We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

REPORT ON PROCESSING & ANALYSIS OF

VTEM 30 HZ EM AND MAGNETICS DATA

WABASSI-MAX PROJECT, ONTARIO

FOR

NORTHERN SHIELD RESOURCES

OCTOBER 2010

Condor Consulting Lakewood Colorado USA

CONTENTS

.

1.	Summary	3
2.	Introduction	4
3.	Exploration History and Deposit Model	6
4.	Processing, Analysis Techniques and Products Processing EM Data Processing Magnetic Data Processing Analysis Anomaly Shapes Picking Magnetics Target Zones Products Table 4-1 Survey Products	
5.	Geophysical Interpretation Target Zones and Targeting Summary Assessment Plate Modeling and Drill Targeting	
6.	Priority Target Zone Discussion TZ 1 TZ 2 TZ 3 TZ 4	
7.	Conclusions	40
8.	References	42
9.	Appendixes Appendix A-List of Picked EM Anomalies Appendix B-Notes on Maxwell Modeling Appendix C- "Fly to drill Templates" Appendix D-Notes on Magnetic Modeling Appendix E-Wabassi-Max historic drill hole list	

Appendix F- VTEM Target Plate Parameters	73
Appendix G- VTEM Target Drill Hole Parameters	75
Appendix H- InfiniTEM Target Plate and Drill Hole Parameters	76
Appendix I-Archive DVD	77

.

1. Summary

This report covers the processing and analysis of three VTEM EM and magnetic surveys carried out by Geotech Ltd. in 2008 and 2010. Two of the surveys were carried out for Northern Shield Resources on their Wabassi and High Bank Camp blocks and a third block (made up of two sub-blocks called Max 1 and Max 2) was flown for East-West Resources in 2008 and was then optioned by Northern Shield Resources. The properties are located approximately 50 km southwest of the Lamon Lake Camp, near Ogoki Post, NW Ontario.

The report also includes the re-analysis of ground EM data collected over the Wabassi grid by Abitibi Geophysics for comparison with the VTEM outcomes.

The processing of the EM data includes Layered Earth Inversions (LEI), time constant (AdTau) analysis and 3D gridding of the LEIs results. Maxwell plate modeling was also performed on specific targets selected by the client. Mag3D modeling was carried out on the stitched (merged) magnetic grid from the three original surveys. Drilling information was provided by Northern Shield Resources and has been displayed in the products provided.

Based on this assessment, seven Target Zones were identified of which the top four Zones were Maxwell modeled and proposed drill holes defined. Plates were also prioritized on having higher associated Mag3D responses and in the case of the drilled Max peridotite and Wabassi A1-A2 sites, being located in gaps between existing drill holes.

The VTEM data is of sufficient quality that direct drilling of the airborne results can be undertaken for selected larger target plates. For the smaller targets of limited spatial extent, the proposed borehole collars were sighted as best as possible using the available VTEM coordinates and UTM transformed InfiniTEM coordinates. If accurate differential GPS sighting of drill holes in the field indicates that collar elevations are off by more than a few meters for the XY coordinates provided over the smaller plates, it's recommended that the drill hole trajectories be adjusted to reflect the more accurate Z coordinate.

2. Introduction

Geotech Ltd. conducted three VTEM EM and magnetic surveys in 2008 and 2010 covering the Max (then held by East-West Resources), Wabassi, and High Bank Camp (or Wabassi West). These are detailed in reports by Prikhodko (2008) and Legault et al (2009) and Au et al (2009). The total survey distance is 2 355 km as seen in Figure 1. The breakdown is shown below:

- Max-1247 lkm
- Wabassi-741 lkm
- High Bank Camp-367 lkm

Figure 1: VTEM flight blocks.

In July 2010 Northern Shield Resources (Northern Shield) commissioned Condor Consulting Inc (Condor) to undertake an independent assessment of the survey outcomes. Condor had earlier carried out an independent assessment of ground and borehole EM results over the Wabassi A1-A2 target area. This was reported on earlier (Cunion and Witherly 2010). At the client's request, some further examination of the ground and airborne results has been undertaken so as to try and rationalize the two sets of results. The outcome of this assessment is also included in this report.

3. Exploration History and Deposit Model

Exploration History

A comprehensive on-line background data search with the Ontario Geological Survey indicates little past exploration work has taken place in the immediate four grid area. The most detailed geologic assessment of the area is from the Northern Shield website: <u>http://www.northern-shield.com/wabassi.html</u> as is quoted below:

The Wabassi and Max properties are located in northwestern Ontario, 60 km south of the Highbank Lake project and 100 km south of the Ring of Fire Ni-Cu-PGE and Chromite deposits. The properties are being explored for reef-hosted PGE and massive sulphide Ni-Cu-PGE deposits. The Wabassi and Wabassi North properties were staked by Northern Shield Resources Inc. in 2007 based on the geophysical pattern observed on the magnetic survey published by the Ontario Geological Survey (OGS) in the Fort Hope area, which suggests a layered intrusion. The anomalous values of Pt and Pd (130 ppb Pt+Pd) found in one of the 3 samples analysed from the first sample collection in 2007 also confirms the potential for PGE and/or Ni-Cu-(PGE) deposits in the intrusive complex. In 2008, Northern Shield optioned the neighbouring Max Property from East West Resource Corp. Subsequently, drilling confirmed the distinct magnetic anomaly in the northern portion of the property to be a nickel, copper and PGE-enriched ultramafic (peridotite) intrusion.

The Northern Shield geology map of the project area, based on the regional aeromagnetic data is seen in Figure 2, with the 22 historical drill holes plotted (Appendix F). Past-identified Wabassi conductive plate responses were associated with sulphides for seven holes. Plate conductivities associated with the massive sulphides were up to 5000 mS/m.

The geology of the grid area is described by Northern Shield as follows:

WABASSI LAYERED INTRUSION

This is a layered mafic-ultramafic intrusion composed of olivine-gabbronorites and norites in the upper (northern) portion. To date, very little exploration has been conducted on the southern portion but it is now believed to represent the lower, and most prospective, levels of the intrusion. The Wabassi intrusion is a well-layered mafic-ultramafic complex with similarities to the Stillwater Complex in Montana, where PGEs are mined from the J-M reef. Rock-types so far identified include, olivine gabbronorites, olivine norites and norites; these are all ideal lithologies in nickel and PGE bearing systems. The intrusion is being explored for Ni-Cu-PGE massive sulphides along the contacts and in feeders, and for disseminated mineralization hosted in "reefs.

WABASSI NORTH INTRUSION

Other than one drill hole, no other exploration has been conducted to date on the Wabassi North Property. Drilling intersected a variety of gabbroic rocks which may, or may not be related to the main Wabassi layered intrusion or the Max peridotite intrusion. The geophysics suggests that this body may consist of composite phases of gabbroic and other mafic/ultramafic phases.

Figure 2: Northern Shield geology map of the merged grid area.

MAX PERIDOTITE INTRUSION

Five drill-holes were completed on this target by Northern Shield in 2007 as part of an option agreement to earn a 50% interest in the property. The body is composed mostly of peridotite (harzburgite) and comprises the most primitive rocks intersected to date within the two properties. The body has high background levels of Ni-Cu-PGE. Geophysics suggests a possible feeder conduit between the Max peridotite and Wabassi North gabbro.

GABBROIC INTRUSION

An intrusion in the southern portion of the Max property has been mapped by the OGS as a gabbroic body, but no exploration has taken place to date on this portion of the Property.

Deposit Model

Northern Shield's website description of the deposit model has been parsed below:

"Feeder conduits are ideal hosts for Ni-Cu-(PGE) mineralization. Fragments of nickel-bearing pyrrhotite and blebs of primary nickel-copper mineralization were observed in core from a drill-hole completed in 2008 adjacent to one of the VTEM conductors....

....Because the sulphide minerals and PGEs are dense, they tend to sink to the bottom of their host body or accumulate in traps. The sulphur has acted as a filter removing nickel, copper and PGEs from the magma as it flows along the conduit and hence the magma downstream from the filter contains very little PGEs and is said to be depleted....

...Thus if one can find two mafic-ultramafic bodies formed from the same magma with one being enriched and the other one being depleted, then there is a good chance that somewhere in between, PGE mineralization may have formed....

....In the case of Max/Wabassi, the Max peridotite is enriched in PGEs (average 45 ppb Pt+Pd). The Wabassi Intrusion shows signs of being depleted in PGEs (average <3 ppb Pt+Pd), which suggests that PGE mineralization may have formed between the two bodies."

A few examples of conduit-associated magmatic nickel sulphide occurrences are Voisey's Bay, Kennecott's Eagle, N'orilsk, and Jinchuan. These occurrences can sometimes be associated with serpentinized peridotite that can have varying conductivity. These ore occurrences can present elevated EM and magnetic responses due to both elevated sulphide and/or associated magnetite content.

In the present situation, blobby-style mineralization could be challenging to locate and target for drilling, even if the zones are quite conductive. PGE-rich mineralization typically is not massive sulfide-rich and can be very difficult to map geophysically. Condor has some familiarity with projects in the general region by Magma Metals and HTX. In both cases, the mineralized zones lack large size and high conductance.

4. Processing, Analysis Techniques and Products

Processing

The following processing steps were carried out on the VTEM EM and magnetic data.

EM Data Processing Layered-Earth Inversion

The layered-earth inversion (LEI) algorithm models the EM data with a 28-layered earth model (Farquharson and Oldenburg, 1993, Ellis 1998) increasing in thickness from the surface to depth in an approximately logarithmic fashion. A starting model of 10,000 ohm-m (0.1 mS/m) was used, with a reference model of 10,000 ohm-m (0.1 mS/m). The reference model resistivity is what the program defaults to at depth when there is no longer enough information to further refine the inversion outcome. The results of the inversion are presented in the form of a conductivity depth section (CDS).

Time Constant: AdTau

The AdTau program calculates the time constant (tau) from time domain decay data. The program is termed <u>AdTau</u> since rather than using a fixed suite of channels as commonly done, the user sets a noise level and depending on the local characteristics of the data, the

program will then select the set of five channels above this noise level. In resistive areas, this means the calculation will favor earlier channels, whereas in conductive terrains the latest channels will more likely be above the noise floor. A typical decay fit; in this case, the last five channels are shown to the right in Figure 3.

Figure 3: Example of AdTau decay.

Maxwell Modeling

Maxwell is an EM modeling program developed by EMIT (Electro Magnetic Imaging Technology) of Perth, Australia. Maxwell is designed for the analysis of ground, borehole and airborne surveys. A brief description of Maxwell is provided in Appendix B.

The *Fly to Drill* template was done using **encom** page software and is used to present the Maxwell modeling outcomes; these are provided in Appendix C.

Magnetic Data Processing

Geosoft was used to filter the magnetic data. In addition to the normal filters available in the Geosoft application, additional processing was done using **encom** additional software and algorithms described by Shi and Butt 2004 – this paper is included in Appendix D.

Magnetic Data Modeling

The magnetic data for the survey block has been modeled using the code Mag3D; this is a voxel-style inversion program developed at the University of British Colombia-GIF (Li and Oldenburg 1996). Information on this program is provided in Appendix C. Encom's ModelVision Pro was used to model the observed magnetic response against plate-derived model responses. This is briefly described in Appendix E.

Analysis

EΜ

Anomaly Shapes

For discrete plate-like targets, the VTEM system produces two main types of responses; those termed inductively thin or double-peaked responses (DPR) and those termed inductively thick or single-peak responses (SPR). These basic shapes are shown in profile form in Figure 4.

Figure 4: Examples of VTEM responses.

Picking

The MultiPlot[™] display was the primary means to examine, identify and then rank the anomalies. This overall process is termed anomaly picking and was performed on a line-by-line basis, with several passes being required to finalize the process.

The discrete EM responses were picked and ranked based on their profile response and character in the 1D inversions. They are plotted on the various provided products. These are listed in Appendix A.

Magnetics

The magnetic results were examined in section (profile and cross-section through the 3D voxel models as well as 3D perspective voxel models.

