We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

METALS CREEK RESOURCES

2013-2015 DIAMOND DRILLING REPORT

OGDEN PROPERTY

PORCUPINE MINING DIVISION, ONTARIO

NTS 42A

Prepared

by

Don Heerema

of

September 2015

TABLE OF CONTENTS

	Daga
	Page
INTRODUCTION	l
LOCATION AND ACCESS	1
TERMS OF REFERENCE	1
PROPERTY STATUS	1
REGIONAL GEOLOGY	7
PROPERTY GEOLOGY	7
EXPLORATION HISTORY	9
Personnel	10
2013 Drilling	10
2015 Drilling	11
SAMPLING/ASSAYING	12
CONCLUSIONS AND RECOMMENDATIONS	13
Expenditures	14
References	15
STATEMENT OF QUALIFICATIONS	16

LIST OF FIGURES, AND MAPS

FIGURE 1	LOCATION MAP	5
FIGURE 2	CLAIM STATUS MAP	6
FIGURE 3	MEK DRILL PLAN1	. 1

LIST OF TABLES

TABLE 1	2013 Collar Coordinates	11
TABLE 2	2013 TABLE OF RESULTS	11
TABLE 3	2015 COLLAR COORDINATES	12
TABLE 4	2015 TABLE OF RESULTS	12

LIST OF APPENDICES

Appendix I	DRILL LOGS
Appendix II	DRILL SECTIONS
APPENDIX III	PLAN MAP
APPENDIX IV	ASSAY CERTIFICATES

Introduction

This report summarizes diamond drilling work conducted on the Ogden Property from November 2013 and June 2015. The November 2013 program took place on the Thomas Odgen Zone (TOZ) and consisted of 4 holes totaling 1,129. The June 2015 program was initiated for the purposes of exploring for the presence of gold mineralization in the South zones of the Naybob Mine. The program totaled 397.4m in 3 short diamond drill holes. The drilling was conducted by Norex Drilling Limited out of Porcupine, Ontario.

The work was conducted on the Ogden property which consists of a large contiguous land package covering approximately 3,135 acres or 13.42 square kilometers in Ogden and Deloro Townships along the Porcupine Destor Fault. The credits of the drilling programs are transferred to the contiguous mining claims of the Ogden Property.

Location and Access

The Ogden Property is situated along the eastern boundary of Ogden Township of the Porcupine Mining Division, approximately 5 kilometers south of the city of Timmins. Travel time to the property is roughly 5 minutes from the city of Timmins. The property is located within the NTS Map Sheet 42A.

The Property is easily accessible by traveling south from Timmins on Pine Street South to the Naybob Mine road. The Naybob Mine road is an all season gravel road, west off Pine Street South, extending through the eastern portion of the property and swinging north along the northern edge of the property boundary. Figure 1.

Terms of Reference

Map projections are in UTM, North American Datum 83, Zone 17 and all referenced UTM coordinates are in this project unless stated otherwise. Contractions are "mm" = millimeter, "cm" = centimeter, "m" = meters, "km" = kilometers, "g" = gram, "kg" = kilogram, "in" = inch, "ft" = foot, "lb" = pound, "oz" = troy ounce, "oz/ton" = troy ounce per short ton, "g/T" is grams per metric tonne, and "ddh" = diamond drill hole.

Property Status

The property consists of 36 patent parcels, 13 leases and 14 unpatented mining claims that lie within the central portion of Ogden Twp. and the west central Deloro Twp., registered in the Porcupine Mining Division. The contiguous patents and leases are registered and held 51% by Goldcorp Canada Ltd and 49% by Goldcorp Inc. The unpatented mining claims are registered as 50% Metals Creek Resources, 25.50% Goldcorp Canada Ltd. and 24.50% Goldcorp Inc. 50% Metals Creek Resources is in an option-joint venture with Goldcorp on the Ogden Property. Figure 2.

1

Patents

PIN 65441-0370(LT), PIN 65441-0204(LT), PIN 65441-0369(LT) Parcel 14423SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% HR1007 (partially in Deloro Tp) P8555 (Deloro Tp) P8594 P8595 PIN 65441-0229(LT) - Parcel 14424SEC - Registered owners are Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49% HR937 (partially in Deloro Tp) HR938 HR939 PIN 65441-0238(LT) - Parcel 8441 SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% HR1008 PIN 65441-0205(LT) - Parcel 4200SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8060 PIN 65441-0206(LT) - Parcel 4401 SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8061 PIN 65441-0203(LT) - Parcel 4402SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P9852 PIN 65441-0190(LT) - Parcel 4114SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8948 PIN 65441-0189(LT) - Parcel 4115SEC - Registered owners are Goldcorp Canada Ltd. 51 0/0 and Goldcorp Inc. 49% P8949 PIN 65441-0187(LT) - Parcel 4116SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8044 PIN 65441-0188(LT) - Parcel 4117SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P11344 PIN 65441-0183(LT) - Parcel 4118SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P11483 PIN 65441-0184(LT) - Parcel 4864SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P16063 PIN 65441-0185(LT) - Parcel 3851SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P8459 PIN 65441-0186(LT) - Parcel 4863SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P16062

PIN 65441-0237(LT) - Parcel 3895SEC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P6465

PIN 65442-0686 (LT) - Parcel 58LC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P37705

Claim #	Parcel #	Pin#	Previous Parcel #	Patent #	Recorded Holder
TRP 1995	221 SEC	65441-0172(LT)		6059 TEM	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
TRP 1407	222 SEC	65441-0173(LT)		6060 TEM	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
P 8795	41 23 SEC	65441-0177(LT)		923 Coch	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
P 8381	4951 SEC	65441-0181(LT)		2011 Coch	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
P 8383	4952 SEC	65441-0180(LT)		2012 Coch	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
P 8384	4953 SEC	65441-0179(LT)		201 3 Coch	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
ME 47/P 18122	5680 SEC SRO	65441-0182(LT)		2288 Coch	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
HR 1135	5681 SEC	65441-0178(LT)		2289 Coch	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
HR 1136	5681 SEC	65441-0178(LT)		2289 Coch	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
P 8381/P 16751	6199 SEC MRO	65441-0335(LT)	4951 SEC	2011 Coch	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
ME 47/P 18122	6199 SEC MRO	65441-0335(LT)	5680 SEC	2288 Coch	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
P 19143	9871 SEC	65441-0166(LT)		4738 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamilton 10%
P 20073	9872 SEC	65441-0164(LT)		4739 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamilton 10%
P 26257	9873 SEC	65441-0165(LT)		4740 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamiton 10%
P 26258	9874 SEC	65441-0161(LT)		4741 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamiton 10%
P 26408	9875 SEC	65441-0170(LT)		4742 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamiton 10%
P 19144	9877 SEC	65441-0167(LT)		4747 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamiton 10%
P 19145	9878 SEC	65441-0171(LT)		4748 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamiton 10%
P 19147	9879 SEC	65441-0168(LT)		4749 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamiton 10%
P 20074	9880 SEC	65441-0159(LT)		4750 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamiton 10%
P 26259	9881 SEC	65441-0160(LT)		4751 Coch	Goldcorp Canada Ltd. 46% and Goldcorp Inc. 44%, Shirley Hamiton 10%

Claim #	Parcel #	Pin #	MRO Previous Parcel #	Patent #	Recorded Holder
PP 22 (TRP 1782)	5496 SEC Firstly	65441-0345(LT)	1804 SND	730 SND	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
PP 21 (TRP 1784)	5496 SEC Secondly	65441-0345(LT)	1826 SND	752 SND	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
PP 23 (TRP 1783)	5496 SEC Thirdly	65441-0345(LT)	1827 SND	753 SND	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
PP 24 (TRP 1785)	5496 SEC Fourthly	65441-0345(LT)	1828 SND	754 SND	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
PP 25 (TRP 1786)	5496 SEC Fifthly	65441-0345(LT)	1829 SND	755 SND	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%
PP 26 (TRP 1787)	5496 SEC Sixthly	65441-0345(LT)	1830 SND	756 SND	Goldcorp Canada Ltd. 51% and Goldcorp Inc. 49%

Leases

PIN 65441-0373(LT) - Parcel 1615LC - Registered owners are Goldcorp Canada Ltd. 51 % and Goldcorp Inc. 49% P528812, P528813, P528814, P528815, P528816, P528817, P528915, P528916, P528917, P528918, P528919, P528920, P528921

Unpatented Mining Claims

Claim Number	Units	Recorded Holder	Due Date
<u>3004000</u>	6	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-SEP-26
<u>3004001</u>	2	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-SEP-26
<u>3004002</u>	9	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-SEP-26
<u>3001492</u>	1	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-DEC-10
<u>1180855</u>	1	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-MAR-25
<u>3004028</u>	2	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2017-OCT-23
<u>1227821</u>	2	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-APR-28
<u>1220101</u>	4	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-JUN-19
<u>1227996</u>	1	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-JUN-23
<u>1227997</u>	2	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-JUN-23
<u>1227998</u>	1	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-JUN-23
<u>1227999</u>	1	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-JUN-23
<u>1228000</u>	3	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-JUN-23
<u>1220102</u>	1	Metals Creek (50.00 %), Goldcorp Can Ltd. (25.50%), Goldcorp Inc. (24.50%)	2018-JUN-26

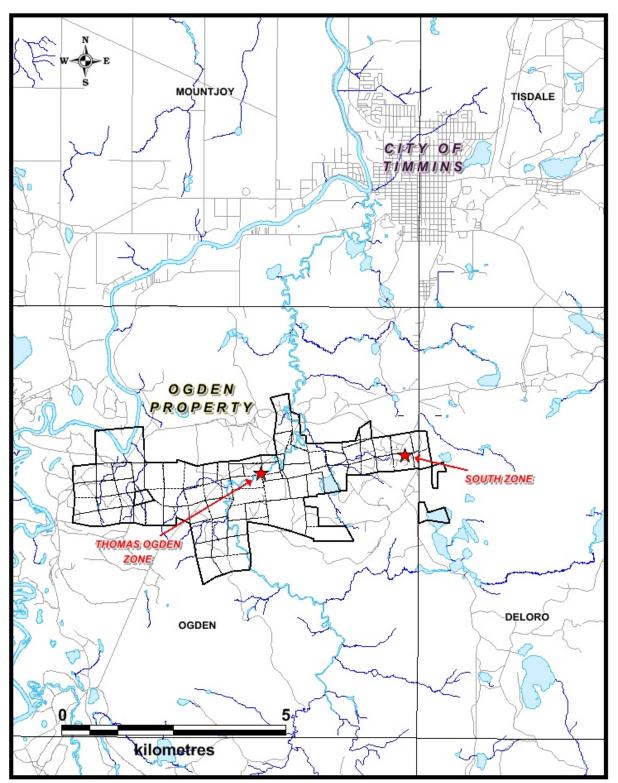


Figure 1: Location Map

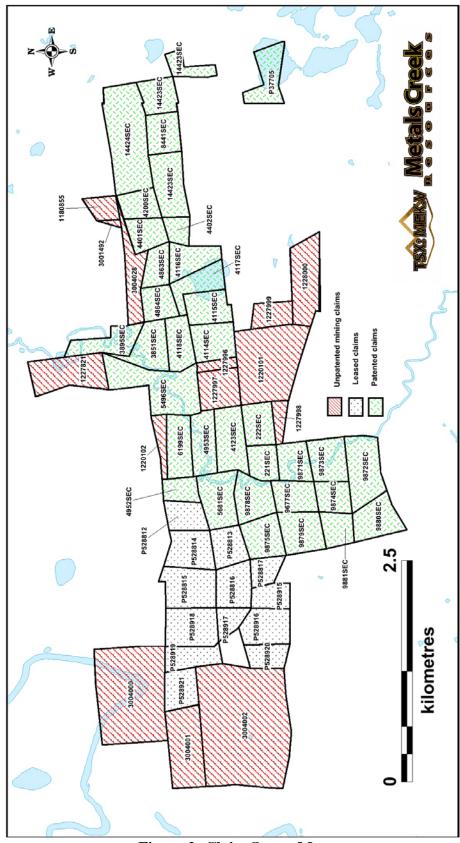


Figure 2: Claim Status Map

- 6 -

Regional Geology

The Timmins area is underlain by late Archean ultramafic to mafic supracrustal rocks which comprise four major assemblages. These are transected by a major regional fault system, the east-west trending Destor-Porcupine fault. Oldest rocks in the camp are mafic, intermediate and felsic volcanic rocks and chemical sediments of the Deloro Assemblage (2730-2725 Ma), which occur to the south of the Destor-Porcupine fault system. These are overlain by dominantly tholeiitic mafic volcanic rocks of the Tisdale Assemblage (2708-2700 Ma) that are present on both sides of the fault. The Tisdale rocks in the central Timmins camp are divided into four formations, which include the Hersey Lake Formation, the Central Formation, and the Gold Center Formation. The Tisdale assemblage is unconformably overlain by a felsic tuff sequence of the Krist Formation, which is developed in western portions of the camp. The Krist tuff unit appears associated with a suite of quartz-plagioclase porphyry (2691-2688 Ma) intrusions that form probable sub-volcanic feeders to the tuffs. Overlying the Krist is the Porcupine Assemblage, a thick sequence of turbiditic greywacke, siltstone and mudstone. Timiskaming Group clastic sediments (2673-2668 Ma, based on detrital zircons) unconformably overlie the Krist and Porcupine sequences, and earlier volcanic sequences where the Krist and Porcupine sequences are not present.

Property Geology

The Ogden Property straddles 8 km strike length of the Porcupine Destor Fault corridor. The Porcupine Destor fault corridor separates the Deloro Group from the Tisdale Group; the latter of which hosts the gold mineralization of the Naybob Mine and Thomas Ogden Zone. North of the Porcupine-Destor fault, the volcanics vary from intermediate to carbonatized ultramafic flows. Sediment packages composed of argillites, greywackes and conglomerates are present as well, and locally (Thomas Ogden) represent slivers of Timiskaming age sediments within the Tisdale. Tisdale rocks have been intruded by altered felsic to porphyritic dykes, sills and small stocks. The rocks dip steeply to the north and young south in the North Zone area of Naybob, but generally dip south and young north in the South and Thomas Ogden Zones. It is possible that a large property scale syncline exists with an east-west fold hinge. Deformation zones on the property are associated with the close proximity of the Porcupine-Destor Fault. Alteration and sulphide mineralization are commonly associated with the structures.

Targeted Geology

On the south side of the Naybob porphyry body is a narrow and linear deformation zone within Tisdale volcanics/sediments referred to as the South Zone. The deformation zone is 0.5 to 5.0m in width and well albitized and brecciated by late quartz stringers. Pyrite and arsenopyrite are found associated with the albitization at an approximate 5:1 ratio respectively.

Gold within the Thomas Ogden Zone has been encountered in both felsic dikes and altered pebble conglomerates. The felsic dikes are extremely silicous with very little mafic content (<5%) and patchy albite alteration. As well local ankerite results in rusty patches and fractures. The gold bearing conglomerates appear to be Timiskaming in age; containing occasional cherty jasperitic fragments. The gold bearing conglomerates are commonly well deformed and compressed with associated fuchsite, silicification, albitization and sulphides. Pyrite is the dominant sulphide with occasional arsenopyrite blades and free visible gold.

Alteration

Alteration on the Ogden Property consists of varying degrees of carbonate, fuchsite, albite, sericite and silicification. Associated with these alteration zones are variable amounts of sulphides. In the vicinity of the North Zone, green fuchsite and ankerite alteration is dominant with lesser albite and silicification. Outside of the carbonate alteration zone, are intensely altered serpentinized/chloritized ultramafics. The South Zone alteration is composed of significant, pervasive albitization that has been brecciated by thin quartz stringers generally found along the mafic/andesite and ultramafic contact. Alteration observed within the area of Thomas Ogden consists of variable amounts of silicification, albitization, sericitization as well as minor carbonate and fuchsite. The felsic dikes of TOZ are generally extremely silicous with clotty beige/peach coloured albitization. Late quartz stringers and veinlets are often associated with the alteration.

Mineralization

Mineralization observed on the property consists of pyrite, arsenopyrite, trace chalcopyrite and free gold. The Naybob North style of mineralization is disseminated pyrite and free gold, within a quartz vein/stockwork and porphyry dikes, within or adjacent to the heavily deformed carbonate zone. Disseminated pyrite, arsenopyrite and specks of free gold occur in the South and Thomas Ogden Zones. The pyrite mineralization is generally more associated with brown/beige sericite/albite alteration found within the conglomerates and felsites. The aresenopyrite is concentrated locally within altered portions of the finer sediments; in particular the argillites. Minor galena and sphalerite were also noted in a silicified zone deeper in South Zone and within the felsite material of the Thomas Ogden Zone. Tourmaline is common also. Porphyry Hill consists of 1-10% disseminated pyrite with occasional specks and blebs of chalcopyrite.

Structure

The Thomas Ogden Zone lies in very close proximity to the Porcupine Destor Break. The host sediments and felsites exhibit folds that tighten and narrow westward. The folds appear to be plunging eastward at approx 50 degrees and post-date the mineralization and diking. All lithologies are folded in this manner.

Exploration History

The section of exploration history is an excerpt from the Timmins West 2005 Summary Report written by Porcupine Joint Venture.

- 1910: William Hayden discovered gold on surface in what is known as the South Zone.
- 1912 1917: Hayden Gold Mines- Exploration shaft on the North Zone to 97 metres. Property closed in 1917 due to WW1.
- 1922 1933: Hayden Gold Mines- Deepened shaft to 219 meters, conducted underground development. Constructed a small mill in 1932 and mined 30 tonnes prior to bankruptcy.
- 1933 1942: Naybob Gold Mines Deepened shaft to 410 metres. Started milling ore at the rate of 30 tonnes/day. By 1942 a total of 194,000 tones @ a grade of 7.33 g/t were produced.
- 1945 1948: Naybob Mines Produced 5,450 tonnes @ a grade of 1.95 g/t in 1948.
- 1962 1964: Kenilworth Mines Ltd. Bought Coniaurum mill in 1963 and leased DeSantis Mine. Planned to re-process tailings with a reported grade of 4.37 g/t. In-addition mined approximately 45,000 tonnes of unknown grade.
- 1984: Black River Resources Optioned property and dewatered shaft. Conducted underground remapping and sampling. No further work completed by Black River Resources.
- 1985 1989: Victoria Porcupine Resources Dewatered and repaired shaft to 220 meters. Conducted ground geophysical surveys. Drilled 48 holes totaling 7,359 meters, principally on the South Zone.
- 1990: Tore the plant down and other buildings burnt.
- 2004: Porcupine Joint Venture acquired property and conducted ground geophysical surveys. Drilled 3,176 meters in 13 holes.
- 2009 2013: Metals Creek Resources drilled 23,436 meters in 91 holes (excluding the diamond drillholes in this report).

Personnel

Norex Drilling Limited of Porcupine, Ontario was contracted by MEK to undertake the diamond drilling portions of the program. Metals Creek employees were responsible for supervising the drilling as well as core logging and cutting.

Norex Drilling Limited 7210 Hwy 101 East Porcupine, Ontario PON 1C0

Don Heerema Jr., Supervised drill program and logged core 1100 Memorial Ave Suite 329. Thunder Bay, Ontario P7B 6H2

November 2013 Drilling

In early November of 2013, MEK drilled four diamond drill holes on the Thomas Ogden Zone totaling 1,129 meters on patent P8384. The drilling was conducted by Norex Drilling Ltd. out of Porcupine, Ontario utilizing NQ diameter rods and NW casing. The drilling was undertaken to build on positive gold results previously intercepted by MEK in other drilling campaigns between 2009 and 2013 on the TOZ. Drilling was also concentrating on specific areas in an attempt to delineate folds in the stratigraphy.

The collar positions were spotted by MEK geologists using a hand held Garmin 76CSx gps system. Front and back sites were compassed in, later to be utilized for drill alignment. At the time of this report the casings had not yet been surveyed.

The core was picked up by MEK geologists and geotechs from the drill site and taken to a rented logging facility on Hwy 101 west, where it was subsequently logged and cut. All logging was conducted by geologist D. Heerema.

- **TOG-13-35-** This hole was an attempt to test a fold theory and under-cut previous drilling on the section. Results found the stratigraphy to be folding but no significant results were attained.
- **TOG-13-36-** This hole was testing the thickness of the sediment package hosting gold mineralization and resulted in yielding 17.05m of 1.908g/t Au including 6.05m of 4.211g/t Au.
- **TOG-13-37-** This was an undercut of previously drilled hole TOG-13-25 that returned 210.19g/t Au over 12.53m. This hole illustrated the complexity of the stratigraphy and returned 0.504g/t Au over 7.83m.

TOG-13-38- This hole was targeting well above the 210.19g/t Au over 12.53m intercept and yielded 1.893g/t Au over 54.55m including 2.79g/t Au over 25.70m within a folded arm of altered sediments.

HOLE-ID	EASTING	NORTHING	ELEVATION	AZIMUTH	DIP	LENGTH
TOG-13-35	471528	5362510	283	359	-51.5	329
TOG-13-36	471618	5362601	280	351	-46	204
TOG-13-37	471522	5362498	283	341	-55	357
TOG-13-38	471518	5362510	283	340	-45	239

 Table 1.0
 2013 Collar Coordinates

All coordinates are in UTM NAD83 Zone 17

able 2.0 2013 Table of Results							
Hole	From	То	Length	Au g/t			
TOG-13-35	N	NO SIGNIFICANT ASSAYS					
TOG-13-36	124.95	142.00	17.05	1.908			
incl.	124.95	131.00	6.05	4.211			
TOG-13-37	228.00	235.85	7.85	0.504			
TOG-13-38	164.75	219.40	54.65	1.890			
incl.	164.75	190.45	25.70	2.790			

Table 2.02013 Table of Results

June 2015 Drilling

In June of 2015, MEK awarded a small 3 hole diamond drilling contract to Norex Diamond Drilling of Porcupine Ontario totaling 397.4 meters. This program took place on the South Zone of the historic Naybob Mine on patent HR1008 (parcel number 8441 SEC). One hole of the short program was designed to test the western extent of gold mineralization below historic drilling and the remaining two holes were undercuts of historic drilling testing for potential high-grade gold shoots.

The collar positions were spotted by MEK geologists using a hand held Garmin 76CSx gps system. Front and back sites were compassed in, later to be utilized for drill alignment. At the time of this report the casings had not yet been surveyed.

The core was picked up by MEK geologists from the drill site and taken to a rented logging facility where it was subsequently logged and cut. All logging was conducted by geologist D. Heerema.

- **OG15-037-** five individual mineralized zones were produced in this hole that returned anomalous gold intercepts. The strongest and largest of these intercepts was 3.72g/t Au over 7.49m. Visible gold was present.
- **OG15-038-** This hole returned three anomalous zones of gold mineralization; two lower grade hanging-wall zones and slightly higher grade main zone. The main mineralized zone returned 1.56g/t Au over 4.98m.

OG15-039- This hole intercepted three zones of alteration and mineralization with local visible gold. Two hanging-wall zones were encountered; one narrow and the other with substantial width and grade. The hanging-wall mineralization returned 2.84g/t Au over 8.29m including 7.03g/t Au over 2.16m. The main mineralization yielded 2.36g/t Au over 3.98m.

Table 3.0	2015	Collar	Coordinates
		Contai	Coolamates

HOLE-ID	EASTING	NORTHING	ELEVATION	AZIMUTH	DIP	LENGTH
OG15-037	474946	5363039	304	0	-51	144
OG15-038	474901	5363087	301	0	-60	94.4
OG15-039	474676	5363028	298	0	-47	159

	I abit of	itcourto		
Hole-ID	From	То	Length	Au g/t
OG15-037	22.50	27.00	4.50	0.339
OG15-037	39.00	44.22	5.22	0.567
OG15-037	65.00	67.00	2.00	0.639
OG15-037	76.91	84.40	7.49	3.723
OG15-037	103.67	106.03	2.36	0.902
OG15-038	20.50	26.12	5.62	0.732
OG15-038	28.94	30.38	1.44	0.703
OG15-038	70.00	74.98	4.98	1.596
OG15-039	72.20	73.30	1.10	2.956
OG15-039	88.18	96.47	8.29	2.840
incl.	90.50	92.66	2.16	7.029
OG15-039	116.20	117.55	1.35	1.486
OG15-039	146.30	150.28	3.98	2.358

Table 4.02015 Table of Results

Sampling/Assaying

The mineralized intervals for all seven holes were generally sampled using 1m sample lengths with exception near lithological contacts. All sampling was kept within lithological contacts.

Blanks and standards were also submitted within the sampling series as a means of quality assurance and quality control. Blanks were submitted at random within every set of 20 samples (1-20, 21-40, 41-60, etc...). Three different Au standards were also submitted at random within every set of 30 samples (1-30, 31-60, 61-90, etc...).

All of the samples were cut by a contracted technician or the geologist himself on a masonry saw. One half of the core was placed back in the core tray and the other bagged and tagged for the purpose of assaying. A total of 358 samples; 220 from the 2013 program and 138 from the 2015 program were delivered to Accurassay Laboratories in Thunder Bay, Ontario for analysis of Au. As part of the MEK's QA/QC protocal, ten percent of the original samples were split from reject material and sent to a second laboratory for Au analysis and comparison. The check samples were sent to AGAT Labs in 2013 and Actlabs in 2015 in Thunder Bay, Ontario.

Conclusions and Recommendations

The 2013 drilling of the Thomas Ogden Zone resulted in the intercepting of folded and mineralized sediments and felsite dikes that contain abundant pyrite and sporadic arsenopyrite mineralization with variable gold assays. The best intercept attained from this drilling was 1.908g/t Au over 17.05m including 4.211g/t Au over 6.05m from hole TOG-13-36. As thought, the drilling proved the stratigraphy is complexly folded and faulted. Much more drilling is recommended to try and delineate the orientation of the folding and potential high-grade plunges.

The shallow drilling within South Zone resulted in multiple zones of albite/sericite alteration hosting variable arsenopyrite and pyrite mineralization. The multiple gold zones provides evidence that poorly understood hanging-wall mineralization may be of significant interest. These three holes returned gold intercepts up to 3.73g/t Au over 7.49m and 2.84g/t Au over 8.29m. Further diamond drilling is recommended to check the continuity of the main and hanging-wall mineralized zones to depth. Downhole induced polarization surveys may be beneficial to identify mineralization to depth and possible shoots.

Expenditures

Г

Below is a list of expenditures incurred for the **2013** diamond drilling program.

Diamond Drilling – 4 holes – 1,129 meters + core shack rental	\$ 89,006.00
Geologists/Geotech Labour	
Geo drill program supervision/logging @ \$350/day – 14 days	\$ 4,900.00
Contract labour @ \$20/hr – 33 hours	\$ 660.00
Planning/Data Comp/Report Writing	\$ 1,400.00
Assays – Primary samples - 220 samples	\$ 4,069.00
Check samples – 22 samples	\$ 405.00
Accommodations & Food	\$ 2,227.00
Transportation	\$ 847.00
Supplies – saw blade, dymo tape etc.	<u>\$ 175.00</u>
Total	\$103,689.00

Below is a list of expenditures incurred for the **2015** diamond drilling program.

Diamond Drilling – 3 holes – 397.4 meters + core shack rental	\$ 37,592.00
Geologists/Geotech Labour Geo drill program supervision/logging @ \$350/day – 7 days Assistant labour @ \$500/day – 5 days Planning/Data Comp/Report Writing	\$ 2,450.00 \$ 2,500.00 \$ 1,050.00
Assays – Primary samples - 138 samples Check samples - 15 samples	\$ 2,972.00 \$ 365.00
Accommodations & Food	\$ 1,536.00
Transportation	\$ 707.00
Supplies – saw blade, dymo tape etc.	<u>\$ 41.00</u>
Total	\$ 49,213.00

References

Brown, P.

2005: Porcupine Joint Venture Report on the 2005 Exploration Program Timmins West ProjectOgden and Thorneloe Twps. Timmins, Ont.

Kirwin, L,J.

1999: Geological Report – The Ogden and Deloro Townships Property, Ontario.

Rhys, D.

2004: Memo to Porcupine Joint Venture on the Timmins West structure.

