

NORTHSTAR GOLD CORP.

RESISTIVITY / INDUCED POLARIZATION SURVEY, IPOWER3D[®] CONFIGURATION & GROUND MAGNETIC INTERPRETATION

MILLER GOLD PROJECT

CATHARINE & PACAUD TOWNSHIPS, ONTARIO, CANADA

LOGISTICS AND ADVANCED INTERPRETATION REPORT

14N001 APRIL 2014

TABLE OF CONTENTS

Abs	tract	. 1
	The Mandate	
	The Miller Gold Project	
	IPower Resistivity / Induced Polarization Survey	
	Ground Magnetic Field Survey	
5.	Data Processing and Deliverables	. 9
	Discussion	
7.	Results and Recommendations	15

LIST OF FIGURES

Figure 1. General location of the Miller Gold Project	2
Figure 2. Index of claims covering the Miller Gold Project	4
Figure 3. Signal transmitted across electrodes C1-C2	5
Figure 4. Semi-log windows (1 s pulse)	6
Figure 5. Screen grab from ProSysControl, Abitibi Geophysics' Proprietary QC software	11
Diamond drill hole I-01a-1 on line 24+50E	18
Diamond drill hole I-01b-1 on line 30+00E	19
Diamond drill hole I-01e-1 on line 25+50E	
Diamond drill hole I-01f-1 on line 30+00E	19
Diamond drill hole I-01g-1 on line 28+00E	19
Diamond drill hole I-01c-1 on line 27+00E	20
Diamond drill hole I-01d-1 on line 33+00E	20
Diamond drill hole I-02-1 on line 24+50	
Diamond drill hole I-09-1 on line 31+00	20
Diamond drill hole I-04-1 on line 25+00E	21
Diamond drill hole I-01d-1 (extension) on line 33+00E	21

LIST OF TABLES

Table 1. Quality statistics - IPower3D [®]	7
Table 2. Maps produced	12
Table 3. IPower3D [®] - Diamond drilling targets	18

APPENDICES

Α.	Description of the IP / Resistivity anomalies interpreted on the Miller Gold Project	. 23
В.	Daily report of the geophysical survey performed on the Miller Gold Project	. 32
C.	Induced polarization survey – Vertical Sections IPower3D [®]	. 33

ABSTRACT

On behalf of Northstar Gold Corp., a **Resistivity / Induced Polarization** survey, using the IPower3D[®] configuration, was conducted on a portion of the **Miller Gold property,** located in the Temiskaming District, of Northeastern Ontario. Ground magnetic data supplied by the client is also included in this report.

During the period of **February 2 to February 11, 2014,** a total of **11.325 km** of Time Domain Resistivity / Induced Polarization surveying was completed using the IPower3D[®] configuration. Survey specifications, instrumentation controls, data acquisition, processing and interpretation were successfully completed within the Abitibi Geophysics quality system framework.

The objectives of this survey were to gain a better understanding of the complex geology of this property, including sub horizontal mineralized veins, faults and porphyry systems.

The IPower3D[®] survey, inversion and ground magnetic survey have identified zones of known mineralization and indicate geometry of the various structures observed on this property.

A follow-up program including prospecting, drilling and a survey extension has been proposed. The recommendations are presented in section 7 of this report.

1. THE MANDATE

GEOPHYSICAL OBJECTIVES

Miller Gold Project (Our reference: 14N001)
18 km Southeast of Kirkland Lake, Ontario
Northstar Gold Corp. 17 Wellington St. N P.O. Box 2529 New Liskeard, ON P0J 1P0 Telephone: (705) 676-6476
Mr. George Pollock, P.Geo. President gpollock73@gmail.com
Time Domain Resistivity / Induced Polarization, IPower3D $^{\otimes}$ configuration

- To identify new zones amenable to gold mineralization and further define known mineralized areas.
- Identify targets for further exploration.