Target Zones

Target Zones are groupings of conductors (either discrete picks or wide zones) that are deemed to be a geophysically-logical feature. The Target Zones (or TZs) are prioritized based on their degree of correlation with the expected response from the target models.

Products

Table 4-1 lists the maps and products that are provided. Other products can be prepared from the existing dataset, if required.

Base Maps: All maps are created using the following NAD83 UTM 16 N parameters:

Projection Description: Datum: NAD83 Ellipsoid: GRS 1980 Projection: Transverse Mercator Central Meridian: 87°W False Northing: 0 False Easting: 500000 Scale factor: 0.9996 Latitude of origin: 0°N Longitude of origin: 87°W

Table 4-1 Survey Products

For this assessment three versions of the MultiPlots were prepared. One set covered each of the two separate airborne surveys and a third set provided comparative plots of the VTEM results.

TargetMaps @ 1:30 000 (one copy of each)

All maps show the indicated themes as well as the Condor picks and Target Zones

- Total Magnetic Intensity (TMI)
- EM B-field Z Channel 14 (234 µsec)
- B-Field AdTau (threshold 0.003 or 0.002 ms) draped on 1VD magnetic, 7 target zones, EM and magnetic interpretation, and AdTau picks
- Magnetic tilt angle and contours with AdTau contours and EM picks. The merged magnetic 1VD grid interpretations with the 7 Target Zones, Maxwell Models and anomaly picks
- DTM (SRTM)

<u>MultiPlots</u>[™] @ 1:20 000 (PDF only)

Mini-Plates™: TMI, TMI-Tilt, EM Bfield Ch [5] (234 usec), Bfield Ch [14] (1 151 usec),

AdTau Bfield Z, DTM

- EM dB/dT Z Channels 1-24 (on Wabassi and Max) and Channels 1-32 on Wabassi West
- EM Bfield Z Channels 1-24 (on Wabassi and Max) and Channels 1-32 on Wabassi West
- Profiles-Magnetics: TMI, TMI-Tilt and TMI-1st vertical derivative
- Profiles-AdTau Bfield, dB/dT, power line monitor
- LEI Conductivity Depth Section (Z dB/dT) with EM System Height, Maxwell Plate Models and Proposed Drill Holes Section
- LEI Conductivity Depth Section (Z Bfield) with EM System Height, Maxwell Plate Models and Proposed Drill Holes Magnetic Susceptibility Model and Proposed Drill Holes
- Magnetic Susceptibility Model + Maxwell models + Proposed Drill Holes
- TrackMap: Magnetic Tilt Angle with Flight Path, Anomaly Picks and Maxwell models

Mag3D Modeling

The following products are provided as part of the Mag3D modeling. Some are stand-alone and some are imbedded with other products; the letters S and I are used to flag which; S= stand-alone and I = imbedded.

- UBC MAG3D mesh and sus files (S)
- 3D DXFs (S)
- Susceptibility Depth Sections (I- in MultiPlots)
- Notes on processing (S)-Appendix C

Processing and analysis report (PDF and 1 hardcopy)

On the archive DVD (Appendix I) the following files are provided:

-Digital archive in Geosoft format

-Profile Analyst session file (to create MultiPlots™)

- -Digital files for LEI modeling (modcon dB and modcon Bf)
- -Digital files for Mag3D modeling

-PDFs of MultiPlots™

-Processing and analysis report (PDF)

5. Geophysical Interpretation

Target Zones and Targeting

Summary

The review of the EM and magnetic data indentified seven Target Zones in the Wabassi-Max merged grid (red boxes in Figure 5). TZ 1, the Max peridotite; TZ 2, Wabassi A1-A2; TZ 3, Wabassi West; and TZ 4, the southern Max 1 and Max 2 grid areas are ranked high priority. In Figure 5 the green outlines trace the more obvious AdTau responses and

Figure 5. Merged Max, Wabassi and Wabassi West grids, AdTau draped on TMI-tilt angle with the seven Target Zones highlighted.

the yellow lines trace in the magnetic signatures coincident with the flagged AdTau signatures. An assessment of the line-by-line EM profiles returned 218 anomalies, broken down into the green colored SPR picks and yellow colored DPR picks shown in Figure 5. A complete anomaly listing is provided in Appendix A.

Maxwell modeling of the VTEM and InfiniTEM responses of four TZ's returned a total of 41 target plates and 31 proposed drill holes; these outcomes are provided in Appendices G, H (VTEM) and I (InfiniTEM). For the client-drilled TZs 1 and 2, the plate and drill holes were located after reviewing the locations of the existing drill holes and rejecting plates that were already drilled.

There are 10 more plate solutions than proposed drill holes as some targets could be modeled with both a shallow and deep plate fits the observed responses. These tandem plates are typically intersected by one drill hole, allowing the client to determine if drilling to the deeper plate is warranted. The plate and drill hole "fly to drill" templates plates are in Appendix C, with brief note captions for each target.

Assessment

The data are assessed and interpreted using 2D plans and sections as well as 3D voxel models.

The summary review (Figure 5) shows the more obvious conductive responses on the grid to be associated with discrete magnetic horizons. The AdTau accentuates the more conductive zones, particularly in TZ 1 and TZ 3 (Figure 6). In TZ 1 a smaller satellite conductor located south of the main Max peridotite (Figure 6 right panel) returns an obvious AdTau signature in plan that is lost in background EM late-time noise (Figure 6 left panel). Likewise, the easternmost TZ 3 is enhanced from an indeterminate response in the late-time amplitude image (Figure 6 left panel) to being a clear response in the AdTau image (Figure 6 right panel).

Figure 6: VTEM late-time plan left panel, AdTau plan right panel. The AdTau enhances the smaller and more subtle late-time EM responses.

The TMI-Tilt (Figure 7) provides greater detail of both the structure and lithologies. The TMI-Tilt response in the left panel was contoured as was the AdTau response (Figure 6) and the result merged and displayed in the right panel of Figure 7 along with the anomalous EM picks. The blue lines trace magnetic lineaments, some of which appear to be faults showing lateral offset.

An example of a magnetic structural break is seen to the north and east of the A1 EM anomaly (Figure 8), where a NE-SW striking magnetic horizon appears to be laterally E-W offset up to 500 m along a demagnetized magnetic linear. Though most of the Wabassi-Max region conductivity appears to be stratabound and concentrated in particular magnetic horizons in the layered mafic sequences, there may be a structural component to elevated conductivity at some sites, as indicated by the magnetic breaks that possibly track faults in the A1-A2 conductive horizon.

Figure 7: TMI-tilt grid left panel, with the TMI-tilt contours in black on the right panel. The right panel red contours are the AdTau. The green and yellow dots are the anomalous EM picks. Blue lines mark magnetic linears or breaks. The A1-A2 focus area is highlighted by the yellow square is zoomed in on in Figure 8.

Figure 9 shows a merged Mag3D and EM voxel model display. TZs 1-4 produce the most coherent voxel responses whereas much of the area north of TZ 4 (which includes TZs 5 and 6) show a quite broken up appearance in the voxel representation.

Unlike the spatially limited EM responses, higher susceptibility coherent 3D magnetic signatures can be traced for tens of kilometers that map lithology and geologic structures. As noted from the plan analysis, most of the larger conductors appear stratabound within discrete higher susceptibility magnetic surfaces, though these may possibly be disrupted by cross-cutting magnetic breaks in certain locations like at A1.

Figure 8: Zoom-in on the tilt angle grid over the A1-A2 conductors. The dashed lines trace inferred magnetic breaks that bisect the magnetic horizon carrying the A1-A2 conductivity. A 500 m lateral offset is indicated at the arrows if indeed the horizon "bend" is structural in origin and not a primary intrusive layering effect.

The final assessment confirms the four higher priority TZs. Whereas TZs 1 and 2 are previously explored, TZ 3 was unknown; returning two new conductors one at least 1 400 m long and TZ 4 is untested.

Figure 9: Perspective 3D view looking northward of the threshold Mag3D surface (blue) and the 3D voxel gridded 1D EM surfaces (red). The most significant conductive responses are identified in TZs 1, 2, 3 and 4,

Plate Modeling and Drill Targeting

Following the identification of the priority TZs, Maxwell modeling was undertaken on targets approved by Northern Shield for TZs 1, 2, 3, and 4 (Figure 10). In previously drilled TZs 1 and 2, the new plates were compared with drilling information provided by Northern Shield. Conductors which did not appear to have been previously drilled are provided to the client for possible drill testing. Figure 10 shows that most of the EM target plates are enclosed within magnetic horizons, the exceptions are the TZ 1 satellite conductor, the TZ 2 deeper A1 plates, one of the TZ 3 conductive subzones, and one of the TZ 4 plates.

Figure 10: The 41 Maxwell plates on the 1VD magnetic plan. Arrows point out the plate locations. The plates are located in the four priority TZs.

6. Priority Target Zone Discussion

Target Zone 1 includes the Max peridotite and satellite conductor and is comprised of three plate models for lines L2180, L2190, and L2300.

Target Zone 2 encloses the Wabassi A1 and A2 conductors, returning 12 plates in total with two higher priority focus plates; L500 and L4390.

Target Zone 3 on the Wabassi West grid is comprised of two conductive sub areas separated by 2 km. The eastern conductor, continuous for 1 400 m, is split into two more-conductive subzones, subzone 1 and subzone 2, that return plate models for lines L1040, L1050, L1060 L1070; and L1120, L1130, L1140 and L1150 respectively. The third feature is called subzone 3. It shows the highest TZ 3 EM response amplitude and is coincident with a higher magnetic susceptibility zone; plate models for lines L1300, L1310 and L1320 were defined.

Target Zone 4 on the far south of the Max 1 and Max 2 merged grid has a 6 km long E-W striking conductive signature, identified by a string of DPR EM picks, that is coincident with a magnetic horizon. This appears to be a formational conductor with one plate model for L4080 thought to be representative of the 6 km long conductor. Two SW-NE and N-S striking deeper conductive responses that span 5-6 flight lines are also identified. These conductors are discordant to the generally E-W striking parallel magnetic horizons that characterize TZ 4. As Northern Shield advised the modeling of two TZ 4 lines, L3280 was chosen as the second line as it is typical of the two 500 m long conductors. L3280 returns two plate models, one for the more eastern NS striking conductor, and a second plate for the more western SW-NE striking conductor.

The lower priority **Target Zones 5, 6 and 7** are characterized by smaller conductive responses of generally lower EM response amplitude. These lesser conductive responses will not be discussed in this paper but can be reviewed in detail and targeted in future if required.

TZ 1

The Max peridotite is located on the north of the larger Max survey grid. Six holes were drilled into the peridotite (08MX-01 to 08MX-06), including a hole into a smaller satellite conductor to the northeast. Northern Shield's report for the Max peridotite that- *"Magnetite/serpentine veins were common and were noticed to be conductive on the drill core scale. No massive sulphides were intersected and thus it was concluded that the magnetite veins may have caused the VTEM anomalies. However, a few blebs of chalcopyrite, pentlandite and millerite were seen in all drill-holes and the background levels of Ni and PGE in the peridotite is high and hence the need to re-evaluate the VTEM".*

Figure 11 is the plan view of the main Max peridotite AdTau response with the proposed three new plates and drill holes, and five existing 08MX drill holes. The drilled holes, except perhaps 08MX-03, appear to have intersected higher AdTau responses. The satellite conductor returns an obvious AdTau response.

Figure 11: AdTau image Max peridotite with three proposed plates (yellow) and drill holes, and the five historical drill holes in green.

The 3D surface views in Figures 12 and 13 show that the historical holes (except 08MX-01) appear to miss the more-magnetic lithology with a threshold above 0.14 SI. The N-S striking plate models parallel the conductive and magnetic isosurfaces inferring that holes 08MX-03 and 08MX-05 may have also missed the more conductive bulk of the peridotite. The three other MX holes do appear to have tested the more conductive surfaces. The isosurfaces indicate that the higher conductivities may be offset toward the eastern top edge of the more magnetic peridotite; magnetic plate modeling would help better resolve this observation. New holes L2180 and L2190 as sited intersect the tops of both the more conductive and more magnetic isosurfaces that surround the target plates. The higher conductivity surface plunges to the south, whereas the magnetic surface plunges to the north and northwest.

