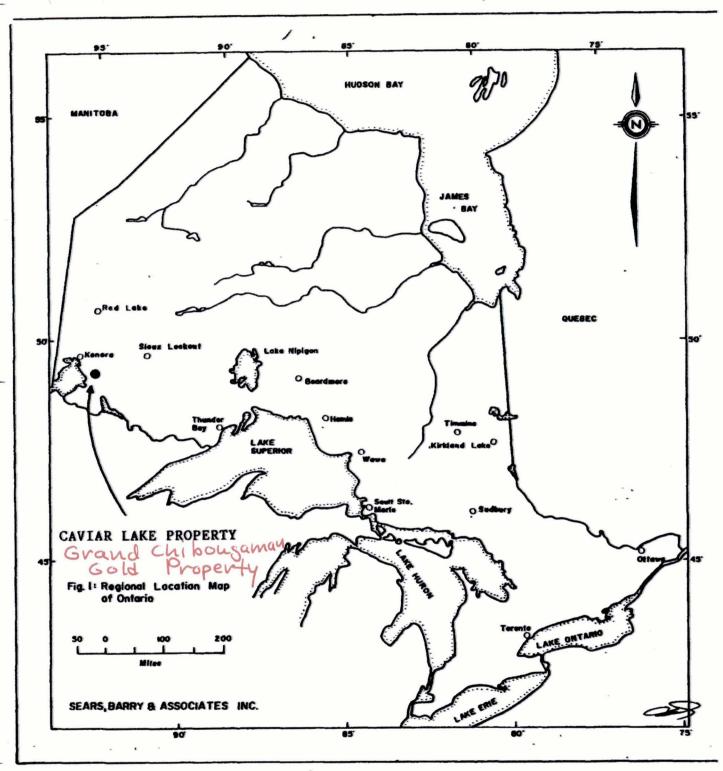

The Grand Chibougamau Gold Property

Sampling and Prospecting Report On the Main & North Zones

North Western Ontario, Kenora Mining Division Lobstick Bay Area

2.55907



Submitted By: David R Healey 28 March 2015

Table Of Contents

Property Location Map	Fig-1
Property-Summary	Page-1
-Access & Ownership	
-Conclusions	
- Personnel	
Mining Claim Location and Zones	Fig-2
Daily Log	Page-2
Rock Sample Descriptions	Page-3
Personnel and Prospecting Licences	Page-4
Appendix -Assay Certificates	
Map -Prospecting and Sample Locations	

Property Location

Grand Chibougaman Gold Property Locatio

Grand Chibougamau Gold Property

Summary

Last fall three days were spent (20,21,22 October 2014) prospecting and sampling the Main, North and SW Zones on the property, 23 samples were taken from the old pits and stripping on the Main ,SW and North Zones. Results were very encouraging returning gold assays from tr- 21.0 gms/ton gold from previous known gold zones confirming work from the past. Strong alteration and mineralization was observed within the known gold zones.

Access & Ownership

The Grand Chibougamau Gold Property consists of one claim 4273848 (Fig-2) totalling four units in Lobstick Bay Area, the property is 65 kilometers southeast of the town of Kenora (Fig-1) in northwestern Ontario. The property is 100% owned and in the name of David R Healey. Access by boat to the property which I used in the fall of 2014, is via Dogpaw Lake and Caviar Lake departing from Whitefish Indian Reserve, this is a 12 kilometer boat trip. A alternate route could be the 7.5 kilometer backhoe trail used in the 1993 stripping by Champion Bear Resources. This route is probably overgrown now but you depart from the Maybrun Mine Road at a point 23 kilometers east of Highway-17. The Maybrun Mine Road is 4.5 kilometers north of the property.

