2014 Diamond Drilling Report May to June 2014 Mine Lease 108400 (CLM305, CLM306)

Cameron Gold Operations Ltd.

Nicholas Walker Exploration Manager

Kristen Wiebe Project Geologist May 2015

Contents

1.	Intro	oduction:	1
2.	Ten	ure	1
3.	Loca	ation and Access	1
4.	Prev	vious Work	2
5.	Reg	ional Geology	1
6.	Loca	al Geology	5
7.	Drill	l Program Overview	5
7	.1.	Juno	3
7	.2.	Ajax	Э
7	.3.	Hermoine)
7	.4.	Jupiter1	1
8.	Log	ging and Core Processing Procedures1	3
9.	Ana	lysis14	1
9	.1.	Quality Control and Quality Assurance1	5
10.	Res	ults and Recommendations1	5

Table of Figures

Figure 1: Location and Access to Cameron Gold Project	1
Figure 2: Simplified geological map of the Cameron Gold Camp Project	4
Figure 3: Location of the regional diamond drilling completed at Cameron in May/June 2014	7
Figure 4: Plan view showing location of drillholes completed at Juno	8
Figure 5: Plan view showing location of drillholes completed at Ajax	10
Figure 6: Plan view showing location of drillholes completed at Hermione	11
Figure 7: Plan view showing location of drillholes completed at Jupiter (CCD-14-240 to CCD-14-244) a	ind
highlighting possible locations for future drilling (red circles)	12

Tables

Table 1: Work history by Cameron Gold Operations Ltd at the Cameron Gold Project	3
Table 2: Collar locations	6
Table 3: Significant intercepts at Juno (above 0.5g/t cut-off)	8
Table 4: Significant intercepts at Ajax (above 0.5g/t cut-off)	9
Table 5: Significant intercepts at Hermione (above 0.5g/t cut-off)	11
Table 6: Significant intercepts at Jupiter (above 0.5g/t cut-off)	12
Table 7: Actlabs analytical methods	14

Appendices

Appendix I: Collar Plan Appendix II: Drill Logs Appendix III: Sample Intervals Appendix IV: Assay Certificates

1. Introduction:

Between May and June of 2014, Cameron Gold Operations Ltd. completed a 15 hole diamond drill program on mine lease 108400 (CLM 305 and CLM 306). In total 2,600 metres were drilled at four prospects proximal to the Cameron Gold Deposit; Juno, Ajax, Hermoine and Jupiter. The program was designed to follow up on anomalous gold grain counts and gold geochemical anomalies returned from overburden till and bedrock samples collected by Cameron Gold Operations in 2012 and 2013.

2. Tenure

Cameron Gold Operations Ltd. holds 100% interest of the Mine Lease 108400 (CLM 305 and CLM 306) covered in this report.

3. Location and Access

The Cameron Gold property is located in the Kenora Mining Division in Northwestern Ontario approximately 90 km southeast of the town of Kenora. Access to the lease is via Cameron Lake Road, an all-weather, gravel road that departs east from Highway 71 about 30 km north of the town of Nestor Falls.

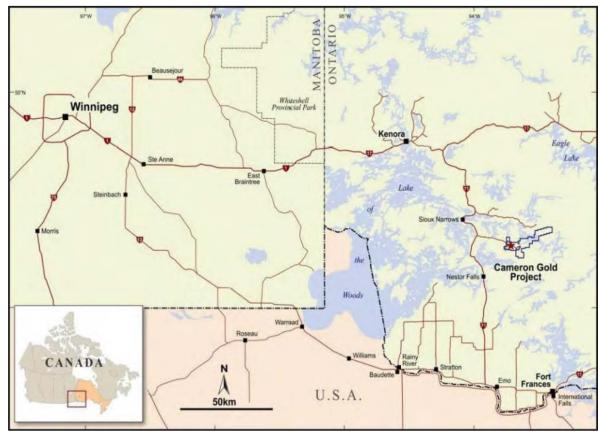


Figure 1: Location and Access to Cameron Gold Project

4. Previous Work

The Cameron Gold Deposit was discovered by prospectors working for Noranda in 1960. Two mineralized zones at surface were identified extending over a strike length of more than 300 metres. Between 1960 and 1973 these zones were tested by limited drilling, trenching, geophysical surveys and geological mapping by Noranda in two separate exploration phases and under option by Zahavy Mines.

In 1980 Nuinsco Resources (Nuinsco) acquired the Project from local prospectors and staked additional claims over the area. Between 1981 and 1983 Nuinsco conducted prospecting and geological mapping, geophysical surveying and shallow drilling (19 holes for 1,734 metres). Follow-up work during 1983-1985 included drilling a further 136 diamond drill holes (31,819 metres) and 62 shallower reverse circulation drill holes (754 metres) in joint venture with Lockwood Petroleum.

During 1986 Nuinsco completed a further four diamond drill holes (744 metres) prior to entering into a joint venture with Echo Bay Mines Limited. Through this joint venture Echo Bay earned a majority equity position in Nuinsco by completing 3,238 metres of underground development. This comprised a decline and three levels of lateral drifts, as well as a further 347 metres of raise development. An underground diamond drill program was subsequently completed, comprising 552 drill holes for 28,913 metres.

In 1988 Deak International purchased Echo Bay's interest in Nuinsco and extended the decline to a vertical depth of 243 metres. A further 16 surface diamond drill holes and 55 underground diamond drill holes were completed before Deak withdrew from the Project, after which Nuinsco regained 100% ownership.

The Project remained dormant until December 1995, when Cambior entered a joint venture agreement with Nuinsco. Cambior completed 13 diamond drill holes (8,012 metres) targeting the western and eastern extensions of the mineralization, and testing the main zone at depth. The results received from this work lead Cambior to withdraw from the Project as it did not fit the corporate objectives of the company. In November 2003 Nuinsco completed a further 13 diamond drill holes for 1,846 metres, evaluating the area above the 243 metre level for the extension of high-grade mineralization intersected in earlier drilling. This program was later followed up with a small, two-hole diamond drilling program (1,063m) in December 2004. Only minimal field work has been completed subsequently. A total of 757 surface and underground drill holes, totalling 84,541 metres, have been completed at the deposit.

In 2010 Coventry Resources Ltd acquired the Cameron Gold Project and through its subsidiary company Cameron Gold Operations Ltd completed the following work (Table 1).

Year	Work	Details
2010	Claim Staking	Approximately 90 km ² added to the Cameron Gold Project through claim staking and the addition of Nucanolan and Roy properties.
2010	Line Cutting	Two campaigns of extensive line cutting were undertaken over the western half of the project area on four grid orientations (Cameron, UTM, Rowan and Otterskin). More than 250 km of lines were cut. Lines spaced between 100 m to 200m. Detailed line cutting on 40m spaced lines has also been completed over limited areas.
2010	Diamond Drilling	88 diamond drill holes for a total of 13,160 m
2010	Airborne Magnetic Gradiometer Survey	A low-level airborne magnetic gradiometer survey flown over the entire project area. A total of 3,465 line kilometres flown. (line spacing of 50m, flight height of 50m)
2010	Prospecting	A mapping and rock chip sampling campaign was executed by traversing cut lines.
2010- 2011	IP Survey (Pole- dipole)	IP Survey conducted in four campaigns between July 2010 and February 2011. IP data was collected in the time domain across 50m receiver dipoles, utilising a GDD 5 Kilowatt transmitter and an Iris ElrecPro Receiver. A total of 142 line kilometres of IP data were acquired.
2011	SGH Soil Sampling Survey	A total of 1353 samples were collected in the greater Cameron and Meston area for SGH (Soil gas and Hydrocarbon) analysis.
2011	Diamond Drilling	124 diamond drill holes for 18,728 m were drilled
2011	Geochemical Pit Excavation	263 pits were excavated in the Greater Cameron area. A backhoe and/or excavator were used to break ground and obtain sample of glacial material located directly above bedrock. Samples were analysed to define the geochemical signature
2012	Overburden Drilling	36 shallow RC holes were completed for 306 m over the area surrounding the Cameron Gold Deposit
2012	Diamond Drilling	30 diamond drill holes for 4,116 m were drilled
2013	Geochemical Pit Excavation	94 pits were excavated in the Greater Cameron area. A backhoe and/or excavator was used to break ground and obtain the sample of glacial material located directly above bedrock. Samples were analysed to define the geochemical signature.
2014	Overburden Drilling	40 shallow RC holes were completed for 220m on the Jupiter prospect (700m northwest along strike of the Cameron Gold Deposit)
2014	Diamond Drilling	15 diamond drill holes for 2,600m were drilled.

Table 1: Work history by Cameron Gold Operations Ltd at the Cameron Gold Project

5. Regional Geology

The Cameron Property is underlain by rocks of the Archean, Savant Lake-Crow Lake metavolcanicmetasedimentary belt in the Wabigoon Subprovince of the Canadian Shield. It occurs within a region of greenstone metavolcanic rock, bounded by granitoid batholiths such as Nolan lake stock. The area is cut by a number of major faults, the Cameron Lake Shear Zone (CLSZ), a northwest-southeast trending zone of high strain that hosts the gold mineralization of the Cameron Deposit. CLSZ is a splay off the Pipestone-Cameron Fault a district sized northwest striking structure that separates the Rowan Lake Greenstone Terrane from the Kakagi Greenstone Terrane to the SW. This northwest striking, steeply northeast dipping fault is a significant zone of deformation and displacement which has been defined for over 100km of strike length and has characteristics similar to the regional "breaks" recognized in other Canadian Archean gold camps. The Monte Cristo Shear Zone is another main structure in the region striking NE-SW, to the east of the CLSZ (Figure 2). The Monte Cristo Shear Zone has gold occurrences along its length most notably Monte Cristo and Victor prospects also held by Cameron Gold Operations Ltd.

The Cameron Deposit sits within the southern limb of the Shingwak Lake anticline and north-west of the Nolan lake stock a large felsic intrusive body. The Nolan Lake Stock is a dual composition intrusion comprising of a granodiorite centre and a magnetically 'noisy' monzonite outer rim.

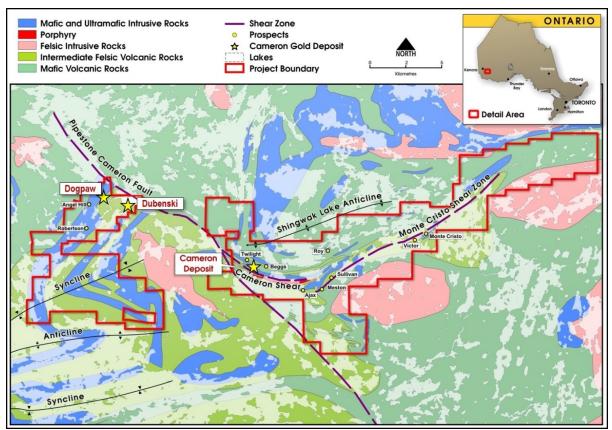


Figure 2: Simplified geological map of the Cameron Gold Camp Project.

6. Local Geology

The Cameron Deposit occurs in the Cameron Lake Shear Zone, a brittle-ductile deformation zone consisting of both branching and en-echelon shears of variable widths. The CLSZ is locally extensively altered to carbonate-sericite schist in the hanging wall of the shear and is dominated by fuchsite and chlorite schist in the footwall. Gold distribution occurs in quartz-breccia veins and as structural controlled altered zones with an abundance of pyrite. Gold mineralisation is present in the hanging wall of the CLSZ, while the footwall of the shear zone despite a few exceptions remains less mineralised. The following five alteration assemblages have been identified by Cameron Gold operations and are listed in from medial to proximal distance to the gold mineralization. Assemblages' iii-iv would be expected to carry significant grade if identified in drill core.

- i) Disseminated carbonate-chlorite
- ii) Pervasive to semi-pervasive carbonate±sericite
- iii) Pervasive carbonate-sericite-pyrite
- iv) Pervasive chlorite-sericite-silica-hematite-carbonate-pyrite±magnetite
- v) Pervasive carbonate-sericite-silica-albite-pyrite

Pyritic alteration is most common within the fragments of the breccia veins and in the altered rocks enveloping them, as well as tertiary structures that splay off of the CLSZ. Gold distribution has a strong correlation to the abundance of fine-grained disseminated pyrite present.

The presence of a mafic dolerite unit in the structural footwall provides a rheological contrast with overlying pillowed basalt unit which is suspected to intensify shear development locally. This shear development is represented by both thicker shear zone intervals as well as local increase of splays off the CLSZ. An increase in abundance of splayed shears provide further opportunity for gold baring fluid to travel, deposit and concentrate in its Fe-rich host rock. The results of the exploration conducted to date provide ample evidence of widespread gold mineralization within the Cameron project.

7. Drill Program Overview

Mallette Drilling was contracted to complete the diamond drilling for Cameron Gold Operations. The program was designed to follow-up on anomalous gold grain counts and gold geochemical anomalies returned from overburden till and bedrock samples collected by Cameron Gold Operations in 2011 and 2013. Drilling commenced on the 15th May 2014 and was completed by the 13th June. A total of 15 holes for 2,600m were completed (Table 2). The prospects targeted during the diamond drill program were Juno, Ajax, Hermione and Jupiter (Figure 2).

PROSPECT	HOLE-ID	EAST ¹	NORTH ¹	ELEVATION (m)	AZIMUTH (magnetic)	DIP	DEPTH (m)
JUNO	CJD-14-001	447,715	5,459,659	375.6	45	-45	200.0
JUNO	CJD-14-002	447,850	5,459,780	374.5	225	-45	199.0
JUNO	CJD-14-003	447,915	5,459,845	378.3	225	-45	163.0
Sub-Total	3						562.0
AJAX	CAD-14-001	450,540	5,458,513	365.1	180	-45	208.0
AJAX	CAD-14-002	450,397	5,458,451	353.7	360	-45	185.0
AJAX	CAD-14-003	450,481	5,458,452	350.5	360	-45	151.0
AJAX	CAD-14-004	450,481	5,458,452	350.5	360	-60	221.0
AJAX	CAD-14-005	450,540	5,458,530	357.4	180	-60	122.0
Sub-Total	5						887.0
HERMIONE	CHD-14-001	450,623	5,459,167	366.6	180	-45	244.0
HERMIONE	CHD-14-002	450,545	5,459,149	368.4	180	-45	181.0
Sub-Total	2						425.0
JUPITER	CCD-14-240	446,277	5,460,542	360.7	225	-60	125.0
JUPITER	CCD-14-241	446,363	5,460,627	365.5	225	-60	138.5
JUPITER	CCD-14-242	446,475	5,460,729	365.2	225	-60	152.0
JUPITER	CCD-14-243	446,426	5,460,565	372.0	225	-60	182.0
JUPITER	CCD-14-244	446,548	5,460,538	366.0	225	-60	128.0
Sub-Total	5						725.0
15 Holes							2599.5

Table 2: Collar locations

¹ Universal Transverse Mercator, NAD83, Zone 15

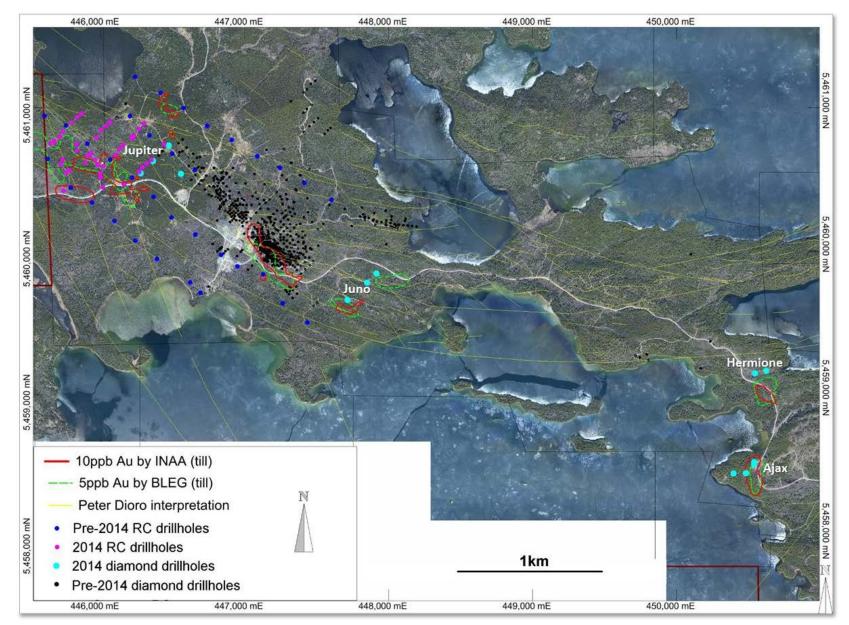


Figure 3: Location of the regional diamond drilling completed at Cameron in May/June 2014.

7.1.Juno

Three drill holes were completed at Juno for a total of 562m (Figure 3). Drilling was planned to follow up on gold-in-till anomalies identified by Cameron Gold Operations during pitting campaigns carried out in 2012 and 2013. The drilling targeted the mafic dolerite and pillow basalt contact to the NNE of the gold till geochemical anomaly. This stratigraphic position at the main part of the Cameron Gold deposit is the location of the strongest shearing, alteration and best gold mineralisation development and as such could potentially be the location needed for gold deposition at Juno.

Drilling at Juno suggests that the lithology and structure are steeply dipping to the northeast. The frequency and grade of significant gold intercepts at Juno were less than anticipated, occurring within moderately foliated chlorite-sericite-(Fe) carbonate altered intervals (Table 2). These intervals occur to the northeast of the targeted contact within an intercalated package of mafic dolerite and basalt. The altered intervals are interpreted to be a weak along strike expression of the Cameron Lake Shear Zone.

Hole ID	From (m)	To (m)	Width (m)	Au (ppm)
CJD-14-002	8.05	10.00	1.95	0.86
CJD-14-003	91.00	92.00	1.00	3.35
CJD-14-003	138.60	139.60	1.00	3.80

Table 3: Significant intercepts at Juno (above 0.5g/t cut-off)

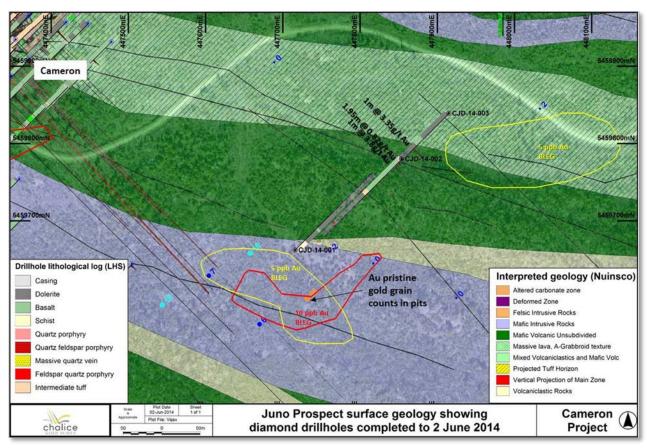


Figure 4: Plan view showing location of drillholes completed at Juno

7.2.Ajax

Five holes were drilled at Ajax for a total of 557m (Figure 4). Drilling at Ajax was designed to follow up on channel sampling and mapping completed by Cameron Gold Operations at the prospect in 2011. The discovery outcrop consists of Fe-carbonate altered mafic dolerite with east-west trending breccia veining and concordant feldspar quartz porphyry dyke. Drilling targeted the breccia veins as well as any possible mineralisation within the altered wall rock. A second target was a shear that was mapped to the south of the discovery outcrop. The shear zone did not produce significant assay results from discrete rock chip sampling but did display sericite-(Fe) carbonate-silica alteration, which warranted further investigation.

CAD-14-001 and CAD-14-005 were designed to test for mineralisation beneath the discovery outcrop. The hole intersected a 25 metre thick, moderately altered (Fe) carbonate zone with trace fine grained disseminated pyrite hosted in mafic dolerite. A 20 centimetre vein with 1% fine grained disseminated pyrite produced an assay result of 3.18 g/t Au over 0.5 metres. Within the larger (Fe) carbonate zone an interval returned 1.23 g/t Au over 0.8m was intersected on the upper contact of a strongly sericite-silica–(Fe) carbonate altered feldspar-quartz porphyry, with 0.5% medium grained pyrite within veins and fractures. Despite CAD-14-001 being proximal to the discovery outcrop, there was no intersection of the breccia veining seen in outcrop.

CAD-14-003 and CAD-14-004 were drilled ~60m along strike to the west of the discovery outcrop. Drill holes CAD-14-003, CAD-14-004 and CAD-14-005 failed to intersect at thick (fe) carbonate alteration package logged in CAD-14-001, however the three holes did intersect breccia veining. The Breccia vein intersected in the drill core produced gold assay of 0.79 g/t over 1.55m, 0.97 g/t over 0.5m and 0.65g/t over 1m in CAD-14-003, CAD-14-004 and CAD-14-005 respectively. Refer to Table 4 for significant intercepts.

CAD-14-002 was collared 145 metres along strike to the west of the discovery outcrop. It was planned to test the sericite dominant schist that was mapped in 2011. CAD-14-002 returned a single intercept of 1.44 g/t Au over 0.7 metres. The result came from a quartz-albite-carbonate vein with 0.5% fine grained disseminated pyrite within a greenshist altered dolerite. It is interpreted that this intercept is likely unrelated to the main gold mineralisation at the discovery outcrop.

Hole ID	From (m)	To (m)	Width (m)	Au (ppm)
CAD-14-001	14.80	15.30	0.50	3.18
CAD-14-001	24.55	25.35	0.80	1.23
CAD-14-002	32.30	33.00	0.70	1.44
CAD-14-003	13.00	14.00	1.00	0.71
CAD-14-003	63.40	65.05	1.65	2.60
CAD-14-004	150.00	151.00	1.00	0.52
CAD-14-004	201.20	201.70	0.50	0.97
CAD-14-005	77.80	78.80	1.00	0.65
CAD-14-005	103.50	104.20	0.70	4.43

Table 4: Significant intercepts at Ajax (above 0.5g/t cut-off)

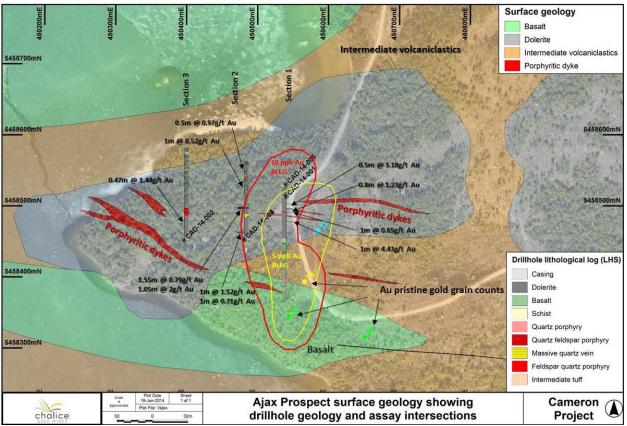


Figure 5: Plan view showing location of drillholes completed at Ajax.

7.3.Hermoine

Two holes were drilled by at Hermione for a total of 425m (Figure 5). These holes targeted an interpreted structure running through a cedar swamp covered depression flanked by the topographic highs of mafic dolerite to the north and a quartz porphyry intrusion to the south. This interpreted structure was anticipated to be the source of a strong gold and multi-element till anomaly identified by Cameron Gold Operations pitting to the south of the depression. The presence of a structure passing though the depressed area was supported by a shear zone being logged in the bedrock, in an overburden drill hole drilled by Nucanolan in (1985) the southwest corner of Knutson Lake.

Drilling was planned to commence in the dolerite unit and finish on the other side of the topographical depression in the porphyry unit. Drilling failed to intersect the interpreted structure; it appears the depressed area has been caused by mechanical weathering of a rheologically softer intermediate volcaniclastic lithology, wedged between preferentially preserved harder more crystalline units of dolerite and porphyry occurring to the north and south respectively.

In addition to the gold in till anomaly, a strong east-west trending IP anomaly parallel to stratigraphy occurs in the same depression. This conductivity response was directly targeted with CHD-14-001. The IP response can be explained by blebby and banded pyrite accumulations with minor quantities of pyrrhotite present within a basaltic andesite unit. These accumulations appear to congregate at what appear to be pillow rinds. No gold or base metal mineralisation is associated with the sulphide mineralisation. Best gold grade intersections from the Hermione diamond drillholes was in CAD-14-002 (Table 5)

Hole ID	From (m)	To (m)	Width (m)	Au (ppm)
CHD-14-002	31.0	32.0	1.0	0.5

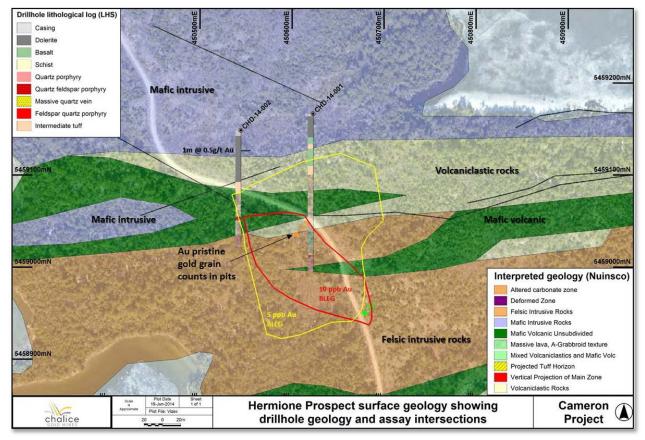


Figure 6: Plan view showing location of drillholes completed at Hermione.

7.4. Jupiter

Drilling at Jupiter was designed to intersect any along strike mineralisation to the northwest of the Cameron Gold deposit, by following up on a gold-in-till anomaly that was identified by the prior pitting campaigns as well as follow up on anomalous bottom of hole samples collected during the 2014 reverse circulation drilling. A total of 4 holes were drilled by at Jupiter with an extra hole drilled to target mineralisation southwest of the Twilight prospect for a total of 726m (Figure 6)

CCD-14-240 and CCD-14-243 were planned to cross a discreet geophysical contact between high magnetic units to the northeast and low magnetic units to the southwest. The Cameron Gold deposit sits just northeast of a similar geophysical signature.

CCD-14-241 intersected 2.78 g/t Au over 0.9 metres, in what appears to be a dacite porphyry that was overprinted by a later vein with relic porphyritic textures still present. The vein features 1% very fine grained disseminated pyrite.

CCD-14-242 intersected 1.95 g/t Au over 1.0 metre in a mineralized intersection consisting of strong sericite-silica- (Fe) carbonate alteration with 0.5% fine grained pyrite.

Cameron Gold Operations Ltd.

CCD-14-244 was planned to target shallow up dip mineralisation of four gold mineralised intersections at the end of CCD-12-239.

Refer to Table 4 for a complete list of significant intercepts at Jupiter.

Table 6: Significant intercepts at Jupiter (above 0.5g/t cut-off)

Hole ID	From (m)	To (m)	Width (m)	Au (ppm)
CCD-14-241	109.85	110.75	0.9	2.78
CCD-14-242	94.00	95.00	1.0	1.95
CCD-14-243	96.90	97.90	1.0	2.56

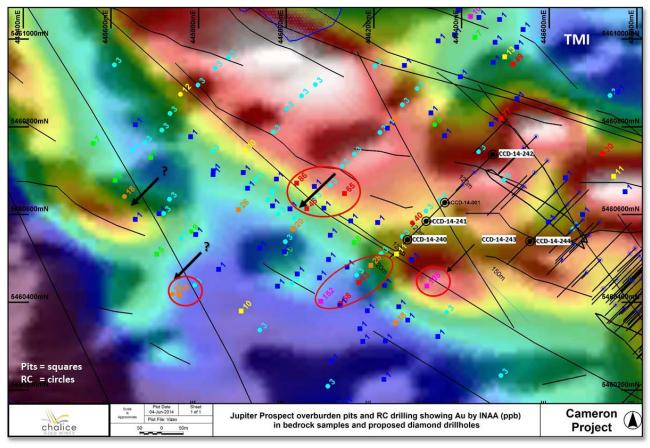


Figure 7: Plan view showing location of drillholes completed at Jupiter (CCD-14-240 to CCD-14-244) and highlighting possible locations for future drilling (red circles).

8. Logging and Core Processing Procedures

During the drilling program core was delivered by the contractor to the core shack twice daily (at shift change). The core processing commenced with orientation of core where the Geo-technician attempted to draw an orientation line across a 3m drill run between orientation marks. Intervals containing important structural and lithological or alteration contacts were given additional attention when it came to orientation. The Geo-technician measured out the received core and placed meter marks every meter using a wax pencil. Box measurements intervals were recorded to the 10cm for each box delivered.

Basic rock competency was determined by measuring core recovery (as a percentage) and calculating Rock Quality Designation (RQD) for each drill run (core block to core block).

Magnetic susceptibility of the core was measured as a point value on every meter of core using the KT-10 Magnetic susceptibility meter which expresses data in SI units.

Density measurements were done on every assay interval as well as every lithological unit within each drillhole. A representative piece of core with a minimum length of 10cm was used. The samples were weighed in air (W_a) and then in water (W_w) and then density (ρ) calculated according to the following formula:

$$\rho = \frac{W_a}{W_a - W_w}$$

Once geotechnical logging was completed; the core was logged by a geologist. Detailed descriptions of lithology, alteration and structure were recorded directly into a spreadsheet template. During the 2010-2011 drill campaign, lithology and alteration were logged in the same template therefore the drill logs have multiple intervals of the same lithology broken out simply due to changes in alteration. Alteration and lithology were separated into two templates in subsequent drilling campaigns.

Structural data (foliation, veins, faults and contacts) was measured by the geologists using a Winn's geological solutions kenometer with an NQ adaptor.

Core to be analyzed was determined by the core logging geologist with the following guidelines

- Pervasive and Semi-Pervasive Sericite-Carbonate (± Quartz ± Albite ± Pyrite) alteration
- Disseminated very fine-grained and fine-grained pyrite where more than 1% in abundance (not late bleb or cube pyrite)
- Quartz veins
- Porphyry's

In general the core was sampled in 1 meter intervals while respecting lithological and alteration contacts. An additional minimum 1m shoulders were placed on either side of mineralization to determine the limit of mineralization and pick up on subtle mineralization that could be potentially missed by the geologists. Core was cut by a core cutters using a masonry saw into two halves with one

half submitted to the lab for analysis and the other half kept in the core box as a reference. After processing, all core from the 2010-2011 program was stored in newly fabricated racks on site on the western side of the Cameron Gold Operations' camp

9. Analysis

All samples were analyzed at Activation Laboratories (Actlabs) Ltd. in Thunder Bay, Ontario, Canada. The samples were prepared using Actlabs method RX1 with the whole sample crushed, with up to 75% passing 2mm. A 250g split was taken and pulverized with 95% passing 105µ. Samples were then analyzed for gold by method 1A2 – Fire Assay-AA with over limit samples re-assayed by 1A3-Fire assay gravimetric (Table 3). For both 1A2 and 1A3 a 30g pulp sample was digested by fire assay with the gold content determined by AA (Atomic Absorption) or weighed gravimetrically on a microbalance respectively.

Samples from the Hermione prospect also underwent multi-element analysis by 1F2 – Total Digestion – ICP. A 0.25 g sample is digested with four acids beginning with hydrofluoric, followed by a mixture of nitric and perchloric acids. This is then heated using precise programmer controlled heating in several ramping and holding cycles which takes the samples to incipient dryness. After incipient dryness is attained, samples are brought back into solution using aqua regia. The samples are then analyzed using an Agilent 735 ICP.

		Elen	nent	Detection Li	mit	Upp	er Limit		
			u	5		5,000			
Code 1A3	(Fire Assay-G	ravimetrio) Detectio	n Limits (g/mT)					
		Ele	ment	Detection L	imit	Upper Limit			
			Au	0.03		1	0000		
Code 1F2	- Elements an	d Detectio	on Limits (p	opm except wh	ere not	ed)			
Element	Detection Limit	Upper Limit	Elemen	t Detection Limit	Uppe Limit	r	Elemen	t Detection Limit	Upper Limit
Ag	0.3	100	Ga	1	10,00	0	Sb	5	10,000
Al*	0.01%	50%	Hg	1	1000		Sc	4	10,000
As*	3	5,000	К	0.01%	10%		Sr	1	10,000
Ba*	7	1,000	Li	1	10,00	0	Те	2	10,000
Ве	1	10,000	Mg	0.01%	50%		Ti	0.01%	10%
Bi	2	10,000	Mn	1	100,0	00	TI	5	10,000
Ca	0.01%	70%	Мо	1	10,00	0	U	10	10,000
Cd	0.3	2,000	Na	0.01%	10%		V	2	10,000
Со	1	10,000	Ni	1	10,00	0	W*	5	10,000
Cr*	1	10,000	Р	0.001%	10%		Y*	1	1000
Cu	1	10,000	Pb	3	5,000		Zn	1	10,000
Fe*	0.01%	50%	S	0.01%	20%		Zr*	5	10,000

Table 7: Actlabs analytical methods

Code 1A2 (Fire Assay-AA) Detection Limits (ppb)

* Element may only be partially extracted,

+ Only sulphide sulphur is extracted

9.1. Quality Control and Quality Assurance

Blanks (rock material with gold values known to be consistently below detection limits), core duplicates and certified reference standards (selected from ten available) were included with each batch of samples sent to the Laboratory at a ratio of 1 in 20 for each. Sample control sheets were utilised to identify samples for both internal and laboratory notification using a sequential numbering system.

