE_MMLM GE_MMLM Dottins pp 000 2 0.5 1 5 0.1 Units pp ppb ppb ppb ppb ppb ppb ppb ppf 1 7.0 <100

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 13 of 22

Report File No.: 0000019566

	Element Method	Mg GE_MMI_M	Mn GE_MMI_M	Mo GE_MMI_M	Nb GE_MMI_M		Ni GE_MMI_M	P GE_MMI_M	. ~
	Det.Lim.	0.5	100	2	0.5	1	5	0.1	5
	Units	ppm	ppb	ppb	ppb	ppb	ppb	ppm	ppb
WS02295		10.1	<100	<2	<0.5	8	15	0.9	35
WS02297		12.4	<100	<2	<0.5	12	20	1.9	39
WS02299		7.3	200	<2	<0.5	15	15	2.7	84
WS02301		6.9	<100	2	<0.5	11	20	2.0	63
*Rep WS02143		4.9	<100	<2	0.6	8	16	1.3	45
*Rep WS02171		6.3	<100	<2	<0.5	11	17	1.0	30
*Rep WS02201		25.1	2300	<2	<0.5	2	21	0.5	27
*Rep WS02251		24.3	1800	<2	<0.5	6	10	0.5	48
*Rep WS02283		73.2	700	<2	<0.5	17	23	1.4	47
*Std MMISRM19		210	6000	10	0.5	13	2050	0.4	942
*Std AMIS0169		29.8	3900	3	2.9	374	417	2.8	104
*BIk BLANK		<0.5	<100	<2	0.7	<1	<5	<0.1	<5
*BIk BLANK		<0.5	<100	<2	<0.5	<1	<5	<0.1	<5
*BIk BLANK		<0.5	<100	<2	<0.5	<1	<5	<0.1	<5
*Blk BLANK		<0.5	<100	<2	<0.5	<1	<5	<0.1	<5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 14 of 22

Report File No.: 0000019566

	Element	Pd	Pr	Pt	Rb	Sb	Sc	Sm	Sn
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	1 ppb	0.5 ppb	0.1 ppb	1 ppb	0.5 ppb	5 ppb	1 ppb	1 ppb
WS02135		<1	1.5	<0.1	7	<0.5	<5	2	1
WS02137		<1	2.1	0.2	12	<0.5	<5	3	<1
WS02139		<1	3.0	<0.1	7	<0.5	<5	3	<1
WS02141		<1	2.5	<0.1	7	<0.5	5	3	<1
WS02143		<1	1.5	<0.1	3	<0.5	<5	1	<1
WS02145		<1	2.4	<0.1	8	<0.5	<5	2	<1
WS02147		<1	3.6	<0.1	6	<0.5	<5	3	<1
WS02149		<1	3.6	<0.1	3	<0.5	<5	3	<1
WS02151		<1	3.5	<0.1	15	<0.5	<5	4	<1
WS02153		<1	3.5	<0.1	9	<0.5	<5	3	<1
WS02155		<1	2.2	<0.1	7	<0.5	<5	2	<1
WS02157		<1	1.7	<0.1	7	<0.5	<5	2	<1
WS02159		<1	2.2	<0.1	3	<0.5	<5	3	<1
WS02161		<1	2.4	<0.1	8	<0.5	6	3	<1
WS02163		<1	2.1	<0.1	8	<0.5	<5	2	<1
WS02165		<1	2.3	<0.1	3	<0.5	<5	2	<1
WS02167		<1	2.7	<0.1	4	<0.5	<5	2	<1
WS02169		<1	1.5	<0.1	2	<0.5	<5	1	<1
WS02171		<1	2.0	<0.1	18	<0.5	<5	2	<1
WS02173		<1	2.8	<0.1	13	<0.5	<5	3	<1
WS02175		<1	1.3	<0.1	6	<0.5	<5	1	<1
WS02177		<1	1.9	<0.1	13	<0.5	<5	2	<1
WS02179		<1	1.5	<0.1	3	<0.5	<5	2	<1
WS02181		<1	0.7	<0.1	5	<0.5	<5	1	<1
WS02183		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
WS02185		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
WS02187		<1	3.2	<0.1	6	<0.5	<5	3	<1
WS02189		<1	3.1	<0.1	13	<0.5	<5	3	<1
WS02191		<1	4.0	<0.1	12	<0.5	<5	4	<1
WS02193		<1	2.0	<0.1	7	<0.5	<5	2	<1
WS02195		<1	1.2	<0.1	12	<0.5	<5	<1	<1
WS02197		<1	<0.5	<0.1	4	<0.5	<5	<1	<1
WS02199		<1	0.8	<0.1	3	<0.5	<5	1	<1
WS02201		<1	<0.5	<0.1	7	<0.5	<5	<1	<1
WS02203		<1	<0.5	<0.1	4	<0.5	<5	<1	<1
WS02205		<1	3.3	<0.1	9	<0.5	<5	3	<1
WS02207		<1	1.8	<0.1	6	<0.5	<5	2	<1
WS02209		<1	2.0	<0.1	9	<0.5	<5	2	<1
WS02211		<1	2.2	<0.1	6	<0.5	<5	2	<1
WS02213		<1	1.7	<0.1	2	<0.5	<5	1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 15 of 22

Report File No.: 0000019566

	Element	Pd	Pr	Pt	Rb	Sb	Sc	Sm	Sn
	Method	GE_MMI_M							
	Det.Lim.	1	0.5	0.1	1	0.5	5	1	1
	Units	ppb							
WS02215		<1	2.5	<0.1	7	<0.5	<5	2	<1
WS02217		<1	2.3	<0.1	6	<0.5	<5	2	<1
WS02219		<1	1.8	<0.1	2	<0.5	<5	2	<1
WS02221		<1	2.9	<0.1	7	<0.5	5	3	<1
WS02223		<1	2.0	<0.1	2	<0.5	<5	2	<1
WS02225		<1	3.6	<0.1	4	<0.5	<5	4	<1
WS02227		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
WS02229		<1	<0.5	<0.1	1	<0.5	<5	<1	<1
WS02231		<1	<0.5	<0.1	1	<0.5	<5	<1	<1
WS02233		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
WS02235		<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
WS02237		<1	2.8	<0.1	6	<0.5	<5	2	<1
WS02239		<1	1.8	<0.1	6	<0.5	<5	1	<1
WS02241		<1	2.1	<0.1	8	<0.5	<5	2	<1
WS02243		<1	1.7	<0.1	2	<0.5	<5	2	<1
WS02245		<1	1.7	<0.1	12	<0.5	<5	2	<1
WS02247		<1	2.1	<0.1	11	<0.5	<5	3	<1
WS02249		<1	3.7	<0.1	10	<0.5	<5	3	<1
WS02251		<1	0.9	<0.1	3	<0.5	<5	2	<1
WS02253		<1	<0.5	<0.1	3	<0.5	<5	<1	<1
WS02255		<1	1.1	<0.1	3	<0.5	<5	<1	<1
WS02257		<1	2.1	<0.1	16	<0.5	<5	2	<1
WS02259		<1	2.5	<0.1	4	<0.5	<5	3	<1
WS02261		<1	3.1	<0.1	5	<0.5	<5	3	<1
WS02263		<1	1.3	<0.1	30	<0.5	7	<1	4
WS02265		<1	1.3	<0.1	1	<0.5	<5	2	<1
WS02267		<1	<0.5	<0.1	11	<0.5	<5	<1	<1
WS02269		<1	2.0	<0.1	5	<0.5	<5	2	<1
WS02203		<1	1.8	<0.1	3	<0.5	<5	2	<1
WS02273		<1	1.0	<0.1	14	<0.5	<5	1	<1
WS02275		<1	2.8	<0.1	6	<0.5	<5	3	<1
WS02277		<1	1.1	<0.1	10	<0.5	<5	2	<1
WS02279		<1	3.0	<0.1	3	<0.5	<5	3	<1
		<1			2		<5	3	
WS02281			2.2	<0.1		<0.5			<1
WS02283		<1	3.1	<0.1	1	<0.5	<5	3	<1
WS02285		<1	5.5	<0.1	7	<0.5	8	5	<1
WS02287		<1	1.4	<0.1	4	< 0.5	<5	2	<1
WS02289		<1	0.9	<0.1	4	<0.5	<5	1	<1
WS02291		<1	<0.5	<0.1	6	<0.5	<5	<1	<1
WS02293		<1	3.2	<0.1	4	<0.5	<5	3	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 16 of 22

Report File No.: 0000019566

Element Method	Pd GE_MMI_M	Pr GE_MMI_M	Pt GE_MMI_M			Sc GE_MMI_M	Sm GE_MMI_M	Sn GE_MMI_M
Det.Lim.	1	0.5	0.1	1	0.5	5	1	1
Units	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
WS02295	<1	1.9	<0.1	3	<0.5	<5	2	<1
WS02297	<1	2.8	<0.1	6	<0.5	<5	2	<1
WS02299	<1	3.2	<0.1	5	<0.5	6	3	<1
WS02301	<1	2.4	<0.1	3	<0.5	<5	2	<1
*Rep WS02143	<1	1.8	<0.1	2	<0.5	<5	2	<1
*Rep WS02171	<1	2.3	<0.1	9	<0.5	<5	2	<1
*Rep WS02201	<1	0.5	<0.1	5	<0.5	<5	<1	<1
*Rep WS02251	<1	1.1	<0.1	3	<0.5	<5	2	<1
*Rep WS02283	<1	3.7	<0.1	<1	<0.5	<5	4	<1
*Std MMISRM19	<1	1.6	<0.1	197	1.1	10	7	<1
*Std AMIS0169	<1	95.7	0.1	255	0.7	53	62	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 17 of 22

Report File No.: 0000019566

	Element Method	Sr GE_MMI_M	Ta GE_MMI_M	Tb GE_MMI_M	Te GE_MMI_M	Th GE_MMI_M	Ti GE_MMI_M	TI GE_MMI_M	U GE_MMI_M
	Det.Lim.	10	1	0.1	10	0.5	10	0.1	0.5
	Units	ppb	ppb						
WS02135		80	<1	0.2	30	0.7	20	0.4	0.8
WS02137		270	<1	0.5	20	1.5	40	0.7	1.4
WS02139		250	<1	0.4	20	4.6	50	0.5	1.5
WS02141		160	<1	0.3	10	4.0	50	0.5	0.9
WS02143		90	<1	0.1	20	2.4	30	0.4	0.8
WS02145		120	<1	0.4	40	3.4	60	0.5	2.6
WS02147		110	<1	0.4	<10	4.0	40	0.2	1.2
WS02149		100	<1	0.5	20	4.2	50	0.4	1.5
WS02151		120	<1	0.4	30	4.8	40	0.4	1.0
WS02153		130	<1	0.4	20	3.4	50	0.2	1.2
WS02155		100	<1	0.3	20	3.2	30	0.3	1.2
WS02157		100	<1	0.2	10	<0.5	30	0.5	0.7
WS02159		60	<1	0.3	20	3.1	50	0.3	1.1
WS02161		60	<1	0.2	<10	4.9	70	0.2	1.8
WS02163		50	<1	0.2	<10	3.7	40	0.4	1.0
WS02165		60	<1	0.3	<10	2.2	40	0.2	0.9
WS02167		60	<1	0.3	20	3.4	70	0.2	1.2
WS02169		50	<1	0.1	<10	1.6	40	0.2	0.7
WS02171		80	<1	0.2	<10	2.0	40	0.1	1.2
WS02173		70	<1	0.4	<10	2.6	40	0.2	0.9
WS02175		50	<1	0.2	<10	1.2	30	0.2	0.7
WS02177		160	<1	0.2	<10	1.7	50	0.3	0.9
WS02179		400	<1	0.2	<10	0.7	50	0.2	1.8
WS02181		70	<1	0.2	<10	<0.5	10	0.2	1.0
WS02183		50	<1	<0.1	<10	0.7	20	0.1	2.3
WS02185		590	<1	<0.1	<10	<0.5	30	0.2	0.9
WS02187		130	<1	0.4	<10	1.9	20	0.1	0.7
WS02189		130	<1	0.4	<10	3.1	40	0.3	1.2
WS02191		140	<1	0.5	<10	3.6	30	0.2	1.2
WS02193		100	<1	0.3	<10	3.1	40	1.0	0.7
WS02195		90	<1	<0.1	<10	1.7	20	0.2	0.9
WS02197		160	<1	<0.1	<10	<0.5	40	0.1	0.7
WS02199		140	<1	0.1	<10	<0.5	10	0.1	<0.5
WS02201		270	<1	<0.1	<10	<0.5	10	0.2	0.5
WS02203		130	<1	<0.1	<10	<0.5	<10	0.3	<0.5
WS02205		110	<1	0.3	<10	3.5	60	0.3	0.9
WS02207		40	<1	0.1	<10	1.6	30	0.1	0.7
WS02209		140	<1	0.3	<10	2.0	50	<0.1	0.7
WS02211		140	<1	0.3	<10	1.2	50	<0.1	0.9
WS02213		70	<1	0.0	<10	2.8	60	<0.1	1.0

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 18 of 22

Report File No.: 0000019566

	Element	Sr	Та	Tb	Te	Th	Ti	TI	U
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	10 ppb	1 ppb	0.1 ppb	10 ppb	0.5 ppb	10 ppb	0.1 ppb	0.5 ppb
WS02215		70	<1	0.3	<10	3.7	60	0.2	
WS02215 WS02217		40	<1	0.3	<10	3.3	50	0.2	0.9
WS02219		50	<1	0.2	<10	1.9	30	0.1	0.8
WS02221		80	<1	0.4	<10	4.7	70	0.2	1.4
WS02223		30	<1	0.3	<10	3.4	30	0.1	1.0
WS02225		80	<1	0.5	<10	4.3	40	0.1	1.3
WS02227		250	<1	<0.1	<10	<0.5	<10	0.2	<0.5
WS02229		300	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
WS02231		180	<1	<0.1	<10	<0.5	10	0.1	<0.5
WS02233		120	<1	<0.1	<10	<0.5	20	0.2	0.6
WS02235		70	<1	<0.1	<10	<0.5	10	0.1	<0.5
WS02237		80	<1	0.2	<10	3.8	60	0.2	1.1
WS02239		100	<1	0.2	<10	0.7	30	<0.1	0.6
WS02241		60	<1	0.2	<10	1.8	40	<0.1	0.9
WS02243		70	<1	0.2	<10	1.5	30	<0.1	0.8
WS02245		60	<1	0.2	<10	2.0	30	<0.1	1.0
WS02247		60	<1	0.2	<10	3.2	40	0.1	1.1
WS02249		70	<1	0.4	<10	3.2	50	0.1	1.3
WS02251		490	<1	0.3	<10	<0.5	10	0.1	0.9
WS02253		1270	<1	<0.1	<10	<0.5	30	0.2	1.5
WS02255		50	<1	<0.1	<10	0.7	30	<0.1	0.6
WS02257		60	<1	0.3	<10	2.0	50	<0.1	1.0
WS02259		70	<1	0.3	<10	3.2	60	<0.1	1.4
WS02261		80	<1	0.3	<10	4.0	50	<0.1	1.2
WS02263		130	<1	<0.1	<10	3.2	170	0.2	1.7
WS02265		160	<1	0.3	<10	<0.5	10	0.1	5.8
WS02267		180	<1	<0.1	<10	<0.5	20	0.2	0.6
WS02269		110	<1	0.2	<10	1.4	20	0.1	1.0
WS02271		90	<1	0.4	<10	1.8	70	<0.1	2.0
WS02273		30	<1	0.2	<10	2.1	40	0.2	0.8
WS02275		60	<1	0.3	<10	3.5	70	<0.1	1.3
WS02277		110	<1	0.3	<10	<0.5	<10	<0.1	2.0
WS02279		60	<1	0.4	<10	2.7	40	<0.1	1.1
WS02281		170	<1	0.4	<10	1.5	100	<0.1	1.8
WS02283		160	<1	0.4	<10	1.7	50	<0.1	0.9
WS02285		100	<1	0.4	<10	7.3	110	<0.1	2.0
WS02287		100	<1	0.0	<10	1.5	50	0.1	1.3
WS02289		90	<1	0.4	<10	0.8	50	<0.1	1.1
		230	<1	<0.2	<10	<0.5	<10	0.1	
WS02291 WS02293		230	<1	<0.1	<10	<0.5	<10 70	<0.1	<0.5 1.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 19 of 22

