We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.



# **\_\_\_\_\_GOLDCORP** MUSSELWHITE MINE

## **MUSSELWHITE MINE**

## 2016 WEST ANTICLINE UNDERGROUND PROJECT

## **DIAMOND DRILL REPORT**

G-Plan #2210, Skinner Lake

M. Zago P.Geo.

September 2016

### TABLE OF CONTENTS

| SUMMARY                     | 4  |
|-----------------------------|----|
| INTRODUCTION                | 4  |
| LOCATION AND ACCESS         | 4  |
| LAND TENURE & OWNERSHIP     | 5  |
| PROPERTY GEOLOGY            | 6  |
| PROGRAM DESCRIPTION         | 8  |
| RESULTS/RECOMMENDATIONS     | 9  |
| STATEMENT OF EXPENDITURES   | 11 |
| STATEMENT OF QUALIFICATIONS | 12 |

#### List of Figures

| Figure 1: General location map                         | 5 |
|--------------------------------------------------------|---|
| Figure 2: General Cross-Section of Musselwhite Geology | 6 |
| Figure 3: Stratigraphy of the Musselwhite Mine area    | 7 |
| Figure 4: Map showing location of drill hole           | 9 |

#### <u>List of Tables</u>

| Table 1: Drill hole information                             | .8 |
|-------------------------------------------------------------|----|
| Table 2: Detailed breakdown of drilling expenditures        | 11 |
| Table 3: Percentage of drill holes attributed to each claim | 11 |

List of Appendices

Appendix 1: Cross Section of Drill Hole

Appendix 2: Drill Log

Appendix 3: Invoices

#### SUMMARY

In the summer of 2016 (June to August), a diamond drilling program was conducted to explore the possible down-plunge extension of known mineralization associated with the West Anticline and Camp Zones of the Northern Iron Formation (NIF). Drilling was conducted underground from the 657mL WEL Access ramp, on the Musselwhite Mine property, which is owned and operated by Goldcorp Canada Ltd. The work completed comprises 4 separate mining leases. Drilling revealed similar geology and local mineralization to what had been previously discovered down plunge of the target area.

#### INTRODUCTION

Musselwhite Mine is a gold producing mine that is 100% owned and operated by Goldcorp Canada Ltd. The report discusses work conducted within the boundaries of mining leases PA449157, PA449158, PA449149, and PA529766. This report is written on behalf of Goldcorp Canada Ltd. by the staff of Musselwhite Mine.

The program was designed and implemented by the exploration department at Musselwhite Mine. Drilling was performed by Boart Longyear. The core from this program is stored adjacent to the exploration camp on the Musselwhite Mine property.

#### LOCATION AND ACCESS

The Musselwhite Mine property is located in the Patricia Mining District of northwestern Ontario on NTS map sheet 53B/9 (Opapimiskan Lake) and on the Ontario Ministry of Northern Development and Mines G-Plan #2210, Skinner Lake. The mine is located at 52° 36' 50" N latitude and 90° 21' 43" W longitude. It is 480 km NNW of Thunder Bay (Figure 1) and 103 km north of Pickle Lake. The mine is serviced by an all-weather gravel road that extends north from Pickle Lake as well as charter air service from Thunder Bay and several local communities including Sioux Lookout, Round Lake and Cat Lake. This was an underground drill program, with mine roads and underground ramps used for access to the drill.

#### Figure 1: General Location Map

.



#### LAND TENURE & OWNERSHIP

All work in this report was conducted within the boundaries of the Musselwhite Mine property. Mining lease PA449157 is ~17.8 ha (1 claim unit), PA449158 is ~17.8 ha (1 claim unit), PA449149 is ~14.1 ha (1 claim unit), and PA529766 is ~16.8 ha (1 claim unit) in size. All 4 claim blocks are owned by Goldcorp Canada Ltd. The tenure rights for these leases are mining and surface rights.

#### PROPERTY GEOLOGY

The Musselwhite Property covers a portion of the northwest-trending North Caribou greenstone belt which is located in the northern margin of the Archean North Caribou Superterrane. The North Caribou greenstone belt is comprised of 8 lithotectonic supercrustal assemblages, with the Opapimiskan-Markop metavolcanic suite hosting the Musselwhite gold deposit. The rocks of the Opapimiskan-Markop suite are subdivided into a detailed stratigraphic sequence that is relatively consistent over the property, with local facies changes observed along and across strike. The structurally lowermost units observed in drilling to date are fine-grained siliciclastic sediments with minor felsic volcanics that occur ~500m east of the mine. It is assumed that these are underlain by mafic-ultramafic flows which outcrop 2.5km southeast of the mine along the eastern edge of the belt. These are followed by largely komatiitic basalts and ultramafic flows/intrusions with local andesite flows. This predominantly high-Mg series of volcanic rocks is overlain by two major banded iron formations (BIF) separated by 10-30m of mafic-ultramafic volcanics (Figure-4).





The lowermost BIF is locally termed the Southern Iron Formation (SIF) and is a generally monotonous sequence of thinly laminated magnetite and chert. There is generally little or no silicate, sulphide, or other facies within this horizon in the mine area. The SIF commonly occurs in two principal horizons, each anywhere from 5 to 20m thick, separated by 5-10m of basalt. About 20-30m above the SIF is the Northern Iron Formation (NIF). This is a complexly layered horizon typically ~40m thick in total and comprised of up to seven different facies, which are not always present across the drilled extent of the NIF (Figure-5). Overlying the NIF is a variable thickness of basalts with meta-sedimentary interbeds, and crosscutting ultramafic dikes. The sedimentary interbeds consist of quartz-feldspar metasediments (6), garnet amphibolite (4E), and garnet biotite schist (4F). A felsic to intermediate volcanic "wedge" consisting of dacitic to rhyolitic tuffs and flows with intercalated meta-sediments overlies the majority of the Musselwhite Mine area.

|                                         | Musselwhite Mine Stratigraphy          |                                                                                                 |                         |                                                              |
|-----------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------|
|                                         | Unit Name                              | Rock Types                                                                                      | Age (Ma)                | Comments                                                     |
| Basalt?                                 | Avol                                   | Dacite-rhyolite<br>tuffs, flows,<br>volcaniclastic<br>sediments                                 | 2972                    |                                                              |
|                                         | Bvol                                   | Tholeiitic basalt,<br>& 4 thin BIFs                                                             |                         |                                                              |
| 4F<br>4EA<br>4B                         | Northern<br>Iron Fm                    | Oxide, silicate<br>& sulphide BIF                                                               |                         | Mineralisation<br>dated at<br>2690 Ma                        |
|                                         | "Basement<br>basalts"                  | Basalt, andesite,<br>& ultramafic<br>flows                                                      |                         |                                                              |
|                                         | Southern<br>Iron Fm                    | 2 Chert-Mt +/-<br>Grunerite-Pyx<br>BIFs                                                         |                         |                                                              |
|                                         | "Lower<br>basalts"                     | Komatiitic<br>basalts +<br>ultramafics,<br>local felsic<br>volcanics                            |                         |                                                              |
|                                         | Felsic tuff                            | Felsic ash tuff                                                                                 | under revision          |                                                              |
|                                         | "Lower<br>sediments"                   | Fine grained<br>siliciclastic<br>sediments,<br>lesser felsic<br>volcanics, minor<br>ultramafics |                         | Possible major<br>fault boundary<br>with Opap.<br>unit above |
| +++++++++++++++++++++++++++++++++++++++ | Late<br>Plutons &<br>Older<br>Gneisses | TTG plutons<br>intruding older<br>TTG gneisses<br>+ greenstone                                  | 2723-29<br>&<br>2856-70 |                                                              |

Figure 3: Stratigraphy of the Musselwhite Mine area.

#### **PROGRAM DESCRIPTION**

An 1127 m drill hole was planned to test the magnetite-chert iron formation within the west anticline area of the highly folded "Northern Iron Formation" (NIF) in an attempt to identify any down-plunge extension of mineralization found in the East Camp Zone. The drill hole (16-WEL-061) was collared underground from the 657 WEL Access ramp located approximately 900m below Opapimiskan Lake. Drill hole information is shown below in **Table 1** and drill locations are shown in **Figure 2**.

|             |         | UTM Co-o | ordinates NAD 8 | 33      | Din | Donth     |
|-------------|---------|----------|-----------------|---------|-----|-----------|
| Hole ID     | Easting | Northing | Elevation       | Azimuth | Dip | Depth     |
|             | 675165  | 5834629  | -600 m          | 223     |     |           |
|             |         | Mine Gr  | id Co-ordinates | ;       | 21  | 1127.2    |
| 10-VVEL-001 | Easting | Northing | R.L.            | Azimuth | 21  | 1127.2111 |
|             | 8077    | 13500    | 4402            | 268     |     |           |

**Table 1**: West Limb drill hole information.



Figure 4: Map showing location of drill hole.

#### **RESULTS/RECOMMENDATIONS**

The diamond drill hole was collared in the mixed metavolcanic and metasedimentary sequence overlying the Northern Iron Formation. 16-WEL-061 drilled the NIF on the west limb of the East Bay Synform area, ~600m of the underlying mafic volcanic package with minor ultramafic dikes, and then back into the NIF in the west anticline area before being terminated in felsic volcanics rocks. Rocks have been metamorphosed to amphibolite grade. A cross section of the drilling can be

seen in **Appendix 1** and drill logs in **Appendix 4** and the various lithology codes used during logging are briefly described below:

| 1   | Ultramafic                                                             |
|-----|------------------------------------------------------------------------|
| 2   | Basalt                                                                 |
| 2H  | Mafic dike                                                             |
| 2U  | Garnet bearing metavolcanic                                            |
| 3F  | Felsic tuff/lapilli tuff                                               |
| 4A  | Chert-grunerite iron formation                                         |
| 4B  | Chert-magnetite iron formation                                         |
| 4BF | Chert-Magnetite iron formation with abundant garnet-biotite bands      |
| 4E  | Garnet-amphibole iron formation                                        |
| 4EA | Garnet-amphibole-grunerite iron formation                              |
| 4EF | Garnet-amphbiole with less than 50% intercalated garnet-biotite schist |
| 4F  | Garnet-biotite schist                                                  |
| 4FB | Garnet-biotite schist with abundant magnetite +/- chert                |
| 4FE | Garnet-biotite schist with less than 50% intercalated Garnet-amphibole |
| 6   | Metasediment                                                           |
| 6W  | Garnet-bearing mudstone/siltstone/sandstone                            |
| 13  | Lamprophyre dike                                                       |

With several zones of mineralization intersected, further drilling is recommended to follow up the mineralization in the targeted area down-plunge extension of the Camp Zone, and to get a better understanding of the geology of the West Anticline Area of the mine property.

#### STATEMENT OF EXPENDITURES

A total of \$ 163,062 was spent drilling 16-WEL-061. Due to the expense incurred drilling, there was no need to claim assessment credits for related costs such as consumables or assay costs. A breakdown of the drilling expenditures can be seen in **Table 2** below and the drill invoices in **Appendix 5**.

| Item        | Cost      |
|-------------|-----------|
| Move        | \$5,611   |
| Drilling    | \$138,047 |
| Survey      | \$1,891   |
| Grout       | \$3,467   |
| Supervision | \$5,662   |
| Rentals     | \$8,384   |
| Total       | \$163,062 |

**Table 2**: Detailed breakdown of 16-WEL-061 drilling expenditures.

Drill meters per claim were calculated by measuring (using the Vulcan 3D modelling software) the co-ordinates at the point where each drill hole crossed a claim boundary and then determining the downhole depth at that point using the calculated XYZ co-ordinates from the Maxibor downhole orientation surveys or by measuring from the claim line to the nearest labeled contact displayed in Vulcan. The total drilling cost of 16-WEL-061 as per the drill contractors invoices (Table 2) was then prorated by the percentage of the hole drilled on each claim as per **Table 3**.

**Table 3**: Percentage of drill holes attributed to each claim.

| Holo Number | Claim #  | Claim #  | Claim #  | laim # Claim # |
|-------------|----------|----------|----------|----------------|
| Hole Number | PA449157 | PA449158 | PA449149 | PA529766       |
| 16-WEL-061  | 18%      | 22%      | 37%      | 23%            |

#### STATEMENT OF QUALIFICATIONS

I, Matthew Zago, herby certify that:

- 1. I am the author of this report.
- 2. I have a Bachelor of Science Honors in Geological Sciences from the University of Manitoba in Winnipeg, Manitoba.
- 3. I am a registered Professional Geologist of the Association of Professional Engineers and Geoscientists of Ontario #2442
- 4. I am employed by Goldcorp Canada Ltd. at Musselwhite Mine.
- 5. I agree with all the information contained within this report and believe that it is an accurate description of the worked performed.
- 6. I reside in the city of Thunder Bay, Ontario, Canada.

MZago

Name:

Date: August 28th, 2016

Goldcorp Canada Ltd. Musselwhite Mine PO Box 7500 Thunder Bay, ON P7B 6S8 Appendix 1



Appendix 2

| Hal                           |                          |                             |
|-------------------------------|--------------------------|-----------------------------|
| Но                            | e: 16-WEL-061            | Project: WEL                |
| Mine Grid Easting: 8077 286   | Discord Death (as), 4000 |                             |
| Wine Grid Lasting: 8077.286   | Planned Deptn(m): 1080   | Drill Start Date: 6/26/2010 |
| Aine Grid Northing: 13500.957 | Actual Depth (m): 1127.2 | Drill End Date: 8/5/2016    |
| Elevation: 4402.323           | Core Diameter: NQ2       |                             |
|                               |                          | Target 1: X                 |
| UTM East:                     | Plugged: YES             | -                           |
| UTM North:                    | Grout Test:YES           | Target 2: X                 |
|                               | Result:BAD               | Target 3:                   |
| Drill Instructions:           |                          |                             |
|                               |                          |                             |
| Collar Comments:              |                          |                             |

|       | Sui     | vey  |            |
|-------|---------|------|------------|
| Depth | Azimuth | Dip  | SurveyType |
| 0     | 268.1   | 20.8 | MAXI       |
| 3     | 268     | 20.7 | MAXI       |
| 6     | 268     | 20.7 | MAXI       |
| 9     | 268     | 20.8 | MAXI       |
| 12    | 268     | 20.7 | MAXI       |
| 15    | 268     | 20.7 | MAXI       |
| 10    | 267.9   | 20.7 | MAXI       |
| 24    | 268     | 20.7 | MAXI       |
| 27    | 268     | 20.7 | MAXI       |
| 30    | 268     | 20.7 | MAXI       |
| 33    | 268.1   | 20.7 | MAXI       |
| 36    | 268.1   | 20.8 | MAXI       |
| 39    | 268.2   | 20.8 | MAXI       |
| 42    | 268.2   | 20.8 | MAXI       |
| 45    | 268.2   | 20.7 | MAXI       |
| 48    | 268.1   | 20.7 | MAXI       |
| 51    | 268.2   | 20.7 | MAXI       |
| 54    | 268.2   | 20.5 | MAXI       |
| 57    | 268.2   | 20.5 | MAXI       |
| 60    | 268.2   | 20.4 | MAXI       |
| 63    | 268.2   | 20.3 | MAXI       |
| 66    | 268.2   | 20.4 | MAXI       |
| 59    | 268.3   | 20.3 | MAXI       |
| 72    | 268.3   | 20.2 | MAXI       |
| 75    | 268.4   | 20.2 | MAXI       |
| 81    | 268.4   | 20.2 | MAXI       |
| 84    | 268.4   | 20.1 | MAXI       |
| 87    | 268.5   | 20.1 | MAXI       |
| 90    | 268.6   | 20.1 | MAXI       |
| 93    | 268.6   | 20.1 | MAXI       |
| 96    | 268.6   | 20   | MAXI       |
| 99    | 268.7   | 20   | MAXI       |
| 102   | 268.7   | 19.9 | MAXI       |
| 105   | 268.7   | 19.9 | MAXI       |
| 108   | 268.8   | 19.8 | MAXI       |
| 111   | 268.8   | 19.8 | MAXI       |
| 114   | 268.8   | 19.7 | MAXI       |
| 117   | 268.8   | 19.6 | MAXI       |
| 120   | 268.8   | 19.6 | MAXI       |
| 123   | 268.8   | 19.5 | MAXI       |
| 120   | 200.0   | 19.5 | MAXI       |
| 132   | 269     | 19.4 | MAXI       |
| 135   | 269     | 19.4 | MAXI       |
| 138   | 269.1   | 19.4 | MAXI       |
| 141   | 269.1   | 19.4 | MAXI       |
| 144   | 269.1   | 19.3 | MAXI       |
| 147   | 269.1   | 19.3 | MAXI       |
| 150   | 269.1   | 19.2 | MAXI       |
| 153   | 269.1   | 19.2 | MAXI       |
| 156   | 269.1   | 19.1 | MAXI       |
| 159   | 269     | 19.1 | MAXI       |
|       |         |      |            |
|       |         |      |            |
|       |         |      |            |
|       |         |      |            |

Γ

|                               | MUSSELWHITE MINE - G     | EOLOGY                      |
|-------------------------------|--------------------------|-----------------------------|
| Hole:                         | 16-WEL-061               | Project: WEL                |
|                               |                          |                             |
| Mine Grid Easting: 8077.286   | Planned Depth(m): 1080   | Drill Start Date: 6/26/2016 |
| Mine Grid Northing: 13500.957 | Actual Depth (m): 1127.2 | Drill End Date: 8/5/2016    |
| Elevation: 4402.323           | Core Diameter: NQ2       |                             |
|                               |                          | Target 1: X                 |
| UTM East:                     | Plugged: YES             |                             |
| UTM North:                    | Grout Test: YES          | Target 2: X                 |
|                               | Result:BAD               | Target 3:                   |
| Drill Instructions:           |                          |                             |
|                               |                          |                             |
| Collar Comments:              |                          |                             |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Su      | rvey |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|------------|
| Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Azimuth | Dip  | SurveyType |
| 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.1   | 19.1 | MAXI       |
| 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269     | 19   | MAXI       |
| 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.1   | 19   | MAXI       |
| .71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.1   | 19   | MAXI       |
| .74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.1   | 19.1 | MAXI       |
| 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.1   | 19.1 | MAXI       |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.1   | 19.1 | MAXI       |
| 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.1   | 19.1 | MAXI       |
| 86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.1   | 19.1 | MAXI       |
| 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.1   | 19.1 | MAXI       |
| 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 19   | MAXI       |
| 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 19   | MAXI       |
| 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 19   | MAXI       |
| 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.2   | 18.9 | MAXI       |
| 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.3   | 18.9 | MAXI       |
| 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.3   | 18.9 | MAXI       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.3   | 18.9 | MAXI       |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.3   | 18.9 | MAXI       |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 18.9 | MAXI       |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 18.9 | MAXI       |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 18.8 | MAXI       |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 18.8 | MAXI       |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 18.8 | MAXI       |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.3   | 18.8 | MAXI       |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.3   | 18.7 | MAXI       |
| 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.3   | 18.7 | MAXI       |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.4   | 18.6 | MAXI       |
| 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.3   | 18.5 | MAXI       |
| 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.3   | 18.4 | MAXI       |
| 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 18.4 | MAXI       |
| 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 18.4 | MAXI       |
| 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.1   | 18.4 | MAXI       |
| 258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.1   | 18.2 | MAXI       |
| 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.1   | 18.3 | MAXI       |
| 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.1   | 18.3 | MAXI       |
| 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.1   | 18.3 | MAXI       |
| 270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.1   | 18.3 | MAXI       |
| 273                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.1   | 18.3 | MAXI       |
| 276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269     | 18.2 | MAXI       |
| 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269     | 18.2 | MAXI       |
| 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269     | 18.2 | MAXI       |
| 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269     | 18.2 | MAXI       |
| 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269     | 18.2 | MAXI       |
| 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269 1   | 18.2 | MAXI       |
| 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.1   | 18.2 | MAXI       |
| 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 260.2   | 19.3 | MAXI       |
| .97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.2   | 18.3 | MAXI       |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 260.3   | 18.3 | MAXI       |
| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.3   | 18.3 | MAXI       |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 209.0   | 10.3 | MAXI       |
| 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 209.2   | 10.4 | MAXI       |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 269.2   | 10.4 | MAXI       |
| 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 209.3   | 10.4 | MAXI       |
| 318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.4   | 18.4 | MAXI       |
| 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 269.4   | 18.4 | MAXI       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |      |            |
| and the second se |         | 1    |            |

| MUSSELWHITE MINE - GEOLOGY    |                          |                           |    |  |  |  |  |  |  |  |  |
|-------------------------------|--------------------------|---------------------------|----|--|--|--|--|--|--|--|--|
| Hole:                         | 16-WEL-061               | Project: WEL              |    |  |  |  |  |  |  |  |  |
| Mine Grid Easting: 8077.286   | Planned Depth(m): 1080   | Drill Start Date: 6/26/20 | 16 |  |  |  |  |  |  |  |  |
| Vine Grid Northing: 13500.957 | Actual Depth (m): 1127.2 | Drill End Date: 8/5/2016  | 6  |  |  |  |  |  |  |  |  |
| Elevation: 4402.323           | Core Diameter: NQ2       |                           |    |  |  |  |  |  |  |  |  |
| UTM East:                     | Plugged: YES             | Target 1: X               |    |  |  |  |  |  |  |  |  |
| UTM North:                    | Grout Test: YES          | Target 2: X               |    |  |  |  |  |  |  |  |  |
|                               | Result:BAD               | Target 3:                 |    |  |  |  |  |  |  |  |  |
| Drill Instructions:           |                          |                           |    |  |  |  |  |  |  |  |  |
| Collar Comments               |                          |                           |    |  |  |  |  |  |  |  |  |
| Collar Comments:              |                          |                           |    |  |  |  |  |  |  |  |  |
|                               |                          |                           |    |  |  |  |  |  |  |  |  |

|       | Su      | vey  |            |
|-------|---------|------|------------|
| Depth | Azimuth | Dip  | SurveyType |
| 324   | 269.4   | 18.4 | MAXI       |
| 327   | 269.4   | 18.4 | MAXI       |
| 330   | 269.4   | 18.4 | MAXI       |
| 333   | 269.4   | 18.3 | MAXI       |
| 336   | 269.5   | 18.3 | MAXI       |
| 339   | 269.5   | 18.3 | MAXI       |
| 342   | 269.4   | 18.2 | MAXI       |
| 345   | 269.5   | 18.2 | MAXI       |
| 348   | 269.5   | 18.3 | MAXI       |
| 351   | 269.6   | 18.3 | MAXI       |
| 354   | 269.6   | 18.3 | MAXI       |
| 357   | 269.6   | 18.3 | MAXI       |
| 360   | 269.7   | 18.3 | MAXI       |
| 363   | 269.7   | 18.3 | MAXI       |
| 366   | 269.7   | 18.2 | MAXI       |
| 369   | 269.7   | 18.1 | MAXI       |
| 372   | 269.8   | 18.1 | MAXI       |
| 375   | 269.8   | 18.1 | MAXI       |
| 3/0   | 209.9   | 18.1 | MAXI       |
| 384   | 269.9   | 18.1 | MAXI       |
| 297   | 209.9   | 10.1 | MAXI       |
| 390   | 269.9   | 10.1 | MAXI       |
| 393   | 269.9   | 18.2 | MAXI       |
| 396   | 269.9   | 18.2 | MAXI       |
| 399   | 269.9   | 18.3 | MAXI       |
| 402   | 270     | 18.4 | MAXI       |
| 405   | 269.9   | 18.4 | MAXI       |
| 408   | 270     | 18.4 | MAXI       |
| 411   | 270     | 18.4 | MAXI       |
| 414   | 270     | 18.4 | MAXI       |
| 417   | 270     | 18.4 | MAXI       |
| 420   | 270.1   | 18.5 | MAXI       |
| 423   | 270.1   | 18.5 | MAXI       |
| 426   | 270.1   | 18.5 | MAXI       |
| 429   | 270.1   | 18.5 | MAXI       |
| 432   | 270.1   | 18.5 | MAXI       |
| 435   | 270.1   | 18.5 | MAXI       |
| 438   | 270.1   | 18.5 | MAXI       |
| 441   | 270.1   | 18.5 | MAXI       |
| 444   | 270.1   | 18.5 | MAXI       |
| 447   | 270     | 18.4 | MAXI       |
| 450   | 270     | 18.3 | MAXI       |
| 453   | 270     | 18.3 | MAXI       |
| 450   | 270     | 10.2 | MAXI       |
| 462   | 270     | 10.2 | MAXI       |
| 465   | 270     | 18.3 | MAXI       |
| 468   | 270     | 18.3 | MAXI       |
| 471   | 270     | 18.3 | MAXI       |
| 474   | 269.9   | 18.3 | MAXI       |
| 477   | 269.9   | 18.4 | MAXI       |
| 480   | 269.9   | 18.5 | MAXI       |
| 483   | 269.9   | 18.5 | MAXI       |
|       |         |      |            |
|       |         |      |            |
|       |         |      |            |
|       |         |      |            |
|       |         |      |            |
|       |         |      |            |
|       |         |      |            |

| MUSSELWHITE MINE - GEOLOGY    |                                               |                                         |  |  |  |  |  |  |  |  |  |
|-------------------------------|-----------------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|--|--|
| Hole:                         | 16-WEL-061                                    | Project: WEL                            |  |  |  |  |  |  |  |  |  |
| Mine Grid Easting: 8077.286   | Planned Depth(m): 1080                        | Drill Start Date: 6/26/2016             |  |  |  |  |  |  |  |  |  |
| Mine Grid Northing: 13500.957 | Actual Depth (m): 1127.2                      | Drill End Date: 8/5/2016                |  |  |  |  |  |  |  |  |  |
| Elevation: 4402.323           | Core Diameter: NQ2                            |                                         |  |  |  |  |  |  |  |  |  |
| UTM East:                     | Plugged: YES<br>Grout Test: YES<br>Result:BAD | Target 1: X<br>Target 2: X<br>Target 3: |  |  |  |  |  |  |  |  |  |
| Drill Instructions:           |                                               |                                         |  |  |  |  |  |  |  |  |  |
| Collar Comments:              |                                               |                                         |  |  |  |  |  |  |  |  |  |

| Survey |         |      |            |  |  |  |  |  |  |  |
|--------|---------|------|------------|--|--|--|--|--|--|--|
| Depth  | Azimuth | Dip  | SurveyType |  |  |  |  |  |  |  |
| 486    | 269.9   | 18.6 | MAXI       |  |  |  |  |  |  |  |
| 489    | 269.9   | 18.6 | MAXI       |  |  |  |  |  |  |  |
| 492    | 270     | 18.5 | MAXI       |  |  |  |  |  |  |  |
| 495    | 270     | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 498    | 270.1   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 501    | 270.1   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 504    | 270.1   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 507    | 270.1   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 510    | 270.1   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 513    | 270.1   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 516    | 270.1   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 519    | 270.1   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 522    | 270.2   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 525    | 270.2   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 528    | 270.2   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 531    | 270.2   | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 534    | 270.3   | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 537    | 270.3   | 18.7 | MAXI       |  |  |  |  |  |  |  |
| 540    | 270.3   | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 543    | 270.3   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 546    | 270.3   | 19   | MAXI       |  |  |  |  |  |  |  |
| 549    | 270.2   | 19   | MAXI       |  |  |  |  |  |  |  |
| 552    | 270.2   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 555    | 270.2   | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 558    | 270.2   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 561    | 270.2   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 564    | 270.2   | 19   | MAXI       |  |  |  |  |  |  |  |
| 567    | 270.2   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 570    | 270.1   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 573    | 270.1   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 576    | 270.1   | 19   | MAXI       |  |  |  |  |  |  |  |
| 579    | 270     | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 582    | 270     | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 585    | 270     | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 588    | 270     | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 591    | 270.1   | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 594    | 270.1   | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 597    | 270 1   | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 600    | 270.1   | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 603    | 270.1   | 18.8 | MAXI       |  |  |  |  |  |  |  |
| 606    | 270.2   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 609    | 270.2   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 612    | 270.2   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 615    | 270.2   | 18.9 | MAXI       |  |  |  |  |  |  |  |
| 619    | 270.2   | 10.9 | MAXI       |  |  |  |  |  |  |  |
| 601    | 270.2   | 10   | MAXI       |  |  |  |  |  |  |  |
| 621    | 270.2   | 19   | MAXI       |  |  |  |  |  |  |  |
| 024    | 270.3   | 19   | MAXI       |  |  |  |  |  |  |  |
| 627    | 270.3   | 19   | MAXI       |  |  |  |  |  |  |  |
| 630    | 270.3   | 19.1 | MAXI       |  |  |  |  |  |  |  |
| 033    | 270.3   | 19   | MAXI       |  |  |  |  |  |  |  |
| 636    | 270.3   | 19   | MAXI       |  |  |  |  |  |  |  |
| 639    | 270.3   | 19.1 | MAXI       |  |  |  |  |  |  |  |
| 042    | 270.4   | 19   | MAXI       |  |  |  |  |  |  |  |
| 045    | 270.4   | 19.1 | MAXI       |  |  |  |  |  |  |  |
|        |         |      |            |  |  |  |  |  |  |  |
|        |         |      |            |  |  |  |  |  |  |  |
|        |         |      |            |  |  |  |  |  |  |  |

|                              | Ν       | USSELWHITE MINE                | - GEOLOGY              |             |
|------------------------------|---------|--------------------------------|------------------------|-------------|
|                              | Hole: 1 | 6-WEL-061                      | Project: WEL           |             |
| Mine Grid Easting: 8077.286  | 5       | Planned Depth(m): 1080         | Drill Start Date       | : 6/26/2016 |
| Mine Grid Northing: 13500.95 | 57      | Actual Depth (m): 1127         | .2 Drill End Date      | 8/5/2016    |
| Elevation: 4402.323          | í -     | Core Diameter: NQ2             |                        |             |
| UTM East:                    |         | Plugged: YES<br>Grout Test:YES | Target 1:<br>Target 2: | x<br>x      |
|                              |         | Result:BAD                     | Target 3:              |             |
| Drill Instructions:          |         |                                |                        |             |
|                              |         |                                |                        |             |
| Collar Comments              |         |                                |                        |             |

.