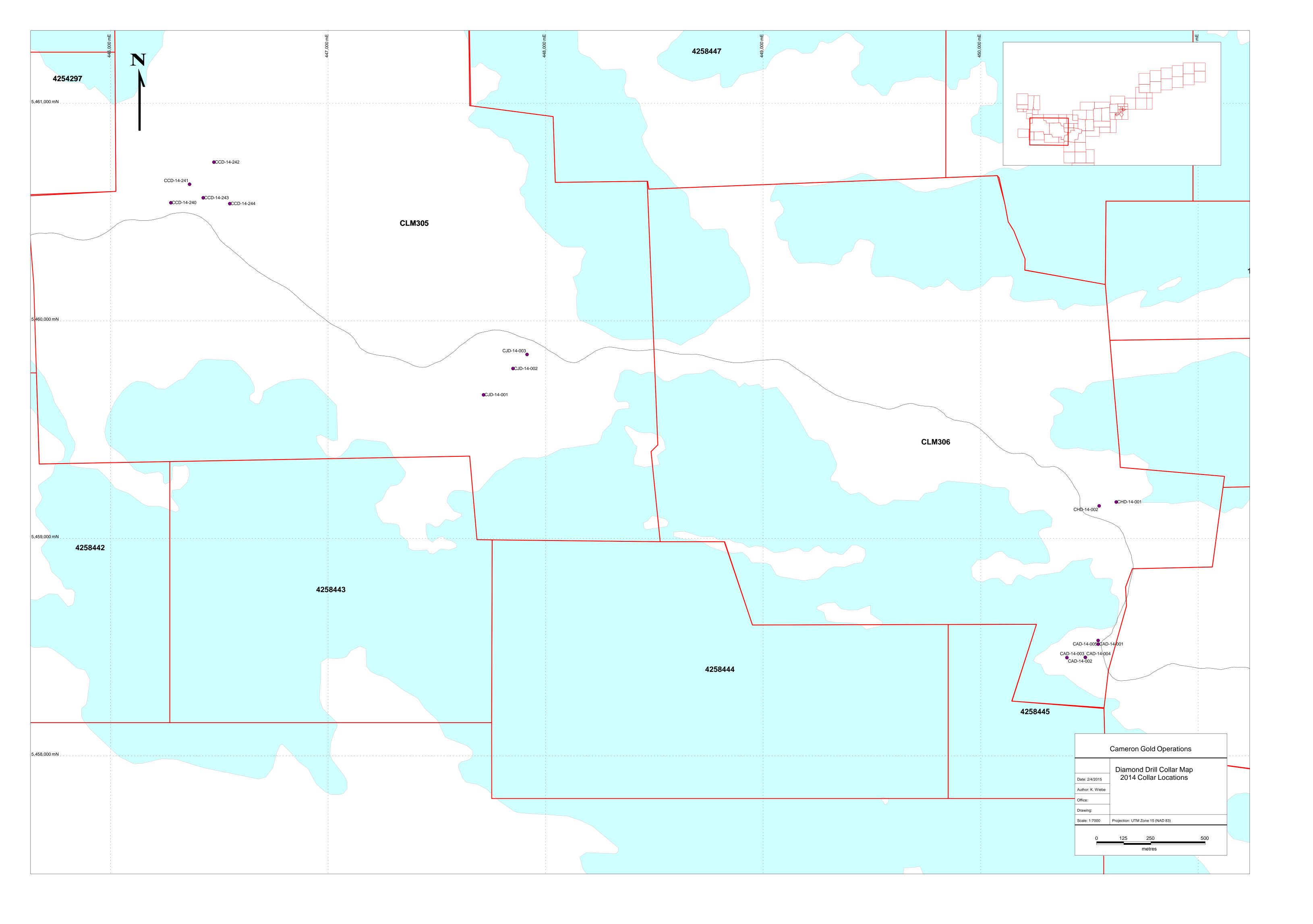
Certified reference material standards were supplied by Geostats Pty Ltd, Perth, Australia.

Blank material was purchased from Nelson granite in Vermillion bay a quarry that has reliably provided blank material to other gold exploration companies in the district

10. Results and Recommendations

The 2014 diamond drill program targeted four individual prospects proximal to the Cameron Gold Deposit. The program was designed to follow up on anomalous gold grain counts and gold geochemical anomalies returned from overburden till and bedrock samples collected by Cameron Gold Operations in previous years.

At Juno, although the drilling intersected the preferred host lithology's (mafic volcanics), the Cameron structure in this locality is not well developed and the unit lacks the required intense silica-sericite-(Fe) carbonate + pyrite alteration associated with gold mineralization at the Cameron Gold deposit.


At Ajax, mineralisation appears to be confined to quartz veins within the dolerite host. The mineralised zone was traced across two sections, approx. 60 metres along strike; however the width of the breccia veining and poor vertical consistency of veining is disappointing. Prospecting to the immediate east of the discovery outcrop has also failed to produce significant gold assay values at the surface.

Drill results at Hermione do not explain the gold in till anomaly, suggesting that the gold source is further north; possibly hidden underneath Knutson Lake to the north east. Before any further drilling is planned, an alternative overburden geochemical survey, such as a partial leach/mobile metal ion (MMI) is recommended to be completed over the area north of the prospect to possibly target the potential source of the current till anomaly at Hermione.

At Jupiter the diamond drill program has all but closed off the possibility of economic along strike extension of the Cameron Gold Deposit within the mine lease. At Jupiter although the overall number of significant intercepts returned was disappointing, the diamond drilling was successful in better defining the stratigraphy and aided the interpretation of the newly acquired magnetic data in the vicinity of the deposit.

Anomalous gold assay intersections were returned from all prospects, but overall gold assay results from the diamond drilling were disappointing and no immediate follow up drilling is recommended at any of the prospects at this time.

APPENDIX I

APPENDIX II

Geology Quicklog

Diamond drillh

Project: JUNO

1ay-14 Cooper

h	ole:C	JD-14	Date comple			Ma
			Alteration	Au p	nm	
	Alt1	Alt1 Py% Comment				
	ACC	0.1	Strong pervasive chlorite-calcite alteration with trace fine grained pyrite.			

Ę				Ge	eology			Alteration	Aurom		Au pp	m	
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm		Au pp	m	
	0	6.7	CAS		Casing					0.5	1 1 1 1 1 1 1 1	- - - 2.0	3.0
-	6.7	25.2	PSC		Chlorite Schist, dark green in colour, protolith likely dolerite with strong foliation sub-parallel to core axis.	ACC	0.1	Strong pervasive chlorite-calcite alteration with trace fine grained pyrite.					
	25.2	53.2	MD		Fine grained mafic intrusive with weak pervasive foliation, equigranular texture. Rare disseminated leucoxene grains.								
-	53.2	58.6	MB		Aphanitic basaltic dyke with abundant calcite veinlets sharp upper and lower contacts.								
- - - - - - - - - - -	58.6	112	MD		Fine grained mafic intrusive with weak pervasive foliation, equigranular texture. Rare disseminated leucoxene grains.	ACC	0.1	Weak perasive chlorite-calcite alteration unit also features trace cubic pyrite and chalcopyrite occuring					
-	112	112.8	ZQV		Quartz-chlorite-albite vein with trace irregular chalcopyrite grains and weak wallrock brecciation at upper and lower ct.			as small blebs on the edge of veinlet material.					
- - - 150- - -	112.8	168.2	MD		Fine-grained mafic intrusive massive unit to weakly foliated sub intervals. Dark green. Leucoxene grain present.								
-	168.2	183.6	MD		Unit is moderately foliated dolerite with an abundance of calcite veinlets, moderate foliated subparallel to core axis. Trace irregular	ACC		Moderate to strongly foliation causing veinlet related calcite alteration pyrite blank.					
	183.6	200	MD		cpy. Dark green equigranular fine-grained mafic intrusive. Massive,	ACC	0.1	Weak typical greenschist facies alteration with trace pyrite occuring on fracture surface with calcite.					
-													
												Page 1	of 1

East: North: Elevation: Azim: Dip: Scale:

447850.08 East: North: 5459780.05 Elevation: 374.5 Azim: 225 Dip: -45 Scale: 1:9

CAMERON GOLD PROJECT

Geology Quicklog

Diamond drillhole:CJD-14-002

Project: JUNO Core size: NQ Date completed: Logged:

19-May-14

Dave Cooper

ц.				Ge	eology			Alteration	Au ppm	Au 222
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm	Au ppm
-	0 7.1	7.1 19.8	CAS MB		Casing Mafic volcanic altered by fe-carbonate with quartz veinlets occuring sub-parallel to moderate foliation. Pyrite up to 0.5% medium grained disseminated but trace for unit.	ACSC ACCF	0.5 0.1	Moderate foliation related chlorite-sericite-fe carbonate alteration. Pyrite occurs as medium and fine grained disseminations as well foliation related.	0.1 0.85 0.78 0.01 0.01 0.07 0.39	
	19.8	84.3	MB W		Dark green aphanitic pillow basalt with a plethora of calcite filled amygdales. Epidote,pyrite and pyrrhotite occuring at pillow rinds.	ACC	0.1	Hematite and goethite stained by by ground water. Weak pervasive fe-carbonate alteration, with 0.1% pyrite occuring as medium to fine grained disseminations. Weak pervasive chlorite-calcite alteration, weal epidote alteration occuring at pillow rinds and veinlets. Pyrite and pyrrhotite also occuring at pillow rinds	0.01 0.01 0.01 0.01 0.01 0.01 0.01	
-	84.3	94.6	ITL		Intermediate lithic tuff with fiamme present. Increase in primary calcite content compared to surrounding units. Minor intercalated basalt. Faulted upper ct.			Moderate pervasive chlorite-calcite		
100	94.6	131.3	MD		Strongly foliated fine grained mafic intrusive with relict leucoxene grained indicative of grain size. Abundant calcite veinlets occuring sub-parallel to strong foliation plane.	ACC	0.1	alteration also occuring in veinlet style. In upper portion of unit most calcite is probably primary. Chalcopyrite and pyrite occuring at veinlet and cubics styles respectively.		
- - - 150- - -	131.3	169.3	MD		Fine-grained equigranular mafic intrusive, odd calcite and QCAV veinlet. Massive to weakly foliated in sub-intervals.	ACC	0.1	Weak pervasive chlorite-calcite alteration with trace cubic pyrite.		
-	169.3	172.1 5	PFQ		Silicified feldspar-quartz porpyry with sharp upper and lower ct. trace cubic pyrite.	ASS	0.1	Moderate sericite and silicified unit with trace pyrite. Weak pervasive		
-	172.1 5	199	MD		Dark green fine-grained mafic intrusive. Massive. Euhedral to subhedral equigranular grains. PY	ACC	0.1	chlorite-calcite with pyrite and chalcopyrite occuring as irregular grains at veinlets in trace quantity.		

Geology Quicklog

Diamond drillhole:CJD-14-002

East: North: Elevation: Azim: Dip: Scale:

5459780.05 374.5 225 -45 1:9

447850.08

Project: JUNO Core size: NQ Date completed: Logged:

19-May-14

Dave Cooper

th			_	Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	, a ppm	
200	172.1	199	MD		Dark green fine-grained mafic intrusive. Massive. Euhedral to subhedral equigranular grains. PY	ACC	0.1	Weak pervasive chlorite-calcite with pyrite and chalcopyrite occuring as irregular grains at veinlets in trace quantity.		

Geology Quicklog

East: 447914.69 5459844.7 Elevation: 378.32 Azim: 225 -45 Dip: Scale: 1:4

Diamond drillhole:CJD-14-003

Project: JUNO Core size: NQ Date completed: Logged:

21-May-14 Dave Cooper

				Ge	eology			Alteration			
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm	Au ppm	
-	0	2.7	CAS		Casing					0.6 11.3 2.6 3.2 2.6	3.9
	2.7	66.47	MD		Medium to fine-grained mafic intrusive, massive for majority of unit. Some cross-cutting calcite and QCAV veinlets. Equigranular texture with common leucoxene grains. PY 0.1% Veinlets and blebs.	ACC	0.1	Weak pervasive chlorite-calcite alteration and weak veinlet related epidote alteration. Qz-Alb-chlorite pyrite vein at36.4-36.8m of interest contains 0.5% pyrite. Unite feautures trace blebby pyrite and veinlet related pyrite.	0.01 0.2 0.01		
70	66.47	83.12	MB W		Weakly foliated amygdaloidal mafic unit with foliation increased at upper ct. pillows identifiable. A myriad of wispy calcite veinlets. Fine-grained mafic intrusive with common leucoxene grains. Possibly an equigranular flow.	ACC	0.1	Weak pervasive chlorite-calcite alteration with trace veinlet related pyrite alteration. FBD 18cm long at 76.75m contains 0.5% foliation related pyrite. Weak pervasive chlorite-calcite alteration. Moderate epidote alteration occuring in fractures and calcite veinlets. Pyrite trace and fine grained dissminated for unit.	0.23		

North:

Geology Quicklog

Diamond drillhole:CJD-14-003

Project: JUNO Core size: NQ Date completed: Logged:

21-May-14 Dave Cooper

Geology Alteration Depth Au ppm Au ppm From То Lith1 Log Comment Alt1 Py% Comment 0.01 90 3.35 0.07 100 Weak pervasive chlorite-calcite alteration. Moderate Fine-grained mafic epidote alteration intrusive with common 83.12 126.7 MD ACC 0.1 occuring in fractures leucoxene grains. Possibly an equigranular and calcite veinlets. Pyrite trace and fine grained dissminated for unit. flow. 110 0.01 Unit features carbonate rhombs, 120 0.01 weak chlorite calcite <u>0.01</u> alteration. Common 0.01 veinlets occuring 0.01 sub-parallel to 0.24 foliation displaying <u>0.03</u> sericite-silica-(fe) <u>0.01</u> carbonate alteration Fine-grained mafic 0.01 as a halo around intrusive with common <u>0.07</u> 130 veinlet selvedges and qcav sub-parallel to foliation. Carbonate 0.5% pyrite 0.01 MD ASIC 0.1 126.7 138.4 ´0.01 Moderate rhombs and leucoxene chlorite-sericite-(fe) <u>0.01</u> grains common. Chlorite-sericite schist carbonate alteration 0.03 occuring in shearing 0.01 with quartz-alb-(fe) plane. 0.5% fine 0.01 carbonate veinlets grained pyrite occuring 0.01 occurring along shearing planes. Unit is terminated grained pyrite occuring in foliation plane. A plethora of healed faulting resulted in many parallel Qz-alb-(fe)carbonate veinlets. Unit ends with a 25cm quartz bre Weak patchy (fe) 140.6 PSD ACSC 0.5 138.4 3.8 0.01 3 140 with a Qz-breccia vein. 0.01 Pyrite occurs in 0.5% abundance foliation related. \0.01 ACCF 0.1 Aphanitic pillow basalt Weak patchy (fe) carbonate alteration, green in colour. A myriad carbonate rhombs 0.01 of wispy calcite veinlets 150 occur near upper 0.01 140.6 MB present. (fe) carbonate 163 contact of unit. PY content decreases down 0.01 3 W trace medium grained unit. Rare calcite filled 0.01 disseminated amygdales present. 0.1% associated with mds pyrite. patchy alteration. Weak pervasive 0.01 ACC chlorite-calcite alteration. 160

East: North: Elevation: Azim: Dip:

Scale:

447914.69 5459844.7 378.32 225 -45

1:4

Geology Quicklog

Diamond drillhole:CAD-14-001

Project: AJAX Core size: NQ Date completed: Logged:

23-May-14

Dave Cooper

÷				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment		
	0	2.4	CAS		Casing					0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
-					Equigranular medium	ACC		Weak chlorite-calcite alteration pyrite not observed. Moderate pervasive chlorite-(fe) carbonated pyrite	0.003 3.18 0.02 0.007 0.003	
-	2.4	30.6	MD		grained mafic intrusive with massive to weak foliation increasing down unit alteration also increases down unit. Lower ct is sharp.	ACCF	0.1	occurs as fine grained disseminations and up to 1% within a prospective veinlet from 15-15.2m, pyrite trace for unit. Strong pervasive (fe)carbonate and sericite-silica	$\begin{array}{c} 0.003 \\ 0.01 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 1.23 \end{array}$	
_					Dacite feldspar-quartz porphyry with a much	ASS	0.5	alteration. Pyrite 0.5% for unit at occurs as	0.016 0.028 0.12	
-	30.6	31.71	PFQ	<u>~ ~</u>	greater precentage of feldspar phenocrysts in	ASS	0.1	fine-medium grained most commonly at	0.059	
-					comparison to quartz. Sharp contacts.			fractures and veinlets. Moderate pervasive silicia-sericite	0.046 0.007 0.003	
	31.71	83.5	MD		Med-grained mafic intrusive unit with fe-carbonate alteration decreasing down unit giving spotty appearnce. Pyroxene grains stretch with foliation. Faulted lower contact. Common QCAV with trace py. chaotic flow top breccia with preserved mafic volcanic material including pillows as well	ACCF	0.1	alteration with fine disseminated trace pyrite. Moderate pervasive (fe) carbonate alteration bleaching the groundmass. Weak patchy fuchsite alteration occuring most commonly at veinlets such as the Qz-alb-carb-tourmaline veinlet at 41.8m. Increase in alteration intensity between 46.4-47.7m. QZ-Alb-Car	0.003 0.003 0.003 0.014 0.003 0.007 0.017 0.008 0.011 0.003 0.003 0.003 0.003 0.008 0.008 0.008 0.02 0.014 0.035 0.013 0.013 0.003 0.003 0.013 0.003 0.003 0.003 0.003 0.002 0.014 0.003 0.0	
-	83.5	93.44	МТХ		as amygdales, grading into more classic mafic lithic tuff with unidentifiale lithic fragments. Fiamme present Feldspar-dominant feldspar-quartz porphyry with large phenocrysts about twice the size of previous porphyry. Contacts sharp. High chlorite content. Mafic lithic tuff with a plethora of lithic clasts and fiamme present very chaotic melanocratic unit.	ACC	0.1	Moderate pervasive chlorite-calcite alteration, pyrite occurs in fine grained disseminations and trace. Moderate silica and chlorite alteration, no pyrite observed.	$\begin{array}{c} 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.003 \\ 0.006 \\ 0.003 \\$	
-	93.44	94.5	PFQ	<u>}</u>	volcaniclastic fine grained. Trace	ASI		Moderate pervasive chlorite-calcite		
	94.5	100.5 5	мтх		medium-grained pyrite. Moderately foliated			alteration, very weak foliation related		
100-	100.5 5	120.2	MB		aphanitic mafic intrusive with common calcite filled amygdales. Foliation increases towards lower ct. common cross-cutting QCAV.	ACC	0.1	sericite alteration. Pyrite 0.1% occuring in foliation as well as veinlet styles. A vein from 128.9-129.4 displays this pyrite style.	0.009 0.003	

East: North: Elevation: Azim: Dip: Scale:

450540.17 5458513.21 365.06 180 -45

1:4

East: 450540.17 North: 5458513.21 Elevation: 365.06 Azim: 180 -45 Dip:

1:4

Scale:

CAMERON GOLD PROJECT

Geology Quicklog

Diamond drillhole:CAD-14-001

Project: AJAX Core size: NQ Date completed: Logged:

23-May-14 Dave Cooper

÷				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppin	
-	100.5 5	120.2			Moderately foliated aphanitic mafic intrusive with common calcite filled amygdales. Foliation increases towards lower ct. common cross-cutting QCAV. Silicified quartz-feldspar	ACC	0.1	Moderate pervasive chlorite-calcite alteration, very weak foliation related sericite alteration. Pyrite 0.1% occuring in foliation as well as veinlet styles. A vein from 128.9-129.4	0.04	
-	120.2	120.7 3	PQF		porphyry with many qz pheocrysts. Sharp upper and lower contacts trace fine-grained disseminated pyrite.	ASS	(<u>0.1</u>)	displays this pyrite style. Moderate pervasive silicia-sericite alteration pyrite occurs as fines grained dissemination at lower contact.	0.003 0.003 0.011	
	120.7	161.8 7	MB		Mafic volcanic aphanitic unit with common calcite filled amygdales. A myriad of cross-cutting qz-alb-(fe) carb and calcite veinlets.	ACC	0.1	Moderate pervasive chlorite-calcite alteration, very weak foliation related sericite alteration. Pyrite 0.1% occuring in foliation as well as veinlet styles. A vein from 128.9-129.4 displays this pyrite style. Pervasive moderate sericite-silica-(fe) carbonate alteration.		
-	161.8 7	169.4 3	PQ		Dacite quartz porphyry, silicified unit with sharp upper and lower ct. large variation in size of anhedral phenocrysts. Trace fine grained pyrite.	ASS	0.1	Chlorite specks present. Pyrite trace a fine grained disseminated throughout unit. Moderate pervasive chlorite-calcite alteration, pyrite occurs in fine grained disseminations and trace. Trace pyrrhotite	0.016 0.003 0.003 0.069 0.105 0.003 0.003 0.003	
-	169.4 3	183.0 5	MB		Aphanitic to fine-grained mafic volcanic with calcite filled amygdales, unit becomes moderately foliated near bottom ct. Moderately sheared chlorite-sericite-schist,	ACC	0.1	occurs on possible pillow rinds. Sericite is weak and increases at lowere and upper cts. Moderate foliation related chlorite-sericite-(fe) carbonate alteration. PY occurs up to 0.5%	0.003 0.003	
-	183.0 5	187.5 8	PSD		with sub-parallel qz-alb-(fe)carbonate veins withing the shearing plane. Platy bladed	ACSC	0.1	locally fine grained and foliation related, trace for unit.	0.036 0.041 0.003 0.003	
- - 200-	187.5 8	208	MB		texture. Bláck chlorite present in foliation. Aphanitic to fine-grained unit with a plethora of calcite filled amygdale. Small intercalated sheared unit at moderate foliation at upper contact. Pyrite trace veinlet related.	ACC	0.1	Moderate pervasive chlorite-calcite alteration, with carbonate rhombs present between 193-199m most likely fe-dolomite. Small sheared interval between 202-202.4m. PY trace and Qz-calcite veinlet related, weak foliation related sericite alteration.	0.003 0.003 0.055 0.005	
										Page 2 of 2

Geology Quicklog

East: 450396.53 North: 5458451.35 Elevation: 353.66 Azim: 360 -45 Dip: Scale: 1:4

Diamond drillhole:CAD-14-002

Project: AJAX Core size: Date completed: Logged:

NQ

27-May-14 Dave Cooper

÷				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment		
-	0	6.8	CAS						0.047	0.6
	6.8	49.45	MD		medium grained mafic intrusive with common leucoxene grains, equgranular texture but grains are anhedral (pyroxene?) unit is saprolite near upper ct. weak fol around lower ct	ACC	0.1	moderate pervasive chlorite-calcite alteration increasing in abundance down unit. Weak veinlet related epidote alteration. Qz-alb-carb-chlorite-he matite stained veinlet from 7.4-7.8m contains 1% medium grained pyrite. Qz-Alb-carbonate-chlori te Veinlet at	0.003 0.003 1.44 0.006 0.014 0.003 0.292 0.016 0.003	
50-	49.45	64.1	PQF		dacite quartz-feldspar porphyry with sharp upper and lower contacts which occur at a very low angle to the core axis. Unit silicified and beige in colour. QCAV common 58.9-61m	ASS	0.1	moderate pervasive sericite-silica alteration with weak disseminated chlorite flecks. Pyrite is trace and cubic style	0.001 0.013 0.003 0.003 0.014 0.003 0.011 0.043	
-	64.1	93.4	MD		fine grained mafic intrusive with moderate to weak foliation common qcav and calcite veinlets at a low angle to CA	ACC	0.1	weak to moderate pervasive calcite alteration. Common qcav veins occuring at a low angle to core axis. Two such veinlets (74-74.27m and 87-87.6m) display weak sericite-fecarbonate alteration as a weak halo in the selvedges these veinlets contain 0.5% fin	0.007 0.116 0.003 0.015 0.227 0.011	
100-	93.4	137.7	MD		medium grained equigranular textured intrusive unit dark green. Qcav and calcite veinlets cross-cutting and present. Thick consistent unit	ACC	0.1	weak pervasive chlorite-calcite alteration. Weak veinlet and disseminated epidote alteration. Py trace cubic		Page 1 of 2

Geology Quicklog

East: 450396.53 North: 5458451.35 Elevation: 353.66 Azim: 360 -45 Dip: Scale: 1:4

Diamond drillhole:CAD-14-002

Project: AJAX Core size: NQ Date completed: Logged:

27-May-14

Dave Cooper

oth		-	-	Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	, a ppin	
-	93.4	137.7	MD		medium grained equigranular textured intrusive unit dark green. Qcav and calcite veinlets cross-cutting and present. Thick consistent unit	ACC	0.1	weak pervasive chlorite-calcite alteration. Weak veinlet and disseminated epidote alteration. Py trace cubic		00 113 123 133 133 133 133 133 133 133 133
-	137.7	141.3	ZQV		many small Qz-alb-carb-chlorite veinlets at a low angle to core axis cutting through fine grained mafic	ACC	0.1	weak chlorite-sericite-carbona te alteration occuring in foliation generated by the introduction of veinlets. Pyrite trace	0.003 0.003	
- 150	. 141.3	171.4 5	MD		intrusive and causing an increased intensity of foliation medium grained equigranular mafic intrusive, ground mass made up of hornblende, pyroxene and plagioclase euhedral to subhedral grains. Dark green in	ACC	0.1	veinlets. Pyrite frace pervasive calcite <u>alteration</u> weak pervasive chlorite-calcite alteration. Weak veinlet and disseminated epidote alteration. Py trace cubic	0.003	
-	171.4 5 176.5	176.5 185	PSC		colour. Weakly foliated at bottom ct weakly sheared chlorite dominant schist protolith clearly identified as dolerite. Leucoxene grains still identifiable. Shearing at approx 15 degrees to core axis fine to medium grained mafic intrusive with weak foliation intermittent throughout unit.	ACC	0.1	moderate pervasive chlorite-calcite alteration with weak patchy incipient chlorite-sericite-carbona te alteration, very weak fuchsite disseminated grains localised. A qz-alb-carb veinlet of interest at 173.66 featuring trace pyrite and aforementioned fuch	0.003 0.038 0.025 0.027 0.003 0.011 0.003 0.006 0.024	
					Leucoxene present					

Geology Quicklog

East: 450481.14 North: 5458452.37 Elevation: 350.48 Azim: 360 -45 Dip: Scale: 1:4

Diamond drillhole:CAD-14-003

Project: AJAX Core size: NQ Date completed: Logged:

28-May-14

Dave Cooper

th				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment		
	0 6.7 6.8	6.7 6.8 12	CAS TA* MD		/medium grained mafic intrusive with equigranular texture and common leucoxene grains. Common cross-cutting	ACC	0.1	moderate chlorite-calcite alteration with moderate to strong veinlet related epidote alteration pyrite trace	0.209	
20-	12	25.6	MD		qz-carb-alb-epidote veinlets. Dark green in colour medium grained mafic intrusive with a plethora of cross-cutting QCA vein;ets. One particular vein set displays pyrite in selvedges. Majority of unit is comprised of the wall rock	ACC	0.1	and cubic form strong chlorite-calcite alteration with many crosscutting QCAV+-chlorite+-epidot e. A particular veinlet set contains 0.5% pyrite halo around the veinlet in the selvedge. Pyrite trace for unit	0.712 0.003 0.003 0.003 0.013 0.007 0.455 0.05 0.003 0.003 0.003 0.084 0.037	
30 	25.6	45.2	MD		fine to medium grained mafic intrusive with common QCA-epidote veinlets cross-cutting in an irregular fashion.	ACC	0.1	moderate chlorite-calcite alteration with weak veinlet related epidote alteration. Pyrite trace and veinlet related mainly In fbd around 28-28.1m strong chlorite-calcite alteration related to QCA-ChI+py veinlets that occur frequently thoughout unit. Pyrite occurs 0.5% for unit	0.037 0.038 0.003 0.003 0.024	
50	45.2	50.1	ZQV		silicified unit with veining cutting through fine grained mafic intrusive. Majority of unit is represented by veining. Veining is comprised of QCA+chl+py. Mod-weak fol with veinlets parallel to	ASI	0.5	vein related occuring as stringers within veins(46.55 is a good example), cubic and fine-medium grained disseminated moderate pervasive chlorite-calcite	0.013 0.192 0.472 0.091 0.207 0.032	
	50.1	62.05	MD		fol fine grained mafic intrusive with weak foliation. Few cross-cutting QCAV and calcite veinlets Qz-alb-(fe) carbonate-chlorite breccia	ACC	0.1	alteration emenating from surrounding units. Pyrite trace in cubic style. strong vein related silica-(fe) carbonate alteration within breccia veining wall rock fragments are	0.036	
	62.05	63.9	ZQB		vein with altered wall rock fragments matrix dominant. Alteration halo	ASIC	0.5	strongly altered. Alteration eminates as a halo into wallrock.	1.07 0.58 3.66	
70	63.9	112.7	MD		extendes into surrounding wall rock. A few cross-cutting chlorite veinlets fine to medium grained mafic intrusive with QCA-epidote veinlets cross-cutting in an irregular fashion as well as calcite veinlets present.	ACC	0.1	Pyrite occurs mostly in altered wallrock as fine grained disseminations, stringers and and weak pervasive chlorite-calcite alteration with weak epidote alteration occuring in common QCAV. Pyrite trace cubic	0.037 0.037 0.05	
-										Page 1 of 2

Geology Quicklog

Diamond drillhole:CAD-14-003

Project: AJAX Core size: NQ Date completed: Logged:

28-May-14

Dave Cooper

ţ				Ge	eology			Alteration	Au 200	Au por	~
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm	Au ppr	3 3 2.6 3 3 2 6
90-								weak pervasive	0.019		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
100	63.9	112.7	MD		fine to medium grained mafic intrusive with QCA-epidote veinlets cross-cutting in an irregular fashion as well as calcite veinlets present.	ACC	0.1	chlorite-calcite alteration with weak epidote alteration occuring in common QCAV. Pyrite trace cubic			
110-								weak foliation related	0.007 0.009 0.035		
	112.7	122.7	MD		strongly foliated mafic intrusive with foliation sub-parallel to the core axis. QCAV vein runs along the length of the core from 1164-118.5m. Leucoxene grains stretched with fol	ACSC	0.1	carbonate alteration occuring in structure that is subparallel to core axis. QCAV also travel the length of the core in this unit. Pyrite occurs as fine grained	0.035 0.007 0.003 0.027 0.022 0.016 0.027 0.003 0.039		
-	122.7	125.7	PF		silicified dacite porphyry with a myriad of feldspar phenocrysts. Sharp upper and lower cts. Hematite	ASS	0.1	disseminations within the foliation fabric and moderate pervasive silica-sericite	0.003 0.003 0.003		
130 	125.7	151	MD		medium grained mafic intrusive massive to weakly foliated. Strongest foliation at upper contact with PF. Common crosscutting QCAV and calcite veinlets	ACC	0.1	alteration, pyrite trace occuring as fine grained disseminations, some silicification is primary due to dacitic lithology moderate pervasive chlorite-calcite alteration. Pyrite trace cubic	0.003 0.117 0.003		
150									-		

East: North: Elevation: Azim: Dip:

450481.14 5458452.37 350.48 360 -45 Scale: 1:4

East: 450481.14 North: 5458452.37 Elevation: 350.48 Azim: 360 -60 Dip: Scale: 1:4

Diamond drillhole:CAD-14-004

Project: AJAX Core size: NQ Date completed: Logged:

30-May-14

Dave Cooper

th				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment		
	0	6.7	CAS							0.0
-	6.7 7	7 19	TA*		medium grained mafic intrusive with equigranular texture a common cross-cutting QCAV and calcite veinlets. Leucoxene grains display skeletal texture. Massive to weakly	ACC	0.1	weak to moderate pervasive chlorite-calcite alteration and weak vein related epidote alteration. Py trace cubic	0.019	
-	19	32.8	MD		foliated towards lower ct mafic medium grained intrusive with veining more intense compared to previous unit many QCAV+-chlorite+-hematite+ -PY occuring at a low angle to core axis. Unit weakly foliated	ACC	0.1	moderate pervasive chlorite-calcite alteration with trace mediung veinlet related pyrite present among common units QCAV.	0.054 0.018 0.12 0.045 1.52 0.052 0.219	
	32.8	56.75	MD G		magnetite rich medium grained mafic intrusive unit with common cross-cutting QCAV and calcite veinlets. Massive to weakly foliated towards lower ct. foliation is subparallel tocore axis Unit intruded by multiple Qz-Carb-Alb-Chl veinlets the majority at a low angle	ACC	0.1	weak pevasive chlorite-calcite alteration with weak epidote-orthoclase alteration occuring in veinlets strong pervasive chlorite-calcite	0.016	
-	56.75	58.9	ZQV		to core axis causing unit to be silicified on the whole. Fractures are	ACC	0.5	alteration with moderate vein related silica alteration pyrite occurs as 0.5% fine	0.157 0.248 0.188	
- - - - - - - - - - - - - - - - - - -	58.9	199.5 5	MD		dark green fine grained mafic volcanic with foliation running sub-parallel to core axis. Cross-cutting wispy calcite and QCAV veinlets present.	ACC	0.1	moderate pervasive chlorite-calcite alteration and trace pyrite odd cross-cutting veinlet with stringer pyrite and pyrite present in foliation 150-151m	0.003 0.127 0.003	
-										

Geology Quicklog

East: 450481.14 North: 5458452.37 Elevation: 350.48 Azim: 360 -60 Dip: Scale: 1:4

Diamond drillhole:CAD-14-004

Project: AJAX Core size: NQ Date completed: Logged:

30-May-14 Dave Cooper

				Ge	eology			Alteration		
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm	Au ppm
	58.9	199.5	MD		dark green fine grained mafic volcanic with foliation running sub-parallel to core axis. Cross-cutting wispy calcite and QCAV veinlets present.	ACC	0.1	moderate pervasive chlorite-calcite alteration and trace pyrite odd cross-cutting veinlet with stringer pyrite and pyrite present in foliation 150-151m	0.003 0.518 0.003 0.2	
- - 200- - -	199.5 5 202.2 5	202.2 5 221	ZQB		clast dominant(supported) Qz-(fe) carbonate-albite breccia vein cutting though moderately foliated mafic intrusive. dark green fine grained mafic intrusive with cross-cutting QCAV and calcite veinlets. Unit massive to weakly foliated towards upper contact.	ASIC	0.1	pervasive moderate (fe) carbonate and silica alteration in wall rock. Veins display strong silica-(fe)carbonate-seri cite alteration with 1% fine to medium disseminated pyrite occuring within wallrock fragments within the veining, up to 5% pyrite locally moderate pervasive chlorite-calcite alteration and weak veinlet related epidote alteration close to EOH. Pyrite trace cubic	0.003 0.003 0.003 0.003 0.032 0.042 0.967 0.041 0.036 0.003 0.006 0.003 0.003 0.006 0.003 0.003	
-										

East: 450539.89 North: 5458530.11 Elevation: 357.39 180 Azim: -60 Dip: Scale: 1:4

Diamond drillhole:CAD-14-005

Project: AJAX Core size: NQ Date completed: Logged:

1-Jun-14 Dave Cooper

Geology Alteration Depth Au ppm Au ppm Lith1 From То Log Comment Alt1 Py% Comment 0 CAS 6.1 5 6.1 6.3 TA* 10 moderate pervasive chlorite-calcite 15 alteration with weak ACC 0.1 epidote related veinlet alteration trace cubic pyrite 20 medium grained mafic intrusive with equigranular texture 6.3 55.65 MD common disseminated 25 magnetite grains and a plethora of cross-cutting QCAV and calcite veinlets 30 weak pervasive chlorite-calcite ACC 0.1 alteration and weak veinlet related epidote 35 alteration 40

Geology Quicklog

Page 2 of 3

Diamond drillhole:CAD-14-005

Project: AJAX Core size: NQ Date completed: Logged:

1-Jun-14

Dave Cooper

÷	Geology						Alteration			Au ppm				
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm	2	+ .		2	2
										0.7	 		1 1 1 1 1 1 1 1	
50	6.3	55.65	MD		medium grained mafic intrusive with equigranular texture common disseminated magnetite grains and a plethora of cross-cutting QCAV and calcite veinlets	ACC	0.1	weak pervasive chlorite-calcite alteration and weak veinlet related epidote alteration						
- - 55- -	55.65	57.35		d p	silicified feldspar-quartz dacite porphyry. Feldspar phenocryst subhedral to	ASS	0.1	/moderate pervasive sericite-silica alteration. Trace medium grained disseminated pyrite	0.006					
-	55.65	57.35	PFQ	5 5 5 7	euhedral and outnumber quartz phenocrysts significantly. Sharp upper and lower contacts.	A55	0.1		0.006 0.003					
					weak to moderately foliated medium grained mafic folcanic with			veinlet related silica-(fe)	0.024 0.036 0.298 0.318					
	- 57.35	77.8	8 MD		common QCAV at a very low angle to core axis. Unit contains a few fractures with goundwater slightly weathering around them	ASIC	0.1	carbonate-sericite alteration in selvedges. Pyrite trace fine grained related to the alteration breccia vein with wall rock fragments pervasively (fe) carbonate-silica-sericite alteration, with 1% fine to medium disseminated pyrite. Alteration extendes into wallrock for ~30cm weak veinlet related silica-sericite-(fe) carbonate alteration occurring in the selvedges of veinlets.Pyrite trace and occuring in alteration halo around	0.007 0.034 0.18 0.006 0.015					
									0.034 0.014 0.028 0.417 0.422					
80	77.8		ZQB	<mark></mark>	Quartz-alb-(fe) carbonate vein with brecciated wall rock fragments within the vein matrix. Unit silicified, breccia fragments altered. Weathered upper contact with goethite staining weakly foliated to massive fine grained mafic intrusive with common QCAV at a very low angle to core axis.				0.006 0.006 0.106					
		78.5				ASIC	1 0.1		0.646 0.003 0.206					
		92.7	MD						0.003 0.003		- - - - - - - - - - - - - - - - - - -			
									0.213		 			
								veinlets	0.038		i 			i

East: North: Elevation: Azim: Dip: Scale:

1:4

Geology Quicklog

East: 450539.89 North: 5458530.11 Elevation: 357.39 Azim: 180 -60 Dip: Scale: 1:4

Diamond drillhole:CAD-14-005

Project: AJAX Core size: NQ Date completed: Logged:

1-Jun-14

Dave Cooper

÷	Geology						Alteration			Au ppm					
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm						
90	78.5	92.7	MD		weakly foliated to massive fine grained mafic intrusive with common QCAV at a very low angle to core axis.	ASIC	0.1	weak veinlet related silica-sericite-(fe) carbonate alteration occurring in the selvedges of veinlets.Pyrite trace and occuring in alteration halo around veinlets	0.003 0.003 0.003 0.003 0.003 0.003 0.021 0.03 0.06				44		
95	92.7	103.3	MD		fine grain equgranular mafic intrusive. Fine grained leucoxene grains present and few cross-cutting QCAV and calcite veinlets	ACCF	0.1	moderate pervasive chlorite-(fe) carbonate alteration . Trace cubic pyrite	0.008 0.011 0.003 0.027 0.003						
105	103.3	108.5 5	PSC		unit varies from moderately fol dolerite to weakly sheared chorite dominant schist. Leucoxene have been strectched with foliation. Qz-carb-alb+-py veinlets occur parallel to foliation & discordant	ACSC	0.5	moderate pervasive chlorite-(fe) carbonate alteration and weak foliation/shearing related chlorite-sericite-(fe) carbonate alteration. Veining occuring parallel to the shear plane features 0.5% pyrite. Weak fuchsite alteration also present in certain are moderate pervasive and foliation related chlorite-(fe) carbonate alteration .Trace cubic pyriteWeak pervasive chlorite-calcite alteration, trace cubic pyrite	0.003 0.003 4.43 0.121 0.038 0.052 0.003 0.038 0.003						
	108.5 5	113.9	MD		fine grained mafic intrusive with a weak foliation, trace cream coloured leucoxene grains										
115	113.9	121	MTX		mottled nondescript mafic volcaniclastic unit with weak foliation, lithic clasts commonly displaying obvious feldspar euhedral grains within. Some mafic volcanic material as ripped up clasts	ACC	0.1		-						

Geology Quicklog

East: 450623.07 North: 5459166.64 Elevation: 366.57 Azim: 180 -45 Dip: Scale: 1:4

Diamond drillhole:CHD-14-001

Project: HERMIONE Core size: NQ Date completed: Logged:

3-Jun-14 Dave Cooper

th				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment		
	0 3.9	3.9 4	CAS TA*							0.6 1.3 1.4 2.6 3.2 3.3
	4	36.4	MD		fine to medium grained mafic intrusive. Certain intervals display equigranular texture. Common qcav and irregular wispy calcite veinlets. Sub intervals of intercalted basalt	ACC	0.1	weak pervasive chlorite-calcite alteration and weak disseminated/veinlet related epidote alteration. A small ash intercalation between 17-17.5m contains 0.5% fds and mds. Trace medium grained disseminated and veinlet related pyrite for unit	0.003	
40	36.4	46.8	MB		fine grained mafic volcanic with a gradational contact with upper unit. Rare calcite filled amygdale present. Common cross-cutting wispy calcite veinlets mafic lithic tuff	-		moderate pervasive chlorite-calcite alteration pyrite is lens related and trace moderate foliation related		
-					moderately laminated with fiamme present, lithic clasts as well as pyrite in	ACC ACSC	0.1 0.1	chlorite-sericite-(fe) carbonate alteration related to shearing.	0.003 0.077 0.138	
50	46.8	53.65	ITL		lens form. Unit is sheared within a sub-interval 48.8-50.4 with numerous QCAV occuring parallel to	1000	0.1	Common Qz-alb-carbonate veinlets occur within the shear plane. Pyrite	0.017	
60	53.65	80.4	МВ		fine grained equigranular flow dark green mafic volcanic unit.	ACC	0.1	trace veinlet related moderate to weak chlorite-calcite alteration with intensity strongest near upper contact. Fe carbonate rhombs occur near upper part of unit. Py occurs cubic trace for unit but QCA-chlorite vein at the end of unit contains fine grained pyrite disseminated	0.003	
80-	80.4	165	IAB		Strongly silicified aphanitic unit with common quartz or calcite filled amygdales, if quartz is primary then the unit is basaltic andesite. Common irregular calcite filled fractures	ACC	0.1	chlorite-calcite alateration and moderate pervasive silicification. Py 0.1% occuring as irregular blebs possibly controlled by fractures	0.003	

Geology Quicklog

East: 450623.07 North: 5459166.64 Elevation: 366.57 180 Azim: -45 Dip: Scale: 1:4

Diamond drillhole:CHD-14-001

Project: HERMIONE Core size: NQ Date completed: Logged:

3-Jun-14 Dave Cooper

th				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment		ة 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
90 90 100 1100	80.4	165	IAB		Strongly silicified aphanitic unit with common quartz or calcite filled amygdales, if quartz is primary then the unit is basaltic andesite. Common irregular calcite filled fractures	ACC	0.1	unit displays weak pervasive chlorite-calcite alateration and moderate pervasive silicification. Py 0.1% occuring as irregular blebs possibly controlled by fractures	0.012 0.012 0.003 0.017 0.003 0.003 0.003 0.003	
	165	180.9 5	ITL		intermediate lithic tuff with common lithic clasts giving the unit a mottled colour and texture.fiamme also common and present. Minor intercalated ash tuff with obvious lamination.	ACC	0.5	weak pervasive chlorite-calcite alteration and weak pervasive silican alteration. Py occurs as large bleb clusters that seem to be filling veinlets or fractures, some appear to be lens shaped	0.003 0.	

Geology Quicklog

Diamond drillhole:CHD-14-001

Project: HERMIONE Core size: NQ Date completed: Logged:

3-Jun-14 Dave Cooper

-fi				Ge	eology			Alteration	A	
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm	Au ppm
	165	180.9 5	ITL		intermediate lithic tuff with common lithic clasts giving the unit a mottled colour and texture.fiamme also common and present. Minor intercalated ash tuff with obvious lamination.	ACA	0.1	moderate to weak calcite alteration with trace pyrite occuring as lens and laminations within the ash tuff.		
	180.9 5	201	MB		fine grained to aphanitic equigranular flow with weak foliation. Leucoxene grains identifiable and appear to be streched with foliation. Common cross-cutting wispy calcite veinlets	ACC	0.1	weak to moderate chlorite-calcite alteration with some calcite occuring as fine grained disseminations. Pyrite trace veinlet related weak pervasive sericite alteration and moderate vein related silica alteration extending into wall	0.003	
200-						ASE	0.5	rock. Pyrite is 0.5%	0.009	
210	201	217.7	ITL		Intermediate fine grained crystal lithic tuff with intercalated ash tuff.Qz crystals. Ash lamallae contain significant formational py. Fiamme and py lens also present in itl. dacite feldspar-quartz porphyry with sharp upper and lower contacts. Unit	ACA	0.1	occuring at what appears to be replaced pillow selvedges with qz-calcite veining. moderate to weak pervasive calcite-sericite alteration appears to be embelished as mostly primary. Pyrite occurs in lens within the lithic tuff and laminations within the ash.	0.003 0.003 0.003 0.014 0.003	
-	217.7	219.3	PFQ	$\frac{1}{5}$	and lower contacts. Unit silicified, Feldspar	ASS	0.1	moderate pervasive	0.003	
220	219.3	244	PQ		massive to moderately foliated porphyry with quartz medium grained phenocrysts. Unit displays primary silicfication. Two basaltic dykes occur within unit 221.7-221.9 & 225.8-226	ASI	0.1	silicia-sericite alteration weak disseminated chlorite alteration. Pyrite occurs as trace and fine grained disseminated, Qz-pyrite veinlet at lower ct contains 1% pyrite moderate pervasive silica alteration and moderate patchy sericite alteration. PY trace and blebby	0.003 0.003 0.003 0.003 0.003	
240- - - - - - - - - - - - - - - - - - -								most common towards upper contact	_	
250- - - - -										

East: North: Elevation: Dip:

Scale:

450623.07 5459166.64 366.57 180 -45

1:4

Azim:

Geology Quicklog

450544.51 East: North: 5459148.67 Elevation: 368.4 Azim: 180 -45 Dip: Scale: 1:4

Diamond drillhole:CHD-14-002

Project: HERMIONE Core size: NQ Date completed: Logged:

4-Jun-14

Dave Cooper

th			_	Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	, a ppin	
	0	7.7	CAS TA*							
10	8.5	14.75	MD		medium grained mafic intrusive with equgranular texture. Trace skeletal leucoxene grains present. Massive unit.	ACC	0.1			
20	14.75	32.3	MD		fine grained mafic intrusive unit varies from weak foliaiton to weakly sheared typified by chlorite schist subintervals with common fbd.			Moderate pervasive and veinlet related chlorite-calcite alteration, QCA	0.012 0.147 0.059 0.5	
40						ACC	0.1	anteration. QCA breccia vein at 51.1-51.5m no (fe) carbonate alteration, trace medium grained pyrite for vein and unit	0.0	
	32.3	79.4	MD		medium grained mafic intrusive with equgranular texture. Trace skeletal leucoxene grains present. Common crosscutting QCAV and calcite veinlets, veined lower contact with IAB	ACC	0.1	weak pervasive chlorite-calcite alteration and weak veinlet related epidote alteration. Pyrite trace and in cubic form.	0.031 0.003 0.017 0.003 0.034 0.008 0.09 0.003	
80	79.4	132.8 5	IAB		aphanitic volcanic with primary silicification thus believed to be basaltic andesite. Common quartz and calcite filled amygdales. Small sub-interval of flow top breccia displaying perlitic texture	ASI	0.1	weak pervasive chlorite-calcite alteration and weak veinlet related epidote alteration. Unit displays moderate pervasive silica alteration possibly primary occurance for this alteration. Trace irregular and blebby pyrite occuring in cluster in what appea	0.003	

Geology Quicklog

Diamond drillhole:CHD-14-002

Project: HERMIONE Core size: NQ Date completed: Logged:

4-Jun-14

Dave Cooper

t				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppin	Au ppin
								weak pervasive chlorite-calcite alteration and weak veinlet related epidote alteration. Unit		
110	79.4	132.8 5	IAB		aphanitic volcanic with primary silicification thus believed to be basaltic andesite. Common quartz and calcite filled amygdales. Small sub-interval of flow top breccia displaying perlitic texture	ASI	0.1	displays moderate pervasive silica alteration possibly primary occurance for this alteration. Trace irregular and blebby pyrite occuring in cluster in what appea unit displays moderate pervasive silicification and sericitization. Pyrite occurs as fine grained dissaminations. A breccia veinlet with wall rock clasts occurs	0.003	
				~ ~ ~	Feldspar-quartz porphyry with large grain subhedral phenocrysts. Sharp upper and lower contacts. Unit silicified.			from 136.3-136.45m and displays strong (fe) carbonate-silica alteration pyrite remains trace unit displays	0.003 0.006 0.003 0.003 0.003 0.003	
140	132.8 5 138.5 5	138.5 5 139.1	PFQ IAB		aphanitic volcanic with sharp upper and lower contact. Unit strongly foliated due to prescence of porphyry above. Significant formational pyrite at what appears to be pillow rinds?	ASS ACC	0.1 0.5	moderate chlorite-calcite alteration due to moderate foliation. Pyrite occurs as 0.5% blebs and lens at what appear to be	0.003 0.003 0.014 0.003 0.003 0.003	
150	139.1	160.9	ITL		moderately foliated intermediate lithic tuff, intercalated with ash tuff. Lithic clasts and fiamme commonly observed in lithic tuff. Ashe tuff finely laminated younging appears to be up unit.	ACC	0.1	billow selvedges. unit displays moderate pervasive chlorite-calcite alteration decreasing from upper to lower ct. weak foliation related sericite alteration mostly considered primary. Pyrite occurs as blebby lens within the laminations of the	0.003	
	160.9	181	PQ		massive to weakly foliated porphyry with medium grained quartz phenocrysts. Unit is quite silicified.	ASI	0.1	lithic tuff and laminated fin moderate pervasive silica alteration with weak patchy sericite alteration. Weak pervasive calcite alteration. Trace fine grained disseminated pyrite (almost blank)		

East: North: Elevation: Azim: Dip:

450544.51 5459148.67 368.4 180 -45 Scale:

1:4

Geology Quicklog

 East:
 446277.1

 North:
 5460542.34

 Elevation:
 360.7

 Azim:
 225

 Dip:
 -60

 Scale:
 1:4

Diamond drillhole:CCD-14-240

Project: JUPITER Core size: NQ Date completed: _____

Logged: Dave Cooper

	Ge	eology			Alteration	Au ppm		Δ	ppm	
Lith1	Log	Comment	Alt1	Py%	Comment		9.	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>bbin</u>	2 0
CAS		aphanitic to fine grained						- , 		
		intercalated crystal tuff between 10-11m.	1000	0.4	weak pervasive chlorite-calcite					
MB		Amygdales rare but present. Weak to	ACC	0.1	alteration. Trace cubic			 		
PSC		moderately foliated unit sharp lower ct chlorite schist with mafic intrusive protolith. Common fault gauge and broken ground due to soft schist. Unit weakly sheared to moderately foliated. Unit like footwall structure beyond CLSZ	ACH	0.1	strong pervasive chlorite alteration due to weak shearing. Calcite weak and veinlet related. Pyrite trace and in cubic form					
5 MD		medium to coarse grained equigranular mafic intrusive massive to weakly foliated near upper ct	ACC	0.1	Weak pervasive chlorite-calcite alteration and weak veinlet related epidote alteration a 10 cm veinlet at 54.8m contains 0.5% fine grained disseminated pyrite	0.008 0.003 0.003				
ITY		intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with fine laminations. Rare lithic clast and fiamme present.	ACC	0.1	weak pervasive chlorite-calcite alteration. Trace blebby pyrite associated with laminations. Weak vein related sericite alteration at 69m	0.034				
MD		equigranular mafic intrusive massive with common cross-cutting qz-carbonate-albite-epidote veinlets. crystal lithic tuff with common euhedral to subhedral feldspar crystals and rare lithic clasts. Unit displays reverse grading and sharp upper and lower ct. Unit weakly foliated to massive aphanitic mafic volcanic with a plethora of calcite and quartz filled	ACC	0.1	weak pervasive chlorite-calcite and weak veinlet related epidote alteration. Pyrite trace and associated with cross-cutting QCAV	0.003				
		sharp upper and lower contacts with crystal lithic tuff. intermediate crystal lithic tuff with reverse graded	ACC	0.1	Weak pervasive chlorite-calcite alteration. Trace blebby pyrite associated with					
		intercalated ash tuff with			laminations.			!		
		lithic clast and fiamme								
	CAS TA* MB PSC 5 MD 1 TY	CAS TA* MB PSC MD ITY MD MD ITY MD ITY ITY ITY ITY ITY ITY	CAS /aphanitic to fine grained mafic volcanic minor intercalated crystal tuff between 10-11m. Amygdales rare but present. Weak to moderately foliated unit sharp lower ct chlorite schist with mafic intrusive protolith. Common fault gauge and broken ground due to soft schist. Unit weakly sheared to moderately foliated. Unit like footwall structure beyond CLSZ MD medium to coarse grained equigranular mafic intrusive massive to weakly foliated near upper ct ITY intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with fine laminations. Rare lithic clast and fiamme present. MD medium to coarse grained equigranular mafic intrusive massive to weakly foliated near upper ct MD medium to coarse grained equigranular mafic intrusive massive with common cubedral to subhedral feldspar crystals and rare lithic clasts. Unit displays reverse grading and sharp upper and lower ct. Unit weakly foliated to massive aphanitic mafic volcanic with a plethora of calcite and quartz filled amygdales. Unit displays sharp upper and lower contacts with crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with fine laminations. Rare	CAS aphanitic to fine grained mafic volcanic minor intercalated crystal tuff between 10-11m. Amygdales rare but present. Weak to moderately foliated unit sharp lower ct chlorite schist with mafic intrusive protolith. Common fault gauge and broken ground due to soft schist. Unit weakly sheared to moderately foliated. Unit like footwall structure beyond CLSZ ACH MD medium to coarse grained equigranular mafic intrusive massive to weakly foliated near upper ct ACC ITY intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with fine laminations. Rare lithic clast and fiamme present. ACC MD intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with fine laminations. Rare lithic clast and fiamme present. ACC MD medium to coarse grained equigranular mafic intrusive massive with common cross-cutting qz-carbonate-albite-epidote veinlets. Crystal lithic tuff with foormon eubedral to subhedral feldspar crystals and rare lithic clasts. Unit displays reverse grading and sharp upper and lower ct. Unit weakly foliated to massive aphanitic mafic volcanic with a plethora of calcite and quartz filled amygdales. Unit displays sharp upper and lower contacts with crystal lithic tuff. intermediate crystal lithic tuff. intercalated ash tuff with fine laminations. Rare lithic clast and fiamme ACC	CAS aphanitic to fine grained mafic volcanic minor intercalated crystal tulf between 10-11m. Amygdales rare but present. Weak to moderately foliated unit sharp lower ct chlorite schist with mafic intrusive protolith. Common fault gauge and broken ground due to soft schist. Unit weakly sheared to moderately foliated. Unit like footwall structure beyond CLSZ ACH 0.1 MD medium to coarse grained equigranular mafic intrusive massive to weakly foliated near upper ct ACC 0.1 MD intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with fine laminations. Rare lithic clast and finamme present. ACC 0.1 MD intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with fore laminations. Rare lithic clasts. Unit displays reverse grading and sharp upper and lower ct. Unit weakly foliated to massive aphanitic mafic volcanic with a plethora of calcite and quarz filled and guarz filled and guarz filled intercalated ash tuff with fine laminations. Rare lithic clast and finamme presere grading and sharp upper and lower contacts with crystal lithic tuff. ACC 0.1 MD ITY Intermediate crystal lithic tuff. intermediate crystal lithic tuff. intermediate crystal lithic tuff. ACC 0.1	CAS Image: aphanitic to fine grained mafic volcanic minor intercalated crystal luft between 10-11m. Amygdales rare but present. Weak to moderately foliated unit sharp lower ct. Chlorite schist with mafic intrusive protoith. Common fault gauge and broken ground due to soft schist. Unit weakly of sheared to moderately foliated. Unit like footwall structure beyond CLSZ ACC 0.1 Weak pervasive chlorite alteration. Trace cubic perite related. Pyrite trace and in cubic form footwall structure beyond CLSZ MD medium to coarse grained equigranular mafic intrusive massive to weakly foliated near upper ct ACC 0.1 Weak pervasive chlorite-calcite alteration at 0 cm weakly foliated near upper ct MD intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash uff with from lamma ability contained ability foliated to minut sive massive with common cross-cutting qu-carbonate-albite-epidote weakly foliated to minut sive massive massive to weakly foliated to minut sive massive with common cross-cutting qu-carbonate-albite-epidote weakly foliated to minut sive massive with common constructing qu-carbonate-albite-epidote maintaitons. Rare lithic clasts. Unit displays reverse grading and sharp upper and lower ct. Unit weakly foliated to minut sive massive with common enderate libelity pyrite associated with a secondare with costs and fiamme present. MD intermediate crystal lithic tuff with reverse graded to minut sive massive with common costs-cutting qu-carbonate-albite-epidote dispersion. Trace there and associated with contact and fiamme present. ACC 0.1 weak pervasive chlorite-calcite and disseminated pyrite associated with contane abilite-epidote dispersion. Trace there and associate	CAS aphanitic to fine grained mafic volcanic minor intercalated crystal tuff between 10-11m. Armygales rate but present. Wat to unit sharp lower of. ACC 0.1 weak pervasive chlorife-calcite alteration. Trace cubic yutte PSC Common fault gauge and broken ground due to soft schist. Unit weakly sheared to moderately foldetd. Lift Re tootwal structure beyond ACH 0.1 Weak pervasive chlorife active alteration. Trace cubic yutte FSC medium to coarse grained equigranular mafic intrusive massive to weakly foldeted near upper ct ACH 0.1 Weak pervasive chlorife calcite alteration and weak veinter traited epidote alteration and weakk veinter traited epidote alteration and weakk veinter traited epidote alteration and weakk veinter traited epidote alteration. Sev fine grained disseminated pyrite 0.008 ITry intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with groesen. Unit agains and sublecting alteration. Rare lithic clast and fiamme present. ACC 0.1 weak pervasive chlorife-calcite alteration at 69m MD intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with groesen. Crystal and real lithic clasts. Unit displays sharp upper and graver of clasts. Unit displays sharp upper and graver of clasts. Unit displays sharp upper and graver of clasts. Unit displays sharp upper and lower contals with crystal lithic tuff with a petros of calcite and quartz filled beds and minor intercalated ash tuff with fine laminations. Rare lithic clast and filtione clasts. Unit displays sharp upper and lower? 0.01 W	CAS aphantic to fine grained mafe volcanic minor intercalated crystal tuff Amygdales rare but present. Weak to moderately foliated unit sharp lower ct. Unit weak protocolit. ACC 0.1 weak pervasive chlorite activite strong pervasive chlorite activite weak pervasive chlorite activite alteration and weak orienter alteration and weak orienter alterated orgoto weak ploritation and weak orienter alteration contains 0.3% fine grained disseminated pyrite 0.008 5 MD intermediate crystal lithic tuff with reverse grained beds and minor present. ACC 0.1 Weak pervasive chlorite-calcite alteration. Trace blebby pyrite associated with taminations. Weak verified alteration. Trace blebby pyrite alteration at 69m MD intermediate crystal lithic tuff. ACC 0.1 Weak pervasive orionis 0.3% fine grained disseminated pyrite MD intermediate crystal lithic tuff. ACC 0.1 Weak pervasive orionic alteration. Pyrite trace and associated with taminations. Weak weak pervasive orionic state and weak verifier calcite alteration. Pyrite trace and associated with taminations. MD intermediate crystal lithic tuff. ACC 0.1 Weak pervasive orionic state and weak	CAS aphantic to fine grained melic volcanic minor intercalated crystal full Anypdates rate but present. Weak to chorite schist with mafic intrusve protoith. ACC 0.1 Weak pervasive chorite schist with mafic intrusve protoith. PSC Common fault gauge and borned rately follated unit schare Journed day control to coarse grained equigranular matic tuff with reverse graded beds and minor intercalated ash tuff with fine laminations. Rare present. ACH 0.1 Weak pervasive chorite calculate alteration and weak chorite calculate alteration. 5 MD Intermediate crystal lithic tuff with reverse graded beds and minor intercalated ash tuff with fine laminations. Rare present. ACC 0.1 Weak pervasive chorite-calcule alteration and weak chorite-calcule alteration. MD Intermediate crystal lithic tuff with reverse graded beds and minor intrevalated ash tuff with fine laminations. Rare present. ACC 0.1 Weak pervasive chorite-calcule alteration. 0.003 MD Intermediate crystal lithic tuff with reverse graded beds and minor intrevalated ash tuff with common cross-cutting class. Unit displays in related service weak pervasive chorite-calcule and weak vehicle calcule alteration. 0.003 MD Intermediate crystal lithic tuff with apterbroa calcule present. ACC 0.1 1 MD Intermediate crystal lithic tuff with apterbroa calcule present. ACC 0.1 1 <	CAS Iaphanitic to fine grained made volcanic minor Image volcanic minor TA* Image volcanic minor TA* MB TA* ME PSC Image volcanic minor PSC Image volcanic minor Image volcanic minor ACC Divide exists Common fault gauge and proken ground lose to soft schist. Unit weakly schist. Unit weakly collated. Unit like equigranular matic mintrave massive to wupper ct ACC ITY Intermediate crystal lithic turf with reverse graded present. ACC 0.1 ITY Intermediate crystal lithic turf with reverse graded equigranular matic mintrave massive with common crease-auting organized disseminated present. ACC 0.1 MD Intermediate crystal lithic turf with reverse graded present. ACC 0.1 MD Intermediate crystal lithic turf with reverse graded present. ACC 0.1 MD Intermediate crystal lithic turf with reverse graded present. ACC 0.1 MD Intermediate crystal lithic turf with reverse graded present. ACC 0.1 MD Intermediate crystal lithic turf with reverse graded present. <td< td=""></td<>

Geology Quicklog

East: 446363 North: 5460627.2 Elevation: 365.47 Azim: 225 Dip: -60 Scale: 1:4

Diamond drillhole:CCD-14-241

Project: JUPITER Core size: NQ Date completed: _____

Logged: Dave Cooper

÷				Ge	eology			Alteration	Au ppm		Λ	ppm	
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppin	9 0		bhii	N 6
	0	7	CAS										
								pervasive chlorite-calcite alteration with weak patchy (fe) carbonate alteration. Carbonate					
	7	53.7	MB W		aphanitic pillow basalt with common calcite filled amydales and frequent cross-cutting calcite veinlets. Unit ranges from moderately to weakly foliated.	ACC	0.1	rhombs present towards the lower contact of alteration unit moderate patchy chlorite-sericite-(fe) carbonate alteration preferentially altering the center of pillows. Trace tourmaline of black schorl occurs in veinlets. Pyrite trace medium to fine grained disseminated. Minor chalco pyrite occuring in a chlorite-v unit displays moderate	0.005				
40- 					ductile deformed shear	ACSC	0.1	to strong sercitite-(fe) carbonate occuring within the foliation as well as moderate silica in the forms of veinlets cross-cutting unit subparallel to shearing. Pyrite trace and foliation related	0.003 0.006 0.008 0.007 0.003 0.003 0.003 0.003				
					zone with later brittle deformation QCAV veinlets overprinting ductile deformation sub-parallel to shearing. Healed shear planes give unit a mottled QCAV texture. Sheared cts			for unit. moderate patchy chlorite-sericite-(fe) carbonate alteration preferentially altering the center of pillows. Pyrite trace medium to fine grained	0.005 0.003 0.006				
-	53.7	57.45	PDS		fine grained mafic volcanic bleached by (fe) carbonate alteration massive to weakly	ASC	0.1	disseminated. 0.5% pyrite occurs in fds form on lower contact with PQF	0.005 0.003 0.003				
	57.45	71.55	MB W		foliated pillow rinds and amygdales identifiable dacite quartz-feldspar porphyry with dominant quartz phenocrysts unit lightly hematite stained near upper ct and silicified. Sharp upper and lower ct aphanitic to fine grained	ACSC	0.1	moderate pervasive silica-sericite alteration with trace medium to fine grained disseminated pyrite. Unit hematite stained towards upper ct moderate foliation related	0.008 0.006 0.005 0.003 0.014 0.008 0.013 0.009 0.007 0.007 0.007				
70-	71.55	73.35	PQF		bleached mafic pillow basalt. Pillow rinds still identiable chloritic. Minor intercalated ash tuff. Common crosscutting	ASS	0.1	chlorite-sericite-(fe) carbonate alteration, pyrite occurs on the edges of irregular QCAV veinlets as	0.003 0.011 0.021 0.009 0.003				
-		73.35 76.85	MB W	<u>ئ</u> ئ	QCAV most sub-parallel to foliation	ASS	0.1	both cubic and fine grained styles.	0.006				

