
We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Work Report On Claims #1118210 & #1118211 By AL Kon June 15, 2016

Index

Introduction	1
Access & Location Topographical & Vegetation	1
Regional Geology, Property Geology	1
Historical work	2&3
Work Program	4&5
Daily Log	6
Magnetometer Survey	7
Recommendations	8
Mag survey data and maps	Appendix I
Equipment descriptions	Appendix II
Prospecting maps	Back Pages
Claim map	Back pages

Introduction

On March 30 2016, Alan Kon (AL) and International Millennium Mining Corp (IMMC) entered into an option agreement in which AL would obtain 100% right, title and interest in two contiguous mining claims located in North Cobalt Ontario, Bucke Township Larder Lake Mining Division. These two mining claims, #1118210 (6 units) & #1118211(4 units) are known as the North Cobalt Claims (NC Claims), were recorded in Cabo Mining Enterprises Ltd, before being transferred into Alan Kon's name.

This work program included light prospecting, implementing a partial GPS/flagged grid and a follow up Magnetometer survey. The reason for the Mag survey is to cover the ground that was missed in previous Mag surveys conducted by Cabo Mining Enterprises. The claim research, prospecting, Mag survey and tech report was done between May 2nd to June 15th 2016.

Location and Access

As mentioned before in the introduction, the NC Claims are located in Bucke Twp and Claim # 1118210 partially straddles Lake Temiskaming. Claim # 1118211 is directly next to the west.

Both claims can easily be accessed by turning east on the Haileybury West Road to the town of Haileybury then turn south on Rorke Ave (11b) and follow to Carter Blvd and to Cobalt St, then follow east on a well maintained gravel road.

Peter Grant's "Mistake on the Lake" lays directly north of the claims.

Topography & Vegetation

Maximum relief on the property is approximately 25 metres. Topography is generally rolling with local steep ledges and cliffs. The steepest terrain is along the shore of Lake Temiskaming in the eastern part of the property. Mill Creek passes through both claims providing the major drainage. Farr Creek drains in the north part of claim L 1118211. Numerous small tributaries cut through the clay cover along these two creeks.

At least 60 % of the claim group is covered by extensive overburden (dominantly clay). Vegetation on the remaining 40% of the property consists mainly of poplar, pines and locally dense underbrush. Abundant thorn bushes make traversing hazardous. Two cemeteries are located at the north end of claim #1118211 but are not part of the claims.

Regional and Property Geology

The area has been mapped by R. Thompson (1963) on behalf of the Ontario Department of Mines. From his map (Map 2050), the claims are located entirely within an area of Archean Metavolcanics with local gabbroic and felsic intrusive rocks. On a regional scale these Archean rocks occur as inliers within extensive areas underlain by Huronian Sediments and Nipissing Diabase. Several pits and trenches are shown on Map 2050. Most of these are in the eastern part of the property along the shore of Lake Temiskaming. A regional scale northwest trending fault (the Lake Temiskaming Fault) is projected immediately offshore. This structure passes through the northeast part of claim L 1118110.

Previous Owners & Work History

Very little is known about the North Cobalt Claims besides what can be found is the MNDM data base. The earliest recorded work on these claims appears to be around 1954 in E L McVeigh drilled 7 X-ray drill holes. There doesn't appear to be any other recorded history on the claims prior to that date.

A list of work follows bellow:

The claims were staked for Falconbridge Limited in 1991 as a result of a compilation program in the Cobalt area.

October 8, 1993 - ASSESSMENT REPORT FOR GEOLOGICAL SURVEY ON CLAIMS LI 19115, LI 19116, LI 179117, LI 179118 AND LI 179119, BUCKE TOWNSHIP by David P. Money, M.Sc., P. Eng. Project Geologist Falconbridge Limited (Exploration) 1977 McKenzie Road, R. R. #2 Chelmsford, Ontario POM 1LO

Branchwater Resources - acquired the property under option from two local prospectors (S. Wareing and M.Simpson) in 1998. In 1999 the Branchwater commitments were assumed by Cabo Mining Corp. and a reconnaissance work program involving rock, soil and stream sampling was completed (Nicholson, 1999).

Cabo Mining Corp – 2000. The eastern part of the property was mapped and recce ground geophysical surveys (Mag and VLF-EM) completed over its southeastern part. In 2002, the grid was extended to cover the remaining part of the claims and a ground magnetometer survey carried out. In 2003, geological mapping was completed over the remaining part of the claims.

Cabo Mining Corp – 2001. Report on Stream Alluvial Sampling On The North Cobalt Property Bucke Twp, Cobalt Project Ontario for Cabo Mining Corp. Sept 2, 2001 by Seymour M. Sears.

Continued;

Cabo Mining Corp – 2002. The grid was extended to cover the remaining part of the claims and a ground magnetometer survey carried out. In 2003, geological mapping was completed over the remaining part of the claims.

Cabo Mining Corp – 2002. REPORT ON A MAGNETOMETER SURVEY ON THE NORTH COBALT PROPERTY BUCKE TOWNSHIP, ONTARIO for Cabo Mining Corp. August, 2002 by Ray Lashbrook

Cabo Mining Corp – 2003. REPORT ON THE 2003 WORK PROGRAM ON THE NORTH COBALT PROPERTY BUCKE Twp, ONTARIO for Cabo Mining Corp. September 2003 Seymour M. Sears, P Geo.

Cabo Mining Corp – 2004. Report on a MMI Soil Test Sampling Survey On the North Cobalt Property Bucke Township, Ontario for Cabo Mining Enterprises Corp. August, 2004 Seymour M. Sears, P.Geo.