Conclusions

Sampling and prospecting on the Grand Chibougamau Gold Property returned encouraging gold assays and confirmed previous work, the Main Zone has returned multiounce values in the past but that is probably due to the nugget effect. The Main Zone returned up to 6.51 gms/ton gold, the SW Zone returned up to 3.33 gms/ton gold and the North Zone returned tr-21.0 gms/ton gold were previous work never submitted gold assays. The main observations from this work is that the sulphide and gold bearing core of the Main Zone ranges in width from a few centimetres to two plus meters and is exposed for 30 metres. The host rocks are a sequence of pillowed to massive mafic volcanics, the gold bearing quartz-ankerite zones contain up to 10% sulphide, more sulphide does not mean higher gold values but it is associated with the stronger alteration in the zone and this makes it a excellent IP target since the host mafic volcanics contain nil-tr pyrite. Also detailed mapping may help to understand the structural controls on the zones as well detailed prospecting of the claim and the ground to the NE towards the Hope Lake Granitic Stock (1 kilometer NE of claim) which may of played a role in the gold mineralization.

Personnel
David R Healey
Anthony Burkholder

F16-2

Grand Chibougamau Daily Log 2014

20 October 2014 Monday sun & cloud +12C

- -leave Brandon Mb at 5.00 am and arrived in Sioux Narrows at 11.30 am
- -met Anthony Burkholder at 12.30 am, found out we couldn't launch the boat in town and went to the Whitefish Reserve and launched boat, parked trucks then headed to Caviar Lake and claim by boat
- setup camp and off to property, found #1 and #4 witness posts for claim 4273848, looked around shore for trench but it may be under water, will look for Main Zone in mourning.

21 October 2014 sun & cloud +17C

- -early night last night early start today, found what should be the North Zone right off the bat, minor quartz veining but some nice fe-carb altered mafic volcanics with 1 % py, took two samples (2575710,11).
- -continued to the south using a GPS coordinate and hit a old stripped area with numerous trenches and pits, this was the Main Zone. Some beautifully mineralized and silicified quartz breccias with tr-10% py, host rock for the zone is mafic volcanics. Took 13 samples from Main Zone (2575712-24) and rep samples as well. Also found zone just SW of main, it was closer than expected. Done for the day and back to camp

22 October 2014 sun & cloud +16C

- -on the walk in found more stripping and trenching on the North Zone which was grown in, took 5 samples (2575725-29) alteration is much weaker than the Main Zone but bigger barren glassy-white quartz veins, minor fe-carb, host rock is mafic volcanics.
- -went back to Main Zone and looked for any parallel quartz veins and altered zones to the east, west, and south but no luck.
- trenching and stripping to date basically lines up with previous work from the assessment files, eg. the Main Zone, SW Zone and North Zone
- -took three more samples from the Main Zone (2575730-32) and some reps
- finished prospecting and back to camp by 3.00 pm, then took down camp and packed boat and headed back to Whitefish Narrows and paid launching fee and parking \$48 (4x7= \$28+\$20 = \$48), drove to Dryden for the night.

23 October 2014 drizzle and rain

-left Dryden at 6.15 am and arrived in Thunder Bay at 10.15 am and dropped rock samples off at ALS Labs, had breakfeast and grabbed some supplies and drove back to Dryden for the night, caught some sort of stomach virus along the way.

24 October 2014 cloudy

-leave Dryden at 6.15 am and arrived in Kenora at 8.30 am and did a little more research on the property and talked to Craig Ravnaas about the geology as well as sawing some property rep samples. Left Kenora at 1.00 pm and arrived in Brandon at 5.30 pm