APPENDIX I

STATEMENT OF QUALIFICATIONS

I, Don Heerema Jr., hereby certify that:

- 1. I am a practicing geologist in Thunder Bay, Ontario and reside at 26 Burriss St., Thunder Bay, Ontario, P7A 3C9.
- 2. I am a graduate of Lakehead University with a HBSc. in Geology.
- 3. I am a Canadian Citizen.
- 4. I have practiced my profession full time since graduation in 2002.
- 5. I am a practicing member of the Association of Professional Geoscientists of Ontario. (Registration #1528)
- 6. I do not have, nor do I expect to receive, directly or indirectly, any interest in the properties of Metals Creek Resources.

Signature:

Date:

September 30, 2015

DRILL LOGS

APPENDIX I

LOGGED	BY: D.I	Heerema SIGNATURE:		PROPERTY: Ogden			ZON	IE: Thoma	s Ogd	en	HOLE NO.: TO13-03	5	Page 2 of 8
METE	RAGE		ROCK	Alt'n			SAN	PLES				ASSAYS	
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)	Cu (%) Ni (%)) Co (%) Zn (%) Ag (ppm)
76.60	101.00	FRAGMENTAL Green/grey fine-grained and speckled groundmass that contains varying sizes and amounts of pyroclastic fragments. The fragments are generally a beige to green/yellow coloured and range from <1cm to 3-4cm in diameter and are stretched at 65-70 degrees to ca. Alteration throughout the unit consists of chlorite, sericite, hematite and lesser carbonate. The unit is fairly homogenous with the exception of a heavily carb and sericite altered section from 81.90 to 85.40m. This alteration is associated with fractures and small ground sections. Lower contact is gradational and subjective.											
101.00	143.73	CHLORITE SCHIST	chl sch		001	120.41	121.4	1 1.00	-	-	0.002		
		The upper 2.3m is more massive with a speckled appearance that gradationally changes to a deep green foliated unit with thin white qtz/felds stringers at 55-60 degrees tca. By 106m the unit is a moderately deep green colour with minor and patchy areas of brighter green chlorite or fuchsite. The unit also starts to become intruded by fairly irregular and contorted quartz/felds stringers and veinlets up to 5cm in diameter. The secondary structures are generally oriented parallel to foliation at 45-50 degrees tca and show strong evidence of folding. The foliation shallows to 5-10 degrees tca at 222m. Coarse spinifex texture from 142.40 to 143.73m. Minor cubic pyrite here and there. Moderate fracturing and hard. 103.05 - 103.64m: brittle fault zone -sub-rounded material with evidence of water 121.41 - 121.73m: felsic dike at 65 degrees tca -peach colouration with albite alteration -white and semi-transparent quartz veinlets and stringers at 45	F.Dk chl sch		002	121.41	121.7 122.7		0.5	-	0.014 0.002		

LOGGEI	DBY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZON	E: Thoma	s Ogd	len	HOLE NO.: TO13-03	5	Page 3 of 8
MET	ERAGE		ROCK	Alt'n			SAMF	PLES				ASSAYS	
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)	Cu (%) Ni (%)	Co (%) Zn (%) Ag (pp
		degrees tca. -very fine to coarser pyrite at 0.5%											
143.73	251.96	ULTRAMAFICS	um		004	189.20	190.20	1.00	-	-	0.002		
		Softer and deriver unit of corporting and tale altered ultremet	carb um		005	190.20	191.20	1.00	0.5	-	0.010		
		Softer and darker unit of serpentine and talc altered ultramaf with 10-20% secondary quartz/felds stringers and veinlets	carb um		006	191.20	192.10	0.90	0.5	-	0.002		
		similar to the chlorite schist above. The unit is heterogeneou	carb um		007	192.10	192.90	0.80	0.75	-	0.014		
		based upon variable alteration types, amounts of secondary veining and angle to foliation.	um um		008	192.90	193.90	1.00	-	-	0.002		
		From 143.73 to 168.50m the rock is soft with tremendous serpentine and talc alteration forming localized brecciated sections with a ductile deformation. Fairly competent with fe fractures and narrow fault seams. The foliation is generally a 45-55 degrees tca. Local pyrite.											
		156.40 - 156.67m: fault zone at 25 degrees tca											
		163.10 - 164.00m: fault zone at 15 degrees tca											
		From 168.50 to 180.40m is a portion containing stronger secondary quartz/felds stringers and veinlets within a strong and shallowing foliation. Foliation angles range from paralle 40 degrees tca. Much of the hard quartz/feld veinlets are parallel to foliation but occasional cross-cutting stringers exis As well, evidence of folding can be seen in folded and irregu veinlets. Micro-faulting have truncated and off-set some secondary stringers on a mm-scale. Associated with the mo abundant veinlets and banding is weak to moderate grey- carbonate alteration. Local pyrite.	l to st. lar										
		From 168.50 to 190.20m is a section of soft and brecciated ultramafics consisting of elongate to sub-rounded ultramafic											

LOGGED	BY: D.I	Heerema SIGNATURE:		PROPERTY: Ogden			ZON	E: Thoma	s Ogd	en	HOLE NO.: TO13-035	Page	4 of 8
METER	AGE		ROCK	Alt'n			SAM	PLES			ASS	SAYS	
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%	6) Ni (%) Co	(%) Zn (%) Ag (ppm)
		clasts within a soft white/green serp/talc matrix. The unit has the appearance of a ductile zone. Little to no secondary quartz/feld stringers.											
		From 190.20 to 192.90m is a section of tremendous dark grey/brown carbonate alteration that appears to form stringers and bands within green fuchsite/chlorite banding. The foliation is sub-parallel tca. The dark carbonate bands are brecciated by the green alteration type matrix. Very few late quartz stringers randomly cross-cut this sub-unit. Trace to 1% pyrite mineralization.											
		From 192.20 to 251.96m the rock is a ductile looking unit of brecciated ultramafic similar to the rock above the carbonate zone. The unit is foliated at 5-10 degrees tca with elongate rounded clasts of ultramafic within a soft serp/talc matrix; clast dominant at 85%. The foliation stays parallel or very shallow tca to 240.33m where after a fault the foliation is closer to 50 degrees tca. Occasional section of harder and more carbonate altered material below 240.33m											
		224.69 - 227.00m: fault zone with numerous gouge seams ranging from sub-parallel to 25 degrees tca.											
		238.50 - 240.33m: fault zone at approximately 35 degrees tca containing numerous gouge seams from 3cm to 35cm wide.											

METE	RAGE		ROCK	A	lt'n			SAMP	PLES			AS9	SAYS	
FROM	то	DESCRIPTION	CODE					то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%		Co (%) Zn (%) Ag
251.96	265.70	FAULT ZONE	F.Z		I	009	260.00	261.50	1.50	-	-	0.007	•	<u> </u>
			F.Z			010	261.50	263.00	1.50	-	-	0.005		
		This is a major fault zone that contains areas of both brittle and ductile deformation. Areas of carbonate alteration are less				011	263.00	263.90	0.90	-	-	0.025		
		fractured and gouged. The areas of serpentine and talc	F.Z			012	263.90	264.80	0.90	0.75	-	0.126		
		alteration are extremely fractured and ground producing gouge	Standard			013	264.80	264.80	0.00			3.085		
		seams. Weak mylonitic textures locally. Approx 60% of this	F.Z			014	264.80	265.70	0.90	tr	-	0.016		
		fault is less than 10cm material with numerous gouge seams.												
		The orientation of the seams range from sub-parallel to 60												
		degrees tca. The host ultramafics are foliated at all sorts of												
		angles tca and deeper in the unit the foliation is so strong that												
		thin silicified banding parallel to the foliation has occurred. The												
		foliation deeper in the unit shows strong evidence of folding and small mm-scale right-lateral off-setting.												
		262.14 - 262.19m: silicified clast caught up in a gouge seam that appears to pre date the faulting												
		263.70m: a 3cm wide silicified band that is well deformed and folded.												
		264.10 - 265.33m: silicified and dike-like section of very fine-												
		grained grey silicification and bleaching that has been intruded												
		by 75% late quartz stringers and veinlets and later broken up in												
		the fault zone.												
		The quartz veining is composed of white and semi-transparent												
		quartz. The lower contact contains angular peach coloured and												
		albitized shards within the quartz veining. Small scale off-sets show evidence of right-lateral or dextral movement.												
		Fine to coarse blebby pyrite present between 263.90 and												
		264.25m found associated with quartz veining.												

OGGED BY:	D.Heerema SIGNATURE:		PROPERTY: Ogden			ZON	E: Thomas	s Ogde	en	HOLE NO.: TO13-035 Page 6 of 8
METERAGE	DECODURTION	ROCK	Alt'n			SAMF	PLES			ASSAYS
FROM TO	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (
265.70 267.	20 ULTRAMAFICS	um		015	265.70	266.45	0.75	tr	-	0.144
	Well foliated with some silicified bands that show evidence of folding and breaking. Foliation at 35-40 degrees tca with a weak mylonitic texture and micro-faults. Occasional truncated secondary quartz stringer/veinlet crosses foliation like gash fractures. Clotty pyrite found within quartz veinlets at around 267m.	um		016	266.45	267.20	0.75	0.75	-	0.049
267.20 271.	25 SILICIFIED ZONE	sil zone		017	267.20	268.20	1.00	2	-	0.009
		sil zone		018	268.20	269.20	1.00	2	-	0.101
	80% of the unit is a fine-grained buff grey silicified ultramafic	Blank		019	269.20	269.20	0.00			0.002
	that has been intruded or flooded by late quartz veining. The alteration has masked and overprinted original textures for the	sil zone		020	269.20	270.20	1.00	2	-	0.026
	most part, with small windows that show a weak foliation and banding. The last 95cm of the unit contains brecciated banded and clots of beige/brown albite alteration. This albite alteration shows banding that has been brecciated by quartz veining as well as a numerous and parallel series of micro-faults showing off-sets with left-lateral displacement of 1-5mm. Quartz structures are not off-set by hairline micro-fractures and post- date the original brecciating event. The off-setting structures are oriented from 60-70 degrees tca. The quartz stringers and veinlets range from 1mm to 6cm in width and in places form a stockwork type array of randomly oriented structures averaging approx 25% of the unit. Larger veins are composed of subhedral to euhedral transparent quartz crystals set within finer white quartz/calcite. Most of the stringers and veinlets are composed of transparent and white feldspars that have crystal growths perpendicular to the orientation of the vein walls. Associated with the quartz is clotty dark chlorite and sulphide mineralization. The sulphides are in the form of very fine pyrite to coarser blebs of pyrite and pyrrhotite. The mineralization appears confined to the quartz structures and is not found within the altered host rock. The sulphide content is approximately	sil zone		021	270.20	271.25	1.05	2		0.039

LOGGE	DBY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZC	ONE:	Thomas	s Ogd	en	HOLE NO.: TO13-035 Page 7 of 8
METE	ERAGE		ROCK	Alt'n			SA	MPL	ES			ASSAYS
FROM	то	DESCRIPTION	CODE		No.	FROM	Т)	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (pp
		2% throughout at approx 5:1 pyrite to pyrrhotite.										
271.25	271.95	ULTRAMAFICS	um		022	271.25	271	.95	0.70	-	-	0.149
		Extremely soft with serpentine and talc alteration.										
271.95	277.60	ALTERED GREYWACKE	grwk		023	271.95	273	.00	1.05	tr	-	0.296
		This writes a people control writewith work avidence of what	grwk		024	273.00	274	.00	1.00	tr	-	0.008
		This unit is a poorly sorted unit with weak evidence of what	grwk		025	274.00	275	.00	1.00	-	-	0.002
		looks like graded bedding. The unit is well foliated at 35-40	grwk		026	275.00	276	.00	1.00	-	-	0.002
		degrees tca and has an olive green colouration to it. It appears that the occasional remnant pebble is present. The unit	grwk		027	276.00	277	.00	1.00	-	-	0.022
		appears to become finer grained to more of an argillite by the base of the unit. Not 100% sure this unit is sediment and may be altered ultramafic but has more of a sedimentary appearance and texture as seen in other holes of the Thomas Ogden area. Trace pyrite mineralization at best.	grwk		028	277.00	277	.60	0.60	-	-	0.010
277.60	329.00	ULTRAMAFICS	um		029	277.60	278	.60	1.00	-	-	0.002
		Well foliated unit and fairly competent with the exception of fault activity between 288.82 and 295.83m. The rocks are serpentine altered but not nearly as talc altered as above. The rocks exhibit some ductile deformation with anastomosing serpentine slips and localized tectonic breccias. Trace pyrite at best.										
		288.82 - 291.60m: fault at 30 degrees tca with extensive talcy gouge and fracturing.										

METALS CREEK RESOURCES

LOGGED	BY: D.	Heerema SIGNATURE:		PROPERTY: Ogden		ZONE: Thomas Ogden	HOLE NO.: TO13-035	Page 8 of 8
METE	RAGE		ROCK	Alt'n		SAMPLES	ASSAYS	6
FROM	то	DESCRIPTION	CODE		No. FROM	TO LENGTH %Py %Ars	B Pd (g/t) Pt (g/t) Au (g/t) Cu (%) N	i (%) Co (%) Zn (%) Ag (ppm)
		292.60 - 293.10m: fault at 15 degrees tca						
		294.66 - 295.83m: fault at 45 degrees tca -talcy gouge and gravel type material						
							Drintod: Wednesday, July 15, 20	45

Printed: Wednesday, July 15, 2015

HOLE NO.: TO1	den	4953SEC				DOWNHOLE SU			ot	REMAR	KS: Downhole surveys @ 48m 351.9 az -46.5 dip, 108m 354.2	
OLE NO TO	13-036	LENGTH (m):	204.0	CORE SIZE:	NQ		DOWNHOLE SL	RVEY BY: D	rillers			46.9 dip and 150m 354.9 az -47.2 dip (all corrected azimuth
OORD SYSTEM: UTN	VI Nad 83	NORTHING:	5362510.000	EASTING:	471618.00	00	COLLAR SURVE	YBY: Don/Je	ff (GPS)			
ECTION: TZ_	_1400W	ZONE:	Thomas Ogden	ELEVATION (m): 280.000		DRILLING COM	ANY: Norex				
OLLAR ORIENTATI	ON (AZIMUTH/DIP)	PLANNED:	351. / -46.0	SURVEYED:	1.000 /	/ -1.000	DATE LOGGED	Nov. 15, 201	3 TO N	ov. 16, 2013	Core Sto	orage: Norex compound
OLE STARTED: No	ovember 14, 2013	HOLE FINISHED	D: November 16, 2013	MAG:	10.75º w		LOGGED BY: D	.Heerema			Page 1 c	of 10
							-					
METERAGE					ROCK		Alt'n		SAM	PLES		ASSAYS
FROM TO	-	DESCR	IPTION	ł	CODE		N	. FROM	то	LENGTH	%Py %Ars	
0.00 36.60									1		-	
36.60 47.45	carbonate and hem green/grey to rusty generally associate found as localized l are cream coloured foliation at 80 degre Narrow fracture zon 40.00 - 41.12m: fra 45.17 - 45.60m: fra	hatite alteration colour. The a ed with a well f bands to perva t to rust colour ees tca. hes that may r cture zone/brin cture zone/brin	ttle fault	s a nal and carb is fragments arallel to								
36.60 47.45	This unit is compose carbonate and hem green/grey to rusty generally associate found as localized la are cream coloured foliation at 80 degree Narrow fracture zon 40.00 - 41.12m: fra	hatite alteration colour. The a ed with a well f bands to perva t to rust colour ees tca. hes that may r cture zone/brin cture zone/brin	n. The fragmental is ilteration is gradation ractured area. Fe-c asive sections. The red and elongated p epresent brittle fault ttle fault	s a nal and carb is fragments arallel to								

LOGGED	BY: D.	Heerema SIGNATURE:											Ogden HOLE NO.: TO13-036 Page 2 of 10 ASSAYS					age 2 of 10	
METER	RAGE		ROCK	Alt'n			SA	MPLE	S						ASSA	YS			
FROM	то	DESCRIPTION	CODE		No.	FROM	т	D LE	NGTH	%Py	%Ars	Pd (g/t	Pt (g/t)	Au (g/t)	Cu (%)	Ni (%)	Co (%) Z	n (%) Ag (ppm)	
		The upper portion to 49.25m is more massive in texture with a weak speckled appearance and weak purplish/violet k-spar alteration. This is typically seen between the chlorite schist and adjacent fragmental/tuff unit. Below the more massive contact, the unit becomes a very dark green chlorite rich unit with a foliation at approx 70-80 degrees to ca. The unit is commonly cross-cut by younger quartz and fe-carb stringers of random orientation averaging approx 10-15% of the unit. Weak crenulations and folds evident. Pitting and fracturing common throughout. Occasional fracture that shows evidence of ground water movement with rust, pitting and carbonate alteration. Pyrite mineralization present from 51.45 to 53.10m is thin irregular stringers and fine blebs that form weak stringers upto 3% over 10cm areas. 51.30 to 51.43m: fracture zone 58.73 - 59.07m: fracture zone 64.46 - 64.60m: fracture zone																	
67.55	96.46	ULTRAMAFICS	um		001	84.20	85.		1.00	-	-			0.002					
		Highly foliated and crenulated ultramafics with a wavy	um		002	85.20	85.		0.16	0.5	-			0.002					
		appearance like that rocks have been heavily compressed.	um		003	85.36	86.		1.00	-	-			0.002					
		Moderate serpentine and chlorite alteration but the unit is moderately fe-carb altered with local areas of a brown to rust colour. Due to extreme tectonism, the unit is composed of numerous white stringers and bands that are crenulated, folded and truncated by tiny hairline healed faults. Local areas of moderate to strong fuchsite alteration with associated quartz veining. Near the base of the unit, carbonate alteration appears	um		004	95.46	96.	40 1	1.00	-	-			0.002					

METERAGE		ROCK	Alt'n			SAMP	LES			ASSAYS			
FROM TO	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)		o) Co (%) Zn (%) 🗚	
	to have replaced the quartz/felds stringers.												
	 85.60m: a 5cm semi-transparent quartz vein with wavy contacts at 10 degrees tca 85.34m: a 2.5cm semi-transparent quartz vein at 40 degrees tca. -associated with this vein is significant silicification and fuchsite alteration from 185.23 to 186.36m. Clotty fuchsite as well as minor albitization present. Fine disseminated pyrite throughout at <0.5% and one chalcopyrite bleb of 7mm x 2mm at 185.33m. This cpy is found within a quartz stringer that cuts perpendicular to the foliation and other quartz veinlets at 85 degrees tca. 93.77 to 95.06m: is missing and drillers note a seam. Only 10cm of remnant gravel material remains. Likely a fault 												
96.46 113.70	FAULT ZONE	FZ		005	96.46	99.00	2.54	_		0.00	2		
	-	FZ		006	99.00	102.00	3.00	-	-	0.00	2		
	Extremely weathered, altered and ground up fault that looks like	FZ		007	102.00	105.00	3.00	-	-	0.01	3		
	a brown-rusty clay zone. Remnant pieces of bleached rock	FZ		008	105.00	108.00	3.00	-	-	0.00	2		
	exist never exceeding more than 15cm in length. Recoveries	FZ		009	108.00	111.00	3.00	-	-	0.08	6		
	are very poor at approximately 30%. Gouge seams of clay to 1cm size particles are held together by the clay. Foliation and fractures are commonly at 75-80 degrees tca. Rocks within the fault start off slightly darker than the rocks below 110.80m and below 110.80 the first sign of remnant clasts are visible.	FZ		010	111.00	113.70	2.70	-	-	0.09	5		

LOGGED BY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZONE	E: Thomas	s Ogde	en	HOLE NO.: TO13-036 Page 4 of 10		
METERAGE		ROCK	Alt'n			SAMF	LES			ASSAYS		
FROM TO	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm)		
113.70 124.95	ALTERED CONGLOMERATE	congl		011	113.70	115.00	1.30	tr	-	0.002		
	Due to the elecanops and size of the adjacent fault zone, this	congl		012	115.00	116.00	1.00	tr	-	0.002		
	Due to the closeness and size of the adjacent fault zone, this unit is moderately to strongly and basically pervasively bleached	congl		013	116.00	117.00	1.00	tr	-	0.002		
	to a cream colour for the most part. The groundmass has a	congl		014	117.00	118.00	1.00	tr	-	0.002		
	beige colouration while the clasts are basically white to cream	congl		015	118.00	119.00	1.00	tr	-	0.002		
	coloured. Small sections of less altered material exist as	Blank		016	119.00	119.00	0.00			0.002		
	green/grey fine groundmass hosting elongate to sub-rounded	congl		017	119.00	120.00	1.00	tr	-	0.006		
	felsic pebbles to small cobbles. The unit contains	congl		018	120.00	121.00	1.00	-	-	0.237		
	approximately 50% clasts. The unit is foliated at 50 degrees	congl		019	121.00	122.00	1.00	-	-	0.002		
	tca. Occasional green fuchsite clasts as small elongate pieces.	congl		020	122.00	123.00	1.00	-	-	0.002		
	 Below 122.40m the rock is less bleached, with moderate beige/brown albitization, sericite bands, fuchsite wisps and bands and weak silicification. The entire unit is fairly fractured; particularly in the areas in closer proximity to faults. Pitting extremely common also. Trace rusted cubes of pyrite. 124.64 - 124.95m: brittle fault zone at 55 degrees tca -naturally ground shards of conglomerate at quartz veining 	congl		021	123.00	124.00	1.00	-	-	0.023		
		congl		022	124.00	124.95	0.95	-	-	0.017		
124.95 145.00	FELSITE	fel		023	124.95	126.00	1.05	3	-	19.918		
	-	fel		024	126.00	127.00	1.00	4	-	0.791		
	The upper portion of this unit to 130.60m is a grey smokey	fel		025	127.00	128.00	1.00	3	-	0.153		
	coloured qtz-rich unit composed of approx 95% qtz with	fel		026	128.00	129.00	1.00	3	-	1.795		
	feldspar with secondary quartz stringers and veinlets and	fel		027	129.00	130.00	1.00	3	-	0.683		
	sulphides making up the remaining 5%. The qtz content varies	Standard		028	130.00	130.00	0.00			0.766		
	slightly throughout. Texturally the unit is massive with tiny qtz eyes (phenos or matrix?) and localized areas of white feldspar	fel		029	130.00	131.00	1.00	4.5	-	1.138		
	phenos having distinct grain boundaries. The unit essentially	fel		030	131.00	132.00	1.00	1	-	0.046		
	looks like marble with thin white discontinuous stringers and	fel		031	132.00	133.00	1.00	0.5	-	0.007		
	healed fractures within a grey groundmass. Occasional brown	fel		032	133.00	134.00	1.00	0.5	-	0.008		
	albitized stringer. The unit could be called a quartzite with a	fel		033	134.00	135.00	1.00	0.5	-	0.538		
	gradational lower contact. Quartz flooding appears to be in at	fel		034	135.00	136.00	1.00	1	0.25	1.147		
	gradational lower contact. Quartz hooding appears to be in at	fel		035	136.00	137.00	1.00	0.5	-	3.086		

METERAGE			ROCK	Alt'n			SAMF	PLES			ASSAYS
ROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%)
		least two phases. Phase 1 appears to be associated with the	fel		036	137.00	138.00	1.00	0.5	-	0.264
		mineralization and phase 2 is youngest and appears as brilliant	Blank		037	138.00	138.00	0.00			0.002
		white stringers and wisps that have intruded and displaced	fel		038	138.00	139.00	1.00	0.75	-	0.451
			fel		039	139.00	140.00	1.00	0.5	-	0.364
			fel		040	140.00	141.00	1.00	0.5	-	0.478
		Below 130.60 to 145.00m is heterogeneous section of	fel		041	141.00	142.00	1.00	0.25	-	0.665
		extremely quartz-rich felsite as above and sections of sericite	fel		042	142.00	143.00	1.00	0.25	-	0.043
		altered felsite or conglomerate with a weak foliation at 55	fel		043	143.00	144.00	1.00	0.25	-	0.002
		degrees tca. Contacts are gradational. The sericite alteration appears to be altered matrix material hosting felsic clasts but contacts are diffuse. Only one section from 136.40 to 136.58m shows evidence of clasts where stretched felsic clasts are set within a chlorite altered groundmass. Few fuchsite shards. Dccasional fractures have rusty alteration halos of 5 to 25cm. Generally less pyrite mineralization than the super siliceous elsite.	fel		044	144.00	145.00	1.00	0.25	-	0.432
		Fine disseminated pyrite present throughout averaging approximately 1.0 - 4.0%. Occasional areas of weak stringer style mineralization. Pyrrhotite stringers are evident along the contacts of quartz flooding from 130.36 to 130.54m. Around 135.60m is arsenopyrite associated with pyrite and an fine wiry grey mineral.									
		General breakdown of sericite altered sections 130.60 - 134.00m, 136.17 - 136.95m, 139.40 - 139.60m, 140.33 - 141.12m, 141.65 - 144.50m									

METALS CREEK RESOURCES

.OGGED	BY: D.H	Heerema SIGNATURE:		PROPERTY: Ogden			ZON	E: Thomas	s Ogde	ən	HOLE NO.: TO13-036 Page 6 of 10		
METE	RAGE			Alt'n	Alt'n		SAMF	PLES			ASSAYS		
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (p)		
145.00	169.06	CONGLOMERATE	congl		045	145.00	146.00	1.00	-	-	0.040		
		-	congl		046	146.00	147.00	1.00	-	-	0.002		
		A heterogeneous unit of conglomerate that varies from clast	congl		047	147.00	148.00	1.00	-	-	0.017		
		poor to clast rich sections as well as a composition change in	congl		048	148.00	149.00	1.00	-	-	0.002		
		clast types. The unit starts off with moderate sericite alteration and	congl		049	149.00	150.00	1.00	-	-	0.002		
		silicification with diffuse clast contacts that gradationally	Standard		050	150.00	150.00	0.00			2.722		
		decreases downhole to a green/grey moderately chloritic	congl		051	150.00	151.00	1.00	tr	-	0.014		
		groundmass. The grain size is generally silt to sand for the	congl		052	151.00	152.00	1.00	-	-	0.008		
		groundmass containing creamy felsic to deep green mafic	congl		053	152.00	153.00	1.00	0.25	-	0.002		
	pebbles up to 4cm. The more mafic clasts exhibit more stretching and elongation than the felsic clasts. Generally felsic clast dominant at 4:1 felsic to mafic clasts. Foliation of the	congl		054	153.00	154.00	1.00	0.5	-	0.002			
			congl		055	154.00	155.00	1.00	0.25	-	0.002		
		congl		056	155.00	156.00	1.00	0.25	-	0.002			
		clasts is at 70 degrees tca.	Blank		057	156.00	156.00	0.00			0.002		
			congl		058	156.00	157.00	1.00	-	-	0.002		
			congl		059	157.00	158.00	1.00	-	-	0.002		
		156.86 - 157.04: brittle fault at 60 degrees tca	congl		060	158.00	159.00	1.00	0.5	-	0.002		
			congl		061	159.00	160.00	1.00	1	-	0.006		
		157.59 - 158.00m: brittle fault at 70 degrees tca with poker chip	congl		062	160.00	161.00	1.00	0.5	-	0.002		
		like core	congl		063	161.00	162.00	1.00	-	-	0.002		
			congl		064	162.00	163.00	1.00	-	-	0.087		
		158.00 - 158.22m: porphyritic dike?	congl		065	163.00	164.00	1.00	-	-	0.002		
		-massive with a gritty appearance and 1.5% rusty cubic pyrite	congl		066	164.00	165.00	1.00	0.25	-	0.002		
			congl		067	165.00	166.00	1.00	0.25	-	0.002		
		160.50 to 162.87m: a coarse grey sand dominant section with 3-	congl		068	166.00	167.00	1.00	tr	-	0.002		
		4% quartz to elongate felsic clasts. One elongate red jasper	congl		069	167.00	168.00	1.00	0.25	-	0.002		
		fragment at 160.85m.	congl		070	168.00	169.06	1.06	-	-	0.002		
		162.87 to 164.61m: is a clast rich conglomerate of ultramafic clasts that are moderately chlorite/grey carb altered giving the appearance of an ultramafic. Occasional quartz pebble											

164.61 to 166.93m: a coarse grey sand dominant section with

10% quartz pebbles. Late quartz flooding from 165.01 to

LOGGED BY: D.H		Heerema SIGNATURE:		PROPERTY: Ogden			ZONI	E: Thoma	s Ogd	en	HOLE NO.: TO13-036 Page 7 of 10			of 10
METE	RAGE		ROCK	ROCK Alt'n			SAMF	PLES			ASSAYS			
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)	Cu (%)	√i (%) Co (%) Zn (%) Ag (ppm)
		165.33m with minor very fine pyrite mineralization.												
		 166.88 - 167.60m: intermediate dike with sharp and wavy contacts at 80 degrees tca -grey and coarser-fine-grained -massive with 0.5% very fine pyrite -a clast of conglomerate within 167.60 - 167.82m: ultramafic clast dominant conglomerate 167.82 - 168.16m: intermediate dike at 62 degrees tca 168.40 to 169.06m: well foliated conglomerate containing clasts of quartz, felsic intrusive and ultramafics. 												
169.06	176.63	ARGILLITE	arg		071	169.06	170.00	0.94	tr	-	0.002			
		Grey to black unit of fine silt to aphanitic muds. Graded bedding	arg		072	170.00	171.00	1.00	tr	-	0.002			
		evident from mm-scale to dc-scale beds of silts to muds. The	Blank		073	171.00	171.00	0.00			0.002			
		younging is downhole or northward. Bedding shows little	arg		074	171.00	172.00	1.00	-	-	0.002			
		evidence of distortion or late folding. Late quartz stringers and	arg		075	172.00	173.00	1.00	-	-	0.002	0.002 0.002 0.002 0.002 0.002 0.002		
		veinlets cross-cut the unit and show minor evidence of	arg		076	173.00	174.00	1.00	tr	-	0.002			
		tectonism. Bedding angles start at 65 degrees tca and shallow	arg		077	174.00	175.00	1.00	tr	-	0.002			
		to 52 degrees by the base of the unit. A very fine cleavage can	arg		078	175.00	175.90	0.90	tr	-	0.002			
		be seen perpendicular to bedding in very fine hairline black stringers.	arg		079	175.90	176.63	0.73	tr	-	0.002			
		Little to no alteration. Trace pyrite at best.												