East: North: Elevation: Azim: Dip:

Scale:

446363 5460627.2 365.47 225 -60

1:4

CAMERON GOLD PROJECT

Geology Quicklog

Diamond drillhole:CCD-14-241

Project: JUPITER Core size: NQ Date completed:

Logged: Dave Cooper

÷				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppin	
80- 	73.35 76.85	76.85 82.05	MB W ITL		aphanitic to fine grained bleached mafic pillow basalt. Pillow rinds still identiable chloritic. Minor intercalated ash tuff. Common crosscutting QCAV most sub-parallel to foliation finely laminated intermediate ash tuff with intercalated lithic tuff.	ACSC	0.1	moderate foliation related chlorite-sericite-(fe) carbonate alteration, pyrite occurs on the edges of irregular QCAV veinlets as both cubic and fine grained styles.	0.012 0.008 0.003 0.003 0.003 0.003 0.008 0.01 0.012	
90-	82.05	98	MD		fine to medium grained mafic intrusive with equgranular texture being partially obscured by carbonatization. Leucoxene grained common with skeletal texture.	ACCF	0.1	moderate pervasive disseminated chlorite-fe carbonate. Pyrite occurs as a paint on fracture surfaces and as lens within the volcaniclastics		
-	98 99.1	99.1 99.9	ITA PQF		well laminated intermediate ash tuff with sharp upper and lower	ASS	0.1	moderate pervasive sericite-silica alteration with trace	0.003 0.003 0.003	
100	99.9	110.2 5	SVS		contacts. dacite quartz-feldspar porphyry with dominant quartz phenocrysts unit silicified. Sharp upper and lower ct. beige in colour Unit dominated by volcanoclastic sandstone with minor intercalated	ACCF	0.1	fine grained pyrite extending into unit above. weak pervasive chlorite-(fe) carbonate alteration with trace pyrite occuring as lens within the bedding plane strong silica-(fe)	0.003	
110-					lithic and ash tuff. Lithic tuff displays common lithic clasts and fiamme.	ASIC	0.5	carbonate alteration occuring in a 35cm	0.013 2.78 0.023	
	110.2 5	128.1	МВ		Unit is dominated by mafic volcanic with smaller sub-intervals of volcaniclastic sandstone with quartz grains. Unit contains wispy irregular cross-cutting calcite veinlets	ACC	0.1	vein that is interpreted to be a replaced PQF. This vein is followed by chlorite-sericite-(fe)car bonate-hematite-magne tite alteration. Pyrite occurs up to 1% as fine to very vine grained vein rel weak pervasive chlorite-calcite alterations weak qz-(fe) carbonate veining near upper contact with trace fine grained pyrite in	0.033 0.014 0.275 0.015 0.003 0.003	
130	128.1	138.5	PSC		chloritic alteration causing lithology to be softened. Protolith is still identifiable as mafic intrusive with leucoxene grains strech with the foliation	ACH		selvedges strong chlorite alteration caused by shearing withing the chlorite schist. Moderate pervasive calcite alteration		
140										Pane 2 of 2

Geology Quicklog

 East:
 446475

 North:
 5460729

 Elevation:
 365.16

 Azim:
 225

 Dip:
 -60

 Scale:
 1:4

Diamond drillhole:CCD-14-242

Project: JUPITER Core size: NQ Date completed: _____

Logged: Kristen Wiebe

÷				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment		
	0	5.8	CAS							
10- 	5.8	23.85	MB			ACC	0.1	Occasional blebby pyrite stringers associated with quartz/carbonat veining Increased pyrite percentage along porph contact(up to 1% cubic fine grained) Up to 0.5%		
20-					The upper contact			cubic/blebby pyrite locally, 1% fine grained cubic pyrite along lower contact.	/ <u>0.005</u> /0.007	
	23.85	28.58	PFB H		appears to be slightly sheared (ductile deformation)(23.85-25m). Strong oxidation along	ASIC	0.1	26.8-28.2m porphyry turns into an ochre colour – oxidation due to ground water.	0.007 0.01 0.003 0.003	
30-				***	fractures due to ground water. Sharp lower contact. Cryptictexture			Unit moderately magnetic up to 0.5%cubic pyrite	0.003 0.003	
-	28.58	34.5	MB			ACC	0.1	locally. Slight increase in pyrite percentage (0.5-1%)	0.003	
	34.5	40.6	PFB H		Sharp upper contact, lower contact is sharp with minor basalt intercallations.	ASIC	0.1	along lower contact. Unit weaky magnetic Unit moderately magnetic. Slight increase in pyrite	0.003 0.003 0.003 0.003 0.003	
	40.6	65.5	МВ			ACC	0.1	percentage (0.1-0.5%) at top of unit, appears to be quartz/carbonate related. 49.8-52.7m moderate quartz carbonate veining with veins reaching 5cm in width. Epidote alteration is limited and weak, assoc Weak patchy magnetics. Up to 1% fine grained cubic pyrite locally – associated with lithology contacts (intercallating PFH and MB) and increasedqrtz/carb	0.003 0.003 0.003 0.003	
-				***		ASIC	0.1	veinlets Weak patchy magnetics. Up to 1%	0.006	
	65.5	70.95	PFB H		Unit not as magnetic as above and below units	ASIC	0.1	fine grained cubic pyrite locally – occurring intermittently within	0.023 0.024 0.056 0.033 0.003	
	70.95	78.5	MD			ACC	0.1	vorphyry. Unit moderately magnetic. Epidote alteration is occurring selectively as		
80	78.5	96.9	MB		Occasional amygdales			selvages around chlorite crystals within dolerite.		

Geology Quicklog

East: 446475 North: Elevation: Azim: 225 Dip: -60 Scale: 1:4

Diamond drillhole:CCD-14-242

Project: JUPITER Core size: NQ

Date completed:

Logged: Kristen Wiebe

th				Ge	eology			Alteration	Au ppm	Au ppm
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment		
	78.5	96.9	МВ		Occasional amygdales	ACC	0.1	Unit moderately magnetic. Epidote alteration is occurring selectively as selvages around		0.6
	96.9	97.35						chlorite crystals within dolerite.	0.007 1.95 0.007 0.003	
100-	90.9	97.33	FIQ						\ <u>0.01</u> \0.015	
110						ACS	0.1	Pyrite most frequently occurring as blebby stringers along qrtz/carb vein selvages. PY also occurring as cubicdisseminated. Quartz/albite vein 116.3-116.6m. The intesnsity of sericite alteration weakens	0.009	
120-								towards the end of the unit		
130-	97.35	152	МВ		EOH. Occasional amygdales					
140						ACC	0.1	at 143.6m a slight increase in sericite alt intensity occurs with a with minor quartz veiningand 0.5% fine	0.086	
								grainedcubic pyrite		

5460729 365.16

Geology Quicklog

 East:
 446426

 North:
 5460565

 Elevation:
 372

 Azim:
 225

 Dip:
 -60

 Scale:
 1:4

Diamond drillhole:CCD-14-243

Project: JUPITER Core size: NQ Date completed: _____

Logged: Kristen Wiebe

				Ge	eology			Alteration		
Depth	From	То	Lith1		Comment	Alt1	Py%	Comment	Au ppm	Au ppm
										0.6 0.6 1.3 2.6 3.9 3.9 3.9
	0	7.2	CAS							
-	7.2	34.1	MB		16.4-16.6m moderate quartz/albite veining. 28-34.1m moderate to strong foliation, weak patchy sericite/carbonate/chlorite alteration and trace cubic/blebby pyrite	ACCF	0.1			
-					/Feldspar quartz prophryr,	ACSC	0.1	Up to 0.5% cubic pyrite locally	0.007 0.032 0.003	
-	34.1	34.55	PF		beige. Moderate sericite				0.005	
50-	34.55	62	MB		Foliation intensity increases to moderate from 28-36.3m. Occasional carbonate rhombs	ACCF	0.1	Sericite alteration occurring along quartz veins – an increase in gubia parte 9	0.236	
-	62	73.95	ITA		Intercallating volcaniclastics with weak chlorite alt		0.1	cubic pyrite % seems to occur with these vein/alteration sets (up to 0.5%py)	0.003	
-	73.95	89.5	MB		Basalt , fine grained, weak chlorite carbonate alteration with weak patchy sericite alt locally 89.8-90.5m weak to moderate sericite alt and			This section of the porphyry appears to have stronger sericite alteration as well as an increased pyrite % (no obvious structural cues to point to why	0.003	
-			PFB	~~	up to 1% vry fine graind disseminatd cubic pyrite.	ASIC	0.5	this has occurred) Unit has a very slight	0.014 0.003 0.003	
_	89.5	94.4	Η̈́Η̈́	**	Remainder of unit is hematite/silica/carbonate	ASI	0.1	mauvy hue Unit is soft and friable from 108.5-100	0.003	
					Frequent carbonate rhombs, moderate	ACC		(due to an increase in chlorite alteration?).	2.56 0.032	
100-	94.4	181.4	MB		chlorite carbonate alteration. Occasional vein related epidote alt. Foliation intensity	ASIC ACC	0.1 0.1	alteration occuring selectively as selvages with	0.053	
100-	94.4	181.4	MB		rhombs, moderate chlorite carbonate alteration. Occasional vein related epidote alt.	ASIC		Weak epidote alteration occuring selectively as	0.053	

Geology Quicklog

East: 446426 5460565 372 Azim: 225 Dip: -60 Scale: 1:4

Diamond drillhole:CCD-14-243

Project: JUPITER Core size: NQ Date completed:

Logged: Kristen Wiebe

				Ge	eology			Alteration		
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm	Au ppm
	94.4	181.4	МВ		Frequent carbonate rhombs, moderate chlorite carbonate alteration. Occasional vein related epidote alt. Foliation intensity decreases down unit.	ACC	0.1	Unit is soft and friable from 108.5-100 (due to an increase in chlorite alteration?). Weak epidote alteration occuring selectively as selvages with quartz/carbonate veining	0.003	
-	181.4	182	ITY			ACC	0.1		0.022 0.009 0.102	
- 200	-									

North: Elevation:

Geology Quicklog

446548 5460538 366 225 -60 Scale: 1:4

Diamond drillhole:CCD-14-244

Project: JUPITER Core size: NQ

Date completed: Logged:

Kristen Wiebe

÷				Ge	eology		Alteration			u ppm Au ppm		
Depth	From	То	Lith1	Log	Comment	Alt1	Py%	Comment	Au ppm			
-	0 3.2 5.2	3.2 5.2 6.8	CAS MB PHF	A A A A A A A A A A A A A A A A A A A		ACC ASIC	0.1 0.1	0.5-1% fds pyrite from 4.79-4.83m (nearing porphyry contact) with weak hematite alteration – rock has a slight purplish hue		06 113 28 28 28 33 33 33		
-	6.8	55.1	MB			ACC	0.1	Sericite alteration is weak and speratic -selectively occurring in areas with increased quartz veining and foliation. Sericite alteration dissapates by 25m				
50-	55.1	59	MD			ACSC	0.1	48-48.45m weak to moderate quartz brecciation with strong silica/sericite/carbonate alt and up to 0.5% fine grained pyrite				
-	59	79.37	MB									
	79.37	116	МВ		Basalt frequently intercallated with volcaniclastic units ranging from ash to lithic tuffs.	ACC	0.1	Weak to moderate patchy magnetics -mag dies out when volcaniclastics are intercepted Patches of more intense alteration – generally associated with quart veining, there is also a slight increase in pyrite percentage (.5% max) in these areas				
-	116	128	ITL		Portions of the of the intercalating units have a very bleached appearance.	ACSC	0.1	125.2-125.5m moderate quartz veining with weak sericite alteration and trace cubic pyrite. 16.3-126.7m moderate quartz veining with weak sericite alt (pyrite blank)				

East: North: Elevation: Azim: Dip:

LITHOLOGY Transported	Soils	NT*	Transported Materials (undifferentiated)
		NR*	
	Overburden	TA*	Alluvium & Fluvial Deposits
		TW*	
		TC*	
		TE*	
		TP*	
		TJ*	
		TX*	
		TM* TD*	
Regolith	Residual	ID	
Aafic Rocks (M)	MPD	MPD	Post-Deformation Mafic Intrusive (eg Proterozoic Dolerite)
	Undivided	M	Undifferentiated mafic rock
Aafic Intrusive Rocks	Gabbroic Rocks	MG	Gabbro / Gabbroic rock - general (includes norite)
	(G)	MGG	Magnetic gabbroic rock
		MGM	Melanocratic gabbroic rock includes norite
		MGF	Feldspathic gabbroic rock includes norite
		MGN	Monzogabbro (alkali feldspar >10%)
		MGQ	Quartz-bearing gabbroic rocks
		MGQG	Quartz gabbro - Granophyric texture
		MGA	Anorthosite
		MGB	Mafic Layered Complex (undiff)
	Doleritic Rocks	MD	Dolerite - general
	(sub-ophitic texture)	MDG	Magnetic dolerite
		MDM	Melanocratic dolerite
		MDF	Feldspathic dolerite / microdolerite
		MDQ	Quartz dolerite
			Granophyric dolerite
Aafic Volcanic Rocks	Volcanic flow units	MB	Basalt to undiff mafic to intermediate volcanic
		MBT	Tholeiitic basalt
	Bornhyritia unita	MBK	Komatiitic or high magnesian basalt
	Porphyritic units	MBFP	Porphyritic basalt - olivine/pyx phenocryst dominant
		MBP	Porphyritic basalt - plagioclase phenocryst dominant Mafic porphyry
		MBC	Coarse doleritic-textured mafic
		MBQ	Quartz basalt
		MBW	Pillow basalt
		MBH	Basaltic hyaloclastite
		MBN	Mafic peperite
	Fragmentals	MT	Basaltic / Mafic tuff - undifferentiated
	ragmontaio	MTL	Basaltic / Mafic tuff - lithic
		MTX	Basaltic / Mafic tuff - crystal
		MTA	Basaltic / Mafic tuff - ash/lapilli
		MTX	Basaltic breccia / Coarse pyroclastic
		MTG	Basaltic agglomerate / fragmental
		MTR	Basaltic autobreccia
Jltramafic Rocks (U)	Undivided	U	Undifferentiated ultramafic rock
	Intrusive rocks	UB	Kimberlitic units
		UC	Carbonatites
		UL	Lamprophyres
		UT	Lamproites
		UN	Ultramafic layered intrusive (undiff)
	Layered Intrusive rocks	UKO	Orthocumulate
		UKA	Adcumulate
		UKM	Mesocumulate
	Peridotites	UD	Dunite
		UP	Peridotite
	Pyroxenites	UX	Pyroxenite (undiff)
		UXV	Olivine pyroxenite
		UXP	Orthopyroxenite
		UXC	Clinopyroxenite
		UXW	Websterite
		UXH UH	Hornblende pyroxenite Hornblendite
	Extrusive rocks	UH UK	Komatiite - undifferentiated
	LAUGIVE IUCKS	UKS	Spinifex-textured komatiite
		UKS	Ultramafic hyaloclastite
	Metamorphosed Equivalents	UMR	Amphibole-chlorite ultramafic
	Metamorphoseu Equivalents	UMC	Chlorite-dominated ultramafic
		UMS	Serpentinite
		UMT	Talc-chlorite ultramafic
		UMB	Talc-carbonate ultramafic
ntermediate	Undivided	I	Intermediate volcanic (undifferentiated)
/olcanic Rocks (I)	Charried	•	
			Andraitic valennia
	Andesites	IA	Andesitic voicanic
	Andesites	IA IAB	Andesitic volcanic Basaltic andesite

		IR	Trachyte
		IRA	Trachyandesite
		IH	Tephritic volcanic
		IP	Phonolitic volcanic
	Porphyritic Units	IAOP	Porphyritic andesite - phenocrysts undefined
		IAAP	Porphyritic andesite - biotite or amphibole phenocrysts
		IAPP	Porphyritic andesite - olivine or pyx phenocrysts
		IAFP	Porphyritic andesite - feldspar-dominant phenocrysts
		IAW	Pillowed andesite
		IAH	Andesitic hyaloclastite
		IAN	Intermediate peperite
	Fragmentals	IT	Intermediate tuff (undiff)
	-	ITL	Intermediate lithic crystal tuff
		ITY	Intermediate crystal tuff
		ITA	Intermediate tuff - ash/lapilli
		ITX	Intermediate breccia / Coarse pyroclastic
		ITG	Intermediate agglomerate / fragmental
		ITR	Intermediate autobreccia
elsic Volcanic	Undivided	F	Felsic volcanic (undifferentiated)
Rocks (F)			
	Flows	FD	Dacite
		FR	Rhyolite
		FG	Obsidian or volcanic glass - uncertain classification
	Estate enclose de	FE	Feldspathoid-rich volcanic
	Felsic porphyrys, flows or	FQP	Quartz porphyry - volcanic context
	subvolcanic sills/dykes (P)	FFP FEP	Feldspar porphyry - volcanic context
		FAP	Quartz-feldspar porphyry - volcanic context
		FAF	Amphibole / biotite-feldspar +/- quartz porphyry Felsic hyaloclastic
			Felsic peperite
	Fragmentals (T)	FT	Felsic tuff (undifferentiated)
	Tragmentais (T)	FTL	Felsic lithic crystal tuff
		FTY	Felsic crystal tuff / Quartz-eye tuff
		FTA	Felsic ash / lapilli /Vitric tuff
		FTX	Felsic breccia
		FTT	Felsic pyroclastic - Ignimbrite
- elsic-Intermediate	Undivided	G	Granitoid (undifferentiated)
ntrusive Rocks (G)	enamada	GI	Intermediate dyke (undifferentiated)
	Dioritic Rocks (I)	GID	Diorite
	()	GIDQ	Quartz diorite / Trondhjemite
		GIM	Monzodiorite
		GIMQ	Quartz monzodiorite
	Granitic Rocks (R	GRT	Tonalite
		GRD	Granodiorite
		GR	Granite
		GRA	Alkali Feldspar Granite
		GRQ	Quartz-rich granitic rock
	Syenitic Rocks (S)	GSM	Monzonite
		00140	Quartz monzonite
		GSIVIQ	Quartz monzonite
		GS	Syenite
		GS GSQ	Syenite Quartz syenite
		GS GSQ GSA	Syenite Quartz syenite Alkali feldspar +/- quartz syenite
	Foid-rich cg intrusives (F)	GS GSQ GSA GF	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite
	Foid-rich cg intrusives (F)	GS GSQ GSA GF GFS	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite
		GS GSQ GSA GF GFS GFM	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks
	Foid-rich cg intrusives (F) General (A)	GS GSQ GSA GF GFS GFM GA	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite
		GS GSQ GF GFS GFM GA GAP	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite
	General (A)	GS GSQ GF GFS GFM GA GAP GAG	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen
Porp		GS GSQ GF GFS GFM GA GAP GAG P	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated)
yorb	General (A)	GS GSQ GF GFS GFM GA GAP GAG P PF	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry
Porp	General (A)	GS GSQ GF GFS GFM GA GAP GAG P PF PQ	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry
Sotb	General (A)	GS GSQ GF GFS GFM GA GAP GAP PF PQ PQF	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry Quartz-feldspar porphyry
yorb	General (A)	GS GSQ GF GFS GFM GA GAP GAG P PG PQF PFQ	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz-feldspar porphyry Feldspar quartz porphyry
Yorp	General (A)	GS GSQ GF GFS GA GAP GAG PF PQF PFQ PB	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry Quartz-feldspar porphyry Feldspar quartz porphyry Biotite aphyric porphyry
Yorp	General (A)	GS GSQ GF GFS GFS GAP GAG P P P P P P P P P P P P P P B F	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz-feldspar porphyry Feldspar quartz porphyry Biotite aphyric porphyry
Porp	General (A)	GS GSQ GF GFS GFS GAP GAG P PQ PQF PQF PBF PC	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz-feldspar porphyry Feldspar quartz porphyry Biotite aphyric porphyry Biotite feldspar porphyry
Porp	General (A)	GS GSQ GF GFS GFS GAP GAG P F PQ PQF PG PBF PC PFB	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry Quartz porphyry Feldspar quartz porphyry Biotite aphyric porphyry Biotite feldspar porphyry Chloritic aphyric porphyry Feldspar biotite porphyry
orb	General (A)	GS GSQ GF GFS GFM GA GAP GAG P PG PAF PFB PFB PFB PFBH	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry Quartz porphyry Feldspar quartz porphyry Biotite feldspar porphyry Biotite feldspar porphyry Chloritic aphyric porphyry Feldspar biotite porphyry Feldspar biotite porphyry
Porp	General (A)	GS GSQ GF GFS GFM GA GAP GAG P PG PAP PAP PAP PAP PAP PFB PFBH PFQB	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry Quartz porphyry Feldspar quartz porphyry Biotite aphyric porphyry Biotite feldspar porphyry Chloritic aphyric porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar biotite hornblende porphyry Feldspar quartz biotite porphyry
	General (A) Porphyritic Rocks (P)	GS GSQ GF GFS GA GAP GAG PF PG PFQ PFQ PFQ PFB PFBH PFQB PFQH	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz feldspar porphyry Feldspar quartz porphyry Biotite aphyric porphyry Biotite feldspar porphyry Feldspar piotite porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar quartz biotite porphyry Feldspar quartz biotite porphyry Feldspar quartz biotite porphyry
	General (A) Porphyritic Rocks (P) Undivided	GS GSQ GF GFS GF GA GA GA P F P C PFB P F B P F B F B F B F B B F C P F B B F C B F S B S C S C S C S C S C S C S C S C S C	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry Quartz-feldspar porphyry Feldspar quartz porphyry Biotite aphyric porphyry Biotite feldspar porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar duartz biotite porphyry Feldspar quartz biotite porphyry Feldspar quartz hornblende porphyry Feldspar quartz hornblende porphyry Sediments (undifferentiated)
	General (A) Porphyritic Rocks (P)	GS GSQ GF GFS GFS GAP GAG P F PQ PAF PFQ PB PFQB PFQB PFQB PFQB SA	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz-feldspar porphyry Feldspar quartz porphyry Biotite aphyric porphyry Biotite feldspar porphyry Chloritic aphyric porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar auartz biotite porphyry Feldspar quartz biotite porphyry Feldspar quartz hornblende porphyry Sediments (undifferentiated) Argillities (undifferentiated), grain size <0.05 mm
	General (A) Porphyritic Rocks (P) Undivided	GS GSQ GF GFS GFM GA GAP GAG P PAP PAP PAP PAP PFB PFBH PFQB PFQH S SA SAS	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz-feldspar porphyry Feldspar quartz porphyry Biotite aphyric porphyry Biotite feldspar porphyry Feldspar biotite porphyry Feldspar uartz hornblende porphyry Feldspar quartz hornblende porphyry Sediments (undifferentiated) Argillities (undifferentiated), grain size <0.05 mm Siltstone
	General (A) Porphyritic Rocks (P) Undivided	GS GSQ GSA GF GFS GFM GA GAP GAG P PA PA PA PA PA PA PA PA PA PA PA PA P	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry Quartz porphyry Feldspar quartz porphyry Biotite feldspar porphyry Biotite feldspar porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar juotite homblende porphyry Feldspar quartz biotite porphyry Feldspar quartz biotite porphyry Feldspar quartz biotite porphyry Sediments (undifferentiated) Argillities (undifferentiated), grain size <0.05 mm Siltstone Mudstone, shale & slate
	General (A) Porphyritic Rocks (P) Undivided	GS GSQ GSA GF GFS GAP GAG P PG PGP PFQ PFQ PFQ PFQ PFQB PFQB PFQB S SAS SAF SAL	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry Quartz porphyry Guartz porphyry Feldspar quartz porphyry Biotite aphyric porphyry Biotite feldspar porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar duartz biotite porphyry Feldspar quartz biotite porphyry Feldspar quartz biotite porphyry Feldspar quartz biotite porphyry Feldspar quartz biotite porphyry Sediments (undifferentiated) Argillities (undifferentiated), grain size <0.05 mm Siltstone Mudstone, shale & slate Lithic argillite
^p orp Sedimentary Rocks (S)	General (A) Porphyritic Rocks (P) Undivided	GS GSQ GSA GF GFS GFM GA GAP GAG P PA PA PA PA PA PA PA PA PA PA PA PA P	Syenite Quartz syenite Alkali feldspar +/- quartz syenite Feldspathoid-rich Intrusive/Foidolite Foid-rich syenite / Foid monzosyenite Foid-rich diorite rocks Microgranite / Felsite or Aplite Pegmatite Greisen Porphyry intrusive (undifferentiated) Feldspar porphyry Quartz porphyry Quartz porphyry Feldspar quartz porphyry Biotite feldspar porphyry Biotite feldspar porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar biotite porphyry Feldspar juotite homblende porphyry Feldspar quartz biotite porphyry Feldspar quartz biotite porphyry Feldspar quartz biotite porphyry Sediments (undifferentiated) Argillities (undifferentiated), grain size <0.05 mm Siltstone Mudstone, shale & slate

	Sandaiza	SAG	Graphitic or carbonaceous argillites
	Sand size	SS SSP	Sandstone / arenite (undifferentiated), grain size >0.05 mm <2 mn Micaceous sandstone
		SSL	Lithic sandstone
		SSG	Graphitic or carbonaceous sandstone
		SSD	Calcareous sandstone
		SSQ	Quartzite
			Arkose & feldspathic sandstone
		SSA SSW	Greywacke / Turbidite
	* second qualifier can include	SS*B	Pebbly sandstone
	Arkose (A), Greywacke (W)	SS*K	Cobbly sandstone
	Micaceous (P), Lithic (L)	SS*F	Fine-grained sandstone
	Graphitic (G), Calcareous (D)	SS*M	Medium-grained sandstone
	Quartz (Q)	SS*C	Coarse-grained sandstone
		SSY	Finely-bedded/graded sandstone
		SSH	Finely-interbedded / laminated sandstone & argillite
	Sedimentary Breccia (X)	SX	Sedimentary breccia (undifferentiated)
	& Conglomerate / Rudite (R)	SXM	Monomictic sedimentary breccia
ast-type' qualifier (inc dominant) Felsic volcanic (F), Intermedi			
amafic volcanic (U), Felsic-Intermediate porphyry (P), Granito			
t (Q), Metamorphic - schist, gneiss etc (C		SXP	Polymictic sedimentary breccia
		SXO	Oligomictic sedimentary breccia
		SR	Conglomerate (undifferentiated)
		SRS	Interbedded conglomerate & sandstone or argillite
		SRM	Monomictic conglomerate
		SRP	Polymictic conglomerate
		SRO	Oligomictic conglomerate
	Chemical sediments (C)	SCC	Carbonate Rocks (undifferentiated)
		SCD	Dolostone / Dolomitic Limestone
		SCL	Limestones (undifferentiated)
		SCCK	Chalk or chalky deposits
		SCE	Evaporites (undifferentiated)
		SCP	Phosphorites
		SCS	vfg siliceous sediment (- Radiolarite / diatomite etc)
		SCT	Chert
		SCJ	Jasper
		SCI	Iron Formation
		SCIO	Oxide facies iron formation - BIF / Jasperite
		SCIZ	Sulphide facies iron formation
		SCIS	Silicate facies iron formation
		SCIC	Carbonate facies iron formation
		SCN	Sinter
		SCZ	Exhalite (undifferentiated)
		SCZD	Exhalite - carbonate dominant
		SCZD SCZZ	Exhalite - carbonate dominant Exhalite - pyrite / sulphide dominant
		SCZZ	Exhalite - pyrite / sulphide dominant
	Carbonaceous sediments (K)	SCZZ SCZQ SCZF	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant
	Carbonaceous sediments (K)	SCZZ SCZQ	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant
	Carbonaceous sediments (K)	SCZZ SCZQ SCZF SK	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated)
	Carbonaceous sediments (K)	SCZZ SCZQ SCZF SK SKP	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal
	Carbonaceous sediments (K)	SCZZ SCZQ SCZF SK SKP SKC	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat
	Carbonaceous sediments (K)	SCZZ SCZQ SCZF SK SKP SKC SKL	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite
	Carbonaceous sediments (K) Volcanic sediments (V)	SCZZ SCZQ SCZF SK SKP SKC SKL SKB	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite
		SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal
		SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SV	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated)
		SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SV SVA	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcanic / Tuffaceous argillite
		SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SV SVA SVS	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcanic/ Tuffaceous argillite Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals
		SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SV SVA SVS SVSF	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals
		SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SV SVA SVS SVSF SVSQ	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals
		SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SV SVS SVSA SVSF SVSQ SVSX	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal
		SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SV SVS SVSF SVSQ SVSF SVSQ SVSX SVSL	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal
	Volcanic sediments (V) Granulites etc (G)	SCZZ SCZQ SCZF SK SKP SKC SKB SKA SVS SVSA SVSS SVSSQ SVSSZ SVSL SVD	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - crystal Volcaniclastic sandstone - lithic Volcaniclastic sandstone - lithic
where primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G)	SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SVS SVSA SVSA SVSA SVSA SVSA SVSA S	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcanic/astic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - orystal Volcaniclastic sandstone - orystal Volcaniclastic sandstone - ithic Volcanic bercia (undifferentiated) Mafic Granulite
vhere primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G)	SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SVS SVSF SVSQ SVSF SVSQ SVSL SVSL SVX PGM	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - lithic Volcanic debris flow Volcanic breccia (undifferentiated) Mafic Granulite
vhere primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic	SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SVS SVSF SVSQ SVSF SVSQ SVSSL SVD SVD SVD PGF PGU	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcanic / Tuffaceous argillite Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - lithic Volcanic debris flow Volcanic breccia (undifferentiated) Mafic Granulite Ultramafic granulite (mafic minerals >90%)
where primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G)	SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SVS SVSF SVSQ SVSS SVSQ SVSX SVSL SVD SVX PGM PGF PGU PNM	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - crystal Volcanic debris flow Volcanic breccia (undifferentiated) Mafic Granulite Ultramafic granulite (mafic minerals >90%) Mafic gneiss
where primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic	SCZZ SCZQ SCZF SK SKC SKL SKB SKA SVS SVSA SVSA SVSA SVSA SVSL SVD SVSX PGM PGGU PNM PNA	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - lithic Volcanic debris flow Volcanic breccia (undifferentiated) Mafic Granulite Ultramafic granulite (mafic minerals >90%) Mafic amphibolite (Amphibolites, +/- PI, +/- Ov, +/- Gn)
where primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic	SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SVS SVS SVSQ SVSS SVSQ SVSS SVSD SVX PGF PNM PNA PNF	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcanic/ Tuffaceous argillite Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcanic debris flow Volcanic berccia (undifferentiated) Mafic Granulite Efelsic Granulite Ultramafic granulite (mafic minerals >90%) Mafic gneiss Mafic amphibolite (Amphibolites, +/- PI, +/- Ov, +/- Gn) Felsic or granitic gneiss
where primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic	SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SVS SVSQ SVSX SVSL SVSL SVSL SVSL SVSL PGF PNA PNF PNB	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - orystal Volcanic debris flow Volcanic berccia (undifferentiated) Mafic Granulite Ultramafic granulite (mafic minerals >90%) Mafic gneiss Mafic amphibolite (Amphibolites, +/- Pl, +/- Ov, +/- Gn) Felsic or granitic gneiss Banded gneiss
amorphic & Foliated Rocks (P) where primary textures are not apparent due to metamorphi as or where deformation has destroyed the primary fabric).	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic	SCZZ SCZQ SCZF SK SKD SKC SKL SKB SKA SVS SVSC SVSC SVSC SVSC SVSC SVSC SVSC	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - lithic Volcanic breccia (undifferentiated) Mafic Granulite Ultramafic granulite (mafic minerals >90%) Mafic amphibolite (Amphibolites, +/- PI, +/- Ov, +/- Gn) Felsic or granitic gneiss Banded gneiss Augen gneiss
where primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic	SCZZ SCZQ SCZF SK SKP SKC SKL SKB SKA SVS SVSZ SVSZ SVSZ SVSZ SVSZ SVSZ SVSZ	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - lithic Volcanic breccia (undifferentiated) Mafic Granulite Efelsic Granulite Ultramafic granulite (mafic minerals >90%) Mafic gneiss Mafic amphibolite (Amphibolites, +/- PI, +/- Ov, +/- Gn) Felsic or granitic gneiss Banded gneiss Augen gneiss Pelitic gneiss / Amphibolite (garnet, cordierite or aluminosilicate)
where primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic	SCZZ SCZQ SCZF SKC SKD SKC SKC SKC SKC SKC SKC SKC SKC SKC SKC	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - crystal Volcaniclastic sandstone - lithic Volcanic debris flow Volcanic breccia (undifferentiated) Mafic Granulite Felsic Granulite Ultramafic granulite (mafic minerals >90%) Mafic gneiss Mafic amphibolite (Amphibolites, +/- PI, +/- Ov, +/- Gn) Felsic or granitic gneiss Banded gneiss Augen gneiss Pelitic gneiss / Amphibolite (garnet, cordierite or aluminosilicate) Calc-silicate gneiss
where primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic Gneisses & Amphibolites (N)	SCZZ SCZQ SCZF SK SKC SKB SKA SVS SVSA SVSA SVSA SVSA SVSA SVSA S	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcanic/ Tuffaceous argillite Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - crystal Volcaniclastic sandstone - thtic Volcanic debris flow Volcanic breccia (undifferentiated) Mafic Granulite Ultramafic granulite (mafic minerals >90%) Mafic gneiss Mafic amphibolite (Amphibolites, +/- PI, +/- Ov, +/- Gn) Felsic or granitic gneiss Banded gneiss Augen gneiss Pelitic gneiss / Amphibolite (garnet, cordierite or aluminosilicate) Calc-silicate gneiss Migmatitic gneiss
where primary textures are not apparent due to metamorphi s or where deformation has destroyed the primary fabric).	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic Gneisses & Amphibolites (N) Schists (S)	SCZZ SCZF SK SKC SKL SKA SVS SVSQ SVSC SVSC SVSC SVSC SVSC SVSC	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic / Epiclastic sediment (undifferentiated) Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - crystal Volcaniclastic sandstone - lithic Volcanic debris flow Volcanic breccia (undifferentiated) Mafic Granulite Felsic Granulite Ultramafic granulite (mafic minerals >90%) Mafic gneiss Mafic amphibolite (Amphibolites, +/- PI, +/- Ov, +/- Gn) Felsic or granitic gneiss Banded gneiss Augen gneiss Pelitic gneiss / Amphibolite (garnet, cordierite or aluminosilicate) Calc-silicate gneiss
where primary textures are not apparent due to metamorphi	Volcanic sediments (V) Granulites etc (G) c recrystallisation at high metamorphic Gneisses & Amphibolites (N) Schists (S)	SCZZ SCZF SK SKC SKL SKA SVS SVSQ SVSC SVSC SVSC SVSC SVSC SVSC	Exhalite - pyrite / sulphide dominant Exhalite - silicate dominant Exhalite - sulphate dominant Carbonaceous sediment (undifferentiated) Peat Coal Lignite Bituminous Coal Anthracite Volcaniclastic / Epiclastic sediment (undifferentiated) Volcanic/ Tuffaceous argillite Volcaniclastic sandstone Volcaniclastic sandstone Volcaniclastic sandstone - feldspar crystals Volcaniclastic sandstone - quartz crystals Volcaniclastic sandstone - crystal Volcaniclastic sandstone - crystal Volcaniclastic sandstone - thtic Volcanic debris flow Volcanic breccia (undifferentiated) Mafic Granulite Ultramafic granulite (mafic minerals >90%) Mafic gneiss Mafic amphibolite (Amphibolites, +/- PI, +/- Ov, +/- Gn) Felsic or granitic gneiss Banded gneiss Augen gneiss Pelitic gneiss / Amphibolite (garnet, cordierite or aluminosilicate) Calc-silicate gneiss Migmatitic gneiss