| DepthÁximuthDipSurveytype648270.419.1MAX1651270.419.1MAX1654270.419.2MAX1657270.419.2MAX1660270.519.2MAX1663270.519.2MAX1669270.619.2MAX1672270.619.2MAX1675270.619.1MAX1676270.719.1MAX1677270.719.1MAX1684270.719.1MAX1684270.719.1MAX1690270.819.1MAX1691270.819.1MAX1692270.819.1MAX1693270.819.1MAX1694270.719.1MAX1695270.819.1MAX1705270.819.1MAX1711270.719.1MAX1724270.719.1MAX1735270.719.1MAX1744271.719.1MAX1754270.719.1MAX1755270.819.1MAX1754270.719.1MAX1755270.819.1MAX1754270.719.1MAX1755270.719.1MAX1754270.719.1MAX1755271.119.1MAX1756 <th></th> <th>Su</th> <th>rvey</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Su      | rvey |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|------|------------|
| 648         270.4         19.1         MAXI           651         270.4         19.1         MAXI           654         270.4         19.2         MAXI           657         270.4         19.2         MAXI           660         270.5         19.2         MAXI           663         270.5         19.2         MAXI           666         270.5         19.2         MAXI           667         270.6         19.2         MAXI           672         270.6         19.2         MAXI           675         270.6         19.1         MAXI           674         270.7         19.1         MAXI           684         270.7         19         MAXI           687         270.7         19         MAXI           6867         270.7         19         MAXI           690         270.8         19.1         MAXI           691         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.7         19         MAXI           705         270.7         19.1         MAXI           <                                                        | Depth | Azimuth | Dip  | SurveyType |
| 651         270.4         19.1         MAXI           654         270.4         19.2         MAXI           657         270.4         19.2         MAXI           660         270.5         19.2         MAXI           663         270.5         19.2         MAXI           666         270.6         19.2         MAXI           672         270.6         19.1         MAXI           675         270.6         19.1         MAXI           676         270.7         19.1         MAXI           681         270.7         19.1         MAXI           687         270.7         19         MAXI           686         270.9         19.1         MAXI           690         270.8         19.1         MAXI           691         270.8         19.1         MAXI           692         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.7         19         MAXI           711         270.7         19.1         MAXI           725         270.7         19.1         MAXI                                                                 | 648   | 270.4   | 19.1 | MAXI       |
| 654         270.4         19.2         MAXI           657         270.4         19.2         MAXI           660         270.5         19.2         MAXI           666         270.5         19.2         MAXI           666         270.5         19.2         MAXI           666         270.6         19.2         MAXI           667         270.6         19.1         MAXI           678         270.6         19.1         MAXI           681         270.7         19.1         MAXI           684         270.7         19         MAXI           6867         270.8         19.1         MAXI           6868         270.9         19.1         MAXI           690         270.8         19.1         MAXI           693         270.8         19.1         MAXI           696         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.8         19.1         MAXI           714         270.7         19.1         MAXI           720         270.7         19.1         MAXI                                                             | 651   | 270.4   | 19.1 | MAXI       |
| 657         270.4         19.2         MAXI           660         270.5         19.2         MAXI           663         270.5         19.2         MAXI           666         270.5         19.2         MAXI           666         270.6         19.2         MAXI           667         270.6         19.2         MAXI           672         270.6         19.1         MAXI           678         270.7         19.1         MAXI           681         270.7         19.1         MAXI           684         270.7         19.1         MAXI           6861         270.8         19.1         MAXI           693         270.8         19.1         MAXI           696         270.9         19.1         MAXI           696         270.8         19.1         MAXI           697         270.8         19.1         MAXI           702         270.8         19.1         MAXI           711         270.7         19         MAXI           720         270.7         19.1         MAXI           721         270.7         19.1         MAXI                                                              | 654   | 270.4   | 19.2 | MAXI       |
| 660         270.5         19.2         MAXI           663         270.5         19.2         MAXI           666         270.5         19.2         MAXI           666         270.6         19.2         MAXI           672         270.6         19.2         MAXI           675         270.6         19.1         MAXI           678         270.6         19.1         MAXI           681         270.7         19         MAXI           684         270.7         19         MAXI           684         270.7         19         MAXI           683         270.8         19.1         MAXI           690         270.9         19.2         MAXI           692         270.9         19.2         MAXI           692         270.9         19.1         MAXI           692         270.9         19.2         MAXI           705         270.8         19.1         MAXI           706         270.7         19         MAXI           711         270.7         19.1         MAXI           720         270.7         19.1         MAXI <t< td=""><td>657</td><td>270.4</td><td>19.2</td><td>MAXI</td></t<> | 657   | 270.4   | 19.2 | MAXI       |
| 663         270.5         19.2         MAXI           666         270.5         19.2         MAXI           669         270.6         19.2         MAXI           6672         270.6         19.2         MAXI           675         270.6         19.1         MAXI           678         270.7         19.1         MAXI           681         270.7         19         MAXI           684         270.7         19         MAXI           687         270.7         19         MAXI           6867         270.8         19.1         MAXI           693         270.8         19.1         MAXI           694         270.9         19.2         MAXI           702         270.8         19.1         MAXI           699         270.9         19.2         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.7         19         MAXI           711         270.7         19.1         MAXI           720         270.7         19.1         MAXI                                                                   | 660   | 270.5   | 19.2 | MAXI       |
| 666         270.5         19.2         MAXI           669         270.6         19.2         MAXI           672         270.6         19.2         MAXI           672         270.6         19.1         MAXI           675         270.6         19.1         MAXI           681         270.7         19.1         MAXI           681         270.7         19         MAXI           684         270.7         19         MAXI           683         270.8         19.1         MAXI           693         270.8         19.1         MAXI           699         270.8         19.1         MAXI           699         270.8         19.1         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.8         19.1         MAXI           714         270.7         19.1         MAXI           720         270.7         19.1         MAXI           721         270.7         19.1         MAXI           722         270.9         19.2         MAXI                                                                 | 663   | 270.5   | 19.2 | MAXI       |
| 669         270.6         19.2         MAXI           672         270.6         19.2         MAXI           675         270.6         19.1         MAXI           675         270.6         19.1         MAXI           687         270.7         19.1         MAXI           681         270.7         19.1         MAXI           684         270.7         19         MAXI           686         270.8         19.1         MAXI           690         270.8         19.1         MAXI           696         270.9         19.1         MAXI           696         270.9         19.1         MAXI           696         270.8         19.1         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.7         19.1         MAXI           705         270.7         19.1         MAXI           717         270.7         19.1         MAXI           720         270.7         19.1         MAXI           721         270.7         19.1         MAXI                                                               | 666   | 270.5   | 19.2 | MAXI       |
| 672         270.6         19.2         MAXI           675         270.6         19.1         MAXI           678         270.6         19.1         MAXI           678         270.6         19.1         MAXI           681         270.7         19.1         MAXI           684         270.7         19         MAXI           680         270.8         19.1         MAXI           693         270.8         19.1         MAXI           696         270.9         19.1         MAXI           697         270.8         19.1         MAXI           698         270.8         19.1         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           708         270.7         19         MAXI           711         270.7         19.1         MAXI           720         270.7         19.1         MAXI           721         270.7         19.1         MAXI           722         270.7         19.1         MAXI           723         270.9         19.1         MAXI                                                                 | 669   | 270.6   | 19.2 | MAXI       |
| 675         270.6         19.1         MAXI           678         270.6         19.1         MAXI           681         270.7         19.1         MAXI           684         270.7         19         MAXI           687         270.7         19         MAXI           687         270.7         19         MAXI           680         270.8         19.1         MAXI           690         270.9         19.2         MAXI           696         270.9         19.2         MAXI           699         270.9         19.2         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.8         19.1         MAXI           711         270.7         19         MAXI           714         270.7         19.1         MAXI           720         270.7         19.1         MAXI           721         270.7         19.1         MAXI           722         270.7         19.1         MAXI           723         270.7         19.1         MAXI <t< td=""><td>672</td><td>270.6</td><td>19.2</td><td>MAXI</td></t<> | 672   | 270.6   | 19.2 | MAXI       |
| 678         270.6         19.1         MAXI           681         270.7         19.1         MAXI           684         270.7         19.1         MAXI           684         270.7         19.4         MAXI           6867         270.8         19.1         MAXI           690         270.8         19.1         MAXI           690         270.9         19.1         MAXI           699         270.9         19.2         MAXI           699         270.8         19.1         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.7         19         MAXI           711         270.7         19.1         MAXI           720         270.7         19.1         MAXI           721         270.7         19.1         MAXI           722         270.9         19.2         MAXI           723         270.7         19.1         MAXI           724         271.1         19.2         MAXI                                                              | 675   | 270.6   | 19.1 | MAXI       |
| 681         270.7         19.1         MAXI           684         270.7         19         MAXI           687         270.7         19         MAXI           687         270.7         19         MAXI           680         270.8         19.1         MAXI           693         270.8         19.1         MAXI           696         270.9         19.1         MAXI           699         270.8         19.1         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.8         19.1         MAXI           708         270.7         19.1         MAXI           714         270.7         19.1         MAXI           720         270.7         19.1         MAXI           721         270.7         19.1         MAXI           722         270.7         19.1         MAXI           723         270.7         19.1         MAXI           724         271.1         19.3         MAXI           735         271         19.3         MAXI <t< td=""><td>678</td><td>270.6</td><td>19.1</td><td>MAXI</td></t<> | 678   | 270.6   | 19.1 | MAXI       |
| 664         270.7         19         MAXI           687         270.7         19         MAXI           6860         270.8         19.1         MAXI           690         270.8         19.1         MAXI           696         270.9         19.1         MAXI           696         270.9         19.1         MAXI           696         270.9         19.2         MAXI           697         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.8         19.1         MAXI           711         270.7         19         MAXI           717         270.7         19.1         MAXI           720         270.7         19.1         MAXI           720         270.7         19.1         MAXI           720         270.7         19.1         MAXI           720         270.7         19.1         MAXI           723         270.8         19.1         MAXI           724         270.7         19.3         MAXI           735         271         19.3         MAXI           <                                                        | 681   | 270.7   | 19.1 | MAXI       |
| 687         270.7         19         MAXI           690         270.8         19.1         MAXI           693         270.8         19.1         MAXI           693         270.8         19.1         MAXI           696         270.9         19.1         MAXI           696         270.9         19.2         MAXI           699         270.8         19.1         MAXI           702         270.8         19.1         MAXI           708         270.7         19         MAXI           711         270.7         19         MAXI           714         270.7         19.1         MAXI           720         270.7         19.1         MAXI           723         270.9         19.1         MAXI           726         270.9         19.1         MAXI           726         270.9         19.1         MAXI           727         270.9         19.1         MAXI           726         271.1         19.3         MAXI           737         271.1         19.4         MAXI           744         271.1         19.4         MAXI                                                                   | 684   | 270.7   | 19   | MAXI       |
| 690         270.8         19.1         MAXI           693         270.8         19.1         MAXI           696         270.9         19.1         MAXI           696         270.9         19.2         MAXI           696         270.9         19.2         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.8         19.1         MAXI           708         270.7         19         MAXI           711         270.7         19.1         MAXI           720         270.7         19.1         MAXI           721         270.7         19.1         MAXI           722         270.7         19.1         MAXI           726         270.9         19.2         MAXI           727         270.9         19.2         MAXI           728         270.9         19.2         MAXI           729         270.9         19.2         MAXI           735         271.1         19.3         MAXI           735         271.1         19.3         MAXI                                                               | 687   | 270.7   | 19   | MAXI       |
| 693         270.8         19.1         MAXI           696         270.9         19.1         MAXI           699         270.9         19.2         MAXI           699         270.8         19.1         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           708         270.7         19         MAXI           711         270.7         19.1         MAXI           717         270.7         19.1         MAXI           720         270.7         19.1         MAXI           720         270.7         19.1         MAXI           720         270.7         19.1         MAXI           720         270.9         19.2         MAXI           721         270.9         19.3         MAXI           732         270.9         19.3         MAXI           734         271.1         19.4         MAXI           735         271.1         19.4         MAXI           744         271.1         19.5         MAXI           756         271.2         19.6         MAXI                                                               | 690   | 270.8   | 19.1 | MAXI       |
| 696         270.9         19.1         MAXI           689         270.9         19.2         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.8         19.1         MAXI           708         270.8         19.1         MAXI           708         270.7         19.1         MAXI           711         270.7         19.1         MAXI           717         270.7         19.1         MAXI           720         270.7         19.1         MAXI           721         270.7         19.1         MAXI           723         270.9         19.3         MAXI           724         270.9         19.3         MAXI           735         271         19.3         MAXI           735         271         19.4         MAXI           744         271.1         19.4         MAXI           744         271.1         19.5         MAXI           750         271.2         19.6         MAXI           755         271.2         19.8         MAXI                                                                 | 693   | 270.8   | 19.1 | MAXI       |
| 699         270.9         19.2         MAXI           702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           705         270.8         19.1         MAXI           706         270.8         19.1         MAXI           707         270.7         19         MAXI           714         270.7         19.1         MAXI           720         270.7         19.1         MAXI           723         270.8         19.1         MAXI           726         270.9         19.1         MAXI           726         270.9         19.1         MAXI           727         270.9         19.1         MAXI           728         270.9         19.3         MAXI           735         271         19.4         MAXI           738         271         19.4         MAXI           744         271.1         19.4         MAXI           750         271.2         19.6         MAXI           755         271.2         19.6         MAXI           756         271.2         19.6         MAXI                                                                   | 696   | 270.9   | 19.1 | MAXI       |
| 702         270.8         19.1         MAXI           705         270.8         19.1         MAXI           706         270.8         19.1         MAXI           708         270.8         19.1         MAXI           708         270.8         19.1         MAXI           708         270.7         19         MAXI           714         270.7         19.1         MAXI           717         270.7         19.1         MAXI           720         270.7         19.1         MAXI           723         270.8         19.1         MAXI           726         270.9         19.2         MAXI           732         270.9         19.2         MAXI           735         271         19.3         MAXI           738         271         19.4         MAXI           741         271.1         19.4         MAXI           744         271.1         19.5         MAXI           750         271.1         19.5         MAXI           755         271.2         19.6         MAXI           756         271.2         19.6         MAXI                                                                   | 699   | 270.9   | 19.2 | MAXI       |
| 705         270.8         19.1         MAXI           708         270.8         19         MAXI           711         270.7         19         MAXI           711         270.7         19         MAXI           714         270.7         19.1         MAXI           717         270.7         19.1         MAXI           720         270.7         19.1         MAXI           720         270.8         19.1         MAXI           726         270.9         19.2         MAXI           729         270.9         19.2         MAXI           732         270.9         19.3         MAXI           735         271         19.3         MAXI           735         271.1         19.4         MAXI           744         271.1         19.4         MAXI           744         271.1         19.5         MAXI           750         271.2         19.6         MAXI           755         271.2         19.6         MAXI           756         271.2         19.8         MAXI           757         271.3         19.9         MAXI <t< td=""><td>702</td><td>270.8</td><td>19.1</td><td>MAXI</td></t<> | 702   | 270.8   | 19.1 | MAXI       |
| 708         270.8         19         MAXI           711         270.7         19         MAXI           714         270.7         19         MAXI           714         270.7         19.1         MAXI           717         270.7         19.1         MAXI           720         270.7         19.1         MAXI           720         270.7         19.1         MAXI           723         270.8         19.1         MAXI           726         270.9         19.2         MAXI           732         270.9         19.3         MAXI           735         271         19.3         MAXI           738         271.1         19.4         MAXI           744         271.1         19.5         MAXI           750         271.1         19.5         MAXI           755         271.2         19.6         MAXI           756         271.2         19.7         MAXI           755         271.3         19.9         MAXI           762         271.2         19.6         MAXI           756         271.3         19.9         MAXI <t< td=""><td>705</td><td>270.8</td><td>19.1</td><td>MAXI</td></t<> | 705   | 270.8   | 19.1 | MAXI       |
| 711       270.7       19       MAXI         714       270.7       19       MAXI         717       270.7       19.1       MAXI         720       270.7       19.1       MAXI         720       270.7       19.1       MAXI         720       270.8       19.1       MAXI         723       270.8       19.1       MAXI         726       270.9       19.1       MAXI         727       270.9       19.2       MAXI         732       270.9       19.3       MAXI         735       271       19.4       MAXI         738       271       19.4       MAXI         744       271.1       19.4       MAXI         750       271.1       19.5       MAXI         756       271.2       19.6       MAXI         756       271.2       19.6       MAXI         756       271.2       19.6       MAXI         756       271.3       19.9       MAXI         756       271.3       19.9       MAXI         765       271.3       19.9       MAXI         771       271.3       19.                                                                                                                                           | 708   | 270.8   | 19   | MAXI       |
| 714       270.7       19       MAXI         717       270.7       19.1       MAXI         720       270.7       19.1       MAXI         723       270.8       19.1       MAXI         726       270.9       19.1       MAXI         726       270.9       19.1       MAXI         727       270.9       19.1       MAXI         729       270.9       19.2       MAXI         732       270.9       19.3       MAXI         735       271       19.4       MAXI         738       271.1       19.4       MAXI         741       271.1       19.4       MAXI         744       271.1       19.5       MAXI         750       271.1       19.5       MAXI         756       271.2       19.6       MAXI         756       271.2       19.6       MAXI         756       271.3       19.9       MAXI         762       271.3       19.9       MAXI         771       271.3       19.9       MAXI         774       271.3       19.9       MAXI         777       271.3 <td< td=""><td>711</td><td>270.7</td><td>19</td><td>MAXI</td></td<>                                                                             | 711   | 270.7   | 19   | MAXI       |
| 717       270.7       19.1       MAXI         720       270.7       19.1       MAXI         723       270.8       19.1       MAXI         726       270.9       19.1       MAXI         727       270.9       19.1       MAXI         726       270.9       19.2       MAXI         727       270.9       19.2       MAXI         732       270.9       19.3       MAXI         735       271       19.4       MAXI         738       271       19.4       MAXI         741       271.1       19.4       MAXI         744       271.1       19.5       MAXI         750       271.1       19.5       MAXI         756       271.2       19.6       MAXI         757       271.2       19.6       MAXI         756       271.2       19.6       MAXI         757       271.3       19.9       MAXI         762       271.3       19.8       MAXI         763       271.3       19.9       MAXI         771       271.3       19.9       MAXI         774       271.3 <td< td=""><td>714</td><td>270.7</td><td>19</td><td>MAXI</td></td<>                                                                             | 714   | 270.7   | 19   | MAXI       |
| 720         270.7         19.1         MAXI           723         270.8         19.1         MAXI           726         270.9         19.1         MAXI           726         270.9         19.2         MAXI           729         270.9         19.2         MAXI           732         270.9         19.3         MAXI           735         271         19.3         MAXI           738         271         19.4         MAXI           741         27.1         19.4         MAXI           744         271.1         19.4         MAXI           744         271.1         19.5         MAXI           750         271.2         19.6         MAXI           755         271.2         19.6         MAXI           756         271.2         19.7         MAXI           755         271.3         19.8         MAXI           762         271.3         19.9         MAXI           771         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20.1         MAXI                                                                  | 717   | 270.7   | 19.1 | MAXI       |
| 723       270.8       19.1       MAXI         726       270.9       19.1       MAXI         729       270.9       19.2       MAXI         732       270.9       19.3       MAXI         735       271       19.3       MAXI         735       271       19.4       MAXI         738       271       19.4       MAXI         741       271.1       19.4       MAXI         744       271.1       19.5       MAXI         750       271.1       19.5       MAXI         750       271.2       19.6       MAXI         756       271.2       19.6       MAXI         755       271.2       19.6       MAXI         762       271.2       19.8       MAXI         765       271.3       19.9       MAXI         765       271.3       19.9       MAXI         774       271.3       19.9       MAXI         774       271.3       19.9       MAXI         777       271.3       20       MAXI         776       271.4       20.2       MAXI         780       271.4       20.                                                                                                                                           | 720   | 270.7   | 19.1 | MAXI       |
| 726         270.9         19.1         MAXI           729         270.9         19.2         MAXI           732         270.9         19.3         MAXI           732         270.9         19.3         MAXI           735         271         19.3         MAXI           738         271         19.4         MAXI           738         271         19.4         MAXI           741         271.1         19.4         MAXI           744         271.1         19.4         MAXI           747         271.1         19.5         MAXI           750         271.2         19.6         MAXI           755         271.2         19.6         MAXI           756         271.2         19.6         MAXI           755         271.3         19.9         MAXI           765         271.3         19.9         MAXI           771         271.3         19.9         MAXI           774         271.3         19.9         MAXI           774         271.3         20.1         MAXI           780         271.4         20.2         MAXI                                                                   | 723   | 270.8   | 19.1 | MAXI       |
| 729         270.9         19.2         MAXI           732         270.9         19.3         MAXI           735         271         19.3         MAXI           736         271         19.4         MAXI           738         271         19.4         MAXI           738         271         19.4         MAXI           741         271.1         19.4         MAXI           744         271.1         19.4         MAXI           747         271.1         19.5         MAXI           750         271.2         19.6         MAXI           755         271.2         19.6         MAXI           756         271.2         19.6         MAXI           756         271.2         19.6         MAXI           756         271.2         19.8         MAXI           756         271.3         19.9         MAXI           765         271.3         19.9         MAXI           771         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20.1         MAXI <t< td=""><td>726</td><td>270.9</td><td>19.1</td><td>MAXI</td></t<> | 726   | 270.9   | 19.1 | MAXI       |
| 732         270.9         19.3         MAXI           735         271         19.3         MAXI           738         271         19.4         MAXI           738         271         19.4         MAXI           738         271         19.4         MAXI           741         271.1         19.4         MAXI           744         271.1         19.4         MAXI           747         271.1         19.5         MAXI           750         271.2         19.6         MAXI           756         271.2         19.6         MAXI           756         271.2         19.6         MAXI           757         271.2         19.6         MAXI           756         271.2         19.7         MAXI           757         271.2         19.8         MAXI           756         271.3         19.9         MAXI           757         271.3         19.9         MAXI           771         271.3         19.9         MAXI           777         271.3         20.1         MAXI           780         271.4         20.2         MAXI <t< td=""><td>729</td><td>270.9</td><td>19.2</td><td>MAXI</td></t<> | 729   | 270.9   | 19.2 | MAXI       |
| 735         271         19.3         MAXI           738         271         19.4         MAXI           741         271         19.4         MAXI           741         271.1         19.4         MAXI           744         271.1         19.4         MAXI           747         271.1         19.5         MAXI           750         271.2         19.6         MAXI           755         271.2         19.6         MAXI           756         271.2         19.7         MAXI           759         271.2         19.7         MAXI           762         271.3         19.8         MAXI           765         271.3         19.9         MAXI           765         271.3         19.9         MAXI           768         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20.1         MAXI           780         271.4         20.2         MAXI           781         271.4         20.3         MAXI           782         271.5         20.4         MAXI                                                                   | 732   | 270.9   | 19.3 | MAXI       |
| 738         271         19.4         MAXI           741         271         19.4         MAXI           741         271.1         19.4         MAXI           744         271.1         19.4         MAXI           747         271.1         19.5         MAXI           750         271.2         19.5         MAXI           755         271.2         19.6         MAXI           756         271.2         19.6         MAXI           756         271.2         19.7         MAXI           756         271.2         19.7         MAXI           757         271.2         19.8         MAXI           762         271.3         19.9         MAXI           765         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20.1         MAXI           780         271.4         20.1         MAXI           786         271.4         20.3         MAXI           792         271.5         20.4         MAXI           792         271.5         20.5         MAXI                                                                 | 735 🗢 | 271     | 19.3 | MAXI       |
| 741         271         19.4         MAXI           744         271.1         19.4         MAXI           744         271.1         19.5         MAXI           750         271.1         19.5         MAXI           755         271.2         19.6         MAXI           756         271.2         19.7         MAXI           762         271.2         19.8         MAXI           765         271.3         19.8         MAXI           766         271.3         19.9         MAXI           771         271.3         19.9         MAXI           777         271.3         20.1         MAXI           780         271.4         20.1         MAXI           786         271.4         20.2         MAXI           795         271.5         20.4         MAXI           795         271.5         20.5         MAXI                                                               | 738   | 271     | 19.4 | MAXI       |
| 744         271.1         19.4         MAXI           747         271.1         19.5         MAXI           750         271.1         19.5         MAXI           750         271.2         19.6         MAXI           756         271.2         19.6         MAXI           756         271.2         19.6         MAXI           757         271.2         19.7         MAXI           756         271.2         19.8         MAXI           757         271.3         19.8         MAXI           765         271.3         19.9         MAXI           768         271.3         19.9         MAXI           771         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20.1         MAXI           780         271.4         20.1         MAXI           783         271.4         20.2         MAXI           795         271.5         20.4         MAXI           792         271.5         20.5         MAXI           795         271.5         20.5         MAXI                                                             | 741   | 271     | 19.4 | MAXI       |
| 747         271.1         19.5         MAXI           750         271.1         19.5         MAXI           750         271.2         19.6         MAXI           756         271.2         19.6         MAXI           756         271.2         19.6         MAXI           757         271.2         19.6         MAXI           757         271.2         19.7         MAXI           758         271.2         19.8         MAXI           762         271.2         19.8         MAXI           762         271.3         19.9         MAXI           768         271.3         19.9         MAXI           771         271.3         19.9         MAXI           777         271.3         20         MAXI           780         271.4         20.1         MAXI           783         271.4         20.2         MAXI           786         271.4         20.2         MAXI           792         271.5         20.4         MAXI           798         271.5         20.5         MAXI           798         271.5         20.5         MAXI <tr tb=""></tr>                                               | 744   | 271.1   | 19.4 | MAXI       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |         |      |            |
| 750         271.1         19.5         MAXI           753         271.2         19.6         MAXI           756         271.2         19.6         MAXI           756         271.2         19.7         MAXI           757         271.2         19.7         MAXI           756         271.2         19.7         MAXI           757         271.2         19.7         MAXI           762         271.2         19.8         MAXI           765         271.3         19.9         MAXI           768         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20.1         MAXI           783         271.4         20.2         MAXI           786         271.4         20.3         MAXI           792         271.5         20.4         MAXI           792         271.5         20.5         MAXI           798         271.5         20.5         MAXI           798         271.5         20.5         MAXI           301         271.5         20.6         MAXI                                                             | 747   | 271.1   | 19.5 | MAXI       |
| 753         271.2         19.6         MAXI           756         271.2         19.6         MAXI           757         271.2         19.7         MAXI           756         271.2         19.8         MAXI           762         271.3         19.8         MAXI           765         271.3         19.8         MAXI           765         271.3         19.9         MAXI           768         271.3         19.9         MAXI           771         271.3         19.9         MAXI           777         271.3         19.9         MAXI           777         271.3         20.1         MAXI           780         271.4         20.1         MAXI           786         271.4         20.3         MAXI           789         271.4         20.3         MAXI           792         271.5         20.4         MAXI           792         271.5         20.5         MAXI           798         271.5         20.5         MAXI           798         271.5         20.6         MAXI           801         271.5         20.6         MAXI                                                             | 750   | 271.1   | 19.5 | MAXI       |
| 756         271.2         19.6         MAXI           759         271.2         19.7         MAXI           762         271.2         19.8         MAXI           766         271.3         19.8         MAXI           766         271.3         19.8         MAXI           768         271.3         19.9         MAXI           768         271.3         19.9         MAXI           771         271.3         19.9         MAXI           777         271.3         20.1         MAXI           780         271.4         20.1         MAXI           783         271.4         20.1         MAXI           786         271.5         20.4         MAXI           795         271.5         20.4         MAXI           795         271.5         20.4         MAXI           798         271.5         20.5         MAXI           798         271.5         20.5         MAXI           301         271.5         20.5         MAXI           304         271.5         20.6         MAXI           307         271.5         20.6         MAXI                                                             | 753   | 271.2   | 19.6 | MAXI       |
| 759         271.2         19.7         MAXI           762         271.2         19.8         MAXI           765         271.3         19.8         MAXI           765         271.3         19.9         MAXI           768         271.3         19.9         MAXI           771         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20         MAXI           780         271.4         20.1         MAXI           786         271.4         20.2         MAXI           786         271.4         20.3         MAXI           789         271.5         20.4         MAXI           792         271.5         20.5         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                           | 756   | 271.2   | 19.6 | MAXI       |
| 762         271.2         19.8         MAXI           765         271.3         19.8         MAXI           768         271.3         19.9         MAXI           7768         271.3         19.9         MAXI           771         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20         MAXI           780         271.4         20.1         MAXI           786         271.4         20.2         MAXI           789         271.4         20.3         MAXI           792         271.5         20.4         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                      | 759   | 271.2   | 19.7 | MAXI       |
| 765         271.3         19.8         MAXI           768         271.3         19.9         MAXI           771         271.3         19.9         MAXI           771         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20         MAXI           780         271.3         20.1         MAXI           783         271.4         20.1         MAXI           786         271.4         20.2         MAXI           792         271.5         20.4         MAXI           792         271.5         20.4         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                             | 762   | 271.2   | 19.8 | MAXI       |
| 768         271.3         19.9         MAXI           771         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20         MAXI           780         271.3         20.1         MAXI           783         271.4         20.1         MAXI           786         271.4         20.2         MAXI           789         271.4         20.3         MAXI           792         271.5         20.4         MAXI           795         271.5         20.5         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                             | 765   | 271.3   | 19.8 | MAXI       |
| 771         271.3         19.9         MAXI           774         271.3         19.9         MAXI           777         271.3         20         MAXI           780         271.3         20.1         MAXI           783         271.4         20.1         MAXI           786         271.4         20.1         MAXI           786         271.4         20.2         MAXI           789         271.4         20.3         MAXI           792         271.5         20.4         MAXI           795         271.5         20.5         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                             | 768   | 271.3   | 19.9 | MAXI       |
| 774         271.3         19.9         MAXI           777         271.3         20         MAXI           780         271.3         20.1         MAXI           783         271.4         20.1         MAXI           786         271.4         20.1         MAXI           787         271.4         20.1         MAXI           789         271.4         20.2         MAXI           792         271.5         20.4         MAXI           795         271.5         20.4         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           804         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                   | 771   | 271.3   | 19.9 | MAXI       |
| 777         271.3         20         MAXI           780         271.3         20.1         MAXI           783         271.4         20.1         MAXI           786         271.4         20.1         MAXI           786         271.4         20.2         MAXI           789         271.4         20.3         MAXI           792         271.5         20.4         MAXI           795         271.5         20.4         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                   | 774   | 271.3   | 19.9 | MAXI       |
| 780         271.3         20.1         MAXI           783         271.4         20.1         MAXI           786         271.4         20.2         MAXI           786         271.4         20.3         MAXI           789         271.5         20.4         MAXI           792         271.5         20.4         MAXI           795         271.5         20.5         MAXI           801         271.5         20.5         MAXI           301         271.5         20.5         MAXI           304         271.5         20.6         MAXI           307         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 777   | 271.3   | 20   | MAXI       |
| 783         271.4         20.1         MAXI           786         271.4         20.2         MAXI           789         271.4         20.3         MAXI           792         271.5         20.4         MAXI           795         271.5         20.4         MAXI           797         271.5         20.4         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 780   | 271.3   | 20.1 | MAXI       |
| 786         271.4         20.2         MAXI           789         271.4         20.3         MAXI           792         271.5         20.4         MAXI           795         271.5         20.4         MAXI           796         271.5         20.4         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 783   | 271.4   | 20.1 | MAXI       |
| 789         271.4         20.3         MAXI           792         271.5         20.4         MAXI           795         271.5         20.4         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 786   | 271.4   | 20.2 | MAXI       |
| 792         271.5         20.4         MAXI           795         271.5         20.4         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 789   | 271.4   | 20.3 | MAXI       |
| 795         271.5         20.4         MAXI           798         271.5         20.5         MAXI           801         271.5         20.5         MAXI           804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 792   | 271.5   | 20.4 | MAXI       |
| 798         271.5         20.5         MAXI           301         271.5         20.5         MAXI           304         271.5         20.6         MAXI           307         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 795   | 271.5   | 20.4 | MAXI       |
| 301         271.5         20.5         MAXI           304         271.5         20.6         MAXI           307         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 798   | 271.5   | 20.5 | MAXI       |
| 804         271.5         20.6         MAXI           807         271.5         20.6         MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 801   | 271.5   | 20.5 | MAXI       |
| 807 271.5 20.6 MAXI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 804   | 271.5   | 20.6 | MAXI       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 807   | 271.5   | 20.6 | MAXI       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |         |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |         |      |            |