Cabo Mining Corp – 2004. Report on a 2004 Work Program On the North Cobalt Property Bucke Township, Ontario for Cabo Mining Enterprises Corp. December, 2004 Seymour M. Sears, P.Geo.

Cabo Mining Corp – 2006. Report on a 2006 Soil Sampling Program On the North Cobalt Property Bucke Township, Ontario for Cabo Mining Enterprises Corp .August 2006 J. M. Barry, P.Geo.

Cabo Mining Corp (IMMC) – 2007. GEOCHEMICAL REPORT ON AN MMI SOIL GEOCHEMISTRY SURVEY OVER THE BUCKE CLAIMS OF THECOBALT AREA PROPERTY BUCKE TOWNSHIP LARDER LAKE MINING DIVISION, ONTARIO. For INTERNATIONAL MILLENIUM MINING CORP. By David Mark P Geo.

The above work history is about all that is known about the North Cobalt Claims although there are two interesting stories about the property told by a local prospector and respected area historian. How accurate these stories are unknown.

Please read on the next page.

As the story goes... According to this historian, a gentleman known as C C Farr who was the founder of the town of Haileybury Ontario once owned the area beside Lake Temiskaming now known as the North Cobalt Claims. He had hired a prospector to work and prospect the area around Mill Creek. This prospector eventually located a very large Silver vein, said to be at least 6 inches wide and several yards long. When the prospector asked for payment for the work he had done, Mr. Farr refused to pay him until he divulged the exact location of the Silver vein. Apparently Mr. Farr was tough to work for and somewhat tight with his money and the prospector who was fairly sharp as well knew this and would not release any details of the location until he got paid first. Mr. Farr never paid the prospector so he recovered the vein and forgot about it until on his death bed several years later. According to the prospector the location of the Silver vein is near an old barbwire fence.

If this Silver vein really does exist it has yet to be found.

The second story is not quite as interesting but something to take note of just the same.

During the height of the Silver boom in Cobalt while most of the rock processing mills were still running someone had accidently (or purposely?) released a huge quantity of Silver/Cyanide leaching agent into Mill Creek. Exactly who or which mill this happened at is unknown but was not far upstream from area now known as the North Cobalt Claims. According to the historian, the release of the Cyanide caused a few people to become quite ill and killed several cows when they drank from Mill Creek.

If this story is true then that would most likely be the cause of the high Silver values recorded in the soil beside Mill Creek.

Work Program

The current work program being conducted by AL Kon of Haileybury/North Cobalt is focusing mainly on the initial access, prospecting and Magnetometer survey. Because of the rainy spring and huge amount of snow from the past winter, access to the south east half of claim #1118210 has been limited. During the mid-summer, when water levels are down, one can easily cross both creeks. Access to the south east part of claim # 1118210 can be easily achieved by walking along the rocky beach of Lake Temiskaming to the claim. That part of the claim can also be accessed via Proctor's Road but the town has put up a gate making to tougher to get through. The owners of the private land on the southern part of claim #1118210 are good to deal with but they have dogs. The Town of Haileybury's sewage poop ponds lay between Proctors Road and the claims and crossing there is possible but kind of stinky.

The water levels in both Farr Creek and Mill Creek are much higher than normal for this part of the spring/summer and crossing would be fairly dangerous if not extremely wet. The lake water level is still fairly high as well and venturing to close to the edge would be very dangerous.

Work Program – Prospecting

Prior to starting the ground work, several hours were spent going over past reports, maps and history of the North Cobalt claims.

Due to the limited amount of outcropping and exposed rock, prospecting was focused mostly on claim #1118210 in the south west corner, north of Mill Creek. There are at least 4 medium to large outcrops in that particular area. The prospecting traverse followed much the same route as what the Mag survey would be in a west/east direction.

The geology of the claims is thought to be predominantly Keewatin aged basalt or andesite rock with a few small intrusions of Pre-Algoman lamprophyre rock and possibly Nippissing diabase.

There are three areas to date that require more intense prospecting and sampling.

The first area while prospecting in the south west corner of claim the rock observed was definitely a volcanic rock but the intrusive dike appeared to be more of a gabbro type rock instead of lamprophyre as recorded on Thompson's geology map M2050. The contact zone was not found during this prospecting program. There were two spots marked on the GPS and flagged for sampling at a later date. One other unusual find was on L750N at the bottom of a large outcrop, was what appeared to be a white spherical semi-solid rock known as golfballite. It's unlikely this will be sampled.

The second area is on the claim lines between claims #1118210 & # 1118211 where they intersect Mill Creek. The rock in that area is clearly volcanic but very limited with only a couple of small outcrops. On the rock was iron staining and another unknown dark stain. This area on both sides of the creek will definitely be prospected further once the water levels go down.

The third area is in the upper north/west corner of claim #1118210 near the shore line overlooking Lake Temiskaming. On LON at about 50E is a water filled medium sized pit and on L50N at about 50E is what appears to be a possible fault. This entire area from the north claim line all the way down the edge of the lake to the south claim line needs to be prospected further when the lake levels recede.

There are no other areas on claim #1118211 north of Mill Creek that appear to have outcropping or exposed rock.

A prospecting map can be viewed in back pages.