Figure 14 shows the satellite conductor's 0.37 mS/m surface returning a conduit-like shape that encloses the Maxwell plate response for L2300. A portion of the northward trending "conductive bridge" that strikes toward the larger Max peridotite is also seen.

When the higher susceptibility Max 1 magnetic surface is threshold to 0.035 SI, the curvilinear magnetic horizon south of the Max peridotite, that strikes eastward toward the satellite conductor, is seen to terminate several tens of meters to the west of the satellite conductor as shown below in Figure 15.

TZ 2

Twelve new Wabassi plates were modeled. Four InfiniTEM¹ and six VTEM plates were completed around the A1 anomaly. One VTEM and InfiniTEM plate each were modeled for the A2 anomaly and are not discussed here.

The Figure 16 ground TMI image shows the six VTEM plates plotted up with the one thicker and deeper L500 InfiniTEM plate model. The deeper, thicker, higher-priority L500 and L4390 target plates are plotted up in yellow with their boreholes, to distinguish them from the lesser priority shallower VTEM plates in black.

¹ Refer to Cunion and Witherly 2010 for a detailed outline of the original assessment of the Abitibi ground and borehole EM data.

Figure 13: WNW looking view Max peridotite; green magnetic surface, blue conductivity surface, two proposed drill holes, and five historical holes.

Figure 14: Elevated eastern view of the TZ 1 satellite conductor, 0.37 mS/m surface enclosing 0.30 mS/m plate.

Figure 15: North-looking view of the TZ 1 satellite conductor situated NE 0.035 SI surface that represents a magnetic horizon striking toward the satellite conductor from the SW.

Figure 16: TZ 2, the Wabassi A1 anomaly ground TMI grid with the six new VTEM plates and one of four new InfiniTEM plates shown, the L500 plate. The two yellow plates, L500 and L4390 are the proposed drill targets, both plates are deeper, thicker and less conductive than the shallower plates shown in black.

Plate L500 is coincident with a subtle ground magnetic signature, located about 200 m to the east of the main Wabassi magnetic horizon that carries most of the observed Wabassi conductivity. L500 is aligned parallel and coincident with a N-S striking magnetic low to the east of the main Wabassi magnetic horizon. The plate is 31 m thick, is located 283 m below surface, and has a lower conductivity of 27 mS/m. Plate L4390 is located about 250 m to the north of plate L500, in a magnetic break of the main A1-A2 magnetic horizon, just to the north of the main A1 EM and magnetic responses. It has a depth of - 227 m, is 41 m thick, and also has a low conductivity of 11 mS/m.

Figure 17 shows the relationship of the two deeper plates with the A1 conductivity and magnetic surfaces. The magnetic break in the blue susceptibility surface, just north of

Figure 17: Threshold A1 magnetic signature (blue) shows a magnetic break just north of the A1 conductor. Plate L500 is enclosed by the conductive surface (gold), Plate L4390 is located on the northern edge of the conductive surface.

the main A1 EM response (brown surface), is evident. Though the L500m plate is partially enclosed by the brown conductivity surface, this may be a LEI inversion artifact as the smaller plates nearer surface are much more conductive, being in the thousands to tens of thousands of mS/m; these shallower conductors likely produce the downward projecting EM surface.

Figure 18 provides an alternate view of the deeper plates and conductivity surface. It is possible that these two deeper plate results were not returned in the past due to a masking effect of the shallower, much more conductive plate results nearer surface. Though the two deeper, thicker, undrilled plates are considered to be higher priority as they are repeatable larger plate models, it's advised that the two deeper plate's lower conductivities be considered as to their representing viable geologic targets to chase or not, prior to drilling them.

Figure 18: 3D view of the A1 anomaly conductive surface and the two deeper plate models with the historical and proposed drill holes.

TZ 3

Two priority conductors are identified on the Wabassi West grid. The 1 400m long eastern conductor spans 15 flight lines. This eastern conductor breaks up into the two moreconductive subzones 1 and 2 seen in Figure 19. Subzone 3 is located 2 kms to the west of subzone 2.

Subzone 1

Subzone 1 is the easternmost coherent conductive signature. This NS striking conductor is coincident, but sub-perpendicular to a NE-SW striking magnetic horizon on its north. The conductor strikes southward out of the magnetic unit. The plate strikes for the subzone 1 models were kept perpendicular to the flight line directions, though the conductive horizon appears to trace the plate centers as seen in Figure 20. This is better seen in Figure 21, where the green conductive surface is seen striking southward out of the red magnetic surface with the plate centers tracking the conductive surface. Figure 22

Figure 19: Plan view of the three conductive subzones in Zone 3, on the Wabassi West grid. The background image is the magnetic 1VD.

shows that the 0.014 SI magnetic surfaces (red) fully encloses the two more northern plates, with the third and fourth more southerly plates being located fully outside the magnetic surface. This corroborates the conductor as being a continuous N-S striking body that is sub-perpendicular to the magnetic signature on the north. Existing drill hole 10WA-01 misses the new plates as modeled, but does appear to intersect the larger NS striking conductive subzone 1.

L1060 and L1070 provide two plates that are each intersected by one drill hole. The shallower shorter strike length plates return lower conductivities than the longer deeper plates. The vertical offset between the plates are about 20 m.

Figure 20: Plan view of the TZ 3 subzone 1 with plate models. Background image is the magnetic 1VD.

Figure 21: West-looking 3D view of the TZ 3 subzone 1 threshold; conductivity (green) and magnetic (red) surfaces, with plate models.

gure 22: Northwest-looking view of the TZ3 subzone 1 magneti surface with conductive plate models.

Subzone 2

Wabassi West subzone 2 (Figure 23) is located about 500 m southwest of subzone 1. The strike of the subzone 2 conductor has flattened out from subzone 1, from N-S to a NE-SW strike, perhaps indicating a structural jog between the two. As seen for subzone 1 the conductive strike of the plate models is not fully coincident with a magnetic signature, the subzone 2 conductor appears to be sub-parallel and in-between two adjacent magnetic horizons. This is evident in Figure 24, where the conductive surface (green) is seen sandwiched between two more-magnetic surfaces (blue).

All four plate model sets for subzone 2 are double plate sets, with vertically adjacent shallower and deeper plates. In two cases the vertical plate separations are 20 m, the third is 5 m offset, the fourth is 10 m offset. In all cases the deeper plates are the longer and more conductive plates.

Figure 23: Plan view of TZ 3 subzone 2 with plate models. Background image is the magnetic 1VD.

Figure 24: Southwest-looking view of TZ 3 subzone 2 conductivity (green) and magnetic (blue) surfaces and conductive plate models.

Subzone 3

The TZ 3 subzone 3 conductor is the highest amplitude Wabassi West grid EM response and is coincident with a significant higher amplitude magnetic signature, unlike subzones 1 and 2. The subzone 3 conductor appears to bisect the center of two north-verging magnetic horizons (Figure 25).

The subzone 3 conductor, like the prior two Wabassi West subzones, returns a shallow and deeper set of plates with similar calculated fit errors. The plate geometry variability is greater though in subzone 3 than it was in the prior mentioned two subzones. Like the prior two subzones, the TZ 3 plate sets taken together are approximately 300 m long and span four lines (Figure 25). The shallower plates locate above the northwestern top edge of a higher susceptibility (0.024 SI) discrete magnetic surface seen in Figures 26 and 27. The deeper plate set is partially imbedded in the northwestern top of the magnetic surface. The shallower plate set in subzone 3 is comprised of the longer and more conductive plates, whereas the shorter strike length thicker plates are deeper and less conductive. This plate-conductivity structure counters the dual-plate model sets obtained for subzones 1 and 2. Though Wabassi West subzone 3 returns the higher amplitude EM responses, it does not return the highest conductivity Wabassi West modeled mS/m numbers.

Figure 25: Plan view of the TZ 3 subzone 3 on the Wabassi West grid, with plate models. Background image is the magnetic 1VD.

Figure 26: Northeast-looking view of the TZ 3 subzone 3 magnetic surface with Maxwell conductive plate models.

Figure 27: Northwest looking view of the TZ 3 subzone 3 magnetic surface with Maxwell conductive plate models.

TZ 4

On the far south of the Max merged grid, two parallel ENW-WSW striking magnetic signatures parallel a 6 km long prominent conductor. The conductor is coincident with the thinner, more southern magnetic signature and returns a series of DPRs. Plate L4080 models this response (Figures 28 and 29). The detailed EM profile review and picking revealed two less-obvious conductive trends on the south beside the main formational conductor. The first is a trend of SPRs striking more steeply NE-SW that is sub-parallel to the more northern of the two nearby magnetic horizons, and located at L3280-1 (Figures 28 and 29). The 2nd is a trend of SPRs striking NS that is sub-perpendicular to the northern magnetic horizon and located at L3280-2 (Figures 28 and 31).

In Figure 30, it's seen that the shallower thin plate model for L4080 is enclosed within the green magnetic threshold surface that maps a more magnetic and conductive geologic formation. The L4080 plate model is thought to be representative of the 6 km long magnetic horizon of elevated conductivity that contains it. The conductivity in this magnetic horizon appears moderate at 250 mS/m.

Figure 28: Plan view of TZ 4 on the south of the merged Max 1 and Max 2 grids. The three Maxwell plate models and SPR picks are shown. The SPRs appear to define two NNE-SSW striking deeper more subtle conductors of limited strike length.

Figure 31 is a plan view of the two L3280 plates on the local 1VD magnetic grid. The western plate is located on an ENE-WSW striking magnetic horizon, while the eastern plate appears in a non-magnetic gap between two magnetic horizons. The 3D representation of the two plate models returned from L3280 is seen in Figure 32. These two plates are from one E-W line segment, the western SPR conductor has a strike length of at least 400 m, and could be modeled on at least five lines. The eastern SPR conductor has a strike length of at least 500 m and could be modeled on six lines.

Figure 29: Plan view of the TZ 4 plate L4080, background image is TMI 1st VD.

Figure 32 shows that the two NS striking plates are not tightly, but loosely, enclosed by coincident 1.25 mS/m conductive surfaces. The deeper conductive surface is seen situated between and parallel to the two magnetic horizons that sandwich it. This deeper conductive surface could be a 1D EM voxel gridding artifact beneath the shallower DPR conductor that is coincident with the southern magnetic horizon, if it is not truly representative of a deeper SPR conductivity. As the conductivity surface thresholding does convincingly corroborate the two SPR conductive profile signatures, whereas the Maxwell modeling does resolve the profile signatures, further Maxwell plate modeling of the SPR conductors is recommended if there is interest in them.

Figure 30: Northeast-looking view of the L4080 Maxwell plate model imbedded in the TZ 4 southern magnetic horizon, surface threshold 0.01 SI.

Figure 31: Plan view of the TZ 4 L3280 area Maxwell plates, background image is magnetic 1VD.

Figure 32: Northeast-looking view of TZ 4 L3280 SPR plate models. The plates are discrete and north of the formational conductor that is coincident at shallower depths with the southern magnetic horizon.

7. Conclusions

The processing and assessment of the merged VTEM EM and magnetic surveys returns the higher priority Target Zones 1-4 comprised of 41 conductive plates targeted by 31 drill holes. There are 10 fewer drill holes than plates, as the TZ 3 modeling was undertaken with two plate geometries, shorter strike-length-limited plates and longer flight line-perpendicular plates. In most cases, the Wabassi West TZ 3 two-plate model sets locate the tandem plates within 20 m of each other vertically, and are intersected by one drill hole. The two prominent TZ 3 conductors are split up into three conductive subzones. The eastern conductor is a 1400 m long continuous NNE-SSW striking band defined by the two more-conductive subzones 1 and 2 that are separated by 500 m. The more western subzone 3 conductor, located 2 km to the west of subzone 2, returns the highest amplitude TZ 3 VTEM response. The subzone 3 conductor is also coincident with a significant magnetic signature of higher amplitude and susceptibility.