LITHOLOGY		PSH	Amphibole +/- chlorite-dominant schist
		PSC	Chlorite-dominant schist
		PSU	Ultramafic (talc / serpentine etc) -dominated schist
		PSM	Mafic schist (chlorite-amphibole-plag (+/- Qz) schist)
		PSD	Chlorite-sericite (+/- quartz) schist
		PSS	
		PSF	Sericite / muscovite (-quartz, +/- biotite) schist
		PSG	Felsic schist (Qz, Fd, +/- mica, +/- amph)
			Graphitic schist
		PSZ	Calc-silicate schist
nly applies where precursor lithology is unclear or uncertain)	Phyllites (P)	PPS PPC	Micaceous phyllite
my applies where precursor innology is unclear of uncertain)		PPG	Chlorite phyllite Graphitic phllite
	Llerefele (LL)		
	Hornfels (H)	PHM	Mafic hornfels
		PHP	Pelitic hornfels (garnet, cordierite or aluminosilicate)
		PHZ	Calc-silicate hornfels (undifferentiated)
		PHF	Biotite-quartz-feldspar hornfels
	Calc-silicate rocks and skarns	PCC	Calcic-garnet, cpx, wollastonite, amphibole-dominated
karns or skarn-like metamorphic assemblages)		PCM	Magnesian-olivine, pyroxene, serpentine, talc, tremolite
		PCB	Marble
	Quartzites (Q)	PQU	Orthoquartzite
		PQM	Quartz-magnetite rock
		PQA	Quartz-magnetite-amphibole rock
	Deformation Zones (D)	PDC	Cataclastic
	(limited to zones of most intense		
	deformation, otherwise employ schist or		
	primary lithcodes)	PDY	Mylonite (undifferentiated)
		PDYP	Protomylonite
		PDYU	Ultramylonite
		PDB	Fault gouge / Fault breccia
		PDS	Intense brittle-ductile shear zone
	Fault Breccia (B)	PB	Breccia zone (unsubdivided, unmineralised)
		PBC	Breccia zone (collapse, unmineralised)
	(textural qualifier)	PB*A	Breccia - angular clasts
		PB*R	Breccia - rounded clasts
lineralization / Hydrothermal Alteration (Z)	Shear Zone (Z)	ZZV	Mineralised / veined or altered shear zone
mited to structures with intense alteration or vein overprint d/or are well-mineralised such that primary hology/metamoprhic textures are totally obscured)		22 V	
	Breccia (B)	ZB	Breccia zone - unsubdivided, mineralised / altered
	2.000.4 (2)	ZBH	Breccia zone - hydrothermal, mineralised / altered
		ZBC	Breccia zone - collapse, mineralised / altered
	Hydrothermal Breccia	ZRM*	Monomictic milled breccia
denotes 'matrix' qualifer Rock flour - massive (F) Rock	Hydrothermal Dieccia		Monormetic milled breecia
agments (R) Hydrothermal cement (H))		ZRO*	Oligomictic milled breccia
		ZRP*	Polymictic milled breccia
		ZAM*	Monomictic angular breccia
		ZAO*	Oligomictic angular breccia
	Culphide (C)	ZAP*	Polymictic angular breccia
	Sulphide (S)	ZSM	Massive sulphide
		ZSS	Semi-massive sulphide
		ZSD	Stringer or disseminated sulphide
		ZSB	Sulphide breccia
	Quartz (Q)	ZQV	Massive quartz vein
	Quartz (Q)	ZQV ZQS	Massive quartz vein Quartz stockwork - host rock obscure
	Quartz (Q)	ZQV	Massive quartz vein
stricted to VMS environments	Quartz (Q) Silicate (L)	ZQV ZQS	Massive quartz vein Quartz stockwork - host rock obscure
stricted to VMS environments		ZQV ZQS ZQB	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia
stricted to VMS environments	Silicate (L)	ZQV ZQS ZQB ZLC	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia
stricted to VMS environments	Silicate (L)	ZQV ZQS ZQB ZLC ZCV	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining
stricted to VMS environments	Silicate (L) Carbonate (C)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia
stricted to VMS environments	Silicate (L)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGM	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGM ZGS	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan
stricted to VMS environments	Silicate (L) Carbonate (C)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGM ZGS ZMM	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGM ZGS ZMM ZMS	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGB ZGS ZMM ZGS ZMM ZMS ZYV	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGM ZGS ZMM ZGS ZMM ZMS ZYV ZYM	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGM ZGS ZMM ZMS ZYV ZYM CAV	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite Cavity
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCV ZCS ZGB ZGS ZGS ZMM ZGS ZMS ZYV ZYV ZYM CAV COLO	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite Cavity Core loss
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGS ZMM ZMS ZMM ZMS ZYV ZYM CAV COLO CAS	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite Cavity Core loss Core loss due to casing
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCS ZCB ZGS ZGM ZGS ZMM ZMS ZYM CAV CAV COLO CAS FILL	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite Cavity Core loss Core loss Core loss due to casing Back fill
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGS ZMM ZMS ZMM ZMS ZYV ZYM CAV COLO CAS	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite Cavity Core loss Core loss due to casing
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCS ZCB ZGS ZGM ZGS ZMM ZMS ZYM CAV CAV COLO CAS FILL	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite Cavity Core loss Core loss Core loss due to casing Back fill
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGM ZGS ZMM ZMS ZYV ZYM CAV COLO CAS FILL NSR	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite Cavity Core loss Core loss due to casing Back fill No sample recovered
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZLC ZCV ZCS ZCB ZGM ZGS ZMM ZMS ZYV ZYM CAV CAV CAV CAV CAV CAS FILL NSR NL	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite Cavity Core loss Core loss Core loss due to casing Back fill No sample recovered Not logged Not sampled
stricted to VMS environments	Silicate (L) Carbonate (C) Gossan (G) Magnetite (M)	ZQV ZQS ZQB ZCV ZCV ZCS ZCB ZGM ZGS ZMM ZMS ZYV ZYV ZYM CAV COLO CAS FILL NSR NL NS	Massive quartz vein Quartz stockwork - host rock obscure Quartz - cemented breccia Chlorite stringer breccia Massive carbonate veining Carbonate stockwork - host rock obscure Carbonate - cemented breccia Massive gossan zone Semi-massive gossan Massive magnetite Semi-massive magnetite Intense barite veining Massive barite Cavity Core loss Core loss Core loss due to casing Back fill No sample recovered Not logged

ALTERATION

ALTER	ATION
AAB	Albitic / albitite
AAC	Albite - carbonate
AAR	Argillic
AAS	Albite - sericite
ABA	Silica - biotite - albite
ABL	Bleached
ABS	Biotite - sericite
ABT	Biotitic
ACA	Carbonate
ACAF	Calc silicate - alkali feldspar
ACAM	Calc silicate - alkali feldspar - magnetite
ACC	Chlorite - carbonate +/- Biotite +/- pyrrohotite
ACG	Chlorite - garnet
ACH	Chloritic
APC	Chlorite - biotite - pyrrohotite
ACS	Chlorite - sericite
ACSC	Chlorite - sericite - carbonate
ACT	Actinolite
ADA	Advanced argillic - generic
ADD	Advanced argillic - quartz-dickite dominant
ADP	Advanced argillic - pyrophyllite bearing
ADQ	Advanced argillic - quartz-alunite dominant
AEP	Epidote
AFB	Albite - biotite
AFE	Ferruginous
AFU	Fuchsitic
AHM	Haematitic (undifferentiated)
AHS	Haematite - steely
AHE	Haematite - earthy
AHM	Haematite - mixed steely and earthy
AHS	Haematite - sericite
	Haematite - sericite - chlorite - carbonate
AHSC	Haematite - sericite - chlorite
AHC	Haematite - chlorite
AKS	K-spar
AIK	Illite - kaolonite
AMB	Magnetite - biotite
AMG	Magnetite
AMN	Manganiferous
APH	Phyllic (clay)
APT	Potassic (K-spar - biotite)
APR	Propylitic (chlorite - carbonate - epidote - haematite)
AQP	Quartz - pyrite
ARR	Red rock (alkali feldspar (albite) - haematite
ASA	Saussuritic
ASB	Silica - biotite +/- Arsenopyrite +/- Pyrrhotite
ASC	Sericite - carbonate
ASE	Sericitic
ASF	Silica - feldspar
ASI	Silicic
ASK	Skarn Smectite - illite
ASM ASS	Silica - sericite
ASS AST	
AST	Serpentine Subbidic
ASU	Sulphidic Siliceous banded
ASZ	Vuggy silica
AV0	vuggy silica

INTENSITY M MEDIUM S STRONG V VARIABLE

W WEAK

MINERALOGY

AC ACTINOLITE AB ALBITE AFS ALKALI FELDSPAR AM AMPHIBOLE AD ANDALUSITE AK ANKERITE AN ANTHOPHYLITE SB ANTIMONY AS ARSENIC APY ARSENOPYRITE AU AUTINITE BI BIOTITE CAL CALCAREOUS CA CALCITE CAR CARBONATE RHOMBS CN CARNOTITE CPY CHALCOPYRITE CL CHLORITE CY CLAY CPX CLINOPYROXENE DA DAVIDITE DIOPSIDE DI EP EPIDOTE FS FELDSPAR FE FERRUGINOUS/IRON FU FUCHSITE GL GALENA GA GARNET GE GOETHITE VG GOLD GO GOSSANOUS GR GRAPHITE GYP GYPSUM HE HAEMATITE HB HORNBLENDE IL ILMENITE KA KAOLIN LX LEUCOXENE LM LIMONITE MG MAGNETITE MN MANGANESE OXIDES MA META-AUTINITE MT META-TORBERNITE MI MICA MU MUSCOVITE NON NONTRONITE OL OLIVINE **OPX ORTHOPYROXENE** PHL PHLOGOPITE PT PITCHBLENDE PL PLAGIOCLASE PY PYRITE PYX PYROXENE PO PYRRHOTITE Q QUARTZ RU RUTILE

MINERALOGY

- SH SCHROECKINGERITE SE SERICITE
- SP SERPENTINE
- SI SIDERITE
- SL SILICA (FINE GRAINED)
- SPH SPHALERITE
- STA STAUROLITE
- SLP SULPHIDES (UNSPECIFIED)
- TA TALC
- TO TORBERNITE
- TU TOURMALINE
- TR TREMOLITE
- TY TYUYAMUNITE
- UR URANINITE
- UP URANOPHANE

COLOUR

B BLUE BG BEIGE BL BLACK BR BROWN C CREAM CL CLEAR G GREEN GB GREEN BLUE/BLUE GREEN GG GREY GREEN GY GREY KH KHAKI MO MOTTLED MV MAUVE OC OCHRE OR ORANGE P PURPLE PI PINK R RED **RB RED BROWN** TN TAN

- TR TRANSLUCENT
- W WHITE
- Y YELLOW

COLOUR DK DARK

LT LIGHT

TEXTURE CODE

ILVIO	
AM	AMYGDALOIDAL
AN	ANGULAR
APH	APHANITIC
BA	BANDED
BD	BEDDED
BLD	BLADED
BL	BLEACHED
BB	BLEBBY
CVN	CARBONATE VEINING
CTC	CHILLED MARGIN
EQU	EQUI-GRANULAR
GL	GLASSY
GNS	GNEISSIC
GR	GRANULAR
GH	GRAPHITIC
LA	LAMINATED
-	MOTTLED
	MYLONITIC
PO	PORPHYRITIC
	QUARTZ EYES
QFD	QUARTZ FLOODING
QVN	
	QUARTZ-CARBONATE VEINING
	QUARTZ-CARBONATE-ALBITE VEINING
CTP	SHARP CONTACT
CTS	
SL	SILICIFIED
STV	STOCKWORK VEINING
VS	VESICULAR
VUG	VUGGY

STRUCTURE CODE

- BCK BLOCKY
- BX BRECCIATED CR CRENULATED
- FT FAULT
- FBX FAULT BRECCIA
- FD FOLDED
- FL FOLIATED
- FR FRACTURED
- JT JOINTED
- LN LINEATED
- MAS MASSIVE
- PL PILLOWED
- SC SCHISTOSE
- SH SHEARED
- SS SLICKENSIDED
- FLB FLOW BANDING
- DFL DEBRIS FLOW

ALTERATION STYLE

- B BANDS, BEDDING CONTROLLED
- D DISSEMINATED
- F FOLIATION CONTROLLED
- R FRACTURE CONTROLLED
- G GOSSANOUS
- H HALO / REACTION RIMS
- L LODES
- M MASSIVE
- P PATCHES, PODS
- E PERVASSIVE
- S STOCKWORKS
- V VEINS

GRAIN SIZE

- APH APHANITIC
- IFG FINE GRAINED <1MM IGNEOUS
- IMG MEDIUM GRAINED 1-5MM IGNEOUS
- ICG COARSE GRAINED 5-30MM IGNEOUS
- IPG PEGMATIC >30MM IGNEOUS
- A+P DISTINCTLY PORPHYRTIC W/ APHANITIC GMASS
- SBD BOULDERY (>256MM) SEDIMENTARY
- SCO COBBLY (16-256MM) SEDIMENTARY SPB PEBBLY (2-16MM) SEDIMENTARY
- SPB PEBBLY (2-16MM) SEDIMENTARY SVC VERY COARSE (1-2MM) SEDIMENTARY
- SCG COARSE (0.5-1.0MM) SEDIMENTARY
- SMG MEDIUM (0.25-0.5MM) SEDIMENTARY
- SFG FINE (0.06-0.25MM) SEDIMENTARY
- SCF VERY FINE (0.03-0.06MM) SEDIMENTARY
- SMF 0.004-0.03MM (FINE MED Ssl) SEDIMENTARY
- SEF <.004MM (MUDSTONE) SEDIMENTARY

STRUCTURE TYPE

- BN BAND
- BD BED
- CL CLEVAGE CT CONTACT
- CR CRENULATION
- FT FAULT
- FD FOLD
- FO FOLIATED
- FR FRACTURE
- JT JOINT
- LN LINEATION
- XX OTHER SEE COMMENTS
- SC SCHISTOSITY
- SH SHEAR
- SS SLICKENSIDE
- VN VEIN

WEATHERING	
EW	EXTREMELY
F	FRESH
HW	HIGHLY
MW	MODERATELY
SW	SLIGHTLY
HARDNESS	
F	FRIABLE
Н	HARD
Μ	MEDIUM
Р	POWDERY
S	SOFT
WET/DRY	
W	WET
D	DRY
Μ	MOIST
DEVICE	
KN	Kenometer
OC	Orientation Cradle

APPENDIX III

PROSPECT	HOLEID	SAMPLEID	FROM	то	SAMPLE_TYPE	STANDARD_Type	Analysis
JUNO	CJD-14-002	100777	7.10	8.05	1/2 core		1A2
JUNO	CJD-14-002	100778	8.05	9.05	1/2 core		1A2
JUNO	CJD-14-002	100779	9.05	10.00	1/2 core		1A2
JUNO	CJD-14-002	100780	9.05	10.00	1/2 core		1A2
JUNO	CJD-14-002	100781	10.00	11.00	1/2 core		1A2
JUNO	CJD-14-002	100782	11.00	12.00	1/2 core		1A2
JUNO	CJD-14-002	100783	12.00	13.00	1/2 core		1A2
JUNO	CJD-14-002	100784	13.00	14.00	1/2 core		1A2
JUNO	CJD-14-002	100785	14.00	15.00	1/2 core		1A2
JUNO	CJD-14-002	100786	15.00	16.00	1/2 core		1A2
JUNO	CJD-14-002	100787	16.00	17.00	1/2 core		1A2
JUNO	CJD-14-002	100788	17.00	18.00	1/2 core		1A2
JUNO	CJD-14-002	100789	18.00	19.00	1/2 core	Chandrand	1A2
JUNO	CJD-14-002	100790			QA/QC	Standard	1A2
JUNO	CJD-14-002	100791	10.00	20.00	QA/QC	Blank	1A2
JUNO	CJD-14-002	100792	19.00	20.00	1/2 core		1A2
JUNO	CJD-14-002	100793	21.00	22.00	1/2 core		1A2
JUNO	CJD-14-003	100794	35.40	36.40	1/2 core		1A2
JUNO	CJD-14-003	100795	36.40	36.80 37.80	1/2 core		1A2 1A2
JUNO JUNO	CJD-14-003 CJD-14-003	100796 100797	36.80 76.60	37.80 77.60	1/2 core 1/2 core		1A2 1A2
JUNO	CJD-14-003 CJD-14-003	100797	90.00	91.00	1/2 core 1/2 core		1A2 1A2
JUNO	CJD-14-003	100798	90.00 91.00	91.00 92.00	1/2 core		1A2 1A2
JUNO	CJD-14-003 CJD-14-003	100799	91.00 91.00	92.00 92.00	1/2 core 1/4 core	Duplicate	1A2 1A2
JUNO	CJD-14-003	100800	91.00 92.00	92.00 93.00	1/2 core	Duplicate	1A2 1A2
JUNO	CJD-14-003	100801	123.60	124.60	1/2 core		1A2 1A2
JUNO	CJD-14-003	100802	123.60	124.00	1/2 core		1A2 1A2
JUNO	CJD-14-003	100803	124.00	125.60	1/2 core		1A2 1A2
JUNO	CJD-14-003	100805	126.60	120.00	1/2 core		1A2
JUNO	CJD-14-003	100806	127.60	128.60	1/2 core		1A2
JUNO	CJD-14-003	100807	128.60	129.60	1/2 core		1A2
JUNO	CJD-14-003	100808	129.60	130.00	1/2 core		1A2
JUNO	CJD-14-003	100809	130.00	130.70	1/2 core		1A2
JUNO	CJD-14-003	100810	100.00	2000/0	QA/QC	Standard	1A2
JUNO	CJD-14-003	100811			QA/QC	Blank	1A2
JUNO	CJD-14-003	100812	130.70	131.60	1/2 core		1A2
JUNO	CJD-14-003	100813	131.60	132.60	1/2 core		1A2
JUNO	CJD-14-003	100814	132.60	133.60	1/2 core		1A2
JUNO	CJD-14-003	100815	133.60	134.55	1/2 core		1A2
JUNO	CJD-14-003	100816	134.55	135.60	1/2 core		1A2
JUNO	CJD-14-003	100817	135.60	136.60	1/2 core		1A2
JUNO	CJD-14-003	100818	136.60	137.60	1/2 core		1A2
JUNO	CJD-14-003	100819	137.60	138.60	1/2 core		1A2
JUNO	CJD-14-003	100820	137.60	138.60	1/4 core	Duplicate	1A2
JUNO	CJD-14-003	100821	138.60	139.60	1/2 core		1A2
JUNO	CJD-14-003	100822	139.60	140.60	1/2 core		1A2
JUNO	CJD-14-003	100823	140.60	141.60	1/2 core		1A2
JUNO	CJD-14-003	100824	141.60	142.60	1/2 core		1A2
JUNO	CJD-14-003	100825	149.50	150.50	1/2 core		1A2
JUNO	CJD-14-003	100826	150.50	151.50	1/2 core		1A2
JUNO	CJD-14-003	100827	151.50	152.50	1/2 core		1A2
JUNO	CJD-14-003	100828	152.50	153.50	1/2 core		1A2
JUNO	CJD-14-003	100829	157.00	158.00	1/2 core		1A2
JUNO	CJD-14-003	100830			QA/QC	Standard	1A2
JUNO	CJD-14-003	100831			QA/QC	Blank	1A2
JUNO	CJD-14-003	100832	113.00	113.50	1/2 core		1A2
AJAX	CAD-14-001	100833	14.00	14.80	1/2 core		1A2
AJAX	CAD-14-001	100834	14.80	15.30	1/2 core		1A2
AJAX	CAD-14-001	100835	15.30	16.00	1/2 core		1A2
AJAX	CAD-14-001	100836	16.00	17.00	1/2 core		1A2
AJAX	CAD-14-001	100837	17.00	18.00	1/2 core		1A2

PROSPECT	HOLEID	SAMPLEID	FROM	то	SAMPLE_TYPE	STANDARD_Type	Analysis
AJAX	CAD-14-001	100838	18.00	19.00	1/2 core		1A2
AJAX	CAD-14-001	100839	19.00	20.00	1/2 core		1A2
AJAX	CAD-14-001	100840	19.00	20.00	1/4 core	Duplicate	1A2
AJAX	CAD-14-001	100841	20.00	21.00	1/2 core		1A2
AJAX	CAD-14-001	100842	21.00	22.00	1/2 core		1A2
AJAX	CAD-14-001	100843	22.00	23.00	1/2 core		1A2
AJAX	CAD-14-001	100844	23.00	24.00	1/2 core		1A2
AJAX	CAD-14-001	100845	24.00	24.55	1/2 core		1A2
AJAX	CAD-14-001	100846	24.55	25.35	1/2 core		1A2
AJAX	CAD-14-001	100847	25.35	26.00	1/2 core		1A2
AJAX	CAD-14-001	100848	26.00	27.00	1/2 core		1A2
AJAX	CAD-14-001	100849	27.00	28.00	1/2 core		1A2
AJAX	CAD-14-001	100850	20.00		QA/QC	Standard	1A2
AJAX	CAD-14-001	100851	28.00	29.00	1/2 core		1A2
AJAX	CAD-14-001	100852	29.00	29.75	1/2 core		1A2
AJAX	CAD-14-001	100853	29.75	30.60	1/2 core		1A2
AJAX	CAD-14-001	100854	30.60	31.75	1/2 core		1A2
AJAX	CAD-14-001	100855	31.75	32.75	1/2 core		1A2
AJAX	CAD-14-001	100856	32.75	33.75	1/2 core		1A2 1A2
AJAX AJAX	CAD-14-001 CAD-14-001	100857 100858	33.75 34.75	34.75 35.75	1/2 core 1/2 core		1A2 1A2
AJAX AJAX	CAD-14-001 CAD-14-001	100858	34.75 35.75	35.75 36.75	1/2 core 1/2 core		1A2 1A2
AJAX	CAD-14-001 CAD-14-001	100859	35.75 35.75	36.75 36.75	1/2 core 1/4 core	Duplicate	1A2 1A2
AJAX AJAX	CAD-14-001 CAD-14-001	100860	35.75 36.75	36.75	1/4 core 1/2 core	Duplicate	1A2 1A2
AJAX	CAD-14-001 CAD-14-001	100861	30.75	38.75	1/2 core		1A2 1A2
AJAX	CAD-14-001	100863	38.75	39.75	1/2 core		1A2
AJAX	CAD-14-001 CAD-14-001	100863	39.75	40.70	1/2 core		1A2 1A2
AJAX	CAD-14-001 CAD-14-001	100865	40.70	40.70	1/2 core		1A2
AJAX	CAD-14-001	100866	41.70	42.70	1/2 core		1A2
AJAX	CAD-14-001	100867	42.70	43.70	1/2 core		1A2
AJAX	CAD-14-001	100868	43.70	44.70	1/2 core		1A2
AJAX	CAD-14-001	100869	44.70	45.70	1/2 core		1A2
AJAX	CAD-14-001	100870	-		QA/QC	Standard	1A2
AJAX	CAD-14-001	100871	45.70	46.70	1/2 core		1A2
AJAX	CAD-14-001	100872	46.70	47.70	1/2 core		1A2
AJAX	CAD-14-001	100873	47.70	48.70	1/2 core		1A2
AJAX	CAD-14-001	100874	48.70	49.70	1/2 core		1A2
AJAX	CAD-14-001	100875	49.70	50.70	1/2 core		1A2
AJAX	CAD-14-001	100876	50.70	51.50	1/2 core		1A2
AJAX	CAD-14-001	100877	51.50	52.35	1/2 core		1A2
AJAX	CAD-14-001	100878	52.35	52.85	1/2 core		1A2
AJAX	CAD-14-001	100879	52.85	53.85	1/2 core		1A2
AJAX	CAD-14-001	100880	52.85	53.85	1/4 core	Duplicate	1A2
AJAX	CAD-14-001	100881	53.85	54.85	1/2 core		1A2
AJAX	CAD-14-001	100882	54.85	55.90	1/2 core		1A2
AJAX	CAD-14-001	100883	55.90	56.90	1/2 core		1A2
AJAX	CAD-14-001	100884	56.90	57.90	1/2 core		1A2
AJAX	CAD-14-001	100885	57.90	58.90	1/2 core		1A2
AJAX	CAD-14-001	100886	58.90	59.90	1/2 core		1A2
AJAX	CAD-14-001	100887	59.90	60.90	1/2 core		1A2
AJAX	CAD-14-001	100888	60.90	61.90	1/2 core		1A2
AJAX	CAD-14-001	100889	61.90	62.85	1/2 core	Characteria I	1A2
AJAX	CAD-14-001	100890			QA/QC	Standard	1A2
AJAX	CAD-14-001	100891	CD 05	co 7 0	QA/QC	Blank	1A2
AJAX	CAD-14-001	100892	62.85	63.70	1/2 core		1A2
AJAX	CAD-14-001	100893	63.70	64.30	1/2 core		1A2
AJAX	CAD-14-001	100894	64.30	65.30	1/2 core		1A2
AJAX	CAD-14-001	100895	67.70	68.60	1/2 core		1A2
AJAX	CAD-14-001	100896	100.60	101.60	1/2 core		1A2
AJAX	CAD-14-001 CAD-14-001	100897	101.60	102.60 120.00	1/2 core		1A2
AJAX	CAD-14-001	100898	119.00	120.00	1/2 core		1A2

AJAX CAL	D-14-001	100900					Analysis
				121.00	1/2 core		1A2
AJAX CAI	D-14-001	100900		121.00	1/4 core	Duplicate	1A2
				122.00	1/2 core		1A2
				129.40	1/2 core		1A2
				161.90	1/2 core		1A2
		100904	161.90	162.90	1/2 core		1A2
				163.90	1/2 core		1A2
		100906	163.90	164.90	1/2 core		1A2
AJAX CAI	D-14-001	100907	164.90	165.90	1/2 core		1A2
AJAX CAI	D-14-001	100908	168.00	169.00	1/2 core		1A2
	D-14-001	100909	169.00	169.60	1/2 core		1A2
		100910			QA/QC	Standard	1A2
	D-14-001	100911			QA/QC	Blank	1A2
				170.60	1/2 core		1A2
				171.60	1/2 core		1A2
	D-14-001	100914		172.60	1/2 core		1A2
	D-14-001	100915		184.00	1/2 core		1A2
				185.00	1/2 core		1A2
				186.00	1/2 core		1A2
				187.00	1/2 core		1A2
				188.00	1/2 core		1A2
AJAX CAL	D-14-001	100920	187.00	188.00	1/4 core	Duplicate	1A2
				189.00	1/2 core		1A2
AJAX CAI	D-14-001	100922	202.00	203.00	1/2 core		1A2
		100923	203.00	204.00	1/2 core		1A2
AJAX CAI	D-14-001	100924	204.00	205.00	1/2 core		1A2
AJAX CAL	D-14-001	100925			QA/QC	Blank	1A2
AJAX CAI	D-14-002	100926	7.20	8.00	1/2 core		1A2
AJAX CAI	D-14-002	100927	8.00	9.00	1/2 core		1A2
AJAX CAI	D-14-002	100928	31.30	32.30	1/2 core		1A2
AJAX CAI	D-14-002	100929	32.30	33.00	1/2 core		1A2
AJAX CAL	D-14-002	100930			QA/QC	Standard	1A2
AJAX CAL	D-14-002	100931			QA/QC	Blank	1A2
AJAX CAI	D-14-002	100932	33.00	34.00	1/2 core		1A2
AJAX CAI	D-14-002	100933	44.00	45.00	1/2 core		1A2
	D-14-002	100934	45.00	45.80	1/2 core		1A2
AJAX CAI	D-14-002	100935	45.80	46.80	1/2 core		1A2
AJAX CAI	D-14-002	100936	46.80	47.60	1/2 core		1A2
AJAX CAI	D-14-002	100937	47.60	48.30	1/2 core		1A2
AJAX CAI	D-14-002	100938	48.30	49.00	1/2 core		1A2
		100939	49.00	50.00	1/2 core		1A2
	D-14-002	100940	49.00	50.00	1/4 core	Duplicate	1A2
	D-14-002	100941	50.00	51.00	1/2 core		1A2
		100942	59.00	60.00	1/2 core		1A2
		100943	60.00	61.00	1/2 core		1A2
		100944	61.00	62.00	1/2 core		1A2
		100945	62.00	63.00	1/2 core		1A2
		100946	73.00	74.00	1/2 core		1A2
		100947	74.00	74.50	1/2 core		1A2
AJAX CAI	D-14-002	100948	74.50	75.50	1/2 core		1A2
AJAX CAI	D-14-002	100949	85.80	86.80	1/2 core		1A2
AJAX CAL	D-14-002	100950			QA/QC	Standard	1A2
AJAX CAL	D-14-002	100951			QA/QC	Blank	1A2
AJAX CAI	D-14-002	100952	86.80	87.60	1/2 core		1A2
AJAX CAI	D-14-002	100953	87.60	88.60	1/2 core		1A2
AJAX CAI	D-14-002	100954	137.50	138.50	1/2 core		1A2
AJAX CAI	D-14-002	100955	138.50	139.50	1/2 core		1A2
AJAX CAI	D-14-002	100956	140.85	141.50	1/2 core		1A2
AJAX CAI	D-14-002	100957	168.00	169.00	1/2 core		1A2
AJAX CAI	D-14-002	100958	169.00	170.00	1/2 core		1A2
	D-14-002	100959	170.00	171.00	1/2 core		1A2