|                               | MUSSELWHITE MINE - G                          | EOLOGY                                  |
|-------------------------------|-----------------------------------------------|-----------------------------------------|
| Hole:                         | 16-WEL-061                                    | Project: WEL                            |
| Mine Grid Easting: 8077.286   | Planned Depth(m): 1080                        | Drill Start Date: 6/26/2016             |
| Mine Grid Northing: 13500.957 | Actual Depth (m): 1127.2                      | Drill End Date: 8/5/2016                |
| Elevation: 4402.323           | Core Diameter: NQ2                            |                                         |
| UTM East:                     | Plugged: YES<br>Grout Test: YES<br>Result:BAD | Target 1: X<br>Target 2: X<br>Target 3: |
| Drill Instructions:           |                                               |                                         |
| Collar Comments:              |                                               |                                         |

| Survey |         |      |            |  |  |  |  |  |  |  |  |
|--------|---------|------|------------|--|--|--|--|--|--|--|--|
| Depth  | Azimuth | Dip  | SurveyType |  |  |  |  |  |  |  |  |
| 810    | 271.5   | 20.7 | MAXI       |  |  |  |  |  |  |  |  |
| 813    | 271.5   | 20.6 | MAXI       |  |  |  |  |  |  |  |  |
| 816    | 271.5   | 20.7 | MAXI       |  |  |  |  |  |  |  |  |
| 819    | 271.5   | 20.7 | MAXI       |  |  |  |  |  |  |  |  |
| 822    | 271.6   | 20.7 | MAXI       |  |  |  |  |  |  |  |  |
| 825    | 271.6   | 20.8 | MAXI       |  |  |  |  |  |  |  |  |
| 828    | 271.6   | 20.8 | MAXI       |  |  |  |  |  |  |  |  |
| 831    | 271.6   | 20.9 | MAXI       |  |  |  |  |  |  |  |  |
| 834    | 271.6   | 20.9 | MAXI       |  |  |  |  |  |  |  |  |
| 837    | 271.6   | 20.9 | MAXI       |  |  |  |  |  |  |  |  |
| 840    | 271.6   | 21   | MAXI       |  |  |  |  |  |  |  |  |
| 843    | 271.6   | 21   | MAXI       |  |  |  |  |  |  |  |  |
| 846    | 271.6   | 21   | MAXI       |  |  |  |  |  |  |  |  |
| 849    | 271.6   | 21.1 | MAXI       |  |  |  |  |  |  |  |  |
| 852    | 271.6   | 21.1 | MAXI       |  |  |  |  |  |  |  |  |
| 855    | 271.6   | 21.1 | MAXI       |  |  |  |  |  |  |  |  |
| 858    | 271.6   | 21.1 | MAXI       |  |  |  |  |  |  |  |  |
| 861    | 271.6   | 21.1 | MAXI       |  |  |  |  |  |  |  |  |
| 864    | 271.6   | 21.2 | MAXI       |  |  |  |  |  |  |  |  |
| 867    | 271.6   | 21.2 | MAXI       |  |  |  |  |  |  |  |  |
| 870    | 271.6   | 21.2 | MAXI       |  |  |  |  |  |  |  |  |
| 873    | 271.5   | 21.2 | MAXI       |  |  |  |  |  |  |  |  |
| 876    | 271.5   | 21.1 | MAXI       |  |  |  |  |  |  |  |  |
| 879    | 271.5   | 21.1 | MAXI       |  |  |  |  |  |  |  |  |
| 882    | 271.5   | 21.1 | MAXI       |  |  |  |  |  |  |  |  |
| 885    | 271.5   | 21.1 | MAXI       |  |  |  |  |  |  |  |  |
| 888    | 271.6   | 21.2 | MAXI       |  |  |  |  |  |  |  |  |
| 891    | 271.5   | 21.2 | MAXI       |  |  |  |  |  |  |  |  |
| 804    | 271.6   | 21.3 | MAXI       |  |  |  |  |  |  |  |  |
| 897    | 271.6   | 21.3 | MAXI       |  |  |  |  |  |  |  |  |
| 000    | 271.0   | 21.3 | MAXI       |  |  |  |  |  |  |  |  |
| 900    | 271.0   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 903    | 271.0   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 906    | 271.7   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 909    | 271.0   | 21.3 | MAXI       |  |  |  |  |  |  |  |  |
| 912    | 271.0   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 915    | 271.6   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 918    | 2/1.6   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 921    | 2/1.5   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 924    | 271.4   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
| 927    | 271.4   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 930    | 271.3   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 933    | 271.2   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 936    | 271.1   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 939    | 271     | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 942    | 270.9   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
| 945    | 270.9   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
| 948    | 270.9   | 21.4 | MAXI       |  |  |  |  |  |  |  |  |
| 951    | 270.9   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
| 954    | 270.9   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
| 957    | 270.9   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
| 960    | 270.8   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
| 963    | 270.8   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
| 966    | 270.8   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
| 969    | 270.8   | 21.5 | MAXI       |  |  |  |  |  |  |  |  |
|        |         |      |            |  |  |  |  |  |  |  |  |
|        |         |      |            |  |  |  |  |  |  |  |  |

|                               | MUSSELWHITE MINE - G                          | EOLOGY                                  |
|-------------------------------|-----------------------------------------------|-----------------------------------------|
| Hole:                         | 16-WEL-061                                    | Project: WEL                            |
| Mine Grid Easting: 8077.286   | Planned Depth(m): 1080                        | Drill Start Date: 6/26/2016             |
| Mine Grid Northing: 13500.957 | Actual Depth (m): 1127.2                      | Drill End Date: 8/5/2016                |
| Elevation: 4402.323           | Core Diameter: NQ2                            |                                         |
| UTM East:                     | Plugged: YES<br>Grout Test: YES<br>Result:BAD | Target 1: X<br>Target 2: X<br>Target 3: |
| Drill Instructions:           |                                               |                                         |
| Collar Comments:              |                                               |                                         |

Τ

| Survey |         |                      |            |  |  |  |  |  |  |  |  |  |
|--------|---------|----------------------|------------|--|--|--|--|--|--|--|--|--|
| Depth  | Azimuth | Dip                  | SurveyType |  |  |  |  |  |  |  |  |  |
| 972    | 270.8   | 21.5                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 975    | 270.8   | 21.5                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 978    | 270.8   | 21.5                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 981    | 270.8   | 21.5                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 984    | 270.8   | 21.4                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 987    | 270.8   | 21.4                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 990    | 270.8   | 21.3                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 993    | 270.8   | 21.3                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 996    | 270.8   | 21.4                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 999    | 270.8   | 21.4                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 1002   | 270.8   | 21.4                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 1005   | 270.7   | 21.4                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 1008   | 270.75  | 21.35                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1011   | 270.75  | 21.35                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1014   | 270.74  | 21.34                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1017   | 270.74  | 21. <mark>3</mark> 3 | MAXI       |  |  |  |  |  |  |  |  |  |
| 1020   | 270.73  | 21.32                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1023   | 270.72  | 21.31                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1026   | 270.72  | 21.3                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 1029   | 270.71  | 21.29                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1032   | 270.71  | 21.28                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1035   | 270.7   | 21.27                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1038   | 270.69  | 21.26                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1041   | 270.68  | 21.27                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1044   | 270.67  | 21.27                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1047   | 270.67  | 21.26                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1050   | 270.66  | 21.25                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1053   | 270.65  | 21.25                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1056   | 270.65  | 21.24                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1059   | 270.64  | 21.23                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1062   | 270.63  | 21.23                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1065   | 270.63  | 21.22                |            |  |  |  |  |  |  |  |  |  |
| 1071   | 270.62  | 21.22                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1074   | 270.6   | 21.21                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1074   | 270.6   | 21.2                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 1080   | 270.59  | 21.19                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1083   | 270.59  | 21.18                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1086   | 270.58  | 21.10                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1089   | 270.57  | 21.16                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1092   | 270.57  | 21.15                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1095   | 270.56  | 21.15                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1098   | 270.55  | 21.14                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1101   | 270.55  | 21.13                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1104   | 270.54  | 21.13                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1107   | 270.53  | 21.12                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1110   | 270.53  | 21.11                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1113   | 270.52  | 21.1                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 1116   | 270.51  | 21.1                 | MAXI       |  |  |  |  |  |  |  |  |  |
| 1119   | 270.51  | 21.09                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1122   | 270.5   | 21.08                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1125   | 270.49  | 21.07                | MAXI       |  |  |  |  |  |  |  |  |  |
| 1127.2 | 270.49  | 21.07                | MAXI       |  |  |  |  |  |  |  |  |  |
|        |         |                      |            |  |  |  |  |  |  |  |  |  |

|      |      |       |      |     |     |                 |     |     |      | _       |          | 1      |    |      |        |                 |                   |            | 1    |      |              |            |           |          |      |    |               |       |     |          |      |      |               |     |      |                                              |
|------|------|-------|------|-----|-----|-----------------|-----|-----|------|---------|----------|--------|----|------|--------|-----------------|-------------------|------------|------|------|--------------|------------|-----------|----------|------|----|---------------|-------|-----|----------|------|------|---------------|-----|------|----------------------------------------------|
| H    | MAJ  | OR UN | ПТ   |     |     | MINERALS QTZ VI |     |     |      |         |          | VEININ | 3  |      | -      |                 | FA                | BRIC       |      |      | FOLD         |            |           |          |      |    | FAULT         |       |     |          |      |      |               |     |      |                                              |
| Dept | From | То    | Unit | As% | Cp% | Mt%             | Po% | Py% | Spec | i<br>ks | Comments | From   | То | Туре | vein - | Tex Cont<br>Typ | act Alph<br>e deg | a Comments | From | То   | Alpha<br>deg | Int        | e         | Comments | From | То | Alph<br>a deg | Int T | уре | Comments | From | То   | Alph<br>a deg | Int | Туре | Comments                                     |
| 5    | 0    | 14.1  | 4    |     |     |                 |     |     |      |         |          |        |    |      |        |                 |                   |            | 6.3  | 6.4  | 35           | MODX       | <u>S1</u> |          |      |    |               |       |     |          |      |      |               |     |      |                                              |
|      |      |       |      |     |     |                 |     |     |      |         |          |        |    |      |        |                 |                   |            | 13.5 | 13.6 | 85           | MODX       | <u>S1</u> |          |      |    |               |       |     |          |      |      |               |     |      |                                              |
| 20   | 14.1 | 48    |      |     |     |                 |     |     |      |         |          | 14.1   | 41 | CA   | 5      |                 |                   |            | 31.3 | 26.3 | 75           | MOD<br>MOD | S1)       |          |      |    |               |       |     |          | 35.8 | 38.6 | 90            | WEK | BR   | core broken at<br>highly variable<br>angles. |

| 1 | 6- | W | E | L- | 06 | 1 |
|---|----|---|---|----|----|---|
|---|----|---|---|----|----|---|

| MA             | JORI | JNIT |       |       |        | MINE  | RALS         |             |      |      |              | QTZ       | VEI | NING            |              |          |              |              | F           | ABRI      | с        |          |      |      | F             | OLD   |      |             |      |    |               | FAU | LT   |          |
|----------------|------|------|-------|-------|--------|-------|--------------|-------------|------|------|--------------|-----------|-----|-----------------|--------------|----------|--------------|--------------|-------------|-----------|----------|----------|------|------|---------------|-------|------|-------------|------|----|---------------|-----|------|----------|
| From           | То   | Unit | As% C | o% Mt | % Po%  | % Py% | VG<br>Specks | Comments    | From | То   | Vein<br>Type | Vein<br>% | Tex | Contact<br>Type | Alpha<br>deg | Comments | From         | То           | Alph<br>deg | na<br>Int | Тур      | Comments | From | То   | Alph<br>a deg | Int 1 | уре  | Comments    | From | То | Alph<br>a deg | Int | Туре | Comments |
| 14.1<br>45     | 48   |      | 0     | .5    | 4 15 5 | -     |              | VG at 44.6m | 14.1 | 41   | CA           | 5         |     |                 |              | ĸ        | 42.5         | 42.6         | 85          | MOI       | DX S1    |          | 47.6 | 47.7 | 85            | WE K  | SFX  | folded vein | 40.3 | 42 | 85            | MOD | HZ   |          |
| 50<br>48<br>55 | 59.6 |      |       |       |        |       |              |             |      |      |              |           |     |                 |              |          | 51.5         | 51.6         | 60          | MOL       | )× 51    |          |      |      |               |       |      |             |      |    |               |     |      |          |
| 55             |      |      |       |       |        | -     |              |             | 58.9 | 59.2 | QZ           | 10        |     |                 |              |          | 63.2         | 63.3         | × 70        | XMOE      | X S1     |          |      |      |               |       |      |             |      |    |               |     |      |          |
| 70 59.6        | 91.5 |      | 0.    | 1     | 0.5    |       |              |             | 59.2 | 91.5 | QZ-BL        | 5         |     |                 |              |          | 70.5<br>70.6 | 70.6<br>70.7 | 70<br>65    | MOE       | S1<br>S1 |          |      |      |               |       |      |             |      |    |               |     |      |          |
|                |      |      |       |       |        |       |              |             |      |      |              |           |     |                 |              |          | 78.5         | 78.6         | 85          | MOD       | ×S1      |          | 79   | 79.1 | 85            | MO    | F fr | olded vein  |      |    |               |     |      |          |

| 1 | 6- | W | Е | L- | 0 | 61 | l |
|---|----|---|---|----|---|----|---|
|   | •  |   | _ | _  | v | •  |   |

|                                                                                             | MA            | JOR U                | NIT        | -     |       |                 | MINE | RALS         |          |       |       |              | QTZ V        | EINING            |             |          |       |         | FA    | BRIC |              |          |                |                  | F             | OLD           |          |          |      |    |      | FAUL | т    |          |
|---------------------------------------------------------------------------------------------|---------------|----------------------|------------|-------|-------|-----------------|------|--------------|----------|-------|-------|--------------|--------------|-------------------|-------------|----------|-------|---------|-------|------|--------------|----------|----------------|------------------|---------------|---------------|----------|----------|------|----|------|------|------|----------|
| Depth                                                                                       | From          | То                   | Unit       | As% C | o% Mt | % Po%           | Py%  | VG<br>Specks | Comments | From  | То    | Vein<br>Type | Vein<br>% Te | ex Contac<br>Type | t Alpha deg | Comments | From  | То      | Alpha | Int  | Тур          | Comments | From           | То               | Alph<br>a deg | Int           | Туре     | Comments | From | То | Alph | Int  | Туре | Comments |
| - 85                                                                                        | 59.6          | 91.5                 |            | 0     | .1    | 0.5             |      |              |          | 59.2  | 91.5  | QZ-BL        | 5            |                   |             |          | 90.6  | 90.7    | 70    | ×MOD | SI           |          |                |                  |               |               |          |          |      |    |      |      |      |          |
| ELE                                                                                         | 91.5          | 92.2                 | 4E         |       |       | 2               |      |              |          |       |       |              |              |                   |             |          |       |         |       |      |              |          |                |                  |               |               |          |          |      |    |      |      |      |          |
|                                                                                             | 92.2          | 94.4                 | 2U         |       |       |                 |      |              |          |       |       |              |              |                   |             |          | 93.8  | 93.9    | 50    | MOD  | S1)          |          |                |                  |               |               |          |          |      |    |      |      |      |          |
| - 95<br>-<br>-                                                                              | 94.4          | 96.5                 | 3F         |       |       |                 |      |              |          |       |       |              |              |                   |             |          |       |         |       |      |              |          |                |                  |               |               |          |          |      |    |      |      |      |          |
| ELT                                                                                         | 96.5          | 98                   | 4EF        |       |       |                 |      |              |          |       |       |              |              |                   |             |          |       |         |       |      |              |          |                |                  |               | MO<br>D<br>MO |          |          |      |    |      |      |      |          |
| FL                                                                                          | 98            | 98.9                 | 4FE        |       |       | 4               |      |              |          |       |       |              |              |                   |             |          |       |         |       |      |              |          | 98.5<br>98.6   | 98.6             | 70            | MO            | ME       |          |      |    |      |      |      |          |
| - 100                                                                                       | 98.9          | 99.7                 | 4E         |       |       |                 |      |              |          |       |       |              |              |                   |             |          |       |         |       |      |              |          | 98.8           | 98.9             | 85            | D/            | FD       |          |      |    |      |      |      |          |
|                                                                                             | 99.7<br>103.9 | 103.9<br>104.6       |            |       |       | 5               | _    |              |          |       |       |              |              |                   |             |          | 102.2 | 102.3   | 40    | XMOD | <u>(S1</u> ) |          | 102.5<br>102.6 | / 102.6<br>102.7 | 40            |               | ME<br>ME |          |      |    |      |      |      |          |
| -                                                                                           | 104.8         | 106.3                | +2K+       |       |       | 5               |      |              |          |       |       |              |              |                   |             |          |       |         |       |      |              |          |                |                  |               |               |          |          |      |    |      |      |      |          |
| Ē                                                                                           | 106.3         | 106.8                | <u>4</u> F |       |       | 2               | -    |              |          |       |       |              |              |                   |             |          |       |         |       |      |              |          |                |                  |               |               |          |          |      |    |      |      |      |          |
| - 110                                                                                       | 106.8         | 11 <mark>0</mark> .7 |            | 0     | .1    | 4               | 0.1  |              |          |       |       |              |              |                   |             |          |       |         |       |      |              |          |                |                  |               |               |          |          |      |    |      |      |      |          |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 110.7         | 126.3                |            |       |       | 0.5<br>8<br>0.5 | 0.5  |              |          |       |       |              |              |                   |             |          | 111   | (111.1) | 50    | XMOD | S1           |          |                |                  |               |               |          |          |      |    |      |      |      |          |
| E                                                                                           |               |                      |            |       |       |                 |      |              |          | 118.6 | 132.4 | QZ-BL        | 10           |                   |             |          |       |         |       |      |              |          |                |                  |               |               |          |          |      |    |      |      |      |          |

|                                                                                             |     |       |                                       |     |     |     |     |      |      |              |          |       |       |              |          |        |                |                | 10 112   | - 001 |       |              |      |                 |          |                                  |                                  |                              |                      |                      |             |      |    |             |        |      |          |
|---------------------------------------------------------------------------------------------|-----|-------|---------------------------------------|-----|-----|-----|-----|------|------|--------------|----------|-------|-------|--------------|----------|--------|----------------|----------------|----------|-------|-------|--------------|------|-----------------|----------|----------------------------------|----------------------------------|------------------------------|----------------------|----------------------|-------------|------|----|-------------|--------|------|----------|
|                                                                                             | MAJ | IOR U |                                       |     |     |     |     | МІ   | NER  | ALS          |          |       |       |              | QT       | TZ VE  | INING          |                |          |       |       | F            | ABR  | с               |          |                                  |                                  |                              | FOL                  | D                    |             |      |    |             | FAI    | JLT  |          |
| Se Fr                                                                                       | om  | То    | Unit                                  | As% | Ср% | Mt9 | Po  | % Py | /% s | VG<br>Specks | Comments | From  | То    | Vein<br>Type | Vei<br>% | in Tex | Contac<br>Type | t Alpha<br>deg | Comments | From  | То    | Alph<br>deg  | a In | Тур             | Comments | From                             | То                               | Alp<br>a de                  | h<br>g In            | t Type               | Comments    | From | То | Alp<br>a de | eg Int | Туре | Comments |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 0.7 | 126.3 |                                       |     |     |     | 22  | 101  |      |              |          |       |       |              |          |        |                |                |          |       |       |              |      |                 |          |                                  |                                  |                              |                      |                      |             |      |    |             |        |      |          |
| 130                                                                                         | 6.3 | 131.8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |     |     |     | 6   |      |      |              |          | 118.6 | 132.4 | QZ-BL        | _ 10     |        |                |                |          | 128.5 | 128.6 | × 85         | XINI | S1              |          | 128.1<br>129.2<br>130.2<br>130.7 | 128.2<br>129.3<br>130.3<br>130.8 | 2 80<br>3 85<br>3 85<br>3 70 |                      | ZE<br>ZE<br>ME<br>ME | folded vein |      |    |             |        |      |          |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1.8 | 138.8 |                                       |     |     |     |     |      |      |              |          |       |       |              |          |        |                |                |          |       |       |              |      |                 |          |                                  |                                  |                              |                      |                      |             |      |    |             |        |      |          |
| 140<br>                                                                                     | 8.8 | 143.5 |                                       |     |     |     | 8   |      |      |              |          | 139.1 | 141.2 | QZ           | 60       | )      |                |                |          |       |       |              |      |                 |          |                                  |                                  |                              |                      |                      |             |      |    |             |        |      |          |
| - 145<br>- 145<br>- 150<br>- 150<br>- 155<br>- 155<br>- 155                                 | 3.5 | 162.3 |                                       |     |     |     | 0.5 |      |      |              |          |       |       | ~            |          |        |                |                |          | 143.5 | 143.6 | × 50<br>× 75 | XMOI | )× 51)<br>)× 51 |          | 147.3                            | 147.4                            | ×60<br>×75                   | /MC<br>D<br>/MC<br>D | <pre>FD XSE</pre>    |             |      |    |             |        |      |          |

|      |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       | 16-WEI   | -061  |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
|------|------------------|----------------|-----------|-----|-------|------|-------|------|-------|----------|------|----|------|-----|-------|------|-------|----------|-------|-------|------|-------|-----|----------|---------|-------|-------|-----|--------|----------|------|----|---------------|------|------|----------|
|      |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          | 1     |       |      |       |     |          |         |       |       |     |        |          | 1    |    |               |      |      |          |
| 6    | MA               | JORU           |           |     |       |      | MI    | NER  |       |          | -    |    | Vein | QTZ |       | ING  | Alpha |          |       |       | F    | ABRIC | Tun |          |         |       | F     | OLD | D      |          |      |    |               | FAUL | T    |          |
| Dept | From             | То             | Unit      | As% | Cp% N | At%P | o% Py | y% s | pecks | Comments | From | То | Туре | %   | Tex C | Туре | deg   | Comments | From  | То    | deg  | a Int | e   | Comments | From    | То    | a deg | Int | t Type | Comments | From | To | Alph<br>a deg | Int  | Туре | Comments |
| -    | 143.5            | 162.3          | 4         |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          | 160.7 | 160.8 | 55   | MOD   | S1  |          |         |       |       |     |        |          |      |    |               |      |      |          |
| -    | 162.3            | 163.2          | 4E        |     |       |      | 2     |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
|      | 163.2            | 165.8          | 4         |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| - 16 | 5                |                |           |     |       | -    | _     |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| -    | 165.8            | 167.3          | 4E        |     |       |      | 4     |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
|      | 167.3            | 169            |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| - 17 | 169              | 170.5          | 4E        |     |       |      | 2     |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
|      |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
|      |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| - 17 | 170.5            | 177.1          |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          | 174.0 | 175   | - CO | MOD   | 60  |          |         |       |       |     |        |          |      |    |               |      |      |          |
| -    |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          | 1/4.9 | 1/5   | 1 60 | MOD   | 50  |          |         |       |       |     |        |          |      |    |               |      |      |          |
| -    |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| -    |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| - 18 | 0 177.1          | 181.9          | 2,        |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| -    |                  |                | · · · · · |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
|      |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          | 192.4   | 192.5 | 75    |     |        |          |      |    |               |      |      |          |
| - 18 | 5                |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          | 184     | 184.1 | 290   | MC  | ZE     |          |      |    |               |      |      |          |
| E    | 181.9            | 190.3          |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       | A   |        |          |      |    |               |      |      |          |
| -    |                  |                |           |     |       | C    | .5    |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          | (186.6) | 186.7 | X 75  | D   | ME)    |          |      |    |               |      |      |          |
| F    |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       | 1   |        |          |      |    |               |      |      |          |
| - 19 | 0                |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
|      | 190.3            | 192.5          | 4E        |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| E    | 100 5            |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| - 19 | 193.5<br>5 194.2 | 194.2<br>195.5 | ew.       |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          | 194.7   | 194.8 | 65    | MC  | FD     |          |      |    |               |      |      |          |
| E    |                  |                | SUC SUC   |     |       |      |       |      |       |          |      |    |      |     |       |      |       | -        |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
| -    | 195.5            | 205            | 4         |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |
|      |                  |                |           |     |       |      |       |      |       |          |      |    |      |     |       |      |       |          |       |       |      |       |     |          |         |       |       |     |        |          |      |    |               |      |      |          |

|       |            |       |      |         |        |       |              |          |      |    |              |              |                   |              | 16-WEI   | 061    |       |              |      |                                                                                                                                                         |          |        |       |               |            |               |       |       |               |      |      |                           |
|-------|------------|-------|------|---------|--------|-------|--------------|----------|------|----|--------------|--------------|-------------------|--------------|----------|--------|-------|--------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|-------|---------------|------------|---------------|-------|-------|---------------|------|------|---------------------------|
| _     | МА         | JORU  | NIT  |         |        | MINE  | ERALS        |          |      |    |              | QTZ V        | EINING            |              |          |        |       | FA           | BRIC |                                                                                                                                                         |          |        |       | FO            | LD         |               |       |       |               | FAUL | .т   |                           |
| Depth | From       | То    | Unit | As% Cp% | Mt% Po | % Py% | VG<br>Specks | Comments | From | То | Vein<br>Type | Vein<br>% Te | x Contact<br>Type | Alpha<br>deg | Comments | From   | То    | Alpha<br>deg | Int  | Тур<br>е                                                                                                                                                | Comments | From   | То    | Alph<br>a deg | nt Type    | Comments      | From  | То    | Alph<br>a deg | Int  | Туре | Comments                  |
|       | 195.5      | 205   |      |         |        |       |              |          |      |    |              |              |                   |              |          | _200_/ | 200.1 | <u>58</u>    | MOD/ | <u></u> |          | 200.5  | 200.6 | 75 (1         | 10 FD      |               |       |       |               |      |      |                           |
|       |            |       |      |         |        | 3     |              |          |      |    |              |              |                   |              |          | 207    | 207.1 | 65           | MOD  | (SI)                                                                                                                                                    |          | 206.1  | 207.2 | 72 V          | VE<br>K ZF | -             |       |       |               |      |      |                           |
|       |            |       |      |         |        | 2     |              |          |      |    |              |              |                   |              |          |        |       |              |      |                                                                                                                                                         |          | 207.8  | 209.8 | 70            | 10<br>D ZF |               |       |       |               |      |      |                           |
| - 21  | 205        | 217   | 4EF  |         |        | 2     |              |          |      |    |              |              | ~                 |              |          | 216    | 216.1 | 70           | MOD  | SI                                                                                                                                                      |          | 215.3  | 215.4 | 77            | VE FD      | (Folded vein) | 213   | 213.6 | 73            | MOD  | HZ   |                           |
| 22    | 0 217      | 223.2 |      |         |        |       |              |          |      |    |              |              |                   |              |          |        |       |              |      |                                                                                                                                                         |          |        |       |               |            |               |       |       |               |      |      |                           |
|       |            |       |      |         | 2      |       |              |          |      |    |              |              |                   |              |          | 222    | 222.1 | 58           | MOD  | S1                                                                                                                                                      |          |        |       |               |            |               |       |       |               |      |      |                           |
| 22    | 5 223.2    | 226.2 |      |         |        |       |              |          |      |    |              |              |                   |              |          |        |       |              |      |                                                                                                                                                         |          |        |       |               |            |               |       |       |               |      |      |                           |
| - 23  | 226.2<br>D | 232.1 | 4EF  |         | 1      | 1     | -            |          |      |    |              |              |                   |              |          | 230    | 230.1 | 65           | WEK  | <u>S1</u> )                                                                                                                                             |          |        |       |               |            |               |       |       |               |      |      |                           |
| - 23  | 5<br>232.1 | 242   | 4BF  |         | 2      | -     |              |          |      |    |              |              |                   |              |          | 239    | 239.1 | 62           | MOD  | SI                                                                                                                                                      |          | _232.8 | 233.3 | 68 N          | D ZF       |               | 232.8 | 234.1 | 77            | INT  | HZ   | Strongly<br>deformed area |

| 16-WEL-0 | 61 |
|----------|----|
|----------|----|

|                | MA    | JOR U |      |         |       | N   | INEF | RALS         |          |      |    |              | QTZ VE        | INING           |              |          |      |         | FA           | BRIC  |              |          |       |       | FC            | DLD    |            |       |              | 1             | FAULT | г    |          |
|----------------|-------|-------|------|---------|-------|-----|------|--------------|----------|------|----|--------------|---------------|-----------------|--------------|----------|------|---------|--------------|-------|--------------|----------|-------|-------|---------------|--------|------------|-------|--------------|---------------|-------|------|----------|
| Depth          | From  | То    | Unit | As% Cp% | % Mt% | Po% | Py%  | VG<br>Specks | Comments | From | То | Vein<br>Type | Vein<br>% Tex | Contact<br>Type | Alpha<br>deg | Comments | From | То      | Alpha<br>deg | Int   | Тур          | Comments | From  | То    | Alph<br>a deg | Int Ty | e Comments | From  | То           | Alph<br>a deg | Int   | Туре | Comments |
|                | 232.1 | 242   | 4BF  |         |       |     |      |              |          |      |    |              |               |                 |              |          |      |         |              |       |              |          | 242   | 242.3 | 70            | MOZ    |            |       |              |               |       |      |          |
| - 24           | 242   | 246.3 | 4B   |         |       | 2   |      |              |          |      |    |              |               |                 |              |          | 245  | 245.1   | 43           | MODX  | SI           |          |       |       |               |        |            | 243.6 | 244          | 70            |       | HZ   |          |
|                |       |       |      |         |       |     |      |              |          |      |    |              |               |                 |              |          |      |         |              |       |              | 5        |       |       |               |        |            |       |              |               | 100   |      |          |
|                |       |       |      |         |       |     |      |              |          |      |    |              |               |                 |              |          | 248  | 248.1   | 38           |       | S1)          |          | 247.2 | 248.4 | 63            | D Z    |            | 247.6 | <u>248.1</u> | 45            | E     | HZ   |          |
|                |       |       |      |         |       |     |      |              |          |      |    |              |               |                 |              |          |      |         |              |       |              |          |       |       |               |        |            |       |              |               |       |      |          |
| - 25           | 5     |       |      |         |       |     |      |              |          |      |    |              |               |                 |              |          | 254  | 254.1   | 60           | MODX  | <u>S1</u>    |          |       |       |               |        |            |       |              |               |       |      |          |
|                |       |       |      |         |       |     |      |              |          |      |    |              |               |                 |              |          |      |         |              |       |              |          | 257.7 | 257.9 | 73            | MOE    | D          |       |              |               |       |      |          |
| - 26           | 0     |       |      |         |       |     |      |              |          |      |    |              |               |                 |              |          | 259  | 259.1   | 78           | MOD   | <u>S1</u>    |          |       |       |               |        |            |       |              |               |       |      |          |
|                | 246.3 | 276.6 | 4B   |         |       |     |      |              |          |      |    |              |               |                 |              |          | 261  | 261.1   | (40)         | MOD   | <u>S1</u>    |          | 259.9 | 266.2 | 70            | INT M  | -          |       |              |               |       |      |          |
| -<br>-<br>- 26 | iδ    |       |      |         |       |     |      |              |          |      |    |              |               |                 |              |          | 264  | 264.1   | (40)         | MODX  | <u>S1</u>    |          |       | 200.2 | 10            |        |            |       |              |               |       |      |          |
|                |       |       |      |         |       | 4   |      |              |          |      |    |              |               |                 |              |          |      |         |              |       |              |          |       |       |               |        | -          |       |              |               |       |      |          |
| - 27           | 'D    |       |      |         |       |     |      |              |          |      |    |              |               |                 |              |          |      |         |              |       |              |          | 267.1 | 270.2 | 77            |        | -          |       |              |               |       |      |          |
| 1 1 1 1        |       |       |      |         |       |     |      |              |          |      |    |              |               |                 |              |          | 271  | (271.1) | (_65)        | (MOD) | <u>(S1</u> ) |          | 271   | 271.8 | 72            | MO S   | -          |       |              |               |       |      |          |
| 27             | 5     |       |      |         |       | 3   |      |              |          |      |    |              |               |                 |              |          | 274  | 274.1   | 87           | MOD   | <u>S1</u>    |          |       |       |               |        |            |       |              |               |       |      |          |
|                | 276.6 | 277.2 | + 2K |         |       | 2   |      |              |          |      |    |              |               |                 |              |          | 278  | 278.1   | 80           | MOD   | S1           |          |       |       |               |        |            |       |              |               |       |      |          |
| -              | 277.2 | 283   | 48-  |         |       |     |      |              |          |      |    |              |               |                 |              |          |      |         |              |       |              |          | 279   | 279.7 | 75            | MO S   | -          | 279   | 279.7        | 75            | MOD   | НZ   |          |

