We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Golden Target Project

4276170

352.00 m

Azimuth:

Length:

Core Size:

Dip:

NAD83 17N

539,612.00 m

Drill Log CR2014-01

COLLAR INFORMATION

Claim:

Projection:

Easting:

Elevation:

				WORK D	ONE BY
Work	From	То	Worker	Start	End
Drilling	0.0	99.7	Walker Drilling	2014-Jul-18	Jul-22
Downhole Survey	0.0	99.7	Walker Drilling	2014-Jul-22	Jul-22
Core Logging	0.0	99.7	Ce Shi	2014-Jul-20	Jul-20
Core Logging	0.0	99.7	Dennis Patron	2014-Jul-20	Jul-20

Storage: CanREE explo site

Northing: 5,360,480.00 m

Comments: The log is in metric but the drill rods are all in imperial length that's why the blocks were converted to metric.

247.00°

-60.00°

99.67 m

NQ

			GEOLOGY	VISU	JAL		-	ASSAY	RESULTS	5	
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
69.00	99.83	GB	Fine to Medium Grained Gabbro		0.1	30310	69.20	70.40	1.20		
		The hol	e reverts back to the kind of gabbro that is a bit similar from the		0.1	30311	70.40	71.60	1.20		
		surface.	It is massive and homogenous. Resulting from a gradationale		0.1	30312	71.60	72.80	1.20		
		evolutio	on of overlying unit the rock becomes, medium-dark gray, medium		0.1	30313	72.80	74.00	1.20		
		grained	, slightly porphyritic plagioclase-amphibole intrusive rock of		0.1	30314	74.00	75.20	1.20		
			nt gabbroic/dioritic composition. This unit is weakly fractured and		0.1	30315	75.20	76.40	1.20		
			mpetent. Generally the rock is non magnetic, however it has		0.1	30316	76.40	77.60	1.20		
			nal narrow zones of weak magnetism which kind of differ. The		0.1	30317	77.60	78.80	1.20		
			f weak magnetism occur at 85.45-85.85 m, 86.86-86.96m, 88.5-		0.1	30318	78.80	80.00	1.20		
			89.3-89.8m respectively. These zones of low magnetism show a		0.1	30319	80.00	81.20	1.20		
			feldpathic texture than the normal gabbro and presumed to be		0.1	30320	81.20	82.40	1.20		
			which is quite similar to the syenites in the beginning of the hole.		0.1	30321	82.40	83.60	1.20		
			k is non calcareous but moderately ankeritic. Ferromagnesian are		0.1	30322	83.60	84.80	1.20		
			te abundant in this rock and modal percentage is estimated to		0.1	30323	84.80	86.00	1.20		
		35%. Ir	ey are pyroxenes.		0.1	30324	86.00	87.20	1.20		
		00.20.0	0.00. Mafia Cuarita. This suggits duly have a nightab tigt that		0.1	30326	87.20	88.40	1.20		
			9.80: Mafic Syenite. This syenite dyke have a pinkish tint that			30327	88.40	89.60	1.20		
			milar to the syenite uphole. However, The sulphides in this rock is		0.1	30328	89.60	90.80	1.20		
			ore abundant than the other syenites observed. The sulphides		0.1	30329	90.80	92.00	1.20		
			d were chalcopyrites and pyrites. It amounted to 0.5% in modal		0.1	30330	92.00	93.20	1.20		
		percent	age.		0.1	30331	93.20	94.40	1.20		
					0.1	30332	94.40	95.60	1.20		
					0.1	30333	95.60	96.80	1.20		
					0.1	30334	96.80	98.00	1.20		
					0.1	30335	98.00	99.00	1.00		
					0.1	30336	99.00	99.83	0.83		
64.55	69.00	MI	Mafic Intrusive		0.1	30307	65.60	66.80	1.20		
		The upp	per contact is sharp at 150°ca when the change in texture changes		0.1	30308	66.80	68.00	1.20		
			edium grained to fine grained. There are more fractures and illed fault slips that's why the RQD is lower. Here, the protolith is		0.1	30309	68.00	69.20	1.20		
		0 0	ined, medium greyish green coloured and massive textured with								
			ely shredded disrupted zones, some of which take on a grungy								
		0	een grey tone reminiscent of flow contacts. Local fine speckling, r fracturing, are caused by alteration and tectonism. This rock is								
		non to v	weakly magnetic, non calcareous and moderately ankeritc. The								
			ontact is gradational over half a meter where the grains are								
			ng coarser but no definite contact showing. Sparse distribution of								
		those ye and sulp	ellow and silvery flecks which are presumed to be source of REE phildes.								

		GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
34.40	64.55	GBFP Porphyritic Gabbro		0.1	30280	34.40	35.60	1.20		
		A well defined contact at 140°ca marks a distinct change to a phenocrystic		0.1	30281	35.60	36.80	1.20		
		texture that is very competent and weakly fractured giving the core a		0.1	30282	36.80	38.00	1.20		
		solid appearance. To this point, the porphyry is light/ medium greyish		0.1	30283	38.00	39.20	1.20		
		green/beige coloured with a few large spots of light yellowish grey		0.1	30284	39.20	40.40	1.20		
		feldspar phenos 1 cm in diameter. It is finely speckled (4-8%) with pale		0.1	30285	40.40	41.60	1.20		
		yellow sericitized ferromagnesian minerals that stand out in a		0.1	30286	41.60	42.80	1.20		
		groundmass of faint grey feldspar phenos and dark green fine to medium		0.1	30287	42.80	44.00	1.20		
		grained groundmass. Below 52.00m, there is a reversal in colour whereby		0.1	30288	44.00	45.20	1.20		
		10-15% dark green to black mafic grains are interstitial to 25-35% densely		0.1	30289	45.20	46.40	1.20		
		packed, millimetric, dull grey, tabular feldspar crystals in a fine grained		0.1	30290	46.40	47.60	1.20		
		feldspathic groundmass forming a massive medium grained host		0.1	30291	47.60	48.80	1.20		
		containing a few scattered mafic inclusions. The rock is moderately		0.1	30292	48.80	50.00	1.20		
		magnetic, no calcareous and weakly to moderately ankeritic. The sulphide		0.1	30293	50.00	51.20	1.20		
		content is moderate but there are yellow and silvery specks that are		0.1	30294	51.20	52.40	1.20		
		sparsely distributed within this unit. There is a drop in magnetic readings		0.1	30295	52.40	53.60	1.20		
		after the mafic intrusive described below.			30296	53.60	54.80	1.20		
		25.12.25.26. Mafie laterative Madium means fine presided accessive and		0.1	30297	54.80	56.00	1.20		
		35.12-35.26: Mafic Intrusive. Medium green, fine grained, massive and		0.1	30298	56.00	57.20	1.20		
		chloritized mafic rock of volcanic aspect. Homogenous aspect, non		0.1	30299	57.20	58.40	1.20		
		magnetic and without volcanic textures. This rock is non ankeritic, non calcareous and non magnetic. Sharp upper and lower contact at 155°ca.		0.1	30301	58.40	59.60	1.20		
		calcareous and non magnetic. Sharp upper and lower contact at 155 ca.		0.1	30302	59.60	60.80	1.20		
				0.1	30303	60.80	62.00	1.20		
				0.1	30304	62.00	63.20	1.20		
				0.1	30305	63.20	64.40	1.20		
				0.1	30306	64.40	65.60	1.20		
26.94	34.40	MI Mafic Intrusive		0.1	30273	27.20	28.40	1.20		
		The upper contact of this fine grained, dark grey, mafic intrusive is sharp		0.1	30274	28.40	29.60	1.20		
		at 25°ca while the lower contact is 140°ca against the gabbro. The unit is			30276	29.60	30.80	1.20		
		massive and homogenous and oftentimes aphanitic. Trace pyrites are		0.1	30277	30.80	32.00	1.20		
		observed to be associated. No significant quartz carbonates veinings.		0.1	30278	32.00	33.20	1.20		
		Appears fresh and unaltered. There are fractures that are coated by chlorite and oriented variably to the CA. The rock is weakly magnetic and weakly ankeritic and weakly to non calcareous. The silvery flecks that are		0.1	30279	33.20	34.40	1.20		
		observed in the gabbro seems to be also present here. There is a weak fabric observed that apparently trends 25 to 30°ca.								

			GEOLOGY	VISU	JAL		4	ASSAY	RESULTS		
From	То	Code	Comment	Cp %	Py%	Sample	From	То	Length	Au gpt	Cu %
0.88	26.94	GB	Fine to Medium grained Gabbro		0.1	30251	0.88	2.00	1.12		
		This is t	the rock that is presumed to be hosting the scandium and yttrium.		0.1	30252	2.00	3.20	1.20		
		There a	are sections where the gabbro is intruded by pinkish syenite		0.1	30253	3.20	4.40	1.20		
		(diorite). The gabbro occurs as massive, medium grained, salt and		0.1	30254	4.40	5.60	1.20		
		pepper	y zones comprised of millimetric black, stubby, ferromagnesian		0.1	30255	5.60	6.80	1.20		
		laths in	a fine grained, yellowish buff coloured when dry, feldspathic			30256	6.80	8.00	1.20		
		ground	mass, while the syenite is also massive and coarser grained than		0.1	30257	8.00	9.20	1.20		
		the gat	bro and have a pinkish tint. It is also massive and homogenous		0.1	30258	9.20	10.40	1.20		
		genera	lly more felsic than the gabbro. Quartz veining is negligible but if		0.1	30259	10.40	11.60	1.20		
		presen	t is usually mm thick and has no definite orientation. Fine fractures		0.1	30260	11.60	12.80	1.20		
		are ank	ceritic while the matrix in both lithologies is essentially non reactive		0.1	30261	12.80	14.00	1.20		
			but weakly to moderately reactive to KFC which means that the		0.1	30262	14.00	15.20	1.20		
			on present is ankerite. Fractures are generally coated by chlorite		0.1	30263	15.20	16.40	1.20		
			s counted individually in the RQD page. Only trace pyrite (Py)		0.1	30264	16.40	17.60	1.20		
			s were noted scattered through the matrix and along fractures.		0.1	30265	17.60	18.80	1.20		
			are however silvery metallic luster grains that is approximately		0.1	30266	18.80	20.00	1.20		
			nat is associated and yet to be identified in the thin section. Some		0.1	30267	20.00	21.20	1.20		
			specks were noticed to be attached to the pyroxene and		0.1	30268	21.20	22.40	1.20		
		plagioc	lase. Below are the contact zones described in detailed.		0.1	30269	22.40	23.60	1.20		
					0.1	30270	23.60	24.80	1.20		
			86: Mafic Syenite. This is a porphyritic unit comprising 1-2mm,		0.1	30271	24.80	26.00	1.20		
			al, feldspar phenocrysts in a fine grained, mixed feldspar-		0.1	30272	26.00	27.20	1.20		
			pole (acicular) groundmass that is dark greenish grey coloured								
			Both contacts are sharp, scalloped at 60°ca upper contact and								
			ower contact. The porphyry intruding the gabbro and forming the								
			t with the amphibolite that follows. Weakly ankeritic, no metallic								
		dissem	inations were observed.								
		3.85-4.	15: Mafic Syenite. This is similar to the rock above exept that the								
			and lower contact is scalopped at 65°ca and 55°ca respectively. No								
			on nor mineralization observed.								
		7 2 4 7									
			95: Mafic Syenite. This is similar to the rock above exept that the and lower contact is scalopped at 35°ca and 130°ca respectively.								
			ration nor mineralization observed.								
			QCV. This quartz carbonate vein trends 20°ca and have an nt thickness of 3 cm.								
		22.50:	QCV. This quartz carbonate vein trends 143°ca and have an								

22.50: QCV. This quartz carbonate vein trends 143°ca and have an apparent thickness of 1 cm.

22.60: QCV. This quartz carbonate vein trends 145°ca and have an apparent thickness of 1 cm.

0.00 0.88 OVB **Overburden**

Core recovery was measured to begin at 0.88m. This section is considered as the overburden or casing.

Note: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.

99.67 EOH End of hole.

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION

2.5 82

>10cm RQD (%) 1.5

1.3

2.2

1.6

1.6

2.4

2.2

2.3

2.3

2.1

2.5

2.6

2.1

2.8

2.6

2.8

3.0

2.7

2.5

2.5

2.0

1.5

1.5

2.5

2.7

2.6

2.3

2.6

3.0

2.6

2.9

2.9

Breaks

						-					
Depth	Test	Az	Dip	Туре	Comments	-	From	То	Len	Core	Rec (%)
0.00	247.0°	247.0°	-60.0°	Collar		-	2.1	3.6	1.4		
11.28	259.0°	247.8°	-59.5°	Multi			3.9	5.3	1.4	1.4	98
14.33	259.4°	248.2°	-59.5°	Multi			5.3	8.3	3.1	3.0	99
17.37	260.8°	249.6°	-59.0°	Multi			8.3	11.4	3.1	3.0	98
20.42	259.4°	248.2°	-59.4°	Multi			11.4	14.4	3.1	3.0	97
23.47	261.4°	250.2°	-59.0°	Multi			14.4	17.5	3.1	3.0	98
26.52	261.9°	250.7°	-58.9°	Multi			17.5	20.5	3.1	3.0	98
29.57	261.4°	250.2°	-58.9°	Multi			20.5	23.6	3.1	3.0	98
32.61	262.7°	251.5°	-58.9°	Multi			23.6	26.6	3.1	3.0	98
35.66	263.0°	251.8°	-59.0°	Multi			26.6	29.7	3.1	3.0	97
38.71	262.5°	251.3°	-59.4°	Multi			29.7	32.7	3.1	3.0	99
41.76	261.5°	250.3°	-59.2°	Multi			32.7	35.8	3.0	3.0	98
44.81	262.0°	250.8°	58.9°	Multi			35.8	38.8	3.1	3.0	98
47.85	261.6°	250.4°	-59.1°	Multi			38.8	41.9	3.1	3.0	99
50.90	260.2°	249.0°	-59.5°	Multi			41.9	44.9	3.1	3.0	99
53.95	259.5°	248.3°	-59.5°	Multi			44.9	48.0	3.1	3.0	99
57.00	261.1°	249.9°	-59.0°	Multi			48.0	51.0	3.1	3.0	99
60.05	261.2°	250.0°	-59.3°	Multi			51.0	54.1	3.0	3.0	99
63.09	261.1°	249.9°	-59.6°	Multi			54.1	57.1	3.1	3.0	98
66.14	263.5°	252.3°	-59.0°	Multi			57.1	60.2	3.1	3.0	98
69.19	263.3°	252.1°	-59.1°	Multi			60.2	63.2	3.1	3.0	97
72.24	259.2°	248.0°	-59.5°	Multi			63.2	66.3	3.1	3.0	97
75.29	258.7°	247.5°	-59.7°	Multi			66.3	69.3	3.1	3.0	97
78.33	260.0°	248.8°	-59.6°	Multi			69.3	72.4	3.0	3.0	99
81.38	263.0°	251.8°	-59.2°	Multi			72.4	75.4	3.1	3.0	99
84.43	262.2°	251.0°	-59.1°	Multi			75.4	78.5	3.1	3.0	97
87.48	261.5°	250.3°	-59.2°	Multi			78.5	81.5	3.1	3.0	98
90.53	258.8°	247.6°	-59.2°	Multi			81.5	84.6	3.1	3.0	98
93.57	259.4°	248.2°	-59.6°	Multi			84.6	87.6	3.1	3.0	99
96.62	260.5°	249.3°	-59.7°	Multi			87.6	90.7	3.1	3.0	98
							90.7	93.7	3.1	3.0	98
							93.7	96.8	3.1	3.0	99
							96.8	99.8	3.1	3.0	99

Golden Target Project

4276170

NAD83 17N

369.00 m

539,695.00 m

Drill Log CR2014-02

COLLAR INFORMATION

Claim:

Projection:

Easting:

Elevation:

				WORK D	ONE BY
Work	From	То	Worker	Start	End
Drilling	0.0	99.2	Walker Drilling	2014-Jul-24	Jul-31
Downhole Survey	0.0	99.2	Walker Drilling	2014-Jul-31	Jul-31
Core Logging	0.0	99.2	Ce Shi	2014-Jul-25	Jul-25
Core Logging	0.0	99.2	Dennis Patron	2014-Jul-25	Jul-25

Storage: CanREE explo site

Northing: 5,360,290.00 m

Comments: Mobilization took a day because the drill is very hard to maneuver in hilly soft ground.

246.90°

-60.00°

99.21 m

NQ

Azimuth:

Length:

Core Size:

Dip:

			GEOLOGY	VISU	JAL			ASSAY	RESULTS	i	
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
70.10	99.23	MV	Altered Mafic Volcanics		0.5	30395	70.10	71.30	1.20		
		This un	it have a sharp contact at 135°ca and occurs as alternating band	S	0.5	30396	71.30	72.50	1.20		
		of dark	er greyish and more pinkish material and is also mineralize by		0.5	30397	72.50	73.70	1.20		
		pyrite o	lisseminations up to 5% in concentration. There is a weak foliation	on	0.5	30398	73.70	74.90	1.20		
		fabric a	t 15 to 35°ca by which sub parallel syenite veinings also occur. T	he	0.5	30399	74.90	76.10	1.20		
		low ang	gle foliation fabric suggest that we are drilling along the dip of th	ne	0.5	30401	76.10	77.30	1.20		
		mafic v	olcanics which is apparently trending 75 to 85°ca when plotted.		0.5	30402	77.30	78.50	1.20		
			ant throughout are dark greyish-green chlorite stringers as well a		0.5	30403	78.50	79.70	1.20		
			green sericite stringers anostomosing the unit at various direction	on	0.1	30404	79.70	81.20	1.50		
			cockwork or meshwork. Generally 0.5% disseminated pyrite but		0.1	30405	81.20	82.90	1.70		
		locally	up to 5% in concentrations. The rock is moderately to strongly		1.0	30406	82.90	84.00	1.10		
		magne	tic, weakly to moderately calcareous and weakly ankeritic. Sub		1.0	30407	84.00	85.00	1.00		
		units w	ithin this mafic volcanic package is described below.		1.0	30408	85.00	86.00	1.00		
					1.0	30409	86.00	87.00	1.00		
			74.23: Feldspar Porphyry. This unit is similar to the massive,		1.0	30410	87.00	88.00	1.00		
			ine and homogenous, pink feldspar porphyry. Upper and lower		1.0	30411	88.00	89.00	1.00		
		contact	are sharp at 35°ca. Trace pyrites.		0.5	30412	89.00	90.20	1.20		
					0.5	30413	90.20	91.40	1.20		
			75.70: Feldspar Porphyry. This unit is similar uphole. Strongly		0.5	30414	91.40	92.60	1.20		
			ritic where the feldspar phenos are coarse ~3-5 mm diameter.		0.5	30415	92.60	93.80	1.20		
		Trace p	yrites		0.5	30416	93.80	95.00	1.20		
					0.5	30417	95.00	96.20	1.20		
			78.80: Mixed Syenite. The ratio of the syenite and mafic volcanic	CS	0.5	30418	96.20	97.20	1.00		
		inclusio	ons is 70:30.		0.5	30419	97.20	98.20			
		79.25-7	79.40: Syenite. This is a short interval of pinkish syenite with an			30420	98.20	99.23	1.03		
			and lower contact of 155°ca.								
		81.20-8	32.95: Syenite. The upper contact is 60°ca while the lower conta	act							
		is 120°	ca. Pinkish grey, massive and crystalline. Trace pyrites.								
			88.10: Syenite. This is a short interval of pinkish syenite with an and lower contact of 25°ca.								
			99.13: Mixed Syenite. The ratio of the syenite and mafic volcanions is 30:70.	CS							

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
65.70	70.10	FP	Feldspar Porphyry		0.1	30392	65.70	67.20	1.50		
		This is	a short interval of feldspar porphyry. It is salmon pink similar as the		0.1	30393	67.20	68.70	1.50		
			e colour, coherent. This unit is massive, and crystalline porphyritic			30394	68.70	70.10	1.40		
		dike w	ith abundant (30%), rounded, translucent grey feldspar								
		pheno	crysts (3-5mm). The upper and lower contact is sharp at 150°ca and								
		60°ca	respectively. Trace of pyrites are disseminated sparsely on this unit.								
			ck is non calcareous, non ankeritic and non to weakly magnetic.								
			volcanic inclusions are abundant towards the lower contact and								
			assimilating into the melt. This porphyry dyke is presumed to be a								
			magma of syenite as shown by the change in texture towards the								
		lower	contact.								
41.70	65.65	MV	Altered Mafic Volcanics		0.1	30371	41.70	42.90	1.20		
			ock is quite similar to the altered mafic volcanics described uphole.		0.1	30372	42.90	44.10	1.20		
			are several syenite veins, veinlets and dykes that cuts accros the		0.5	30373	44.10	45.30	1.20		
			low angke to the CA. The veinings are ubiquitous and worm like		0.5	30374	45.30	46.50	1.20		
			rance forming a weak foliation fabric of 20 to 30°ca. A lot of the		0.5	30376	46.50	47.70	1.20		
			gs are deformed in shape. There is a weak pyite mineralization of		0.5	30377	47.70	48.90	1.20		
			to 0.5% that is finely disseminated in the host rock. However pyrite		0.5	30378	48.90	50.10	1.20		
			ntrations increases on fracture filling zones and veinlets which are		0.5	30379	50.10	51.30	1.20		
			by quartz carbonate as well as syenite. Several zones of syenite dyke		0.5	30380	51.30	52.50	1.20		
		are inc	cluded and described separately below.		0.5	30381	52.50	53.70	1.20		
					0.5	30382	53.70	54.90	1.20		
			44.00: Syenite. This is a pinkish, massive and crystaline syenite		0.1	30383	54.90	56.10	1.20		
			sharp upper and lower contact of 150°ca. The rock is non ankeritic,		0.5	30384	56.10	57.30	1.20		
		non ca	lcareous and non magnetic. Trace pyrites.		0.5	30385	57.30	58.50	1.20		
		F1 00	F2 C0. Mired Granita. This interval is a mired of granita and motio		0.5	30386	58.50	59.70	1.20		
			52.60: Mixed Syenite. This interval is a mixed of syenite and mafic ics. The latter comes in and out with a 50:50 ratio. The syenite		0.5	30387	59.70	60.90	1.20		
			s the foliation fabric of the mafic volcanics which is 10°ca to almost		0.5	30388	60.90	62.10	1.20		
			irralel to CA. The syenite have a wormy appearance. There is 0.5%-		1.0	30389	62.10	63.30	1.20		
			e pyrite disseminations and most of them were concentrated on		1.0	30390	63.30	64.50	1.20		
			afic volcanics and along the contact rims.		1.0	30391	64.50	65.70	1.20		
		55.50-	56.10: Syenite. This is a pinkish, massive and crystaline syenite								
			sharp upper and lower contact of 120°ca. The rock is non ankeritic,								
			la construction de la constructi								

57.60-58.40: Mixed Syenite. This unit is quite similar to the mixed syenite uphole.

non calcareous and non magnetic. Trace pyrites

			GEOLOGY	VISU	JAL		ŀ	ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
29.20	41.70	SY	Syenite		0.5	30363	29.20	31.00	1.80		
		A sharp	o contact of 75°ca marks the beginning of a pinkish, medium to			30364	31.00	32.50	1.50		
		coarse	grained Syenite dyke. This unit is massive and homogenous and		0.1	30365	32.50	34.00	1.50		
		crystall	ine and contains about 10% 1-3 mm whitish phenocrysts. There		0.1	30366	34.00	35.50	1.50		
		are por	tions of this unit which exhibits well developed phenos and those		0.1	30367	35.50	37.00	1.50		
		interva	ls were presumed to be feldspar porphyry. The groundmass is		0.1	30368	37.00	38.50	1.50		
		variabl	y pale salmon (least carbonatized) with white subhedral to		0.1	30369	38.50	40.00	1.50		
		anhedr	al feldspar pseudocrysts and white, locally euhedral 1-2mm relic		0.1	30370	40.00	41.70	1.70		
		feldspa	r phenocrysts varying in abundance from 5% to 10%. This unit is								

weakly carbonatized with ankerite. There are dark green to black mafic grains that are interstitial to 5% in abundance in a medium grained host. Some sections show angular clasts of fine grained, greenish grey mafic volcanics wall rock, suggesting that the intrusion is younger than the mafic volcanic wall rock. Traces of pyrite and chalcopyrites are locally observed to be associated. The rock is non to weakly magnetic, non calcareous and non ankeritic. This syenite is also sampled for assay analysis for easier resource calculation. The mafic volcanics comes in and

31.60-31.70: Mafic volcanics. Upper contact is 145°ca while lower contact is 30°ca. Same description as the mafic volcanics above.

31.80-31.93: Mafic Volcanics. This rock appears like an inclusion that is connected to the above mafic volcanics. This interval is sliced by a syenite in the middle at 31.86-31.88. The upper contact is 17°ca while the lower

32.19-32.42: Mafic Volcanics. Appears like an inclusion because the other

37.00-37.63: Mafic Volcanics. The upper and lower contact is oriented at

out of the syenite. The lower contact is 10°ca.

conbtact is 10°ca.

10°ca.

half of the core is syenite.

			GEOLOGY		VISU	JAL		ŀ	ASSAY	RESULTS		
rom 1	То	Code	Comment		Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
0.25 2	29.15	MV	Altered Mafic Volcanics			0.1	30337	0.25	1.20	0.95		
		The hol	e begins in a package of fine	grained grayish_green mafic			30338	1.20	2.40	1.20		
		volcanio	s intruded by irregular quartz	-ankerite veining typical of a syenite.		1.0	30339	2.40	3.60	1.20		
		From th	e collar to 0.7 m is a pinkish,	medium to coarse grained, massive		0.5	30340	3.60	4.80	1.20		
		and cry	stalline, homogenous syenite	dyke. Following the above syenite		0.1	30341	4.80	6.00	1.20		
		dyke is	a rubbly zone up to 2.5 m lead	ling into altered mafic volcanics that		2.0	30342	6.00	7.20	1.20		
		has a sl	ghtly syenitic appearance due	e to its pinkish-greyish color		5.0	30343	7.20	8.40	1.20		
		sporadi	cally occuring and irregular se	condary quartz-ankerite veins. The		2.0	30344	8.40	9.60	1.20		
			-	petween bands of darker greyish and		5.0	30345	9.60	10.80	1.20		
		more p	nkish material from 0.7 up to	12.77 m and is also mineralize by		1.0	30346	10.80	12.00	1.20		
				centration. There is a weak foliation		1.0	30347	12.00	13.20	1.20		
				rallel syenite veinings also occur. The		1.0	30348	13.20	14.40	1.20		
		-		t we are drilling along the dip of the		1.0	30349	14.40	15.60	1.20		
				ending 75 to 85°ca when plotted.		1.0	30351	15.60	16.80	1.20		
				h-green chlorite stringers as well as		1.0	30352	16.80	18.00	1.20		
				mosing the unit at various direction		1.0	30353	18.00	19.20	1.20		
				ally trace disseminated pyrite but		1.0	30354	19.20	20.40	1.20		
			-	e rock is moderately to strongly		1.0	30355	20.40	21.60	1.20		
				areous and weakly ankeritic. Sub		1.0	30356	21.60	22.80	1.20		
			•	ge is described below. Details of		0.1	30357	22.80	24.00	1.20		
				n the core and could be reviewed in		0.1	30358	24.00	25.20	1.20		
		the core	e pictures of CR-2014-02W.			0.5	30359	25.20	26.20	1.00		
						1.0	30360	26.20	27.20	1.00		
			-	to coarse grained, massive and		1.0	30361	27.20	28.20	1.00		
			ne, homogenous syenite dyke ic, non ankeritic and non calca			1.0	30362	28.20	29.20	1.00		
		mafic ve greyish ankerite volcanie the syen system. interval	bloanics that has a slightly system color sporadically occuring ar eveins. This unit is lighter in c is intercepted in CR-2014-01V nite intrusion and possibly hyo There is a concentration of 1 . Chlorite and sericite stringer moderately to strongly magne	zone up to 2.5 m leading into altered nitic appearance due to its pinkish- id irregular secondary quartz- olor than the previous mafic V due to the alteration created by drothermal fluids that enter the % pyrite disseminations within this s anostomosing the interval. The tic, weakly ankeritic and weakly								
		3.70-5.2	70: Syenite. These syenite ba	nds and dykes generally have sharp								
		to 5.7 n of alter propert the mai	n and the rest of the interval h ed mafic volcanics. This syenit ies within the syenite but stro	e solid syenite interval occur at 4.82 have interspersed of small intervals e interval have a weak magnetic ng magnetic properties if mixed with ntrations were localized within the hite.								
		interval stronge scale qu the edg recorde directio	is quite similar to one uphole r here. The interval is sheared lartz ankerite veinings that ar- es of the veins appears jagged d on the table to the left. The	cription of this mafic volcanic except that the shearing is quite controlled as observed on the mm e folded ptygmatically. The shapes of d. The pyrite concentrations are Syenite veinings have no particular inings seems to be following the								
			4.20: Syenite. This Syenite ha intercepted from 3.70-5.70.	ve the same description as the								

24.20-29.15: Mafic Volcanics. There are numerous quartz carbonates veinings anostomosing the unit generally in a 30°ca directions. The pyrites mineralization is trace to 0.5% in abundance. The weak foliation fabric seems to be in the direction of the veinings at 30°ca. The rock is moderately magnetic, non ankeritic and weakly calcareous.

			GEOLOGY	VISU	JAL		A	SSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
0.00	0.25	Core re	Overburden covery was measured to begin at 9.84 in. The driller's block e that they placed 10.0 ft. of NW casing because the overburden is ubbly.								
		dilute h fizzes ir presen	All the core is systematically tested for pervasive carbonate using hydrochloric acid HCI) and potassium ferricyanide (KFC). The acid n contact with calcite and the KFC stains the core blue in the ce of ankerite. In certain areas, the core is tested with a magnet to nine relative magnetite content.								

99.21 EOH End of hole.

DOWNHOLE ORIENTATION SURVEYS

-

GEOTECHNICAL INFORMATION

Breaks

										•		0/ 12 11 11 2
Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm	RQD (%)
35.05	247.4°	236.2°	-60.1°	Multi		2.3	4.7	2.4	1.4	56	0.9	36
38.10	251.6°	240.4°	-59.9°	Multi		4.7	7.8	3.1	3.0	99	2.2	71
41.15	246.8°	235.6°	-59.4°	Multi		7.8	10.8	3.1	3.0	99	2.8	93
44.20	248.9°	237.7°	-59.4°	Multi		10.8	13.9	3.1	3.0	98	2.2	72
47.24	255.8°	244.6°	-59.2°	Multi		13.9	16.9	3.1	3.0	99	2.5	81
50.29	262.3°	251.1°	-59.1°	Multi		16.9	20.0	3.1	3.0	98	1.9	63
53.34	246.7°	235.5°	-59.0°	Multi		20.0	23.0	3.1	3.0	98	2.4	78
56.39	258.0°	246.8°	-58.9°	Multi		23.0	26.1	3.1	3.0	99	3.0	100
59.44	258.4°	247.2°	-59.0°	Multi		26.1	29.1	3.1	3.0	97	2.0	65
62.48	264.5°	253.3°	-59.2°	Multi		29.1	32.2	3.1	3.0	99	2.4	79
65.53	260.8°	249.6°	-59.0°	Multi		32.2	35.2	3.1	3.0	98	2.9	96
68.58	270.3°	259.1°	-58.8°	Multi		35.2	38.3	3.1	3.0	98	2.7	89
71.63	263.4°	252.2°	-58.8°	Multi		38.3	41.3	3.0	3.0	100	3.0	100
74.68	262.0°	250.8°	-58.6°	Multi		41.3	44.4	3.1	3.0	99	1.5	48
77.72	262.2°	251.0°	-58.9°	Multi		44.4	47.4	3.1	3.0	99	2.9	95
80.77	263.8°	252.6°	-58.4°	Multi		47.4	50.5	3.1	3.0	99	2.9	95
83.82	265.8°	254.6°	-58.9°	Multi		50.5	53.6	3.1	3.0	98	2.2	71
86.87	258.6°	247.4°	-58.3°	Multi		53.6	56.6	3.0	3.0	100	2.7	90
89.92	270.5°	259.3°	-58.3°	Multi		56.6	59.6	3.1	3.0	98	2.3	75
92.96	259.4°	248.2°	-58.2°	Multi		59.6	62.7	3.1	3.0	97	2.9	93
96.01	264.9°	253.7°	-58.5°	Multi		62.7	65.7	3.1	3.0	97	2.3	76
0.00	246.9°	246.9°	-60.0°	Collar		65.7	68.8	3.1	3.0	97	1.4	46
7.62	255.1°	243.9°	-60.0°	Multi		68.8	71.8	3.1	3.0	98	2.7	87
10.67	258.9°	247.7°	-60.9°	Multi		71.8	74.9	3.1	3.0	99	2.7	87
13.72	253.2°	242.0°	-60.2°	Multi		74.9	77.9	3.1	3.0	99	2.7	88
16.76	255.3°	244.1°	-60.1°	Multi		77.9	81.0	3.1	3.0	99	2.8	90
19.81	250.0°	238.8°	-60.2°	Multi		81.0	84.0	3.1	3.0	98	2.6	84
22.86	266.8°	255.6°	-60.2°	Multi		84.0	87.1	3.1	3.0	98	2.8	91
25.91	259.0°	247.8°	-59.8°	Multi		87.1	90.1	3.1	3.0	98	2.7	87
28.96	250.2°	239.0°	-60.0°	Multi		90.1	93.1	3.0	3.0	99	2.8	92
32.00	251.8°	240.6°	-59.6°	Multi		93.1	96.2	3.1	3.0	99	2.5	83
						96.2	99.2	3.0	3.0	100	2.9	97
						0.3	2.3	2.0			0.3	17

Golden Target Project

Drill Log CR2014-03

COLLAR INFORMATION

Claim:	4276169			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	74.10° -60.00°	Drilling Downhole Survey	0.0 0.0		Walker Drilling Walker Drilling	2014-Aug-01 2014-Aug-04	Aug-04 Aug-04
Easting: Northing:	539,702.00 m 5,360,300.00 m	Dip: Length:	-60.00 102.11 m	Core Logging Core Logging	0.0 0.0		Ce Shi Dennis Patron	2014-Aug-01 2014-Aug-01	Aug-01 Aug-01
Elevation:	369.00 m	Core Size:	NQ	00.0 20888	0.0	1021		20217108 01	100 01

Storage: CanREE explo site

Comments: 0.5%- 3% pyrite concentrations hosted in amphibolite were presumed to be hosting PGE. There is a PGE mark at the table of descriptions where the samples needs to be assayed for PGE.

			GEOLOGY	VISU	JAL	ASSAY RESULTS							
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %		
72.00	102.15	MV	Altered Mafic Volcanics		0.5	30485	72.15	73.35	1.20				
		A subtl	e contact reverts back to altered mafic volcanics intruded by		1.0	30486	73.35	74.55	1.20				
		pinkish	grey syenite veinings and dykes that comes in and out. Included in		3.0	30487	74.55	75.75	1.20				
		this int	erval are alteration zone surrounding what appear to be sheeted		2.0	30488	75.75	76.95	1.20				
		quartz	+/-ankerite and pyrite veins. The overall colour is a light greenish		1.0	30489	76.95	78.15	1.20				
		buff gro	ey. The most intense alteration is strongly mineralize by pyrite		1.0	30490	78.15	79.35	1.20				
		which o	coincides with the most veins. These veins are generally narrow		3.0	30491	79.35	80.55	1.20				
		and at	35-60°ca and oftentimes contorted. A number of narrow veins		1.0	30492	80.55	81.75	1.20				
			by pyrite mineralization in the selvages appears to be weakly		1.0	30493	81.75	82.95	1.20				
			d. Most of the upper veins and veinlets are conformable with the		2.0	30494	82.95	84.15	1.20				
			n fabric at 40-50°ca. Much of the colour change in the whole		1.0	30495	84.15	85.35	1.20				
			l can be attributed to sericite and k-spar alteration. This rock is		5.0	30496	85.35	86.55	1.20				
			ately to strongly magnetic, non to weakly calcareous and weakly		1.0	30497	86.55	87.75	1.20				
		ankerit	ic. Pyrite mineralization range from 1% to locally 10%.		5.0	30498	87.75	88.95	1.20				
					5.0	32001	88.95	90.15	1.20				
			lowing are the intervals of syenite and their corresponding contact		2.0	32002	90.15	91.35	1.20				
			o the core axis. The syenite contains trace amounts of pyrite and		5.0	32003	91.35	92.55	1.20				
		chalcop	pyrites.		3.0	32004	92.55	93.75	1.20				
					1.0	32005	93.75	94.95	1.20				
			74.64: 80°ca, 40°ca		2.0	32006	94.95	96.15	1.20				
			73.19: 38°ca		3.0	32007	96.15	97.35	1.20				
			73.42: 50°ca		0.5	32008	97.35	98.55	1.20				
			74.64: 80°ca, 40°ca			32009	98.55	99.75	1.20				
			75.25: 75°ca, 60°ca		3.0	32010	99.75	100.95	1.20				
			75.52: 79°ca, 130°ca 75.67: 145°ca, 150°ca		1.0	32011	100.95	102.13	1.18				
			76.48: 130°ca										
			77.97: 45°ca, 54°ca										
			78.05: 50°ca, 55°ca										
			78.30: 130°ca, 80°ca										
			78.47: 50°ca, 90°ca										
			78.55: 60°ca.										
			79.10: 45°ca										
			79.95: 65°ca, 90°ca.										
			30.62: 50°ca, 20°ca										
			30.72: 112°ca, 120°ca										
			31.56: 150°ca, 80°ca										
			31.82: 120°ca, 70°ca										
			32.00: 70°ca, 85°ca										
		82.58-8	33.00: 40°ca										
		83.42-8	33.44: 90°ca										
		83.93-8	34.40: 65°ca										

GEOLOGY				VISU	JAL	ASSAY RESULTS							
rom	То	Code Comment		Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %		
		84.39-84.42: 60°ca											
		86.91-87.85: 160°ca	, 35°ca.										
		88.97-89.74: 75°ca	, 80°ca										
		90.30-90.80: 80°ca	, 50°ca										
		92.68-92.78: 36°ca	, 30°ca										
		92.91-92.94: 35°ca											
		93.91-94.12: 140°ca	•										
		95.91-96.82: 25°ca	·										
		97.91-98.15: 50°ca											
		98.34-98.78: 50°ca	•										
		98.82-98.84: 50°ca	•										
		98.88-98.97: 40°ca											
		99.15-99.46: 40°ca	, 30°ca.										
42.30	72.00		dium Grained Gabbro		0.1	30460	43.35	44.55					
			k to the kind of gabbro that is a bit similar from the		0.1	30461	44.55	45.75	1.20				
			0 m depth. It is massive and homogenous. Resulting		0.1	30462	45.75	46.95	1.20				
		0	evolution of overlying unit the rock becomes,		0.1	30463	46.95	48.15	1.20				
			nedium grained, slightly porphyritic plagioclase-		0.1	30464	48.15	49.35	1.20				
			rock of apparent gabbroic/dioritic composition. This		0.1	30465	49.35	50.55	1.20				
			red and very competent. The rock is moderately		0.1	30466	50.55	51.75	1.20				
			eous and non ankeritic. Trace pyrite disseminations.		0.1	30467	51.75	52.95	1.20				
		Quartz ankerite vein	ings is very minimal.		0.1	30468	52.95	54.15	1.20				
					0.1	30469	54.15	55.35	1.20				
					0.1	30470	55.35	56.55	1.20				
					0.1	30471	56.55	57.75	1.20				
					0.1	30472	57.75	58.95	1.20				
					0.1	30473	58.95	60.15	1.20				
					0.1	30474	60.15	61.35	1.20				
					0.1	30476	61.35	62.55	1.20				
					0.1	30477	62.55	63.75	1.20				
					0.1	30478	63.75	64.95	1.20				
						30479	64.95	66.15	1.20				
					0.1	30480	66.15	67.35	1.20				
					0.1	30481	67.35	68.55	1.20				
					0.1	30482	68.55	69.75	1.20				
					0.1	30483	69.75	70.95	1.20				
					0.1	30484	70.95	72.15	1.20				
6.00	42.25	GBFP Porphyritic	Gabbro		0.1	30454	36.15	37.35	1.20				
		A change in texture	to coarse grained and porphyritic comes this rock			30455	37.35	38.55	1.20				
		locally termed porph	yritic gabbro. This rock have phenocrystic texture		0.1	30456	38.55	39.75	1.20				
			nt and weakly fractured giving the core a solid		0.1	30457	39.75	40.95	1.20				
			point, the porphyry is light/ medium greyish		0.1	30458	40.95	42.15	1.20				
			d with a few large spots of light yellowish grey		0.1	30459	42.15	43.35	1.20				
			n in diameter. It is finely speckled (4-8%) with pale										
			romagnesian minerals that stand out in a										
		0	grey feldspar phenos and dark green fine to medium										
			. The rock is non ankeritic, moderately to strongly										
		-	lcareous on the groundmass but thin calcite stringers										
			d by the fizzes it shows when the HCL tester is used.										
		Trace pyrites. Hopef	ully the REE will kicked in the geochemical analysis.										

		GEOLOGY	VISUAL ASSAY RESULTS							
From	То	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
20.30	36.00	GB Fine to Medium Grained Gabbro		0.1	30440	20.55	21.75	1.20		
		A gradational contact over 90 cm comes the fine to medium grained			30441	21.75	22.95	1.20		
		gabbro. The change in texture from very fined grained aphanitic volcanic		0.1	30442	22.95	24.15	1.20		
		rock to a medium grained gabbro is subtle. The trasition zone from 20.3		0.1	30443	24.15	25.35	1.20		
		to 21.2 m reveals mixed syenite and gabbro (see description below).		0.1	30444	25.35	26.55	1.20		
		Following this transition zone is a massive, homogenous and crystalline		0.1	30445	26.55	27.75	1.20		
		fine to medium grained gabbro. It is rarely fractured. The rock is strongly		0.1	30446	27.75	28.95	1.20		
		magnetic from 20.3 up to 25 m but becomes weakly magnetic from 25 m		0.1	30447	28.95	30.15	1.20		
		to 26. Pyrite mineralization is generally trace with some sections revealing		0.1	30448	30.15	31.35	1.20		
		0.5%. The rock is non ankeritic and non calcareous.		0.1	30449	31.35	32.55	1.20		
				0.1	30451	32.55	33.75	1.20		
		20.30-21.20: Transition zone. This interval shows pockets of pinkish		0.1	30452	33.75	34.95	1.20		
		syenite occuring at 20.55-20.65, 21.1-21.7. The upper and lower contacts		0.1	30453	34.95	36.15	1.20		
		of these syenites are 90°ca and 75°ca respectively. The rock is strongly								
		magnetic, non calcareous and non ankeritic. Trace pyrites.								
0.15	20.30	MV Altered Mafic Volcanics		0.5	30421	0.15	1.35	1.20		
		The hole is collared into a dark grey, fine grained amphibole rich mafic		0.5	30422	1.35	2.55	1.20		
		volcanic. It is called amphibolite by SGS when we send a sample for thin		0.1	30423	2.55	3.75	1.20		
		section. The protolith of this rock before metamorpism is probably basalt.		0.5	30426	3.75	4.95	1.20		
		This altered mafic volcanics is quite similar to the mafic volcanics		0.5	30427	4.95	6.15	1.20		
		intercepted on CR-2014-02W except that the foliation fabric in this hole is		0.5	30428	6.15	7.35	1.20		
		high angle to the core axis. This proves our theory that the mafic volcanics		0.5	30429	7.35	8.55	1.20		
		is steeply dipping to the west. This drill hole is just located aprroximately		0.5	30430	8.55	9.75	1.20		
		5 meters east of CR-2014-02W but is still collared on a mafic volcanic		0.5	30431	9.75	10.95	1.20		
		syenite package. There is a weak foliation fabric at 50-60°ca by which sub		0.5	30432	10.95	12.15	1.20		
		parallel syenite veinings and intrusions also occur. The high angle		0.5	30433	12.15	13.35	1.20		
		foliation fabric suggest that we are drilling across the dip of the mafic		0.5	30434	13.35	14.55	1.20		
		volcanics which is apparently trending 75 to 85°ca when plotted.		0.5	30435	14.55	15.75	1.20		
		Abundant throughout are dark greyish-green chlorite stringers as well as		0.5	30436	15.75	16.95	1.20		
		yellow green epidote stringers anostomosing the unit at various direction		0.5	30437	16.95	18.15	1.20		
		like a stockwork or meshwork. Generally trace disseminated pyrite but		0.5	30438	18.15	19.35	1.20		
		locally up to 5% in concentrations. The rock is moderately to strongly		0.1	30439	19.35	20.55	1.20		
		magnetic, weakly to moderately calcareous and weakly ankeritic. Sub				0				
		units within this mafic volcanic package is described below.								

The following are the intervals of syenite and their corresponding contact angle to the core axis. The syenite contains trace amounts of pyrite and chalcopyrites.

1.16- 1.30: 155°ca syenite 1.31- 1.38: 80°ca 1.98- 2.04: 45°ca 2.15- 2.18: 60°ca 2.50- 3.95: 30°ca, 105°ca 8.60- 8.75: 90°ca, 30°ca. 9.33- 9.75: 45°ca, 55°ca. 10.49-10.69: 150°ca, 90°ca 11.30-11.76: 25°ca, 40°ca 12.55-12.65: 35°ca 13.35-13.57: 20°ca, 40°ca 17.88-18.04: 90°ca, 50°ca 18.80-18.83: 120°ca

0.00 0.15 OVB **Overburden**

Core recovery was measured to begin at 6 inches. The driller's indicate that they placed 3.05 m (10.0 ft) of NW casing.

NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.

102.11 EOH End of hole.

CR2014-03

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments	Fr
0.00	74.1°	74.1°	-60.0°	Collar		
16.76	100.8°	89.6°	-59.6°	Multi		
19.81	86.1°	74.9°	-59.9°	Multi		
22.86	88.7°	77.5°	-59.8°	Multi		
25.91	90.5°	79.3°	-60.0°	Multi		
28.96	86.3°	75.1°	-60.1°	Multi		
32.00	84.5°	73.3°	-60.0°	Multi		
35.05	82.7°	71.5°	-59.6°	Multi		
38.10	80.2°	69.0°	-59.8°	Multi		
41.15	83.9°	72.7°	-60.0°	Multi		
44.20	81.7°	70.5°	-59.4°	Multi		
47.24	83.0°	71.8°	-59.6°	Multi		
50.29	82.8°	71.6°	-59.5°	Multi		
53.34	81.6°	70.4°	-59.2°	Multi		
56.39	80.2°	69.0°	-59.1°	Multi		
59.44	80.8°	69.6°	-59.3°	Multi		
62.48	80.6°	69.4°	-59.0°	Multi		
65.53	82.3°	71.1°	-59.4°	Multi		
68.58	81.2°	70.0°	-58.8°	Multi		
71.63	84.9°	73.7°	-59.3°	Multi		
74.68	83.7°	72.5°	-59.3°	Multi		
77.72	104.6°	93.4°	-58.9°	Multi		
80.77	89.7°	78.5°	-58.6°	Multi		
83.82	91.5°	80.3°	-59.0°	Multi		
86.87	92.3°	81.1°	-58.5°	Multi		
89.92	88.1°	76.9°	-58.4°	Multi		
92.96	92.5°	81.3°	-58.2°	Multi		
96.01	91.3°	80.1°	-58.6°	Multi		
99.06	84.5°	73.3°	-58.2°	Multi		

From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
0.2	0.6	0.5	0.5	100	0.0	0	1
0.6	1.7	1.1	1.1	99	0.7	66	7
1.7	3.2	1.5	1.5	99	0.8	53	4
3.2	4.7	1.5	1.5	95	0.4	26	10
4.7	7.8	3.1	3.0	98	1.8	60	14
7.8	10.8	3.1	3.0	98	1.8	60	8
10.8	13.9	3.1	3.0	100	2.8	92	2
13.9	16.9	3.1	3.0	99	2.5	81	2
16.9	20.0	3.1	3.0	98	2.2	72	16
20.0	23.0	3.1	3.0	99	2.4	80	13
23.0	26.1	3.0	3.0	99	2.0	65	19
26.1	29.1	3.1	3.0	98	2.0	64	11
29.1	32.2	3.0	3.1	100	2.9	96	6
32.2	35.2	3.1	3.0	100	2.9	96	11
35.2	38.3	3.1	3.0	99	2.7	89	21
38.3	41.3	3.1	3.0	99	2.6	86	14
41.3	44.4	3.1	3.0	99	2.6	86	27
44.4	47.4	3.1	3.0	99	2.5	81	25
47.4	50.5	3.1	3.0	98	1.8	59	47
50.5	53.5	3.1	3.0	99	2.9	95	37
53.5	56.6	3.0	3.0	99	2.7	88	11
56.6	59.6	3.1	3.0	100	2.9	95	13
59.6	62.7	3.1	3.0	98	2.0	65	36
62.7	65.7	3.1	3.0	98	2.5	82	32
65.7	68.8	3.1	3.1	100	3.1	100	16
68.8	71.8	3.1	3.0	99	2.6	85	27
71.8	74.9	3.1	3.0	99	2.5	82	23
74.9	77.9	3.1	3.0	100	2.8	90	12
77.9	81.0	3.0	3.0	100	2.5	84	12
81.0	84.0	3.0	3.0	99	2.7	89	17
84.0	87.0	3.1	3.0	99	2.8	91	17
87.0	90.1	3.1	3.1	100	3.1	100	8
90.1	93.2	3.1	3.0	98	2.9	93	12
93.2	96.2	3.0	3.0	99	2.3	77	17
96.2	99.2	3.1	3.0	97	1.8	59	33
99.2	102.1	2.9	2.9	99	2.1	74	25

Golden Target Project

Drill Log CR2014-04

COLLAR INFORMATION

WORK	DONE BY

Claim:	4273175			Work	From	То	Worker	Start	End
Projection: Easting:	NAD83 17N 539,691.00 m	Azimuth: Dip:	265.40° -60.00°	Drilling Downhole Survey Core Logging	0.0 0.0 0.0	153.0	Walker Drilling Walker Drilling Ce Shi	2014-Aug-05 2014-Aug-15 2014-Aug-08	Aug-15 Aug-15 Aug-08
Northing:	5,360,100.00 m	Length:	153.01 m	Core Logging	0.0	153.0	Dennis Patron	2014-Aug-08	Aug-08
Elevation:	380.00 m	Core Size:	NQ						

Storage: CanREE explo site

Comments: Drill Machine brakes down after pulling the last rod.0.5%- 3% pyrite concentrations hosted in amphibolite were presumed to be hosting PGE. There is a PGE mark at the table of descriptions where the samples needs to be assayed for PGE.

			GEOLOGY	VISU	JAL	ASSAY RESULTS							
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %		
134.00	153.05	GBFP	Porphyritic Gabbro		0.1	32074	134.80	136.00	1.20				
		The gra	ins and texture becomes coarser but the rock unit is still the same		0.1	32076	136.00	137.20	1.20				
			e. A distinct change to a phenocrystic texture that is very		0.1	32077	137.20	138.40	1.20				
		compe	ent and weakly fractured giving the core a solid appearance. The		0.1	32078	138.40	139.60	1.20				
		porphy	ry is light/ medium greyish green/beige coloured with a few large		0.1	32079	139.60	140.80	1.20				
		spots o	f light yellowish grey feldspar phenos 1 cm in diameter. It is finely			32080	140.80	142.00	1.20				
		•	d (4-8%) with pale yellow sericitized ferromagnesian minerals that		0.1	32081	142.00	143.20	1.20				
			ut in a groundmass of faint grey feldspar phenos and dark green		0.1	32082	143.20	144.40	1.20				
			medium grained groundmass. The rock is weakly to moderately		0.1	32083	144.40	145.60	1.20				
			c, moderately to strongly magnetic and non calcareous on the		0.1	32084	145.60	146.80	1.20				
			mass but thin calcite stringers are common revealed by the fizzes		0.1	32085	146.80	148.00	1.20				
		it show	s when the HCL tester is used. Trace pyrites.		0.1	32086	148.00	149.20	1.20				
					0.1	32087	149.20	150.40	1.20				
					0.1	32088	150.40	151.60	1.20				
					0.1	32089	151.60	153.05	1.45				
111.50	134.00	GB	Fine to medium Grained Gabbro			32055	112.00	113.20	1.20				
		A grada	tional subtle contact over 50 cm comes this fine to medium		0.1	32056	113.20	114.40	1.20				
		grained	gabbro. Through a gradational contact, the hole rolls into typical		0.1	32057	114.40	115.60	1.20				
			that I am expecting to intercept to the west which I mapped at		0.1	32058	115.60	116.80	1.20				
			face. It is fine to medium grained, massive, homogenous and salt		0.1	32059	116.80	118.00	1.20				
			oper textured, the overall medium grey green colour formed form		0.1	32060	118.00	119.20	1.20				
			6 dark green coloured altered ferromagnesians in a fine grained,		0.1	32061	119.20	120.40	1.20				
			sh buff feldspathic groundmass. About 35% of the gabbroic unit is		0.1	32062	120.40	121.60	1.20				
			olitized to a dark greenish grey/ black colour and fine to medium		0.1	32063	121.60	122.80	1.20				
		0	ze, the thickest of which extends up to 134m, and exits gradually		0.1	32064	122.80	124.00	1.20				
			coarser grained, salt and peppery phase of the gabbro. The rock is		0.1	32065	124.00	125.20	1.20				
			ately magnetic, non calcareous and moderately ankeritic. Veining		0.1	32066	125.20	126.40	1.20				
			abbroic unit is very minimal and pyrite mineralization is trace to		0.1	32067	126.40	127.60	1.20				
		nil. Calo	ite occurs strictly on fracture fillings only.		0.1	32068	127.60	128.80	1.20				
					0.1	32069	128.80	130.00	1.20				
					0.1	32070	130.00	131.20	1.20				
					0.1	32071	131.20	132.40	1.20				
					0.1	32072	132.40	133.60	1.20				
					0.1	32073	133.60	134.80	1.20				

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
96.10	111.50	MV	Mafic Volcanics		0.1	32040	97.20	98.40	1.20		
		A sharp	contact of 22°ca comes this fine grained unit, dark to medium		0.1	32041	98.40	100.00	1.60		
		greenis	h grey, weakly foliated mafic volcanics. The foliation varies from		0.5	32042	100.00	101.20	1.20		
		15°ca to	o 25°ca that's why we are not 100% of the exact attitude of this		2.0	32043	101.20	102.20	1.00		
		mafic v	ocanics. Chlorite-bearing, heterogeneous, interbeds of primarily		2.0	32044	102.20	103.20	1.00		
		dark gro	een and grey mafic volcanics. Pale grey flow with dark green to		5.0	32045	103.20	104.20	1.00		
		black ai	mphibole phenocrysts (very similar to the MI unit above-this may		10.0	32046	104.20	105.20	1.00		
		be extr	usive equivalent?). Several massive aphanitic (the smaller		2.0	32047	105.20	106.20	1.00		
		dismen	nbered examples) and finely feldspar-porphyritic dikes cut this unit		2.0	32048	106.20	107.20	1.00		
		and des	scribed separately below. The mafic volcanic rocks are moderately		0.5	32051	107.20	108.40	1.20		
		foliated	l, moderately to strongly magnetic, non calcareous and non		0.1	32052	108.40	109.60	1.20		
		ankeriti	ic, and weakly pyrite mineralized (trace to 0.5%) typically within		0.1	32053	109.60	110.80	1.20		
		more a	ric. Where fabric development is strongest pyrite mineralization is bundant (up to 2% over 5-20cm). A strongly mineralized section is ed below and included in this interval.		0.1	32054	110.80	112.00	1.20		

102.20-107.00: Mineralized Zone. This interval is strongly mineralized by suphides chiefly pyrites and traces of chalcopyrite. The concentrations of pyrite ranges from 2% to up to 10%. The pyrites are locally euhedral but commonly anhedral. Within this mineralized zone is pinkish syenite intrusive that contains several mineralized mafic volcanics inclusions. The syenite groundmass contains no sulphides which means that the syenite is younger. The interval of syenite is at 102.5- 103.45. There is a foliation fabric that trends 25°ca on this mineralized zone.

The following syenite intervals within this mafic volcanics and their corresponding upper and lower contacts are:

97.80-100.19: 25°ca, 140°ca 100.26-100.44: 30°ca, 50°ca 100.75-100.95: 50°ca, 110°ca 101.40-101.70: 65°ca, 55°ca. 101.80-102.00: 20°ca, 130°ca. 102.50-103.45: 50°ca, 120°ca.

78.70 96.10 MI Mafic Intrusive

A sharp contact of 115°ca comes this mafic intrusive probably amphibolite. Greenish grey, granular porphyritic rock with distinctive medium to coarse grained, locally euhedral, needles of amphibole phenocrysts. I call it a mafic intrusive for consistency purpose and base on the thin section of a sample sent to SGS that looks like this. Strain throughout the interval varies from slightly foliated with a weak alignment of the amphibole phenocrysts to moderately sheared with strung out almost indistinguishable phenocrysts at 50°ca. This unit magnetic property varies from weak to moderate. The rock is non calcareous but moderately ankeritic. Pyrite is limited to trace, very fine disseminations. Coarse feldpspar phenos 1 cm in diameter is commonly associated. In fact, in one of the inclusions within the syenite dyke at 88.4m depth the coarse pheldspar phenos are cluster together appearing like a pegmatite. A reddish rock, feldspar porphyritic dike which I refer in this camp as syenite intrudes this mafic intrusive. The dike margins are sharp but no particular direction and lacking in contact metamorphic aureole. It comes in and out in just centimetric scale. Chunks of mafic intrusive inclusions are usually associated with the syenite. Measurement of each syenite intrusive that comes in and out was not recorded but can be seen in the pictures of the core at this interval. The only syenike dyke that I measured is towards the lower contact which is described below.

93.64-96.10: Syenite. Pinkish, coherent porphyritic dike with abundant (30%), rounded, translucent grey phenocrysts (3-5mm). This unit massive, homogenous, and crystalline, competent and rarely fractured. Dull greyish pyrite is very weakly disseminated throughout the unit (trace). The upper contact is arbitrary but the lower contact is sharp at 22°ca.

2.0	32023	78.70	80.00	1.30
0.1	32026	80.00	81.20	1.20
0.1	32027	81.20	82.40	1.20
0.1	32028	82.40	83.60	1.20
0.1	32029	83.60	84.80	1.20
0.1	32030	84.80	86.00	1.20
1.0	32031	86.00	87.20	1.20
1.0	32032	87.20	88.40	1.20
0.1	32033	88.40	89.60	1.20
	32034	89.60	90.80	1.20
0.5	32035	90.80	92.00	1.20
0.1	32036	92.00	93.20	1.20
0.1	32037	93.20	94.40	1.20
0.1	32038	94.40	96.00	1.60
1.0	32039	96.00	97.20	1.20

		GEOLOGY	VISU	JAL			ASSAY	RESULTS	JLTS		
From	То	Code Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %	
27.45	78.70	SY Syenite			41309	27.45	28.65	1.20			
		A sharp contact of 30°ca comes this pinkish, medium grained, massive			41310	28.65	29.85	1.20			
		and homogenous, locally porphyritic syenite dyke. Just a few samples			41311	29.85	31.05	1.20			
		collected, only on greenstones that measured more than one meter			41312	31.05	32.25	1.20			
		length. Occasionally visible are waxy-greyish-green phenocrysts, 1-4mm,			41313	32.25	33.45	1.20			
		up to 5% in local areas. These phenocrysts seem to appear and disappear			41314	33.45	34.65	1.20			
		The core moves to a brick-reddish orange syenite that is slightly different			41315	34.65	35.85	1.20			
		from other syenites seen in this hole due to its brighter color, thought to			41316	35.85	37.00	1.15			
		be the result of feldspar alteration. The upper contact consists of a		0.1	32022	37.00	38.27	1.27			
		contact zone (described above). It is medium to coarse grained in areas,			41317	38.27	39.47	1.20			
		with large (1-3mm) quartz and mafic grains visible, 7%, although these			41318	39.47	40.67	1.20			
		are not believed to be phenocrysts but rather primary minerals. In more			41319	40.67	41.87	1.20			
		fresher areas, 1-2mm rounded, whitish feldspar grains are observed.			41320	41.87	43.07	1.20			
		Trace disseminated pyrite throughout. The rock is generally non to weakly			41321	43.07	44.27	1.20			
		ankeritic but there are intervals which register a dark blue tint on the rock			41321	43.07	45.47	1.20			
		when KFC was applied. The phenos of these strongly ankeritic porptions			41322	44.27	46.67	1.20			
		were probably overprinted by ankerite alteration. The unit is generally non					40.07				
		calcareous and non magnetic.			41327	46.67		1.20			
		-			41328	47.87	49.07	1.20			
		31.00-31.40: Mafic Volcaniclastics. Stretched mafic volcanic clasts,			41329	49.07	50.27	1.20			
		angular. Non to weakly magnetic			41330	50.27	51.47	1.20			
					41331	51.47	52.67	1.20			
		32.00-32.62: Mafic volcaniclastics. Streched mafic angular fragments at			41332	52.67	53.87	1.20			
		15°ca fabric Non to weakly magnetic.			41333	53.87	55.07	1.20			
		, 3			41334	55.07	56.27	1.20			
		34.50-35.20: Mafic volcaniclastic. Same as above except that the			41335	56.27	57.47	1.20			
		fragments here is larger than above. Non to weakly magnetic.			41336	57.47	58.67	1.20			
					41337	58.67	59.87	1.20			
		37.00-38.27: Mafic Intrusive. Dark green, porphyritic mafic intrusive.			41338	59.87	61.07	1.20			
		Trace pyrite, non ankeritic, non magnetic, non calcareous.			41339	61.07	62.27	1.20			
					41340	62.27	63.47	1.20			
		41.23-42.15: Mafic Volcanics. Fine Grained, dark green mafic volcanics.			41341	63.47	64.67	1.20			
		Non ankeritic, non to weakly calcareous and non magnetic.			41342	64.67	65.87	1.20			
					41343	65.87	67.07	1.20			
		43.05-43.33: Mafic Volcanics. Fine Grained, dark green mafic volcanics.			41344	67.07	68.27	1.20			
		Non ankeritic, non to weakly calcareous and non magnetic.			41345	68.27	69.47	1.20			
					41346	69.47	70.67	1.20			
		43.60-43.94: Mafic Volcanics. This mafic volcanics contain narrow quartz			41347	70.67	71.87	1.20			
		ankerite veinings. Trace pyrite. Non magnetic, non calcareous and non			41348	71.87	73.07	1.20			
		ankeritic			41352	73.07	74.27	1.20			
					41353	74.27	75.47	1.20			
		48.70-49.02: Mafic volcaniclastics. Streched mafic angular fragments at			41354	75.47	76.67	1.20			
		15°ca fabric Non to weakly magnetic.			41355	76.67	77.70	1.03			
					41356	77.70	78.70	1.00			
					41550	//./0	70.70	1.00			
22.50	27.45	UNK Contact Zone		2.0	32018	22.50	23.70	1.20			
		This rock is guite similar to the one uphole from the collar. The interval		0.5	32019	23.70	24.90	1.20			
		shows a mixed fine to medium grained phase of the medium/ dark green		0.5	32020	24.90	26.10	1.20			
		coloured early amphibolite (?) or mafic volcanics inclusions that may		0.0	32021	26.10	27.45	1.35			
		represent a zone that is near the wallrock. The characteristic of this			02021	20120	27110	1.00			
		section is that the ratio of the mafic volcanics and the syenite is almost									
		50:50. Sampling is done on this section accross the mixed rocks and not									
		selective sampling. The contact angles were observed to be low dipping									
		which suggest that drilling is along the dip. There is short section of pyrite									
		mineralization occuring at 22.5m to 23.0 m having 2% modal percentage.									
16.60	22.50	SV Suppito			11204	16 60	17 00	1 20			
10.00	22.50				41304	16.60	17.80	1.20			
		A fairly sharp contact of 150°ca with the contact zone above marks the			41305	17.80	19.00	1.20			
		beginning of a syenite. This syenite is greyish pink in colour and medium			41306	19.00	20.20	1.20			
		grained. The unit medium grained, massive and homogenous, locally			41307	20.20	21.40	1.20			
		porphyritic. Trace pyrite. The rock is non ankeritic, non magnetic and non			41308	21.40	22.50	1.10			
		calcareous. It is very competent. No sample was collected on this syenite									

CR2014-04

			GEOLOGY	VISUAL			A	ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
12.10	16.60	appears is low a dipping granula charact matrix o 15mm a materia	Mafic Volcaniclastic r sharp contact of 30°ca comes the mafic volcanics. This unit s like a volcaniclastics shown by the streched fragments. The fabric ngle suggesting that we are drilling along the dip of a steeply volcanic flow. The rock generally is fine grained but in places has a r appearance where mixing with syenitic dykes occurs. It is erized by a greyish-green colour globules or subangular clasts in a dark greenish matrix. The globules or clasts range in size from 3- and are subangular. They are usually outlined by a dark chloritic al. Trace pyrites. The rock is non ankeritic, weakly to non bus and non magnetic.		0.5 0.5 0.5	32015 32016 32017	13.20 14.40 15.60	14.40 15.60 16.60	1.20 1.20 1.00		
7.90	12.10	A fairly beginni grained porphyr	Syenite sharp contact of 150°ca with the contact zone above marks the ng of a syenite. This syenite is greyish pink in colour and medium . The unit medium grained, massive and homogenous, locally ritic. Trace pyrite. The rock is non ankeritic, non magnetic and non ous. It is very competent. No sample was collected on this syenite		0.5	41301 41302 41303 32014	8.00 9.30 10.60 12.00	9.30 10.60 12.00 13.20	1.30 1.30 1.40 1.20		
2.13	7.90	mafic ve blackish walls. T Silvery a The rim is non-r angular and rare interval	Contact Zone le is collared over what appears to be a contact zone between the olcanic wallrock and a syenite. This zone consists of fine grained, in matrix hosting angular clasts of syenite from the surrounding he dark greyish matrix material flows in and out of this interval. and yellowish flecks of unknown minerals are present on the core. Is of the angular clasts shows 0.5% pyrite mineralization. The rock magnetic, non-calcareous and non ankeritic. The sizes of clast of mafic volcanics range from 2 cm to 10 cm. The rock is competent ely fractured. The fabric appears to be at 20- to 30°ca. Long of sampling was collected just to confirm the presence of trace d other metals.		0.5 0.5	41933 32012 32013	3.50 5.00 6.50	5.00 6.50 8.00	1.50 1.50 1.50		
0.00	1.93	indicate NOTE: A dilute h fizzes in presence	Overburden covery was measured to begin at 1.93 m'. The driller's block a that they placed 10.0 ft (3.04 m.) of NW casing. All the core is systematically tested for pervasive carbonate using ydrochloric acid HCl) and potassium ferricyanide (KFC). The acid a contact with calcite and the KFC stains the core blue in the ce of ankerite. In certain areas, the core is tested with a magnet to ine relative magnetite content.								