PROSPECT	HOLEID	SAMPLEID	FROM	то	SAMPLE_TYPE	STANDARD_Type	Analysis
AJAX	CAD-14-002	100960	170.00	171.00	1/4 core	Duplicate	1A2
AJAX	CAD-14-002	100961	171.00	172.00	1/2 core		1A2
AJAX	CAD-14-002	100962	172.00	173.00	1/2 core		1A2
AJAX	CAD-14-002	100963	173.00	174.00	1/2 core		1A2
AJAX	CAD-14-002	100964	174.00	175.00	1/2 core		1A2
AJAX	CAD-14-002	100965	175.00	176.00	1/2 core		1A2
AJAX	CAD-14-002	100966	176.00	177.00	1/2 core		1A2
AJAX	CAD-14-003	100967	12.00	13.00	1/2 core		1A2
AJAX	CAD-14-003	100968	13.00	14.00	1/2 core		1A2
AJAX	CAD-14-003	100969	14.00	15.00	1/2 core		1A2
AJAX	CAD-14-003	100970			QA/QC	Standard	1A2
AJAX	CAD-14-003	100971			QA/QC	Blank	1A2
AJAX	CAD-14-003	100972	15.00	16.00	1/2 core		1A2
AJAX	CAD-14-003	100973	16.00	17.00	1/2 core		1A2
AJAX	CAD-14-003	100974	17.00	17.60	1/2 core		1A2
AJAX	CAD-14-003	100975	17.60	18.60	1/2 core		1A2
AJAX	CAD-14-003	100976	18.60	19.60	1/2 core		1A2
AJAX	CAD-14-003	100977	19.60	20.60	1/2 core		1A2
AJAX	CAD-14-003	100978	20.60	21.60	1/2 core		1A2
AJAX	CAD-14-003	100979	21.60	22.60	1/2 core		1A2
AJAX	CAD-14-003	100980	21.60	22.60	1/4 core	Duplicate	1A2
AJAX	CAD-14-003	100981	22.60	23.40	1/2 core		1A2
AJAX	CAD-14-003	100982	23.40	24.40	1/2 core		1A2
AJAX	CAD-14-003	100983	24.40	25.40	1/2 core		1A2
AJAX	CAD-14-003	100984	25.40	26.40	1/2 core		1A2
AJAX	CAD-14-003	100985	26.40	27.40	1/2 core		1A2
AJAX	CAD-14-003	100986	27.40	28.40	1/2 core		1A2
AJAX	CAD-14-003	100987	44.20	45.20	1/2 core		1A2
AJAX	CAD-14-003	100988	45.20	46.00	1/2 core		1A2
AJAX	CAD-14-003	100989	46.00	47.00	1/2 core		1A2
AJAX	CAD-14-003	100990			QA/QC	Standard	1A2
AJAX	CAD-14-003	100991			QA/QC	Blank	1A2
AJAX	CAD-14-003	100992	47.00	48.05	1/2 core		1A2
AJAX	CAD-14-003	100993	48.05	48.60	1/2 core		1A2
AJAX	CAD-14-003	100994	48.60	49.60	1/2 core		1A2
AJAX	CAD-14-003	100995	49.60	50.30	1/2 core		1A2
AJAX	CAD-14-003	100996	50.30	51.30	1/2 core		1A2
AJAX	CAD-14-003	100997	60.85	61.85	1/2 core		1A2
AJAX	CAD-14-003	100998	61.85	62.50	1/2 core		1A2
AJAX	CAD-14-003	100999	62.50	63.40	1/2 core		1A2
AJAX	CAD-14-003	101000	62.50	63.40	1/4 core	Duplicate	1A2
AJAX	CAD-14-003	101001	63.40	64.00	1/2 core		1A2
AJAX	CAD-14-003	101002	64.00	65.05	1/2 core		1A2
AJAX	CAD-14-003	101003	65.05	66.05	1/2 core		1A2
AJAX	CAD-14-003	101004	66.05	67.05	1/2 core		1A2
AJAX	CAD-14-003	101005	90.80	91.30	1/2 core		1A2
AJAX	CAD-14-003	101006	111.00	112.00	1/2 core		1A2
AJAX	CAD-14-003	101007	112.00	113.00	1/2 core		1A2
AJAX	CAD-14-003	101008	113.00	114.00	1/2 core		1A2
AJAX	CAD-14-003	101009	114.00	115.00	1/2 core		1A2
AJAX	CAD-14-003	101010			QA/QC	Standard	1A2
AJAX	CAD-14-003	101011			QA/QC	Blank	1A2
AJAX	CAD-14-003	101012	115.00	116.00	1/2 core		1A2
AJAX	CAD-14-003	101013	116.00	117.00	1/2 core		1A2
AJAX	CAD-14-003	101014	117.00	118.00	1/2 core		1A2
AJAX	CAD-14-003	101015	118.00	119.00	1/2 core		1A2
AJAX	CAD-14-003	101016	119.00	120.00	1/2 core		1A2
AJAX	CAD-14-003	101017	120.00	121.00	1/2 core		1A2
AJAX	CAD-14-003	101018	121.00	122.00	1/2 core		1A2
AJAX	CAD-14-003	101019	122.00	123.00	1/2 core		1A2

PROSPECT	HOLEID	SAMPLEID	FROM	то	SAMPLE_TYPE	STANDARD_Type	Analysis
AJAX	CAD-14-003	101021	123.00	124.00	1/2 core		1A2
AJAX	CAD-14-003	101022	124.00	125.00	1/2 core		1A2
AJAX	CAD-14-003	101023	125.00	125.80	1/2 core		1A2
AJAX	CAD-14-003	101024	125.80	126.90	1/2 core		1A2
AJAX	CAD-14-003	101025	126.90	127.90	1/2 core		1A2
AJAX	CAD-14-004	101026	19.00	20.00	1/2 core		1A2
AJAX	CAD-14-004	101027	20.00	21.00	1/2 core		1A2
AJAX	CAD-14-004	101028	21.00	22.00	1/2 core		1A2
AJAX	CAD-14-004	101029	22.00	23.00	1/2 core		1A2
AJAX	CAD-14-004	101030			QA/QC	Standard	1A2
AJAX	CAD-14-004	101031	22.00	24.00	QA/QC	Blank	1A2
AJAX	CAD-14-004	101032	23.00	24.00	1/2 core		1A2
AJAX	CAD-14-004	101033	24.00	25.00	1/2 core		1A2
AJAX	CAD-14-004	101034	30.80	31.80	1/2 core		1A2 1A2
AJAX AJAX	CAD-14-004 CAD-14-004	101035 101036	31.80 32.80	32.80 33.80	1/2 core 1/2 core		1A2 1A2
AJAX	CAD-14-004 CAD-14-004	101030	52.80 55.75	56.75	1/2 core		1A2 1A2
AJAX AJAX	CAD-14-004 CAD-14-004	101037	55.75 56.75	57.60	1/2 core		1A2 1A2
AJAX	CAD-14-004 CAD-14-004	101038	56.75	57.60	1/2 core		1A2 1A2
AJAX	CAD-14-004 CAD-14-004	101039	57.60 57.60	58.30 58.30	1/2 core 1/4 core	Duplicate	1A2 1A2
AJAX	CAD-14-004 CAD-14-004	101040	58.30	58.90	1/2 core	Duplicate	1A2 1A2
AJAX	CAD-14-004 CAD-14-004	101041	58.90	59.90	1/2 core		1A2 1A2
AJAX	CAD-14-004 CAD-14-004	101042	104.00	104.90	1/2 core		1A2 1A2
AJAX	CAD-14-004 CAD-14-004	101043	104.00	104.50	1/2 core		1A2 1A2
AJAX	CAD-14-004	101045	105.50	105.50	1/2 core		1A2
AJAX	CAD-14-004	101046	149.00	150.00	1/2 core		1A2
AJAX	CAD-14-004	101047	150.00	151.00	1/2 core		1A2
AJAX	CAD-14-004	101048	151.00	152.00	1/2 core		1A2
AJAX	CAD-14-004	101049	153.50	154.50	1/2 core		1A2
AJAX	CAD-14-004	101050			QA/QC	Standard	1A2
AJAX	CAD-14-004	101051			QA/QC	Blank	1A2
AJAX	CAD-14-004	101052	195.55	196.55	1/2 core		1A2
AJAX	CAD-14-004	101053	196.55	197.55	1/2 core		1A2
AJAX	CAD-14-004	101054	197.55	198.55	1/2 core		1A2
AJAX	CAD-14-004	101055	198.55	199.55	1/2 core		1A2
AJAX	CAD-14-004	101056	199.55	200.40	1/2 core		1A2
AJAX	CAD-14-004	101057	200.40	201.20	1/2 core		1A2
AJAX	CAD-14-004	101058	201.20	201.70	1/2 core		1A2
AJAX	CAD-14-004	101059	201.70	202.40	1/2 core		1A2
AJAX	CAD-14-004	101060	201.70	202.40	1/4 core	Duplicate	1A2
AJAX	CAD-14-004	101061	202.40	203.00	1/2 core		1A2
AJAX	CAD-14-004	101062	203.00	204.00	1/2 core		1A2
AJAX	CAD-14-004	101063	204.00	205.00	1/2 core		1A2
AJAX	CAD-14-004	101064	205.00	206.00	1/2 core		1A2
AJAX	CAD-14-004	101065	206.00	207.00	1/2 core		1A2
AJAX	CAD-14-004	101066	207.00	208.00	1/2 core		1A2
AJAX	CAD-14-004	101067	208.00	209.00	1/2 core		1A2
AJAX	CAD-14-005	101068	54.65	55.65	1/2 core		1A2
AJAX	CAD-14-005	101069	55.65	56.50	1/2 core	at an al sural	1A2
AJAX	CAD-14-005	101070			QA/QC	standard	1A2
AJAX	CAD-14-005	<i>101071</i>	F6 F0	57 50	QA/QC	Blank	1A2
AJAX AJAX	CAD-14-005 CAD-14-005	101072 101073	56.50 57.50	57.50 58.50	1/2 core		1A2 1A2
AJAX AJAX	CAD-14-005 CAD-14-005	101073	63.00	58.50 64.00	1/2 core 1/2 core		1A2 1A2
AJAX AJAX	CAD-14-005 CAD-14-005	101074	63.00 64.00	65.00	1/2 core		1A2 1A2
AJAX AJAX	CAD-14-005 CAD-14-005	101075	64.00 65.00	65.00 66.00	1/2 core		1A2 1A2
AJAX AJAX	CAD-14-005 CAD-14-005	101076	65.00 66.00	67.05	1/2 core		1A2 1A2
AJAX AJAX	CAD-14-005 CAD-14-005	101077	67.05	67.05 68.00	1/2 core		1A2 1A2
AJAX	CAD-14-005	101078	68.00	68.60	1/2 core		1A2 1A2
AJAX	CAD-14-005	101079	68.00	68.60	1/2 core 1/4 core	Duplicate	1A2 1A2
AJAX	CAD-14-005	101080	68.60	69.30	1/2 core	Dupilculc	1A2 1A2
	000 17 000	101001	00.00	05.50			174

AJAX CAD-14-005 101083 70.30 71.30 1/2 core 1 AJAX CAD-14-005 101084 71.30 72.30 1/2 core 1 AJAX CAD-14-005 101086 73.30 73.30 1/2 core 1 AJAX CAD-14-005 101086 73.30 73.90 1/2 core 1 AJAX CAD-14-005 101087 73.90 74.80 1/2 core 1 AJAX CAD-14-005 101087 73.90 74.80 1/2 core 1 AJAX CAD-14-005 101089 75.30 76.20 1/2 core 1 AJAX CAD-14-005 101091 QA/QC Blank 1 AJAX CAD-14-005 101092 76.20 77.00 1/2 core 1 AJAX CAD-14-005 101093 77.00 77.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 <td< th=""><th>A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A</th></td<>	A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A
AJAX CAD-14-005 101084 71.30 72.30 1/2 core 1 AJAX CAD-14-005 101085 72.30 73.30 1/2 core 1 AJAX CAD-14-005 101087 73.90 74.80 1/2 core 1 AJAX CAD-14-005 101087 73.90 74.80 1/2 core 1 AJAX CAD-14-005 101089 75.30 76.20 1/2 core 1 AJAX CAD-14-005 101090 QA/QC standard 1 AJAX CAD-14-005 101091 QA/QC Blank 1 AJAX CAD-14-005 101092 76.20 77.00 1/2 core 1 AJAX CAD-14-005 101093 77.00 77.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX	42 42 42 42 42 42 42 42 42 42 42 42 42 4
AJAX CAD-14-005 101085 72.30 73.30 1/2 core 1 AJAX CAD-14-005 101086 73.30 73.90 1/2 core 1 AJAX CAD-14-005 101087 73.90 74.80 1/2 core 1 AJAX CAD-14-005 101089 75.30 76.20 1/2 core 1 AJAX CAD-14-005 101099 75.30 76.20 1/2 core 1 AJAX CAD-14-005 101091 QA/QC Blank 1 AJAX CAD-14-005 101092 76.20 77.00 1/2 core 1 AJAX CAD-14-005 101093 77.80 78.80 1/2 core 1 AJAX CAD-14-005 101094 77.80 78.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 83.00 1/2 core 1 <td>42 42 42 42 42 42 42 42 42 42 42 42 42 4</td>	42 42 42 42 42 42 42 42 42 42 42 42 42 4
AJAX CAD-14-005 101086 73.30 73.90 1/2 core 1 AJAX CAD-14-005 101087 73.90 74.80 1/2 core 1 AJAX CAD-14-005 101088 74.80 75.30 1/2 core 1 AJAX CAD-14-005 101089 75.30 76.20 1/2 core 1 AJAX CAD-14-005 101090 QA/QC Standard 1 AJAX CAD-14-005 101091 QA/QC Blank 1 AJAX CAD-14-005 101093 77.00 77.80 1/2 core 1 AJAX CAD-14-005 101094 77.80 78.80 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 82.00 83.00 1/2 core 1 AJAX	42 42 42 42 42 42 42 42 42 42 42 42 42 4
AJAX CAD-14-005 101087 73.90 74.80 1/2 core 1 AJAX CAD-14-005 101088 74.80 75.30 1/2 core 1 AJAX CAD-14-005 101089 75.30 76.20 1/2 core 1 AJAX CAD-14-005 101090 QA/QC standard 1 AJAX CAD-14-005 101091 QA/QC Blank 1 AJAX CAD-14-005 101092 76.20 77.00 1/2 core 1 AJAX CAD-14-005 101094 77.80 78.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX	42 42 42 42 42 42 42 42 42 42 42 42 42 4
AJAX CAD-14-005 101088 74.80 75.30 1/2 core 1 AJAX CAD-14-005 101089 75.30 76.20 1/2 core 1 AJAX CAD-14-005 101090 QA/QC standard 1 AJAX CAD-14-005 101091 QA/QC Blank 1 AJAX CAD-14-005 101092 76.20 77.00 1/2 core 1 AJAX CAD-14-005 101093 77.00 77.80 1/2 core 1 AJAX CAD-14-005 101094 77.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/2 core 1 AJAX CAD-14-005	42 42 42 42 42 42 42 42 42 42 42 42 42 4
AJAX CAD-14-005 101089 75.30 76.20 1/2 core 1 AJAX CAD-14-005 101090 QA/QC standard 1 AJAX CAD-14-005 101091 QA/QC Blank 1 AJAX CAD-14-005 101092 76.20 77.00 1/2 core 1 AJAX CAD-14-005 101093 77.00 77.80 1/2 core 1 AJAX CAD-14-005 101094 77.80 78.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101109 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AJAX CAD-14-005 <t< td=""><td>42 42 42 42 42 42 42 42 42 42 42 42 42 4</td></t<>	42 42 42 42 42 42 42 42 42 42 42 42 42 4
AJAX CAD-14-005 101090 QA/QC standard 1 AJAX CAD-14-005 101091 QA/QC Blank 1 AJAX CAD-14-005 101092 76.20 77.00 1/2 core 1 AJAX CAD-14-005 101093 77.00 77.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101098 83.00 1/2 core 1 1 AJAX CAD-14-005 101100 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AJAX CAD-14-005 10	42 42 42 42 42 42 42 42 42 42 42 42 42 4
AJAX CAD-14-005 101091 QA/QC Blank 1 AJAX CAD-14-005 101092 76.20 77.00 1/2 core 1 AJAX CAD-14-005 101093 77.00 77.80 1/2 core 1 AJAX CAD-14-005 101094 77.80 78.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101101 83.00 1/2 core 1 1 AJAX CAD-14-005 101101 83.00 1/2 core 1 1 AJAX CAD-14-005<	A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A
AJAX CAD-14-005 101092 76.20 77.00 1/2 core 1 AJAX CAD-14-005 101093 77.00 77.80 1/2 core 1 AJAX CAD-14-005 101094 77.80 77.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101098 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AJAX CAD-14-005 101102 84.00 87.00 1/2 core 1 AJAX CAD-14-005 101103 85.05 1/2 core 1 1 <td>42 42 42 42 42 42 42 42 42 42 42 42 42 4</td>	42 42 42 42 42 42 42 42 42 42 42 42 42 4
AJAX CAD-14-005 101093 77.00 77.80 1/2 core 1 AJAX CAD-14-005 101094 77.80 78.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AJAX CAD-14-005 101104 86.00 87.00 1/2 core 1	42 42 42 42 42 42 42 42 42 42 42 42
AJAX CAD-14-005 101094 77.80 78.80 1/2 core 1 AJAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101099 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AJAX CAD-14-005 101102 84.00 87.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1	42 42 42 42 42 42 42 42 42 42 42
AIAX CAD-14-005 101095 78.80 79.45 1/2 core 1 AIAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AIAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AIAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AIAX CAD-14-005 101099 82.00 83.00 1/2 core 1 AIAX CAD-14-005 101100 82.00 83.00 1/2 core 1 AIAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AIAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AIAX CAD-14-005 101103 85.05 86.00 1/2 core 1 AIAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AIAX CAD-14-005 101105 87.00 1/2 core 1 1 AIAX CAD-14-005 101107 89.15 90.15 1/2 core 1 <td>42 42 42 42 42 42 42 42 42 42 42</td>	42 42 42 42 42 42 42 42 42 42 42
AJAX CAD-14-005 101096 79.45 80.00 1/2 core 1 AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101099 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AJAX CAD-14-005 101103 85.05 86.00 1/2 core 1 AJAX CAD-14-005 101104 86.00 87.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1	42 42 42 42 42 42 42 42 42
AJAX CAD-14-005 101097 80.00 81.00 1/2 core 1 AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101099 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/4 core Duplicate 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 1 AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 1 AJAX CAD-14-005 101103 85.05 86.00 1/2 core 1 1 AJAX CAD-14-005 101104 86.00 87.00 1/2 core 1 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 1 AJAX CAD-14-005 101106 88.00 89.15 1/2 core 1 1 A	42 42 42 42 42 42 42 42
AJAX CAD-14-005 101098 81.00 82.00 1/2 core 1 AJAX CAD-14-005 101099 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/4 core Duplicate 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AJAX CAD-14-005 101101 83.00 85.05 1/2 core 1 AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AJAX CAD-14-005 101103 85.05 86.00 1/2 core 1 AJAX CAD-14-005 101104 86.00 87.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101106 88.00 89.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101108 90.15 91.05 1/2 core </td <td>42 42 42 42 42 42 42</td>	42 42 42 42 42 42 42
AJAX CAD-14-005 101099 82.00 83.00 1/2 core 1 AJAX CAD-14-005 101100 82.00 83.00 1/4 core Duplicate 1 AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AJAX CAD-14-005 101103 85.05 86.00 1/2 core 1 AJAX CAD-14-005 101103 85.05 86.00 1/2 core 1 AJAX CAD-14-005 101104 86.00 87.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101107 89.15 1/2 core 1 AJAX CAD-14-005 <td>42 42 42 42 42 42</td>	42 42 42 42 42 42
A/AX CAD-14-005 101100 82.00 83.00 1/4 core Duplicate 1 A/AX CAD-14-005 101101 83.00 84.00 1/2 core 1 A/AX CAD-14-005 101102 84.00 85.05 1/2 core 1 A/AX CAD-14-005 101103 85.05 86.00 1/2 core 1 A/AX CAD-14-005 101104 86.00 87.00 1/2 core 1 A/AX CAD-14-005 101105 87.00 88.00 1/2 core 1 A/AX CAD-14-005 101106 88.00 89.15 1/2 core 1 A/AX CAD-14-005 101107 89.15 90.15 1/2 core 1 A/AX CAD-14-005 101107 89.15 90.15 1/2 core 1 A/AX CAD-14-005 101108 90.15 91.05 1/2 core 1 A/AX CAD-14-005 101110 QA/QC Standard 1 A/AX CAD-14-005 101111 QA/QC Blank 1	42 42 42 42
AJAX CAD-14-005 101101 83.00 84.00 1/2 core 1 AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AJAX CAD-14-005 101103 85.05 86.00 1/2 core 1 AJAX CAD-14-005 101104 86.00 87.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101106 88.00 89.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 91.05 1/2 core 1 AJAX CAD-14-005 101108 90.15 91.05 1/2 core 1 AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101111 QA/QC Standard 1 AJAX CAD-14-005 101111 92.00 93.00 1/2 core 1	42 42 42
AJAX CAD-14-005 101102 84.00 85.05 1/2 core 1 AJAX CAD-14-005 101103 85.05 86.00 1/2 core 1 AJAX CAD-14-005 101104 86.00 87.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101106 88.00 89.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 91.05 1/2 core 1 AJAX CAD-14-005 101108 90.15 91.05 1/2 core 1 AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101110 QA/QC Standard 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1	42 42
AJAX CAD-14-005 101103 85.05 86.00 1/2 core 1 AJAX CAD-14-005 101104 86.00 87.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101106 88.00 89.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101108 90.15 91.05 1/2 core 1 AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101111 QA/QC Standard 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101113 93.00 94.00 1/2 core 1	42
AJAX CAD-14-005 101104 86.00 87.00 1/2 core 1 AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101106 88.00 89.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 91.05 1/2 core 1 AJAX CAD-14-005 101108 90.15 91.05 1/2 core 1 AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101110 QA/QC Standard 1 AJAX CAD-14-005 101111 QA/QC Blank 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101113 93.00 94.00 1/2 core 1 AJAX CAD-14-005 101114 94.00 95.00 1/2 core 1 AJAX	
AJAX CAD-14-005 101105 87.00 88.00 1/2 core 1 AJAX CAD-14-005 101106 88.00 89.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101108 90.15 91.05 1/2 core 1 AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101110 QA/QC Standard 1 AJAX CAD-14-005 101111 QA/QC Blank 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101113 93.00 94.00 1/2 core 1 AJAX CAD-14-005 101114 94.00 95.00 1/2 core 1 AJAX CAD-14-005 101115 95.00 96.00 1/2 core 1 AJAX	17
AJAX CAD-14-005 101106 88.00 89.15 1/2 core 1 AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101108 90.15 91.05 1/2 core 1 AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101110 QA/QC Standard 1 AJAX CAD-14-005 101111 QA/QC Standard 1 AJAX CAD-14-005 101111 QA/QC Blank 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 1 AJAX CAD-14-005 101113 93.00 94.00 1/2 core 1 1 AJAX CAD-14-005 101114 94.00 95.00 1/2 core 1 1 AJAX CAD-14-005 101115 95.00 96.00 1/2 core 1	
AJAX CAD-14-005 101107 89.15 90.15 1/2 core 1 AJAX CAD-14-005 101108 90.15 91.05 1/2 core 1 AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101110 QA/QC Standard 1 AJAX CAD-14-005 101111 QA/QC Blank 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101113 93.00 94.00 1/2 core 1 AJAX CAD-14-005 101114 94.00 95.00 1/2 core 1 AJAX CAD-14-005 101115 95.00 96.00 1/2 core 1 AJAX CAD-14-005 101116 96.00 97.00 1/2 core 1 AJAX	
AJAX CAD-14-005 101108 90.15 91.05 1/2 core 1 AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101110 QA/QC Standard 1 AJAX CAD-14-005 101110 QA/QC Blank 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101113 93.00 94.00 1/2 core 1 AJAX CAD-14-005 101113 93.00 94.00 1/2 core 1 AJAX CAD-14-005 101114 94.00 95.00 1/2 core 1 AJAX CAD-14-005 101115 95.00 96.00 1/2 core 1 AJAX CAD-14-005 101116 96.00 97.00 1/2 core 1 AJAX CAD-14-005 101117 97.00 98.00 1/2 core 1 AJAX	
AJAX CAD-14-005 101109 91.05 92.00 1/2 core 1 AJAX CAD-14-005 101110 QA/QC Standard 1 AJAX CAD-14-005 101111 QA/QC Blank 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101113 93.00 94.00 1/2 core 1 AJAX CAD-14-005 101114 94.00 95.00 1/2 core 1 AJAX CAD-14-005 101115 95.00 96.00 1/2 core 1 AJAX CAD-14-005 101116 96.00 97.00 1/2 core 1 AJAX CAD-14-005 101117 97.00 98.00 1/2 core 1 AJAX CAD-14-005 101117 97.00 98.00 1/2 core 1 AJAX CAD-14-005 101118 102.00 103.00 1/2 core 1	
AJAX CAD-14-005 101110 QA/QC Standard 1 AJAX CAD-14-005 101111 QA/QC Blank 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101112 92.00 93.00 1/2 core 1 AJAX CAD-14-005 101113 93.00 94.00 1/2 core 1 AJAX CAD-14-005 101114 94.00 95.00 1/2 core 1 AJAX CAD-14-005 101115 95.00 96.00 1/2 core 1 AJAX CAD-14-005 101116 96.00 97.00 1/2 core 1 AJAX CAD-14-005 101117 97.00 98.00 1/2 core 1 AJAX CAD-14-005 101118 102.00 103.00 1/2 core 1	
AJAXCAD-14-005101111QA/QCBlank1AJAXCAD-14-00510111292.0093.001/2 core1AJAXCAD-14-00510111393.0094.001/2 core1AJAXCAD-14-00510111494.0095.001/2 core1AJAXCAD-14-00510111595.0096.001/2 core1AJAXCAD-14-00510111696.0097.001/2 core1AJAXCAD-14-00510111696.0097.001/2 core1AJAXCAD-14-00510111797.0098.001/2 core1AJAXCAD-14-005101118102.00103.001/2 core1	
AJAXCAD-14-00510111292.0093.001/2 core1AJAXCAD-14-00510111393.0094.001/2 core1AJAXCAD-14-00510111494.0095.001/2 core1AJAXCAD-14-00510111595.0096.001/2 core1AJAXCAD-14-00510111696.0097.001/2 core1AJAXCAD-14-00510111696.0097.001/2 core1AJAXCAD-14-00510111797.0098.001/2 core1AJAXCAD-14-005101118102.00103.001/2 core1	
AJAXCAD-14-00510111393.0094.001/2 core1AJAXCAD-14-00510111494.0095.001/2 core1AJAXCAD-14-00510111595.0096.001/2 core1AJAXCAD-14-00510111696.0097.001/2 core1AJAXCAD-14-00510111797.0098.001/2 core1AJAXCAD-14-00510111797.0098.001/2 core1AJAXCAD-14-005101118102.00103.001/2 core1	
AJAXCAD-14-00510111494.0095.001/2 core1AJAXCAD-14-00510111595.0096.001/2 core1AJAXCAD-14-00510111696.0097.001/2 core1AJAXCAD-14-00510111797.0098.001/2 core1AJAXCAD-14-00510111797.0098.001/2 core1AJAXCAD-14-005101118102.00103.001/2 core1	
AJAXCAD-14-00510111595.0096.001/2 core1AJAXCAD-14-00510111696.0097.001/2 core1AJAXCAD-14-00510111797.0098.001/2 core1AJAXCAD-14-005101118102.00103.001/2 core1	42
AJAXCAD-14-00510111696.0097.001/2 core1AJAXCAD-14-00510111797.0098.001/2 core1AJAXCAD-14-005101118102.00103.001/2 core1	42
AJAXCAD-14-00510111797.0098.001/2 core1AJAXCAD-14-005101118102.00103.001/2 core1	42
AJAX CAD-14-005 101118 102.00 103.00 1/2 core 1	42
	42
	42
AJAX CAD-14-005 101120 103.00 103.50 1/4 core Duplicate 1	42
	42
	42
	42
	42
	42
	42
	42
	42
	42
	42
HERMIONE CHD-14-001 101131 QA/QC Blank 1	12
HERMIONE CHD-14-001 101132 48.00 49.00 1/2 core 1	42
	42
	42
HERMIONE CHD-14-001 101135 74.60 75.60 1/2 core 1	42
	42
	42
	42 42
	42 42 42
	42 42 42 42
HERMIONE CHD-14-001 101142 111.70 112.20 1/2 core 1	42 42 42 42 42 42