LOGGED	BY: D.I	leerema SIGNATURE:		PROPERTY: Ogden			ZONE	E: Thoma	s Ogde	en	HOLE NO.: TO13-036 Page 8 of 10
METE	RAGE		ROCK	Alt'n			SAMP	LES			ASSAYS
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm)
176.63	187.35	GREYWACKE	grwk		080	176.63	177.63	1.00	tr	-	0.002
		This wacke unit is a soft olive green to grey colour and relatively	grwk		081	177.63	178.63	1.00	tr	-	0.007
		massive but sections of the unit show weak bedding. Argillite	Standard		082	178.63	178.63	0.00			1.403
		beds are present also with generally gradational contacts. The	grwk		083	178.63	179.63	1.00	0.25	-	0.009
		alteration masks some contacts as well as bedding. The	arg		084	179.63	180.63	1.00	0.25	-	0.002
		alteration is pervasive weak chloritization with yellow sericite	grwk		085	180.63	181.63	1.00	-	-	0.002
		bands. Late quartz stringers are few in numbers and carry	grwk		086	181.63	182.63	1.00	-	-	0.021
		pyrite mineralization deeper in the unit. Evidence of tectonism	grwk		087	182.63	183.63	1.00	-	-	0.002
		becoming more apparent downhole with folded quartz stringers	grwk		088	183.63	184.63	1.00	<0.25	-	0.002
		and micro-faults.	grwk		089	184.63	185.63	1.00	0.25	-	0.002
			grwk		090	185.63	186.53	0.90	0.25	-	0.002
		178.55 - 179.20m, 179.50 - 180.92m: argillte units of significance	grwk		091	186.53	187.35	0.82	0.25	-	0.002
187.35	188.06	INTERMEDIATE DIKE	I.Dk		092	187.35	188.06	0.71	0.5	-	0.002
		Fine-grained, hard and massive purplish/grey dike with sharp contacts Fine pyrite mineralization within at approx 1%. Within the dike from 187.64 to 187.87m is a clast of argillite that has an influx of narrow quartz stringers and pyrite mineralization. The begging angles of the argillite clast now sits parallel tca. Upper and lower dike contacts are at 45 and 20 degrees tca respectively.									
188.06	189.09	GRAPHITIC ARGILLITE	grph arg		093	188.06	189.09	1.03	6	-	0.131
		Black, aphanitic argillite with bedding at 47 degrees tca. The beds are extremely narrow (1-2mm) that exhibit graded bedding from grey bottoms to black tops. Bedding has been folded with evidence of tight waves over 20cm sections. Pyrite mineralization throughout as fine dissemination, thin stringers and massive 2.5cm seams parallel to bedding. Overall pyrite content of approximately 6%. Massive seams are associated									

LOGGE	DBY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			Z	ONE	: Thoma	s Ogd	len	HOLE NO.: TO13-03	6 Page 9 of 10
METE	RAGE		ROCK	Alt'n			S	AMP	LES				ASSAYS
FROM	то	DESCRIPTION	CODE		No.	FROM		то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)	Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm)
		with silicification; possibly from the adjacent diking.											
189.09	189.91	INTERMEDIATE DIKE	I.Dk		094	189.09	18	9.91	0.82	6	-	0.040	
		Fine-grained purplish-grey massive dike with weak albitization. Contacts are sharp at 80 and 65 degrees tca. The dike is cross- cut by black chloritic stringers as well as white quartz gash fractures. The chlorite stringers are oriented at approx 60 degrees tca and the quartz filled gash fractures are oriented perpendicular to the chlorite structures. Very fine to fine dust like pyrite mineralization throughout at approx 5-6%.											
189.91	190.67	GRAPHITIC ARGILLITE	grph arg		095	189.91		0.67	0.76	4	-	0.052	
		Aphanitic unit with a strong folding as seen in disturbed beds as well as fine quartz/pyrite stringers. Some beds appear to be folded over themselves. Overall pyrite content of 3-4%, with no massive seams like above.	Blank		096	190.67	19	0.67	0.00			0.002	
190.67	204.00	ULTRAMAFICS	um		097	190.67	19	1.67	1.00	tr	-	0.289	
		The ultramafics are well foliated with serpentine and	um		098	191.67	19	2.67	1.00	-	-	0.167	
		tremendous talc alteration. Soft wavy feel. Weak brecciated appearance.	um		099	192.67	19	3.67	1.00	-	-	0.084	
		190.67 to 190.90m is a section of the same intermediate dike at noted above. Secondary quartz veining at 30 degrees tca. Lower contact is ground away.											
		End of hole											

METALS CREEK RESOURCES

LOGGED BY: D.He	erema SIGNATURE:		PROPERTY: Ogden		ZONE: Thomas Ogden	HOLE NO.: TO13-036 Page 10 of 10
METERAGE		ROCK	Alt'n		SAMPLES	ASSAYS
FROM TO	DESCRIPTION	CODE		No. FROM	TO LENGTH %Py %Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm)

Printed: Wednesday, July 15, 2015

OLE NO: TO 13:037 LENGTH (m): 357.0 CORE SIZE: NO DOWNHOLE SURVEY BY: Dollers: DORD SYSTEM: UTM Naid 83 NORTHING: 5362498.000 EASTING: 471522.000 COLLAR SURVEY BY: Dorlers: COLLAR SURVEY BY: Dorlers: 243m 343.4 az -54.4 dip, 192m 344.3 az -55.4 dip, and 345 COLLOR SURVEY BY: Davies Dorlers: Thomas Ogden ELEVATION (m): 283.000 DAVILING COMPANY: Nores 243m 343.4 az -54.2 dip, and 345 OLLAR CORRENTATION (AZIMUTHDIP) PLANNED: 341.7 /-55.0 SURVEYED: 1000 DATE LOGGED: Nov. 08, 2013 TO Nov. 11, 2013 Core Storage: Norex compound OLLE STARTED: Norember 07, 2013 HOLE FINISHED: November 17, 2013 MAGE Nor. FROM TO LENGTEM ASSAYS METERAGE DESCRIPTION CODE No. FROM TO LENGTEM SAMPLES ASSAYS 0.00 23.00 OVERBURDEN SAMPLES No. FROM TO LENGTEM Ni (%) Co (%)	PROPERT	Y: Og	den	CLAIM NO.:	4953SEC				DOWNHOL	E SUR	VEY ME	THOD:	EZ Sh	ot		REMARK	(S: Corrected	d surveys @	39m 342.5	az -55.4 dip, 90r	n 343.3 az
Opendorshink Um Kala as No/KTHINC: BASING: 4/162/2000 DOLLAR OWNER: 3443 ar: 65.6 dp. OLLAR ORIENTATION (ZANUTHOP) PLANNED: 341. / 55.0 SURVEYED: 1.000 / -1.000 DATE LOGGED: New Kin Core Stonge: Nore compound OLLAR ORIENTATION (ZANUTHOP) PLANNED: 341. / 55.0 SURVEYED: 1.000 / -1.000 DATE LOGGED: New Kin Core Stonge: Nore compound OLLAR ORIENTATION (ZANUTHOP) HOLE FINISHED: Newmber 11, 2013 MAG: 10.75" W LIGGED: BY: Difference Page 1 of 5	HOLE NO.:			LENGTH (m):	357.0	CORE SIZE:	NQ		DOWNHOLE SURVEY BY: Drillers 54.9 dip, 141m										′ az -54.4 di	p, 192m 344.1 Az	z -53.9 dip,
ECITION N/A ZONE: Tomas Option ELEVATION (m): 283:000 DIRLLING COMPANY: Norex OLLGA ORIENTATION (AZUNUTHPD) PLANNED 341, / 0.53 SURVEYED 1.000 DATE LOGGEE: No. 00: 2013 Down. 11, 2013 Core Storage: Norex compound OLLE STARTED: November 07, 2013 HOLE FINISHED: November 11, 2013 MAG: 1.075* w LGGGED: No. 00: 2013 D Nov. 11, 2013 Core Storage: Norex compound METERAGE DESCRIPTION CODE No. PROM To LEMON N/P NASSAYS 0.000 23.00 OVERBURDEN DESCRIPTION CODE No. PROM To LEMON N/P NAEs PE(gt) PE(gt) NE(gt) Core No. 00: 20: 2	COORD SYS	STEM: UT	M Nad 83	NORTHING:	5362498.000	EASTING:	471522.0	000	COLLAR SI	URVEY	BY: Do	on (GPS	S)						dip, 294m 3	344.9 az -55.4 dip	and 345m
OILE STARTED: November 07, 2013 HOLE FINISHED: November 11, 2013 MAG: 10.75° w LOGGED BY: D Heerema Page 1 of 5 METERAGE FROM DESCRIPTION ROCK All'n SAMPLES ASSAYS 0.00 23.00 OVERBURDEN DESCRIPTION ROCK All'n SAMPLES Assays Paige 1 of 5 23.00 34.90 FAULT ZONE No. PROM TO LENGTH Skey Skey Paige 1 of 5 23.00 34.90 FAULT ZONE This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rotenness of the rock. The rock is a belgehorm colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. Sk4.00 FAGMENTAL Deeg reen in colour with few belge/orange fragments of bomb material. Most of the with is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fragments discoving minerals.	SECTION:	N//	A	ZONE:	Thomas Ogden	ELEVATION	(m): 283.000		DRILLING (COMPA	ANY: No	orex				1	044.0 02	00.0 up.			
METERAGE FROM DESCRIPTION ROCK Alt'n SAMPLES ASSAYS 0.00 23.00 OVERBURDEN TO LENGTR %/// Y %/// X/rs Pd (g/t) Pt (g/t) Co (%) Zn (%) Co (%) Zn (%) Xi Yi %/// X/rs Pd (g/t) Pt (g/t) Co (%) Zn (%) Xi Yi %// X/rs Pd (g/t) Pt (g/t) Co (%) Zn (%) Xi Yi %// X/rs Pd (g/t) Pd (g/t) Co (%) Zn (%) Yi %// X/rs Pd (g/t) Co (%) Zn (%) Yi %// X/rs Pd (g/t) Co (%) Zn (%) Yi %// X/rs Pd (g/t) Co (%) Zn (%) Yi %// X/rs Yi %// X/rs <th>COLLAR C</th> <th>RIENTAT</th> <th>ION (AZIMUTH/DIP)</th> <th>PLANNED:</th> <th>341. / -55.0</th> <th>SURVEYED:</th> <th>1.000</th> <th>/ -1.000</th> <th>DATE LOG</th> <th>GED:</th> <th>Nov. 08,</th> <th>2013</th> <th>TO N</th> <th>lov. 11, 20</th> <th>13</th> <th>Core Sto</th> <th>rage: Norex</th> <th>compound</th> <th></th> <th></th> <th></th>	COLLAR C	RIENTAT	ION (AZIMUTH/DIP)	PLANNED:	341. / -55.0	SURVEYED:	1.000	/ -1.000	DATE LOG	GED:	Nov. 08,	2013	TO N	lov. 11, 20	13	Core Sto	rage: Norex	compound			
ITO DESCRIPTION CODE No. FROM TO LENGTH Skey Sken Pet (get) Pet (get) Aut (get) Cut(%) N(%) Cot(%) N(%) Cot(%) N(%) Cut(%) N(%) N(%) Cut(%)	HOLE STA	RTED: N	ovember 07, 2013	HOLE FINISHED:	November 11, 2013	MAG:	10.75º w		LOGGED B	BY: D.H	leerema					Page 1 o	f 5				
ITO DESCRIPTION CODE No. FROM TO LENGTH Skey Sken Pet (get) Pet (get) Aut (get) Cut(%) N(%) Cot(%) N(%) Cot(%) N(%) Cut(%) N(%) N(%) Cut(%)									-												
FROM TO DESCRIPTION CODE No. FROM TO LENGTH Years Ped (ght) Ped (ght) Code (ht) Ne (ht) Code (ht) Description Code (ht) Ne (ht) Code (ht) Description Code (ht) Des	METE	RAGE					ROCK	A	Alt'n				SAM	PLES					ASSA	YS	
0.00 23.00 OVERBURDEN 23.00 34.90 FAULT ZONE This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. 23.00 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.	FROM	то	-	DESCRI	PTION		CODE			No.	FRO	MC			H %P	y %Ars	Pd (g/t) P	t (g/t) Au (g			Zn (%) Ag (
 34.90 Solution 23.00 So										1					1	·	,		<i>'</i>		• 1
This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.	0.00	23.00	OVERBURDEN																		
This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely flattened. Fragment poor unit. The unit is extremely flattened. Strong pitting as a result of groundwater dissolving minerals.																					
This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
This unit is extremely bleached, carbonatized and fractured. Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.	23.00	34.90	FAULT ZONE																		
Portions of the unit have been ground away as a result of the rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
rottenness of the rock. The rock is a beige/brown colour with evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
evidence of tremendous ground water movement. Numerous gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.			rottenness of the re	ock. The rock is	a beige/brown co	lour with															
gouge seams present. Appears to be a bleached tuff. Lower contact is ground away. 34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals. Fragment			evidence of tremer	ndous ground wa	ater movement. N	umerous															
34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
34.90 54.40 FRAGMENTAL Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.						•															
Deep green in colour with few beige/orange fragments of bomb material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.			Lower contact is gi	iounu away.																	
material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.	34.90	54.40	FRAGMENTAL																		
material. Most of the unit is a homogenous green unit. The clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.			Deen meet 's '	and the first of t	- (1															
clasts are more localized and moderately flattened. Fragment poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
poor unit. The unit is extremely fractured and blocky with strong pitting as a result of groundwater dissolving minerals.																					
pitting as a result of groundwater dissolving minerals.																					
pitting as a result of groundwater dissolving minerals.			poor unit. The unit	t is extremely fra	with strong																
54.40 92.70 TUFF				0	5																
54.40 92.70 TUFF																					
	54 40	92 70	TUFF																		
	01.10	52.70																			
	1																				

LOGGED	BY: D.H	leerema SIGNATURE:		PROP	ERTY: Ogden			ZON	E: Thoma	s Ogde	n	HOLE NO.: TO13-	037	Page 2 of 5
METE	RAGE		ROCK		Alt'n			SAM	PLES				ASSAYS	
FROM	то	DESCRIPTION	CODE			No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g	/t) Cu (%) Ni (%	6) Co (%) Zn (%) Ag (ppm)
		This unit is variable in appearance as a result of alteration. Foliated at 65-70 degrees tca, fine chlorite stringers are oriented parallel to foliation. The rock is a green/grey to locally orange/rust colour as a result of more localized carbonate alteration. Chlorite flecks throughout the rock at 20% give the rock a speckled appearance. Narrow secondary quartz stringers are not uncommon. No visible sulphides to note. This unit is much more competent than the fragmental above.												
92.70	122.25	FRAGMENTAL												
		Green/grey fine-grained and speckled groundmass that contains varying sizes and amounts of pyroclastic fragments. The fragments are generally a beige to green/yellow coloured but locally are hematized to a soft violet/purple colour. The fragments range from <1cm to 3-4cm in diameter and are stretched at 65-70 degrees to ca. Alteration throughout the unit consists of chlorite, sericite, hematite and lesser carbonate. The unit is fairly homogenous. Chlorite and sericite becomes much stronger below 115m associated with a slight increase in foliation and quartz flooding. The last 7m is more of a sericite/chlorite schist with approx 25-30% sericite as stringers and weak bands.												
122.25	160.80	CHLORITE SCHIST												
		The upper portion to 126m is more massive in texture with a weak speckled appearance and weak purplish/violet k-spar alteration and strong fe-carb alteration at the lower contact. This is typically seen between the chlorite schist and adjacent fragmental/tuff unit. Below the more massive material, the unit becomes a very dark green chlorite rich unit with a foliation at approx 30-50 degrees to ca. The rock contains a few												

OGGED BY: [D.Heerema	SIGNATURE:		PROPERTY: Ogden			ZONE	: Thoma	s Ogd	en	HOLE NO.: TO13-037	Page 3 of 5
METERAGE			ROCK	Alt'n			SAMP	LES			ASSAY	S
FROM TO	\neg	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) N	i (%) Co (%) Zn (%) Ag (ppm)
	Below approx more abundar orientation ave and folds evid Pyrite present	artz stringers and some brilliant green fuchsite. 136.20m the unit becomes cross-cut by much at quartz and fe-carb stringers of random eraging approx 15-25% of the unit. Crenulations ent. Resembles a chlorite altered ultramafic. ranging from trace amounts to 2-3% locally as s to coarse blebs approx 0.75cm in diameter.										
160.80 232.8	5 ULTRAMAFIC	CS	um		001	228.00	229.00	1.00	tr	-	0.264	
	The upper per	tion is moderately serp altered and the contact is	um		002	229.00	230.00	1.00	1	-	0.477	
		e drop in chlorite and emergence of serpentine.	um		003	230.00	231.00	1.00	0.25	-	0.200	
		o 166.69m is a heavily foliated and carbonate –	um		004	231.00	232.00	1.00	0.5	-	0.111	
	is a section of micro-faulting of parallel ser on a mm-scale exhibits much is dark and ex zebra appeara Unit contains Nil to localized 190.57 - 190.9 208.90 - 209.9 3% pyrite as f foliation at 55 221.10 - 232.8 alteration vary	 a of 50% green fuchsite. From 166.69 to 177.30m moderate alteration but immense folding and The rock has a wavy appearance with hundreds bentine left-lateral slips displacing weak banding e. Below 177.30m the unit is less deformed and stronger serpentine and talc alteration. The unit tremely soft (soapstone). The unit has a weak ance as a result of irregular quartz/felds stringers. relatively few fractures. d minor cubic pyrite. dom: grey intermediate dike at 75 degrees tca dom: carbonate altered section containing approx ine cubes forming weak stringers parallel to degrees tca. 	um		005	232.00	232.85	0.85	tr	-	1.273	

OGGEL) BY: D.I	Heerema SIGNATURE:		PROPERTY: Ogden			ZONE	E: Thoma	s Ogde	ən	HOLE NO.: TO13-037 Page 4 of 5
METE	RAGE		ROCK	Alt'n			SAMP	PLES			ASSAYS
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (
		222.94 to 223.64m: rubble bearing zone that might be a brittle fault zone. Well fractured patches with material of sand and pebble size									
232.85	237.40	GREYWACKE	Blank		006	232.85	232.85	0.00			0.006
			l.Dk		007	232.85	233.85	1.00	5	-	0.786
		Dark grey with a weak purplish hue. The rock is fairly massive	I.Dk		800	233.85	234.85	1.00	3	-	0.455
		with a weak fabric. Resembles dike material but is likely the sediment package. For the most part the rock is fairly	I.Dk		009	234.85	235.85	1.00	1.5	-	0.584
		homogenous with patchy and weak silicification and albitization.	l.Dk		010	235.85	236.65	0.80	0.5	-	0.082
		The upper contact is fairly sharp at 50 degrees with stronger	Standard		011	236.65 236.65	236.65 237.40	0.00	0.25		0.750
		pinkish albitization gradationally becoming the darker intermediate material. The lower contact is more gradational. A few late quartz stringers cut the unit. Pyrite mineralization present throughout the unit ranging from very fine to coarser cubes in the order of 2mm in diameter. The sulphides are strongest in the more felsic material and areas of greater alteration; the upper 1.5m. The overall pyrite content is 3%, with areas reaching as high as 5-6%.									
		From approx 236.70 to 237.00 has been ground away and a sand seam what hit here. Possible fault???									
237.40	357.00	ULTRAMAFICS	um		013	237.40	238.40	1.00	-	-	0.015
		Relatively competent ultramafics with localized areas of weak brecciation of massive ultramafics with random dark soft serpentine stringers that form a matrix appearance. Unit is harder and contains little to no quartz/felds stringers like the ultramafics uphole. Deeper in the unit, the serpentine alteration increases drastically.	um		014	238.40	239.40	1.00	-	-	0.002

METALS CREEK RESOURCES

LOGGED	BY: D.I	Heerema	SIGNATURE:		PROPERTY: Ogden			ZON	IE: Thoma	s Ogde	ən	HOLE NO .:	TO13-03	7	Page 5 of	f 5
METER	AGE			ROCK	Alt'n			SAM	PLES					ASSAYS		
FROM	то	1	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g	/t) Au (g/t)	Cu (%) Ni (%)	Co (%)	Zn (%) Ag (ppm)
			291.00m is a section of extremely massive rock inifex texture present.													
		serpentine shea brecciated with matrix of anasto evident with extr common through	311.85m is a section with tremendous ars, slips and brecciation. The rocks are elliptical shaped clasts within a serpentine omising slips etc. Numerous 10cm shears are remely soft gouge; and fracturing is extremely hout at approx 55-60 degrees tca. The rock is en due to the high serpentine content.													
		with much fewer	323.80m is a very massive and competent unit r fractures and less alteration. Very dark with xture and irregular white plag stringers.													
			0m is a well fractured and brecciated section tremendous serpentine alteration. Few narrow ns.													
		brecciated textu	357.0m is moderately massive with a very weak ire. Strong serpentine along fractures with very halos. No secondary quartz/felds features.													
		End of Hole														

Printed: Wednesday, July 15, 2015

PROPERTY: Ogden	CLAIM NO.:	4953SEC			DOWNHOLE SURVEY METHOD: EZ Shot	REMARKS: Corrected surveys @ 41m 346.7 az -44.1 dip, 92m 346.7 az -
HOLE NO.: TO13-038	LENGTH (m):	239.0	CORE SIZE:	NQ	DOWNHOLE SURVEY BY: Drillers	44.6 dip, 143m 349.1 az -45.6 dip, 194m 348.9 az -46.3 dip and 239m 348.9 az -46.5 dip.
COORD SYSTEM: UTM Nad 83	NORTHING:	5362498.000	EASTING:	471518.000	COLLAR SURVEY BY: Don (GPS)	anu 239m 346.9 az -46.5 up.
SECTION: N/A	ZONE:	Thomas Ogden	ELEVATION (m)	: 283.000	DRILLING COMPANY: Norex	
COLLAR ORIENTATION (AZIMUTH/DIP)	PLANNED:	343. / -45.0	SURVEYED:	1.000 / -1.000	DATE LOGGED: Nov. 05, 2013 TO Nov. 08, 2013	Core Storage: Norex compound
HOLE STARTED: November 04, 2013	HOLE FINISHED): November 07, 2013	MAG:	10.75° w	LOGGED BY: D.Heerema	Page 1 of 8

METE	RAGE		ROCK	Alt'n			SAN	IPLES			ASSAYS
FROM	то	DESCRIPTION	CODE	Í	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm)
0.00	27.00	OVERBURDEN									
27.00	92.90	FRAGMENTAL/TUFF									
		Unit is a dark to moderate green colour with varying amounts of k-spar, carbonate and chlorite alteration throughout. Interval shows local fracturing with the majority being relatively competent. After the 41m mark, the rock has a lighter green colouration and appears more altered as the rock becomes a variable brown/green/beige colour with patchy and irregular fecarb often associated with late quartz flooding. This sub-interval of carbonate alteration ends at 56.60m where the below rock is the same, typical, green fragmental present throughout the Thomas Ogden area. The last 6m of the unit is extremely sericite altered with bands and semi-massive seams. Fragments are usually stretched perpendicular to core axis and give the green coloured rock a white colour. Thin quartz stringers are also abundant throughout the entire interval. Patchy areas of cubic pyrite locally. Numerous intervals if blocky/fractured ground with pitting of dissolved minerals. Lower contact is fairly sharp and distinct at 80 deg tca.									
		27.70 to 29.00m: soft grey/green gouge									

LOGGED) BY: D.ł	Heerema SIGNATURE:		PROPERTY: Ogden			ZONE	E: Thomas	s Ogde	ən	HOLE NO.: TO13-03	8	Paç	ge 2 of 8	
METE	RAGE		ROCK	Alt'n			SAMP	LES				ASSAY	S		
FROM	то	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)	Cu (%) N	Ni (%) C	o (%) Zn	(%) Ag (ppm)
		From 66.96 - 67.47m: mafic dyke; dark to medium grey; sharp wavy contacts at 45-50 degrees tca; faint k-spar alteration throughout; no visible sulphide													
92.90	119.50	CHLORITE SCHIST	um		001	111.69	112.69	1.00	-	-	0.002				
		-	I.Dk		002	112.69	113.10	0.41	4	-	0.005				
		The upper portion to 95.20m is more massive in texture with a weak speckled appearance and weak purplish/violet k-spar alteration and strong fe-carb alteration at the lower contact. This is typically seen between the chlorite schist and adjacent fragmental/tuff unit. Below the more massive contact, the unit becomes a very dark green chlorite rich unit with a foliation at approx 40-50 degrees to ca. The unit is commonly cross-cut by younger quartz and fe-carb stringers of random orientation averaging approx 10-15% of the unit. Weak crenulations and folds evident. Pitting and fracturing common throughout. Pyrite present ranging from very fine cubes to coarse blebs approx 0.75cm in diameter. 107.13 to 112.69m: ultramafic with serp/talc alteration 112.69 to 113.10m: felsic-intermediate dike at 80 deg tca -fine-grained with 40% very fine white plag phenocrysts within a grey matrix -cut by numerous white quartz stringers with associated albitized alteration halos causing an orange/peach colouration -approx 3-4% fine dust to coarser cubic pyrite throughout	chl sch		003	113.10	114.10	1.00	0.25	-	0.002				
119.50	156.18	ULTRAMAFICS	um		004	155.18	156.18	1.00	-	-	0.002				