153.01 EOH End of hole.

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION RQD (%)

0.0

0.9

1.5

2.4

1.8

2.0

2.5

3.1

1.8

2.9

2.5

2.7

2.9

2.7

2.3

2.6

1.8

2.4

2.4

2.3

2.9

1.8

2.2

2.4

0.6

2.2

2.5

2.7

2.5

2.7

2.3

2.3

2.8

2.2

2.5

2.8

1.8

2.0

2.3

1.7

2.4

3.0 2.8

2.5

2.7

2.7

2.9

1.2

2.9

2.9 3.1

1.5

Breaks

-										-	
Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm
0.00	265.4°	265.4°	-60.0°	Collar		1.9	2.1	0.2	0.2	100	0.0
8.23	277.4°	266.2°	-58.4°	Multi		2.1	3.7	1.5	1.5	98	0.9
11.28	277.9°	266.7°	-58.3°	Multi		3.7	5.2	1.5	1.5	100	1.5
14.33	275.0°	263.8°	-58.8°	Multi		5.2	8.2	3.1	3.0	98	2.4
17.37	268.0°	256.8°	-58.5°	Multi		8.2	11.3	3.1	3.0	98	1.8
20.42	278.4°	267.2°	-58.1°	Multi		11.3	14.3	3.1	3.0	99	2.0
23.47	279.2°	268.0°	-57.9°	Multi		14.3	17.4	3.1	3.0	99	2.5
26.52	276.9°	265.7°	-58.1°	Multi		17.4	20.4	3.1	3.1	100	3.1
29.57	277.3°	266.1°	-58.1°	Multi		20.4	23.5	3.1	3.0	97	1.8
32.61	274.4°	263.2°	-58.1°	Multi		23.5	26.5	3.0	3.0	100	2.9
35.66	274.3°	263.1°	-58.0°	Multi		26.5	29.6	3.1	3.0	100	2.5
38.71	277.2°	266.0°	-57.3°	Multi		29.6	32.6	3.1	3.0	98	2.7
41.76	276.0°	264.8°	-57.6°	Multi		32.6	35.7	3.1	3.1	100	2.9
44.81	277.4°	266.2°	-57.3°	Multi		35.7	38.7	3.1	3.0	100	2.7
47.85	277.8°	266.6°	-57.3°	Multi		38.7	41.8	3.1	3.0	99	2.3
50.90	276.9°	265.7°	-57.7°	Multi		41.8	44.8	3.1	3.0	99	2.6
53.95	279.0°	267.8°	-57.0°	Multi		44.8	47.9	3.1	3.0	99	1.8
57.00	277.0°	265.8°	-57.5°	Multi		47.9	50.9	3.0	3.0	100	2.4
60.05	278.3°	267.1°	-57.1°	Multi		50.9	54.0	3.1	3.0	99	2.4
63.09	278.6°	267.4°	-56.7°	Multi		54.0	57.0	3.1	3.0	99	2.3
66.14	278.5°	267.3°	-56.6°	Multi		57.0	60.1	3.1	3.1	100	2.9
69.19	277.8°	266.6°	-56.6°	Multi		60.1	63.1	3.1	3.0	100	1.8
72.24	278.5°	267.3°	-56.5°	Multi		63.1	66.2	3.1	3.0	99	2.2
75.29	277.7°	266.5°	-56.9°	Multi		66.2	69.2	3.1	3.0	99	2.4
78.33	278.0°	266.8°	-56.6°	Multi		69.2	72.3	3.1	3.0	98	0.6
81.38	268.1°	256.9°	-56.7°	Multi		72.3	75.3	3.1	3.0	99	2.2
84.43	261.4°	250.2°	-56.5°	Multi		75.3	78.4	3.1	3.0	100	2.5
87.48	277.1°	265.9°	-56.3°	Multi		78.4	81.4	3.1	3.0	100	2.7
90.53	274.6°	263.4°	-56.5°	Multi		81.4	84.5	3.1	3.0	99	2.5
93.57	275.6°	264.4°	-56.2°	Multi		84.5	87.5	3.1	3.0	98	2.7
96.62	276.3°	265.1°	-56.4°	Multi		87.5	90.6	3.1	3.0	99	2.3
99.67	275.6°	264.4°	-56.1°	Multi		90.6	93.6	3.1	3.1	100	2.3
102.72	272.5°	261.3°	-56.1°	Multi		93.6	96.7	3.1	3.0	99	2.8
105.77	274.9°	263.7°	56.2°	Multi		96.7	99.7	3.1	3.0	98	2.2
108.81	271.1°	259.9°	-55.8°	Multi		99.7	102.8	3.1	3.0	97	2.5
111.86	276.4°	265.2°	-55.4°	Multi		102.8	105.8	3.1	3.0	98	2.8
114.91	276.5°	265.3°	-55.3°	Multi		105.8	108.9	3.1	3.0	99	1.8
117.96	276.1°	264.9°	-55.2°	Multi		108.9	111.9	3.1	3.0	99	2.0
121.01	275.6°	264.4°	-55.4°	Multi		111.9	115.0	3.1	3.0	99	2.3
124.05	274.8°	263.6°	-55.4°	Multi		115.0	118.0	3.1	3.0	98	1.7
127.10	274.4°	263.2°	-55.5°	Multi		118.0	121.1	3.1	3.0	100	2.4
130.15	276.4°	265.2°	-55.0°	Multi		121.1	124.1	3.1	3.1	100	3.0
133.20	278.2°	267.0°	-54.8°	Multi		124.1	127.2	3.1	3.0	100	2.8
136.25	278.4°	267.2°	-55.0°	Multi		127.2	130.2	3.1	3.0	99	2.5
139.29	275.8°	264.6°	-54.7°	Multi		130.2	133.2	3.0	3.0	100	2.7
142.34	275.2°	264.0°	-54.7°	Multi		133.2	136.3	3.1	3.0	99	2.7
145.39	275.3°	264.1°	-54.5°	Multi		136.3	139.3	3.0	3.0	100	2.9
148.44	275.8°	264.6°	-54.5°	Multi		139.3	142.4	3.1	3.0	99	1.2
						142.4	145.4	3.0	3.0	100	2.9
						145.4	148.5	3.1	3.0	100	2.9
						148.5	151.5	3.1	3.1	100	3.1
						151.5	153.1	1.5	1.5	100	1.5
						101.0		2.0	2.0	200	2.0

CR2014-04

Golden Target Project

4273194

Azimuth:

Length:

Core Size:

Dip:

NAD83 17N

360.00 m

539,703.00 m

Drill Log CR2014-05

COLLAR INFORMATION

Claim:

Projection:

Easting:

Elevation:

					WORK DO	ONE BY
	Work	From	То	Worker	Start	End
87.20°	Drilling	0.0	99.4	Walker Drilling	2014-Aug-16	Aug-23
	Downhole Survey	0.0	99.4	Walker Drilling	2014-Aug-23	Aug-23
-60.00° 99.36 m	Core Logging	0.0	99.4	Dennis Patron	2014-Aug-21	Aug-21

Storage: CanREE explo site

Northing: 5,360,095.00 m

Comments: The drill just broke down right after setting up.Sampling was done up to 96.60 only leaving 3 meters of feldspar porphyry unsampled.

NQ

DRILL LOG

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %	
94.90	99.39	MVSY	Mafic Volcanics/Syenite package		0.1	32311	95.40	96.60	1.20			
		The co	ntact of the above gabbro and this mafic volcanic package seems			41930	96.60	98.20	1.60			
		subltle	Distinguishable only on the grain size. This unit is finer grained			41931	98.20	99.20	1.00			
		than al	ove and the plagioclase seems to disappear at the mafic volcanics.									
		Feldpa	porphyry seems to cut into the volcanic package at 60°ca. Below									
		is the s	hort description of the felsic dykes. Trace pyrites.									
		96.65-9	07.40: Feldspar Porphyry. This unit have sharp upper and lower									
		contac	ts at 60°ca. The unit is porphyritic, coherent, felsic intrusive rock. It									
		is pinki	sh, medium grained, massive, homogenous and crystalline. The									
		size an	d abundance of phenocrysts appears to vary considerably.									
		97.96-9	98.70: Feldspar Porphyry. This unit have sharp upper and lower									
			s at 60°ca. The unit is porphyritic, coherent, felsic intrusive rock. It									
			sh, medium grained, massive, homogenous and crystalline. The									
		size an	d abundance of phenocrysts appears to vary considerably.									
75.00	94.90	GB	Fine to Medium Grained Gabbro		0.1	32143	75.00	76.20	1.20			
			e reverts back to the gabbro zone which we are considering as the		0.1	32144	76.20	77.40	1.20			
			our Scandium and Yttrium. The rock contains 0.5% of yellowish		0.1	32145	77.40	78.60	1.20			
			very metallic flecks which we think are not pyrite nor chalcopyrites		0.1	32146	78.60	79.80	1.20			
			bably one of those REE's. The assay results will reveal our gut feel		0.1	32147	79.80	81.00	1.20			
			vs. The rock is similar as that uphole description of the Fine to		0.1	32148	81.00	82.20	1.20			
			n Grained Gabbro. It contains 30% plagioclase and		0.1	32149	82.20	83.40	1.20			
			ne/amphiboles package. It is fine to medium grained, massive,			32301	83.40	84.60	1.20			
		0	enous and salt and pepper textured, the overall medium grey		0.1	32302	84.60	85.80	1.20			
		0	olour formed form 30- 50% dark green coloured altered		0.1	32303	85.80	87.00	1.20			
			agnesians in a fine grained groundmass. About 35% of the		0.1	32304	87.00	88.20	1.20			
			ic unit is amphibolitized to a dark greenish grey/ black colour and		0.1	32305	88.20	89.40	1.20			
			medium grain size. The rock is moderately magnetic, non		0.1	32306	89.40	90.60	1.20			
			ous and weakly ankeritic. Veining in this gabbroic unit is very		0.1	32307	90.60	91.80	1.20			
			al and pyrite mineralization is trace to nil. Calcite occurs strictly on		0.1	32308	91.80	93.00	1.20			
		iractur	e fillings only which seldomly occurs.		0.1	32309	93.00	94.20	1.20			
					0.1	32310	94.20	95.40	1.20			

CR2014-05

			GEOLOGY	VISU	JAL	ASSAY RESULTS					
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
55.50	75.00	AMSY	Syenite/Amphibolite Package		0.1	32135	55.60	56.80	1.20		
		A chang	e in texture, grain size and color comes another package which is		0.1	32136	56.80	58.00	1.20		
		domina	ted by Syenite. It is pinkish with stripes of greenish amphibolite		0.1	32137	58.00	59.20	1.20		
			ns, porphyritic, massive rock of felsic composition in intrusion into		0.1	32138	59.20	60.50	1.30		
			s unit. Local presence of chloritic angular volcanic fragments of			41918	60.50	61.60	1.10		
			ying from millimetric to centimetric. Characterized by up to 15%			41919	61.60	62.70	1.10		
			tric often euhedral feldspars supported by a fine grained matrix.			41920	62.70	63.80	1.10		
		•	alteration affect many of the feldspars. Few calcite filling veinlets			41921	63.80	64.90	1.10		
			The rock is non to weakly magnetic unit with a clear upper and		0.1	32139	64.90	66.10	1.20		
			ontact noted at 55°ca. Trace of thinly disseminated Py noted along			32140	66.10	67.30	1.20		
			actually a mixed unit by which the pinkish rocks were described		0.1	32141	67.30	68.50	1.20		
		below.			0.1	32142	68.50	69.70	1.20		
						41922	69.70	70.90	1.20		
			4.90: Feldspar Porphyry. This unit have sharp upper and lower			41923	70.90	72.10	1.20		
			s at 60°ca. The unit is porphyritic, coherent, felsic intrusive rock. It			41927	72.10	73.30	1.20		
			h, medium grained, massive, homogenous and crystalline. The			41928	73.30	74.20	0.90		
		size and	abundance of phenocrysts appears to vary considerably.			41929	74.20	75.00	0.80		
		67.95-6	8.60: Syenite. This unit is not as phenocrystic as abobe. More								
		mafic g	ains are present and more greenish walrock inclusions are								
		observe	d. The rock is non ankeritic, non calcareous and non magnetic.								
		69.77-7	4.90: Syenite. This unit is same as above except as it has a longer								
		interval	. The mafic intrusive inclusions are 10%. The rock is also non to								
			magnetic, non ankeritic, and non calcareous. Trace pyrites. No								
		sample	was taken from this interval.								
44.80	55.50	MVSY	Mafic Volcanics/Syenite package			32126	44.80	46.00	1.20		
		The cor	e enters a package that grades into a mixed zone consisting mainly		0.1	32127	46.00	47.20	1.20		
		of mafic	volcanics presumed to be a flow, which composes approximately		0.1	32128	47.20	48.40	1.20		
		60% of	this unit and the rest are syenite. The mafic volcanics is weakly		0.1	32129	48.40	49.60	1.20		
		foliated	at 30°ca, with the foliations defined by planes of medium grained		0.1	32130	49.60	50.80	1.20		
		pinkish	matrix material and blackish wispy chlorite stringers. This zone		0.1	32131	50.80	52.00	1.20		
		consists	of fine grained, blackish matrix hosting angular clasts of syenite		0.1	32132	52.00	53.20	1.20		
			e surrounding walls. The dark greyish matrix material flows in and		0.1	32133	53.20	54.40	1.20		
			nis interval. No significant mineralization is associated with this		0.1	32134	54.40	55.60	1.20		
			ne rock is non-magnetic, non-calcareous and non ankeritic. The								
		sizes of	clast of angular mafic volcanics range from 2 cm to 10 cm.								

		GEOLOGY	VISU	JAL	ASSAY RESULTS							
rom	То	Code Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %		
3.80	44.80	GB Fine to medium grained Gabbro		0.1	32090	4.00	5.20	1.20				
		A sharp contact of 60°ca defined by a change in color and texture from		0.1	32091	5.20	6.40					
		pinkish to dark green comes the zone hosting the scandium and uttrium.		0.1	32092	6.40	7.60					
		This is a gabbro. It is fine to medium grained, massive, homogenous,		0.1	32093	7.60	8.80					
		dark/ medium greyish green coloured, containing millimetric, dark green,		0.1	32094	8.80	10.00					
		amphibole/pyroxene grains and crystals in a fine grained groundmass.		0.1	32095	10.00	11.20					
		Quartz veining is negligible but if present is usually mm thick and has no		0.1	32096	11.20	12.40					
		definite orientation. The rock is moderately magnetic, non ankeritic and		0.1	32097	12.40	13.60					
		non calcareous. It is competent and rarely fractured. If fractures are		0.1	32098	13.60	14.80					
		generally coated by chlorite and was counted individually in the RQD		0.1	32099	14.80	16.00					
		page. Only trace pyrite (Py) crystals were noted scattered through the		0.1	32101	16.00	17.20					
		matrix and along fractures. There are however silvery and yellowish		0.1	32102	17.20	18.40					
		metallic luster grains that is approximately 0.5% that is associated which		0.1	32103	18.40	19.60					
		we hope to be part of the REE package. Some silvery specks were noticed		0.1	32104	19.60	20.80					
		to be attached to the pyroxene and plagioclase. The lower contact is also		0.12	32105	20.80	22.00					
		sharp at 60°ca.		0.1	32106	22.00	23.20					
				0.1	32107	23.20	24.40					
				0.1	32107	24.40	25.60					
				0.1	32109	25.60	26.80					
				0.1	32110	26.80	28.00					
				0.1	32111	28.00	29.20					
				0.1	32112	29.20	30.40					
				0.1	32113	30.40	31.60					
				0.1	32114	31.60	32.80					
				0.1	32115	32.80	34.00					
				0.1	32116	34.00	35.20					
				0.1	32117	35.20	36.40					
				0.1	32118	36.40	37.60					
				0.1	32119	37.60	38.80					
				0.1	32120	38.80	40.00					
				0.1	32121	40.00	41.20					
				0.1	32122	41.20	42.40					
				0.1	32123	42.40	43.60					
				0.1	32123	43.60	44.80					
2.00	3.80	SY Syenite			41916	2.00	3.00	1.00				
		The hole is collared into reddish-orange syenite. It appears to be very			41917	3.00	4.00	1.00				
		massive homogenous and crystalline. The rock is partly grainy due to the										
		associated amphiboles. It is somewhat porphyritic. The rock is non										
		ankeritic, non calcareous and non magnetic. No significant mineralization										
		is observed thats why no samples were collected. The lower contact is sharp at 60°ca.										
0.00	2.00	OVB Overburden										
		Core recovery was measured to begin at 6.56'. The driller's block indicate that they placed 3.04 m (10 ft) of NW casing.										
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid										

dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.

99.36 EOH End of hole.

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION

Breaks

		-								-		-
Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm	RQD (%)
0.00	87.2°	87.2°	-60.0°	Collar		2.1	5.2	3.1	2.4	79	0.8	25
10.67	99.2°	88.0°	-59.4°	Multi		5.2	8.2	3.1	3.0	98	2.4	79
13.72	99.9°	88.7°	-59.2°	Multi		8.2	11.3	3.1	3.0	99	2.5	81
16.76	100.0°	88.8°	-58.9°	Multi		11.3	14.3	3.1	3.0	99	2.3	75
19.81	99.3°	88.1°	-58.7°	Multi		14.3	17.4	3.1	3.0	99	2.9	94
22.86	101.4°	90.2°	-59.0°	Multi		17.4	20.4	3.1	3.0	100	3.0	97
25.91	100.4°	89.2°	-58.8°	Multi		20.4	23.5	3.1	3.0	98	2.6	85
28.96	99.3°	88.1°	-58.6°	Multi		23.5	26.5	3.0	3.0	100	3.0	99
32.00	99.2°	88.0°	-58.5°	Multi		26.5	29.6	3.1	3.0	99	2.8	92
35.05	100.1°	88.9°	-58.9°	Multi		29.6	32.6	3.1	3.0	99	2.8	90
38.10	99.5°	88.3°	-58.9°	Multi		32.6	35.7	3.1	3.0	99	2.2	72
41.15	98.0°	86.8°	-58.4°	Multi		35.7	38.7	3.0	3.0	98	2.3	77
44.20	97.5°	86.3°	-58.7°	Multi		38.7	41.8	3.1	3.1	100	3.1	100
47.24	100.5°	89.3°	-58.3°	Multi		41.8	44.8	3.1	3.0	100	2.9	95
50.29	104.7°	93.5°	-58.1°	Multi		44.8	47.9	3.1	3.0	99	2.3	76
53.34	102.2°	91.0°	-58.1°	Multi		47.9	50.9	3.0	3.0	99	2.4	80
56.39	98.1°	86.9°	-58.1°	Multi		50.9	54.0	3.1	3.1	99	2.3	73
59.44	97.8°	86.6°	-58.0°	Multi		54.0	57.0	3.0	3.0	100	2.8	92
62.48	136.6° X	86.6°	-57.7°	Multi		57.0	60.1	3.1	3.0	100	2.8	93
65.53	184.9° X	86.6°	-57.8°	Multi		60.1	63.1	3.1	3.1	100	3.0	98
68.58	142.3° X	86.6°	-57.5°	Multi		63.1	66.2	3.1	3.0	100	3.0	97
71.63	144.3° X	86.6°	-57.2°	Multi		66.2	69.2	3.1	3.0	100	2.8	90
74.68	146.0° X	86.6°	-57.2°	Multi		69.2	72.3	3.1	3.0	99	3.0	98
77.72	150.9° X	86.6°	-57.2°	Multi		72.3	75.3	3.0	3.0	98	2.2	74
80.77	212.5° X	86.6°	-57.4°	Multi		75.3	78.4	3.1	3.0	99	2.9	93
83.82	275.1° X	86.6°	-58.0°	Multi		78.4	81.4	3.1	3.0	99	2.8	93
86.87	300.0° X	86.6°	-58.0°	Multi		81.4	84.5	3.1	3.0	100	2.5	83
89.92	89.2° X	86.6°	-57.4°	Multi		84.5	87.5	3.1	3.0	100	2.7	88
92.96	45.5° X	86.6°	-57.6°	Multi		87.5	90.6	3.1	3.0	100	3.1	100
96.01	38.5° X	86.6°	-58.0°	Multi		90.6	93.6	3.1	3.0	99	2.9	94
						93.6	96.7	3.1	3.0	98	2.3	76
						96.7	99.4	2.7	2.6	97	1.8	66

Golden Target Project

COLLAR INFORMATION

Claim:	4273194		
Projection:	NAD83 17N	Azimuth:	90.70°
Easting:	539,703.00 m	Dip:	-60.00°
Northing:	5,359,931.00 m	Length:	112.01 m
Elevation:	366.00 m	Core Size:	NQ
Storage:	CanREE explo site		
Commontes			

				WORK DO	ONE BY
Work	From	То	Worker	Start	End
Drilling	0.0	112.0	Walker Drilling	2014-Aug-24	Aug-28
Downhole Survey	0.0	112.0	Walker Drilling	2014-Aug-28	Aug-28
Core Logging	0.0	112.0	Dennis Patron	2014-Aug-26	Aug-26

Comments:

DRILL LOG

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
101.10	112.00	AM	Amphibolite			32356	101.70	102.90	1.20		
		A subtle	e contact reverts back to the mafic intrusive classified as			32357	102.90	104.10	1.20		
		amphib	olite. It is dark grey color containing more amphiboles than			32366	104.10	105.30	1.20		
		pyroxei	ne. It is darker in color athan above. The rock is weakly magnetic,			32367	105.30	106.50	1.20		
		non cal	careous and non ankeritic. There is a fault section revealed by the			32368	106.50	107.70	1.20		
		present	ce of angular fragments of the same material. It is some sort of a			32369	107.70	108.90	1.20		
		fault br	eccia. The description is described below. The hole ended in the			32370	108.90	110.00	1.10		
		fault zo	ne.			32371	110.00	111.00	1.00		
		tectoni	111.50: Fault breccia zone. This interval show angular clast of corigin. There is no significant mineralization associated with this ructure. Trace pyrites.			32372	111.00	112.00	1.00		
		101.50	101.63: Quartz Vein. This veins trends 220°ca.								
		101.10 trends	101.20: Quartz vein. Another short interval of quartz vein that 220°ca.								

Drill Log CR2014-06

		GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %	
66.90	101.07	GB Fine to Medium Grained Gabbro			32326	66.90	68.10	1.20			
		A gradational subtle contact over 50 cm comes this fine to medium			32327	68.10	69.30	1.20			
		grained gabbro. Through a gradational contact, the hole rolls into typical			32328	69.30	70.50	1.20			
		gabbro that I am expecting to intercept to the east which is the second			32329	70.50	71.70	1.20			
		zone. The first zone were right on the surface and we have collared past			32330	71.70	72.90	1.20			
		it. This second gabbro zone is fine to medium grained, massive,			32331	72.90	74.10	1.20			
		homogenous and salt and pepper textured, the overall medium grey			32332	74.10	75.30	1.20			
		green colour formed form 30- 50% dark green coloured altered			32333	75.30	76.50	1.20			
		ferromagnesians in a fine grained, yellowish buff feldspathic groundmass.			32334	76.50	77.70	1.20			
		The rock is competent and rarely fractured. Specks of yellow and silvery			32335	77.70	78.90	1.20			
		metallic minerals were sparsely distributed. The rock is moderately			32336	78.90	80.10	1.20			
		magnetic, non calcareous and moderately ankeritic. Veining in this			32337	80.10	81.30	1.20			
		gabbroic unit is very minimal and pyrite mineralization is trace to nil.			32338	81.30	82.50	1.20			
		Calcite occurs strictly on fracture fillings only.			32339	82.50	83.70	1.20			
		96 EQ 97 2E: Altored Mafic Sugnita, This interval show perphyritis			32340	83.70	84.90	1.20			
		86.50-87.25: Altered Mafic Syenite. This interval show porphyritic texture, dark green with a tint of pink medium grained, hematite altered			32341	84.90	86.10	1.20			
		mafic syenite. The rock is non magnetic, non calcareous and non			32342	86.10	87.30	1.20			
		ankeritic. Trace pyrites.			32343	87.30	88.50	1.20			
		ankentic. Trace pyrites.			32344	88.50	89.70	1.20			
					32345	89.70	90.90	1.20			
					32346	90.90	92.10	1.20			
					32347	92.10	93.30	1.20			
					32348	93.30	94.50	1.20			
					32349	94.50	95.70	1.20			
					32351	95.70	96.90	1.20			
					32352	96.90	98.10	1.20			
					32353	98.10	99.30	1.20			
					32354	99.30		1.20			
					32355	100.50	101.70	1.20			
52.50	66.90	•			32313	52.50	53.70	1.20			
		Pale grey, granular porphyritic rock with distinctive medium to coarse			32314	53.70	54.90	1.20			
		grained, locally euhedral, needles of amphibole phenocrysts. This was			32315	54.90	56.10	1.20			
		classified as amphibolite based on the rock sampled sent to SGS for thin			32316	56.10	57.30	1.20			
		section. Strain throughout the interval varies from slightly foliated with a			32317	57.30	58.50	1.20			
		weak alignment of the amphibole phenocrysts with strung out almost indistinguishable phenocrysts @ 50°ca. Coarse felspar phenos are also			32318	58.50	59.70	1.20			
		common but sparsely distributed. The rock is non ankeritic, non			32319	59.70	60.90	1.20			
		calcareous and weakly magnetic. Pyrite is limited to trace, very fine			32320	60.90	62.10	1.20			
		disseminations. Several feldspar porphyritic dike which was classified as			32321	62.10	63.30	1.20			
		syenite intrudes this mafic dike. The dike margins are sharp from 30 to			32322	63.30	64.50	1.20			
		60°ca and lacking in contact metamorphic aureole.			32323	64.50	65.70	1.20			
					32324	65.70	66.90	1.20			
		52.5-54.90: Fine grained Amphibolite. Dark grey, fine grained, aphanitic, moderately to strongly magnetic, non calcareous and non ankeritic. Trace pyrite disseminations.									
		54.90-62.10: Amphibolite. Same description as above.									

59.90-60.20: Syenite. The pinkish grey syenite dyke that cuts into the amphibolite at 60 and 30°ca respectively.

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
46.80	52.50	AMFP	Feldpar Phyric Amphibolite			41390	47.10	48.30	1.20			
		A sharp	contact of 50° ca reverts back to Feldspar Phyric amphibolite			41391	48.30	49.80	1.50			
		similar t	o the one uphole. The presence 1 cm diameter feldspar phenos			41392	49.80	51.30	1.50			
		to medi rock is a m depth 60°ca. Y observe on this r where n	mately 1%- 5% in abundance set in a same dark greenish grey, fine ium grained matrix id the main feature of this amphibolite. This lso intruded by late syenite feldpar porphyry dykes at 50.4 to 50.7 a. The upper and lower contact of the syenite is also sharp at ellow and silvery specks occur at this rock and sometimes d to be interstitally attached to feldspars. Samples were collected ock just to verify the presence of rare earths especially on zones nineralization increase. The rock is weakly to moderately c, non calcreous and non ankeritic.			32312	51.30	52.50	1.20			
46.30	46.80	The hole sharp at diabse.	Contact transition zone. e enters a chilled margins along this contact zone. The contact is 55°ca. The rock dark grey, fine grained, similar texture as the The rock is non calcareous weakly magnetic and non ankeritic. e and contains trace fine pyrite disseminations and not merits g.									
42.45	46.30	SY	Syenite			41387	43.50	44.70	1.20			
		Massive	and homogenous syenite dyke. Pinkish. Contact angle is 160°ca.			41388	44.70	45.90	1.20			
		The grou felted ch grained amphibo felsic ph amphibo ankeritio	a grained, milky-grey-white and pink, feldspar porphyritic syenite. andmass is medium to dark, maroon-grey, fine grained, pitted, hlorite-brick red feldspar/feldspathoid material. Locally, finer (2-3mm), dark grey-green, lath-shaped, mafic (originally bles?) phenocryst/porphyroblasts occur with the larger white/pink enocrysts. This rock is probably late intrusive that cuts into the blite dyke. The rock is non magnetic, non calcareous and non c. Trace pyirte disseminations. The rock is competent and rarely d. No sample collected.			41389	45.90	47.10	1.20			

			GEOLOGY	VISU	JAL		ASSAY RESULTS					
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
1.40	42.45	AM	Amphibolite			41357	1.40	2.60	1.20			
		The Ho	le is collared into a huge section of amphibolite rocks whose			41358	2.60	3.80	1.20			
		protolit	h are probably early mafic intrusive or fine grained gabbro locally			41359	3.80	5.00	1.20			
		intrude	d by pinkish feldpar porphyry dykes. It is dark-gray, fine-textured			41360	5.00	6.20	1.20			
		igneou	s rock composed mainly of feldspar and pyroxene, and			41361	6.20	7.40	1.20			
		charact	erized by an ophitic texture where laths of plagioclase in a			41362	7.40	8.60	1.20			
		mediur	n grained matrix of pyroxene crystals, wherein the plagioclase is			41363	8.60	9.80	1.20			
		totally	surrounded by pyroxene grains. Typically, it is massive,			41364	9.80	11.00	1.20			
		homog	enous, fine grained with tendencies towards a medium grain size,			41365	11.00	12.20	1.20			
			k greenish grey, almost black coloured. Mineralization consists of			41366	12.20	13.40	1.20			
		a few s	cattered splashes of pyrites and chalcopyrite. The plain			41367	13.40	14.60	1.20			
			olite dike ends with the appearance of the coarse grained (>1 cm)			41368	14.60	15.80	1.20			
			dark grey fine grained matrix. This amphibolite is competent and			41369	15.80	17.00	1.20			
		,	ractured. The unit is moderately ankeritic, non calcareous and			41370	17.00	18.20	1.20			
			ately magnetic. Trace pyrite disseminations, poorly veined. Some			41371	18.20	19.40	1.20			
		fracture	es are filled with epidote.			41372	19.40	20.60	1.20			
						41373	20.60	21.80	1.20			
		30.14-3	30.14-30.30: Syenite. 85°ca sharp contact angle.			41377	21.80	23.00	1.20			
						41378	23.00	24.20	1.20			
		33.30:	Syenite dyke 6 cm thick and have contact angkes of 10°ca.			41379	24.20	25.40	1.20			
						41380	25.40	26.60	1.20			
			2.45: Mixed intrusive. This interval contains 20% ayenite and 70%			41381	26.60	27.80	1.20			
			ewan amphibolite. The syenite seems to be in and out of the			41382	27.80	29.10	1.30			
		interva				32358	29.10	30.30	1.20			
						32359	30.30	31.50	1.20			
						32360	31.50	32.70	1.20			
						32361	32.70	33.90	1.20			
						32362	33.90	35.10	1.20			
						32363	35.10	36.30	1.20			
						32364	36.30	37.50	1.20			
						32365	37.50	38.70	1.20			
						41383	38.70	39.90	1.20			
						41383	39.90	41.10	1.20			
						41384	41.10	41.10	1.20			
						41386	42.30	43.50	1.20			

0.00 1.40 OVB Overburden

Core recovery was measured to begin at 4.6". The driller's block indicate that they placed 1.52 m (5.0 ft) of NW casing.

NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.

112.01 EOH End of hole.

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments
0.00	90.7°	90.7°	-60.0°	Collar	
20.73	102.7°	91.5°	-59.2°	Multi	
23.77	103.9°	92.7°	-59.0°	Multi	
26.82	105.1°	93.9°	-58.9°	Multi	
29.87	104.1°	92.9°	-58.7°	Multi	
32.92	103.5°	92.3°	-58.8°	Multi	
35.97	102.3°	91.1°	-58.6°	Multi	
39.01	102.7°	91.5°	-58.6°	Multi	
42.06	103.2°	92.0°	-58.5°	Multi	
45.11	102.7°	91.5°	-58.2°	Multi	
48.16	102.2°	91.0°	-58.2°	Multi	
51.21	103.0°	91.8°	-58.2°	Multi	
54.25	104.8°	93.6°	-58.1°	Multi	
57.30	103.6°	92.4°	-58.1°	Multi	
60.35	102.7°	91.5°	-57.9°	Multi	
63.40	103.8°	92.6°	-57.9°	Multi	
66.45	104.3°	93.1°	-57.7°	Multi	
69.49	104.1°	92.9°	-57.7°	Multi	
72.54	103.9°	92.7°	-57.6°	Multi	
75.59	101.6°	90.4°	-57.6°	Multi	
78.64	100.9°	89.7°	-57.3°	Multi	
81.69	103.2°	92.0°	-57.4°	Multi	
84.73	100.6°	89.4°	-57.3°	Multi	
87.78	101.6°	90.4°	-57.2°	Multi	
90.83	101.9°	90.7°	-56.9°	Multi	
93.88	105.2°	94.0°	-56.9°	Multi	
96.93	102.8°	91.6°	-56.8°	Multi	
99.97	101.3°	90.1°	-56.7°	Multi	
103.02	104.4°	93.2°	-56.7°	Multi	
106.07	109.5°	98.3°	-56.5°	Multi	
109.12	103.2°	92.0°	-56.4°	Multi	

_	_		_				
From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
1.4	4.0	2.6	2.5	98	1.5	57	23
4.0	5.5	1.5	1.5	100	1.5	99	4
5.5	8.5	3.1	3.0	100	2.4	78	14
8.5	11.6	3.0	3.0	100	2.2	71	21
11.6	14.6	3.1	3.0	99	2.9	93	14
14.6	17.7	3.1	3.0	100	2.8	92	11
17.7	20.7	3.1	3.0	99	2.0	67	28
20.7	23.8	3.1	3.0	98	2.3	76	25
23.8	26.8	3.1	3.0	99	2.3	75	23
26.8	29.9	3.1	3.0	99	2.5	80	17
29.9	32.9	3.1	3.0	100	2.9	94	6
32.9	36.0	3.1	3.0	98	2.9	94	26
36.0	39.0	3.0	3.0	100	2.3	76	25
39.0	42.1	3.1	3.0	100	2.6	86	17
42.1	45.1	3.1	3.1	100	3.0	100	8
45.1	48.2	3.1	3.0	99	2.7	88	14
48.2	51.2	3.1	3.1	100	2.9	94	10
51.2	54.3	3.1	3.0	99	2.7	88	19
54.3	57.3	3.1	3.0	100	2.8	93	13
57.3	60.4	3.1	3.1	100	3.0	98	5
60.4	63.4	3.1	3.0	100	3.0	97	8
63.4	66.5	3.1	3.0	100	2.8	90	15
66.5	69.5	3.1	3.0	99	3.0	98	11
69.5	72.6	3.1	3.0	98	2.2	73	25
72.6	75.6	3.1	3.0	99	2.9	93	16
75.6	78.7	3.0	3.0	99	2.8	93	11
78.7	81.7	3.1	3.0	100	2.4	78	23
81.7	84.8	3.0	3.0	100	2.8	90	7
84.8	87.8	3.1	3.0	99	2.6	86	14
87.8	90.9	3.1	3.1	100	3.0	97	7
90.9	93.9	3.1	3.1	100	3.0	99	8
93.9	97.0	3.1	3.1	100	2.9	94	5
97.0	100.0	3.1	3.1	100	2.8	92	13
100.0	103.1	3.1	3.1	100	1.5	50	14
103.1	106.1	3.1	3.1	100	2.5	82	12
106.1	109.2	3.1	3.0	98	2.9	95	9
109.2	112.2	3.1	2.8	92	2.0	66	15

Golden Target Project

Drill Log CR2014-07

COLLAR INFORMATION

Claim:	4273175		
Projection:	NAD83 17N	Azimuth:	262.50°
Easting:	539,668.00 m	Dip:	-60.00°
Northing:	5,359,938.00 m	Length:	206.04 m
Elevation:	366.00 m	Core Size:	NQ
Storage:	CanREE explo site		
Commontes			

				WORK DO	ONE BY
Work	From	То	Worker	Start	End
Drilling	0.0	206.0	Walker Drilling	2014-Aug-29	Sep-03
Downhole Survey	0.0	206.0	Walker Drilling	2014-Sep-03	Sep-03
Core Logging	0.0	206.0	Dennis Patron	2014-Aug-30	Aug-30

Comments:

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
205.20	206.10	SY	Syenite									
		Sharp u	upper contact at 30°ca marks the beginning of another Syenite									
		packag	e. It is pinkish, massive and crystalline, homogenous. The rock is									
			keritic, non calcareous and non magnetic. Angular clast of									
			polite inclusiuon at 205.70 5 cm diameter. Trace pyrite									
		dissem	inations.									
179.20	205.20	GB	Fine to Medium Grained Gabbro			32469	179.40	180.60	1.20			
		A subtl	e upper contact reverts back to the Fine to Medium Grained			32470	180.60	181.80	1.20			
			b. This unit is quite similar in compositioin as the above but			32471	181.80	183.00	1.20			
		0	lly finer grained. The pyrite mineralization is trace. The rock is non			32472	183.00	184.20	1.20			
			ic, non calcareous and moderately to strongly magnetic. The lower			32473		185.40	1.20			
		contac	t is sharp at 30°ca.			32474		186.60	1.20			
		100.00				32476		187.80	1.20			
			: 120°ca (2 cm)			32477		189.00	1.20			
			: 60°ca (1.5 cm)			32478		190.20	1.20			
			: 60°ca (3 cm)			32479		191.40	1.20			
			: 120°ca (10 cm) : 60°ca (1.5 cm)			32480		192.60	1.20			
			: 70°ca (2 cm)			32481		193.80	1.20			
			: 105°ca			32482		195.00	1.20			
			: 120°ca (2 cm)			32483		196.20	1.20			
			: 60°ca (2 cm)			32484		197.40	1.20			
			: 130°ca			32485		198.60	1.20			
			: 130°ca (5 cm)			32486		199.80	1.20			
			: 105°ca (10 cm)			32487		201.00	1.20			
			: 20°ca			32488		202.20	1.20			
						32489		203.40	1.20			
						32490		204.60	1.20			
						32491	204.60	205.80	1.20			

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
139.50	179.20	GBFP	Porphyritic Gabbro		0.1	32435	139.80	141.00	1.20			
		A subtle	e contact of 45°ca comes the massive, homogenous and crystalline		0.1	32436	141.00	142.20	1.20			
		Porphy	ritic Gabbro. The grains and texture becomes coarser but the rock		0.1	32437	142.20	143.40	1.20			
		unit is s	till the same as above. A distinct change to a phenocrystic texture		0.1	32438	143.40	144.60	1.20			
		that is v	very competent and weakly fractured giving the core a solid		0.1	32439	144.60	145.80	1.20			
		appeara	ance. The porphyry is light/ medium greyish green/beige coloured		0.1	32440	145.80	147.00	1.20			
		with a f	ew large spots of light yellowish grey feldspar phenos 1 cm in		0.1	32441	147.00	148.20	1.20			
		diamet	er. It is finely speckled (4-8%) with pale yellow sericitized		0.1	32442	148.20	149.40	1.20			
		ferroma	agnesian minerals that stand out in a groundmass of faint grey		0.1	32443	149.40	150.60	1.20			
		feldspa	r phenos and dark green fine to medium grained groundmass. The		0.1	32444		151.80	1.20			
		rock is v	weakly to moderately ankeritic, moderately to strongly magnetic		0.1	32445		153.00	1.20			
		and nor	n calcareous on the groundmass but thin calcite stringers are		0.1	32446		154.20	1.20			
		commo	n revealed by the fizzes it shows when the HCL tester is used.		0.1	32447		155.40	1.20			
		Trace p	yrites.		0.1	32448		156.60	1.20			
					0.1	32449		157.80	1.20			
		166.70-	166.90: Fine Grained Gabbro, 60°ca		0.1	32451		159.00	1.20			
		176.90-	177.00: Fine Grained Gabbro, 145°ca		0.1	32452		160.20	1.20			
					0.1	32453		161.40	1.20			
		Quartz	Veins occurrence and their thickness and orientation. (minimum of		0.1	32454		162.60	1.20			
		1 cm th	ick):		0.1	32455		163.80	1.20			
						32455		165.00	1.20			
		140.00	35°ca (5 cm)			32457		166.20	1.20			
		140.50	45°ca (2 cm)			32457		167.40	1.20			
		140.70:	40°ca (1.5 cm)			32458		167.40	1.20			
			67°ca (5 cm)			32459		169.80	1.20			
			50°ca									
			50°ca			32461 32462		171.00 172.20	1.20 1.20			
			55°ca (2 cm)									
			120°ca (1.5 cm)			32463	172.20		1.20			
		153.30:	150°ca (2cm)			32464		174.60	1.20			
			140°ca			32465		175.80	1.20			
			40°ca (8 cm)			32466		177.00	1.20			
			60°ca			32467		178.20	1.20			
			60°ca (3 cm)			32468	1/8.20	179.40	1.20			
			45°ca (2 cm)									
			70°ca (2 cm)									
			130°ca									
		177.15:	130°ca									

			GEOLOGY	VIS	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
106.80	139.50	GB	Fine ot Medium Grained Gabbro.			41456	107.60	108.80	1.20			
		A shar	o change in texture and color comes the gabbro zone that we are			41457	108.80	109.80	1.00			
		expecti	ng in the west flank. This gabbro zone is similar as uphole in the			32409	109.80	111.00	1.20			
		collar. 1	The uppoer contact is sharp at 34°ca. This gabbro occurs as			32410	111.00	112.20	1.20			
		massive	e, medium grained, salt and peppery zones comprised of		0.1	32411	112.20	113.40	1.20			
		millime	tric black, stubby, ferromagnesian laths in a fine grained, yellowish		0.5	32412	113.40	114.60	1.20			
			oured when dry, feldspathic groundmass. Quartz veining is		0.1	32413	114.60	115.80	1.20			
		0 0	ole but if present is usually mm thick and has no definite		0.1	32414	115.80	117.00	1.20			
			tion. Fine fractures are ankeritic while the matrix is essentially non		0.5	32415	117.00	118.20	1.20			
			e to HCL but weakly to moderately reactive to KFC which means		0.1	32416	118.20	119.40	1.20			
			e alteration present is ankerite. Fractures are generally coated by		0.1	32417	119.40	120.60	1.20			
			and was counted individually in the RQD page. Only trace pyrite		0.1	32418	120.60	121.80	1.20			
		, .	stals were noted scattered through the matrix and along fractures.		0.1	32419	121.80	123.00	1.20			
		It is on	this rock that scandium and yttrium is presumed to be hosted.		0.1	32420	123.00	124.20	1.20			
			106.80-109.20: Fine Grained Gabbro 34°ca		0.1	32421	124.20	125.40	1.20			
					0.1	32422	125.40	126.60	1.20			
			112.33: Medium Grained Gabbro. 140°ca		0.1	32423	126.60	127.80	1.20			
			112.53: Fine Grained Grabbro. 105°ca		0.1	32424	127.80	129.00	1.20			
			112.85: Medium Grained Gabbro. 40°ca		0.1	32426	129.00	130.20	1.20			
			113.13: Fine Grained Gabbro. 135°ca		0.1	32427	130.20	131.40	1.20			
			114.05: Medium Grained Gabbro 130°ca		0.1	32428	131.40	132.60	1.20			
			114.24: Fine Grained Gabbro 70°ca			32429	132.60	133.80	1.20			
			114.33: Medium Grained Gabbro. 120°ca		0.1	32430	133.80	135.00	1.20			
			114.43: Fine Grained Gabbro. 150°ca		0.1	32431	135.00	136.20	1.20			
			125.52: Medium Grained Gabbro. 60°ca		0.1	32432	136.20	137.40	1.20			
			126.30: Fine Grained Gabbro. 150°ca		0.1	32433	137.40	138.60	1.20			
			130.18: Medium Grained Gabbro 138°ca		0.1	32434		139.80	1.20			
			130.70: Fine Grained Gabbro. 75°ca									
			131.14: Medium Grained Gabbro. 160°ca									
			132.44: Fine Grained Gabbro. 160°ca									
		132.44	-136.93: Medium Grained Gabbro.									

Quartz Veins occurrence and their thickness and orientation. (minimum of 1 cm thick):

118.75: 60°ca 125.85: 145°ca 126.45: 138°ca 129.90: 80°ca (3 cm) 129.70: 45°ca (1.5 cm) 129.95: 35°ca. 134.24: 145°ca (3 cm) 134.41: 115°ca (2 cm) 135.80: 41°ca

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
71.00	106.80	SY	Syenite Porphyry			41420	71.60	72.80	1.20		
		After t	he mixed intrusive the hole enters into a more massive rock of			41421	72.80	74.00	1.20		
		quartz	feldspar porphyry which we gave a camp name of syenite/syenite			41422	74.00	75.20	1.20		
		porphy	yry. It is medium gray to gray reddish brown, medium to coarse			41423	75.20	76.40	1.20		
		graine	d, massive rock composed of 85-90% of mm size euhedral k			41427	76.40	77.60	1.20		
		feldspa	ars close packed together with intergranular gray-greenish			41428	77.60	78.80	1.20		
		-	bole material in interfragmental position. Rock composition is			41429	78.80	80.00	1.20		
			en QFP and FP depending on the Quartz phenocrysts content. But			41430	80.00	81.20	1.20		
			plify the logging we just consider this kind of rock as syenite and			41431	81.20	82.40	1.20		
			lassify the quartz and feldspar phenos and their modal percentage.			41432	82.40	83.60	1.20		
			ck is massive and relatively hard that drillers having a hard time			41433	83.60	84.80	1.20		
			ating it. The rock is non magnetic, non ankeritic and non			41434	84.80	86.00	1.20		
			eous. Trace pyrite disseminations. The competent and rarely			41435	86.00	87.20	1.20		
		fractur	ed.			41436	87.20	88.40	1.20		
		71 64				41437	88.40	89.60	1.20		
			72.20: Amphibolite			41438	89.60	90.80	1.20		
			72.90: Amphibolite			41439	90.80	92.00	1.20		
		84.80-	84.95: Amphibolite			41440	92.00	93.20	1.20		
						41441	93.20	94.40	1.20		
						41442	94.40	95.60	1.20		
						41443	95.60	96.80	1.20		
						41444	96.80	98.00	1.20		
						41445	98.00	99.20	1.20		
						41446	99.20	100.40	1.20		
						41447	100.40		1.20		
						41448	101.60	102.80	1.20		
						41452		104.00	1.20		
						41453		105.20	1.20		
						41454		106.40	1.20		
						41455	106.40	107.60	1.20		
62.30	71.00		Mixed Intrusive			41413	63.20	64.40	1.20		
			le enters a rock of mixed intrusive. Syenite comes in and out of this			41414	64.40	65.60	1.20		
		unit. T	he ratio of the syenite and the mafic intrusive is 50:50. There is no			41415	65.60	66.80	1.20		
			Ilar direction of contact between rock units. It appears that angular			41416	66.80	68.00	1.20		
			ons of mafic intrusive is carried by the syenite dyke. The mafic			41417	68.00	69.20	1.20		
			ve is dark green, fine to medium grained, amphibolitized and			41418	69.20	70.40	1.20		
			carbonatized (calcite) unit of mafic composition. Both intrusive are			41419	70.40	71.60	1.20		
		massiv	e. Both rock are also non magnetic, weakly calcareous and weakly tic.								
50.00	62.30	SY	Syenite Porphyry			41402	50.00	51.20	1.20		
		A shar	p contact of 30°ca comes a gray reddish to, pinkish red medium-			41403	51.20	52.40	1.20		
		coarse	grained, massive rock of felsic composition composed of 75% of			41404	52.40	53.60	1.20		
		mm siz	ze euhedral K Fp often close packed with up to 5% of euhedral			41405	53.60	54.80	1.20		
			grains unevenly distributed along unit. All unit is affected by a			41406	54.80	56.00	1.20		
		moder	ate to strong pervasive hematization thats why it turns out to be			41407	56.00	57.20	1.20		
			h in color. Weak fracture and vein controlled calcite. Intergranulat			41408	57.20	58.40	1.20		
			ish leucoxene observed throughout unit. Local cm size angular			41409	58.40	59.60	1.20		
			clasts included and described separately below. The rock is non			41410	59.60	60.80	1.20		
		magne	tic, non calcareous and non ankeritic. Trace pyrites. No significant			41411	60.80	62.00	1.20		
			alization observed thats why no sample was collected.								

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
rom	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
42.80	50.00	MI	Mafic Intrusive			41393	42.80	44.00	1.20		
		There is	a distinct change in texture which is evident with a lens whereby			41394	44.00	45.20	1.20		
		the fine	granular foliation ends and the texture becomes fine grained			41395	45.20	46.40	1.20		
		crystall	ne as defined by acicular dark green/ black mafic grains/ crystals			41396	46.40	47.60	1.20		
		in the g	roundmass. Overall, it is fine grained, massive, medium/ dark grey			41397	47.60	48.80	1.20		
		coloure	d, relatively hard, weakly magnetic, non reactive to weakly calcitic			41398	48.80	50.00	1.20		
		with 10	% irregular streaks and networks of pink calcite fractures. It is								
		minera	ized with trace sulphides with anomalous portions up to 1%								
		dissem	nated Pyrite. This unit is also intruded by pinkish syenite that								
		comes	n and out of the unit. The syenite dykes range in thickness from 1								
			0 cm. The contact angle of the intruding syenites varies in								
			tion from 45 to 75°ca. There is no significant mineralization in this								
		unit tha	t merits sampling thats why no samples were collected.								
19.10	42.80	MVFP	Feldpar Phyric mafic volcanics			32389	19.80	21.00	1.20		
		A sharp	change in texture marks the beginning of this Feldpar Phyric			32390	21.00	22.20	1.20		
		mafic v	olcanics. The contact is subtle approximately 30°ca. This rock is			32391	22.20	23.40	1.20		
		quite si	milar to the Feldpar Phyric amphibolite except that the texture of			32392	23.40	24.60	1.20		
		this roc	k is finer grained and darker in color. There is an abundance of			32393	24.60	25.80	1.20		
		amphib	oles in the matrix which is specled by coarse crystals of Feldpar			32394	25.80	27.00	1.20		
			than 1 cm in diameter. The rock is amphibolitized. Several			32395	27.00	28.20	1.20		
		section	s of this rock is intruded by pinkish syenite dykes. Pyrite were			32396	28.20	29.40	1.20		
		normal	y observed on the selveges of the contact between the syenite			32397	29.40	30.60	1.20		
		and the	amphibolite. Trace pyrites and chalcopyrites were present in this			32398	30.60	32.00	1.40		
		rocks. N	Nost of the pyrites occur as fine disseminations and sometimes			32399	32.00	33.20	1.20		
		trains ir	fractures. Sampling was taken from this rock since sometmes REE			32401	33.20	34.40	1.20		
		are ass	ociated with this kind of rock texture. Below are the intervals of			32402	34.40	35.60	1.20		
		syenite	s and their corresponding contact angles.			32403	35.60	36.80	1.20		
						32404	36.80	38.00	1.20		
			9.48: 35°ca, 30°ca			32405	38.00	39.20	1.20		
			22.20: 30°ca, 35°ca			32406	39.20	40.40	1.20		
			25.60: 25°ca, 30°ca			32407	40.40	41.60	1.20		
			27.40: 40°ca, 45°ca			32408	41.60	42.80	1.20		
		27.60-	28.35: 40°ca, 50°ca								
1.85	19.10	GB	Fine to Medium Grained Gabbro			32373	1.85	3.00	1.15		
		This ho	e is collared into a a camp name Fine to Medium grained Gabbro.			32374	3.00	4.20	1.20		
		This is t	he gabbro zone that was missed by CR-2014-06E. This gabbro			32376	4.20	5.40	1.20		
			as massive, medium grained, salt and peppery zones comprised of			32377	5.40	6.60	1.20		
			tric black, stubby, ferromagnesian laths in a fine grained, yellowish			32378	6.60	7.80	1.20		
			oured when dry, feldspathic groundmass. Quartz veining is			32379	7.80	9.00	1.20		
			le but if present is usually mm thick and has no definite			32380	9.00	10.20	1.20		
			tion. Fine fractures are ankeritic while the matrix is essentially non			32381	10.20	11.40	1.20		
			e to HCL but weakly to moderately reactive to KFC which means			32382	11.40	12.60	1.20		
			e alteration present is ankerite. Fractures are generally coated by			32383	12.60	13.80	1.20		
			and was counted individually in the RQD page. Only trace pyrite			32384	13.80	15.00	1.20		
		, .	stals were noted scattered through the matrix and along fractures.			32385	15.00	16.20	1.20		
		it is on	this rock that scandium and yttrium is presumed to be hosted.			32386	16.20	17.40	1.20		
						32387	17.40	18.60	1.20		
						32388	18.60	19.80	1.20		
0.00	1.85	OVB	OVB								
			covery was measured to begin at 6.07'. The driller's block indicate								
		that the	ey placed 1.52 m (5 ft ft) of NW casing.								

NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.

206.04 EOH End of hole.

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION

Breaks

Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm	RQD (%)
0.00	262.5°	262.5°	-60.0°	Collar		1.9	2.1	0.2	0.2	100	0.0	
8.23	275.4°	264.2°	-58.2°	Multi		2.1	3.7	1.5	1.5	98	0.9	
11.28	274.5°	263.3°	-58.1°	Multi		3.7	5.2	1.5	1.5	100	1.5	
14.33	273.6°	262.4°	-58.0°	Multi		5.2	8.2	3.1	3.0	98	2.4	
17.37	270.6°	259.4°	-57.8°	Multi		8.2	11.3	3.1	3.0	98	1.8	
20.42	274.2°	263.0°	-57.8°	Multi		11.3	14.3	3.1	3.0	99	2.0	
23.47	275.2°	264.0°	-57.7°	Multi Multi		14.3	17.4	3.1	3.0	99	2.5	
26.52 29.57	275.0° 275.3°	263.8° 264.1°	-57.5° -57.5°	Multi		17.4 20.4	20.4 23.5	3.1 3.1	3.1 3.0	100 97	3.1 1.8	
32.61	273.3° 274.8°	263.6°	-57.3°	Multi		20.4	26.5	3.0	3.0	100	2.9	
35.66	275.8°	264.6°	-57.2°	Multi		26.5	29.6	3.1	3.0	100	2.5	
38.71	275.3°	264.1°	-57.2°	Multi		29.6	32.6	3.1	3.0	98	2.7	
41.76	275.5°	264.3°	-57.1°	Multi		32.6	35.7	3.1	3.1	100	2.9	
44.81	275.3°	264.1°	-56.9°	Multi		35.7	38.7	3.1	3.0	100	2.7	
47.85	274.7°	263.5°	-56.8°	Multi		38.7	41.8	3.1	3.0	99	2.3	76
50.90	274.1°	262.9°	-56.9°	Multi		41.8	44.8	3.1	3.0	99	2.6	86
53.95	274.3°	263.1°	-56.7°	Multi		44.8	47.9	3.1	3.0	99	1.8	
57.00	273.1°	261.9°	56.6°	Multi		47.9	50.9	3.0	3.0	100	2.4	
60.05	271.5°	260.3°	-56.7°	Multi		50.9	54.0	3.1	3.0	99	2.4	
63.09	271.4°	260.2°	-56.5°	Multi		54.0	57.0	3.1	3.0	99	2.3	
66.14	273.4°	262.2°	-56.4°	Multi		57.0	60.1	3.1	3.1	100	2.9	
69.19 72.24	275.3° 274.6°	264.1° 263.4°	-56.3° -56.2°	Multi Multi		60.1 63.1	63.1 66.2	3.1 3.1	3.0 3.0	100 99	1.8 2.2	
75.29	274.0 275.2°	263.4 264.0°	-56.2 -56.1°	Multi		66.2	69.2	3.1	3.0	99	2.2	
78.33	275.2°	264.0°	-56.0°	Multi		69.2	72.3	3.1	3.0	98	0.6	
81.38	274.0°	262.8°	-56.1°	Multi		72.3	75.3	3.1	3.0	99	2.2	
84.43	275.0°	263.8°	-55.8°	Multi		75.3	78.4	3.0	3.0	100	2.5	
87.48	274.2°	263.0°	-55.9°	Multi		78.4	81.4	3.1	3.0	100	2.7	
90.53	275.4°	264.2°	-55.6°	Multi		81.4	84.5	3.1	3.0	99	2.5	82
93.57	273.8°	262.6°	-55.8°	Multi		84.5	87.5	3.1	3.0	98	2.7	89
96.62	274.2°	263.0°	-55.5°	Multi		87.5	90.6	3.1	3.0	99	2.3	
99.67	273.4°	262.2°	-55.5°	Multi		90.6	93.6	3.1	3.1	100	2.3	
102.72	273.1°	261.9°	-55.5°	Multi		93.6	96.7	3.1	3.0	99	2.8	
105.77	274.4°	263.2°	-55.2°	Multi		96.6	99.7	3.1	3.0	98	1.9	
108.81	272.6°	261.4°	-55.3°	Multi		99.7 102 7	102.7	3.1	3.0	99	2.7	
111.86 114.91	271.9° 273.0°	260.7° 261.8°	-55.3° -55.1°	Multi Multi		102.7 105.7	105.7 108.8	3.0 3.1	3.0 3.0	99 99	2.2 2.3	
114.91	273.4°	262.2°	-55.1°	Multi		103.7	108.8	3.1	3.0	99	1.8	
121.01	272.3°	261.1°	-54.9°	Multi		111.8	114.9	3.1	3.0	99	2.7	
124.05	273.6°	262.4°	-54.8°	Multi		114.9	117.9	3.1	3.0	98	1.9	
127.10	272.3°	261.1°	-55.0°	Multi		117.9	121.0	3.1	3.0	100	2.8	
130.15	273.9°	262.7°	-54.8°	Multi		121.0	124.0	3.1	3.1	100	2.6	86
133.20	271.1°	259.9°	-54.9°	Multi		124.0	127.1	3.1	3.0	100	2.6	86
136.25	274.2°	263.0°	-54.8°	Multi		127.1	130.1	3.0	3.0	99	2.7	89
139.29	273.4°	262.2°	-54.5°	Multi		130.1	133.2	3.0	3.0	100	3.0	
142.34	271.8°	260.6°	-54.7°	Multi		133.2	136.2	3.1	3.0	99	2.7	
145.39	274.1°	262.9°	-54.5°	Multi		136.2	139.3	3.1	3.0	100	2.7	
148.44	271.6°	260.4°	-54.5°	Multi		139.3	142.4	3.1	3.1	98	2.1	
151.49 154.53	274.4° 275.2°	263.2° 264.0°	-54.2° -54.3°	Multi Multi		142.4 145.4	145.4 148.5	3.1 3.1	3.0 3.0	99 100	2.6 2.7	
154.53 157.58	275.2 273.5°	264.0 262.3°	-54.3 -54.0°	Multi		145.4 148.5	148.5 151.5	3.1	3.0	100	2.7	
160.63	275.5 272.2°	262.5 261.0°	-54.0 -54.2°	Multi		148.5	151.5	3.1	3.0	99	2.9	
163.68	272.3°	261.1°	-53.9°	Multi		154.6	157.6	3.1	3.0	99	2.0	
166.73	270.9°	259.7°	-53.8°	Multi		157.6	160.7	3.1	3.0	100	1.8	
169.77	271.2°	260.0°	-53.9°	Multi		160.7	163.8	3.1	3.0	97	2.9	
172.82	272.8°	261.6°	-53.6°	Multi		163.8	166.8	3.0	3.0	100	1.7	57
175.87	274.7°	263.5°	-53.7°	Multi		166.8	169.8	3.1	3.0	99	2.9	94
178.92	274.9°	263.7°	-53.7°	Multi		169.8	172.9	3.1	3.0	99	3.0	
181.97	274.2°	263.0°	-53.4°	Multi		172.9	175.9	3.0	3.0	99	2.3	
185.01	275.9°	264.7°	-53.5°	Multi		175.9	179.2	3.2	3.2	99	2.7	
188.06	272.1°	260.9°	-53.4°	Multi		179.2	182.0	2.9	2.8	99	2.1	
191.11	272.8°	261.6°	-53.4°	Multi		182.0	185.0	3.0	3.0	100	2.1	
194.16	273.9°	262.7°	-53.5°	Multi		185.0	188.1	3.1	3.1	98	2.7	
197.21	274.3°	263.1°	-53.5°	Multi		188.1	191.2	3.1	3.0	99	1.6	51

GOOD Mining Exploration Inc.

CR2014-07

272.1°	260.9°	-53.4°	Multi	19	91.2	194.2	3.1	3.0	98	1.5	5
				19	94.2	197.3	3.1	3.0	99	2.7	88
				19	97.3	200.3	3.0	3.0	99	2.3	75
				20	00.3	203.3	3.0	3.0	100	2.1	69
				20	03.3	206.1	2.8	2.8	100	2.3	82

4276170

NAD83 17N

366.00 m

539,572.00 m

5,360,664.00 m

Storage: CanREE explo site

Azimuth:

Length:

Core Size:

Dip:

Drill Log CR2014-08

COLLAR INFORMATION

Claim:

Projection:

Easting:

Northing:

Elevation:

				WORK DO	ONE BY
Work	From	То	Worker	Start	End
Drilling	0.0	104.4	Walker Drilling	2014-Sep-04	Sep-05
Downhole Survey	0.0	104.4	Walker Drilling	2014-Sep-05	Sep-05
Core Logging	0.0	104.4	Athraa Koma	2014-Sep-10	Sep-10
Core Logging	0.0	104.4	Dennis Patron	2014-Sep-10	Sep-10

Comments: This hole needs to be assayed for PGE. 0.5%- 3% pyrite concentrations hosted in amphibolite were presumed to be hosting PGE. There is a PGE mark at the table of descriptions where the samples needs to be assayed for PGE.