PROSPECT	HOLEID	SAMPLEID	FROM	то	SAMPLE_TYPE	STANDARD_Type	Analysis
HERMIONE	CHD-14-001	101143	112.20	113.20	1/2 core		1A2
HERMIONE	CHD-14-001	101144	120.00	121.00	1/2 core		1A2
HERMIONE	CHD-14-001	101145	145.00	146.00	1/2 core		1A2
HERMIONE	CHD-14-001	101146	146.00	147.00	1/2 core		1A2
HERMIONE	CHD-14-001	101147	147.00	148.00	1/2 core		1A2
HERMIONE	CHD-14-001	101148	148.00	149.00	1/2 core		1A2
HERMIONE	CHD-14-001	101149	149.00	150.00	1/2 core		1A2
HERMIONE	CHD-14-001	101150			QA/QC	Standard	1A2
HERMIONE	CHD-14-001	101151			QA/QC	Blank	1A2
HERMIONE	CHD-14-001	101152	150.00	151.00	1/2 core		1A2+1F2
HERMIONE	CHD-14-001	101153	151.00	152.00	1/2 core		1A2+1F2
HERMIONE	CHD-14-001	101154	152.00	153.00	1/2 core		1A2+1F2
HERMIONE	CHD-14-001	101155	153.00	154.00	1/2 core		1A2+1F2
HERMIONE	CHD-14-001	101156	154.00	155.00	1/2 core		1A2+1F2
HERMIONE	CHD-14-001	101157	155.00	156.00	1/2 core		1A2+1F2
HERMIONE	CHD-14-001	101158	156.00	157.00	1/2 core		1A2+1F2
HERMIONE	CHD-14-001	101159	157.00	158.00	1/2 core	Duplicato	1A2+1F2
<i>HERMIONE</i> HERMIONE	CHD-14-001	101160	<i>157.00</i> 158.00	158.00 159.00	<i>1/4 core</i> 1/2 core	Duplicate	1A2+1F2
HERMIONE	CHD-14-001 CHD-14-001	101161 101162	158.00 159.00	159.00 160.00	1/2 core 1/2 core		1A2+1F2 1A2+1F2
HERMIONE	CHD-14-001 CHD-14-001	101162	160.00	160.00	1/2 core		1A2+1F2 1A2+1F2
HERMIONE	CHD-14-001 CHD-14-001	101163	160.00	161.00	1/2 core		1A2+1F2 1A2+1F2
HERMIONE	CHD-14-001 CHD-14-001	101165	162.00	163.00	1/2 core		1A2+1F2 1A2
HERMIONE	CHD-14-001 CHD-14-001	101165	198.60	199.60	1/2 core		1A2 1A2
HERMIONE	CHD-14-001 CHD-14-001	101167	198.00	200.00	1/2 core		1A2 1A2
HERMIONE	CHD-14-001	101168	200.00	200.00	1/2 core		1A2
HERMIONE	CHD-14-001	101169	201.00	202.00	1/2 core		1A2
HERMIONE	CHD-14-001	101170	202.00	202.00	QA/QC	Standard	1A2
HERMIONE	CHD-14-001	101171			QA/QC	Blank	1A2
HERMIONE	CHD-14-001	101172	202.00	203.00	1/2 core		1A2
HERMIONE	CHD-14-001	101173	203.00	204.00	1/2 core		1A2
HERMIONE	CHD-14-001	101174	204.00	204.70	1/2 core		1A2
HERMIONE	CHD-14-001	101175	204.70	205.40	1/2 core		1A2
HERMIONE	CHD-14-001	101176	205.40	206.40	1/2 core		1A2
HERMIONE	CHD-14-001	101177	216.70	217.70	1/2 core		1A2
HERMIONE	CHD-14-001	101178	217.70	218.20	1/2 core		1A2
HERMIONE	CHD-14-001	101179	218.20	219.00	1/2 core		1A2
HERMIONE	CHD-14-001	101180	218.20	219.00	1/4 core	Duplicate	1A2
HERMIONE	CHD-14-001	101181	219.00	219.90	1/2 core		1A2
HERMIONE	CHD-14-001	101182	219.90	221.00	1/2 core		1A2
HERMIONE	CHD-14-001	101183	221.00	222.00	1/2 core		1A2
HERMIONE	CHD-14-001	101184	222.00	223.00	1/2 core		1A2
HERMIONE	CHD-14-002	101185	28.00	29.00	1/2 core		1A2
HERMIONE	CHD-14-002	101186	29.00	30.00	1/2 core		1A2
HERMIONE	CHD-14-002	101187	30.00	31.00	1/2 core		1A2
HERMIONE	CHD-14-002	101188	31.00	32.00	1/2 core		1A2
HERMIONE	CHD-14-002	101189	51.00	51.55	1/2 core	Channel and the	1A2
HERMIONE	CHD-14-002	101190			QA/QC	Standard	1A2
	CHD-14-002	101191	00 00	80.00	QA/QC	Blank	1A2
	CHD-14-002 CHD-14-002	101192	88.00	89.00 96.00	1/2 core		1A2
HERMIONE HERMIONE	CHD-14-002 CHD-14-002	101193 101194	95.00 128.00	96.00 129.00	1/2 core 1/2 core		1A2 1A2
HERMIONE	CHD-14-002 CHD-14-002	101194	128.00	129.00	1/2 core		1A2 1A2
HERMIONE	CHD-14-002 CHD-14-002	101195	129.00	130.00	1/2 core		1A2 1A2
HERMIONE	CHD-14-002 CHD-14-002	101198	130.00	131.00	1/2 core		1A2 1A2
HERMIONE	CHD-14-002 CHD-14-002	101197	131.00	132.00	1/2 core		1A2 1A2
HERMIONE	CHD-14-002 CHD-14-002	101198	132.00	132.85	1/2 core		1A2 1A2
HERMIONE	CHD-14-002 CHD-14-002	101133	132.85	133.85	1/2 core 1/4 core	Duplicate	1A2 1A2
HERMIONE	CHD-14-002 CHD-14-002	101200	132.85	133.85	1/2 core	Dupilcule	1A2 1A2
HERMIONE	CHD-14-002	101201	137.10	137.10	1/2 core		1A2 1A2
HERMIONE	CHD-14-002	101202	138.10	138.50	1/2 core		1A2
	0.12 14 0.02	101203	130.10	130.30			1112

PROSPECT	HOLEID	SAMPLEID	FROM	то	SAMPLE_TYPE	STANDARD_Type	Analysis
HERMIONE	CHD-14-002	101204	138.50	139.10	1/2 core		1A2
HERMIONE	CHD-14-002	101205	139.10	140.10	1/2 core		1A2
HERMIONE	CHD-14-002	101206	153.15	154.15	1/2 core		1A2
HERMIONE	CHD-14-002	101207	125.15	126.15	1/2 core		1A2
HERMIONE	CHD-14-002	101208	53.50	54.50	1/2 core		1A2
HERMIONE	CHD-14-002	101209	54.50	55.00	1/2 core		1A2
HERMIONE	CHD-14-002	101210			QA/QC	Standard	1A2
HERMIONE	CHD-14-002	101211			QA/QC	Blank	1A2
HERMIONE	CHD-14-002	101212	55.00	56.00	1/2 core		1A2
HERMIONE	CHD-14-002	101213	61.00	62.00	1/2 core		1A2
HERMIONE	CHD-14-002	101214	67.60	68.60	1/2 core		1A2
HERMIONE	CHD-14-002	101215	68.60	69.40	1/2 core		1A2
HERMIONE	CHD-14-002	101216	69.40	70.40	1/2 core		1A2
HERMIONE	CHD-14-002	101217	83.80	84.60	1/2 core		1A2
JUPITER	CCD-14-240	101208	53.50	54.50	1/2 core		1A2
JUPITER	CCD-14-240	101209	54.50	55.00	1/2 core		1A2
JUPITER	CCD-14-240	101210			QA/QC	Standard	1A2
JUPITER	CCD-14-240	101211			QA/QC	Blank	1A2
JUPITER	CCD-14-240	101212	55.00	56.00	1/2 core		1A2
JUPITER	CCD-14-240	101213	61.00	62.00	1/2 core		1A2
JUPITER	CCD-14-240	101214	67.60	68.60	1/2 core		1A2
JUPITER	CCD-14-240	101215	68.60	69.40	1/2 core		1A2
JUPITER	CCD-14-240	101216	69.40	70.40	1/2 core		1A2
JUPITER	CCD-14-240	101217	83.80	84.60	1/2 core		1A2
JUPITER	CCD-14-241	101218	35.00	36.00	1/2 core		1A2
JUPITER	CCD-14-241	101219	36.00	37.00	1/2 core	- "	1A2
JUPITER	CCD-14-241	101220	36.00	37.00	1/4 core	Duplicate	1A2
JUPITER	CCD-14-241	101221	37.00	38.00	1/2 core		1A2
JUPITER	CCD-14-241	101222	38.00	39.00	1/2 core		1A2
JUPITER	CCD-14-241	101223	39.00	40.00	1/2 core		1A2
JUPITER	CCD-14-241	101224	40.00	41.00	1/2 core		1A2
JUPITER	CCD-14-241	101225	41.00	42.00	1/2 core		1A2
JUPITER	CCD-14-241	101226	42.00	43.00	1/2 core		1A2
JUPITER	CCD-14-241	101227	43.00	44.00	1/2 core		1A2
JUPITER	CCD-14-241	101228	51.00	52.00	1/2 core		1A2
JUPITER	CCD-14-241	101229	52.00	53.00	1/2 core	Ctandard	1A2
JUPITER	CCD-14-241	101230			QA/QC	Standard	1A2
JUPITER	<i>CCD-14-241</i> CCD-14-241	101231	52.00	F 4 00	QA/QC	Blank	1A2
JUPITER		101232	53.00	54.00	1/2 core		1A2
	CCD-14-241 CCD-14-241	101233	54.00 55.00	55.00 56.00	1/2 core		1A2 1A2
JUPITER JUPITER	CCD-14-241 CCD-14-241	101234 101235	55.00 56.00	56.00 57.00	1/2 core 1/2 core		1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101235	56.00 57.00	57.00 58.00	1/2 core		1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101236	60.00	58.00 61.00	1/2 core		1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101237	61.00	62.00	1/2 core		1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101238	62.00	63.00	1/2 core		1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101239	62.00	63.00	1/2 core 1/4 core	Duplicate	1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101240	63.00	64.00	1/2 core	Dupilcule	1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101241	64.00	64.50	1/2 core		1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101242	64.50	65.30	1/2 core		1A2 1A2
JUPITER	CCD-14-241	101243	65.30	66.30	1/2 core		1A2
JUPITER	CCD-14-241	101244	66.30	67.30	1/2 core		1A2
JUPITER	CCD-14-241	101245	67.30	68.30	1/2 core		1A2
JUPITER	CCD-14-241	101240	68.30	69.30	1/2 core		1A2
JUPITER	CCD-14-241	101247	69.30	70.30	1/2 core		1A2
JUPITER	CCD-14-241 CCD-14-241	101248	70.30	70.30	1/2 core		1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101249	70.50	, 1.20	QA/QC	Standard	1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101250			QA/QC	Blank	1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101251	71.20	72.00	1/2 core	DIGIIK	1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101252	72.00	73.00	1/2 core		1A2 1A2
JUPITER	CCD-14-241	101255	73.00	73.75	1/2 core		1A2
I JOINER	000 17 271	101234	75.00	, 3.75			1112

PROSPECT	HOLEID	SAMPLEID	FROM	то	SAMPLE_TYPE	STANDARD_Type	Analysis
JUPITER	CCD-14-241	101255	73.75	74.75	1/2 core		1A2
JUPITER	CCD-14-241	101256	74.75	75.75	1/2 core		1A2
JUPITER	CCD-14-241	101257	75.75	76.75	1/2 core		1A2
JUPITER	CCD-14-241	101258	76.75	77.75	1/2 core		1A2
JUPITER	CCD-14-241	101259	77.75	78.75	1/2 core		1A2
JUPITER	CCD-14-241	101260	77.75	78.75	1/4 core	Duplicate	1A2
JUPITER	CCD-14-241	101261	78.75	79.75	1/2 core		1A2
JUPITER	CCD-14-241	101262	79.75	80.75	1/2 core		1A2
JUPITER	CCD-14-241	101263	80.75	81.85	1/2 core		1A2
JUPITER	CCD-14-241	101264	97.10	98.10	1/2 core		1A2
JUPITER	CCD-14-241	101265	98.10	99.10	1/2 core		1A2
JUPITER	CCD-14-241	101266	99.10	99.90	1/2 core		1A2
JUPITER	CCD-14-241	101267	99.90	100.90	1/2 core		1A2
JUPITER	CCD-14-241	101268	107.00	108.00	1/2 core		1A2
JUPITER	CCD-14-241	101269	108.00	109.00	1/2 core		1A2
JUPITER	CCD-14-241	101270			QA/QC	Standard	1A2
JUPITER	CCD-14-241	101271	400.00	100.05	QA/QC	Blank	1A2
JUPITER	CCD-14-241	101272	109.00	109.85	1/2 core		1A2
JUPITER	CCD-14-241	101273	109.85	110.75	1/2 core		1A2
	CCD-14-241 CCD-14-241	101274	110.75	111.75	1/2 core		1A2
		101275	111.75 112.75	112.75	1/2 core		1A2
JUPITER JUPITER	CCD-14-241 CCD-14-241	101276 101277	112.75 113.75	113.75 114.75	1/2 core 1/2 core		1A2 1A2
	CCD-14-241 CCD-14-241						1A2 1A2
JUPITER JUPITER	CCD-14-241 CCD-14-241	101278 101279	114.75 115.75	115.75 116.75	1/2 core 1/2 core		1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101279	115.75	116.75 116.75	1/2 core 1/4 core	Duplicate	1A2 1A2
JUPITER	CCD-14-241 CCD-14-241	101280	116.75	117.75	1/2 core	Duplicute	1A2 1A2
JUPITER	CCD-14-241	101281	22.70	23.70	1/2 core		1A2
JUPITER	CCD-14-242	101283	23.70	24.70	1/2 core		1A2
JUPITER	CCD-14-242	101284	24.70	25.70	1/2 core		1A2
JUPITER	CCD-14-242	101285	25.70	26.70	1/2 core		1A2
JUPITER	CCD-14-242	101286	26.70	27.70	1/2 core		1A2
JUPITER	CCD-14-242	101287	27.70	28.70	1/2 core		1A2
JUPITER	CCD-14-242	101288	28.70	29.70	1/2 core		1A2
JUPITER	CCD-14-242	101289	34.05	35.05	1/2 core		1A2
JUPITER	CCD-14-242	101290			QA/QC	Standard	1A2
JUPITER	CCD-14-242	101291			QA/QC	Blank	1A2
JUPITER	CCD-14-242	101292	35.05	36.05	1/2 core		1A2
JUPITER	CCD-14-242	101293	36.05	37.05	1/2 core		1A2
JUPITER	CCD-14-242	101294	37.05	38.05	1/2 core		1A2
JUPITER	CCD-14-242	101295	38.05	39.05	1/2 core		1A2
JUPITER	CCD-14-242	101296	39.05	40.05	1/2 core		1A2
JUPITER	CCD-14-242	101297	40.05	40.55	1/2 core		1A2
JUPITER	CCD-14-242	101298	40.55	41.60	1/2 core		1A2
JUPITER	CCD-14-242	101299	41.60	42.60	1/2 core		1A2
JUPITER	CCD-14-242	101300	41.60	42.60	1/4 core	Duplicate	1A2
JUPITER	CCD-14-242	101301	62.10	63.10	1/2 core		1A2
JUPITER	CCD-14-242	101302	63.10	64.10	1/2 core		1A2
JUPITER	CCD-14-242	101303	64.10	65.10	1/2 core		1A2
JUPITER	CCD-14-242	101304	65.10	66.10	1/2 core		1A2
JUPITER	CCD-14-242	101305	66.10	67.10	1/2 core		1A2
JUPITER	CCD-14-242	101306	67.10	68.10	1/2 core		1A2
JUPITER	CCD-14-242	101307	68.10	69.10	1/2 core		1A2
JUPITER	CCD-14-242	101308	69.10	70.00	1/2 core		1A2
JUPITER	CCD-14-242	101309	70.00	71.00	1/2 core		1A2
JUPITER	CCD-14-242	101310			QA/QC	Standard	1A2
JUPITER	CCD-14-242	101311			QA/QC	Blank	1A2
JUPITER	CCD-14-242	101312	93.00	94.00	1/2 core		1A2
JUPITER	CCD-14-242	101313	94.00	95.00	1/2 core		1A2
JUPITER	CCD-14-242	101314	95.00	96.00	1/2 core		1A2
JUPITER	CCD-14-242	101315	96.00	96.60	1/2 core		1A2

PROSPECT	HOLEID	SAMPLEID	FROM	то	SAMPLE_TYPE	STANDARD_Type	Analysis
JUPITER	CCD-14-242	101316	96.60	97.60	1/2 core		1A2
JUPITER	CCD-14-242	101317	97.60	98.60	1/2 core		1A2
JUPITER	CCD-14-242	101318	110.00	111.00	1/2 core		1A2
JUPITER	CCD-14-242	101319	144.00	145.00	1/2 core		1A2
JUPITER	CCD-14-242	101320	144.00	145.00	1/4 core	Duplicate	1A2
JUPITER	CCD-14-243	101321	31.80	32.80	1/2 core		1A2
JUPITER	CCD-14-243	101322	32.80	33.80	1/2 core		1A2
JUPITER	CCD-14-243	101323	33.80	34.55	1/2 core		1A2
JUPITER	CCD-14-243	101324	34.55	35.55	1/2 core		1A2
JUPITER	CCD-14-243	101325	55.00	56.00	1/2 core		1A2
JUPITER	CCD-14-243	101326	66.00	67.00	1/2 core		1A2
JUPITER	CCD-14-243	101327	88.10	89.10	1/2 core		1A2
JUPITER	CCD-14-243	101328	89.10	90.10	1/2 core		1A2
JUPITER	CCD-14-243	101329	90.10	91.10	1/2 core		1A2
JUPITER	CCD-14-243	101330			QA/QC	Standard	1A2
JUPITER	CCD-14-243	101331			QA/QC	Blank	1A2
JUPITER	CCD-14-243	101332	91.10	92.10	1/2 core		1A2
JUPITER	CCD-14-243	101333	92.10	93.10	1/2 core		1A2
JUPITER	CCD-14-243	101334	93.10	94.35	1/2 core		1A2
JUPITER	CCD-14-243	101335	94.35	95.35	1/2 core		1A2
JUPITER	CCD-14-243	101336	96.90	97.90	1/2 core		1A2
JUPITER	CCD-14-243	101337	97.90	98.90	1/2 core		1A2
JUPITER	CCD-14-243	101338	98.90	99.90	1/2 core		1A2
JUPITER	CCD-14-243	101339	99.90	100.90	1/2 core		1A2
JUPITER	CCD-14-243	101340	99.90	100.90	1/4 core	Duplicate	1A2
JUPITER	CCD-14-243	101341	171.00	172.00	1/2 core	·	1A2
JUPITER	CCD-14-243	101342	172.00	173.00	1/2 core		1A2
JUPITER	CCD-14-243	101343	173.00	174.00	1/2 core		1A2
JUPITER	CCD-14-243	101344	174.00	175.00	1/2 core		1A2
JUPITER	CCD-14-243	101345	175.00	176.00	1/2 core		1A2
JUPITER	CDD-14-244	101346	4.20	5.20	1/2 core		1A2
JUPITER	CDD-14-244	101347	5.20	6.20	1/2 core		1A2
JUPITER	CDD-14-244	101348	6.20	7.00	1/2 core		1A2
JUPITER	CDD-14-244	101349	7.00	8.00	1/2 core		1A2
JUPITER	CDD-14-244	101350			QA/QC	Standard	1A2
JUPITER	CDD-14-244	101351			QA/QC	Blank	1A2
JUPITER	CDD-14-244	101352	47.00	48.00	1/2 core		1A2
JUPITER	CDD-14-244	101353	48.00	49.00	1/2 core		1A2
JUPITER	CDD-14-244	101354	49.00	50.00	1/2 core		1A2
JUPITER	CDD-14-244	101355	50.00	51.00	1/2 core		1A2
JUPITER	CDD-14-244	101356	51.00	52.00	1/2 core		1A2
JUPITER	CDD-14-244	101357	110.00	111.00	1/2 core		1A2
JUPITER	CDD-14-244	101358	114.00	115.00	1/2 core		1A2
JUPITER	CDD-14-244	101359	115.00	116.00	1/2 core		1A2
JUPITER	CDD-14-244	101360	115.00	116.00	1/4 core	Duplicate	1A2
JUPITER	CDD-14-244	101361	116.00	117.00	1/2 core		1A2
JUPITER	CDD-14-244	101362	125.00	126.00	1/2 core		1A2

APPENDIX IV

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 27-May-14

 Invoice No.:
 A14-03580

 Invoice Date:
 29-May-14

 Your Reference:
 3200

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Nick Walker

CERTIFICATE OF ANALYSIS

56 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

REPORT A14-03580

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Page 1/4

Results

Analyte Symbol Au Unit Symbol g/tonne Detection Limit 0.03 Analysis Method FA-GRA 100777 0.10 100778 0.85 100779 0.78 100780 0.98 100781 < 0.03 100782 < 0.03 100784 0.39 100785 < 0.03 100786 < 0.03 100787 < 0.03 100788 < 0.03 100789 < 0.03 100790 1.02 100791 < 0.03 100792 < 0.03 100793 < 0.03 100794 < 0.03 100795 0.20 100796 < 0.03 100797 0.23 100798 < 0.03 100799 3.35 100800 3.30 100801 0.07 100802 < 0.03 100803 < 0.03 100804 <th></th> <th></th>		
Detection Limit 0.03 Analysis Method FA-GRA 100777 0.10 100778 0.85 100779 0.78 100780 0.98 100781 < 0.03	Analyte Symbol	Au
Analysis Method FA-GRA 100777 0.10 100778 0.85 100779 0.78 100780 0.98 100781 < 0.03	Unit Symbol	g/tonne
100777 0.10 100778 0.85 100779 0.78 100780 0.98 100781 < 0.03	Detection Limit	0.03
100778 0.85 100779 0.78 100780 0.98 100781 < 0.03	Analysis Method	FA-GRA
100779 0.78 100780 0.98 100781 < 0.03	100777	0.10
100780 0.98 100781 < 0.03	100778	0.85
100781 < 0.03	100779	0.78
100782 < 0.03	100780	0.98
100783 0.07 100784 0.39 100785 < 0.03	100781	< 0.03
100784 0.39 100785 < 0.03	100782	< 0.03
100785 < 0.03	100783	0.07
100786 < 0.03	100784	0.39
100787 < 0.03	100785	< 0.03
100788 < 0.03	100786	< 0.03
100789 < 0.03	100787	< 0.03
100790 1.02 100791 < 0.03	100788	< 0.03
100791 < 0.03	100789	< 0.03
100792 < 0.03	100790	1.02
100793 < 0.03	100791	< 0.03
100794 < 0.03	100792	< 0.03
100795 0.20 100796 < 0.03	100793	< 0.03
100796 < 0.03	100794	< 0.03
100797 0.23 100798 < 0.03	100795	0.20
100797 0.23 100798 < 0.03	100796	< 0.03
100798 < 0.03	100797	_
100799 3.35 100800 3.30 100801 0.07 100802 < 0.03		
100800 3.30 100801 0.07 100802 < 0.03		3.35
100801 0.07 100802 < 0.03		
100802 < 0.03		-
100803 < 0.03	100802	_
100804 < 0.03		_
100805 < 0.03		_
100806 0.24 100807 0.03 100808 < 0.03		-
100807 0.03 100808 < 0.03		
100808 < 0.03		
100809 < 0.03		_
100810 1.11 100811 < 0.03		
100811 < 0.03		_
100812 0.07 100813 < 0.03		_
100813 < 0.03		-
100814 < 0.03		_
100815 < 0.03		_
100816 0.03 100817 < 0.03		-
100817 < 0.03		
100818 < 0.03		
100819 < 0.03		_
100820 < 0.03		
100821 3.80 100822 < 0.03		_
100822 < 0.03		_
100823 < 0.03		_
100824 < 0.03		-
		_
100825 < 0.03		_
	100825	< 0.03

Analyte Symbol	Au
Unit Symbol	g/tonne
Detection Limit	0.03
Analysis Method	FA-GRA
100826	< 0.03
100827	< 0.03
100828	< 0.03
100829	< 0.03
100830	2.53
100831	< 0.03
100832	< 0.03

Activation	Laboratories	Ltd.
------------	--------------	------

Analyte Symbol	Au
Unit Symbol	g/tonne
Detection Limit	0.03
Analysis Method	FA-GRA
OxK110 Meas	3.59
OxK110 Cert	3.602
OxK110 Meas	3.53
OxK110 Cert	3.602
TB-GS-5A Meas	4.85
TB-GS-5A Cert	5.032
TB-GS-5A Meas	5.00
TB-GS-5A Cert	5.032
100786 Orig	< 0.03
100786 Dup	0.03
100796 Orig	< 0.03
100796 Dup	< 0.03
100806 Orig	0.24
100806 Split	0.26
100806 Orig	0.26
100806 Dup	0.23
100821 Orig	4.05
100821 Dup	3.55
100826 Orig	< 0.03
100826 Split	< 0.03
100831 Orig	< 0.03
100831 Dup	< 0.03
Method Blank	< 0.03
Method Blank	< 0.03
Method Blank	< 0.03

QC

Innovative Technologies

 Date Submitted:
 27-May-14

 Invoice No.:
 A14-03582

 Invoice Date:
 30-May-14

 Your Reference:
 3200

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Nick Walker

CERTIFICATE OF ANALYSIS

93 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

REPORT A14-03582

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
100833	< 5	
100834	> 3000	3.18
100835	20	
100836	7	
100837	< 5	
100838	10	
100839	< 5	
100840	< 5	
100841	< 5	
100842	< 5	
100843	< 5	
100844	< 5	
100845	< 5	
100846	1230	
100847	16	
100848	28	
100849	120	
100850	992	
100851	59	
100852	19	
100853	46	
100854	7	
100855	< 5	
100856	< 5	
100857	< 5	
100858	< 5	
100859	14	
100860	81	
100861	< 5	
100862	7	
100863	17	
100864	8	
100865	11	
100866	< 5	
100867	< 5	
100868	< 5	
100869	8	
100870	> 3000	7.81
100871	69	-
100872	89	
100873	20	
100874	14	
100875	35	
100876	13	1
100877	13	
100878	68	
100879	< 5	
100880	< 5	+
100881	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
100882	< 5	
100883	< 5	
100884	< 5	
100885	< 5	
100886	< 5	
100887	< 5	
100888	< 5	
100889	14	
100890	> 3000	3.05
100891	< 5	
100892	< 5	
100893	6	
100894	< 5	
100895	30	1
100896	9	1
100897	< 5	
100898	40	
100899	< 5	
100900	< 5	
100901	< 5	
100902	11	
100903	16	
100904	< 5	
100905	< 5	
100906	69	
100907	105	
100908	< 5	
100909	< 5	
100910	953	1
100911	< 5	
100912	< 5	
100913	< 5	
100914	< 5	
100915	< 5	1
100916	36	1
100917	41	
100918	< 5	1
100919	< 5	
100920	< 5	1
100921	< 5	
100922	< 5	1
100923	55	
100924	5	1
100925	< 5	1

1		
Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
OxD108 Meas	451	
OxD108 Cert	414.000	
OxD108 Meas	442	
OxD108 Cert	414.000	
OxD108 Meas	443	
OxD108 Cert	414.000	
SF67 Meas	904	
SF67 Cert	835.000	
SF67 Meas	928	
SF67 Cert	835.000	
SF67 Meas	921	
SF67 Cert	835.000	
OxK110 Meas		3.43
OxK110 Cert		3.602
TB-GS-5A Meas		5.16
TB-GS-5A Cert		5.032
100834 Orig		3.14
100834 Dup		3.21
100842 Orig	< 5	
100842 Dup	< 5	
100852 Orig	21	
100852 Dup	16	
100862 Dup	7	
100862 Split	12	
100862 Orig	6	
100862 Dup	9	
100877 Orig	10	
100877 Dup	15	
100877 Dup 100882 Orig	< 5	
-	_	
100882 Split	< 5	
100887 Orig	< 5	
100887 Dup	< 5	
100892 Orig	< 5	
100892 Split	< 5	
100897 Orig	< 5	
100897 Dup	< 5	
100912 Orig	< 5	
100912 Dup	< 5	
100922 Orig	< 5	
100922 Split	< 5	
100922 Orig	< 5	
100922 Dup	< 5	
Method Blank	< 5	
	< 5	
Method Blank		
Method Blank Method Blank	< 5	

Page 4/4

Innovative Technologies

 Date Submitted:
 04-Jun-14

 Invoice No.:
 A14-03774

 Invoice Date:
 09-Jun-14

 Your Reference:
 ONT-0002

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Nick Walker

CERTIFICATE OF ANALYSIS

100 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

REPORT A14-03774

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
100926	47	
100927	< 5	
100928	< 5	
100929	1440	
100930	970	
100931	< 5	
100932	6	
100933	14	
100934	< 5	
100935	292	
100936	16	
100937	< 5	
100938	11	
100939	13	
100940	22	
100941	< 5	
100942	14	
100943	< 5	
100944	11	
100945	43	
100946	7	
100947	116	
100948	< 5	
100949	15	
100950	> 3000	8.36
100951	< 5	
100952	227	
100953	11	
100954	< 5	
100955	< 5	
100956	< 5	
100957	< 5	
100958	38	
100959	25	
100959	10	
100961	27	
	_	
100962	< 5	
100963 100964	11	
	_	
	< 5	
100965	< 5 6	
100965 100966	< 5 6 24	
100965 100966 100967	< 5 6 24 209	
100965 100966 100967 100968	< 5 6 24 209 712	
100965 100966 100967	< 5 6 24 209	
100965 100966 100967 100968 100969 100970	< 5 6 24 209 712	
100965 100966 100967 100968 100969	< 5 6 24 209 712 9	
100965 100966 100967 100968 100969 100970	 < 5 6 24 209 712 9 2980 	
100965 100966 100967 100968 100969 100970 100971	<pre>< 5 6 24 209 712 9 2980 <5</pre>	

Analyte Symbol Unit Symbol	Au	Au a/toppo
	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method 100975	FA-AA 7	FA-GRA
100976	455	
100977	50	
100978	< 5	
100979	< 5	+
100980	6	
100981	84	
100982	37	
100983	38	
100984	< 5	+
	< 5	
100985	_	
100986	24	
100987	13	
100988	192	+
100989	472	
100990	897	
100991	< 5	
100992	91	
100993	207	
100994	32	
100995	36	
100996	11	
100997	18	
100998	1070	
100999	580	
101000	597	
101001	> 3000	3.66
101002	2000	
101003	37	
101004	50	
101005	19	
101006	7	
101007	9	
101008	35	
101009	7	
101010	> 3000	8.12
101011	< 5	
101012	< 5	
101013	27	
101014	22	
101015	16	
101016	27	
101017	< 5	
101018	39	1
101019	< 5	
101020	< 5	
101021	< 5	
101022	< 5	+
101023	< 5	+

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
101025	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
OxD108 Meas	450	
OxD108 Cert	414.000	
OxD108 Meas	440	
OxD108 Cert	414.000	
OxD108 Meas	438	
OxD108 Cert	414.000	
SF67 Meas	919	
SF67 Cert	835.000	
SF67 Meas	873	
SF67 Cert	835.000	
SF67 Meas	937	
SF67 Cert	835.000	
OxK110 Meas		3.65
OxK110 Cert		3.602
TB-GS-5A Meas		5.11
TB-GS-5A Cert		5.032
100935 Orig	277	
100935 Dup	306	
100945 Orig	40	
100945 Dup	47	
100955 Split Orig	< 5	
100955 Split	< 5	
100955 Orig	< 5	
100955 Dup	< 5	
100971 Orig	< 5	
100971 Dup	< 5	
100975 Split Orig	7	
100975 Split	< 5	
100980 Orig	6	
100980 Dup	6	
100985 Split Orig	< 5	
100985 Split	< 5	
100991 Orig	< 5	
100991 Dup	< 5	
101001 Orig	< 5	2 54
101001 Dup		3.54
	47	3.78
101005 Orig	17	
101005 Dup	20	
101012 Split Orig	< 5	
101012 Split	< 5	
101015 Orig	15	
101015 Dup	16	
101025 Orig	< 5	
101025 Dup	< 5	
Method Blank	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
Method Blank	< 5	
Method Blank		< 0.03

Innovative Technologies

 Date Submitted:
 04-Jun-14

 Invoice No.:
 A14-03786

 Invoice Date:
 09-Jun-14

 Your Reference:
 ONT-0002

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Nick Walker

CERTIFICATE OF ANALYSIS

42 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A14-03786

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au
Unit Symbol	ppb
Detection Limit	5
Analysis Method	FA-AA
101026	19
101027	54
101028	18
101029	120
101030	2750
101031	< 5
101032	45
101033	1520
101034	52
101035	219
101036	< 5
101037	16
101038	157
101039	248
101040	226
101041	188
101042	327
101043	< 5
101044	127
101045	< 5
101046	< 5
101047	518
101048	< 5
101049	200
101050	960
101051	< 5
101052	< 5
101053	< 5
101054	< 5
101055	< 5
101056	32
101057	42
101058	967
101059	41
101060	42
101061	36
101062	< 5
101063	6
101064	< 5
101065	< 5
101066	6
101067	< 5

Activation Laboratories Ltu.	Activation	Laboratories	Ltd.
------------------------------	------------	--------------	------

	_
Analyte Symbol	Au
Unit Symbol	ppb
Detection Limit	5
Analysis Method	FA-AA
OxD108 Meas	438
OxD108 Cert	414.000
OxD108 Meas	447
OxD108 Cert	414.000
SF67 Meas	902
SF67 Cert	835.000
SF67 Meas	913
SF67 Cert	835.000
101035 Orig	215
101035 Dup	223
101045 Orig	< 5
101045 Dup	< 5
101055 Orig	< 5
101055 Split	< 5
101055 Orig	< 5
101055 Dup	< 5
101064 Orig	< 5
101064 Dup	< 5
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5

QC

Innovative Technologies

 Date Submitted:
 11-Jun-14

 Invoice No.:
 A14-03940

 Invoice Date:
 17-Jun-14

 Your Reference:
 3200

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Nick Walker

CERTIFICATE OF ANALYSIS

60 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

REPORT A14-03940

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
101068	6	
101069	10	
101070	> 3000	7.78
101071	< 5	
101072	6	
101073	< 5	
101074	24	
101075	36	
101076	298	
101077	318	
101078	7	
101079	34	
101080	< 5	
101081	180	
101082	6	
101083	15	
101084	34	
101085	14	
101086	28	
101087	417	
101088	422	
101089	6	-
101090	2880	
101091	< 5	
101092	6	-
101093	106	
101094	646	
101095	< 5	
101096	206	
101097	< 5	-
101098	< 5	-
101099	213	
	99	
101100 101101	121	
	_	
101102	38	
101103	< 5	
101104	< 5	
101105	< 5	
101106	< 5	_
101107	< 5	_
101108	21	
101109	30	
101110	875	
101111	< 5	
101112	60	
101113	8	
101114	11	
101115	< 5	
101115		