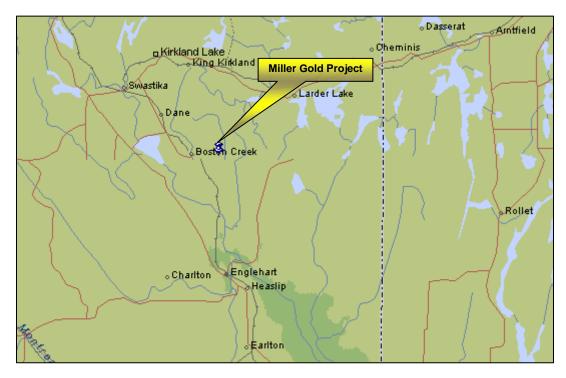


Figure 1. General location of the Miller Gold Project

2. THE MILLER GOLD PROJECT

LOCATION	Temiskaming District, Northeastern Ontario, Canada Centred on 48.009015°N and 79.888453°W, UTM NAD83, zone 17N: 582 900 mE, 5 318 000 mN NTS sheet: 32D/04
NEAREST SETTLEMENT	Kirkland Lake: 18 km to the Northwest
Access	The Miller Gold property was accessed by the crew daily from the town of Kirkland Lake by taking highway 66 West for 5.5 km, then proceeding south on 112 S for 15.1 km and finally turning east onto 564 for the remaining 5.9 km to the southern end of the grid, from there the grid was accessed by snowmobile.
Geomorphology	Topography on the grid ranged from 300 m to 320 m above sea level. A number of creeks and swampy areas are located within the grid. Vegetation consists of spruce, fir, birch and alder. Cover thickness is variable, with outcrop, including mineralized zones noted on the property.
CULTURAL FEATURES	Cultural features included 5 old mine shafts and numerous historic drill holes These do not appear to have had a significant impact on the data quality.
MINING LAND TENURE	The 2014 IPower3D [®] IP survey was conducted on 13 claims of the Miller property. All claims were 100% in the name of Northstar Gold Corp. The claim numbers encompassed in the present survey are illustrated on page 4.
Survey grid	This grid on the Miller property was comprised of two parts. The west grid consisted of 8 lines, 24+00E, 25+00E, 26+00E, 26+50E, 27+00E, 27+50E, 28+00E and 28+80E. These lines extend from 74+00N to 84+00N. The east grid comprises 5 lines, at 100 m intervals from 29+00E to 33+00E The lines extend from 77+30N to 81+80N. The grid was picketed at 25 m intervals, but the IPower3D [®] survey was conducted with 37.5 m electrode spacing. Additional stations were added to accommodate the complete array. In total 11.325 line km were surveyed with IPower3D [®] .
ENVIRONMENTAL HEALTH AND SAFETY	As part of the Abitibi Geophysics EHS program crew members received first aid training and are provided with safety equipment and specialized training for the induced polarization technique. In addition, the crew was provided with a satellite telephone for emergency communication.
COORDINATE SYSTEM	Projection: Universal Traverse Mercator, zone: 17N Datum: NAD83

NODTHOTAD	COLD	
NORTHSTAR	GULD	CORP.