North Cobalt Claims – Daily Log
May 2 – Check access, too much snow/mud
May 16 – Check access, water level, posts, light prospecting
May 24 – Light prospecting, GPS trails and some outcrops
May 25 – Plot targets, review old reports/maps
May 26 – Prospect o/c beside Mill Creek on #1118211, record trails
May 27 – Prospect claim #1118210
May 30 – Prospect O/C on claim #1118211 SW corner, 2 rock samples marked for
future sampling
May 31 – Adjust Mag grid, data entry
June 1 – Flag Mag survey start line
June 2 – Start North Cobalt claims Magnetometer survey
June 3 - Magnetometer survey readings check
June 4 - Magnetometer survey
June 6 - Magnetometer survey
June 9 - Magnetometer survey
June 10 - Magnetometer survey
June 13 - Magnetometer survey
June 14 - Magnetometer survey, Tech report

Magnetometer Survey

The Magnetometer survey conducted across parts of the North Cobalt claims #1118210 & #1118211 was aimed at covering parts of the claims which were not done by earlier surveys. This survey was conducted is an east/west direction, perpendicular to previous Mag surveys for two reasons: Firstly, because of the direction of previous Mag surveys most of the corners and part of the lake side was missed. By going in an east/west direction, perpendicular to previous direction most of that ground can easily be covered: Secondly, by going in a different direction, perpendicular to previous Mag surveys has showed to have its advantages by better understanding the geology and locating potential targets.

The Mag survey was done in two separate parts. Four longer lines at the top of claims #1118210 and #1118211 and 5 shorter lines at the bottom south west corner of claim#1118211. The last 2 lines were shortened to ~ 100m because the bush in the area was impossible to traverse alone without a helper or point man.

The only places missed were areas where crossing the creeks would be too difficult or dangerous. There was only one area missed but may be done at a later date. This particular area was the far north/west corner of claim # 1118211. That part of the claim is in Mount Pleasant Cemetery and even though the current residents probably won't say much, the town of Haileybury might not like it too much.

Magnetometer Survey Results

North Mag Survey

The south east corner of the Mag survey shows better promise than the rest of the survey. There are 2 high Mag targets on Line 0 N that are interesting but because of the depth of the overburden further exploration in that area may be somewhat difficult. The lower Mag reading in the south east corner has good potential and should be explored further. There is outcropping in that area and overburden is mostly minimal.

South Mag Survey

The Mag survey in the south east corner of claim #1118211 showed way better results. This may be due in part to the exposed rock and outcropping along with the minimal amount of overburden.

The high Mag results show a possible structure striking from the NW in a SE direction and needs further exploration. The low Mag results near the middle of L 550 N show the best results. It also coincides with the Mag survey conducted by Ray Lashbrook in 2002, see *REPORT ON A MAGNETOMETER SURVEY ON THE NORTH COBALT PROPERTY BUCKE TOWNSHIP, ONTARIO for Cabo Mining Corp. August, 2002 Ray Lashbrook.*

Recommendations

A considerable amount of work still needs to be done on the North Cobalt Claims.

One of the first things to be done is follow up prospecting over both claims including the Mag highs and especially the lows. Historically and generally high Mag anomalies in the general Cobalt area have shown to be some sort of iron formation, typically Pyrrohotite or other magnetic iron structure. The close proximity of the low Mag anomalies may be an indication of Silver or possibly Gold nearby.

Another Mag survey should be considered but this time cover the entire area or at least what was missed in previous surveys.

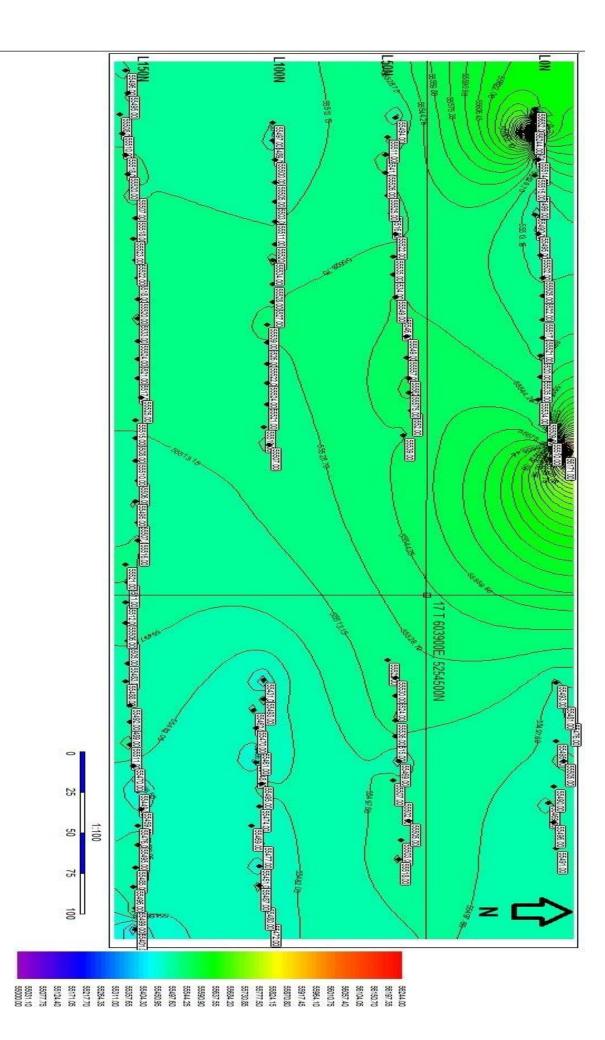
Thank you.