New plate models were generated in TZs 1 and 2 in undrilled sites in the Max peridotite and Wabassi A1-A2 areas. Two plates are in the main Max peridotite body. The satellite conductor, the third Max peridotite plate, is well-identified by the AdTau plan response. It also returns a larger plate model that is enclosed by a threshold conductivity surface of similar mS/m amplitude. Twelve new plate models are proposed for TZ 2, at undrilled sites in the Wabassi A1-A2 anomalies. Ten of the plates are small and higher conductivity, with modeled conductivity values often in the thousands and in two cases tens of thousands of mS/m. These plates have limited spatial extent and would be easy to miss with a drill hole if the drill site topography differs by more than a few meters from the VTEM or InfiniTEM derived DEM elevations.

Differential GPS surveying of drill hole sites is recommended for smaller or thinner plates as the subsequent elevations could be used to adjust the drill hole trajectories prior to drilling. The two new L500 and L4390 A1 anomaly plate models are thicker, of lower conductivity, and deeper than the average Wabassi plate model. These two plates appear to be coincident with more-subtle magnetic signatures and not with the formational magnetic signature that contains most of the A1-A2 conductive response. Their novelty, i.e. their depth, size, lower conductivity, and thickness increases their priority to high in this report, though an argument could be made that they are not characteristic of the typical A1-A2 conductor, and therefore makes them higher risk.

Three target plates are provided for TZ 4. The most obvious conductor identified is a 6 km long ENE-WSW striking DPR conductive horizon coincident with the southernmost prominent ENE-WSW striking magnetic horizon. Though plate L4080 is thought to model a formational conductor, it's born in mind that mineralized layered mafic systems can be formational in character. To the NNE, two more subtle and deeper conductors were identified from the profile responses and mapped as 500 m long and 600 m long SPR strings. Both SPR strings are readily Maxwell modeled, and the two L3280 plates provided fit the two separate SPR responses on one of the lines traversed by both SPR strings. Up to 10 more Maxwell plates could be fit to the two SPR strings. More Maxwell modeling is recommended if there is interest in these SPR responses. The preliminary indications are that the two SPR conductors plunge to the NNE.

Respectfully submitted,

Ken Ewitay

Ken Witherly Condor Consulting, Inc.

Ed Cunion Consultant

October 25, 2010

8. References

Acorn, W., Legault, J., Venter, N., Smith, G., 2010, Report on a Helicopter-borne Versatile Time Domain Electromagnetic (VTEM) Geophysical Survey, Wabassi West, High Bank Camp, Ontario; for Northern Shield Resources Inc. by Geotech Ltd., Project 10047, June 2010.

Au, K., Fiset, N and Legault, J. 2009, Report on a Helicopter-borne Versatile Time Domain Electromagnetic (VTEM) Geophysical Survey, Hale Lake Property and Wabassi Property, Ogoki Post Area, Ontario; report for Northern Shield Resources Inc. by Geotech Ltd., Project 8012 January 2009.

Cunion, E. and Witherly, K. 2010, Wabassi TEM Review; for Northern Shield Resources Inc. report by Condor Consulting, Inc. July 19, 2010.

Ellis, R.G., 1998, Inversion of airborne electromagnetic data: Exploration Geophysics, 29, 121-127.

Li, Y., and Oldenburg, D. W. 1996, 3-D inversion of magnetic data: Geophysics, 61, no.2, 394-408.

Prikhodko, A., 2008, Report on a Versatile Time Domain Electromagnetic Survey (VTEM), Thunder Bay Mining Division Project, Northern Ontario, Canada for East-West Resources; by Geotech Ltd., Project 8027 May 2008.

Shi, Z., and Butt, G. 2004, New enhancement filters for geological mapping Preview, 111, 87-88

9. Appendixes

Appendix A-List of Picked EM Anomalies

Pick_ID	Lin e	grid	x	Y	SF	BF	Ad- Tau_ B	TMI	pick- type	ra nk	
Maxspr1	L33 10	Max	519 910	5717 851	0.000 601	0.000 74	2.616 4	582 10	spr	2	in southern mafic complex but small 3D response, perhaps noise
Maxspr2	L33 00	Max	522 045	5717 998	0.006 434	0.035 453	4.518 5	579 87	spr	2	shallower Maxwell plate (-83m) fit
Maxspr3	L33 00	Max	522 682	5718 002	0.003 049	0.014 158	4.420 6	579 61	spr	2	deeper Maxwell Plate fit (-163m)
Maxspr4	L33 00	Max	517 385	5717 997	0.000 379	- 0.001 5	2.003 3	581 40	spr	2	deep Maxwell plate fit (-298m)
Maxspr5	L32 90	Max	521 288	5718 151	0.000 275	0.000 717	2.142 6	581 66	spr	1	deep Maxwell plate fit -352m
Maxspr6	L32 90	Max	522 053	5718 147	0.001 299	0.007 176	4.951 2	580 08	spr	1	deeper Maxwell plate fit -220m
Maxspr7	L32 80	Max	522 674	5718 302	0.004 289	0.026 311	5.008 8	579 31	spr	1	deeper Maxwell plate fit -174 meters
Maxspr8	L32 80	Max	521 499	5718 300	0.000 133	0.001 03	1.028 3	583 27	spr	1	deeper Maxwell plate fit -192 meters
Maxspr9	L32 80	Max	521 319	5718 303	0.000 086	- 0.000 89	1.341 1	583 07	spr	2	more subtle EM response, difficult to model
Maxspr10	L32 70	Max	522 625	5718 447	0.001 441	0.007 272	4.480 0	579 41	spr	1	prominent broad response Maxwell plate -198
Maxspr11	L32 70	Max	521 691	5718 450	- 0.000 051	- 0.001 63	1.065 8	583 09	spr	1	prominent broad response Maxwell plate -207
Maxspr12	L32 70	Max	521 505	5718 450	0.000 314	0.000 557	1.046 4	582 88	spr	3	smaller sub-response to adjacent larger response
Maxspr13	L32 70	Max	522 307	5718 450	0.000 172	0.001 36	2.294 3	579 80	spr	3	smaller to adjacent larger response
Maxspr14	L32 60	Max	522 639	5718 603	0.000 474	0.000 644	2.060 7	579 97	spr	1	deeper Maxwell plate at -206m
Maxspr15	L32 60	Max	521 754	5718 600	0.000 263	0.000 586	0.887 1	583 70	spr	1	deeper Maxwell plate at -215m
Maxspr16	L32 50	Max	522 659	5718 754	0.000 067	- 0.000 58	1.139 3	581 53	spr	1	deeper Maxwell plate at -217m
Maxspr17	L32 40	Max	522 738	5718 896	0.000 586	-7.1E- 05	0.258 3	582 85	spr	2	more subtle response, difficult to Maxwell model
Maxspr18	L31 60	Max	519 824	5720 099	0.000 433	0.002 002	0.165 0	582 72	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr19	L30 90	Max	518 130	5721 151	0.000 41	0.001 225	0.225 4	579 88	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr20	L31 00	Max	519 430	5720 998	0.000 772	0.002 296	0.216 9	583 31	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr21	L30 80	Max	518 108	5721 301	0.000 083	- 0.000 57	0.342 4	580 15	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr22	L30 80	Max	519 214	5721 301	- 0.000 011	0.002 004	0.006 6	587 74	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr23	L30 80	Max	518 979	5721 304	0.000 394	0.000 762	0.124 2	587 53	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr24	L30 80	Max	522 864	5721 298	- 0.000 151	- 0.000 6	0.335 6	579 27	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr25	L30 70	Max	519 187	5721 451	0.000 091	0.000 411	0.981 7	585 42	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr26	L30 70	Max	518 251	5721 453	0.000 098	0.002 727	1.041 7	580 38	spr	3	in southern Max grid mafic complex but lesser 3D voxel response

Maxspr27	L30 60	Max	518 223	5721 599	0.000 011	0.000 364	1.457 7	581 01	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr28	L30 60	Max	519 210	5721 603	0.000 472	0.001 135	0.059 7	583 96	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr29	L30 60	Max	518 223	5721 599	0.000 011	0.000 364	1.457 7	581 01	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr30	L30 40	Max	517 902	5721 902	0.001 182	- 0.002 61	0.000 0	581 04	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr31	L30 40	Max	521 806	5721 902	0.000 113	0.006 533	0.000 0	580 34	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr32	L30 20	Max	522 794	5722 207	0.000 556	0.008 396	0.442 0	579 22	spr	з	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr33	L30 20	Max	520 590	5722 201	0.000 506	0.004 481	0.000 0	580 27	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr34	L30 20	Max	520 009	5722 202	- 0.000 158	0.002 578	0.000	578 61	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr35	L30 20	Max	519 622	5722 203	0.001 759	0.002 943	0.131 7	580 06	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr36	L30 20	Max	518 969	5722 207	0.000 396	0.000 726	0.022 2	581 64	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr37	L30 20	Max	517 349	5722 206	0.000 268	- 0.001 01	0.591 7	581 12	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr38	L30 10	Max	517 376	5722 350	0.000 234	- 0.005 7	0.013 2	580 69	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr39	L30 00	Max	522 267	5722 500	0.000 747	0.012 671	0.000 0	579 65	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr40	L30 00	Max	517 320	5722 499	0.000 929	0.002 574	0.515 2	580 58	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr41	L29 90	Max	517 074	5722 654	- 0.002 363	- 0.002 08	0.006 7	581 63	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr42	L29 90	Max	520 060	5722 651	- 0.002 023	0.063 48	0.000 0	579 45	spr	з	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr43	L29 90	Max	522 181	5722 650	0.000 286	0.002 323	0.000 0	579 60	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr44	L29 80	Max	519 967	5722 798	- 0.000 135	0.000 391	0.000 0	579 54	spr	3	in southern Max grid mafic complex but lesser 3D voxel response
Maxspr45	L29 30	Max	518 565	5723 551	0.000 065	0.006 367	0.000 0	581 41	spr	3	isolated small EM response
Maxspr46	L29 30	Max	517 440	5723 553	0.000 954	0.002 102	0.000 0	579 97	spr	3	isolated small EM response
Maxspr47	L27 90	Max	518 015	5725 647	0.000 376	- 0.000 79	0.110 2	582 27	spr	3	isolated small EM response
Maxspr48	L27 00	Max	518 073	5727 004	0.000 093	0.003 323	0.047 1	582 63	spr	3	isolated small EM response
Maxspr49	L26 90	Max	515 629	5727 151	- 0.001 385	0.009 744	0.015 1	579 12	spr	3	isolated small EM response
Maxspr50	L26 80	Max	517 650	5727 302	0.000 <u>18</u> 7	0.008 907	2.436 2	581 30	spr	3	small cluster of lesser EM responses
Maxspr51	L26 80	Max	517 944	5727 299	0.000 343	0.003 425	0.002	581 60	spr	3	small cluster of lesser EM responses
Maxspr52	L26 70	Max	517 567	5727 449	0.000 061	0.000 439	0.000	580 96	spr	3	small cluster of lesser EM responses
Maxspr53	L25 90	Max	517 535	5728 650	0.000 269	0.002 741	0.856 9	580 67	spr	3	isolated small EM response