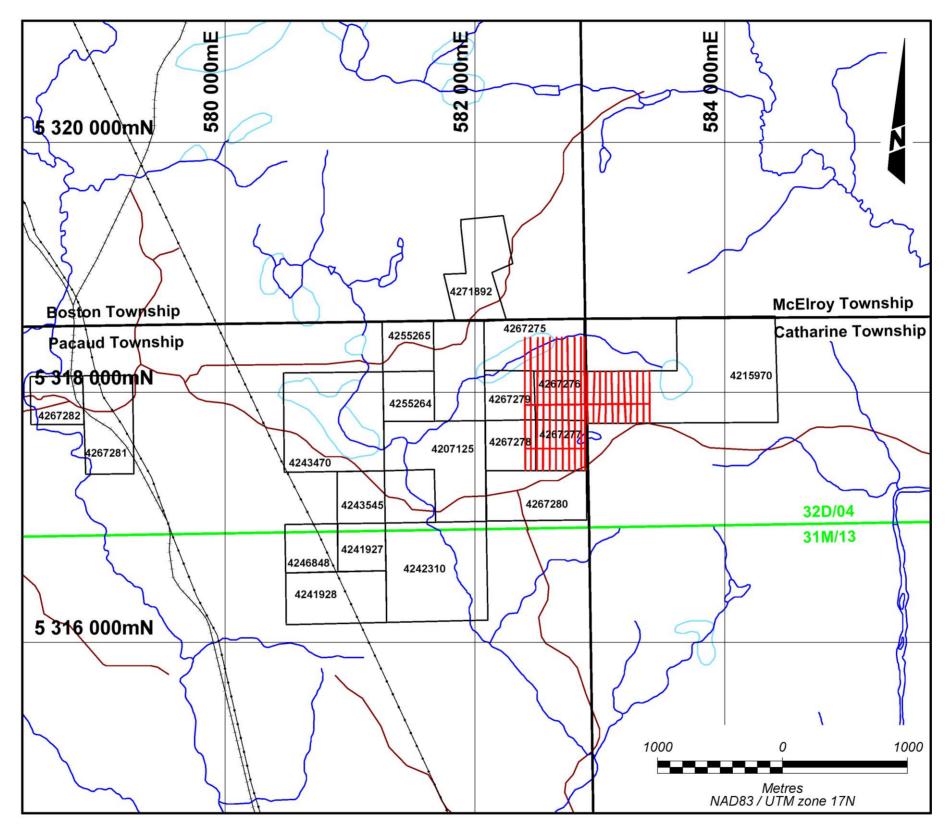


Figure 2. Index of claims covering the Miller Gold Project

3. IPOWER RESISTIVITY / INDUCED POLARIZATION SURVEY

TYPE OF SURVEY	Time Domain Resistivity / Induced Polarization
	IPower3D [®] (5 simultaneous lines)
Dersonnel	Christian Larochelle, Simon Rioux,,Crew Chief OperatorMichaël Picard-Rousson, AssistantAssistantSamuel Charette, Kevin Lussier,AssistantBruno Tremblay, Carole Picard, Tech., Thomas Loader, P.Geo., Chris Brown, P.Eng.,Production of maps Interpretation ReportChris Brown, P.Eng.,Final verification of product conformity
SURVEY COVERAGE	11.325 km
DATA ACQUISITION	February 2 to February 11, 2014
TRANSMITTERS	GDD Instruments TxII, s/n 296 & 318Generator:Honda 2000 VAMaximum output:1.8 kW at 10 A at 2 400 VElectrodes:memory-shape alloy rodsResolution:1 mA on output current displayWaveform:Bipolar square wave with 50% duty cyclePulse Duration:1 second+1

Figure 3. Signal transmitted across electrodes C1-C2

□ RECEIVERS

IRIS Elrec-PRO, (10 input channels), s/n 123 & 269 IRIS Switch-PRO 240, s/n 64 Electrodes: Memory-shape alloy rods V_p Primary voltage measurement:

Input impedance: 100 MΩ

- Resolution: 1 μV
- Typical accuracy: **0.2%**

M_A Apparent chargeability measurement:

- Resolution: 0.01 mV/V
- Typical accuracy: **0.4%**
- Semi-log sampling mode, 20 time windows (M₁ to M₂₀).

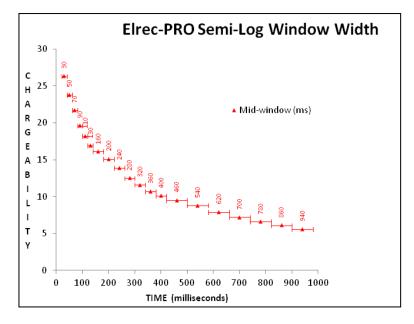


Figure 4. Semi-log windows (1 s pulse)

- All gates are normalized with respect to a standard decay curve for field quality assurance.
- Final chargeability values were normalized to the 2 second pulse Newmont standard.
- APPARENT RESISTIVITY
 CALCULATION

$$\rho_{a} = 2\pi \cdot \frac{V_{p}}{I} \cdot \frac{1}{\left(\frac{1}{C_{1}P_{1}} - \frac{1}{C_{2}P_{1}}\right) - \left(\frac{1}{C_{1}P_{2}} - \frac{1}{C_{2}P_{2}}\right)} \qquad (\Omega \cdot m)$$

Cumulative error: 5% max, mainly due to chaining accuracy.

QUALITY CONTROL (RECORDS AVAILABLE UPON REQUEST)

Before the survey:

- ✓ Transmitters & motor generators were checked for maximum output using calibrated loads.
- ✓ Receivers were checked using the Abitibi Geophysics SIMP™ certified and calibrated V_P & M_a signal simulator.