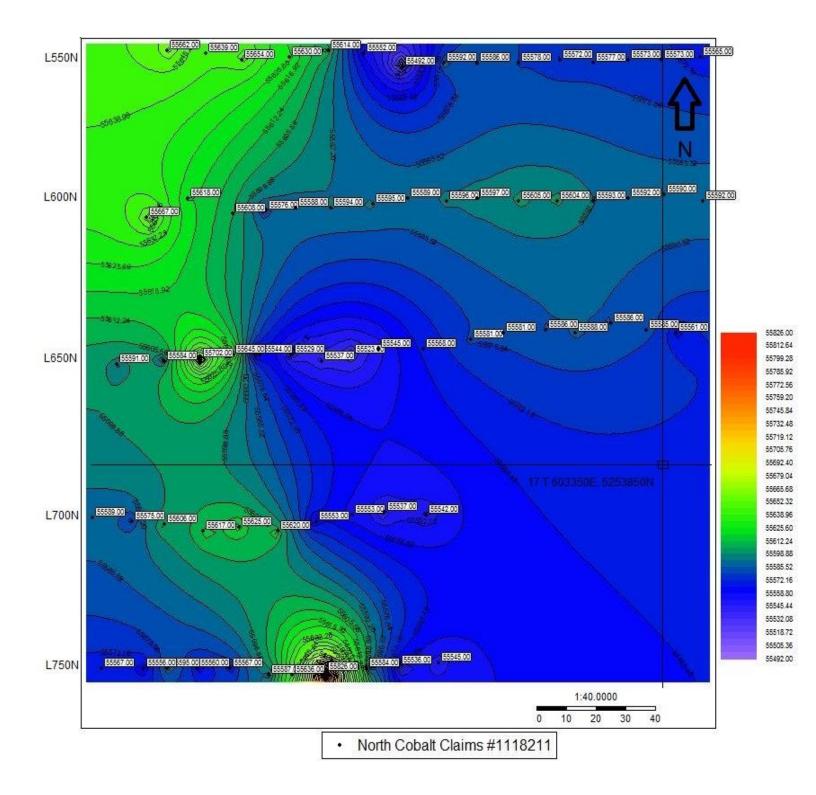
alan Kon

Alan Kon

APPENDIX I

North Cobalt	Claims Magnetometer S	Survey Lines L 0 N to L 150 N
Station	Coordinates	Elevation Date/Time
55482 LON	17 T 603606 5254542	224 m 6/2/2016 13:36
55490	17 T 603667 5254529	225 m 6/2/2016 13:48
55495	17 T 603679 5254527	223 m 6/2/2016 13:50
55499	17 T 603654 5254531	225 m 6/2/2016 13:46
55501	17 T 603620 5254539	225 m 6/2/2016 13:43
55502	17 T 603692 5254527	224 m 6/2/2016 13:52
55505	17 T 603705 5254526	225 m 6/2/2016 13:53
55509	17 T 603795 5254536	226 m 6/2/2016 14:00
55510	17 T 603805 5254541	225 m 6/2/2016 14:01
55514	17 T 603631 5254538	225 m 6/2/2016 13:44
55515	17 T 603641 5254535	225 m 6/2/2016 13:45
55517	17 T 603733 5254528	226 m 6/2/2016 13:56
55520	17 T 603754 5254527	227 m 6/2/2016 13:58
55521	17 T 603743 5254527	227 m 6/2/2016 13:57
55522	17 T 603716 5254524	226 m 6/2/2016 13:55
55534	17 T 603782 5254531	226 m 6/2/2016 13:59
55535	17 T 603768 5254528	226 m 6/2/2016 13:58
55493	17 T 603955 5254550	216 m 6/9/2016 12:33
55481	17 T 603968 5254553	216 m 6/9/2016 12:34
55476	17 T 603978 5254555	213 m 6/9/2016 12:35
55495	17 T 603991 5254550	213 m 6/9/2016 12:37
55505	17 T 604003 5254553	211 m 6/9/2016 12:39
55490	17 T 604019 5254549	209 m 6/9/2016 12:41
55469	17 T 604029 5254547	206 m 6/9/2016 12:43
55496	17 T 604041 5254549	204 m 6/9/2016 12:46
55491	17 T 604057 5254550	204 m 6/9/2016 12:50
	17 T 603802 5254492	224 m 6/2/2016 14:05
55552	17 T 603787 5254495	226 m 6/2/2016 14:11
55575	17 T 603776 5254494	227 m 6/2/2016 14:11
55562	17 T 603767 5254494	225 m 6/2/2016 14:12
55557	17 T 603754 5254493	227 m 6/2/2016 14:13
55549	17 T 603741 5254493	226 m 6/2/2016 14:15
55546	17 T 603728 5254491	224 m 6/2/2016 14:16
55549	17 T 603717 5254489	224 m 6/2/2016 14:17
55534	17 T 603703 5254488	225 m 6/2/2016 14:18
55535	17 T 603692 5254488	224 m 6/2/2016 14:19
55522	17 T 603678 5254489	223 m 6/2/2016 14:20
55516	17 T 603665 5254487	223 m 6/2/2016 14:21
55525	17 T 603654 5254486	224 m 6/2/2016 14:21
55526	17 T 603640 5254485	225 m 6/2/2016 14:22
55541	17 T 603629 5254485	225 m 6/2/2016 14:23
55511	17 T 603618 5254486	222 m 6/2/2016 14:24
55494	17 T 603606 5254489	220 m 6/2/2016 14:25
55518	17 T 604064 5254490	205 m 6/9/2016 12:57
00010		200 11 0/0/2010 12:01