|                       |                    |                |            |             |                  |     |              |    |        |    |     |     |              |             |        |                 |           | 16-WEI   | 061  |        |               |                  |            |          |       |       |               |           |    |          |       |       |               |     |      |          |
|-----------------------|--------------------|----------------|------------|-------------|------------------|-----|--------------|----|--------|----|-----|-----|--------------|-------------|--------|-----------------|-----------|----------|------|--------|---------------|------------------|------------|----------|-------|-------|---------------|-----------|----|----------|-------|-------|---------------|-----|------|----------|
| MAJOR UNIT MINERALS   |                    |                |            |             |                  |     |              |    |        |    |     | QTZ | VEININ       | 3           |        |                 |           |          | F    | ABRI   | с             |                  |            |          | F     | DLD   |               |           |    |          |       | FAUL  | .т            |     |      |          |
| Depth                 | From               | То             | Unit       | As% Cp% Mt% | % Po%            | Py% | VG<br>Specks | Co | mments | Fr | rom | То  | Vein<br>Type | Vein<br>% T | ex Con | act Alj<br>e di | pha<br>eg | Comments | From | То     | Alph<br>deç   | <sup>a</sup> Int | Тур<br>е   | Comments | From  | То    | Alph<br>a deg | Int Ty    | pe | Comments | From  | То    | Alph<br>a deg | Int | Туре | Comments |
| -                     | 277.2              | 283            | 4B         |             | 2                |     |              |    |        |    |     |     |              |             |        |                 |           |          |      |        |               |                  |            |          | 280.9 | 281.5 | 85            | WE F      | D  |          |       |       |               |     |      |          |
| - 28                  | 283<br>5 284.6     | 284.6<br>285.1 | €]<br>+ 2K |             |                  |     |              |    |        |    |     |     |              |             |        |                 |           |          | 283  | × 283. | 1 <u>× 67</u> | XWE              | KK S1      |          |       |       |               |           |    |          |       |       |               |     |      |          |
| -                     |                    |                |            |             | 5                | -   |              |    |        |    |     |     |              |             | č.     |                 |           |          | 287  | 287.   | 1 78          | MO               | D S1       |          | 286   | 286.7 | 88            | MO F      | D  |          |       |       |               |     |      |          |
| -<br>-<br>-<br>-<br>- | 285.1              | 297.1          | 4B         |             |                  |     |              |    |        |    |     |     |              |             |        |                 |           |          |      |        |               |                  |            |          | 288.9 | 290.6 | 80            | MO<br>D F | D  |          |       |       |               |     |      |          |
|                       |                    |                |            |             | 2<br>4<br>1<br>3 | 2   |              |    |        |    |     |     |              |             |        |                 |           |          | 293  | 293.   | 1 73          | MO               | D S1       |          |       |       |               |           |    |          |       |       |               |     |      |          |
| - 29                  | 297.1              | 298.6          | 4A         |             | 1<br>3<br>8      |     |              |    |        |    |     |     |              |             |        |                 |           |          |      |        |               |                  |            |          |       |       |               |           |    |          | 296.4 | 298.1 | 60            | MOD | HZ   |          |
| -<br>-<br>-<br>30     | <sup>)</sup> 298.6 | 301.8          | 48         |             | 2                |     |              |    |        |    |     |     |              |             |        |                 |           |          | 300  | 300.   | 1 69          | MO               | D S1       |          |       |       |               |           |    |          |       |       |               |     |      |          |
|                       |                    |                |            |             | 3                |     |              |    |        |    |     |     |              |             |        |                 |           |          |      |        |               |                  |            |          | 301.4 | 302.2 | 70            | K F       | D  |          |       |       |               |     |      |          |
| 30                    | 5                  |                |            |             | 5                |     |              |    |        |    |     |     |              |             |        |                 |           |          | 306  | 306.   | 1 52          | MOI              | D S1       |          | 307.3 | 307.6 | 90            | WEF       | D  |          |       |       |               |     |      |          |
|                       | )                  |                |            |             | 8                | 2   |              |    |        |    |     |     |              |             |        |                 |           |          | 308  | 308.   | 1 68          | MOI              | 5<br>S1    |          | 309.4 | 309.7 | 80            | WE E      | D  |          |       |       |               |     |      |          |
|                       | 301.8              | 320.9          | 4A         |             | 2                |     |              |    |        |    |     |     |              |             |        |                 |           |          |      |        |               |                  |            |          | 312.6 | 312.9 | 80            | WE F      | D  |          | 307.4 | 317.2 | 45            | MOD | HZ   |          |
| - 31                  | 5                  |                |            |             | 1                |     |              |    |        |    |     |     |              |             |        |                 |           |          | 315  | 315.   | 40            | MOI              | 51)<br>S1) |          |       |       |               |           |    |          |       |       |               |     |      |          |
|                       |                    |                |            |             | 10               |     |              |    |        |    |     |     |              |             |        |                 |           |          |      |        |               |                  |            |          |       |       |               |           |    |          |       |       |               |     |      |          |

|       | MA                  | JOR U          | TIN                                   |     |       |       | M     | IINEF | RALS         |          |      |    |              | QTZ VI        | EINING          |              |          |            |                | F            | ABRIC        | ;        |          |       |       |      | OLD     |            |       |       |      | FAUL | т    |          |
|-------|---------------------|----------------|---------------------------------------|-----|-------|-------|-------|-------|--------------|----------|------|----|--------------|---------------|-----------------|--------------|----------|------------|----------------|--------------|--------------|----------|----------|-------|-------|------|---------|------------|-------|-------|------|------|------|----------|
| Depth | From                | То             | Unit                                  | As% | Cp% I | Mt% F | Po% F | Py%   | VG<br>Specks | Comments | From | То | Vein<br>Type | Vein<br>% Tex | Contact<br>Type | Alpha<br>deg | Comments | From       | То             | Alpha        | Int          | Тур      | Comments | From  | То    | Alph | Int Typ | e Comments | From  | То    | Alph | Int  | Туре | Comments |
| -     | 301.8               | 320.9          | 4A                                    |     |       |       | 10    |       |              |          |      |    |              |               |                 |              |          |            |                |              |              |          |          |       |       |      |         |            |       |       |      |      |      |          |
|       | 220.0               | 228.0          |                                       |     |       |       |       |       |              |          |      |    |              |               |                 |              |          | 322.2      | 322.3          | 57           | XMOD         | S1       |          | 322   | 322.2 | 90   | WE FI   |            |       |       |      |      |      |          |
| 5     |                     | 020.0          |                                       |     |       |       |       |       |              |          |      |    |              |               |                 |              |          |            |                |              |              |          |          |       |       |      |         |            | 324   | 327.8 | 52   | WEK  | ΗZ   |          |
|       | 30                  |                |                                       |     |       |       |       |       |              |          |      |    |              |               |                 |              |          | 329<br>330 | 329.1<br>330.1 | × 75<br>× 77 | XWEK<br>XWEK | S1<br>S1 |          | 329.6 | 329.9 | 87   | WE FI   |            |       |       |      |      |      |          |
|       | 95<br>90<br>328.9   | 353.6          | δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ | 1   |       |       |       |       |              |          |      |    |              |               |                 |              |          | 339        | 339.1          | × 75         | XWEK         | ×S1      |          |       |       |      |         |            |       |       |      |      |      |          |
| 34    | 65<br>50            |                |                                       |     |       |       |       |       |              |          |      |    |              |               |                 |              |          | 348        | 348.1          | × 67         | XWER         | XS1      |          |       |       |      |         |            |       |       |      |      |      |          |
| 3     | 353.6<br>5<br>354.2 | 354.2<br>391.1 | 4B                                    |     |       | _     | 3     |       |              |          |      |    |              |               |                 |              |          | 357        | 357.1          | 70           | XWEK         | ×S1      |          |       |       |      |         |            | 356.5 | 357.1 | 70   | MOD  | HZ   |          |

|       |                                           |                                         |                                  |        |       |       |     |      |          |       |       |              |        |        |       |              | 16-WEI   | -061                       |       |       |      |          |          |                            |                       |              |       |      |          |       |       |      |      |      |                                               |
|-------|-------------------------------------------|-----------------------------------------|----------------------------------|--------|-------|-------|-----|------|----------|-------|-------|--------------|--------|--------|-------|--------------|----------|----------------------------|-------|-------|------|----------|----------|----------------------------|-----------------------|--------------|-------|------|----------|-------|-------|------|------|------|-----------------------------------------------|
|       | MA                                        |                                         |                                  |        |       |       |     | PALS |          | _     |       |              | 017    |        | NG    |              |          |                            |       | EA    | BBIC |          |          |                            |                       | FC           |       |      |          |       |       |      | EALU |      |                                               |
| Depth | From                                      | То                                      | Unit                             | As% Cp | % Mt% | Po%   | Py% | VG   | Comments | From  | То    | Vein<br>Type | Vein % | Tex Co | ntact | Alpha<br>deg | Comments | From                       | То    | Alpha | Int  | Тур      | Comments | From                       | То                    | Alph         | Int T | ype  | Comments | From  | То    | Alph | Int  | Туре | Comments                                      |
|       | 65                                        |                                         |                                  |        |       |       |     |      |          |       |       |              |        |        |       |              |          | 361                        | 361.1 | 63    | WEK? | S1)      |          |                            |                       |              |       |      |          |       |       |      |      |      |                                               |
| 3     | 70                                        |                                         |                                  |        |       |       |     |      |          |       |       |              |        |        |       |              |          | 367                        | 367.1 | 58    | WEK  | SI       |          | 368                        | 368.7                 | 82           | VE F  | Đ    |          |       |       |      |      |      |                                               |
| 3     | 75<br>354.2<br>80                         | 391.1                                   |                                  |        |       |       |     |      |          |       |       |              |        |        |       |              |          | 375                        | 375.1 | 60    | WEK  | S1<br>S1 |          | 377.8                      | 378                   | 90 1         | VE F  | Ð,   |          |       |       |      |      |      |                                               |
| - 31  | 35<br>90                                  |                                         |                                  |        |       | 1     |     |      |          |       |       |              |        |        |       |              |          | <u>387</u><br><u>391.1</u> | 387.1 | 57    | MODX | S1)      |          | 390.1                      | 390.4                 | 90 1         | VE F  | Đ    |          |       |       |      |      |      |                                               |
| - 39  | 391.1<br>5 394.7<br>395.1<br>396.5<br>397 | 394.7<br>395.1<br>396.5<br>397<br>397.9 | 4E<br>4E<br>4E<br>4E<br>4E<br>4E |        |       | 4 2 3 |     |      |          | 391.1 | 397.9 | QZ-C<br>A    | 65     |        |       |              |          | 396                        | 396.1 | (47)  | MODX | S1       |          | <u>396.2</u><br><u>397</u> | <u>396.6</u><br>397.3 | 78 V<br>83 A |       | افاف |          | 391.1 | 397.9 | 52   | INT  | SZ   | Intense<br>shearing with<br>strong alteration |
|       | 397.9                                     | 409.4                                   | 2.                               |        |       |       |     |      |          |       |       |              |        |        |       |              |          | 398                        | 398.1 | (70)  | WEK  | S1       |          | 397.9                      | 398.1                 | 90           | K / E | D    |          | 397.9 | 399   | 67   | MOD  | ΗZ   |                                               |

| _     | MA      | JOR U | NIT                                                                                         |       |       |       | M     | IINE | RALS         |          |      |    |              | QT  | Z VE | INING           |              |          |                   |                         | FA                   | BRIC       | ;              |          |       |       | F             | OLD    |           |        |       |             | FAU    | LT   |                                                                    |
|-------|---------|-------|---------------------------------------------------------------------------------------------|-------|-------|-------|-------|------|--------------|----------|------|----|--------------|-----|------|-----------------|--------------|----------|-------------------|-------------------------|----------------------|------------|----------------|----------|-------|-------|---------------|--------|-----------|--------|-------|-------------|--------|------|--------------------------------------------------------------------|
| Depth | From    | То    | Unit                                                                                        | As% C | ¢p% № | At% P | 'o% I | Py%  | VG<br>Specks | Comments | From | То | Vein<br>Type | e % | Tex  | Contact<br>Type | Alpha<br>deg | Comments | From              | То                      | Alpha<br>deg         | Int        | тур            | Comments | From  | То    | Alph<br>a deg | Int Ty | pe Commen | s Fron | то То | Alp<br>a de | ng Int | Туре | Comments                                                           |
| 40    | 5 397.9 | 409.4 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |       |       |       |       |      |              |          |      |    |              |     |      |                 |              |          | 405               | 405.1                   | 70                   | XMOD       | XS1)           |          |       |       |               |        |           |        |       |             |        |      |                                                                    |
| - 41  | 5       |       |                                                                                             |       |       |       |       |      |              |          |      |    |              |     |      |                 |              |          | 414               | 414.1                   | ×70                  | XWER       | XS1)           |          |       |       |               |        |           |        |       |             |        |      |                                                                    |
| 44    | 5 409.4 | 510.4 |                                                                                             |       |       |       |       |      |              |          |      |    |              |     |      |                 |              |          | 424               | 424.1                   | × 72                 | XMOD       | XS1            |          |       |       |               |        |           | 409.   | 462.  | 1 67        | 7 INT  | ΗZ   | Intense<br>shearing with<br>qtz<br>replacement<br>and elevated alt |
| 4     | δ       |       |                                                                                             |       |       |       |       |      |              |          |      |    |              |     |      |                 |              |          | 435<br>436<br>438 | 435.1<br>436.1<br>438.1 | × 62<br>× 58<br>× 57 | WEK<br>WEK | S1<br>S1<br>S1 |          | 435.4 | 435.5 | 5 90<br>6 90  | WE F   | D         |        |       |             |        |      |                                                                    |

|                                                                                             |       |       |                                       |       |      |       |      |                   |                                 |                                                                                                |          |       |       |           |      |         |       | 16-WE                                                                                                              | L-061 |       |       |       |          |          |       |       |       |     |      |          |       |       |       |     |      |                                                                                      |
|---------------------------------------------------------------------------------------------|-------|-------|---------------------------------------|-------|------|-------|------|-------------------|---------------------------------|------------------------------------------------------------------------------------------------|----------|-------|-------|-----------|------|---------|-------|--------------------------------------------------------------------------------------------------------------------|-------|-------|-------|-------|----------|----------|-------|-------|-------|-----|------|----------|-------|-------|-------|-----|------|--------------------------------------------------------------------------------------|
|                                                                                             |       |       |                                       |       |      |       | MIN  |                   | <u> </u>                        |                                                                                                |          |       |       |           | 077  |         |       |                                                                                                                    | 1     |       |       |       |          |          | T     |       |       |     |      |          | 1     |       |       |     |      |                                                                                      |
| 5                                                                                           | MAC   |       |                                       |       |      |       |      |                   | VG                              |                                                                                                |          | -     | -     | Vein      | Vein | Contac  | Alpha |                                                                                                                    | -     | _     | Alpha | ABRIC | ;<br>Tvn |          | FOL   |       |       | OLD |      |          |       | 1     | Alah  | FAU | LT   |                                                                                      |
| 8 -                                                                                         | rom   | 10    | Unit<br>V V V                         | AS% C | p% M | 1% P0 | % Py | <sup>%</sup> Spec | cks                             | Commen                                                                                         | (S       | From  | 10    | Туре      | %    | ex Type | deg   | Comments                                                                                                           | From  | То    | deg   | Int   | e        | Comments | From  | То    | a deg | Int | Туре | Comments | From  | То    | a deg | Int | Туре | Comments                                                                             |
| - 445<br>- 445<br>- 445<br>- 450<br>- 455                                                   |       |       |                                       |       |      | 1     |      |                   |                                 |                                                                                                |          |       |       |           |      |         |       |                                                                                                                    | 447   | 447.1 | × 35  | MOD   | ×S1      |          |       |       |       |     |      |          | 409.4 | 462.1 | 67    | INT | HZ   | Intense<br>shearing with<br>qtz<br>replacement<br>and elevated alt                   |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 109.4 | 510.4 |                                       |       |      |       |      |                   | Nu<br>sm<br>of g<br>in a<br>wit | merous<br>all patches<br>gold specks<br>a qtz-crb ve<br>h dark and<br>h dark and<br>ht veining | s<br>ein | 455.6 | 459.8 | QZ-C<br>A | 80   |         |       | / Qtz-crb<br>veining<br>with milky<br>and glassy<br>qtz phases<br>present<br>and VG<br>between<br>456.6-457.1<br>m | 462   | 455.1 | 43    | WEK . | (SI)     |          |       |       |       |     |      |          | ~     |       |       |     |      |                                                                                      |
| 465                                                                                         |       |       |                                       |       |      |       |      |                   |                                 |                                                                                                |          | 469.6 | 476.6 | QZ        | 15   |         |       |                                                                                                                    | 470   | 470.1 | 62    | WER   | (S1)     |          |       |       |       |     |      |          | 469.6 | 473.5 | 38    | MOD | sz   | Strong<br>shearing with<br>elevated alt<br>and qtz<br>replacement<br>Elevated strain |
| 475                                                                                         |       |       |                                       |       |      |       |      |                   |                                 |                                                                                                |          |       |       |           |      |         |       |                                                                                                                    | 476.1 | 476.2 | 57    | MODX  | S1)      |          |       | 170 0 |       | WE  | -    |          | 473.5 | 476.1 | 60    | E   | HZ   | throughout area                                                                      |
| -                                                                                           |       |       |                                       |       |      |       |      |                   |                                 |                                                                                                |          | 476.6 | 477.4 | QZ        | 35   |         |       |                                                                                                                    | 477   | 477.1 | 50    | WEK   | S1)      |          | 477.8 | 476.6 | 90    | WE  | FD   |          | 476.1 | 478.1 | 65    | INT | SZ   | sheared with<br>strong<br>alteration and                                             |
| F                                                                                           |       |       | , , , , , , , , , , , , , , , , , , , |       |      |       |      |                   |                                 |                                                                                                |          | 478.5 | 480.3 | QZ        | 15   |         |       |                                                                                                                    | 479.8 | 479.9 | 75    | WER   | SI       |          |       |       |       |     |      |          |       |       |       |     |      | Are replacement/                                                                     |

|       | MA             | JOR U | TIV          |     |       |        | MIN   | ERALS        |          |       |       |              | QTZ         | VEINING          | 6               |          | FABRIC     |       |                  |                   |          |          |                |                | F             | DLD                 |          | 1     | FAULT |      |     |      |                                                           |  |  |
|-------|----------------|-------|--------------|-----|-------|--------|-------|--------------|----------|-------|-------|--------------|-------------|------------------|-----------------|----------|------------|-------|------------------|-------------------|----------|----------|----------------|----------------|---------------|---------------------|----------|-------|-------|------|-----|------|-----------------------------------------------------------|--|--|
| Depth | From           | То    | Unit         | As% | Cp% M | t% Pos | % Py% | VG<br>Specks | Comments | From  | То    | Vein<br>Type | Vein<br>% T | ex Conta<br>Type | ct Alpha<br>deg | Comments | From       | т     | o Alph           | a Int             | Тур      | Comments | From           | То             | Alph<br>a deg | Int Type            | Comments | From  | То    | Alph | Int | Туре | Comments                                                  |  |  |
| - 48  | 85             |       |              |     |       |        |       |              |          | 478.5 | 480.3 | QZ           | 15<br>45    |                  |                 |          | 480.5      | 48(   | 0.6 67<br>3.1 77 | ,<br>XMOE<br>XWEF | S1       |          | 480.9          | 481.3          | 90            | WE FD               |          |       |       |      |     |      |                                                           |  |  |
| - 49  | əb             |       |              |     |       |        |       |              |          | 488.4 | 491.6 | QZ           | 10          |                  |                 |          | 492        | × 49: | 2.1 63           | WEł               | SI       |          |                |                |               |                     |          |       |       |      |     |      |                                                           |  |  |
| -     |                |       |              |     |       |        |       |              | 3        | 493.3 | 494   | QZ           | 85          |                  |                 |          |            |       |                  |                   |          |          |                |                |               |                     |          |       |       |      |     | -    |                                                           |  |  |
| - 49  | - 495 409.4    | 510.4 |              |     |       |        |       |              |          | 496.5 | 502   | QZ           | 20          |                  |                 |          | 500        | × 500 | 0.1 62           | WE                | XS1      |          |                |                |               |                     |          | 493   | 501.5 | 65   | MOD | ΗZ   | Elevated strain<br>and some<br>veining<br>throughout area |  |  |
| 50    | 05             |       |              |     |       |        |       |              |          | 508.4 | 510   | QZ           | 30          |                  |                 |          | 510        |       |                  |                   |          |          |                |                |               |                     |          |       |       |      |     |      |                                                           |  |  |
|       | <b>510.1</b>   | 510.5 | QTZ          |     |       |        |       |              |          |       |       |              |             |                  |                 |          | 210        |       | 0.1 00           | VVEr              | ASL      |          |                |                |               |                     |          |       | 510   |      | MOD |      |                                                           |  |  |
| 5     | 510.4<br>513.5 | 514.2 | VN<br>*_2,*  |     |       |        |       |              |          |       |       |              |             |                  |                 |          | 514.2      | 514   | 4.3 78           |                   | S1       |          | 513.4<br>513.9 | 513.6<br>514.2 | 90<br>90      | WE<br>K<br>WE<br>FD |          | 511.5 | 512   | - 6/ | Ē   | HZ   |                                                           |  |  |
|       | 514.2          | 518.3 | 4A           |     |       | 6      |       |              |          |       |       |              |             |                  |                 |          | 516<br>517 | 510   | 6.1 5<br>7.1 33  | MOL               | S1<br>S1 |          | 515.8          | 516.4          | 90            | MO<br>D FD          |          | 514.7 | 518.3 | 35   | MOD | НZ   | High strain<br>with folding<br>throughout 4A<br>unit      |  |  |
|       | 518.3          | 529.1 | <u>,</u> 2,~ |     |       |        | 1     |              |          |       |       |              |             |                  |                 |          | 519        | 519   | 9.1 60           | WE                | S1       |          | 518            | 518.3          | 90            | DFD                 |          |       |       |      |     |      |                                                           |  |  |
|           |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |       |                       |      |             |   |          |       |     |              |           |      |                 |              | 16-WE    | 061   |                |              |              |              |          |                         |                                |                |          |          |     |       |       |               |          |      |                                               |
|-----------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-------|-----------------------|------|-------------|---|----------|-------|-----|--------------|-----------|------|-----------------|--------------|----------|-------|----------------|--------------|--------------|--------------|----------|-------------------------|--------------------------------|----------------|----------|----------|-----|-------|-------|---------------|----------|------|-----------------------------------------------|
|           | MA    | JOR U | NIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |     |       | N                     | AINE | RALS        | ; |          |       |     |              | QTZ       | Z VE | INING           |              |          |       |                | FA           | ABRIC        |              |          |                         |                                | F              | OLD      |          |     |       |       |               | FAUL     | .T   |                                               |
| Depth     | From  | То    | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | As% | Cp% | At% P | 0% I                  | Py%  | VG<br>Speck | s | Comments | From  | То  | Vein<br>Type | Vein<br>% | Tex  | Contact<br>Type | Alpha<br>deg | Comments | From  | То             | Alpha<br>deg | Int          | Тур<br>е     | Comments | From                    | То                             | Alph<br>a deg  | Int Ty   | pe Comme | nts | From  | То    | Alph<br>a deg | Int      | Туре | Comments                                      |
|           | 518.3 | 529.1 | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |       |                       |      |             |   |          | 520.6 | 523 | QZ           | 15        | -    |                 |              |          |       |                |              |              |              |          |                         |                                |                |          |          |     |       |       |               |          |      |                                               |
| - 530     |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |       |                       |      |             |   |          |       |     |              |           |      |                 |              |          | 527   | 527.1          | 45           | WEK          | <b>(S1</b> ) |          |                         |                                |                |          |          |     |       |       |               |          |      |                                               |
| - 535     | 529.1 | 538.3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |       |                       |      |             |   |          |       |     |              |           |      |                 |              |          | 533   | 533.1          | 50           | XWER         | (S1)         |          |                         |                                |                |          |          |     | 534.7 | 535.9 | 62            | MOD<br>E | HZ   |                                               |
|           | 538.3 | 542.9 | >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     >     > <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>u.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>542</td> <td>542.1</td> <td>55</td> <td>XWEK</td> <td><u>(S1</u>)</td> <td></td> |     |     |       | •                     |      |             |   |          |       |     | u.           |           |      |                 |              |          | 542   | 542.1          | 55           | XWEK         | <u>(S1</u> ) |          |                         |                                |                |          |          |     |       |       |               |          |      |                                               |
| - 545<br> |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |     |       | 3<br>5<br>3<br>7<br>5 |      |             |   |          |       |     |              |           |      |                 |              |          | 546   | 546.1<br>547.7 | (40)<br>(5)  | XMOD<br>XMOD | (S1)<br>(S1) |          | 546.4<br>547.9<br>548.5 | 547.4<br>548.1<br>549          | 90<br>90<br>90 | MO NE KE | F        | _   | 544.3 | 546.9 | 58            | MOD      | нz   |                                               |
| - 550<br> | 542.9 | 557.3 | 4A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |     |       | 8<br>5<br>1<br>4      |      |             |   |          |       |     |              |           |      |                 |              |          | 550.7 | 550.8<br>552.7 | 23<br>18     | XMOD<br>XMOD | (S1)<br>(S1) |          | 549.6<br>550.4<br>552.4 | <u>550.1</u><br>550.8<br>552.9 | 50<br>90<br>87 | K MO D F |          |     |       |       |               |          |      |                                               |
|           | 557.3 | 580   | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |     |       | 4                     |      |             |   |          |       |     |              |           |      |                 |              |          |       |                |              |              |              |          |                         |                                |                |          |          |     | 557.3 | 562.1 | 60            | INT      | SZ   | Strongly<br>sheared mafic<br>at start of unit |

|       |                |       |      |     |       |       |                  |      |      |       |                  |      |      |    |        |       |               |        |        | 1    | 6-WEI   | -061                  |                       |               |                      |                      |          |                     |              |      |     |      |          |       |       |      |     |    |                                               |
|-------|----------------|-------|------|-----|-------|-------|------------------|------|------|-------|------------------|------|------|----|--------|-------|---------------|--------|--------|------|---------|-----------------------|-----------------------|---------------|----------------------|----------------------|----------|---------------------|--------------|------|-----|------|----------|-------|-------|------|-----|----|-----------------------------------------------|
|       | MA             |       | INIT |     |       |       | M                | INFI | RAIS |       |                  |      |      |    |        |       |               | EINING |        |      |         | 1                     |                       | EA            |                      |                      |          | 1                   |              |      |     |      |          |       |       |      |     | -  |                                               |
| Depth | From           | То    | Unit | As% | Cp% I | At% F | 0% F             | y%   | VG   | . (   | Comme            | ents | From | То | V<br>T | ein V | vein<br>% Tex | Conta  | t Alph | a Co | omments | From                  | То                    | Alpha         | Int                  | Тур                  | Comments | From                | То           | Alph | Int | Туре | Comments | From  | То    | Alph | Int |    | Comments                                      |
|       |                |       |      |     |       |       |                  |      |      |       |                  |      |      |    |        |       |               | .,,,,  |        |      |         | 560                   | 560.1                 | 58            | MOD                  | S1/                  |          |                     |              | auey |     |      |          | 557.3 | 562.1 | 60   | INT | sz | Strongly<br>sheared mafic<br>at start of unit |
|       | 70 557.3<br>75 | 580   |      |     |       |       |                  |      |      |       |                  |      |      |    |        |       |               |        |        |      |         | 570                   | 570.1                 | 52            | XMOD>                | (S1)                 |          |                     |              |      |     |      |          |       |       |      |     |    |                                               |
|       | 10             |       |      |     |       |       |                  |      |      |       |                  |      |      |    |        |       |               |        |        |      |         | 579                   | 579.1                 | 68            | WEK                  | (S1)                 |          |                     |              |      |     |      |          |       |       |      |     |    |                                               |
|       | 35             |       |      | 1   |       |       | 3<br>2<br>2      |      |      | ASI   | olebs<br>ociated | with |      |    |        |       |               |        |        |      |         | 581                   | 581.1                 | 53            | XMOD                 | <u>(S1</u> )         |          | 580                 | 580.6        | 90   |     | FD   |          |       |       |      |     |    |                                               |
|       |                |       |      |     |       |       | 2                |      |      | \loca | lly              |      |      |    |        |       |               |        |        |      |         | 586                   | 586.1                 | 47            | MOD                  | S1                   |          | 588.7               | 589.3        | 90   | MO  | FD   |          |       |       |      |     |    |                                               |
| - 59  | 580            | 600.8 | 48   |     |       | +     | _                |      |      |       |                  |      |      |    |        |       |               |        |        |      |         | 590.4                 | 590.5                 | 25            | MOD                  | (S1)                 |          | <u>590</u><br>591,4 | 590.4<br>592 | 85   | WE  | FD   |          |       |       |      |     |    |                                               |
| 59    | 95             |       |      |     |       |       | 2<br>3<br>1<br>3 |      |      |       |                  |      |      |    |        |       |               |        |        |      |         | 594<br>595.4<br>596.9 | 594.1<br>595.5<br>597 | 0<br>40<br>35 | XMOD<br>XMOD<br>XMOD | (S1)<br>(S1)<br>(S1) |          | 592.7               | 592.8        | 87   | K K | FD   |          |       |       |      |     |    |                                               |