LOGGE) BY: D.	.Heerema SIGNATURE:		PROPERTY: Ogden			ZON	E: Thoma	is Ogd	en	HOLE NO.: TO13-038	Page 3 of 8
MET	ERAGE		ROCK	Alt'n			SAM	PLES			A	ASSAYS
FROM	то	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) C	u (%) Ni (%) Co (%) Zn (%) Ag (ppm)
		Unit is a dark green to black/grey coloured interval of extreme soft serpentine/talc altered ultramafic. Minor green carbonate present below 136m and becomes increasingly stronger downhole. Core shows abundant qtz/calcite stringers throughout which are oriented 45 to perpendicular tca and are disrupted and crenulated within this non-magnetic unit. Unit is moderately to well fractured. Trace visible sulphide throughout as the rare cubes of fine to coarse pyrite.	e									
156.18	159.63	CONGLOMERATE	congl		005	156.18	157.18	1.00	tr	-	0.072	
			congl		006	157.18	158.18	1.00	0.5	-	0.090	
		Massive unit of small pebble rich conglomerate with a siliceou grey groundmass and a weak intrusive texture. The unit is a	JS congl		007	158.18	159.00	0.82	0.25	-	0.090	
		buff grey that increases in sericite and albitization downhole to buff beige colouration with very diffuse clast contacts. Unit is cross-cut by two ages of quartz stringers at random angles to ca. Trace disseminated pyrite with local clusters of pyrite grains Sharp upper and lower contacts.	o a		008	159.00	159.63	0.63	tr	-	0.148	
159.63	161.05	GRAPHITIC ARGILLITE	grph arg		009	159.63	160.40	0.77	5	-	0.076	
		The unit starts off as a fine-grained dark grey silt horizon that grades into an aphanitic black graphitic unit. Bedding is oriented at 70 degrees tca with younging in the downhole direction (north). Rafts of underlying conglomerate found within the first 10cm. Pyrite is present as stringers to coarse sub-rounded nodules to 1.5cm in diameter. The nodules are most abundant betwee 160.25 and 160.65m at approx 20% in abundance.	up		010	160.40	161.05	0.65	13		0.184	

LOGGED	DBY: D.H	Heerema SIGNATURE:		PROPERTY: Ogden			ZON	E: Thomas	s Ogde	en	HOLE NO.: TO13-03	8	Page 4 of	8
METE	ERAGE	,	ROCK	Alt'n			SAMF	PLES				ASSAYS		
FROM	то	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)	Cu (%) Ni (%	%) Co (%)	Zn (%) Ag (ppm)
161.05	162.75	ULTRAMAFIC	um		011	161.05	162.00				0.042			
		Well foliated with moderate to strong chlorite alteration. Cut by minor quartz stringers.	um		012	162.00	162.75	0.75			0.032			
		161.67 to 161.84m: bull quartz vein at 50 degrees tca -minor pyrite along lower contact												
162.75	166.98	CONGLOMERATE	congl		013	162.75	163.73	0.98	0.75	-	0.094			
-			congl		014	163.75	164.75	1.00	0.5	-	0.176			
		A relatively blonde or light coloured assemblage of altered	congl		015	164.75	165.85	1.10	4	-	16.235			
		conglomerate consisting of silicification and albitization. The - rock is a grey to weak yellow/beige colouration with some -	Blank		016	165.85	165.85				0.012			
		darker remnant clasts. The clasts are stretched and elongated at approx 70 degrees tca. The silicification has caused a buff appearance and has created diffuse contacts. Disseminated pyrite up to 2% locally. Starting at 165.40m the unit becomes more mineralized with local patches of a finer and darker sandstone. Minor albite and fuchsite alteration present. Alteration is associated with secondary quartz flooding. The pyrite mineralization is mainly in the form of sulfide stringers and semi-massive seams. Hairline qtz stringers cross-cut the unit at random angles but generally at 40 degrees tca.	congl		017	165.85	166.98	1.13	4	tr	3.887			
166.98	167.85	FELSITE	fel		018	166.98	167.85	0.87	2	-	1.496			

BY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZONE	E: Thoma	s Ogd	en	HOLE NO.: TO13-038	Page 5 of 8
RAGE		ROCK	Alt'n			SAMF	LES			ASSAY	S
то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars		
	Very fine-grained pinkish/grey siliceous unit containing what appear as xenoliths of conglomerate. The conglomerate clasts are well foliated. The host felsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees tca. Late quartz flooding present also ranging from thin stringers to knots to more vein type. The felsite itself is mineralized with 2% finely disseminated pyrite and the late quartz appears barren.										
180.75	INTERBEDDED WACKE AND ARGILLITE	grwk		019	167.85	168.75	0.90	0.25	-	1.311	
	This writhin company of the provident to 0000 providing and 0000	grwk		020	168.75	169.75	1.00	2.5	-	2.131	
		arg		021	169.75	170.75	1.00	1	-	0.942	
		arg		022	170.75	171.75	1.00	1.5	-	2.267	
		wacke		023	171.75	172.75	1.00	2.5	-	2.428	
		Standard		024	172.75	172.75	0.00			4.230	
		wacke		025	172.75	173.75	1.00	2.5	-	3.855	
		arg		026	173.75	174.75	1.00	2	-	0.629	
		arg		027	174.75	175.75	1.00	2	-	1.369	
		arg		028	175.75	176.75	1.00	2	-	2.274	
	, , , ,	arg		029	176.75	177.75	1.00	2	-	3.686	
		arg		030	177.75	178.75	1.00	2	-	4.312	
		arg		031	178.75	179.75	1.00	1.5	-	1.624	
	and well altered areas. Pyrite content reaches as high as 3-4% locally. The finer argillite horizons show evidence of smaller scale graded bedding or younging in the downhole direction (north). The beds range from greyer silts to aphanitic black tops and vary from cm to dm in thickness. Bedding angles are quite variable and range from 65 degrees tca to parallel tca and back to 45 degrees tca. The rocks are generally dark grey to black and show evidence of crenulations etc. Very few secondary quartz stringers. Argillite are well mineralized with disseminated pyrite averaging 2% throughout. Lower contact is based upon the end of an argillite bed and the	arg		032	179.75	180.75	1.00	1.5	-	3.004	
2	TO	AGE DESCRIPTION To Description Very fine-grained pinkish/grey siliceous unit containing what appear as xenoliths of conglomerate. The conglomerate clasts are well foliated. The host felsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees tca. Late quartz flooding present also ranging from thin stringers to knots to more vein type. The felsite itself is mineralized with 2% finely disseminated pyrite and the late quartz appears barren. 180.75 INTERBEDDED WACKE AND ARGILLITE This unit is composed of approximately 80% argillite and 20% wacke. The wacke horizons are at the bases of repeating sequences of wacke to argillite generally over 2-3m. The entire unit is mineralized with pyrite. The wackes are silty to sandy and show more alteration and quartz flooding than the argillite. Wackes are a dull grey to soft green/beige colour as a result of fine albitization and carbonation. Weak to moderate silicification locally as well. Many of the wacke beds appear brecciated by thin semi-transparent quartz stringers. Other areas have larger irregular semi-transparent quartz stringers to veinlets. Strongest alteration is associated with the quartz-rich and well altered areas. Pyrite content reaches as high as 3-4% locally. The finer argillite horizons show evidence of smaller scale graded bedding or younging in the downhole direction (north). The beds range from greyer silts to aphanitic black tops and vary from cm to dm in thickness. Bedding angles are quite variable and range from 65 degrees tca to parallel tca and back to 45 degrees tca. The rocks are generally dark grey to black and show evidence of crenulations etc. Very few secondary quartz stringers. Argillite are well mineralized with disseminated pyrite averaging 2% throughout.	AGE ROCK To DESCRIPTION CODE Very fine-grained pinkish/grey siliceous unit containing what appear as xenoliths of conglomerate. The conglomerate clasts are well foliated. The host felsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees tca. Late quartz flooding present also ranging from thin stringers to knots to more vein type. The felsite itself is mineralized with 2% finely disseminated pyrite and the late quartz appears barren. grwk 180.75 INTERBEDDED WACKE AND ARGILLITE grwk marg arg arg arg dardshow wacke. The wacke horizons are at the bases of repeating sequences of wacke to argillite generally over 2-3m. The entire unit is mineralized with pyrite. The wackes are silty to sandy and show more alteration and quartz flooding than the argillite. Wackes are a dull grey to soft green/beige colour as a result of fine ablitization and carbonation. Weak to moderate sillicification locally as well. Many of the wacke beds appear breciated by thin semi-transparent quartz stringers. Other areas have larger irregular semi-transparent quartz stringers to veinlets. Strongest alteration is associated with quartz-rich and well altered areas. Pyrite content reaches as high as 3-4% locally. The finer argillite horizons show evidence of smaller scale graded bedding or younging in the downhole direction (north). The beds range from greyer silts to aphanitic black tops and vary from cto m in thickness. Bedding angles are quite variable and range from 65 degrees tca to parallel tca and back to 45 degrees tca. The rocks are generally dark grey to black and show evidence of crenulations etc. Very few secondary quartz stringers. Argillite are well mineralized with disseminated py	AGE ROCK Alt'n TO DESCRIPTION CODE Alt'n AGE To CODE Alt'n AGE To DESCRIPTION CODE Alt'n Age Code Alt'n Code Alt'n Age Code Code Alt'n Code Alt'n Appear as xenoliths of conglomerate. The conglomerate clasts are well foliated. The host felsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees tca. Late quartz flooding present also ranging from thin stringers to knots to more vein type. The felsite itself is mineralized with 2% finely disseminated pyrite and the late quartz appears barren. grvk 180.75 INTERBEDDED WACKE AND ARGILLITE grvk macke. This unit is composed of approximately 80% argillite and 20% wacke. The wacke horizons are at the bases of repeating sequences of wacke to argillite generally over 2-3m. The entire unit is mineralized with pyrite. The wackes are silly to sandy and show more alteration and quartz flooding than the argillite. Wackes are a dull grey to soft green/beige colour as a result of fine albitization and carbonation. Weak to moderate silicification locally as well. Many of the wacke beds appear brecicated by thin semi-transparent quartz stringers. Other areas have larger irregular semi-transparent quartz stringers to veinlets. Strongest alteration is associated with quartz-rich and well altered areas. Pyrite content reaches as high as 3-4% locally. The finer suphides are associated wit	AGE ROCK Alt'n T0 DESCRIPTION CODE Ne. Very fine-grained pinkish/grey siliceous unit containing what appear as xenoliths of conglomerate. The conglomerate clasts are well foliated. The host felsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees tca. Late quartz flooding present also ranging from thin stringers to knots to more vein type. The felsite it is more massive with the felsite its some vein type. The felsite its more area the bases of repeating sequences of wacke to argillite generally over 2-3m. The entire unit is mineralized with pyrite. The wackes are sitly to sandy and show more atteration and quartz flooding than the argillite. Wackes are a dull grey to soft green/beige colour as a result of fine albitzation and carbonation. Weak to moderate silicification locally as well. Many of the wacke beds appear brecciated by thin semi-transparent quartz stringers. Other areas have larger irregular semi-transparent quartz stringers to veinlets. Strongest alteration is associated with quartz-rich and well altered areas. Pyrite content reaches as high as 3-4% locally. The finer sulphides are associated with the quartz-rich and well altered areas. Pyrite content reaches as high as 3-4% locally. The finer sulphides are associated with quartz stringers are give area do area from 65 degrees tca to parallel tca and back to 45 degrees tca. The rocks are generally dark grey to black and show evidence of smaller scale graded bedding or younging in the downhole direction (north). The beds range from greyer silts to aphanitic black tops and vary from con do min thickness. Bedding angles are quite variable and range from 65 degrees tca to parallel tca and back to 45 degrees t. The rocks are generally dark grey to black and show evidence of the showe vidence of the showe hore dor an argillite bed and the	AGE TO DESCRIPTION ROCK Alt'n TO DESCRIPTION CODE No. FROM Very fine-grained pinkish/grey siliceous unit containing what appear as xenoliths of conglomerate. The conglomerate clasts are well foliated. The host felsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees tca. Late quartz flooding present also ranging from thin stringers to knots to more vein type. The felsite isself is mineralized with 2%, finely disseminated pyrite and the late quartz appears barren. grwk 019 167.85 180.75 INTERBEDDED WACKE AND ARGILLITE This unit is composed of approximately 80% argillite and 20% wacke. The wacke horizons are at the bases of repeating sequences of wacke to argillite generally over 2-3m. The entire unit is mineralized with pyrite. The wackes are sitly to sandy and show more alteration and quartz flooding than the argillite. Wackes are a dull grey to soft green/beige colour as a result of fine albitization and carbonation. Weak to moderate silicification locally as well. Many of the wacke beds appear brecciated by thin semi-transparent quartz stringers to veinlets. Strongest alteration and is associated with quartz-rich and well attered areas. Pyrite content reaches as high as 3-4% locally. The finer sulphides are associated with quartz-rich and well attered areas. Pyrite content reaches as high as 3-4% locally. The finer sulphides are associated with the quartz-rich and show weidence of crenulations etc. Very few secondary quartz stringers. Argillite are well mineralized with disseminated pyrite averaging 2% throughout. Lower contact is based upon the end of an argillite bed and the 178.75	AGE ROCK Alt'n SAMF TO DESCRIPTION CODE Alt'n SAMF TO Very fine-grained pinkish/grey siliceous unit containing what appear as xenoliths of conglomerate. The conglomerate clasts are well foliated. The host felsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees tca. Late quartz (flocding present lasto ranging from thin stringers to knots to more vein type. The felsite itself is mineralized with 2% finely disseminated pyrite and the late quartz appears barren. grwk 019 167.85 168.75 180.75 INTERBEDDED WACKE AND ARGILLITE mis unit is composed of approximately 80% argillite and 20% wacke. The wacke horizons are at the bases of repeating sequences of wacke to argillite generally over 2-3m. The entire unit is mineralized with pyrite. The wackes are silty to sandy and show more alteration and quart flooding than the argillite. Wackes are a dull grey to soft green/beige colour as a result of fine albitization and carbonation. Weak to moderate silicification locally as well. Many of the wacke beds appear brecciated by thin semi-transparent quartz stringers. Other areas have larger irregular semi-transparent quartz stringers to veinites. Strongest alteration is associated with quartz-rich arg arg 022 176.75 177.75 arg 031 178.75 179.75 arg 032 179.75 180.75 arg 032 179.75 180.75 arg 032 179.75 180.75 arg 032 178.75 179.75 arg arg 0	AGE TO DESCRIPTION ROCK Attn SAMPLES TO DESCRIPTION CODE No. FROM TO LENGTH Very fine-grained pinkish/grey siliceous unit containing what appear as xenolities of conglomerate. The conglomerate clasts are well foliated. The host felsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees tca. Late quartz flooding present also ranging from thin stringers to knots to more vein type. The felsite itself is mineralized with 2% finely disseminated pyrite and the late quartz appears barren. 97% 019 167.85 169.75 1.00 180.75 INTERBEDDED WACKE AND ARGILLITE This unit is composed of approximately 80% arglilite and 20% wacke. The wacke horizons are at the bases of repeating sequences of wack to arglittig generally cover 2.3m. The entire unit is mineralized with pyrite. The wackes are sitily to sandy and show more alteration and quartz flooding than the arglitte. Wackes are a dull grey to soft green/beige colour as a result of fine ablitzation and carbonation. Weak to moderate silicification locally as well. Many of the wacke beds appear brecciated by thin semi-transparent quartz stringers. Other areas. The finer sulphides are associated with quartz-rich and well altered areas. Prite content reaches as high as 3-4% locally. The finer arglifte horizons show evidence of smaller scale graded bedding or younging in the downhole direction (north). The beds range from greyer sits to aphantic black tops and vary from cn to dm in thickness. Bedding angles are quite variable and range from Greyer sits to aphantic black tops and vary from cn to dm in thickness. Bedding angles are quite variable and range f	AGE DESCRIPTION ROCK AI'n SAMPLES TO DESCRIPTION No. PROM TO LENOTH Mey Very fine-grained pinkish/grey siliceous unit containing what appear as xenoliths of conglomerate. The conglomerate clasts are well foliated. The host fielsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees to: Late quartz flooding present also ranging from thin stringers to knots to more vein type. The felsite itself is mineralized with 2% finely disseminated pyrite and the late quartz appears barren. grvk 019 167.85 168.75 0.90 2.25 180.75 INTERBEDDED WACKE AND ARGILLITE wacke. The wacke horizons are at the bases of repeating sequences of wacke to argillite generally over 2-3m. The entire unit is mineralized with pyrite. The wackes are silly to sandy and show more alteration and quartz flooding than the argillite. Bilicification locally as well. Many of the wacke bods appear breccitated by thin semi-transparent quartz stringers. Other areas. The finer sublides are associated with quartz-rich and well altered area. Pyrite content reaches as high as 3-4% locally. The finer argillite horizons show evidence of smaller scale graded bedding or younging in the downhole direction (north). The beds range from greyer silts to aphanitic black tops and vary from cm to dm in thickness. Bedding angles are quite variable and range from Sec. Very few secondary quartz stringers. Argillite are well mineralized with disseminated pyrite averaging 2% throughout. Lower contact is based upon the end of an argillite bed and the	AGE TO DESCRIPTION ROCK Altr SAMPLES To DESCRIPTION CODE No. FROM TO LENGTH %4/9 %4/8 Wery fine-grained pinkish/grey siliceous unit containing what appear as axenoliths of conglomerate. The conglomerate clasts are well foliated. The host felsite is more massive with thin hairline black chloritic stringers and wisps at 80 degrees tca. Late quartz flooding present also ranging from thin stringers to knots to more vein type. The felsite itself is mineralized with 2% finely disseminated pyrite and the late quartz appears barren. grwk 019 167.85 168.75 0.90 0.25 - 180.75 INTERBEDDED WACKE AND ARGILLITE wacke. The wacke horizons are at the bases of repeating sequences of wacke to argillite generally over 2-3m. The entire unit is mineralized with pyrite. The wackes are a stuly forger to sot greer/beige colour as a result of fine albitization and carbonation. Weak to moderate silicification locally as well. Many of the wacke beds appear brecciated by thin sessociated with the quartz-rich and well altered areas. Pyrite content reaches as high as 3-4%, locally. The finer sulphides are associated with the quartz-rich and well altered areas. Pyrite content reaches as high as 3-4%, locally. The finer sulphides are ageories to to parabinic black tops and vary from cm to dm in thickness. Bedding angles are quite variable and range from 65 degrees to to parabinic black tops and vary from cm to dm in thickness. Bedding angles are quite variable and range from 65 degrees to to parabinic black tops and vary from cm to dm in thickness. Redding angles are quite variable and range from for bed grees to to parabinic black tops and som weidence of crenulations etc. Very few second	AGE DESCRIPTION ROCK AIM SAMPLES AMPLES ASSAYS To DESCRIPTION No. PROM To LENGTH YMP YMP Par(gn) Par(gn)<

LOGGED	BY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZONI	E: Thoma	s Ogd	en	HOLE NO.: TO13-038 Page 6 of 8
METE	RAGE		ROCK	Alt'n			SAMF	PLES			ASSAYS
FROM	то	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm)
		degree tca.									
180.75	188.45	GREYWACKE	grwk		033	180.75	181.75	1.00	2.5	-	1.434
		Massive arey and generally featuraless. No hedding evident as	Blank		034	181.75	181.75	0.00			0.002
		Massive, grey and generally featureless. No bedding evident as the unit is homogenous. Few very faint black chloritic stringers	grwk		035	181.75	182.75	1.00	1	-	1.403
1		at approx 35 degrees tca. Weakly silicified and locally albitized.	grwk		036	182.75	183.75	1.00	0.5	-	1.571
		Pyrite mineralization throughout averaging 1-2%.	grwk		037	183.75	184.75	1.00	0.5	-	0.691
		Fyrite milleralization throughout averaging 1-2%.	grwk		038	184.75	185.75	1.00	1	-	0.621
			grwk		039	185.75	186.75	1.00	1.25	-	1.960
			grwk		040	186.75	187.65	0.90	0.25	-	0.597
			grwk		041	187.65	188.45	0.80	0.5	-	2.703
188.45	198.90	ARGILLITE	arg		042	188.45	189.45	1.00	3	-	4.651
		Mainly a yary dark unit with minar to moderate alteration that	arg		043	189.45	190.45	1.00	1	-	3.151
		Mainly a very dark unit with minor to moderate alteration that decreases downhole. The bedding angles start off at 35	arg		044	190.45	191.45	1.00	2.5	-	0.186
		degrees tca becoming parallel tca by 193m. The bedding has	arg		045	191.45	192.45	1.00	0.75	-	1.437
1		been crenulated and off-set on mm-scale micro-fractures in a	arg		046	192.45	193.45	1.00	tr	-	0.619
			arg		047	193.45	194.45	1.00	tr	-	3.506
		right lateral movement. Late hairline quartz stringers cross-cut the unit at random angles to ca. Pyrite mineralization	arg		048	194.45	195.45	1.00	tr	-	0.103
		throughout from trace to 4.5% as fine disseminations to blebs to	Standard		049	195.45	195.45	0.00			4.061
		fine stringers locally. Mineralization is greatest in the upper and	arg		050	195.45	196.45	1.00	tr	-	0.143
		lower 3m of the unit.	arg		051	196.45	197.45	1.00	0.75	-	2.180
			arg		052	197.45	198.20	0.75	1.5	-	1.311
		191.40 to 192.70m is a section with irregular semi-transparent to white quartz veining and associated pyrite and sphalerite mineralization?	arg		053	198.20	198.90	0.70	3	-	1.373

DGGED BY: D	.Heerema SIGNATURE:		PROPERTY: Ogden			ZONE	E: Thomas	s Ogd	en	HOLE NO.: TO13-038 Page 7 of 8
METERAGE		ROCK	Alt'n			SAMP	LES			ASSAYS
FROM TO	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (p)
98.90 215.63	INTERMEDIATE DIKE	I.Dk		054	198.90	200.00	1.10	3	-	1.090
	This unit is generally massive and homogenous and resembles	I.Dk		055	200.00	201.00	1.00	0.5	-	0.474
	an intermediate to mafic dike as well as wacke but has more	I.Dk		056	201.00	202.00	1.00	1.25	-	1.678
	intrusive characteristics than sedimentary. A dull grey colour is	I.Dk		057	202.00	203.00	1.00	1	-	1.243
	pervasive with gradational areas of slight pinking as a result of	Blank		058	203.00	203.00	0.00			0.002
	more felsic material. The unit contains occasional tiny 5-10cm	I.Dk		059	203.00	204.00	1.00	0.5	-	0.059
	foliated and albitized sections that resemble altered argillite.	I.Dk		060	204.00	205.00	1.00	tr	-	0.236
	Within the unit are flow textures or weak bedding; hard to tell.	I.Dk		061	205.00	206.00	1.00	tr	-	0.062
	Very few secondary quartz structure, but present are black	I.Dk		062	206.00	207.00	1.00	tr	-	0.226
	hairline chlorite and chlorite + pyrite stringers. Medium to	I.Dk		063	207.00	208.00	1.00	tr	-	1.450
	coarse cubic pyrite found more commonly in the upper and	I.Dk		064	208.00	209.00	1.00	0.75	-	1.283
	lower portions of the unit with the centre relatively barren except	I.Dk		065	209.00	210.00	1.00	1.5	-	0.866
		I.Dk		066	210.00	211.00	1.00	1	-	0.706
	for occasional chlorite + pyrite stringers mentioned above. Extremely competent unit. Lower contact is based upon the first sign of felsic diking.	I.Dk		067	211.00	212.00	1.00	1	-	1.987
		I.Dk		068	212.00	213.00	1.00	1.5	-	0.706
	Lower contact is based upon the first sign of felsic diking.	I.Dk		069	213.00	214.00		0.75	-	0.776
		Blank		070	214.00	214.00	0.00			0.002
		I.Dk		071	214.00	214.85	0.85	tr	-	0.268
		I.Dk		072	214.85	215.63	0.78	0.5	-	1.359
215.63 219.40	FELSIC DIKE	F.Dk		073	215.63	216.40	0.77	0.75	-	1.126
	The unit of the sector of 00 demonstration. Must of the unit	F.Dk		074	216.40	217.40	1.00	4	-	0.851
	The upper contact is sharp at 23 degrees tca. Most of the unit	F.Dk		075	217.40	218.40	1.00	1.5	-	3.673
	to 218.56m is a mix of intermediate and felsic diking. The felsic diking is a pink/grey colour and appears to host xenoliths of the	F.Dk		076	218.40	219.40	1.00	5	-	2.061
	adjacent intermediate dike. It appears as though the drill hole may have drilled down the contact slightly as half the core is felsic and the other half is intermediate with the contact at approx parallel to ca. The contact is extremely wavy and also shows evidence of tectonism in mm-scale left lateral movement. Assimilation of some intermediate material may be the reason for the slight darkening of the host felsic material. Below 218.56 the felsic dike is a brighter pink/peach colour with late quartz stringers and micro-scale gash fractures all parallel to one another at 70 degrees tca. The intermediate material is									

METALS CREEK RESOURCES

LOGGED	BY: D.I	Heerema SIGNATURE:		PROPERTY: Ogden			ZONE	E: Thomas	s Ogde	en	HOLE NO.: TO13-038	Page 8 of 8
METE	RAGE		ROCK	Alt'n			SAMP	LES			ASSA	YS
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%)	Ni (%) Co (%) Zn (%) Ag (ppm)
		a grey green colour and relatively barren in pyrite in comparison to the well mineralized felsic diking. The pyrite within the felsic material is in the form of euhedral cubes ranging from 1mm to 2.cm in diameter and locally form 2cm wide semi-massive seams of pyrite clusters. Overall pyrite content of approx 3%. Lower contact is wavy and pyrite rich with adjacent ultramafics. 218.38 to 218.57m: extremely soft ultramafic clast										
219.40	239.00	ULTRAMAFICS	um		077	219.40	220.40	1.00	-	-	0.139	
219.40 239.00 ULT Rela app serp hard as a		Relatively competent ultramafics with a weak brecciated appearance of massive ultramafics with random dark soft serpentine stringers that form a matrix appearance. Unit is harder than the ultramafics uphole. These ultramafics are not as altered. End of Hole	um		078	220.40	221.40	1.00	-	-	0.014	

Printed: Wednesday, July 15, 2015

METALS CREEK RESOURCES

PROPERTY:	Ogden	CLAIM NO.:	HR1008			DOWNHOLE SURVEY METHOD: EZ Shot	REMARKS: Drilling section 510W beneath hole OG10-035
HOLE NO .:	OG15-037	LENGTH (m):	144.0	CORE SIZE:	NQ	DOWNHOLE SURVEY BY: Drillers	
COORD SYSTEM:	UTM Nad 83	NORTHING:	5363039.000	EASTING:	474946.000	COLLAR SURVEY BY: Don (GPS)	
SECTION:	510W	ZONE:	South Zone	ELEVATION (m):	304.000	DRILLING COMPANY: Norex	
COLLAR ORIEN	TATION (AZIMUTH/DIP)	PLANNED:	360. / -51.0	SURVEYED:	1.000 / -1.000	DATE LOGGED: Jun. 19, 2015 TO Jun. 19, 2015	Core Storage: Norex compound
HOLE STARTED	: June 17, 2015	HOLE FINISHED:	June 18, 2015	MAG:	10.75⁰ w	LOGGED BY: D.Heerema	Page 1 of 7

METE	RAGE		ROCK	Alt'n			SAMF	LES				ASSA	YS		
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%)	Ni (%)	Co (%) Zn (%	6) Ag (p
0.00	17.65	OVERBURDEN		- 											-
17.65	30.40	FAULT ZONE	FLT		001	17.65	19.50	1.85	-			002			
		This portion of the hole is extremely broken with a majority of	FLT		002	21.00	21.00	1.50				.002			
		the unit containing core not exceeding 10cm in length. Much of	FLT		004	22.50	24.00	1.50	tr	-		399			
		the unit (80%) is angular shards of 1-3cm material. The host	FLT		005	24.00	25.50	1.50	0.5	-		327			
		rock appears to be of ultramafic origin, with variable alteration throughout. The rock is a dark green/blackish colour with a	FLT		006	25.50	27.00	1.50	1	-	0.	.291			
		weak speckled appearance of ultramafics. Ankerite stringers	FLT		007	27.00	28.50	1.50	0.5	-	0.	.085			
		and veinlets are very common throughout with local patches of	FLT		800	28.50	30.40	1.90	<0.5	-	0.	.046			

more pervasive ankerite. Chlorite and minor serpentine common also.

More of a brittle fault with only one area of noticeable clay gouge at 22.5m. Many breaks at steeper angles tca at approx 55-60 degrees. Upper portion of unit shows a shallow foliation angle of 20 degrees tca.