Report File No.: 0000019566

Element	Sr	Ta	Tb	Te	Th	Ti	TI	U
Method	GE_MMI_M							
Det.Lim.	10	1	0.1	10	0.5	10	0.1	0.5
Units	ppb							
WS02295	60	<1	0.1	<10	2.4	40	<0.1	0.7
WS02297	70	<1	0.2	<10	3.0	70	<0.1	1.1
WS02299	110	<1	0.3	<10	6.6	90	<0.1	1.5
WS02301	90	<1	0.2	<10	6.4	60	<0.1	1.3
*Rep WS02143	100	<1	0.2	20	4.0	50	0.3	1.0
*Rep WS02171	80	<1	0.2	<10	1.9	40	0.1	1.4
*Rep WS02201	270	<1	<0.1	<10	<0.5	10	0.3	0.5
*Rep WS02251	510	<1	0.3	<10	<0.5	10	0.1	0.8
*Rep WS02283	160	<1	0.5	<10	2.2	60	<0.1	1.1
*Std MMISRM19	4010	<1	1.8	20	14.6	<10	1.4	59.5
*Std AMIS0169	50	<1	5.2	<10	67.4	370	0.9	25.2
*BIk BLANK	<10	<1	<0.1	<10	<0.5	<10	0.1	<0.5
*BIk BLANK	<10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
*BIk BLANK	<10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
*BIk BLANK	<10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

W Zr Element Yb Zn Method GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M Det.Lim. 0.5 0.2 10 2 Units ppb ppb ppb ppb ppb WS02135 <0.5 140 3 10 1.1 WS02137 <0.5 14 1.5 50 7 WS02139 <0.5 14 1.4 140 13 10 12 WS02141 <0.5 0.8 580 WS02143 7 < 0.5 7 0.7 360 10 10 WS02145 < 0.5 1.0 200 WS02147 <0.5 13 1.5 190 9 WS02149 <0.5 16 1.7 170 8 WS02151 13 230 11 <0.5 1.1 WS02153 <0.5 14 1.1 220 9 9 WS02155 <0.5 0.9 380 10 WS02157 <0.5 8 0.9 50 8 WS02159 9 0.7 750 <0.5 11 WS02161 <0.5 10 0.9 310 13 WS02163 < 0.5 8 1.0 1010 14 9 7 WS02165 < 0.5 0.8 290 WS02167 11 1.0 280 11 <0.5 WS02169 <0.5 6 0.6 400 8 10 WS02171 <0.5 8 0.8 150 9 WS02173 < 0.5 11 0.9 390 6 WS02175 <0.5 5 0.4 260 WS02177 <0.5 9 220 7 0.7 7 11 WS02179 <0.5 1.3 260 WS02181 <0.5 6 0.7 60 <2 WS02183 < 0.5 5 1.3 50 2 <2 WS02185 <0.5 4 0.4 320 12 6 WS02187 <0.5 0.9 290 1.3 9 WS02189 800 <0.5 13 WS02191 <0.5 17 1.5 100 10 <0.5 WS02193 10 1.0 250 10 6 WS02195 <0.5 5 0.6 340 2 WS02197 < 0.5 3 0.4 630 10 <2 WS02199 <0.5 5 0.6 WS02201 <0.5 4 100 <2 0.5 3 <2 WS02203 < 0.5 <0.2 160 13 WS02205 <0.5 11 0.9 130 9 WS02207 <0.5 7 0.7 310 9 8 WS02209 <0.5 0.7 310 WS02211 < 0.5 10 0.7 20 5 WS02213 < 0.5 7 0.6 240 16

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 20 of 22

Page 21 of 22

F	Element	W	Y	Yb	Zn	Zr
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	et.Lim.	0.5	1	0.2	10	2
	Units	ppb	ppb	ppb	ppb	ppb
WS02215		<0.5	9	0.8	110	11
WS02217		<0.5	9	0.9	410	10
WS02219		<0.5	7	0.7	300	5
WS02221		<0.5	12	1.2	120	10
WS02223		<0.5	11	1.4	10	7
WS02225		<0.5	16	1.9	530	11
WS02227		<0.5	2	<0.2	30	<2
WS02229		<0.5	1	<0.2	80	<2
WS02231		<0.5	2	<0.2	130	<2
WS02233		<0.5	2	0.3	1390	<2
WS02235		<0.5	<1	<0.2	40	<2
WS02237		<0.5	11	1.1	450	13
WS02239		<0.5	7	0.8	120	7
WS02241		<0.5	7	0.8	220	6
WS02243		<0.5	8	0.9	460	5
WS02245		<0.5	8	0.7	550	7
WS02247		<0.5	9	0.9	500	8
WS02249		<0.5	13	1.2	390	10
WS02251		<0.5	11	1.4	510	<2
WS02253		<0.5	5	0.3	80	2
WS02255		<0.5	5	0.5	470	6
WS02257		<0.5	7	0.6	1960	7
WS02259		<0.5	10	0.8	890	9
WS02261		<0.5	10	0.7	340	12
WS02263		<0.5	3	0.2	130	12
WS02265		<0.5	19	1.0	170	5
WS02267		<0.5	3	0.5	940	<2
WS02269		<0.5	8	1.0	650	7
WS02271		<0.5	16	1.8	770	4
WS02273		<0.5	6	0.5	3110	6
WS02275		<0.5	11	1.2	1420	9
WS02277		<0.5	12	1.4	120	<2
WS02279		<0.5	13	1.3	630	7
WS02281		<0.5	12	1.0	360	7
WS02283		<0.5	14	1.1	470	4
WS02285		<0.5	20	1.8	1430	14
WS02287		<0.5	12	1.5	970	3
WS02289		<0.5	8	1.3	1020	2
WS02291		<0.5	4	0.5	730	<2
WS02293		<0.5	11	1.0	630	7

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

W Yb Zn Zr Element GE_MMI_M Method GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M 0.5 Det.Lim. 0.2 10 2 Units ppb ppb ppb ppb ppb WS02295 <0.5 8 0.7 830 6 WS02297 <0.5 10 1.2 730 8 WS02299 <0.5 13 1.4 970 17 WS02301 <0.5 11 1.2 380 15 *Rep WS02143 <0.5 8 0.9 370 11 *Rep WS02171 8 < 0.5 8 0.9 150 <2 *Rep WS02201 <0.5 3 0.4 60 *Rep WS02251 <0.5 12 1.3 340 <2 *Rep WS02283 16 1.3 420 4 <0.5 *Std MMISRM19 4.7 2160 11 0.5 56 1.2 200 46 *Std AMIS0169 119 8.8 *BIk BLANK <0.5 <1 <0.2 <10 <2 *Blk BLANK <0.5 <1 <0.2 <10 <2 <2 *Blk BLANK <0.5 <1 <0.2 <10 *BIk BLANK <1 <0.2 <10 <2 < 0.5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 22 of 22

Certificate of Analysis Work Order : VC163211 [Report File No.: 0000019568]

Date: October 25, 2016

To: SHARON ALLAN PROBE METALS INC 56 TEMPERANCE ST SUITE 1000 TORONTO ON M5H 3V5 P.O. No.: West Porcupine-GTA/334 Samples (4 of 4) Project No.: -Samples: 82 Received: Oct 11, 2016 Pages: Page 1 to 22 (Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	Description
82	G_LOG02	Pre-preparation processing, sorting, logging, boxing
82	GE_MMI_M	Mobile Metal ION standard package/ICP-MS
Storage: Pulp & Re	eject_	

REJECT STORAGE

DISCARD

Certified By : John Chiang QC Chemist

SGS Minerals Services Geochemistry Vancouver conforms to the requirements of ISO/IEC 17025 for specific tests as listed on their scope of accreditation which can be found at http://www.scc.ca/en/search/palcan/sgs

 Report Footer:
 L.N.R. = Listed not received
 I.S. = Insufficient Sample

 n.a.
 = Not applicable
 - = No result

 *INF
 = Composition of this sample makes detection impossible by this method

 M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

 Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

 Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 2 of 22

Report File No.: 0000019568

	Element	Ag	Al	As	Au	Ва	Bi	Ca	Cd
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	0.5 ppb	ı ppm	10 ppb	0.1 ppb	10 ppb	0.5 ppb	2 ppm	ı ppb
WS02471		<0.5	26	<10	<0.1	100	0.6	47	7
WS02473		<0.5	26	<10	<0.1	80	1.1	26	8
WS02475		<0.5	19	<10	<0.1	90	0.7	38	12
WS02477		<0.5	20	<10	<0.1	50	0.7	30	5
WS02479		<0.5	29	<10	<0.1	70	<0.5	40	6
WS02481		<0.5	18	<10	<0.1	60	<0.5	91	3
WS02483		<0.5	16	<10	<0.1	80	<0.5	117	5
WS02485		<0.5	8	<10	<0.1	90	<0.5	70	4
WS02487		<0.5	9	<10	<0.1	90	<0.5	176	3
WS02489		<0.5	5	<10	<0.1	90	<0.5	197	6
WS02491		<0.5	9	<10	<0.1	60	<0.5	109	6
WS02493		<0.5	9	<10	<0.1	60	<0.5	151	3
WS02495		<0.5	19	<10	<0.1	80	<0.5	105	ç
VS02497		<0.5	16	<10	<0.1	100	0.9	43	10
VS02499		<0.5	34	<10	<0.1	110	<0.5	61	ç
VS01733		0.5	42	<10	<0.1	170	<0.5	384	5
VS01735		<0.5	40	<10	<0.1	100	<0.5	161	21
VS01737		<0.5	61	<10	<0.1	120	<0.5	156	25
VS01739		<0.5	28	<10	<0.1	100	<0.5	236	6
VS01741		<0.5	26	<10	<0.1	80	<0.5	244	7
WS01743		0.6	29	<10	<0.1	90	<0.5	239	2
WS01745		<0.5	38	<10	<0.1	110	<0.5	246	Ę
WS01747		<0.5	25	<10	<0.1	100	<0.5	198	6
VS01749		<0.5	36	<10	<0.1	110	<0.5	228	12
V1477001		<0.5	25	<10	<0.1	80	<0.5	166	4
N1477003		<0.5	34	20	<0.1	90	<0.5	325	6
N1477005		0.6	29	<10	<0.1	60	<0.5	313	13
N1477007		<0.5	19	<10	<0.1	50	<0.5	405	4
V1477009		<0.5	17	<10	<0.1	80	<0.5	304	4
V1477011		<0.5	14	70	<0.1	70	<0.5	216	2
W1477013		<0.5	10	10	<0.1	60	<0.5	167	2
W1477015		<0.5	12	<10	<0.1	70	<0.5	190	2
V1477017		<0.5	11	<10	<0.1	130	<0.5	151	4
V1477019		<0.5	5	<10	<0.1	80	<0.5	138	4
V1477021		<0.5	4	<10	<0.1	160	<0.5	246	
N1477023		<0.5	3	<10	<0.1	180	<0.5	249	2
N1477025		<0.5	6	<10	<0.1	100	<0.5	78	3
N1477027		<0.5	5	<10	<0.1	110	<0.5	61	<1
N1477029		<0.5	18	<10	<0.1	80	<0.5	178	3
N1477031		<0.5	11	<10	<0.1	70	< 0.5	157	2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 3 of 22

	Element	Ag	Al	As	Au	Ba	Bi	Ca	Cd
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	0.5 ppb	ı ppm	10 ppb	0.1 ppb	10 ppb	0.5 ppb	2 ppm	ı ppb
W1477033		<0.5	4	<10	<0.1	90	<0.5	161	1
W1477035		<0.5	6	<10	<0.1	130	<0.5	229	3
W1477037		<0.5	4	10	<0.1	50	<0.5	136	<1
W1477039		<0.5	19	<10	<0.1	40	<0.5	152	2
W1477041		<0.5	5	20	<0.1	60	<0.5	199	2
W1477043		<0.5	4	10	<0.1	30	<0.5	190	2
W1477045		<0.5	28	<10	<0.1	90	<0.5	184	2
W1477047		<0.5	28	<10	<0.1	90	<0.5	191	3
W1477049		<0.5	10	<10	<0.1	110	<0.5	86	<1
W1477051		<0.5	19	<10	<0.1	40	<0.5	289	5
W1477053		<0.5	19	<10	<0.1	80	<0.5	350	4
W1477055		1.1	44	<10	<0.1	90	<0.5	299	1
W1477057		<0.5	20	<10	<0.1	80	<0.5	50	4
W1477059		<0.5	15	<10	<0.1	60	<0.5	48	5
W1477061		<0.5	19	<10	<0.1	70	<0.5	59	3
W1477201		<0.5	24	<10	<0.1	130	<0.5	92	7
W1477203		<0.5	27	<10	<0.1	80	<0.5	102	7
W1477205		<0.5	33	<10	<0.1	130	< 0.5	84	7
W1477207		<0.5	28	<10	<0.1	120	< 0.5	235	2
W1477209		<0.5	14	<10	<0.1	110	<0.5	153	10
W1477211		<0.5	31	<10	<0.1	110	<0.5	66	6
W1477213		<0.5	27	<10	<0.1	120	<0.5	43	2
W1477215		<0.5	31	<10	<0.1	90	<0.5	57	4
W1477217		<0.5	14	<10	<0.1	50	0.6	34	5
W1477219		<0.5	19	<10	<0.1	60	<0.5	45	2
W1477221		<0.5	24	<10	<0.1	110	<0.5	131	5
W1477223		<0.5	25	<10	<0.1	130	< 0.5	100	6
W1477225		<0.5	25	<10	<0.1	120	< 0.5	88	5
W1477227		<0.5	28	<10	<0.1	110	<0.5	149	6
W1477229		<0.5	30	<10	<0.1	120	< 0.5	86	5
W1477231		<0.5	23	<10	<0.1	90	<0.5	56	4
W1477233		<0.5	8	<10	<0.1	130	<0.5	87	6
W1477235		<0.5	6	<10	<0.1	100	<0.5	172	3
W1477237		<0.5	7	10	<0.1	110	<0.5	217	2
W1477239		<0.5	9	<10	<0.1	50	<0.5	247	2
W1477241		<0.5	18	<10	<0.1	70	<0.5	231	7
W1477243		<0.5	20	<10	<0.1	100	<0.5	159	3
W1477245		<0.5	56	<10	<0.1	110	<0.5	148	10
W1477247		<0.5	62	<10	<0.1	160	0.8	251	10
W1477249		<0.5	72	<10	<0.1	140	0.0	231	12

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 4 of 22

Report File No.: 0000019568

Element	Ag	Al	As	Au	Ba	Bi	Ca	Cd
Method	GE_MMI_M							
Det.Lim.	0.5	1	10	0.1	10	0.5	2	1
Units	ppb	ppm	ppb	ppb	ppb	ppb	ppm	ppb
W1477251	<0.5	38	<10	<0.1	140	1.6	104	17
W1477253	<0.5	20	<10	<0.1	60	<0.5	62	4
*Rep WS01747	<0.5	27	<10	<0.1	90	<0.5	206	7
*Rep W1477023	<0.5	3	10	<0.1	200	<0.5	259	1
*Rep W1477041	<0.5	6	<10	<0.1	60	<0.5	216	2
*Rep W1477215	<0.5	34	<10	<0.1	90	<0.5	65	5
*Rep W1477239	<0.5	9	<10	<0.1	60	<0.5	244	2
*Std MMISRM19	28.6	22	<10	6.6	1380	<0.5	787	40
*Std AMIS0169	10.1	59	10	1.5	630	<0.5	39	2
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	<2	<1
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	2	<1
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	2	<1
*BIk BLANK	<0.5	<1	<10	<0.1	<10	<0.5	<2	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 5 of 22