|       |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         | 16-WEI                   | -061  |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
|-------|------|----------------|----------------------------------------|-----|-----|-------|-----|------|-------------|---|---------|----|-------|------|----------|--------------|-------------------|-----------------|--------------|---------|--------------------------|-------|-------|-------|------------------|-------|----------------|----------|-------|-------|--------------|----------|------|----------|-------|-------|---------------|-----|------|----------|
|       |      |                |                                        |     |     |       |     |      |             |   |         |    | 1     |      |          |              |                   |                 |              |         |                          | 1     |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
|       | MA   | Jor u          | NIT                                    |     |     |       | _   | MINE | RALS        | 3 |         |    |       |      | -        | C            | TZ V              | EINING          |              |         |                          |       | 1     | F     | ABRI             | IC    | _              |          |       |       | -            | FOLI     | )    |          |       |       |               | FAU | LT   |          |
| F     | rom  | То             | Unit                                   | As% | Cp% | Mt% F | Po% | Py%  | VG<br>Speck | s | Comment | ts | From  | То   | Ve<br>Ty | ein V<br>/pe | <sup>eln</sup> Te | x Conta<br>Type | ct Alp<br>de | ha<br>g | Comments                 | From  | То    | Alpha | <sup>a</sup> Int | t Tyj | <sup>p</sup> C | Comments | From  | То    | Alpl<br>a de | g Int    | Туре | Comments | From  | То    | Alph<br>a deg | Int | Туре | Comments |
|       | 580  | 600.8          | 4B                                     |     |     | F     | 3   |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| 6     | 8.00 | 603            | 4A                                     |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
|       |      |                | · , * , * .                            |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          | 603   | 603.1 | 62    | MO               | D S1  | 1              |          |       |       |              |          |      |          |       |       |               |     |      |          |
| 605   |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
|       |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| Ē     |      |                | , , , , , , , , , , , , , , , , , , ,  |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               | 5   |      |          |
|       |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| - 610 |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
|       |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| E     |      |                | · · · · ·                              |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          | 612   | 612.1 | 55    | MOI              | D S1  | 1              |          |       |       |              |          |      |          |       |       |               |     |      |          |
| EI e  | 603  | 624.9          | 2                                      |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| 615   |      |                | ***                                    |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| -     |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| F     |      |                | · · · · · ·                            |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| E     |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| 620   |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
|       |      |                | (                                      |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          | 621   | 621.1 | X 50  | MOI              | DX S1 | 17             |          |       |       |              |          |      |          |       |       |               |     |      |          |
| -     |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
|       |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| 620   | 24.9 | 625.9          | 4B                                     |     |     |       | 6   |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          | 625.5 | 625.6 | 47    | MOL              | D S1  |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| 6     | 25.9 | 626.3<br>626.8 | -4B-                                   |     |     |       | 12  |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              | WE       |      |          |       |       |               |     |      |          |
| - 6   | 26.8 | 628.2          | 13                                     |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          | 628.2 | 628.3 | 62    | MO               | DX S1 |                |          | 628.1 | 628.2 | V 90         | WE       | ED   |          |       |       |               | MOD |      |          |
|       | 28.2 | 628.8          | 4 <b>D</b>                             |     |     | t     | 10  |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          | 020.0 | 020.5 | 10           | <u> </u> |      |          | 628.2 | 628.8 | 62            | E   | HZ   |          |
| 630   | 28.8 | 632.5          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| -     |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| E     |      |                |                                        |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| F     |      |                | · · · · ·                              | ŀ   |     | F     |     |      | 1           |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| 630   | 00.5 | 0.47.0         | · · · · · · · · · · · · · · · · · · ·  |     |     |       |     |      |             |   |         |    | 000 5 | 0.40 |          | DI I         |                   |                 |              |         | veins<br>typically       |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| E 63  | 32.5 | 047.3          | · · · · ·                              |     | 0.5 |       | 1   | 0.1  |             |   |         |    | 632.5 | 046  | QZ.      | BL           | 4                 |                 |              |         | folded or<br>boudinaged. | 636.5 | 636.6 | × 65  | MOL              | DX S1 | D              |          |       |       |              |          |      |          |       |       |               |     |      |          |
| E     |      |                | ***                                    |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |
| F     |      |                | · · · · · ·                            |     |     |       |     |      |             |   |         |    |       |      |          |              |                   |                 |              |         |                          |       |       |       |                  |       |                |          |       |       |              |          |      |          |       |       |               |     |      |          |

| 16-WEL-06 | 1 |
|-----------|---|
|-----------|---|

| I                           | MAJ | OR U  | NIT                                               |     |     |     | 1   | MINE | RALS         |          |       |       |              | QTZ V        | EINING            |                |                                                |                         |                         | F              | ABRIC        | ;              |          |       |       |     | FC            | OLD    |                             |      |    |               | FAU | LT   |          |
|-----------------------------|-----|-------|---------------------------------------------------|-----|-----|-----|-----|------|--------------|----------|-------|-------|--------------|--------------|-------------------|----------------|------------------------------------------------|-------------------------|-------------------------|----------------|--------------|----------------|----------|-------|-------|-----|---------------|--------|-----------------------------|------|----|---------------|-----|------|----------|
| Frc                         | om  | То    | Unit                                              | As% | Cp% | Mt% | Po% | Py%  | VG<br>Specks | Comments | From  | То    | Vein<br>Type | Vein<br>% Te | ex Contac<br>Type | t Alpha<br>deg | Comments                                       | From                    | То                      | Alpha<br>deg   | Int          | Typ<br>e       | Comments | From  | т     | ō   | Alph<br>a deg | Int Ty | e Comments                  | From | То | Alph<br>a deg | Int | Type | Comments |
| - 632<br>- 632<br>- 645<br> | 2.5 | 647.3 |                                                   |     | 0.5 | -   | 1   | 0.1  |              |          | 632.5 | 646   | QZ-BI        | - 4          |                   |                | veins<br>typically<br>folded or<br>boudinaged. | 644.2<br>645.1<br>645.3 | 644.3<br>645.2<br>645.4 | 65<br>55<br>50 | ×MOD<br>×MOD | S0<br>S1<br>S1 |          | 645.5 | × 64! | 5.6 | 80            | MO S   | viregualarly<br>folded vein | >    |    |               |     |      |          |
| 650<br>                     | 7.3 | 665.1 |                                                   |     |     |     |     |      |              |          |       |       |              |              |                   |                |                                                | 656.5                   | 656.6                   | × 60           | ×MOD         | ×S1            |          |       |       |     |               |        |                             |      |    |               |     |      |          |
| 665                         | 5.1 | 668.9 | + + + +<br>+ + + +<br>+ 2 K<br>+ + + +<br>+ + + + |     |     |     |     |      |              |          |       |       |              |              |                   |                |                                                | 665.5                   | 665.6                   | 65             | XMOD         | ×S1            |          |       |       |     |               |        |                             |      |    |               |     |      |          |
| - 666<br>- 675<br>          | 3.9 | 680.4 |                                                   |     |     |     |     |      |              |          | 679.6 | 679.8 | 07           | v10          |                   |                |                                                | 675.7                   | 675.8                   | 70             | ×MOD         | ×S1            |          |       |       |     |               |        |                             |      |    |               |     |      |          |

|                                                  |                         |                                |      |     |     |       |     |      |              |          |       |       |              |     |             |                |                | 16-WEI                                                                                                           | 061   |       |              |      |          |          |       |       |               |       |      |          |       |       |               |       |          |          |
|--------------------------------------------------|-------------------------|--------------------------------|------|-----|-----|-------|-----|------|--------------|----------|-------|-------|--------------|-----|-------------|----------------|----------------|------------------------------------------------------------------------------------------------------------------|-------|-------|--------------|------|----------|----------|-------|-------|---------------|-------|------|----------|-------|-------|---------------|-------|----------|----------|
|                                                  | MA.                     |                                |      |     |     |       | N   | AINE | BALS         |          |       |       |              | 0   |             | FINING         |                |                                                                                                                  | 1     |       | FA           | BRIC |          |          | 1     |       | F             |       |      |          | 1     |       |               | FAIII | т        |          |
| Depth                                            | rom                     | То                             | Unit | As% | Cp% | Mt% P | 0%  | Py%  | VG<br>Specks | Comments | From  | То    | Veir<br>Type | n V | ein<br>% Te | Contac<br>Type | t Alpha<br>deg | Comments                                                                                                         | From  | То    | Alpha<br>deg | Int  | Тур<br>е | Comments | From  | То    | Alph<br>a deg | Int 1 | Гуре | Comments | From  | То    | Alph<br>a deg | Int   | Туре     | Comments |
|                                                  | 568.9<br>580.4<br>581.1 | <u>680.4</u><br>681.1<br>688.8 |      |     |     |       |     |      |              |          | 681.2 | 681.5 | 5 QZ         |     | 0           |                |                | vein<br>appears to<br>have been<br>brecciated<br>and<br>re-cemented<br>with<br>multiple<br>generations<br>of qtz |       |       |              |      |          |          |       |       |               |       |      |          |       |       |               |       |          |          |
| - 690<br>- 690<br>- 695<br>- 695<br>- 695<br>- 6 | 588.8                   | 703.2                          | 48   |     |     | (     | ).5 |      |              |          |       |       |              |     |             |                |                |                                                                                                                  | 695   | 695.1 | 15           | MOD  | (S0)     |          | 690.5 | 690.6 | ×75>          | MO    | FD   |          | 689.2 | 689.3 | 90            |       | BC<br>BC |          |
|                                                  |                         |                                |      |     |     |       |     |      |              |          |       |       |              |     |             |                |                |                                                                                                                  | 703   | 703.1 | 65           | MOD  | S0)      |          |       |       |               |       |      |          |       |       |               |       |          |          |
| 710                                              | 03.2                    | 719.6                          |      |     |     |       |     |      |              |          |       |       |              |     |             |                |                |                                                                                                                  | 711.5 | 711.6 | 55           | MOD  | (S1)     |          |       |       |               |       |      |          |       |       |               |       |          |          |

|                                                      |       |      |         |       |       |       |              |       |      | 1    |    |              |           |       |                 |              |          |               |                    |                    |              |                |          |       |         |               |        |        |         |       |       |               |      |      |          |
|------------------------------------------------------|-------|------|---------|-------|-------|-------|--------------|-------|------|------|----|--------------|-----------|-------|-----------------|--------------|----------|---------------|--------------------|--------------------|--------------|----------------|----------|-------|---------|---------------|--------|--------|---------|-------|-------|---------------|------|------|----------|
| MA                                                   | JORL  | JNIT |         |       | м     | INER  | ALS          |       |      |      | 1  | 1            | QT:       | Z VEI | NING            |              | 1        |               | -                  | F                  | ABRIC        |                |          | -     |         | FC            | LD     |        |         |       |       |               | FAUL | т    |          |
| From                                                 | То    | Unit | As% Cp% | Mt% F | 20% P | °y% s | VG<br>Specks | Comme | ents | From | То | Vein<br>Type | Vein<br>% | Tex   | Contact<br>Type | Alpha<br>deg | Comments | From<br>720.6 | <b>To</b><br>720.7 | Alpha<br>deg<br>10 | Int<br>MOD   | Typ<br>e<br>S0 | Comments | From  | То      | Alph<br>a deg | Int Ty | rpe Co | omments | From  | То    | Alph<br>a deg | Int  | Туре | Comments |
| -<br>-<br>-<br>-<br>-<br>-<br>725<br>-<br>-<br>719.6 | 731.7 | 48   |         |       |       |       |              |       |      |      |    |              |           |       |                 |              |          | 724.3<br>725  | 724.4<br>725.1     | 15<br>0            | XMOD<br>XMOD | S0<br>S0       |          |       |         |               |        |        |         |       |       |               |      |      |          |
| 730                                                  |       |      |         | -     | 0.5   |       |              |       |      |      |    |              |           |       |                 |              |          | 728.6         | 728.7              | 60                 | XMOD         | <u>S0</u>      |          |       |         |               |        |        |         |       |       |               |      |      |          |
| - 735<br>- 740<br>- 740<br>- 745<br>- 745<br>- 731.7 | 809.8 |      |         |       |       |       |              |       |      |      |    |              |           |       |                 |              |          | 740.2         | 740.3              | × 50               | XMOD         | S1)            |          | 744.9 | 745     | ×85 <         | MOVE   | D      |         |       |       |               |      |      |          |
| - 750<br><br><br><br><br><br><br><br><br><br>        |       |      |         |       |       |       |              |       |      |      |    |              |           |       |                 |              |          | 754           | 754.1              | 65                 | MOD          | × <u>so</u> >  |          | 754.5 | × 754.6 | ×85           | MO     | NE)    |         | 750.9 | 760.0 | 10            | WEK  | DD   |          |

|       |                                                                                 |           |      |        |       |       |      |              |          |                                      |       |              |        |                    |                | 16-WEI                                                                | -061  |             |          |      |             |          |        |              |                           |                                            |                        |          |                      |                    |                     |            |            |          |
|-------|---------------------------------------------------------------------------------|-----------|------|--------|-------|-------|------|--------------|----------|--------------------------------------|-------|--------------|--------|--------------------|----------------|-----------------------------------------------------------------------|-------|-------------|----------|------|-------------|----------|--------|--------------|---------------------------|--------------------------------------------|------------------------|----------|----------------------|--------------------|---------------------|------------|------------|----------|
|       | MA                                                                              | JOBU      | NIT  |        |       |       | MINE | RALS         |          |                                      |       |              | QTZ    | VEINING            | _              |                                                                       |       |             | FA       | BRIC |             |          |        |              | F                         | OLD                                        |                        |          |                      |                    | _                   | FAUL       |            |          |
| Depth | From                                                                            | То        | Unit | As% Cp | % Mt% | Po%   | Py%  | VG<br>Specks | Comments | From                                 | То    | Vein<br>Type | Vein - | Tex Contac<br>Type | t Alpha<br>deg | Comments                                                              | From  | То          | Alpha    | Int  | Тур<br>е    | Comments | From   | То           | Alph<br>a deg             | Int Ty                                     | pe Co                  | omments  | From                 | То                 | Alph<br>a deg       | Int        | Туре       | Comments |
|       | 70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>7 | <b>To</b> |      | As% Cp | % Mt% | • P0% | Py%  | VG<br>Specks | Comments | From           772.2           773.1 | 802.4 | QZ<br>QZ     | 1      | Tex Contac<br>Type | t Alpha<br>deg | Veins have<br>been<br>attenuated<br>into groups<br>of ovoid<br>lenses | 763.8 | To<br>763.9 | 60<br>60 | MOD  | Typ e<br>S0 | Comments | 7788.5 | To<br>7772.3 | Alph<br>A deg<br>55<br>85 | MO<br>D<br>MO<br>D<br>MO<br>MO<br>MO<br>MO | De Co<br>Tolda<br>Vein | deded ns | <b>From</b><br>759.8 | <b>To</b><br>760.9 | Alph<br>a deg<br>40 | Int<br>WEK | Type<br>BR | Comments |
| 7     | 95                                                                              |           |      |        |       |       |      |              |          |                                      |       |              |        |                    |                |                                                                       |       |             |          |      |             |          |        |              |                           |                                            |                        |          | 798.3                | 799                | 75                  | MOD        | BR         |          |

| 1 | 6- | W | Ε | L-( | D | 6 | 1 |
|---|----|---|---|-----|---|---|---|
|---|----|---|---|-----|---|---|---|

|                 | MA    |       | NIT                                   |     |       |       | М   | INER | ALS          |          |       |       |              | QTZ       | VEIN  | IING           |              |                                               |        |       | FA           | BRIC |            |          |       |       | F             | OLD     |      |          |       |       |               | FAU | LT   |          |
|-----------------|-------|-------|---------------------------------------|-----|-------|-------|-----|------|--------------|----------|-------|-------|--------------|-----------|-------|----------------|--------------|-----------------------------------------------|--------|-------|--------------|------|------------|----------|-------|-------|---------------|---------|------|----------|-------|-------|---------------|-----|------|----------|
| Depth           | From  | То    | Unit                                  | As% | Cp% M | t% Po | % P | y% s | VG<br>Specks | Comments | From  | То    | Vein<br>Type | Vein<br>% | Tex C | ontact<br>Type | Alpha<br>deg | Comments                                      | From   | То    | Alpha<br>deg | Int  | Тур<br>е   | Comments | From  | То    | Alph<br>a deg | Int     | Туре | Comments | From  | То    | Alph<br>a deg | Int | Туре | Comments |
|                 |       |       |                                       |     |       |       |     |      |              |          | 773.1 | 802.4 | QZ           | 1         |       |                |              | typicall<br>folded.<br>chlorite<br>selvedges. |        |       |              |      |            |          | 802.2 | 802.3 | V 85          | MO      | ZE   |          |       |       |               |     |      |          |
|                 |       |       |                                       |     |       |       |     |      |              |          | 802.4 | 802.8 | QZ           | 40        |       |                |              | barren                                        | 1      |       |              |      |            |          | 802.3 | 802.4 | 190           | MO      | ME   |          |       |       |               |     |      |          |
| - 805           | 731.7 | 809.8 | 2                                     |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               | 804.9  | 805   | 55           | MOD  | S1)        |          |       |       |               |         |      |          |       |       |               |     |      |          |
|                 |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| - 810           |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          | 809.8 | 809.9 | 40            | MOD | HZ   |          |
|                 | 809.8 | 810.9 | -48-                                  |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               | 810.8  | 810.9 | 35           |      | (S0)       |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               | 010.0 | 012.0 |                                       |     |       | 5     |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
|                 |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
|                 |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| - 820           |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               | 820.7  | 820.8 | 45           | MOD  | <b>S</b> 1 |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
|                 |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| - 825           |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               | 812.5 | 867.5 | 2                                     |     |       |       |     |      |              |          |       |       |              |           |       |                |              | occasional                                    | 826.8  | 826.9 | 55           | MOD  | S1         |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               |       |       |                                       |     |       |       |     |      |              |          | 816   | 861   | A            | 3         |       |                |              | chlorite<br>selvedges.                        |        |       | 1            |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -<br>- 830<br>- |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               | 830.7  | 830.8 | 65           | MOD  | C1         |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               |       |       |                                       |     |       | 0.    | 5   |      |              |          |       |       |              |           |       |                |              |                                               | 0.00.1 | 050.0 | 05           | WOD  |            |          |       |       | -             |         |      |          |       |       |               |     |      |          |
|                 |       |       | · · · · · · · · · · · · · · · · · · · |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| - 835           |       |       |                                       |     |       | -     | _   |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |
| -               |       |       |                                       |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          | 837.5 | 837.6 | 80            | MO<br>D | FD   |          |       |       |               |     |      |          |
| -               |       |       | · · · · ·                             |     |       |       |     |      |              |          |       |       |              |           |       |                |              |                                               |        |       |              |      |            |          |       |       |               |         |      |          |       |       |               |     |      |          |

| Image: |           |     |       |      |     |     |     |     |     |      |            |          |      |     |              |         |              |                |                |                                      |         |                    |              |       |              |          |         |       |               |       |     |          |      |       |               |     |      |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-------|------|-----|-----|-----|-----|-----|------|------------|----------|------|-----|--------------|---------|--------------|----------------|----------------|--------------------------------------|---------|--------------------|--------------|-------|--------------|----------|---------|-------|---------------|-------|-----|----------|------|-------|---------------|-----|------|----------|
| Image: Normalize and Section 2000 and Secti | N         | MAJ | OR U  | NIT  |     |     |     |     | MIN | IERA | LS         |          |      |     |              | Q       | TZ VI        | EINING         |                |                                      |         |                    | FA           | ABRIC | :            |          |         |       | F             | OLD   |     |          |      |       |               | FAU | LT   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fro       | m   | То    | Unit | As% | Cp% | Mt% | Po% | Py  | % Sp | /G<br>ecks | Comments | From | То  | Vein<br>Type | Ve<br>9 | ein<br>% Tex | Contac<br>Type | t Alpha<br>deg | Comments                             | From    | То                 | Alpha<br>deg | Int   | Тур          | Comments | From    | То    | Alph<br>a deg | Int 1 | ype | Comments | From | То    | Alph<br>a deg | Int | Туре | Comments |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 812<br>50 | 2.5 | 867.5 |      |     |     |     | 0.5 |     | sp   | ecks       |          | 816  | 861 | QZ-C<br>A    |         | 3            | Type           | deg            | occasional<br>chlorite<br>selvedges. | (B59.7) | × 841.5<br>× 859.8 | 65<br>70     | ×MOD  | si Si        |          | (844.7) | 844.8 | a deg         | MO    | FD. |          |      |       |               |     |      |          |
| 877.9 893.2 V 2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 867       | 2.5 | 877.9 |      |     |     |     |     |     |      |            |          |      |     |              |         |              |                |                |                                      | 863     | 877.7              | 65           | XMOD  | (S1)<br>(S1) |          |         |       |               |       |     |          | 870  | 872.6 | 50            | MOD | BR   |          |

| L     | MA           | JOR U        | NIT                                                                                                   |        | _     | N   | INEF | RALS         |          |      |    |                                         | QTZ  | VEIN | NING                                    |              |          |       |       | FA    | BRIC |          |          |                         |                       | F              | OLD   |       |          |      |    |       | FAU | .т    |          |
|-------|--------------|--------------|-------------------------------------------------------------------------------------------------------|--------|-------|-----|------|--------------|----------|------|----|-----------------------------------------|------|------|-----------------------------------------|--------------|----------|-------|-------|-------|------|----------|----------|-------------------------|-----------------------|----------------|-------|-------|----------|------|----|-------|-----|-------|----------|
| Depth | From         | То           | Unit                                                                                                  | As% Cp | % Mt% | Po% | Py%  | VG<br>Specks | Comments | From | То | Vein<br>Type                            | Veln | Tex  | Contact<br>Type                         | Alpha<br>deg | Comments | From  | То    | Alpha | Int  | Тур      | Comments | From                    | То                    | Alph           | Int T | ype   | Comments | From | То | Alph  | Int | Type  | Comments |
| 8     | 877.9        | 893.2        |                                                                                                       |        |       |     |      |              |          |      |    | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      |      | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |          | 886   | 886.1 | 55    | MOD  | <b>e</b> |          |                         |                       | a deg          |       | 7     |          |      |    | a deg |     | . The |          |
| 8     | 893.2<br>00  | 899.3        | 44                                                                                                    |        |       | 2   |      |              |          |      |    |                                         |      |      |                                         |              |          |       |       |       |      |          |          |                         |                       |                |       |       |          |      |    |       |     |       |          |
|       | 899.3        | 906.2        | $\langle \cdot, $ |        |       |     |      |              |          |      |    |                                         |      |      |                                         |              |          | 901.6 | 901.7 | 70    | MOD  | S1)      |          |                         |                       |                |       |       |          |      |    |       |     |       |          |
| -     | 906.2        | 908.5        | 4B                                                                                                    |        |       | 2   |      |              |          |      |    |                                         |      |      |                                         |              |          |       |       |       |      |          |          |                         |                       |                |       |       |          |      |    |       |     |       |          |
| 9     | 908.5        | 911          | 4FB                                                                                                   |        |       | 5   |      |              |          |      |    |                                         |      |      |                                         |              |          |       |       |       |      |          |          | 909.5<br>909.9<br>910.5 | 909.6<br>910<br>910.6 | 60<br>80<br>85 | MOMOM | D D D |          |      |    |       |     |       |          |
| 9     | 911<br>918.4 | 918.4<br>923 | 48                                                                                                    |        |       | 2   |      |              |          |      |    |                                         |      |      |                                         |              |          |       |       |       |      |          |          |                         |                       |                |       |       |          |      |    |       |     |       |          |

|                         |                  |             |        |       |              |          |      |    |              |           |                  |                 |              | 16-WEI   | 061   |       |              |      |            |          |                |                |                |                          |            |       |       |               |      |      |          |
|-------------------------|------------------|-------------|--------|-------|--------------|----------|------|----|--------------|-----------|------------------|-----------------|--------------|----------|-------|-------|--------------|------|------------|----------|----------------|----------------|----------------|--------------------------|------------|-------|-------|---------------|------|------|----------|
| MAJ                     | OR UNIT          |             |        | MINE  | RALS         |          |      |    |              | QT        | Z VE             | INING           |              |          |       |       | FA           | BRIC |            |          |                |                | FC             | DLD                      |            |       |       |               | FAUL | .T   |          |
| From                    | To Uni           | t As% Cp% I | Mt% Po | % Py% | VG<br>Specks | Comments | From | То | Vein<br>Type | Veir<br>% | <sup>n</sup> Tex | Contact<br>Type | Alpha<br>deg | Comments | From  | То    | Alpha<br>deg | Int  | тур<br>е   | Comments | From           | То             | Alph<br>a deg  | Int Ty                   | e Comments | From  | То    | Alph<br>a deg | Int  | Туре | Comments |
| 918.4                   | 923 481          |             |        |       |              |          |      |    |              |           |                  |                 |              |          |       |       |              |      |            |          | 920.6          | 920.7          | ×90            |                          | Ð          |       |       |               |      |      |          |
| - 925<br>923            | 927.8 <b>4B</b>  |             |        |       |              |          |      |    |              |           |                  |                 |              |          |       |       |              |      |            |          | 923.9<br>924.2 | 924<br>924.3   | 85<br>80       | MOVZ<br>D FI<br>MO<br>D  |            |       |       |               |      |      |          |
| - 930<br>927.8          | 935.7 <b>4B</b>  |             |        |       |              |          |      |    |              |           |                  |                 |              |          |       |       |              |      |            |          | 930.2          | 930.3          | ×85            | MO<br>D SI               | Ð          |       |       |               |      |      |          |
| - 935<br>935.7<br>- 940 | 941              |             | 3      |       |              |          |      |    |              |           |                  |                 |              |          |       | ÷.    |              |      |            |          | 936.6<br>936.7 | 936.7<br>936.8 | 90<br>90<br>90 | MO SI<br>D FI<br>MO<br>D | 6          |       |       |               |      |      |          |
| 941                     | 945.4 <b>4BF</b> |             | 5      |       |              |          |      |    |              |           |                  |                 |              |          | 943   | 943.1 | 60           | MOD  | 50>        |          | 943            | 944            | 90             | INT F                    |            |       |       |               |      |      |          |
| -950<br>945.4<br>-955   | 965.3            |             |        |       |              |          |      |    |              |           |                  |                 |              |          | 952.6 | 952.7 | 75           | MODX | <u>.50</u> |          | 950.5          | 950.6          | 85             | NO<br>D FI               | C          |       |       |               |      |      |          |
|                         |                  |             |        |       |              |          |      |    |              |           |                  |                 |              |          | 958.8 | 958.9 | 80           | MODX | S1         |          |                |                |                |                          |            | 956.5 | 965.3 | 80            | INT  | ΗZ   |          |

|       |                      |                      |                |         |        |       |              |          |      |      |           |              |               |                 |                | 16-WEI   | -061  |       |              |       |          |          |       |                  |               |      |           |          |                |              |               |      |      |          |
|-------|----------------------|----------------------|----------------|---------|--------|-------|--------------|----------|------|------|-----------|--------------|---------------|-----------------|----------------|----------|-------|-------|--------------|-------|----------|----------|-------|------------------|---------------|------|-----------|----------|----------------|--------------|---------------|------|------|----------|
|       | MA                   | JORL                 | INIT           |         |        | MINE  | RALS         |          |      |      |           | (            |               | INING           |                |          |       |       | FÆ           | BRIC  |          |          |       |                  | F             |      | )         |          |                |              |               | FAUI | т    |          |
| Depth | From                 | То                   | Unit A         | As% Cp% | Mt% Po | % Py% | VG<br>Specks | Comments | From | n To | o V<br>Ty | ein \<br>ype | Vein<br>% Tex | Contact<br>Type | t Alpha<br>deg | Comments | From  | То    | Alpha<br>deg | Int   | Тур<br>е | Comments | From  | То               | Alph<br>a deg | Int  | Туре      | Comments | From           | To           | Alph<br>a deg | Int  | Туре | Comments |
|       | 945.4                | 9 <mark>6</mark> 5.3 | 48-            |         |        |       |              |          |      |      |           |              |               |                 |                |          |       |       |              |       |          |          | 962.9 | 963              | 85            | XINT | ME        |          | 956.5          | 965.3        | 80            | INT  | ΗZ   |          |
| 9     | 965.3<br>70<br>75    | 967                  | * 2K +<br>2K + |         |        |       |              |          |      |      |           |              |               |                 |                |          |       |       |              |       |          |          | 970.7 | < 970.8<br>973.6 | 3×80<br>3×80  | XINT | ZF<br>XMF |          |                |              |               |      |      |          |
| 9     | 967<br>189           | 989.7                | - <b>48F</b>   |         |        |       |              |          |      |      |           |              |               |                 |                |          | 985.1 | 975.3 | × 35<br>× 40 | ×MOD> | (50)     |          | 981.5 | ₹981.€           | 3 90          | XINT | ×FD>      |          |                |              |               |      |      |          |
| 9     | 989.7<br>989.7<br>95 | 994.2                |                |         |        |       |              |          |      |      |           |              |               |                 |                |          | 992.5 | 992.6 | 40           | MOD   | (S0)     |          |       |                  |               |      |           |          | 993.5<br>993.9 | 993.6<br>994 | ¥ 35<br>90    |      | BR   |          |
|       | 994.2                | 1003.2               | 4BF            |         |        |       |              |          |      |      |           |              |               |                 |                |          |       |       |              |       |          |          | 998.9 | 999              | 85            | MO   | FD        |          |                |              |               |      |      |          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |        |           |     |     |     |                  |      |            |          |     |       |    |     |    |             |              |                  |                |               |         | 16-WEL   | -061                   |                               |                     |              |                      |          |        |        |                    |         |      |          |        |        |               |      |      |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------|-----------|-----|-----|-----|------------------|------|------------|----------|-----|-------|----|-----|----|-------------|--------------|------------------|----------------|---------------|---------|----------|------------------------|-------------------------------|---------------------|--------------|----------------------|----------|--------|--------|--------------------|---------|------|----------|--------|--------|---------------|------|------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MA             | JOR U  | NIT       |     |     |     | 1                | MINE | RAL        | S        |     |       |    |     |    |             | QT           | Z VE             | INING          |               |         |          |                        |                               | F.                  | ABRIC        | ;                    |          |        |        | F                  | OLD     |      |          |        |        |               | FAUL | T    |          |
| field F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rom            | То     | Unit      | As% | Cp% | Mt% | Po%              | Py%  | VG<br>Spec | )<br>cks | Com | ments | Fr | rom | То | Veir<br>Typ | n Vei<br>e % | <sup>n</sup> Tex | Contae<br>Type | t Alph<br>deg | ha<br>g | Comments | From                   | То                            | Alpha<br>deg        | Int          | Тур<br>е             | Comments | From   | То     | Alph<br>a deg      | Int     | Туре | Comments | From   | То     | Alph<br>a deg | Int  | Туре | Comments |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 94.2           | 1003.2 | 4BF       |     |     |     |                  |      |            |          |     |       |    |     |    |             |              |                  |                |               |         |          | 1002.7                 | 1002.8                        | 3 70                | MOL          | SO                   |          |        |        |                    |         |      |          |        |        |               |      |      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 003.2          | 1012.4 | 3P        |     |     |     |                  |      |            |          |     |       |    |     |    |             |              |                  |                |               |         |          |                        |                               |                     |              |                      |          |        |        |                    |         |      |          |        |        |               |      |      |          |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 18     |           |     |     |     | 4                |      |            |          |     |       |    |     |    |             |              |                  |                |               |         |          | 1013                   | 1013.1                        | 80<br>63            | XMOD<br>XMOD | (S1)<br>(S1)         |          | 1012.5 | 1012.8 | 3 <u>85</u><br>488 | WE MO   | FD   |          |        |        |               |      |      |          |
| - 10<br>- 1020<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | )12.4          | 1024.3 | 4B        |     |     |     | 2<br>1<br>2<br>3 |      |            |          |     |       |    |     |    |             |              |                  |                |               |         |          | 1022                   | 1022.1                        | 60                  | XMOD         | ×S1                  |          | 1016.2 | 1021   | 85                 | INT     | FD   |          | 1013.6 | 1022.3 | 60            | MOD  | ΗZ   |          |
| - 1029 ()<br>- 1020 | )24.3<br>)25.7 | 1025.7 |           |     |     |     | 2                |      |            |          |     |       |    |     |    |             |              |                  |                |               |         |          | (1026)<br>(1028)       | (1026.1                       | <u>43</u><br>37     | ×MOD<br>×MOD | XS1<br>XS1           |          | 1026   | 1027.1 | 90                 | MO<br>D | MF   |          |        |        |               |      |      |          |
| - 10<br>- 10<br>- 1035_<br>- 10<br>- 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )30.9          | 1035.2 | 48F<br>48 |     |     |     | 3                |      |            |          |     |       |    |     |    |             |              |                  |                |               |         |          | 1035<br>1036.6<br>1039 | <1035.1<br>(1036.7<br>(1039.1 | × 56<br>× 0<br>× 50 | ×MOD<br>×MOD | ×S1)<br>×S1)<br>×S1) |          | 1036.1 | 1038.5 | 5 87               | MOD     | FD   |          |        |        |               |      |      |          |