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
101117	< 5	
101118	< 5	
101119	< 5	
101120	< 5	
101121	> 3000	4.43
101122	121	
101123	38	
101124	52	
101125	< 5	
101126	38	
101127	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
OxD108 Meas	442	
OxD108 Cert	414.000	
OxD108 Meas	420	
OxD108 Cert	414.000	
SF67 Meas	836	
SF67 Cert	835.000	
SF67 Meas	822	
SF67 Cert	835.000	
OxK110 Meas		3.56
OxK110 Cert		3.602
TB-GS-5A Meas		5.17
TB-GS-5A Cert		5.032
101087 Orig	371	
101087 Dup	462	
101097 Orig	< 5	
101097 Split	7	
101097 Orig	< 5	
101097 Dup	6	
101111 Orig	< 5	
101111 Dup	6	
101117 Orig	< 5	
101117 Split	6	
101120 Orig	< 5	
101120 Dup	< 5	
101121 Orig		4.37
101121 Dup		4.50
101125 Orig	< 5	
101125 Dup	< 5	
101127 Orig	< 5	
101127 Split	< 5	
Method Blank		< 0.03

Innovative Technologies

Date Submitted:11-Jun-14Invoice No.:A14-03941Invoice Date:17-Jun-14Your Reference:3200

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Nick Walker

CERTIFICATE OF ANALYSIS

57 Core samples were submitted for analysis.

The following analytical package was requested:

REPORT A14-03941

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay) Code 1F2-Tbay Total Digestion ICP(TOTAL)

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3 Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

	1.				-	1-	-						-		I					1	.	T	1
Analyte Symbol	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	К	Mg	Li	Mn	Мо	Na	Ni	P
Unit Symbol	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	ppm	%	ppm	%
Detection Limit	5	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	1	0.01	1	0.001
Analysis Method	FA-AA	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP
101128	< 5																					<u> </u>	<u> </u>
101129	< 5																					───	<u> </u>
101130	> 3000																					<u> </u>	<u> </u>
101131	< 5																					<u> </u>	<u> </u>
101132	77																					──	
101133	138																					—	
101134	17																					──	<u> </u>
101135	< 5																					<u> </u>	<u> </u>
101136	48																					<u> </u>	<u> </u>
101137	< 5																					───	
101138	40											ļ										<u> </u>	<u> </u>
101139	12		ļ					L				ļ		<u> </u>							<u> </u>	—	—
101140	14		ļ									ļ										───	───
101141	< 5		ļ			<u> </u>						ļ			<u> </u>						<u> </u>	───	───
101142	17		ļ				ļ	<u> </u>				ļ	ļ	<u> </u>		ļ						───	───
101143	< 5		ļ									ļ										───	───
101144	< 5																					───	<u> </u>
101145	< 5																					<u> </u>	<u> </u>
101146	11																					<u> </u>	<u> </u>
101147	< 5																					───	<u> </u>
101148	< 5											ļ										<u> </u>	<u> </u>
101149	< 5																					───	<u> </u>
101150	2780																					<u> </u>	<u> </u>
101151	< 5																					<u> </u>	<u> </u>
101152	< 5	< 0.3	7.64		61	< 1	< 2	4.31	< 0.3	28	37	62	5.99	15	< 1	0.10	2.73	15	1010	< 1	2.85	26	0.082
101153	< 5	0.5	7.75	7	97	< 1	< 2	3.96	< 0.3	28	48	68	7.59	18	< 1	0.19	3.27	19	890	< 1	3.28	25	0.085
101154	< 5	0.4	7.72	6	52	< 1	< 2	4.53	4.4	29	43	88	6.94	17	< 1	0.05	3.00	17	875	< 1	3.10	24	0.084
101155	< 5	< 0.3	7.96	< 3	62	< 1	4	4.32	< 0.3	26	38	72	6.09	16	< 1	0.06	3.03	17	808	< 1	3.01	24	0.086
101156	< 5	0.4	7.18	13	186	< 1	< 2	3.29	< 0.3	32	38	71	8.72	14	2	0.35	3.16	20	764	< 1	1.81	25	0.084
101157	< 5	< 0.3	7.74	8	294	< 1	< 2	4.00	< 0.3	26	41	76	6.78	14	< 1	0.54	3.08	20	885	< 1	1.98	24	0.086
101158	< 5	< 0.3	7.50	< 3	551	< 1	2	4.12	< 0.3	25	42	64	6.90	15	< 1	1.10	3.18	21	1070	< 1	1.85	23	0.081
101159	10	< 0.3	7.09	4	475	< 1	3	4.35	< 0.3	27	36	57	6.38	15	< 1	0.94	2.88	21	1020	< 1	2.02	23	0.082
101160	/	< 0.3	6.89	5	470	< 1	< 2	4.54	< 0.3	26	39	61	6.46	14	< 1	0.95	2.90	21	1040	< 1	2.00	23	0.081
101161	< 5	< 0.3	4.90	< 3	184	< 1	< 2	4.77	< 0.3	26	53	58	5.92	15	< 1	0.24	2.65	20	1180	< 1	1.75	23	0.082
101162	< 5	0.4	7.44	6	191	< 1	< 2	4.78	< 0.3	29	49	69 05	7.42	16	< 1	0.28	3.27	26	1320	< 1	1.70	25	0.089
101163	< 5	0.4	7.18	< 3	283	<1 <1	< 2 < 2	3.90	< 0.3	28 25	43	65 62	7.17	13	<1 <1	0.53	3.07	25	1160	< 1	1.82	24	0.080
101164	< 5	< 0.3	7.46	< 3	192	< 1	< 2	4.04	< 0.3	20	45	62	6.70	16	< 1	0.33	3.06	26	1220	< 1	2.06	25	0.085
101165	< 5 < 5																					──	──
101166						<u> </u>		<u> </u>							<u> </u>						<u> </u>	──	──
101167	20																					┥────	───
101168 101169	9					<u> </u>		<u> </u>						<u> </u>	<u> </u>						<u> </u>	──	──
	/																			-		┥────	───
101170 101171	891 < 5																					──	──
	_																					───	───
101172	< 5					I									I						I	──	──
101173	< 5 < 5					I									I							──	───
101174																						───	───
101175	14																					┨─────	───
101176	< 5		L		ļ	L	L	L	L	I	2/8	L	L	L	L	L	L	l	I	<u> </u>	I	└───	L

Activation Laboratories Ltd.

Analyte Symbol	Au	Ag	AI	As	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	К	Mg	Li	Mn	Mo	Na	Ni	Р
Unit Symbol	ppb	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	ppm	%	ppm	%
Detection Limit	5	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	1	0.01	1	0.001
Analysis Method	FA-AA	TD-ICP																					
101177	< 5																						
101178	< 5																						
101179	9																						
101180	16																						
101181	72																						
101182	< 5																						
101183	< 5																						
101184	< 5																						

Analyte Symbol	Pb	Sb	S	Sc	Sr	Те	Ti	TI	U	V	W	Y	Zn	Zr	Au
Unit Symbol	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g/tonne
Detection Limit	3	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5	0.03
Analysis Method	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	FA-GRA
101128															
101129															
101130															7.85
101131															
101132															
101133															
101134															
101135															1
101136															1
101137															1
101138															
101139															<u> </u>
101140		1	1	1		1	1	1		1	1	1	1	1	<u> </u>
101141															1
101142															+
101143			1	1		1				1		1			+
101144			1												+
101145															
101146															<u> </u>
101147															
101148															+
101149															┼───
101150															
101151															+
101152	< 3	< 5	0.09	30	278	< 2	0.15	< 5	< 10	83	< 5	20	108	54	
101153	< 3	< 5	1.31	29	158	8	0.13	< 5	< 10	129	< 5	20	220	81	+
101153	8	< 5	1.05	29	221	o 5	0.32	< 5	< 10	104	9	19	1440	59	
	-				279	2	0.40			92		20		44	
101155 101156	< 3 10	< 5 < 5	0.16 2.74	30 27	269	11	0.17	< 5 < 5	< 10 < 10	92 152	< 5 < 5	17	95 144	44 66	
	7										< 5	19			
101157		< 5	0.56	29	260	4	0.35	< 5	< 10	84		19	130 123	46	+
101158	< 3	< 5	0.53	29	131	9	0.35	< 5	< 10	85	< 5			52	──
101159	< 3	< 5	0.68	28	122	4	0.33	< 5	< 10	73	< 5	18	103	41	──
101160	< 3	< 5	0.70	27	127	< 2	0.40	< 5	< 10	92	< 5	18	104	58	+
101161	< 3	< 5	0.07	15	248	6	0.59	< 5	< 10	162	< 5	14	86	80	──
101162	4	< 5	1.06	29	241	12	0.62	< 5	< 10	169	< 5	19	155	99	──
101163	< 3	< 5	1.53	27	210	< 2	0.48	< 5	< 10	140	< 5	18	142	74	──
101164	< 3	< 5	0.65	29	229	3	0.38	< 5	< 10	87	< 5	19	109	47	──
101165				[[<u> </u>
101166						I	 					I	 		──
101167	_		ļ			I						I			
101168															_
101169			L												<u> </u>
101170															
101171															
101172															
101173															
101174															
101175															
101176			1												

Activation Laboratories Ltd.

Analyte Symbol	Pb	Sb	S	Sc	Sr	Те	Ti	TI	U	V	W	Y	Zn	Zr	Au
Unit Symbol	ppm	ppm	%	ppm	ppm	ppm	%	ppm	g/tonne						
Detection Limit	3	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5	0.03
Analysis Method	TD-ICP	FA-GRA													
101177															
101178															
101179															
101180															
101181															
101182															
101183															
101184															

Q U

Jnit Symbol p		0	Al	As	Ва	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	К	Mg	1.1	Mn	Мо	Na	Ni	D
	nnh										-	ou	16	Ga	ing	ĸ	ivig	LI	IVITI	NIO	ina	INI	Р
	ppp	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	%	ppm	ppm	ppm	%	ppm	%
Detection Limit 5	5	0.3	0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	1	0.01	1	0.001
Analysis Method F	FA-AA	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-IC							
GXR-1 Meas		31.3	2.02	418	634	1	1380	0.84	1.1	9		1180	22.6	8	5	0.04	0.19	7	838	16	0.04	55	0.058
GXR-1 Cert		31.0	3.52	427	750	1.22	1380	0.960	3.30	8.20		1110	23.6	13.8	3.90	0.050	0.217	8.20	852	18.0	0.0520	41.0	0.065
GXR-4 Meas		3.7	6.07	110	244	2	15	1.05	< 0.3	15	46	6290	3.06	16	2	3.55	1.65	10	166	312	0.49	40	0.132
GXR-4 Cert		4.0	7.20	98.0	1640	1.90	19.0	1.01	0.860	14.6	64.0	6520	3.09	20.0	0.110	4.01	1.66	11.1	155	310	0.564	42.0	0.120
SDC-1 Meas			7.82	< 3	630	3		1.11		19	42	34	5.09	21	1	2.33	1.03	35	889		1.55	39	0.057
SDC-1 Cert			8.34	0.220	630	3.00		1.00		18.0	64.00	30.00	4.82	21.00	0.20	2.72	1.02	34.00	880.00		1.52	38.0	0.069
GXR-6 Meas		0.4	11.8	224	> 1000	1	4	0.15	< 0.3	14	43	73	6.05	27	2	1.60	0.58	32	1040	< 1	0.09	27	0.034
GXR-6 Cert		1.30	17.7	330	1300	1.40	0.290	0.180	1.00	13.8	96.0	66.0	5.58	35.0	0.0680	1.87	0.609	32.0	1010	2.40	0.104	27.0	0.035
DREAS 14P Meas										689		9330	32.8									> 10000	
OREAS 14P Cert										750		9970	37.2									21000	
Dreas 72a (4 Acid				4						165	197	355	9.90									7170	1
Digest) Meas																							
Dreas 72a (4 Acid Digest) Cert				14.7						157	228	316	9.63									6930.000	,
SAR-M (U.S.G.S.) Meas		3.7	5.59	30	757	3	< 2	0.58	5.0	12	75	316	3.09	15		1.35	0.45	27	5260	12	1.14	47	0.064
SAR-M (U.S.G.S.)		3.64	6.30	38.8	801	2.20	1.94	0.61	5.27	10.70	79.7	331	2.99	17		2.94	0.50	27.4	5220	13.1	1.140	41.5	0.07
Cert DNC-1a Meas					92					56	189	104						4				258	\vdash
NC-1a Cert					118					57.0	270	100.0						5.20				247	<u> </u>
DREAS 13b (4-Acid)		1.2		44						78	9650	2560								7		2220	<u> </u>
leas																						-	
OREAS 13b (4-Acid) Cert		0.86		57						75	8650.000	2327.00 00								9.0		2247.00 00	
DxD108 Meas 4	425																						
DxD108 Cert	414.000																						
0xD108 Meas 4	431																						
DxD108 Cert	414.000																						
SF67 Meas 8	803																						<u> </u>
SF67 Cert	835.000																						
	853																						<u> </u>
	835.000																						<u> </u>
SBC-1 Meas				14	732	3	< 2		< 0.3	23	79	34		25				152		1		86	<u> </u>
SBC-1 Cert				25.7	788.0	3.20	0.70		0.40	22.7	109	31.0		27.0				163.0		2.40		82.8	<u> </u>
DxK110 Meas				2011	100.0	0.20	0.1.0		0.10			0.10		21.0				100.0		20		02.0	+
DxK110 Cert																							<u> </u>
B-GS-5A Meas																							<u> </u>
B-GS-5A Cert										<u> </u>								<u> </u>			<u> </u>		+
	< 5																						+
*	17																						+
	< 5								<u> </u>	<u> </u>								<u> </u>		<u> </u>	<u> </u>		+
÷	< 5 < 5									<u> </u>								<u> </u>			<u> </u>		+
· ·	< 5 < 5									<u> </u>								<u> </u>			<u> </u>		+
-	< 5 < 5																						
																							╂──
÷	< 5									 								 		<u> </u>	I		—
	< 5		- 10		100			4.05			10		0.70	10					10.15			0.5	
01164 Orig			7.49	< 3	192	< 1	< 2	4.05	< 0.3	26	48	64	6.76	16		0.33	3.08	26	1240	< 1	2.06	25	0.08
01164 Dup	_	< 0.3	7.44	3	191	< 1	< 2	4.03	< 0.3	24	42	61	6.63	16	< 1	0.33	3.04	26	1210	< 1	2.06	24	0.084
101171 Orig <	< 5			1	1																		

Activation Laboratories Ltd.

		•	AI				Bi	Ca				Cu	Fe	Ga	Hg	K	Mg	Li	Mn	Мо	Na	Ni	P
			%	ppm	ppm	ppm	ppm	%		ppm	ppm	opm	%	ppm	ppm	%	%	ppm	ppm	ppm	%	ppm	%
			0.01	3	7	1	2	0.01	0.3	1	1	1	0.01	1	1	0.01	0.01	1	1	1	0.01	1	0.001
	FA-AA	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-IC
-	< 5																						_
	< 5																						_
-	16																						_
	< 5																						_
	< 5																						
	< 5																						_
lethod Blank lethod Blank	< 5	< 0.3	< 0.01	< 3	< 7	< 1	< 2	< 0.01	< 0.3	. 1		< 1	< 0.01	. 4	< 1	< 0.01	< 0.01	< 1		. 4	< 0.01	< 1	< 0.00
lethod Blank		< 0.5	< 0.01	< 3	< /	< 1	< 2	< 0.01	< 0.3	< 1		< 1	< 0.01	< 1	< 1	< 0.01	< 0.01	< 1		< 1	< 0.01	< 1	< 0.00
QC					I	I				I	·											4	
Analyte Symbol	Pb	Sb	S	Sc	Sr	Te	Ti	TI	U	V	W	Y	Zn	Zr	Au								
Unit Symbol	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g/tonne	e							
Detection Limit	3	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5	0.03								
Analysis Method	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICF	P TD-ICF	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICF	FA-GR	A							
GXR-1 Meas	699	54	0.25	< 4	288	16	0.03	< 5	30	85	160	30	729	27									
GXR-1 Cert	730	122	0.257	1.58	275	13.0	0.036	0.390	34.9	80.0	164	32.0	760	38.0									
GXR-4 Meas	46	11	1.78	8	211	2	0.29	< 5	< 10	88	35	13	73	41									
GXR-4 Cert	52.0	4.80	1.77	7.70	221	0.970	0.29	3.20	6.20	87.0	30.8	14.0	73.0	186									
SDC-1 Meas	22	< 5		17	179		0.11	< 5	< 10	38	< 5		99	31									
SDC-1 Cert	25.00	0.54		17.00	180.00	_	0.606	0.70	3.10	102.00	0.80		103.00	290.0	2								
GXR-6 Meas	90	< 5	0.01	27	34	< 2		< 5	< 10	102	< 5	10	127	51									
GXR-6 Cert	101	3.60	0.0160	27.6	35.0	0.0180		2.20	1.54	186	1.90	14.0	118	110									
OREAS 14P Meas		_	_	_	_	_	_		_	_		_		_									
OREAS 14P Cert				_	_		_		_	_				_									
Oreas 72a (4 Acid Digest) Meas			1.78																				
Oreas 72a (4 Acid Digest) Cert			1.74																				
SAR-M (U.S.G.S.) Meas	1020	6		9	152	5	0.38	< 5	< 10	68	20	31	956										
SAR-M (U.S.G.S.) Cert	982	6.0		7.83	151	0.96	0.38	2.7	3.57	67.2	9.78	28.00											
DNC-1a Meas		< 5		31	129		0.28	_		143	_	14	55	31	_								
DNC-1a Cert		0.96	-	31	144.0		0.29	_	_	148.00		18.0	70.0	38.00)								
OREAS 13b (4-Acid Meas			1.21										161										
OREAS 13b (4-Acid Cert)		1.2										133										
OxD108 Meas		_					_	_	_		_			_									
OxD108 Cert	_	_				4		_	_			4		_		_							
OxD108 Meas		_		_	_	4		_	_	_		4		_	_								
OxD108 Cert		_		_	_			_		_			_		_								
SF67 Meas		_		_			_	_	_	_			_	_	_								
SF67 Cert		_		_	_		_	_	_	_			_		_								
SF67 Meas				_				_	_	_						_							
SF67 Cert		<u> </u>		-	170		0.54	<u> </u>			<u> </u>		170	100	_	_							
SBC-1 Meas	29	< 5	_	19	170		0.51	< 5	< 10	209	< 5	25	176	103	_	_							
SBC-1 Cert	35.0	1.01		20.0	178.0		0.51	0.89	5.76	220.0	1.60	36.5	186.0	134.0	_	_							
OxK110 Meas OxK110 Cert				_	_	+				_	+	+	_		3.53	_							
	1	1	1	1	1	1	1		1	1	1		1		3.602	1							

Activation Laboratories Ltd.

		-	-	-	_							_	_	1.
Pb	Sb		Sc	Sr	Te		TI	U	V	W	Y	Zn	Zr	Au
ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	g/tonne
3	5	0.01	4	1	2	0.01	5	10	2	5	1	1	5	0.03
TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	TD-ICP	FA-GRA
														5.24
														5.032
4	< 5	0.65	29	229	3	0.39	< 5	< 10	92	< 5	19	109	50	
< 3	< 5	0.65	29	230	2	0.38	< 5	< 10	81	< 5	19	109	44	
< 3	< 5	< 0.01	< 4	< 1	< 2	< 0.01	< 5	< 10	< 2	< 5	< 1	< 1	< 5	
1	1	1	1			1	1	i i	1		İ	1		< 0.03
	3 3 TD-ICP 4 4 < 3	ppm ppm 3 5 TD-ICP TD-ICP - - -	ppm ppm % 3 5 0.01 TD-ICP TD-ICP TD-ICP I I I I I	ppm $%$ ppm 3 5 0.01 4 TD-ICP TD-ICP TD-ICP TD-ICP I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <t< td=""><td>$\begin{array}{ c c c c c c c } ppm & ppm & ppm & ppm & ppm & ppm \\ \hline 3 & 5 & 0.01 & 4 & 1 \\ \hline TD-ICP & TD-ICP & TD-ICP & TD-ICP & TD-ICP \\ \hline TD-ICP & TD-ICP & TD-ICP & TD-ICP & TD-ICP \\ \hline 1 & 1$</td><td>ppm ppm ppm ppm ppm 3 5 0.01 4 1 2 TD-ICP TD-ICP TD-ICP TD-ICP TD-ICP TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP<</td><td>ppm ppm ppm ppm ppm % 3 5 0.01 4 1 2 0.01 TD-ICP TD-ICP</td><td>ppmppm$ppm$$ppm$$ppm$$ppm$$ppm$$ppm$$ppm$350.014120.015TD-ICPTD-</td><td>ppmppmppmppmppmppm%ppmppm350.014120.01510TD-ICPICPICPICPICPICPTD-ICPTD-ICPICPICPICPICPICPTD-ICPICPICPICPICPICPICPICPICPICPIC</td><td>ppmppm$\%$ppmppm$\%$ppmp</td><td>ppmppmppmppmppmppmppmppmppmppmppmppm350.014120.0151025TD-ICP</td><td>ppmpp</td><td>ppmppm%ppm<</td><td>ppmpp</td></t<>	$\begin{array}{ c c c c c c c } ppm & ppm & ppm & ppm & ppm & ppm \\ \hline 3 & 5 & 0.01 & 4 & 1 \\ \hline TD-ICP & TD-ICP & TD-ICP & TD-ICP & TD-ICP \\ \hline TD-ICP & TD-ICP & TD-ICP & TD-ICP & TD-ICP \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	ppm ppm ppm ppm ppm 3 5 0.01 4 1 2 TD-ICP TD-ICP TD-ICP TD-ICP TD-ICP TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP Image: TD-ICP<	ppm ppm ppm ppm ppm % 3 5 0.01 4 1 2 0.01 TD-ICP TD-ICP	ppmppm ppm ppm ppm ppm ppm ppm ppm 350.014120.015TD-ICPTD-	ppmppmppmppmppmppm%ppmppm350.014120.01510TD-ICPICPICPICPICPICPTD-ICPTD-ICPICPICPICPICPICPTD-ICPICPICPICPICPICPICPICPICPICPIC	ppmppm $\%$ ppmppm $\%$ ppmp	ppmppmppmppmppmppmppmppmppmppmppmppm350.014120.0151025TD-ICP	ppmpp	ppmppm%ppm<	ppmpp

Innovative Technologies

 Date Submitted:
 11-Jun-14

 Invoice No.:
 A14-03942

 Invoice Date:
 17-Jun-14

 Your Reference:
 ONT-002

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Nick Walker

CERTIFICATE OF ANALYSIS

33 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

REPORT A14-03942

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
101185	12	
101186	147	
101187	59	
101188	500	
101189	31	
101190	2570	
101191	< 5	
101192	< 5	
101193	< 5	
101194	< 5	
101195	6	
101196	< 5	
101197	< 5	
101198	< 5	
101199	< 5	
101200	< 5	
101201	< 5	
101202	14	
101203	< 5	
101204	< 5	
101205	< 5	
101206	< 5	
101207	< 5	
101208	< 5	
101209	17	
101210	> 3000	7.70
101211	< 5	
101212	< 5	
101213	34	
101214	8	
101215	90	
101216	< 5	
101217	< 5	

QC	
Analyte Symbol	Au
Unit Symbol	ppb
Detection Limit	5
Analysis Method	FA-AA
OxD108 Meas	413
OxD108 Cert	414.000
SF67 Meas	806
SF67 Cert	835.000
OxK110 Meas	
OxK110 Cert	
TB-GS-5A Meas	
TB-GS-5A Cert	
101194 Orig	< 5
101194 Dup	< 5
101204 Orig	6
101204 Dup	< 5
101214 Orig	8
101214 Split	< 5

6

10

< 5

< 5

101214 Orig

101214 Dup

Method Blank

Method Blank

Method Blank

Au g/tonne 0.03 FA-GRA

3.47 3.602 4.93 5.032

< 0.03

Innovative Technologies

 Date Submitted:
 16-Jun-14

 Invoice No.:
 A14-04019

 Invoice Date:
 24-Jun-14

 Your Reference:
 3200

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Harry Wilhelmij

CERTIFICATE OF ANALYSIS

58 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

REPORT A14-04019

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
1211213	96	
1211214	< 5	
1211215	< 5	
1211216	< 5	
1211217	< 5	
1211218	< 5	
1211219	< 5	
1211220	< 5	
1211221	< 5	
1211222	< 5	
1211223	< 5	
1211224	6	
1211225	< 5	
1211226	< 5	
1211227	19	
1211228	59	
1211229	5	
1211230	927	
1211231	5	
1211232	78	
1211233	< 5	
1211234	9	
1211235	< 5	
1211236	< 5	
1211151	< 5	
1211152	7	
1211153	8	
1211154	1960	
1211155	828	
1211156	187	
1211157	812	
1211158	21	
1211159	157	
1211160	108	
1211161	340	
1211162	17	
1211163	93	
1211164	180	
1211165	< 5	
1211166	35	+
1211167	< 5	+
1211172	< 5	+
1211173	97	-
1211174	40	
1211175	331	
1211176	17	
1211176	336	+
1211177	1490	+
1211178	445	+
12111/9	440	

An al de Ormale al	Au	Au
Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
1211180	424	
1211181	> 3000	3.96
1211182	7	
1211183	< 5	
1211184	< 5	
1211185	7	
1211186	8	
1211187	81	
1211188	49	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
OxD108 Meas	434	
OxD108 Cert	414.000	
OxD108 Meas	437	
OxD108 Cert	414.000	
SF67 Meas	880	
SF67 Cert	835.000	
SF67 Meas	884	
SF67 Cert	835.000	
OxK110 Meas		3.53
OxK110 Cert		3.602
TB-GS-5A Meas		5.25
TB-GS-5A Cert		5.032
1211222 Orig	< 5	
1211222 Dup	< 5	
1211232 Orig	87	
1211232 Dup	69	
1211156 Orig	187	
1211156 Split	148	
1211156 Orig	187	
1211174 Orig	47	
1211174 Dup	34	
1211180 Orig	424	
1211180 Split	387	
1211181 Orig		4.13
1211181 Dup		3.80
1211183 Orig	< 5	
1211183 Dup	< 5	
Method Blank		< 0.03

QC

Innovative Technologies

 Date Submitted:
 16-Jun-14

 Invoice No.:
 A14-04025

 Invoice Date:
 24-Jun-14

 Your Reference:
 3200

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Martine Wilhelmij

CERTIFICATE OF ANALYSIS

64 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay) Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

REPORT A14-04025

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
101218	5	
101219	5	
101220	< 5	
101221	6	
101222	8	
101223	7	
101224	< 5	
101225	8	
101226	< 5	
101227	< 5	
101228	5	
101229	< 5	
101230	913	
101231	< 5	
101232	6	
101233	5	
101234	< 5	
101235	< 5	
101236	8	
101237	6	
101238	5	
101239	< 5	
101240	< 5	
101241	14	
101242	8	
101243	13	
101244	9	
101245	7	
101246	7	
101247	< 5	
101248	11	
101249	21	
101250	> 3000	7.77
101251	< 5	
101252	9	
101253	< 5	
101254	6	
101255	12	
101256	8	
101257	< 5	
101258	< 5	
101259	< 5	
101260	< 5	
101261	8	
101262	10	
101263	12	
101264		
101265	< 5	
101265 101266	< 5 < 5 < 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
101267	< 5	
101268	< 5	
101269	11	
101270	2920	
101271	< 5	
101272	13	
101273	2780	
101274	23	
101275	38	
101276	14	
101277	275	
101278	15	
101279	< 5	
101280	< 5	
101281	< 5	

0	C
Q	C

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Detection Limit	5	0.03
Analysis Method	FA-AA	FA-GRA
OxD108 Meas	431	
OxD108 Cert	414.000	
OxD108 Meas	425	
OxD108 Cert	414.000	
SF67 Meas	892	
SF67 Cert	835.000	
SF67 Meas	869	
SF67 Cert	835.000	
OxK110 Meas		3.53
OxK110 Cert		3.602
TB-GS-5A Meas		5.25
TB-GS-5A Cert		5.032
101227 Orig	< 5	
101227 Dup	< 5	
101237 Orig	6	
101237 Dup	5	
101247 Orig	< 5	
101247 Split	11	
101247 Orig	< 5	
101247 Dup	5	
101261 Orig	8	
101261 Dup	8	
101267 Orig	< 5	
101267 Split	< 5	
101271 Orig	< 5	
101271 Dup	< 5	
101277 Orig	275	
101277 Split	424	
101279 Orig	< 5	
101279 Dup	6	
Method Blank	< 5	
Method Blank		< 0.03

Innovative Technologies

 Date Submitted:
 16-Jun-14

 Invoice No.:
 A14-04036

 Invoice Date:
 20-Jun-14

 Your Reference:
 3200

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Martine Wilhelmij

CERTIFICATE OF ANALYSIS

39 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A14-04036

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Activation Laboratorie	s Ltd.
------------------------	--------

Analyte Symbol	Au
Unit Symbol	ppb
Detection Limit	5
Analysis Method	FA-AA
101282	5
101283	7
101284	10
101285	< 5
101286	< 5
101287	< 5
101288	< 5
101289	< 5
101290	932
101291	< 5
101292	< 5
101293	< 5
101294	< 5
101295	< 5
101296	< 5
101297	< 5
101298	< 5
101299	< 5
101300	< 5
101301	< 5
101302	7
101303	6
101304	6
101305	23
101306	24
101307	56
101308	33
101309	< 5
101310	2660
101311	< 5
101312	7
101313	1950
101314	7
101315	< 5
101316	10
101317	15
101318	9
101319	86
101320	87

Activation Laboratories Ltd.

Report: A14-04036

Analyte Symbol	Au
Unit Symbol	ppb
Detection Limit	5
Analysis Method	FA-AA
OxD108 Meas	433
OxD108 Cert	414.000
OxD108 Meas	429
OxD108 Cert	414.000
SF67 Meas	898
SF67 Cert	835.000
SF67 Meas	861
SF67 Cert	835.000
101291 Orig	< 5
101291 Dup	< 5
101301 Orig	< 5
101301 Dup	< 5
101311 Orig	< 5
101311 Split	< 5
101312 Orig	7
101312 Dup	8
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5

QC

Innovative Technologies

 Date Submitted:
 16-Jun-14

 Invoice No.:
 A14-04037

 Invoice Date:
 20-Jun-14

 Your Reference:
 3200

Coventry Resources Ontario, Inc 1 Yonge Street, Suite 1801 Toronto On M5E 1W7 Canada

ATTN: Martine Wilhelmij

CERTIFICATE OF ANALYSIS

42 Core samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A14-04037

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Activation Laboratories Lt

Analyte Symbol	Au
Unit Symbol	ppb
Detection Limit	5
Analysis Method	FA-AA
101321	7
101322	32
101323	< 5
101324	12
101325	236
101326	< 5
101327	< 5
101328	7
101329	14
101330	955
101331	< 5
101332	< 5
101333	< 5
101334	< 5
101335	< 5
101336	2560
101337	32
101338	53
101339	< 5
101340	< 5
101341	< 5
101342	< 5
101343	22
101344	9
101345	102
101346	< 5
101347	< 5
101348	< 5
101349	5
101350	2620
101351	< 5
101352	138
101353	221
101354	6
101355	< 5
101356	6
101357	5
101358	7
101359	< 5
101360	< 5
101361	< 5
101362	< 5

Activation Laboratories Ltd.

Report: A14-04037

Analyte Symbol	Au
Unit Symbol	ppb
Detection Limit	5
Analysis Method	FA-AA
OxD108 Meas	433
OxD108 Cert	414.000
OxD108 Meas	428
OxD108 Cert	414.000
SF67 Meas	838
SF67 Cert	835.000
SF67 Meas	888
SF67 Cert	835.000
101331 Orig	< 5
101331 Dup	< 5
101340 Orig	< 5
101340 Dup	< 5
101351 Orig	< 5
101351 Split	< 5
101351 Orig	< 5
101351 Dup	< 5
Method Blank	< 5
Method Blank	< 5
Method Blank	< 5

QC