Report File No.: 0000019568

	Element	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	2	1	100 nob	0.2	10 nah	0.5	0.2	0.2
	Units	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
VS02471		17	5	<100	0.4	10	1.8	1.3	0.5
VS02473		8	5	<100	0.8	<10	1.0	0.8	0.3
VS02475		11	5	<100	0.8	<10	1.0	0.5	0.4
VS02477		5	5	<100	0.3	<10	0.8	0.5	<0.2
VS02479		6	4	<100	0.4	10	1.1	0.5	<0.2
VS02481		13	5	<100	0.3	<10	1.4	0.8	0.3
VS02483		<2	10	<100	<0.2	20	<0.5	0.3	<0.2
VS02485		<2	4	<100	<0.2	20	<0.5	0.2	<0.2
VS02487		<2	1	<100	<0.2	20	<0.5	<0.2	<0.2
VS02489		<2	2	<100	<0.2	20	<0.5	<0.2	<0.2
VS02491		<2	2	<100	<0.2	20	<0.5	0.3	<0.2
VS02493		<2	2	<100	<0.2	20	<0.5	0.3	<0.2
VS02495		<2	7	<100	1.1	10	0.6	1.0	<0.2
VS02497		9	6	<100	0.4	20	1.1	0.7	<0.2
VS02499		21	6	<100	0.4	20	2.0	1.3	0.6
VS01733		16	15	<100	0.5	80	1.9	1.2	0.3
VS01735		7	15	<100	0.9	20	1.8	1.7	0.3
VS01737		5	23	<100	0.5	10	1.9	2.4	<0.2
VS01739		8	11	<100	0.7	10	2.2	1.5	0.4
VS01741		8	9	<100	0.8	10	2.5	1.5	0.5
VS01743		10	3	<100	0.4	20	3.1	1.5	0.5
VS01745		12	6	<100	0.7	10	3.6	2.3	0.6
VS01747		12	6	<100	0.7	<10	3.6	2.2	0.9
VS01749		14	6	<100	0.5	20	3.9	2.8	0.7
V1477001		5	6	<100	0.4	<10	1.3	1.0	<0.2
V1477003		7	16	<100	1.2	<10	2.2	1.6	0.4
V1477005		5	51	<100	<0.2	1100	1.1	1.6	<0.2
V1477007		<2	14	<100	<0.2	50	<0.5	0.2	<0.2
V1477009		2	22	<100	<0.2	50	0.5	0.5	<0.2
V1477011		3	31	<100	0.2	40	< 0.5	0.4	<0.2
V1477013		3	18	<100	<0.2	40	0.5	0.3	<0.2
V1477015		3	7	<100	<0.2	30	0.5	0.3	<0.2
V1477017		<2	3	<100	<0.2	20	< 0.5	0.4	<0.2
V1477019		<2	3	<100	<0.2	40	<0.5	<0.2	<0.2
V1477021		<2	1	<100	<0.2	20	<0.5	<0.2	<0.2
V1477023		<2	2	<100	<0.2	20	<0.5	0.2	<0.2
V1477025		<2	4	<100	<0.2	20	<0.5	<0.2	<0.2
V1477025 V1477027		<2		<100	<0.2	40	<0.5	<0.2	<0.2
			6						
V1477029 V1477031		<2 2	13 7	<100 <100	0.6	10 30	<0.5 <0.5	0.3	<0.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 6 of 22

Report File No.: 0000019568

	Element	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
	Method	GE_MMI_M							
	Det.Lim.	2	1	100	0.2	10	0.5	0.2	0.2
	Units	ppb							
W1477033		<2	15	<100	<0.2	30	<0.5	<0.2	<0.2
W1477035		<2	14	<100	0.3	10	<0.5	<0.2	<0.2
W1477037		<2	20	<100	0.2	30	<0.5	<0.2	<0.2
W1477039		<2	8	<100	0.3	<10	0.7	0.5	<0.2
W1477041		<2	16	<100	<0.2	40	<0.5	<0.2	<0.2
W1477043		<2	9	<100	<0.2	20	<0.5	<0.2	<0.2
W1477045		<2	23	<100	<0.2	50	<0.5	0.2	<0.2
W1477047		15	9	<100	<0.2	<10	2.8	1.6	0.7
W1477049		<2	42	<100	0.5	<10	<0.5	<0.2	<0.2
W1477051		3	16	<100	<0.2	40	0.6	0.6	<0.2
W1477053		21	78	<100	0.2	630	1.5	0.9	0.4
W1477055		2	68	<100	0.2	370	<0.5	0.6	<0.2
W1477057		16	6	<100	<0.2	10	1.6	0.9	0.4
W1477059		11	4	<100	0.2	10	1.5	0.9	0.3
W1477061		14	6	<100	1.2	<10	1.6	0.9	0.4
W1477201		17	6	<100	0.3	30	1.8	1.0	0.4
W1477203		18	6	<100	0.4	<10	1.9	1.0	0.3
W1477205		21	8	<100	0.3	30	2.7	1.6	0.6
W1477207		3	1	<100	0.5	<10	0.8	0.6	<0.2
W1477209		<2	8	<100	0.4	20	<0.5	0.5	<0.2
W1477211		9	10	<100	0.3	10	1.4	0.9	0.2
W1477213		6	7	<100	<0.2	<10	0.7	0.6	<0.2
W1477215		10	6	<100	0.4	<10	1.0	0.9	0.2
W1477217		9	6	<100	0.5	<10	1.1	0.8	0.3
W1477219		12	5	<100	<0.2	10	1.1	0.6	0.3
W1477221		17	7	<100	<0.2	10	1.8	0.9	0.6
W1477223		21	5	<100	0.4	10	2.1	1.1	0.5
W1477225		22	8	<100	<0.2	10	2.6	1.3	0.7
W1477227		18	6	<100	0.3	<10	1.8	0.9	0.5
W1477229		22	7	<100	0.5	20	2.3	1.6	0.5
W1477231		11	5	<100	0.3	<10	1.3	0.7	0.4
W1477233		<2	4	<100	0.8	10	<0.5	<0.2	<0.2
W1477235		<2	8	<100	0.7	10	<0.5	0.2	<0.2
W1477237		<2	3	<100	<0.2	10	<0.5	<0.2	<0.2
W1477239		<2	16	<100	0.2	20	<0.5	0.3	<0.2
W1477241		<2	32	<100	0.4	30	<0.5	0.3	<0.2
W1477243		<2	43	<100	<0.2	90	<0.5	0.4	<0.2
W1477245		11	26	<100	1.1	10	1.9	1.3	0.3
W1477247		38	51	<100	0.6	100	5.7	4.5	1.2
W1477249		37	57	<100	1.1	120	7.7	5.3	1.6

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 7 of 22

Report File No.: 0000019568

Element	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
Method	GE_MMI_M							
Det.Lim.	2	1	100	0.2	10	0.5	0.2	0.2
Units	ppb							
W1477251	30	10	<100	1.2	20	2.9	1.5	0.8
W1477253	15	6	<100	0.3	10	1.7	0.9	0.5
*Rep WS01747	12	5	<100	0.6	10	3.6	2.2	0.8
*Rep W1477023	<2	2	<100	<0.2	30	<0.5	<0.2	<0.2
*Rep W1477041	2	10	<100	<0.2	20	<0.5	<0.2	<0.2
*Rep W1477215	11	7	<100	0.3	<10	1.2	0.6	<0.2
*Rep W1477239	<2	17	<100	<0.2	20	<0.5	<0.2	<0.2
*Std MMISRM19	21	391	<100	4.8	2300	12.8	7.4	2.5
*Std AMIS0169	758	102	100	7.6	4510	28.5	12.7	11.6
*BIk BLANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*BIk BLANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*BIk BLANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2
*BIk BLANK	<2	<1	<100	<0.2	<10	<0.5	<0.2	<0.2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 8 of 22

Report File No.: 0000019568

	Element	Fe	Ga	Gd	Hg	In	K	La	L
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N
	Det.Lim. Units	ppm	0.5 ppb	0.5 ppb	ppb	0.1 ppb	0.5 ppm	ppb	ppt
WS02471		16	4.3	2.5	<1	<0.1	1.2	6	<
WS02473		22	4.5	1.1	<1	<0.1	2.4	3	<'
WS02475		19	3.6	1.1	<1	<0.1	1.7	5	<'
WS02477		14	4.1	0.7	<1	<0.1	0.7	2	<'
WS02479		19	4.4	0.8	<1	<0.1	0.8	2	<
WS02481		16	3.4	2.0	<1	<0.1	1.7	5	<
WS02483		264	1.4	<0.5	<1	<0.1	0.5	<1	<
WS02485		364	0.8	<0.5	<1	<0.1	0.6	<1	
WS02487		197	0.8	<0.5	<1	<0.1	0.7	<1	
WS02489		158	<0.5	<0.5	<1	<0.1	0.5	<1	
WS02491		352	1.5	<0.5	<1	<0.1	<0.5	<1	<
WS02493		284	1.3	<0.5	<1	<0.1	<0.5	<1	<
WS02495		286	2.0	0.6	<1	<0.1	<0.5	<1	<
WS02497		20	4.1	1.5	<1	0.2	4.2	3	<
WS02499		23	5.6	3.2	<1	<0.1	1.9	8	<
WS01733		41	2.9	1.9	<1	<0.1	3.3	7	
WS01735		137	8.0	1.3	<1	<0.1	0.7	2	
WS01737		159	9.1	1.5	<1	<0.1	1.3	2	<
WS01739		55	4.8	2.0	<1	<0.1	2.0	3	<
WS01741		40	3.7	2.6	<1	<0.1	1.2	3	<
WS01743		31	4.2	2.9	<1	<0.1	<0.5	4	<
WS01745		35	4.0	3.6	<1	<0.1	<0.5	5	<
WS01747		35	3.2	3.8	<1	<0.1	<0.5	5	<
WS01749		36	3.1	4.1	<1	<0.1	<0.5	5	<
W1477001		118	4.5	1.2	<1	<0.1	0.5	1	<
W1477003		154	6.5	1.7	<1	<0.1	1.7	2	<
W1477005		125	1.8	1.1	<1	<0.1	0.9	2	<
W1477007		68	1.7	<0.5	<1	<0.1	2.3	<1	<
W1477009		108	1.9	<0.5	<1	<0.1	<0.5	<1	<
W1477011		155	1.7	<0.5	<1	<0.1	1.8	1	<
W1477013		144	1.5	<0.5	<1	<0.1	0.7	1	<
W1477015		148	1.1	0.5	<1	<0.1	<0.5	<1	<
W1477017		247	0.8	<0.5	<1	<0.1	<0.5	<1	<
W1477019		205	1.1	<0.5	<1	<0.1	0.7	<1	<
W1477021		114	<0.5	<0.5	<1	<0.1	2.3	<1	
W1477023		147	<0.5	<0.5	<1	<0.1	2.1	1	
W1477025		370	0.8	<0.5	<1	<0.1	0.7	<1	
W1477027		383	0.9	<0.5	<1	<0.1	0.6	<1	<
W1477029		182	2.6	<0.5	<1	<0.1	0.8	<1	<
W1477031		162	1.3	<0.5	<1	<0.1	1.2	<1	<

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 9 of 22

Report File No.: 0000019568

	Element	Fe	Ga	Gd	Hg	In	к	La	L
	Method	GE_MMI_M	GE_MMI_N						
	Det.Lim.	1	0.5	0.5	1	0.1	0.5	1	
	Units	ppm	ppb	ppb	ppb	ppb	ppm	ppb	ppt
W1477033		126	0.8	<0.5	<1	<0.1	1.4	<1	
W1477035		98	1.1	<0.5	<1	<0.1	0.7	<1	<1
W1477037		227	0.6	<0.5	<1	<0.1	1.4	<1	<1
W1477039		170	2.4	<0.5	<1	<0.1	0.7	<1	1
W1477041		100	0.6	<0.5	<1	<0.1	1.5	<1	<1
W1477043		84	0.8	<0.5	<1	<0.1	<0.5	<1	<1
W1477045		188	2.0	<0.5	<1	<0.1	0.5	<1	<1
W1477047		11	4.6	3.2	<1	<0.1	0.5	6	<'
W1477049		333	2.1	<0.5	<1	<0.1	1.3	<1	<1
W1477051		96	1.8	0.6	<1	<0.1	0.9	2	<1
W1477053		90	1.4	1.5	<1	<0.1	2.0	8	2
W1477055		280	3.4	<0.5	<1	<0.1	0.9	<1	2
W1477057		15	3.2	2.0	<1	<0.1	3.0	6	<
W1477059		11	3.0	2.1	<1	<0.1	1.1	5	<
W1477061		19	3.6	1.8	<1	<0.1	3.4	5	<
W1477201		20	3.9	2.2	<1	<0.1	0.6	7	<1
W1477203		18	5.5	2.5	<1	<0.1	2.7	7	1
W1477205		22	4.6	3.0	<1	<0.1	1.7	8	<1
W1477207		89	3.7	0.7	<1	<0.1	2.1	1	2
W1477209		252	2.2	<0.5	<1	<0.1	0.6	<1	<1
W1477211		110	5.6	1.3	<1	<0.1	<0.5	3	1
W1477213		112	5.9	0.7	<1	<0.1	<0.5	2	<1
W1477215		120	5.5	1.2	<1	<0.1	1.4	4	<1
W1477217		14	2.7	1.3	<1	<0.1	2.9	4	<
W1477219		12	3.8	1.5	<1	<0.1	0.7	5	<
W1477221		12	3.9	2.8	<1	<0.1	<0.5	6	<1
W1477223		16	5.4	2.6	<1	<0.1	1.6	7	<1
W1477225		14	5.3	2.8	<1	<0.1	<0.5	10	<1
W1477227		13	4.7	2.7	<1	<0.1	1.9	8	<
W1477229		17	4.7	3.9	<1	<0.1	2.3	8	<1
W1477231		33	4.5	1.3	<1	<0.1	2.0	4	<1
W1477233		317	1.2	<0.5	<1	<0.1	<0.5	<1	1
W1477235		170	0.7	<0.5	<1	<0.1	0.5	<1	2
W1477237		125	1.0	<0.5	<1	<0.1	1.2	<1	1
W1477239		75	0.8	<0.5	<1	<0.1	0.5	<1	<1
W1477241		119	2.1	<0.5	<1	<0.1	1.4	<1	<1
W1477243		252	1.8	<0.5	<1	<0.1	0.5	<1	<1
W1477245		297	11.7	1.5	<1	<0.1	4.5	4	<1
W1477247		57	10.4	5.0	<1	<0.1	2.0	13	6
W1477249		55	11.2	7.3	<1	<0.1	1.9	14	6