267.00°

-60.00°

NQ

104.39 m

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
102.50	104.40	Sharp c crystall ankerit	Syenite contact at 65°ca comes this pinkish, medium grained, massive, ine and homgenous syenite dyke. It is weakly to non magnetic, non ic and non calcareoius. Trace pyrites. The rock exhibits a ritic texture.			41466	102.60	104.40	1.80		

			GEOLOGY	VIS	UAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
48.10	102.50	AMSY	Amphibolite Syenite Package		1.0	32676	49.20	50.40	1.20		
		A sharp	contact of 30°ca comes a mixed package of amphibolite syenite.		1.0	32677	50.40	51.60	1.20		
		This int	erval comprises of 85% amphibolite and 15% syenite. The		1.0	32678	51.60	52.80	1.20		
			polite is dark grey, fine grained amphibole rich mafic volcanic. It is		0.5	32679	52.80	54.00	1.20		
			amphibolite by SGS, hence, the rock name. The protolith of this		0.5	32680	54.00	55.20	1.20		
			fore metamorpism is probably basalt because it is too dark and		0.5	32681	55.20	56.40	1.20		
		0	ined. This amphibolite show various texture. Some sections are		0.5	32682	56.40	57.60	1.20		
			ar phyric while some sections are fine to medium grained,		0.5	32683	57.60	58.80	1.20		
			g weak foliation fabric of 30°ca. The syenite seems to intrude the	~		32684	58.80	60.00	1.20		
		-	polites because there are some chuncks of amphibolite inclusions nite interval. Solid core of syenite that is more than a meter is also		0.5	32685	60.00	61.20	1.20		
		'	d here. The rock is generally non ankeritic, non calcareous and)	0.5	32686	61.20	62.40	1.20		
			to moderately magnetic. Pyrite mineralization is stronger in the		0.5	32687	62.40	63.60	1.20		
			polite than the syenite. The modal percentage of pyrite is recorded	ł	0.5	32688	63.60	64.80	1.20		
			eft corner of the description below. The associated feldspar in the		0.5	32689	64.80	66.00	1.20		
			polite occurs as specks and patches ranging in size from a few mm		0.5	32690	66.00	67.20	1.20		
		-	e than 1 cm.		0.5	32691	67.20	68.40	1.20		
					0.5 0.5	32692 32693	68.40 69.60	69.60 70.80	1.20 1.20		
		48.10-4	18.50: Amphibolite. UC= 70°ca, LC =130°ca, 1% Py		0.1	32693	70.80	72.00	1.20		
		48.50-4	18.80: Syenite. UC =130°ca, LC= 49°ca		0.1	32695	70.80	73.20	1.20		
					0.1	32696	73.20	74.40	1.20		
			52.95: 95% amphibolite with 5% syenite dykelets. UC=49°ca,		0.1	32697	74.40	75.80	1.40		
		LC=120	°ca, 1% Py		0.1	32698	75.80	77.00	1.20		
					0.1	32699	77.00	78.20	1.20		
		52.95-5	53.15: Syenite. UC=120°ca, LC=120°ca, 5% Py.		0.1	32701	78.20	79.00	0.80		
		52 4 F 1				41464	79.00	80.30	1.30		
			53.40: Amphibolite with one 2 cm syenite dyke. UC=120°ca,			41465	80.30	81.70	1.40		
		LC=45	са, 1% Ру		0.1	32702	81.70	82.90	1.20		
		53 /0-	53.50: Massive syenite. UC=45°ca, LC=40°ca		0.1	32703	82.90	84.10	1.20		
		55.40-	55.50. Massive syemile. 00-45 ca, 20-40 ca			32704	84.10	85.30	1.20		
		53.50-	57.90: 95% amphibolite with 5% Syenite dykes ranging in size		0.1	32705	85.30	86.50	1.20		
			5 mm to 3 cm. UC=40°ca, LC=130°ca, 1% Py			41468	89.20	90.80	1.60		
					0.1	32706	90.80	92.00	1.20		
		57.90-	58.10: Syenite with amphibolite inclusions. UC=130°ca, LC=170°c	а	0.1	32707	92.00	93.20	1.20		
					0.5	32708	93.20	94.40	1.20		
		58.10-	58.80: Amphibolite. UC =170°ca, LC= 50°ca, 1% Py		2.0	32709	94.40	95.60	1.20		
			59.05: Massive syenite. UC= 50°ca, LC= 60°ca, 1% Py		0.5	32710	95.60	96.80	1.20		
			59.75: Amphibolite. UC= 60°ca, LC= 30°ca, 2% Py		0.1	32711	96.80	98.00	1.20		
			59.89: Synite dyke. UC= 35°ca, LC= 40°ca, 0.5% Py		0.1	32712	98.00	99.20	1.20		
			61.15: Amphibolite. UC= 40°ca, LC =160°ca, 0.5%- 5% Py		0.1	32713		100.40	1.20		
			61.25: Syenite dyke. UC =160°ca, LC =150°ca, 1% Py			32714		101.60	1.20		
		61.25-	65.05: Amphibolite. UC =150°ca, LC= 80°ca, 1%- 5% Py		0.1	32715	101.60	102.60	1.00		
			EE 1E: Sugnita with amphibalita inclusions LIC-200°ca LC-EE°ca	1							
		specks	65.15: Syenite with amphibolite inclusions. UC=80°ca, LC=55°ca , of Cov	4							
		зреска									
		65.15-	70.25: 98% amphibolite and 2% Synite dyke (2 dykes of 5 cm								
			UC =55°ca, LC=70°ca, 1%- 5% Py								
		70.25-	70.35: Syenite dyke. UC and LC =70°ca, Trace Py								
			70.75: Amphibolite. UC and LC =60°ca, 1% Py								
			71.50: Syenite. UC =60°ca, LC =6+E670°ca, trace Py								
			72.50: Amphibolite. UC and LC =60°ca, 1% Py								
			72.70: Syenite Dyke. UC and LC =60°ca, Trace Py								
			73.55: Amphibolite. UC = 60° ca , LC = 90° ca , 5% Py								
			73.65: Syenite Dyke. UC and LC =90°ca, Trace Py 73.95: Amphibolite. UC =90°ca, LC =50°ca, 1%								
		/ 3.03-	73.33. Amphibolite. OC -30 ta, LC =30 ta, 1%								
		73,95-	74.10: Syenite with amphibolite inclusion. UC=50°ca, LC=65°ca,								
		Trace P									
			1								

74.10- 78.95: Amphibolite. UC=65°ca, LC=90°ca, 1%- 5% Py

		GEOLOGY	VISU	JAL		ŀ	ASSAY	RESULTS		
From	То	Code Comment	Cp %	Ру%	Sample	From	То	Length	Au gpt	Cu %
		78.95-81.75: Syenite. This is a bigger section of syenite within the Amphibolite package. The upper contact is 90°ca and the lowqer contact is 45°ca. Both are sharp contact. It is massive, homogenous and crystalline. Pinkish color. Very competent. Trace P.								
		81.75-86.01: 98% Amphibolite and 2% Syenite Dykes. UC=45°ca, LC=70°ca, 1%- 2% Py								
		NOTE: The drillers grounded the core from 86.1m to 89.2 m giving a core recorvery of only 29%. Broken Core measuring 0.88 meters in this run giving lost core of 2.17 meters. No sample was taken on this zone. RQD is only 9%.								
		89.18-89.80: Amphibolite. LC =120°ca, 0.5% Py 89.80-90.80: Syenite. UC=120°ca, LC= 90°ca, Trace Py								
		90.80-102.35: 95% amphibolite and 5% synite dykes. The syenite dykes occurs at the following intervals within this amphibolite ineterval:								
		 91.70: 4 cm, UC =25°ca, LC =110°ca 92.50: 10 cm, UC =60°ca, LC= 70°ca 92.80: 3 cm, UC and LC is 60°ca 93.25: 3 cm, UC and LC is 70°ca 93.60: 2 cm, UC and LC is 80°ca. 95.95: 3 cm, UC and LC is 150°ca 98.10: 5 cm, UC =60°ca, LC =130°ca. 98.20: 10 cm, UC and LC is 140°ca. 98.90: 15 cm, UC =30°ca, LC= 45°ca 								
		Pyrite Veins within this amphibolite sections occur in the following interval:								
		94.40- 94.60: UC=30°ca, LC=25°ca 95.70- 95.75: UC and LC is 45°ca								

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
34.10	48.10	AMSY	Syenite Amphibolite Package		0.1	32668	34.75	35.95	1.20		
			ckage comprise of 75% syenite and 25% amphibolite. The contacts		0.5	32669	35.95	37.15	1.20		
			rp but no definite orientation. The intervals below show where		3.0	32670	37.15	38.35	1.20		
		syenite	and amphibolite occurs including their upper and lower contact.		3.0	32671	38.35	39.55	1.20		
		The sa	npled portion is the amphibolite sections only. Pyrite is generally			41458	39.55	40.75	1.20		
		trace w	ith local sections reaching up to 5% pyrite. The rock is generally			41459	40.75	41.95	1.20		
			keritic, non calcareous and moderately magnetic on the			41460	41.95	43.15	1.20		
		amphik	olite while the the syenite is non magnetic.			41461	43.15	44.20	1.05		
					1.0	32672	44.20	45.00	0.80		
			6.55: Fine Grained amphibolite. The upper contact is 30°ca while			41462	45.00	46.00	1.00		
		the low	er contact is 160°ca.		3.0	32673	46.00	47.20	1.20		
		26 55				41463	47.20	48.00	0.80		
		36.55-:	6.95: Syenite. Upper contact is 160°ca lower contact is 65°ca		1.0	32674	48.00	49.20	1.20		
		36.95-3	7.15: Amphibolite/Syenite. This short interval is 90% fine grained								
			intruded by 10% syenite dyke.								
		37.15-3	7.80: Amphibolite. The upper contac is 110°ca while the lower								
		contac	is also 110°ca.								
			7.90: Syenite dyke. Upper contacty is 110°ca while lower conatct								
		is also	110 ca.								
			88.15: Amphibolite. UC =110°ca, LC= 85°ca, 2% Py 88.55: Syenite. UC= 85°ca, LC= 60°ca, 5% Py								
			19.55: Amphibolite. UC= 60°ca, LC =155°ca, 1% Py								
			4.17: Syenite. UC=155°ca, LC= 32°ca								
			15.00: Amphibolite. UC= 32°ca, LC =160°ca, 1% Py								
			IS.95: Syenite. UC =160°ca, LC= 40°ca								
			17.20: Amphibolite. UC= 40°ca, LC= 50°ca, 5% Py								
			8.10: Syenite. UC= 50°ca, LC= 75°ca								
4.80	34.10	GB	Fine to medium Grained Gabbro		0.1	32493	5.95	7.15	1.20		
		This ho	le is collared into the camp name of Fine to medium Grained		0.5	32494	7.15	8.35	1.20		
		Gabbro	. This gabbro is medium greenish grey, fine to medium grained,		1.0	32495	8.35	9.55	1.20		
			e and crystalline. It is intruded by syenite locally and described			32496	9.55	10.75	1.20		
			Pyrite mineralization ranges from trace to locally 1%. The upper		0.1	32497	10.75	11.95	1.20		
			of this hole is weakly hematitzed. The syenites have sharp		1.0	32498	11.95	13.15	1.20		
			s that is quite variable suggesting that no particular orientation		0.1	32499	13.15	14.35	1.20		
			e syenite have. The overall appearance of the protolith is that of a		1.0	32651	14.35	15.55	1.20		
			ined gabbro. Staining and testing with KFC and HCl reveal that the		0.5	32652	15.55	16.75	1.20		
			is non reactive. The magnetic properties are erratic but generally ately magnetic. A few splashes and grains of Py and Cp were noted		0.1	32653		17.95	1.20		
			valls of some of the wider calcite/ epidote stringers/ veinlets,		0.1	32654	17.95	19.15	1.20		
			ere, the sulphide content is nil to trace. The lower contact is sharp		0.1	32655	19.15	20.35	1.20		
		at 30°c			0.1	32656	20.35	21.55	1.20		
		41.50 0	u.		0.1	32657	21.55	22.75	1.20		
		Svenite	intervals and their contact angles.		0.1	32658	22.75	23.95	1.20		
		-,			0.1	32659	23.95	25.15	1.20		
		9.40-	9.95: 135°ca, 55°ca		0.1	32660	25.15	26.35	1.20		
			.2.00: 60°ca, 60°ca		0.1	32661	26.35	27.55	1.20		
		14.30-2	4.55: 85°ca, 150°ca		0.1	32662	27.55	28.75	1.20		
		14.90-2	.5.00: 135°ca, 54°ca.		0.1 0.1	32663 32664	28.75 29.95	29.95 31.15	1.20		
		15.10-2	.5.30: 54°ca, 90°ca		0.1	32664	29.95 31.15	31.15	1.20		
		15.40-2	.5.60: 120°ca, 130°ca		0.1	32665	31.15	32.35	1.20 1.20		
					0.1	32667	33.55	34.75	1.20		
					0.1	52007	55.55	5 5	1.20		

CR2014-08

		GEOLOGY	VISU	JAL		Д	SSAY	RESULTS		
D	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
	Core re	,		0.1	32492	4.75	5.95	1.20		
	dilute h fizzes in presenc	ydrochloric acid HCl) and potassium ferricyanide (KFC). The acid n contact with calcite and the KFC stains the core blue in the ce of ankerite. In certain areas, the core is tested with a magnet to								
	.80	.80 OVB Core re indicate NOTE: / dilute h fizzes ir presend	Code Comment	Code Comment Cp % .80 OVB Overburden Core recovery was measured to begin at 15.58'. The driller's block indicate that they placed 3.05 m (10.0 ft) of NW casing. NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to	Code Comment Cp % Py% .80 OVB Overburden 0.1 Core recovery was measured to begin at 15.58'. The driller's block indicate that they placed 3.05 m (10.0 ft) of NW casing. 0.1 NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to	Code Comment Cp % Py% Sample .80 OVB Overburden 0.1 32492 Core recovery was measured to begin at 15.58'. The driller's block indicate that they placed 3.05 m (10.0 ft) of NW casing. 0.1 32492 NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to 0.1 32492	Code Comment Cp % Py% Sample From .80 OVB Overburden 0.1 32492 4.75 Core recovery was measured to begin at 15.58'. The driller's block indicate that they placed 3.05 m (10.0 ft) of NW casing. 0.1 32492 4.75 NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to 0.1 32492 4.75	Code Comment Cp % Py% Sample From To .80 OVB Overburden 0.1 32492 4.75 5.95 Core recovery was measured to begin at 15.58'. The driller's block indicate that they placed 3.05 m (10.0 ft) of NW casing. 0.1 32492 4.75 5.95 NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to 8 <td>Code Comment Cp % Py% Sample From To Length .80 OVB Overburden 0.1 32492 4.75 5.95 1.20 Core recovery was measured to begin at 15.58'. The driller's block indicate that they placed 3.05 m (10.0 ft) of NW casing. 0.1 32492 4.75 5.95 1.20 NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to 8</td> <td>Code Comment Cp % Py% Sample From To Length Au gpt .80 OVB Overburden 0.1 32492 4.75 5.95 1.20 .80 OVB Overburden 0.1 32492 4.75 5.95 1.20 .80 NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to 0.1 32492 4.75 5.95 1.20</td>	Code Comment Cp % Py% Sample From To Length .80 OVB Overburden 0.1 32492 4.75 5.95 1.20 Core recovery was measured to begin at 15.58'. The driller's block indicate that they placed 3.05 m (10.0 ft) of NW casing. 0.1 32492 4.75 5.95 1.20 NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to 8	Code Comment Cp % Py% Sample From To Length Au gpt .80 OVB Overburden 0.1 32492 4.75 5.95 1.20 .80 OVB Overburden 0.1 32492 4.75 5.95 1.20 .80 NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to 0.1 32492 4.75 5.95 1.20

GEOTECHNICAL INFORMATION

Breaks

Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm	RQD (%)
0.00	267.0°	267.0°	-60.0°	Collar		4.8	6.9	2.1	2.1	100	1.7	82
9.75	281.0°	269.8°	-59.9°	Multi		6.9	9.9	3.1	3.0	98	2.2	71
12.80	279.0°	267.8°	-59.9°	Multi		9.9	13.0	3.1	3.0	99	1.3	41
15.85	279.5°	268.3°	-60.0°	Multi		13.0	16.0	3.1	3.0	98	3.0	96
18.90	280.4°	269.2°	-59.9°	Multi		16.0	19.2	3.2	3.0	95	2.0	64
21.95	279.6°	268.4°	-59.8°	Multi		19.2	22.1	2.9	3.0	106	2.3	80
24.99	279.4°	268.2°	-59.8°	Multi		22.1	25.2	3.1	3.0	98	3.0	97
28.04	279.2°	268.0°	-59.9°	Multi		25.2	28.2	3.1	3.0	99	2.8	91
31.09	279.7°	268.5°	59.8°	Multi		28.2	31.2	3.0	3.0	100	2.7	88
34.14	279.3°	268.1°	-59.6°	Multi		31.2	37.4	6.2	3.0	49	1.7	28
37.19	281.0°	269.8°	-59.6°	Multi		37.4	43.5	6.1	3.0	50	5.4	89
40.23	277.9°	266.7°	-59.6°	Multi		43.5	47.9	4.4	3.0	67	3.9	87
43.28	278.5°	267.3°	-59.5°	Multi		47.9	49.5	1.7	3.1	185	1.7	100
46.33	277.9°	266.7°	-59.5°	Multi		49.5	52.6	3.1	3.0	100	2.8	93
49.38	277.1°	265.9°	-59.3°	Multi		52.6	55.6	3.1	3.0	99	2.6	86
52.43	285.6°	274.4°	-59.1°	Multi		55.6	58.7	3.1	3.0	99	2.4	80
55.47	278.0°	266.8°	-59.0°	Multi		58.7	61.8	3.1	3.1	99	2.8	92
58.52	273.2°	262.0°	-58.9°	Multi		61.8	64.6	2.9	3.0	105	2.6	92
61.57	287.6°	276.4°	-58.8°	Multi		64.6	67.8	3.2	3.0	94	3.0	94
64.62	284.4°	273.2°	-58.8°	Multi		67.8	70.9	3.0	3.1	100	2.4	79
67.67	283.4°	272.2°	-58.6°	Multi		70.9	73.9	3.1	3.0	100	2.2	72
70.71	282.1°	270.9°	-58.8°	Multi		73.9	77.0	3.1	3.0	100	3.1	100
73.76	282.0°	270.8°	-58.5°	Multi		77.0	80.0	3.1	3.0	99	2.5	81
76.81	280.6°	269.4°	-58.4°	Multi		80.0	83.1	3.1	3.0	98	2.4	78
79.86	280.7°	269.5°	-58.3°	Multi		83.1	86.1	3.1	3.0	99	2.9	93
82.91	281.7°	270.5°	-58.3°	Multi		86.1	89.2	3.1	0.9	29	0.3	9
85.95	281.7°	270.5°	-58.1°	Multi		89.2	92.2	3.1	3.0	100	2.6	86
89.00	281.4°	270.2°	-58.3°	Multi		92.2	95.3	3.0	3.0	100	3.1	100
92.05	281.7°	270.5°	-58.0°	Multi		95.3	98.3	3.1	3.1	100	3.1	100
95.10	282.0°	270.8°	-57.9°	Multi		98.3	101.4	3.1	3.1	100	2.8	92
98.15	281.7°	270.5°	-57.9°	Multi		101.4	104.4	3.1	3.1	100	2.8	92

Drill Log CR2014-09

COLLAR INFORMATION

WORK DONE BY

Claim:	4273175			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	94.70°	Drilling	0.0		Walker Drilling	2014-Sep-04	Sep-05
Easting:	539,678.00 m	Dip:	-60.00°	Downhole Survey Core Logging	0.0 0.0		 Walker Drilling Athraa Koma 	2014-Sep-05 2014-Sep-11	Sep-05 Sep-11
Northing:	5,359,937.00 m	Length:	47.85 m	Core Logging	0.0	47.9	Dennis Patron	2014-Sep-11	Sep-11
Elevation:	366.00 m	Core Size:	NQ						

Storage: CanREE explo site

Comments: 0.5%- 3% pyrite concentrations hosted in amphibolite were presumed to be hosting PGE. There is a PGE mark at the table of descriptions where the samples needs to be assayed for PGE.

DRILL LOG

			GEOLOGY	VISU	JAL		ļ	ASSAY	RESULTS	;	
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
35.70	47.87	AMSY	Amphibolite Syenite package		2.0	32746	36.50	37.70	1.20		
		There is	a gradual transition into an amphibolitic zone from the well		0.1	32747	37.70	38.90	1.20		
		defined	gabbro host. It becomes dark grey coloured (with a reddish tone),		0.1	32748	38.90	40.10	1.20		
			edium, grained, massive, with a faint lighter grey speckling caused		0.1	32749	40.10	41.30	1.20		
			te in the matrix. With the aid of a lens, it is seen to contain fine		3.0	32751	41.30	42.50	1.20		
		00 0	tes and feathery grains of black amphibole in a dark greyish, fine		2.0	32752	42.50	43.70	1.20		
		grained	, calcite- feldspar matrix/ groundmass.		0.1	32753	43.70	44.90	1.20		
					2.0	32754	44.90	46.10	1.20		
			are the intervals of the amphibolite and the syenite with their		2.0	32755	46.10	47.10	1.00		
		corresp	onding upper and lower contact including their pyrite modal ages.			41467	47.10	47.90	0.80		
		35.70-3	7.70: Amphibolite. UC= 40°ca, LC =120°ca, trace to locally 2% Py								
		37.70-3	7.80: Syenite Dyke. UC =120°ca, LC= 90°ca, Trace Py								
		37.80-3	7.90: Amphibolite. UC= 90°ca, LC= 40°ca, 1% Py								
		37.90-3	8.10: Syenite dyke. UC= 40°ca, LC=70°ca, tr Py								
		38.10-3 Trace P	8.90: Amphibolite with 1% syenite dykes. UC=70°ca, LC= 45°ca, y								
		38.90-3 Py 2%	9.20: 70% Syenite and 30% amphibolite. UC= 45° ca, LC = 125° ca,								
		39.20-4 Trace P	0.00: 98% amphibolite 2% syenite dykes. UC =125°ca, LC =160°ca, y								
		40.00-4	0.20: Syenite dyke. UC=160°ca, LC =120°ca, Trace Py.								
		40.20-4	0.35: Amphibolite. UC =120°ca, LC =130°ca, Trace Py								
			0.85: Syenite dyke with amphibolite inclusions. UC=130°ca ca, 0.5% Py								
			2.50: 95% amphibolite 5% syenite dykes. UC=40°ca, LC=50°ca, % Py locally								
		42.50-4	2.70: Syenite dykes. UC and LC is 50°ca, tr Py								
		42.70-4 50°ca, t	3.95: 98% Amphibolitwe and 2% Syenite dykes. UC and LC is r Py								

43.95-44.15: Syenite Dyke. UC=50°ca, 40°ca, Trace Py.

		GEOLOGY	VISU	JAL		4	SSAY	RESULTS		
From	То	Code Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
		44.15-47.87: 90% Amphibolite and 10% Syenite Dykes. UC=40°ca, 1% to 2% Py.								
1.70	35.70	GB Fine to medium Grained Gabbro		0.1	32716	1.70	2.90	1.20		
		This hole is collared into a a camp name Fine to Medium grained Gabbro.		0.1	32717	2.90	4.10	1.20		
		This is the gabbro zone that was missed by CR-2014-06E and is exposed at		0.5	32718	4.10	5.30	1.20		
		the surface. This short drillhole was done just to measure the thickness of		1.0	32719	5.30	6.50	1.20		
		the gabbro that is exposed at the surface. The hole started as broken core		1.0	32720	6.50	7.70	1.20		
		up to m meters depth. It becomes solid after that interval. This gabbro		0.1	32721	7.70	8.90	1.20		
		occurs as massive, medium grained, salt and peppery zones comprised of		0.1	32722	8.90	10.10	1.20		
		millimetric black, stubby, ferromagnesian laths in a fine grained, yellowish		0.1	32723	10.10	11.30	1.20		
		buff coloured when dry, feldspathic groundmass. Quartz veining is		0.1	32724	11.30	12.50	1.20		
		negligible but if present is usually mm thick and has no definite		0.1	32726	12.50	13.70	1.20		
		orientation. Fine fractures are ankeritic while the matrix is essentially non		0.1	32727	13.70	14.90	1.20		
		reactive to HCL but weakly to moderately reactive to KFC which means		0.1	32728	14.90	16.10	1.20		
		that the alteration present is ankerite. Fractures are generally coated by		0.1	32729	16.10	17.30	1.20		
		chlorite and was counted individually in the RQD page. Only trace pyrite		0.1	32730	17.30	18.50	1.20		
		(Py) crystals were noted scattered through the matrix and along fractures.		0.1	32731	18.50	19.70	1.20		
		It is on this rock that scandium and yttrium is presumed to be hosted. At		0.1	32732	19.70	20.90	1.20		
		4.5 m to 6.1 meters there are 5 pcs of quartz veins (1 cm to 3 cm thick)		0.1	32733	20.90	22.10	1.20		
		and oriented at 60 or 120°ca. At this zone there is 1% fine Py		0.1	32734	22.10	23.30	1.20		
		disseminations. There is one piece of pyrite in the quartz verin located at 6.1 m mark.		0.1	32735	23.30	24.50	1.20		
		0.1 III IIIdIK.		0.1	32736	24.50	25.70	1.20		
				0.1	32737	25.70	26.90	1.20		
				0.1	32738	26.90	28.10	1.20		
				0.1	32739	28.10	29.30	1.20		
				0.1	32740	29.30	30.50	1.20		
				0.1	32741	30.50	31.70	1.20		
				0.1	32742	31.70	32.90	1.20		
				0.1	32743	32.90	34.10	1.20		
				0.1	32744	34.10	35.30	1.20		
				2.0	32745	35.30	36.50	1.20		

> Core recovery was measured to begin at 5.58'. The driller's block indicate that they placed 3.05 m (10.0 ft) of NW casing.

> NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.

47.85 **EOH** End of hole.

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments
0.00	94.7°	94.7°	-60.0°	Collar	
11.28	106.7°	95.5°	-59.0°	Multi	
14.33	109.6°	98.4°	-59.1°	Multi	
17.37	107.5°	96.3°	-59.1°	Multi	
20.42	106.6°	95.4°	-59.1°	Multi	
23.47	107.7°	96.5°	-59.2°	Multi	
26.52	107.4°	96.2°	-59.1°	Multi	
29.57	108.6°	97.4°	-59.1°	Multi	
32.61	107.5°	96.3°	-59.2°	Multi	
35.66	107.4°	96.2°	-59.2°	Multi	
38.71	108.9°	97.7°	-59.4°	Multi	
41.76	108.1°	96.9°	-59.5°	Multi	
44.81	107.2°	96.0°	-59.4°	Multi	

From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
1.7	5.2	3.5	3.1	89	1.2	36	4
5.2	8.2	3.1	3.0	99	2.5	83	15
8.2	11.3	3.1	3.0	99	2.8	93	7
11.3	14.3	3.1	3.0	100	3.0	97	20
14.3	17.4	3.1	3.0	99	2.8	92	25
17.4	20.4	3.0	3.0	99	2.5	83	41
20.4	23.5	3.1	3.0	99	3.0	97	22
23.5	26.5	3.1	3.0	99	2.7	88	8
26.5	29.6	3.1	3.0	98	2.8	92	27
29.6	32.6	3.1	3.0	98	2.6	84	13
32.6	35.7	3.1	3.0	100	2.6	86	6
35.7	38.7	3.1	3.0	99	2.6	85	14
38.7	41.8	3.1	3.1	100	2.6	85	10
41.8	44.8	3.1	3.0	100	2.6	86	11
44.8	47.9	3.1	3.0	99	2.9	95	21

Drill Log CR2014-10

COLLAR INFORMATION

Claim:	4273194		
Projection:	NAD83 17N	Azimuth:	101.80°
Easting:	539,700.00 m	Dip:	-60.00°
Northing:	5,359,758.00 m	Length:	107.59 m
Elevation:	360.00 m	Core Size:	NQ
Storage:	CanREE explo site		
C			

				WORK DO	ONE BY
Work	From	То	Worker	Start	End
Drilling	0.0	107.6	Walker Drilling	2014-Sep-08	Sep-09
Downhole Survey	0.0	107.6	Walker Drilling	2014-Sep-09	Sep-09
Core Logging	0.0	107.6	Dennis Patron	2014-Sep-12	Sep-12

Comments:

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %	
98.80	107.60	AMSY	Amphibolite Syenite Package.		0.1	30538	99.20	100.40	1.20			
		A sharp	contact of 110°ca reverts back to the amphibolite syenite		0.5	30539	100.40	101.60	1.20			
		packag	e. The estimated percentage is 60% amphibolite and 40% Syenite.		1.0	30540	101.60	102.80	1.20			
		The roo	k is weakly ankeritic, non calcareous and weakly to moderately		1.0	30541	102.80	104.00	1.20			
		magnetic. Trace to 2% pyrite disseminations. Below are the details of the lithology for this interval. 98.80-99.70: Syenite with amphibolite inclusions. UC and LC=110°ca, 0.5% Py				30542	104.00	105.30	1.30			
						41866	105.30	106.60	1.30			
						41915	106.70	107.72	1.02			
			105.70: 95% amphibolite with 5% cm scale syenite dykes oriented									
		at vario	us directions. UC=110°ca and LC=60°ca, 0.5% to 2% Py									
		105.70	107.62: 95% Syenite with 5% amphibolite. UC=60 dtc, 0.5% Py.									
77.50	98.80	GB	Fine to medium Grained Gabbro		0.5	30519	77.60	78.80	1.20			
		Throug	h a gradational contact, the hole rolls into another typical gabbroic		0.5	30520	78.80	80.00	1.20			
		•	fine to medium grained, massive, homogenous and salt and		0.5	30521	80.00	81.20	1.20			
			textured, the overall medium grey green colour formed form 30-		0.5	30522	81.20	82.40	1.20			
			rk green coloured altered ferromagnesians in a fine grained,		0.1	30523	82.40	83.60	1.20			
			thic groundmass. About 35% of the gabbroic unit is amphibolitized		0.1	30524	83.60	84.80	1.20			
			k greenish grey/ black colour and fine to medium grain size. This		0.1	30526	84.80	86.00	1.20			
			arted with a chlorite altered sheared zone 40 cm long oriented at			30527	86.00	87.20	1.20			
		130°ca.			0.5	30528	87.20	88.40	1.20			
		04.05.0			0.5	30529	88.40	89.60	1.20			
			2.41: Sheared Zone consisting of several mm thick quartz veinings priented 120°ca to 130°ca. Some of the veins are contorted.		0.1	30530	89.60	90.80	1.20			
		that is d	priented 120 ca to 130 ca. Some of the veins are contorted.		0.1	30531	90.80	92.00	1.20			
		04 50 0	AFE, Suppite Vicin, UC and LC -140°ca, trace Dr		0.1	30532	92.00	93.20	1.20			
			4.55: Syenite Vein. UC and LC =140°ca, trace Py 5.80: sherared zone oriented 130°ca filled with epidote		0.5	30533	93.20	94.40	1.20			
		05.70-8	5.60. Sherareu zone orienteu 150 ta filleu with epidote		0.1	30534	94.40	95.60	1.20			
		86 60-9	7.10: Sheared zone that appears like an epidote altered zone		0.1	30535	95.60	96.80	1.20			
			g patches of epidote. 0.5% Py.		0.1	30536	96.80	98.00	1.20			
		2110/01/1	ב שמנווכי טו בשונטנב. ט.כא דע.		0.1	30537	98.00	99.20	1.20			

				GEOLOGY		VISU	JAL			ASSAY	RESULTS	5	
From	То	Code	Comment			Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
32.10	77.50	GBFP	Porphyriti	c Gabbro			0.5	32781	33.20	34.40	1.20		
		A well o	defined conta	act at 140°ca marks a	distinct change to a phenocrystic		0.5	32782	34.40	35.60	1.20		
		texture	e that is very o	competent and weakl	r fractured giving the core a		2.0	32783	35.60	36.80	1.20		
		solid ap	opearance. To	o this point, the porph	yry is light/ medium greyish		1.0	32784	36.80	38.00	1.20		
		-	-		ots of light yellowish grey		1.0	32785	38.00	39.20	1.20		
					ely speckled (4-8%) with pale		1.0	32786	39.20	40.40	1.20		
		-		rromagnesian minera			1.0	32787	40.40	41.60	1.20		
		0			and dark green fine to medium		1.0	32788	41.60	42.80	1.20		
		0	0		e is a reversal in colour whereby		1.0	32789	42.80	44.00	1.20		
			-	-	are interstitial to 25- 35%		0.5	32790	44.00	45.20	1.20		
					ular feldspar crystals in a fine		0.5	32791	45.20	46.40	1.20		
		-			a massive medium grained host		0.5	32792	46.40	47.60	1.20		
			-		s. The rock is moderately		0.1	32793	47.60	48.80	1.20		
		0		,	oderately ankeritic. Epidote vein		0.1	32794	48.80	50.00	1.20		
		located	1 at 39.50- 39	.6 oriented at 30°ca.			0.5	32795	50.00	51.20	1.20		
		Enidote	a chlorita and	d quartz veins occur a	these intervals		0.5	32796	51.20	52.40	1.20		
		Lpidote	e, chionte and		t these intervals.		0.5	32797	52.40	53.60	1.20		
		44 05-4	44 10. Chlorit	te vein oriented 110°	2		0.5	32798	53.60	54.80	1.20		
				e vein oriented at 70			0.5	32799	54.80	56.00	1.20		
				oriented 70°ca, 1 cm			0.5	30501	56.00	57.20	1.20		
				e vein oriented at 60	ca		0.1	30502	57.20	58.40	1.20		
					ub parallel to the core axis.		0.5	30503	58.40	59.60	1.20		
							0.1	30504	59.60	60.80	1.20		
		51.95-5	52.15: Quartz	z vein trends 40°ca			0.5	30505	60.80	62.00	1.20		
				z epidote vein trends	120°ca		0.1	30506	62.00	63.20	1.20		
				oriented at 110°ca 3				30507	63.20	64.40	1.20		
		70.15:	Chlorite vein	oriented at 60°ca, 3	cm		0.1	30508	64.40	65.60	1.20		
		72.90-7	73.00: Fault s	lip filled with chlorite	oriented at 125°ca.		0.1	30509	65.60	66.80	1.20		
		73.20:	Fault slip fille	ed with chlorite 3 cm	hick oriented 120°ca.		0.5	30510	66.80	68.00	1.20		
		76.60:	Fault slip fille	ed with chloirte 3 cm	priented at 70°ca.		0.5	30511	68.00	69.20	1.20		
							0.5	30512	69.20	70.40	1.20		
							0.1	30513	70.40	71.60	1.20		
							0.5	30514	71.60	72.80	1.20		
							0.5	30515	72.80	74.00	1.20		
							0.5	30516	74.00	75.20	1.20		
							0.5	30517	75.20	76.40	1.20		
							0.5	30518	76.40	77.60	1.20		
23.60	32.10			edium Grained Gabbr				32772	23.60	24.80	1.20		
					mes the camp name fine to			32773	24.80	26.00	1.20		
			0		pyroxene is more than the			32774	26.00	27.20	1.20		
					in rock type. This unit is lighter			32776	27.20	28.40	1.20		
				to medium grey, mas				32777	28.40	29.60	1.20		
					pepper texture. The rock			32778	29.60	30.80	1.20		
		0			rence of 1% occur at 25.5 meter ankeritic and strongly magnetic.		0.1	32779	30.80	32.00	1.20		
		The roo	ck is solid, stro	ongly competent and	rarely fractured. There are 2 pocated at 23.05 and 23.40			32780	32.00	33.20	1.20		
		respect											

			GEOLOGY	VISU	JAL		ASSAY RESULTS				
rom	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
12.80	23.60	AM	Amphibolite			32763	12.80	14.00	1.20		
		A sharp	contact of 30°ca marks the beginning of this fine grained, dark			32764	14.00	15.20	1.20		
		grey, ar	nphibole rich mafic intrusive we now called amphibolite. The rock			32765	15.20	16.40	1.20		
			ve, homogenous and crystalline. There are local cm scale syenite			32766	16.40	17.60	1.20		
			nat cuts into the unit approximately 1% of the interval. Below are			32767	17.60	18.80	1.20		
			ails of those syenite dykes. The rock is non ankeritic, non			32768	18.80	20.00	1.20		
		calcared	ous, moderately magnetic. Pyrites occurs as trace to locally 0.5%.			32769	20.00	21.20	1.20		
		Delaure	un die numerie duiters destants into dein annu bie die die die set			32770	21.20	22.40	1.20		
			re the syenite dyklets that cuts into this amphibolite (location: tion, thickness)			32771	22.40	23.60	1.20		
			80°ca, 2 cm								
			130°ca, 2 cm								
			90°ca, 1 cm 60°ca, 2 cm								
			70°ca, 1 cm								
0.20	12.80		Syenite Amphibolite Package			32756	0.20	1.40	1.20		
			e is collared into a mixed package of 60% syenite and 40%			32757	1.40	2.60	1.20		
		-	olite. This mixed rock appears like a Breccia Zone because angular			32758	2.60	3.90	1.30		
		0	nts of amphibolite appering like inclusions are common. As y mentioned that the amphibolite protolith is probably basalt.			41469	3.90	5.10	1.20		
			re the details of their corresponding intervals, upper and lower			41470	5.10	6.50	1.40		
			including the modal percentage of Pyrite. The amphibolite is			41471 32759	6.50 8.00	8.00 9.20	1.50 1.20		
			most of the pyrite mineralization from trace to locally 1%. This			32759	9.20	9.20	1.20		
		0	on ankeritic non calcareous and weakly magnetic depending on			32760	10.40	11.60	1.20		
			ount of amphibolite.			32762	11.60	12.80	1.20		
		0.20-	4.15: 98% amphibolite and 2% syenite dykes. LC =110°ca, 0.5% Py								
			5.75: Maroonish pink syenite due to hematite alteration. °ca, LC=70°ca, trace Py								
		5.75- Trace P	6.50: Broken of 98% amphibolite and 2% syenite dyke. UC=70°ca, y								
			7.00: Maroonish pink syenite due to hematite alteration. LC a, Trace PY								
		7.00-	7.40: Amphibolite. UC=110, LC=70°ca, Trace Py								
		7.40-	7.90: Massive syenite. UC=70°ca, LC=45°ca, Trace Py								
			0.30: 95% amphibolite and 5% syenite dykes. UC=45°ca, a, 0.5% Py								
			0.50: Massive Syenite. UC=60°ca, LC=130°ca, Trace py								
			0.70: Amphibolite. UC=130°ca, LC=120°ca, trace Py								
		trace to	2.90: 90% Syenite and 10% Amphibolite. UC=120°ca, LC=90°ca, 1% Py								
0.00	0.20	OVB	Overburden								
			covery was measured to begin at 0.656'. The driller's block that they placed 1.52 m (5.00 ft) of NW casing.								
		dilute h	All the core is systematically tested for pervasive carbonate using ydrochloric acid HCl) and potassium ferricyanide (KFC). The acid								
			contact with calcite and the KFC stains the core blue in the								
		•	e of ankerite. In certain areas, the core is tested with a magnet to ine relative magnetite content.								
		EOH	End of hole.								

GEOTECHNICAL INFORMATION RQD (%)

Breaks

Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm
0.00	101.8°	101.8°	-60.0°	Collar		0.2	4.0	3.8	3.7	98	3.1
10.06	112.1°	100.9°	-59.3°	Multi		4.0	7.0	3.1	3.0	99	1.9
13.11	113.8°	102.6°	-59.1°	Multi		7.0	10.1	3.1	3.0	99	2.4
16.15	113.1°	101.9°	-59.0°	Multi		10.1	13.1	3.1	3.0	100	2.6
19.20	115.8°	104.6°	-59.0°	Multi		13.1	16.2	3.1	3.0	99	1.6
22.25	117.4°	106.2°	-59.1°	Multi		16.2	19.2	3.0	3.0	99	2.2
25.30	117.5°	106.3°	-59.2°	Multi		19.2	22.3	3.1	3.0	99	2.9
28.35	114.6°	103.4°	-59.3°	Multi		22.3	25.3	3.0	3.0	99	2.9
31.39	115.3°	104.1°	-59.3°	Multi		25.3	28.4	3.1	3.0	98	2.9
34.44	114.8°	103.6°	-59.3°	Multi		28.4	31.4	3.1	3.0	98	2.9
37.49	114.2°	103.0°	-59.3°	Multi		31.4	34.5	3.1	3.0	100	2.9
40.54	116.7°	105.5°	-59.3°	Multi		34.5	37.8	3.4	3.0	90	3.2
43.59	115.9°	104.7°	-59.3°	Multi		37.8	40.6	2.8	3.1	111	3.0
46.63	116.5°	105.3°	-59.3°	Multi		40.6	43.6	3.1	3.0	100	2.9
49.68	117.7°	106.5°	-59.4°	Multi		43.6	46.7	3.1	3.0	99	3.1
52.73	115.5°	104.3°	-59.2°	Multi		46.7	49.7	3.0	3.0	100	2.8
55.78	115.2°	104.0°	-59.4°	Multi		49.7	52.8	3.1	3.1	99	2.8
58.83	115.3°	104.1°	-59.3°	Multi		52.8	55.8	3.0	3.0	100	3.0
61.87	116.2°	105.0°	-59.3°	Multi		55.8	58.8	3.1	3.0	100	2.6
64.92	116.5°	105.3°	-59.5°	Multi		58.8	61.9	3.1	3.0	100	2.7
67.97	115.1°	103.9°	-59.4°	Multi		61.9	64.9	3.1	3.0	100	3.0
71.02	115.9°	104.7°	-59.5°	Multi		64.9	68.0	3.1	3.0	99	2.7
74.07	117.8°	106.6°	-59.6°	Multi		68.0	71.0	3.1	3.0	99	2.9
77.11	117.4°	106.2°	-59.6°	Multi		71.0	74.1	3.1	3.0	100	2.4
80.16	116.2°	105.0°	-59.6°	Multi		74.1	77.1	3.1	3.1	100	2.5
83.21	116.0°	104.8°	-59.6°	Multi		77.1	80.2	3.0	3.0	100	2.6
86.26	117.8°	106.6°	-59.7°	Multi		80.2	83.2	3.1	3.0	100	2.2
89.31	117.6°	106.4°	-59.6°	Multi		83.2	86.3	3.1	3.0	100	1.8
92.35	118.6°	107.4°	-59.7°	Multi		86.3	89.3	3.1	3.0	100	2.2
95.40	118.8°	107.6°	-59.6°	Multi		89.3	92.4	3.1	3.0	100	2.7
98.45	119.1°	107.9°	-59.7°	Multi		92.4	95.4	3.1	3.0	100	2.4
101.50	115.4°	104.2°	-59.7°	Multi		95.4	98.5	3.1	3.0	100	2.3
104.55	118.0°	106.8°	-59.6°	Multi		98.5	101.5	3.0	3.1	100	2.4
						101.5	104.6	3.1	3.1	100	2.3
						104.6	107.6	3.1	3.1	100	2.4

4276170

NAD83 17N

360.00 m

539,568.00 m

Drill Log CR2014-11

.

COLLAR INFORMATION

Claim:

Projection:

Easting:

Elevation:

			WORK DO	<u>ONE BY</u>
From	То	Worker	Start	End
0.0	101.5	Walker Drilling	2014-Sep-05	Sep-14
0.0	101.5	Walker Drilling	2014-Sep-14	Sep-14
0.0	101.5	Athraa Koma	2014-Sep-13	Sep-13
0.0	101.5	Dennis Patron	2014-Sep-13	Sep-13
	0.0 0.0 0.0	0.0 101.5 0.0 101.5 0.0 101.5	0.0 101.5 Walker Drilling0.0 101.5 Walker Drilling0.0 101.5 Athraa Koma	0.0 101.5 Walker Drilling 2014-Sep-05 0.0 101.5 Walker Drilling 2014-Sep-14 0.0 101.5 Athraa Koma 2014-Sep-13

Storage: CanREE explo site

Northing: 5,360,649.00 m

Comments: The drill breakdown that's why it took them a long time to finish this hole.

Azimuth:

Length:

Core Size:

Dip:

99.30°

-60.00°

NQ

101.50 m

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
26.20	101.60	GBFP	Porphyritic Gabbro		0.5	32820	26.60	27.80	1.20			
		A well	defined contact at 140°ca marks a distinct change to a phenocrystic		0.5	32821	27.80	29.00	1.20			
		texture	that is very competent and weakly fractured giving the core a		0.5	32822	29.00	30.20	1.20			
		solid a	opearance. To this point, the porphyry is light/ medium greyish		0.5	32823	30.20	31.40	1.20			
		green/	beige coloured with a few large spots of light yellowish grey		0.5	32824	31.40	32.60	1.20			
		feldspa	r phenos 1 cm in diameter. It is finely speckled (4-8%) with pale		0.5	32826	32.60	33.80	1.20			
		yellow	sericitized ferromagnesian minerals that stand out in a		0.5	32827	33.80	35.00	1.20			
		ground	mass of faint grey feldspar phenos and dark green fine to medium		0.5	32828	35.00	36.20	1.20			
		0	groundmass. dark green to black mafic grains are interstitial to		0.5	32829	36.20	37.40	1.20			
		25-35	% densely packed, millimetric, dull grey, tabular feldspar crystals in		0.5	32830	37.40	38.60	1.20			
		a fine g	rained feldspathic groundmass forming a massive medium grained		0.5	32831	38.60	39.80	1.20			
			ntaining a few scattered mafic inclusions. The rock is moderately			32832	39.80	41.00	1.20			
		magne	tic, no calcareous and weakly to moderately ankeritic.		0.5	32833	41.00	42.20	1.20			
					0.5	32834	42.20	43.40	1.20			
		58.70-	53.95: Fine Grained Gabbro. UC=40°ca LC=60°ca		0.5	32835	43.40	44.60	1.20			
					0.5	32836	44.60	45.80	1.20			
		Therea	are several fault slips with gouge, chlorite and calcite located at:		0.5	32837	45.80	47.00	1.20			
					1.0	32838	47.00	48.20	1.20			
			5 cm, 110°ca,		1.0	32839	48.20	49.60	1.40			
			3 cm, 40°ca,		1.0	32840	49.60	50.80	1.20			
			3 cm, 120°ca,		1.0	32841	50.80	52.00	1.20			
			3 cm, 80°ca,		1.0	32842	52.00	53.20	1.20			
		79.20:	2 cm, 120°ca.		1.0	32843	53.20	54.40	1.20			
					1.0	32844	54.40	55.60	1.20			
			31.90: Calcite vein. 60°ca.		0.5	32845	55.60	56.80	1.20			
			39.15: Sheared zone oriented at 130°ca		0.5	32846	56.80	58.00	1.20			
			Calcite vein. 3 cm, 125°ca		1.0	32847	58.00	59.20	1.20			
			Feldspar Phenos >1 cm dia.		1.0	32848	59.20	60.40	1.20			
			97.86: Broken Core.		0.1	32849	60.40	61.60	1.20			
		99.60:	Calcite vein. 10 cm, 50°ca		0.1	40001	61.60	62.80	1.20			
					0.1	40001	62.80	64.00	1.20			
					0.1	40002	64.00	65.20	1.20			
					0.5	40004	65.20	66.40	1.20			
					1.0	40004	66.40	67.60	1.20			
					0.5	40005	67.60	68.80	1.20			
					0.5	40008	68.80	70.00	1.20			
					0.5	40007 40008	70.00	70.00	1.20			
					0.5 1.0	40008	70.00	72.40	1.20			
					1.0	40010	72.40	73.60	1.20			
					1.0	40011	73.60	74.80	1.20			
					0.1	40012	74.80	76.00	1.20			
					0.1	40013	76.00	77.20	1.20			

		GEOLOGY	VISU	JAL		ASSAY RESULTS				
rom	То	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
				0.5	40014	77.20	78.40	1.20		
				3.5	40015	78.40	79.60	1.20		
				1.0	40016	79.60	80.80	1.20		
				0.5	40017	80.80	82.00	1.20		
				1.0	40018	82.00	83.20	1.20		
				1.0	40019	83.20	84.40	1.20		
				1.0	40020 40021	84.40	85.60	1.20		
				2.0 1.0	40021 40022	85.60 86.80	86.80 88.00	1.20 1.20		
				1.0	40022	88.00	89.20	1.20		
				2.0	40023	89.20	90.40	1.20		
				2.0	40026	90.40	91.60	1.20		
				3.5	40027	91.60	92.80	1.20		
				1.0	40028	92.80	94.00	1.20		
				1.0	40029	94.00	95.20	1.20		
				0.5	40030	95.20	96.40	1.20		
				0.1	40031	96.40	98.00	1.60		
				0.1	40032	98.00	99.20	1.20		
				0.2	40033		100.40	1.20		
				0.5	40034	100.40	101.60	1.20		
10.20	26.20	GB Fine to medium Grained Gabbro		0.1	30545	11.00	12.20	1.20		
10.20	20.20	A guartz veinlet trending 70°ca and change in texture and color from dark		0.1	30546	12.20	13.40	1.20		
		grey to greenish grey marks the beginning of Fine to medium Grained		0.5	30547	13.40	14.60	1.20		
		Gabbro. This gabbro is medium greenish grey, fine to medium grained,		0.5	30548	14.60	15.80	1.20		
		massive and crystalline. It is intruded by syenite and amphibolite locally		0.1	30549	15.80	17.00	1.20		
		and altered by epidote as described below. Pyrite mineralization ranges		0.1	32812	17.00	18.20	1.20		
		from trace to locally 1%. The upper section of this hole is weakly		0.1	32813	18.20	19.40	1.20		
		hematitzed. The syenites have sharp contacts that is quite variable		0.1	32814	19.40	20.60	1.20		
		suggesting that no particular orientation does the syenite have. The rock		0.1	32815	20.60	21.80	1.20		
		is non ankeritic, non calcareous and moderately magnetic. The lower		0.1	32816	21.80	23.00	1.20		
		contact is sharp at 30°ca.		0.1	32817	23.00	24.20	1.20		
		12.65-13.02: Syenite Dyke. UC and LC=60°ca, Trace Py		0.1	32818	24.20	25.40	1.20		
		12.05-15.02. Syenne Dyke. OC and LC=60 Ca, Trace Py		0.1	32819	25.40	26.60	1.20		
		13.25-13.95: Epidote alteration zone. UC=70°ca, LC=110°ca, 0.5% Py								
		13.95-15.80: Feldspar Phyric Amphibolite. UC=110°ca, LC=120°ca, 0.5% Py								
		18.80-21.20: Fine Grained Gabbro. UC=60°ca, LC=130°ca, Trace Py								
4.70	10.20	AM Amphibolite		0.1	30543	8.60	9.80	1.20		
		The hole is collared into a dark grey, fine grained amphibole rich mafic		0.1	30544	9.80	11.00	1.20		
		volcanic. It is called amphibolite by SGS, hence, the rock name. The								
		protolith of this rock before metamorpism is probably basalt because it is								
		too dark and fine grained. There are no pyrite mineralization. The core is								
		broken. There is a sheared zone from 8.6 to 9.5 meter mark exhibiting								
		anostomosing quartz epidote veining like meshwork but no significant mineralization observed. There is a general trend in this veinlet network								
		that trends 60°ca. Sampling starts at 8.6 meters. The rock is strongly								
		magnetic, non calcareous and non ankeritic. Trace pyrites.								
0.00	4.70	OVB Overburden								
		Core recovery was measured to begin at 15.4'. The driller's block indicate that they placed 3.05 m (10.0 ft) of NW casing.								
		NOTE: All the core is systematically tested for pervasive carbonate using								
		dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid								
		fizzes in contact with calcite and the KFC stains the core blue in the								
		presence of ankerite. In certain areas, the core is tested with a magnet to								
		determine relative magnetite content.								

GOOD Mining Exploration Inc.

CR2014-11

GEOTECHNICAL INFORMATION RQD (%)

0

73

54

91

90

80

80

97

85

94

94

90

94

97

96

71

85

96

81

93

68

101

77

73

60

88

82

63

83

76

77

56

54

100

Core

0.3

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.1

3.0

3.0

3.0

3.1

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.1

3.0

3.0

3.0

3.0

3.0

3.0

3.0

3.1

0.7

Rec (%)

91

166

99

100

99

99

99

99

98

99

101

99

99

100

99

100

100

98

100

103

88

111

99

100

100

100

100

100

105

100

100

100

100

100

>10cm

0.0

1.3

1.7

2.8

2.8

2.5

2.4

3.0

2.6

2.8

2.8

2.8

2.9

3.0

2.9

2.2

2.6

2.9

2.5

2.7

2.3

2.8

2.4

2.2

1.8

2.7

2.5

1.9

2.4

2.3

2.4 1.7

1.7

0.7

Breaks

3

11

13

6

12

25

16

4

9

11

5

8

3

7

9

7

12

7

13

13

19

12

14

12

16

14

11

15

9

6

7

9

15

4

-								
Depth	Test	Az	Dip	Туре	Comments	From	То	Len
0.00	99.3°	99.3°	-60.0°	Collar		4.4	4.7	0.3
12.19	111.3°	100.1°	-57.6°	Multi		4.7	6.6	1.8
15.24	108.9°	97.7°	-57.0°	Multi		6.6	9.6	3.1
18.29	114.0°	102.8°	-57.0°	Multi		9.6	12.7	3.1
21.34	111.6°	100.4°	-57.1°	Multi		12.7	15.7	3.1
24.38	105.4°	94.2°	-57.1°	Multi		15.7	18.8	3.1
27.43	108.7°	97.5°	-57.0°	Multi		18.8	21.8	3.1
30.48	106.8°	95.6°	-57.3°	Multi		21.8	24.9	3.1
33.53	115.5°	104.3°	-57.2°	Multi		24.9	27.9	3.1
36.58	122.3°	111.1°	-57.2°	Multi		27.9	30.9	3.0
39.62	111.7°	100.5°	-57.3°	Multi		30.9	34.0	3.0
42.67	111.0°	99.8°	-57.3°	Multi		34.0	37.0	3.1
45.72	111.2°	100.0°	-57.4°	Multi		37.0	40.1	3.1
48.77	108.7°	97.5°	-57.3°	Multi		40.1	43.1	3.1
51.82	111.4°	100.2°	-57.4°	Multi		43.1	46.2	3.1
54.86	121.5°	110.3°	-57.4°	Multi		46.2	49.2	3.1
57.91	107.0°	95.8°	-57.3°	Multi		49.2	52.3	3.1
60.96	112.8°	101.6°	-57.4°	Multi		52.3	55.3	3.1
64.01	109.6°	98.4°	-57.2°	Multi		55.3	58.4	3.0
67.06	114.4°	103.2°	-57.4°	Multi		58.4	61.3	3.0
70.10	110.3°	99.1°	-57.6°	Multi		61.3	64.8	3.5
73.15	112.6°	101.4°	-57.6°	Multi		64.8	67.5	2.7
76.20	112.5°	101.3°	-57.5°	Multi		67.5	70.6	3.1
79.25	111.7°	100.5°	-57.3°	Multi		70.6	73.6	3.0
82.30	111.7°	100.5°	-57.5°	Multi		73.6	76.7	3.1
85.34	113.0°	101.8°	-57.5°	Multi		76.7	79.7	3.1
88.39	110.6°	99.4°	-57.5°	Multi		79.7	82.8	3.0
91.44	109.8°	98.6°	-57.4°	Multi		82.8	85.8	3.1
94.49	100.7°	89.5°	-57.4°	Multi		85.8	88.7	2.9
97.54	108.6°	97.4°	-57.5°	Multi		88.7	91.8	3.1
						91.8	94.8	3.1
						94.8	97.9	3.0
						97.9	100.9	3.1
						100.9	101.6	0.7

COLLAR INFORMATION

Drill Log CR2014-12

WORK DONE BY

									••••••
Claim:	4273194			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	271.50°	Drilling	0.0		Walker Drilling	2014-Sep-09	Sep-12
	500 604 00		CO 00	Downhole Survey	0.0	196.3	Walker Drilling	2014-Sep-12	Sep-12
Easting:	539,691.00 m	Dip:	-60.00°	Core Logging	0.0	196.3	Dennis Patron	2014-Sep-14	Sep-14
Northing:	5,359,763.00 m	Length:	196.29 m	Core Logging	0.0	196.3	Athraa Koma	2014-Sep-14	Sep-14
Elevation:	366.00 m	Core Size:	NQ						
Storage:	CanREE explo site								

Comments:

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
127.80	196.30	GB	Fine to medium Grained gabbro.			40035	128.00	129.20	1.20		
		A short	interval of fine grained amphibolite marks the beginning of this		0.1	40036	129.20	130.40	1.20		
		Fine to	Medium Grained Gabbro which is our target. Below are		0.1	40037	130.40	131.60	1.20		
		amphik	olite or mafic intrusives that layered within this Gabbro. The		0.5	40038		132.80	1.20		
		contact	angle are high that's why it is presumed to be sub-parallel with		0.5	40039	132.80	134.00	1.20		
		the gab	bro layer. The contact angles are also sharp and very distinctive		0.1	40040	134.00	135.20	1.20		
		based o	n the color which is darker due to high amphibole content. In the		0.1	40041	135.20	136.40	1.20		
		interva	below the amphibolite is fine grained and trace pyrite. The rock of		0.1	40042	136.40	137.60	1.20		
		the gab	bro and amphibolite are non calcareous, moderate to strongly		0.1	40043	137.60	138.80	1.20		
		magne	ic and non ankeritic. This gabbro contains 5 mm of felpar		0.1	40044	138.80	140.00	1.20		
		phenoc	rysts from 186.10- 196.3.		0.1	40045	140.00	141.20	1.20		
					0.1	40046		142.40	1.20		
			129.73: Amphibolite. UC=35°ca, LC=85°ca, trace Py		0.1	40047		143.60	1.20		
		158.41	159.61: Amphibolite. UC and LC=85°ca, Trace Py		0.1	40048		144.80	1.20		
					0.1	40049		146.00	1.20		
			150.60: In this zone appears like a sheared zone that contains a		0.1	40051		147.20	1.20		
			k of quartz veinlets that generally trends 25°ca approximately		0.1	40052		148.40	1.20		
		10%. N	o significant mineralization observed to be associated in this zone.		0.1	40053		149.60	1.20		
					0.1	40054		150.80	1.20		
			155.97: Quartz ankerite vein that trends 60°ca.		0.1	40055		152.00	1.20		
		157.40	5 cm quartz ankerite vein. 110°ca, 0.5% Py		0.1	40056		153.20	1.20		
					0.1	40057		154.40	1.20		
			10cm quartz vein with angular wallrock inclusions that is altered		0.1	40058		155.60	1.20		
		by chlo	ite and hematite and calcite. 130°ca, 0.5% Py		0.1	40059		156.80	1.20		
					5.0	40060		158.00	1.20		
			5 cm quartz vein with angular wallrock inclusions that is altered		0.0	40061		159.20	1.20		
		by chio	ite and hematite and calcite. 50°ca, 2% Py		0.1	40062		160.40	1.20		
		472.40	2 construction the construction of the distribution to the distribution		0.1	40063		161.60	1.20		
			2 cm quartz vein with angular wallrock inclusions that is altered		0.1	40064		162.80	1.20		
		by chio	ite and hematite and calcite. 130°ca, 2% Py		0.1	40065		164.00	1.20		
		175 10	F am hamatite altered on the rime of the quarty using 20° as 20'		0.1	40066		165.20	1.20		
			5 cm hematite altered on the rims of the quartz veins. 30°ca, 2%		0.1	40067		166.40	1.20		
		Ру			0.5	40068		167.60	1.20		
		177 75	1.5 cm quartz vein. 5% Py		0.5	40069		168.80			
			5 cm, quartz calciote vein. 30°ca, trace Py		0.5	40070		170.00	1.20		
			15 cm quartz epidote vein. 20°ca, 2% Py		0.5	40071		171.20	1.20		
			5 cm quartz epidote vein. 5 cm, 130°ca, tr Py		0.5	40072		172.40	1.20		
			5 cm quartz epidote vein. 5 cm, 150 ca, tr Py		3.0	40073		173.60	1.20		
		155.00	o chi quarte opidote veni. o chi, 140 ca, ti i y		0.5	40073		174.80	1.20		
					1.5	40074		176.00	1.20		
					2.0	40070		177.20	1.20		
					3.0	40077		178.40	1.20		
					5.0	40070	1/7.20	1/0.40	1.20		

row row <th></th> <th></th> <th>GEOLOGY</th> <th>VISU</th> <th>JAL</th> <th colspan="3">ASSAY RESULTS</th> <th></th> <th></th>			GEOLOGY	VISU	JAL	ASSAY RESULTS					
118.95 54008 1700 1.20 118.95 1200 1200 1200 1200 118.95 1200 1200 1200 1200 1200 118.95 1200 1200 1200 1200 1200 1200 118.95 1200 1200 1200 1200 1200 1200 118.95 1200 1200 1200 1200 1200 1200 118.95 1200 1200 1200 1200 1200 1200 118.95 1200 1200 1200 1200 1200 1200 118.95 1200 1200 1200 1200 1200 1200 1200 118.95 1200 120	From	То	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
118.95 SYNE 97% Synethe Dyke and 3% amphibolite weinings mm scale and have no particlar directions. Trace Py 4178 10.20 10.20 10.20 118.95 SYNE 97% Synethe Dyke and 3% amphibolite weinings mm scale and have no particlar directions. Trace Py 4178 10.20 10.20 10.20 118.95 SYNE 97% Synethe Dyke and 3% amphibolite weinings mm scale and have no particlar directions. Trace Py 4178 10.20 10.20 10.20 118.95 SYNE 97% Synethe Dyke and 3% amphibolite weinings mm scale and have no particlar directions. Trace Py 4178 112.00 11.20 12.00 118.95 SYNE 97% Synethe Dyke and 3% amphibolite weinings mm scale and have no particlar directions. Trace Py 4178 112.00 11.20 12.00 118.95 SYNE 97% Synethe Dyke and 3% relidance Physic 12.46.21.25.45.45.47.07.07.07.07.07.07.07.07.07.07.07.07.07											
No. 4008 82.00 83.20 84.40 83.20 84.40 10 4008 84.40 85.00 1.20 10.0 4008 88.00 1.80 1.20 10.1 4008 88.00 1.80 1.20 10.1 4008 88.00 1.80 1.20 10.1 4008 88.00 1.80 1.20 10.1 4008 88.00 1.80 1.20 10.1 4008 88.00 1.20 1.20 10.1 4008 1.91.00 1.20 1.20 10.1 4008 1.92.00 1.20 1.20 11.2 1.20.1 1.20 1.20 1.20 1.20 11.2.3 1.20.1 1.20 1.20 1.20 1.20 1.20 12.2.5-133.68. Amphibolite. UC=65'ca, IC=40'ca, Tace Py 4178 122.40 1.20 1.20 12.2.5-133.68. Amphibolite. UC=65'ca, IC=40'ca, Tace Py 4178 1.20 1.20 1.20 12.2.5-133.68. Amphibolite. UC=65'ca, IC=40'ca, Tace Py 4178 1.20 1.20 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>											
10. 4008 81.44 1.20 10. 4008 81.44 1.20 10. 4008 81.68 1.20 10. 4008 81.68 1.20 10. 4008 18.02 1.20 10. 4008 18.02 1.20 10. 4008 19.00 11.01 120 11.0. 4008 19.00 11.01 120 11.0. 4008 19.00 12.00 12.00 12.00 11.0. 4008 19.00 12.00 12.00 12.00 12.0. 12.00 12.00 12.00 12.00 12.00 12.2.57.12.58.3. Amphibolite 12.00 12.00 12.00 12.00 12.2.57.12.58.3. Amphibolite 12.00 12.00 12.00 12.00 12.2.57.12.58.3. Amphibolite 12.00 12.00 12.00 12.00 12.2.57.13.58.3. Amphibolite 12.00 12.00 12.00 12.00 12.2.57.13.58.3. Amphibolite 12.00 12.00 12.00 12.00 12.00 12.00											
10.4 00084 184.0 185.00 1.20 10.4 00084 185.00 185.00 1.20 10.4 00087 185.00 185.00 1.20 10.4 00087 185.00 185.00 1.20 10.4 00087 195.00 197.00 1.20 11.8 5 75.00 197.00 197.00 1.20 118.05 17.80 75.90 197.00 1.20 1.20 118.05 17.80 75.90 197.00 1.20 1.20 118.05 17.80 75.90 197.00 1.20 1.20 118.05 17.80 75.90 12.00 1.20 1.20 118.05 17.80 75.90 12.00 1.20 1.20 118.05 17.80 75.90 1.20 1.20 1.20 1.20 112.25 12.26 1.20 1.20 1.20 1.20 1.20 112.15 12.26 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20											
12.1 10.0005 15.6.0 18.6.0 1.8.0											
10.3 0.006 18.80 18.00 1.00 11.0 0.008 19.00 1.00 0.008 11.0 0.008 19.00 1.00 0.008 19.00 1.00 11.0 0.008 19.00											
1.0 4068 94.04 1.20 0.5 40699 94.04 91.04 1.20 0.5 40091 132.00											
0.1 0008 00090 91.00 13.00 12.00 12.0 00090 91.00 92.00 13.00 12.00 13.0 12.0 12.00 12.00 12.00 12.00 13.0 12.7.00 YEN 97% Syenite Dyke and 3% amphibolite 12.00 12.						40087	188.00	189.20	1.20		
0.5 4009 19.60 10.20 1.00 11.0 4009 19.40 16.30 23.00 118.05 17.70 SYEN 97% Syenite Dyke and 3% amphibolite contain 15% iste quart calcite veinings nm scale and have no particular directions. Trace Py 4778 12.100 12.30 122.05 122.05 12.06 12.00					1.0	40088	189.20	190.40	1.20		
0.8 0090 292.80 194.00 1.20 118.95 127.80 SYEN 97% Syenite Dyke and 3% amphibolite 128 112.040 121.09 120.040 121.09 118.95 127.80 SYEN 97% Syenite Dyke and 3% amphibolite 122.05 122.09 122.09 122.09 122.09 122.00 120.00 120.00 122.95-123.68. Amphibolite. UC-65'Ca, LC-40'Ca, Trace Py 41788 122.00 120.00					0.1	40089	190.40	191.60	1.20		
1.0 4009 194.00 196.00 2.00 118.85 127.80 SYEN 97% Synific hidd yead 3% amphibolite 47.87 112.80 122.00											
118.95 127.80 5YEN 97% Syenite Dyke and 3% amphibolite The amphibolite that cuts into the syenite contains 15% late quarts calcite weinings mm scale and have no particular directions. Trace Py 117.87 121.60 1.20 122.95-123.68. Amphibolite. UC-65°ca, IC-40°ca, Trace Py 14788 122.00 122.00 122.00 122.00 124.62-125.45. Amphibolite. UC-65°ca, IC-40°ca, Trace Py 14788 122.00 120.00 120.00 102.15 118.95 5Y Syenite Dyke with 5% Feldspar Phyric amphibolite This intrusive package is dominated by 5%% syenite and 5% feldspar phyric amphibolite. UC-50°ca, IC-65°ca, IC-610°ca 147.00 100.80 10.20 102.15 118.95 SY Syenite Dyke with 5% Feldspar Phyric amphibolite. UC-55°ca, IC-110°ca 147.77 106.00 10.20 1.20 102.15-109.85: Massive Syenite, UC-70°ca, IC-65°ca 110.15 110.15 110.15 110.15 110.15 110.15 110.15 110.15 110.15 110.15 110.15 110.20 1.20 110.15 110.15 115.00 110.15 110.15 110.15 110.15 110.15 110.15 112.00 1.20 110.15 115.10 115.00 110.20 1.20 <td></td>											
The amphibolite that cuts into the spenie contains 15% late quart culcite 4178 12.0 12.0 12.0 vienings ms cale and have no particular directions. Trace Py 4178 12.2.0 12.4.0 12.0 124.62-125.45. Amphibolite. UC-65°ca, LC-40°ca, Trace Py 4179 12.6.0 12.0 121.5 118.35 S Senth Dyke with 5% Feldspar Phyric amphibolite 41768 102.0 10.0 102.15 118.35 S Senth Dyke with 5% Feldspar Phyric amphibolite 41778 10.60 10.2 102.15 118.35 S Senth Science Dyke with 5% Feldspar Phyric amphibolite. 41771 10.60 10.2 102.15 108.85: Massive Syenite, UC-70°ca, LC-55°ca 41771 10.60 10.2 1.0 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41777 10.80 11.00 1.20 111.5-112.20: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41778 11.20 1.20 111.15-112.80: 98% Feldspar Phyric amphibolite. 41781 11.80 1.80 1.20 112.80: 113.80: 113.80: 113.80 11.20 1.20					1.0	40092	194.00	196.30	2.30		
veinings mm scale and have no particular directions. Trace Py 477 172 174 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172 172	118.95	127.80	SYEN 97% Syenite Dyke and 3% amphibolite			41785	119.20	120.40	1.20		
4178 1248 124 00 120 124 52 35 123 68. Amphibolite. UC-65'ca, LC-40'ca, Trace Py 41789 124 00 125 20 126 60 124 52 125 45. Amphibolite. UC-50'ca, LC-40'ca, Trace Py 41791 125 00 126 00 120 120 215 118 55 Sy Senite Dyke with 5% Feldspar Phyric amphibolite 41768 102 40 103 60 120 102.15 118 05 Sy Maxies Dysenic, UC-90'ca, LC-55'ca 41771 106 00 100 120 102.15 108 35 Maxies Dysenic, UC-90'ca, LC-55'ca 41773 108 40 106 00 120 102.15 108 35: Maxies Dysenic, UC-90'ca, LC-55'ca 41773 108 40 108 00 120 110.15 11.15: 55% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41779 110 80 112.00 112.00 112.00 112.00 112.00 112.00 112.00 120 120 120 121 124 124 124 126 128 120 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 12											
12235-123.68. Amphabelite. UC-55'ra, LC-40'ra, Trace Py 1790 122.52.0 12.60 124.63-125.45. Amphabelite. UC-50'ra, LC-40'ra, Trace Py 1790 126.60 128.00 1.40 102.15 118.95 SY Syenite Dyke with 5% Feldspar Phyric amphabelite 1788 102.14 103.60 1.20 102.15 118.95 SY Syenite Dyke with 5% Feldspar Phyric amphabelite. 1770 104.80 106.00 1.20 102.15-109.85: Massive Syenite, UC-70'ra, LC-55'ra 41771 1070.00 108.40 100.60 1.20 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41773 108.40 100.60 1.20 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41778 110.80 112.00 1.20 111.15-112.80: 98% Feldspar Phyric amphibolite. 41780 113.20 114.40 1.56 1.68 1.20 111.26-0113.80: Massive Syenite. UC and LC=50'ra 41781 118.00 119.00 1.20 1.20 112.80-113.80: Massive Syenite Dyke and 2% Feldspar Phyric amphibolite. 41782 116.80 118.00 12.00 113.80-114.30: Sy Syenite Dyke and 2% Feldspar Phyric amphibolite.			veinings mm scale and have no particular directions. Trace Py								
124.62-125.45. Amphibolite. UC-50°ca, LC-40°ca, Trace Py 4179 125.60 1.40 102.15 118.95 S Spente Dyke with 5% Feldspar Phyric amphibolite 4176 102.40 103.60 1.20 102.15 118.95 S Spente Dyke with 5% Feldspar Phyric amphibolite 4176 102.40 103.60 1.20 102.15 109.85 109.85 100.05 1.20 107.10 100.00 1.20 102.15 109.85 109.85 100.05 1.20 100.00 1.20 102.15 109.85 103.60 1.20 1.20 100.00 1.20 100.15 111.15 105% Spenite Dyke and 5% Feldspar Phyric amphibolite. 41777 108.00 10.20 1.20 111.15 113.20 1.40 1.20 1.20 1.20 11.20 11.20 11.20 11.40 11.20 1.20 111.15 113.20 1.40 1.20 1.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.20 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
102.15 118.95 Y Symte Dyke with 5% Feldspar Phyric amphibolite 41768 102.06 1.20 112.15 118.95 SY Symte Dyke with 5% Feldspar Phyric amphibolite 41768 102.06 1.20 112.15 118.95 SY Symte Dyke with 5% Feldspar Phyric amphibolite. UC=55°ca, LC=110°ca 4177 106.00 1.20 110.15-151.09.85; Massive Symite, UC=70°ca, LC=55°ca, LC=110°ca 41777 100.06 10.20 1.20 110.15-111.15: 95% Symite Dyke and 5% Feldspar Phyric amphibolite. 41777 110.08 11.20 1.20 111.15: 12.80: 98% Feldspar Phyric amphibolite. 4178 11.30 11.40 11.50 1.20 112.80: 113.80: 143.09 113.80: 143.09 11.80 11.80 1.20 1.20 111.30: 113.80: 143.09 11.80 1.80 1.20 1.20 1.20 112.80: 113.80: 143.09 11.80 1.80 1.20 1.20 113.80: 143.09 11.80 1.80 1.20 1.20 113.80: 143.09 185% Peldspar Phyric amphibolite. 1.20 1.20 </td <td></td>											
1102.15 118.95 SY Syenite Dyke with 5% Feldspar Phyric amphibolite This intrusive package is dominated by 95% Syenite and 5% feldpar phyric amphibolite. Details of the intervals were written below. 41768 102.40 103.60 1.20 1102.15 110.15.15 Feldspar Phyric amphibolite. UC=55°ca 41771 106.00 1.20 1102.15 103.85:103.85: Massive Syenite. UC=70°ca, LC=55°ca 41772 107.20 108.40 1.20 110.15.111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41777 109.60 112.00 1.20 110.15.111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41777 109.60 112.00 1.20 111.15.112.80: 98% Seldspar Phyric amphibolite and 2% Syenite Dyke. 41781 114.40 115.60 1.20 111.80-114.30: Massive Syenite. UC and LC=50°ca 41781 114.40 115.60 1.20 111.80-114.30: Massive Syenite: UC and LC=50°ca 41781 114.40 115.60 1.20 111.80-114.30: Massive Syenite: UC and LC=135°ca 116.80 116.80 1.20 1.20 111.80-116.30: Massive Syenite: UC =130°ca, LC=135°ca 116.80 117.47 <			124.62-125.45. Amphibolite. UC=50 ca, LC=40 ca, Trace Py								
This intrusive package is dominated by 95% Syenite and 5% feldpar phyric 41769 103.60 104.80 1.20 amphibolite. Details of the intervals were written below. 41771 106.00 107.20 1.20 102.15-109.85: Massive Syenite. UC=70°ca, LC=55°ca 41771 108.40 1.20 1.20 102.15-109.85: Massive Syenite. UC=70°ca, LC=55°ca 41772 107.20 108.40 1.20 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41778 113.20 112.00 1.20 UC=10°ca, LC=50°ca 41778 113.20 113.20 1.20 111.15-112.80: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41781 114.40 115.60 1.20 112.80-113.80: Massive Syenite. UC and LC=50°ca 41783 116.80 1.80 1.20 113.80-116.30: Massive Syenite. UC and LC=50°ca 41784 118.00 119.20 1.20 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 116.30 1.20 1.20 1.20 114.30-116.30: Massive Syenite: UC=310°ca, LC=135°ca 116.30 1.20 1.20 1.20 114.30-116.30: Massive Syenite: UC=310°ca, LC=135°ca 1.20 1.20 1.20 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>41791</td><td>126.60</td><td>128.00</td><td>1.40</td><td></td><td></td></t<>						41791	126.60	128.00	1.40		
amphibiolite. Details of the intervals were written below. 41770 104.80 106.00 1.20 102.15-109.85: Massive Syenite, UC=70°ca, LC=55°ca 41771 106.00 1.20 103.85: 101.35: Feldspar Phyric amphibolite. UC=55°ca, LC=110°ca 41772 107.20 108.40 1.20 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41779 112.00 1.20 UC=10°ca, LC=50°ca 41779 112.00 1.20 UC=10°ca, LC=50°ca 41780 113.20 114.40 1.20 UC=50°ca, LC=50°ca 41781 114.40 120 120 UC=50°ca, LC=50°ca 41782 115.60 116.80 120 112.80-113.80: Massive Syenite. UC and LC=50°ca 41782 118.60 118.00 120 UC=50°ca, LC=130°ca, LC=135°ca 41783 118.00 119.20 1.20 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 41745 78.40 79.60 120 114.30-118.95: 95% Feldspar Phyric amphibolite with 10% Spenite Dykes 41745 78.40 79.60 120 78.00 102.15 MVF Peldspar Phyric amphibolite, This amphibolite is also the 41745 <td>102.15</td> <td>118.95</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	102.15	118.95									
102.15-109.85: Massive Syenite. UC=70°ca, LC=55°ca 41772 106.00 107.20 1.20 109.85-110.15: Feldspar Phyric amphibolite. UC=55°ca, LC=110°ca 41772 107.20 108.40 1.20 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41777 106.60 10.20 1.20 110.15-111.15: 102.80: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41780 113.20 1.20 111.15-112.80: 98% Feldspar Phyric amphibolite. 41782 116.80 1.20 112.80-113.80: Massive Syenite. UC and LC=50°ca 41782 116.80 1.20 113.30-113.00: 98% Syenite Dyke and 2% Feldspar Phyric amphibolite. 41784 118.00 119.20 1.20 113.30-113.00: 98% Syenite Dyke and 2% Feldspar Phyric amphibolite. 41784 118.00 119.20 1.20 114.30-116.30: Massive Syenite: UC=130°ca 116.30 1.20 1.20 1.20 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite, UC and LC=135°ca 1.20 1.20 714.30 114.30-116.30: Massive Syenite: UC=130°ca, LC=140°ca 41747 80.80 3.20 1.20 74.30 82.20: 60% Syenite Dyke and 2% Feldspar Phyric amphibolite is also											
102.15-109.85: Massive Syenite, UC=70°ca, LC=55°ca, LC=110°ca 41773 108.40 1.20 109.85-110.15: Feldspar Phyric amphibolite. UC=55°ca, LC=110°ca 41773 108.60 1.20 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41777 110.80 112.00 1.20 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41778 110.80 112.00 1.20 111.15-112.80: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41781 114.40 115.60 1.68 1.20 112.80-113.80: Massive Syenite. UC and LC=50°ca 41783 116.80 118.00 1.20 112.80-116.30: Massive Syenite Dyke and 2% Feldspar Phyric amphibolite. 41784 118.00 119.20 1.20 114.30-116.30: Massive Syenite UC and LC=135°ca 41784 118.00 1.20 1.20 114.30-116.30: Massive Syenite IUC=130°ca, LC=135°ca 114.40 1746 78.40 9.60 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite with 10% Syenite Dykes 41747 80.80 82.00 1.20 78.01 102.15 MVFP Feldspar Phyric amphibolite. 41746 78.60 1.20			amphibolite. Details of the intervals were written below.								
109.85-110.15: Feldspar Phyric amphibolite. UC=55°ca, LC=110°ca 41777 10.8 40 109.60 1.20 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41777 110.80 112.00 112.00 111.15-112.80: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41778 111.40 115.60 12.00 111.15-112.80: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41781 114.40 15.60 12.00 112.80: 113.80: Massive Syenite. UC and LC=50°ca 41781 116.80 118.00 12.00 113.80: 114.30: 98% Syenite Dyke and 2% Feldspar Phyric amphibolite. 41784 118.00 118.00 12.00 114.30: 118.30: Massive Syenite: UC=130°ca 41784 118.00 118.00 1.20 114.30: 118.30: Massive Syenite: UC=130°ca, LC=135°ca 116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30 118.00 1.20 114.30: 118.30: Massive Syenite: UC=130°ca 41746 79.60 80.80 1.20 Metachewan amphibolite Syenite Package is similar to above except that the 41746 79.60 80.80 1.20 Metachewan amphibolite: Chaiting feldpar phenos which is named as 41775 83.20 83.40 1.20 <td< td=""><td></td><td></td><td>102 15 100 85. Massivo Svonito 110-70°ca 10-55°ca</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			102 15 100 85. Massivo Svonito 110-70°ca 10-55°ca								
41777 109.60 110.80 1.20 110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite. 41778 112.00 11.20 111.15:112.80: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41780 113.20 113.20 111.15:112.80: 188% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41781 113.20 112.00 112.80-113.80: Massive Syenite. UC and LC=50°ca 41783 116.80 1.20 112.80-113.80: Massive Syenite. UC and LC=50°ca 41783 116.80 1.20 112.80-113.80: Massive Syenite: UC=130°ca, LC=135°ca 41784 118.00 11.20 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 41745 78.40 79.60 1.20 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 1.20 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite is also the 41746 79.60 1.20 Metachewan amphibolite. 41746 78.40 79.60 1.20 Metachewan amphibolite. 41746 78.60 82.00 1.20 74.35 82.20 62.00 1.20 1.20 1.20											
110.15:111.15: 15% Synite Dyke and 5% Feldspar Phyric amphibolite. 41778 110.80 112.00 1.20 111.15:112.80: 98% Feldspar Phyric amphibolite and 2% Synite Dyke. 41781 114.40 115.60 1.20 111.15:112.80: 98% Feldspar Phyric amphibolite and 2% Synite Dyke. 41781 114.40 115.60 1.20 111.15:112.80: 98% Synite Dyke and 1C=50°ca 41783 116.80 1.20 112.80:113.80: Massive Synite. UC and LC=50°ca 41783 116.80 1.20 113.80:114.30: 98% Synite Dyke and 2% Feldspar Phyric amphibolite. 11.800 112.20 1.20 114.30:116.30: Massive Synite: UC=130°ca, LC=135°ca 116.30 1.20 1.20 114.30:116.30: Massive Synite Dyke and 2% Feldspar Phyric amphibolite, UC and LC=135°ca 1.20 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite, UC and LC=135°ca 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite is also the 41745 78.40 79.60 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite is also the 41745 78.40 91.60 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite and											
UC=110*ca, LC=50*ca 41779 112:00 113.20 1.20 111.15-112.80: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41781 113.40 114.40 1.20 UC=50*ca, LC=50*ca 41782 115.60 116.80 1.20 112.80-113.80: Massive Syenite. UC and LC=50*ca 41783 116.80 118.00 1.20 112.80-113.80: Massive Syenite. UC=130*ca 41784 118.00 119.20 1.20 114.30-116.30: Massive Syenite: UC=130*ca, LC=135*ca 116.30-118.95: 95% Feldspar Phyric amphibolite, UC and LC=135*ca 116.30-118.95: 95% Feldspar Phyric amphibolite is also the 41745 78.40 79.60 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite so that the 41747 80.80 82.00 1.20 This amphibolite containing feldpar phenos which is named as 41745 78.40 79.60 1.20 Feldpar Phyric amphibolite. 41752 83.20 82.00 1.20 Metachewan amphibolite. 41752 83.20 82.00 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41753 84.40 1.20 82.80- 88.75: 50% Feldspar Phyric			110.15-111.15: 95% Syenite Dyke and 5% Feldspar Phyric amphibolite.								
41780 113.20 114.40 1.20 UC=50°ca, LC=50°ca 41781 111.40 115.60 1.20 112.80-113.80: Massive Syenite. UC and LC=50°ca 41783 116.80 118.00 1.20 113.80-114.30: 98% Syenite Dyke and 2% Feldspar Phyric amphibolite. 41784 118.00 119.20 1.20 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30-116.30: Massive Syenite: UC=30°ca, LC=135°ca 114.30-116.30: Massive Syenite: UC=30°ca, LC=135°ca 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite with 10% Syenite Dykes 41745 78.40 79.60 1.20 This amphibolite Syenite Pacakage is similar to above except that the more dominant rock is the amphibolite. This amphibolite is also the Metachewan amphibolite. 41745 78.40 79.60 1.20 74.35 82.20: 60% Syenite Dyke and 40% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41753 84.40 1.20 74.35 82.20: 60% Syenite Dyke and 40% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41755 88.00 1.20 74.35 82.20: 60% Syenite Dyke and 40% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41755 88.00 1.20 82.											
111.15-112.80: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke. 41781 114.40 115.60 1.20 112.80-113.80: Massive Syenite. UC and LC=50°ca 41782 115.60 116.80 1.20 113.80: 113.80: Massive Syenite. UC and LC=50°ca 41784 118.00 119.20 1.20 113.80: 114.30: 98% Syenite Dyke and 2% Feldspar Phyric amphibolite. 41784 118.00 119.20 1.20 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 116.30-118.95: 95% Feldspar Phyric amphibolite, UC and LC=135°ca 116.30-118.95: 95% Feldspar Phyric amphibolite. 11745 78.40 79.60 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite vith 10% Syenite Dykes 41745 78.40 79.60 1.20 This amphibolite Syenite Pacakage is similar to above except that the 41746 79.60 83.20 1.20 Metachewan amphibolite containing feldpar phenos which is named as 41747 82.00 82.00 1.20 74.35 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 88.00 1.20 74.35 82.20: 60% Syenite Dyke and 50% Syenite Dyke. 41755 88.00 89.20 1.20 28.20 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
112.80-113.80: Massive Syenite. UC and LC=50°ca 11783 116.80 18.00 1.20 113.80-114.30: 98% Syenite Dyke and 2% Feldspar Phyric amphibolite. 41784 118.00 119.20 1.20 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30-118.95: 95% Feldspar Phyric amphibolite, UC and LC=33°ca 41745 78.40 79.60 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite with 10% Syenite Dykes 41745 78.40 79.60 1.20 This amphibolite Syenite Pacakage is similar to above except that the more dominant rock is the amphibolite in samphibolite is also the 41747 80.80 82.00 1.20 Metachewan amphibolite. 41753 84.40 1.20 74.35 82.20 60% Syenite Dyke and 40% Feldspar Phyric 41753 84.40 1.20 74.35 82.20 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 1.20 74.35 82.20 60% Syenite Dyke and 50% Syenite Dyke. 41755 86.80 1.20 0.00 0.00 1.20 41755 86.80 1.20 0.12 0.2			111.15-112.80: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke.			41781	114.40	115.60			
112.80-113.80: Massive Syenite. UC and LC=50°ca 41784 118.00 119.20 1.20 113.80-114.30: 98% Syenite Dyke and 2% Feldspar Phyric amphibolite. 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 114.30-116.30: MVFP Feldspar Phyric amphibolite, UC and LC=135°ca 1175 78.40 79.60 1.20 78.00 102.15 MVFP Feldspar Phyric amphibolite, UC and LC=135°ca 1.20 1.20 This amphibolite Syenite Pacakage is similar to above except that the more dominant rock is the amphibolite. This amphibolite is also the Metachewan amphibolite. This amphibolite is also the 41747 80.80 82.00 1.20 Y4.35: 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41753 84.40 85.60 1.20 74.35: 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 88.80 1.20 82.80: 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41755 86.80 88.00 1.20 82.80: 88.75: 102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41756 82.00 92.00 1.20 82.80: 88.75: 102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41761 94.00 1.20 1.20 <t< td=""><td></td><td></td><td>UC=50°ca, LC=50°ca</td><td></td><td></td><td>41782</td><td>115.60</td><td>116.80</td><td>1.20</td><td></td><td></td></t<>			UC=50°ca, LC=50°ca			41782	115.60	116.80	1.20		
113.80-114.30: 98% Syenite Dyke and 2% Feldspar Phyric amphibolite. 118.00 119.20 1.20 114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca 116.30-118.95: 95% Feldspar Phyric amphibolite, UC and LC=135°ca 78.00 102.15 MVFP Feldspar Phyric amphibolite with 10% Syenite Dykes 1174 78.40 79.60 1.20 This amphibolite Syenite Pacakage is similar to above except that the 41745 78.40 79.60 1.20 Metachewan amphibolite. This amphibolite is also the 41747 80.80 82.00 1.20 Metachewan amphibolite. 41752 83.20 84.40 1.20 74.35 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41753 84.40 85.60 1.20 74.35 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 86.80 1.20 74.35 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41755 86.80 82.00 1.20 82.80 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41756 88.00 1.20 88.75: 102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41769 91.60 92.80 1.20 88.75: 102.15: 95% Feldspar Phyri						41783	116.80	118.00	1.20		
116.30-118.95: 95% Feldspar Phyric amphibolite, UC and LC=135°ca 78.00 102.15 MVFP Feldspar Phyric amphibolite with 10% Syenite Dykes 41745 78.40 79.60 1.20 This amphibolite Syenite Pacakage is similar to above except that the more dominant rock is the amphibolite. This amphibolite is also the M1747 80.80 82.00 1.20 Metachewan amphibolite containing feldpar phenos which is named as Feldpar Phyric amphibolite. 41752 83.20 84.40 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41753 84.40 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 86.80 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41755 86.80 88.00 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41755 86.80 80.00 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41755 88.80 82.00 1.20 82.80- 82.75: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41759 91.60 1.20 82.80- 82.70 1.20 41761 92.80 40.00 1.			113.80-114.30: 98% Syenite Dyke and 2% Feldspar Phyric amphibolite.			41784	118.00	119.20	1.20		
78.00 102.15 MVFP Feldspar Phyric amphibolite with 10% Syenite Dykes 41745 78.40 79.60 1.20 This amphibolite Pacakage is similar to above except that the 41746 79.60 80.80 1.20 more dominant rock is the amphibolite. This amphibolite is also the 41747 80.80 82.00 1.20 Metachewan amphibolite containing feldpar phenos which is named as 41748 82.00 83.20 1.20 Feldpar Phyric amphibolite. 41753 84.40 85.60 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 86.80 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 86.80 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 86.80 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41757 89.20 90.40 1.20 UC=60°ca, LC=45°ca, tr Py 41758 90.60 91.60 1.20 88.75: 102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41761 94.00 95.20 1.20 UC			114.30-116.30: Massive Syenite: UC=130°ca, LC=135°ca								
This amphibolite Syenite Pacakage is similar to above except that the 41746 79.60 80.80 1.20 more dominant rock is the amphibolite. This amphibolite is also the 41747 80.80 82.00 1.20 Metachewan amphibolite containing feldpar phenos which is named as 41748 82.00 83.20 1.20 Feldpar Phyric amphibolite. 41753 84.40 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41753 84.40 85.60 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41755 86.80 8.00 1.20 amphibolite.UC=120°ca, LC=60°ca, 1% Py 41755 86.80 88.00 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41757 89.20 90.40 1.20 82.80- 88.75: 102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41758 90.40 91.60 1.20 88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41760 92.80 4.20 1.20 within this section, there are two alteration zones containing epidote 41761 94.00 1.20 1.20 within this feldspar phyric amphibolite syenite package. Their 41764			116.30-118.95: 95% Feldspar Phyric amphibolite, UC and LC=135°ca								
more dominant rock is the amphibolite. This amphibolite is also the 41747 80.80 82.00 1.20 Metachewan amphibolite containing feldpar phenos which is named as 41748 82.00 83.20 1.20 Feldpar Phyric amphibolite. 41752 83.20 84.40 1.20 41753 84.40 85.60 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41753 84.40 85.60 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41755 86.80 82.00 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41755 88.00 89.20 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41758 90.40 1.20 98.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41760 92.80 94.00 1.20 98.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41761 94.00 1.20 98.87.50: 0.0C=70°ca, 0.5% Py 41761 94.00 1.20 99.40 1.20 1.20 1.20 90.90 95.20 1.20 1.20	78.00	102.15	MVFP Feldspar Phyric amphibolite with 10% Syenite Dykes			41745	78.40	79.60	1.20		
Metachewan amphibolite containing feldpar phenos which is named as 41748 82.00 83.20 1.20 Feldpar Phyric amphibolite. 41752 83.20 84.40 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41753 84.40 85.60 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 86.80 1.20 amphibolite.UC=120°ca, LC=60°ca, 1% Py 41755 86.80 88.00 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41756 88.00 1.20 UC=60°ca, LC=45°ca, tr Py 41758 90.40 91.60 1.20 88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41760 92.80 1.20 UC=45°ca, LC=70°ca, 0.5% Py 41761 94.00 95.20 1.20 within this section, there are two alteration zones containing epidote 41763 96.40 1.20 within the feldspar phyric amphibolite syenite package. Their 41764 97.60 1.20 location and orientation are listed below 41765 98.80 1.20 92.96.5 UC=120°ca, LC=120°ca, 0.5% Py 41765 98.80 <t< td=""><td></td><td></td><td>This amphibolite Syenite Pacakage is similar to above except that the</td><td></td><td></td><td>41746</td><td>79.60</td><td>80.80</td><td>1.20</td><td></td><td></td></t<>			This amphibolite Syenite Pacakage is similar to above except that the			41746	79.60	80.80	1.20		
Feldpar Phyric amphibolite. 41752 83.20 84.40 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41753 84.40 85.60 1.20 amphibolite.UC=120°ca, LC=60°ca, 1% Py 41755 86.80 88.00 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41756 88.00 99.20 1.20 UC=60°ca, LC=45°ca, tr Py 41758 90.40 91.60 1.20 88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41759 91.60 92.80 1.20 uC=45°ca, LC=70°ca, 0.5% Py 41761 94.00 95.20 1.20 within this section, there are two alteration zones containing epidote 41761 94.00 95.20 1.20 within the feldspar phyric amphibolite syenite package. Their 41763 96.40 97.60 1.20 97.70-98.05. UC=120°ca, 0.5% Py 41765 98.80 100.00 1.20 99.45.99 65. UC=20°ca, 1.C=130°ca, 1% Py 41765 98.80 1.20 10.20 1.20 1.20 1.20 1.20 99.45.99 65. UC=20°ca, 0.5% Py 41761 94.00 97.60 1.						41747	80.80	82.00	1.20		
41753 84.40 85.60 1.20 74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 86.80 1.20 amphibolite.UC=120°ca, LC=60°ca, 1% Py 41755 86.80 88.00 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41757 89.20 90.40 1.20 W12=60°ca, LC=45°ca, tr Py 41758 90.40 91.60 1.20 88.75:-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41759 91.60 92.80 1.20 W1C=45°ca, LC=70°ca, 0.5% Py 41760 92.80 94.00 1.20 Within this section, there are two alteration zones containing epidote 41761 94.00 95.20 1.20 Within this section, there are two alteration zones containing epidote 41763 96.40 97.60 1.20 Within the feldspar phyric amphibolite sysnite package. Their 41764 97.60 98.80 1.20 Iocation and orientation are listed below 41765 98.80 100.00 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41766 100.00 101.20 1.20 92.						41748	82.00	83.20	1.20		
74.35- 82.20: 60% Syenite Dyke and 40% Feldspar Phyric 41754 85.60 86.80 1.20 amphibolite.UC=120°ca, LC=60°ca, 1% Py 41755 86.80 88.00 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41757 89.20 90.40 1.20 UC=60°ca, LC=45°ca, tr Py 41758 90.40 91.60 1.20 88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41760 92.80 94.00 1.20 UC=45°ca, LC=70°ca, 0.5% Py 41761 94.00 95.20 1.20 within this section, there are two alteration zones containing epidote 41761 94.00 95.20 1.20 viens within the feldspar phyric amphibolite syenite package. Their 41763 96.40 97.60 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41764 97.60 98.80 1.20 97.70-98.05. UC=120°ca, 0.5% Py 41765 98.80 1.20			Feldpar Phyric amphibolite.								
amphibolite.UC=120°ca, LC=60°ca, 1% Py 41755 86.80 88.00 1.20 41755 86.80 89.20 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41757 89.20 90.40 1.20 UC=60°ca, LC=45°ca, tr Py 41758 90.40 91.60 1.20 88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41760 92.80 94.00 1.20 UC=45°ca, LC=70°ca, 0.5% Py 41761 94.00 95.20 1.20 within this section, there are two alteration zones containing epidote 41763 96.40 97.60 1.20 viens within the feldspar phyric amphibolite syenite package. Their 41764 97.60 98.80 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41765 98.80 100.00 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41765 98.80 100.00 1.20 99.45-90.65. UC=120°ca, LC=120°ca, 0.5% Py 41766 100.00 101.20 1.20			74.25 02.20, CON Granita Dulia and 400/ Faldanan Damia								
41756 88.00 89.20 1.20 82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41757 89.20 90.40 1.20 UC=60°ca, LC=45°ca, tr Py 41758 90.40 91.60 1.20 88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41760 92.80 94.00 1.20 Within this section, there are two alteration zones containing epidote 41761 94.00 95.20 1.20 within the feldspar phyric amphibolite syenite package. Their 41763 96.40 97.60 1.20 viens within the feldspar phyric amphibolite syenite package. Their 41764 97.60 98.80 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41765 98.80 100.00 1.20 99.45-90 65. UC=70°ca, LC=130°ca, 0.5% Py 41766 100.00 101.20 1.20											
82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Syenite Dyke. 41757 89.20 90.40 1.20 UC=60°ca, LC=45°ca, tr Py 41758 90.40 91.60 1.20 88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41759 91.60 92.80 1.20 UC=45°ca, LC=70°ca, 0.5% Py 41760 92.80 94.00 1.20 within this section, there are two alteration zones containing epidote 41761 94.00 95.20 1.20 within the feldspar phyric amphibolite syenite package. Their 41763 96.40 97.60 1.20 yeins within the feldspar opyric amphibolite syenite package. Their 41764 97.60 98.80 1.20 yeins within the feldspar opyric anglibolite syenite package. Their 41764 97.60 98.80 1.20 yeins within the feldspar opyric anglibolite syenite package. Their 41764 97.60 98.80 1.20 yeins within the feldspar opyric anglibolite syenite package. Their 41765 98.80 100.00 1.20 yeins within the feldspar opyric anglibolite syenite package. Their 41765 98.80 100.00 1.20 yeins within the feldspar opyric anglibolite syenite package. Th											
UC=60°ca, LC=45°ca, tr Py 41758 90.40 91.60 1.20 88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41759 91.60 92.80 1.20 UC=45°ca, LC=70°ca, 0.5% Py 41760 92.80 94.00 1.20 within this section, there are two alteration zones containing epidote 41761 94.00 95.20 1.20 within the feldspar phyric amphibolite syenite package. Their 41763 96.40 97.60 1.20 Iocation and orientation are listed below 41765 98.80 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41765 98.80 100.00 1.20 99.45-99.65. UC=70°ca, LC=130°ca, 0.5% Py 41766 100.00 101.20 1.20			82.80- 88.75: 50% Feldspar Phyric amphibolite and 50% Svenite Dyke.								
41750 50.40 51.60 11.20 41759 91.60 92.80 1.20 41760 92.80 94.00 1.20 UC=45°ca, LC=70°ca, 0.5% Py 41761 94.00 95.20 1.20 within this section, there are two alteration zones containing epidote 41763 96.40 97.60 1.20 within the feldspar phyric amphibolite syenite package. Their 41764 97.60 98.80 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41765 98.80 100.00 1.20 99.45-99.65. UC=70°ca, LC=130°ca, 0.5% Py 41766 100.00 101.20 1.20											
88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. 41760 92.80 94.00 1.20 UC=45° ca, LC=70° ca, 0.5% Py 41761 94.00 95.20 1.20 within this section, there are two alteration zones containing epidote 41763 96.40 97.60 1.20 viens within the feldspar phyric amphibolite syenite package. Their 41763 96.40 97.60 1.20 location and orientation are listed below 41764 97.60 98.80 1.20 97.70-98.05. UC=120° ca, LC=120° ca, 0.5% Py 41765 98.80 100.00 1.20 99.45-99.65. UC=70° ca, LC=130° ca, 0.5% Py 41766 100.00 101.20 1.20			. , ,								
UC=45°ca, LC=70°ca, 0.5% Py 41761 94.00 95.20 1.20 within this section, there are two alteration zones containing epidote 41762 95.20 96.40 1.20 viens within the feldspar phyric amphibolite syenite package. Their 41763 96.40 97.60 1.20 location and orientation are listed below 41765 98.80 100.00 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41765 100.00 101.20 1.20 99.45-99.65. UC=70°ca, LC=130°ca, 1% Py 41766 100.00 101.20 1.20			88.75-102.15: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke.								
within this section, there are two alteration zones containing epidote 41762 95.20 96.40 1.20 viens within the feldspar phyric amphibolite syenite package. Their 41763 96.40 97.60 1.20 location and orientation are listed below 41764 97.60 98.80 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41765 98.80 100.00 1.20 99.45-99.65. UC=70°ca, LC=130°ca, 1% Py 41766 100.00 101.20 1.20			UC=45°ca, LC=70°ca, 0.5% Py								
within this section, there are two alteration zones containing epidote4176396.4097.601.20viens within the feldspar phyric amphibolite syenite package. Their4176497.6098.801.20location and orientation are listed below4176598.80100.001.2097.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py41766100.00101.201.2099.45-99.65. UC=70°ca, LC=130°ca, 1% Py41766100.00101.201.20											
viens within the feldspar phyric amphibolite syenite package. Their 41764 97.60 98.80 1.20 location and orientation are listed below 41765 98.80 100.00 1.20 97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 41765 100.00 101.20 99.45-99.65. UC=70°ca, LC=130°ca, 1% Py 41766 100.00 101.20											
97.70-98.05. UC=120°ca, LC=120°ca, 0.5% Py 99.45-99.65. UC=70°ca, LC=130°ca, 1% Py 41766 100.00 101.20 1.20											
99 45-99 65 LIC=70°ca LC=130°ca 1% Pv						41765	98.80	100.00	1.20		
41767 101.20 102.40 1.20			•			41766	100.00	101.20	1.20		
			55.15 55.05. 0C-70 tu, LC-150 tu, 1701 y			41767	101.20	102.40	1.20		

CR2014-12

			GEOLOGY	VISU	JAL			ASSAY	RESULTS	5	
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
58.00	78.00	SY	Syenite Dykes with Feldspar Phyric Amphibolite			41728	58.00	59.20	1.20		
		This ur	it was lump as a Syenite-amphibolite package where in the Syenite			41729	59.20	60.40	1.20		
		is more	dominant and the amphibolite contains 5% to 10% feldspar			41730	60.40	61.60	1.20		
		pheno	. The amphibolite is usually contains feldpars phenocryst 1 cm			41731	61.60	62.80	1.20		
		diamet	er and I just termed it as Feldspar Phyric amphibolite. Below is the			41732	62.80	64.00	1.20		
			of their intervals including the contact angles and the pyrite			41733	64.00	65.20	1.20		
		conten	t is written on a table to the right corresponding their meterage.			41734	65.20	66.40	1.20		
						41735	66.40	67.60	1.20		
			51.60: 98% Feldspar Phyric amphibolite and 2% amphibolites,			41736	67.60	68.80	1.20		
		UC=90	°ca, LC=120°ca, 1% Py			41737	68.80	70.00	1.20		
						41738	70.00	71.20	1.20		
			52.00: Massive Syenite. UC and LC=120°ca, tr Py			41739	71.20	72.40	1.20		
		62.00-	52.30: Feldspar Phyric amphibolite. UC=120°ca, LC=135°ca, 0.5% Py			41740	72.40	73.60	1.20		
		62.20				41741	73.60	74.80	1.20		
			52.60: Massive Syenite. UC and LC=135°ca, tr Py			41742	74.80	76.00	1.20		
		62.60-	52.80: Feldspar Phyric amphibolite. UC=135°ca, LC=130°ca, 0.5% Py			41743	76.00	77.20	1.20		
		62.80	53.00: Massive Syenite. UC and LC=140°ca, 0.5%Py			41744	77.20	78.40	1.20		
			53.95: 95% Feldspar Phyric amphibolite and 5% Syenite Dyke. UC								
			=130°ca, 1% Py								
		63.95-	54.30: Massive Syenite. UC and LC=130°ca, 1% Py								
		64.30-	54.50: Feldspar Phyric amphibolite. UC=130°ca, LC=20°ca, 1% Py								
		64.50-	54.90: Massive Syenite. UC=20°ca, LC=65°ca, 0.5% Py								
		64.90-	73.70: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke.								
		UC=65	°ca, LC=70°ca, 1% Py								
		73.70-	74.05: Massive Syenite. UC=70°ca, LC=90°ca, 0.5% Py								
		74.05-	74.35: 98% Feldspar Phyric amphibolite and 2% Syenite Dyke.								
		UC=90	°ca, LC=120°ca, 0.5% Py								
46.60	58.00	SY	Syenite Dyke			41716	47.20	48.40	1.20		
			contact of 30°ca marks the start of a massive pinkish syenite. The			41717	48.40	49.60	1.20		
			f this unit is thought to be the product of feldspar alteration. It is			41718	49.60	50.80	1.20		
			n grained, and contains several sections of amphibolite which is			41719	50.80	52.00	1.20		
			ed below. This interval is non to weakly-magnetic, weakly ankeritic			41720	52.00	53.20	1.20		
		and no	n calcareous. Trace to locallty 1% pyrite disseminations.			41721	53.20	54.40	1.20		
		46.60				41722	54.40	55.60	1.20		
			46.90: Massive Syenite. UC=30°ca,LC=40°ca, 1% Py47.30: 98% amphibolite and 2% Syenite Dyke. UC and LC=40°ca, tr			41723	55.60	56.80	1.20		
		40.90- Py				41727	56.80	58.00	1.20		
			48.00: Massive Syenite. UC=40°ca, LC=90°ca, 1% Py								
			51.00: 85% amphibolite and 15% Syenite Dyke. UC=90°ca, i°ca, tr Py								
		51.00-	52.70: Massive Syenite. UC=135°ca, LC=45°ca, 0.5% Py								
			52.90: Amphibolite. UC=45°ca, LC=60°ca,1% Py								
			53.55: 98% Syenite and 2% amphibolite. UC and LC=60°ca, 0.5% Py								
			53.70: Amphibolite. UC=60°ca, LC =40°ca, 0.5%- 1% Py								
		53.70-	58.00: Massive Syenite. UC=40°ca, LC=90°ca, 1% Py								

	GEOLOGY				UAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
1.60	46.60	AM	Amphibolite			41472	1.60	2.80	1.20			
		The Ho	le is collared ito a huge section of amphibolite rocks locally			41473	2.80	4.00	1.20			
		intrude	ed by pinkish feldpar porphyry dykes. It is dark-gray, fine-textured			41477	4.00	5.20	1.20			
		0	s rock composed mainly of feldspar and pyroxene, and			41478	5.20	6.40	1.20			
			terized by an ophitic texture where laths of plagioclase in a			41479	6.40	7.60	1.20			
			m grained matrix of pyroxene crystals, wherein the plagioclase is			41480	7.60	8.80	1.20			
			surrounded by pyroxene grains. Typically, it is massive,			41481	8.80	10.00	1.20			
		-	enous, fine grained with tendencies towards a medium grain size			41482	10.00	11.20	1.20			
			rk greenish grey, almost black coloured. Mineralization consists o	-		41483	11.20	12.40	1.20			
			cattered splashes of pyrites and chalcopyrite, however, it did not			41484	12.40	13.60	1.20			
			t sampling. The plain amphibolite dike ends with the appearance			41485	13.60	14.80	1.20			
			coarse grained (>1 cm) feldspar Phenocrysts set in a dark grey fine	2		41486	14.80	16.00	1.20			
		0	matrix. This amphibolite is competent and rarely fractured. The			41487	16.00	17.20	1.20			
			moderately ankeritic, non calcareous and moderately magnetic.			41488	17.20	18.40	1.20			
		-	pyrite disseminations, poorly veined. Some fractures are filled with	ו		41489	18.40	19.60	1.20			
		epidote	2.			41490	19.60	20.80	1.20			
		1.60				41491	20.80	22.00	1.20			
			2.70: amphibolite. LC=120°ca, 1-2% Py			41492	22.00	23.20	1.20			
		2.70-	2.90: 70% amphibolite. 30% syenite dyke, UC=120°ca, 1% Py			41493	23.20	24.40	1.20			
		2.00				41494	24.40	25.60	1.20			
		2.90-	7.70: 99% amphibolite. 1% syenite dyke, LC=90°ca, 1% Py			41495	25.60	26.80	1.20			
		7 70	7.00 March 4 and 10 00% at 10 40% at 40% D			41496	26.80	28.00	1.20			
			7.80: Massive syenite. UC=90°ca, LC=40°ca, 1% Py			41497	28.00	29.20				
			9.50: 98% amphibolite and 2% Syenite dyke. UC=40°ca,			41498	29.20	30.40				
		LC=130	°ca, 2-5% Py			41702	30.40	31.60	1.20			
		0 50 1	10.20, 60% Suppite Dukes and 40% emphibalite LIC-120°ca			41703	31.60	32.80	1.20			
			L0.20: 60% Syenite Dykes and 40% amphibolite. UC=130°ca,			41704	32.80	34.00	1.20			
		LC-90	ca, 1% Py			41705	34.00	35.20	1.20			
		10 20-	15.50: 98% amphibolite and 2% syenite dyke. UC=90°ca,			41706	35.20	36.40	1.20			
)°ca, 1-2% Py			41707	36.40	37.60				
		10-150	, ca, 1-2701 y			41708	37.60	38.80				
		15 50-2	16.30: 98% syenite and 2% amphibolite. UC=130°ca, LC=130°ca, 1	%		41709	38.80	40.00	1.20			
		Py	10.30. 30% Sychite and 2% amphibolite. 0C=130 cd, EC=130 cd, 1	/0		41710	40.00	41.20				
		. y				41711	41.20	42.40	1.20			
		16.30-2	26.30: 98% amphibolite and 2% syenite dyke. UC=130°ca,			41712	42.40	43.60	1.20			
)°ca, 1-5% Py			41713	43.60	44.80	1.20			
						41714	44.80	46.00				
		26.30-2	26.85: 98% syenite dyke and 2% amphibolite. UC=130°ca,			41715	46.00	47.20				
			°ca, 1-2% Py									
			29.60: amphibolit. UC=170°ca, LC=30°ca, 1-2% Py									
		29.60-3 Py	32.60: 99% Syenite and 1% amphibolite. UC=30°ca, LC=60°ca, 0.55	6								
			33.15: amphibolite. UC=60°ca, LC=120°ca, 1% Py									
			34.05: 98% Syenite Dyke and 2% amphibolite. UC=120°ca, ca, 1% Py									
			35.15: 95% amphibolite and 5% Syenite Dyke. UC=60°ca, 9°ca, 1% Py									
			35.80: 90% Syenite Dyke and 10% amphibolite. UC=140°ca, 9°ca, 1% Py									
		35.80-3 1-5% P	37.95: 95% amphibolite and 5% Syenite Dyke. UC=40°ca, LC=60°ca y	а,								
		37.95-3	39.20: 98% Syenite and 2% amphibolite. UC=60°ca, LC =40°ca, 0.5	-								

1% Py

39.20-39.90: Massive Syenite. UC=60°ca, LC=120°ca, 0.5 Py 39.90-42.80: 98% amphibolite and 2% Syenite Dyke. LC=120°ca, LC=60°ca, 0.5%- 2% Py

			GEOLOGY	VISU	JAL						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
		12 80 1	3.20: Massive Syenite. UC=60°ca, LC=60°ca, 2% Py								
			5.50: amphibolite. UC=60°ca, LC=60°ca, 0.5%-2% Py								
			5.70: Syenite Dyke. UC=60°ca, LC=60°ca, 0.5% Py								
			6.60: amphibolite. UC=60°ca, LC=30°ca, 0.5% Py								
0.00	1.60	OVB	Overburden								
		Core re	covery was measured to begin at 5.25'. The driller's block indicate								
		that the	y placed 3.05 m (10.0 ft) of NW casing.								
		NOTE: /	All the core is systematically tested for pervasive carbonate using								
		dilute h	ydrochloric acid HCl) and potassium ferricyanide (KFC). The acid								
		fizzes ir	contact with calcite and the KFC stains the core blue in the								
		present	e of ankerite. In certain areas, the core is tested with a magnet to								
		determ	ine relative magnetite content.								

196.29 EOH End of hole.

GEOTECHNICAL INFORMATION RQD (%)

77

92

94

94

58

96

82

92

93

100

96

93

85

86

85

71

85

63

81

93

83

79

90

95

95

92

92

90

100

96

97

93

95

95

97

97

93

98

94

97 95

43

98

85

99

98

98

97

93 96

94

88

94

87

98

92

87

87

95 99

90

83

90

93

3.0

2.8

2.9

2.9

1.8

2.5

2.9

2.8

2.9

3.1

2.9

2.8

2.6

2.6

2.6

2.2

2.6

1.9

2.5

2.8

2.5

2.4

2.8

2.9

2.9

2.8

2.8

2.7

3.1 2.9

3.0

2.9

2.9

2.9

3.0

3.0

2.9

3.0

2.9

3.0

2.9 1.3

3.0

2.6

3.0

3.0

3.0

3.0

2.9

2.9 2.9

2.7

2.8

2.6

3.0

2.8

2.7

2.7

2.9

3.0 2.8

2.5

2.8

1.7

Breaks

13

8

13

9

11

9

11

16

11

3

3

6

9

12

11

8

13

13

13

21

8

7

8

8

7

12

4

10

9

6

13

2

3

7 5

8

5

8

13

10

Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm
0.00	271.5°	271.5°	-60.0°	Collar		1.6	5.5	3.9			3.0
16.15	283.5°	272.3°	-59.1°	Multi		5.5	8.5	3.0			2.8
19.20	283.6°	272.4°	-59.1°	Multi		8.5	11.6	3.1			2.9
22.25	285.7°	274.5°	-58.3°	Multi		11.6	14.6	3.0			2.9
25.30	283.0°	271.8°	-59.0°	Multi		14.6	17.7	3.1			1.8
28.35	283.6°	272.4°	-59.1°	Multi		17.7	20.2	2.6			2.5
31.39	284.1°	272.9°	-59.2°	Multi		20.2	23.8	3.6			2.9
34.44	283.9°	272.7°	-59.1°	Multi		23.8	26.8	3.1			2.8
37.49	284.3°	273.1°	-59.0°	Multi		26.8	29.9	3.1			2.9
40.54 43.59	282.2° 282.9°	271.0° 271.7°	-59.1° -59.1°	Multi Multi		29.9 32.9	32.9 36.0	3.1 3.1			3.1 2.9
43.59	282.9 284.4°	271.7 273.2°	-59.1 -59.1°	Multi		32.9	36.0 39.0	3.1			2.8
40.03	284.4°	273.2°	-59.1 -58.9°	Multi		39.0	42.1	3.1			2.6
52.73	284.3°	273.1°	-59.1°	Multi		42.1	45.1	3.1			2.6
55.78	284.9°	273.7°	-59.1°	Multi		45.1	48.2	3.1			2.6
58.83	285.2°	274.0°	-59.0°	Multi		48.2	51.2	3.1			2.2
61.87	286.5°	275.3°	-59.3°	Multi		51.2	54.3	3.1			2.6
64.92	285.3°	274.1°	-59.0°	Multi		54.3	57.3	3.1			1.9
67.97	285.9°	274.7°	-59.2°	Multi		57.3	60.4	3.1			2.5
71.02	287.1°	275.9°	-59.1°	Multi		60.4	63.4	3.0			2.8
74.07	282.8°	271.6°	-59.0°	Multi		63.4	66.5	3.1			2.5
77.11	286.3°	275.1°	-59.0°	Multi		66.5	69.5	3.1			2.4
80.16	284.5°	273.3°	-59.2°	Multi		69.5	72.6	3.1			2.8
83.21	285.9°	274.7°	-59.3°	Multi		72.6	75.6	3.1			2.9
86.26	284.8°	273.6°	-59.2°	Multi		75.6	78.7	3.0			2.9
89.31	286.1°	274.9°	-59.1°	Multi		78.7	81.7	3.1			2.8
92.35	286.5°	275.3°	-59.3°	Multi		81.7	84.8	3.1			2.8
95.40	286.9°	275.7°	-59.2°	Multi		84.8	87.8	3.0			2.7
98.45	286.2° 284.8°	275.0°	-59.1° -59.3°	Multi		87.8	90.9 93.9	3.1			3.1
101.50		273.6°	-59.3 -59.3°	Multi		90.9 93.9		3.1			2.9
104.55 107.59	286.0° 286.6°	274.8° 275.4°	-59.3 -59.2°	Multi Multi		93.9 97.0	97.0 100.0	3.1 3.1			3.0 2.9
110.64	280.0° 287.3°	275.4°	-59.2°	Multi		100.0	100.0	3.1			2.9
113.69	287.3°	276.1°	-59.2°	Multi		103.1	105.1	3.1			2.9
116.74	287.1°	275.9°	-59.2°	Multi		106.1	109.2	3.1			3.0
119.79	286.9°	275.7°	-59.3°	Multi		109.2	112.2	3.1			3.0
122.83	286.9°	275.7°	-59.2°	Multi		112.2	115.3	3.1			2.9
125.88	286.9°	275.7°	-59.3°	Multi		115.3	118.3	3.0			3.0
128.93	286.8°	275.6°	-59.3°	Multi		118.3	121.3	3.1			2.9
131.98	286.6°	275.4°	-59.3°	Multi		121.3	124.4	3.1			3.0
135.03	288.3°	277.1°	-59.4°	Multi		124.4	127.4	3.1			2.9
138.07	287.0°	275.8°	-59.3°	Multi		127.4	130.5	3.1			1.3
141.12	287.4°	276.2°	-59.3°	Multi		130.5	133.5	3.1			3.0
144.17	287.7°	276.5°	-59.4°	Multi		133.5	136.6	3.0			2.6
147.22	288.5°	277.3°	-59.5°	Multi		136.6	139.6	3.1			3.0
150.27	290.9°	279.7°	-59.4°	Multi		139.6	142.7	3.1			3.0
153.31	287.1°	275.9°	-59.5°	Multi		142.7	145.7	3.1			3.0
156.36	288.6°	277.4°	-59.4°	Multi		145.7	148.8	3.1			3.0
159.41	279.8°	268.6°	-59.5°	Multi		148.8	151.8	3.1			2.9
162.46	288.6°	277.4°	-59.4°	Multi		151.8	154.9	3.1			2.9
165.51 168.55	287.8° 287.2°	276.6° 276.0°	-59.6° -59.5°	Multi Multi		154.9 157.9	157.9 161.0	3.1 3.1			2.9
171.60	287.2 286.6°	276.0 275.4°	-59.5°	Multi		161.0	164.0	3.0			2.8
174.65	286.8°	275.6°	-59.6°	Multi		164.0	167.1	3.0			2.6
177.70	280.8° 287.9°	275.0° 276.7°	-59.5°	Multi		167.1	170.1	3.1			3.0
180.75	287.6°	276.4°	-59.5°	Multi		170.1	173.2	3.1			2.8
183.79	289.4°	278.2°	-59.7°	Multi		173.2	176.2	3.1			2.7
186.84	288.7°	277.5°	-59.6°	Multi		176.2	179.3	3.1			2.7
189.89	288.1°	276.9°	-59.8°	Multi		179.3	182.3	3.1			2.9
192.94	324.4° X	276.9°	-62.9°	Multi		182.3	185.4	3.0			3.0
						185.4	188.4	3.1			2.8
						188.4	191.5	3.1			2.5
						191.5	194.5	3.1			2.8
						194.5	196.3	1.8			1.7

GOOD Mining Exploration Inc.

CR2014-12

COLLAR INFORMATION

Drill Log CR2014-13

WORK DONE BY

CR2014-13

Claim:	4273194			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	91.60°	Drilling	0.0		Walker Drilling	2014-Sep-12	Sep-15
Easting:	539,714.00 m	Dip:	-60.00°	Downhole Survey	0.0		Walker Drilling	2014-Sep-15	Sep-15
0	,	•		Core Logging	0.0	101.8	Dennis Patron	2014-Sep-17	Sep-17
Northing:	5,359,555.00 m	Length:	101.80 m	Core Logging	0.0	101.8	Athraa Koma	2014-Sep-17	Sep-17
Elevation:	366.00 m	Core Size:	NQ						
Storage:	CanREE explo site								

Comments:

			GEOLOGY	VISUAL ASSA			ASSAY	RESULTS			
From	То	Code Comr	nent	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
84.00	101.83	AMSY Ampl	nibolite Syenite Package			41941	85.00	86.00	1.00		
		The hole rever	s back to the amphibolite syenite package encoutered			40164	86.00	87.20	1.20		
		from the collar	before hitting the gabbro. As usual. The term amphibolite			40165	87.20	88.40	1.20		
		refers to metar	norphosed mafic volcanics probably basalt. This interval is			40166	88.40	89.60	1.20		
		weakly to mod	erately silicified. The rock is non calcareous non to weakly			40167	89.60	90.80	1.20		
		ankeritic and w	eakly to moderately magnetic. Trace to 0.5% Py			40168	90.80	92.00	1.20		
						40169	92.00	93.20	1.20		
		Below are the	detailed descriptons:			40170	93.20	94.40	1.20		
						40171	94.40	95.60	1.20		
			mphibolite with less than 5mm quartz veining. UC=90°ca,			40172	95.60	96.80	1.20		
		LC=120°ca, 0.5	% Ру			40173	96.80	97.80	1.00		
			No and the state of the state of the last state of the st			40174	97.80	98.80	1.00		
			Quartz-Epidote vein altered with hematite and calcite. =45°ca, 0.5% Py								
		84.60-84.95: A	mphibolite with less than 5mm quartz-epidote veining.								
		UC=120°ca, LC	=45°ca, 0.5% Py								
		84.95-86.05: N	/lassive Syenite. UC=45°ca, LC=20°ca, Trace Py								
			mphibolite with less than 5mm quartz-epidote veining.								
		UC=20°ca, LC=2	130°ca, 0.5% Py								
		88.25-88.55: C	Quartz-epidote veining. UC=130°ca, LC=130°ca, 0.5% Py								
			8% Amphibolite with less than 5mm quartz-epidote								
		veining and 2%	Syenite Dyke. UC=130°ca, 0.5% Py								
67.45	84.00	GB Fine t	to medium Grained Gabbro			40149	68.30	69.50	1.20		
		The hole revert	s back to a Fine to medium grained Gabbro similar to the			40151	69.50	70.70	1.20		
			e overall appearance of the protolith is that of a fine			40152	70.70	71.90	1.20		
		0 0	. Staining and testing with KFC and HCl reveal that the			40153	71.90	73.10	1.20		
			eactive. A few splashes and grains of Py and Cp were noted			40154	73.10	74.30	1.20		
			some of the wider calcite/ epidote stringers/ veinlets,			40155	74.30	75.50	1.20		
			sulphide content is nil to trace. This rock however is our			40156	75.50	76.70	1.20		
			e to the soft silvery, metallic mineral presumed to be			40157	76.70	77.90	1.20		
		scandium Whic	h is sporadically disseminated in the host rock.			40158	77.90	79.10	1.20		
						40159	79.10	80.30	1.20		
						40160	80.30	81.50	1.20		
						40161	81.50	82.70	1.20		
						40162	82.70	83.90	1.20		
						40163	83.90	85.00	1.10		

FromToCodeCommentCp %Py%SampleFrom44.1067.45GBFPPoprhyritic Gabbro4012944.3A well defined contact at 110°ca marks a distinct change to a phenocrystic texture that is very competent and weakly fractured giving the core a solid appearance. To this point, the porphyry is light/ medium greyish green/beige coloured with a few large spots of light yellowish grey feldspar phenos 1 cm in diameter. It is finely speckled (4-8%) with pale yellow sericitized ferromagnesian minerals that stand out in aCp %Py%SampleFrom	0 45.50 0 46.70 0 47.90 0 49.10 0 50.30 0 51.50 0 52.70 0 53.90	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	Au gpt	Cu %
A well defined contact at 110°ca marks a distinct change to a phenocrystic4013045.5texture that is very competent and weakly fractured giving the core a4013146.7solid appearance. To this point, the porphyry is light/ medium greyish4013247.5green/beige coloured with a few large spots of light yellowish grey4013349.1feldspar phenos 1 cm in diameter. It is finely speckled (4-8%) with pale4013450.3yellow sericitized ferromagnesian minerals that stand out in a4013551.5	0 46.70 0 47.90 0 49.10 0 50.30 0 51.50 0 52.70 0 53.90	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		
texture that is very competent and weakly fractured giving the core a4013146.7solid appearance. To this point, the porphyry is light/ medium greyish4013247.5green/beige coloured with a few large spots of light yellowish grey4013349.1feldspar phenos 1 cm in diameter. It is finely speckled (4-8%) with pale4013450.3yellow sericitized ferromagnesian minerals that stand out in a4013551.5	0 47.90 0 49.10 0 50.30 0 51.50 0 52.70 0 53.90	01.2001.2001.2001.20		
solid appearance. To this point, the porphyry is light/ medium greyish4013247.5green/beige coloured with a few large spots of light yellowish grey4013349.1feldspar phenos 1 cm in diameter. It is finely speckled (4-8%) with pale4013450.3yellow sericitized ferromagnesian minerals that stand out in a4013551.5	0 49.10 0 50.30 0 51.50 0 52.70 0 53.90	0 1.20 0 1.20 0 1.20		
green/beige coloured with a few large spots of light yellowish grey4013349.1feldspar phenos 1 cm in diameter. It is finely speckled (4-8%) with pale4013450.3yellow sericitized ferromagnesian minerals that stand out in a4013551.5	0 50.30 0 51.50 0 52.70 0 53.90	0 1.20 0 1.20		
feldspar phenos 1 cm in diameter. It is finely speckled (4-8%) with pale4013450.3yellow sericitized ferromagnesian minerals that stand out in a4013551.5	0 51.50 0 52.70 0 53.90	0 1.20		
yellow sericitized ferromagnesian minerals that stand out in a 40135 51.5	0 52.70 0 53.90			
	53.90	0 1.20		
groundmass of faint grey feldspar phenos and dark green fine to medium 40136 52.7		0 1.20		
grained groundmass. There are sections in this unit whereby 10- 15% 40137 53.5	0 55.10	0 1.20		
dark green to black mafic grains are interstitial to 25- 35% densely4013855.1	56.30	0 1.20		
packed, millimetric, dull grey, tabular feldspar crystals in a fine grained 40139 56.3	57.50	0 1.20		
feldspathic groundmass forming a massive medium grained host 40140 57.5	58.70	0 1.20		
containing a few scattered mafic inclusions. The rock is moderately 40141 58.7	59.90	0 1.20		
magnetic, no calcareous and weakly to moderately ankeritic. This unit 40142 59.5	0 61.10	0 1.20		
show trace pyrites. 40143 61.1	0 62.30	0 1.20		
40144 62.3	0 63.50	0 1.20		
40145 63.5	0 64.70	0 1.20		
40146 64.7	0 65.90	0 1.20		
40147 65.5	0 67.10	0 1.20		
40148 67.1	0 68.30	0 1.20		
32.30 44.10 GB Fine to Medium Grained Gabbro 40118 32.3	33.50	0 1.20		
A change in texture and color marks the beginning of this Fine to medium 40119 33.5	34.70	0 1.20		
grained Gabbro. The upper contact is high angle which I presumed that 40120 34.7	35.90	0 1.20		
the layers of the amphibolite is subparallel to the Gabbro. This Gabbro 40121 35.9	37.10	0 1.20		
occurs as massive, medium grained, salt and peppery zones comprised of 40122 37.1	38.30	0 1.20		
millimetric black, stubby, ferromagnesian laths in a fine grained, yellowish 40123 38.3	39.50	0 1.20		
buff coloured when dry, feldspathic groundmass. Quartz veining is 40124 39.5	0 40.70	0 1.20		
negligible but if present is usually mm thick and has no definite 40126 40.7	0 41.90	0 1.20		
orientation. Fine fractures are ankeritic while the matrix is essentially non 40127 41.9	0 43.10	0 1.20		
reactive to HCL but weakly to moderately reactive to KFC which means 40128 43.1	0 44.30	0 1.20		
that the alteration present is ankerite. Fractures are generally coated by				
chlorite and was counted individually in the RQD page. Only trace pyrite				
(Py) crystals were noted scattered through the matrix and along fractures.				