Grand Chibo	ougamau												
Sample#	Easting	Nortrhing Car	b % Py	% Qtz	Other	Descriptions	AU g/t Au g/t	Rep	Carb		As PPM	Cu PP	M
2575710	442898	5470501	tr py		65%	old trench,fe-carb,qtz stockwork	0.005						
2575711	442896	5470510	tr-2% py		10%	old stripped area, aly MV, fe-carb, qtz fract fill	0.835				32	2	174
2575712	442810	5470381	tr py		50%	old pit,mod fe-carb,disjointed QV	2.74						
2575713	442820	5470407	tr-<0.50%	6	15%	two large angular boulders, str fe-carb and silicified	0.361						
2575714	442817	5470392	tr-<0.50%	6	15%	old stripping,muck,fe-carb & silicified,small qtz veinlets	1.875	yes	wk-mod	qtz			
2575715	442817	5470393	tr py		85%	old trench,15cm white te QV,mod fe-carb,silicified	0.886						
2575716	442817	5470396	tr py		35%	old trench,20 cm zone qtz bx,wk-mod fe-carb,silicified	3.09	yes	wk	qtz,host			
2575717	442814	5470401	tr py			old pit,qtz bx,wk-mod fe-carb,silicified	0.946						
2575718	442842	5470426	tr py	tr py 50%		old pit, muck, silicified, fe-carb, 3 pieces of muck	0.299						
2575719	442844	5470426	1-3% py		5%	old pit,muck,silicified bleached MV	1.195	yes	wk	sil,fuch	64		115
2575720	442835	5470440	2-4% py		8%	big pit, silicified MV,qtz fract-fill	3.62				32	2	82
2575721	442844	5470443	tr-<0.509	6	25%	big pit,bx,silicified MV,white qtz	5.59						
2575722	442846	5470441	0.50% py	,	10%	big pit,bx,silicified MV,fe-carb	3.93						
2575723		5470441	1-3% py		20%	big pit,bx,silicified MV,fe-carb	6.51	yes	nil		34		49
2575724		5470439	2-4% py		5%	big pit ,north side muck,bx,silicified MV	1.8	yes	wk-mod	qtz	2	5	32
2575725	442873	5470527	tr py		55%	North Zone, white-grey QV,30 cm, silicified MV	0.035						
2575726	442872	5470532	tr py		40%	North Zone,3 cm QV,ank,silicified MV	>10.0	21					
2575727	442830	5470563	(0%	97%	North Zone,1m QV,barren qtz,white, large chunks	0.027						
2575728	442833	5470565	tr py	75%		North Zone, large blocks barren qtz, py along chl margins	0.088						
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.702						

North Zone, str alt and silicified MV, old pit

North Zone, str alt and silicified MV, OC.

old pit,str alt and silicified MV

alt and silicified MV

1-2% py

1% py

<1% py

tr-<0.50%

1%

1%

5%

1%

0.792

0.561

0.274

3.33

yes

yes

mod

qtz,host

wk-mod qtz,host

2575729

2575730

2575731

2575732

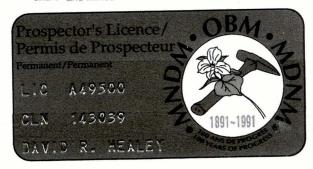
442893

442895

5470502

5470508

442841 5470424


442815 5470384

Personel

Ministry of

Ministère du Northern Development Développement du Nord et des Mines

David R. Healey

att Elle

Anthony Burkholder

Appendix

Assay Certificates

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: DAVID HEALEY **2114 9TH STREET BRANDON MB**