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 10 of 22

Report File No.: 0000019568

Element	Fe	Ga	Gd	Hg	In	К	La	Li
Method	GE_MMI_M							
Det.Lim.	1	0.5	0.5	1	0.1	0.5	1	1
Units	ppm	ppb	ppb	ppb	ppb	ppm	ppb	ppb
W1477251	24	7.1	3.3	<1	0.1	3.6	12	1
W1477253	12	3.8	2.4	<1	<0.1	2.1	6	<1
*Rep WS01747	32	3.4	3.8	<1	<0.1	<0.5	4	<1
*Rep W1477023	155	0.6	<0.5	<1	<0.1	2.3	<1	3
*Rep W1477041	91	0.6	<0.5	<1	<0.1	1.3	<1	<1
*Rep W1477215	127	6.3	1.2	<1	<0.1	1.4	4	<1
*Rep W1477239	81	0.8	<0.5	<1	<0.1	0.5	<1	1
*Std MMISRM19	8	<0.5	15.9	2	<0.1	95.0	4	1
*Std AMIS0169	40	10.2	45.3	<1	<0.1	45.3	409	<1
*BIk BLANK	<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*BIk BLANK	<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*BIk BLANK	1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1
*BIk BLANK	<1	<0.5	<0.5	<1	<0.1	<0.5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 11 of 22

Report File No.: 0000019568

	Element	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	0.5 ppm	100 ppb	2 ppb	0.5 ppb	1 ppb	5 ppb	0.1 ppm	5 ppb
WS02471		5.6	<100	<2	1.1	10	10	0.9	48
WS02473		5.8	400	<2	1.0	6	7	0.6	55
WS02475		7.8	<100	2	<0.5	7	10	1.3	58
WS02477		5.8	<100	<2	1.8	3	10	0.4	62
WS02479		5.6	<100	<2	1.4	4	9	0.7	17
WS02481		9.8	200	<2	0.9	8	13	0.8	61
WS02483		16.2	2300	5	<0.5	<1	13	0.6	9
WS02485		10.7	1800	<2	0.6	<1	9	0.7	6
WS02487		24.2	1100	3	0.5	<1	15	0.7	10
WS02489		24.5	1800	3	<0.5	<1	11	0.7	6
WS02491		14.4	1800	2	<0.5	<1	11	0.7	12
WS02493		14.0	2100	<2	<0.5	<1	12	0.7	10
WS02495		11.5	2100	<2	<0.5	1	9	0.6	84
WS02497		10.6	3200	<2	0.5	6	15	2.1	159
WS02499		11.4	1500	2	0.6	14	19	1.9	61
WS01733		43.6	700	5	1.1	9	69	0.3	89
WS01735		20.8	1900	<2	<0.5	5	11	0.5	120
WS01737		14.7	1600	<2	<0.5	4	8	0.9	112
WS01739		20.2	5500	2	<0.5	5	17	0.6	101
WS01741		20.4	2300	<2	<0.5	6	12	0.7	78
WS01743		23.5	1500	4	<0.5	8	16	0.5	48
WS01745		26.0	1700	<2	<0.5	11	13	0.6	54
WS01747		24.0	1700	<2	<0.5	11	11	0.5	51
WS01749		26.0	1700	<2	<0.5	12	12	0.6	46
W1477001		13.6	3800	2	0.6	3	16	0.8	76
W1477003		23.0	2600	4	<0.5	5	27	0.7	87
W1477005		34.9	8700	20	<0.5	3	199	0.2	24
W1477007		45.3	7800	5	<0.5	<1	43	0.2	21
W1477009		30.9	3400	3	<0.5	1	25	0.3	33
W1477011		19.0	5400	3	<0.5	2	25	0.9	24
W1477013		13.1	2300	3	<0.5	2	19	0.7	16
W1477015		18.7	1500	2	<0.5	2	16	0.6	17
W1477017		16.2	1300	2	<0.5	<1	12	0.8	11
W1477019		14.7	1100	2	<0.5	<1	11	0.7	8
W1477021		23.5	1700	5	<0.5	<1	13	0.5	6
W1477023		20.9	2100	13	<0.5	<1	15	0.6	5
W1477025		10.0	2300	<2	<0.5	<1	8	0.4	8
W1477027		6.8	1100	<2	<0.5	<1	10	0.5	7
W1477029		24.0	8400	3	<0.5	1	16	0.4	64
W1477031		16.6	3100	3	<0.5	1	17	0.5	33

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 12 of 22

Report File No.: 0000019568

	Element	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M
	Det.Lim. Units	0.5	100 ppb	2 ppb	0.5 ppb	1 nnh	5 ppb	0.1	5 nnh
	Onits	ppm		ppb		ppb		ppm	ppb
W1477033		18.7	6700	3	<0.5	<1	13	0.4	7
W1477035		24.5	3700	3	<0.5	<1	16	0.5	25
W1477037		14.7	2700	<2	0.6	<1	13	0.4	11
W1477039		20.3	2700	4	<0.5	1	18	0.5	52
W1477041		18.6	3700	4	<0.5	1	17	0.5	12
W1477043		12.8	2100	5	<0.5	<1	15	0.5	12
W1477045		29.1	1500	<2	<0.5	<1	24	0.6	21
W1477047		51.1	400	<2	0.5	12	19	1.9	60
W1477049		7.8	700	<2	<0.5	<1	11	0.5	<5
W1477051		26.8	7400	11	<0.5	2	89	0.3	25
W1477053		37.5	7600	20	<0.5	11	100	0.4	61
W1477055		79.7	400	3	<0.5	<1	59	0.5	13
W1477057		10.0	900	2	<0.5	10	13	1.2	125
W1477059		10.4	200	<2	<0.5	7	11	1.4	37
W1477061		7.9	<100	2	<0.5	9	12	2.3	71
W1477201		11.4	400	2	<0.5	10	14	1.2	34
W1477203		6.7	100	<2	<0.5	12	17	1.2	40
W1477205		8.4	400	2	<0.5	13	21	1.6	52
W1477207		18.5	900	2	<0.5	2	11	0.7	64
W1477209		21.4	2600	<2	<0.5	<1	11	0.7	15
W1477211		3.3	1000	<2	<0.5	6	12	1.1	28
W1477213		4.0	600	3	<0.5	4	9	1.2	13
W1477215		4.7	500	2	<0.5	6	10	0.9	17
W1477217		6.6	300	<2	<0.5	6	10	0.7	102
W1477219		10.1	200	2	<0.5	7	11	1.1	33
W1477221		26.2	400	<2	<0.5	11	21	1.6	26
W1477223		12.7	<100	<2	<0.5	14	14	1.3	21
W1477225		12.1	100	2	<0.5	13	19	1.1	40
W1477227		15.7	100	<2	<0.5	13	19	1.3	30
W1477229		14.8	<100	<2	<0.5	15	19	1.2	30
W1477231		11.4	500	<2	<0.5	6	11	0.6	22
W1477233		12.0	400	<2	<0.5	<1	9	0.7	30
W1477235		23.0	1000	4	<0.5	<1	12	0.6	28
W1477237		27.7	5700	2	<0.5	<1	15	0.6	9
W1477239		36.5	4200	3	< 0.5	<1	19	0.4	12
W1477241		42.0	3900	4	< 0.5	<1	23	0.6	40
W1477243		28.7	2200	23	< 0.5	<1	49	0.3	13
W1477245		20.9	300	5	<0.5	8	12	1.9	59
W1477247		92.1	1400	<2	1.6	23	31	0.8	187
W1477249		68.2	1700	<2	2.0	25	37	0.8	281

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 13 of 22

Report File No.: 0000019568

Element	Mg	Mn	Мо	Nb	Nd	Ni	P	Pb
Method	GE_MMI_M							
Det.Lim.	0.5	100	2	0.5	1	5	0.1	5
Units	ppm	ppb	ppb	ppb	ppb	ppb	ppm	ppb
W1477251	15.7	200	4	<0.5	18	24	2.3	227
W1477253	9.3	200	3	<0.5	9	17	1.7	68
*Rep WS01747	24.8	1500	<2	<0.5	9	11	0.5	44
*Rep W1477023	21.7	2400	13	<0.5	<1	17	0.8	5
*Rep W1477041	19.8	3100	4	<0.5	1	15	0.5	13
*Rep W1477215	4.7	500	3	<0.5	6	11	1.0	21
*Rep W1477239	37.0	4500	3	<0.5	<1	20	0.4	12
*Std MMISRM19	234	7600	11	<0.5	20	2110	0.4	1230
*Std AMIS0169	30.2	4100	4	3.4	384	430	2.8	111
*BIk BLANK	<0.5	<100	<2	0.6	<1	<5	<0.1	<5
*BIk BLANK	<0.5	<100	<2	<0.5	<1	<5	<0.1	<5
*BIk BLANK	<0.5	<100	<2	<0.5	<1	<5	<0.1	<5
*BIk BLANK	<0.5	<100	<2	<0.5	<1	<5	<0.1	<5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 14 of 22

Report File No.: 0000019568

	Element	Pd	Pr	Pt	Rb	Sb	Sc	Sm	Sr
	Method	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_M	GE_MMI_N
	Det.Lim. Units	1 ppb	0.5 ppb	0.1 ppb	1 ppb	0.5 ppb	5 ppb	1 ppb	1 ppt
WS02471	Units	ې ۲	2.5	<0.1	5	<0.5	ې 5	2	<1
VS02471		<1	1.2	<0.1	11	<0.5	<5	1	<1
VS02475			1.2	<0.1					
VS02475 VS02477		<1	0.7	<0.1	12	<0.5	<5	2	<'
VS02477 VS02479		<1	0.7	<0.1	4	<0.5 <0.5	<5 <5	<1	<
		<1	1.8	<0.1	6	<0.5	<5	2	<'
VS02481		<1	<0.5						<
VS02483		<1		<0.1	1	<0.5	<5	<1	<'
VS02485		<1	<0.5	<0.1	1	<0.5	<5	<1	<
VS02487		<1	<0.5	<0.1	1	<0.5	<5	<1	<
VS02489		<1	<0.5	<0.1	1	<0.5	<5	<1	<
VS02491		<1	<0.5	<0.1	2	<0.5	<5	<1	<
VS02493		<1	<0.5	<0.1	1	< 0.5	<5	<1	<
/S02495		<1	<0.5	<0.1	3	<0.5	<5	<1	<
/S02497		<1	1.2	<0.1	9	<0.5	<5	1	<
/S02499		<1	3.0	<0.1	5	<0.5	6	3	<
/S01733		<1	2.2	<0.1	12	0.8	5	2	<
/S01735		<1	0.9	<0.1	5	<0.5	<5	<1	<
/S01737		<1	0.7	<0.1	5	<0.5	<5	1	<
/S01739		<1	1.1	<0.1	5	<0.5	<5	2	<
/S01741		<1	1.2	<0.1	4	<0.5	<5	2	<
VS01743		<1	1.6	<0.1	2	<0.5	<5	2	<
VS01745		<1	2.0	<0.1	2	<0.5	<5	3	<
VS01747		<1	2.3	<0.1	3	<0.5	<5	3	<
VS01749		<1	2.1	<0.1	2	<0.5	<5	4	<
/1477001		<1	0.7	<0.1	2	<0.5	<5	<1	<
V1477003		<1	0.8	<0.1	6	<0.5	<5	1	<
V1477005		<1	0.6	<0.1	2	1.6	<5	<1	<
V1477007		<1	<0.5	<0.1	3	<0.5	<5	<1	<
V1477009		<1	<0.5	<0.1	1	<0.5	<5	<1	<'
V1477011		<1	<0.5	<0.1	3	<0.5	<5	<1	<'
V1477013		<1	<0.5	<0.1	2	<0.5	<5	<1	<
V1477015		<1	<0.5	<0.1	2	<0.5	<5	<1	<
/1477017		<1	<0.5	<0.1	<1	<0.5	<5	<1	<
/1477019		<1	<0.5	<0.1	2	<0.5	<5	<1	<
/1477021		<1	<0.5	<0.1	3	<0.5	<5	<1	<
v1477023		<1	<0.5	<0.1	4	<0.5	<5	<1	<
V1477025		<1	<0.5	<0.1	2	<0.5	<5	<1	<
V1477027		<1	< 0.5	<0.1	4	<0.5	<5	<1	<
V1477029		<1	<0.5	<0.1	3	<0.5	<5	<1	<
V1477031		<1	<0.5	<0.1	4	0.6	<5	<1	<

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 15 of 22

Report File No.: 0000019568

	Element Method	Pd GE_MMI_M	Pr GE_MMI_M	Pt GE_MMI_M	Rb GE_MMI_M	Sb GE_MMI_M	Sc GE_MMI_M	Sm GE_MMI_M	Sn GE_MMI_M
	Det.Lim.	0L_WWI_W	0.5	0.1	0L_10101_101 1	0.5	5	0L_ININI_INI 1	0L_101101_101 1
	Units	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
W1477033		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477035		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477037		<1	<0.5	<0.1	3	<0.5	<5	<1	<1
W1477039		<1	<0.5	<0.1	3	<0.5	<5	<1	<1
W1477041		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477043		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477045		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477047		<1	2.3	<0.1	2	<0.5	<5	3	<1
W1477049		<1	<0.5	<0.1	6	<0.5	<5	<1	<1
W1477051		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477053		<1	2.3	<0.1	8	0.6	<5	2	<1
W1477055		<1	<0.5	<0.1	3	<0.5	<5	<1	<1
W1477057		<1	2.4	<0.1	6	<0.5	<5	2	<1
W1477059		<1	1.5	<0.1	4	<0.5	<5	2	<1
W1477061		<1	1.8	<0.1	16	<0.5	<5	2	<1
W1477201		<1	2.3	<0.1	3	<0.5	<5	2	<1
W1477203		<1	2.5	<0.1	8	<0.5	<5	3	<1
W1477205		<1	2.9	<0.1	5	<0.5	<5	3	<1
W1477207		<1	<0.5	<0.1	5	<0.5	<5	<1	<1
W1477209		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477211		<1	1.2	<0.1	1	<0.5	<5	2	<1
W1477213		<1	0.7	<0.1	2	<0.5	<5	<1	<1
W1477215		<1	1.3	<0.1	5	<0.5	<5	1	<1
W1477217		<1	1.2	<0.1	10	<0.5	<5	<1	<1
W1477219		<1	1.7	<0.1	3	<0.5	<5	1	<1
W1477221		<1	2.3	<0.1	1	<0.5	<5	2	<1
W1477223		<1	2.9	<0.1	5	<0.5	<5	3	<1
W1477225		<1	2.9	<0.1	2	<0.5	<5	3	<1
W1477227		<1	2.5	<0.1	6	<0.5	<5	2	<1
W1477229		<1	3.2	<0.1	6	<0.5	<5	3	<1
W1477231		<1	1.6	<0.1	6	<0.5	<5	1	<1
W1477233		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477235		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477237		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477239		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477241		<1	<0.5	<0.1	5	<0.5	<5	<1	<1
W1477243		<1	<0.5	<0.1	2	<0.5	<5	<1	<1
W1477245		<1	1.8	<0.1	17	<0.5	5	2	<1
W1477247		<1	4.6	<0.1	13	<0.5	17	5	<1
W1477249		<1	5.4	<0.1	20	<0.5	22	7	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 16 of 22

Report File No.: 0000019568

Element	Pd	Pr	Pt	Rb	Sb	Sc	Sm	
Method	GE_MMI_M							
Det.Lim.	1	0.5	0.1	1	0.5	5	1	1
Units	ppb							
W1477251	<1	3.9	<0.1	18	<0.5	6	4	<1
W1477253	<1	1.9	<0.1	5	<0.5	<5	2	<1
*Rep WS01747	<1	2.0	<0.1	2	<0.5	<5	3	<1
*Rep W1477023	<1	<0.5	<0.1	4	<0.5	<5	<1	<1
*Rep W1477041	<1	<0.5	<0.1	3	<0.5	<5	<1	<1
*Rep W1477215	<1	1.6	<0.1	4	<0.5	<5	1	<1
*Rep W1477239	<1	<0.5	<0.1	2	<0.5	<5	<1	<1
*Std MMISRM19	<1	2.8	<0.1	219	1.1	12	9	<1
*Std AMIS0169	<1	99.4	<0.1	261	0.9	60	63	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*BIk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1
*Blk BLANK	<1	<0.5	<0.1	<1	<0.5	<5	<1	<1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 17 of 22