		GEOLOGY	VISUAL ASSAY RESULT					RESULTS		
From	То	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
1.50	32.30	AMSY Amphibolite Syenite Package			41939	2.20	3.40	1.20		
		This hole is collared into a 80% amphibolite and 20% syenite package. The			41940	3.40	4.70	1.30		
		former is dark grey, fine grained amphibole rich mafic volcanic. It is called			40094	4.70	5.90	1.20		
		amphibolite by SGS, hence, the rock name. The protolith of this rock			40095	5.90	7.10	1.20		
		before metamorpism is probably basalt because it is too dark and fine			40096	7.10	8.30	1.20		
		grained. Syenite comes in and out of this unit as described below. The			40097	8.30	9.50	1.20		
		rock is cooked and moderately silicified thats why it is hard. Pyrite			40098	9.50	10.70	1.20		
		mineralization occur as trace to locally up to 2%.			40099	10.70	11.90	1.20		
					40101	11.90	13.10	1.20		
		9.50- 9.90: Massive Syenite. UC=30°ca, LC=30°ca, 0.5% Py			40102	13.10	14.30	1.20		
		9.90-11.60: Amphibolite with quartz-epidote veining. UC=30°ca,			40103	14.30	15.50	1.20		
		LC=40°ca, 0.5%-2% Py			40104	15.50	16.70	1.20		
		11.60-11.75: Massive Syenite. UC=40°ca, LC=120°ca, trace Py			40105	16.70	17.90	1.20		
		11.75-11.90: Epidote patch-alteration zone. UC and LC =120°ca, 0.5 Py			40106	17.90	19.10	1.20		
					40107	19.10	20.30	1.20		
		11.90-12.20: Massive Syenite. UC=120°ca, LC=105°ca, 0.5 Py			40108	20.30	21.50	1.20		
		12.20-14.95: 98% Amphibolite with guartz-epidote veining and 2%			40109	21.50	22.70	1.20		
		Syenite Dyke. UC=105°ca, LC=40°ca, 1%-3% Py			40110	22.70	23.90	1.20		
					40111 40112	23.90 25.10	25.10 26.30	1.20 1.20		
		14.95-15.30: Massive Syenite. UC=40°ca, LC=105°ca, 0.5% Py			40112	26.30	20.30	1.20		
		15.30-16.60: 98% Amphibolite with quartz-epidote veining and 2%			40113	20.50	27.50	1.20		
		Syenite Dyke. UC=105°ca, LC=25°ca, 0.5%-1% Py			40114	27.50	29.90	1.20		
					40116	29.90	31.10	1.20		
		16.60-17.10: Massive Syenite. UC=25°ca, LC=140°ca, 0.5% Py			40117	31.10	32.30	1.20		
		17.10-18.60: 98% Amphibolite and 2% Syenite Dyke. UC and LC =140°ca, trace-1% Py			10117	51.10	52.50	1.20		
		18.60-21.35: 98% Porphyry Syenite and 2% Amphibolite inclusion. UC=140°ca, LC=150°ca, trace-2% Py								
		21.35-32.30: 95% Amphibolite with quartz-epidote veining and 5% Syenite Dyke. UC=150°ca, LC=140°ca, trace-1% Py								
0.60	1.50	OVB Overburden Core recovery was measured to begin at 1.97'. The driller's block indicate that they placed 1.52 m (5.0 ft) of NW casing.			41938	1.00	2.20	1.20		
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.								

101.80 EOH End of hole.

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments
0.00	91.6°	91.6°	-60.0°	Collar	
16.46	105.4°	94.2°	-57.9°	Multi	
19.51	103.6°	92.4°	-58.0°	Multi	
22.56	104.7°	93.5°	-58.0°	Multi	
25.60	104.4°	93.2°	-57.9°	Multi	
28.65	107.6°	96.4°	-58.0°	Multi	
31.70	104.0°	92.8°	-57.9°	Multi	
34.75	104.3°	93.1°	-58.0°	Multi	
37.80	104.7°	93.5°	-58.0°	Multi	
40.84	104.3°	93.1°	-58.0°	Multi	
43.89	106.7°	95.5°	-58.0°	Multi	
46.94	106.7°	95.5°	-58.1°	Multi	
49.99	106.8°	95.6°	-58.1°	Multi	
53.04	106.3°	95.1°	-58.1°	Multi	
56.08	107.7°	96.5°	-58.2°	Multi	
59.13	106.7°	95.5°	-58.0°	Multi	
62.18	106.3°	95.1°	-58.2°	Multi	
65.23	105.3°	94.1°	-58.2°	Multi	
68.28	105.8°	94.6°	-58.1°	Multi	
71.32	104.9°	93.7°	-58.2°	Multi	
74.37	105.6°	94.4°	-58.1°	Multi	
77.42	106.4°	95.2°	-58.2°	Multi	
80.47	106.6°	95.4°	-58.3°	Multi	
83.52	105.8°	94.6°	-58.3°	Multi	
86.56	108.1°	96.9°	-58.4°	Multi	
89.61	108.4°	97.2°	-58.3°	Multi	
92.66	105.2°	94.0°	-59.7°	Multi	
95.71	104.7°	93.5°	-58.4°	Multi	
98.76	104.8°	93.6°	-58.3°	Multi	
101.80	104.1°	92.9°	-58.3°	Multi	

From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
0.6	4.3	3.7			2.8	76	15
4.3	7.3	3.1			2.5	83	17
7.3	10.4	3.1			2.6	85	24
10.4	13.4	3.0			2.8	92	13
13.4	16.5	3.1			2.9	95	17
16.5	19.5	3.1			2.8	93	9
19.5	22.6	3.1			2.8	90	17
22.6	25.6	3.1			2.8	92	21
25.6	28.7	3.0			2.5	82	17
28.7	31.7	3.1			2.6	83	17
31.7	34.8	3.1			2.8	93	15
34.8	37.8	3.1			2.9	94	8
37.8	40.9	3.1			3.0	98	8

COLLAR INFORMATION

Claim:	4273194		
Projection:	NAD83 17N	Azimuth:	272.30°
Easting:	539,925.00 m	Dip:	-60.00°
Northing:	5,359,494.00 m	Length:	47.49 m
Elevation:	366.00 m	Core Size:	NQ
Storage:	CanREE explo site		
Comments:	Exploration Hole at	: 427194 claim	

I	Drill	Log	CR	201	4-1	4
			N	/ORK D	ONE B	Y

Work	From	То	Worker	Start	End
Drilling	0.0	47.5	Walker Drilling	2014-Sep-14	Sep-15
Downhole Survey	0.0	47.5	Walker Drilling	2014-Sep-15	Sep-15
Core Logging	0.0	47.5	Dennis Patron	2014-Sep-20	Sep-20

			GEOLOGY	VISU	JAL		ŀ	ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
1.90	47.50	AMSY	Syenite Amphibolite Package			41792	1.90	3.10	1.20		
		This ho	e is collared into a mixed package of Syenite and amphibolite			41793	3.10	4.30	1.20		
		where	he former is more dominant than the latter. The Syenite is pinkish			41794	4.30	5.50	1.20		
		in color	, massive, medium grained, locally porphyritic, and homogenous			41795	5.50	6.70	1.20		
		while th	ne amphibolite is medium green, medium grained, also massive			41796	6.70	7.90	1.20		
		and ho	nogenous. Below are the detailed description where these 2			41797	7.90	9.10	1.20		
			e occurs. (lithologic name was made where the first rock name is			41798	9.10	10.30	1.20		
		more d	ominant than the second rock name)			41802	10.30	11.50	1.20		
						41803	11.50	12.70	1.20		
			9.40: Amphibolite-Syenite Package. LC=90°ca			41804	12.70	13.90	1.20		
			3.25: Massive Syenite. UC=90°ca, LC=60°ca			41805	13.90	15.10	1.20		
			9.60: Syenite-amphibolite Package. UC=60°ca, LC=130°ca			41806	15.10	16.30	1.20		
			3.70: Amphibolite-Syenite Package. UC=130°ca, LC=90°ca			41807	16.30	17.50	1.20		
			4.04: Massive Syenite. UC and LC =130°ca			41808	17.50	18.70	1.20		
			8.20: Amphibolite-Syenite Package. UC=130°ca, LC=60°ca			41809	18.70	19.90	1.20		
			1.70: Syenite-amphibolite Package. UC=60°ca, LC=50°ca			41810	19.90	21.10	1.20		
			1.90: Quartz Vein. UC and LC =50°ca			41811	21.10	22.30	1.20		
			6.50: Amphibolite-Syenite Package. UC=50°ca, LC=150°ca			41812	22.30	23.50	1.20		
		46.50-4	7.50 (End of the Hole): Syenite-amphibolite Package. LC=150°ca			41813	23.50	24.70	1.20		
						41814	24.70	25.90	1.20		
			L sample is collected on this hole just to check if the quartz vein			41815	25.90	27.10	1.20		
		will run	for gold.			41816	27.10	28.30	1.20		
						41817	28.30	29.50	1.20		
						41818	29.50	30.70	1.20		
						41819	30.70	31.90	1.20		
						41820	31.90	33.10	1.20		
						41821	33.10	34.30	1.20		
						41822	34.30	35.50	1.20		
						41823	35.50	36.70	1.20		
						41827	36.70	37.90	1.20		
						41828	37.90	39.10	1.20		
						41829	39.10	40.30	1.20		
						41830	40.30	41.60	1.30		
					5.0	40264	41.60	42.60	1.00		
					2.0	41934	42.60	43.80	1.20		
						41935	43.80	45.00	1.20		
						41936	45.00	46.20	1.20		
						41937	46.20	47.50	1.20		

			GEOLOGY	VISU	JAL	ASSAY RESULTS					
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
0.00	1.94		OVB covery was measured to begin at 6.23'. The driller's block indicate ey placed 1.52 m (10.0 ft) of NW casing.			41792	1.90	3.10	1.20		
		dilute h fizzes ir presene	All the core is systematically tested for pervasive carbonate using hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid in contact with calcite and the KFC stains the core blue in the ce of ankerite. In certain areas, the core is tested with a magnet to ine relative magnetite content.								

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments
0.00	272.3°	272.3°	-60.0°	Collar	
14.02	287.5°	276.3°	-59.2°	Multi	
17.07	281.5°	270.3°	-59.8°	Multi	
20.12	285.5°	274.3°	-59.7°	Multi	
23.16	285.5°	274.3°	-59.9°	Multi	
26.21	284.9°	273.7°	-59.9°	Multi	
29.26	284.3°	273.1°	-60.0°	Multi	
32.31	283.2°	272.0°	-60.0°	Multi	
35.36	283.8°	272.6°	-60.0°	Multi	
38.40	283.0°	271.8°	-60.1°	Multi	
41.45	285.8°	274.6°	-59.9°	Multi	
44.50	287.2°	276.0°	-60.0°	Multi	
47.55	282.3°	271.1°	-59.9°	Multi	

From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
1.9	5.8	3.9			3.3	86	14
5.8	8.8	3.1			2.8	92	19
8.8	11.9	3.1			2.7	88	13
11.9	14.9	3.1			3.0	97	15
14.9	18.0	3.1			2.9	95	10
18.0	21.0	3.1			2.4	80	14
21.0	24.1	3.1			2.8	90	9
24.1	27.1	3.1			2.7	87	10
27.1	30.2	3.0			2.7	88	11
30.2	33.2	3.1			2.8	92	10
33.2	36.3	3.1			3.0	97	7
36.3	39.3	3.1			2.8	92	10
39.3	42.4	3.1			2.4	77	11
42.4	45.4	3.1			2.9	96	6
45.4	47.5	2.1			1.9	92	3

COLLAR INFORMATION

Drill Log CR2014-15

WORK DONE BY

									•••••••
Claim:	4276170			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	90.60°	Drilling	0.0		Walker Drilling	2014-Sep-15	Sep-17
	500 60 4 00		CO 00	Downhole Survey	0.0	103.0	Walker Drilling	2014-Sep-17	Sep-17
Easting:	539,624.00 m	Dip:	-60.00°	Core Logging	0.0	103.0	Dennis Patron	2014-Sep-19	Sep-19
Northing:	5,360,477.00 m	Length:	103.02 m	Core Logging	0.0	103.0	Athraa Koma	2014-Sep-19	Sep-19
Elevation:	366.00 m	Core Size:	NQ						
Storage:	CanREE explo site								

Comments:

	GEOLOGY	VISU	JAL		ļ	ASSAY	RESULTS		
From To	Code Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
10.10 103.1	0 AM Amphibolite/Mafic Volcanics		0.8	40184	10.60	11.80	1.20		
	The upper contact is subtle but a change in texture, color and grain size		0.5	40185	11.80	13.00	1.20		
	marks the beginning of this amphibolite whose prototlith is probably a		1.5	40186	13.00	14.20	1.20		
	basalt or any mafic volcanics. It is dark grey, fine grained and is locally		0.5	40187	14.20	15.40	1.20		
	intruded by syenite dykes oriented at various directions. There is a weak		0.5	40188	15.40	16.60	1.20		
	foliation fabric on the amphibolite oriented at 30°ca and 150°ca. Pyrite		0.5	40189	16.60	17.80	1.20		
	mineralization is common ranging from 0.5% to locally 2 to 5%. The rock		0.5	40190	17.80	19.00	1.20		
	is non ankeritic non to weakly calcareous only on fractures and		0.5	40191	19.00	20.20	1.20		
	moderately to strongly magnetic. Below is the detailed description of		0.5	40192	20.20	21.40	1.20		
	each lithologic intervals.		0.5	40193	21.40	22.60	1.20		
			1.0	40194	22.60	23.80	1.20		
	10.10-10.70: Amphibolite. UC=90°ca, LC=60°ca		3.0	40195	23.80	25.00	1.20		
	10.70-11.65: 95% Amphibolite and 5% Syenite Dykes. UC=60°ca, LC=45°ca		1.0	40196	25.00	26.20	1.20		
	11.65-12.10: 95% Syenite Dyke and 5% Amphibolite. UC=45°ca,		1.0	40197	26.20	27.40	1.20		
	LC=135°ca		1.5	40198	27.40	28.60	1.20		
	12.10-12.35: Amphibolite. UC=135°ca, LC=90°ca		2.0	40199	28.60	29.80	1.20		
	12.35-12.45: Syenite Dyke. UC=90°ca, LC=130°ca		3.5	40201	29.80	31.00	1.20		
	12.45-15.70: 98% Amphibolite and 2% Syenite Dyke. UC=130°ca,		1.0	40202	31.00	32.20	1.20		
	LC=125°ca		3.5	40203	32.20	33.40	1.20		
	15.70-15.90: Syenite Dyke. UC=125°ca, LC=130°ca		6.0	40204	33.40	34.60	1.20		
	15.90-17.75: 98% Amphibolite and 2% Syenite Dyke. UC=130°ca,		2.0	40205	34.60	35.80	1.20		
	LC=25°ca			40206	35.80	37.00	1.20		
	17.75-18.10: 98% Syenite Dyke and 2% Amphibolite. UC=25°ca, LC=60°ca 18.10-20.90: Amphibolite. UC=60°ca, LC=130°ca		1.5	40207	37.00	38.20	1.20		
	20.90-21.15: 98% Syenite Dyke and 2% Amphibolite. UC=130°ca,		1.5	40208	38.20	39.40	1.20		
	LC=70°ca		1.5	40209	39.40	40.40	1.00		
	21.15-25.75: 98% Amphibolite and 2% Syenite Dyke. UC=70°ca, LC=50°ca		1.5	40210	40.40	41.40	1.00		
	25.75-25.90: Syenite Dyke. UC=50°ca, LC=130°ca		3.0	40211	41.40	42.60	1.20		
	25.90-26.95: Amphibolite. UC=130°ca, LC=60°ca		3.5	40212	42.60	43.80	1.20		
	26.95-27.30: Massive Syenite Porphyry. UC=60°ca, LC=60°ca			41831	43.80	44.90	1.10		
	27.30-27.40: Amphibolite. UC=60°ca, LC=60°ca		1.5	40213	44.90	45.90	1.00		
	27.40-27.80: 98% Porphyry Syenite Dyke and 2% Amphibolite inclusions.		2.0	40214	45.90	46.90	1.00		
	UC and LC =60°ca		2.0	40215	46.90	47.90	1.00		
				41832	47.90	49.30	1.40		
	27.80-43.80: 90% Amphibolite and 10% Syenite Dyke. UC=60°ca,			40216	49.30	50.50	1.20		
	LC=130°ca		1.0	40217	50.50	51.70	1.20		
			1.5	40218	51.70	52.90	1.20		
	43.80-44.90: Massive Syenite. UC=130°ca, LC=70°ca		1.0	40219	52.90	54.10	1.20		
	44.90-46.80: 99% Amphibolite and 1% Syenite Dyke. UC=70°ca, LC=70°ca		0.9	40220	54.10	55.30	1.20		
			1.8	40221	55.30	56.50	1.20		
	46.80-46.95: Syenite Dyke. UC=70°ca, LC=70°ca		2.0	40222	56.50	57.50	1.00		
	46.95-47.90: Amphibolite. UC and LC =70°ca		1.0	40223	57.50	58.50	1.00		
	47.90-49.30: Massive Syenite. UC=70°ca, LC=50°ca			41833	58.50	59.70	1.20		

		GEOLOGY	VISU	JAL		ASSAY RESULTS					
From	То	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
		49.30-58.50: 90% Amphibolite with Quartz-Epidote Veining and 10%			41834	59.70	60.80	1.10			
		Syenite Dyke. UC=50°ca, LC=70°ca		2.0	40224	60.80	62.00	1.20			
				2.0	40226	62.00	63.20	1.20			
		58.50-60.80: Massive Syenite. UC=70°ca, LC=105°ca.		2.0	40227	63.20	64.40	1.20			
		60.80-69.05: 99% Amphibolite with Quartz-epidote veining and 1%		1.5	40228	64.40	65.60	1.20			
		Syenite Dyke. UC=105°ca, LC=150°ca. Within this section there is a a 3cm		2.0	40229	65.60	66.80	1.20			
		wide quartz epidote vein at at 63.30 meters		1.0	40230	66.80	68.00	1.20			
				1.0	40231	68.00	69.20				
		69.05-70.25: 95% Syenite Dyke 5% Amphibolite. UC=150°ca, LC=130°ca		1.3	40232	69.20					
				0.5	40233	70.40					
		70.25-70.65: Amphibolite. UC=130°ca, LC=120°ca		0.5	40234	71.60	72.80				
		70.65-70.80: Syenite Dyke. UC=120°ca, LC=120°ca		5.0	40235	72.80	74.00				
		70.80-71.60: Amphibolite. UC=120°ca, LC=55°ca		2.0	40235	74.00	75.20				
		71.60-71.95: Massive Syenite. UC=55°ca, LC=60°ca		2.0	40230	75.20	76.40				
		71.95-72.60: 98% Amphibolite with less than 5mm Quartz-Epidote		2.0		76.40	77.60				
		veining and 2% Syenite Dyke. UC=60°ca, LC=20°ca			40238						
				0.1	40239	77.60					
		72.60-72.80: Syenite Dyke. UC=120°ca, LC=30°ca		0.5	40240	78.80	80.00				
		72.80-73.40: Amphibolite with less than 5mm Quartz-Epidote veining.		0.8	40241	80.00					
		UC=30°ca, LC=130°ca		1.0	40242	81.20	82.40				
				1.3	40243	82.40	83.60				
		73.40-73.80: Syenite Dyke. UC=130°ca, LC=130°ca		1.5	40244	83.60					
		73.80-74.60: Amphibolite with less than 5mm Quartz-Epidote veining.		2.0	40245	84.60					
		UC=130°ca, LC=20°ca		2.0	40246	85.60	86.60				
				3.5	40247	86.60	87.60	1.00			
		74.60-74.90: Syenite Dyke. UC=20°ca, LC=30°ca		2.0	40248	87.60	88.60	1.00			
		74.90-82.40: 98% Amphibolite with less than 5mm Quartz veining and		2.0	40249	88.60	89.60	1.00			
		2% Syenite Dyke. UC=30°ca, LC=145°ca		2.0	40251	89.60	90.60	1.00			
				2.0	40252	90.60	91.60	1.00			
		82.40-82.99: Shear Zone. UC=145°ca, LC=150°ca		2.0	40253	91.60	92.60	1.00			
		82.99-83.40: 95% Syenite Dyke. UC=150°ca, LC=130°ca		3.5	40254	92.60	93.60	1.00			
		83.40-84.20: Amphibolite sheared zone containing stretched phenocrysts		3.5	40255	93.60	94.60	1.00			
		and less than 5mm quartz-epidote veining. UC=130°ca, LC=90°ca		5.0	40256	94.60	95.60	1.00			
				10.0	40257	95.60	96.60	1.00			
		84.20-84.40: Syenite Dyke. UC=90°ca, LC=50°ca		6.0	40258	96.60	97.60	1.00			
		84.40-85.25: Amphibolite sheared zone with stretched phenocrysts and		2.0	40259	97.60					
		5mm-2cm quartz-epidote veining. UC=50°ca, LC=50°ca		3.5	40260	98.60					
				2.0	40261		100.60				
		85.25-86.15: 70% Amphibolite and 30% Syenite Dyke. UC=50°ca,			40262		101.80				
		LC=60°ca,		1.0	40263		103.05	1.25			
				1.0	40205	101.00	105.05	1.25			
		86.15-86.35: Solid Syenite Dyke. UC and LC =60°ca									
		86.35-86.90: 60% Syenite Dyke and 40% Amphibolite. UC and LC =60°ca									
		86.90-90.75: Amphibolite with 5mm-2cm Quartz-Epidote veining. UC									
		and LC =60°ca									
		90.75-90.80: Gouge-evidence for a minor fault. UC and LC =60°ca									
		90.80-93.00: Amphibolite with 5mm-2cm Quartz-Epidote veining.									
		UC=60°ca, LC=80°ca									
		93.00-93.10: Gouge-Evidence of a fault. UC and LC =80°ca									
		93.10-99.10: Amphibolite with 5mm-2cm Quartz-Epidote veining.									
		UC=80°ca, LC=75°ca									
		99.10-99.50: 90% Syenite Dyke and 10% Amphibolite. UC=75°ca,									
		LC=70°ca									
		99.50-100.40: Amphibolite with 5mm-2cm Quartz epidote veining.									
		UC=70°ca, LC=60°ca									
		100 40-103 05. Amphibolite with less than 5mm Quartz-epidote veining									

100.40-103.05: Amphibolite with less than 5mm Quartz-epidote veining. UC=60°ca

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
0.95	10.10	GB	Fine to Medium Grained Gabbro		0.1	40176	1.00	2.20	1.20		
		This ho	le is collared into what we call a fine to medium grained Gabbro. It		0.1	40177	2.20	3.40	1.20		
		is mass	ive, crystalline and homogenous. It is dark to medium greyish			40178	3.40	4.60	1.20		
		green.	The gabbro occurs as massive, medium grained, salt and peppery		0.1	40179	4.60	5.80	1.20		
		zones c	omprised of millimetric black, stubby, ferromagnesian laths in a		0.1	40180	5.80	7.00	1.20		
		fine gra	ined, yellowish buff coloured when dry, feldspathic groundmass.		0.1	40181	7.00	8.20	1.20		
		Within	this gabbro section there is a 70°ca fault gouge that occurs at 7.6		0.1	40182	8.20	9.40	1.20		
		arbitra	nark and it is 10 cm thick. A minor fault. The lower contact is 90°ca ry. Trace pyrite. The rock is weakly ankeritic moderately magnetic n calcareous.		0.1	40183	9.40	10.60	1.20		
0.00	0.95		Overburden covery was measured to begin at 3.12'. The driller's block indicate ey placed 1.52 m (5.0 ft) of NW casing.								
		dilute h fizzes ir presen	All the core is systematically tested for pervasive carbonate using ydrochloric acid HCl) and potassium ferricyanide (KFC). The acid o contact with calcite and the KFC stains the core blue in the ce of ankerite. In certain areas, the core is tested with a magnet to ine relative magnetite content.								

103.02 EOH End of hole.

GEOTECHNICAL INFORMATION RQD (%)

Breaks

Rec (%)

>10cm

1.2

2.6

2.0

1.9

3.0

2.7

2.7

2.9

2.8

2.9

2.9

2.7

2.9 2.2

3.0

2.8

2.2

3.1

3.0

2.6

2.8

2.6

2.8

2.8

2.8

2.8

2.9

2.4

3.1 2.3

1.5

2.5

2.8

2.8

Core

_								
Depth	Test	Az	Dip	Туре	Comments	From	То	Len
0.00	90.6°	90.6°	-60.0°	Collar		1.0	2.4	1.4
14.63	102.7°	91.5°	-59.2°	Multi		2.4	5.5	3.1
17.68	102.6°	91.4°	-59.1°	Multi		5.5	8.5	3.1
20.73	102.2°	91.0°	-59.1°	Multi		8.5	11.6	3.1
23.77	102.8°	91.6°	-59.2°	Multi		11.6	14.6	3.1
26.82	104.1°	92.9°	-59.4°	Multi		14.6	17.7	3.1
29.87	104.4°	93.2°	-59.1°	Multi		17.7	20.7	3.1
32.92	102.6°	91.4°	-59.2°	Multi		20.7	23.8	3.1
35.97	103.4°	92.2°	-59.2°	Multi		23.8	26.8	3.1
39.01	103.1°	91.9°	-59.2°	Multi		26.8	29.9	3.1
42.06	104.2°	93.0°	-59.3°	Multi		29.9	32.9	3.1
45.11	104.2°	93.0°	-59.3°	Multi		32.9	36.0	3.1
48.16	104.3°	93.1°	-59.3°	Multi		36.0	39.0	3.1
51.21	103.6°	92.4°	-59.3°	Multi		39.0	42.1	3.1
54.25	103.1°	91.9°	-59.2°	Multi		42.1	45.1	3.0
57.30	103.8°	92.6°	-59.4°	Multi		45.1	48.2	3.1
60.35	104.1°	92.9°	59.2°	Multi		48.2	51.2	3.1
63.40	104.5°	93.3°	-59.2°	Multi		51.2	54.3	3.1
66.45	103.5°	92.3°	-59.2°	Multi		54.3	57.3	3.1
69.49	103.7°	92.5°	-59.2°	Multi		57.3	60.4	3.1
72.54	104.9°	93.7°	-59.3°	Multi		60.4	63.4	3.1
75.59	105.2°	94.0°	-59.4°	Multi		63.4	66.5	3.0
78.64	105.4°	94.2°	-59.4°	Multi		66.5	69.5	3.1
81.69	104.7°	93.5°	-59.3°	Multi		69.5	72.6	3.1
84.73	107.3°	96.1°	-59.3°	Multi		72.6	75.6	3.1
87.78	104.0°	92.8°	-59.3°	Multi		75.6	78.7	3.1
90.83	104.4°	93.2°	-59.4°	Multi		78.7	81.7	3.1
93.88	105.5°	94.3°	-59.2°	Multi		81.7	84.8	3.0
96.93	104.9°	93.7°	-59.5°	Multi		84.8	87.8	3.1
99.97	105.0°	93.8°	-59.4°	Multi		87.8	90.9	3.1
						90.9	93.9	3.1
						93.9	97.0	3.1
						97.0	100.0	3.0
						100.0	103.1	3.1

Drill Log CR2014-16

COLLAR INFORMATION

WORK	DONE	BY

Claim:	4273194			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	90.00°	Drilling	0.0		4 Walker Drilling	2014-Sep-15	Sep-17
Easting:	539,939.00 m	Dip:	-60.00°	Downhole Survey Core Logging	0.0 0.0		 Walker Drilling Dennis Patron 	2014-Sep-17 2014-Sep-21	Sep-17 Sep-21
Northing:	5,359,392.00 m	Length:	35.36 m	Core Logging	0.0		4 Athraa Koma	2014-Sep-21 2014-Sep-21	Sep-21 Sep-21
Elevation:	366.00 m	Core Size:	NQ						

Storage: CanREE explo site

Comments: This hole was abandoned due to drill problems. The core barrel got stuck probably drillers fault.No Reflex was taken because the core barrel is stuck and the instrument cant be put in.

DRILL LOG

		GEOLOGY	VISUAL		ASSAY RESULTS					
From	То	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
0.64	35.36	SY Syenite			41836	1.80	3.00	1.20		
		This hole is collared into a pinkish colored, medium grained, abundantly			41837	3.00	4.20	1.20		
		(35-40%), feldspar porphyritic syenite. The groundmass is medium to			41838	4.20	5.40	1.20		
		dark, maroon-grey, fine grained, feldspar/feldspathoid material. Locally,			41839	5.40	6.60	1.20		
		finer grained (2-3mm), dark grey-green, lath-shaped, mafic (originally			41840	6.60	7.80	1.20		
		amphiboles?) phenocryst/porphyroblasts occur with the larger white/pink			41841	7.80	9.00	1.20		
		felsic phenocrysts. Small (gravel-sized) dark green mafic xenoliths are			41842	9.00	10.20	1.20		
		entrained within the coherent, relatively unaltered and unmineralized			41843	10.20	11.40	1.20		
		intrusive rock. This rock is hard, competent and rarely fractured. Non			41844	11.40	12.60	1.20		
		ankeritic, non calcareous and non magnetic. Trace pyrites. No sample was			41845	12.60	13.80	1.20		
		collected. The hole was abandoned when the core barrel get stuck at the			41846	13.80	15.00	1.20		
		bottom. The core barrel was left behind.			41847	15.00	16.20	1.20		
					41848	16.20	17.40	1.20		
					41852	17.40	18.60	1.20		
					41853	18.60	19.80	1.20		
					41854	19.80	21.00	1.20		
					41855	21.00	22.20	1.20		
					41856	22.20	23.40	1.20		
					41857	23.40	24.60	1.20		
					41858	24.60	25.80	1.20		
					41859	25.80	27.00	1.20		
					41860	27.00	28.20	1.20		
					41861	28.20	29.40	1.20		
					41862	29.40	30.60	1.20		
					41863	30.60	31.80	1.20		
					41864	31.80	32.80	1.00		
					41865	32.80	33.80	1.00		
0.00	0.64	OVB Overburden			41835	0.60	1.80	1.20		
		Core recovery was measured to begin at 2.10'. The driller's block indicate that they placed 1.52 m (5.0 ft) of NW casing.								
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the								
		presence of ankerite. In certain areas, the core is tested with a magnet to								

determine relative magnetite content.

35.36 EOH End of hole.

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments
0.00	90.0°	90.0°	-60.0°	Collar	

From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
0.6	4.9	4.2			0.7	17	6
4.9	7.2	2.4			1.1	47	16
7.2	11.0	3.8			2.5	67	12
11.0	14.0	3.0			1.8	60	20
14.0	17.1	3.1			2.2	70	18
17.1	20.1	3.1			2.4	80	20
20.1	23.2	3.1			1.6	51	25
23.2	26.2	3.1			2.2	73	19
26.2	29.3	3.1			1.7	57	15
29.3	32.3	3.1			1.8	60	18
32.3	35.4	3.0			1.3	41	15

4273175

360.00 m

NAD83 17N

539,564.00 m

Drill Log CR2014-17

.

COLLAR INFORMATION

Claim:

Projection:

Easting:

Elevation:

				WORK DO	ONE BY
Work	From	То	Worker	Start	End
Drilling	0.0	103.0	Walker Drilling	2014-Sep-18	Sep-20
Downhole Survey	0.0	103.0	Walker Drilling	2014-Sep-20	Sep-20
Core Logging	0.0	103.0	Dennis Patron	2014-Sep-21	Sep-21
Core Logging	0.0	103.0	Athraa Koma	2014-Sep-21	Sep-21

Storage: CanREE explo site

Northing: 5,359,455.00 m

Comments: The Gabbro target near surface was displaced by a strong fault at 88.43 m.

Azimuth:

Length:

Core Size:

Dip:

96.70°

-60.00°

NQ

103.02 m

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
94.90	103.10	GB	Fine to Medium Grained Gabbro		0.1	40271	94.90	96.10	1.20			
		This gat	bro was supposed to be intercepted at near the collar but was		0.1	40272	96.10	97.30	1.20			
		burried	by the fault above. This gabbro appears different from the usual		0.1	40273	97.30	98.50	1.20			
		gabbro	in the area. It is dark grey probably strongly metamorphose,			40274	98.50	99.70	1.20			
		aphyric	to very finely mafic-mineral present Gabbro. The rock is non		0.1	40276	99.70	100.90	1.20			
		calcared	ous, non ankeritic and weakly to moderately magnetic. It is		0.1	40277	100.90	101.90	1.00			
		massive	and crystalline and homogenous.		0.1	40278	101.90	103.05	1.15			
		Within 1	he Gabbro zone there are few epidote veins, below are the									
		location	, the width and the orientation of the vein									
		98.40:	4cm, 120°ca									
		98.50:	15cm, 120°ca									
		98.80:	25cm, 20°ca									
		99.95:	5cm, 140°ca									
		101.50:	6cm, 110°ca									
88.40	94.90	FLTZ	Fault Zone		0.1	40266	88.90	90.10	1.20			
		The hole	e enters a tectonic breccia with associated fault gouge. The upper		0.1	40267	90.10	91.30	1.20			
		contact	is measured to be 45°ca. Within this fault zone there are several		0.1	40268	91.30	92.50	1.20			
		patches	of hematite alteration that are less than 5 cm thick. There is fault		0.1	40269	92.50	93.70	1.20			
		-	section measuring 0.55 meters observed from 89.6 meter mark		0.1	40270	93.70	94.90	1.20			
		that has	a sharp contacts on both ends oriented at 60°ca.									

		GEOLOGY			JAL			ASSAY	RESULTS	5	
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
47.90	88.40	MV	Mafic Volcanics/Amphibolite		0.1	40504	48.30	49.50	1.20		
		A chan	ge in texture and grain size marks the beginning of what we		0.1	40505	49.50	50.70	1.20		
			ed as mafic volcanics or basalt but when metamorposed becomes		0.1	40506	50.70	51.90	1.20		
			politized mafic volcanics. This mafic volcanic rock is the dominant		0.1	40507	51.90	53.10	1.20		
			it this whole package. However, short intervals of amphibolite		0.1	40508	53.10	54.30	1.20		
		which i	s the metamorphosed diabase or gabbro and syenite comes in an	d	0.1	40509	54.30	55.50	1.20		
		out of	his unit as described below. Upper contact (UC) and lower			40510	55.50	56.70	1.20		
		contac	ts (LC) are sharp that's why it is recorded. Weak to moderate		0.1	40511	56.70	57.90	1.20		
		foliatio	n fabric that is present in the mafic volcanics were also measured	0.1	0.5	40512	57.90	59.10	1.20		
		and red	corded. Sampling was also done here.		0.1	40513	59.10	60.30	1.20		
					0.1	40514	60.30	61.50	1.20		
		47.80-4	48.40: Mafic Volcanics. UC=130°ca, LC=125°ca, Foliation=125°ca		0.1	40515	61.50	62.70	1.20		
		48.40-4	18.60: 98% Syenite Dyke and 2% Mafic Volcanics. UC=125°ca,		0.1	40516	62.70	63.90	1.20		
		LC=55°	са		0.1	40517	63.90	65.10	1.20		
		48.60-4	19.65: Mafic Volcanics. UC=55°ca, LC=10°ca, Foliation=20°ca		0.1	40518	65.10	66.30	1.20		
		49.65-5	50.45: 90% Syenite Dyke and 10% Mafic Volcanics. UC=10°ca,		0.1	40518	66.30	67.50	1.20		
		LC=45°	ca, Foliation=45°ca								
					0.1	40520	67.50	68.70	1.20		
		50.45-5	51.75: 98% Mafic Volcanics and 2% Syenite Dyke. UC=45°ca,		0.1	40521	68.70	69.90	1.20		
			ca, Foliation =45°ca		0.1	40522	69.90	71.10	1.20		
					0.1	40523	71.10	72.30	1.20		
		51.75-5	52.10: 99% Syenite Dyke and 1% Mafic Volcanics. UC=45°ca,		0.1	40524	72.30	73.50	1.20		
		LC=40°			0.1	40526	73.50	74.70	1.20		
			53.25: 98% Mafic Volcanics and 2% Syenite Dyke. UC=40°ca,			40527	74.70	75.90	1.20		
			°ca, Foliation=35°ca		0.1	40528	75.90	77.10	1.20		
			,		0.1	40529	77.10	78.30	1.20		
		53.25-	53.45: Syenite Dyke. UC=145°ca, LC=145°ca		0.1	40530	78.30	79.50	1.20		
			53.70: Amphibolite. UC=145°ca, LC=145°ca		0.1	40531	79.50	80.70	1.20		
			54.25: Mafic Volcanics. UC=145°ca, LC=145°ca		0.1	40532	80.70	81.90	1.20		
			55.45: 98% Syenite Dyke and 2% Amphibolite. UC=145°ca,		0.1	40533	81.90	83.10	1.20		
		LC=145			0.1	40534	83.10	84.30	1.20		
					0.1	40535	84.30	85.50	1.20		
		55.45-5	56.98: Mafic Volcanics. UC=145°ca, LC=20°ca, Foliation=30°ca		0.1	40536	85.50	86.70	1.20		
						41883	86.70	87.70	1.00		
		56.98-5	57.25: Syenite Dyke. UC and LC =20°ca		0.1	40265	87.70	88.90	1.20		
			57.65: Mafic Volcanics. UC=20°ca, LC=160°ca, Foliation=160°ca								
		57.65-5	57.85: Syenite Dyke. UC=160°ca, LC=165°ca								
			51.10: Mafic Volcanics. UC=165°ca, LC=30°ca, Foliation=160°ca								
			52.75: 90% Mafic Volcanics and 10% Syenite Dyke. UC=30°ca, 1°ca, Foliation=160°ca								
		62 75-6	53.13: 90% Amphibolite and 10% Syenite Dyke. UC=160°ca,								
		LC=155									
		63.13-0	53.41: Mafic Volcanics. UC=155°ca, LC=150°ca, Foliation=160°ca								
			53.80: 99% Amphibolite and 1% Syenite Dyke. UC=150°ca, °ca, Foliation=160°ca								
			55.3: 90% Mafic Volcanics and 10% Syenite Dyke. UC=160°ca, ca, Foliation=160°ca								
		65.30-6	55.80: 80% Syenite Dyke and 20% Diabase. UC=160°ca, LC=135°ca								
			70.80: 98% Mafic Volcanics and 2% Syenite Dyke. UC=135°ca, ca, Foliation 150°ca								

70.80-71.90: 80% Syenite Dyke and 20% Mafic Volcanics. UC=60°ca, LC=45°ca

71.90-73.90: 90% Mafic Volcanics and 10% Syenite Dyke. UC=45°ca, LC=30°ca, Foliation=150°ca

		GEOLOGY	VISUAL		ASSAY RESULTS						
From	То	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
		73.90-77.90: 60% Syenite Dykes and 40% Mafic Volcanics. UC=30°ca, LC=20°ca, Foliation=30°ca									
		77.90-78.20: Amphibolite. UC=20°ca, LC=140°ca 78.20-88.40: 50% Syenite Dyke and 50% Mafic Volcanics. UC=140°ca									
10.60	47.90	AMSY Amphibolite/Syenite Package			41868	11.80	13.00				
		This hole is collared into a mix intrusive of Syenite and Amphibolite.			41869	13.00	14.20				
		Below are the details where each interval was observed. The upper and			41870	14.20	15.40				
		lower contact was taken as well as the modal percentage of pyrite. The			41871	15.40	16.60				
		rock is generally non calcareous, weakly ankeritic and moderately			41872	16.60	17.80				
		magnetic. The Diabase appears like a fine to medium grained gabbro			41873	17.80	19.00				
		thats why samples were collected on this rock unit starting from 26.7 m			41877	19.00	20.20				
		depth.			41878	20.20	21.40				
					41879	21.40	22.60	1.20			
		10.60-10.80: Amphibolite Syenite Package. LC=130°ca			41880	22.60	23.80	1.20			
		10.80-10.98: Syenite Dyke. UC=130°ca, LC=55°ca			41881	23.80	25.20	1.40			
		10.98-12.00: 98% Amphibolite and 2% Syenite Dyke. UC=55°ca, LC=90°ca			41882	25.20	26.70	1.50			
		12.00-12.50: 98% Syenite and 2% Amphibolite. UC=90°ca			40485	26.70	27.90	1.20			
		12.50-18.00: Broken Rock-Syenite-Amphibolite Package.		0.1	40486	27.90	29.10	1.20			
		18.00-18.90: 98% Amphibolite and 2% Syenite. LC=40°ca		0.1	40487	29.10	30.30	1.20			
		18.90-24.30: 90% Syenite and 10% Syenite Dyke. UC=40°ca, LC=70°ca		0.1	40488	30.30	31.50	1.20			
		24.30-26.50: Massive Syenite. UC=70°ca, LC=50°ca		0.1	40489	31.50	32.70	1.20			
		26.50-27.80: 98% Amphibolite and 2% Syenite Dyke. UC=50°ca, LC=60°ca		0.1	40490	32.70	33.90	1.20			
		27.80-30.15: 95% Syenite Dyke and 5% Amphibolite. UC=60°ca, LC=45°ca		0.1	40491	33.90	35.10	1.20			
		30.15-34.05: 98% Amphibolite and 2% Syenite Dyke. UC=45°ca,		0.1	40492	35.10	36.30	1.20			
				0.1	40493	36.30	37.50	1.20			
		34.05-47.85: 60% Syenite Dyke and 40% Amphibolite. UC=145°ca,		0.1	40494	37.50	38.70	1.20			
		LC=130°ca		0.1	40495	38.70	39.90	1.20			
				0.1	40496	39.90	41.10	1.20			
				0.1	40497	41.10	42.30	1.20			
				0.1	40498	42.30	43.50				
				0.1	40499	43.50	44.70				
				0.1	40501	44.70	45.90				
				0.1	40502	45.90	47.10				
				0.1	40503	47.10	48.30				

0.00 10.25 OVB **Overburden**

Core recovery was measured to begin at 27.39'. The driller's block indicate that they placed 10.0 m (32.8 ft) of NW casing. Rubbles or broken rock from 8.35 m to 10.60. The rocks have rounded edges suggesting that it is part of the overburden.

NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.

103.02 EOH End of hole.

GEOTECHNICAL INFORMATION

Breaks

-		_								-		-
Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm	RQD (%)
0.00	96.7°	96.7°	-60.0°	Collar		8.6	11.6	3.0			2.1	70
14.63	108.7°	97.5°	-59.4°	Multi		11.6	14.6	3.0			1.3	44
17.68	109.8°	98.6°	-59.4°	Multi		14.6	17.7	3.1			0.3	10
20.73	108.8°	97.6°	-59.2°	Multi		17.7	20.7	3.1			2.8	91
23.77	109.8°	98.6°	-59.3°	Multi		20.7	23.8	3.1			2.2	73
26.82	114.9°	103.7°	-59.3°	Multi		23.8	26.8	3.1			2.2	71
29.87	110.2°	99.0°	-59.5°	Multi		26.8	29.9	3.1			2.9	96
32.92	111.2°	100.0°	-59.5°	Multi		29.9	32.9	3.1			2.3	74
35.97	112.4°	101.2°	-59.7°	Multi		32.9	36.0	3.1			3.0	98
39.01	111.7°	100.5°	-59.7°	Multi		36.0	39.0	3.0			3.0	100
42.06	112.9°	101.7°	-59.7°	Multi		39.0	42.1	3.1			3.0	99
45.11	113.2°	102.0°	59.7°	Multi		42.1	45.1	3.1			3.0	99
48.16	114.7°	103.5°	-59.7°	Multi		45.1	48.2	3.1			3.1	100
51.21	111.4°	100.2°	-59.8°	Multi		48.2	51.2	3.1			2.9	94
54.25	110.2°	99.0°	-59.7°	Multi		51.2	54.3	3.1			2.8	91
57.30	111.6°	100.4°	-59.6°	Multi		54.3	57.3	3.1			2.6	86
60.35	111.8°	100.6°	-59.8°	Multi		57.3	60.4	3.1			2.8	92
63.40	113.1°	101.9°	-59.9°	Multi		60.4	63.4	3.0			1.8	58
66.45	111.4°	100.2°	-59.7°	Multi		63.4	66.5	3.1			2.8	90
69.49	111.4°	100.2°	-59.9°	Multi		66.5	69.5	3.0			2.8	92
72.54	114.8°	103.6°	-60.0°	Multi		69.5	72.6	3.1			2.9	94
75.59	111.6°	100.4°	-60.1°	Multi		72.6	75.6	3.1			2.8	92
78.64	110.0°	98.8°	-59.8°	Multi		75.6	78.7	3.1			2.8	92
81.69	112.5°	101.3°	-60.0°	Multi		78.7	81.7	3.1			2.7	89
84.73	112.4°	101.2°	-59.9°	Multi		81.7	84.8	3.1			2.8	91
87.78	112.0°	100.8°	-60.1°	Multi		84.8	87.8	3.0			2.7	88
90.83	111.7°	100.5°	-60.0°	Multi		87.8	90.9	3.1			3.0	98
93.88	111.8°	100.6°	-59.7°	Multi		90.9	93.0	2.1			0.9	40
96.93	112.9°	101.7°	-60.4°	Multi		93.0	93.9	0.9			0.2	21
99.97	111.4°	100.2°	-60.2°	Multi		93.9	97.0	3.1			1.6	52
						97.0	100.0	3.1			2.6	86
						100.0	103.1	3.1			2.4	79

COLLAR INFORMATION

Claim:	4273194		
Projection:	NAD83 17N	Azimuth:	89.20°
Easting:	539,868.00 m	Dip:	-60.00°
Northing:	5,360,034.00 m	Length:	103.02 m
Elevation:	366.00 m	Core Size:	NQ
Storage:	CanREE explo site		
Comments:	Exploration Hole at	427194 claim	

Drill Log CR2014-18

WORK DONE BY

Work	From	То	Worker	Start	End
Drilling	0.0	103.0	Walker Drilling	2014-Sep-17	Sep-19
Downhole Survey	0.0	103.0	Walker Drilling	2014-Sep-19	Sep-19
Core Logging	0.0	103.0	Dennis Patron	2014-Sep-23	Sep-23
Core Logging	0.0	103.0	Athraa Koma	2014-Sep-23	Sep-23

DRILL LOG

			GEOLOGY	VISU	JAL			ASSAY	RESULTS	5	
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
55.00	103.10	ΒХ	Breccia Zone		1.0	40321	55.20	56.40	1.20		
			ntervals of mafic volcanic and mafic fragments are mixed in with		1.0	40322	56.40	57.60			
			nite dike either as rafts in a large dike or as country rock that has		1.0	40323	57.60	58.80			
		been cu	ut by multiple dikes. Some of the volcanic fragments display in situ		1.0	40324	58.80	60.00	1.20		
		crackly	brecciation. Phenocrysts are white subhedral to anhedral feldspar		1.0	40326	60.00	61.20	1.20		
		pseudo	crysts. Pyrite also occurs in blebs possibly replacing mafic		1.0	40327	61.20	62.40	1.20		
		•	rysts. The rock is non to weakly ankeritic, moderately magnetic		1.0	40328	62.40	63.60	1.20		
		and no	n to weakly calcareous in places. Below are the details of the core		1.0	40329	63.60	64.80	1.20		
		log.			1.0	40330	64.80	66.00	1.20		
					1.0	40331	66.00	67.20	1.20		
			59.23: Breccia Zone. 80% MV and 20% Syenite. Angular fragments		0.5	40332	67.20	68.40	1.20		
			nclusions noted on the syenite dykes suggesting that the MV is		0.5	40333	68.40	69.60	1.20		
			nan the Syenite. Meshwork of epidote pyrite veins is common in		0.5	40334	69.60	70.80	1.20		
		the MV	estimated to be 1% to 2% locally. UC=60°ca, LC=120°ca		0.5	40335	70.80	72.00	1.20		
					0.5	40336	72.00	73.20	1.20		
			56.46: 95% mafic volcanics and 5% syenite dyklets. The mafic			40337	73.20	74.40	1.20		
			cs (MV) contains few <1% feldpar phenos and and also contains		0.5	40338	74.40	75.60	1.20		
			orks of epidote pyrite stringers anastomosing the unit. 1% to 5%		0.5	40339	75.60	76.80	1.20		
			is the pyrite estimate. Pyrite also occurs at the margins of the		0.5	40340	76.80	78.00	1.20		
		syenite	dyklets. UC=120 and LC is 45°ca.		0.5	40341	78.00	79.20	1.20		
			33.00: Breccia Zone This interval contains angular fragments of		0.5	40342	79.20	80.40	1.20		
			olcanics that is cemented by syenite. Seems like the MV is		0.5	40343	80.40	81.60	1.20		
			ed and the syenite fills the interstices or voids thereby appearing		0.5	40344	81.60	82.80	1.20		
			reccia. This is possibly a tectonic breccia zone similar at 54.95 m		0.5	40467	82.80	84.00	1.20		
			Meshworks of pyrite epidote anostomosing the MV. 1% to 5% Py		0.5	40468	84.00	85.20	1.20		
		•	Pyrites noted on the margins of syenites.		0.5	40469	85.20	86.40	1.20		
		iocurry.	ryntes noted on the margins of sychites.		0.5	40470	86.40	87.60	1.20		
		79.10-7	79.90: Massive and crystalline syenite dyke that is included in this		0.5	40471	87.60	88.80	1.20		
		unit.			0.5	40472	88.80	90.00	1.20		
					0.5	40473	90.00	91.20	1.20		
		90.00-1	03.05: Mafic Volcanics intruded by 5% Syenite Dykes. The MV is		0.5	40474	91.20	92.40	1.20		
			foliated at 25°ca and contains epidote stringers anostomosing the		0.5	40476	92.40	93.60	1.20		
		,	oparallel to thye foliation fabric. Trace to 0.5% pyrite. There is a		0.5	40477	93.60	94.80	1.20		
			e and crystalline syenite dyke from 96.8 to 99 that is included in		0.5	40478	94.80	96.00	1.20		
		this inte			0.5	40479	96.00	97.20	1.20		
					0.5	40480	97.20	98.40	1.20		
					0.5	40481	98.40	99.60	1.20		
					0.5	40482	99.60	100.80	1.20		
						40483	100.80	102.00	1.20		
					0.5	40484	102.00	103.05	1.05		

CR2014-18

	GEOLOGY					ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
47.70	55.00	MVFP	Feldspar Phyric Mafic Volcanics		0.5	40315	48.00	49.20	1.20			
		A conta	ct at 80°ca marks the change into a unit that is porphyritic, but is			40316	49.20	50.40	1.20			
		very fin	e grained. Based on the fabric grain size this unit is interpreted to		0.5	40317	50.40	51.60	1.20			
		be an a	mphibolitized flow containing coarse feldspar phenocrysts. The		0.5	40318	51.60	52.80	1.20			
		feldspa	r phenos occupy 10% of the interval. There are silvery and		0.5	40319	52.80	54.00	1.20			
		not pyri the feld volcanic through of thin c ankeriti	sh metallic flecks that can be scratched by a knife suggesting it is ite or arsenopyrite but something different. After 50 meters depth spar phenos disappear and the core reverts back to massive mafic cs up to 54,95. Pervasive linear shreds of calcite epidote nout give the core a crackly appearance. Also present is a network chlorite stringers. The rock is non to weakly calcareous, non c and moderately to dstrongly magnetic. 0.5% to 1% pyrite g as disseminations and fracture fillings.		0.5	40320	54.00	55.20	1.20			

			GEOLOGY	VISU	JAL		4	ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
0.75	47.70	MVBX	Mafic Volcanics/Brecciated Mafic Volcanics			41911	0.75	2.00	1.25		
		This ex	oloration hole at 427194 is collared on what we classified as mafic			41912	2.00	3.20	1.20		
		volcani	cs or basalt. This mafic volcanic rock the core is weakly aligned at			41913	3.20	4.40	1.20		
		50°caai	nd 130°ca. It is dark blackish-greenish-pink, fine grained, and			41914	4.40	6.00	1.60		
			e and brecciated oftentimes. The seems to be brecciated in situ		0.8	40279	6.00	7.20	1.20		
		and exh	nibits a weak fabric of 60°ca. Shredded, wispy, pinkish green areas			40280	7.20	8.40	1.20		
			ensely pervasive throughout. However, short intervals of gabbro		1.0	40281	8.40	9.60	1.20		
			nite comes in and out of this unit as described below. Upper		1.0	40282	9.60	10.80	1.20		
			(UC) and lower contacts (LC) are sharp thats why it is recorded.		1.0	40283	10.80	12.00	1.20		
			o moderate foliation fabric that is present in the mafic volcanics		0.8	40284	12.00	13.20	1.20		
			so measured and recorded. The interstices or margins of the		1.0	40285	13.20	14.40	1.20		
			were filled with quartz and epidote. It is good signature for gold		2.0	40286	14.40	15.60	1.20		
			that pyrite mineralization is kind of weak. Sampling was taken on		3.0	40287	15.60	16.80	1.20		
			e for a possibility that other minerals including gold maybe		2.0	40288	16.80	18.00	1.20		
			. The host rock itself is weakly to moderately silicified thats why it		1.0	40289	18.00	19.20	1.20		
			Generally the rock is non calcareous, weakly ankeritic and		1.0	40290	19.20	20.40	1.20		
		modera	ately magnetic. Below are the details of the core log.		1.0	40291	20.40	21.60	1.20		
		0.61	5.70: 80% Brecciated mafic volcanics and 20% Syenite Dyke.		0.5	40292	21.60	22.80	1.20		
			ca, Foliation=50°ca, 0.5%- 1% Py		0.5	40293	22.80	24.00	1.20		
		LC-70 (a, 1011atron=50 ca, 0.5% 1% Fy		0.5	40294	24.00	25.20	1.20		
		5 70-	7.60: 99.5% Gabbro and 0.5% Syenite Dyke UC=70°ca, LC is not		0.5	40295	25.20	26.40	1.20		
			with one angle, the contact is an S shape top of the S is 90°ca and		0.5	40296	26.40	27.60	1.20		
			of the S is 50°ca and the middle is 0°ca, Trace to 0.5% Py		1.0	40297	27.60	28.80	1.20		
		Sottom			1.0	40298	28.80	30.00	1.20		
		7.60-	8.65: Massive Syenite. LC=145°ca, 0.5% Py		1.0	40299	30.00	31.20	1.20		
			2.65: 99% Brecciated Mafic Volcanics and 1% Syenite Dyke.		1.0	40301	31.20	32.40	1.20		
			5°ca, LC=30°ca, Foliation=130°ca, 1% Py		2.0	40302	32.40	33.60	1.20		
					1.0	40303	33.60	34.80	1.20		
		12.65-1	3.98: 98% Gabbro and 2% Syenite Dyke. UC=30°ca, LC=50°ca,		1.0	40304	34.80	36.00	1.20		
		0.5%- 1	% Py		0.5	40305	36.00	37.20	1.20		
					0.5	40306	37.20	38.40	1.20		
		13.98-1	4.25: 99% Mafic Volcanics and 1% Syenite Dyke. UC and LC		0.5	40307	38.40	39.60	1.20		
		=50°ca,	Foliation=45°ca, 1% Py		0.5	40308	39.60	40.80	1.20		
					0.5	40309	40.80	42.00	1.20		
			4.40: Gabbro. UC=50°ca, LC=90°ca, 1% Py		0.5	40310	42.00	43.20	1.20		
		14.40-1	4.95: Mafic Volcanics. UC=90°ca, LC=35°ca, Foliation=130°ca, 1%		0.5	40311	43.20	44.40	1.20		
		Ру			0.5	40312	44.40	45.60	1.20		
					0.5	40313	45.60	46.80	1.20		
			.5.35: 95% Syenite Dyke and 2% Mafic Volcanics. UC=35°ca, ca, 2% Py		0.5	40314	46.80	48.00	1.20		
			6.95: Massive Syenite with CPY. UC=60°ca, LC=120°ca, 2%- 5% Py ure fillings.								
			8.85: 98% Brecciated Mafic Volcanics and 2% Syenite Dyke. 9°ca, LC=130°ca, Foliation=130°ca, 1%- 2% Py								
		18.85-1 1% Py	9.25: 98% Gabbro and 2% Syenite Dyke. UC=130°ca, LC=40°ca,								
			0.30: Brecciated mafic Volcanics. UC=40°ca, LC=130°ca, n=130°ca								
			0.75: 70% Gabbro and 30% Syenite Dyke, 1% Py. UC=130°ca, °ca, 1% Py								
			2.15: 99% Brecciated Mafic Volcanics and 1% Syenite Dyke. s°ca, LC=35°ca, 1%- 2% Py								

22.15-22.30: Gabbro. UC=35°ca, LC=90°ca, 0.5% Py 22.30-22.50: 50% Mafic Volcanics and 50% Syenite Dyke. UC=90°ca, LC=145°ca, 0.5%-2% Py

				GEO	LOGY					VI	SUAL	AL ASSAY RESULTS)			
om	То	Code	Commer	nt						Cp 🤋	% Py%	Samp	ole	From	То	Length	Au gpt	Cu		
			2.70: Gabl 3.30: Mafi					oliation=5	0°ca, 1%											
			3.70: Brec 4.80: 95% 6 Py					30°ca, LC=	:145°ca,											
		25.30-2	5.30: Mafi 7.20: 40% °ca, LC=10	Gabbro,	40% Syen	ite Dyke	e and 20%		canics.											
			0.40: 98% ca, Foliatio				venite Dyk	e. UC=105	5°ca,											
			0.80: Syen 130°ca, LC	-		bbro inc	clusions th	iat range fi	rom 5-10											
			0.85: Mafi 2.40: 95% % Py						=40°ca,											
		32.40-3 LC=40°c	2.70: 98% a2% Py	Mafic vol	canics an	d 2% Sy	enite Dyk	e. UC=40°o	ca,											
		32.70-3 1% Py	5.25: 95%	Gabbro a	ind 5% Sy	enite Dy	yke. UC=4	0°ca, LC=1	.25°ca,											
			6.30: 90% ca, Foliatio				Syenite Dy	ke. UC=12	25°ca,											
			1.40: 98% associated			-	-		-											
		41.40-4	2.25: Mas	sive Syeni	ite. UC=13	35°ca, L(C=125°ca,	0.5% Py												
			4.17: mafi directions.				-	at cuts the	e unit at											
			5.35: This s. There ar																	
			7.50: Mafi arp at 80°c			% syenit	e dykes. L	IC is arbitra	ary but											
0.00	0.75		Overbur covery was y placed 1.	measure	-			ller's block	(indicate											
		dilute hy fizzes in	Il the core ydrochlorid contact w	acid HCl)) and pota and the k	assium f KFC staii	erricyanic ns the cor	le (KFC). Th e blue in tl	he acid he											
			e of ankeri ne relative				re is teste	d with a m	nagnet to											

GEOTECHNICAL INFORMATION

>10cm RQD (%) 2.9

1.8

2.8

3.0

2.8

3.0

2.8

2.9

2.8

2.8

2.9

2.9

3.0 3.0

3.1 3.0

2.4

3.0

3.0

3.0

3.0

2.9

2.9

2.9

2.9

2.7

2.9

Breaks

Rec (%)

Depth	Test	Az	Dip	Туре	Comments	-	From	То	Len	Core
0.00	89.2°	89.2°	-60.0°	Collar		-	0.6	3.7	3.1	
17.68	101.2°	90.0°	-59.6°	Multi			3.7	5.5	1.8	
20.73	100.8°	89.6°	-59.2°	Multi			5.5	8.5	3.1	
23.77	102.5°	91.3°	-59.5°	Multi			8.5	11.6	3.1	
26.82	104.8°	93.6°	-59.5°	Multi			11.6	14.6	3.0	
29.87	104.5°	93.3°	-59.6°	Multi			14.6	17.7	3.1	
32.92	102.7°	91.5°	-59.4°	Multi			17.7	20.7	3.1	
35.97	107.2°	96.0°	-59.5°	Multi			20.7	23.8	3.1	
39.01	105.9°	94.7°	-59.5°	Multi			23.8	26.8	3.1	
42.06	103.9°	92.7°	-59.6°	Multi			26.8	29.9	3.1	
45.11	104.3°	93.1°	-59.4°	Multi			29.9	32.9	3.1	
48.16	103.7°	92.5°	-59.6°	Multi			32.9	36.0	3.1	
51.21	104.6°	93.4°	-59.6°	Multi			36.0	39.0	3.0	
54.25	103.0°	91.8°	-59.7°	Multi			39.0	42.1	3.1	
57.30	104.1°	92.9°	-59.6°	Multi			42.1	45.1	3.1	
60.35	103.6°	92.4°	-59.6°	Multi			45.1	48.2	3.1	
63.40	106.5°	95.3°	-59.7°	Multi			48.2	51.2	3.1	
66.45	102.9°	91.7°	-59.7°	Multi			51.2	54.3	3.1	
69.49	105.6°	94.4°	-59.6°	Multi			54.3	57.3	3.1	
72.54	105.6°	94.4°	-59.7°	Multi			57.3	60.4	3.1	
75.59	107.2°	96.0°	-59.6°	Multi			60.4	63.4	3.0	
78.64	108.2°	97.0°	-59.6°	Multi			63.4	66.5	3.1	
81.69	111.7°	100.5°	-59.6°	Multi			66.5	69.5	3.1	
84.73	111.2°	100.0°	-59.5°	Multi			69.5	72.6	3.1	
87.78	108.1°	96.9°	-59.6°	Multi			72.6	75.6	3.1	
90.83	111.8°	100.6°	-59.6°	Multi			75.6	78.7	3.1	
93.88	102.4°	91.2°	-59.6°	Multi			78.7	81.7	3.1	
96.93	102.8°	91.6°	-59.5°	Multi						
99.97	101.9°	90.7°	-59.6°	Multi						

4273175

NAD83 17N

360.00 m

539,555.00 m

5,359,453.00 m

Azimuth:

Length:

Core Size:

Dip:

327.10°

-60.00°

89.92 m

NQ

Drill Log CR2014-19

COLLAR INFORMATION

Claim:

Easting:

Northing:

Elevation:

Projection:

				WORK DO	ONE BY
Work	From	То	Worker	Start	End
Drilling	0.0	89.9	Walker Drilling	2014-Sep-20	Sep-21
Downhole Survey	0.0	89.9	Walker Drilling	2014-Sep-21	Sep-21
Core Logging	0.0	89.9	Dennis Patron	2014-Sep-25	Sep-25
Core Logging	0.0	89.9	Athraa Koma	2014-Sep-25	Sep-25

Storage: CanREE explo site

Comments: This drillhole was alligned at night and the drill was stuck into the mud. We just drill on it anyways but upon taking the Reflex survey, the azimuth is way off the target. Reflex have erratic reading due to abrupt change in magnetic susceptibility between the volcanics and syenite.

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
61.65	89.94	MV	Mafic Volcanics			40581	62.20	63.40	1.20		
		A shar	pupper contact of 85°ca comes the Mafic Volcanics. This lithologic			40582	63.40	64.60	1.20		
		unit is	classified into altered mafic volcanic and porphyritic mafic volcanics			40583	64.60	65.80	1.20		
		and the	e plain mafic volcanic. The first is pinkish grey due hematite			40584	65.80	67.00	1.20		
		alterat	on and streaks of dark green presumed to be chlorite. The second			40585	67.00	68.20	1.20		
		is what	I call feldpar phyric mafic volcanics due to the presence of 5 mm			40586	68.20	69.40	1.20		
			feldspar phenocryst. Based on the fabric grain size this unit is			40587	69.40	70.60	1.20		
			eted to be a flow. This unit is dark grey with 3-10 mm waxy grey			40588	70.60	71.80	1.20		
		•	crysts throughout, 3% with localized areas up to 5%. The third is the			40589	71.80	73.00	1.20		
			mafic volcanics which dark greenish grey, fine grained and			40590	73.00	74.20	1.20		
			e. Also present is a network of thin chlorite stringers. This mafic			40591	74.20	75.40	1.20		
			c is locally intruded by syenite porphyry. This felsic intrusive is			40592	75.40	76.60	1.20		
			o-orange, medium grained porphyritic syenite dyke. It does not			40593	76.60	77.80	1.20		
			etely intrude the core, but instead features tongues of the host			40594	77.80	79.00	1.20		
			olcanic. Characteristic of the dyke are rounded, 3-4mm white			40595	79.00	80.20	1.20		
		•	crysts, 0.5%. Below are the details of each litholgy mentioned			40596	80.20	81.40	1.20		
		above.				40597	81.40	82.60	1.20		
		C4 CF -	70.00. 00% (1			40598	82.60	83.80	1.20		
			70.90: 98% Hematite altered Mafic Volcanics and 2% Syenite Dyke.			40599	83.80	85.00	1.20		
			eration covers 10% of the Mafic Volcanics. UC=85°ca, LC=80°ca,			40601	85.00	86.20	1.20		
		Foliatio	in =50			40602	86.20	87.40	1.20		
		70.00	74.90: Mafic Volcanics. UC=85°ca, LC=125°ca			40603	87.40	88.40	1.00		
		70.90-	4.90. Mane Volcanics. OC-65 Ca, EC-125 Ca			40604	88.40	89.40	1.00		
		74.90-8	31.05: Hematite altered Mafic Volcanics. The alteration covers								
		10% of	the Mafic Volcanics. UC=125°ca, LC=45°ca								
		81.05-8	34.85: Hematite altered Mafic Volcanics. The alteration covers								
		100% c	f the Mafic Volcanic Surface. UC=45°ca, LC=140°ca								
		84.85-8	35.40: Feldspar Phyric Mafic Volcanics. The feldspar phenocrysts ar								
		less tha	an 5mm and the phenocrysts are stretched. UC=140°ca, LC=130°ca								
			39.94: Hematitle altered Mafic Volcanics. The alteration covers the Mafic Volcanics Surface.								