Maxspr54	L25 20	Max	516 601	5729 701	- 0.000 708	0.005 02	0.000 0	580 00	spr	3	isolated small EM response
Maxspr55	L25 00	Max	515 187	5729 998	- 0.000 345	0.006	0.000	580 67	spr	3	isolated small EM response
	L25		520	5729	- 0.000	0.004	0.000	580			
Maxspr56	00	Max	900	999	364	15	0	75	spr	3	isolated small EM response
Maxspr57	L24 50	Max	518 079	5730 751	0.000 09	0.004 383	0.000 0	581 79	spr	3	isolated small EM response
Maxspr58	L24 30	Max	518 689	5731 050	0.000 123	0.004 254	0.000 0	580 86	spr	3	isolated small EM response
Maxspr59	L24 10	Max	518 442	5731 349	0.000 171	0.003 149	0.000 0	581 73	spr	3	isolated small EM response
Maxspr60	L23 70	Мах	522 217	5731 948	0.000	0.002	0.000	579 47	spr	3	isolated small FM response
Maxsproo	L23	Mux	515	5732	0.000	0.003	0.006	580	351	5	
Maxspr61	10	Max	668	848	518	724	9	18	spr	3	isolated small EM response
Maxspr62	L23 10	Max	517 737	5732 849	0.000 06	0.004 126	0.000 0	596 97	spr	1	Possible IP drop-out effect over a 3000 nT magmetic signature
Maxspr63	L23 10	Max	519 163	5732 849	0.000 557	0.003 2	0.000 0	580 31	spr	1	Max southern satellite conductor
	L23		519	5732	0.000	0.001	1.141	580			
Iviaxspr64	00	IVIAX	061	997	548	537	5	52	spr	1	Max southern satellite conductor
Maxspr65	90	Max	052	5733 147	0.000	0.000 205	0.607	580 64	spr	1	Max southern satellite conductor
Maxspr66	L22 90	Max	522 630	5733 148	0.000 195	0.012 118	0.313 8	580 46	spr	3	isolated small EM response
Maxspr67	L22 80	Max	519 004	5733 300	0.000 262	- 0.001 12	0.824 4	580 70	spr	1	Max southern satellite conductor
Maxspr68	L22 70	Max	518 976	5733 448	0.000 178	- 0.000 17	0.000 0	580 52	spr	1	Max southern satellite conductor
	L22		517	5733	0.000	0.003	0.025	578			
Maxspr69	70	Max	239	451	062	786	0	95	spr	3	smaller EM response west of Max peridotite
Maxspr70	L22 60	Max	518 150	5733 602	0.000 419	0.000 32	0.153 1	598 04	spr	2	undrilled stronger broad EM response in center of Max peridotite, a drilled horizon though
Maxspr71	L22 50	Max	518 170	5733 746	0.000 059	0.001 135	0.507 7	599 68	spr	2	undrilled stronger broad EM response in center of Max peridotite, a drilled horizon though
Maxspr72	L22 70	Max	519 760	5733 452	0.000 364	0.002 128	0.000 0	579 69	spr	3	isolated small EM response east of Max peridotite
	L22		520	5733	0.000	0.004	0.000	579			
Maxspr73	50	Max	475	747	23	452	0	76	spr	3	isolated small EM response east of Max peridotite
Maxspr74	50 L22	Max	517 785	5733 749	0.000 402	0.002 658	0.079 8	580 99	spr	2	subtle conductive shoulder on western edge of larger Max peridotite main signature, Maxwell model?
Maxspr75	L22 40	Max	517 954	5733 902	0.000 141	0.001 369	1.585 1	592 39	spr	2	subtle conductive shoulder on western edge of larger Max peridotite main signature, Maxwell model?
Maxspr76	L22 40	Max	518 229	5733 901	0	0.001 606	1.381 8	597 70	spr	2	undrilled stronger broad EM response in center of Max peridotite, a drilled horizon though
Maxspr77	L22 40	Max	518 543	5733 900	0.000 305	0.001 824	1.500 6	584 37	spr	2	undrilled stronger broad EM response in center of Max peridotite, a drilled horizon though
Maxspr78	L22 40	Max	518 818	5733 907	0.000 437	0.002	0.436	580 44	spr	3	lesser EM response to east of main Max peridotite
Maxspr79	L22 30	Max	517 994	5734 052	0.000 679	0.004 209	1.429 7	593 59	spr	2	subtle conductive shoulder on western edge of larger Max peridotite main signature, Maxwell model?
Maxspr80	L22 30	Max	518 423	5734 049	0.001 334	0.003 046	2.132 6	592 38	spr	2	Main Max Peridotite stronger broad EM response

Maxspr81	L22 30	Max	518 848	5734 047	0.000 091	0.003 03	0.463 0	579 88	spr	3	lesser EM response to east of main Max peridotite
Maxspr82	L22 30	Max	519 070	5734 046	0.000 127	0.003 686	0.147 4	579 21	spr	3	lesser EM response to east of main Max peridotite
Maxspr83	L22 30	Max	519 851	5734 052	0.000 797	0.001 992	0.020 4	579 38	spr	3	lesser EM response to east of main Max peridotite
Maxspr84	L22 20	Max	518 441	5734 198	0.002 555	0.008 482	2.440 6	592 71	spr	3	drilled main Max Peridotite stronger broad EM response
Maxspr85	L22 20	Max	518 002	5734 200	0.000 98	0.000 955	1.856 7	590 58	spr	2	subtle conductive shoulder on western edge of larger Max peridotite main signature, Maxwell model?
Maxspr86	L22 10	Max	518 445	5734 348	0.002 195	0.004 172	1.679 9	595 02	spr	3	drilled main Max Peridotite stronger broad EM response
Maxspr87	L22 10	Max	517 324	5734 347	0.000 367	0.004 225	0.362 3	584 63	spr	2	more subtle EM response on northern Max peridotote "magnet- ic hook"
Maxspr88	L22 00	Max	518 449	5734 497	0.002 599	0.003 999	1.296 0	594 18	spr	3	drilled main Max Peridotite stronger broad EM response
Maxspr89	L21 90	Max	518 331	5734 650	0.000 384	- 0.000 95	0.862 4	600 96	spr	1	new proposed Maxwell plate main Max conductor
Maxspr90	L21 90	Max	517 558	5734 650	- 0.000 091	0.002 484	0.000 0	587 17	spr	2	more subtle EM response on northern Max peridotote "magnet- ic hook"
Maxspr91	L21 90	Max	518 331	5734 650	0.000 384	- 0.000 95	0.862 4	600 96	spr	1	new proposed Maxwell plate main Max conductor
Maxspr92	L21 80	Max	518 289	5734 802	- 0.000 548	0.000 019	0.542 0	601 28	spr	1	new proposed Maxwell plate main Max conductor
Maxspr93	L21 70	Max	518 148	5734 947	- 0.000 615	- 0.002 02	0.452 8	594 54	spr	2	Main Max Peridotite stronger broad EM response at north of signature
Maxspr94	L21 60	Max	518 104	5735 099	- 0.000 468	0.002 225	0.486 0	595 98	spr	2	Main Max Peridotite stronger broad EM response at north of signature
Maxspr95	L21 50	Max	518 225	5735 247	0.000 002	0.001 96	0.281 9	589 01	spr	2	Main Max Peridotite stronger broad EM response at north of signature
Maxspr96	L21 50	Max	521 008	5735 250	0.000 11	0.002 763	0.000 0	581 16	spr	3	standalone smaller EM response east of max peridotite
Maxspr97	L21 50	Max	522 266	5735 251	- 0.000 255	0.003 385	0.072 7	578 75	spr	3	small EM response
Maxspr98	L21 50	Max	517 653	5735 249	- 0.000 25	0.002 354	0.000 0	585 33	spr	3	smaller EM response
Maxspr99	L21 40	Max	522 376	5735 400	0.000 12	0.000 202	0.491 3	579 23	spr	3	smaller EM response
Maxspr10 0	L21 60	Max	515 482	5735 098	- 0.000 285	0.002 589	0.000 0	580 29	spr	3	smaller EM response
Maxspr10 1	L21 20	Max	521 562	5735 700	0.000 313	0.001 262	0.456 6	580 13	spr	3	small group of EM responses drilled by hole 08MX-04
Maxspr10 2	L21 10	Max	521 519	5735 849	- 0.000 192	0.001 971	1.705 8	581 20	spr	3	small group of EM responses drilled by hole 08MX-04
Maxspr10 3	L21 10	Max	521 247	5735 849	- 0.000 428	0.002 271	0.048 1	582 24	spr	3	small group of EM responses drilled by hole 08MX-04
Maxspr10 4	L21 00	Max	521 588	5735 995	- 0.000 345	- 0.002 44	0.138	580 02	spr	3	small group of EM responses drilled by hole 08MX-04
Maxspr10 5	L21 00	Max	521 824	5735 994	0.000 431	- 0.000 45	0.000	579 61	spr	3	small group of EM responses drilled by hole 08MX-04
Maxspr10 6	L21 00	Max	521 295	5735 997	0.000	- 0.002 11	0.000	582 03	spr	3	small group of EM responses drilled by hole 08MX-04
Maxspr10 7	L20 90	Max	521 316	5736 151	0.000 15	0.002	0.000	582 08	spr	3	small group of EM responses drilled by hole 08MX-04

Maxspr10 8	L20 70	Max	522 237	5736 450	0.000 237	0.000 614	0.469 4	579 66	spr	2	small group of EM responses NE of 08MX-04				
Maxspr10 9	L20 60	Max	522 046	5736 601	- 0.000 1	- 0.000 74	0.406 1	580 24	spr	3	small group of EM responses NE of 08MX-04				
Maxspr11 0	L20 50	Max	522 124	5736 751	- 0.000 099	0.001 991	0.000 0	580 03	spr	3	small group of EM responses NE of 08MX-04				
Maxspr11 1	L20 30	Max	517 127	5737 048	0.000	0.004 153	0.342	579 38	spr	3	small isolated EM response				
Wabas- sispr112	L40 20	Wabassi	532 193	5734 193	- 0.000 282	- 0.001 3	0.044	583 87	spr	3	moderate EM response near hole 10WA-05				
Wabas- sispr113	L40 20	Wabassi	531 985	5734 488	- 0.000 24	0.000 323	0.445 1	582 62	spr	3	moderate EM response near hole 10WA-05				
Wabas- sispr114	L40 30	Wabassi	531 964	5734 262	- 0.000 026	0.000 893	0.000	582 06	spr	2	moderate EM response near hole 10WA-05				
Wabas- sispr115	L41 30	Wabassi	528 398	5736 638	- 0.000 049	- 0.001 23	0.000	594 41	spr	3	subtle EM response on prominent magnetic horizon				
Wabas- sispr116	L41 40	Wabassi	528 114	5736 781	- 0.000 011	- 0.000 55	0.015 7	587 84	spr	3	subtle EM response on prominent magnetic horizon				
Wabas- sispr117	L41 50	Wabassi	528 012	5736 659	- 0.000 204	0.000 701	0.278 7	590 06	spr	3	subtle EM response on prominent magnetic horizon				
Wabas- sispr118	L41 60	Wabassi	527 907	5736 552	- 0.000 16	0.001 877	0.000 0	595 00	spr	3	subtle EM response on prominent magnetic horizon				
Wabas- sispr119	L41 70	Wabassi	527 744	5736 517	0.000 068	0.002 438	0.029 9	593 02	spr	3	subtle EM response on prominent magnetic horizon				
Wabas- sispr120	L41 80	Wabassi	527 623	5736 439	0.000 26	0.000 196	0.000 0	593 08	spr	3	subtle EM response on prominent magnetic horizon				
Wabas- sispr121	L41 90	Wabassi	527 444	5736 421	0.000 091	0.001 037	2.369 2	592 84	spr	2	subtle EM response on prominent magnetic horizon				
Wabas- sispr122	L42 60	Wabassi	527 500	5734 549	0.000 168	- 0.000 58	0.209 6	580 68	spr	3	subtle EM response on prominent magnetic horizon				
Wabas- sispr123	L42 70	Wabassi	527 434	5734 387	- 0.000 153	0.001 886	0.000 0	593 08	spr	3	subtle EM response on prominent magnetic horizon				
Wabas- sispr124	L42 80	Wabassi	527 342	5734 267	0.000 031	0.001 599	0.027 9	596 70	spr	3	subtle EM response on prominent magnetic horizon				
Wabas- sispr125	L43 00	Wabassi	526 779	5734 528	0.000 302	- 0.001 23	0.000 0	585 57	spr	2	subtle EM response on prominent the north of the A1-A2 magnetic horizon				
Wabas- sispr126	L43 10	Wabassi	526 681	5734 407	0.000 223	- 0.001 25	0.000 0	585 14	spr	2	subtle EM response on prominent the north of the A1-A2 magnetic horizon				
Wabas- sispr127	L43 20	Wabassi	526 553	5734 324	0.000 082	0.000 94	0.207 0	586 48	spr	2	subtle EM response on prominent the north of the A1-A2 magnetic horizon				
Wabas- sispr128	L43 30	Wabassi	526 493	5734 152	- 0.000 46	- 0.001 53	0.028 3	586 75	spr	2	subtle EM response on prominent the north of the A1-A2 magnetic horizon				
Wabas- sispr129	L43 40	Wabassi	526 418	5734 005	- 0.000 127	- 0.000 39	0.000 0	587 18	spr	2	subtle EM response on prominent the north of the A1-A2 magnetic horizon				
Wabas- sispr130	L43 50	Wabassi	526 353	5733 831	0.000 351	0.001 329	0.000 0	587 19	spr	2	subtle EM response on prominent the north of the A1-A2 magnetic horizon				
Wabas- sispr131	L43 60	Wabassi	526 277	5733 686	0.000 214	0.000 311	0.197 2	587 79	spr	2	subtle EM response on prominent the north of the A1-A2 magnetic horizon				
Wabas- sispr132	L43 70	Wabassi	526 121	5733 647	0.000 272	- 0.000 72	0.142 7	587 32	spr	2	subtle EM response on prominent the north of the A1-A2 magnetic horizon				
Wabas- sispr133	L43 80	Wabassi	526 039	5733 506	0.000 007	- 0.000 34	0.030 7	586 55	spr	2	subtle EM response on prominent the north of the A1-A2 magnetic horizon				
Wabas- sispr134	L43 90	Wabassi	525 904	5733 425	0.000 74	0.002 623	4.383 6	585 36	spr	1	deeper undrilled VTEM plate on magnetic structure				