Report File No.: 0000019568

	Element Method Det.Lim. Units	Sr GE_MMI_M 10 ppb	Ta GE_MMI_M 1	Tb GE_MMI_M 0.1	Te GE_MMI_M 10 ppb	Th GE_MMI_M 0.5 ppb	Ti GE_MMI_M 10 ppb	TI GE_MMI_M 0.1	U GE_MMI_M 0.5
WS02471	Units	50	ppb <1	0.4	20	4.9	30	ppb 0.3	ppb 0.8
WS02473		40	<1	0.4	<10	5.3	30	0.5	1.2
WS02475		50	<1	0.2	<10	4.0	20	0.6	0.8
WS02473		30	1	<0.1	<10	3.4	20	0.0	0.0
WS02479		40	1	0.1	<10	4.4	20	0.3	1.3
WS02473		50	<1	0.1	10	2.6	20	0.3	0.8
WS02481 WS02483		100	<1	<0.1	<10	1.5	<10	0.4	1.0
WS02485		70	<1	<0.1	<10	<0.5	10	0.3	<0.5
WS02483		310	<1	<0.1	<10	<0.5	<10	0.3	<0.5
WS02489		270	<1	<0.1	<10	<0.5	10	0.2	<0.5
WS02403		70	<1	<0.1	<10	<0.5	20	0.4	0.5
WS02493		80	<1	<0.1	<10	<0.5	10	0.3	0.5
WS02495		60	<1	0.1	<10	1.5	10	0.3	0.0
WS02493		60	<1	0.1	<10	1.5	20	0.3	<0.5
WS02499		70	<1	0.2	<10	3.6	50	0.2	1.5
WS01733		620	<1	0.4	<10	4.6	100	0.2	6.7
WS01735		370	<1	0.3	<10	2.1	70	0.2	2.5
WS01737		400	<1	0.2	<10	2.9	60	0.3	1.0
WS01739		400	<1	0.2	<10	0.8	30	0.2	1.1
WS01741		420	<1	0.0	<10	0.6	10	0.0	1.0
WS01743		450	<1	0.4	<10	0.7	20	<0.1	1.0
WS01745		530	<1	0.4	<10	<0.5	20	<0.1	1.8
WS01747		510	<1	0.6	<10	1.6	<10	0.3	1.1
WS01749		550	<1	0.8	<10	0.6	20	<0.1	2.1
W1477001		70	<1	0.0	<10	0.6	40	<0.1	0.9
W1477003		180	<1	0.2	<10	< 0.5	20	0.3	0.7
W1477005		190	<1	0.0	<10	1.1	20	0.4	28.0
W1477007		260	<1	<0.1	<10	<0.5	10	<0.1	1.7
W1477009		500	<1	<0.1	<10	<0.5	10	<0.1	1.3
W1477011		200	<1	<0.1	<10	0.7	30	<0.1	1.0
W1477013		250	<1	<0.1	<10	1.0	20	<0.1	1.6
W1477015		370	<1	<0.1	<10	<0.5	20	<0.1	0.7
W1477017		340	<1	<0.1	<10	<0.5	10	0.1	0.7
W1477019		310	<1	<0.1	<10	<0.5	10	0.1	<0.5
W1477021		410	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
W1477023		340	<1	<0.1	<10	<0.5	<10	<0.1	0.6
W1477025		130	<1	<0.1	<10	<0.5	10	<0.1	<0.5
W1477027		90	<1	<0.1	<10	< 0.5	10	<0.1	<0.5
W1477029		470	<1	<0.1	<10	< 0.5	20	<0.1	0.5
W1477031		390	<1	<0.1	<10	<0.5	20	<0.1	0.8

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 18 of 22

Report File No.: 0000019568

	Element	Sr	Та	Tb	Te	Th	Ti	TI	U
	Method	GE_MMI_M							
	Det.Lim.	10	1	0.1	10	0.5	10	0.1	0.5
	Units	ppb							
W1477033		440	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
W1477035		580	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
W1477037		130	<1	<0.1	<10	<0.5	10	<0.1	<0.5
W1477039		180	<1	<0.1	<10	<0.5	20	<0.1	1.2
W1477041		210	<1	<0.1	<10	<0.5	<10	0.1	0.6
W1477043		140	<1	<0.1	<10	<0.5	<10	<0.1	0.5
W1477045		620	<1	<0.1	<10	<0.5	60	0.1	1.9
W1477047		70	<1	0.5	<10	2.2	90	0.1	1.3
W1477049		110	<1	<0.1	<10	<0.5	30	0.1	<0.5
W1477051		160	<1	<0.1	<10	0.6	20	<0.1	3.8
W1477053		260	<1	0.2	<10	3.0	50	0.1	8.2
W1477055		180	<1	<0.1	<10	<0.5	70	<0.1	7.3
W1477057		30	<1	0.3	<10	2.7	40	<0.1	0.8
W1477059		10	<1	0.2	<10	2.4	40	<0.1	0.7
W1477061		30	<1	0.2	<10	2.4	60	0.2	0.6
W1477201		100	<1	0.4	<10	2.3	30	<0.1	0.8
W1477203		90	<1	0.3	<10	2.9	40	<0.1	1.2
W1477205		130	<1	0.4	<10	4.3	50	<0.1	1.4
W1477207		540	<1	<0.1	<10	<0.5	30	<0.1	0.7
W1477209		480	<1	<0.1	<10	<0.5	30	<0.1	0.9
W1477211		50	<1	0.2	<10	2.2	50	<0.1	2.0
W1477213		40	<1	<0.1	<10	2.5	40	<0.1	1.1
W1477215		50	<1	0.2	<10	2.2	40	<0.1	1.0
W1477217		20	<1	0.2	<10	2.3	20	<0.1	0.5
W1477219		30	<1	0.2	<10	2.7	50	<0.1	0.9
W1477221		80	<1	0.3	<10	2.1	70	<0.1	1.1
W1477223		110	<1	0.4	<10	2.2	30	<0.1	0.7
W1477225		80	<1	0.4	<10	2.2	40	<0.1	0.8
W1477227		110	<1	0.4	<10	2.3	50	<0.1	1.1
W1477229		80	<1	0.5	<10	2.3	30	<0.1	0.8
W1477231		80	<1	0.1	<10	1.6	20	<0.1	0.6
W1477233		430	<1	<0.1	<10	<0.5	<10	0.1	<0.5
W1477235		380	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
W1477237		200	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
W1477239		120	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
W1477241		130	<1	<0.1	<10	<0.5	30	<0.1	1.6
W1477243		110	<1	<0.1	<10	<0.5	20	<0.1	1.8
W1477245		70	<1	0.2	<10	3.7	70	<0.1	3.3
W1477247		150	<1	0.9	<10	12.9	260	<0.1	6.5
W1477249		130	<1	1.1	<10	14.9	320	<0.1	7.1

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

Page 19 of 22

Report File No.: 0000019568

Element	Sr	Ta	Tb	Te	Th	Ti	TI	U
Method	GE_MMI_M							
Det.Lim.	10	1	0.1	10	0.5	10	0.1	0.5
Units	ppb							
W1477251	80	<1	0.5	<10	7.8	80	<0.1	1.8
W1477253	30	<1	0.3	<10	4.2	50	<0.1	1.1
*Rep WS01747	500	<1	0.6	<10	<0.5	20	0.1	1.2
*Rep W1477023	370	<1	<0.1	<10	<0.5	10	<0.1	0.5
*Rep W1477041	230	<1	<0.1	<10	<0.5	<10	<0.1	0.6
*Rep W1477215	60	<1	0.2	<10	2.4	50	<0.1	1.0
*Rep W1477239	120	<1	<0.1	<10	<0.5	<10	<0.1	0.5
*Std MMISRM19	3960	<1	2.3	<10	17.6	<10	1.0	64.1
*Std AMIS0169	60	<1	5.8	<10	72.9	370	1.2	26.1
*BIk BLANK	<10	1	<0.1	<10	<0.5	<10	<0.1	<0.5
*BIk BLANK	<10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
*BIk BLANK	<10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5
*Blk BLANK	<10	<1	<0.1	<10	<0.5	<10	<0.1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

W Zr Element Yb Zn Method GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M Det.Lim. 0.5 0.2 10 2 Units ppb ppb ppb ppb ppb WS02471 520 7 <0.5 10 1.1 WS02473 0.7 5 0.7 1190 8 WS02475 6 0.5 530 6 <0.5 6 WS02477 <0.5 4 0.5 790 WS02479 8 < 0.5 6 0.6 260 4 WS02481 < 0.5 7 0.6 700 WS02483 <0.5 2 0.3 1050 <2 WS02485 <0.5 1 <0.2 640 <2 2 0.3 <2 WS02487 <0.5 190 <2 WS02489 <0.5 1 <0.2 1800 3 WS02491 <0.5 2 0.3 210 WS02493 <0.5 3 0.3 770 2 WS02495 4 0.7 700 3 <0.5 7 WS02497 <0.5 0.5 1310 4 9 WS02499 < 0.5 12 1.2 1040 6 12 WS01733 < 0.5 1.0 910 WS01735 <0.5 10 2.3 1780 7 <0.5 12 7 WS01737 3.0 1890 3 WS01739 <0.5 10 1.2 1300 3 WS01741 < 0.5 13 1.2 400 <2 WS01743 <0.5 14 1.2 230 WS01745 <0.5 17 1.7 70 2 2 WS01747 <0.5 17 1.8 370 3 WS01749 <0.5 21 2.5 150 0.9 W1477001 < 0.5 7 290 7 6 W1477003 <0.5 11 1.2 380 10 W1477005 <0.5 11 1.1 1020 2 2 W1477007 780 <0.5 0.4 W1477009 <0.5 3 0.3 460 <2 <0.5 3 W1477011 3 0.3 310 2 W1477013 <0.5 3 0.2 260 <2 W1477015 < 0.5 3 0.2 300 3 1330 4 W1477017 <0.5 0.4 W1477019 <0.5 <0.2 340 <2 1 W1477021 3 < 0.5 1 <0.2 130 12 W1477023 <0.5 2 0.2 140 2 W1477025 <0.5 1 <0.2 270 <0.2 <2 W1477027 <0.5 <1 200 W1477029 < 0.5 3 0.4 430 <2 < 0.5 2 0.2 300 <2 W1477031

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 20 of 22

W Zr Element Yb Zn Method GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M GE_MMI_M Det.Lim. 0.5 0.2 10 2 Units ppb ppb ppb ppb ppb W1477033 <0.5 <0.2 310 <2 <1 W1477035 <0.5 1 <0.2 390 <2 W1477037 <0.5 <0.2 1060 <2 1 <2 3 W1477039 <0.5 0.5 240 W1477041 380 <2 < 0.5 1 < 0.2 2 90 W1477043 < 0.5 1 <0.2 2 W1477045 <0.5 2 0.2 40 1.3 W1477047 <0.5 13 1060 7 <1 0.3 <2 W1477049 <0.5 130 5 4 W1477051 <0.5 0.6 390 5 W1477053 <0.5 9 0.7 340 W1477055 <0.5 2 1.2 500 5 W1477057 9 2760 6 <0.5 1.1 7 5 W1477059 < 0.5 0.6 1290 7 W1477061 < 0.5 7 0.6 2300 9 10 W1477201 < 0.5 0.6 570 W1477203 10 1.1 170 11 <0.5 W1477205 <0.5 13 1.3 550 15 <2 W1477207 <0.5 4 0.6 40 2 W1477209 < 0.5 3 0.3 220 W1477211 <0.5 8 0.7 370 13 W1477213 <0.5 200 8 5 0.8 7 9 W1477215 <0.5 0.5 230 W1477217 <0.5 5 0.5 300 10 W1477219 < 0.5 6 0.5 260 14 12 W1477221 <0.5 10 0.8 300 W1477223 <0.5 11 0.6 340 9 W1477225 11 1.0 230 5 <0.5 W1477227 <0.5 9 0.8 210 19 <0.5 W1477229 14 1.3 120 8 8 W1477231 < 0.5 7 0.7 450 <2 W1477233 < 0.5 1 <0.2 400 <2 W1477235 <0.5 <1 <0.2 1510 W1477237 <0.5 1 <0.2 <10 <2 W1477239 2 3 < 0.5 <0.2 570 3 W1477241 <0.5 3 0.5 200 W1477243 <0.5 2 0.2 650 6 30 W1477245 0.5 11 1.8 520 W1477247 < 0.5 33 4.5 890 24 < 0.5 43 5.6 1240 23 W1477249

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 21 of 22

Element Method	W GE_MMI_M	Y GE_MMI_M	Yb GE_MMI_M		Zr GE_MMI_M
Det.Lim.	0.5	1	0.2	10	2
Units	ppb	ppb	ppb	ppb	ppb
W1477251	<0.5	15	1.4	760	13
W1477253	<0.5	9	0.8	170	18
*Rep WS01747	<0.5	17	1.8	350	<2
*Rep W1477023	<0.5	2	<0.2	130	13
*Rep W1477041	<0.5	2	<0.2	330	<2
*Rep W1477215	<0.5	8	0.7	240	11
*Rep W1477239	<0.5	2	<0.2	600	2
*Std MMISRM19	<0.5	70	5.6	2540	13
*Std AMIS0169	1.5	129	9.4	220	52
*Blk BLANK	<0.5	<1	<0.2	<10	<2
*Blk BLANK	<0.5	<1	<0.2	<10	<2
*Blk BLANK	<0.5	<1	<0.2	<10	<2
*Blk BLANK	<0.5	<1	<0.2	10	<2

This document is issued by the Company under its General Conditions of Service accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

SGS Canada Inc. Minerals Suite E - 3260 Production Way Burnaby BC t(604) 638-2349 f(604) 444-5486 www.ca.sgs.com

Page 22 of 22

APPENDIX III

Soil Sampling Actlabs Certificates INAA analysis Quality Analysis ...