	GEOLOGY			VISUAL ASSAY RESULTS				i			
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
54.30	61.65	SY	Syenite Porphyry			40574	55.00	56.20	1.20		
		A sharp	upper contact of 140°ca enters a more massive looking			40576	56.20	57.40	1.20		
		porphy	ritic unit that resembles a hematite altered syenite. Overall, it is			40577	57.40	58.60	1.20		
	porphyritic unit that resembles a hematite altered syenite. Overall, it is medium/ dark pinkish grey to greyish pink mottled and streaked, mediu				40578	58.60	59.80	1.20			
		grained	l with a faint speckling, and fairly massive with a weak fabric			40579	59.80	61.00	1.20		
		ground rarely f weakly	I by the streaky colour variations at about 75 to 85°ca. The mass appears to be feldspathic. The rock is very competent and ractured. Non to weakly magnetic throughout interval. Matrix is pervaded with ankerite and gashy irregular veinlets are both ic and calcitic. Trace pyrites. Sharp lower contact at 85°ca.			40580	61.00	62.20	1.20		

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
20.30	54.30	BX	Breccia Zone			40545	21.40	22.60	1.20		
		This zo	ne consists of angular mafic fragments or inclusions within a			40546	22.60	23.80	1.20		
		syenite	e intrusion. There are 2 lithologic units that comprises the			40547	23.80	25.00	1.20		
		fragme	ents. They are mafic volcanics and amphibole rich mafic intrusive			40548	25.00	26.20	1.20		
		which	were identified in thin section as amphibolite. The sizes of the			40549	26.20	27.40	1.20		
		mafic f	ragments range from 3 cm to 15 cm. Hematite alterations is			40551	27.40	28.60	1.20		
		pervas	ive. Metallic minerals were observed to be occurring at the rims of			40552	28.60	29.80	1.20		
		the fra	gments. Brecciated mafic volcanics refers to the mafic volcanics			40553	29.80	31.00	1.20		
		that se	ems to be brecciated in situ and was streched but fragments were			40554	31.00	32.20	1.20		
		not sca	attered. The rock is non calcareous, weakly to moderately magnetic			40555	32.20	33.40	1.20		
		and we	eakly ankeritic. Also included in this zone are the massive syenite			40556	33.40	34.60	1.20		
		that co	mes in and out of this sub volcanic unit like tongues. Below are the			40557	34.60	35.80	1.20		
		details	of each lithology including the contact angles.			40558	35.80	37.00	1.20		
						40559	37.00	38.20	1.20		
		20.30-	20.90: Brecciated Mafic Volcanics. UC=140°ca, LC=60°ca			40560	38.20	39.40	1.20		
						40561	39.40	40.60	1.20		
		20.90-	21.30: Hematite altered Amphibolite. The alterations are patches			40562	40.60	41.80	1.20		
		on the	Amphibolite and they cover 50% UC=60°ca, LC=140°ca			40563	41.80	43.00	1.20		
						40564	43.00	44.20	1.20		
		21.30-	23.70: Massive Syenite with Amphibolite Xenoliths. The Xenoliths			40565		44.20	1.20		
		range f	from 3cm to 15cm, they are sub-rounded to angular in shape.				44.20				
		UC=14	0°ca, LC=130°ca			40566	45.40	46.60	1.20		
						40567	46.60	47.80	1.20		
		23.70-	24.10: Mafic Volcanics. UC=130°ca, LC=140°ca			40568	47.80	49.00	1.20		
		24.10-	24.90: Massive Syenite with 4 Amphibolite Xenoliths. The			40569	49.00	50.20	1.20		
		Xenolit	ths range from 2cm to 15 cm.			40570	50.20	51.40	1.20		
						40571	51.40	52.60	1.20		
		24.90-	25.95: 95% Mafic Volcanics, 4% Syenite Dyke and 1% Amphibolite			40572	52.60	53.80	1.20		
		Xenolit	ths within the Syenite Dyke. UC=140°ca, LC=130°ca			40573	53.80	55.00	1.20		
		25.95-	26.20: Mafic Volcanics. UC=130°ca, LC=70°ca, Foliation=50°ca								
			26.80: Hematite altered Mafic Volcanics. The alteration covers the surface of the Mafic Volcanic rock. UC=70°ca, LC=65°ca								
		26.98-3 patche	26.98: Syenite Dyke. UC=65°ca, LC=60°ca 28.75: Hematite altered Mafic Volcanics. The alteration are is that run from the surface to the center of the core, it covers 30% Mafic Volcanics. UC=60°ca, LC=140°ca, Foliation=140								
			34.25: 98% Hematite altered Amphibolite, 2% Syenite Dyke. The ion covers 50% of the Amphibolite. UC=140, LC=150°ca								
		The he	36.70: 98% Hematite altered Mafic Volcanics and 2% Syenite Dyke matitle alteration covers only 20% of the mafic volcanics. 0°ca, LC=30°ca								
		38.40-	38.40: Massive Syenite. UC=30°ca, LC=140°ca 39.20: Hematitle altered Mafic Volcanics. The alteration covers f the Mafic Volcanics. UC and LC =140°ca								
		41.45-	41.45: Massive Syenite. UC=140°ca, LC=130°ca 42.15: 99% Hematite altered Mafic Volcanics and 1% Syenite Dyke. ceration covers 20% of the Mafic Volcanics . UC=130°ca, LC=60°ca								
		43.05- The alt there a	43.05: Massive Syenite. UC=60°ca, LC=60°ca 46.80: 95% Hematite altered Amphibolite and 5% Syenite Dyke. ceration covers 40% of the Amphibolite. Within the Syenite Dykes are large Amphibolite Xenoliths ranging from 10cm-15cm that are unded to angular in shape. Typical of Breccia Zone UC=60°ca, 0°ca								

		GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
		47.40-50.50: 95% Hematite altered Amphibolite and 5% Syenite Dyke with Amphibolite Xenoliths. The alteration covers 40% of the Amphibolite. Within the Syenite Dykes there are large Amphibolite Xenoliths ranging from 10cm-15cm that are subrounded to angular in shape. UC=110°ca, LC=70°ca									
		50.50-51.25: 98% Hematite altered Mafic Volcanics and 2% Syenite Dyke. The alteration covers 20% of the Mafic Volcanics . UC=70°ca, LC=90°ca, Foliation=70°ca									
		51.25-54.30: 98% Hematitle altered Amphibolite and 2% Syenite Dyke. The alteration covers 10% of the Amphibolite. UC=90°ca, LC=140°ca									
15.90	20.30	SY Syenite porphyry			40541	16.60	17.80	1.20			
		Milky-grey-white and pink, Syenite porphyry. The groundmass is medium			40542	17.80	19.00				
		to dark, maroon-grey, fine grained, pitted, felted chlorite-brick red			40543	19.00	20.20				
		feldspar/feldspathoid material. Locally, finer grained (2-3mm), dark grey- green, lath-shaped, mafic (originally amphiboles?) phenocryst/porphyroblasts occur with the larger white/pink felsic phenocrysts. Small (gravel-sized) dark green mafic xenoliths are entrained			40544	20.20	21.40	1.20			
		within the coherent, relatively unaltered and unmineralized intrusive rock. Alteration locally obscures the porphyritic texture.									
9.00	15.90	MVSY Mafic Volcanics Syenite package			41909	9.00	10.40	1.40			
		The hole is collared into a mafic volcanics that is intruded by syenite. The			41910	10.40	11.80	1.40			
		hole begins with pinkish, massive and crystalline, locally porphyritic,			40537	11.80	13.00				
		syenite dyke up to 11.8 m. depth. This is followed by 90% mafic volcanic			40538	13.00	14.20				
		intruded by 10% syenite. The syenite occurs at 15.45 and 15.70 m depth			40539	14.20	15.40				
		respectively. Their thickness is 3 cm and 5 cm with contact angle of 150 and 140°ca respectively.			40540	15.40	16.60	1.20			
0.00	9.00	OVB Overburden Core recovery was measured to begin at 29.52 ft. The driller's block									
		indicate that they placed 12.0 m (39.4 ft) of NW casing. The core									
		recovered from 9 m to 11.3 m were unconsolidated gravels so we consider this section as part of the overburden.									
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid									
		fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.									

89.92 EOH End of hole.

GEOTECHNICAL INFORMATION

65

70

85

80

90

95

92

90

99

89

77

90

97

98

97

93

92

86

77

90

90

83

96

90

77

73

51

>10cm RQD (%) 2.1

2.1

2.6

2.5

2.8

2.2

2.9

2.8

3.0

2.7

2.5

2.3

3.0 2.5

3.0

2.8

2.8

2.6

2.4

2.8

2.7

2.5

2.9

2.8

2.4

2.2

0.8

Breaks

5

15

15

19

13

17

16

12

16

16

12

8

7

8 9

11

3

15

16

13

7

14

10

11

11

15

8

Rec (%)

Core

		-							
Depth	Test	Az	Dip	Туре	Comments	From	То	Len	
0.00	327.1°	327.1°	-60.0°	Collar		9.0	12.2	3.2	
16.76	86.7° X	326.3°	-58.2°	Multi		12.2	15.2	3.0	
19.81	339.1° X	326.3°	-58.8°	Multi		15.2	18.3	3.1	
22.86	337.5°	326.3°	-59.1°	Multi		18.3	21.3	3.1	
25.91	326.2°	315.0°	-58.9°	Multi		21.3	24.4	3.1	
28.96	18.5° X	316.4°	-58.4°	Multi		24.4	27.4	3.1	
32.00	329.1°	317.9°	-58.9°	Multi		27.4	30.5	3.1	
35.05	325.6°	314.4°	-58.7°	Multi		30.5	33.5	3.1	
38.10	326.6°	315.4°	-59.0°	Multi		33.5	36.6	3.0	
41.15	346.7° X	314.9°	-59.2°	Multi		36.6	39.6	3.1	
44.20	16.3° X	314.4°	-58.4°	Multi		39.6	42.7	3.1	
47.24	19.8° X	313.9°	-58.6°	Multi		42.7	45.7	3.1	
50.29	324.6°	313.4°	-58.8°	Multi		45.7	48.8	3.1	
53.34	16.8° X	314.3°	-58.7°	Multi		48.8	51.8	3.1	
56.39	348.4° X	315.3°	-59.3°	Multi		51.8	54.9	3.1	
59.44	336.1° X	316.3°	-59.3°	Multi		54.9	57.9	3.1	
62.48	16.8° X	317.2°	-58.8°	Multi		57.9	61.0	3.1	
65.53	17.0° X	318.2°	-58.8°	Multi		61.0	64.0	3.0	
68.58	353.3° X	319.1°	-58.9°	Multi		64.0	67.1	3.1	
71.63	331.3°	320.1°	-59.0°	Multi		67.1	70.1	3.1	
74.68	13.2° X	317.6°	-58.9°	Multi		70.1	73.2	3.1	
77.72	326.4°	315.2°	-58.7°	Multi		73.2	76.2	3.1	
80.77	328.2°	317.0°	-58.6°	Multi		76.2	79.3	3.1	
83.82	349.9° X	317.0°	-58.8°	Multi		79.3	82.3	3.1	
86.87	13.7° X	317.0°	-59.0°	Multi		82.3	85.4	3.1	
89.92	16.1°X	317.0°	-59.1°	Multi		85.4	88.4	3.0	
						88.4	89.9	1.5	

COLLAR INFORMATION

Claim:	4273194		
Projection:	NAD83 17N	Azimuth:	273.10°
Easting:	539,858.00 m	Dip:	-60.00°
Northing:	5,360,036.00 m	Length:	93.91 m
Elevation:	366.00 m	Core Size:	NQ
Storage:	CanREE explo site		
Comments:	Exploration Hole at	427194 claim	

D	ril	l Log	CR2014	-20
			WORK DO	ONE BY
From	То	Worker	Start	End

Work	From	То	Worker	Start	End
Drilling	0.0	93.9	Walker Drilling	2014-Sep-19	Sep-22
Downhole Survey	0.0	93.9	Walker Drilling	2014-Sep-22	Sep-22
Core Logging	0.0	93.9	Dennis Patron	2014-Sep-27	Sep-27
Core Logging	0.0	93.9	Athraa Koma	2014-Sep-27	Sep-27

_			GEOLOGY	VISU	JAL		Å	ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
82.40	93.90	SY	Syenite Porphyry			41885	82.80	84.00	1.20		
		A sharp	o contact of 140°ca comes the pinkish, medium to coarse grained,			41886	84.00	85.20	1.20		
		porphy	ritic, massive and crystalline, coherent, Syenite porphyry intrusive			41887	85.20	86.40	1.20		
		Short ir	ntervals of volcanic (V4) are mixed in with the dike either as rafts in			41888	86.40	87.60	1.20		
		0	dike or as country rock that has been cut by multiple dikes. Some			41889	87.60	88.80	1.20		
			olcanic fragments display in situ crackly brecciation. Phenocrysts			41890	88.80	90.00	1.20		
			ite subhedral to anhedral feldspar pseudocrysts. The rock is non			41891	90.00	91.20	1.20		
			ic weakly to non magnetic except for the associated mafic			41892	91.20	92.40	1.20		
			cs which are moderately magnetic and non calcareous. Trace			41893	92.40	93.90	1.50		
		pyrites	thats why no samples were collected. Below are the details.								
		82.40-8	35.95, Syenite Dyke. UC=140°ca, LC=110°ca								
		85.95-8	36.10: Amphibolite. UC=110°ca, LC=125°ca, 0.5%Py								
			37.18: Breccia zone. UC=125°ca, LC=130°ca								
			38.05: Amphibolite with 4 small syenite intrusions								
		(35,40,	30,35°ca). UC=130°ca, LC=135°ca, 1% Py								
		88.05-8	38.20: Breccia Zone. UC=135°ca, LC=45°ca								
		88.20-9	92.40: Syenite Dyke. UC=45°ca, LC=60°ca								
		92.40-9	92.45: Amphibolite. UC=60°ca, LC=60°ca								
		92.45-9	3.08: Syenite Dyke with less phenocrysts. UC=60°ca, LC=60°ca								
		93.08-9	93.08-93.89: Syenite. UC=60°ca, LC=110°ca								
		93.89-9	93.92: Amphibolite. UC=110°ca, LC=110°ca								
			93.94: Syenite. UC=110°ca								

		GEOLOGY	VISU	JAL		-	ASSAY	RESULTS		
rom	То	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
65.40	82.40	MVFP Feldpsar Phyric Mafic Volcanics			40819	66.00	67.20	1.20		
		A contact at 40°ca marks the change into a unit that is amphibolitized			40820	67.20	68.40	1.20		
		mafic volcanics containing 5 to 12 mm diameter of feldspar phenocrysts			40821	68.40	69.60	1.20		
		set in a very fine grained matrix. Based on the fabric grain size this unit is interpreted to be an amphibolitized flow containing coarse feldspar			40822	69.60	70.80	1.20		
		phenocrysts. The feldspar phenos occupy 10% of the interval. There are			40823 40824	70.80 72.00	72.00 73.20	1.20 1.20		
		silvery and yellowish metallic flecks that can be scratched by a knife			40824	72.00	74.40	1.20		
		suggesting it is not pyrite or arsenopyrite but something different. The			40827	74.40	75.60	1.20		
		feldspar phenos comes in and out of the mafic volcanic intervals but was			40828	75.60	76.80	1.20		
		recorded properly below. Pervasive linear shreds of calcite epidote			40829	76.80	78.00	1.20		
		throughout give the core a crackly appearance. Also present is a network			40830	78.00	79.20	1.20		
		of thin chlorite stringers. The rock is non to weakly calcareous, non ankeritic and moderately to strongly magnetic. 0.5% to 2% pyrite occuring			40831	79.20	80.40	1.20		
		as disseminations and fracture fillings. Below are the details of the core			40832	80.40	81.60	1.20		
		log.			41884	81.60	82.80	1.20		
		65.40-65.80: Amphibolitized Mafic Volcanics with feldspar phenocrysts. UC=40°ca, LC=55°ca								
		65.80-66.00: Breccia Zone. UC=55°ca, LC=60°ca								
		66.00-66.90: Mafic Volcanics. UC=60°ca, LC=80°ca, 1-2% Py								
		66.90-67.15: Breccia Zone. UC =80°ca, LC=110°ca								
		67.15-67.90: Brecciated Mafic Volcanics. UC=110°ca, LC=75°ca								
		67.90-68.20: Breccia Zone. UC=75°ca, LC=150°ca, Tr Py								
		68.20-68.40: Mafic Volcanics. UC=150°ca, LC=70°ca, 0.5% Py								
		68.40-68.70: Amphibolitized mafic volcanics with feldspar phenocrysts.								
		UC=70°ca, LC =50°ca,								
		68.70-68.95: Breccia zone. UC=50°ca, LC =40°ca, 2% Py								
		68.95-69.05: Mafic Volcanics. UC=40°ca, LC=120°ca								
		69.05-69.25: Breccia Zone. UC=120°ca, LC=140°ca,								
		69.25-69.55: Syenite Dyke. UC=140°ca, LC=150°ca								
		69.55-70.25: Breccia Zone. UC=150°ca, LC =145°ca, 0.5% Py								
		70.25-70.35: Ultramafic Dyke. UC=145°ca, LC=135°ca 70.35-70.90: Breccia Zone. UC=135°ca, LC=30°ca								
		70.90-71.15: Amphibolitized mafic volcanics with feldspar phenocrysts.								
		UC=30°ca, LC=155°ca								
		71.15-72.30: Breccia Zone. UC=155°ca, LC=50°ca 72.30-72.57: Amphibolitized mafic volcanics with feldspar phenocrysts.								
		UC=50°ca, LC=60°ca								
		72.57-72.85: Breccia Zone. UC=60°ca, LC=50°ca								
		72.85-73.45: Amphibolitized mafic volcanics with few feldspar phenocrysts. UC=50°ca, LC =135°ca								
		73.45-73.60: Syenite Dyke. UC=135°ca, LC=130°ca								
		73.60-74.25: Brecciated mafic volcanics. UC =130°ca, LC=130°ca								
		74.25-74.30: Syenite Dyke. UC=130°ca, LC=130°ca								
		74.30-74.50: Breccia Zone. UC =130°ca, LC=100°ca 74.50-74.80: Syenite Dyke. UC=100°ca, LC=35°ca, tr Py								
		74.80-75.05: Amphibolitized mafic volcanics with few feldspar								
		phenocrysts. UC=35°ca, LC=150°ca								
		75 05 76 201 Braccia Zana 110-150°ca 1.0-120°ca 20/ bi								
		75.05-76.20: Breccia Zone. UC=150°ca, LC=130°ca,2% Py 76.20-76.45: Mafic Volcanics. UC=130°ca, LC=130°ca								
		76.45-77.75: Brecciated Mafic Volcanics. UC=130°ca, LC=130°ca, Strong								
		Foaliation 130°ca								
		77.7E.70.00. Amphibalitized metionalization with following the second								
		77.75-78.90: Amphibolitized mafic volcanics with feldspar phenocrysts. UC=130°ca, LC=145°ca								

78.90-79.00: Syenite Dyke. UC=145°ca, LC=120°ca

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
			30.00: Amphibolitized mafic volcanics with feldspar phenocrysts. o°ca, LC=50°ca									
		80.05-8	30.05: Syenite Dyke. UC=50°ca, LC=50°ca 30.30: Amphibolitized mafic volcanics with feldspar phenocrysts. ca, LC=35°ca									
		80.30-8	31.60: Brecciated Amphibolite. UC=35°ca, LC=140°ca, 0.5% Py									
		81.60-8	2.25: Syenite Dyke. UC=140°ca, LC=150°ca, Tr Py									
			82.40: Amphibolitized mafic volcanics with feldspar phenocrysts. J°ca, LC=140°ca									

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
46.60	65.40	BX	Breccia Zone			40803	46.80	48.00	1.20		
			tervals of hematite altered mafic volcanics and mafic fragments			40804	48.00	49.20	1.20		
			ed in with the syenite dike either as rafts in a large dike or as			40805	49.20	50.40	1.20		
			rock that has been cut by multiple dikes. Some of the volcanic			40806	50.40	51.60	1.20		
			nts display in situ crackly brecciation. Phenocrysts are white			40807	51.60	52.80	1.20		
		-	ral to anhedral feldspar pseudocrysts. Pyrite also occurs in blebs			40808	52.80	54.00	1.20		
		possibly	replacing mafic phenocrysts. The rock is non to weakly ankeritic,			40809	54.00	55.20	1.20		
		modera	tely magnetic and non to weakly calcareous in places. Below are			40810	55.20	56.40	1.20		
		the det	ails of the core log.			40811	56.40	57.60	1.20		
						40812	57.60	58.80	1.20		
		46.60-4	7.30: Breccia Zone. UC=90°ca, LC=45°ca, Foliation=30°ca, 0.5% Py			40813	58.80	60.00	1.20		
		47 30-47 95. Mafic Volcanics LIC=45°ca LC=70°ca Foliation=13				40814	60.00	61.20	1.20		
		47.30-4	7.95: Mafic Volcanics. UC=45°ca, LC=70°ca, Foliation=130°ca,			40815	61.20	62.40	1.20		
		0.5% Py	,			40816	62.40	63.60	1.20		
						40817	63.60	64.80	1.20		
			8.10: Breccia Zone. UC=70°ca, LC=40°ca, tr-0.5% Py			40818	64.80	66.00	1.20		
		48.10-4 0.5% Ργ	8.35: Mafic Volcanics. UC=40°ca, LC=105°ca, Foliation=35°ca,								
		40.25.4	0.05. Breezie Zene LLC 105° LC 20° E-listics 20° 0.5°								
			9.05: Breccia Zone. UC=105°ca, LC=30°ca, Foliation=30°ca, 0.5%								
		Ру									
		49.05-4	9.75: Mafic Volcanics. UC=30°ca, LC=145°ca, Foliation=30°ca,								
		0.5% Py									
		49.75-5	1.22: Breccia Zone. UC=145°ca, Foliation=135°ca, 0.5% Py								
			2.40: Hematite altered Mafic Volcanics. The alteration covers f the mafic volcanics surface. LC=35°ca, tr Py								
		52 40-5	2.60: Syenite Dyke. UC and LC =35°ca, tr Py								
			3.20: Hematite altered Mafic Volcanics. The alteration covers								
			f the mafic volcanics surface. UC=35°ca, LC=120°ca, Tr Py								
		53.20-5 0.5% Py	9.60: Breccia Zone. UC=120°ca, LC=130°ca, Foliation=150°ca, ,								
		59 60-6	0.80: Mafic Volcanics. UC=130°ca, LC=50°ca, Foliation=150°ca,								
		0.5 Py									
		60.80-6	1.20: Breccia Zone. UC=50°ca, LC=40°ca, 0.5% Py								
		61.20-6	1.70: Mafic volcanics. UC=40°ca, LC=160°ca, 0.5%Py								
		61.70-6	1.80: Breccia Zone. UC=160°ca, LC=130°ca								
		61.80-6	1.90: Brecciated mafic volcanic. UC=130°ca, LC=40°ca								
		61.90-6	2.05: Breccia Zone. UC=40°ca, LC=145°ca								
			2.20: Amphibolite. UC=145°ca, LC=35°ca,0.5% Py								
			2.35: Breccia zone. UC=35, LC=40								
			2.80: Mafic Volcanics. UC=40, LC=140								
			3.20: Syenite Dyke. UC=140°ca, LC=60°ca								
			3.45: Breccia Zone. UC=60°ca, LC=10°ca								
			4.25: Mafic Volcanics. UC=10°ca, LC=30°ca, 1% Py								
			4.50: Breccia Zone. UC=30°ca, LC=50°ca								
			4.70: Mafic Volcanics. UC=50°ca, LC=110°ca								
			5.10: Breccia Zone. UC=110°ca, LC=90°ca, 1% Py								
		05.10-6	5.25: Mafic Volcanics. UC=90°ca, LC=25°ca,0.5% Py								
			5.40: Syenite Dyke. UC=25°ca, LC=40°ca								

			GEOLOGY	VISU	JAL		ŀ	ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
1.10	46.60	MVBX	Mafic Volcanics/Brecciated Mafic Volcanics			41906	2.25	3.45	1.20		
		This ex	ploration hole at 427194 is collared on what we classified as mafic			41907	3.45	4.65	1.20		
		volcani	cs or basalt. This mafic volcanic rock the core is weakly aligned at			41908	4.65	6.00	1.35		
		50°ca a	nd 130°ca. It is dark blackish-greenish-pink, fine grained, and			40345	6.00	7.20	1.20		
			e and brecciated oftentimes. The seems to be brecciated in situ			40346	7.20	8.40	1.20		
			nibits a weak fabric of 60°ca. Shredded, wispy, pinkish green areas			40347	8.40	9.60	1.20		
			ensely pervasive throughout. However, short intervals of gabbro			40348	9.60	10.80	1.20		
		,	enite comes in and out of this unit as described below. Upper			40349	10.80	12.00	1.20		
			(UC) and lower contacts (LC) are sharp thats why it is recorded.			40351	12.00	13.20	1.20		
			o moderate foliation fabric that is present in the mafic volcanics			40352	13.20	14.40	1.20		
			so measured and recorded. The interstices or margins of the			40353	14.40	15.60	1.20		
			were filled with quartz and epidote. It is good signature for gold			40354	15.60	16.80	1.20		
			that pyrite mineralization is kind of weak. Sampling was taken on			40355	16.80	18.00	1.20		
			e for a possibility that other minerals including gold maybe			40356	18.00	19.20	1.20		
		•	t. The host rock itself is weakly to moderately silicified thats why it Generally the rock is non calcareous, weakly ankeritic and			40357	19.20	20.40	1.20		
			ately magnetic. Below are the details of the core log.			40358	20.40	21.60	1.20		
		mouer	ately magnetic. below are the details of the core log.			40359	21.60	22.80	1.20		
		1 05-	2.50: Mafic Volcanics. LC=105°ca			40360	22.80	24.00	1.20		
			3.20: Brecciated Mafic Volcanics with 20% Quartz-Epidote			40361	24.00	25.20	1.20		
			g. UC=105°ca, LC=135°ca, Foliation=60°ca			40362	25.20	26.40	1.20		
		vennie				40363	26.40	27.60	1.20		
		3 20-	3.65: Syenite Dyke. UC=135°ca, LC=135°ca			40364	27.60	28.80	1.20		
			7.30: Brecciated Mafic Volcanics with 30% Quartz-Epidote			40365	28.80	30.00	1.20		
			y. UC=135°ca, LC=40°ca, Foliation=50°ca			40366	30.00	31.20	1.20		
						40367	31.20	32.40	1.20		
		7.30-	7.40: Quartz-Epidote Veining. UC and LC =40°ca			40368	32.40	33.60	1.20		
			7.65: Mafic Volcanics with 1% Quartz-Epidote Veining. UC=40°ca,			40369	33.60	34.80	1.20		
			ca, Foliation=50°ca			40370	34.80	36.00	1.20		
						40371	36.00	37.20	1.20		
		7.65-	7.85: Brecciated Mafic Volcanics with 95% Quartz-Epidote			40372	37.20	38.40	1.20		
		Veining	. UC and LC =50°ca, Foliation=50			40373	38.40	39.60	1.20		
						40374	39.60	40.80	1.20		
		7.85-	9.80: Brecciated Mafic Volcanics. UC=50°ca, LC=130°ca,			40376	40.80	42.00	1.20		
		Foliatio	n=50°ca			40377	42.00	43.20	1.20		
						40378	43.20	44.40	1.20		
		9.80-1	0.10: 99% Syenite Dyke and 1% Mafic Volcanics Inclusion.			40801	44.40	45.60	1.20		
		UC=13	0°ca, LC=50°ca			40802	45.60	46.80	1.20		
			1.25: Brecciated Mafic Volcanics with 25% Quartz-Epidote g. UC=50°ca, LC=45°ca, Folation=50°ca								
		11.25-2	1.45: Syenite Dyke. UC=45°ca, LC=50°ca								
			1.90: Brecciated Mafic Volcanics with 5% Quartz-Epidote Veining. ca, LC=45°ca, Foliation=50								
		12.25-2	 L2.25: Syenite Dyke. UC=45°ca, LC=35°ca L2.80: Brecciated Mafic Volcanics with 30% Quartz-Epidote UC=35°ca, LC=140°ca, Foliation=40°ca 								
			13.40: Mafic Volcanics with 1% less than 5mm Quartz-Epidote 9. UC=140°ca, LC=130°ca, Foliation=40								
			L3.65: Brecciated Mafic Volcanics with 70% Quartz-Epidote J. UC=130°ca, LC=145°ca, Foliation=130°ca								
			14.20: Brecciated Mafic Volcanics with 40% Quartz-Epidote g. UC=145°ca, LC=50°ca, Foliation =50°ca								
			15.60: 99% Brecciated Mafic Volcanics with 30% Quartz-Epidote g and 1% Syenite Dyke. UC=50°ca, LC=90°ca, Foliation=130°ca								

15.60-15.85: Brecciated Mafic Volcanics with 90% Quartz-Epidote

	GEOLOGY	VISU	JAL		4	SSAY	RESULTS		
rom To	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
	Veining. UC=90°ca, LC=120°ca, Foliation=40°ca								
	15.85-16.50: 98% Brecciated Mafic Volcanics with 70% Quartz-Epidote Veining and 2% Syenite Dyke. UC=120°ca, LC=140°ca, Foliation=130°ca								
	16.50-19.90: 98% Brecciated Mafic Volcanics with 50% Quartz-Epidote veining and 2% Syenite Dyke. UC=140°ca, LC=150°ca, Folation=50°ca								
	19.90-20.20: Syenite Dyke. UC=150°ca, LC=140°ca 20.20-22.70: 98% Brecciated Mafic Volcanics with 40% Quartz-Epidote Veining and 2% Syenite Dyke. UC=140°ca, LC=130°ca, Foliation=45								
	22.70-23.00: Syenite Dyke. UC=130°ca, LC=135°ca 23.00-23.30: Brecciated Mafic Volcanics with 10% Quartz-Epidote Veining. UC=135°ca, LC=140°ca, Foliation=130°ca								
	23.30-24.05: Hematite altered Mafic Volcanics. UC=140°ca, LC=30°ca								
	24.05-25.05: Brecciated Mafic Volcanics with 20% Quartz-Epidote Veining and 20% Hematite alteration. UC=30°ca, LC=90°ca, Foliation=130°ca								
	25.05-25.90: Brecciated Mafic Volcanics with 10% Quartz-Epidote Veining. UC=90°ca, LC=130°ca, Foliatio=130°ca								
	25.90-26.70: Mafic Volcanics. UC=130°ca, LC=150°ca, Foliation=140°ca								
	26.70-29.05: Brecciated Mafic Volcanics with 40% Quartz-Epidote Veining. UC=150°ca, LC=130°ca, Foliation=140°ca								
	29.05-29.75: Brecciated Mafic Volcanics within Syenite Dyke. UC=130°ca, LC=60°ca, Foliation=140°ca								
	29.75-33.05: Brecciated Mafic Volcanics with 10% Quartz-Epidote Veining. UC=60°ca, LC=140°ca, Foliation=140°ca								
	33.05-33.20: Syenite Dyke. UC=140°ca, LC=145°ca 33.20-35.02: Brecciated Mafic Volcanics with 10% Quartz-Epidote Veining. UC=145°ca, LC=90°ca, Foliation=145°ca								
	35.02-35.30: Syenite Dyke. UC=90°ca, LC=50°ca 35.02-44.35: 90% Brecciated Mafic Volcanics with 10% Quartz-Epidote Veining and 10% Syenite Dykes. UC=50°ca LC=150°ca, Foliation=140°ca								
	44.35-46.60: Mafic Volcanics. UC=150°ca, LC=90°ca, Foliation=150°ca, 0.5% Py								
0.00 1.	0 OVB Overburden Core recovery was measured to begin at 3.60 ft. The driller's block indicate that they placed 1.52 m (5.0 ft) of NW casing.			41905	1.05	2.25	1.20		
	NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCI) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.								

93.91 EOH End of hole.

GOOD Mining Exploration Inc.

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments	 From
0.00	273.1°	273.1°	-60.0°	Collar		1.1
5.39	285.1°	273.9°	-56.6°	Multi		2.4
6.32	285.0°	273.8°	-56.5°	Multi		5.5
7.25	282.7°	271.5°	-56.4°	Multi		8.5
8.18	285.9°	274.7°	-56.4°	Multi		11.6
9.11	284.9°	273.7°	-56.7°	Multi		14.6
10.04	285.8°	274.6°	-56.4°	Multi		17.7
10.97	286.2°	275.0°	-56.5°	Multi		20.7
11.89	287.2°	276.0°	-56.4°	Multi		23.8
12.82	286.2°	275.0°	-56.5°	Multi		26.8
13.75	286.0°	274.8°	-56.5°	Multi		29.9
14.68	286.7°	275.5°	-56.3°	Multi		32.9
15.61	287.2°	276.0°	-56.4°	Multi		36.0
16.54	287.2°	276.0°	-56.3°	Multi		39.0
17.47	286.2°	275.0°	-56.5°	Multi		42.1
18.40	287.1°	275.9°	-56.2°	Multi		45.1
19.33	288.1°	276.9°	-56.1°	Multi		48.2
20.26	286.2°	275.0°	-56.1°	Multi		51.2
21.19	287.1°	275.9°	-56.3°	Multi		54.3
22.12	286.3°	275.1°	-56.2°	Multi		57.3
23.05	287.7°	276.5°	-56.1°	Multi		60.4
23.98	287.5°	276.3°	-56.0°	Multi		63.4
24.90	285.9°	274.7°	-56.2°	Multi		66.5
25.83	287.4°	276.2°	-55.8°	Multi		69.5
26.76	287.5°	276.3°	-55.9°	Multi		72.6
27.69	288.3°	277.1°	-55.8°	Multi		75.6
28.62	289.1°	277.9°	-56.0°	Multi		78.7
						81.7
						84.8

From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
1.1	2.4	1.4			1.1	79	6
2.4	5.5	3.1			2.9	94	17
5.5	8.5	3.1			2.9	94	17
8.5	11.6	3.1			2.9	93	8
11.6	14.6	3.0			2.5	82	12
14.6	17.7	3.1			2.8	92	12
17.7	20.7	3.1			2.7	87	10
20.7	23.8	3.1			2.5	83	18
23.8	26.8	3.1			2.2	73	18
26.8	29.9	3.1			3.0	98	11
29.9	32.9	3.1			2.9	96	1
32.9	36.0	3.1			2.8	90	12
36.0	39.0	3.0			2.7	90	12
39.0	42.1	3.1			2.9	96	13
42.1	45.1	3.1			2.9	96	8
45.1	48.2	3.1			2.8	92	9
48.2	51.2	3.1			2.7	89	16
51.2	54.3	3.1			2.9	94	9
54.3	57.3	3.1			2.9	94	10
57.3	60.4	3.1			2.9	93	11
60.4	63.4	3.0			2.8	91	10
63.4	66.5	3.1			3.0	98	7
66.5	69.5	3.1			3.1	100	6
69.5	72.6	3.1			2.9	96	10
72.6	75.6	3.1			2.9	96	6
75.6	78.7	3.1			2.9	94	10
78.7	81.7	3.1			3.0	98	10
81.7	84.8	3.1			2.7	87	1
84.8	87.8	3.1			2.8	93	1
87.8	90.9	3.1			2.7	88	3
90.9	93.9	3.1			3.0	98	1

COLLAR INFORMATION

Drill Log CR2014-21

WORK DONE BY

Claim:	4273175			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	100.60°	Drilling	0.0		Walker Drilling	2014-Sep-21	Sep-23
Easting:	539,531.00 m	Dip:	-60.00°	Downhole Survey Core Logging	0.0 0.0		Walker Drilling	2014-Sep-23 2014-Sep-29	Sep-23 Sep-29
Northing:	5,359,670.00 m	Length:	102.41 m	Core Logging	0.0		Athraa Koma	2014-Sep-29	Sep-29
Elevation:	366.00 m	Core Size:	NQ						
Storage:	CanREE explo site								

Comments:

			GEOLOGY	VISU	JAL			ASSAY	RESULTS	i	
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
74.30	102.40	GB	Fine to Medium Grained Gabbro		0.1	40443	75.20	76.40	1.20		
		The cor	ntact between the fine to medium grained gabbro and the		0.1	40444	76.40	77.60	1.20		
		porphy	rytic gabbro is gradational over 30 cm. Generally, this gabbro is		0.1	40445	77.60	78.80	1.20		
		massive	e, relatively homogenous, fine to medium grained with a		0.1	40446	78.80	80.00	1.20		
		distinct	ive salt and pepper type texture, composed of 40- 65% dark green		0.1	40447	80.00	81.20	1.20		
		grey to	black, millimetric, altered ferromagnesian grains/ crystals in a fine		0.1	40448	81.20	82.40	1.20		
		0	l yellowish buff coloured feldspathic groundmass. It is moderately		0.1	40449	82.40	83.60	1.20		
			ngly magnetic-weakly to non-ankeritic. Moderately and pervasively		0.1	40451	83.60	84.80	1.20		
			zed, slightly saussuritized with weak to moderate fracture		0.1	40452	84.80	86.00	1.20		
			led black chlorite material. Yellow green epidote veinings and		0.1	40453	86.00	87.20	1.20		
			veinings are also present. Within this section there are different		0.1	40454	87.20	88.40	1.20		
		veins; t	he following are their Location: Type. Size, Orientation		0.1	40455	88.40	89.60	1.20		
					0.1	40456	89.60	90.80	1.20		
			Quartz-Calcite-Feldspar Vein. 5 cm, 130°ca		0.1	40457	90.80	92.00	1.20		
			Calcite-Chlorite Vein. 5 cm, 50°ca		0.1	40458	92.00	93.20	1.20		
			Quartz Vein. 5 cm,140°ca		0.1	40459	93.20	94.40	1.20		
			Quartz Vein. 10 cm, 45°ca		0.1	40460	94.40	95.60	1.20		
			Calcite-Chlorite Vein. 3 cm, 140°ca		0.1	40461	95.60	96.80	1.20		
			Calcite-Chlorite-Epidote Vein. 5 cm, 140°ca		0.1	40462	96.80	98.00	1.20		
			Calcite Vein. 4 cm, 45°ca		0.1	40463	98.00	99.20	1.20		
			Calcite Vein. 3 cm, 130°ca			40464	99.20	100.40	1.20		
			Chlorite Vein. 1 cm, 145°ca		0.1	40465	100.40	101.40	1.00		
		97.75:	Quartz Vein. 2 cm, 50°ca		0.1	40466	101.40	102.44	1.04		

	To 74.30	The hole	Comment Porphyrytic Gabbro	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
40.40 74	74.30	The hole	Porphyrytic Gabbro			-			Lengen		Cu %
					0.1	40413	40.40	41.60	1.20		
		grained,	e enters a phenocrystic texture of the gabbro. It is medium		0.1	40414	41.60	42.80	1.20		
			salt and peppery looking unit that is characterized by 15- 25%,		0.1	40415	42.80	44.00	1.20		
		fine (mil	limetric), mafic phenocrysts and 1%, small mafic inclusions in a		0.1	40416	44.00	45.20	1.20		
		0	ned, feldspathic(?) groundmass. Within this section there are two		0.1	40417	45.20	46.40	1.20		
		calcite v	eins; the following are their Location: Type. Orientatio		0.1	40418	46.40	47.60	1.20		
					0.1	40419	47.60	48.80	1.20		
			lcm, 45°ca		0.1	40420	48.80	50.00	1.20		
		40.80: 3	3cm, 40°ca		0.1	40421	50.00	51.20	1.20		
					0.1	40422	51.20	52.40	1.20		
			3.40: Fine grained Gabbro. This interval is quite similar to the fine		0.1	40423	52.40	53.60	1.20		
		to medi	um grained Gabbro described above.		0.1	40424	53.60	54.80	1.20		
					0.1	40426	54.80	56.00	1.20		
			3.60: Porphyrytic Gabbro. UC and LC = 135°ca			40427	56.00	57.20	1.20		
			7.70: Calcite-Epidote Vein. Orientation= 50°ca		0.1	40428	57.20	58.40	1.20		
		56.70-50	5.74: Calcite-Epidote Vein. Orientation= 45°ca		0.1	40429	58.40	59.60	1.20		
					0.1	40430	59.60	60.80	1.20		
					0.1	40431	60.80	62.00	1.20		
					0.1	40432	62.00	63.20	1.20		
					0.1	40433	63.20	64.40	1.20		
					0.1	40434	64.40	65.60	1.20		
					0.1	40435	65.60	66.80	1.20		
					0.1	40436	66.80	68.00	1.20		
					0.1	40437	68.00	69.20	1.20		
					0.1	40438	69.20	70.40	1.20		
					0.1	40439	70.40	71.60	1.20		
					0.1	40440	71.60	72.80	1.20		
					0.1	40441	72.80	74.00	1.20		
						40442	74.00	75.20	1.20		

			GEOLOGY	VISU	JAL		4	ASSAY	RESULTS		
rom	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
2.80	40.40	GB	Fine to Medium Grained Gabbro		0.1	40381	3.20	4.40	1.20		
			e is collared into what we call in the camp as Fine to medium			40382	4.40	5.60	1.20		
			gabbro. Generally, this gabbro is massive, relatively homogenous,		0.1	40383	5.60	6.80	1.20		
		-	nedium grained with a distinctive salt and pepper type texture,		0.1	40384	6.80	8.00	1.20		
			ed of 40- 65% dark green grey to black, millimetric, altered		0.1	40385	8.00	9.20	1.20		
			gnesian grains/ crystals in a fine grained yellowish buff coloured		0.1	40386	9.20	10.40	1.20		
			hic groundmass. It is moderately to strongly magnetic-weakly to		0.1	40387	10.40	11.60	1.20		
			ceritic. Moderately and pervasively chloritized, slightly		0.1	40388	11.60	12.80	1.20		
			tized with weak to moderate fracture controlled black chlorite		0.1	40389	12.80	14.00	1.20		
			I. Yellow green epidote veinings and calcite veinings are also		0.1	40390	14.00	15.20	1.20		
			. Below are some of the pronounced intervals.		0.1	40391	15.20	16.40	1.20		
		1									
		Within	he fine to medium grained gabbro zone there are calcite with		0.1	40392	16.40	17.60	1.20		
			e alteration veins; epidote veins and broken core. The following		0.1	40393	17.60	18.80	1.20		
			r Location: Type. Size, Orientation		0.1	40394	18.80	20.00	1.20		
		are the			0.1	40395	20.00	21.20	1.20		
		15.00-1	5.40: Broken Rock and 20 cm lost core		0.1	40396	21.20	22.40	1.20		
		10.00 1			0.1	40397	22.40	23.60	1.20		
		15 70·	Hematite-Calcite Vein. 10 cm, 130°ca		0.1	40398	23.60	24.80	1.20		
			Hematite-Calcite Vein. 10 cm, 30°ca		0.1	40399	24.80	26.00	1.20		
			Calcite Vein. 2 cm, 140°ca		0.1	40401	26.00	27.20	1.20		
			Epidote Vein. 4 cm, 45°ca		0.1	40402	27.20	28.40	1.20		
			Hematite-Calcite Vein. 2 cm, 55°ca			40403	28.40	29.60	1.20		
			Calcite Vein. 10 cm, 50°ca		0.1	40404	29.60	30.80	1.20		
			Epidote Vein. 20 cm, 45°ca		0.1	40405	30.80	32.00	1.20		
			Calcite Vein. 20 cm, 49 ca		0.1	40406	32.00	33.20	1.20		
			-		0.1	40407	33.20	34.40	1.20		
		54.70.	Calcite Vein. 3 cm, 140°ca		0.1	40408	34.40	35.60	1.20		
		25 10 2	6.00: Fine Grained Gabbro. For detailed logging sake, the fine		0.1	40409	35.60	36.80	1.20		
			gabbro is described separately. Mostly greenish gray, medium		0.1	40410	36.80	38.00	1.20		
		-	, massive and mafic rock of microgabbroic aspect. The rock is		0.1	40411	38.00	39.20	1.20		
		-	magnetic, non to weakly ankeritic and non calcareous. There is a		0.1	40412	39.20	40.40	1.20		
			ntact angle observed oriented at 130°ca. Yellowish and silvery								
			-								
		HECKS C	ommonly present in this rock.								
			.40: Fine to Medium Grained Gabbro. This is also classified								
			ely based on the grain size. It is coarser than above but finer than								
			Kind of intermediate between a fine grained gabbro and								
			itic gabbro. The upper contact is 130°ca and the lower contact is								
			race pyrite disseminations but still there are some silvery and								
		yellowis	h flecks present. The rock is non ankeritic, moderately to strongly								
		magnet	ic and non calcareous.								
0.00	2.80	OVB	Overburden								
		Core re	covery was measured to begin at 8.96ft. The driller's block indicate								
		that the	y placed 3.0 m (10.0 ft) of NW casing.								
		NOTE	II the core is systematically tested for pervasive carbonate using								
			ydrochloric acid HCl) and potassium ferricyanide (KFC). The acid								
			contact with calcite and the KFC stains the core blue in the								
			e of ankerite. In certain areas, the core is tested with a magnet to								
		•	ne relative magnetite content.								

GEOTECHNICAL INFORMATION

>10cm RQD (%) 1.0

2.0

2.6

2.6

2.5

2.6

3.0

2.9

2.9

3.0

2.9

2.8

2.9

2.9

3.0

2.8

2.9

2.8

3.1

2.9

3.1

2.8

2.9

2.9

2.8

2.6

2.6

2.5

2.9

2.9

2.9

2.7

2.6

Breaks

Rec (%)

Core

Depth	Test	Az	Dip	Туре	Comments	From	То	Len
0.00	100.6°	100.6°	-60.0°	Collar		2.8	4.9	2.1
17.07	112.6°	101.4°	-58.3°	Multi		4.9	7.9	3.1
20.12	111.4°	100.2°	-58.4°	Multi		7.9	11.0	3.1
23.16	112.8°	101.6°	-58.4°	Multi		11.0	14.0	3.0
26.21	111.1°	99.9°	-58.4°	Multi		14.0	17.1	3.1
29.26	114.0°	102.8°	-58.2°	Multi		17.1	20.1	3.1
32.31	112.9°	101.7°	-58.2°	Multi		20.1	23.2	3.1
35.36	115.2°	104.0°	-58.3°	Multi		23.2	26.2	3.1
38.40	114.3°	103.1°	-58.4°	Multi		26.2	29.3	3.1
41.45	114.8°	103.6°	-58.5°	Multi		29.3	32.3	3.1
44.50	114.8°	103.6°	-58.4°	Multi		32.3	35.4	3.1
47.55	113.1°	101.9°	-58.4°	Multi		35.4	38.4	3.0
50.60	113.3°	102.1°	-58.4°	Multi		38.4	41.5	3.1
53.64	113.5°	102.3°	-58.4°	Multi		41.5	44.5	3.1
56.69	112.3°	101.1°	-58.6°	Multi		44.5	47.6	3.1
59.74	115.5°	104.3°	-58.5°	Multi		47.6	50.6	3.1
62.79	114.6°	103.4°	-58.6°	Multi		50.6	53.7	3.1
65.84	116.1°	104.9°	-58.7°	Multi		53.7	56.7	3.1
68.88	113.5°	102.3°	-58.6°	Multi		56.7	59.8	3.1
71.93	113.3°	102.1°	-58.7°	Multi		59.8	62.8	3.0
74.98	113.1°	101.9°	-58.8°	Multi		62.8	65.9	3.1
78.03	114.5°	103.3°	-58.6°	Multi		65.9	68.9	3.1
81.08	112.9°	101.7°	-58.7°	Multi		68.9	72.0	3.1
84.12	115.3°	104.1°	-58.9°	Multi		72.0	75.0	3.1
87.17	113.5°	102.3°	-58.8°	Multi		75.0	78.1	3.1
90.22	113.2°	102.0°	-58.7°	Multi		78.1	81.1	3.1
93.27	115.6°	104.4°	-58.9°	Multi		81.1	84.2	3.1
96.32	115.2°	104.0°	-59.0°	Multi		84.2	87.2	3.1
99.36	114.6°	103.4°	-58.9°	Multi		87.2	90.2	3.0
						90.2	93.3	3.1
						93.3	96.3	3.1
						96.3	99.4	3.1
						99.4	102.4	3.1

COLLAR INFORMATION

Drill Log CR2014-22

WORK DONE BY

Claim:	4273175			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	273.20°	Drilling	0.0	30.5	Walker Drilling	2014-Sep-23	Sep-23
•				Downhole Survey	0.0	30.5	Walker Drilling	2014-Sep-23	Sep-23
Easting:	539,518.00 m	Dip:	-60.00°	Core Logging	0.0	30.5	Dennis Patron	2014-Oct-01	Oct-01
Northing:	5,359,668.00 m	Length:	30.48 m	Core Logging	0.0	30.5	Athraa Koma	2014-Oct-01	Oct-01
Elevation:	366.00 m	Core Size:	NQ						
Storage:	CanREE explo site								

Comments:

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
6.70	30.50	MV	Mafic Volcanics			41902	6.70	8.00	1.30		
		The hol	e is collared in a dark to medium greenish grey coloured, fine			41903	8.00	9.20	1.20		
		grained	, weakly to moderately foliated chloritic rock. The rock is			41904	9.20	10.10	0.90		
		modera	tely ankeritic, non to weakly calcareous and moderately to			40605	10.10	11.30	1.20		
		strongly	y magnetic. comprising multiple flow horizons (some possible high-		0.8	40606	11.30	12.50	1.20		
		level di	ke/sills that exhibit less foliation) with coherent, granular to		1.5	40607	12.50	13.70	1.20		
			coarsely, feldspar porphyritic textures. Aphyric, pale salmon-grey,		1.0	40608	13.70	14.90	1.20		
		syenitic	dikes cut the unit (9.1m-10.1m; 24.98m- 25.30m; 29.3m-		1.0	40609	14.90	16.10	1.20		
			; 30.30m- 30.50 m). The weak fabric is defined by whispy streaks		1.5	40610	16.10	17.30	1.20		
			eds, elongate phenocrysts, and segmented veinlets of dull white/		2.0	40611	17.30	18.50	1.20		
		0 /	kerite aligned roughly at 140°ca to 145°ca. After 13.6 up to the		1.3	40612	18.50	19.70	1.20		
			the hole the grain size of the mafic volcanics becomes coarser		0.8	40613	19.70	20.90	1.20		
			ly due to the heat generated by the syenite intrusion. It was		1.0	40614	20.90	22.10	1.20		
			ed as amphibolite but actually the better term will be		3.5	40615	22.10	23.30	1.20		
			olitized mafic volcanics. Patches of epidote and hematite		1.5	40616	23.30	24.50	1.20		
			ons are common throughout. There are sections of the syenite		0.8	40617	24.50	25.70	1.20		
			an be classified as breccia zone because the core shows an		0.8	40618	25.70	26.90	1.20		
			nce of angular mafic inclusions especially near the bottom of the			40619	26.90	28.10	1.20		
			rite mineralization ranges from 0.5% to locally 2% and occuring as		0.5	40620	28.10	29.30	1.20		
			nations and fracture fillings. The hole was sampled from top to . Below are the details of the core log.		0.5	40621	29.30	30.50	1.20		
		10.10-	13.60: Mafic Volcanics. These volcanics are finer grains than the								
		previou	s mafic volcanics, 2% covered by hematite alteration and 2% by								
		Epidote	patches -moderately ankeritic and strongly magnetic. UC= 60°ca,								
		LC= 50°	ca.								
			4.98: 95% Amphibolite with 20% Hematite and Epidote								
		alterati	ons and 5% Syenite Dykes. UC= 50°ca, LC= 50°ca, Foliation= 140°ca								
			5.30: Syenite Dyke. UC and LC = 50°ca								
			9.30: 95% Amphibolite with 30% Hematite and Epidote								
		alterati 145°ca	ons and 5% Syenite Dykes. UC= 50°ca, LC= 125°ca, Foliation=								
		29.30-2	9.95: Syenite Dyke. UC= 125°ca, LC= 30°ca								
		29.95-3	0.30: 80% Amphibolite and 20% Syenite Dyke-Like. UC= 30°ca,								
		LC= 60°	ca								
		30.30-3	0.50: Syenite Dyke with 1% Amphibolite Inclusions. UC= 60°ca								

	GEOLOGY				JAL	ASSAY RESULTS					
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
0.00	6.70	Core re	Overburden covery was measured to begin at 22.0ft. The driller's block indicate ey placed 6.10 m (20.0 ft) of NW casing.								
		dilute h fizzes ir presen	All the core is systematically tested for pervasive carbonate using hydrochloric acid HCI) and potassium ferricyanide (KFC). The acid in contact with calcite and the KFC stains the core blue in the ce of ankerite. In certain areas, the core is tested with a magnet to nine relative magnetite content.								

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments
0.00	273.2°	273.2°	-60.0°	Collar	
15.24	285.2°	274.0°	-59.7°	Multi	
18.29	276.4°	265.2°	-59.9°	Multi	
21.34	290.5°	279.3°	-59.8°	Multi	
24.38	288.0°	276.8°	-59.9°	Multi	
27.43	291.5°	280.3°	-59.7°	Multi	

From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
6.7	9.2	2.5			0.9	0	7
9.2	12.2	3.1			1.9	1	10
12.2	15.2	3.0			2.7	1	15
15.2	18.3	3.1			2.6	1	14
18.3	21.3	3.1			2.6	1	10
21.3	24.4	3.1			2.9	1	7
24.4	27.4	3.1			2.8	1	11
27.4	30.5	3.1			2.8	1	18

COLLAR INFORMATION

Claim:	4273194		
Projection:	NAD83 17N	Azimuth:	88.20°
Easting:	539,925.00 m	Dip:	-60.00°
Northing:	5,359,763.00 m	Length:	81.69 m
Elevation:	366.00 m	Core Size:	NQ
Storage:	CanREE explo site		

Comments:	
-----------	--

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %	
73.70	81.70	A sharp medium syenite non cal mafic v only sa 73.70-7 78.66-7	Syenite o contact of 150°ca comes this massive and crystalline, pinkish, m grained, hematite altered, weakly porphyritic and coherent intrusive rock. This rock is highly ankeritic, weakly magnetic and careous. Trace pyrite disseminations. A short interval of folded olcanics is included in this interval and described below. This is the mple interval collected in this section. 78.66: Massive Syenite. UC= 150°ca, LC= 150°ca 79.70: Mafic Volcanics deformation zone with Chlorite alteration. 0°ca, LC= 60°ca		0.5	40669	78.60	79.80	1.20			
		79.90-8	31.70: Massive Syenite									
66.10	73.70	A sharp It is dai pinkish porphy euhedr mediur bleach shearir becom fillings. weakly 73.70-6 LC= 13: 68.20-6	Sheared and altered Mafic Volcanics o contact of 130°ca comes a messy looking core of mafic volcanics. If to medium green to green-grey, chloritic, mafic volcanics with patches of hematite alteration characterize this unit. Two ritic dikes (68.2m-68.7m; 71.9m -72.2m) with 15% medium, white, al to subhedral feldspar phenocrysts in a pink-buff-grey fine to m grained coherent groundmass intrude the volcanic rocks. A ed zone and zones of small-scale, subparallel foldiation and go were developed in this interval. Pyrite mineralization also es more intense here up to 5% disseminations, blebbs and fracture The rock is generally non calcareous moderately ankeritic and to moderately magnetic. Below are the details of the log. 68.20: 90% Mafic Volcanics and 10% Syenite Dyke. UC= 130°ca, 5°ca, Foliation= 150°ca 69.10: Hematitle altered Mafic Volcanics. UC= 135°ca, LC= 145°ca 73.70: 90% Mafic Volcanics and 10% Syenite Dyke. UC= 145°ca, 0°ca		5.0 5.0 5.0 5.0	40663 40664 40665 40666 40667 40668	66.20 67.40 68.60 69.80 71.00 72.20	67.40 68.60 69.80 71.00 72.20 73.40	1.20 1.20 1.20 1.20 1.20			
63.50	66.10	A sharp mediur syenite	Massive Syenite o contact of 130°ca comes this massive and crystalline, pinkish, n grained, hematite altered, weakly porphyritic and coherent intrusive rock. This rock is highly ankeritic, weakly magnetic and careous. 0.5% pyrite disseminations. Lower contact is sharp at									

Work

Drilling

Downhole Survey

Core Logging

Core Logging

From

0.0

0.0

0.0

0.0

То

Drill Log CR2014-23

Worker

81.7 Walker Drilling

81.7 Walker Drilling

81.7 Dennis Patron

81.7 Athraa Koma

WORK DONE BY

End

Sep-27

Sep-27

Oct-03

Oct-03

Start

2014-Sep-26

2014-Sep-27

2014-Oct-03

2014-Oct-03

GOOD Mining Exploration Inc.

			GEOLOGY	VIS	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
47.60	63.50	MVFP	Feldspar Phyric Mafic Volcanics and Syenite Package		1.0	40649	48.00	49.20	1.20			
		This zo	ne is actually a part of the mafic volcanics except that it contains		1.0	40651	49.20	50.40	1.20			
		feldspa	r phenos probably the bottom of the flow where cooling is slower.		1.0	40652	50.40	51.60	1.20			
		The up	per contact between the previous zone and this zone is at 47.6 and		1.0	40653	51.60	52.80	1.20			
		its orie	ntation is 130°ca. This rock is strongly amphibolitized as shown by		2.0	40654	52.80	54.00	1.20			
		the sna	ke skin like texture. It is dark greenish grey/ black, fine grained		2.0	40655	54.00	55.20				
		matrixe	d mafic volcanics locally altered by reddish hematite and epidote		2.0	40656	55.20	56.40				
		patche	and veins and contains spots of feldpsar phenos (~up to 5%		2.0	40657	56.40	57.60				
		locally)	throughout. From 55.9 to 63.5 the foliation fabric begin to be		2.0	40658	57.60	58.80				
		pronou	nce and distiguished. It is generally oriented at 40°ca. The feldspar		2.0	40659	58.80	60.00				
		phenos	are still there but not as much above this foliated section. This		2.0	40660	60.00	61.20				
		feldspa	r phyric mafic volcanics is also intruded by cm scale syenite dykes		2.0	40661	61.20	62.40				
		at vario	us directions. A fault zone and breccia zone is included in this unit		2.0	40662	62.40	63.60				
		and de	scribed below. This rock is weakly magnetic, weakly ankertic and		2.0	10002	02.10	05.00	1.20			
		non ca	careous.									
			8.30: 90% feldspar Phyric Mafic Volcanics and 10% Syenite dykes.									
		UC= 13	0°ca, LC= 140°ca									
		40.20	0.70. Maasing Supplies LLC and LC 140°-									
			8.70: Massive Syenite. UC and LC = 140°ca									
		48.30-:	1.30: Feldspar Phyric Mafic Volcanics. UC= 140°ca, LC= 135°ca									
		E1 20 I	2 60: 00% Matic Valcanics containing 5% foldspar phonocrysts									
			3.60: 98% Mafic Volcanics containing 5% feldspar phenocrysts Syenite Dyke. UC= 135°ca, LC= 40°ca, Foliation= 140°ca									
		anu z7	Syellite Dyke. OC- 155 ca, LC- 40 ca, Follation- 140 ca									
		53 60-4	4.30: Massive Syenite. UC= 40°ca, LC= 40°ca									
			5.65: Mafic Volcanics with 10% Feldspar Phenocrysts. UC= 40°ca,									
			ca, Foliation= 50°ca									
		LC= 50										
		55.65-5	5.85: Hematitle altered Mafic Volcanics and 2% Calcite veins and									
			rysts. UC= 50°ca, LC= 40°ca									
			·····									
		55.85-5	7.80: 98% Mafic Volcanics and 2% Syenite Dyke. UC= 40°ca, LC=									
			Foliation= 40°ca									
		57.80-5	8.30: Fault Zone/breccia zone-Syenite breccia filled with Chlorite									
		veins. l	JC= 120°ca, LC= 60°ca									
		58.30-5	9.90: Mafic Volcanics. UC= 60°ca, LC= 130°ca, Foliation= 40°ca									
		59.90-6	0.25: Breccia Zone. UC and LC = 130°ca									
39.60	17 60	MVSV	Mafic Volcanics and Syenite Package		1.0	40642	39.60	40.80	1.20			
55.00	÷7.00		ckage is 98% mafic volcanics same description as above intruded		1.0	40642	40.80	40.80	1.20			
			Syenite dykes. The rock is weakly magnetic, non to weakly		1.0	40643	40.80	43.20				
			ous and non to weakly ankeritic. Pyrite occurring as fine		1.0	40644	42.00	45.20	1.20			
			nations amounting to 1%. There is a weak foliation fabric oriented		2.0	40645	43.20	44.40	1.20			
		at 140°			0.5	40646	44.40	45.80				
		20110			1.0	40647	45.80	48.00				
					1.0	-00+0	-0.00	-0.00	1.20			
35.10	39.60	SY	Massive Syenite									
		A sharp	contact of 145°ca comes this massive and crystalline, pinkish,									
		mediur	n grained, hematite altered, weakly porphyritic and coherent									
		syenite	intrusive rock. This rock is highly ankeritic, weakly magnetic and									
			careous. 0.5% pyrite disseminations. Lower contact is sharp at									
			Calcite vein at 35.2 m oriented at 120°ca.									

80°ca. Calcite vein at 35.2 m oriented at 120°ca.

			GEOLOGY	VISU	JAL		ASSAY RESULTS						
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %		
33.10	35.10	MV	Mafic Volcanics		1.0	40640	33.60	34.80	1.20				
		It is dar	k greenish grey/ black, fine grained matrixed mafic volcanics			40641	34.80	36.00	1.20				
		,	altered by reddish hematite and epidote patches and veins. This										
			is highly mineralized by pyrite disseminations up to 5% locally.										
			k is weakly to moderately magnetic, weakly to non-ankertic. Sharp										
		contact 35°ca.	between the massive syenite and mafic volcanics UC= 80°ca, LC=										
		35 Cd.											
32.00	33.10		Massive Syenite		2.0	40639	32.40	33.60	1.20				
			contact of 145°ca comes this massive and crystalline, pinkish,										
			n grained, hematite altered, weakly porphyritic and coherent										
			intrusive rock. Theis rock is highly ankeritic, weakly magnetic and										
		non calo 80°ca.	careous. 0.5% pyrite disseminations. Lower contact is sharp at										
13.20	31.95	MVSY	Mafic Volcanics and Syenite Package			40622	13.20	14.40	1.20				
			e enters into package that is dominated by mafic volcanics. The		0.5	40623	14.40	15.60	1.20				
			about 90% mafic volcanics and 10% syenite. The former is quite		1.5	40624	15.60	16.80	1.20				
			to the associated mafic volcanic uphole. It is dark greenish grey/ ne grained matrixed mafic volcanics locally altered by reddish		1.3	40626	16.80	18.00	1.20				
		-	te and epidote patches and veins. The latter is the typical syenite		1.3	40627	18.00	19.20	1.20				
			n that comes in and out. The package is weakly to moderately		1.5 0.8	40628 40629	19.20 20.40	20.40 21.60	1.20 1.20				
			ic, moderately ankeritic and weakly to non calcareous. Local shear		0.8	40629	20.40	21.60	1.20				
		0	deformation zone were observed and recored below. Pyrite		1.0	40630	21.00	22.80	1.20				
			as blebs, disseminations and fracture fillings. The modal		2.0	40631	22.80	25.20	1.20				
			ageof pyrite is recorded at a separate column in the sample/assay		1.0	40633	25.20	26.40	1.20				
		table.			2.0	40634	26.40	27.60	1.20				
					0.5	40635	27.60	28.80	1.20				
		13.20-1	4.85: Mafic Volcanics covered by 40% Epidote patches. UC=		2.0	40636	28.80	30.00	1.20				
		140°ca,	LC= 45°ca, Foliation= 140°ca		1.3	40637	30.00	31.20	1.20				
					5.0	40638	31.20	32.40	1.20				
			5.65: Massive Syenite. UC= 45°ca, LC= 140°ca										
			4.00: Deformation Zone-98% Mafic Volcanics that are covered by										
			idote veins and patches and 2% Syenite dykelike. UC= 140 and LC=										
		140 ca,	Foliation= 140°ca										
			4.70: Massive Syenite. UC= 140°ca, LC= 40°ca										
			0.10: 98% Mafic Volcanics and 2% Syenite Dykes. UC= 40°ca, LC=										
		30°ca, F	oliation= 160°ca										
		20.10-2	0.40: Massive Syenite. UC= 30°ca, LC= 145°ca										
			2.00: 98% Mafic Volcanics and 2% Syenite Dyke. UC= 145°ca, LC=										
		145°ca,	Foliation= 140°ca										

			GEOLOGY	VISU	JAL		ŀ	ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
8.10	13.20	The ho grained almost zones o grade i potass Feldsp. unit. It moder 8.10-1 10.10- 0.5% P 10.90- 11.55-	Altered Mafic Volcanics le is collared into a medium to dark maroon-grey, coherent, fine d likely mafic flow. Fabric is weakly developed through this unit, massive. Patches of buff-pink, weakly corroded, less magnetic of ankerite and possibly albite alteration occur through the unit and nto less altered zones. It seems that the rock has undergone strong ium metasomatism as it bleached the rock maroonish in color. ar or quartz overprints were common as it occupies 20% of the occurs like quartz grains. Trace to 0.5% pyrites. The rock is ately to strongly ankeritic, non calcareous and weakly magnetic. 10.10: Massive altered mafic volcanics. LC= 45°ca : Trace Py 10.90: Mafic Volcanics. UC= 45°ca, LC= 120°ca, Foliation= 40°ca, y 11.55: Massic Syenite. UC= 120°ca, LC= 120°ca : 0.5% Py 12.50: Mafic Volcanics covered by 1% Hematite alteration. UC= , LC= 140°ca, Foliation= 40°ca, 1% Py								
		12.50-	13.20: Massive Syenite. UC= 140°ca, LC= 140°ca, 0.5% Py								
0.00	8.10	indicat NOTE: dilute l fizzes i presen	Overburden ecovery was measured to begin at 26.57 ft. The driller's block e that they placed 6.10 m (20.0 ft) of NW casing. All the core is systematically tested for pervasive carbonate using hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid n contact with calcite and the KFC stains the core blue in the ce of ankerite. In certain areas, the core is tested with a magnet to hine relative magnetite content.								
	81.69	EOH	End of hole.								