| 1 | 6- | W | Ε | L- | 0 | 6 | 1 |
|---|----|---|---|----|---|---|---|
|---|----|---|---|----|---|---|---|

|                                                                                             | MAJ    | IOR U  | TIN    |         |     | М                | INER | ALS          |          |      |    |              | QTZ         | VEINING  | à      |            |        |         | F            | ABRIC |      |          |                  |                  | FC            | DLD               |             |        |        |               | FAUL | т    |          |
|---------------------------------------------------------------------------------------------|--------|--------|--------|---------|-----|------------------|------|--------------|----------|------|----|--------------|-------------|----------|--------|------------|--------|---------|--------------|-------|------|----------|------------------|------------------|---------------|-------------------|-------------|--------|--------|---------------|------|------|----------|
| Depth                                                                                       | From   | То     | Unit 4 | As% Cp% | Mt% | Po% F            | y% s | VG<br>Specks | Comments | From | То | Vein<br>Type | Vein<br>% T | ex Conta | e Alph | a Comments | From   | То      | Alpha<br>deg | Int   | туре | Comments | From             | То               | Alph<br>a deg | Int Ty            | pe Comments | From   | То     | Alph<br>a deg | Int  | Туре | Comments |
|                                                                                             | 1035.2 | 1044.5 | 48-    |         |     | 2                |      |              |          |      |    |              |             |          |        |            | 1042   | 1042.1  | 42           | XMOD  | S1)  |          | 1040.9<br>1041.9 | 1041.6<br>1042.1 | 90<br>90      | MO F<br>WE Z<br>K | D<br>E      |        |        |               |      |      |          |
| - 10                                                                                        | 45     |        |        |         |     | 4                |      |              |          |      |    |              |             |          |        |            | 1047   | ×1047.1 | 32           | MOD   | S1)  |          | 1044.5           | 1045.1           | 82            | D Z               | F           |        |        |               |      |      |          |
|                                                                                             | 1044.5 | 1062   | 4BF    |         |     |                  |      |              |          |      |    |              |             |          |        |            | 1052   | 1052.1  | 43           | MOD   | SI   |          | 1052.7           | 1054.1           | 90            | MO F              | D           | 1051.7 | 1053.5 | 43            | MOD  | HZ   |          |
| - 10                                                                                        | 55     |        |        |         |     |                  |      |              |          |      |    |              |             |          |        |            | 1053.7 | 1053.8  | 37           | MOD   | S1   |          |                  |                  |               |                   |             |        |        |               |      |      |          |
|                                                                                             |        |        |        |         |     |                  |      |              |          |      |    |              |             |          |        |            |        |         |              |       |      |          | 1056.1           | 1057             | 87            | MO F              | D           |        |        |               |      |      |          |
|                                                                                             |        |        |        |         |     |                  |      |              |          |      |    |              |             |          |        |            | 1060   | ×1060.1 | 50           | XMOD  | ×S1> |          |                  |                  |               |                   |             |        |        |               |      |      |          |
| -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 1062   | 1070.3 | 4B     |         |     | 1<br>4<br>1<br>3 |      |              |          |      |    |              |             |          |        |            | 1070   | 1070.1  | 63           | MOD   | ×S1  |          |                  |                  |               |                   |             |        |        |               |      |      |          |
|                                                                                             | 1070.3 | 1074   |        |         |     | 2                |      |              |          |      |    |              |             |          |        |            |        |         |              |       |      |          |                  |                  |               |                   |             |        |        |               |      |      |          |
|                                                                                             | 1074   | 1078.1 | 4EA    |         |     |                  |      |              |          |      |    |              |             |          |        |            | 1079   | 1079.1  | 66           | MOD   | ×S1> |          |                  |                  |               | WE                |             |        |        |               |      |      |          |

|                |        |      |            |                  |       |              |      |      |      |    |              |           |       |                 |              | IO-WEI   | -001   |                 |              |       |          |          |        |        |               |           |        |        |        |        |               |      |      |                                                                |
|----------------|--------|------|------------|------------------|-------|--------------|------|------|------|----|--------------|-----------|-------|-----------------|--------------|----------|--------|-----------------|--------------|-------|----------|----------|--------|--------|---------------|-----------|--------|--------|--------|--------|---------------|------|------|----------------------------------------------------------------|
| MA             | JORL   | JNIT |            |                  | MINE  | RALS         |      |      |      |    |              | QT        | Z VEI | NING            |              |          |        |                 | FA           | ABRIC | ;        |          |        |        | FC            | LD        |        |        |        |        |               | FAUL | .т   |                                                                |
| From           | То     | Unit | As% Cp% Mi | t% Po%           | 6 Py% | VG<br>Specks | Comm | ents | From | То | Vein<br>Type | Vein<br>% | Tex   | Contact<br>Type | Alpha<br>deg | Comments | From   | То              | Alpha<br>deg | Int   | Тур<br>е | Comments | From   | То     | Alph<br>a deg | Int Ty    | pe Com | nments | From   | То     | Alph<br>a deg | Int  | Туре | Comments                                                       |
| 1078.1         | 1084.9 | 4EA  |            | 2<br>5<br>2<br>4 |       |              |      |      |      |    |              |           |       |                 |              |          |        |                 |              |       |          |          | 1082.6 | 1084.2 | 88            | MO<br>D F | D      |        | 1081.3 | 1084.9 | 70            | MOD  | HZ   |                                                                |
| 1000           |        |      |            |                  |       |              |      |      |      |    |              |           |       |                 |              |          | 1087   | × <u>1087.1</u> | 62           | WEK   | S1)      |          |        |        |               |           |        |        |        |        |               |      |      |                                                                |
| 1084.9         | 1096.6 |      |            | 2                | -     |              |      |      |      |    |              |           |       |                 |              |          |        |                 |              |       |          |          |        |        |               |           |        |        |        |        |               |      |      |                                                                |
| 1095           |        |      |            | 1                | -     |              |      |      |      |    |              | 6         |       |                 |              |          | 1096.4 | 1096.5          | 60           | WEK   | XS1)     |          |        |        |               |           |        |        |        |        |               |      |      |                                                                |
| 1100<br>1096.6 | 1104.9 | 4EF  |            | 2                | -     |              |      |      |      |    |              |           |       |                 |              |          | 1101   | 1101.1          | 67           | XMOD  | XS1)     |          |        |        |               |           |        |        |        |        |               |      |      |                                                                |
| 1105           |        |      |            |                  |       |              |      |      |      |    |              |           |       |                 |              |          |        |                 |              |       |          |          | 1107.6 | 1108   | 90            | NO F      | D      |        | 1106.7 | 1109.4 | 65            | MOD  | SZ   | High strain<br>with qtz-crb<br>stockwork alt<br>throughout 3F. |
| 1110           | 1127.2 | 3F.  |            |                  |       |              |      |      |      |    |              |           |       |                 |              |          | 1110   | 1110.1          | 63           | MOD   | (SI)     |          |        |        |               |           |        |        | 1109.4 | 1112   | 65            | INT  | SZ   | Sheared 3F<br>with qtz-crb<br>stockwork alt<br>throughout.     |
| 1115           |        |      |            |                  |       |              |      |      |      |    |              |           |       |                 |              |          |        |                 |              |       |          |          |        |        |               |           |        |        | 1112   | 1119   | 67            | MOD  | нz   | High strain<br>with qtz-crb<br>stockwork alt<br>throughout 3F. |
|                |        |      |            |                  |       |              |      |      |      |    |              |           |       |                 |              |          | 1119   | 1119.1          | 62           | MOD   | SI       |          |        |        |               |           |        |        | 1110.0 | 1100.0 | 60            | WEK  | Meth | Werak meth<br>with red<br>vstaining and                        |

|      | МА     | JOB U  | NIT   | T   |       |       | N   |     | RALS   |          |      |    |      |       | INING   |       |          |          |    | EA     | PDIC |     |          |      |    | 50    | D       |          |        |        | -             |      |               |                             |
|------|--------|--------|-------|-----|-------|-------|-----|-----|--------|----------|------|----|------|-------|---------|-------|----------|----------|----|--------|------|-----|----------|------|----|-------|---------|----------|--------|--------|---------------|------|---------------|-----------------------------|
| 5    | _      | _      | Ι     |     |       |       | Ï   |     | VG     |          |      |    | Voin | Voin  | Contact | Alpha |          |          |    | Alasha | DRIC | Tur |          |      |    | FUI   |         |          |        |        | 1             | FAUL | .1            |                             |
| deg  | From   | То     | Unit  | As% | % Cp% | 6 Mt% | Po% | Py% | Specks | Comments | From | То | Туре | % Tex | Туре    | deg   | Comments | From     | То | deg    | Int  | e   | Comments | From | То | a deg | nt Type | Comments | From   | То     | Alph<br>a deg | Int  | Туре          | Comments                    |
| F    |        |        |       |     |       |       | K   | 2   |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          | 1119.9 | 1120.3 | 63            | WEK  | Meth          | Werak meth                  |
| -    |        |        | 2.41  |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          | 1120.3 | 1123.1 | 65            | MOD  | Fault         | vstaining and               |
| F    |        |        | 1.1   |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               | E    | /Meth         | Shearing with               |
| F    | 1104.9 | 1127.2 | 3F    |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          | 1123.1 | 1123.4 | 68            | WEK  | ane<br>Fault/ | qtz-crb<br>stockwork alt    |
| -11  | 25     |        | 12.00 |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               | throughout.<br>Red staining |
| EL   |        |        | 1250  |     |       |       |     |     |        |          |      |    |      |       |         | 1     |          |          |    |        |      |     |          |      |    |       |         |          | 1123.4 | 1127.2 | 65            | INT  | BC            | Badly<br>brecciated with    |
| E    |        |        | 100   |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               | crb infill abd              |
| E    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               | staining. Could             |
| E.   |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               | fault system?               |
| - 11 | 80     |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| -    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| L    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| F    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          | •        |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| F    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| - 11 | 85     |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          | <u> </u> |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| 2    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E    | 10     |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| -    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E 11 | 45     |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| F.   |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E.   |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| F    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| È.   |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          | ( I.     |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| -11  | 50     |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| F    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| F    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| Fl   |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         | 2        |        |        |               |      |               |                             |
| E    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| -11  | 55     |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| E    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| -    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |
| F    |        |        |       |     |       |       |     |     |        |          |      |    |      |       |         |       |          |          |    |        |      |     |          |      |    |       |         |          |        |        |               |      |               |                             |

|      |      |         |           | MAJOR UNIT                                                                                                                                                                                                                     |                                                                                                                                                                                                                                   |      | MINOR UNIT |     |    |    |     |     |   | ALT | ERA |    | N        |
|------|------|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|----|----|-----|-----|---|-----|-----|----|----------|
| From | То   | Unit Co | Text      | Comments                                                                                                                                                                                                                       | Comments                                                                                                                                                                                                                          | Unit | Comments   | Bio | Ca | ar | Chl | Gru | H | em  | Ser | Si | Comments |
| 0    | 14.1 | B       | POR<br>BL | Porphyroblastic biotite garnet schist. 2-5cm bands of<br>garnet-amphibole are observed to be folded across the path of<br>the drill hole. Fold axis are highly variable but typically very<br>shallow to the core axis.        | Traces of PO are<br>observed throughout as<br>fine grains to medium<br>blebs disseminated in<br>the groundmass. The<br>fabric is strongly<br>deformed but often<br>indiscernible as the<br>rock does not preserve<br>strain well. |      |            |     |    |    |     |     |   |     |     |    |          |
| 14.1 | 48   |         | FOL       | Fine grained, dark green mafic metavolcanic. Weakly to<br>moderately biotite altered. Biotite grains are preferentially<br>oriented at a steep angle to the core axis. 5-25mm carbonate<br>veins are abundant, 2-10 per meter. | Blue-grey qtz veins<br>increase in abundance<br>down hole of 35m from<br>1/m to 3-5/peter.<br>Intensely mineralized<br>below 43m (see min<br>tab). The largest<br>carbonate veins contain<br>small qtz lenses.                    |      |            |     |    |    |     |     |   |     |     |    |          |

|      |      |      |     |      | MAJOR UNIT                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |      | MINOR UNIT |     |    |      |     |     | AL  | TER | ATIC | N      |     |
|------|------|------|-----|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|----|------|-----|-----|-----|-----|------|--------|-----|
| From | То   | Unit | Col | Text | Comments                                                                                                                                                                                                                                             | Comments                                                                                                                                                                                                                                          | Unit | Comments   | Bio | Ca | ar C | Chl | Gru | Hem | Ser | Si   | Commer | nts |
| 14.1 | 48   | 2    | DG  | FOL  | Fine grained, dark green mafic metavolcanic. Weakly to<br>moderately biotite altered. Biotite grains are preferentially<br>oriented at a steep angle to the core axis. 5-25mm carbonate<br>veins are abundant, 2-10 per meter.                       | Blue-grey qtz veins<br>increase in abundance<br>down hole of 35m from<br>1/m to 3-5/peter.<br>Intensely mineralized<br>below 43m (see min<br>tab). The largest<br>carbonate veins contain<br>small qtz lenses.                                    |      |            |     |    |      |     |     |     |     |      |        |     |
| 48   | 59.6 |      | G   | FOL  | Fine grained, mesocratic grey, ultramafic intrusive unit.<br>Moderately foliated at a moderate angle to the core axis.<br>Weakly soapy tactility. Weak silicification is discernable on<br>fresh surfaces.                                           |                                                                                                                                                                                                                                                   |      |            |     |    |      |     |     |     |     |      |        |     |
| 59.6 | 91.5 |      | DG  | FOL  | Fine grained, dark green, mafic metavolcanic. Weakly to<br>moderately biotite altered throughout. Biotite grains display a<br>preferential but variable orientation at a high degree to the<br>core axis. 5-15mm steel blue qtz veins 3-8 per meter. | Veins often contain a<br>carbonate selvedge and<br>fine grained PO with<br>lesser CPY. Veins are<br>at variable but typically<br>high angles to the core<br>axis, occasionally veins<br>are tightly folded.<br>Intensely veined upper<br>contact. |      |            |     |    |      |     |     |     |     |      |        |     |

16-WEL-061

|       |       |      |     |                  | MAJOR UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                              |      | MINOR UNIT |     |     |     |     | ,    |      | RATI  | NC       |
|-------|-------|------|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|-----|-----|------|------|-------|----------|
| From  | То    | Unit | Col | Text             | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Comments                                                                                                                                                                                                                                                     | Unit | Comments   | Bio | Car | Chl | Gru | J He | m Se | er Si | Comments |
| 59.6  | 91.5  |      | DG  | FOL              | Fine grained, dark green, mafic metavolcanic. Weakly to<br>moderately biotite altered throughout. Biotite grains display a<br>preferential but variable orientation at a high degree to the<br>core axis. 5-15mm steel blue qtz veins 3-8 per meter.<br>Strongly foliated garnet amphibole iron formation. Moderate<br>carbonate alteration displays a patchy habit. 1-5 sub cm<br>blue-grey qtz veins. 2-5cm bands of biotite-garnet schist.<br>Wisps and medium grained blebs of PO, 1-2% modal<br>abundance.<br>Strongly foliated, strongly biotite altered, garnetiferous<br>mafic metavolcanic. 15% medium grained garnet<br>porphyroblasts. of then in a state of advanced retrograde<br>metamorphism. 1-15 tightly folded carbonate veinlets per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Veins often contain a<br>carbonate selvedge and<br>fine grained PO with<br>lesser CPV. Veins are<br>at variable but typically<br>high angles to the core<br>axis, occasionally veins<br>are tightly tolded.<br>Intensely veined upper<br>contact.            |      |            |     |     |     |     |      |      |       |          |
| 91.5  | 92.2  | 4E   | DG  | FOL              | meter.<br>Mesocratic grey to melanocratic brown felsic lapilli tuff, 3-5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |      |            |     |     |     |     |      |      |       |          |
| 92.2  | 94.4  | 2U   | в   | FOL              | garnet porphyroblasts, typically medium grained, rarely<br>coarse. Moderate to intense sericite alteration throughout.<br>1-5cm carbonate veins present at a rate of 2-4 per meter.<br>Strongly foliated garnet amphibole iron formation. Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | biotite occurs as fine<br>grained elongate books<br>preferentially aligned to<br>the foliation.                                                                                                                                                              |      |            |     |     |     |     |      |      |       |          |
| 94.4  | 96.5  | 3F   | G   | FOL              | carbonate alteration displays a patchy habit. 1-5 sub cm<br>blue-grey qtz veins. Folded 2-5cm bands of biotite-garnet<br>schist crosscut the unit at a low angle to the core axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Maria blaka and                                                                                                                                                                                                                                              |      |            |     |     |     |     |      |      |       |          |
| 96.5  | 98    | 4EF  | DG  | POR<br>BL<br>POR | In the community compared on the source of the second of the source of t | Wisps blebs and<br>stringers of PO, 2-3%<br>modal abundance.                                                                                                                                                                                                 |      |            |     |     |     |     |      |      |       |          |
| 98    | 98.9  | ₽4₽E | В   | BL               | poorly developed. Strong gtz veining with associated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                              |      |            |     |     |     |     |      |      |       |          |
| 99.7  | 103.9 |      | в   | FOL              | occurring as disseminated blebs.<br>Strongly foliated clastic metasedimentary unit. Abundance of<br>garnet porphyroblasts is locally variable ranging from 5-20%.<br>No observed mineralization. Strongly biotite altered.<br>Porphyroblastic biotite garnet schist. 10-15, ~1cm planar qtz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                              |      |            |     |     |     |     |      |      |       |          |
| 103.9 | 104.6 | AF   | B   | BL               | Moderate staurolite alteration observed throughout the biotite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                              |      |            |     |     |     |     |      |      |       |          |
| 104.6 | 105.3 | 4E   | DG  | BA               | groundmass as distinct buff colored grains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                              |      |            |     |     |     |     |      |      |       |          |
| 105.3 | 106.3 | 4F   | DG  | BA               | formation. Modal abundances of the constituent mineral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |      |            |     |     |     |     |      |      |       |          |
| 106.8 | 110.7 |      | В   | FOL              | priases ranges greatly between 5-10 cm compositional<br>bands. Abundant fine grains and stringers of PO throughout,<br>2-4%<br>Fine grained, dark green, mafic dyke. Sharp contacts,<br>dominantly featureless<br>Moderately well banded amphibole garnet chert iron<br>formation. Modal abundances of the constituent mineral<br>phases ranges greatly between 5-10 cm compositional<br>bands. Abundant fine grains and stringers of PO throughout,<br>2-4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Intermittent zones of<br>significant PO<br>mineralization comprise<br>~50%. Mineralization is<br>associated with tightly<br>folded opaque white to<br>blue-grey qtz veins.                                                                                   |      |            |     |     |     |     |      |      |       |          |
| 110.7 | 126.3 | 2    | DG  | FOL              | Fine grained, melanocratic brown clastic metasedimentary<br>unit. Approx. 50% of the unit is pervasively carbonate altered.<br>The unit is strongly foliated at a moderate degree to the core<br>axis.<br>Fine grained, strongly foliated, mafic metavolcanic. Strongly to<br>intensely biotite altered. Biotte occurs as distinct fine grained<br>books which are preferentially oriented parallel to the foliation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15-30, tightly folded,<br>sub-cm, blue-grey qtz<br>veins per meter. Fine<br>grains of PO with<br>lesser PY and CPY are<br>observed proximal to<br>and within qtz veins.<br>Sulphide abundances<br>are highty variable<br>ranging from trace to 8%<br>locally |      |            |     |     |     |     |      |      |       |          |

|       |       |                                       |     |           | MAJOR UNIT                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                              |      | MINOR UNIT |     |    |     |     |     | AL  | TER | ATIC | N        |  |
|-------|-------|---------------------------------------|-----|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|----|-----|-----|-----|-----|-----|------|----------|--|
| From  | То    | Unit                                  | Col | Text      | Comments                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                     | Unit | Comments   | Bio | Ca | r ( | Chl | Gru | Hem | Ser | Si   | Comments |  |
| 110.7 | 126.3 |                                       | DG  | FOL       | Fine grained, strongly foliated, mafic metavolcanic. Strongly to<br>intensely biolite altered. Biotite occurs as distinct fine grained<br>books which are preferentially oriented parallel to the foliation.                                       | 15-30, tightly folded,<br>sub-cm, blue-grey qtz<br>veins per meter. Fine<br>grains of PO with<br>lesser PY and CPY are<br>observed proximal to<br>and within qtz veins.<br>Sulphide abundances<br>are highly variable<br>ranging from trace to 8%<br>Incally |      |            |     |    |     |     |     |     |     |      |          |  |
| 126.3 | 131.8 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | В   | FOL       | Fine grained, melanocratic brown, clastic metasedimentary<br>unit. The unit is strongly foliated and intensely folded at steep<br>but variable degrees to the core axis. 15:25 grey-blue qtz<br>veins pet meter, tightly folded rarely boudinaged. | 1-3cm in width,<br>associated with<br>intermittent but<br>significant PO<br>mineralization with<br>lesser PY and CPV.<br>Fine, strongly folded,<br>laminations are inferred<br>to be relict primary<br>bedding.                                              |      |            |     |    |     |     |     |     |     |      |          |  |
| 131.8 | 138.8 |                                       | G   | FOL       | Fine grained, mesocratic grey, ultramafic intrusive.<br>Intermittently weakly silicified. Weakly waxy tactility throughout.                                                                                                                        |                                                                                                                                                                                                                                                              |      |            |     |    |     |     |     |     |     |      |          |  |
| 138.8 | 143.5 | · · · · · · · · · · · · · · · · · · · | DG  | FOL       | Fine grained, dark green, mafic metavolcanic. The unit is<br>abundantly invaded by 10-40cm opaque white qtz veins.<br>Wisps and stringers of PO occur within, and proximal to the<br>veins.                                                        | The veins have<br>imparted a moderately<br>intense biotite<br>alteration on the unit.<br>The tightly folded<br>blue-grey dt veins of<br>the previous unit are<br>present but in a<br>reduced abundance,<br>approx FW                                         |      |            |     |    |     |     |     |     |     |      |          |  |
| 143.5 | 162.3 |                                       | В   | POR<br>BL | Strongly foliated, moderately well banded, porphyroblastic<br>biotite garnet schist. 1-3cm bands of 4E crosscut the unit<br>frequently 1-2 per meter. 4E bands are typically well<br>mineralized.                                                  | 5-15mm wide blue-grey,<br>tightly folded, qtz<br>veins, 5-10 per meter.<br>qtz veins are typically<br>associated with<br>disseminated PO<br>mineralization. Moderate<br>to strong staurolite<br>alteration occurs<br>intermittently in short<br>intervals.   |      |            |     |    |     |     |     |     |     |      |          |  |

|       |       |       |     |           | MAJOR UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |    | MINOR UNIT    | Τ   |     |    |      |     | ALT | ERA |    |          |
|-------|-------|-------|-----|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----|---------------|-----|-----|----|------|-----|-----|-----|----|----------|
| From  | То    | Unit  | Col | Text      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Comments                                                                                           | Un | Unit Comments | Bio | Car | Cł | ıl G | àru | Hem | Ser | Si | Comments |
| 143.5 | 162.3 | -     | в   | POR<br>BL | Strongly foliated, moderately well banded, porphyroblastic<br>biotite garnet schist. 1-3cm bands of 4E crosscut the unit<br>frequently 1-2 per meter. 4E bands are typically well<br>migrafications and the standard the standard term of | 5-15mm wide blue-grey,<br>tightly folded, qtz<br>veins, 5-10 per meter.<br>dt veins are twicelly   |    |               |     |     |    |      |     |     |     |    |          |
| 162.3 | 163.2 | 4E    | DG  | BA        | Alternating irregular bands of dark green amphibole with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | associated with                                                                                    |    |               |     |     |    |      |     |     |     |    |          |
| 163.2 | 165.8 |       | в   | BA        | garnet. Biotite with garnet, and chert. Chert bands are<br>typically bouidnaged. Or may be tightly folded. PO is present<br>as fine disseminated grains or wisps in a modal abundance<br>of 2%.<br>Porphyroblastic biotite garnet schist. A weakly banded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mineralization. Moderate<br>to strong staurolite<br>alteration occurs<br>intermittently in short   |    |               |     |     |    |      |     |     |     |    |          |
| 165.8 | 167.3 | 4E    | DG  | FOL       | character is apparent. 5-10 sub –cm qtz veins per meter,<br>typically boudinaged. Trace PO occurring as fine<br>disseminated grains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Medium to coarse blebs in gtz, and fine                                                            |    |               |     |     |    |      |     |     |     |    |          |
| 167.3 | 169   |       | в   | BA        | Quartz clast 4E. Abundant opaque white qtz veins<br>throughout which have been attenuated and boudinaged into<br>large ragged to subrounded qtz clasts. 4% PO which is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stringers parallel to<br>banding.<br>4% PO which is                                                | 1  |               |     |     |    |      |     |     |     |    |          |
| 169   | 170.5 | 4E    | DG  | BA        | observed as fine grains between densely packed garnets.<br>Porphyroblastic biotite garnet schist. A weakly banded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | observed as fine grains<br>between densely<br>packed garnets                                       |    |               |     |     |    |      |     |     |     |    |          |
| 170.5 | 177.1 |       | В   | POR<br>BL | character is apparent. 5-10 sub -cm qtz veins per meter,<br>typically boudinaged. Trace PO occurring as fine<br>disseminated grains. 1cm bands of moderate to strong<br>grunerite alteration are common.<br>Quartz clast 4E. Abundant blue-grey qtz veins throughout<br>(25-30 per meter) which have been atteruated and<br>boudinaged into large ragged to subrounded qtz clasts.<br>Porphyroblastic biotite garnet staurolite schist. Patches of<br>weak staurolite alteration throughout the biotite groundmass.<br>Impart a pale grey color on the unit. Staurolite occurs as<br>distinct fine buff colored grains.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hacked gamets.<br>Medium to coarse blebs<br>in qtz, and fine<br>stringers parallel to<br>banding.  |    |               |     |     |    |      |     |     |     |    |          |
| 177.1 | 181.9 | 2.    | DG  | МА        | Fine grained dark green mafic metavolcanic. Weakly biotite<br>altered. Foliation is not easily discernable due to the fine<br>grain size. Intercalated 2-5cm bands of 4f per meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                    |    |               |     |     |    |      |     |     |     |    |          |
| 181.9 | 190.3 |       | в   | POR<br>BL | Strongly foliated biotite garnet schist. 10-20 sub cm qtz veins<br>per meter, typically boudinaged. Narrow bands of 4E are<br>sparely observed and often display well developed folding<br>which is not typically observable in the highly ductile 4F.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1% PO occurs as fine grained wisps and stringers.                                                  |    |               |     |     |    |      |     |     |     |    |          |
| 190.3 | 192.5 | 4E    | DG  | POR<br>BL | Moderately banded weakly folded amphibole garnet iron<br>formation. Dominantly the unit consists of subhedral medium<br>grained garnets set in a groundmass of dark green<br>amphibole. Commonly there are planar,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | do agglomerated garnets<br>with interstitial<br>grunerite. 5-10, sub cm<br>blue grey qtz veins per |    |               |     |     |    |      |     |     |     |    |          |
|       |       |       |     | POR       | 1-2cm qtz veins and larger, intercalated 4E bands increase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \meter.                                                                                            | 1  |               |     |     |    |      |     |     |     |    |          |
| 193.5 | 194.2 | 4     | В   | BL        | composition from upper contact to lower. Trace to 0.5% PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                    |    |               |     |     |    |      |     |     |     |    |          |
| 194.2 | 195.5 | 6W-   | В   | BL        | as tine wisps or stringers increasing in abundance downhole.<br>5% fine to medium grained garnet porphyroblasts set in a fine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |    |               |     |     |    |      |     |     |     |    |          |
| 195.5 | 205   | 4     | В   | POR<br>BL | grained, finely laminated, dark brown groundmass.<br>Brown-maroon, mg, porphyroblastic, foliated, weakly-banded,<br>mod-developed 4F. – 40% mg (1-3mm) grts scattered in a<br>bio-rich groundmass. ~5% green amph wisps locally present.<br>~5-8% qtz stringers (~0.5-1cm) and are often boudinaged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trace to 1% PO min<br>locally. Diffuse LC with<br>4EF.                                             |    |               |     |     |    |      |     |     |     |    |          |
| 195.5 | 205   | H CON | В   | POR<br>BL | mod-developed 4F, ~40% mg (1-3mm) grts scattered in a<br>bio-rich groundmass, ~5% green amph wisps locally present.<br>~5-8% qtz stringers (~0.5-1cm) and are often boudinaged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I race to 1% PO min<br>locally. Diffuse LC with<br>4EF.                                            |    |               |     |     |    |      |     |     |     |    |          |

|       |       |      |     |           | MAJOR UNIT                                                                                                                                                                                                                                     |                                                                                                                                                                                |      | MINOR UNIT    |    |     |    |     |     | AL  | ERA | TION |          |
|-------|-------|------|-----|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------|----|-----|----|-----|-----|-----|-----|------|----------|
| From  | То    | Unit | Col | Text      | Comments                                                                                                                                                                                                                                       | Comments                                                                                                                                                                       | Unit | t Comments Bi | io | Car | Ch | d ( | Gru | Hem | Ser | Si   | Comments |
| 195.5 | 205   |      | В   | POR<br>BL | Brown-maroon, mg, porphyroblastic, foliated, weakly-banded,<br>mod-developed 4F 40% mg (1-3mm) grts scattered in a<br>bio-rich groundmass, ~5% green amph wisps locally present.<br>~5-8% qtz stringers (~0.5-1cm) and are often boudinaged.   | Trace to 1% PO min<br>locally. Diffuse LC with<br>4EF.                                                                                                                         |      |               |    |     |    |     |     |     |     |      |          |
| 205   | 217   | 4EF  | GG  | ВА        | Dark green-grey-brown, fg-mg, banded, well foliated,<br>mod-developed 4EF. ~25% mg (~1-4mm) grts throughout,<br>but mainly associated with bio matrix (4F) ~40% green amph<br>defining the 4E component with scattered grts associated.        | Folding present in<br>several areas, often as<br>Z-folds. Trace PO min<br>with up to 2% PO<br>locally and no mag.<br>~2-3% qtz-orb stringers<br>locally. Sharp LC with<br>4FE. |      |               |    |     |    |     |     |     |     |      |          |
| 217   | 223.2 |      | В   | BA        | Brown-green-grey, fg-mg, banded, well-foliated,<br>mod-developed 4FE. Several amph patches (-2-5cm) occur<br>throughout defining the 4E component (-20%), -40-50% mg<br>(1-4mm) grt porphyroblasts scattered throughout the 4F<br>patches.     | Weak (~2-3%) qtz-crb<br>stringers. No min or<br>mag present. Diffuse<br>LC with 6.                                                                                             |      |               |    |     |    |     |     |     |     |      |          |
| 223.2 | 226.2 |      | G   | FOL       | Grey-light brown, fg, foliated metasediment (6). No mag or<br>min seen. Unit is defined by a weakly banded texture with<br>elevated silica content. ~34% mg (1-2mm) grts scattered in<br>patches. Diffuse LC with 4EF.                         |                                                                                                                                                                                |      |               |    |     |    |     |     |     |     |      |          |
| 226.2 | 232.1 | 4EF  | GG  | BA        | Dark green-grey-brown, fg-mg, banded, well foliated,<br>mod-developed 4EF, ~25% mg (~1-4mm) grts throughout,<br>but mainly associated with bio matrix (4F), ~35-40% green<br>amph defining the 4E component with scattered grts<br>associated. | Trace PO min with up<br>to 2% PO locally and<br>trace mag locally.<br>~2-3% qtz-crb stringers<br>locally. Sharp LC with<br>4BF.                                                |      |               |    |     |    |     |     |     |     |      |          |
| 232.1 | 242   | 4BF  | G   | ВА        | Dark grey-brown, fg-mg, banded, foliated, 4BF. ~25% bio+grt<br>bands intercalated within alternating bands of mag and<br>chert. Weak folding locally present. Trace PO min withy up<br>to 3% PO locally throughout. Sharp LC with 4B.          |                                                                                                                                                                                |      |               |    |     |    |     |     |     |     |      |          |

|       |       |                  |     |      | MAJOR UNIT                                                                                                                                                                                                                                                                                                    |                                                                                                                                                        |      | MINOR UNIT |     |     |    |      |     | AL  | TER | ATION | 1        |
|-------|-------|------------------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|----|------|-----|-----|-----|-------|----------|
| From  | То    | Unit             | Col | Text | Comments                                                                                                                                                                                                                                                                                                      | Comments                                                                                                                                               | Unit | Comments   | Bio | Car | Ch | ni C | Gru | Hem | Ser | Si    | Comments |
| 232.1 | 242   | 4BF              | G   | BA   | Dark grey-brown, fg-mg, banded, foliated, 4BF, ~25% bio+grt<br>bands intercalated within alternating bands of mag and<br>chert. Weak folding locally present Trace PO min withy up                                                                                                                            |                                                                                                                                                        |      |            |     |     |    |      |     |     |     |       |          |
| 242   | 246.3 | 4B               | G   | BA   | Ito 3% PO locally infroductions in the Dark grey-light grey, ito, banded to laminated, folded,<br>magnetic 4B. Alternating 0.5-2cm bands of chert (~60%)<br>and magnetic (~35%). There are occasional non-mag wisps<br>of dark green amph throughout (~5-8% of unit). Chert bands<br>are generally wider than | the mag bands. Weak<br>to mod folded patches<br>locally throughout.<br>Trace to 2% PY min<br>locally present. Diffuse<br>LC with 4B.                   |      |            |     |     |    |      |     |     |     |       |          |
| 246.3 | 276.6 | -48-<br>-48-<br> | G   | BA   | Dark grey-light grey, fg, banded to laminated, folded, very<br>magnetic 4B. Strained in localized patches. Alternating<br>0.5-2cm bands of chert (~60%) and magnetite (~35%).<br>Chert bands are generally wider than the mag bands.                                                                          | Trace to 3% PO and<br>PY min locally present<br>throughout. Well folded<br>patches locally<br>throughout with M and S<br>folding. Sharp LC with<br>2K. |      |            |     |     |    |      |     |     |     |       |          |
| 277.2 | 283   | 48               | G   | BA   | magnetic 4B. Aliernating 0.5-2cm bands of chert (~65%)'<br>and magnetite (~30%). Chert bands are generally wider than<br>the mag bands. Trace to 3% PO min locally present<br>throughout.                                                                                                                     | patches locally<br>throughout. Sharp LC<br>with 2J.                                                                                                    |      |            |     |     |    |      |     |     |     |       |          |