Innovative Technologies

Date Submitted:06-Oct-16Invoice No.:A16-10340Invoice Date:08-Nov-16Your Reference:West Porcupine

Probe Metals Limited 56 Temperance Street Suite 1000 Toronto ON M5H 3V5 Canada

ATTN: Dave Palmer

CERTIFICATE OF ANALYSIS

334 Vegetation samples were submitted for analysis.

The following analytical package(s) were requested:

Code 2B-15g Vegetation INAA(INAAGEO)

REPORT A16-10340

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

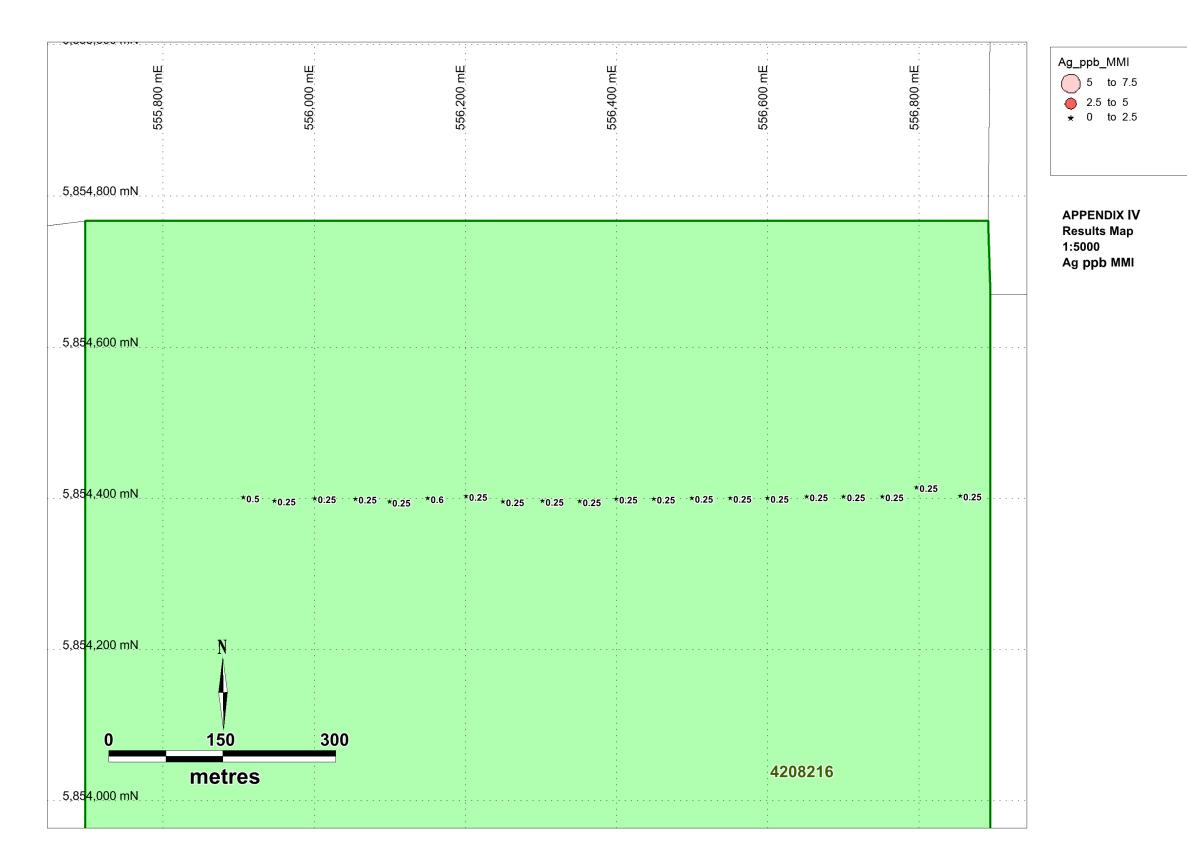
Activation Laboratories Ltd.

Report: A16-10340

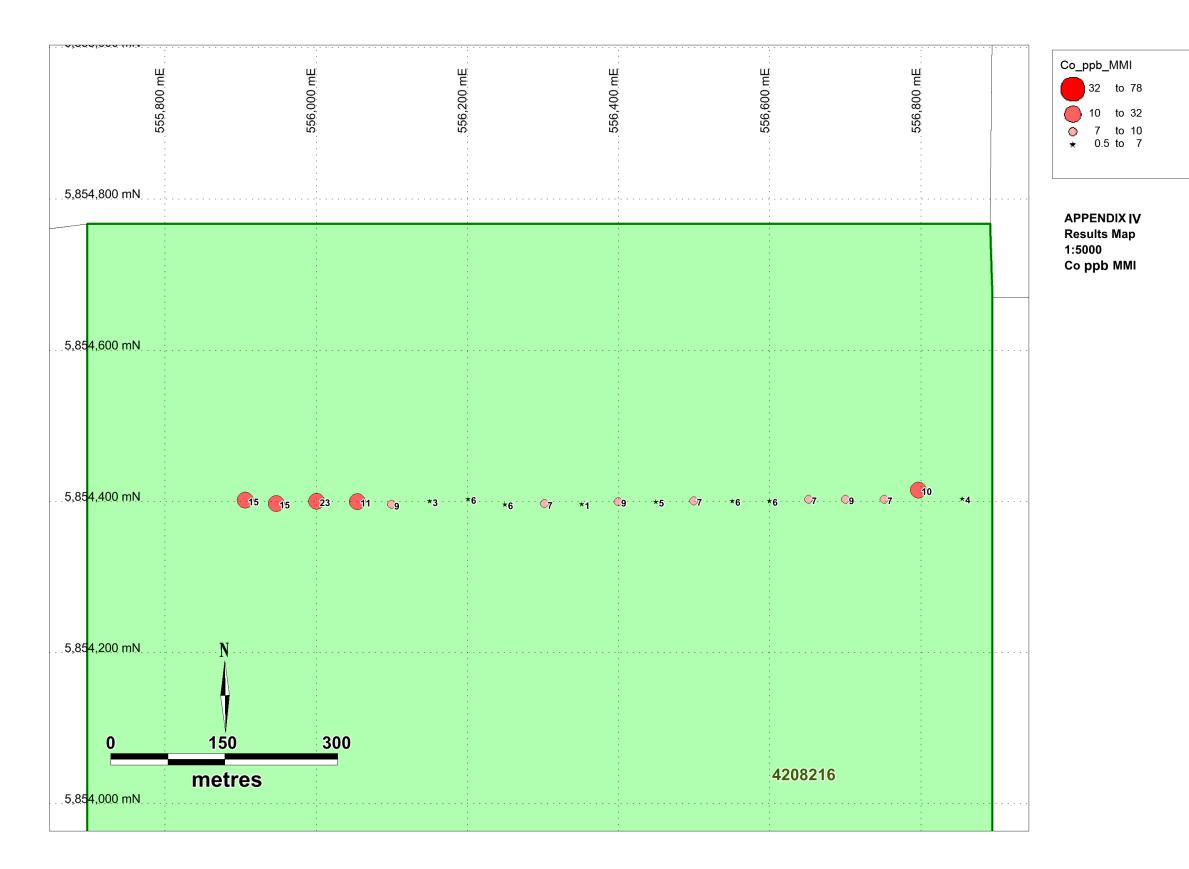
Analyte Symbol	Au	Ag	As	Ва	Br	Ca	Co	Cr	Cs	Fe	Hg	Hf	lr	К	Мо	Na	Ni	Rb	Sb	Sc	Se	Sr	Та
Unit Symbol	ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppb	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.1	0.3	0.01	5	0.01	0.01	0.1	0.3	0.05	0.005	0.05	0.05	0.1	0.01	0.05	1	2	1	0.005	0.01	0.1	100	0.05
Method Code	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
WS01918	1.2	< 0.3	4.48	56	14.4	0.80	1.4	3.6	< 0.05	0.290	< 0.05	< 0.05	< 0.1	1.46	< 0.05	1210	< 2	< 1	0.210	1.02	< 0.1	< 100	< 0.05
WS01920	< 0.1	< 0.3	4.86	68	26.1	1.10	1.7	2.5	< 0.05	0.530	< 0.05	< 0.05	< 0.1	1.25	< 0.05	688	< 2	2	0.140	0.96	< 0.1	< 100	< 0.05
WS01922	< 0.1	< 0.3	3.80	70	20.9	1.34	2.3	2.4	< 0.05	0.430	< 0.05	0.23	< 0.1	1.37	< 0.05	672	< 2	3	0.180	0.93	1.1	< 100	0.21
WS01924	< 0.1	< 0.3	3.92	98	20.3	0.83	2.2	< 0.3	< 0.05	0.340	0.28	0.30	< 0.1	2.12	< 0.05	676	< 2	< 1	0.190	1.02	< 0.1	< 100	< 0.05
WS01926	< 0.1	< 0.3	< 0.01	54	16.0	0.45	1.3	3.1	< 0.05	0.200	< 0.05	0.18	< 0.1	1.29	< 0.05	548	< 2	< 1	0.150	1.29	< 0.1	< 100	< 0.05
WS01928	< 0.1	< 0.3	1.62	58	14.7	0.76	1.6	2.8	< 0.05	0.260	< 0.05	0.27	< 0.1	1.37	< 0.05	684	< 2	< 1	0.130	1.71	1.0	< 100	< 0.05
WS01930	< 0.1	< 0.3	1.89	56	17.7	1.06	1.6	3.7	< 0.05	0.350	< 0.05	0.24	< 0.1	1.47	< 0.05	692	< 2	4	0.110	1.20	< 0.1	< 100	< 0.05
WS01932	< 0.1	< 0.3	2.27	80	17.0	1.00	1.9	3.3	< 0.05	0.250	< 0.05	0.32	< 0.1	1.17	0.92	676	< 2	< 1	0.100	1.92	< 0.1	< 100	< 0.05
WS01934	< 0.1	< 0.3	2.79	56	16.6	1.11	1.4	4.3	< 0.05	0.340	< 0.05	< 0.05	< 0.1	1.54	1.81	700	< 2	< 1	0.120	1.47	< 0.1	< 100	< 0.05
WS01936	< 0.1	< 0.3	3.33	86	23.6	0.84	1.7	3.0	< 0.05	0.330	0.12	< 0.05	< 0.1	1.03	< 0.05	932	< 2	< 1	0.100	1.53	< 0.1	< 100	< 0.05
WS01938	< 0.1	< 0.3	0.88	66	14.3	0.88	< 0.1	2.5	< 0.05	0.330	< 0.05	< 0.05	< 0.1	1.75	< 0.05	564	< 2	< 1	0.080	1.08	< 0.1	< 100	< 0.05
WS01940	< 0.1	< 0.3	3.60	66	17.5	0.48	1.6	3.5	< 0.05	0.330	0.15		< 0.1	1.84	< 0.05	1120	< 2	< 1	0.210	1.59	< 0.1	< 100	< 0.05
WS01942	< 0.1	< 0.3	10.9	136	28.5	1.19	2.1	7.7	< 0.05	1.94	0.09	0.22	< 0.1	1.48	< 0.05	732	< 2	< 1	0.100	1.17	< 0.1	< 100	< 0.05
WS01944	< 0.1	< 0.3	40.8	260	37.9	3.26	< 0.1	4.7	< 0.05	12.9	< 0.05	0.35	< 0.1	1.18	< 0.05	1020	< 2	< 1	0.020	1.47	< 0.1	< 100	< 0.05
WS01946	< 0.1	< 0.3	23.6	464	39.1	3.32	< 0.1	5.1	< 0.05	10.6	< 0.05	0.20	< 0.1	1.32	< 0.05	1010	< 2	< 1	0.070	1.17	< 0.1	100	< 0.05
WS01948	< 0.1	< 0.3	38.3	232	51.6	2.92	< 0.1	4.6	< 0.05	7.76	0.13		< 0.1	1.19	< 0.05	1160	< 2	< 1	0.100	1.89	2.0	< 100	< 0.05
WS01950	< 0.1	< 0.3	23.0	400	49.2	2.41	2.7	6.0	< 0.05	8.28	< 0.05	0.31	< 0.1	0.90	< 0.05	996	< 2	< 1	0.130	1.50	< 0.1	< 100	< 0.05
WS01734	< 0.1	< 0.3	12.8	450	30.1	3.31	6.6	33.8	2.57	4.64	0.18	2.78	< 0.1	1.44	3.00	18000	< 2	28	0.320	12.5	< 0.1	200	< 0.05
WS01736	< 0.1	< 0.3	16.1	364	37.0	2.46	4.5	14.2	1.16	3.41	0.17	0.87	< 0.1	1.15	< 0.05	5260	< 2	8	0.350	5.07	< 0.1	< 100	< 0.05
WS01738	< 0.1	< 0.3	16.5	264	52.7	2.70	4.6	14.5	1.00	3.62	0.32	0.82	< 0.1	1.18	< 0.05	3080	< 2	11	0.190	5.19	2.1	< 100	< 0.05
WS01740	< 0.1	< 0.3	16.0	206	41.1	3.30	3.0	7.7	< 0.05	2.52	< 0.05	0.40	< 0.1	1.26	2.75	1410	< 2	< 1	0.120	2.67	2.9	< 100	< 0.05
WS01742	< 0.1	< 0.3	13.3	190	39.4	2.20 2.28	3.5	5.2	< 0.05	2.08	0.22	0.30	< 0.1	1.32	< 0.05	1180	< 2	< 1	0.220	2.01	< 0.1	< 100	< 0.05
WS01744 WS01746	< 0.1	< 0.3 < 0.3	12.2 10.5	226 144	35.6 32.2	2.20	3.0 2.3	5.5 3.4	< 0.05 < 0.05	1.72 1.26	0.13	0.15	< 0.1 < 0.1	1.60 1.29	< 0.05 < 0.05	956 860	< 2 < 2	< 1	0.190	1.95 1.41	< 0.1 < 0.1	100 200	< 0.05 < 0.05
WS01748	< 0.1	< 0.3	10.3	146	37.2	2.12	1.9	4.4	< 0.05	1.46	0.13	0.20	< 0.1	1.42	3.57	936	< 2	< 1	0.130	1.86	< 0.1	200	< 0.05
WS01748 WS01750	< 0.1	< 0.3	12.7	108	34.8	2.05	2.6	4.1	< 0.05	1.44	0.10	0.24	< 0.1	1.41	< 0.05	896	< 2	2	0.220	1.56	< 0.1	< 100	< 0.05
WS02002	< 0.1	< 0.3	16.3	284	42.6	2.61	2.4	3.8	0.53	4.70	0.25	< 0.05	< 0.1	1.28	< 0.05	1240	< 2	< 1	0.120	1.53	2.7	< 100	< 0.05
WS02003A	< 0.1	< 0.3	47.3	386	40.8	2.88	2.2	2.2	< 0.05	13.9	< 0.05		< 0.1	1.54	< 0.05	1220	< 2	< 1	0.040	1.26	< 0.1	200	< 0.05
WS02006	< 0.1	< 0.3	40.5	296	48.7	2.56	1.6	4.6	< 0.05	11.3	0.24	0.19	< 0.1	1.39	< 0.05	1400	< 2	<1	0.040	1.89	2.1	< 100	< 0.05
WS02008	< 0.1	< 0.3	31.8	83	27.0	1.95	3.3	2.3	< 0.05	6.02	< 0.05		< 0.1	1.14	< 0.05	1020	< 2	< 1	< 0.005	1.14	< 0.1	< 100	< 0.05
WS02010	< 0.1	< 0.3	15.0	91	38.2	2.07	3.1	4.4	< 0.05	5.44	< 0.05	0.32	< 0.1	0.96	< 0.05	1520	< 2	< 1	< 0.005	2.19	< 0.1	< 100	< 0.05
WS02012	< 0.1	< 0.3	12.8	88	41.2	2.46	6.3	4.8	< 0.05	5.66	< 0.05	< 0.05	< 0.1	0.89	< 0.05	1600	< 2	< 1	< 0.005	2.46	3.1	< 100	< 0.05
WS02014	< 0.1	< 0.3	8.20	63	31.6	2.61	4.0	2.8	< 0.05	3.62	< 0.05		< 0.1	1.06	< 0.05	1120	< 2	< 1	< 0.005	1.59	1.4	< 100	0.20
WS02016	< 0.1	< 0.3	8.36	59	33.0	2.26	4.5	3.6	0.41	2.16	< 0.05	0.24	< 0.1	1.12	3.09	1090	< 2	< 1	0.050	1.32	< 0.1	< 100	< 0.05
WS02018	< 0.1	< 0.3	10.0	80	64.6	2.51	< 0.1	< 0.3	< 0.05	3.03	< 0.05	< 0.05	< 0.1	1.23	< 0.05	1550	< 2	< 1	0.130	1.50	< 0.1	< 100	< 0.05
WS02020	< 0.1	< 0.3	2.08	47	23.9	1.07	3.0	2.2	< 0.05	0.717	0.21	0.15	< 0.1	1.19	< 0.05	860	< 2	2	< 0.005	1.11	< 0.1	< 100	< 0.05
WS02022	< 0.1	< 0.3	2.28	< 5	21.3	0.87	2.4	3.3	< 0.05	0.552	< 0.05	0.26	< 0.1	1.62	< 0.05	1030	< 2	< 1	0.160	1.14	< 0.1	< 100	< 0.05
WS02024	< 0.1	< 0.3	14.7	98	65.7	2.00	< 0.1	4.3	< 0.05	3.67	< 0.05	< 0.05	< 0.1	1.14	< 0.05	1010	< 2	< 1	0.050	1.14	< 0.1	< 100	< 0.05
WS02026	< 0.1	< 0.3	16.3	59	44.3	2.56	3.9	2.6	< 0.05	5.20	0.14	0.25	< 0.1	1.27	< 0.05	1500	66	< 1	0.050	1.95	< 0.1	< 100	< 0.05
WS02028	< 0.1	< 0.3	29.7	70	48.9	2.82	4.9	8.6	< 0.05	7.65	< 0.05	0.36	< 0.1	1.12	< 0.05	2170	< 2	< 1	0.020	2.28	2.7	< 100	< 0.05
WS02030	< 0.1	< 0.3	26.8	50	38.4	2.47	4.7	4.4	< 0.05	8.10	< 0.05	0.28	< 0.1	1.14	< 0.05	1470	< 2	< 1	0.040	1.80	< 0.1	< 100	< 0.05
WS02032	< 0.1	< 0.3	37.5	140	43.5	2.74	3.9	3.5	< 0.05	7.10	< 0.05	0.29	< 0.1	1.22	< 0.05	1670	< 2	< 1	< 0.005	2.16	1.9	200	< 0.05