81.69 EOH End of hole.

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments	•	
0.00	88.2°	88.2°	-60.0°	Collar		•	_
17.68	100.2°	89.0°	-57.9°	Multi			
20.73	100.6°	89.4°	-58.2°	Multi			
23.77	100.4°	89.2°	-57.5°	Multi			
26.82	102.0°	90.8°	-58.1°	Multi			
29.87	100.9°	89.7°	-58.1°	Multi			
32.92	100.1°	88.9°	-58.2°	Multi			
35.97	100.1°	88.9°	-58.1°	Multi			
39.01	112.6°	101.4°	-58.7°	Multi			
42.06	101.7°	90.5°	58.2°	Multi			
45.11	101.1°	89.9°	-58.1°	Multi			
48.16	101.8°	90.6°	-58.3°	Multi			
51.21	101.5°	90.3°	-58.2°	Multi			
54.25	101.7°	90.5°	-58.1°	Multi			
57.30	101.9°	90.7°	-58.1°	Multi			
60.35	101.8°	90.6°	-58.1°	Multi			
63.40	102.0°	90.8°	-58.2°	Multi			
66.45	102.2°	91.0°	-58.2°	Multi			
69.49	102.6°	91.4°	-58.1°	Multi			
72.54	102.7°	91.5°	-58.1°	Multi			
75.59	102.0°	90.8°	-58.2°	Multi			
78.64	102.6°	91.4°	-58.3°	Multi			

From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
8.1	8.5	0.5			0.2	0	1
8.5	11.6	3.1			2.4	1	10
11.6	14.6	3.0			2.8	1	11
14.6	17.7	3.1			2.8	1	13
17.7	20.7	3.1			2.7	1	8
20.7	23.8	3.1			2.6	1	16
23.8	26.8	3.0			2.9	1	7
26.8	29.9	3.1			2.8	1	16
29.9	32.9	3.1			3.0	1	6
32.9	36.0	3.1			2.9	1	15
36.0	39.0	3.0			3.0	1	7
39.0	42.1	3.1			2.7	1	16
42.1	45.1	3.1			2.9	1	11
45.1	48.2	3.1			2.8	1	12
48.2	51.2	3.0			2.6	1	12
51.2	54.3	3.1			2.6	1	12
54.3	57.3	3.1			2.9	1	11
57.3	60.4	3.1			2.6	1	15
60.4	63.4	3.0			2.9	1	1
63.4	66.5	3.1			2.7	1	13
66.5	69.5	3.1			2.8	1	8
69.5	72.6	3.1			2.8	1	9
72.6	75.6	3.1			3.0	1	4
75.6	78.7	3.1			3.0	1	6
78.7	81.7	3.1			3.0	1	5

COLLAR INFORMATION

Drill Log CR2014-24

WORK DONE BY

	••••••••								
Claim:	4276170			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	85.50°	Drilling	0.0		Walker Drilling	2014-Sep-25	Sep-27
	530 504 00	р.	60.00 ⁰	Downhole Survey	0.0	100.3	Walker Drilling	2014-Sep-27	Sep-27
Easting:	539,584.00 m	Dip:	-60.00°	Core Logging	0.0	100.3	Dennis Patron	2014-Oct-04	Oct-04
Northing:	5,360,183.00 m	Length:	100.28 m	Core Logging	0.0	100.3	Athraa Koma	2014-Oct-04	Oct-04
Elevation:	366.00 m	Core Size:	NQ						
Storage:	CanREE explo site								

Comments:

	GEOLOGY				VISUAL		ASSAY RESULTS							
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %			
82.05	100.30	MV	Altered Mafic Volcanics		1.5	40735	82.40	83.60	1.20					
		A chan	ge in texture marks the beginning of another lithologic unit termed		3.5	40736	83.60	84.80	1.20					
		as the	Mafic Volcanics. This is the same mafic volcanics being described in		6.0	40737	84.80	86.00	1.20					
		previo	us holes. The upper contact is sharp contact oriented at 160°ca. The		6.0	40738	86.00	87.20	1.20					
		rock is	moderately ankeritic, non to weakly calcareous and moderately to		1.5	40739	87.20	88.40	1.20					
		strong	ly magnetic. comprising multiple flow horizons (some possible high-		1.3	40740	88.40	89.60	1.20					
		level d	ike/sills that exhibit less foliation) with coherent, granular to		1.5	40741	89.60	90.80	1.20					
		locally	, coarsely, feldspar porphyritic textures. Aphyric, pale salmon-grey,		5.5	40742	90.80	92.00	1.20					
		syeniti	c dikes cut the unit at several sections (please see details		7.5	40743	92.00	93.20	1.20					
		below)). The weak fabric is defined by whispy streaks and shreds, elongate		10.0	40744	93.20	94.40	1.20					
		pheno	crysts, and segmented veinlets of dull white/ grey ankerite aligned		5.0	40745	94.40	95.60	1.20					
		roughl	y at 40°ca following the weak to moderate folation fabric. Patches		5.0	40746	95.60	96.80	1.20					
		of epic	dote and hematite alterations are common throughout. There are		3.0	40747	96.80	98.00	1.20					
		sectior	ns of the syenite which can be classified as breccia zone because the			40748	98.00	99.20						
			nows an abundance of angular mafic inclusions especially near the		2.0	40749	99.20	100.30	1.10					
			n of the hole. Pyrite mineralization increase in intensity at this unit											
		rangin	g from 0.5% to locally 10% and occuring as disseminations and											
		fractur	re fillings.											
		Below	are the details of the log:											
		82.05-	82.75: Mafic Volcanics. UC= 160°ca, LC= 145°ca											
		82.75-	82.80: Calcite-Hematite Vein. UC and LC = 145°ca											
		82.80-	82.90: Mafic Volcanics. UC and LC = 145°ca											
		82.90-	82.94: Calcite-Hematite Vein. UC and LC = 145°ca											
		82.94-	83.10: Mafic Volcanics. UC= 145°ca, LC= 140°ca											
		83.10-	83.25: Calcite-Hematitle Vein. UC and LC = 140°ca											
		83.25-	83.65: Syenite Dyke. UC= 140°ca, LC= 60°ca											
		83.65-	84.85: 98% Mafic Volcanics and 2% Syenite dyke. UC= 60°ca, LC=											
		145°ca	a, Foliation= 40°ca											
		84.85-	85.10: Syenite Dyke. UC= 145°ca, LC= 50°ca											
		85.10-	86.80: Mafic Volcanics with 10% Hematite alteration. UC= 50°ca,											
		LC= 15	0°ca, Foliation= 40°ca											
		86.80-	87.00: Deformed Syenite Dyke-like with Epidote patches. UC and											
		LC = 15												
		87.00-	87.80: Mafic Volcanics. UC= 150°ca, LC= 40°ca, Foliation= 40°ca-											
			mineralized											
		87.80-	88.45: Syenite Dyke with Hematite alteration. UC= 40°ca, LC=											
		145°ca												

			GEOLOGY	VISUAL		ASSAY RESULTS							
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %		
			2.30: 98% Mafic Volcanics and 2% Syenite Dyke. UC= 145°ca, LC= oliation= 40°ca										
		92.30-92.70: Syenite Dyke. UC= 40°ca, LC= 50°ca 92.70-97.65: 98% Mafic Volcanics with 5% Hematite alteration and 2% Syenite Dyke. UC= 50°ca, LC= 35°ca, Foliation= 40°ca											
			7.90: Syenite Dyke. UC= 35°ca, LC= 30°ca 00.30: 80% Mafic Volcanics and 20% Syenite Dyke										
68.20	82.05	5 GB	Fine to Medium Grained Gabbro		0.1	40723	69.20	70.40	1.20				
		The hol	e reverts back to the same kind of gabbro in the beginning of the		0.1	40724	70.40	71.60	1.20				
		hole. Th	ne gradual grain size change from porphyritic to fine-medium		0.1	40726	71.60	72.80	1.20				
		grained	gabbro is noted. This interval have same description as uphole.		0.1	40727	72.80	74.00	1.20				
		This int	erval is moderately to strongly magnetic, weakly to non ankeritic		0.1	40728	74.00	75.20	1.20				
		and cor	tains thin less than 5mm chlorite veining oriented at variuos		0.1	40729	75.20	76.40	1.20				
		directio	n to the CA. It also contains about 2% feldspar phenocrysts that		0.1	40730	76.40	77.60	1.20				
		range f	rom 1cm to 4cm in size. There is whitish green vein observed to be		0.1	40731	77.60	78.80	1.20				
		include	d in this interval and described below.		0.1	40732	78.80	80.00	1.20				
					0.1	40733	80.00	81.20	1.20				
		79.10-7 130°ca.	9.30: Chlorite-Calcite-Epidote-Hematite vein. UC= 50°ca, LC=		0.3	40734	81.20	82.40	1.20				
		80.1-8	2.1 : Fine Grained Gabbro/Mafic Intrusive.										
		pepper	s the lower contact comes this fine grained gabbro. The salt and texture is not present here so probably it is a mafic intrusive or a margin as it approaches the syenite mafic volcanic pacakge.										

			GEOLOGY	VISU	JAL			ASSAY	RESULTS	i	
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
15.50	68.20	GBFP	Porphyritic Gabbro		0.1	40678	16.40	17.60	1.20		
			e contact marked by the grain size getting a bit coarser comes to a		0.1	40679	17.60	18.80	1.20		
		rock na	med Phophyritic Gabbro. The hole enters a phenocrystic texture of		0.1	40680	18.80	20.00	1.20		
			bbro. It is medium grained, salt and peppery looking unit that is		0.1	40681	20.00	21.20	1.20		
		charact	terized by 15- 25%, fine (millimetric), mafic phenocrysts and 1%,		0.1	40682	21.20	22.40	1.20		
		small n	nafic inclusions in a fine grained, feldspathic(?) groundmass. The		0.1	40683	22.40	23.60	1.20		
		rock is	strongly magnetic, weakly to non-ankeritic, and non calcareous. It		0.1	40684	23.60	24.80	1.20		
		also co	ntains about 2% feldspar phenocrysts sparsely distributed. Thin		0.1	40685	24.80	26.00	1.20		
		chlorite	e veins running 140°ca (<5mm) is common. There is a large epidote		0.1	40686	26.00	27.20	1.20		
		vein at	41.40m that is 15cm wide and oriented at 150°ca. A minor fault is		0.1	40687	27.20	28.40	1.20		
		noted a	at 66.2 to 66.7 m depth showing broken core with associated		0.1	40688	28.40	29.60	1.20		
		gouge.			0.1	40689	29.60	30.80	1.20		
						40690	30.80	32.00	1.20		
					0.1	40691	32.00	33.20	1.20		
					0.1	40692	33.20	34.40	1.20		
					0.1	40693	34.40	35.60	1.20		
					0.1	40694	35.60	36.80	1.20		
					0.1	40695	36.80	38.00	1.20		
					0.1	40696	38.00	39.20	1.20		
					0.1	40697	39.20	40.40	1.20		
					0.1	40698	40.40	41.60	1.20		
					0.1	40699	41.60	42.80	1.20		
					0.1	40701	42.80	44.00	1.20		
					0.1	40702	44.00	45.20	1.20		
					0.1	40703	45.20	46.40	1.20		
					0.1	40704	46.40	47.60	1.20		
					0.1	40705	47.60	48.80	1.20		
					0.1	40706	48.80	50.00	1.20		
					0.1	40707	50.00	51.20	1.20		
					0.1	40708	51.20	52.40	1.20		
					0.1	40709	52.40	53.60	1.20		
					0.1	40710	53.60	54.80	1.20		
					0.1	40711	54.80	56.00	1.20		
					0.1	40712	56.00	57.20	1.20		
					0.1	40713	57.20	58.40	1.20		
					0.1	40714	58.40	59.60	1.20		
					0.1	40715	59.60	60.80	1.20		
						40716	60.80	62.00	1.20		
					0.1	40717	62.00	63.20	1.20		
					0.1	40718	63.20	64.40	1.20		
					0.1	40719	64.40	65.60	1.20		
					0.1	40720	65.60	66.80	1.20		
					0.1	40721	66.80	68.00	1.20		
					0.1	40722	68.00	69.20	1.20		
2.50	15.50		Fine to Medium Grained Gabbro		0.1	40670	8.00	9.20	1.20		
			le is collared into what we call in the camp as Fine to medium			40671	9.20	10.40	1.20		
		-	gabbro. Generally, this gabbro is massive, relatively homogenous,		0.1	40672	10.40	11.60	1.20		
			medium grained with a distinctive salt and pepper type texture,		0.1	40673	11.60	12.80	1.20		
			sed of 40- 65% dark green grey to black, millimetric, altered		0.1	40674	12.80	14.00	1.20		
			agnesian grains/ crystals in a fine grained yellowish buff coloured		0.1	40676	14.00	15.20	1.20		
		non-an saussu materia	thic groundmass. It is moderately to strongly magnetic-weakly to keritic. Moderately and pervasively chloritized, slightly ritized with weak to moderate fracture controlled black chlorite al. Yellow green epidote veinings and calcite veinings are also t. Below are some of the pronounced intervals. This interval		0.1	40677	15.20	16.40	1.20		
		contair size. Th	is about 2% feldspar phenocrysts that range from 1cm to 4cm in iere are broken core intervals within this section. They are located m = 8.0m + 8.10m + 8.50m = and 9.2m + 9.9m								

at 6.02m- 8.0m; 8.10m- 8.50 m and 9.2m- 9.9 m.

			GEOLOGY	VISU	JAL		A	SSAY	RESULTS	i	
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
0.00	2.50		Overburden covery was measured to begin at 8.20 ft. The driller's block e that they placed 3.0 m (10.0 ft) of NW casing.								
		dilute h fizzes ir presen	All the core is systematically tested for pervasive carbonate using hydrochloric acid HCI) and potassium ferricyanide (KFC). The acid in contact with calcite and the KFC stains the core blue in the ce of ankerite. In certain areas, the core is tested with a magnet to ine relative magnetite content.								

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION

Breaks

>10cm RQD (%)

0.3

2.7

1.4

2.6

2.8

3.0

2.8

3.0

2.9

3.1

2.7

2.9

3.1

3.0

3.0

2.9

2.8

2.8

3.0

3.0

3.0

3.0

3.0

2.7

2.7

2.4

2.4

2.9

3.0

2.9

2.9

2.9

3.0

Rec (%)

Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core
0.00	85.5°	85.5°	-60.0°	Collar		2.1	2.7	0.7	
14.94	96.8°	85.6°	-59.5°	Multi		2.7	5.8	3.1	
17.98	95.9°	84.7°	-59.4°	Multi		5.8	8.8	3.1	
21.03	97.8°	86.6°	-59.7°	Multi		8.8	11.9	3.1	
24.08	97.5°	86.3°	-59.6°	Multi		11.9	14.9	3.1	
27.13	97.2°	86.0°	-59.8°	Multi		14.9	18.0	3.1	
30.18	95.5°	84.3°	-59.7°	Multi		18.0	21.0	3.1	
33.22	96.8°	85.6°	-59.8°	Multi		21.0	24.1	3.1	
36.27	96.7°	85.5°	-59.7°	Multi		24.1	27.1	3.0	
39.32	94.9°	83.7°	-59.7°	Multi		27.1	30.2	3.1	
42.37	95.6°	84.4°	-59.9°	Multi		30.2	33.2	3.1	
45.42	99.2°	88.0°	-60.0°	Multi		33.2	36.3	3.1	
48.46	95.8°	84.6°	-59.9°	Multi		36.3	39.3	3.1	
51.51	95.7°	84.5°	-60.0°	Multi		39.3	42.4	3.1	
54.56	95.8°	84.6°	-60.0°	Multi		42.4	45.4	3.1	
57.61	96.1°	84.9°	-59.8°	Multi		45.4	48.5	3.1	
60.66	97.6°	86.4°	-60.0°	Multi		48.5	51.5	3.1	
63.70	96.1°	84.9°	-60.0°	Multi		51.5	54.6	3.0	
66.75	97.4°	86.2°	-60.1°	Multi		54.6	57.6	3.1	
69.80	97.0°	85.8°	-60.0°	Multi		57.6	60.7	3.1	
72.85	98.9°	87.7°	-60.1°	Multi		60.7	63.7	3.1	
75.90	98.2°	87.0°	-60.2°	Multi		63.7	66.8	3.1	
78.94	97.9°	86.7°	-60.1°	Multi		66.8	69.8	3.1	
81.99	98.4°	87.2°	-60.1°	Multi		69.8	72.9	3.1	
85.04	99.0°	87.8°	-60.3°	Multi		72.9	75.9	3.0	
88.09	98.1°	86.9°	-60.1°	Multi		75.9	79.0	3.1	
91.14	99.8°	88.6°	-60.3°	Multi		79.0	82.0	3.1	
94.18	120.4° X	88.6°	-60.0°	Multi		82.0	85.1	3.1	
97.23	104.1° X	88.6°	-60.3°	Multi		85.1	88.1	3.1	
						88.1	91.2	3.1	
						91.2	94.2	3.1	
						94.2	97.3	3.1	
						97.3	100.3	3.0	

Golden Target Project

COLLAR INFORMATION

Drill Log CR2014-25

WORK DONE BY

Claim:	4273194			Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	269.30°	Drilling	0.0		Walker Drilling	2014-Sep-27	Sep-28
Easting:	539,924.00 m	Dip:	-60.00°	Downhole Survey Core Logging	0.0 0.0		Walker Drilling Dennis Patron	2014-Sep-28 2014-Oct-06	Sep-28 Oct-06
Northing:	5,359,763.00 m	Length:	100.28 m	Core Logging	0.0		Athraa Koma	2014-Oct-06	Oct-06
Elevation:	366.00 m	Core Size:	NQ						
Storage:	CanREE explo site								

Comments:

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
92.50	100.00	This sye	Massive Syenite enite setion is quite similar as the massive syenite described			41894 41895	92.60 94.10	94.10 95.60	1.50 1.50		
			. However there is a calcareous section at 90.9- 95.5 that contains ant vugs and pits. The vugs and pits wagere probably leached out			41896 41897	95.60 97.10	97.10 98.60	1.50 1.50		
		calcite massive rock. Tl	when it overprints the rock. This is still a pinkish, medium grained, e amnd crystalline syenite rock. No samples were collected on this here is however a short breccia zone section at 97 m to 99m where e show 2% angular mafic inclusions within the syenite.			41898		100.00	1.40		
90.10	92.50	MVBX	Brecciated Mafic Volcanics		1.0	40871	90.20	91.40	1.20		
		regiona compos jigsaw j epidote patches	erval appears to be brecciated in situ probably caused by the al structure that affect the area. This interval have have a similar sition as above as well as texture. Bowever this interval show puzzle texture due to brecciation. The rims of the fragments have e, chloite and quartz carbonate infills. There are also epidote s in this interval ~2%. The rock is moderately magnetic, non to ankeriotic and non calcareous.		0.8	40872	91.40	92.60	1.20		
89.20	90.10	This int above b fabric a weakly stringer 5 cm qu	Mafic Volcanics ereval is finer grain than above. Compositionally it is the same as but texturally distinct. This interval also show a stronger fabric ind sronger pyrite mineralization. The rock is moderately magnetic, calcareous and weakly ankeritic. Thin epidote +quartz+chlorite rs again anastomosing the unit at various directions. At 89.9 m is a uartz carbonate vein that trends 15°ca. Pyrite mineralization ed on the edges of the QCV but not on the QCV itself.								
80.10	89.20	MVFP	Feldspar Phyric Mafic Volcanics and Syenite Package		0.5	40863	80.60	81.80	1.20		
			le reverts back to the Feldpar phyric Mafic volcanic uphole. The		1.5	40864	81.80	83.00	1.20		
			I show snake skin texture and appears to be strongly		1.5	40865	83.00	84.20	1.20		
			politized. It also contains 1% feldpar phenos whose size range from		1.0	40866	84.20	85.40	1.20		
			9 4 cm and sporadically distributed. The rock is weakly to non- tic and weakly to non-ankeritic. There is a weak fabric that trends		2.0	40867 40868	85.40 86.60	86.60 87.80	1.20 1.20		
		0	hown by the allignment of thin chlorite stringers. It was noted that		1.0	40868 40869	86.60 87.80	87.80 89.00	1.20		
			nineralization tends to be associated with the chlorite stringers		1.0	40809	89.00	90.20	1.20		
		and sar sample	nples collected have an extimate pyrite in the left table in the assay table to the left. The syenite is in a form of dykes and is about 5% of the total interval.		1.0	10070	03.00	50.20	1.20		

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
76.10	80.10	SY	Massive Svenite		0.1	40860	77.00	78.20	1.20		
			contact of 140°ca comes this massive and crystalline, pinkish,		0.1	40861	78.20	79.40	1.20		
			n grained, hematite altered, weakly porphyritic and coherent		0.5	40862	79.40	80.60	1.20		
			intrusive rock. There is a Sheared zone oriented at 150°ca								
		,	ing highly fractured and broken core from 78.0- 78.2. Shear zone								
		ends at	78.6m depth. There is also a Calcite vein at 35.2 m oriented at								
		120°ca.	non-ankeritic, non-magnetic-high calcite pits and vugs, contains a								
		small zo	one of shearing that has mafic volcanics and hematite alterations,								
		no sulp	hide mineralization Lower contact is sharp at 80°ca								
		78.00-7	78.20: Fractured and broken core								
		78.20-7	78.60: Shear Zone. Shear Angle= 150°ca								
48.20	76.10	MVFP	Feldspar Phyric Mafic Volcanics and Syenite Package		0.5	40785	48.20	49.40	1.20		
		A chang	ge in texture and the appearance of coarse (1cm- 4 cm) feldspar		0.5	40786	49.40	50.60	1.20		
		phenoc	ryst marks the beginning of this Feldspar Phyric Mafic Volcanic and		1.0	40787	50.60	51.80	1.20		
			package. The former exhibits snake skin texture suggesting that it		1.0	40788	51.80	53.00	1.20		
		was str	ongly amphibolitized. The Feldspar phenos occur sporadically		0.8	40789	53.00	54.20	1.20		
		approxi	imately 1%. The matrix is dark grey and fine grained and appears		2.0	40790	54.20	55.40	1.20		
			ated by amphiboles. SGS thin section called it amphibolite but we		1.0	40791	55.40	56.60	1.20		
		2	nsider it an amphibolitized mafic volcanics. The rock is weakly to		1.0	40792	56.60	57.80	1.20		
			agnetic and weakly to non-ankeritic and non calcareous. Pyrite		1.0	40793	57.80	59.00	1.20		
			lization is stronger in this rock amounting to 5%. The Syenite		1.0	40794	59.00	60.20	1.20		
			in and out of this unit but oftentimes observed as a breccia zone.		2.0	40795	60.20	61.40	1.20		
			eccia zone contains angular mafic fragment occuring as inclusions.		2.0	40796	61.40	62.60	1.20		
		The det	tails of the log is below.		1.0	40797	62.60	63.80	1.20		
						40798	63.80	65.00	1.20		
			57.70: 98% Feldspar Phyric Mafic Volcanics covered with 2%		1.5	40799	65.00	66.20	1.20		
		Hemati	te alteration and 2% Syenite Dyke. UC= gradual; LC= 50°ca		1.0	40851	66.20	67.40	1.20		
					1.0	40852	67.40	68.60	1.20		
			58.30: Massive Syenite. UC= 50°ca, LC= 50°ca		1.0	40853	68.60	69.80	1.20		
			59.15: Breccia Zone. UC= 50°ca, LC= 150°ca 50.20: Feldspar Phyric Mafic Volcanics. UC= 150°ca, LC= 30°ca		3.0	40854	69.80	71.00	1.20		
			50.80: Massive Syenite. UC= 30°ca, LC= 30°ca		2.0	40855	71.00	72.20	1.20		
			54.80: 98% Feldspar Phyric Mafic Volcanics and 2% Syenite Dyke.		2.0	40856	72.20	73.40	1.20		
			°ca, LC= 140°ca		1.0	40857	73.40	74.60	1.20		
		UC= 30	(d, LC= 140 (d		1.0	40858	74.60	75.80	1.20		
		61 20 6	66.65: Breccia Zone containing one large Calcite phenocryst (5cm).		0.1	40859	75.80	77.00	1.20		
			0°ca, LC= 125°ca								
		UC- 14									
			66.80: Shear Zone. UC and LC = 20°ca								
			76.10: 90% Feldspar Phyric Mafic Volcanics and 10% Syenite Dyke.								
		UC= 20	°ca, LC= 140°ca								

Comment Mafic Volcanics and Syenite Package le enters into package that is dominated by mafic volcanics d by syenite. The ratio is about 90% mafic volcanics and 10% . The former is quite different to the mafic volcanic uphole e it exhibits well developed fabric. This rock dark greenish grey/ ine grained matrixed mafic volcanics locally altered by yellow pidote patches and veins. The latter is the typical syenite intrusion mes in and out. The package is weakly to moderately magnetic, ately ankeritic and weakly to non calcareous. Local shear zone or ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 15.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 11.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca 24.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca 27.70: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 120°ca, LC=	<u>Ср %</u>	Py% 1.0 1.0 1.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.5 0.5 1.0 1.0 1.0 1.0 1.0 1.0	Sample 40761 40762 40763 40764 40765 40766 40767 40768 40770 40770 40771 40772 40773 40774 40776 40776 40777	From 20.60 21.80 23.00 24.20 25.40 26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	To 21.80 23.00 24.20 25.40 26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	Length 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20	Au gpt	Cu
e enters into package that is dominated by mafic volcanics d by syenite. The ratio is about 90% mafic volcanics and 10% . The former is quite different to the mafic volcanic uphole e it exhibits well developed fabric. This rock dark greenish grey/ ine grained matrixed mafic volcanics locally altered by yellow upidote patches and veins. The latter is the typical syenite intrusion mes in and out. The package is weakly to moderately magnetic, ately ankeritic and weakly to non calcareous. Local shear zone or ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 55.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 26.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		$\begin{array}{c} 1.0\\ 1.0\\ 0.1\\ 0.1\\ 0.1\\ 0.5\\ 0.5\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 2.0\\ \end{array}$	40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40776 40777	21.80 23.00 24.20 25.40 26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	23.00 24.20 25.40 26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		
d by syenite. The ratio is about 90% mafic volcanics and 10% . The former is quite different to the mafic volcanic uphole e it exhibits well developed fabric. This rock dark greenish grey/ ine grained matrixed mafic volcanics locally altered by yellow upidote patches and veins. The latter is the typical syenite intrusion mes in and out. The package is weakly to moderately magnetic, ately ankeritic and weakly to non calcareous. Local shear zone or ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 15.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 86.40: Massive Syenite. UC= 130°ca, LC= 45°ca 11.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca 14.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		$\begin{array}{c} 1.0\\ 0.1\\ 0.1\\ 0.1\\ 0.5\\ 0.5\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 2.0\\ \end{array}$	40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40776 40777	23.00 24.20 25.40 26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	24.20 25.40 26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		
. The former is quite different to the mafic volcanic uphole e it exhibits well developed fabric. This rock dark greenish grey/ ine grained matrixed mafic volcanics locally altered by yellow epidote patches and veins. The latter is the typical syenite intrusion mes in and out. The package is weakly to moderately magnetic, ately ankeritic and weakly to non calcareous. Local shear zone or ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 45.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 46.40: Massive Syenite. UC= 130°ca, LC= 45°ca 41.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 50liation= 40°ca 44.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		0.1 0.1 0.1 0.5 0.5 1.0 1.0 1.0 1.0 2.0	40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40776 40777	24.20 25.40 26.60 27.80 30.20 31.40 32.60 33.80 35.00 36.20 37.40	25.40 26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		
e it exhibits well developed fabric. This rock dark greenish grey/ ine grained matrixed mafic volcanics locally altered by yellow pidote patches and veins. The latter is the typical syenite intrusion mes in and out. The package is weakly to moderately magnetic, ately ankeritic and weakly to non calcareous. Local shear zone or ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 35.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 36.40: Massive Syenite. UC= 130°ca, LC= 45°ca 41.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 50liation= 40°ca 44.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		0.1 0.1 0.5 0.5 1.0 1.0 1.0 1.0 2.0	40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40776 40777	25.40 26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		
ine grained matrixed mafic volcanics locally altered by yellow pidote patches and veins. The latter is the typical syenite intrusion mes in and out. The package is weakly to moderately magnetic, ately ankeritic and weakly to non calcareous. Local shear zone or ation zone were observed and recorded below. Pyrite occurs as lisseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 25.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 26.40: Sym Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 26.150: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 26.1610 = 40°ca 24.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		0.1 0.1 0.5 0.5 1.0 1.0 1.0 1.0 2.0	40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40776 40777	25.40 26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		
 pidote patches and veins. The latter is the typical syenite intrusion mes in and out. The package is weakly to moderately magnetic, ately ankeritic and weakly to non calcareous. Local shear zone or ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 25.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 27.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca 28.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca 		0.1 0.5 0.5 1.0 1.0 1.0 1.0 2.0	40766 40767 40768 40769 40770 40771 40772 40773 40774 40776 40777	26.60 27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		
 pidote patches and veins. The latter is the typical syenite intrusion mes in and out. The package is weakly to moderately magnetic, ately ankeritic and weakly to non calcareous. Local shear zone or ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 25.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 27.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca 28.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca 		0.1 0.5 0.5 1.0 1.0 1.0 1.0 1.0 2.0	40767 40768 40769 40770 40771 40772 40773 40774 40776 40777	27.80 29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		
 mes in and out. The package is weakly to moderately magnetic, ately ankeritic and weakly to non calcareous. Local shear zone or ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 25.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 25.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 26.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca 		0.5 0.5 1.0 1.0 1.0 1.0 1.0 2.0	40768 40769 40770 40771 40772 40773 40774 40776 40777	29.00 30.20 31.40 32.60 33.80 35.00 36.20 37.40	30.20 31.40 32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20 1.20 1.20		
ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 25.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 21.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 20.150: 95% Mafic Volcanics AND		0.5 0.5 1.0 1.0 1.0 1.0 1.0 2.0	40769 40770 40771 40772 40773 40774 40776 40777	30.20 31.40 32.60 33.80 35.00 36.20 37.40	31.40 32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20 1.20		
ation zone were observed and recorded below. Pyrite occurs as disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 25.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 21.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 20.150: 95% Mafic Volcanics AND		0.5 1.0 1.0 1.0 1.0 1.0 2.0	40770 40771 40772 40773 40774 40776 40777	31.40 32.60 33.80 35.00 36.20 37.40	32.60 33.80 35.00 36.20 37.40	1.20 1.20 1.20 1.20		
 disseminations and fracture fillings. The modal percentage of pyrite ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 25.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 25.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 26.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca 		1.0 1.0 1.0 1.0 1.0 2.0	40771 40772 40773 40774 40776 40777	32.60 33.80 35.00 36.20 37.40	33.80 35.00 36.20 37.40	1.20 1.20 1.20		
ded at a separate column in the sample/assay table. 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 25.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 21.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 201ation= 40°ca 24.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		1.0 1.0 1.0 2.0	40772 40773 40774 40776 40777	33.80 35.00 36.20 37.40	35.00 36.20 37.40	1.20 1.20		
 25.20: Mafic Volcanics without fabric. UC= 150°ca, LC= 140°ca 25.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 26.40: Massive Syenite. UC= 130°ca, LC= 45°ca 25.95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 25.20: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= 		1.0 1.0 1.0 2.0	40773 40774 40776 40777	35.00 36.20 37.40	36.20 37.40	1.20		
 85.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 86.40: Massive Syenite. UC= 130°ca, LC= 45°ca 81.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca 84.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca 		1.0 1.0 2.0	40774 40776 40777	36.20 37.40	37.40			
 85.65: 95% Mafic Volcanics and 5% Syenite Dykes. UC= 140°ca, Foliation= 140°ca 86.40: Massive Syenite. UC= 130°ca, LC= 45°ca 81.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca 84.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca 		1.0 1.0 2.0	40776 40777	37.40		1.20		
Foliation= 140°ca 86.40: Massive Syenite. UC= 130°ca, LC= 45°ca 11.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca 14.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		1.0 2.0	40777			1 2 2		
86.40: Massive Syenite. UC= 130°ca, LC= 45°ca 11.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca 14.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		2.0			38.60	1.20		
 H1.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca H4.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca 				38.60	39.80	1.20		
 H1.50: 95% Mafic Volcanics and 5% Syenite Dyke. UC= 45°ca, LC= Foliation= 40°ca H4.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca 		10	40778	39.80	41.00	1.20		
Foliation= 40°ca 14.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		1.0	40779	41.00	42.20	1.20		
44.40: Deformation Zone. UC= 30°ca, LC= 120°ca, Foliation= 130°ca		0.5	40780	42.20	43.40	1.20		
		2.0	40781	43.40	44.60	1.20		
		1.0	40782	44.60	45.80	1.20		
17 70: 95% Mafic Volcanics and 5% Svenite Dyke LIC= 120°ca LC=		2.0	40783	45.80	47.00	1.20		
		1.0	40784	47.00	48.20	1.20		
Foliation= 145°ca		0.5	40785	48.20	49.40	1.20		
8.60: Massive Syenite. UC and LC = 50°ca 9.20: Mafic Volcanics. UC= 50°ca, LC- gradual contact, Foliation=								
44.60: Brecciated zone/Stockwork zone. This zone contains reddish s which when cut bleeds into the core saw. Possible cobalt veins. d out what minerals are in this zone. The reddish stringers mosing the the unit at various directions. The host is weakly d mafic volcanics. This zone also apprears brecciated in situ as fragments is common and the epidote, hematite and chlorite rims gments.								
Altered Mafic Volcanics		0.1	40751	8.60	9.80	1.20		
e is collared into a medium to dark maroon-grey, coherent, fine		0.1	40752	9.80	11.00	1.20		
		0.5						
um metasomatism as it bleached the rock maroonish in color.								
r or guartz overprints were common as it occupies 20% of the								
occurs like quartz grains. Trace to 0.5% pyrites. The rock is								
ately to strongly ankeritic, non calcareous and weakly magnetic.		0.5	40760	19.40	20.60	1.20		
Overburden								
covery was measured to begin at 21.00 ft. The driller's block a that they placed 6.10 m (20.0 ft) of NW casing.								
All the core is systematically tested for pervasive carbonate using								
e f nt of at co	ragments is common and the epidote, hematite and chlorite rims nents. Altered Mafic Volcanics is collared into a medium to dark maroon-grey, coherent, fine ikely mafic flow. Fabric is weakly developed through this unit, hassive. Patches of buff-pink, weakly corroded, less magnetic ankerite and possibly albite alteration occur through the unit and o less altered zones. It seems that the rock has undergone strong m metasomatism as it bleached the rock maroonish in color. or quartz overprints were common as it occupies 20% of the ccurs like quartz grains. Trace to 0.5% pyrites. The rock is ely to strongly ankeritic, non calcareous and weakly magnetic. Overburden overy was measured to begin at 21.00 ft. The driller's block	ragments is common and the epidote, hematite and chlorite rims nents. Altered Mafic Volcanics is collared into a medium to dark maroon-grey, coherent, fine ikely mafic flow. Fabric is weakly developed through this unit, nassive. Patches of buff-pink, weakly corroded, less magnetic ankerite and possibly albite alteration occur through the unit and o less altered zones. It seems that the rock has undergone strong m metasomatism as it bleached the rock maroonish in color. or quartz overprints were common as it occupies 20% of the ccurs like quartz grains. Trace to 0.5% pyrites. The rock is ely to strongly ankeritic, non calcareous and weakly magnetic. Overburden overy was measured to begin at 21.00 ft. The driller's block that they placed 6.10 m (20.0 ft) of NW casing. I the core is systematically tested for pervasive carbonate using drochloric acid HCI) and potassium ferricyanide (KFC). The acid contact with calcite and the KFC stains the core blue in the of ankerite. In certain areas, the core is tested with a magnet to	Altered Mafic Volcanics0.1is collared into a medium to dark maroon-grey, coherent, fine0.1ikely mafic flow. Fabric is weakly developed through this unit,0.3passive. Patches of buff-pink, weakly corroded, less magnetic0.5ankerite and possibly albite alteration occur through the unit and0o less altered zones. It seems that the rock has undergone strong0.5or quartz overprints were common as it occupies 20% of the0.5occurs like quartz grains. Trace to 0.5% pyrites. The rock is0.8ely to strongly ankeritic, non calcareous and weakly magnetic.0.5Overburden0overy was measured to begin at 21.00 ft. The driller's block that they placed 6.10 m (20.0 ft) of NW casing.1I the core is systematically tested for pervasive carbonate using drochloric acid HCl) and potassium ferricyanide (KFC). The acid contact with calcite and the KFC stains the core blue in the of ankerite. In certain areas, the core is tested with a magnet to	Altered Mafic Volcanics0.140751is collared into a medium to dark maroon-grey, coherent, fine0.140752ikely mafic flow. Fabric is weakly developed through this unit,0.340753passive. Patches of buff-pink, weakly corroded, less magnetic0.540754ankerite and possibly albite alteration occur through the unit and4075540756on less altered zones. It seems that the rock has undergone strong0.540756or quartz overprints were common as it occupies 20% of the0.540758ccurs like quartz grains. Trace to 0.5% pyrites. The rock is0.840759ely to strongly ankeritic, non calcareous and weakly magnetic.0.540760Overburdenovery was measured to begin at 21.00 ft. The driller's block40760It her core is systematically tested for pervasive carbonate usingdrochloric acid HCl) and potassium ferricyanide (KFC). The acid540760Overtain areas, the core is tested with a magnet to	Altered Mafic Volcanics0.1407518.60is collared into a medium to dark maroon-grey, coherent, fine0.1407529.80ikely mafic flow. Fabric is weakly developed through this unit,0.34075311.00passive. Patches of buff-pink, weakly corroded, less magnetic0.54075412.20ankerite and possibly albite alteration occur through the unit and4075513.40o less altered zones. It seems that the rock has undergone strong0.54075614.60m metasomatism as it bleached the rock maroonish in color.0.34075715.80or quartz overprints were common as it occupies 20% of the0.54075817.00ccurs like quartz grains. Trace to 0.5% pyrites. The rock is0.84075918.20ely to strongly ankeritic, non calcareous and weakly magnetic.0.54076019.40Overburdenovery was measured to begin at 21.00 ft. The driller's block that they placed 6.10 m (20.0 ft) of NW casing.1114It he core is systematically tested for pervasive carbonate using drochloric acid HCI) and potassium ferricyanide (KFC). The acid contact with calcite and the KFC stains the core blue in the	Altered Mafic Volcanics0.1407518.609.80Altered Mafic Volcanics0.1407518.609.80is collared into a medium to dark maroon-grey, coherent, fine0.1407529.8011.00ikely mafic flow. Fabric is weakly developed through this unit,0.34075311.0012.20passive. Patches of buff-pink, weakly corroded, less magnetic0.54075412.2013.40o less altered zones. It seems that the rock has undergone strong0.54075614.6015.80n metasomatism as it bleached the rock maroonish in color.0.34075715.8017.00or quartz overprints were common as it occupies 20% of the0.54075817.0018.20curs like quartz grains. Trace to 0.5% pyrites. The rock is0.84075918.2019.40ely to strongly ankeritic, non calcareous and weakly magnetic.0.54076019.4020.60Overburdenovery was measured to begin at 21.00 ft. The driller's block that they placed 6.10 m (20.0 ft) of NW casing.1111I the core is systematically tested for pervasive carbonate using drochloric acid HCI) and potassium ferricyanide (KFC). The acid contact with calcite and the KFC stains the core blue in the of ankerite. In certain areas, the core is tested with a magnet to0111	Altered Mafic Volcanics0.1407518.609.801.20is collared into a medium to dark maroon-grey, coherent, fine0.1407529.8011.001.20ikely mafic flow. Fabric is weakly developed through this unit,0.34075311.0012.201.20anssive. Patches of buff-pink, weakly corroded, less magnetic0.54075412.2013.401.20ankerite and possibly albite alteration occur through the unit and4075513.4014.601.20o less altered zones. It seems that the rock has undergone strong0.54075614.6015.801.20n metasomatism as it bleached the rock maroonish in color.0.34075715.8017.001.20or quartz overprints were common as it occupies 20% of the0.54075817.001.20our attract on 0.5% pyrites. The rock is0.84075918.201.20oley to strongly ankeritic, non calcareous and weakly magnetic.0.54076019.401.20Overburdenovery was measured to begin at 21.00 ft. The driller's block4076019.4020.601.20I the core is systematically tested for pervasive carbonate using drochloric acid HCI) and potassium ferricyanide (KFC). The acid contact with calcite and the KFC stains the core blue in the e of ankerite. In certain areas, the core is tested with a magnet to55555	ragments is common and the epidote, hematite and chlorite rims hents. Altered Mafic Volcanics is collared into a medium to dark maroon-grey, coherent, fine is collared into a medium to dark maroon-grey, coherent, fine is collared into a medium to dark maroon-grey, coherent, fine is collared into a medium to dark maroon-grey, coherent, fine 0.1 40752 9.80 11.00 1.20

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION

Breaks

				·						-		
Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm	RQD (%)
0.00	269.3°	269.3°	-60.0°	Collar		6.4	8.5	2.1			1.0	0
11.58	282.5°	271.3°	-59.2°	Multi		8.5	11.6	3.1			2.6	1
14.63	281.3°	270.1°	-59.3°	Multi		11.6	14.6	3.0			2.9	1
17.68	280.6°	269.4°	-59.5°	Multi		14.6	17.7	3.1			2.9	1
20.73	281.0°	269.8°	-59.2°	Multi		17.7	20.7	3.1			2.8	1
23.77	281.3°	270.1°	-59.3°	Multi		20.7	23.8	3.1			2.9	1
26.82	281.0°	269.8°	-59.4°	Multi		23.8	26.8	3.1			2.5	1
29.87	281.1°	269.9°	-59.4°	Multi		26.8	29.9	3.1			3.0	1
32.92	280.4°	269.2°	-59.3°	Multi		29.9	32.9	3.1			2.9	1
35.97	281.6°	270.4°	-59.3°	Multi		32.9	36.0	3.1			2.8	1
39.01	280.8°	269.6°	-59.4°	Multi		36.0	39.0	3.0			2.9	1
42.06	283.3°	272.1°	-59.1°	Multi		39.0	42.1	3.1			2.9	1
45.11	280.2°	269.0°	-59.5°	Multi		42.1	45.1	3.1			3.0	1
48.16	279.9°	268.7°	-59.3°	Multi		45.1	48.2	3.1			2.8	1
51.21	281.5°	270.3°	-59.3°	Multi		48.2	51.2	3.1			3.0	1
54.25	281.7°	270.5°	-59.3°	Multi		51.2	54.3	3.1			2.9	1
57.30	283.7°	272.5°	-58.9°	Multi		54.3	57.3	3.1			2.8	1
60.35	281.0°	269.8°	-59.3°	Multi		57.3	60.4	3.1			3.1	1
63.40	281.4°	270.2°	-59.3°	Multi		60.4	63.4	3.0			3.0	1
66.45	281.3°	270.1°	-59.4°	Multi		63.4	66.5	3.1			3.0	1
69.49	281.5°	270.3°	-59.3°	Multi		66.5	69.5	3.1			3.0	1
72.54	280.8°	269.6°	-59.3°	Multi		69.5	72.6	3.1			2.9	1
75.59	281.4°	270.2°	-59.4°	Multi		72.6	75.6	3.1			2.8	1
78.64	283.7°	272.5°	-58.8°	Multi		75.6	78.7	3.1			2.2	1
81.69	281.1°	269.9°	-59.4°	Multi		78.7	81.7	3.1			2.7	1
84.73	281.0°	269.8°	-59.9°	Multi		81.7	84.8	3.1			2.9	1
87.78	281.6°	270.4°	-59.4°	Multi		84.8	87.8	3.0			2.9	1
90.83	282.8°	271.6°	-59.2°	Multi		87.8	90.9	3.1			2.8	1
93.88	283.1°	271.9°	-59.1°	Multi		90.9	93.9	3.1			3.0	1
96.93	282.6°	271.4°	-59.3°	Multi		93.9	97.0	3.1			2.9	1
						97.0	100.0	3.1			3.0	1

Golden Target Project

Drill Log GT2014-01

COLLAR INFORMATION

COLLAR IN	FORMATION							WORK DO	ONE BY
Claim:				Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	5.10°	Drilling	0.0	230.4	Walker Drilling	2014-Sep-30	Oct-08
•				Downhole Survey	0.0	230.4	Walker Drilling	2014-Oct-08	Oct-08
Easting:	541,800.00 m	Dip:	-60.00°	Core Logging	0.0	230.4	Dennis Patron	2014-Oct-09	Oct-09
Northing:	5,364,161.00 m	Length:	230.43 m	Core Logging	0.0	230.4	Athraa Koma	2014-Oct-09	Oct-09
Elevation:	324.00 m	Core Size:	NQ	Core Logging	0.0	230.4	Ce Shi	2014-Oct-09	Oct-09
Storage:	CanREE explo site								

Comments:

			GEOLOGY	VISU	JAL			ASSAY	RESULTS	;	
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
171.40	178.10	GRPH	Graphitic Zone		0.8	41067	172.00	173.00	1.00		
		Very da	rk grey, soft and massive without a fabric. Strongly magnetic and		5.3	41068	173.00	174.00	1.00		
			ceritic. It is considered to be a graphitic zone due to the high		1.0	41069	174.00	175.20	1.20		
		conduct	ors observed by the VLF and the conducting probe. The angle		2.0	41070	175.20	176.40	1.20		
		betwee	n the fine grained mafic volcanics and the graphitic zone is defined		1.5	41071	176.40	177.60	1.20		
		by a sha	rp angle at the end of the chlorite vein and the epidote patches at		1.5	41072	177.60	178.80	1.20		
		50°ca. V	Vithin this zone there is a large vein of bull quartz which contains								
		fragmei	nts of the graphitic rock and the chlorite-calcite-epidote veins. The								
			rtz is considered to be a late alteration that has been well								
			ed and does not contain any sulphide mineralization. however the								
			ne has moderate sulphide mineralization within the smaller								
			veins that are less than 2mm and scattered throughtout the rock; .5% - 1% sulphide mineralization.								
26.00	37.10	MV	Mafic Volcanics		1.0	40873	26.00	27.20	1.20		
		The hol	e is collared in a dark greenish-grey, fine to medium grained mafic		1.0	40876	27.20	28.40	1.20		
			unit displaying a weak foliation at 30°ca. The foliation is defined		1.0	40877	28.40	29.60	1.20		
		by an al	ignment of medium grained, elongate mafic crystals and a weakly		1.0	40878	29.60	30.80	1.20		
		aligned	network of chlorite stringers. Shredded whitish-pink calcite		2.0	40879	30.80	32.00	1.20		
		stringer	s are present throughout. It was observed that the medium		1.0	40880	32.00	33.20	1.20		
		grained	mafic volcanic contains moderate amounts of interstital epidote		1.0	40881	33.20	34.40	1.20		
		(10-20%	6). Also observed are scattered thin (1mm - 10mm) veinlet of		1.0	40882	34.40	35.60	1.20		
			epidote hematite or calcite which are oriented at various angles to		2.0	40883	35.60	36.80	1.20		
			e axis. Many of the veinlet have increased amount of		1.0	40884	36.80	38.00	1.20		
			ization such as pyrite and chalcopyrite, minor scattered,								
			nated pyrite in the rest of the core. The rock is medium grained								
			plays a weak granular texture in places. There is a weak epidote								
			on throughout the unit as well. Quartz-calcite veining in the unit								
			with an abundance of 0.5% throughout. The rock is strongly								
		magnet	ic, non to weakly calcareous and non to weakly ankeritic.								

			GEOLOGY	VISU	JAL		A	ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
37.10	42.70	FLTZ	Fault Zone Broken Core		1.0	40885	38.00	39.00	1.00		
		Probab	y a fault zone, with 1m of lost core due to drilling issues. Mainly		1.0	40886	39.00	40.00	1.00		
		fine to	medium grained mafic volcanics that is drab, olive green and		1.0	40887	41.00	42.00	1.00		
		quartz l The dril graphit graphit meter b	sh core, with minor hematite in places. A few pieces of ground between 38.40m to 41.50m. Very soft and mylonitized in places. lers said that the return water is black so probably it is the e conductor picked up by the VLF anomaly near the collar. The e however is grounded into oblivion. Lost core estimated at 1 based on how the drillers distribute the broken core. If the broken ere to be squeezed then the lost core will probably be 3 meters.		5.5	40888	42.00	43.00	1.00		
		LOST C	DRE - 40m to 41m								
42.70	44.00	A small within t quartz f contain fairly m strongly	Altered Mafic Volcanics alteration zone, with upper and lower contacts at 40°ca exists the mafic flow. It is light pinkish-grey to medium green with patchy looding- often pinkish in colour due to weak hematization and s several quartz veins and chlorite stringers oriented at 20°ca. It is ineralized, containing up to 10% disseminated pyrite. The rock is y magnetic, non to weakly ankeritic and non calcareous. It is weak erate intermitently silicified.		1.5	40889	43.00	44.00	1.00		
44.00	45.30	SHRZ	Silicified Sheared Zone			40890	44.00	45.00	1.00		
		silicified chlorite pyrite b soft, my There a pyrite in 44.20m	ately after the above fault zone the core moves to a weakly d sheared zone which is beigeish green in color and pervaded by -epidote stringers at low angle to the core axis. This zone contains ands along fracture planes, 1%. This sheared zone is indicated by /lonitized sections, highly foliated core foliation at 20°ca to 30°ca. re minor calcite and ankerite veinlets as well as disseminated n places. This section include a 10cm pinkish quartz veinlet at that orients 20°ca. The quartz is well developed showing st looking crystals on the vugs.		1.0	40891	45.00	46.00	1.00		

			GEOLOGY	VISU	JAL		ŀ	ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
45.30	85.30	MV	Medium Grained Mafic Volcanics		1.0	40892	46.00	47.00	1.00		
		A poorl	y defined, irregular contact marks the contact into a medium		1.0	40893	47.00	48.00	1.00		
		grained	dark green, massive flow. This mafic volcanic contains very fine		1.0	40894	48.00	49.00	1.00		
		waxy-g	rey, elongate and somethimes stubby, 1mm phenocrysts, 10%,		1.0	40895	49.00	50.00	1.00		
		0	nout giving it a speckly appearance. It is pervaded by chlorite		2.0	40896	50.00	51.00	1.00		
		0	s which were counted for every sample interval and whitish to		2.0	40897	51.00	52.00	1.00		
			shreds of calcite and epidote which increase in intensity after 60		2.0	40898	52.00	53.00	1.00		
			depth. Some sections contain a well developed fabric and also		2.0	40901	53.00	54.00	1.00		
			s of shear zoning. Parts of quartz, epidote veining that are less		2.0	40902	54.00	55.00	1.00		
			m and some that are larger than 5mm. The veins and the shear		1.0	40903	55.00	56.00	1.00		
			hat are larger than 1cm will be mentioned below in details. The		1.0	40904	56.00	57.00	1.00		
		rock is	weakly calcareous, weakly ankeritic but strongly magnetic.		2.0	40905	57.00	58.00	1.00		
					5.0	40906	58.00	59.00	1.00		
			owing are the Location: Type. Size, Orientation of the veins within		3.5	40907	59.00	60.00	1.00		
		the abc	ve section	0.1	6.0	40908	60.00	61.00	1.00		
		52.50			2.0	40909	61.00	62.00	1.00		
			Quartz Veinlet. 15cm, 30°ca - Pyrite mineralization Two pinkish Quartz Veinlet. 2cm each, 30°ca		1.5	40910	62.00	63.00	1.00		
			Epidote Vein. 1cm, 50°ca		2.0	40911	63.00	64.00	1.00		
			Breccia Zone infilled with Quartz Veinlet. 5cm, 145°ca		2.0	40912	64.00	65.20	1.20		
			Pinkish Quartz vein. 10cm, 50°ca - well developed pyrite		2.0	40913	65.20	66.40	1.20		
			ization (10-20%)		2.0	40914	66.40	67.60	1.20		
		minera	1241011 (10-2070)		3.0	40915	67.60	68.80	1.20		
		61 50.	Quartz Vein. 2cm, 135°ca - high Chalcopyrite mineralization		0.5	40916	68.80	70.00	1.20		
			Quartz Vein. 2cm, 30°ca		1.5	40917	70.00	71.20	1.20		
			Pinkish Quartz Veinlet. 2cm, 30°ca		2.0	40918	71.20	72.40	1.20		
			Quartz-Epidote Vein. 4cm, 160°ca		0.8	40919	72.40	73.60	1.20		
		0			1.0	40920	73.60	74.80	1.20		
					0.5	40921	74.80	76.00	1.20		
					1.0	40922	76.00	77.00	1.00		
					0.5	40923	77.00	78.00	1.00		
					0.8	40926	78.00	79.00	1.00		
					0.5	40927	79.00	80.00	1.00		
					1.0	40928	80.00	81.00	1.00		
					1.0	40929	81.00	82.00	1.00		
					2.0	40930	82.00	83.00	1.00		
					3.0	40931	83.00	84.00	1.00		
					1.0	40932	84.00	85.00	1.00		
					1.0	40933	85.00	86.00	1.00		

	GEOLOGY	VISUAL			ASSAY RESULTS				
From To	Code Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
85.30 152.	00 MV Fine Grained Mafic Volcanics		1.0	40934	86.00	87.00	1.00		
	The core subtly moves to what is believed to be a typical mafic flow. This		0.5	40935	87.00	88.00	1.00		
	flow is fine grained, dark green, and has sharp, distinguishable contacts at		0.5	40936	88.00	89.00	1.00		
	20-25°ca. It is fairly massive, pervaded by shreds of whitish-pink calcite,		0.5	40937	89.00	90.00	1.00		
	chlorite and epidote stringers. Wispy, broken calcite stringers and present		1.3	40938	90.00	91.00	1.00		
	throughout the unit but have no particular direction suggesting a		1.0	40939	91.00	92.00	1.00		
	stockwork. This unit generally does not contain any relict grains typical of the above mafic volcanic. There is however a short section of medium		1.3	40940	92.00	93.00	1.00		
	grained mafic volcanics similar to uphole that is included in this unit. It		1.3	40941	93.00	94.00	1.00		
	occurs at 102 m up to 105.3. There is a weak foliation fabric present		1.0	40942	94.00	95.00	1.00		
	oriented at 20°ca. The rock is weakly ankeritic, weakly calcareous and		2.0	40943	95.00	96.00	1.00		
	moderately magnetic. Pyrite occurs as fine to medium disseminations		2.0	40944	96.00	97.20	1.20		
	amounting from 0.5% to locally 2%. Chalcopyrite blebs were noted to be		2.0 2.0	40945 40946	97.20	98.40 99.60	1.20		
	also associated.		2.0 1.5	40946 40947	98.40	99.60 100.80	1.20 1.20		
			0.8	40947		100.80	1.20		
	The following are the Location: Type. Size, Orientation of the veins within		1.0	41001		102.00	1.20		
	the above section. The veins are named based on the composition;		1.0	41001		103.20	1.20		
	mineral that is most abundant is stated first and least abundant is stated		1.5	41002		104.40	1.20		
	last.		2.0	41005		106.80	1.20		
			1.0	41004		108.00	1.20		
	88.30: Chlorite-Hematite Vein. 6 cm, 50°ca		0.5	41006		109.20	1.20		
	88.70: Chlorite-Calcite. 5 cm, 30°ca		0.5	41007		110.40	1.20		
	89.60: Chlorite-Calcite Vein. 10 cm, 55°ca		0.5	41008		111.60	1.20		
	90.30: Epidote Patch. 20 cm		0.5	41009		112.80	1.20		
	93.70: Epidote-Chlorite Vein. 7 cm, 130°ca		0.8	41010		114.00	1.20		
	91.20: Epidote-Chlorite Vein. 15 cm, 45°ca		1.3	41011		115.20	1.20		
	92.65: Calcite-Chlorite Vein. 2.5 cm, 140°ca		0.5	41012		116.40	1.20		
	93.10: Calcite Vein. 2 cm, 145°ca 95.95: Calcite-Epidote-Chlorite Vein. 5 cm, 25°ca		0.8	41013	116.40	117.60	1.20		
	97.30: Epidote-Chlorite Vein. 2 cm, 150°ca		0.8	41014	117.60	118.80	1.20		
	98.95: Calcite-Chlorite-Epidote Vein. 3 cm, 165°ca		0.5	41015	118.80	120.00	1.20		
	99.20: Epidote-Chlorite-Calcite Vein. 120°ca		0.8	41016	120.00	121.20	1.20		
			0.5	41017	121.20	122.40	1.20		
	101.60: Calcite-Epidote Vein. 2 cm, long and sub-parallel to the core axis		0.5	41018	122.40	123.60	1.20		
	angle (10°ca)		0.8	41019	123.60	124.80	1.20		
			0.8	41020	124.80	126.00	1.20		
	101.98: Calcite-Epidote Phenocrysts. 5 cm wide		1.5	41021		127.00	1.00		
	102.15: Calcite-Chlorite Vein. 1.5 cm, 25°ca		3.5	41022		128.00	1.00		
	105.45: Calcite-Chlorite Vein. 7 cm, 75°ca		10.0	41023		129.00	1.00		
	107.50: Calcite-Chlorite-Epidote Vein. 10 cm, 135°ca		0.8	41026		130.00	1.00		
	107.80: Calcite-Chlorite-Epidote Vein. 4 cm, 145°ca		1.0	41027		131.20	1.20		
	108.80: Chlorite-Calcite Vein. 4 cm, 55°ca		1.0	41028		132.40	1.20		
	109.02: Chlorite-Epidote-Calcite Vein. 7 cm, 50°ca		1.0	41029		133.60	1.20		
	109.65: Agglomerate Zone. 15 cm 109.85: Chlorite-Calcite Vein. 5 cm, 135°ca		0.8	41030		134.80	1.20		
	109.96: Chlorite-Calcite-Hematite Vein. 15 cm, 135°ca		1.3	41031		136.00	1.20		
	110.30: Chlorite-Epidote Vein. 3 cm, 120°ca		1.0 3.0	41032 41033		137.20	1.20		
	111.50: Chlorite-Calcite Vein. 10 cm, 155°ca		0.5	41033		138.40	1.20 1.20		
	111.55: Quartz Vein. 2 cm, 165°ca		0.5	41034		139.60 140.80	1.20		
	111.80: Chlorite-Calcite-Epidote Vein. 12 cm, 130°ca		1.5	41035		140.80	1.20		
	112.05: Chlorite-Calcite Vein. 5 cm, 50°ca		1.3	41030		143.20	1.20		
	112.15: Chlorite-Calcite Vein. 5 cm, 50°ca		1.3	41037		144.40	1.20		
	112.35: Chlorite-Calcite Vein. 4 cm, 130°ca		5.5	41030		145.60	1.20		
			1.5	41035		146.80	1.20		
	112.60: Agglomerate Zone filled with Calcite-Chlorite Veins. 20 cm		0.5	41040		148.00	1.20		
	114.20: Epidote-Calcite-Chlorite Vein. 20 cm, Sub-parallel to CA (5°ca)		0.8	41041		149.20	1.20		
			0.8	41043		150.40	1.20		
	114.50: Calcite-Hematite-Chlorite Vein. 2 cm, 45°ca		0.5	41043		151.60	1.20		
	114.95: Angular Calcite phenocryst with Chlorite rims around it. 5 cm		0.8	41045		152.80	1.20		
	115.20: Agglomerate Zone infilled with Calcite-Chlorite Veins. 25 cm					2.5	-		
	117.50: Calcite-Chlorite Vein. 4 cm, 40°ca								
	121.00: Agglomerate Zone infilled with Calcite-Chlorite-Epidote Veins. 25								
	cm								

cm

GT2014-01

			GEOLOGY	visu	JAL	ASSAY RESULTS					
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
		121.80	Chlorite-Calcite Vein. 10 cm, 145°ca								
		123.20	: Chlorite-Calcite-Hematite Vein. 6 cm, 45°ca								
		123.60	: Chlorite-Calcite-Epidote Vein. 4 cm, 40°ca								
		123.70	: Calcite-Chlorite-Hematite Vein. 5 cm, 55°ca								
		124.10	: Calcite-Chlorite-Epidote Vein. 5 cm, 40°ca								
		124.65	: Calcite-Chlorite Vein. 20 cm, 40°ca								
		125.60	: Calcite-Chlorite-Epidote. 7 cm, 85°ca								
		126.00	127.30: Foliated Zone defined by Epidote, Calcite, Chlorite and								
		Hemati	te veining, Foliation angle between 140 to 145°ca. The veins vary								
		from 1	cm to 5 cm.								
		127.30	- 130.00: Silicified Zone. UC= 110°ca; LC= 85°ca								
		127.80	- 128.75: Fault Zone. High sulphide mineralization, fractured								
		broken	core with Chlorite and epidote mineralization								
		130.30	: Chlorite-Calcite-Epidote. 10 cm, 130°ca								
			3 Epidote Veins 1.5 cm each orienting 145°ca all three cut by a								
			artz Vein that is 10 cm wide and orients 75°ca, the Quartz Vein								
			s fragments and inclusions of Epidote, Calcite and Chlorite								
		134.80	135.20: Foliated zone defined by Quartz-Calcite Veins; about 20								
			anging from 2mm to 1.5 cm oriented 55°ca								
		136.15	: Bull Quartz Vein. 5 cm, 89°ca								
			Bull Quartz Vein with Mafic Volcanics Inclusions. 5 cm, 110°ca								
		137.90	: Chlorite-Calcite-Epidote. 5 cm, 150°ca								
		138.80	: Epidote-Calcite Vein. 5 cm, 140°ca								
		142.60	: Calcite-Chlorite-Hematite Vein. 3 cm, 20°ca								
		142.75	: Chlorite-Calcite-Epidote Vein. 10 cm, 140°ca								
			Chlorite-Quartz-Hematite-Epidote Vein. 105°ca								
			Calcite-Chlorite-Epidote-Hematite Vein. 10 cm, 145°ca								
		150.05	: Calcite-Chlorite Vein. 3 cm, 50°ca								
152.00	163.80		Shear Zone - Brecciated Mafic Volcanics		0.5	41046	152.80				
		,	stretched or elongated fragmental zone; the fragments are mainly		0.8	41047	154.00				
		-	d dark green and 1cm-2cm wide and slightly to moderately		1.0	41048	155.00				
			I in places. A sharp contact between the fine grained mafic		1.5	41051	156.00				
			cs and the sheared zone at 152m orienting 140°ca. This zone starts		1.5	41052	157.00	158.00	1.00		
			deformed and sheared zone of the brecciated mafic volcanics		1.0	41053	158.00				
			e elongated and infilled with chlorite, calcite, Quartz and epidote		1.0	41054	159.00				
			ome sections also contain hematite alterations. It has a very well		1.0	41055	160.00	161.00	1.00		
			t 30°ca and the fabric is more defined at higher depths. Starting at		2.0	41056	161.00	162.00	1.00		
			m the deformation and the shearing gets stronger at a sharp angle		1.0	41057	162.00	163.00	1.00		
			d 30-150°ca, the strength of the shearing is defined by the		0.5	41058	163.00	164.00	1.00		
		-	r fabric and increase in the veining; the vein sizes are between								
			mm in width. Based on the geophysical data; VLF and conducting								
		•	t has been observed that this zone is highly conducted starting at								
			The zone is strongly magnetic and moderately to strongly ankeritic. Iphide mineralization within this zone between 1%-5%								
162 00	165.00	_	Fine Grained Mafic Volcanics		0.5	41050	164.00	16E 00	1.00		
103.60	102.00		ntact between the deformed zone and the fine grained mafic		0.5	41059	164.00	105.00	1.00		
			cs is at 163.80m with a sharp angle of 110°ca. Fine grained, greyish								
			h colour with a very weak fabric 50°ca. It is strongly to moderately								
		magnet	tic and moderately ankeritic. This section also shows medium to								
		-	nductors with low to medium sulphide mineralization (0.5% - 2%)								