Page: 2 - A Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 1-NOV-2014

Account: DEHE

CERTIFICATE OF ANALYSIS TB14162411

Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-AA23 Au ppm 0.005	Au-GRA21 Au ppm 0.05	ME-ICP41 Ag ppm 0.2	ME-ICP41 AI % 0.01	ME-ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME-ICP41 Bi ppm 2	ME-ICP41 Ca % 0.01	ME-ICP41 Cd ppm 0.5	ME-ICP41 Co ppm 1	ME-ICP41 Cr ppm 1	ME-ICP41 Cu ppm 1
2575710 2575711 2575712 2575713 2575714		1.42 2.23 1.81 1.81 1.32	0.005 0.835 2.74 0.361 1.875		0.2	1.28	32	<10	20	<0.5	3	6.16	<0.5	41	145	174
2575715 2575716 2575717 2575717 2575718 2575719		2.88 1.58 2.03 2.24 2.22	0.886 3.09 0.946 0.299 1.195		0.5	0.61	64	<10	20	<0.5	<2	8.1	<0.5	45	43	115
2575720 2575721 2575722 2575723 2575724		1.75 1.81 2.25 2.21 2.10	3.52 5.59 3.93 6.51 1.800		0.8 0.3	0.09 0.09 0.11	32 34 25	<10 <10 <10	10 10 <10	<0.5 <0.5 <0.5	<2 2 <2	5.71 9.2	<0.5 <0.5 <0.5	35 38 35	27 27 33	82 49 32
2575725 2575726 2575727 2575728 2575729		1.29 1.51 1.89 1.66 2.51	0.035 >10.0 0.027 0.088 0.792	21.0	***************************************											
2575730 2575731 2575732		1.81 1.69 2.29	0.561 0.274 3.33													

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: DAVID HEALEY
2114 9TH STREET
BRANDON MB

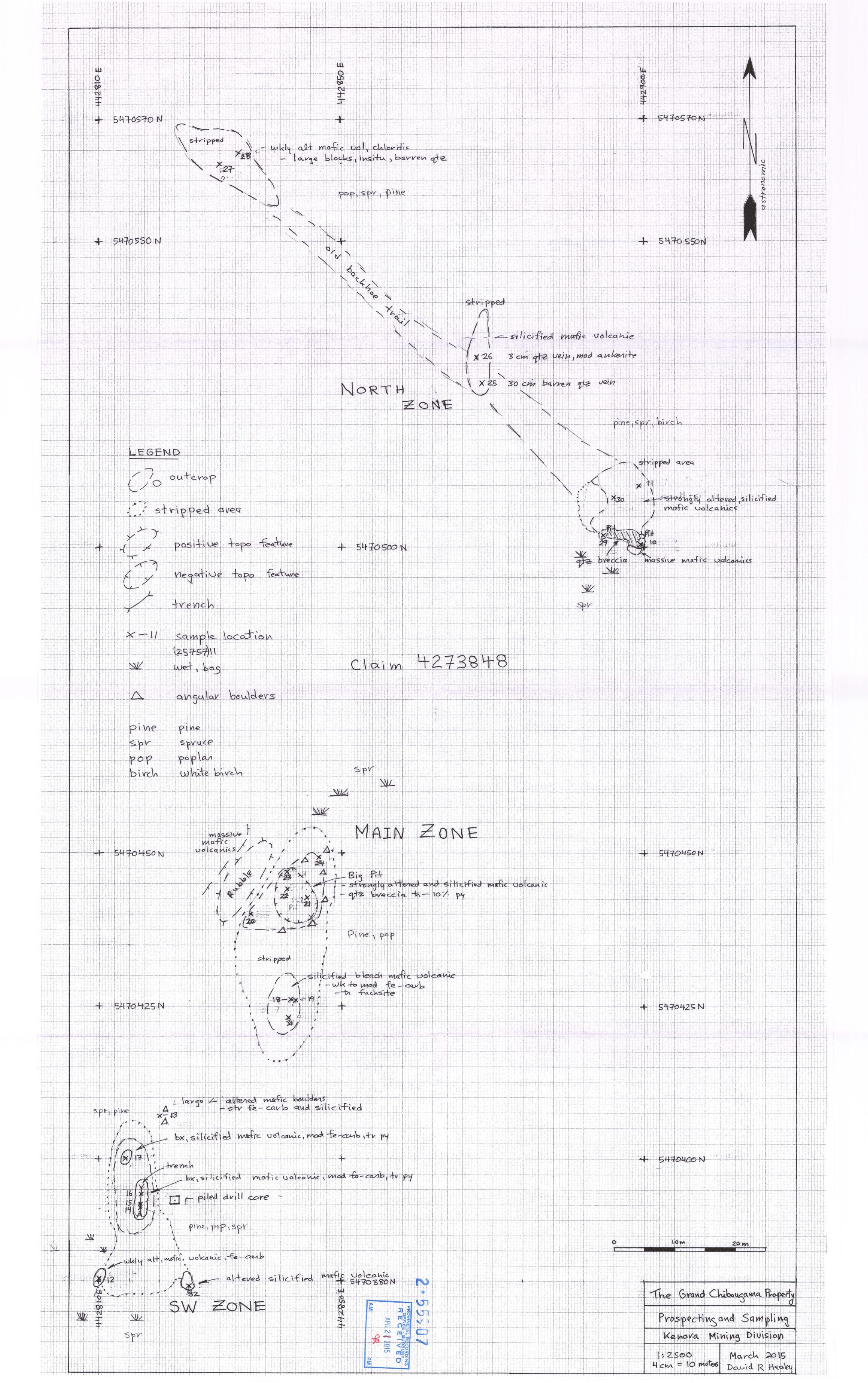
Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 1-NOV-2014 Account: DEHE