Analyte Symbol	Au	Ag		Ba	Br		Co	Cr	Cs	Fe	Hg		lr	1X 0/			Ni	Rb	Sb	Sc	Se	Sr	Та
Jnit Symbol	ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppb	%		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.1	0.3		5	0.01		0.1	0.3	0.05	0.005	0.05		0.1	0.01	0.05	1	2	1	0.005	0.01	0.1	100	0.05
Method Code	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
NS02202	0.2	< 0.3	27.8	36	33.9	2.13	< 0.1	2.2	< 0.05	2.59	< 0.05	0.06	< 0.1	0.76	< 0.05	665	< 2	< 1	0.050	1.06	0.4	< 100	< 0.
WS02204	0.7	< 0.3	16.4	233	30.2	1.68	2.2	2.5	< 0.05	1.45	0.07	0.23	< 0.1	1.50	< 0.05	1010	< 2	< 1	0.120	1.14	< 0.1	< 100	< 0
WS02206	0.4	< 0.3	4.52	114	22.0	0.74	1.4	1.8	< 0.05	0.890	0.05	0.08	< 0.1	0.75	< 0.05	640	< 2	< 1	0.100	1.12	0.2	< 100	< 0
WS02208	< 0.1	< 0.3	2.32	45	19.1	0.67	1.6	2.1	< 0.05	0.590	< 0.05	0.08	< 0.1	0.85	< 0.05	720	< 2	< 1	0.020	0.94	0.9	< 100	< 0
WS02210	< 0.1	< 0.3	2.48	35	21.3	0.77	1.8	2.8	< 0.05	0.640	0.06	0.15	< 0.1	0.97	0.27	728	< 2	< 1	0.020	1.06	< 0.1	< 100	< 0
WS02212	< 0.1	< 0.3	2.64	50	22.1	0.80	1.1	1.5	< 0.05	0.620	0.11	0.07	< 0.1	1.84	< 0.05	812	< 2	4	0.030	1.00	0.6	< 100	< 0
WS02214	< 0.1	< 0.3	4.72	41	26.1	0.75	1.3	1.9	< 0.05	0.690	0.06	0.15	< 0.1	0.95	0.19	755	< 2	< 1	0.070	1.18	< 0.1	< 100	< 0
WS02216	< 0.1	< 0.3	2.72	29	29.9	0.56	1.5	2.0	< 0.05	0.520	< 0.05	0.14	< 0.1	1.21	0.62	592	< 2	< 1	0.050	0.96	< 0.1	< 100	< 0
WS02218	0.3	< 0.3	1.94	96	20.8	0.69	1.2	1.5	< 0.05	0.310	0.05	0.08	< 0.1	1.01	0.17	675	< 2	< 1	0.070	1.36	0.3	< 100	< 0
WS02220	< 0.1	< 0.3	1.26	81	19.2	0.86	1.0	2.2	0.06	0.290	0.10	0.14	< 0.1	0.83	< 0.05	645	< 2	< 1	0.070	1.42	< 0.1	< 100	< 0
WS02222	< 0.1	< 0.3	2.00	60	27.5	0.68	1.4	2.5	< 0.05	0.260	0.05	0.25	< 0.1	0.75	1.31	682	< 2	< 1	0.060	2.04	0.4	< 100	< 0
WS02224	< 0.1	< 0.3	1.92	155	23.9	0.63	1.3	2.5	< 0.05	0.320	0.06	0.21	< 0.1	1.06	0.24	602	< 2	< 1	0.020	1.94	0.3	< 100	< 0
WS02226	< 0.1	< 0.3	2.02	60	27.3	0.55	1.3	2.8	0.10	0.280	< 0.05	0.07	< 0.1	1.27	0.25	540	< 2	< 1	0.020	1.20	0.4	< 100	< 0
WS02228	< 0.1	< 0.3	31.2	150	40.7	2.33	2.9	2.4	< 0.05	4.16	0.10	0.08	< 0.1	0.60	< 0.05	862	< 2	< 1	0.130	1.14	< 0.1	< 100	< 0
WS02230	< 0.1	< 0.3	25.9	243	43.4	2.16	4.0	2.8	< 0.05	3.35	< 0.05	0.08	< 0.1	0.41	0.34	898	< 2	< 1	0.100	1.16		< 100	< 0
WS02232	< 0.1	< 0.3	25.9	150	44.8	2.23	3.8	2.7	< 0.05	4.48	< 0.05	< 0.05	< 0.1	0.62	0.39	642	< 2	< 1	0.090	0.82	0.8		< 0
WS02234	< 0.1	< 0.3	31.4	90	60.9	2.76	3.5	3.0	0.35	7.59	0.10	0.08	< 0.1	0.95	< 0.05	898	< 2	< 1	0.080	1.44	0.6		< 0
WS02236	< 0.1	< 0.3	25.0	188	72.6	1.94	3.5	2.1	< 0.05	9.70	0.06	0.09	< 0.1	0.55	< 0.05	1010	< 2	< 1	0.050	1.34	< 0.1	< 100	< 0
WS02238	< 0.1	< 0.3	4.16	56	22.9	0.59	1.2	1.9	< 0.05	1.00	< 0.05	0.07	< 0.1	1.44	0.71	708	< 2	< 1	0.000	0.98	< 0.1	< 100	< 0
WS02240	< 0.1	< 0.3	1.65	< 5	16.4	0.42	0.5	2.4	< 0.05	0.340	< 0.05	0.07	< 0.1	2.04	< 0.05	528	< 2	<1	0.060	0.69		< 100	< 0
WS02242	< 0.1	< 0.3	1.00	< 5	16.2	0.45	0.8	1.3	< 0.05	0.350	< 0.05	0.09	< 0.1	2.49	0.22	630	< 2	<1	0.000	0.73	< 0.1	< 100	< 0
WS02244	0.9	< 0.3	0.75	< 5	12.9	0.40	0.8	2.0	< 0.05	0.270	< 0.05	< 0.05	< 0.1	1.83	< 0.05	478	< 2	<1	0.020	0.69		< 100	< 0
WS02244 WS02246	< 0.1	< 0.3	1.69	36	14.8	0.32	0.8	2.0	< 0.05	0.240	< 0.05	0.08	< 0.1	1.59	< 0.05	615	< 2	1	0.030	0.96		< 100	0
WS02240	< 0.1	< 0.3	0.95	76	17.5	0.45	0.0	1.8	< 0.05	0.240	< 0.05	0.00	< 0.1	1.65	0.96	632	< 2	< 1	0.020	1.06		< 100	< 0
WS02240 WS02250	< 0.1	< 0.3	0.93	38	16.5	0.33	0.3	2.0	< 0.05	0.190	< 0.05	0.20	< 0.1	1.44	< 0.05	712	< 2	<1	0.040	1.17	< 0.1	< 100	< 0
WS02250	< 0.1	< 0.3	8.10	133	25.3	1.83	1.2	3.0	< 0.05	1.19	0.10		< 0.1	1.68	< 0.05	1060	< 2	< 1	0.030	1.22	0.8		< 0
WS02252 WS02254	< 0.1	< 0.3	14.3	217	33.1	2.87	< 0.1	3.3	< 0.05	1.19	0.10	0.11		2.16	< 0.05	1700	< 2	3	0.130	1.54	< 0.1	< 100	< 0
WS02254 WS02256	< 0.1	< 0.3	3.12	31	18.5	0.59	< 0.1 1.3	2.6	< 0.05	1.18	< 0.05	< 0.05	< 0.1 < 0.1	2.10	< 0.05	738	< 2		0.070	0.80	< 0.1	< 100	< 0
			-											-				< 1					
WS02258	< 0.1	< 0.3	3.24	72	13.4	0.47	< 0.1	1.4	< 0.05	0.320	0.06	0.08	< 0.1	2.70	< 0.05	1040	< 2	< 1	0.090	1.02	1.0	< 100	< 0
WS02260	< 0.1	< 0.3	1.94	< 5	12.8	0.41	0.8	2.1	< 0.05	0.230	< 0.05	0.11	< 0.1	2.37	< 0.05	572	< 2	< 1	0.010	0.92		< 100	< 0
WS02262	< 0.1	< 0.3	4.94	34	15.6	0.61	< 0.1	2.4	< 0.05	0.450	0.12	0.08	< 0.1	3.99	< 0.05	985 5760	< 2	<1	0.230	1.08		< 100	< 0
WS02264	< 0.1	< 0.3	5.56	220	13.5	0.34	4.0	7.9	< 0.05	2.14	0.07	0.42	< 0.1	3.54	< 0.05	5760	< 2	< 1	0.150	5.43		< 100	< 0
WS02266	< 0.1	< 0.3	5.61	139	18.5	5.09	4.5	6.1	< 0.05	2.92	0.12	0.41	< 0.1	1.71	1.60	2000	< 2	< 1	0.100	3.25	< 0.1	< 100	< 0
WS02268	< 0.1	< 0.3	25.5	42	47.7	2.95	2.5	4.3	< 0.05	2.92	< 0.05	< 0.05	< 0.1	3.00	< 0.05	1170	< 2	< 1	0.030	1.60	< 0.1	< 100	< 0
WS02270	< 0.1	< 0.3	8.49	32	17.7	1.03	2.5	1.6	< 0.05	1.07	< 0.05	< 0.05	< 0.1	3.33	< 0.05	978	< 2	< 1	0.180	0.92	< 0.1	< 100	< 0
WS02272	0.4	< 0.3	5.59	101	29.9	2.92	2.0	4.9	< 0.05	1.68	0.06	-	< 0.1	2.76	< 0.05	1280	< 2	< 1	0.180	1.74		< 100	
WS02274	< 0.1	< 0.3	3.12	73	21.1	0.56	< 0.1	2.7	< 0.05	0.350	0.10		< 0.1	2.22	1.39	890	< 2	< 1	0.120	1.29			-
WS02276	< 0.1	< 0.3	1.52	57	20.9	0.40	0.7	2.8	< 0.05		< 0.05		< 0.1	1.86	< 0.05	770	< 2	< 1	0.070	1.38		< 100	-
WS02278	< 0.1	< 0.3	11.2	49	51.3	2.71	2.0	6.1	< 0.05	2.30	0.16		< 0.1	2.31	< 0.05	1530	< 2	< 1	0.260	1.92		< 100	-
WS02280	< 0.1	< 0.3	2.19	93	21.7	0.62	< 0.1	2.6	< 0.05		< 0.05		< 0.1	2.73	0.22	828	< 2	< 1	0.090	1.03			
WS02282	< 0.1	< 0.3	2.13	100	22.4	2.49	< 0.1	3.5	< 0.05	0.680	< 0.05	0.26	< 0.1	2.16	0.18	1310	< 2	2	0.110	1.77	< 0.1	< 100	-
WS02284	< 0.1	< 0.3	3.15	117	18.9	2.48	1.6	3.1	< 0.05	0.460	0.06	0.22	< 0.1	1.59	0.08	1260	< 2	< 1	0.180	1.91	< 0.1	< 100	< 0