A section from approx 23.40 to 28.70m has undergone immense silicification and now resembles more of an intrusive than ultramafic. The rock is a buff grey colour with 1-2% disseminated fine to 1mm cubic pyrite and minor ankerite alteration. The mineralization in places is fresh and other areas

DGGED	BY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZONE	E: South 2	Zone		HOLE NO.: OG15-037 Page 2 of 7
METE	RAGE		ROCK	Alt'n			SAMP				ASSAYS
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag
		is oxidized. This interval is heavily intruded by white/semi- transparent quartz veinlets from 0.5 to 2cm wide. These quartz features are barren of mineralization.									
30.40	42.22	ULTRAMAFICS	ULT		009	30.40	31.40	1.00	-	-	0.002
		Well foliated deep green chlorite/serp altered ultramafics.	ULT		010	39.00	40.22	1.22	tr	-	1.539
		Foliation ranges from 20-30 degrees tca. Weakly speckled	ULT		011	40.22	41.22	1.00	0.5	-	0.038
Fo ap fo ca bl ar cc Th di 38 -e	 appearance. Moderate to well fractured; generally parallel to foliation. Unit has been ribboned slightly from alteration and carb stringers that exhibit local crenulations and folding. Thin black chloritic stringers cross-cut the foliation at 5 degrees tca and appear to be late stage tectonic structures. Local pinkish colour calcite and minor ankerite locally. The last 1.5m of the unit is slightly silicified and hosts finely disseminated pyrite at 0.5%. 38.70 - 40.12m: brittle fault zone at 80 degrees tca -extremely broken to approx 2-4cm size material -very rusty as a result of groundwater 	ULT		012	41.22	42.22	1.00	0.5	-	0.382	
2.22	76.91	DACITE	DAC		013	42.22	43.22	1.00	0.5	<0.5	0.359
	_ `		DAC		014	43.22	44.22	1.00	tr	-	0.305
		Light green and fairly homogenous to approximately 60m. The unit is moderately massive with a weak more localized foliation.	DAC		015	65.00	66.00	1.00	tr	tr	0.951
		Weakly amygdaloidal, with 1% feldspar filled vesicles. Unit	DAC		016	66.00	67.00	1.00	0.25	tr	0.326
		commonly cut by thin quartz/carb stringers with rarer quartz	DAC		017	67.00	68.00	1.00	tr	-	0.041
		veinlets of greater size. Sulphides are mainly conducive to	Blank		018	68.00	68.00	0.00			0.002
		alteration zones with only minor cubic pyrite found outside the	DAC		019	68.00	69.00	1.00	0.25	tr	0.271
		alteration.	DAC		020	69.00	70.00	1.00	-	-	0.002
			DAC		021	75.91	76.91	1.00	-	-	0.002
		42.22 to 42.66m is a section of slightly increased silicification with minor albitization, quartz veinlets and fine mineralization									

LOGGE	DBY: D	Heerema SIGNATURE:		PROPERTY: Ogden			ZON	E: South 2	Zone		HOLE NO.: OG15-03	7	Page 3 of 7
METE	RAGE		ROCK	Alt'n			SAM	PLES				ASSAYS	
FROM	то	DESCRIPTION	CODE	1 1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)	Cu (%) Ni (%	%) Co (%) Zn (%) Ag (p
		including pyrite and arsenopyrite at 1%.											
		41.71 and 42.79m: thin healed micro-faults showing cm-scale left lateral movement.											
		43.25 - 43.43m: fault at 45 degrees tca -rusty gravel type material within											
		65.25 - 65.31m: alteration zone of quartz stringers, albitization and fine pyrite + arsenopyrite at 0.5%.											
		66.22 - 66.38m: weak alteration zone with quartz flooding, minor albite and fine pyrite with trace arsenopyrite											
		68.20 - 68.30m: weak alteration zone with fine quartz stringers, minor albite and fine pyrite + arsenopyrite at <0.75%. Silicification is moderate.											
76.91	84.40	MINERALIZED ZONE	MIN		022	76.91	77.76	0.85	3	1	3.229		
1 010 1	01110		MIN		023	77.76	78.60	0.84			1.566		
		This is a unit of patchy mineralization and alteration within fine-	MIN		024	78.60	79.43	0.83			0.638		
		grained green amygdaloidal basalts (andesites). The alteration	MIN		025	79.43	80.15	0.72			3.325		
		zones have fairly distinct features and contacts that contrasts	MIN		026	80.15	80.85	0.70			6.737		
		the much fresher basalts. The alteration zones are very fine-	Standard		027	80.85	80.85	0.00			3.029		
		grained and grey/beige in colour as a result of fine albitization,	MIN		028	80.85	81.27	0.42			0.739		
		bleaching, silicification and fine quartz flooding. These	MIN		029	81.27	81.90	0.63			3.547		
		alteration zones are generally banded as a result of wispy	MIN		030	81.90	83.18	1.28			1.412		
		alteration and quartz stringers and host anywhere from 0.5 to	MIN		031	83.18	83.45	0.27			39.129		
		5% fine pyrite and arsenopyrite. The alteration/mineralization zones vary in size from <1cm bands to 1.37m drilled width.	MIN		032	83.45	84.40	0.95			1.338		
		Orientation of these zones varying from 25 to 60 degrees tca.											
		76.91 to 77.76m: alteration zone of strong albite and quartz with 3-4% pyrite + arsenopyrite											

LOGGED B	Y: D.I	Heerema SIGNATURE:		PROPERTY: Ogden			ZON	NE: South 2	Zone		HOLE NO .:	OG15-03	57	Page 4	4 of 7
METERA	GE		ROCK	Alt'n			SAM	IPLES					ASSAYS		
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/	t) Au (g/t)	Cu (%) Ni ((%) Co (%	%) Zn (%) Ag (ppm)
		77.76 to 78.45m: amygdaloidal basalt with trace cubic pyrite													
		78.45 to 78.66m: moderate alteration zone with 3% pyrite + arseno													
		78.66 to 79.43m: amygdaloidal basalt with 4 narrow bands of alteration/mineralization ranging from 0.5 to 2.5cm in width													
		79.43 to 80.85m: alteration zone of strong albite with quartz hosting 5% pyrite + arsenopyrite													
		80.85 to 81.27m: amygdaloidal basalts with odd wisp of albite alteration and minor pyrite and arsenopyrite													
		81.27 to 81.90m: alteration zone of strong albite and quartz flooding hosting approx 4-5% pyrite + arsenopyrite													
		81.90 to 82.31m: amygdaloidal basalts													
		82.31 to 82.44m: alteration zone with weak folded quartz and albite hosting 4% pyrite + arsenopyrite													
		82.44 to 83.18m: amygdaloidal basalts with weak silicification near contacts of alteration patches													
		83.18 to 83.45m: alteration zone of immense and brecciated albite alteration; quartz flooding has brecciated the albitized rock into angular xenoliths hosting approx 4% pyrite + arsenopyrite. VISABLE GOLD present as two clusters of very tiny grains at 83.28 in white quartz flooding.													
		83.45 to 84.23m: amygdaloidal basalt													

METE	RAGE		ROCK	Alt'n			SAMP	LES			ASS	AYS
ROM	то	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%)	
		84.23 to 84.40m: moderately altered zone of albitization with 2- 3% pyrite and trace arsenopyrite										
34.40	107.16	ANDESITE	AND	C)33	84.40	85.40	1.00	-	-	0.042	
		Fairly homogeneous unit of darker volcanics than uphole. The	AND	C)34	90.00	91.00	1.00	1	-	0.261	
		unit appears to slowly increase in mafic content downhole. The -	AND	C)35	91.00	92.00	1.00	-	-	0.002	
		upper section to approx 93m contains 1-2% amygdules. The	AND	C)36	92.00	93.00	1.00	0.5	tr	0.262	
		unit is chlorite altered and cut by thin white quartz/carb stringers -	AND	C)37	93.00	94.00	1.00	tr	-	0.002	
		and veinlets. Trace cubic pyrite locally. Occasional 10-15cm	AND	C)38	94.00	95.00	1.00	0.25	tr	0.047	
		patch of weak albitization with associated semi-transparent	Blank	C)39	95.00	95.00	0.00			0.002	
		quartz veinlets and minor pyrite + arsenopyrite -	AND	C)40	95.00	96.00	1.00	0.5	tr	0.818	
			AND)41	96.00	97.00	1.00	-	-	0.002	
		92.43 to 92.69m and 94.93 to 95.16m: weak albitization with	AND)42	103.67	104.67	1.00	tr	-	0.377	
		quartz flooding hosting 1-2% pyrite and arsenopyrite	AND)43	104.67	105.03	0.36	2	0.5	4.243	
		-lower alteration zone hosts 3-4% pyrite and arsenopyrite at 2:1 –	AND)44	105.03	106.03	1.00	0.25	tr	0.225	
			AND	C)45	106.03	107.16	1.13	-	-	0.002	
		104.67 to 105.03m: a small section of stronger semi- transparent quartz/white carb flooding with associated albitization and minor fuchsite. Associated with the alteration is fine blebby pyrite and arsenopyrite averaging approx 2%. VISABLE GOLD located in three separate clusters of tiny grains from 104.78 to 104.84m.										
		105.53 to 105.70m: moderate albitization with a couple thin quartz stringers and 1-2% fine pyrite and arsenopyrite										

METALS CREEK RESOURCES

LOGGED	BY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZONE	: South Z	one		HOLE NO.: OG15-037	Page 6 of 7
METER	RAGE		ROCK	Alt'n			SAMP	LES			ASSAYS	3
FROM	то	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni	(%) Co (%) Zn (%) Ag (ppm)
		Deep green/black foliated ultramafics that have become ribboned as a result of foliation and alteration. The unit starts off hard as a result of 15% quartz stringers and veinlets but the quartz content drops off some and the carbonate and talc alteration increases to a waxy soft unit. Foliation is generally at 45-50 degrees tca.										
119.70	134.45	CARBONATE ZONE	CARB		046	123.62	124.62	1.00	tr	-	0.060	
		This unit is a heavily carb altered ultramafic that is now	CARB		047	124.62	125.62	1.00	-	-	0.009	
		essentially a carbonate schist. The unit is composed of variable	CARB		048	125.62	126.62	1.00	-	-	0.002	
		amounts of grey, olive green/brown and green carbonate	CARB		049	126.62	127.62	1.00	tr	-	0.002	
		(fuchsite) that have formed bands amongst 20-70% white	CARB		050	127.62	128.10	0.48	0.5	tr	0.044	
		quartz/felds/carb stringers and veinlets. Foliation starts off at	CARB		051	128.10	129.10	1.00	tr	-	0.012	
		approx 20 degrees tca and steepens to 75 degrees tca	CARB		052	129.10	130.10	1.00	-	-	0.009	
		exhibiting crenulations and folding in a majority of the unit.	CARB		053	130.10	131.10	1.00	-	-	0.006	
			Standard		054	131.10	131.10	0.00			0.697	
		123.75 - 126.00m is a section of increased fuchsite and semi-	CARB		055	131.10	132.10	1.00	-	-	0.002	
		transparent quartz flooding causing a green and white	CARB		056	132.10	133.25	1.15	tr	-	0.002	
		colouration.	CARB		057	133.25	134.45	1.20	-	-	0.010	
		 124.41 - 124.51m: felsite dike at 70 degrees tca -pinkish/beige colour and quartz-rich -sharp contacts -0.5% disseminated blebby pyrite 127.62 - 128.10m: silicified carbonate section -massive in texture and honey/beige in colour -cross-cut by two narrow quartz stringers and one calcite vein of 1cm width. -hosts 0.5% pyrite and arsenopyrite 										
		132.18 - 133.18m: fault zone?										

-well fractured with minor gouge

METALS CREEK RESOURCES

LOGGED	BY: D.	Heerema	SIGNATURE:		PROPERTY: Ogden			ZC	ONE: So	outh Z	lone		HOLE NC	D.: OG15-0)37	ſ	Page 7 of	f 7
METE	RAGE			ROCK	Alt'n			SA	MPLES	s					ASSA	YS		
FROM	то	7 DE	SCRIPTION	CODE	1	No.	FROM	т		NGTH	%Py	%Ars	Pd (g/t) Pt	(g/t) Au (g/t)) Cu (%)	Ni (%)	Co (%)	Zn (%) Ag (ppm)
		-well contorted banding wi diameter	ith minor cubic pyrite to 2mm in															
		134.33m: 1cm gouge sear	n at 65 degrees tca															
134.45	144.00	PORPHYRY																
		very fine quartz/feldspar g phenocrysts at approx 459 gradational epidotization, consistent soft orange/cre	e-grained porphyry that consists of groundmass and white plag %. Alteration is in the form of fine k-spar and ankerite. The rock is a eam/greenish colour. Homogenous ry few late vuggy quartz veinlets.															

Printed: Monday, September 28, 2015

METALS CREEK RESOURCES

PROPERTY: Ogden	CLAIM NO .:	HR1008			DOWNHOLE SURVEY METHOD: EZ Shot	REMARKS: Drilling section 555W
HOLE NO.: OG15-038	LENGTH (m):	94.4	CORE SIZE:	NQ	DOWNHOLE SURVEY BY: Drillers	
COORD SYSTEM: UTM Nad 83	NORTHING:	5363087.000	EASTING:	474901.000	COLLAR SURVEY BY: Don/Jeff (GPS)	
SECTION: 555W	ZONE:	South Zone	ELEVATION (m)): 301.000	DRILLING COMPANY: Norex	
COLLAR ORIENTATION (AZIMUTH/DIP)	PLANNED:	360. / -61.0	SURVEYED:	1.000 / -1.000	DATE LOGGED: Jun. 20, 2015 TO Jun. 20, 2015	Core Storage: Norex compound
HOLE STARTED: June 19, 2015	HOLE FINISHED): June 19, 2015	MAG:	10.75º w	LOGGED BY: D.Heerema	Page 1 of 5

MEIE	RAGE		ROCK	Alt'n			SAMP	LES					A	SSAYS	J		
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt	t (g/t) A	u (g/t) C	u (%) Ni	(%) Co /	(%) Zn ((%) Ag (pr
0.00	13.40	OVERBURDEN										-				-	
13.40	29.30	ANDESITE	AND		001	19.50	20.50	1.00	-	-			0.083				
13.40	29.50	-	AND		002	20.50	21.12	0.62	10	2			2.754				
		This unit consists of flows that are more massive and coarser	AND		003	21.12	22.12	1.00	tr	-			0.249				
		grained and fine in grain size downhole to amygdaloidal to flow	AND		004	22.12	23.12	1.00	-	-			0.517				
		top breccia. The rock is generally a dull green/grey colour with	AND		005	23.12	24.12	1.00	tr	tr			0.176				
		cream coloured amygdules and fine feldspar in the coarser	AND		006	24.12	25.12	1.00	-	-			0.600				
		material. Locally, the unit has suffered brittle fracturing and	AND		007	25.12	26.12	1.00	-	-			0.867				
		groundwater penetration resulting in broken rusty patches.	AND		800	26.12	27.12	1.00	tr	-			0.054				
		Trace mineralization at best except for local areas of increased - silicification and weak to moderate alteration. Below 21.12m	AND		009	27.12	28.12	1.00	-	-			0.024				
		the unit is weakly to moderately silicous with tiny 1-5cm albitized -	AND		010	28.12	28.94	0.82	-	-			0.075				
		sections with fine pyrite and arsenopyrite.	AND		011	28.94	29.30	0.36	1	1			1.809				
		16.85 - 16.87m and 17.36 - 17.46m: white quartz veins at 45															
		degrees tca															
		-thin wisps of fuchsite within quartz															
		-one 2mm bleb of chalcopyrite in upper vein															

18.63 - 21.12m: section of flow breccia with a very dark almost black colouration hosting green chloritic shards aligned at 45 degrees tca. Silicification and patchy beige/cream

LOGGED	BY: D	.Heerema	SIGNATURE:		PROPERTY: Ogder	า		ZON	IE: South	Zone		HOLE NO.: O	G15-038	Page 2 of 5
METE	RAGE			ROCK	Alt'n			SAM	PLES				ASSA	YS
FROM	то	7	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t)	Au (g/t) Cu (%)	Ni (%) Co (%) Zn (%) Ag (ppm)
FROM	то	present from 20.5 to 10% and very f 22.65 - 23.00m: b 24.50 - 24.66m: b 25.14 - 25.54m: b chip type material 26.72 - 27.05m: lr -sharp contacts; le -dark grey and ap -fabric at 80 degre	ntermediate dike ower very irregular and upper at 20 degrees tca prox 45% altered feldspar	CODE		No.	FROM	то	LENGTH	%Ру	%Ars	Pd (g/t) Pt (g/t)	Au (g/t) Cu (%)	Ni (%) Co (%) Zn (%) Ag (ppm)
		27.28 - 27.36m: lr	ntermediate dike like above											
		27.46 - 28.05m: b	rittle fault with gravel type material remaining											
		a few thin 2-4mm	ilicified and moderately albitized section cut by grey quartz stringers. Hosts very fine pyrite at a 1:1 ratio and approx 2% in abundance.											
29.30	30.38	INTERMEDIATE	DIKE	l.Dk		012	29.30	30.38	1.08	-	-		0.335	
			ur, foliated creating a weak fabric at 55 Isists of approx 35% creamy feldspar. Non- Iower contacts.											

LOGGED	BY: D.I	Heerema SIGNATURE:	:		PROPERTY: Ogden			ZONI	E: South 2	Zone		HOLE N	D.: OG15-03	38	Pa	age 3 of 5	
METE	RAGE		RO	СК	Alt'n			SAMF	PLES					ASSAY	s		
FROM	то	DESCRIPTION	со	DE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) F	t (g/t) Au (g/t)	Cu (%) N	i (%)	Co (%) Zn (%)	Ag (ppm)
30.38	48.33	MAFIC VOLCANICS															
		Bordering between andesite and more mafic bar a deep green colour and moderately massive. numerous hairline to 1cm quartz stringers and y generally all ranging from 40 to 65 degrees tca. is in the form of cubic of pyrite up to 7mm in dia associated with the secondary quartz features a locally over 15cm intervals. 37.03 - 37.09m: small section of moderate albit associated with silicification and hosts 1% pyrite arsenopyrite	Unit is cut by veinlets; Mineralization ameter and up to 2% ization														
48.33	71.98	ULTRAMAFICS	I.C)13	52.70	53.43	0.73	tr	-		0.005				
		Dark green/black unit, well foliated and modera	I.E)14	55.23	55.95	0.72	-	-		0.002				
		quartz/carb/felds stringers. Oriented at approx	55 degrees too)15	55.95	57.00	1.05	1.5	-		0.027				
		The unit is weakly magnetic and soft. Chlorite, s	serpentine and)16	70.00	71.00	1.00	-	-		0.887				
		talc alteration throughout. Numerous serpentin	e stringers)17	71.00	71.00	0.00				0.002				
		throughout. Many of the quartz/carb/felds string exhibit contorting and folding as well as hematiz 61 and 63m. A few hematized intermediate dik unit between 52.70 and 63.15m and are broken The last 2.2m from approx 69.70m the rock gra more and more carbonate altered. A grey carb very pervasive by 70.30 and the presence of fu sericite begins at 71.46m. Fine sulphides are a 71.46m as well in the form of pyrite and arseno 50.30 - 50.77m: fault zone at 45 degrees tca	gers and veinlets zation between tes intrude the n out below. Idually becomes onate becomes chsite and appearing at pyrite.	М		018	71.00	71.98	0.98	0.5	tr		0.121				
		-angular gravel type material as well as some re gouge that hasn't washed away	emnant talcy														

OGGED) BY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZONE	E: South 2	Zone		HOLE N	10.: OG	15-038		Page 4 of 5
METE	RAGE		ROCK	Alt'n			SAMP	LES					ASS	AYS	
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t)	Pt (g/t) Au	ı (g/t) Cu (%)	Ni (%)	Co (%) Zn (%) Ag (p
		52.70 - 53.43m: intermediate dike at 50 degrees tca -sharp contacts with very fine black chill margins -approx 50% mafics and 50% hematized feldspar -deep red colouration -disseminated pyrite of 0.25% over last 15cm -1cm quartz-tourmaline veinlet at 53.37m													
		55.23 - 55.84m: intermediate dike at 45 degrees tca -similar to above -very fine trace pyrite -2-3cm black chill margins													
		55.95 - 56.99m: intermediate dike -lower contact at 70 degrees and upper at 45 degrees tca -chill margins -red/grey colouration -slightly finer-grained and heavily cut by white quartz/carb- tourmaline stringers and veinlets to 1cm -1.5% disseminated blebs of pyrite to 1mm in diameter													
		59.38 - 59.52m: intermediate dike at 50 degrees tca													
		62.89 - 63.13m: intermediate dike -lower contact at 80 degrees and upper at 25 degrees tca													
71.98	74.98	MINERALIZED ZONE	MIN		019	71.98	72.98	1.00	tr	<0.5			1.073		
71.00	7 1.00		MIN		020	72.98	73.98	1.00	tr	tr			0.195		
		Well altered zone consisting of very fine carbonate as well as	MIN		021	73.98	74.98	1.00	10	2			5.673		
		more localized albitization with patchy sericite banded and wisps. The unit starts off as a quartz flooding and sericite banded section for 12cm (2% arsenopyrite with 0.5% pyrite) before becoming a very fine olive green carb altered section with weak albitization and minor grey quartz stringers. Evidence of thin white extensional fractures throughout filled with quartz.	Standard		022	74.98	74.98	0.00					1.359		

LOGGED	BY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZON	E: South 2	Zone		HOLE NO.: OG15-03	8	Page	5 of 5
METER	RAGE		ROCK	Alt'n			SAM	PLES				ASSAYS		
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)	Cu (%) Ni ((%) Co (%	%) Zn (%) Ag (ppm)
		This section continues to 74m hosting weak mineralization with patchy increases to 3% pyrite and arsenopyrite. From 74 to 74.98m is a heavily mineralized and banded section of albitization with significant quartz flooding, thin bands of albite and grey carb. Thin grey quartz flooding is associated with the alteration all intruded by late white quartz. Approx 10% with another 2% arsenopyrite.												
		NOTE: Driller notes 8" seam at the 74m block but actually 0.5m is missing between 74 and 75m.												
		VISIBLE GOLD located on a slip plane at the 72m mark.												
74.98	76.95	CARBONATE ZONE	CARB		023	74.98	75.98	1.00	-	-	0.023			
		Altered ultramafics to olive green to honey/beige carbonate that has been weakly banded/brecciated by thin grey quartz stringers and knots. Trace mineralization at best. Lower contact sharp at 53 degrees tca but contains 1cm of rusty gouge.	CARB		024	75.98	76.95	0.97	-	-	0.029			
76.95	94.40	PORPHYRY	POR		025	76.95	77.95	1.00	-	-	0.299			
		Massive unit of medium-grained massive porphyry consisting of 60% grey quartz, 49% anhedral white feldspar phenocrysts and less than 1% black hornblende. Epidotization has caused a greenish hue to the unit. Cut by occasional semi-transparent to white quartz veinlets. Trace pyrite at best. End of Hole												

PROPERTY: Ogden	CLAIM NO.:	HR1008			DOWNHOLE SURVEY METHOD: EZ Shot	REMARKS: Drilling on section 780W to test for mineralization below
HOLE NO.: OG15-039	LENGTH (m):	159.0	CORE SIZE:	NQ	DOWNHOLE SURVEY BY: Drillers	historic drilling.
COORD SYSTEM: UTM Nad 83	NORTHING:	5363028.000	EASTING:	474676.000	COLLAR SURVEY BY: Don (GPS)	
SECTION: 780W	ZONE:	South Zone	ELEVATION (m)	298.000	DRILLING COMPANY: Norex	
COLLAR ORIENTATION (AZIMUTH/DIP)	PLANNED:	360. / -47.0	SURVEYED:	1.000 / -1.000	DATE LOGGED: Jun. 17, 2015 TO Jul. 18, 2015	Core Storage: Norex compound
HOLE STARTED: June 16, 2015	HOLE FINISHED	: June 17, 2015	MAG:	10.75º w	LOGGED BY: D.Heerema	Page 1 of 7

METE	RAGE		ROCK	Alt'n			SAMP	LES				ASS	AYS		
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t)	Au (g/t) Cu (%) Ni (%)	Co (%) Zn (%	Ag (ppm)
0.00	24.60	OVERBURDEN			· ·		-			-	•	• •		•	
04.00	57.00		AND		001	24.60	25.60	1.00	4.0			0.000			
24.60	57.00	ANDESITE	AND		001	24.60	25.60	1.00	tr tr	-		0.008			
		Not a homogenous unit, but a fairly consistent mineralogy of	AND		002	25.60	27.60	1.00	tr			0.002			
		fine feldspar and chlorite causing a grey/green colouration.	AND		003	41.00	42.00	1.00	tr	-		0.007			
		Grain size is generally very fine with local areas of slightly	AND		005	42.00	43.00	1.00	tr	-		0.002			
		coarser material and more massive texture. Coarser portion	AND		006	43.00	44.00	1.00	tr	-		0.011			
		present from 32.90 to 41.70m where the original texturing is	AND		007	44.00	45.00	1.00	tr	-		0.005			
		destroyed by increased foliation. Unit as a whole is cross-cut by	AND		008	45.00	46.00	1.00	tr	-		0.035			
		this hairline qtz/carb stringers at random angles with local	AND		009	46.00	47.00	1.00	0.25	-		0.025			
		silicification. Unit is well fractured with local rust and hematite	AND		010	47.00	48.00	1.00	tr	-		0.002			
		staining.	AND		011	48.00	49.00	1.00	tr	-		0.010			
		24.60 to 32.90m is a greyer section overall, fine-grained and	AND		012	49.00	50.00	1.00	tr	-		0.025			
		foliated at 40 degrees tca. Upper section to 24.60m has been	AND		013	50.00	51.00	1.00	tr	-		0.007			
		intruded by narrow 1-4cm quartz veinlets that has associated	Blank		014	51.00	51.00	0.00				0.002			
		alteration and pyrite mineralization. Presence of minor sericite	AND		015	51.00	52.00	1.00	tr	-		0.002			
		as well as strong chlorite.	AND		016	52.00	53.00	1.00	tr	-		0.002			
		.	AND		017	53.00	54.00	1.00	tr	-		0.002			
		32.90 to 41.70m is a slightly coarser and more massive portion	AND		018	54.00	55.00	1.00	tr	-		0.051			
I		of the flows, with areas of what look like more felsic bombs.	AND		019	55.00	56.00	1.00	-	-		0.002			
		Trace disseminated pyrite mineralization within these small	AND		020	56.00	57.00	1.00	-	-		0.002			