Account Dem

Minera	15								С	ERTIFIC	CATE O	F ANAI	YSIS	TB141	62411	
Sample Description	Method Analyte Units LOR	ME-ICP41 Fe % 0.01	ME-ICP41 Ga ppm 10	ME-ICP41 Hg ppm 1	ME-ICP41 K % 0.01	ME-ICP41 La ppm 10	ME-ICP41 Mg % 0.01	ME-ICP41 Mn ppm 5	ME-ICP41 Mo ppm 1	ME-ICP41 Na % 0.01	ME-ICP41 Ni ppm 1	ME-ICP41 P ppm 10	ME-ICP41 Pb ppm 2	ME-ICP41 S % 0.01	ME-ICP41 Sb ppm 2	ME-ICP41 Sc ppm 1
2575710 2575711 2575712 2575713 2575714		6.69	<10	<1	0.03	<10	2.67	1275	<1	0.05	116	50	<2	0.77	<2	16
2575715 2575716 2575717 2575718 2575719		6.91	<10	1	0.19	<10	3.57	1150	1	0.02	143	60	6	2.54	<2	7
2575720 2575721 2575722 2575723 2575724		6.67 5.72 6.63	<10 <10 <10	1 <1 <1	0.03 0.02 0.03	<10 <10 <10	2.92 1.98 3.31	1640 1200 1495	9 2 6	0.05 0.06 0.04	76 80 76	110 100 150	<2 3 4	1.66 1.72 2.20	<2 <2 <2	13 12 12
2575725 2575726 2575727 2575728 2575729			and the first state of the stat					44 - 44 - 44 - 44 - 44 - 44 - 44 - 44								
2575730 2575731 2575732								-								

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7


Phone: 604 984 0221 Fax: 604 984 0218 www.alsglobal.com

To: DAVID HEALEY
2114 9TH STREET
BRANDON MB

Page: 2 - C
Total # Pages: 2 (A - C)
Plus Appendix Pages
Finalized Date: 1-NOV-2014
Account: DEHE

CERTIFICATE OF ANALYSIS TB14162411

										KINIOATE OF 7	151110	
Sample Description	Method Analyte Units LOR	ME-ICP41 Sr ppm 1	ME-ICP41 Th ppm 20	ME-ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME-ICP41 V ppm 1	ME-ICP41 W ppm 10	ME-ICP41 Zn ppm 2			
2575710 2575711 2575712 2575713 2575714		100	<20	<0.01	<10	<10	96	10	63			
2575715 2575716 2575717 2575718 2575719		169	<20	<0.01	<10	<10	36	<10	56			
2575720 2575721 2575722 2575723 2575724	an (Araman de Araman) a militar a main a m Ta	147 133 146	<20 <20 <20	<0.01 <0.01 <0.01	<10 <10 <10	<10 <10 <10	25 16 23	<10 <10 10	62 49 96			
2575725 2575726 2575727 2575728 2575729												
2575730 2575731 2575732												
ı												
		I										