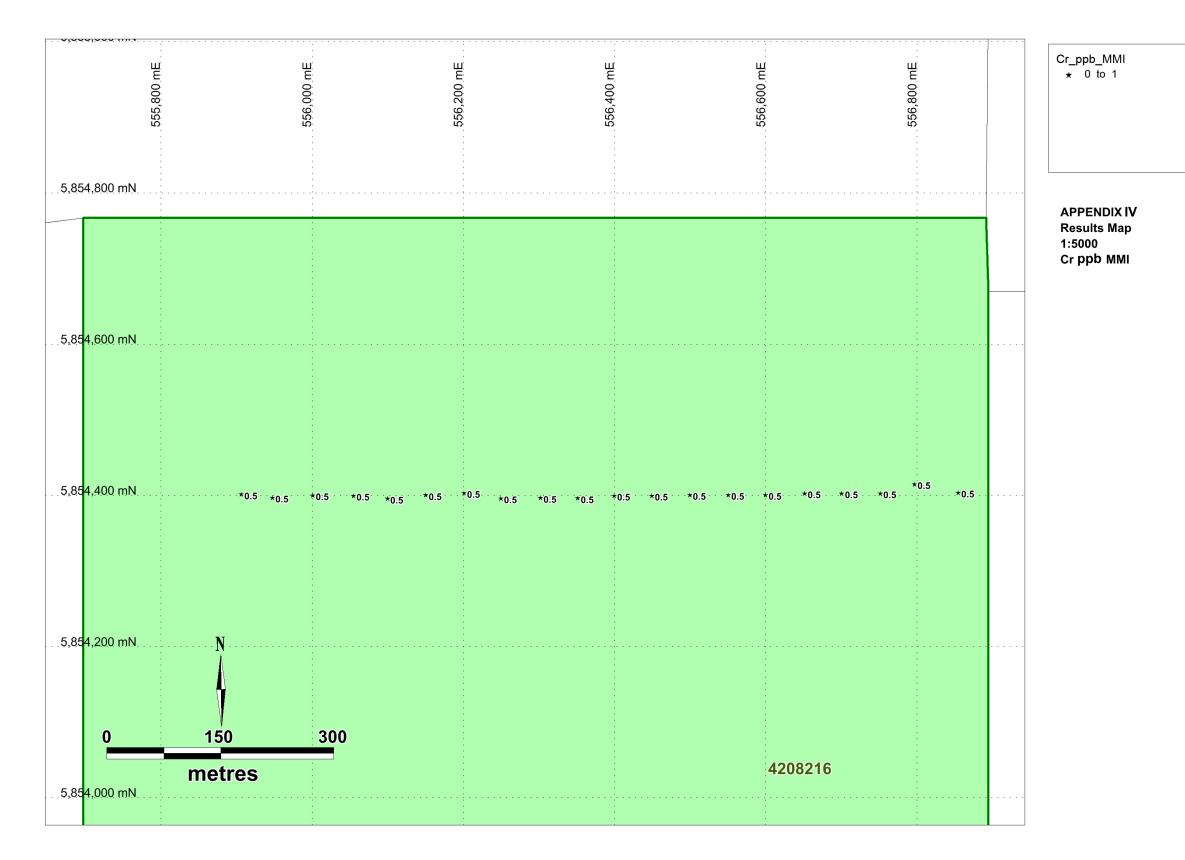
Analyte Symbol	Th	U	W	Zn	La	Ce	Nd	Sm	Eu	Tb	Lu	Yb	Mass
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g
Lower Limit	0.1	0.01	0.05	2	0.01	0.1	0.3	0.001	0.05	0.1	0.001	0.005	
 Method Code	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
WS01918	0.3	< 0.01	< 0.05	40	3.67	7.5	< 0.3	0.440	< 0.05	< 0.1	0.010	0.500	13.8
WS01920	0.3	0.10	< 0.05	< 2	3.06	10.2	< 0.3	0.470	< 0.05	< 0.1	0.010	0.420	15.1
WS01922	0.4	< 0.01	< 0.05	< 2	3.92	7.8	< 0.3	0.550	< 0.05	< 0.1	0.020	0.600	14.5
WS01924	0.4	< 0.01	< 0.05	29	4.00	12.9	7.4	0.510	< 0.05	< 0.1	0.020	< 0.005	9.00
WS01926	0.3	0.23	< 0.05	23	3.76	9.3	4.4	0.400	< 0.05	< 0.1	< 0.001	0.520	14.7
WS01928	0.4	0.17	< 0.05	16	4.66	8.4	< 0.3	0.540	< 0.05	< 0.1	0.010	0.520	14.9
WS01930	0.4	0.15	< 0.05	27	4.16	9.6	4.3	0.500	< 0.05	< 0.1	0.020	0.540	14.2
WS01932	0.5	0.28	< 0.05	< 2	4.43	9.3	6.6	0.520	0.08	< 0.1	0.010	0.500	15.3
WS01934	0.5	0.23	< 0.05	14	4.32	10.8	4.0	0.480	< 0.05	< 0.1	0.010	0.400	13.6
WS01936	0.7	< 0.01	< 0.05	< 2	4.23	12.0	5.3	0.570	< 0.05	< 0.1	0.020	0.460	14.8
WS01938	0.4	< 0.01	< 0.05	16	2.88	6.3	< 0.3	0.380	< 0.05	< 0.1	< 0.001	< 0.005	9.80
WS01940	0.5	< 0.01	< 0.05	45	4.12	9.3	5.9	0.530	< 0.05	< 0.1	0.010	0.600	11.5
WS01942	0.5	< 0.01	< 0.05	< 2	3.69	9.0	< 0.3	0.620	< 0.05	< 0.1	0.020	0.320	12.0
WS01944	0.7	< 0.01	< 0.05	223	4.41	9.0	8.3	0.700	< 0.05	< 0.1	0.020	0.430	15.8
WS01946	0.4	< 0.01	< 0.05	101	4.25	7.8	9.3	0.830	< 0.05	< 0.1	0.010	0.540	15.3
WS01948	0.6	< 0.01	< 0.05	94	5.33	12.9	9.5	0.760	< 0.05	< 0.1	0.020	0.620	15.1
 WS01950	0.6	< 0.01	< 0.05	76	4.59	10.8	10.7	0.780	< 0.05	< 0.1	0.020	0.690	15.3
 WS01734	4.6	1.07	< 0.05	83	38.9	85.2	14.1	5.27	0.43	< 0.1	0.140	3.25	15.1
WS01736	1.8	0.43	< 0.05	81	15.0	33.3	12.0	2.19	0.19	< 0.1	0.080	1.37	15.1
WS01738	1.9	0.33	< 0.05	41	16.1	41.7	12.4	2.35	0.20	< 0.1	0.060	1.77	15.7
WS01740	1.0	< 0.01	< 0.05	32	8.87	20.1	7.8	1.27	0.09	< 0.1	0.020	0.920	15.8
WS01742	0.8	< 0.01	< 0.05	47	6.37	11.7	9.8	1.01	< 0.05	< 0.1	0.030	1.18	15.2
WS01744	1.0	< 0.01	< 0.05	< 2	6.71	14.7	9.8	1.00	< 0.05	< 0.1	0.030	0.760	14.5
WS01746	0.4	< 0.01	< 0.05	< 2	5.87	11.7	6.8	0.820	< 0.05	< 0.1	0.030	0.580	14.9
WS01748	0.6	0.30	< 0.05	36	7.38	19.5	7.7	1.05	0.05	< 0.1	0.020	0.920	14.8
WS01750	0.7	< 0.01	< 0.05	38	6.95	17.1	8.5	0.960	< 0.05	< 0.1	0.020	0.660	15.6
WS02002	0.6	< 0.01	< 0.05	63	4.54	9.3	10.3	0.650	< 0.05	< 0.1	0.020	0.490	14.8
WS02003A	0.3	< 0.01	< 0.05	50	3.76	8.1	< 0.3	0.520	< 0.05	< 0.1	0.020	0.540	15.1
WS02006	0.8	< 0.01	< 0.05	70	5.06	14.1	8.8	0.750	< 0.05	< 0.1	0.020	< 0.005	15.3
WS02008	0.5	< 0.01	< 0.05	< 2	4.62	7.8	4.0	0.580	< 0.05	< 0.1	0.010	< 0.005	15.6
WS02010	0.7	0.21	< 0.05	58	8.16	12.3	8.5	1.00	< 0.05	< 0.1	0.030	0.550	15.4
WS02012	0.9	< 0.01	< 0.05	< 2	8.43	15.0	7.1	1.19	< 0.05	< 0.1	0.030	0.690	15.0
WS02014	0.7	< 0.01	< 0.05	14	5.70	9.9	< 0.3	0.810	0.07	< 0.1	0.010	0.370	15.3
WS02016	0.4	< 0.01	< 0.05	< 2	5.46	22.2	< 0.3	0.700	< 0.05	< 0.1	0.020	0.330	15.2
WS02018	0.6	< 0.01	< 0.05	33	5.61	11.1	< 0.3	0.770	< 0.05	< 0.1	0.020	0.390	15.6
WS02020	0.3	< 0.01	< 0.05	< 2	3.27	6.9	< 0.3	0.430	< 0.05	< 0.1	< 0.001	0.320	12.3
WS02022	0.4	< 0.01	< 0.05	< 2	4.08	7.2	5.4	0.520	< 0.05	< 0.1	0.010	0.350	10.2
WS02024	0.4	< 0.01	< 0.05	< 2	4.38	7.8	< 0.3	0.720	< 0.05	< 0.1	< 0.001	< 0.005	14.7
WS02026	0.5	< 0.01	< 0.05	< 2	7.68	15.3	9.9	1.12	< 0.05	< 0.1	0.040	0.470	15.2
WS02028	0.8	0.36	< 0.05	37	7.92	10.8	10.4	1.05	< 0.05	< 0.1	0.020	0.590	15.6
WS02030	0.7	< 0.01	< 0.05	47	6.39	14.4	5.4	0.870	0.06	< 0.1	0.020	0.460	15.6
WS02032	0.7	< 0.01	< 0.05	60	6.96	12.6	< 0.3	1.06	0.08	< 0.1	0.010	0.460	15.5
	Ι		Ι									Ι	


Analyte Symbol	Th	U	W	Zn	La	Ce	Nd	Sm	Eu	Tb	Lu	Yb	Mass
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g
Lower Limit	0.1	0.01	0.05	2	0.01	0.1	0.3	0.001	0.05	0.1	0.001	0.005	
Method Code	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA
WS02202	0.3	< 0.01	< 0.05	11	3.34	7.8	4.0	0.523	< 0.05	< 0.1	0.010	0.140	15.5
WS02204	0.3	< 0.01	< 0.05	27	3.76	8.6	4.8	0.562	< 0.05	< 0.1	0.010	0.410	10.0
WS02206	0.4	0.11	< 0.05	9	3.58	8.4	1.9	0.497	< 0.05	< 0.1	< 0.001	0.420	11.1
WS02208	0.4	0.07	< 0.05	15	2.91	6.4	1.6	0.406	< 0.05	< 0.1	0.010	0.390	12.4
WS02210	0.2	< 0.01	< 0.05	7	3.06	7.0	3.4	0.443	< 0.05	0.2	0.010	0.450	11.4
WS02212	0.3	0.09	< 0.05	< 2	3.13	7.4	1.4	0.427	< 0.05	< 0.1	0.010	0.430	9.90
WS02214	0.3	0.05	< 0.05	10	2.90	7.0	1.7	0.410	< 0.05	< 0.1	0.010	0.350	14.4
WS02216	0.2	< 0.01	< 0.05	14	2.96	8.4	4.4	0.452	< 0.05	< 0.1	< 0.001	0.140	14.5
WS02218	0.3	0.10	< 0.05	12	4.33	10.6	4.3	0.649	< 0.05	< 0.1	0.010	0.380	14.8
WS02220	0.4	0.04	< 0.05	14	4.08	8.6	4.2	0.548	< 0.05	< 0.1	0.010	0.380	14.9
WS02222	0.4	0.12	< 0.05	< 2	4.53	11.2	3.8	0.642	< 0.05	< 0.1	0.010	0.460	13.9
WS02224	0.4	0.09	< 0.05	5	5.19	12.0	4.3	0.691	< 0.05	< 0.1	0.010	0.510	15.2
WS02226	0.3	0.06	< 0.05	11	3.44	8.4	3.0	0.597	< 0.05	< 0.1	< 0.001	0.420	14.5
WS02228	0.3	< 0.01	< 0.05	9	3.39	8.0	1.9	0.549	< 0.05	< 0.1	0.010	0.360	15.0
WS02230	0.4	< 0.01	< 0.05	23	3.60	9.0	3.7	0.564	< 0.05	< 0.1	< 0.001	0.160	15.6
WS02232	0.2	< 0.01	< 0.05	23	2.69	6.6	5.3	0.413	< 0.05	< 0.1	< 0.001	0.250	15.5
WS02234	0.4	< 0.01	< 0.05	89	4.83	9.8	6.5	0.768	< 0.05	< 0.1	0.010	0.250	15.6
WS02236	0.3	0.04	< 0.05	48	3.96	8.0	5.1	0.618	< 0.05	< 0.1	0.010	0.380	15.8
WS02238	0.3	< 0.01	< 0.05	11	2.98	7.0	1.5	0.464	< 0.05	< 0.1	0.010	0.290	14.3
WS02240	0.2	< 0.01	< 0.05	7	2.59	4.2	1.0	0.340	< 0.05	< 0.1	< 0.001	0.110	13.9
WS02242	0.3	< 0.01	< 0.05	< 2	2.75	4.8	2.4	0.315	< 0.05	< 0.1	< 0.001	0.100	13.5
WS02244	0.2	< 0.01	< 0.05	15	2.34	4.2	2.8	0.264	< 0.05	< 0.1	< 0.001	0.240	12.0
WS02246	0.3	0.05	< 0.05	11	3.87	5.8	3.1	0.430	< 0.05	< 0.1	0.013	0.390	14.7
WS02248	0.4	< 0.01	< 0.05	7	4.14	7.7	2.8	0.496	< 0.05	< 0.1	0.007	0.290	14.5
WS02250	0.4	< 0.01	< 0.05	9	4.73	7.2	2.5	0.566	< 0.05	< 0.1	0.018	0.510	15.6
WS02252	0.6	0.07	< 0.05	56	5.32	7.5	3.8	0.704	0.07	< 0.1	0.009	0.550	15.0
WS02254	0.8	0.09		15	7.29	11.4	7.7	0.956	0.09	< 0.1	0.010	0.710	15.6
WS02256	0.4	< 0.01	< 0.05	66	3.04	5.4	3.3	0.393	< 0.05	< 0.1	0.009	0.450	10.9
WS02258	0.3	< 0.01	< 0.05	86	3.75	7.5	< 0.3	0.432	< 0.05	< 0.1	0.008	0.420	10.2
WS02260	0.3	< 0.01	< 0.05	43	3.21	5.6	2.5	0.358	< 0.05	< 0.1	0.007	0.340	12.3
WS02262	0.3	< 0.01	< 0.05	54	4.25	8.7	0.9	0.510	< 0.05	< 0.1	0.010	0.490	10.8
WS02264	1.0	0.23	< 0.05	18	16.2	29.9	4.8	1.83	0.17	< 0.1	0.042	1.42	15.3
WS02266	1.0	0.41	< 0.05	40	25.8	51.2	7.3	3.34	0.31	0.2	0.040	1.62	15.4
WS02268	0.6	< 0.01	< 0.05	53	6.84	11.4	6.8	1.03	< 0.05	< 0.1	0.017	0.740	15.4
WS02270	0.4	< 0.01	< 0.05	44	4.23	7.5	3.5	0.624	< 0.05	< 0.1	0.012	0.500	9.10
WS02272	0.6	0.16		69	6.44	10.5	3.7	0.843	< 0.05	< 0.1	0.015	0.660	
WS02274	0.6			122	4.59	11.3	3.3	0.526		< 0.1	0.010	0.280	
WS02276	0.5	0.08	< 0.05	104	4.88	9.6	2.0	0.513	0.05	< 0.1	0.011	0.510	14.8
WS02278	0.8	< 0.01	< 0.05	58	7.49	13.6	8.3	1.09	0.05	< 0.1	0.013	0.790	14.6
WS02280	0.4	< 0.01	< 0.05	25	3.86	7.5	3.0	0.495	< 0.05	< 0.1	0.011	0.350	13.7
WS02282	0.6	0.19		32	6.09	11.1	3.7	0.682	0.05	< 0.1	0.013	0.650	14.5
WS02284	0.6	0.13	< 0.05	83	6.29	12.8	2.7	0.792	< 0.05	< 0.1	0.018	0.660	15.4

QC


Analyte Symbol	Au	As	Ba	Br	Ca	Co	Fe	К	Na	Rb	Sb	Sc	Sr	Zn	La	Ce	Sm	Yb
Unit Symbol	ppb	ppm	ppm	ppm	%	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.1	0.01	5	0.01	0.01	0.1	0.005	0.01	1	1	0.005	0.01	100	2	0.01	0.1	0.001	0.005
Method Code	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA	INAA						
L-Std-3 Meas	23.8	1.23	66	4.27	3.85	1.1	0.340	1.28	1600	8	0.190	0.80	100	32	2.76	5.8	0.397	0.302
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	21.7	1.16	64	4.43	3.97	1.3	0.360	1.23	1760	9	0.250	0.78	< 100	62	2.84	6.0	0.422	0.282
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	22.9	1.20	70	4.46	3.88	1.1	0.330	1.19	1720	7	0.200	0.92	< 100	54	2.58	5.8	0.401	0.250
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	20.0	1.24	64	3.67	3.94	1.4	0.330	1.13	1710	7	0.200	0.84	< 100	72	2.51	6.2	0.358	0.280
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	21.9	1.46	68	4.19	3.94	1.7	0.380	1.26	1700	8	0.190	0.88	100	61	2.62	6.0	0.430	0.270
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	21.3	1.17	72	3.88	3.43	1.4	0.320	1.08	1780	7	0.240	0.88	100	55	2.78	5.8	0.384	0.322
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	23.5	1.17	69	4.19	3.68	1.2	0.320	1.17	1630	7	0.200	0.75	< 100	72	2.70	5.4	0.351	0.290
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	23.1	1.40	78	4.92	3.84	1.3	0.400	1.26	1620	7	0.200	0.84	100	61	2.66	6.0	0.396	0.320
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	23.2	1.30	72	4.07	3.68	1.4	0.330	1.14	1720	9	0.220	0.76	< 100	66	2.72	5.6	0.348	0.330
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	21.7	1.22	76	3.60	3.65	1.2	0.320	1.13	1620	8	0.260	0.72	< 100	61	2.48	5.2	0.400	0.260
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	20.0	1.28	60	4.35	3.29	1.6	0.360	1.36	1550	9	0.230	0.75	< 100	66	2.85	5.7	0.420	0.250
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290
L-Std-3 Meas	22.7	1.26	60	4.24	3.53	1.1	0.340	1.33	1620	10	0.270	0.81	< 100	63	2.68	5.7	0.370	0.300
L-Std-3 Cert	20.0	1.23	71.0	4.00	3.60	1.40	0.350	1.20	1660	9.00	0.240	0.890	105	64.0	2.73	5.60	0.400	0.290

APPENDIX IV


Soil Sampling Result Maps at 1:5,000 For select elements