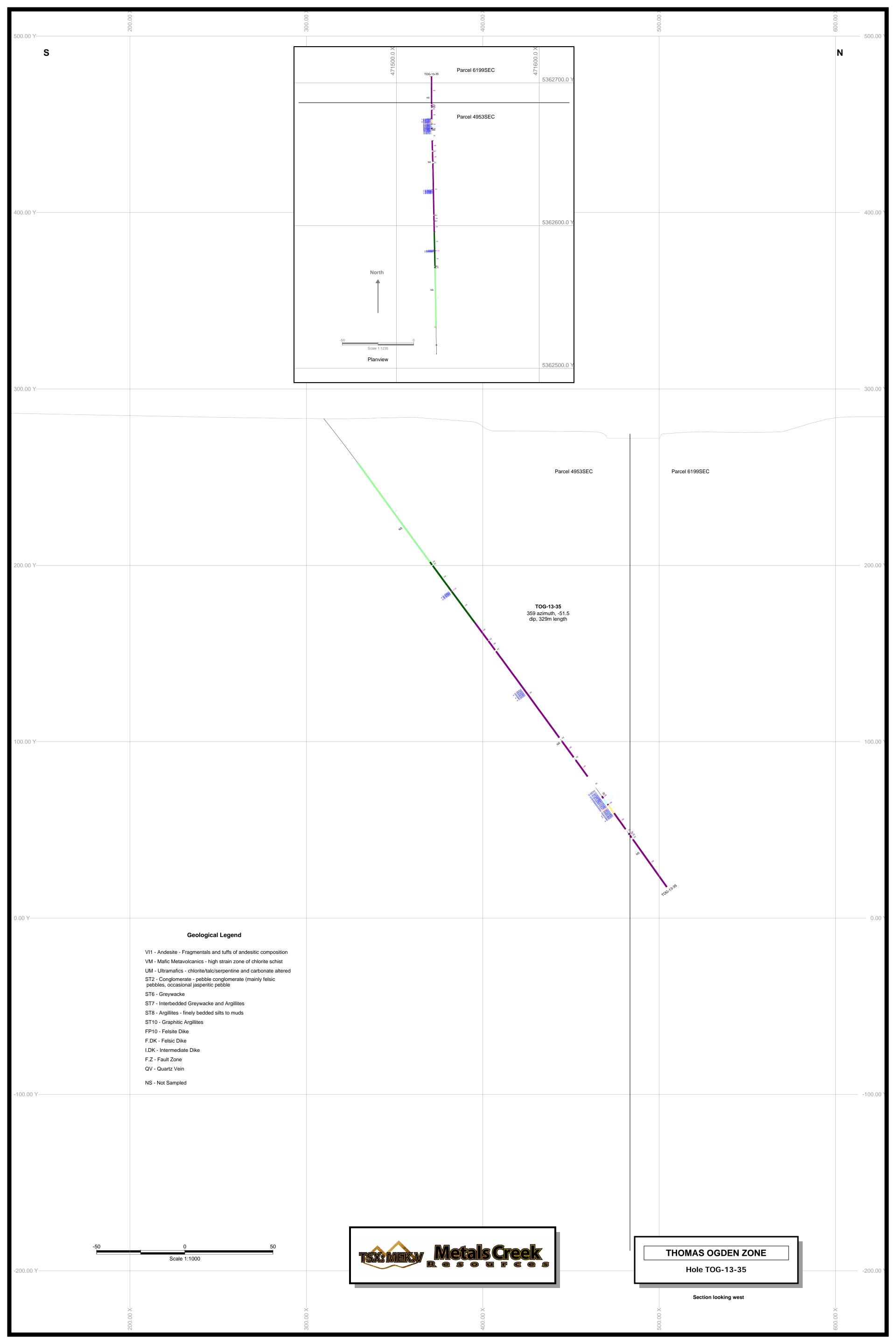
LOGGED BY: D.	Heerema	SIGNATURE:	F	PROPERTY: Ogd	en		ZON	E: South 2	Zone		HOLE N	IO.: OG15-0	039	Page 2 of 7
METERAGE			ROCK	Alt'n				PLES					ASSAYS	
FROM TO] L	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t)	Pt (g/t) Au (g/t	:) Cu (%) Ni ((%) Co (%) Zn (%) Ag (pp
	bomb-like features													
	well as silicification cau majority of this section of hair thin quartz/carb brecciation re-cementer material hosting sub-an mm to cm scale. This s quartz/carb stringers wi rock especially from 51 randomly oriented but f at steep ca and show e Occasional semi-transp found over upper 4m th minor sericite alteration		A result c om ountry are a, are matite and ut from											
	30 degrees tca -irregular and wavy con -beige in colour with fin halos -dikelets pre-date cross	8 - 46.75m: intermediate dikes at a ntacts e chill margins and fine bleached a s-cutting quartz/carb stringers s 2 and 4cm respectively												

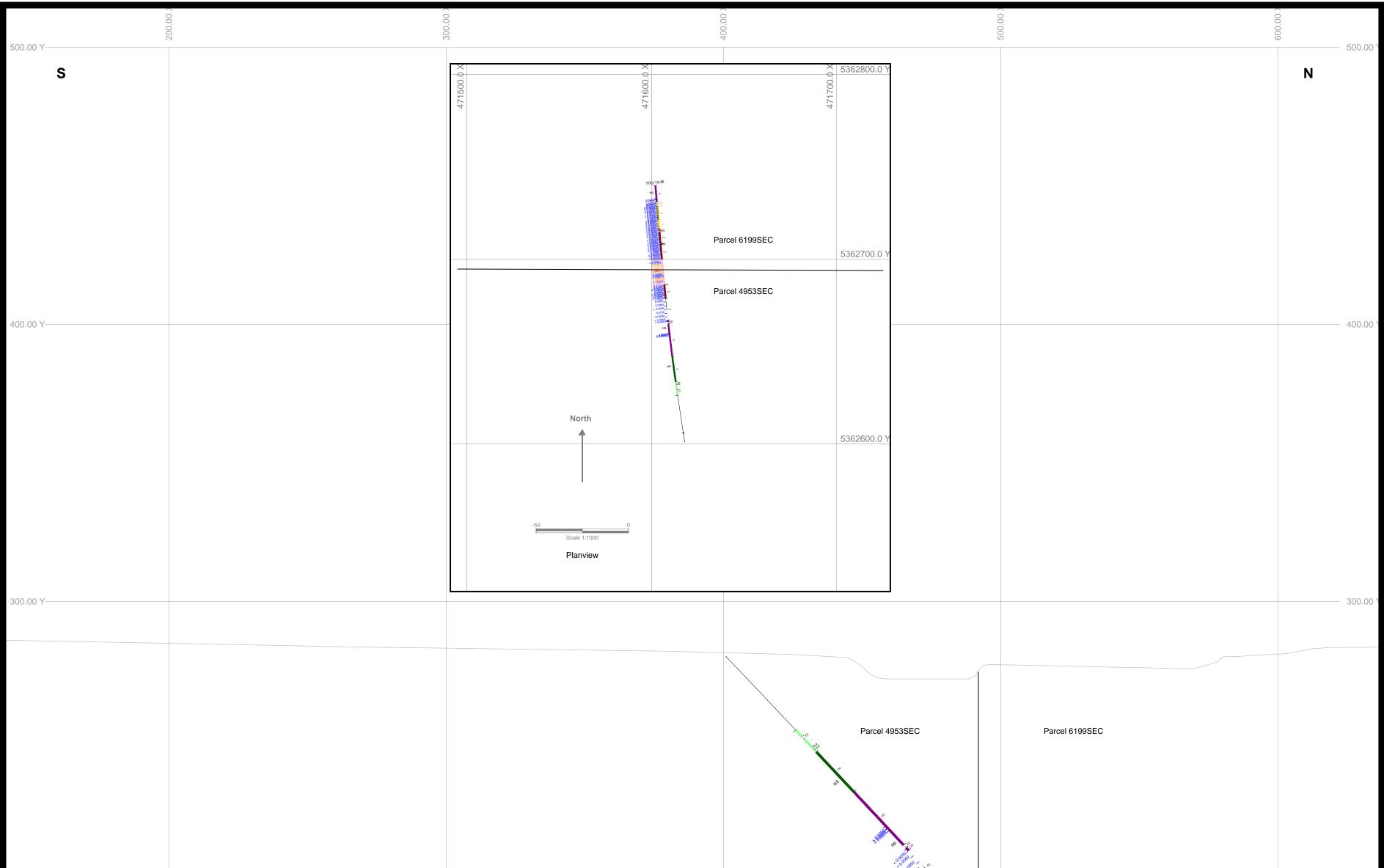
LOGGED BY: D	Heerema SIGNATURE:		PROPERTY: Ogden			ZON	E: South Z	lone		HOLE NO.: OG15-039 Page 3 of 7
METERAGE		ROCK	Alt'n			SAM	PLES			ASSAYS
FROM TO	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm
57.00 72.20	AMYGDULOIDAL BASALT	AMG B		021	57.00	58.50	1.50	-		0.002
	Fine-grained, green chloritic assemblage with a variable content	AMG B		022	58.50	60.00	1.50	-		0.002
	of feldspar filled vesicles. The amygdules vary from trace to	AMG B		023	60.00	61.50	1.50	-		0.002
	20% locally and generally white to cream in colour. The unit is	AMG B		024	61.50	63.00	1.50	tr		0.002
	well foliated ranging from 25 - 40 degrees tca. Well fractured	AMG B		025	63.00	64.50	1.50	tr		0.002
	unit that has been intruded by late quartz veinlets locally with	Standard		026	64.50	64.50	0.00			1.465
	weak pyrite mineralization. Occasional shear healed by	AMG B		027	64.50	66.00	1.50	2		0.042
	quartz/chlorite and 30% fine blebby pyrite.	AMG B		028	70.20	71.20	1.00	2		0.017
	quartz/onionito and cove into blobby pyrite.	AMG B		029	71.20	72.20	1.00	tr		0.010
	64.50 - 64.65m: quartz veining at 35 deg tca with 0.25% pyrite									
	65.85m: 1cm pyritic shear with 30% pyrite -cross-cut by barren white quartz stringer									
	70.45 - 70.80m: pyritic/chloritic shear at 5 degrees tca -approx 3cm true width hosting 20% blebby pyrite									
72.20 73.30	MINERALIZED ZONE	MIN		030	72.20	73.30	1.10	8	2	2.956
	Buff grey/beige unit of bleaching and albitization that has been intruded weakly by late quartz veinlets. A weak brecciation of the alteration seen locally by late quartz features. The unit host significant pyrite and arsenopyrite mineralization in the order of approx 10% at a 4:1 ratio respectively. Well foliated at approx 35 degrees to ca with evidence of folding.									
73.30 76.10	AMYGDULOIDAL BASALT	AMG B		031	73.30	74.80	1.50	tr		0.021
	Similar to unit above, but intruded more by late erratic white quartz/carb stringers. Trace pyrite at best.	AMG B		032	74.80	76.10	1.30	tr		0.006

LOGGED	BY: D.	Heerema SIGNATURE:		PROPERTY: Ogden			ZONI	E: South Z	Zone		HOLE NO.: OG15-039 Page 4 of 7
METE	RAGE		ROCK	Alt'n			SAMF	PLES			ASSAYS
FROM	то	DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm)
76.10	88.18	ANDESITE	AND		033	76.10	76.58	0.48	<0.5	tr	0.550
			AND		034	76.58	77.58	1.00	-		0.043
		Slightly darker and more mafic unit that above with a deeper green colouration. Chlorite alteration prominent throughout with areas of silicification and others of weak albitization of not fully developed alteration/mineralization zones. Moderate to strong white hairline quartz/carb stringers with local areas as high as 10%. Numerous larger 0.5 to 1.5cm quartz/ black chlorite veinlets cross-cutting unit also that host minor pyrite mineralization.	AND		035	87.18	88.18	1.00	tr	tr	0.016
		Upper 25cm to 76.35m is broken core with semi-transparent quartz knotting and strong rusting of the core. Ground water penetration perhaps.									
		76.35 - 76.58m: small mineralized/alteration zone consisting of irregular and folded quartz/black chlorite veinlets and stringers with associated silicification and minor albitization. Pyrite and trace arsenopyrite present at 0.5%.									
		77.25 - 77.36m: fault at 48 degrees tca -fine gravel type material within									
		Last 2.12m is silicified and silicification increases in intensity downhole towards adjacent alteration zone.									
88.18	92.66	MINERALIZED ZONE	MIN		036	88.18	89.20	1.02	5	1	3.630
			Blank		037	89.20	89.20	0.00			0.002
		This alteration/mineralized zone is not homogenous throughout;	MIN		038	89.20	90.50	1.30	<0.5	tr	0.383
		in fact it has patches of little alteration and mineralization. Albitization and bleaching is common in the strongest areas of	MIN		039	90.50	91.58	1.08	4	1	3.673
		alteration and mineralization. These zones are buff grey/beige colour and intruded/brecciated by semi-transparent to	MIN		040	91.58	92.66	1.08	4	1	10.386

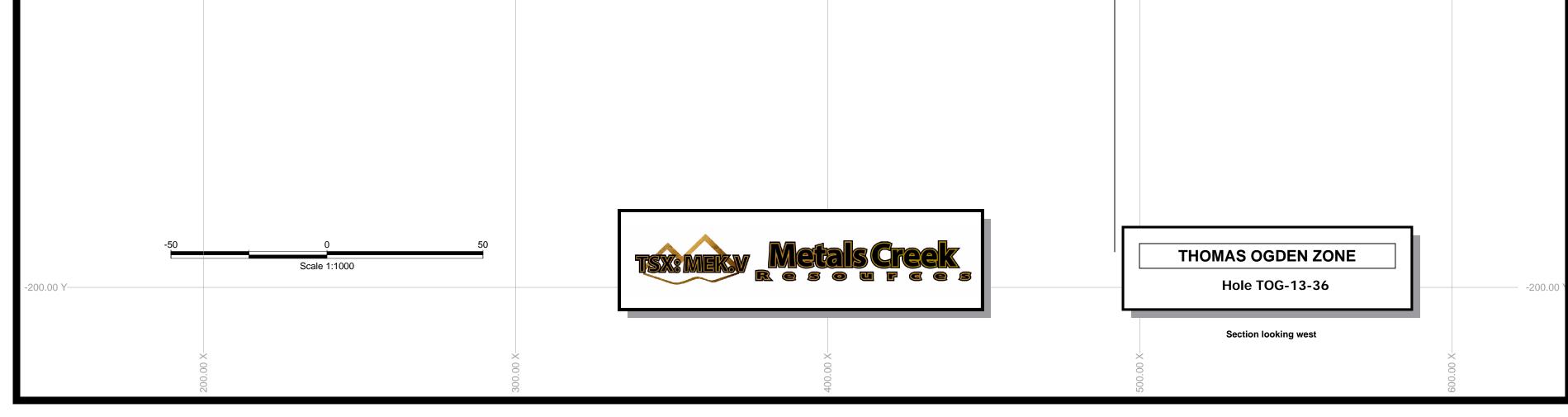
GGED BY: [D.Heerema	SIGNATURE:		PROPERTY: Ogden			ZONE	E: South 2	Zone		HOLE NO.: OG15-039	Page 5 of 7
METERAGE			ROCK	Alt'n			SAMP	LES			ASSA	YS
ROM TO		DESCRIPTION	CODE		No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%)	Ni (%) Co (%) Zn (%) Ag
	abundance in	uartz. The pyrite and arsenopyrite is heaviest in the areas of strongest albite and quartz flooding. found is quartz veinlets.										
		m: section of intense albitization and quartz ng 5-6% pyrite and 0.5-1.0% arsenopyrite.										
		m: foliated and silicified section; mainly chloritic ite and a few narrow mineralized quartz veinlets										
	transparent/gr banded. Folia with a slight w strong with ad	Sm: section of intense albite and thin semi- rey quartz veining. Well foliated and essentially ation is very shallow tca; essentially parallel tca aviness. Alteration contacts are moderate to jacent host rock. Well mineralized at approx 4- 1.0% arsenopyrite.										
2.66 116.2	0 ANDESITE		AND		041	92.66	94.00	1.34	tr	-	0.081	
2.00 110.2		-	FLT		042	94.00	95.00	1.00	_	-	2.281	
		c fine-grained andesite with local patches of	AND		043	95.00	95.97	0.97	tr	tr	0.124	
		ight represent flow top breccias. The clasts tend	MIN		044	95.97	96.47	0.50	6	1	3.295	
		to sub-angular within a fine groundmass of fine	AND		045	96.47	98.00	1.53	tr	-	0.020	
	from 40 to 70	cementation. The unit is well foliated anywhere degrees tca. Thin quartz/carb stringers cross the n angles tca. Local areas of fault structures with sty staining.	AND		046	115.20	116.20	1.00	tr	-	0.025	
	93.94 - 95.27r 0.70m.	n: brittle fault with strong fe-carb over the last										
		n: mineralized/alteration zone eration with quartz stringers and 6-7% fine pyrite +										

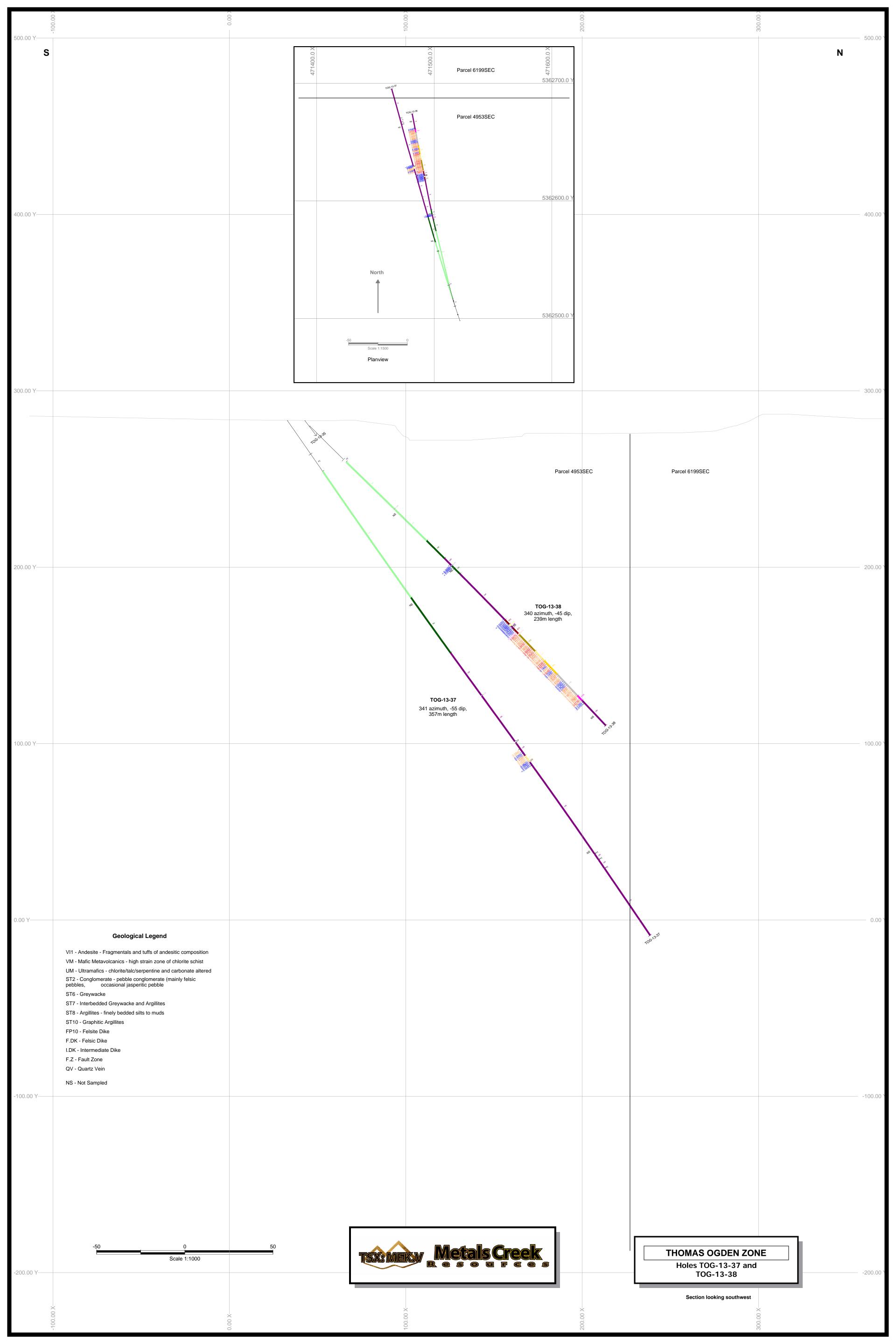
LOGGED BY: D.Heerema METERAGE		Heerema SIGNATURE:	PROPERTY: Ogden				ZON	E: South 2	Zone		HOLE NO .: OG15-039	Page 6 of 7
			ROCK			SAMF	PLES			ASSAYS		
FROM	то	• DESCRIPTION	CODE	N	lo.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t)	Cu (%) Ni (%) Co (%) Zn (%) Ag (ppm)
		100.50 - 101.96m: brittle fault										
		-small 1-3cm angular shards of rock remain										
		104.05 - 104.60m: brittle fault										
		-10 upper 10cm is gravel type material										
		-lower 45cm is fe-carb and thin remnant quartz stringers										
116.20	117 55	MINERALIZED ZONE	MIN	04	47	116.20	117.55	1.35	4	1	1.486	
110.20	117.00										1.100	
		Similar to the mineralized zones above, this zone also is albite										
		altered with associated quartz stringers and flooding causing a grey/beige buff colour. Patchy alteration locally with well										
		defined contacts with chlorite rich host rocks. From 116.60 to										
		117.55m is the strongest alteration and mineralization.										
		Mineralization consists of fine pyrite and arsenopyrite up to										
		approx 5%.										
		Hairline fault at 116.87m that shows evidence of movement										
		sinistral (left-lateral) by the truncation and movement of a quartz										
		vein. Trace bleb of cpy in quartz.										
117.55	146.30	ANDESITE	AND	0	48	117.55	118.55	1.00	tr		0.013	
117.55		Relatively massive and unfoliated unit below 119m. The unit is approx 50:50 chlorite and feldspar. Relatively homogenous as	AND			118.55	119.55	1.00	u		0.013	
			AND			119.55	120.55	1.00	-	-	0.012	
			AND			145.30	146.30	1.00	tr	-	0.100	
		well with thin randomly oriented quartz/carb stringers										
		throughout. Local areas of increases secondary quartz structures in the form of 1-2cm veinlets with associated black										
		chlorite. Trace pyrite at best and unit much more competent.										
		118.85 - 119.10m: area of moderate albitization with 1-2% fine										
		pyrite + arsenopyrite										

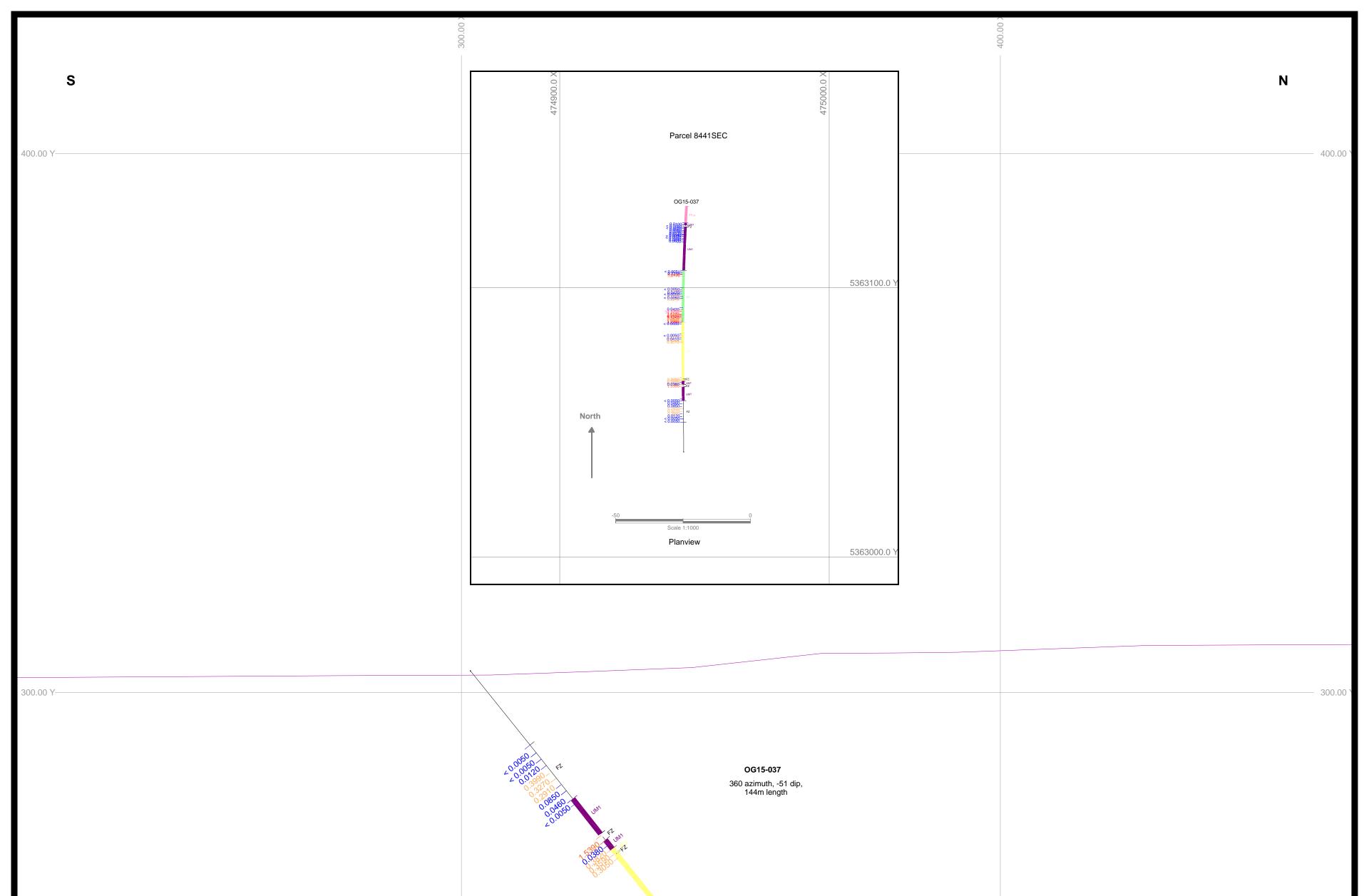

METALS CREEK RESOURCES


LOGGED BY: D.Heerema SIGNATURE:		PROPERTY: Ogden			ZONE: South Zone					HOLE NO.: OG15-039 Page 7 of 7			
METERAGE			ROCK	Alt'n			SAMPLES				ASSAYS		
FROM	то	DESCRIPTION	CODE	1	No.	FROM	то	LENGTH	%Py	%Ars	Pd (g/t) Pt (g/t) Au (g/t) Cu (%) Ni (%) Co (%) Zn (%) Ag (p		
		138.00 - 138.22m: area of small scale ladder veining at 85 degrees tca											
146.30	150.28	 MINERALIZED ZONE Unit of immense albitization, grey carbonate alteration and fine white/grey quartz flooding. The unit for the most part is well banded by albite and grey carb bands that locally have been disrupted and even weakly brecciated by the quartz flooding. Banding generally at 65-70 degrees tca. The highly altered areas contain approx 15% quartz, 45% grey/brown carb and 35% albite and 5% pyrite + arsenopyrite. The stronger alteration hosts the more significant sulphides. Slightly coarser sulphides than mineralized zones up hole. Arsenopyrite needles to 2.5mm. Portions of this unit are not nearly as altered and mineralized as the strongest material. Last 1.15m is mainly carb alteration with trace to 0.25% pyrite. 	MIN		052	146.30	147.30	1.00	7	1	4.203		
			MIN		053	147.30	148.30	1.00	2	0.5	0.869		
			MIN		054	148.30	149.30	1.00	4	0.5	2.152		
			MIN		055	149.30	150.28	0.98	0.25	tr	2.204		
150.28	159.00	ANDESITE	AND		056	150.28	151.28	1.00	-	-	0.334		
		Massive and homogenous unit of green chloritic andesite with few thin quartz/carb stringers.											
		End of Hole											

Printed: Friday, October 02, 2015

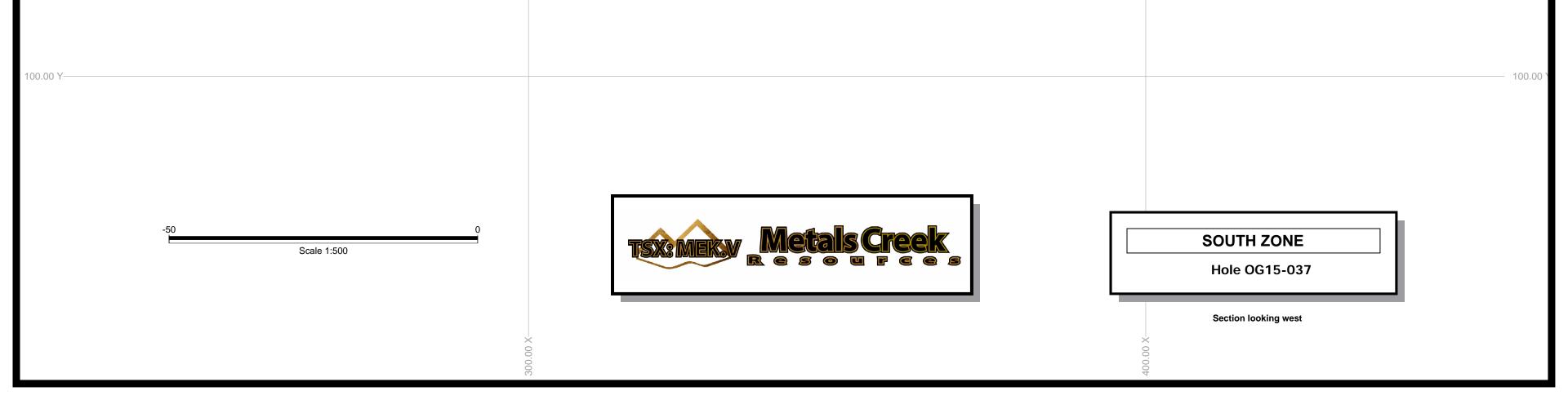

DRILL SECTIONS


APPENDIX II



200.00 X		Loopen as a constant		200.00.1
200.00 Y		TOG-13-36 351 azimuth, -46 dip, 204m length	Too 1200	200.00
100.00 Y				100.00 \
0.00 Y				— 0.00 \
0.00 1				0.00
	Geological Legend VI1 - Andesite - Fragmentals and tuffs of andesitic composition VM - Mafic Metavolcanics - high strain zone of chlorite schist UM - Ultramafics - chlorite/talc/serpentine and carbonate altered ST2 - Conglomerate - pebble conglomerate (mainly felsic pebbles, occasional jasperitic pebble ST6 - Greywacke ST7 - Interbedded Greywacke and Argillites ST8 - Argillites - finely bedded silts to muds ST10 - Graphitic Argillites FP10 - Felsite Dike I.DK - Intermediate Dike F.Z - Fault Zone QV - Quartz Vein NS - Not Sampled			
-100.00 Y				-100.00