16-WEL-061

|       |       |      |     |      | MAJOR UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                              |      | MINOR UNIT |     |     |     |    |     | ALT  | ERA | TION |          |
|-------|-------|------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|-----|----|-----|------|-----|------|----------|
| From  | То    | Unit | Col | Text | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comments                                                                                                                                                                                                                                                                     | Unit | t Comments | Bio | Car | Chl | Gr | u H | em s | Ser | Si   | Comments |
| 277.2 | 283   | 48   | G   | BA   | Dark grey-light grey, fg, banded to laminated, folded, very<br>magnetic 4B. Alternating 0.5-2cm bands of chert (~65%)<br>and magnetite (~30%). Ohert bands are generally wider than<br>the mag bands. Trace to 3% PO min locally present<br>throughout.                                                                                                                                                                                                                                                                              | Mod to well folded<br>patches locally<br>throughout. Sharp LC<br>with 2J.                                                                                                                                                                                                    |      |            |     |     |     |    |     |      |     |      |          |
| 283   | 284.6 |      | DG  | FOL  | Dark green, mg, foliated mafic dyke. Much coarser texture<br>than typical mafic units. Mod green amph alt throughout that                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                              |      |            |     |     |     |    |     |      |     |      |          |
| 284.6 | 285.1 | - 2K | DG  | FOL  | is well foliated. No min or mag present. Well foliated with<br>sharp contacts. Sharp LC with 2K.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                              | -    |            |     |     |     |    |     |      |     |      |          |
| 285.1 | 297.1 | 4B-  | G   | ВА   | Dark green, fg, foliated mafic dyke. Mod bio and amph alt<br>throughout that is well foliated and weakly strained. There<br>are ~2.3% qtz-crb stringers (~0.5cm) throughout. No min or<br>mag present. Well foliated with sharp contacts. Sharp LC<br>with 4B.<br>Dark grey-light grey, fg, banded to laminated, folded, very<br>magnetic 4B. Alternating 0.5-2cm bands of chert (~65%)<br>and magnetite (~30%). Chert bands are generally wider than<br>the mag bands. Trace PO min with up to 8% PO locally<br>present throughout. | Mod folded patches<br>locally present<br>throughout. Diffuse LC<br>with 4A.                                                                                                                                                                                                  |      |            |     |     |     |    |     |      |     |      |          |
| 297.1 | 298.6 | 4A   | G   | BA   | Grey-beige, Ig, foliated chert-grunente iron formation (4A).<br>Strongly silicified chert with well-developed banding. ~75%<br>chert with ~10% grun wispy bands finely intermixed. ~8%                                                                                                                                                                                                                                                                                                                                               | Diffuse LC with 4B.                                                                                                                                                                                                                                                          |      |            |     |     |     |    |     |      |     |      |          |
| 298.6 | 301.8 | 4B   | G   | BA   | PO min throughout entire unit and trace mag present locally.<br>Dark grey-light grey, (g), banded to laminated, folded, very<br>magnetic 4B. Alternating 0.5-2cm bands of chert (~65%)<br>and magnetic (~30%). Chert bands are generally wider than<br>the mag bands. Trace to ~2% PO min locally present<br>throughout.                                                                                                                                                                                                             | Mod folded patches<br>locally present<br>throughout.                                                                                                                                                                                                                         |      |            |     |     |     |    |     |      |     |      |          |
| 301.8 | 320.9 |      | G   | DI   | Grey-green-beige, fg, distorted, foliated, altered<br>chert-grunerite iron formation (4A). Strongly silicified<br>chert with well-developed green ampt wisps throughout<br>composing – 25% of unit. ~40-50% chert with ~6-8% grun<br>wispy bands finely intermixed.                                                                                                                                                                                                                                                                  | There are also<br>occasional wisps of<br>magnetite locally<br>throughout (-8%).<br>Trace to 10% PO min<br>throughout entire unit<br>and weak mag locally<br>associated with<br>magnetite. Elevated<br>strain and weak folds<br>found throughout unit.<br>Diffuse LC with UM. |      |            |     |     |     |    |     |      |     |      |          |

|                           |                         |      |               |           | MAJOR UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                  |     | MINOR UNIT   |     |    |      |     | ALTE      | ATION |          |
|---------------------------|-------------------------|------|---------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|-----|----|------|-----|-----------|-------|----------|
| From                      | То                      | Unit | Col           | Text      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Comments                                                                                                                                                                                                                                                                                                                         | Uni | nit Comments | Bio | Ca | r Ch | I G | ru Hem Se | Si    | Comments |
| 301.8                     | 320.9<br>328.9          | 44   | G             | DI        | Grey-green-beige, fg, distorted, foliated, altered<br>chert-grunerite iron formation (4A). Strongly silicified<br>chert with well-developed green amph wisps throughout<br>composing ~25% of unit. ~40-50% chert with ~6-8% grun<br>wispy bands finely intermixed.<br>Light green, fg, distorted, foliated, ultramafic unit. Weak<br>green amph alt and moderate talc alt locally throughout. weak<br>to mod strain and fine folding present throughout. There are<br>~2-3% qtz-crb stringers present. Weak crb background<br>replacement.                                                                                                                                                                                                                                   | There are also<br>occasional wisps of<br>magnetite locally<br>throughout (-8%).<br>Trace to 10% PO min<br>throughout entire unit<br>and weak mag locally<br>associated with<br>magnetite. Elevated<br>strain and weak folds<br>found throughout unit.<br>Diffuse LC with UM.<br>No min or mag present.<br>Diffuse LC with mafic. |     |              |     |    |      |     |           |       |          |
| 328.9<br>_353.6<br>_354.2 | 353.6<br>354.2<br>391.1 |      | DG<br>G<br>DG | FOL<br>BA | Dark green, fg, foliated mafic unit. Weak to mod bio oriented<br>with fabric and weak amph alt locally throughout. Elevated<br>strain locally present. ~2-3% qtz stringers locally. No min or<br>mag present. Sharp LC with 4B.<br>Dark grey-light grey, fg, banded to laminated, folded, very<br>magnetic 4B. Alternating 0.5-2cm bands of chert (~75%)<br>and magnetite (~20%). Chert bands are generally wider<br>than the mag bands. ~3% PO min present throughout. Sharp<br>LC with mafic.<br>Dark green, fg, foliated mafic unit. Weak to mod bio oriented<br>with fabric and weak amph alt locally throughout. Elevated<br>strain patches locally present. Weak folding is also locally<br>present, but best exhibited by bent veins. ~3-4% qtz stringers<br>locally. | No min throughout with<br>1-2 specks of PO<br>locally and no mag<br>present. Sharp LC with<br>altered mafic.                                                                                                                                                                                                                     |     |              |     |    |      |     |           |       |          |

16-WEL-061

|       |       |                                       |     |      | MAJOR UNIT                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |      | MINOR UNIT |     |     |      |    |     | AL  | TER | ATIC | N        |
|-------|-------|---------------------------------------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|------|----|-----|-----|-----|------|----------|
| From  | То    | Unit                                  | Col | Text | Comments                                                                                                                                                                                                                                                                  | Comments                                                                                                                                                                                                                                                                                       | Unit | Comments E | 3io | Car | r Ci | hi | Gru | Hem | Ser | Si   | Comments |
| 397.9 | 409.4 | · · · · · · · · · · · · · · · · · · · | DG  | FOL  | Dark green, fg, foliated mafic unit. Weak to mod bio oriented<br>with fabric and weak amph alt locally throughout. Elevated<br>strain patches locally present with strong shearing between<br>436.5-445m. Weak folding is also locally present.                           | (exhibited by bent<br>veins). ~3-5% dtz<br>stringers locally. No<br>min throughout with<br>only 1% PO locally<br>associated with<br>shearing with no mag<br>present. Diffuse LC<br>with distorted malic.                                                                                       |      |            |     |     |      |    |     |     |     |      |          |
| 409.4 | 510.4 |                                       | GG  | DI   | Dark green-grey-white, fg, sheared and distorted, foliated,<br>altered matic unit. Mod to strong bio and green amph alt<br>locally throughout associated with shears. Strongly sheared<br>patches locally throughout with elevated strain in the matic<br>between shears. | Weak folding locally<br>present (flipping<br>labric). ~15-20% qtz<br>and qtz-cb stringers<br>locally and are<br>strongest around<br>sheared patches. No<br>min throughout with<br>only 1% FO locally in<br>shearing with no mag<br>present. VG seen in<br>small patches between<br>456.6-457m. |      |            |     |     |      |    |     |     |     |      |          |

| 16- | WE | L-061 |
|-----|----|-------|
|-----|----|-------|

|       |       |      |     |      | MAJOR UNIT                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                 |      | MINOR UNIT | _   |    |      |     |     | ,  | ALTE | RA | TION |          |
|-------|-------|------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|----|------|-----|-----|----|------|----|------|----------|
| From  | То    | Unit | Col | Text | Comments                                                                                                                                                                                                                                                                  | Comments                                                                                                                                                                                                                                                                                        | Unit | Comments   | Bio | Ca | ar ( | Chl | Gru | He | m Se | er | Si   | Comments |
| 409.4 | 510.4 |      | GG  | DI   | Dark green-grey-white, fg, sheared and distorted, foliated,<br>altered mafic unit. Mod to strong bio and green amph alt<br>locally throughout associated with shears. Strongly sheared<br>patches locally throughout with elevated strain in the mafic<br>between shears. | Weak folding locally<br>present (flipping<br>fabric). ~15-20% qtz<br>and qt2-crb stringers<br>locally and are<br>strongest around<br>sheared patches. No<br>min throughout with<br>only 1% PO locally in<br>shearing with no mag<br>present. VG seen in<br>small patches between<br>456.6-457m. |      |            |     |    |      |     |     |    |      |    |      |          |

|       |       |                  |     |      | MAJOR UNIT                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                             |      | MINOR UNIT |     |     |    |   |     | AI  | TER | ATIC | N        |   |
|-------|-------|------------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|----|---|-----|-----|-----|------|----------|---|
| From  | То    | Unit             | Col | Text | Comments                                                                                                                                                                                                                                                                                                                                                                    | Comments                                                                                                                                                                                                                                                                    | Unit | Comments   | Bio | Car | Ch | 1 | Gru | Hem | Ser | Si   | Comments | 0 |
| 409.4 | 510.4 |                  | GG  | וס   | Dark green-grey-white, fg, sheared and distorted, foliated,<br>altered mafic unit. Mod to strong bio and green amph alt<br>locally throughout associated with shears. Strongly sheared<br>patches locally throughout with elevated strain in the mafic<br>between shears.                                                                                                   | Weak folding locally<br>present (flipping<br>fabric), ~15-20% qtz<br>and qtz-crb stringers<br>locally and are<br>sheared patches. No<br>min throughout with<br>only 1% FO locally in<br>shearing with no mag<br>present. VG seen in<br>small patches between<br>456.6-457m. |      |            |     |     |    |   |     |     |     |      |          |   |
| 510.4 | 513.5 |                  | w   | ма   | Milky white to grey, aphanitic, massive with occasional<br>foliations in a dz vein. A few wisps of green amph present<br>locally throughout. No min or mag present. Poor ground with<br>numerous broken or blocky sections. Irregular contacts.<br>Dark green, fg, foliated mafic unit. Weak to mod bio and<br>amph alt locally throughout. Elevated strain patches locally | 700/ shoet with 050/                                                                                                                                                                                                                                                        |      |            |     |     |    |   |     |     |     |      |          |   |
| 513.5 | 514.2 | ~2, <sup>×</sup> | DG  | FOL  | present. Weak folding is present. ~3-5% qtz stringers<br>locally. No min throughout and no mag present. Sharp LC                                                                                                                                                                                                                                                            | green amph wisps                                                                                                                                                                                                                                                            |      |            |     |     |    |   |     |     |     |      |          |   |
| 514.2 | 518.3 | 4A               | GG  | DI   | with altered 4A.<br>Grey-green, fg, folded, strained, banded, foliated altered 4A<br>that lacks grun. Strongly silicified with strong banding<br>between chert and green amph that is folded and strained<br>throughout. Black threads throughout, but not magnetite?<br>Dark green-grey/white, fg, distorted, foliated, altered mafic                                      | min throughout entire<br>unit and trace mag<br>present locally. Called<br>altered 4A, but appears<br>more like a 4B. Diffuse<br>LC with mafic.                                                                                                                              |      |            |     |     |    |   |     |     |     |      |          |   |
| 518.3 | 529.1 | 2                | DG  | DI   | unit. Mod bio and green amph alt locally throughout<br>associated with elevated strain. Moderate strain patches<br>locally throughout with ~10-15% stockwork qtz veining<br>present throughout.                                                                                                                                                                             | Weak folding locally<br>present. No min or mag<br>present. Gradational<br>LC with UM.                                                                                                                                                                                       |      |            |     |     |    |   |     |     |     |      |          |   |

|       |       |                                          |     |      | MAJOR UNIT                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                               |      | MINOR UNIT |     |     |     |     | AL  | TERA | TION |          |   |
|-------|-------|------------------------------------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|-----|-----|-----|------|------|----------|---|
| From  | То    | Unit                                     | Col | Text | Comments                                                                                                                                                                                                                                                                 | Comments                                                                                                                                                                                                                                                                                      | Unit | Comments   | Bio | Car | Chl | Gru | Hem | Ser  | Si   | Comments | 1 |
| 518.3 | 529.1 |                                          | DG  | DI   | Dark green-grey/white, fg, distorted, foliated, altered mafic<br>unit. Mod bio and green amph alt locally throughout<br>associated with elevated strain. Moderate strain patches<br>locally throughout with ~10-15% stockwork qtz veining<br>present throughout.         | Weak folding locally<br>present. No min or mag<br>present. Gradational<br>LC with UM.                                                                                                                                                                                                         |      |            |     |     |     |     |     |      |      |          |   |
| 529.1 | 538.3 |                                          | LG  | FOL  | Light green, fg-mg, foliated ultramafic unit. Weak green amph<br>alt and weak localized talc alt. There are ~2-3% qtz-crb<br>stringers present. Weak crb background replacement. No<br>min or mag present. Gradational LC with mafic.                                    |                                                                                                                                                                                                                                                                                               |      |            |     |     |     |     |     |      |      |          |   |
| 538.3 | 542.9 | · · · · · · · · · · · · · · · · · · ·    | DG  | FOL  | Dark green-grey, fg, foliated, weakly distorted, altered<br>mafic unit. Weak bio and mod green amph alt locally<br>throughout associated with elevated strain. Weak to mod<br>local strain patches with ~8-10% dt replacement veining<br>present. No min or mag present. | Sharp LC with altered 4A.                                                                                                                                                                                                                                                                     |      |            |     |     |     |     |     |      |      |          |   |
| 542.9 | 557.3 | 44                                       | GG  | ВА   | Grey-green, fg, folded, strained, banded, foliated altered 4A<br>that lacks grun. Very similar to previous 4A unit. Silicified<br>with strong banding between chert and green amph that is<br>folded and strained. Black threads throughout, but most are<br>not mag.    | Bio? ~70-75% chert<br>with ~20-25% green<br>amph wisps<br>throughout. Occasional<br>(~3%) grt+bio threads.<br>~3-8% PO min<br>throughout unit and<br>trace mag locally.<br>Called altered 4A, but<br>looks more like a 4B<br>(no mag). Last 4m has<br>less amph. mostly<br>chert. Diffuse LC. |      |            |     |     |     |     |     |      |      |          |   |
| 557.3 | 580   | 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, | DG  | DI   | Dark green-grey/white, fg, distorted, foliated, altered mafic<br>unit. Mod bio and green amph alt locally throughout<br>associated with elevated strain. Intense strain throughout first<br>5m and transitions to strongly foliated with oriented bio (like<br>2T).      | Strained area has<br>~10% stockwork qtz<br>veining present<br>throughout. No min or<br>mag present. Sharp LC<br>with 4B.                                                                                                                                                                      |      |            |     |     |     |     |     |      |      |          |   |

| 16 | -W | Ε | L-0 | 61 |
|----|----|---|-----|----|
|----|----|---|-----|----|

|       |       |      |     |      | MAJOR UNIT                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                         |      | MINOR UNIT |     |    |      |     |     |      | ALT  | ERA | TIO | N        |  |
|-------|-------|------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|----|------|-----|-----|------|------|-----|-----|----------|--|
| From  | То    | Unit | Col | Text | Comments                                                                                                                                                                                                                                                            | Comments                                                                                                                                                                                                                | Unit | Comments   | Bio | Ca | ır C | Chl | Gru | J He | em l | Ser | Si  | Comments |  |
| 557.3 | 580   |      | DG  | DI   | Dark green-grey/white, fg, distorted, foliated, altered mafic<br>unit. Mod bio and green amph alt locally throughout<br>associated with elevated strain. Intense strain throughout first<br>5m and transitions to strongly foliated with oriented bio (like<br>2T). | Strained area has<br>~10% stockwork qtz<br>veining present<br>throughout. No min or<br>mag present. Sharp LC<br>with 4B.                                                                                                |      |            |     |    |      |     |     |      |      |     |     |          |  |
| 580   | 600.8 |      | G   | וס   | Dark grey-light grey, fg, folded, banded to laminated,<br>magnetic 4B. Alternating 0.5-2cm bands of chert (~60%)<br>and magnetite (~20%) with wisps of green amph (~15%)<br>throughout. Chert bands are generally wider than the mag<br>bands.                      | Occasional wisps of<br>grt+bio locally<br>intermixed with bedding<br>(~3-4%). Trace to ~3%<br>PO min locally present<br>throughour. Numerous<br>folds and fabric flips<br>with a shallow CAA.<br>Diffuse LC with mafic. |      |            |     |    |      |     |     |      |      |     |     |          |  |

|              |              |          |          |          | MAJOR UNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                            | Ι    | MINOR UNIT   | Τ  |    |     |     |     |      | ALTE | RAT  | ION |          |
|--------------|--------------|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|----|----|-----|-----|-----|------|------|------|-----|----------|
| From         | То           | Unit     | Col      | Text     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Comments                                                                                                                                                                                                                                                                                   | Unit | nit Comments | Bi | io | Car | Chl | Gru | u He | em S | er S | Si  | Comments |
| 580<br>600.8 | 600.8<br>603 | 4B<br>4A | G<br>GG  | DI<br>BA | Dark grey-light grey, fg, folded, banded to laminated,<br>magnetic 4B. Alternating 0.5-2cm bands of chert ( $-60\%$ )<br>and magnetite ( $-20\%$ ) with wisps of green amph ( $-15\%$ )<br>throughout. Chert bands are generally wider than the mag                                                                                                                                                                                                                                                                                        | Occasional wisps of<br>grt+bio locally<br>intermixed with bedding<br>(~3-4%). Trace to ~3%                                                                                                                                                                                                 |      |              |    |    |     |     |     |      |      |      |     |          |
|              |              |          |          |          | bands,<br>Grey-green, fg, banded, weakly-folded, foliated altered 4A<br>that lacks grun. Strongly silicified with strong banding<br>between chert and green amph that is weakly folded and<br>strained throughout. Black threads throughout, but not<br>magnetite.                                                                                                                                                                                                                                                                         | PO min locally present<br>throughout. Numerous<br>folds and fabric flips<br>with a shallow CAA.<br>Diffuse LC with mafic.<br>Perhaps bio? ~70%<br>chert with ~25% green<br>amph wisps<br>throughout. Trace to<br>~3% PO min locally.<br>Called attered 4A, but<br>looks more like a 4B.    |      |              |    |    |     |     |     |      |      |      |     |          |
| 603          | 624.9        |          | DG       | FOL      | Dark green-brown, fg, foliated, altered mafic unit. Mod to strong bio alt and weak amph alt locally. Bio oriented in areas similar to a 2T. ~3-4% qtz stringers present throughout. No min or mag present. Diffuse LC with 4B.                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                            |      |              |    |    |     |     |     |      |      |      |     |          |
|              |              |          |          |          | Dark grey-green, fg, banded to laminated, weakly folded,<br>magnetic 4B. Alternating 0.5-2cm bands of chert (~60%)<br>and magnetite (~15%) with wisps of green amph (~15-20%)<br>throughout. Chert bands are generally wider than the other<br>bands.<br>Black, mg, mottled Lamp Dyke. Has a mottled texture that<br>almost seems like a breccia. Occasional crb replaced blobs<br>(~3%). Lamp dyke is broken up into several bands intermixed<br>with the 4B. Sharp LC with 4B.<br>Dark grey green, Ig, banded to laminated, magnetic 4B. | ~6% PO min present<br>throughout as wisps.<br>Occasional small tolds<br>present. Sharp LC with<br>Lamp.<br>Up to 12% PO min<br>present throughout as<br>stroop wisps along                                                                                                                 |      |              |    |    |     |     |     |      |      |      |     |          |
| 624.9        | 625.9        | 4B<br>13 | GG<br>BK | BA       | (~15%) with wisps of green amph (~15%) throughout. Chert<br>hands are generally wider than the other bands                                                                                                                                                                                                                                                                                                                                                                                                                                 | margins of cherty<br>bands, Sharp LC with                                                                                                                                                                                                                                                  |      |              |    |    |     |     |     |      |      |      |     |          |
| 626.3        | 626.8        | 48       | GG       | BA       | Black, mg, mottled Lamp Dyke. Has a mottled texture with<br>darker and white patches that almost seems like it has been                                                                                                                                                                                                                                                                                                                                                                                                                    | Lamp.<br>/Up to 10% PO min                                                                                                                                                                                                                                                                 | T    |              |    |    |     |     |     |      |      |      |     |          |
| 626.8        | 628.2        | 13       | BK       | MO       | brecciated. Occasional crb replaced blobs (~1-2mm;~3%).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | present throughout as strong wisps along                                                                                                                                                                                                                                                   |      |              |    |    |     |     |     |      |      |      |     |          |
| 028.2        | 028.8        | 40       | GG       | BA       | Dark grey-green, fg, banded to laminated, magnetic 4B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | margins of cherty<br>bands. Sharp LC with                                                                                                                                                                                                                                                  | 1    |              |    |    |     |     |     |      |      |      |     |          |
| 628.8        | 632.5        | 2°       | DG       | FOL      | (~15%) with wisps of green amph (~15%) throughout. Chert<br>bands are generally wider than the other bands.<br>Dark green-grey, fg, foliated, weakly distorted, altered mafic<br>unit. Weak to mod bio and green amph alt locally throughout<br>associated Weak to mod local strain with distorted irregular.                                                                                                                                                                                                                              | \mafic.                                                                                                                                                                                                                                                                                    |      |              |    |    |     |     |     |      |      |      |     |          |
| 632.5        | 647.3        |          | DG       | FOL      | banding. ~3-4% qtz stringers present. No min or mag present.<br>Strongly foliated, strongly altered, mafic metavolcanic.<br>Intense biotite alteration, moderate to strong green amphibole<br>alteration. ~1cm qtz veins occur throughout at a frequency of<br>1-3 per meter. veins wider than 1 cm are present but rare.                                                                                                                                                                                                                  | All veins contain fine<br>to medium<br>disseminated grains of<br>PO and CPV with<br>minor PY. Veins<br>typically display strong<br>folding or boudinage.<br>Disseminated sulphides<br>outside of veins occur<br>in trace abundances.<br>High Mg. Fine grained,<br>Phanentic, equigranular. |      |              |    |    |     |     |     |      |      |      |     |          |

|       |       |                                       |     |      | MAJOR UNIT                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                            |      | MINOR UNIT |     |     |    |   |     | AL  | TER | ATIC | N        |
|-------|-------|---------------------------------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|----|---|-----|-----|-----|------|----------|
| From  | То    | Unit                                  | Col | Text | Comments                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                                                   | Unit | Comments   | Bio | Car | Ch | 1 | Gru | Hem | Ser | Si   | Comments |
| 632.5 | 647.3 | 2                                     | DG  | FOL  | Strongly foliated, strongly altered, mafic metavolcanic.<br>Intense biotite alteration, moderate to strong green amphibole<br>alteration 1 cm qiz veins occur throughout at a frequency of<br>1-3 per meter. veins wider than 1 cm are present but rare.           | All veins contain fine<br>to medium<br>disseminated grains of<br>PO and CPY with<br>minor PY. Veins<br>typically display strong<br>folding or boudinage.<br>Disseminated subplices<br>outside of veins occur<br>in trace abundances.<br>High Mg. Fine grained,<br>Phanertic, equigranular. |      |            |     |     |    |   |     |     |     |      |          |
| 647.3 | 665.1 |                                       | GG  | FOL  | Fine grained, mesocratic grey, ultramafic unit. Interpreted to<br>be intrusive. The unit has a strong waxy tactility, intensified<br>on broken faces. This is indicative of intense serpentine or<br>talc alteration.                                              | There is a strong<br>foliation present at<br>variable orientations.<br>Sub-cm folded qtz<br>veins present near<br>upper contact.                                                                                                                                                           |      |            |     |     |    |   |     |     |     |      |          |
| 665.1 | 668.9 | + + + + + + + + + + + + + + + + + + + | DG  | FOL  | Fine grained, phaneritic, mafic unit. The unit is interpreted to<br>be an intrusive dyke or sill. Dark green in color. Moderate<br>green amphibole alteration. Moderately foliated diffuse upper<br>and lower contacts.                                            |                                                                                                                                                                                                                                                                                            |      |            |     |     |    |   |     |     |     |      |          |
| 668.9 | 680.4 |                                       | G   | FOL  | Dark grey ultramatic unit, mottled salt and pepper type<br>appearance. Very strongly foliated at a moderate degree to<br>the core axis. Distinctly different in texture and appearance<br>from previous unit. Undetermined if this unit is a flow or<br>intrusion. | Intense waxy tactility<br>especially on fracture<br>surfaces. Traces of<br>disseminated PO CPY<br>appears to be primary<br>mineralization.                                                                                                                                                 |      |            |     |     |    |   |     |     |     |      |          |
| 680.4 | 681.1 | . 2 .                                 | DG  | MA   | fine grained, dark green mafic metavolcanic. diffuse upper<br>and lower contacts                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                            |      |            |     |     |    |   |     |     |     |      |          |

|       |       |      |     |      | MAJOR UNIT                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          |      | MINOR UNIT   |    |       |       |      | A       | LTERA | TION |          |
|-------|-------|------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|----|-------|-------|------|---------|-------|------|----------|
| From  | То    | Unit | Col | Text | Comments                                                                                                                                                                                                                                                                                                                                                           | Comments                                                                                                                                                                                                                                                 | Unit | nit Comments | Bi | io Ca | ar Cl | hl G | Gru Her | n Ser | Si   | Comments |
| 680.4 | 681.1 | 2    | DG  | MA   | fine grained, dark green mafic metavolcanic. diffuse upper<br>and lower contacts                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                          |      |              |    |       |       |      |         |       |      |          |
| 681.1 | 688.8 |      | DG  | MA   | Ultramatic intrusive unit typical of those observed in WEL<br>and POE drilling. Fine grained grey-green in color. Weak<br>soapy tactility. Sharp lower contact.                                                                                                                                                                                                    |                                                                                                                                                                                                                                                          |      |              |    |       |       |      |         |       |      |          |
| 688.8 | 703.2 | 4B   | G   | ВА   | Aphanitic to fine grained magnetite chert grunerite iron<br>formation. The banded fabric is heavily deformed the<br>orientation of the banding is highly variable throughout as it<br>has been distorted by tight to sweeping folds.                                                                                                                               | Traces of PO, locally<br>0.5%, are observed<br>throughout as fine<br>stringers or<br>disseminated blebs.<br>Chert is translucent to<br>opaque and buff<br>colored. Grunerite<br>occurs as thin<br>selvedges bordering<br>magnetite bands.                |      |              |    |       |       |      |         |       |      |          |
| 703.2 | 719.6 |      | DG  | FOL  | High Mg basalt. Fine to medium grained, dominantly<br>equigranular. 1-2 white dtz veins per meter. 1-3cm wide,<br>translucent to opaque. No mineralization observed.<br>Aphanitic to fine grained magnetite chert grunerite iron<br>formation. The banded fabric is strongly distorted by sweeping<br>fields throuphout the unit. Therefore the orientation of the | Traces of PO are<br>observed throughout as<br>fine stringers or<br>disseminated blebs,<br>locally 1% proximal to<br>lower contact. Chert is<br>translucent to opaque<br>and buff to pale green<br>colored. Grunerite<br>occurs as thin<br>occurs as thin |      |              |    |       |       |      |         |       |      |          |