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From 1	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
0.00 2		Core re indicate cover o like and they are an anci from the NOTE: <i>i</i> dilute h fizzes ir present	Overburden covery was measured to begin at 26.0 m. The driller's block a that they placed 8.0 m (24.4 ft) of NW casing. There is a thick f unconsolidated sand and gravel overlying the bedrock. Seems easker. A bucket full of gravel and sand observed on the road when e constructing it were collected to test for the gold occurrence on ent river bed. Just unusual because the terrace gravel occurs far e present creek. All the core is systematically tested for pervasive carbonate using ydrochloric acid HCI) and potassium ferricyanide (KFC). The acid contact with calcite and the KFC stains the core blue in the ere of ankerite. In certain areas, the core is tested with a magnet to ine relative magnetite content.								
167.00 17			Fine Grained Mafic Volcanics		0.9	41062	169.00	160.00	1.00		
167.80 17	1.30		itact between the deformed zone and the fine grained mafic		0.8 1.0	41063 41064		169.00 170.00			
			cs is at 167.80m. Fine grained, greyish greenish colour with a very		1.0	41065		171.00			
		ankeriti mediun mafic v mafic v	bric 50°ca. It is strongly to moderately magnetic and moderately c. This section also shows medium to high conductors with low to n sulphide mineralization (0.5% - 2%). Within the fine grained olcanics there are small weak deformation zones of the brecciated olcanics infilled with Calcite, Quartz and Chlorite veins and s patches of epidote that will be described below.		2.0	41066	171.00	172.00	1.00		
		168.50 169.45 171.05	Deformed Brecciated Mafic Volcanics. 20 cm, 50°ca Deformed Brecciated Mafic Volcanics. 10 cm, 75°ca Deformed Brecciated Mafic Volcanics. 75 cm, 140°ca Calcite-Chlorite Vein. 3 cm, 45°ca Chlorite Veins and Epidote Patch. 20 cm, 40°ca								
226.10 23	30.50	MV	Mafic Volcanics - Silicified Zone		6.0	41117	226.60	227.60	1.00		
		The zor	e starts at a gradual angle at 226.10 to the end of the hole, light		2.0	41118	227.60	228.60	1.00		
		beginni in detai Weakly	grey fine to medium grains. Contains patches of epidote in the ng with chlorite and calcite veinings which will be described below Is. Highly mineralized zone; 1% to 10% sulphide mineralization. to moderately ankeritic and moderately to strongly magnetic, the epidote patches are weakly magnetic.		1.0 1.0	41119 41120		229.60 230.50			
			226.50: Epidote patch with thin 1 cm calcite and chlorite veinings matite alterations. LC= 50°ca								
		vein.15	Quartz-Calcite-Chlorite rich zone that shows a feature of a cm. Highly minderalized (10%) and has a sharp angle of 40°ca. tion is partly more ankeritic than the rest of the zone								
178.10 17		Fine to Strongli calcite, 5mm au contact volcanic contain calcite, volcanic	Fine to Medium Grained Mafic Volcanics medium grained Greyish-greenish rock. Massive without a fabric. y magnetic and weakly to moderately ankeritic. Contains veins of quartz and chlorite throughout the section, some are smaller than nd some are bigger than 1cm which will be described below. The between the graphitic zone and the fine to medium grained mafic cs is defined at 179.10 with a sharp angle of 140°ca. This section s 0.5%-5% sulphide mineralization that is disseminated within the chlorite and epidote veins or scattered throughout the mafic cs. There are two large quarts-calcite-chlorite-epidote veins at and at 178.90 that are 4cm and 10cm wide respectively and orient		1.5	41073	178.80	180.00	1.20		

			GEOLOGY	VISU	JAL			ASSAY	RESULTS	;	
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
179.10	188.90	MV	Medium Grained Mafic Volcanics		1.3	41076	180.00	181.20	1.20		
		Mediun	n grained dark green, massive flow. This mafic volcanic contains		0.8	41077	181.20	182.40	1.20		
			e waxy-grey, elongate and sometimes stubby, 1mm		1.0	41078	182.40	183.60	1.20		
			rysts,10%, throughout giving it a speckly appearance. It is		1.0	41079	183.60	184.80	1.20		
		-	ed by chlorite stringers which were counted for every sample	0.1	1.5	41080		186.00	1.20		
			and whitish to creamy shreds of calcite and epidote. The rock is		1.5	41081		187.20	1.20		
			tely to strongly calcareous, weakly ankeritic and strongly		2.0	41082		188.40	1.20		
		-	ic. Within this zone there are large bull quartz veins that contain ns of the mafic rock and the calcite, chlorite and epidote veinings	0.1	2.0	41083	188.40	189.60	1.20		
			e also contains small (less than 2mm) to large (more than 1cm)	•							
			chlorite and epidote veins. there is also a big section that contain	s							
		,	of epidote along with chlorite, quartz, calcite and hematite								
			that are sub-parallel to the CA and which will be described below	v							
			ith the other veinings. The section is moderately mineralized wit								
		sulphide	es; about 1% to 5%. The contact between the fine to medium								
		grained	mafic volcanics and the medium mafic volcanics is usually								
		gradual	, but due to a presence of a big quartz vein it was described to								
			sharp contact at 179.20 which orients 75°ca. Within this zone								
			re small sections that show a poikilitic texture; which is a word th	at							
			es a needle-like texture of the crystals within the martix. This								
			is common in a diabase or an ultramafic flow. They will also be								
		describe	ed below to where they occur and the size of these diabase dykes								
		179 10.	Bull Quartz Vein. 25 cm, 75°ca								
			Quartz-Calcite Vein. 3 cm, 140°ca								
			Bull Quartz Vein. 15 cm, 50°ca								
			Quartz Veinlet. 5 cm, 10°ca								
		185.30:	Chlorite-Calcite-Quartz Vein. 20 cm, 50°ca - within the vein the								
			have a poikilitic texture or a needle-like texture as explained								
		above.	The texture is sub-parallel to the vein								
		195 70.	Sub-parallel Chlorite-Calcite-Quartz-Hematite Veins within an								
			patch matrix. 60 cm, 50°ca								
		107 20.	Chlorita Calcita Vain 20 cm 125°ca								
			Chlorite-Calcite Vein. 30 cm, 135°ca 188.90: Poikilitic texture (diabase)								
		100.50									
188.90	191.60	BX	Breccia Zone	0.1	2.0	41084	189.60	190.80	1.20		
		The zon	e starts with three fractures that are oriented 20°ca followed by	a 0.1	3.5	41085	190.80	192.00	1.20		
		quartz-o	calcite vein that has the same orientation as the vein and is about								
		5cm wi	de. The breccia mafic volcanicsare angular and range from 1cm to)							
			ide and they are infilled with quartz and calcite veins. the veins								
			nes give an orangish-pinkish colour which can be interpeted as a								
			e alteration within the vein. within the veins there are many vug	5							
			s created by the leaching of the calcite crystals. within these vugs								
			there are well developed quartz and calcite crystals that have								
		-	eth spar texture. This zone is highly mineralized with sulphide ization between 2% to 5% and it also contains large chalcopyrite								
			rysts that are about 1cm wide. it is strongly to moderately								
			ic and non-ankeritic. There are also thin less than 2mm chlorite								
		-	s which are counted and recorded throughout the whole core.								
101.60	102.20		Shaar Zana		2.0	41096	102.00	102.20	1 20		
191.60	192.30		Shear Zone aring is sub-parallel to the CA, the shearing is defined by the		2.0	41086	192.00	193.20	1.20		
			, hematite, quartz, epidote and quarts veinings. It is weakly								
			ic and weakly to non ankeritic. The zone contains 1% to 3%								
			e mineralization.								
		20.0110									

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
192.30	195.60	The zor The bro quartz v fracture large se develop veining veins al and cal have a magnet will be orienta contain	Medium Grained Mafic Volcanics and Quartz Vein Package he starts off with broken core from about 192.30m to 193.40m. oken core consists of medium grained light grey grains with coarse veins. Beyond the broken core, the rock is still the same, highly ed contains dark to light grey medium grained mafic volcanics and actions of quartz veins. the quartz veins seem to have a well bed fabric defined by the alignment of the epidote-chlorite-calcite s and the of the angle of the fabric is around 50°ca. The quartz so contains pits and vugs that are filled with well developed quartz cite grains that have a dog's teeth spar texture, they are sharp and rosey colour. This zone is magnetic except the quartz veins are non- cic, but the whole zone is moderately ankertitic. The quartz veins described below as in where are they located, their size and their tion. The zone is highly; 1% to 2% sulphide mineralization and also s chalcopyrite phenocrysts within quartz veins which will also be ed below.	0.1 0.1	1.5 1.0	41087 41088		194.40 195.60	1.20 1.20		
		chalcop 194.41	Quartz Vein. 6 cm, 45°ca. The edge of the vein contains write phenocrysts Quartz Vein. 1.5 cm, 130°ca - chalcopyrite phenocrysts Quartz Vein. 100. 10 cm, well developed fabric with 50°ca tion								
195.60	201.30		Fine to Medium Grained Mafic Volcanics		2.0	41089		196.80	1.20		
			ne starts at a sharpe angle of 45°ca at 195.60. Dark greyish- h, fine to medium grained mafic volcanics. Strongly magnetic and	0.1 0.1	3.0 6.0	41090 41091		198.00	1.20 1.20		
		weakly than 2r minera	n, fine to medium graned mane volcanics, strongly magnetic and to non-ankeritic. Contains small chlorite-calcite veins that are less nm and large veins which will be described below. it is highly lized; 2% - 10% sulphide mineralization and the presence of syrite within the veins and scattered throughout the zone.	0.1	0.0 1.5 0.8	41091 41092 41093	199.20	199.20 200.40 201.60	1.20 1.20 1.20		
		197.30	Epidote-Chlorite-Calcite vein. 4 cm, 145°ca Quartz Vein. 15 cm, alignment angle of smaller chlorite-epidote- ein= 45°ca								
		198.80 200.00	Quartz Vein. 2 cm, 45°ca Calcite-Chlorite-Epidote Vein. 20 cm, 15°ca, 10% Py 200.40: poikilitic texture Quartz Vein. 10 cm, 135°ca								
201.30	207.70		Coarse Grained Mafic Volcanics		0.8	41094		202.80	1.20		
		0	in sizes gradually change from fine to medium to coarse grained dark greyish greenish. Has a weak fabric with a foliation angle		0.8 0.8	41095 41096		204.00 205.20	1.20 1.20		
			145°ca. Weakly to moderately ankeritic and moderately to		0.8	41090		205.20	1.20		
			magnetic. Contains thin chlorite veins that are less than 2mm		3.5	41098		207.60	1.20		
		will be texture explain	vill be counted and recorded also other veins that are large and described in details below. contains some setions of poikilitic or needle-like texture which is common in diabase; this is ed as small diabase dykes cutting through the coarse grained mafic cs, these textures will also be recorded below.		1.5	41101	207.60	208.80	1.20		
		voicaill	s, mese textures will also be recorded below.								
		inclusio	Quartz-Calcite-Epidote-Chlorite-Hematite Vein that contains ns of the coarse grained mafic volcanics ranging from 1 cm-3 cm. ridth is 10cm, 20°ca								
		203.95	Poikilitic texture. 20 cm 204.05: Poikilitic texture followed by a 3 cm wide quartz-calcite C= 30°ca; LC= 50°ca. CPY mineralization								
		205 50	Poikilitic texture. 10cm, 45°ca								

			GEOLOGY	VISUAL ASSAY RES					RESULTS	SULTS		
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %	
207.70	226.10	MV	Fine to Medium Grained Mafic Volcanics		1.0	41102	208.80	210.00	1.20			
		Gradua	ally the grains change to fine and medium greyish-greenish grains.		1.0	41103	210.00	211.20	1.20			
		Some	sections will show medium grains and sections will show finer		2.0	41104	211.20	212.40	1.20			
			Moderately to weakly ankeritic and strongly magnetic. Highly		2.0	41105	212.40	213.60	1.20			
		minera	lized with sulphides (1% - 5%). Contains chlorite and calcite veins		2.0	41106	213.60	214.80	1.20			
		that ar	e less than 2mm which are counted and recorded next to sampling		2.0	41107	214.80	216.00	1.20			
		and lar	ger veins will be described below. the rock is massive without a		2.0	41108	216.00	217.20	1.20			
			some sections show poikilitic texture or diabase dykes which will		2.0	41109	217.20	218.40	1.20			
		be reco	orded below.		3.5	41110	218.40	219.60	1.20			
					2.0	41111	219.60	220.80	1.20			
			: Chlorite-Epidote-Calcite Vein. 10 cm,140°ca		1.3	41112	220.80	222.00	1.20			
			- 212.10: Poikilitic texture that ends with a 2 cm quartz-calcite-		0.8	41113	222.00	223.20	1.20			
		epidot	e-chlorite vein. UC= 45°ca, LC= 150°ca		2.0	41114	223.20	224.40	1.20			
					1.0	41115	224.40	225.60	1.20			
			- 212.95: Poikilitic texture with a quartz-calcite-chlorite vein in the that is 3 cm wide : the vein and the texture are oriented 145°ca		2.0	41116	225.60	226.60	1.00			
		214.25	: Chlorite vein. 15 cm, 60°ca									
		216.70	-217.30: Poikilitic texture that contain two quartz-calcite-chlorite									
		veins t	hat are 13 cm and 10 cm wide respectively. The orientation angle									
		of the	poikilitic texture and the other veins are similar 34-40°ca									
		225.15	: Calcite-Chlorite vein. 15 cm, 60°ca									
165.00	167.80	SHRZ	Shear Zone - Brecciated Mafic Volcanics		2.0	41060	165.00	166.00	1.00			
		Small S	Section of deformed brecciated mafic volcanics that are elongated		1.0	41061	166.00	167.00	1.00			
		greyisł	greenish mafic volcanics infilled with chlorite, calcite veins. High		2.0	41062	167.00	168.00	1.00			
		sulphic	le mineralization with the veins. The size of the fragments range									
		from 1	cm to 5cm and the veins range from 1mm to 2cm wide. A sharp									
			t between the fine grained mafic volcanics and the sheared zone at									
		165m	prienting 40°ca. within this zone there is a bull quartz vein that is									
		10cm v	vide and orients 70°ca which contains angular fragments of the									
			olcanics, calcite and chlorite. This section is moderately ankeritic									
			ongly magnetic.									

230.43 EOH End of hole.

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION

Breaks

												/
Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm	RQD (%)
0.00	5.1°	5.1°	-60.0°	Collar		25.8	29.7	3.9		. ,	1.9	
29.26	13.0°	1.8°	-50.1°	Multi		29.7	32.3	2.6			1.3	
32.31	13.0° 17.1°	5.9°	-50.2°	Multi		32.3	35.4	3.1			2.1	
35.36	18.6°	7.4°	-50.2°	Multi		35.4	38.4	3.0			0.6	
33.30	19.5°	7.4 8.3°	-30.0°	Multi		33.4	41.5	3.1			0.0	
41.45	21.7°	10.5°	-49.9°	Multi		41.5	44.5	3.1			0.6	
44.50	23.6°	12.4°	-50.0°	Multi		44.5	47.6	3.1			1.7	
47.55	25.7°	14.5°	-50.0°	Multi		47.6	50.6	3.1			2.0	
50.60	18.2°	7.0°	-50.0°	Multi		50.6	53.7	3.1			2.3	
53.64	20.5°	9.3°	-49.9°	Multi		53.7	56.7	3.0			2.7	
56.69	26.0°	14.8°	-49.9°	Multi		56.7	59.8	3.1			3.0	1
59.74	28.3°	17.1°	-49.9°	Multi		59.8	62.8	3.0			3.0	1
62.79	20.2°	9.0°	-49.9°	Multi		62.8	65.9	3.1			3.0	1
65.84	19.5°	8.3°	-50.0°	Multi		65.9	68.9	3.1			3.0	1
68.88	24.4°	13.2°	-49.9°	Multi		68.9	72.0	3.1			3.0	
71.93	18.6°	7.4°	-49.9°	Multi		72.0	75.0	3.1			3.0	
74.98	20.5°	9.3°	-49.9°	Multi		75.0	78.1	3.1			3.0	
78.03	19.2°	8.0°	-50.0°	Multi		78.1	81.1	3.1			3.0	
81.08	20.8°	9.6°	-50.1°	Multi		81.1	84.2	3.1			2.8	1
	20.8 22.4°						87.2					
84.12		11.2°	-49.9°	Multi		84.2		3.1			2.9	1
87.17	22.5°	11.3°	-50.1°	Multi		87.2	90.3	3.1			2.8	1
90.22	17.9°	6.7°	-50.0°	Multi		90.3	93.3	3.1			2.9	1
93.27	21.7°	10.5°	-50.0°	Multi		93.3	96.4	3.1			3.0	
96.32	19.1°	7.9°	-50.1°	Multi		96.4	99.4	3.1			2.9	1
99.36	19.8°	8.6°	-50.1°	Multi		99.4	102.5	3.1			3.0	1
102.41	19.8°	8.6°	-49.9°	Multi		102.5	105.5	3.1			2.9	1
105.46	18.4°	7.2°	-50.0°	Multi		105.5	108.5	3.0			2.8	1
108.51	16.6°	5.4°	-50.0°	Multi		108.5	111.6	3.1			2.9	1
111.56	24.6°	13.4°	-50.0°	Multi		111.6	114.6	3.0			2.9	1
114.60	18.0°	6.8°	-50.0°	Multi		114.6	117.7	3.1			2.9	1
117.65	19.2°	8.0°	-50.0°	Multi		117.7	120.7	3.1			3.1	
120.70	21.4°	10.2°	-50.0°	Multi		120.7	123.8	3.1			2.8	1
123.75	21.8°	10.6°	-50.0°	Multi		123.8	126.8	3.1			3.1	
126.80	20.5°	9.3°	-50.1°	Multi		126.8	129.9	3.1			1.5	
120.80	20.5 36.7°	25.5°	-50.1°	Multi		120.8	132.9	3.1			3.0	
132.89	19.8°	8.6°	-50.0°	Multi		132.9	136.0	3.1			3.0	
135.94	20.0°	8.8°	-50.0°	Multi		136.0	139.0	3.0			3.0	
138.99	19.8°	8.6°	-50.1°	Multi		139.0	142.1	3.1			3.0	
142.04	24.2°	13.0°	-49.9°	Multi		142.1	145.1	3.1			2.8	
145.08	24.5°	13.3°	-50.0°	Multi		145.1	148.2	3.1			2.9	1
148.13	25.5°	14.3°	-49.9°	Multi		148.2	151.2	3.1			3.0	
151.18	24.1°	12.9°	-50.1°	Multi		151.2	154.3	3.1			2.8	1
154.23	18.5°	7.3°	-49.9°	Multi		154.3	157.3	3.1			2.7	1
157.28	15.5°	4.3°	-50.0°	Multi		157.3	160.4	3.1			2.6	1
160.32	19.2°	8.0°	-50.0°	Multi		160.4	163.4	3.0			2.8	1
163.37	21.6°	10.4°	-50.1°	Multi		163.4	166.5	3.1			2.4	
166.42	27.4°	16.2°	-50.0°	Multi		166.5	169.5	3.1			2.8	
169.47	22.2°	11.0°	-50.0°	Multi		169.5	172.6	3.1			3.0	
172.52	23.3°	12.1°	-50.1°	Multi		172.6	175.6	3.1			2.7	
175.56	19.5°	8.3°	-50.2°	Multi		175.6	178.7	3.1			3.1	
178.61	27.0°	15.8°	-50.2°	Multi		173.0	181.7	3.1			3.1	
178.61	30.6°	15.8 19.4°	-50.2 -50.1°	Multi		178.7	184.8	3.1			3.1	1
184.71	28.5°	17.3°	-50.2°	Multi		184.8	187.8	3.0			3.0	
187.76	19.7°	8.5°	-50.2°	Multi		187.8	190.9	3.1			2.8	
190.80	22.4°	11.2°	-50.1°	Multi		190.9	193.9	3.1			2.1	
193.85	34.2°	23.0°	-50.1°	Multi		193.9	197.0	3.1			2.8	
196.90	23.8°	12.6°	-50.0°	Multi		197.0	200.0	3.1			2.9	
199.95	34.2°	23.0°	-49.9°	Multi		200.0	203.1	3.1			2.9	1
203.00	28.0°	16.8°	-50.0°	Multi		203.1	206.1	3.1			2.8	1
206.04	28.8°	17.6°	-50.0°	Multi		206.1	209.2	3.1			3.0	1
209.09	28.8°	17.6°	-50.1°	Multi		209.2	212.2	3.1			2.6	1
212.14	27.5°	16.3°	-50.1°	Multi		212.2	215.2	3.0			3.0	1
215.19	30.9°	19.7°	-50.0°	Multi		215.2	218.3	3.1			3.0	
218.24	27.2°	16.0°	-50.1°	Multi		218.3	221.3	3.1			2.9	1
		-		-			-					
						F Aug 12						

GOOD Mining Exploration Inc.

GT2014-01

221.28	30.4°	19.2°	-50.0°	Multi	221	L.3	224.4	3.1	2.9	1	2
224.33	30.0°	18.8°	-50.0°	Multi	224	1.4	227.4	3.1	3.1	1	4
227.38	36.9°	25.7°	-50.0°	Multi	227	7.4	230.5	3.1	3.0	1	3

Golden Target Project

NAD83 17N

365.00 m

540,906.00 m

Drill Log GT2014-02

COLLAR INFORMATION

Claim:

Projection:

Easting:

Elevation:

From	То	Worker	Start	End
0.0	17.4	Walker Drilling	2014-Oct-07	Oct-15
0.0	17.4	Walker Drilling	2014-Oct-15	Oct-15
0.0	17.4	Dennis Patron		
0.0	17.4	Athraa Koma		

Storage: CanREE explo site

Northing: 5,364,348.00 m

Comments: Abandoned hole due to drill problems - Reflex was not taken

Azimuth:

Length:

Core Size:

Dip:

360.00°

-60.00°

17.37 m

NQ

			GEOLOGY	VISU	JAL	ASSAY RESULTS					
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
9.00	17.38	Fine to weakly veins a contact starts a	Mafic Volcanics o medium grained dark greenish-grey. Strongly magnetic and y ankeritic Contains less than 1mm chlorite veins and larger epidote and patches and chlorite veins which will be mentioned below. The tts between the diabase and the mafic volcanics is gradual and at 9m. The rock contains weak fabric of 50°ca.								
		10.40: 10.50: 12.30: 13.75: 15.80:	Epidote-Calcite Vein. 4 cm, 140°ca Chalcopyrite mineralization along fratures Epidote Patches. 20 cm, 140°ca Epidote Patch with Chlorite. 6 cm, 60°ca Epidote-Chlorite-Pyrite Vein. 5 cm, 50°ca Epidote-Chlorite-Hematite-Pyrite Vein. 3 cm, 130°ca Epidote Patch with a thin Calcite-Chlorite Vein. 15 cm, 50°ca								
0.70	9.00	DIA Highly greenis texture epidote minder	Diabase ankeritic and moderately to strongly magnetic. Medium to coarse sh-greyish grains. Contains a salt-pepper texture or snake's skin e defined by the feldspar phenocrysts. Some sections contains e patching and veins which will be described below. High sulphide ralization within fractures and veins mainly pyrite but some pyrite which will also be mentioned below.								
		2.20-2. 2.40-6. 6.20-9.	 .20: Medium to Coarse grained Diabase. 1% Pyrite .40: Epidote Patch. 0.5% - 1% Pyrite .20: Fine grained Gabbro. 0.5% - 1% Pyrite .00: Medium to Coarse Grained Gabbro. 0.5% - 1% Pyrite, s 4 cm e vein at 8.80 m orienting 50°ca 								
0.00	0.70	dilute ł fizzes ii presen	Overburden All the core is systematically tested for pervasive carbonate using hydrochloric acid HCI) and potassium ferricyanide (KFC). The acid n contact with calcite and the KFC stains the core blue in the nee of ankerite. In certain areas, the core is tested with a magnet to nine relative magnetite content.								

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION

Depth	Test	Az	Dip	Туре	Comments
0.00	360.0°	360.0°	-60.0°	Collar	

From	То	Len	Core	Rec (%)	>10cm	RQD (%)	Breaks
0.4	3.0	2.6			1.7	1	12
3.0	5.2	2.2			1.7	1	11
5.2	8.2	3.1			2.8	1	10
8.2	11.3	3.1			2.5	1	12
11.3	14.3	3.1			2.9	1	10
14.3	17.4	3.1			2.9	1	9
1.110		0.12			2.0	-	0

Golden Target Project

Drill Log GT2014-03

COLLAR INFORMATION

COLLAR IN	FORMATION							WORK DO	ONE BY
Claim:				Work	From	То	Worker	Start	End
Projection:	NAD83 17N	Azimuth:	358.00°	Drilling	0.0	316.6	Walker Drilling	2014-Oct-23	Nov-06
•				Downhole Survey	0.0	316.6	Walker Drilling	2014-Nov-06	Nov-06
Easting:	541,533.00 m	Dip:	-60.00°	Core Logging	0.0	316.6	Dennis Patron	2014-Oct-23	Oct-23
Northing:	5,367,578.00 m	Length:	316.60 m	Core Logging	0.0	316.6	Athraa Koma	2014-Oct-23	Oct-23
Elevation:	303.00 m	Core Size:	NQ						
Storage:	CanREE explo site								

Comments:

			GEOLOGY	VISUAL ASSAY RESULT					RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
310.49	316.59	SY	Syenite Porphyry		0.5	41622	310.60	311.80	1.20		
		Sharp ja	agged upper contact of 45°ca marks the beginning of this reddish		0.1	41623	311.80	313.00	1.20		
		grey Sy	enite porphyry. Medium to coarse grained, massive and		0.1	41626	313.00	314.20	1.20		
		crystalli	ne. Coarse feldspar phenos are common. Few QCV cuts into this		0.1	41627	314.20	315.40	1.20		
			trusive rock at 45°ca. The rock is non magnetic, non calcareous, n to weakly ankeritic. Trace pyrite dissemnations.		0.1	41628	315.40	316.60	1.20		
299.46	310.49	BX	Breccia Zone		0.5	41613	299.80	301.00	1.20		
		Approa	ching the lower contact is this breccia zone. It has a jigsaw puzzle		0.1	41614	301.00	302.20	1.20		
		texture	or mosaic texture. The angular breccia clasts are cemented by		2.0	41615	302.20	303.40	1.20		
		yellow §	green epidote or chlorite. There is a 3 cm lithified fault gouge at		0.1	41616	303.40	304.60	1.20		
		308.7m	mark that trends 60°ca. There is another broken core with		2.0	41617	304.60	305.80	1.20		
		associat	ted fault gouge at 300.8- 301.0 m mark suggesting a minor fault.		0.5	41618	305.80	307.00	1.20		
		This mi	nor fault trends 50°ca. This zone is moderately ankeritic, non		2.0	41619	307.00	308.20	1.20		
		calcared	ous and moderately magnetic. Meshwork of QCV occurs after the		5.0	41620	308.20	309.40	1.20		
		anothe	308.7m up to the lower contact. Broken core which appears to be • sheared zone from 310.0 to 310.49. Silvery flecks sparsely nated in this interval. Probably paladium.		2.0	41621	309.40	310.60	1.20		

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From To	, c	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
281.80 299	.46 N	٧V	Mafic Volcanics		2.0	41596	281.80	283.00	1.20			
	2	281.80-	286.40: Amphibolite. This interval is solid core of weakly silicified,		0.5	41597	283.00	284.20	1.20			
	b	blackish	to dark green grey, very fine grained, hard, competent and rarely		1.0	41598	284.20	285.40	1.20			
	fı	racture	d amphibolite. Inside the core were some biotite flakes		1.0	41601	285.40	286.60	1.20			
	S	uggesti	ing cooking and metamorphism.		4.0	41602	286.60	287.80	1.20			
					0.5	41603	287.80	289.00	1.20			
	2	286.40-	287.60: QCV. This interval contains QCV+ epi-chl-hem veins 1 cm		0.5	41604	289.00	290.20	1.20			
	tl	hick an	d runs almost sub-parallel to CA. They are hosted in dark green		1.0	41605	290.20	291.40	1.20			
	g	grey, ve	ry fine grained basalt.		4.0	41606	291.40	292.60	1.20			
					0.5	41607	292.60	293.80	1.20			
	2	287.60-	291.40: Mafic Volcanics. Solid core of dark grey, fine grained		0.5	41608	293.80	295.00	1.20			
	n	nafic vo	blcanics containing series of QCV and epi-chl veins that trends 30-		0.1	41609	295.00	296.20	1.20			
	4	15°ca. T	he rock is moderately magnetic, non ankeritic and weakly		0.5	41610	296.20	297.40	1.20			
	С	alcared	bus.		0.5	41611	297.40	298.60	1.20			
	a fi	noston	293.20: Stockwork zone. Several QCV and epi-chl stringers nosing the interval. The network is hosted in a dark green grey, ined, mafic volcanics.Orientation of the QCV is low angle while the stringers are high angle to CA.		0.1	41612	298.60	299.80	1.20			
	n	nottled	294.50: Sheared/Brecciated Zone. This interval shows mosaic and texture. Appears brecciated in situ. Chlorite filling the interstices stures within this interval. Still hosted on mafic volcanics.									
	2	04 50	295 30° foliated matic volcanics. This interval is weakly foliated at									

294.50-295.30: foliated mafic volcanics. This interval is weakly foliated at 40°ca suggesting flow banding. Hematite stringers are common in this interval. 0.5% disseminated pyrite.

295.30- 296.40: Sheared/Brecciated Zone. The hole reverts back to the sheared/brecciated zone similar uphole.

296.40-299.00: Foliated mafic volcanics. Dark green grey, fine grained, weakly foliated at 40-45°ca. 0.5% fine disseminated pyrite. Solid core, competent and rarely fractured.

299.00-299.46: BBC/FZ. Broken and rubbly core with associated fault gouge. Probably a minor fault.

	GEOLOGY	VISUAL				ASSAY	RESULTS		
From To	Code Comment	Cp %	Ру%	Sample	From	То	Length	Au gpt	Cu %
194.40 281.8	30 MV Altered Mafic Volcanics		0.5	41518	195.40	196.60	1.20		
	194.40-203.33: Altered Mafic Volcanics. This is a solid core core,		2.0	41519	196.60	197.80	1.20		
	competent and rarely fractured, dark green grey, fine grained, chlorite		0.5	41520		199.00	1.20		
	altered mafic volcanics, fairly mineralized by pryrite disseminations up to		2.0	41521		200.20	1.20		
	10% locally. Stockwork zones of QCV stringers are common as well as		2.0	41522		201.40	1.20		
	network of epidote chlorite stringers.		2.0	41523		202.60	1.20		
	203.00-211.95: Altered Mafic Volcanics. Dark green grey, fine grained,		10.0	41526		203.80	1.20		
	weakly silicified mafic volcanics containing low angle epidote chlorite vein		5.0	41527		205.00	1.20		
	treking along the core axis. Stockworks of QCV stringers anostomosing		4.0 3.0	41528 41529		206.20 207.40	1.20 1.20		
	the unit cutting through the low angle epuidote chlorite vein. Hematite		5.0	41529		207.40	1.20		
	normally occur along the selveges of veins. Fairly mineralized by pyrite		1.0	41530		209.80	1.20		
	disseminations up to 4%.		5.0	41532		211.00	1.20		
			2.0	41533		212.20	1.20		
	211.95-218.00: SZ (silicified zone). This section is dark green grey, hard		0.1	41534		213.40	1.20		
	(scratcher is just sliding on the core), very fine grained, appears like a		0.1	41535		214.60	1.20		
	silicified basalt. Pyrite mineralization weakens here to 0.5% -trace.		0.1	41536		215.80	1.20		
			0.1	41537	215.80	217.00	1.20		
	218.00-221.60: Mineralized Zone. The silicification above weakens at this		0.1	41538	217.00	218.20	1.20		
	interval but the pyrite mineralization strengthens from 0.5% to 1% up to 2%. Network of QCV and epiedote chlorite veingings also increased.		0.5	41539	218.20	219.40	1.20		
	2%. Network of QCV and epiedole chlorite veirigings also increased.		2.0	41540	219.40	220.60	1.20		
	221.60-226.00: Sheared Zone. The mineralized zone becomes sheared		4.0	41541	220.60	221.80	1.20		
	having a jigsaw or mottled or masaic texture. VMS also appeared in this		2.0	41542		223.00	1.20		
	interval as well as increased in the volume of QCV. The VMS zone occurs		0.1	41543		224.20	1.20		
	at 223.9 up to 225.6 m. The main sulphides are generally pyrite and lesser		15.0	41544		225.40	1.20		
	pyrrhotite. QCV generally trends 130°ca. At 224.6- 225.8 exhibits mottled		5.0	41545		226.60	1.20		
	texture and intense QCV and epi-chl veinings. At 225.8 - 226.0 is a broken		0.5	41546		227.80	1.20		
	core zone due to intense fractures.		1.0	41547		229.00	1.20		
			1.0	41548		230.20	1.20		
	226.00-232.00: Mineralized Zone. This interval shows farcture filling		0.5 2.0	41551 41552		231.40 232.60	1.20 1.20		
	pyrite mineralization trending 5 to 10°ca and 1 to 2 cm thick. At 231.5 to		0.5	41552		232.00	1.20		
	232.0 is a vuggy interval containing QCV's with pyrite mineralizations		0.5	41554		235.00	1.20		
	along its selveges. The QCV's trends 10°ca subparallel to the fracture filling pyrite veins.		0.5	41555		236.20	1.20		
	ninig pyrite venis.		3.0	41556		237.40	1.20		
	232.00-241.00: SZ (Silicified Zone). This interval is hard, scratcher is		4.0	41557		238.60	1.20		
	sliding, dark grey, fine to very fine grained, mafic volcanics (probably		0.1	41558	238.60	239.80	1.20		
	silicified basalt). Thin QCV and hematite veinings and Chl-Epi stringers are		0.1	41559	239.80	241.00	1.20		
	common. Pyrite normally occurs along the selveges of these veinings.		2.0	41560	241.00	242.20	1.20		
	Competent and rarely fractured.		0.5	41561	242.20	243.40	1.20		
			0.1	41562	243.40	244.60	1.20		
	241.00-244.60: Altered Mafic Volcanics. This interval is lighter in color		1.0	41563	244.60	245.80	1.20		
	than anove. Bleached but still hard and weakly silicified. The rock is		0.5	41564		247.00	1.20		
	moderately magnetic, weakly to moderately ankeritic and non calcareous.		0.5	41565		248.20	1.20		
	Meswork and network of QCV and Chl-epidote stringers anostomosing the interval. Pyrite concentration on 241.0- 242.2 is up to 2%.		2.0	41566		249.40	1.20		
	the interval. Pyrite concentration on 241.0- 242.2 is up to 2%.		0.5	41567		250.60	1.20		
	244.60-244.80: FZ (Fault zone). This fault trends 20°ca. The fault gouge is		0.5	41568		251.80	1.20		
	lithified and silicified and blackish in color.		1.0 0.1	41569 41570		253.00 254.20	1.20 1.20		
			0.1	41570		255.40	1.20		
	244.80-250.00: SZ (Silicified Zone). Light grey, weakly bleached, fine		2.0	41571		255.40	1.20		
	grained, massive, hard, altered mafic volcanics. This interval is quite		4.0	41572		257.80	1.20		
	similar to the above except that the intensity of meshworks (QCV and		15.0	41576		259.00	1.20		
	stringers) is lesser than above. Py mineralization occurs as fine		15.0	41577		260.20	1.20		
	dissemination amounting to 0.5% up to 2%		2.0	41578		261.40	1.20		
			4.0	41579		262.60	1.20		
	250.00-254.40: Mafic Volcanics. This is a fresher interval of mafic		1.0	41580		263.80	1.20		
	volcanics. Generally dark green in color, fine grained, chlorite altered		1.0	41581		265.00	1.20		
	basalt. At 252.6 m is a 1 cm chlorite episdote vein that trends 150°ca.		3.0	41582	265.00	266.20	1.20		
	Pyrite is trace to 1% locally.		2.0	41583	266.20	267.40	1.20		
	254.40-255.0: Sheared/brecciated Zone. This sheared zone is light green		3.0	41584	267.40	268.60	1.20		
			4.0	41585	268.60	269.80	1.20		
	grey color and contains fault breccia clasts ranging in size from 1 to 3 and		4.0	71303	200.00	205.00	1.20		

GT2014-03

			GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code	Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %	
		trends	155°ca. Healed fractures contaiing Chlorite, calcite and quartz		0.1	41586	269.80	271.00	1.20			
		trends	sub parallel to shearing.		4.0	41587	271.00	272.20	1.20			
					1.0	41588	272.20	273.40	1.20			
		255.00	258.00: Mafic Volcanics. The hole reverts back to dark green grey,		0.1	41589	273.40	274.60	1.20			
		fine gra	ined chlorite altered mafic volcanics. Fracture filling pyrite veins		0.5	41590	274.60	275.80	1.20			
		are con	nmon and usually trending 257°ca.		0.1	41591	275.80	277.00	1.20			
					0.1	41592	277.00	278.20	1.20			
		258.00	260.10: Mineralized Zone. This interval contains strong pyrite		0.5	41593	278.20	279.40	1.20			
			ization comparable to a semi VMS. Mottled zone suggesting		0.1	41594	279.40	280.60	1.20			
		shearin	g. Weak foliation fabric at 20°ca.		0.5	41595	280.60	281.80	1.20			
			262.10: Mafic Volcanics. The hole reverts back to dark green grey, ined chlorite altered mafic volcanics.									
		silicifie	265.00: SZ (silicified zone). Dark grey to blackish, fine grained, I mafic volcanics. There is a reddish seam of ~1 cm hematite vein nds 5°ca.									

262.00-270.25: Stockwork Zone. This interval contains ~10% QCV anostomosing the unit. The color of the rock is greyish brown with a tint of red. I refer this kind as syenitized mafic volcanics. The reddish tint is possibly from hematization or from potassium metasomatism.

270.25-272.00: Altered Amphibolite. Vugs and pits are also common. Specially at 270.4 up to 273.0. Included here is epi-chl-qtz veinlet that trends 30°ca located at 273.4 m mark. Also included here is a section of a brownish yellow green altered amphibolite containing species of ferromagnesians possibly a mafic intrusive Sharp contact on both ends oriented at 75°ca. This rock is non magnetic, non ankeritic and non calcareous.

272.00-281.80: Stockwork Zone. The hole reverts back to the stockwork zone similar as uphole before the above mafic intrusive.

			GEOLOGY	VISU	JAL			ASSAY	RESULTS		
From	То	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %
128.00	194.40	MV	Mafic Volcanics		0.1	41208	128.20	129.40	1.20		
			e enters a thick volcanic sequence dominated by mafic rocks		0.5	41209	129.40	130.60	1.20		
		compos	sed of breccia (hyaloclastic), pillowed and massive flows with rare		10.0	41210	130.60	131.80	1.20		
			size mafic dykes intrusions. Rare cherty interflow sediment		5.0	41211	131.80	133.00	1.20		
			d along the mafic dominated sequence. This rock is weakly to		3.0	41212	133.00	134.20	1.20		
			ately ankeritic, moderately to strongly magnetic and weakly to non		1.0	41213	134.20	135.40	1.20		
		calcare	DUS.		1.0	41214		136.60			
		127.00	120.00. Wealth to medanately silisified and containing loop als		2.0	41215		137.80			
			139.00: Weakly to moderately silicified zone containing loangle e quartz veinings as well as epidote chlorite veinings. Pyrites		4.0	41216		139.00			
			e quartz vernings as well as epidole chlorite vernings. Pyrites		2.0	41217		140.20			
		on the	5		1.0	41218		141.40			
		on the			2.0	41219		142.60			
		141.40	142.20: Silcified zone containing abundant epidote and hematite		1.0	41220		143.80			
			artz calcite veinings. The veins have different orientations. QCV is		3.0	41221		145.00			
			hematite vein is 145°ca; epidote is 150°ca.		2.0	41222		146.20			
		,			0.5	41223		147.40			
		143.80	Calcite hematite vein oriented at 45°ca.		2.0	41226		148.60			
		144.90	145.20: Another SZ with meshwork odf epidote veinings as well		3.0	41227		149.80 151.00			
		as QCV	5 mm thick. Chert clast were noted.Pyrite concentration is 5%.		3.0 2.0	41228 41229		151.00			
					3.0	41229		152.20			
		151.00	Hematite calcite chlorite vein. 10 cm thick and trends 60°ca.		0.5	41230		155.40			
			153.00: Subparallel hematite vein. 5 mm thck.		1.0	41231		155.80			
		153.00	158.20: Silicified zone, hardly scratch by a knife, solid and		0.5	41232		157.00			
		compet	ent.		1.0	41233		157.00			
					5.0	41234		159.40			
			162.70: Sheared zone showing contorted veinings of epidote and		10.0	41235		160.60			
			calcite. Some sections are brecciated especially from 162.25 to		2.0	41237		161.80			
			howing calcitic pinkish clasts as well as chlorite stringers. The		0.1	41237		163.00			
		quartz	calcite veining on this particular section is 135°ca.		0.1	41239		164.20			
		164.40	Another brassis zone componented by bomotite and guartz		0.1	41240		165.40			
			Another breccia zone cemenmted by hematite and quartz. Quartz calcite vein that trends 135°ca and is 8 cm tyhiuck.		1.0	41241		166.60			
			170.00: Another sheared zone treending 150°ca. Foliation is also		0.5	41242		167.80			
			ca at this point.		0.5	41243		169.00			
		41 100			2.0	41244	169.00	170.20			
		170.00	170.77: QCV anastomosing the unit subparallel to CA.		0.1	41245	170.20	171.40	1.20		
			172.00: Mafic volcanics with meshworks of hematiote altered		0.1	41246	171.40	172.60	1.20		
		QCV str	ingers.		0.1	41247	172.60	173.80	1.20		
					0.1	41248	173.80	175.00	1.20		
		172.80	173.00: Dark green chlorite vein trending at 135°ca.		0.5	41501	175.00	176.20	1.20		
		173.24	178.60: Mafic volcanics with abundant epidote veinings that		0.5	41502	176.20	177.40	1.20		
		trends	from 30 to 45°ca.		0.5	41503	177.40	178.60	1.20		
					5.0	41504	178.60	179.80	1.20		
			179.80: Pyritic and hematite altered QCV zone. The reddish veins		10.0	41505	179.80	181.00	1.20		
		trends	135°ca while the pyrite veins trends 30°ca.		1.0	41506		182.20			
		470.00			1.0	41507		183.40			
			182.20: Silcicified zone containingseveral hematite altered QCV.		1.0	41508		184.60			
			ccurs at the selveges of the veins. Veins have no particular		3.0	41509		185.80			
		directio	lis		1.0	41510		187.00			
		181 25	4 cm seam of greyish and clayish fault gouge.		0.5	41511		188.20			
			185.40: Section of meshworks of QCV and epidote veinings. The		0.5	41512		189.40			
			is more dominant than the QCV. Strong pyrite disseminations at		0.5	41513		190.60			
		3%	the second s		0.5	41514		191.80			
					0.5	41515		193.00			
		185.40	186.00: Yellow green epidote vein and patch with pyrite		0.5	41516		194.20			
			lizatgions on the rims at 1%.		4.0	41517	194.20	195.40	1.20		
		186.00	187.01: Dark green, fine grained, chlorite altered mafic volcanics.								

187.01-188.0: Weakly to moderately silicified mafic volcanics, dark green grey, fine grained, contained epidote patches and reddish veins (1.5 cm thick) with pyrite trends 150°ca.

		GEOLOGY	VISU	JAL	ASSAY RESULTS						
From To	Code	Comment	Ср %	Ру%	Sample	From	То	Length	Au gpt	Cu %	
	188.02 volcani and Ch	I-188.20: BBC I-194.40: SZ. Weakly to moderately silicified zone of mafic ics protolith containing stokworks of QCV including networks of Epi I veinings. Veins are generally hematite altered. 0.5% fine pyrite inations.									
	194.40	: QCV. 2 cm thick trending 150°ca.									
117.00 128.00	The contact is low angle at 15°ca. It appears an amphibolite.			10.0 0.5 0.5	41197 41198 41201	118.60	118.60 119.80 121.00				
	124.90	-125.10: Fault Gouge oriented at 60°ca.		0.5 1.0	41201 41202 41203	121.00	121.00 122.20 123.40	1.20			
	124.00	: 10 cm epidote patch		4.0 3.0	41204 41205	123.40	124.60 125.80	1.20			
	126.5-2	127.0: Another epidote patch.on amphibolite.		5.0 2.0	41206 41207		127.00 128.20				
	clasts t sheare	-130.54: Fault/Sheared Zone : This zone contains fault breccia hat is hematite altered (reddish color) in a very fine grained d matrix. Orientation of shearing is 10°ca. It is also mineralized by ite disseminations.									
	could h altered minera crackle pillow f epidote	-137.30: This is a weakly to moderately silicified zone. Very hard, hardly be scratched by excato knife. This zone contains hematite I QCV from 130.2 to 131.0 m trending 5°ca and strongly lized by pyrite on the selveges. The MV matrix of this zone show ed and brecciated texture from 131.0 to 133.59 m. There is also a fabric observed on 136.64. This zone also contains abundant e chlorite veinings oriented at high angle cutting through the QCV 36 to 136.5 m.									

	GEOLOGY	VISUAL				ASSAY	RESULTS		
From To	Code Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %
36.00 117.0	00 MV Mafic Volcanics		1.0	41126	37.00	38.20	1.20		
	Massive, greyish-greenish, fine to medium grained and some sections		3.0	41127	38.20	39.40	1.20		
	show zones of coarser grains. The contact starts at 36 m within the		0.5	41128	39.40	40.60	1.20		
	broken core therefore the contact angle was unable to be measured.		1.0	41129	40.60	41.80	1.20		
	Many hematite, epidote veins and patches along with calcite chlorite and		0.5	41130	41.80	43.00	1.20		
	some quartz veins; they are all counted along a length of a sample and		0.5	41131	43.00	44.20	1.20		
	mentioned on the samples/assays section of this table. Some of the veins are thing less than 1cm and some are larger than 1 cm which will be		0.5	41132	44.20	45.40	1.20		
	decribed below. The zone is strongly to moderately magnetic and weakly		1.5	41133	45.40	46.70	1.30		
	to moderately ankeritic. High minderalization within this zone along veins		1.3 2.0	41134 41135	46.70 47.80	47.80 49.00	1.10 1.20		
	and scattered throughout the core such as sulphide mineralizations.		1.3	41135	47.80	49.00 50.20	1.20		
	Some sections nare weakly silcicified		0.5	41130	49.00 50.20	51.40	1.20		
			0.5	41137	51.40	52.60	1.20		
	37.60: Epidote patch with calcite-chlorite-hematite veins cutting through		0.5	41139	52.60	53.80	1.20		
	it. 60 cm		1.0	41140	53.80	55.00	1.20		
			2.0	41141	55.00	56.20	1.20		
	41.05: Chlorite-Calcite-Epidote vein. 5 cm, 150°ca		1.0	41142	56.20	57.40	1.20		
	41.20: Epidote-Chlorite- Veins. 5 cm, 50°ca		1.5	41143	57.40	58.60	1.20		
	44.40: Epidote patch. 25 cm		1.0	41144	58.60	59.80	1.20		
	46.70: Pinkish Quatz-Calcite-Hematite vein. 35 cm, 45°ca		1.0	41145	59.80	61.00	1.20		
	47.20: Epidote patch with chlorite veins. 30 cm		7.5	41146	61.00	62.20	1.20		
	48.60: Epidote vein. 4 cm, 70°ca 49.20: Calcite-Hematite-Chlorite. 5 cm, 35°ca		10.0	41147	62.20	63.40	1.20		
	62.00-62.70: Quartz-hematite strings with 5-10% pyrite mineralization		3.5	41148	63.40	64.60	1.20		
	02.00-02.70. Quartz-nematite strings with 5-10% pyrite mineralization		3.5	41151	64.60	65.80	1.20		
	57.00: Epidote-Pyrite Vein. 10 cm, 140°ca		3.5	41152	65.80	67.00	1.20		
	64.50: Epidote-Pyrite patch. 50 cm, 5% Pyrite		5.0	41153	67.00	68.20	1.20		
	76.70: Semi massive Pyrite vein trends 35°ca.		5.0	41154	68.20	69.40	1.20		
			5.0	41155	69.40	70.60	1.20		
	76.80-79.20: A thin seam of hematite + chlorite+ calcite + pyrite that runs		5.0	41156	70.60	71.80	1.20		
	5°ca.with 1% of cubic pyrite associated. The pyrite is concentrated at the		1.0	41157	71.80	73.00	1.20		
	rim of the vein. There are high angle epidote quartz veins that cuts across		3.0	41158	73.00	74.20	1.20		
	this low angle vein mentioned.		1.5	41159	74.20 75.40	75.40	1.20		
			2.0 10.0	41160 41161	75.40	76.60 77.80	1.20 1.20		
	86.80-87.80: Epidote patch and veins are common.		10.0	41161	70.00	79.00	1.20		
	89.80-90.80: Sheared zone showing angular breccia lasts cemented by		1.0	41163	79.00	80.20	1.20		
	chlorite. This sheared zone trends sub paratlel to CA and apparently cuts		3.0	41164	80.20	81.40	1.20		
	the high angle quartz calcite veinings that are present in this interval.		2.0	41165	81.40	82.60	1.20		
	Pyrite concentration is high 10% and occrus along the shear zone.		1.0	41166	82.60		1.20		
	, 31		1.0	41167	83.80	85.00	1.20		
	91.80-97.80: This interval contains an abundacnce of reddish hematite		2.0	41168	85.00	86.20	1.20		
	veinings with no particular orientation. Pyrite is not as abundant but there		2.0	41169	86.20	87.40	1.20		
	is an increase in number of chlorite epidote veinings.		0.5	41170	87.40	88.60	1.20		
			1.0	41171	88.60	89.80	1.20		
	97.80-98.80: This interval show a hematite vein stockworks with		10.0	41172	89.80	91.00	1.20		
	abundant pyrite 10%.		3.0	41173	91.00	92.20	1.20		
	112.00.112.00. Declar and blocks and		3.0	41176	92.20	93.40	1.20		
	112.80-113.80: Broken and blocky core 113.80-116.00: Meshwork of quarz calcite stringers making the core		1.0	41177	93.40	94.60	1.20		
	crackle and mottled texture.		0.5	41178	94.60		1.20		
			0.5	41179	95.80		1.20		
	116.00- 118.70: Quartz hematite vein trending 10°ca with abundant		5.0	41180	97.00		1.20		
	pyrites on the edges. Strong pyrite mineralization on this interval.		4.0	41181	98.20		1.20		
			4.0 0.1	41182 41183		100.60 101.80	1.20 1.20		
	119.70-120.00: Yellow green epidote patch		3.0	41183		101.80	1.20		
			0.5	41184		103.00	1.20		
			1.0	41185		104.20	1.20		
			3.0	41187		106.60	1.20		
			2.0	41187		100.00	1.20		
			1.0	41189		109.00	1.20		
			3.0	41190		110.20	1.20		
			5.0	41191		111.40	1.20		

GT2014-03

		GEOLOGY	VISU	JAL	ASSAY RESULTS						
From	То	Code Comment	Ср %	Py%	Sample	From	То	Length	Au gpt	Cu %	
				4.0	41192	111.40	112.60	1.20			
				2.0	41193	112.60	113.80	1.20			
				2.0	41194	113.80	115.00	1.20			
				3.0	41195	115.00	116.20	1.20			
				8.0	41196	116.20	117.40	1.20			
34.40	36.00	ALTZ Strongly altered Zone		2.0	41122	34.60	35.80	1.20			
		Massive, very dark grey, fine grained. The contact starts at 34.40 after the 10cm quartz-hematite-calcite vein described in the above zone at 145°ca,		2.0	41123	35.80	37.00	1.20			
		the bottom contact is at 36cm and it it is within the broken core and the									
		angle could not be measured. Thin hemtite veins less than 5mm are									
		observed throughout this zone along with chlorite, epidote and calcite									
		veinings. The zone is moderately to strongly magnetic and weakly to									
		moderately ankeritic									
31.05	34.40	MV Coarse Grained Mafic Volcanics (Amphibolite)		1.0	41121	33.40	34.60	1.20			
		Greyish-reddish, coarse to medium grained. The reddish colour is due to									
		hematite veins throughout the core. Besides hematite veins there are									
		quartz, chlorite, epidote and calcite veinings which are counted and									
		described beside sample numbers. The first two meters are broken core									
		and this section is moderately to strongly magnetic, weakly to moderately ankeritic. The veins are usually thin (less than 5mm) and run									
		approximately 130 to 145°ca. A 10cm wide guartz-hematite-calcite vein									
		occurs at 34.30m and run 145°ca									
0.00	31.00	OVB OVB									
		Core recovery was measured to begin at 31.05m. The driller's block									
		indicate that they placed 31 m (95 ft) of NW casing.									
		NOTE: # Qcv stands for number quartz and or calcite veins									
		# Hv stands for number of hematite veins									
		# Cev stands for number of Chlorite and or epidote veins									
		NOTE: All the core is systematically tested for pervasive carbonate using									
		dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid									
		fizzes in contact with calcite and the KFC stains the core blue in the									
		presence of ankerite. In certain areas, the core is tested with a magnet to									
		determine relative magnetite content.									

316.60 EOH End of hole.

DOWNHOLE ORIENTATION SURVEYS

GEOTECHNICAL INFORMATION RQD (%)

Breaks

_		-									
Depth	Test	Az	Dip	Туре	Comments	From	То	Len	Core	Rec (%)	>10cm R
0.00	358.0°	358.0°	-60.0°	Collar		31.1	32.9	1.9			0.0
23.77	335.4° X	360.0°	-60.2°	Multi		32.9	36.0	3.1			2.3
26.82	80.2° X	360.0°	-60.0°	Multi		36.0	39.0	3.0			2.4
29.87	2.7° X	360.0°	-60.1°	Multi		39.0	42.1	3.1			2.7
32.92	10.0° X	360.0°	-59.7°	Multi		42.1	45.1	3.1			2.1
35.97	4.7° X	360.0°	-59.3°	Multi		45.1	48.2	3.1			2.9
39.01 42.06	17.6° 12.4°	6.4° 1.2°	-60.3° -59.9°	Multi		48.2 51.2	51.2 54.3	3.0 3.1			2.7 3.0
42.00	12.4 21.1°	1.2 9.9°	-59.9 -60.1°	Multi Multi		54.3	54.5 57.3	3.1			3.0
48.16	16.4°	5.2°	-60.1°	Multi		57.3	60.4	3.1			2.7
51.21	12.9°	1.7°	-59.9°	Multi		60.4	63.4	3.0			2.7
54.25	14.4°	3.2°	-60.1°	Multi		63.4	66.5	3.1			2.7
57.30	10.9°	359.7°	-60.0°	Multi		66.5	69.5	3.1			2.4
60.35	10.2°	359.0°	-60.1°	Multi		69.5	72.6	3.1			2.8
63.40	9.6°	358.4°	-60.0°	Multi		72.6	75.6	3.1			2.4
66.45	13.3°	2.1°	-60.2°	Multi		75.6	78.7	3.1			2.9
69.49	15.8°	4.6°	-60.2°	Multi		78.7	81.7	3.1			2.7
72.54	12.4°	1.2°	-60.1°	Multi		81.7	84.8	3.1			2.1
75.59	14.3°	3.1°	-60.2°	Multi		84.8	87.8	3.1			2.8
78.64	12.5°	1.3°	-60.3°	Multi		87.8	90.9	3.1			0.9
81.69	18.5°	7.3°	-60.2°	Multi		90.9	93.9	3.1			2.7
84.73	17.8°	6.6°	-60.3°	Multi		93.9	97.0	3.1			2.8
87.78	18.0°	6.8°	-60.2°	Multi		97.0	100.0	3.1			2.0
90.83	12.6°	1.4°	-60.0°	Multi		100.0	103.1	3.1			2.2
93.88	9.6°	358.4°	-60.5°	Multi		103.1	106.1	3.1			2.3
96.93	12.3°	1.1°	-60.3°	Multi		106.1	109.2	3.1			2.7
99.97 102.02	16.1° 9.9°	4.9°	-60.4°	Multi		109.2	112.2	3.1			2.5
103.02 106.07	9.9 12.3°	358.7° 1.1°	-60.4° -60.3°	Multi Multi		112.2 115.3	115.3 118.3	3.1 3.1			0.8 2.4
108.07	12.5 17.1°	1.1 5.9°	-60.5°	Multi		115.5	121.4	3.1			2.4
112.17	10.3°	359.1°	-60.5°	Multi		121.4	121.4	3.1			2.5
115.21	10.9°	.7°	-60.5°	Multi		121.4	127.5	3.1			2.5
118.26	10.3°	359.1°	-60.4°	Multi		127.5	130.5	3.1			2.5
121.31	8.0°	356.8°	-60.6°	Multi		130.5	133.6	3.1			2.7
124.36	8.8°	357.6°	-60.5°	Multi		133.6	136.6	3.1			2.7
127.41	7.3°	356.1°	-60.7°	Multi		136.6	139.7	3.1			3.0
130.45	6.4°	355.2°	-60.6°	Multi		139.7	142.7	3.1			2.2
133.50	9.3°	358.1°	-60.6°	Multi		142.7	145.8	3.1			2.8
136.55	13.6°	2.4°	-60.7°	Multi		145.8	148.8	3.1			3.4
139.60	27.7°	16.5°	-60.7°	Multi		148.8	151.9	3.1			2.9
142.65	12.6°	1.4°	-60.5°	Multi		151.9	154.9	3.1			3.0
145.69	16.2°	5.0°	-60.7°	Multi		154.9	158.0	3.1			3.0
148.74	19.7°	8.5°	-60.7°	Multi		158.0	161.0	3.1			2.9
151.79	15.7°	4.5°	-60.6°	Multi		161.0	164.1	3.1			2.8
154.84	13.4°	2.2°	-60.7°	Multi		164.1	167.1	3.1			2.8
157.89	13.2°	2.0°	-60.8°	Multi		167.1	170.2	3.1			2.8
160.93	10.0° 8.0°	358.8°	-60.7° -60.6°	Multi		170.2 173.2	173.2	3.1			2.8
163.98 167.03	8.0 9.5°	356.8° 358.3°	-60.6°	Multi Multi		175.2	176.3 179.3	3.1 3.1			3.0 2.9
170.08	9.5°	8.3°	-60.7°	Multi		170.3	182.4	3.1			2.9
173.13	12.5°	1.3°	-60.7°	Multi		182.4	185.4	3.1			2.8
176.17	11.7°	.5°	-60.7°	Multi		185.4	188.5	3.1			2.9
179.22	12.5°	1.3°	-60.7°	Multi		188.5	191.5	3.1			2.6
182.27	10.7°	359.5°	-60.8°	Multi		191.5	194.6	3.1			2.9
185.32	10.7°	359.5°	-60.8°	Multi		194.6	197.6	3.1			2.5
188.37	10.3°	359.1°	-60.9°	Multi		197.6	200.7	3.1			3.0
191.41	9.8°	358.6°	-61.0°	Multi		200.7	203.7	3.1			3.0
194.46	15.0°	3.8°	-61.0°	Multi		203.7	206.8	3.1			2.9
197.51	10.8°	359.6°	-61.0°	Multi		206.8	209.8	3.1			2.6
200.56	10.6°	359.4°	-60.9°	Multi		209.8	212.9	3.1			2.8
202 64	9.8°	358.6°	-61.0°	Multi		212.9	215.9	3.1			3.0
203.61			60.00	Multi		215.9	219.0	3.1			2.8
206.65	9.8°	358.6°	-60.9°								
	9.8° 12.4° 10.2°	358.6 1.2° 359.0°	-60.9° -61.1°	Multi Multi		213.9 219.0 222.0	222.0 225.1	3.1 3.1			2.8 2.9 2.9

GOOD Mining Exploration Inc.

GT2014-03

215.80	14.3°	3.1°	-61.1°	Multi	225.1	228.1	3.1	2.2	1	11
218.85	12.2°	1.0°	-61.0°	Multi	228.1	231.2	3.1	2.8	1	9
221.89	12.3°	1.1°	-61.0°	Multi	231.2	234.2	3.1	3.0	1	6
224.94	13.6°	2.4°	-61.0°	Multi	234.2	237.3	3.1	2.8	1	7
227.99	12.7°	1.5°	-60.9°	Multi	237.3	240.3	3.1	2.6	1	9
231.04	12.9°	1.7°	-61.0°	Multi	240.3	243.4	3.1	2.7	1	9
234.09	16.0°	4.8°	-61.0°	Multi	243.4	246.4	3.1	2.7	1	12
237.13	22.1°	10.9°	-60.9°	Multi	246.4	249.5	3.1	2.6	1	13
240.18	11.5°	.3°	-61.0°	Multi	249.5	252.5	3.1	2.7	1	17
243.23	14.8°	3.6°	-61.1°	Multi	252.5	255.6	3.1	2.6	1	11
246.28	13.9°	2.7°	-60.9°	Multi	255.6	258.6	3.1	2.5	1	16
249.33	16.0°	4.8°	-61.0°	Multi	258.6	261.7	3.1	2.0	1	10
252.37	19.2°	8.0°	-61.0°	Multi	261.7	264.7	3.1	2.3	1	20
255.42	16.8°	5.6°	-61.1°	Multi	264.7	267.8	3.1	2.7	1	7
258.47	1.5°	350.3°	-61.0°	Multi	267.8	270.8	3.1	2.1	1	20
261.52	14.9°	3.7°	-61.0°	Multi	270.8	273.9	3.1	1.9	1	16
264.57	24.2°	13.0°	-60.9°	Multi	273.9	276.9	3.1	2.6	1	10
267.61	15.7°	4.5°	-61.0°	Multi	276.9	280.0	3.1	2.9	1	8
270.66	17.4°	6.2°	-61.1°	Multi	280.0	283.0	3.1	2.9	1	6
273.71	23.0°	11.8°	-60.9°	Multi	283.0	286.1	3.1	2.8	1	7
276.76	24.5°	13.3°	-61.0°	Multi	286.1	289.1	3.1	2.6	1	10
279.81	15.2°	4.0°	-61.0°	Multi	289.1	292.2	3.1	2.7	1	7
282.85	14.9°	3.7°	-61.0°	Multi	292.2	295.2	3.1	2.9	1	7
285.90	12.3°	1.1°	-61.0°	Multi	295.2	298.3	3.1	2.9	1	11
288.95	15.2°	4.0°	-61.0°	Multi	298.3	301.3	3.1	2.1	1	17
292.00	15.7°	4.5°	-60.9°	Multi	301.3	304.4	3.1	2.9	1	7
295.05	16.1°	4.9°	-60.9°	Multi	304.4	307.4	3.1	2.2	1	20
298.09	16.0°	4.8°	-60.9°	Multi	307.4	310.5	3.1	1.9	1	22
301.14	14.1°	2.9°	-61.0°	Multi	310.5	313.5	3.1	2.8	1	8
304.19	15.7°	4.5°	-60.8°	Multi	313.5	316.6	3.1	2.7	1	6
307.24	9.6°	358.4°	-60.7°	Multi						
310.29	11.9°	.7°	-60.8°	Multi						
313.33	51.8°	40.6°	-61.1°	Multi						