Wabas- sispr135	L44 00	Wabassi	525 898	5733 182	0.002 361	0.015 007	5.319 9	582 73	spr	2	on new undrilled Maxwell plate
Wabas- sispr136	L44 00	Wabassi	525 657	5733 526	0.000 221	0.000 221	2.050 9	580 88	spr	2	near new Maxwell plate
Wabas- sispr137	L44 50	Wabassi	525 470	5732 502	0.000 867	- 0.000 81	0.267 0	586 95	spr	2	on new undrilled Maxwell plate
Wabas- sispr138	L44 60	Wabassi	525 348	5732 411	0.006 018	0.030 244	4.543 7	587 76	spr	2	on new undrilled Maxwell plate
Wabas- sispr139	L44 70	Wabassi	522 122	5736 609	0.000 086	- 0.000 74	0.000 0	579 50	spr	3	smaller isolated EM response
Wabas- sispr140	L44 70	Wabassi	525 264	5732 272	0.000 174	0.000 908	0.000 0	584 60	spr	2	on south of A2 anomaly
Wabas- sispr141	L44 70	Wabassi	527 658	5728 957	- 0.000 066	0.000 826	0.267 8	582 48	spr	1	in the Wabassi-West 1 conductive horizon
Wabas- sispr142	L44 80	Wabassi	520 311	5738 882	- 0.000 229	- 0.000 87	0.000	578 89	spr	3	small isolated conductive response
Wabas- sispr143	L44 80	Wabassi	522 024	5736 507	- 0.000 151	-7.6E- 05	0.000 0	579 84	spr	3	small isolated conductive response
Wabas- sispr144	L45 00	Wabassi	525 113	5731 709	- 0.000 024	- 0.000 81	0.819 7	595 04	spr	2	conductor in A1-A2 horizon
Wabas- sispr145	T47 80	Wabassi	525 329	5732 427	0.005 412	0.032 748	4.818 8	588 35	spr	2	on new undrilled Maxwell plate
Wabas- sispr146	T47 80	Wabassi	525 983	5732 900	0.000 146	0.002 314	0.585 5	581 44	spr	1	deeper undrilled VTEM plate on magnetic structure
Wabas- sispr147	T48 20	Wabassi	527 613	5729 137	- 0.000 171	- 0.000 8	0.000	580 65	spr	1	in the Wabassi-West 1 conductive horizon
Wab- Westspr1 48	L10 30	Wabassi West	525 223	5731 796	0.000	0.000	0.000	593 63	spr	2	south of A2 anomaly
Wab- Westspr1 49	L10 40	Wabassi West	525 123	5731 760	0.000	0.000	0.000	590 72	spr	2	south of A2 anomaly
Wab- Westspr1 50	L10	Wabassi West	525 069	5731 662	0.000	0.001	1.355	594 91	spr	2	on new undrilled Maxwell plate
Wab- Westspr1	L10	Wabassi West	525 043	5731	0.000 099	0.000	0.000	598 08	spr	2	on A1-A2 magnetic horizon
Wab- Westspr1	L10	Wabassi	524	5731 504	0.000	0.000	0.000	595 70	spr	2	on A1-A2 magnetic horizon
Wab- Westspr1	L10	Wabassi	527	5729	0.000	0.000	0.000	579	spr	1	nick on
Wab- Westspr1	L10	Wabassi	527	5728	0.000	0.000	1.221	581	spr	1	plate on now Wabacci West conductor 1
Wab- Westspr1	L10	Wabassi	527	5728	0.000	0.000	0.714	580	spr	2	plate on new Wabassi-West conductor 1 near evicting drillhole
Wab- Westspr1	L10	Wabassi	527	5728	0.000	0.003	3.170	579	spr	1	plate on new Wabacsi West conductor 1
Wab- Westspr1	L10	Wabassi	527	5728	0.000	0.002	2.749	578	spi	1	plate on new Wabassi-West conductor 1
Wab- Westspr1	L10	Wabassi	527	5728	0.000	- 0.000	0.422	579	spr	1	plate on new Wabassi-West conductor 1
Wab- Westspr1	L10	Wabassi	527	5728	0.000	- 0.000	0.744	579	spr	1	prace on new wabassi-west conductor 1
Wab- Westspr1	90 L11	Wabassi	527	5728	0.000	0.000	1.313	578	spr	2	conductive response in Wabassi-west A2 Cluster
Wab- Westspr1 61	L11 10	Wabassi West	527 470	5728 327	0.000	0.000	8 2.067 3	94 578 95	spr	2	conductive response in wabassi-West A2 cluster

Wab- Westspr1	L11	Wabassi	527	5728	0.000	0.001	2.901	579			
62	20	West	345	311	341	523	4	08	spr	1	plate on new Wabassi-West conductor 2
Wab-	111	Mahassi	F 2 7	5720	-	0.001	2 260	F 70			
63	30	West	220	291	12	632	2.369	578	spr	1	plate on new Wabassi-West conductor 2
Wab-						-					
Westspr1	L11	Wabassi	527	5728	0.000	0.000	1.543	578			
64	40	West	144	225	236	19	1	39	spr	1	plate on new Wabassi-West conductor 2
Wab-	1.1.1	Wabacci	E 27	5770	0.000	0.000	1 072	E 70			
65	50	West	070	166	337	667	1.873	45	spr	1	plate on new Wabassi-West conductor 2
Wab-					-	-					
Westspr1	L11	Wabassi	526	5728	0.000	0.000	0.000	578			
66	60	West	919	172	113	16	0	46	spr	1	conductive response in Wabassi-West A2 cluster
Wab-	112	Mahassi	5.25	5720	0.000	8.05	0.257	F 77			
67	80	West	050	3728	264	-0.91	0.337	85	spr	2	conductive response in Wabassi-West A3 cluster
Wab-											
Westspr1	L12	Wabassi	525	5728	0.000	0.002	2.600	580			
68	90	West	032	254	557	731	5	45	spr	1	conductive response in Wabassi-West A3 cluster
Wab-	112	Mahassi	524	5720	0.002	0.011	2 415	F 0 1			
69	00	West	524 968	177	122	0.011	3.415	30	spr	1	conductive response in Wabassi-West A3 cluster
Wab-						-			P -		
Westspr1	L13	Wabassi	524	5727	0.000	0.000	0.000	579			
70	40	West	800	776	321	2	0	42	spr	2	conductive response in Wabassi-West A3 cluster
Movens17	140		F10	5720	0.000	-	0.000	570			
1 1	20	Max	518	947	878	76	0.092	579	spr	3	smaller EM response
					-	-					
Maxspr17	L32		521	5718	0.000	0.003	0.450	582			
2	60	Max	573	600	454	13	6	95	spr	1	near deeper Maxwell plate @ -215m
Mayopr17	TEO		E10	E724	-	-	1 104	E00			
3	20	Max	000	966	361	95	1.154	30	spr	2	on main Max peridotite conductor near existing drillhole
Maxspr17	T50		517	5734	0.000	0.001	1.567	591			
4	20	Max	998	422	626	343	1	17	spr	1	on western edge of main Max peridotite conductor
Maxor17	T50		517	5725	0.000	0.000	0.423	582			
5	20	Max	996	662	605	343	0.425	76	spr	3	isolated small EM response
					-						
Maxspr17	T50		518	5718	0.000	0.001	0.576	582			response on west of larger east-west striking magnetic horizon,
6	20	Max	005	000	026	185	3	45	spr	2	Maxwell model?
Maxsnr17	T50		519	5717	0.000	0.001	1 838	579			response on west of larger east-west striking magnetic horizon
7	30	Max	498	883	567	671	4	98	spr	2	Maxwell model?
					-	-					
Maxspr17	T50		519	5734	0.000	0.002	0.087	579			
8	30	Max	498	211	511	56	1	00	spr	3	smaller EM response to east of Max peridotite
Maxsnr17	T50		519	5734	- 0.00	0.001	0 125	579			
9	30	Max	500	547	374	798	4	04	spr	3	smaller EM response to east of Max peridotite
					-	-					
Maxspr18	T50		521	5718	0.000	0.000	1.492	580			
0	40	Max	002	424	16	14	9	95	spr	2	response to north of the larger magnetic horizon
Maxsnr18	T50		522	5718	-	0.002	0.188	583			
1	50	Max	500	942	172	586	2	78	spr	2	near deeper Maxwell plates just to east
Maxspr18	L32		521	5718	0.000	0.000	0.271	580			
2	50	Max	617	/48	035	6	8	47	spr	1	Deeper Maxwell plate model nearby