55503	17 T 604046 5254491	207 m 6/9/2016 13:00
55505	17 T 604040 5254494	208 m 6/9/2016 13:01
55502	17 T 604026 5254497	209 m 6/9/2016 13:03
55507	17 T 604015 5254488	211 m 6/9/2016 13:06
55469	17 T 604003 5254490	212 m 6/9/2016 13:09
55515	17 T 603988 5254489	215 m 6/9/2016 13:11
	17 T 603978 5254489	221 m 6/9/2016 13:11
55536		
55524	17 T 603963 5254489	224 m 6/9/2016 13:16
55530	17 T 603952 5254489	224 m 6/9/2016 13:17
	N17 T 603609 5254442	222 m 6/4/2016 13:22
55489	17 T 603620 5254442	224 m 6/4/2016 13:23
55500	17 T 603632 5254443	225 m 6/4/2016 13:24
55505	17 T 603646 5254443	226 m 6/4/2016 13:25
55503	17 T 603658 5254443	226 m 6/4/2016 13:26
55511	17 T 603670 5254443	226 m 6/4/2016 13:27
55520	17 T 603684 5254443	226 m 6/4/2016 13:27
55534	17 T 603694 5254442	227 m 6/4/2016 13:28
55528	17 T 603709 5254442	227 m 6/4/2016 13:29
55527	17 T 603709 5254442	228 m 6/4/2016 13:29
55539	17 T 603734 5254440	229 m 6/4/2016 13:31
55526	17 T 603745 5254440	228 m 6/4/2016 13:32
55522	17 T 603758 5254440	227 m 6/4/2016 13:33
55524	17 T 603770 5254440	227 m 6/4/2016 13:33
55521	17 T 603783 5254440	226 m 6/4/2016 13:34
55519	17 T 603797 5254439	226 m 6/4/2016 13:35
55507	17 T 603808 5254441	226 m 6/4/2016 13:36
55431	17 T 603954 5254435	225 m 6/13/2016 11:22
55493	17 T 603965 5254439	222 m 6/13/2016 11:24
55462	17 T 603972 5254435	220 m 6/13/2016 11:25
55470	17 T 603979 5254437	219 m 6/13/2016 11:26
55461	17 T 603996 5254440	216 m 6/13/2016 11:28
55448	17 T 604004 5254436	214 m 6/13/2016 11:28
55495	17 T 604004 5254438	212 m 6/13/2016 11:30
	17 T 604017 5254438	212 m 6/13/2016 11:30 212 m 6/13/2016 11:31
55474		
55469	17 T 604043 5254434	211 m 6/13/2016 11:33
55477	17 T 604054 5254438	209 m 6/13/2016 11:34
55451	17 T 604065 5254442	207 m 6/13/2016 11:35
55487	17 T 604080 5254442	206 m 6/13/2016 11:37
55480	17 T 604092 5254445	204 m 6/13/2016 11:38
55472	17 T 604103 5254455	201 m 6/13/2016 11:40
55495 L150N	N17 T 603591 5254387	222 m 6/6/2016 12:55
55508	17 T 603604 5254384	223 m 6/6/2016 12:56
55510	17 T 603616 5254385	225 m 6/6/2016 12:58
55518	17 T 603629 5254386	224 m 6/6/2016 12:59
55520	17 T 603641 5254387	224 m 6/6/2016 12:59
55507	17 T 603654 5254390	226 m 6/6/2016 13:00
00001	17 1 000007 0204030	220110/0/2010 13.00


55518	17 T 603668 5254390	227 m 6/6/2016 13:01
55523	17 T 603681 5254389	226 m 6/6/2016 13:03
55522	17 T 603694 5254390	224 m 6/6/2016 13:03
55518	17 T 603705 5254391	225 m 6/6/2016 13:04
55520	17 T 603718 5254391	225 m 6/6/2016 13:06
55533	17 T 603730 5254391	224 m 6/6/2016 13:06
55524	17 T 603744 5254391	223 m 6/6/2016 13:07
55521	17 T 603755 5254391	224 m 6/6/2016 13:08
55517	17 T 603767 5254391	223 m 6/6/2016 13:09
55525	17 T 603779 5254392	224 m 6/6/2016 13:11
55518	17 T 603793 5254390	223 m 6/6/2016 13:12
55508	17 T 603804 5254390	223 m 6/6/2016 13:12
55510	17 T 603818 5254390	222 m 6/6/2016 13:13
55506	17 T 603830 5254391	223 m 6/6/2016 13:13
55495	17 T 603843 5254390	223 m 6/6/2016 13:14
55507	17 T 603856 5254391	224 m 6/6/2016 13:15
55516	17 T 603867 5254391	224 m 6/6/2016 13:16
55521	17 T 603878 5254388	223 m 6/6/2016 13:18
55511	17 T 603893 5254387	222 m 6/6/2016 13:19
55512	17 T 603905 5254386	222 m 6/6/2016 13:20
55506	17 T 603918 5254386	222 m 6/6/2016 13:20
55505	17 T 603929 5254387	221 m 6/6/2016 13:21
55483	17 T 603943 5254387	221 m 6/6/2016 13:22
55488	17 T 603954 5254386	219 m 6/6/2016 13:23
55492	17 T 603969 5254388	219 m 6/6/2016 13:24
55489	17 T 603979 5254388	217 m 6/6/2016 13:25
55497	17 T 603991 5254389	216 m 6/6/2016 13:26
55401 L150N	N17 T 604107 5254390	209 m 6/13/2016 11:45
55499	17 T 604093 5254386	211 m 6/13/2016 11:47
55496	17 T 604081 5254389	210 m 6/13/2016 11:49
55485	17 T 604069 5254390	211 m 6/13/2016 11:51
55495	17 T 604055 5254398	213 m 6/13/2016 11:52
55476	17 T 604043 5254391	216 m 6/13/2016 11:54
55459	17 T 604031 5254393	217 m 6/13/2016 11:55
55449	17 T 604014 5254389	218 m 6/13/2016 11:57
55470	17 T 604006 5254391	221 m 6/13/2016 11:58
55511	17 T 603993 5254394	224 m 6/13/2016 12:00
55487	17 T 603982 5254388	229 m 6/13/2016 12:01
55477	17 T 603971 5254385	229 m 6/13/2016 12:03