E BARE LA BARE

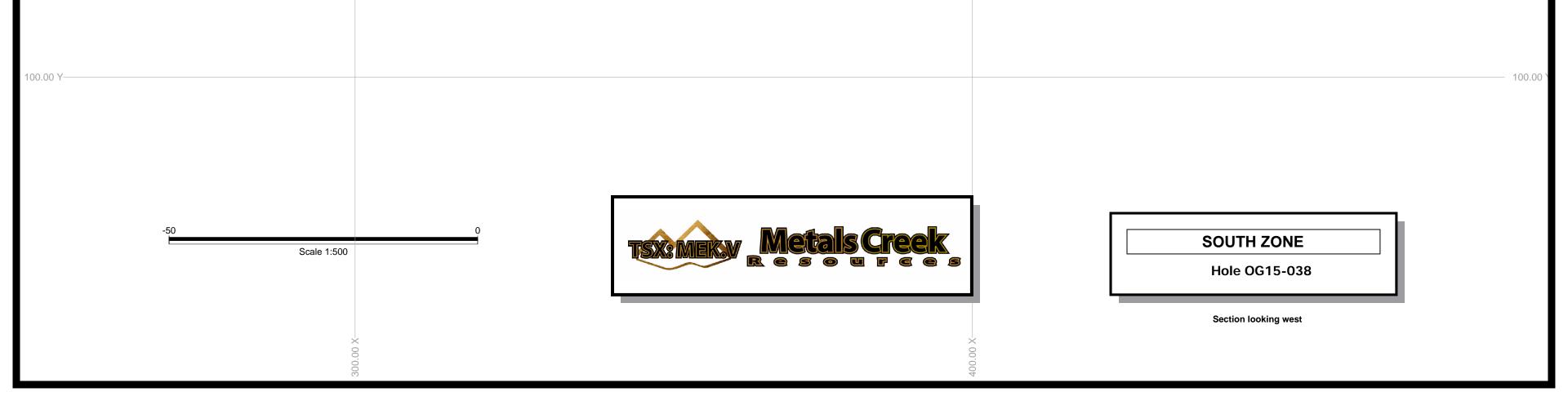

0615-031

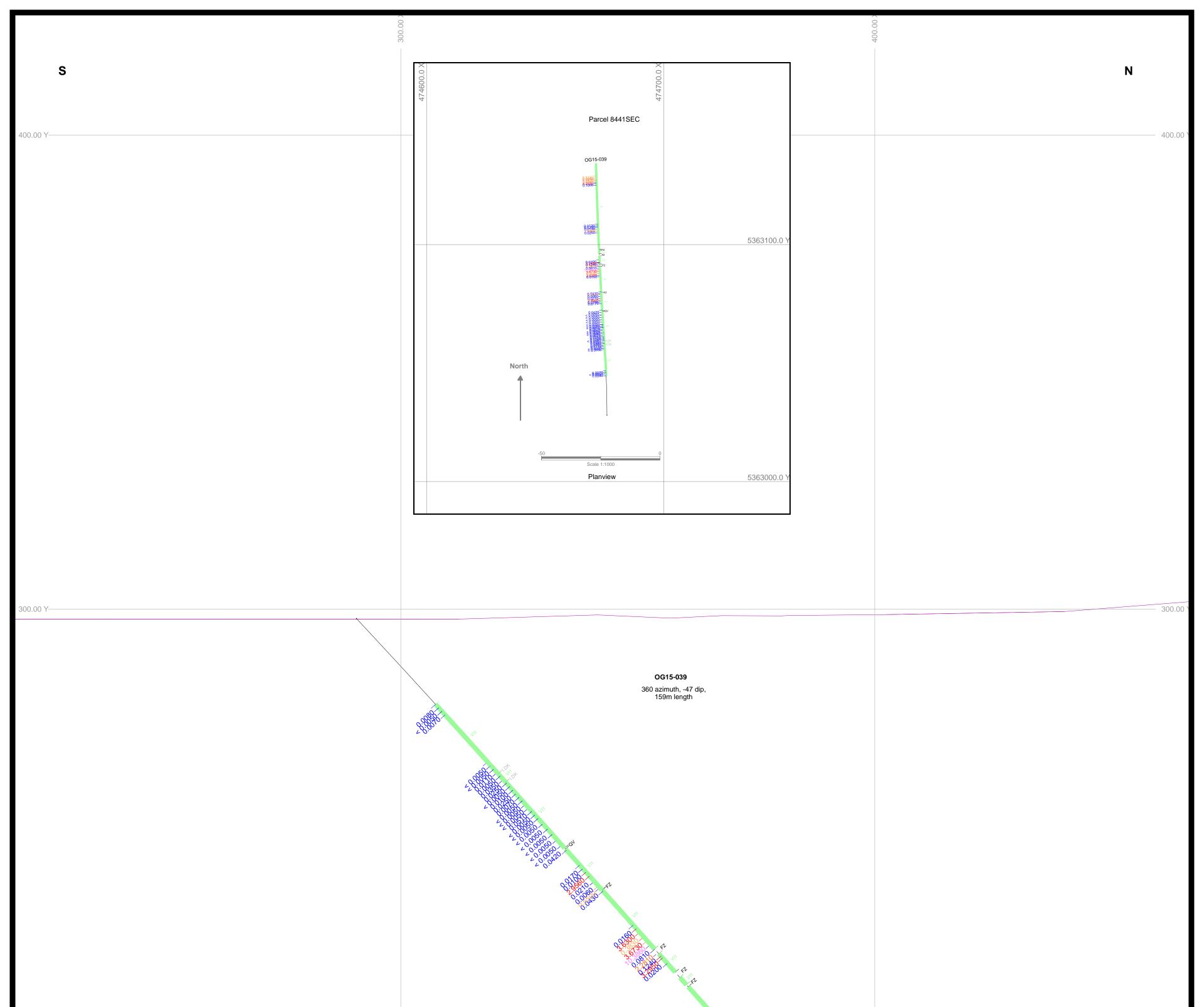
200.00

Geological Legend

200.00 Y-

VI1 - Andesite - Fragmentals and tuffs of andesitic composition
VM - Mafic Metavolcanics - high strain zone of chlorite schist
UM - Ultramafics - chlorite/talc/serpentine and carbonate altered
ST2 - Conglomerate - pebble conglomerate (mainly felsic pebbles, occasional jasperitic pebble
ST6 - Greywacke
ST7 - Interbedded Greywacke and Argillites
ST8 - Argillites - finely bedded silts to muds
ST10 - Graphitic Argillites
FP10 - Felsite Dike
F.DK - Felsic Dike
I.DK - Intermediate Dike
F.Z - Fault Zone
QV - Quartz Vein
NS - Not Sampled

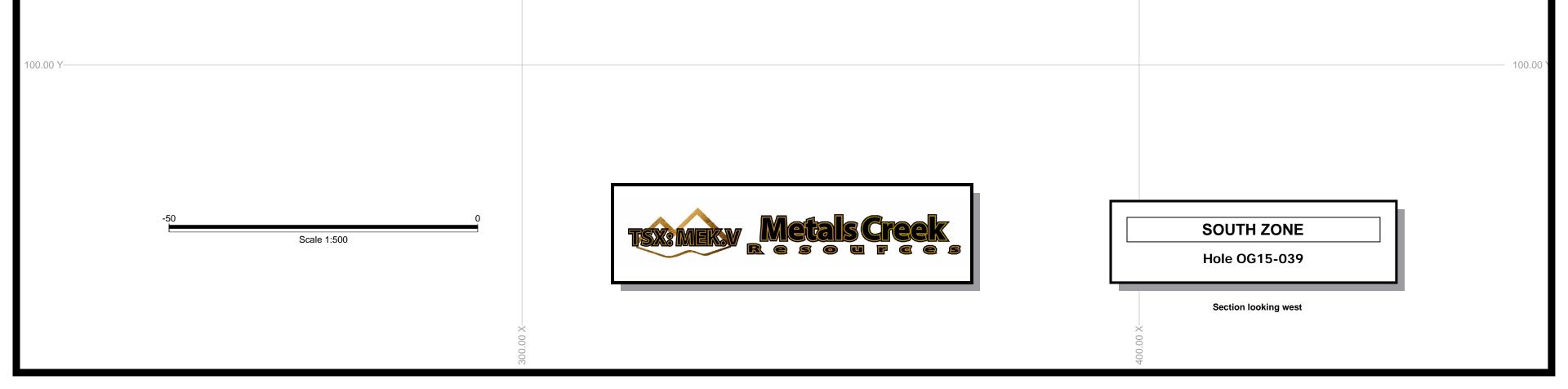

0G15-038


200.00

Geological Legend

200.00 Y-

VI1 - Andesite - Fragmentals and tuffs of andesitic composition
VM - Mafic Metavolcanics - high strain zone of chlorite schist
UM - Ultramafics - chlorite/talc/serpentine and carbonate altered
ST2 - Conglomerate - pebble conglomerate (mainly felsic pebbles, occasional jasperitic pebble
ST6 - Greywacke
ST7 - Interbedded Greywacke and Argillites
ST8 - Argillites - finely bedded silts to muds
ST10 - Graphitic Argillites
FP10 - Felsite Dike
F.DK - Felsic Dike
I.DK - Intermediate Dike
F.Z - Fault Zone
QV - Quartz Vein
NS - Not Sampled

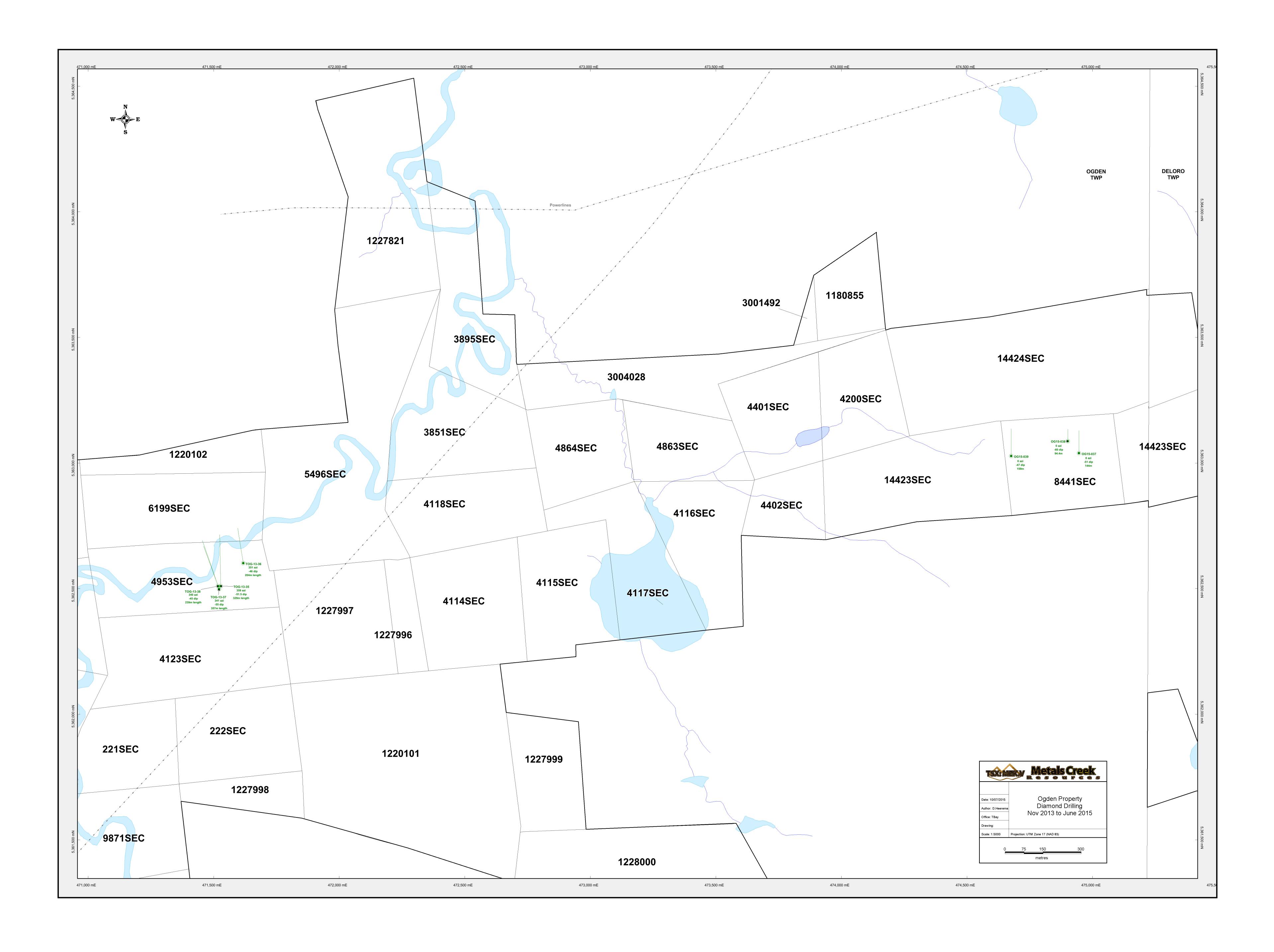


Geological Legend

VI1 - Andesite - Fragmentals and tuffs of andesitic composition
VM - Mafic Metavolcanics - high strain zone of chlorite schist
UM - Ultramafics - chlorite/talc/serpentine and carbonate altered
ST2 - Conglomerate - pebble conglomerate (mainly felsic pebbles, occasional jasperitic pebble
ST6 - Greywacke
ST7 - Interbedded Greywacke and Argillites
ST8 - Argillites - finely bedded silts to muds
ST10 - Graphitic Argillites
FP10 - Felsite Dike
F.DK - Felsic Dike
I.DK - Intermediate Dike
F.Z - Fault Zone
QV - Quartz Vein

NS - Not Sampled

200.00 Y-



200.00

OG15039

APPENDIX III

DRILL PLAN

APPENDIX IV

ASSAY CERTIFICATES

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 11/18/2013 Date Completed: 11/26/2013 Job #: 201342446 Reference: Sample #: 128

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
171169	TOG-13-35-001	<5	<0.001	<0.005	
171170	TOG-13-35-002	14	<0.001	0.014	
171171	TOG-13-35-003	<5	<0.001	<0.005	
171172	TOG-13-35-004	<5	<0.001	<0.005	
171173	TOG-13-35-005	10	<0.001	0.010	
171174	TOG-13-35-006	<5	<0.001	<0.005	
171175	TOG-13-35-007	14	<0.001	0.014	
171176	TOG-13-35-008	<5	<0.001	<0.005	
171177	TOG-13-35-009	7	<0.001	0.007	
171178	TOG-13-35-010	5	<0.001	0.005	
171179 Du	p TOG-13-35-010	<5	<0.001	<0.005	
171180	TOG-13-35-011	25	<0.001	0.025	
171181	TOG-13-35-012	126	0.004	0.126	
171182	TOG-13-35-013	3085	0.090	3.085	
171183	TOG-13-35-014	16	<0.001	0.016	
171184	TOG-13-35-015	144	0.004	0.144	
171185	TOG-13-35-016	49	0.001	0.049	
171186	TOG-13-35-017	9	<0.001	0.009	
171187	TOG-13-35-018	101	0.003	0.101	
171188	TOG-13-35-019	<5	<0.001	<0.005	
171189	TOG-13-35-020	26	<0.001	0.026	
171190 Du	p TOG-13-35-020	17	<0.001	0.017	
171191	TOG-13-35-021	39	0.001	0.039	
171192	TOG-13-35-022	149	0.004	0.149	
171193	TOG-13-35-023	296	0.009	0.296	
171194	TOG-13-35-024	8	<0.001	0.008	
171195	TOG-13-35-025	<5	<0.001	<0.005	
171196	TOG-13-35-026	<5	<0.001	<0.005	
171197	TOG-13-35-027	22	<0.001	0.022	
171198	TOG-13-35-028	10	<0.001	0.010	

PROCEDURE CODES: ALP1, ALFA1

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 11/18/2013 Date Completed: 11/26/2013 Job #: 201342446 Reference: Sample #: 128

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
171199	TOG-13-35-029	<5	<0.001	<0.005
171200	TOG-13-36-001	<5	<0.001	<0.005
171201 Dup	o TOG-13-36-001	<5	<0.001	<0.005
171202	TOG-13-36-002	<5	<0.001	<0.005
171203	TOG-13-36-003	<5	<0.001	<0.005
171204	TOG-13-36-004	<5	<0.001	<0.005
171205	TOG-13-36-005	<5	<0.001	<0.005
171206	TOG-13-36-006	<5	<0.001	<0.005
171207	TOG-13-36-007	13	<0.001	0.013
171208	TOG-13-36-008	<5	<0.001	<0.005
171209	TOG-13-36-009	86	0.002	0.086
171210	TOG-13-36-010	96	0.003	0.096
171211	TOG-13-36-011	<5	<0.001	<0.005
171212 Dup	o TOG-13-36-011	<5	<0.001	<0.005
171213	TOG-13-36-012	<5	<0.001	<0.005
171214	TOG-13-36-013	<5	<0.001	<0.005
171215	TOG-13-36-014	<5	<0.001	<0.005
171216	TOG-13-36-015	<5	<0.001	<0.005
171217	TOG-13-36-016	<5	<0.001	<0.005
171218	TOG-13-36-017	6	<0.001	0.006
171219	TOG-13-36-018	237	0.007	0.237
171220	TOG-13-36-019	<5	<0.001	<0.005
171221	TOG-13-36-020	<5	<0.001	<0.005
171222	TOG-13-36-021	23	<0.001	0.023
171223 Dup	o TOG-13-36-021	7	<0.001	0.007
171224	TOG-13-36-022	17	<0.001	0.017
171225	TOG-13-36-023	19918	0.581	19.918
171226	TOG-13-36-024	791	0.023	0.791
171227	TOG-13-36-025	153	0.004	0.153
171228	TOG-13-36-026	1679	0.049	1.679

PROCEDURE CODES: ALP1, ALFA1

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 11/18/2013 Date Completed: 11/26/2013 Job #: 201342446 Reference: Sample #: 128

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
171229	TOG-13-36-027	683	0.020	0.683	
171230	TOG-13-36-028	766	0.022	0.766	
171231	TOG-13-36-029	877	0.026	0.877	
171232	TOG-13-36-030	46	0.001	0.046	
171233	TOG-13-36-031	7	<0.001	0.007	
171234 Re	ер TOG-13-36-031	<5	<0.001	<0.005	
171235	TOG-13-36-032	8	<0.001	0.008	
171236	TOG-13-36-033	538	0.016	0.538	
171237	TOG-13-36-034	1147	0.033	1.147	
171238	TOG-13-36-035	3086	0.090	3.086	
171239	TOG-13-36-036	264	0.008	0.264	
171240	TOG-13-36-037	<5	<0.001	<0.005	
171241	TOG-13-36-038	451	0.013	0.451	
171242	TOG-13-36-039	364	0.011	0.364	
171243	TOG-13-36-040	478	0.014	0.478	
171244	TOG-13-36-041	665	0.019	0.665	
171245 Du	ир TOG-13-36-041	570	0.017	0.570	
171246	TOG-13-36-042	43	0.001	0.043	
171247	TOG-13-36-043	<5	<0.001	<0.005	
171248	TOG-13-36-044	432	0.013	0.432	
171249	TOG-13-36-045	40	0.001	0.040	
171250	TOG-13-36-046	<5	<0.001	<0.005	
171251	TOG-13-36-047	17	<0.001	0.017	
171252	TOG-13-36-048	<5	<0.001	<0.005	
171253	TOG-13-36-049	<5	<0.001	<0.005	
171254	TOG-13-36-050	2722	0.079	2.722	
171255	TOG-13-36-051	14	<0.001	0.014	
171256 Du	ıp TOG-13-36-051	10	<0.001	0.010	
171257	TOG-13-36-052	8	<0.001	0.008	
171258	TOG-13-36-053	<5	<0.001	<0.005	

PROCEDURE CODES: ALP1, ALFA1

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 11/18/2013 Date Completed: 11/26/2013 Job #: 201342446 Reference: Sample #: 128

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
171259	TOG-13-36-054	<5	<0.001	<0.005
171260	TOG-13-36-055	<5	<0.001	<0.005
171261	TOG-13-36-056	<5	<0.001	<0.005
171262	TOG-13-36-057	<5	<0.001	<0.005
171263	TOG-13-36-058	<5	<0.001	<0.005
171264	TOG-13-36-059	<5	<0.001	<0.005
171265	TOG-13-36-060	<5	<0.001	<0.005
171266	TOG-13-36-061	6	<0.001	0.006
171267 Dup	o TOG-13-36-061	10	<0.001	0.010
171268	TOG-13-36-062	<5	<0.001	<0.005
171269	TOG-13-36-063	<5	<0.001	<0.005
171270	TOG-13-36-064	87	0.003	0.087
171271	TOG-13-36-065	<5	<0.001	<0.005
171272	TOG-13-36-066	<5	<0.001	<0.005
171273	TOG-13-36-067	<5	<0.001	<0.005
171274	TOG-13-36-068	<5	<0.001	<0.005
171275	TOG-13-36-069	<5	<0.001	<0.005
171276	TOG-13-36-070	<5	<0.001	<0.005
171277	TOG-13-36-071	<5	<0.001	<0.005
171278 Dup	o TOG-13-36-071	<5	<0.001	<0.005
171279	TOG-13-36-072	<5	<0.001	<0.005
171280	TOG-13-36-073	<5	<0.001	<0.005
171281	TOG-13-36-074	<5	<0.001	<0.005
171282	TOG-13-36-075	<5	<0.001	<0.005
171283	TOG-13-36-076	<5	<0.001	<0.005
171284	TOG-13-36-077	<5	<0.001	<0.005
171285	TOG-13-36-078	<5	<0.001	<0.005
171286	TOG-13-36-079	<5	<0.001	<0.005
171287	TOG-13-36-080	<5	<0.001	<0.005
171288	TOG-13-36-081	7	<0.001	0.007

PROCEDURE CODES: ALP1, ALFA1

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 11/18/2013 Date Completed: 11/26/2013 Job #: 201342446 Reference: Sample #: 128

Acc #	Client ID	Au	Au	Au	
		ppb	oz/t	g/t (ppm)	
171289 Dup	o TOG-13-36-081	<5	<0.001	<0.005	
171290	TOG-13-36-082	1403	0.041	1.403	
171291	TOG-13-36-083	9	<0.001	0.009	
171292	TOG-13-36-084	<5	<0.001	<0.005	
171293	TOG-13-36-085	<5	<0.001	<0.005	
171294	TOG-13-36-086	21	<0.001	0.021	
171295	TOG-13-36-087	<5	<0.001	<0.005	
171296	TOG-13-36-088	<5	<0.001	<0.005	
171297	TOG-13-36-089	<5	<0.001	<0.005	
171298	TOG-13-36-090	<5	<0.001	<0.005	
171299	TOG-13-36-091	<5	<0.001	<0.005	
171300 Rep	o TOG-13-36-091	<5	<0.001	<0.005	
171301	TOG-13-36-092	<5	<0.001	<0.005	
171302	TOG-13-36-093	131	0.004	0.131	
171303	TOG-13-36-094	40	0.001	0.040	
171304	TOG-13-36-095	52	0.002	0.052	
171305	TOG-13-36-096	<5	<0.001	<0.005	
171306	TOG-13-36-097	289	0.008	0.289	
171307	TOG-13-36-098	167	0.005	0.167	
171308	TOG-13-36-099	84	0.002	0.084	

PROCEDURE CODES: ALP1, ALFA1

Certified By: Dr. David Brown, VP Quality

The results included on this report relate only to the items tested.

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571

assay@accurassay.com

Thursday, December 19, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 12/11/2013 Date Completed: 12/19/2013 Job #: 201342655 Reference: 201342445 42446 Sample #: 24

Acc #	Client ID	Au Grav oz/t	Au Grav g/t(ppm)
184435	TOG-13-36-023	0.439	15.040
184436	TOG-13-36-024	<0.029	<1.000
184437	TOG-13-36-025	<0.029	<1.000
184438	TOG-13-36-026	0.052	1.795
184439	TOG-13-36-027	<0.029	<1.000
184440	TOG-13-36-028	Insufficient Sample	
184441	TOG-13-36-029	0.033	1.138
184442	TOG-13-36-033	<0.029	<1.000
184443	TOG-13-36-034	<0.029	<1.000
184444	TOG-13-36-035	0.063	2.176
184445	TOG-13-36-036	<0.029	<1.000
184446	TOG-13-36-038	<0.029	<1.000
184447	TOG-13-36-039	<0.029	<1.000
184448	TOG-13-36-040	<0.029	<1.000
184449	TOG-13-36-041	<0.029	<1.000
184450	TOG-13-37-01	<0.029	<1.000
184451	TOG-13-37-02	<0.029	<1.000
184452	TOG-13-37-03	<0.029	<1.000
184453	TOG-13-37-04	<0.029	<1.000
184454	TOG-13-37-05	<0.029	<1.000

PROCEDURE CODES: ALFA7, ALP1

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Tel: (807) 626-1630 www.accu Fax: (807) 622-7571 assay@a

www.accurassay.com assay@accurassay.com

Thursday, December 19, 2013

Final Certificate

Metals Creek ResourcesDate Received: 12/11/2013945 Cobalt CresDate Completed: 12/19/2013Thunder Bay, ON, CANJob #: 201342655P7B 5Z4Reference: 201342445 42446Ph#: (807) 345-4990Reference: 201342445 42446Fax#: (807) 345-5382Sample #: 24Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Au Grav g/t(ppm)	Au Grav oz/t	Client ID	Acc #
	Insufficient Sample	TOG-13-37-06	184455
<1.000	<0.029	TOG-13-37-07	184456
<1.000	<0.029	TOG-13-37-08	184457
<1.000	<0.029	TOG-13-37-09	184458

PROCEDURE CODES: ALFA7, ALP1

The results included on this report relate only to the items tested.

The Certificate of Analysis should not be reproduced except in full, without the written approval of the laboratory.