								_			
Pick_ID	Line	grid	X	Y	SF	BF	Adlau_B	IMI	pick_type	Rank	Notes located in the thinner
											southern magnetic horizon, appears to be
Maxdpr1	L4010	Max	518297	5716978	0.004379	0.021666	5.274287	58097	dpr	2	a formational response
											southern magnetic
Maxdpr2	L4030	Max	518702	5717075	0.003621	0.021252	6.196445	58224	dpr	2	horizon, appears to be a formational response
·									· ·		located in the thinner
											horizon, appears to be
Maxdpr3	L4020	Max	518503	5/1/0/4	0.001632	0.010897	5.986339	58105	dpr	2	located in the thinner
											southern magnetic
Maxdpr4	L4040	Max	518903	5717155	0.008476	0.046985	5.519978	58185	dpr	2	a formational response
											southern magnetic
Maxdpr5	L4050	Max	519094	5717151	0.011564	0.087261	6.538592	58301	dpr	2	horizon, appears to be a formational response
											located in the thinner
											horizon, appears to be
Maxdpr6	L4080	Max	519700	5717341	0.014516	0.058324	4.371406	58197	dpr	2	a formational response located in the thinner
											southern magnetic
Maxdpr7	L4100	Max	520102	5717468	0.001477	0.007368	4.188104	58016	dpr	2	a formational response
											located in the thinner southern magnetic
Maxdor8	14110	Max	520303	5717390	0.000151	0.001526	0.620384	57978	dor	2	horizon, appears to be
Махарто	Latio	Max	020000	0111000	0.000101	0.001020	0.020004	01010	api		located in the thinner
											southern magnetic horizon, appears to be
Maxdpr9	L4120	Max	520502	5717384	0.002086	0.011168	4.039659	58070	dpr	2	a formational response
											southern magnetic
Maxdpr10	L4130	Max	520699	5717428	0.003116	0.017652	3.712779	58113	dpr	2	a formational response
											located in the thinner southern magnetic
Movdpr11	1 4000	Mox	F10002	5717401	0.046079	0.201910	4 177069	50240	dor	2	horizon, appears to be
Maxopri i	L4090	IVIAX	519902	5717401	0.046978	0.201819	4.177908	36346	арг	2	located in the thinner
											southern magnetic horizon, appears to be
Maxdpr12	L4140	Max	520902	5717487	0.002667	0.009126	2.643374	57993	dpr	2	a formational response
											southern magnetic
Maxdpr13	L4060	Max	519302	5717250	0.001103	0.001456	2.096381	58194	dpr	2	a formational response
											located in the thinner southern magnetic
Movdor14	1 4150	Mox	521101	5717540	0.001610	0.004502	2 701415	E90E4	dor	2	horizon, appears to be
Maxupi 14	L4150	IVIAX	521101	5717540	0.001019	0.004505	2.701415	56054	арі	2	located in the thinner
											southern magnetic horizon, appears to be
Maxdpr15	L4160	Max	521300	5717593	0.003005	0.016022	3.809758	58152	dpr	2	a formational response
											southern magnetic
Maxdpr16	L4170	Max	521504	5717676	0.008816	0.037016	3.496566	58159	dpr	2	horizon, appears to be a formational response
											located in the thinner
Manual and 7	1 4400	Maria	504007	5747700	0.0000.40	0.400400	5 000 447	50000	da a		horizon, appears to be
Maxopr17	L4180	iviax	521697	5/1//20	0.026843	0.169166	5.333417	58092	apr	2	located in the thinner
											southern magnetic horizon, appears to be
Maxdpr18	L4190	Max	521902	5717815	0.011482	0.057707	4.308468	58048	dpr	2	a formational response
											southern magnetic
Maxdpr19	L4200	Max	522100	5717838	0.002047	0.011613	3.312037	58035	dpr	2	horizon, appears to be a formational response
											located in the thinner
Mauria 00	1 40 10		500000	5747050	0.0005	0.00105	4 570 105	50001	-da -a	_	horizon, appears to be
Maxopr20	L4210	IVIAX	522302	5717958	-0.0003	-0.00183	1.576498	58004	apr	2	located in the thinner
											southern magnetic horizon, appears to be
Maxdpr21	L4230	Max	522698	5718170	0.000974	0.00629	3.400744	57949	dpr	1	a formational response
											southern magnetic
Maxdpr22	L3310	Max	<u>5</u> 21748	<u>57</u> 17851	0.022044	0.125028	4.908394	57976	dpr	2	horizon, appears to be a formational response

											just north of the main
Maxdpr23	L3310	Max	521236	5717847	0.0019	0.010181	3.954755	57947	dpr	1	DPR horizon
											located in the thinner southern magnetic
											horizon, appears to be
Maxdpr24	L3310	Max	521790	5717852	0.032356	0.155227	4.206747	57984	dpr	2	a formational response
											southern magnetic
	1.0010		500045		0.000500						horizon, appears to be
Maxdpr25	L3310	Max	522045	5717850	0.000599	0.003986	3.890086	58036	dpr	2	a formational response
											located near anomaly
Wabassidpr26	L4400	Wabassi	525718	5733438	0.000106	0.000686	1.12533	58167	dpr	2	A1
											located near anomaly
Wabassidpr27	L4410	Wabassi	525764	5733105	0.001362	0.009059	4.346874	58812	dpr	2	A1
											located near anomaly
Wabassidpr28	L4410	Wabassi	525906	5732907	0.000226	0.000489	1.5202	58169	dpr	2	A1
											located near anomaly
Wabassidpr29	L4420	Wabassi	525641	5733032	0.000008	-0.00015	0.656397	58803	dpr	2	A1
		Wabassi									Maxwell plate model
WabWestdpr30	L1310	West	524866	5728136	0.001042	0.006328	5.276189	58062	dpr	1	on Wabassi-West 3
		Wabassi									Maxwell plate model
WabWestdpr31	L1320	West	524810	5728049	0.000537	0.002125	4.921865	58020	dpr	1	on Wabassi-West 3
		Wabassi									Maxwell plate model
WabWestdpr32	L1330	West	524751	5727970	-0.00033	-0.00091	0.244168	57938	dpr	1	on Wabassi-West 3
											easternmost dpr on the Max South
Maxdpr33	L3290	Max	522627	5718149	0.000322	0.000183	1.454792	57952	dpr	2	magnetic linear
											easternmost dpr on
Maxdpr34	T5050	Max	522503	5718072	-0.00038	0.001511	1.41289	57965	dpr	2	magnetic linear
									•		located in the thinner
											southern magnetic
Maxdpr35	T5040	Max	520997	5717496	0.000949	0.005384	3.719607	58035	dpr	2	a formational response
											located in the thinner
											horizon, appears to be
Maxdpr36	T5030	Max	519498	5717333	0.178703	1.17888	5.747471	58157	dpr	2	a formational response

Appendix B-Notes on Maxwell Modeling

The Geotech provided database was run through the Maxwell plate inversion program. The EM response is presented, and plate parameters are edited and inverted to better fit the observed EM response with the model EM response. The resulting deliverable products are Maxwell plate model PRJ, PTE, PTS, and DXF files are located within the delivered client CD.

Appendix C- "Fly to drill Templates"

Maxwell EM plate model and drill hole outcomes are presented in graphical plan and 3D format using Encom PA. The drill holes as sited are seen to intersect the top sections of the provided plate models. The drill hole collars and geometries are therefore thought to be accurate for the intersection of the modeled conductive plates out in the field, though there is always be some ambiguity in plate model results for any given observed EM response. It was noted for the TZ 2 and TZ 3 models in particular, where two plates of different geometries, either shallower or deeper, or of shorter or longer strike length, could fit the same response with a similar calculated fit error. For the smaller targets of limited spatial extent, accurate differential GPS sighting of drill holes is recommend to allow a drill hole's trajectory into a smaller conductor to be adjusted if necessary to reflect the more accurate XYZ collar coordinates out in the field. Conductors that are thin conductive ribbons or small blobs 100 m or more below surface can easily be missed by a drill hole if the proposed drill hole collar elevation deviates by more than a few meters from the real field topography elevation where a drill hole is sited.

Wabassi-Max Target Template Listing

Max Peridotite L2180 "Main conductor"

L2180 Larger thicker plate well fits the response, moderate conductivity, one drill hole proposed.

Max Peridotite L2190 "Main conductor"

L2190 Larger thicker plate well fits the response, moderate conductivity, one drill hole proposed.

Max Peridotite L2300 "South satellite conductor"

L2300 Larger thicker plate well fits the response, moderate conductivity, one drill hole, higher priority.

L3280 "deeper southern Max SPRs"

L3280 two plates fit the two along-line separated responses, lower conductivity, higher priority due the conductors being deeper and sub-parallel or sub-perpendicular from the NE-SW striking formational conductor just to the south.

L4080 Max grid far south "formational magnetic conductor"

L4080 Max south thin plate well fits the response, moderate conductivity, higher priority.

Wabassi "A1 anomaly L4380"

L4380- small conductive plate, accurate GPS positioning for the drill hole collar in the field is recommended, as the plate extents are limited in size. This model is fit to a noisier and more subtle response, lower priority target.

Wabassi "A1 anomaly L4390"

L4390- thicker deeper plate with a pipe-like morphology, of moderate conductivity. Higher priority target due to location in a magnetic structural break. but higher risk due to depth.

Wabassi "A1 anomaly L4400"

L4400- South plate was drilled by Northern Shield, the north plate target is a moderately conductive long thin plate. Lower priority, accurate GPS positioning for the drill hole collar in the field is recommended, as the plate extents are limited.

Wabassi "A1 anomaly L4420"

L4420- one highly conductive, one extremely conductive small plate separated by a few hundred meters along-flight line. Accurate GPS positioning of the drill hole collar in the field is recommended, as the plate extents are limited. Lower priority due to limited plate extents.

L4450- Thin vertical pipe-like plate of moderate conductivity. Accurate GPS positioning for the drill hole collar in the field is recommended, as the plate extents are limited. This is a noisier lower amplitude response, lower priority target.

Wabassi "A1 anomaly T4780"

T4780- small flat-lying highly conductive plate in a magnetic dyke or other magnetic linear. Accurate GPS positioning of the drill hole collar in the field is recommended, as the plate extents are limited. Lower priority.

Wabassi "A1 anomaly InfiniTEM L300"

L300- Two plates fit this response; the NS striking thin plate was chosen as the model, though a sub-perpendicular thick plate also fits the response. The drill hole is sighted to intersect the center of both plates, both of which are high conductivity. These are lower priority targets due to the ribbon-like morphology. The profile traces in the top panel are the Abitibi-provided merged Z and X component InfiniTEM responses, there was not a located Z response database provided.

Wabassi "A1 anomaly InfiniTEM L400"

L400- A long rod-like plate model of higher conductivity fit the response. The model is ranked low priority as it has a limited spatial extent, is thin, rod-like. The profile traces in the top panel are the Abitibi-provided merged Z and X component InfiniTEM responses, there was not a located Z response database provided.

L500- A suite of deeper plates fit this response; the deepest plate was selected as the drill hole intersects the tops of the shallower plates on its trajectory to the deeper plate. Plate has lower to moderate conductivity and a coincident ground magnetic signature. The target is high priority for returning repeatable deeper model fits that may have been masked by shallower more conductive responses to the west, and also for being coincident with a subtle ground magnetic signature, though the depth makes it high risk.

Wabassi "A1 anomaly InfiniTEM L600"

L600- shallow very conductive thin plate, a 2nd thick plate model with a perpendicular strike to the thin plate is also very conductive; the drill hole is sighted to intersect both plates piercing the center of the thin plate. Low priority due to limited plate extents. The profile traces in the top panel are the Abitibi-provided merged Z and X component Infini-TEM responses, there was not a located Z response database provided.

Wabassi "A2 anomaly InfiniTEM L1200"

L1200- long thin shallow conductive plate model, low priority due to its being thin and rod-like. The profile traces in the top panel are the Abitibi-provided merged Z and X component InfiniTEM responses, there was not a located Z response database provided. The UTM conversion was internal in Maxwell to the modeled unlocated TEM files.

Wabassi West "Subzone 1 L1040"

L1040- lower-moderate conductivity long thin plate. Higher priority for being part of a 1400m long conductive horizon. The existing drill hole 10WA-01 trace is seen to miss the southern plate edge just south of plate, on the right bottom panel.

Wabassi West "Subzone 1 L1050"

L1050- one of two small plates separated by 650m along the flight line. This is a lower conductivity plate. Ranked higher priority for being part of a 1400m long Wabassi West conductive horizon.

Wabassi West "Subzone 1 L1050 plate 2"

L1050 the 2nd of two widely separated small plates, this plate is part of A1-A2 conductive horizon. Low-moderate conductivity, low priority. Differential GPS hole sighting is recommended as the plate is small, easy to miss.

L1060- two thinner plates of moderate to high conductivity, one drill hole is sighted that intersects the center of both plates that are moderate-higher conductivity. High priority as part of a continuous 1400 m long Wabassi West conductive horizon.

Wabassi West "Subzone 1 L1070"

L1070- two thinner plates of moderate to high conductivity, one drill hole is sighted that intersects both plate centers, higher priority. Differential GPS Hole sighting recommended as both plates are small, easy to miss.

Wabassi West "Subzone 2 L1120"

L1120 Two smaller plates, moderate to higher conductivity, higher priority due to being part of 1400 m long conductive horizon. One drill hole is sighted that intersects both plate centers, higher priority.

Wabassi West "Subzone 2 L1130"

L1130- two thinner plates of moderate to high conductivity, one drill hole intersects both plates, higher priority as part of a 1400 m continuous conductive horizon.