North Cobalt Claims Magnetometer	Survey Lines L 505 N to L 750 N
Station Coordinates	Elevation Date/Time
55565 L550N17 T 603361 5253978	247 m 6/10/2016 15:18
55573 17 T 603348 5253977	247 m 6/10/2016 15:18 247 m 6/10/2016 15:19
55573 17 T 603348 5253977	247 m 6/10/2016 15:19 247 m 6/10/2016 15:20
	247 m 6/10/2016 15:20 247 m 6/10/2016 15:21
55572 17 T 603314 5253977	249 m 6/10/2016 15:22
55578 17 T 603300 5253976	248 m 6/10/2016 15:22
55586 17 T 603286 5253976	248 m 6/10/2016 15:23
55592 17 T 603275 5253976	249 m 6/10/2016 15:24
55492 17 T 603261 5253975	248 m 6/10/2016 15:24
55552 17 T 603248 5253979	249 m 6/10/2016 15:26
55614 17 T 603236 5253980	249 m 6/10/2016 15:27
55630 17 T 603224 5253973	248 m 6/10/2016 15:32
55654 17 T 603211 5253985	248 m 6/10/2016 15:34
55639 17 T 603201 5254002	249 m 6/10/2016 15:34
55662 17 T 603189 5254012	249 m 6/10/2016 15:36
55667 L600N17 T 603175 5253927	251 m 6/10/2016 14:59
55608 17 T 603204 5253928	250 m 6/10/2016 15:02
55618 17 T 603197 5253934	251 m 6/10/2016 15:03
55576 17 T 603215 5253929	250 m 6/10/2016 15:04
55588 17 T 603225 5253930	250 m 6/10/2016 15:05
55594 17 T 603237 5253930	249 m 6/10/2016 15:06
55595 17 T 603251 5253931	249 m 6/10/2016 15:07
55589 17 T 603263 5253933	250 m 6/10/2016 15:08
55596 17 T 603276 5253932	249 m 6/10/2016 15:10
55597 17 T 603286 5253933	247 m 6/10/2016 15:10
55605 17 T 603300 5253932	248 m 6/10/2016 15:11
55604 17 T 603313 5253932	248 m 6/10/2016 15:12
55593 17 T 603325 5253932	248 m 6/10/2016 15:13
55592 17 T 603337 5253933	248 m 6/10/2016 15:13
55590 17 T 603349 5253934	247 m 6/10/2016 15:14
55592 17 T 603362 5253932	246 m 6/10/2016 15:15
55591 L650N17 T 603165 5253880	251 m 6/13/2016 12:41
55584 17 T 603181 5253881	251 m 6/13/2016 12:44
55702 17 T 603192 5253886	253 m 6/13/2016 12:46
55645 17 T 603202 5253893	253 m 6/13/2016 12:47
55544 17 T 603208 5253881	252 m 6/13/2016 12:51
55529 17 T 603224 5253883	248 m 6/13/2016 12:53
55537 17 T 603234 5253881	246 m 6/13/2016 12:53
55523 17 T 603244 5253877	248 m 6/13/2016 12:54
	248 m 6/13/2016 12:55 247 m 6/13/2016 12:56
55545 17 T 603253 5253885	
55568 17 T 603268 5253885	247 m 6/13/2016 12:58
55581 17 T 603281 5253895	246 m 6/13/2016 13:01
55581 17 T 603293 5253898	245 m 6/13/2016 13:02
55586 17 T 603308 5253897	245 m 6/13/2016 13:03

55588 55586 55585 55561	17 T 603316 5253899 17 T 603331 5253893 17 T 603343 5253891 17 T 603353 5253890	245 m 6/13/2016 13:03 245 m 6/13/2016 13:05 245 m 6/13/2016 13:06 243 m 6/13/2016 13:07
55542 L700N	N17 T 603269 5253832	248 m 6/14/2016 10:43
55537	17 T 603255 5253829	249 m 6/14/2016 10:45
55553	17 T 603244 5253832	250 m 6/14/2016 10:46
55553	17 T 603231 5253823	252 m 6/14/2016 10:48
55620	17 T 603219 5253827	253 m 6/14/2016 10:49
55625	17 T 603203 5253820	254 m 6/14/2016 10:51
55617	17 T 603193 5253824	256 m 6/14/2016 10:52
55606	17 T 603182 5253824	257 m 6/14/2016 10:53
55575	17 T 603170 5253830	256 m 6/14/2016 10:55
55589	17 T 603157 5253831	257 m 6/14/2016 10:56
55567 L750	N17 T 603161 5253777	256 m 6/14/2016 10:15
55556	17 T 603174 5253783	257 m 6/14/2016 10:18
55560	17 T 603188 5253780	257 m 6/14/2016 10:20
55567	17 T 603199 5253782	255 m 6/14/2016 10:21
55587	17 T 603215 5253784	255 m 6/14/2016 10:23
55636	17 T 603224 5253781	255 m 6/14/2016 10:24
55826	17 T 603235 5253780	258 m 6/14/2016 10:26
55584	17 T 603249 5253783	257 m 6/14/2016 10:28
55536	17 T 603260 5253788	253 m 6/14/2016 10:33
55545	17 T 603273 5253785	252 m 6/14/2016 10:36

APPENDIX II

1.0 General Information

1.1 Introduction

The MP-2 is a portable proton precession magnetometer. Such instruments utilize the phenomenon of nuclear magnetic resonance to measure the flux density of the total mangetic field.

The MP-2 Sensor consists of a chamber filled with a proton rich fluid such as kerosene enclosed within two wire wound coils. When a current is passed through these coils for a short period of time, a magnetic field is set up which aligns the spinning protons. When this polarizing current is abruptly switched off, the protons begin to precess around the earth's magnetic field and eventually realign with it. This precession induces a small, exponentially decaying, AC signal in the sensor coils whose frequency is proportional to the flux of the ambient magnetic field (23.4874 gammas/Hz). This frequency is measured by the signal processing electronics of the MP-2, converted to a gamma value and presented on the digital display.