Certified By: Dr. David Brown, VP Quality

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 11/18/2013 Date Completed: 11/29/2013 Job #: 201342445 Reference: Sample #: 92

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
171068	TOG-13-38-001	<5	<0.001	<0.005	
171069	TOG-13-38-002	5	<0.001	0.005	
171070	TOG-13-38-003	<5	<0.001	<0.005	
171071	TOG-13-38-004	<5	<0.001	<0.005	
171072	TOG-13-38-005	72	0.002	0.072	
171073	TOG-13-38-006	90	0.003	0.090	
171074	TOG-13-38-007	90	0.003	0.090	
171075	TOG-13-38-008	148	0.004	0.148	
171076	TOG-13-38-009	76	0.002	0.076	
171077	TOG-13-38-010	184	0.005	0.184	
171078 Du	p TOG-13-38-010	197	0.006	0.197	
171079	TOG-13-38-011	42	0.001	0.042	
171080	TOG-13-38-012	32	<0.001	0.032	
171081	TOG-13-38-013	94	0.003	0.094	
171082	TOG-13-38-014	176	0.005	0.176	
171083	TOG-13-38-015	13777	0.402	13.777	
171084	TOG-13-38-016	12	<0.001	0.012	
171085	TOG-13-38-017	2563	0.075	2.563	
171086	TOG-13-38-018	1418	0.041	1.418	
171087	TOG-13-38-019	1202	0.035	1.202	
171088	TOG-13-38-020	1626	0.047	1.626	
171089 Du	p TOG-13-38-020	1578	0.046	1.578	
171090	TOG-13-38-021	942	0.027	0.942	
171091	TOG-13-38-022	2267	0.066	2.267	
171092	TOG-13-38-023	2428	0.071	2.428	
171093	TOG-13-38-024	4230	0.123	4.230	
171094	TOG-13-38-025	3855	0.112	3.855	
171095	TOG-13-38-026	629	0.018	0.629	
171096	TOG-13-38-027	1256	0.037	1.256	
171097	TOG-13-38-028	1461	0.043	1.461	

PROCEDURE CODES: ALP1, ALFA1

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 11/18/2013 Date Completed: 11/29/2013 Job #: 201342445 Reference: Sample #: 92

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)
171098	TOG-13-38-029	3465	0.101	3.465
171099	TOG-13-38-030	3738	0.109	3.738
171100 Dup	p TOG-13-38-030	4543	0.133	4.543
171101	TOG-13-38-031	1195	0.035	1.195
171102	TOG-13-38-032	3004	0.088	3.004
171103	TOG-13-38-033	1343	0.039	1.343
171104	TOG-13-38-034	<5	<0.001	<0.005
171105	TOG-13-38-035	1186	0.035	1.186
171106	TOG-13-38-036	1571	0.046	1.571
171107	TOG-13-38-037	691	0.020	0.691
171108	TOG-13-38-038	621	0.018	0.621
171109	TOG-13-38-039	1960	0.057	1.960
171110	TOG-13-38-040	597	0.017	0.597
171111 Dup	p TOG-13-38-040	687	0.020	0.687
171112	TOG-13-38-041	2703	0.079	2.703
171113	TOG-13-38-042	4651	0.136	4.651
171114	TOG-13-38-043	3151	0.092	3.151
171115	TOG-13-38-044	186	0.005	0.186
171116	TOG-13-38-045	1437	0.042	1.437
171117	TOG-13-38-046	619	0.018	0.619
171118	TOG-13-38-047	3506	0.102	3.506
171119	TOG-13-38-048	103	0.003	0.103
171120	TOG-13-38-049	4061	0.118	4.061
171121	TOG-13-38-050	143	0.004	0.143
171122 Dup	p TOG-13-38-050	155	0.005	0.155
171123	TOG-13-38-051	2180	0.064	2.180
171124	TOG-13-38-052	1158	0.034	1.158
171125	TOG-13-38-053	1373	0.040	1.373
171126	TOG-13-38-054	1068	0.031	1.068
171127	TOG-13-38-055	474	0.014	0.474

PROCEDURE CODES: ALP1, ALFA1

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 11/18/2013 Date Completed: 11/29/2013 Job #: 201342445 Reference: Sample #: 92

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
171128	TOG-13-38-056	1278	0.037	1.278	
171129	TOG-13-38-057	1038	0.030	1.038	
171130	TOG-13-38-058	<5	<0.001	<0.005	
171131	TOG-13-38-059	59	0.002	0.059	
171132	TOG-13-38-060	236	0.007	0.236	
171133 Re	p TOG-13-38-060	313	0.009	0.313	
171134	TOG-13-38-061	62	0.002	0.062	
171135	TOG-13-38-062	226	0.007	0.226	
171136	TOG-13-38-063	1256	0.037	1.256	
171137	TOG-13-38-064	1283	0.037	1.283	
171138	TOG-13-38-065	866	0.025	0.866	
171139	TOG-13-38-066	706	0.021	0.706	
171140	TOG-13-38-067	1987	0.058	1.987	
171141	TOG-13-38-068	706	0.021	0.706	
171142	TOG-13-38-069	776	0.023	0.776	
171143	TOG-13-38-070	<5	<0.001	<0.005	
171144 Du	p TOG-13-38-070	Insufficient Sample			
171145	TOG-13-38-071	268	0.008	0.268	
171146	TOG-13-38-072	1125	0.033	1.125	
171147	TOG-13-38-073	1126	0.033	1.126	
171148	TOG-13-38-074	851	0.025	0.851	
171149	TOG-13-38-075	1812	0.053	1.812	
171150	TOG-13-38-076	2061	0.060	2.061	
171151	TOG-13-38-077	139	0.004	0.139	
171152	TOG-13-38-078	14	<0.001	0.014	
171153	TOG-13-37-001	264	0.008	0.264	
171154	TOG-13-37-002	477	0.014	0.477	
171155 Du	p TOG-13-37-002	460	0.013	0.460	
171156	TOG-13-37-003	200	0.006	0.200	
171157	TOG-13-37-004	111	0.003	0.111	

PROCEDURE CODES: ALP1, ALFA1

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Fax: (807) 622-7571

Tel: (807) 626-1630 www.accurassay.com assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 11/18/2013 Date Completed: 11/29/2013 Job #: 201342445 Reference: Sample #: 92

Acc #	Client ID	Au ppb	Au oz/t	Au g/t (ppm)	
171158	TOG-13-37-005	1162	0.034	1.162	
171159	TOG-13-37-006	6	<0.001	0.006	
171160	TOG-13-37-007	786	0.023	0.786	
171161	TOG-13-37-008	455	0.013	0.455	
171162	TOG-13-37-009	584	0.017	0.584	
171163	TOG-13-37-010	82	0.002	0.082	
171164	TOG-13-37-011	750	0.022	0.750	
171165	TOG-13-37-012	56	0.002	0.056	
171166 Dup	o TOG-13-37-012	52	0.002	0.052	
171167	TOG-13-37-013	15	<0.001	0.015	
171168	TOG-13-37-014	<5	<0.001	<0.005	

PROCEDURE CODES: ALP1, ALFA1

Certified By: Dr. David Brown, VP Quality

The results included on this report relate only to the items tested.

Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571

assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources Date Received: 11/29/2013 945 Cobalt Cres Date Completed: 12/05/2013 Thunder Bay, ON, CAN Job #: 201342552 P7B 5Z4 Reference: 201342445 Ph#: (807) 345-4990 Sample #: 36 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Acc #	Client ID	Au Grav oz/t	Au Grav g/t(ppm)
177734	TOG-13-38-017	0.113	3.887
177735	TOG-13-38-018	0.044	1.496
177736	TOG-13-38-019	0.038	1.311
177737	TOG-13-38-020	0.062	2.131
177738	TOG-13-38-022	0.054	1.855
177739	TOG-13-38-023	0.065	2.230
177740	TOG-13-38-025	0.107	3.666
177741	TOG-13-38-027	0.040	1.369
177742	TOG-13-38-028	0.066	2.274
177743	TOG-13-38-029	0.108	3.686
177744	TOG-13-38-030	0.126	4.312
177745	TOG-13-38-031	0.047	1.624
177746	TOG-13-38-032	0.070	2.404
177747	TOG-13-38-033	0.042	1.434
177748	TOG-13-38-035	0.041	1.403
177749	TOG-13-38-036	0.033	1.137
177750	TOG-13-38-039	0.054	1.850
177751	TOG-13-38-041	0.037	1.281
177752	TOG-13-38-042	0.133	4.554
177753	TOG-13-38-043	0.066	2.268

PROCEDURE CODES: ALM1, ALFA7

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Thunder Bay, ON Canada P7B 5X5

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571

assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources Date Received: 11/29/2013 945 Cobalt Cres Date Completed: 12/05/2013 Thunder Bay, ON, CAN Job #: 201342552 P7B 5Z4 Reference: 201342445 Ph#: (807) 345-4990 Sample #: 36 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Acc #	Client ID	Au Grav oz/t	Au Grav g/t(ppm)
177754	TOG-13-38-045	0.037	1.283
177755	TOG-13-38-047	0.090	3.069
177756	TOG-13-38-051	0.058	1.982
177757	TOG-13-38-052	0.038	1.311
177758	TOG-13-38-053	0.032	1.102
177759	TOG-13-38-054	0.032	1.090
177760	TOG-13-38-056	0.049	1.678
177761	TOG-13-38-057	0.036	1.243
177762	TOG-13-38-063	0.042	1.450
177763	TOG-13-38-064	0.037	1.268
177764	TOG-13-38-067	0.049	1.663
177765	TOG-13-38-072	0.040	1.359
177766	TOG-13-38-073	0.032	1.094
177767	TOG-13-38-075	0.107	3.673
177768	TOG-13-38-076	0.060	2.044
177769	TOG-13-37-005	0.037	1.273

PROCEDURE CODES: ALM1, ALFA7

The results included on this report relate only to the items tested.

Certified By: Dr. David Brown, VP Quality

Tel: (807) 626-1630 www.accurassay.com

Fax: (807) 622-7571 assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources	Date Received: 11/27/2013
945 Cobalt Cres	Date Completed: 12/05/2013
Thunder Bay, ON, CAN	Job #: 201342518
P7B 5Z4	Reference: 201342446
Ph#: (807) 345-4990 Fax#: (807) 345-5382	Sample #: 1
Email: mmacisaac@metalscreek.com, astares@metalscreek.com	

Acc #	Client ID	#1 Pulp Assay	#2 Pulp Assay	Metallics Assay	Total	% Met. in Pulp	Pulp Met. Weight(g)
		ppm	ppm	ppm	ppm		ppm
175609	TOG-13-36-023	8.978	9.218	452.264	15.032	1.34%	13.43

PROCEDURE CODES: ALPM1

amt M. fron Certified By: Dr. David Brown, VP Quality laboratory.

The results included on this report relate only to the items tested.

Tel: (807) 626-1630 www.accurassay.com

Fax: (807) 622-7571 assay@accurassay.com

Thursday, December 5, 2013

Final Certificate

Metals Creek Resources	Date Received: 11/29/2013
945 Cobalt Cres	Date Completed: 12/05/2013
Thunder Bay, ON, CAN	Job #: 201342553
P7B 5Z4	Reference: 201342445
Ph#: (807) 345-4990 Fax#: (807) 345-5382	Sample #: 1
Email: mmacisaac@metalscreek.com, astares@metalscreek.com	

Acc #	Client ID	#1 Pulp Assay	#2 Pulp Assay	Metallics Assay	Total	% Met. in Pulp	Pulp Met. Weight(g)
		ppm	ppm	ppm	ppm		ppm
177770	TOG-13-38-015	12.829	13.940	117.743	16.235	2.73%	27.34

PROCEDURE CODES: ALPM1

amt M. fron Certified By: Dr. David Brown, VP Quality laboratory.

The results included on this report relate only to the items tested.

5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: METALS CREEK RESOURCES 945 COBALT CRES THUNDER BAY, ON P7B5Z4 (807) 345-4990

ATTENTION TO: JEFF MYLLYAHO

PROJECT NO:

AGAT WORK ORDER: 13B791562

SOLID ANALYSIS REVIEWED BY: Ron Cardinall, Certified Assayer - Director - Technical Services (Mining)

DATE REPORTED: Dec 27, 2013

PAGES (INCLUDING COVER): 5

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 13B791562 PROJECT NO: 5623 MCADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: JEFF MYLLYAHO

				Fire /	Assay - Trace Au, ICI	P-OES finish (202052)	
DATE SAMPLED: Dec	06, 2013			DATE RECE	EIVED: Dec 06, 2013	DATE REPORTED: Dec 27, 2013	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight	Au	Au-Grav			
	Unit:	kg	ppm	g/t			
Sample ID (AGAT ID)	RDL:	0.01	0.001	0.05			
TOG-13-35-005 (5035227)		0.41	0.062				
TOG-13-35-015 (5035228)		0.32	0.066				
TOG-13-35-025 (5035229)		0.30	0.005				
TOG-13-36-005 (5035230)		0.28	0.003				
TOG-13-36-015 (5035231)		0.34	0.003				
TOG-13-36-025 (5035232)		0.37	0.207				
TOG-13-36-035 (5035233)		0.36	1.26				
TOG-13-36-045 (5035234)		0.38	0.041				
TOG-13-36-055 (5035235)		0.26	0.007				
TOG-13-36-065 (5035236)		0.35	<0.001				
TOG-13-36-075 (5035237)		0.32	<0.001				
TOG-13-36-085 (5035238)		0.34	<0.001				
TOG-13-36-095 (5035239)		0.42	0.051				
TOG-13-38-005 (5035240)		0.33	0.086				
TOG-13-38-015 (5035241)		0.31	>10	16.2			
TOG-13-38-025 (5035242)		0.38	2.69				
TOG-13-38-035 (5035243)		0.29	1.08				
TOG-13-38-045 (5035244)		0.42	0.964				
TOG-13-38-055 (5035245)		0.35	0.544				
TOG-13-38-065 (5035246)		0.30	1.39				
TOG-13-38-075 (5035247)		0.36	0.886				
TOG-13-37-005 (5035248)		0.41	1.34				

Comments: RDL - Reported Detection Limit

Certified By:

Roy Cardinall

Quality Assurance - Replicate AGAT WORK ORDER: 13B791562 PROJECT NO: 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: JEFF MYLLYAHO

					Fire As	say - T	race Au	, ICP-C	ES finis	h (2020)52)			
		REPLIC	ATE #1			REPLIC	ATE #2							
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD						
Au	5035227	0.0620	0.0533	15.1%	5035239	0.051	0.051	0.0%						

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 13B791562 PROJECT NO:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: METALS CREEK RESOURCES

ATTENTION TO: JEFF MYLLYAHO

					Fire A	ssay - ⁻	Trace A	u, ICP-O	ES fini	sh (202	2052)			
		CRM #	1 (GS6D)			CRM #	2 (CM14)			CF	RM #3			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Au	6.09	6.03	99%	90% - 110%	0.792	0.859	108%	90% - 110%						
Au-Grav									14.8	15.3	103%	95% - 105%		

Method Summary

CLIENT NAME: METALS CREEK RESOU	RCES	AGAT WORK ORE	DER: 13B791562
PROJECT NO:		ATTENTION TO: J	EFF MYLLYAHO
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis		•	
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP-OES
Au-Grav	MIN-200-12006		GRAVIMETRIC

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 06/23/2015 Date Completed: 07/15/2015 Job #: 201542483 Reference: Sample #: 138

Acc #	Client ID	Au g/t (ppm)	Au Grav ppm	
216402	OG15-037-001	<0.005		
216403	3 OG15-037-002	<0.005		
216404	OG15-037-003	0.012		
216405	OG15-037-004	0.399		
216406	OG15-037-005	0.327		
216407	OG15-037-006	0.291		
216408	3 OG15-037-007	0.085		
216409	OG15-037-008	0.046		
216410	OG15-037-009	<0.005		
216411	OG15-037-010	1.313	1.539	
216412	2 OG15-037-010 Dup	1.439	1.519	
216413	0G15-037-011	0.038		
216414	OG15-037-012	0.382		
216415	6 OG15-037-013	0.359		
216416	GG15-037-014	0.305		
216417	OG15-037-015	0.951		
216418	0G15-037-016	0.326		
216419	OG15-037-017	0.041		
216420	OG15-037-018	<0.005		
216421	OG15-037-019	0.271		
216422	OG15-037-020	<0.005		
216423	3 OG15-037-020 Dup	<0.005		
216424	OG15-037-021	<0.005		
216425	0G15-037-022	3.229	1.651	
216426	6 OG15-037-023	1.566	<1	

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Validated By:

Jesse Deschutter

Assistant Manager - Thunder Bay

Andrew Oleski Lab Manager - Thunder Bay

Certified By

Authorized By: Derek Demianiuk, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 06/23/2015 Date Completed: 07/15/2015 Job #: 201542483 Reference: Sample #: 138

Acc #	Client ID	Au	Au
		g/t (ppm)	Grav
			ppm
216427	OG15-037-024	0.638	
216428	OG15-037-025	3.325	3.163
216429	OG15-037-026	6.249	6.737
216430	OG15-037-027	3.029	
216431	OG15-037-028	0.739	
216432	OG15-037-029	3.547	2.152
216433	OG15-037-030	1.180	1.412
216434	OG15-037-030 Dup	1.094	1.275
216435	OG15-037-031	>10.000	39.129
216436	OG15-037-032	1.224	1.338
216437	OG15-037-033	0.042	
216438	OG15-037-034	0.261	
216439	OG15-037-035	<0.005	
216440	OG15-037-036	0.262	
216441	OG15-037-037	<0.005	
216442	OG15-037-038	0.047	
216443	OG15-037-039	<0.005	
216444	OG15-037-040	0.818	
216445	OG15-037-040 Dup	0.801	
216446	OG15-037-041	<0.005	
216447	OG15-037-042	0.377	
216448	OG15-037-043	3.623	3.027
216449	OG15-037-044	0.225	
216450	OG15-037-045	<0.005	
216451	OG15-037-046	0.060	

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Validated By:

Jesse Deschutter

Assistant Manager - Thunder Bay

Certified By Andrew Oleski Lab Manager - Thunder Bay

Authorized By:

Derek Demianiuk, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 06/23/2015 Date Completed: 07/15/2015 Job #: 201542483 Reference: Sample #: 138

Acc #	Client ID	Au g/t (ppm)	Au Grav ppm
216452	OG15-037-047	0.009	
216453	OG15-037-048	<0.005	
216454	OG15-037-049	<0.005	
216455	OG15-037-050	0.044	
216456	OG15-037-050 Dup	0.039	
216457	OG15-037-051	0.012	
216458	OG15-037-052	0.009	
216459	OG15-037-053	0.006	
216460	OG15-037-054	0.697	
216461	OG15-037-055	<0.005	
216462	OG15-037-056	<0.005	
216463	OG15-037-057	0.010	
216464	OG15-038-001	0.083	
216465	OG15-038-002	2.694	2.754
216466	OG15-038-003	0.249	
216467	OG15-038-003 Rep	0.249	
216468	OG15-038-004	0.517	
216469	OG15-038-005	0.176	
216470	OG15-038-006	0.600	
216471	OG15-038-007	0.867	
216472	OG15-038-008	0.054	
216473	OG15-038-009	0.024	
216474	OG15-038-010	0.075	
216475	OG15-038-010 Dup	0.066	
216476	OG15-038-011	1.809	1.709

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Validated By:

Jesse Deschutter

Assistant Manager - Thunder Bay

Andrew Oleski

Certified By

Lab Manager - Thunder Bay

Authorized By: Derek Demianiuk, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 06/23/2015 Date Completed: 07/15/2015 Job #: 201542483 Reference: Sample #: 138

Acc #	Client ID	Au g/t (ppm)	Au Grav ppm
216477	OG15-038-012	0.335	
216478	OG15-038-012 Dup	0.301	
216479	OG15-038-013	0.005	
216480	OG15-038-014	<0.005	
216481	OG15-038-015	0.027	
216482	OG15-038-016	0.887	
216483	OG15-038-017	<0.005	
216484	OG15-038-018	0.121	
216485	OG15-038-019	1.073	1.063
216486	OG15-038-020	0.195	
216487	OG15-038-021	5.673	5.638
216488	OG15-038-022	1.359	
216489	OG15-038-022	Insufficient Sample	
216490	OG15-038-023	0.023	
216491	OG15-038-024	0.029	
216492	OG15-038-025	0.299	
216493	OG15-039-001	0.008	
216494	OG15-039-002	<0.005	
216495	OG15-039-003	0.007	
216496	OG15-039-004	<0.005	
216497	OG15-039-005	<0.005	
216498	OG15-039-006	0.011	
216499	OG15-039-007	0.005	
216500	OG15-039-007 Dup	0.006	
216501	OG15-039-008	0.035	

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Validated By:

Assistant Manager - Thunder Bay

Certified By: Andrew Oleski

Lab Manager - Thunder Bay

Authorized By:

Derek Demianiuk, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571

www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 06/23/2015 Date Completed: 07/15/2015 Job #: 201542483 Reference:

Acc #	Client ID	Au g/t (ppm)	
216502	OG15-039-009	0.025	
216503	OG15-039-010	<0.005	
216504	OG15-039-010 Dup	<0.005	
216505	OG15-039-011	0.010	
216506	OG15-039-012	0.025	
216507	OG15-039-013	0.007	
216508	OG15-039-014	<0.005	
216509	OG15-039-015	<0.005	
216510	OG15-039-016	<0.005	
216511	OG15-039-016 Dup	0.006	
216512	OG15-039-017	<0.005	
216513	OG15-039-018	0.051	
216514	OG15-039-019	<0.005	
216515	OG15-039-020	<0.005	
216516	OG15-039-021	<0.005	
216517	OG15-039-022	<0.005	
216518	OG15-039-023	<0.005	
216519	OG15-039-024	<0.005	
216520	OG15-039-025	<0.005	
216521	OG15-039-026	1.465	
216522	OG15-039-026	Insufficient Sample	
216523	OG15-039-027	0.042	
216524	OG15-039-028	0.017	
216525	OG15-039-029	0.010	
216526	OG15-039-030	2.413	

Sample #: 138

Au Grav ppm 2.956

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Validated By:

Jesse Deschutter Assistant Manager - Thunder Bay

Andrew Oleski

Certified By:

Lab Manager - Thunder Bay

Authorized By:

Derek Demianiuk, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 06/23/2015 Date Completed: 07/15/2015 Job #: 201542483 Reference: Sample #: 138

Acc #	Client ID	Au g/t	Au Grav	
		(ppm)	ppm	
216527	OG15-039-031	0.021		
216528	OG15-039-032	0.006		
216529	OG15-039-033	0.550		
216530	OG15-039-034	0.043		
216531	OG15-039-035	0.016		
216532	OG15-039-036	3.630	3.267	
216533	OG15-039-036 Rep	3.624	1.408	
216534	OG15-039-037	<0.005		
216535	OG15-039-038	0.383		
216536	OG15-039-039	3.673	1.796	
216537	OG15-039-040	8.826	10.386	
216538	OG15-039-041	0.081		
216539	OG15-039-042	1.819	2.281	
216540	OG15-039-043	0.124		
216541	OG15-039-044	3.295	2.778	
216542	OG15-039-045	0.020		
216543	OG15-039-046	0.025		
216544	OG15-039-046 Dup	0.034		
216545	OG15-039-047	1.296	1.486	
216546	OG15-039-048	0.013		
216547	OG15-039-049	0.120		
216548	OG15-039-050	0.012		
216549	OG15-039-051	0.100		
216550	OG15-039-052	4.203	1.866	
216551	OG15-039-053	0.869		

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Validated By:

Jesse Deschutter

Assistant Manager - Thunder Bay

Andrew Oleski Lab Manager - Thunder Bay

Certified By

Authorized By:

Derek Demianiuk, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 06/23/2015 Date Completed: 07/15/2015 Job #: 201542483 Reference: Sample #: 138

Client ID Acc # Au Au g/t Grav (ppm) ppm 216552 OG15-039-054 2.152 1.973 216553 OG15-039-055 2.204 1.921 216554 OG15-039-056 0.334

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Validated By:

Jesse Deschutter Assistant Manager - Thunder Bay

Certified By: Andrew Oleski Lab Manager - Thunder Bay

Authorized By:

Derek Demianiuk, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Control Standards

QC Type	QC Performance (ppm)	Mean (ppm)	Std Dev (ppm)
GS37	3.287	3.220	0.210
AR02	1.523	1.575	0.088
KL01	0.420	0.394	0.020
AR02	1.506	1.575	0.088
AR02	1.550	1.575	0.088
AR02	1.588	1.575	0.088
AR02	1.635	1.575	0.088
GS37	3.207	3.220	0.210

APPLIED SCOPES: ALP1, ALFA1, ALFA7

Validated By:

Jesse Deschutter

Assistant Manager - Thunder Bay

Certified By: Andrew Oleski

Lab Manager - Thunder Bay

Authorized By: Derek Demianiuk, VP Quality

Date Received: 06/23/2015

Job #: 201542483

Date Completed: 07/15/2015

Sample #: 138

Reference:

Thunder Bay, ON Canada P7B 5X5

1046 Gorham Street Tel: (807) 626-1630 www.accurassay.com Fax: (807) 622-7571 assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources	Date Received: 07/15/2015
945 Cobalt Cres	Date Completed: 08/11/2015
Thunder Bay, ON, CAN	Job #: 201543090
P7B 5Z4	Reference: 201542483
Ph#: (807) 345-4990	
Fax#: (807) 345-5382	Sample #: 5
Email: mmacisaac@metalscreek.com, astares@metalscreek.com	

Acc #	Client ID	#1 Pulp Assay ppb	#2 Pulp Assay ppb	Metallics Assay ppb	Total ppb	% Met. in Pulp	Pulp Met. Weight(g) ppb
275651	OG15-037-026	6842	4478	6591	5681	2.26%	22.61
275652	OG15-037-031	35196	33363	43601	34593	3.36%	18.15
275653	OG15-038-021	5430	5348	12542	5540	2.11%	11.49
275654	OG15-039-040	5101	6432	38664	7187	4.32%	43.18
291804	OG15-037-043	4270	4015	5299	4243	8.67%	41.66

PROCEDURE CODES: ALPM1

The results included on this report relate only to the items tested.

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 07/21/2015 Date Completed: 07/27/2015 Job #: 201543091 Reference: 201542483 Sample #: 3

 Acc #
 Client ID
 Au Grav ppm

 275655
 OG15-037-031
 13.538

 275657
 OG15-037-044
 <1</td>

 275658
 OG15-038-019
 1.112

APPLIED SCOPES: ALP6, ALFA7

Validated By:

Jason Moore, VP Operations, Assayer

Certified By:

Jason Moore, VP Operations, Assayer

Authorized By

Derek Demianiuk, VP Quality

Tel: (807) 626-1630 Fax: (807) 622-7571 www.accurassay.com assay@accurassay.com

Wednesday, September 30, 2015

Final Certificate

Metals Creek Resources 945 Cobalt Cres Thunder Bay, ON, CAN P7B 5Z4 Ph#: (807) 345-4990 Fax#: (807) 345-5382 Email: mmacisaac@metalscreek.com, astares@metalscreek.com

Date Received: 07/21/2015 Date Completed: 07/27/2015 Job #: 201543091 Reference: 201542483 Sample #: 3

Control Standards

QC Type	QC Performance (ppm)	Mean (ppm)	Std Dev (ppm)
KL02	<0.005	<0.005	<0.005
KL02	<0.005	<0.005	<0.005
KL02	<0.005	<0.005	<0.005

APPLIED SCOPES: ALP6, ALFA7

Validated By:

Jason Moore, VP Operations, Assayer

Certified By:

Jason Moore, VP Operations, Assayer

Authorized By: Derek Demianiuk, VP Quality

The results included on this report relate only to the items tested.

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 07-Jul-15

 Invoice No.:
 A15-04967

 Invoice Date:
 20-Jul-15

 Your Reference:
 X

Metals Creek Resources 1100 Memorial Ave. Suite 329 Thunder Bay Ontario P7B 4A3 Canada

ATTN: Mike MacIsaac

CERTIFICATE OF ANALYSIS

15 Crushed Rock samples were submitted for analysis.

The following analytical package was requested:

Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A15-04967

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Page 1/3

Results

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OG15-037-005	362
OG15-037-015	656
OG15-037-025	3560
OG15-037-035	5
OG15-037-045	9
OG15-037-055	27
OG15-038-005	183
OG15-038-015	14
OG15-038-025	277
OG15-039-005	< 5
OG15-039-015	< 5
OG15-039-025	7
OG15-039-035	19
OG15-039-045	23
OG15-039-055	1570

Report: A15-04967

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OxD108 Meas	416
OxD108 Cert	414
SE68 Meas	592
SE68 Cert	599
OG15-039-005 Orig	< 5
OG15-039-005 Dup	< 5
OG15-039-055 Orig	1570
OG15-039-055 Split	1540
Method Blank	< 5

QC