Wabassi West "Subzone 2 L1140"

L1140- two thinner plates of moderate to high conductivity, drill hole intersects both plate centers, higher priority as part of a 1400 m long conductive horizon.

Wabassi West "Subzone 2 L1150"

L1150 two vertically separated smaller plates of different strike lengths, higher conductivity, higher priority due to being part of a 1400m long conductive horizon. Hole intersects center of both deeper and shallower plates. Differential GPS Hole sighting important as plates are small, easy to miss.

Wabassi West "Subzone 3 L1290"

L1290 Two plates return similar fits, a thinner shallower one, and deeper thicker one with significant depth extent. One hole intersects the center of both pates. The hole intercept is the shallow plate, the EOH is out the side of the thicker deeper plate as shown on the lower right panel.

Wabassi West "Subzone 3 L1300"

L1300- Two thick plates of different morphology fit the field response, one drill hole provided that intersect the plate centers of both plates. The hole intersects the top center of the deeper thicker plate and exits out its side as shown in the lower right panel.

Wabassi West "Subzone 3 L1310"

L1310 Two plates, one shallower and thin, one deeper and thick, fit this response. The shallow thin plate returns a better visual fit, though the calculated fit errors are the same for both modeled plates. One hole is provided to pierce both plates, Hole one intersects the center of the thin shallower plate at -110 m, and also intersects the top right side of the deeper plate at -180 m. High priority.

Wabassi West "Subzone 3 L1320"

L1320- Two plates, one shallower, one deeper, fit this response. The shallow plate returns a better visual fit, though the calculated fit errors are the same. One hole intersects the center of the thin shallower plate at -140 m, and intersects the deeper plate at -250 m. High priority.
Appendix D-Notes on Magnetic Modeling

Hole_id	Easting	Northing	Dip	Azimuth	Elevation	Length
10WA-01	527657	5728911	-65	120	212	234.7
10WA-02	531967	5734539	-75	145	204	154.2
10WA-03	527705	5734265	-50	325	217	267.3
10WA-04	525860	5733240	-75	145	218	301.75
10WA-05	525860	5733240	-75	325	218	341.38
10WA-06	525735	5733145	-65	145	217	216.41
10WA-07	525355	5732415	-85	145	216	213.4
10WA-08	525978	5733062	-60	290	219	302
10WA-09	525761	5733141	-60	290	218	192
10WA-10b	525800	5733129	-60	110	218	266
10WA-11	525948	5733287	-68	280	221	288
10WA-12	525896	5733172	-65	290	220	1
08WA-01	521362	5739350	-55	270	226	14.9
08WA-02	522415	5738860	-55	300	220	160.6
08WA-04	518084	5734790	-65	330	223	347.12
10WA-13	525408	5732393	-55	290	215	164
08MX-01	518586	5734504	-55	280	223	426.72
08MX-02	518586	5734504	-75	270	223	502.92
08MX-03	518084	5734790	-70	270	223	362.7
08MX-04	521628	5735853	-55	270	220	207.26
08MX-05	518690	5734200	-75	270	224	787.35
08MX-06	518290	5734200	-70	90	225	739.07

Appendix E-Wabassi-Max historic drill hole list

.

	Pla				Den	ы	Din	Leng	De-	Cond-		
File	to	x	v	7	th	n	Dir	th	nExt	Thick	Cond	Thick
WahWest-		5277	y 57289	11		Р			PLAC	THICK	cond	THICK
11040	1	67	90	8	-96	74	136	200	55.8	92	12.8	7.2
WahWest-	-	5277	57289	0	50	7 -	150	200	55.0	52	12.0	7.2
11050	1	40	00	61	-152	27	136	58	19.8	181	20.7	87
WabWest-	-	5250	57316	01	152	27	150	50	15.0	101	20.7	0.7
11050	2	71	49	38	-178	21	136	72	34.0	105	10.7	9.8
WabWest-	-	5277	57287	50	1/0	~	150	,2	54.0	105	10.7	5.0
11060	1	15	90	83	-130	23	136	43	423	278	33 5	83
WabWest-	-	5277	57287	00	100		150		12.0	2/0	55.5	0.5
11060	2	20	80	63	-150	91	-45	200	12 5	1319	594	22.2
WahWest-		5276	57286	00	100	51	15	200	12.0	1010	33.1	
11070	1	90	60	94	-118	20	136	30	20.3	712	97.6	73
WabWest-	-	5276	57286	51	110		150	50	20.5	/12	186	7.5
11070	2	95	57200	76	-136	66	-45	200	6.6	2858	2001	15.4
WabWest-	_	5273	57283		100				0.0			
L1120	1	35	26	59	-155	16	136	35	12.1	780	97.8	8.0
WabWest-	_	5273	57283								229.	
L1120	2	33	29	39	-174	58	136	200	11.2	2625	7	11.4
WabWest-		5272	57282									
L1130	1	38	70	78	-136	16	136	38	5.6	754	81.3	9.3
WabWest-		5272	57282							_	173.	
L1130	2	41	59	68	-145	74	-45	200	5.7	2531	6	14.6
WabWest-		5271	57282									
L1140	1	51	14	64	-150	14	136	41	5.9	837	80.9	10.4
WabWest-		5271	57282								205.	
L1140	2	55	15	61	-152	82	-45	200	6.8	3083	8	15.0
WabWest-		5270	57281									
L1150	1	77	53	69	-146	15	136	41	5.1	759	72.2	10.5
WabWest-		5270	57281								233.	
L1150	2	83	47	59	-156	70	-45	200	5.2	3279	8	14.0
WabWest-		5250	57282									
L1290	1	60	25	66	-150	82	-45	200	16.6	1351	58.7	23.0
WabWest-		5250	57282			12			229.			
L1290	2	59	21	40	-176	2	136	64	0	152	2.4	63.3
WabWest-		5249	57281	10								
L1300	1	75	80	0	-118	80	-55	200	25.7	966	35.6	27.2
WabWest-		5249	57281	11					106.			
L1300	2	70	75	5	-103	99	136	60	3	331	8.6	38.4
							-					
WabWest-		5248	57281	12			50.0					
L1310	1	72	22	5	-93	95	0	200	26.9	1451	149	9.74
WabWest-		5249	57280						222.			
L1310	2	23	76	85	-133	70	316	91	7	234	6.9	34.1

Appendix F- VTEM Target Plate Parameters

.

WabWest-		5248	57280									
L1320	1	01	59	87	-133	90	143	82	48.8	812	58	14
WabWest-		5248	57280	-								
L1320	2	10	50	25	-245	99	136	150	67.0	647	11.5	56.2
		5182	57348	10		10			411.			
Max-L2180	1	79	00	4	-119	3	270	400	1	20	0.5	39.2
		5182	57346			13			426.			
Max-L2190	1	05	50	85	-137	3	270	400	8	24	1.1	21.1
		5190	57330						500.			
Max-L2300	1	29	00	23	-201	73	90	200	0	18	0.3	51.7
		5214	57183					177.	378.		2.14	
Max-L3280	1	64	05	23	-192	86	270	9	7	64	3	29.9
		5226	57183			11		177.	283.		3.43	
Max-L3280	2	95	00	40	-174	9	90	9	8	161	16	46.9
		5197	57173	17		10						
Max-L4080	1	05	42	6	-45	2	179	400	94.6	249	na	na
Wabassi-		5260	57335								871.	
L4380	1	35	10	96	-132	86	130	42	36.4	4696	1	5.4
Wabassi-		5259	57333			11			273.			
L4390	1	75	20	-5	-227	6	135	69	4	431	10.4	41.4
Wabassi-		5256	57335								353.	
L4400	2	31	60	35	-182	46	135	200	8.7	3003	3	8.5
Wabassi-		5256	57329								430.	
L4420	1	85	70	99	-117	64	135	100	11.6	2236	4	5.2
Wabassi-		5255	57331								1,86	
L4420	2	55	50	63	-153	90	135	51	7.3	76245	3.3	40.9
Wabassi-		5254	57324						213.			
L4450	1	62	97	97	-120	86	53	27	0	351	27.3	12.9
Wabassi-		5253	57324	11							169.	
T4780	1	55	45	9	-97	28	135	63	3.8	2411	4	14.2

Appendix G- VTEM Target Drill Hole Parameters

Grid	Hole_ID	Easting	Northing	Dip	Azimuth	Elevation	Length	Intercept
Wabassi-								
West	L1040-hole 1	527835	5728952	-60	300	212	170	140
Wabassi-								
West	L1050-hole 1	527798	5728844	-65	315	213	200	170
Wabassi-								
West	L1050-hole 2	525145	5731583	-66	316	217	220	200
Wabassi-								
West	L1060-hole 1	527757	5728747	-73	315	212	190	160
Wabassi-	11070 h ala 1	F 2 7 7 2 0	5720620	70	245	242	1.00	1 4 5
West	L1070-noie 1	527720	5728629	-/6	315	212	160	145
Wabassi-	11120 hole 1	E 272E2	E720201	00	225	215	200	180
Wabassi		527555	5726501	-00	525	215	200	100
West	11130-hole 1	527208	5728302	-71	135	214	170	160
Wabassi-		527200	5720502	,1	135	217	170	100
West	L1140-hole 1	527134	5728235	-80	135	215	170	155
Wabassi-								
West	L1150-hole 1	527055	5728181	-75	136	215	170	155
Wabassi-								
West	L1290-hole 1	525089	5728193	-75	315	218	320	160
Wabassi-								
West	L1300-hole 1	524917	5728230	-60	135	218	200	130
Wabassi-								
West	L1310-hole 1	524834	5728170	-61	135	220	280	110
Wabassi-								
West	L1320-hole 1	524786	5728074	-82	136	220	320	140
Max	L2180-hole 1	518390	5734800	-60	270	224	250	170
Max	L2190-hole 1	518332	5734650	-60	270	223	240	190
Max	L2300-hole 1	519190	5732998	-60	270	225	350	260
Max	L3280-hole 1	521325	5718300	-60	90	217	330	260
Max	L3280-hole 2	522540	5718301	-60	90	215	300	230
Max	L4080-hole 1	519699	5717390	-60	180	220	110	80
Wabassi	L4380-hole 1	526090	5733435	-60	323	233	200	180
Wabassi	L4390-hole 1	525859	5733445	-60	137	216	350	280
Wabassi	L4400-hole 1	525616	5733585	-80	145	217	200	190
Wabassi	1/1/20-bole 1	52573/	5732012	-60	320	217	160	145
Wabacci		525754	5722172	_00	1/1	210	100	160
Wabassi		525550	57551/3	-00	140	212	200	180
vvabassi		525530	5/32420	-60	320	216	250	110
Wabassi	T4780-hole 1	525403	5732481	-60	233	216	120	110

Appendix H- InfiniTEM Target Plate and Drill Hole Parameters

Plates

										Cond-		
File	Plate	х	У	Z	Depth	Dip	DipDir	Length	DepExt	Thick	Cond	Thick
Wabassi-												
L300utm	1	525845	5733220	97	-118	93	271	400	40.8	2774	na	na
Wabassi-												
L400utm	1	525850	5733110	109	-106	89	269	200	34.8	3538	231	15.3
Wabassi-												
L500utm	1	525925	5732975	-68	-283	92	265	200	216.4	853	28	31.1
Wabassi-												
L600utm	1	525592	5732969	203	-12	40	265	200	98.7	23289	na	na
Wabassi-												
L1200utm	1	525360	5732435	170	-45	101	315	200	15.1	8914	2408	3.7

Drill Holes

Grid	Hole_ID	Easting	Northing	Dip	Azimuth	Elevation	Length	Intercept
Wabassi	L300-hole 1	525770	5733245	-60	110	217.91	200	165
Wabassi	L400-hole 1	525780	5733136	-60	110	219.21	170	135
Wabassi	L500-hole 1	525730	5732980	-60	90	219.6	450	360
Wabassi	L600-hole 1	525530	5732967	-60	90	215.25	90	55
Wabassi	L1200-hole 1	525390	5732424	-60	290	215.78	75	65

Appendix I-Archive DVD