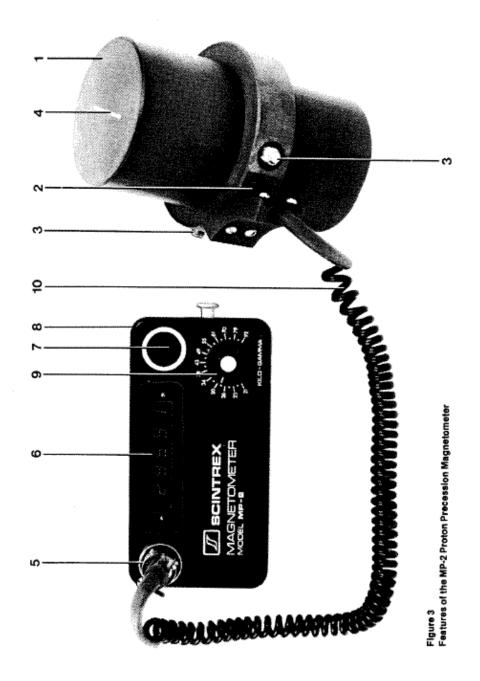
The MP-2 is designed for portable magnetic surveying. As no levelling is required, a rapid survey is possible to a high accuracy anywhere on the earth. An optional external battery kit converts the instrument easily for winter use. The sensor is either staff mounted, or carried in a backpack. Two separate attachment joints orient the sensor for either polar or equatorial use.

Coupled with a module into which the MP-2 is easily inserted, the magnetometer can be used as a base station unit for continuous analogue or digital recording. The entire unit of MP-2 and module is called the MBS-2 Magnetic Base Station. Full information on the MBS-2, shown in Figure 1, is available from Scintrex.

The carrying case is designed to serve as a shipping or storage container and should contain the following items:

1 console
1 sensor with cable
1 staff (in lid)
1 harness

1 manual 8 alkaline batteries 8 carbon-zinc batteries 1 spare sensor cable


Optional: External Battery Kit consisting of: 2 battery cables 1 battery case

Reasonable care in handling should be exercised as this is a high precision instrument.

2.0 Specifications

The MP-2 has the following specifications:

Resolution	1 gamma
Total Field Accuracy	±1 gamma over full operating range
Range	20,000 to 100,000 gammas in 25 overlapping steps.
Internal Measuring Program	A reading appears 1.5 seconds after depression of the Operate Switch and remains displayed for 2.2 seconds for a total of 3.7 seconds per single reading. Recycling feature permits automatic repetitive readings at 3.7 second intervals.
External Trigger	External trigger input permits use of sampling intervals longer than 3.7 seconds.
Display	5 digit LED (light emitting diode) readout displaying total magnetic field in gammas or normalized battery voltage.
Data Output	Multiplied precession frequency and gate time outputs for base station recording using interfac- ing optionally available from Scintrex.
Gradient Tolerance	Up to 5000 gammas/meter.
Power Source	8 alkaline "D" cells proyide up to 25,000 readings at 25 C under reasonable signal/noise conditions (less at lower temperatures). Premium carbon-zinc cells provide about 40% of this number.
Sensor	Omnidirectional, shielded, noise- cancelling dual coil, optimized for high gradient tolerance.
Harness	Complete for operation with staff or back pack sensor.
Operating Temperature Range	-35°C to +60°C
Size	Console, with batteries: 80 x 160 x 250 mm Sensor: 80 x 150 mm Staff: 30 x 1550 mm (extended) 30 x 660 mm (collapsed)
Weights	Console, with batteries: 1.8 kg Sensor: 1.3 kg Staff: 0.6 kg

G-816/826

Portable Proton Magnetometer

Sensor: High signal, noise cancelling, mounted on staff or attached to backpack. Size: Console: $3.5 \times 7 \times 11$ inches

(9 x 18 x-28 cm)

Sensor: 3.5 x 5 inches (9 x 13 cm) Staff: I inch diameter x 8 ft. length

(3 cm x 2.5 m)

Weight: 'Lbs. Kgs.

Console (w/batteries): 5.5 2.5

Sensor and signal cable: 4 1.8

Aluminum staff: ,J_ .9

11.5 TT

- 1. G-816/826 Magnetometer console I each
- 2. Sensor I each
- 3. Collapsible sensor staff I each
- 4. Signal cable-staff (long) I each
- 5. Signal cable-backpack (short) I each
- 6. Adjustable carrying harness ' I each

7. Batteries: Type D Premium Carbon Zinc with 24 each cardboard jacket (12 each - within console)

8. Applications Manual for Portable Magnetometers I each

9. Operator's Manual I each

10. Storage/Carrying Case I each

Operating

Model C-816/826

Portable Proton Magnetometer

1.3 SPECIFICATIONS

Sensitivity:

Rang*: '- t Tuner;

*3 Gradient tolerance: •T Sampling 'Rate: Output::

Power Requirements: D Cell Batteries

Temperature Range: -10c to 30c

Accurary (Total Field): ^ I gamma throughout range. 20,000 to 90,000 gammas (worldwide).

Multiposition switch with signal amplitude indicator light on display.