|       |       |      |     |      | MAJOR UNIT                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   |      | MINOR UNIT | _   |     |    |     |     | AL  | TER | ATIC | DN                                                                    |
|-------|-------|------|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|----|-----|-----|-----|-----|------|-----------------------------------------------------------------------|
| From  | То    | Unit | Col | Text | Comments                                                                                                                                                                                                                               | Comments                                                                                                                                                                                                                                                                          | Unit | Comments   | Bio | Car | Ch | 1 ( | Gru | Hem | Ser | Si   | Comments                                                              |
| 719.6 | 731.7 | 48   | G   | ВА   | Aphanitic to fine grained magnetite chert grunerite iron<br>formation. The banded fabric is strongly distorted by sweeping<br>folds throughout the unit. Therefore the orientation of the<br>compositional banding is highly variable. | Traces of PO are<br>observed throughout as<br>fine stringers or<br>disseminated blebs,<br>locally 1% proximal to<br>lower contact. Chert is<br>translucent to opaque<br>and buff to pale green<br>colored. Grunerite<br>occurs as thin<br>selvedges bordering<br>magnetite bands. |      |            |     |     | S  |     |     |     |     |      | /intercalated zone<br>between 2 and 4B.<br>strongly chlorite altered. |
| 731.7 | 809.8 |      | DG  | FOL  | Fine grained, pale green, mafic metavolcanic. Weakly to<br>moderately biotite altered. Strongly foliated with tight folds<br>observed occasionally. Weak chlorite alteration, intense<br>amphibole alteration.                         | Sparsely sub cm tightly<br>folded qtz veins may be<br>observed. Barren of<br>sulphide mineralization.                                                                                                                                                                             |      |            |     |     |    |     |     |     |     |      |                                                                       |

| 16- | WEL | -061 |
|-----|-----|------|
|-----|-----|------|

|       |       |      |     |      | MAJOR UNIT                                                                                                                                                                                                     |                                                                                                       |      | MINOR UNIT |     |    |     |     |     | AL  | TERA | TION |          |
|-------|-------|------|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------|------------|-----|----|-----|-----|-----|-----|------|------|----------|
| From  | То    | Unit | Col | Text | Comments                                                                                                                                                                                                       | Comments                                                                                              | Unit | Comments   | Bio | Ca | r C | Chl | Gru | Hem | Ser  | Si   | Comments |
| 731.7 | 809.8 |      | DG  | FOL  | Fine grained, pale green, mafic metavolcanic. Weakly to<br>moderately biotite altered. Strongly foliated with tight folds<br>observed occasionally. Weak chlorite alteration, intense<br>amphibole alteration. | Sparsely sub cm tightly<br>folded qtz veins may be<br>observed. Barren of<br>sulphide mineralization. |      |            |     |    | S   |     |     |     |      |      |          |
|   |       |       |      |     |           | MAJOR UNIT                                                                                                                                                                                                          |                                                                                                                                                                                            |              | MINOR UNIT                                                                                                                                  |     |     |    |     |     | AL  | TER | ATIO | N        |
|---|-------|-------|------|-----|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|----|-----|-----|-----|-----|------|----------|
|   | From  | То    | Unit | Col | Text      | Comments                                                                                                                                                                                                            | Comments                                                                                                                                                                                   | Unit         | Comments                                                                                                                                    | Bio | Car | Ch | d ( | Gru | Hem | Ser | Si   | Comments |
|   | 731.7 | 809.8 |      | DG  | FOL       | Fine grained, pale green, mafic metavolcanic. Weakly to<br>moderately biotite altered. Strongly foliated with tight folds<br>observed occasionally. Weak chlorite alteration, intense<br>amphibole alteration.      | Sparsely sub cm tightly<br>folded qtz veins may be<br>observed. Barren of<br>sulphide mineralization.                                                                                      | € <b>4</b> ₿ | (intraformational 4B                                                                                                                        |     |     | S  | ()  |     |     |     |      |          |
| - | 900.9 | 910.0 | 40   |     | DA        | Intraformational 4B, sub cm bands of aphanitic white chert<br>and black magnetite. Banding shows weak deformation,                                                                                                  | Lower contact is diffuse due to contact                                                                                                                                                    |              |                                                                                                                                             |     |     |    |     |     |     |     |      |          |
| - | 010.0 | 010.9 |      | G   | DA<br>FOI | displaying a wavy character. Highly strained upper contact<br>with strong to intense chlorite alteration.                                                                                                           | metamorphism with<br>ultramafic dyke.                                                                                                                                                      |              |                                                                                                                                             |     |     |    |     |     |     |     |      |          |
|   | 812.5 | 812.5 |      | DG  | FOL       | Dark green, fine grained ultramafic intrusive. Similar in<br>appearance to mafic metavolcanics, but identified through<br>characteristic ultramafic alteration and typically soft<br>character. Soapy to the touch. | Veins are dominantly<br>planar but may be<br>weakly boudinaged or<br>moderately folded.<br>3-5cm qtz veins are<br>present rarely. Rarely<br>folding of the foliated<br>fabric is observed. |              | what is interpreted to be a course<br>grained flow center. amphibolite grade<br>featuring coarse 5-15mm long ascicular<br>amphibole grains. |     |     |    |     |     |     |     |      |          |

|       |       |                |     |      | MAJOR UNIT                                                                                                                                                                                                                                 |                                                                                                                                                                                            |      | MINOR UNIT |     |     |     |     |       | ALTE | RAT   | TION |          |
|-------|-------|----------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|-----|-----|-------|------|-------|------|----------|
| From  | То    | Unit           | Col | Text | Comments                                                                                                                                                                                                                                   | Comments                                                                                                                                                                                   | Unit | Comments   | Bio | Car | Chl | I G | iru H | am S | ier 1 | Si   | Comments |
| 812.5 | 867.5 |                | DG  | FOL  | Dominantly fine grained mafic metavolcanic. Weakly biotite<br>altered. Strongly foliated. PO and CPY occur as fine<br>disseminated grains. Within the rock mass or in association<br>with sub cm qtz carb veins.                           | Veins are dominantly<br>planar but may be<br>weakly boudinaged or<br>moderately folded.<br>3-5cm qtz veins are<br>present rarely. Rarely<br>folding of the foliated<br>fabric is observed. |      |            |     |     |     |     |       |      |       |      |          |
| 867.5 | 877.9 |                | G   | FOL  | Fine grained, mesocratic grey, fine grained, ultramafic<br>intrusive unit. Notably softy and soapy to the touch. Diffuse<br>upper and lower contacts.                                                                                      |                                                                                                                                                                                            |      |            |     |     |     |     |       |      |       |      |          |
| 877.9 | 893.2 | <b>, 2</b> , , | GG  | FOL  | Fine gained, well foliated, mafic metavolcanic. Mesocratic<br>grey to leucocratic green. Moderately to strongly biotite<br>altered. 1-2 sub-cm carbonate veins per meter. rarely 1-2cm<br>qtz veins with carbonate selvedges are observed. |                                                                                                                                                                                            |      |            |     |     |     |     |       |      |       |      |          |

| 16- | WE | L-0 | 61 |
|-----|----|-----|----|
|-----|----|-----|----|

|       |       |                                       |     |      | MAJOR UNIT                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                             |      | MINOR UNIT |       |    |     |    |     | ALT | ERA |    | N        |  |
|-------|-------|---------------------------------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-------|----|-----|----|-----|-----|-----|----|----------|--|
| From  | То    | Unit                                  | Col | Text | Comments                                                                                                                                                                                                                                         | Comments                                                                                                                                                                                                                                                                    | Unit | Comments   | Bio C | ar | Chl | Gr | u H | em  | Ser | Si | Comments |  |
| 877.9 | 893.2 |                                       | GG  | FOL  | Fine gained, well foliated, mafic metavolcanic. Mesocratic<br>grey to leucocratic green. Moderately to strongly biotite<br>altered. 1-2 sub-cm carbonate veins per meter. rarely 1-2cm<br>qtz veins with carbonate selvedges are observed.       | The et-fleeded                                                                                                                                                                                                                                                              |      |            |       |    |     |    |     |     |     |    |          |  |
| 893.2 | 899.3 | 4A                                    | G   | LA   | Unusual, highly deformed unit consisting of variably well<br>preserved of grey carbonate, chert, and grunerite, with lesser<br>quantities if magnetite. The entire unit is intensely deformed<br>and qtz flooded. weakly magnetic.               | The dat hoosed<br>destroys the<br>compositional banding<br>but it is intensely<br>folded where preserved.<br>2-5% PO observed<br>throughout as fine<br>disseminate grains and<br>wisps as well as<br>medium to coarse<br>amorphous blebs and<br>scrack seal precipitations. |      |            |       |    |     |    |     |     |     |    |          |  |
| 899.3 | 906.2 | · · · · · · · · · · · · · · · · · · · | GG  | FOL  | Fine gained, well foliated, mafic metavolcanic. Mesocratic<br>grey to green. Moderately to strongly biotite altered. 5-10<br>sub-cm carbonate veins per meter. Sharp contacts. No<br>mineralization observed.                                    | The qtz flooded<br>destroys the<br>compositional banding<br>but it is intensely<br>folded where preserved.<br>1-2% PO observed<br>throuchout as fine                                                                                                                        |      |            |       |    |     |    |     |     |     |    |          |  |
| 906.2 | 908.5 | 4B                                    | G   | DI   | Unusual, highly deformed unit consisting of variably well<br>preserved of grey carbonate, chert, and magnetite. The entire<br>unit is intensely deformed and qtz flooded.                                                                        | disseminate grains and<br>wisps as well as<br>medium to coarse<br>amorphous blebs and                                                                                                                                                                                       |      |            |       |    |     |    |     |     |     |    |          |  |
| 908.5 | 911   | 4FB                                   | в   | ВА   | banding is dominantly oriented sub-parallel to the core axis<br>and is strongly folded. Fine PO grains and stringers are<br>disseminated throughout and are bound to the compositional<br>bands.                                                 | crack seal precipitations.<br>modal abundance of PO<br>is estimated to be 5%.                                                                                                                                                                                               |      |            |       |    |     |    |     |     |     |    |          |  |
| 911   | 918.4 | 48                                    | G   | DI   | Aphanitic to fine grained 4B. Strong silicification has<br>destroyed the primary compositional banding. Magnetite is<br>strongly to intensely altered to grunerite however the unit<br>remains moderately to strongly magnetic.                  | Sparsely wisps and<br>blebs of PO are<br>observed, trace<br>abundances overall.<br>relict banding is<br>deformed by wavy low<br>angle folding.                                                                                                                              |      |            |       |    |     |    |     |     |     | S  |          |  |
| 918.4 | 923   | 48F                                   | вк  | ВА   | Banded chert, biolite-garnet, magnetite iron formation. The<br>banded fabric is moderately well defined but strongly to<br>intensely folded. 0.5 to 1 % PO occurring as course blebs,<br>fine crack seal stringers, and fine disseminate grains. | Magnetite bands<br>display grunerite<br>alteration selvedges.                                                                                                                                                                                                               |      |            |       |    |     |    |     |     |     |    |          |  |

|       |       |              |      | MAJOR UNIT                                                                                                                                                                                                                                         |                                                                                                                                                                        |     | MINOR UNIT  |     |     |    |     |     | AL. | TERA | ATION | 1        |
|-------|-------|--------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-----|-----|----|-----|-----|-----|------|-------|----------|
| From  | То    | Unit Co      | Text | Comments                                                                                                                                                                                                                                           | Comments                                                                                                                                                               | Uni | it Comments | Bio | Car | Ch | I G | Gru | Hem | Ser  | Si    | Comments |
| 918.4 | 923   | 4BF BK       | BA   | Banded chert, biotite-garnet, magnetite iron formation. The<br>banded fabric is moderately well defined but strongly to<br>intensely folded. 0.5 to 1 % PO occurring as course blebs,<br>fine crack seal stringers, and fine disseminate grains.   | Magnetite bands<br>display grunerite<br>alteration selvedges.                                                                                                          |     |             |     |     |    |     |     |     |      |       |          |
| 923   | 927.8 | <b>4В</b> ВК | BA   | Aphanitic to fine grained chert magnetite iron formation. The<br>banded fabric is very well preserved but intensely folded.<br>Magnetite bands display fine grunerite selvedges. Trace PO<br>occurring as fine wisps or stringers.                 |                                                                                                                                                                        |     |             |     |     |    |     |     |     |      |       |          |
| 927.8 | 935.7 | <b>4BF</b> G | ВА   | Banded chert, biolite-garnet, magnetite iron formation. The<br>banded fabric is moderately well defined but intensely folded,<br>trace PO occurring as fine stringers. Magnetite bands display<br>fine grunerite selvedges.                        | Weak dark green<br>amphibole alteration<br>observed within biotite<br>bands. Chert bands<br>commonly display weak<br>to moderate boudinaged<br>in addition to folding. |     |             |     |     |    |     |     |     |      |       |          |
| 935.7 | 941   | <b>48</b> вк | ВА   | Banded chert, magnetite iron formation. The compositional<br>banding is very finely laminated, and very strongly folded.<br>Occasional small intervals of silicification are host to blebby<br>and crack seal PO. Up to 3% locally, trace overall. |                                                                                                                                                                        |     |             |     |     |    |     |     |     |      |       |          |
| 941   | 945.4 | <b>48F</b> G | ВА   | Banded chert, biotite-garnet, magnetite iron formation. The<br>banded fabric is moderately well defined but intensely folded,<br>trace PO occurring as fine stringers. Magnetite bands display<br>fine grunerite selvedges.                        | Blebby chlorite<br>alteration observed<br>within biotite bands.<br>Chert bands commonly<br>display weak to<br>moderate boudinaged in<br>addition to folding.           |     |             |     |     |    |     |     |     |      |       |          |
| 945.4 | 965.3 |              | ВА   | Banded chert, magnetite iron formation. The compositional<br>banding is very finely laminated, highly regular, and weakly<br>deformed. Weakly folded proximal to upper contact. Chert<br>bands often weakly to moderately boudinaged.              | Occasional small<br>intervals of<br>silicification are host<br>to blebby and crack<br>seal PO. Up to 3%<br>locally, trace overall.                                     |     |             |     |     |    |     |     |     |      |       |          |

|       |        |              |     |      | MAJOR UNIT                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                      |      | MINOR UNIT |     |     |    |     |     | AL  | TER | ATIC | N   |       |
|-------|--------|--------------|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|-----|----|-----|-----|-----|-----|------|-----|-------|
| From  | То     | Unit         | Col | Text | Comments                                                                                                                                                                                                                                                     | Comments                                                                                                                                                                                                                                                                             | Unit | Comments   | Bio | Car | Ch | l ( | Gru | Hem | Ser | Si   | Com | ments |
| 945.4 | 965.3  | 4B           | вк  | BA   | Banded chert, magnetite iron formation. The compositional<br>banding is very finely laminated, highly regular, and weakly<br>deformed. Weakly folded proximal to upper contact. Chert<br>bands often weakly to moderately boudinaged.                        | Occasional small<br>intervals of<br>silicification are host<br>to blebby and crack<br>seal PO. Up to 3%<br>locally, trace overall.                                                                                                                                                   |      |            |     |     |    |     |     |     |     |      |     |       |
| 965.3 | 967    | * 2K +       | G   | MA   | Fine grained, melanocratic grey, mafic intrusive dyke. Very weakly deformed, sharp contacts, dominantly featureless.                                                                                                                                         |                                                                                                                                                                                                                                                                                      |      |            |     |     |    |     |     |     |     |      |     |       |
| 967   | 989.7  | 488          | вк  | BA   | Magnetite, chert, biotite-garnet iron formation. The banded<br>fabric is very well preserved, characterized as finely<br>laminated chert and magnetite between 1-2cm biotite bands<br>with garnet porphyroblasts.                                            | The compositional<br>banding is strongly<br>deformed by broad<br>sweeping folds<br>throughout the unit.<br>There is no consistent<br>orientation of the<br>banding. Trace to 0.5%<br>PO and PY throughout<br>occurring as fine wisps<br>and less commonly<br>medium to coarse blebs. |      |            |     |     |    |     |     |     |     |      |     |       |
| 989.7 | 994.2  | -4B          | вк  | BA   | Aphanitic to fine grained, banded chert magnetite iron<br>formation. Dominantly the banding can be characterized as<br>fine alternating laminations of magnetite and chert however<br>there are sparse 5-15mm wide bands of biotite with garnet<br>observed. | The compositional<br>banding is strongly<br>deformed by broad<br>sweeping folds<br>throughout the unit.<br>There is no consistent<br>orientation of the<br>banding. Trace to 0.5%<br>PO and PY throughout                                                                            |      |            |     |     |    |     |     |     |     |      |     |       |
| 994.2 | 1003.2 | 4 <b>8</b> F | ВК  | BA   | Magnetite, chert, biotite-garnet iron formation. The banded<br>fabric is very well preserved, characterized as finely<br>laminated chert and magnetite between 1-2cm biotite bands<br>with garnet porphyroblasts.                                            | voccurring as fine wisps //<br>The compositional<br>banding is dominantly<br>undeformed, only weak<br>folding observed<br>occasionally. Trace to<br>0.5% PO and PY<br>throughout occurring as<br>fine wisps and less<br>commonly medium to<br>coarse blebs.                          |      |            |     |     |    |     |     |     |     |      |     |       |

|        |        |      |     |      | MAJOR UNIT                                                                                                                                                                                                                                                |                                                                                                                                                                               |      | MINOR UNIT                                                                                              |     |    |    |    |     | AL  | TER | ATION | ٧        |
|--------|--------|------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------|-----|----|----|----|-----|-----|-----|-------|----------|
| From   | То     | Unit | Col | Text | Comments                                                                                                                                                                                                                                                  | Comments                                                                                                                                                                      | Unit | Comments                                                                                                | Bic | Ca | Ch | hl | Gru | Hem | Ser | Si    | Comments |
| 994.2  | 1003.2 | ABF  | вк  | ВА   | Magnetite, chert, biotite-garnet iron formation. The banded<br>fabric is very well preserved, characterized as finely<br>laminated chert and magnetite between 1-2cm biotite bands<br>with garnet porphyroblasts.                                         | The compositional<br>banding is dominantly<br>undeformed, only weak<br>folding observed                                                                                       |      |                                                                                                         |     |    |    |    |     |     |     |       |          |
| 1003.2 | 1012.4 | 3Р   | G   | МА   | Fine grained, mesocratic grey, intermediate intrusive. The unit<br>is dominantly featureless, displaying no notable veining,<br>exceptional alteration, or significant strain fabrics. Simply a<br>massive grey unit with sharp contacts.                 | occasionally. Trace to<br>0.5% PO and PY<br>throughout occurring as<br>fine wisps and less<br>commonly medium to<br>coarse blebs.                                             |      | partially digested and intensely altered<br>4B xenolith thrapped within the large<br>intermediate dyke. |     |    |    |    |     |     |     |       |          |
| 1012.4 | 1024.3 | 48   | G   | DI   | Dark grey-light grey, fg, folded, banded to laminated,<br>magnetic 4B. Alternating 0.5-2cm bands of chert (~60%)<br>and magnetite (~35%). There are occasional non-mag wisps<br>of dark green amph throughout (~10% of unit).                             | Chert bands are<br>generally wider than<br>the mag bands. Mod<br>folded patches<br>throughout unit. Trace<br>to 4% PO min locally<br>present. Sharp LC with<br>sediment.      |      |                                                                                                         |     |    |    |    |     |     |     |       |          |
| 1024.3 | 1025.7 |      | G   | FOL  | Grey, fg, foliated metasediment (6). No mag or min seen. Unit<br>is defined by a weakly foliated fabric with elevated silica<br>content. Occasional dz nodules or fragments in patches.                                                                   |                                                                                                                                                                               |      |                                                                                                         |     |    |    |    |     |     |     |       |          |
| 1025.7 | 1030.9 | 48   | G   | ВА   | Sharp LC with 4B.<br>Dark grey-light grey, fg, banded to laminated, locally<br>folded magnetic 4B. Alternating 0.5-2cm bands of chert<br>(~60%) and magnetite (~35%). There are occasional<br>non-mag wisps of dark green amph throughout (~10% of unit). | Chert bands are<br>generally wider than<br>the mag bands. Weak<br>to mod folded patches<br>throughout unit. Trace<br>to 2% PO min locally<br>present. Diffuse LC<br>with 4BF. |      |                                                                                                         |     |    |    |    |     |     |     |       |          |
| 1030.9 | 1035.2 | 4BF  | G   | BA   | Dark grey, fg-mg, banded, foliated, 4BF. ~25% bio+grt bands<br>intercalated within alternating bands of mag and chert. Weak<br>folding locally present. Trace PO min locally. Diffuse LC with<br>4B.                                                      |                                                                                                                                                                               |      |                                                                                                         |     |    |    |    |     |     |     |       |          |
| 1035.2 | 1044.5 | 4B   | G   | BA   | Dark grey-light grey, fg, banded to laminated, locally<br>folded magnetic 4B. Alternating 0.5-2cm bands of chert<br>(~60%) and magnetite (~35%). There are occasional<br>non-mag wisps of dark green amph throughout (~10% of unit).                      | Chert bands are<br>generally wider than<br>the mag bands. Weak<br>to mod folded patches<br>throughout unit. Trace<br>to 2% PO min locally<br>present. Diffuse LC<br>with 4BF. |      |                                                                                                         |     |    |    |    |     |     |     |       |          |

|        |        |              |     |      | MAJOR UNIT                                                                                                                                                                                                                                                            |                                                                                                                                                                             |      | MINOR UNIT |     |   |    |     |    |     | ALT | ERA | TION | 1        |   |
|--------|--------|--------------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|-----|---|----|-----|----|-----|-----|-----|------|----------|---|
| From   | То     | Unit         | Col | Text | Comments                                                                                                                                                                                                                                                              | Comments                                                                                                                                                                    | Unit | Comments   | Bio | C | ar | Chl | Gr | u H | lem | Ser | Si   | Comments | 5 |
| 1035.2 | 1044.5 | 4B           | G   | ва   | Dark grey-light grey, fg, banded to laminated, locally<br>folded magnetic 4B. Alternating 0.5-2cm bands of chert<br>(~60%) and magnetite (~35%). There are occasional<br>non-mag wisps of dark green amph throughout (~10% of unit).                                  | Chert bands are<br>generally wider than<br>the mag bands. Weak<br>to mod folded patches<br>throughout unit. Trace<br>to 2% PO min locally                                   |      |            |     |   |    |     |    |     |     |     |      |          |   |
| 1044.5 | 1062   | 48F          | G   | ВА   | Dark grey-brown, fg-mg, folded, banded, foliated, 4BF.<br>~20-25% bio+gr bands intercalated within alternating bands<br>of mag and chert. Folding found locally throughout. Trace to<br>4% PO min locally throughout. Badly fractured ground<br>between 1053-1054.5m. | present. Diffuse LC <sup>2</sup><br>with 4BF.                                                                                                                               |      |            |     |   |    |     |    |     |     |     |      |          |   |
| 1062   | 1070.3 | 48           | G   | BA   | Dark grey-light grey, fg, banded to laminated, locally<br>folded magnetic 45. Alternating 0.5-2cm bands of chert<br>(~60%) and magnetite (~35%). There are occasional<br>non-mag wisps of dark green amph throughout (~10% of unit).                                  | Chert bands are<br>generally wider than<br>the mag bands. Weak<br>to mod folded patches<br>throughout unit. Trace<br>to 4% PO min locally<br>present. Sharp LC with<br>4FE. |      |            |     |   |    |     |    |     |     |     |      |          |   |
| 1070.3 | 1074   |              | в   | ва   | Brown-green-grey, fg-mg, banded, well-foliated,<br>mod-developed 4FE. Several (~20-25%) amph patches<br>(2-12cm) occur throughout defining the 4E component.<br>~40% mg (1-4mm) grt porphyroblasts scattered throughout<br>the 4F areas.                              | ~5% qtz-crb stringers<br>and cherty patches.<br>Trace to 2% PO min<br>locally throughout and<br>weak mag present.<br>Diffuse LC with 4F.                                    |      |            |     |   |    |     |    |     |     |     |      |          |   |
| 1074   | 1078.1 | 4            | BF  | FOL  | Brown-maroon, fg-mg, foliated, weak to mod-developed 4F.<br>~40-45% mg (1-3mm) grts scattered in a bio-rich<br>groundmass forming fine bands. ~3-5% green amph wisps<br>locally present. No min or mag present. Diffuse LC with 4EA.                                  |                                                                                                                                                                             |      |            |     |   |    |     |    |     |     |     |      |          |   |
| 1078.1 | 1084.9 | <b>4EA</b> ( | G   | ва   | Grey-green-beige-brown, fg-mg, banded, weakly folded, weak<br>to mod-developed 4EA. ~20% grun-grt, ~35% chert,<br>~15-20% bio-grt and ~15% green amph with minor mag<br>(~5%). Trace to 5% PO min locally. Strained in several areas<br>with folding throughout unit. | Sharp LC with 4F.                                                                                                                                                           |      |            |     |   |    |     |    |     |     |     |      |          |   |

|        |        |      |     |      | MAJOR UNIT                                                                                                                                                                                                                                                            |                                                                                                                                                                                                            |    | MINOR UNIT   | T   |      |      |     |     | ALT | ERA | TION |          |
|--------|--------|------|-----|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------|-----|------|------|-----|-----|-----|-----|------|----------|
| From   | То     | Unit | Col | Text | Comments                                                                                                                                                                                                                                                              | Comments                                                                                                                                                                                                   | Un | nit Comments | Bic | o Ca | ar ( | Chl | Gru | Hem | Ser | Si   | Comments |
| 1078.1 | 1084.9 | 4EA  | GG  | BA   | Grey-green-beige-brown, fg-mg, banded, weakly folded, weak<br>to mod-developed 4EA. ~20% grun+grt, ~35% chert,<br>~15-20% bio+grt and ~15% green amph with minor mag<br>(~5%). Trace to 5% PC min locally. Strained in several areas<br>with folding throughout unit. | Sharp LC with 4F.                                                                                                                                                                                          |    |              |     |      |      |     |     |     |     |      |          |
| 1084.9 | 1096.6 |      | В   | FOL  | Brown-maroon-grey, fg-mg, foliated, weak to mod-developed<br>4F. ~30% mg (1-3mm) grts scattered in a bio-rich<br>groundmass forming fine weak bands. Elevated silica content<br>present giving a grey appearance. ~3-5% green amph wisps<br>locally present.          | No min or mag present.<br>Diffuse LC with 4FE.                                                                                                                                                             |    |              |     |      |      |     |     |     |     |      |          |
| 1096.6 | 1104.9 | 4EF  | В   | BA   | Brown-green-grey, fg-mg, banded, well-foliated,<br>mod-developed 4FE. Several (~25%) amph patches (2-15cm)<br>occur throughout defining the 4E component. ~30-40% mg<br>(1-3mm) grf porphyroblasts scattered throughout the 4F areas.                                 | ~5% qtz-crb stringers<br>and cherty patches. A<br>few patches of the 4F<br>get very weak and<br>appear like they may<br>even be sediment.<br>Trace to 2% PO min<br>locally present. Diffuse<br>LC with 3F. |    |              |     |      |      |     |     |     |     |      |          |
| 1104.9 | 1127.2 | 3F   | G   | IJ   | Grey-white, fg, distorted, foliated 3F. ~5% lapilli (~1-3mm)<br>scattered throughout. Significant qtz-orb stockwork<br>stringers/alteration present throughout creating a very<br>distorted and altered appearance. ~5% qtz bands/stringers<br>present throughout.    | Weak to mod sericite<br>alt and weak bio alt.<br>Weakly folded locally.<br>Several weak Meth<br>faults/brecias from<br>~1120 to the end. EOH                                                               |    |              |     |      |      |     |     |     |     |      |          |

|      |     |        |      |     |      | MAJOR UNIT                                                                                                                                                                                                                                                          |                                                                                                                                               |     | MINOR UNIT  |     |     |    |    |   |     | Α   | LTE | RA | TION |          |
|------|-----|--------|------|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------|-----|-----|----|----|---|-----|-----|-----|----|------|----------|
| From | om  | То     | Unit | Col | Text | Comments                                                                                                                                                                                                                                                            | Comments                                                                                                                                      | Uni | it Comments | Bic | o C | ar | Ch | G | iru | Hen | n S | er | Si   | Comments |
| 04   | 4.9 | 1127.2 | ЗF   | G   | DI   | Grey-white, fg, distorted, foliated 3F. ~5% lapilli (~1-3mm)<br>scattered throughout. Significant qtz-crb stockwork<br>stringers/alteration present througthout creating a very<br>distorted and altered appearance. ~5% qtz bands/stringers<br>present throughout. | Weak to mod sericite<br>alt and weak bio alt.<br>Weakly folded locally.<br>Several weak Meth<br>faults/breccias from<br>~1120 to the end. EOH |     |             |     |     |    |    |   |     |     |     |    |      |          |
|      |     |        |      | -   |      |                                                                                                                                                                                                                                                                     |                                                                                                                                               |     |             |     |     |    |    |   |     |     |     |    |      |          |
|      |     |        |      |     |      |                                                                                                                                                                                                                                                                     |                                                                                                                                               |     |             |     |     |    |    |   |     |     |     |    |      |          |
|      |     |        |      |     |      |                                                                                                                                                                                                                                                                     |                                                                                                                                               |     |             |     |     |    |    |   |     |     |     |    |      |          |
|      |     |        |      |     |      |                                                                                                                                                                                                                                                                     |                                                                                                                                               |     |             |     |     |    |    |   |     |     |     |    |      |          |
|      |     |        |      |     |      |                                                                                                                                                                                                                                                                     |                                                                                                                                               |     |             |     |     |    |    |   |     |     |     |    |      |          |
|      |     |        |      |     |      |                                                                                                                                                                                                                                                                     |                                                                                                                                               |     |             |     |     |    |    |   |     |     |     |    |      |          |
|      |     |        |      |     |      |                                                                                                                                                                                                                                                                     |                                                                                                                                               |     |             |     |     |    |    |   |     |     |     |    |      |          |
|      |     |        |      |     |      |                                                                                                                                                                                                                                                                     |                                                                                                                                               |     |             |     |     |    |    |   |     |     |     |    |      |          |
|      |     |        |      |     |      |                                                                                                                                                                                                                                                                     |                                                                                                                                               |     |             |     |     |    |    |   |     |     |     |    |      |          |

**Appendix 3** 

# Information withheld for client confidentiality.