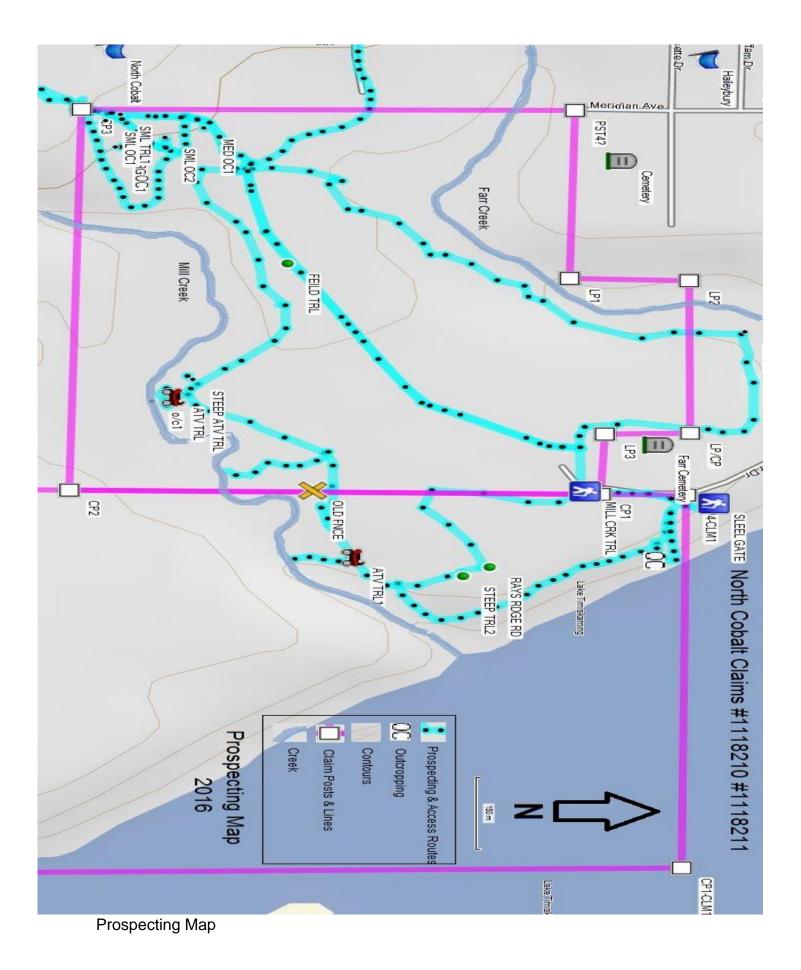
*Exceeds 800 gammas/feet. Manual push button, one reading each six seconds. Five digit numeric display with readout directly in gammas.

Twelve 1.5 volt "D" cell universally available flashlight-type batteries;

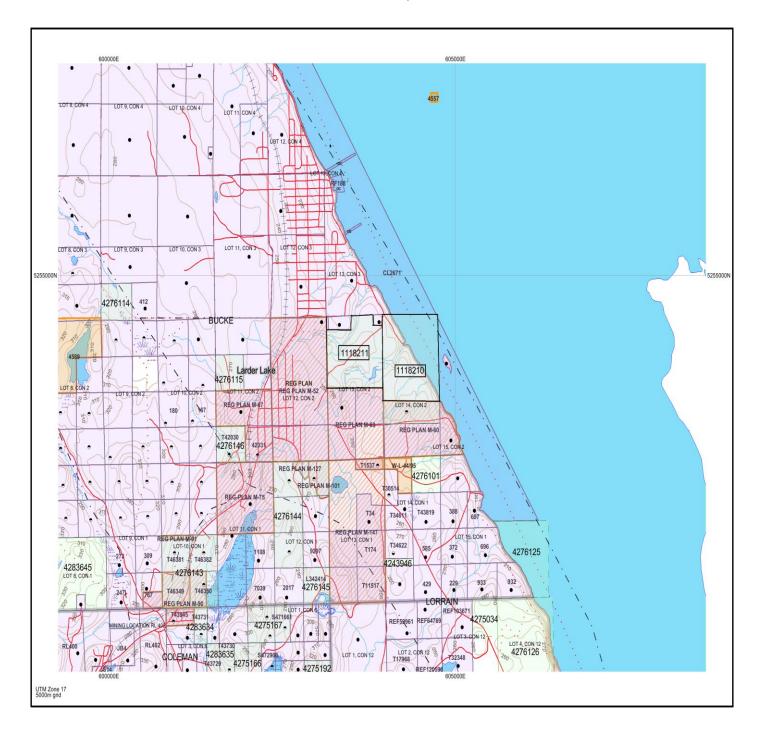
Charge state or replacement signified -by flashing indicator light on display. Console and sensor: -40* to +S5* C.

Battery pack: O^{*} to $+50^*$ C (limited use to -15^* C; lower temperature battery belt operation - optional).

^ I gamma through O" td +50" C temperature range.


Garmin GPSMap 62st

Physical & Performance


Physical dimensions	2.4" x 6.3" x 1.4" (6.1 x 16.0 x 3.6 cm)
Display size, WxH	1.43" x 2.15" (3.6 x 5.5 cm); 2.6" diag (6.6 cm)
Display resolution, WxH	160 x 240 pixels
Display type	transflective, 65-K color TFT
Weight	7.9 oz (223 g) with batteries
Battery	2 AA batteries (not included); NiMH or Lithium recommended
Battery life	20 hours
Water rating	IPX7
High-sensitivity receiver	•
Interface	high-speed USB and NMEA 0183 compatible
Barometric altimeter	0
Electronic compass	Yes (tilt-compensated 3-axis)
Unit-to-unit transfer (shares data wirelessly with similar units)	•

Maps & Memory

Basemap	0
Preloaded maps	yes (topographic)
Ability to add maps	0
Built-in memory	3.5GB total space; 500MB available for use
Accepts data cards	microSD [™] card (not included)
Custom POIs (ability to add additional points of interest)	0
Waypoints/favorites/locations	2000
Routes	200
Track log	10,000 points, 200 saved tracks

Claim Map