During data acquisition:

- ✓ Rx & Tx cable insulation was verified every morning.
- ✓ Proprietary Software ProsysControl[™] allowed a daily thorough monitoring of data quality and survey efficiency.
- ✓ Sufficient pulses were stacked: 8 pulses for every reading.

At the Base of Operations:

- ✓ Field quality assurance inspected & validated.
- ✓ Each IP decay curve was analyzed with *ProsysControl*[™]. The few gates that were rejected were not included in the calculation of the plotted M_a.

QUALITY STATISTICS

Table 1. Quality statistics - IPower3D[®]

Miller Gold Project IPower3D [®]	
Average contact resistance across R_X dipole (P ₁ -P ₂)	17.25 kΩ
Average current applied to T_X dipole (C_1 - C_2)	1867 mA
Average V_p measured across R_x dipole (P ₁ -P ₂)	1940 mV
Observed windows found to fit a pure electrode polarization relaxation curve	97.2%
Average deviation of the validated, normalized windows with respect to the mean chargeabilities.	0.28 mV/V

4. GROUND MAGNETIC FIELD SURVEY

Type of survey	Measurement of the Total Magnetic Field (TMF) with at 10 m intervals (Catharine grid) and 5 m intervals (Pacaud grid). The plotted values were corrected for diurnal variations using readings from a synchronized MAG base station.							
Personnel	Meegwich Consultants In	c. Data Acquisition and QC						
	Carole Picard, Tech., Tom Loader, P.Geo., Chris Brown, P.Eng.,	Plotting Data processing & interpretation Final validation of product conformity						
FIELD MAGNETOMETER	Resolution: Absolute accuracy: Gradient tolerance:	s/n 58479 etometer with overhauser effect. 0.01 nT/1 m 0.2 nT >10 000 nT/m at a height of 1.8 m above ground						
BASE STATION	Resolution: Absolute accuracy: Cycle time: Pacaud grid: EDA Omni IV base stati	etometer with Overhauser effect 0.01 nT 0.2 nT 15 seconds on						
		0.1 nT 15 seconds						
QUALITY CONTROLS	Quality controls performe	d by Meegwich Consultants Inc.						

5. DATA PROCESSING AND DELIVERABLES

□ TOTAL MAGNETIC FIELD CONTOURS
The total magnetic field was gridded using a minimum curvature gridding algorithm with grid cell size of 12.5 m. One pass of a 3 x 3 Hanning filter was applied to the resulting grid, which was then re-gridded with a cell size of 5 m to improve the overall appearance of the final Total Magnetic Field Contour maps. The Geosoft colour table (Clrb64.tbl) was used with linear intervals of 50 nT from 55,000 to 58,200.

NORMALIZED DERIVATIVES Conventional filtering:

Using a convolution filter method, the first vertical derivative (vertical gradient) of the *total magnetic field* was calculated (1.4).

Special filtering:

Conventional filtering responds primarily to amplitude variations within the dataset and high-amplitude anomalies often mask more subtle anomalies of interest. When rock magnetization is weak, anomalies are subtle and special filtering and enhancement methods are required. The *tilt derivative* (1.5) was found to be one of the most effective techniques, it is designed to emphasise particular characteristics of the magnetic data.

The tilt derivative is defined as the arctangent of the ratio of the vertical gradient with respect to the total horizontal gradient. The gradient tilt angle shows some interesting properties. As a dimensionless ratio, it responds equally well to shallow and deep sources and to a large dynamic range of amplitudes for sources at the same level. The tilt angle (radians) is positive over a source and negative elsewhere, with 0 tracing the edge of the source making interpretation much simpler than other normalized derivatives.

□ *IPOWER3D*[®] *QUALITY CONTROL* The first step in processing IPower3D[®] data is quality control. The IPower3D[®] configuration takes a large number of readings using different electrode orientations to thoroughly investigate the subsurface in 3D. Because of the varying geometry used there are a small number of readings that are not at favourable dipole orientations. IPower3D[®] incorporates a high degree of redundancy, so a moderate percentage of readings can be rejected, without compromising survey coverage.

> To ensure consistent and efficient quality control Abitibi Geophysics has developed *ProSysControlTM* This application analyses the normalized decay curve for each reading within the data set. Only readings that successfully pass quality control will be used to calculate the final chargeability. This software also allows the user to view each decay curve for additional manual quality control.

- □ *IPOWER3D[®] QUALITY CONTROL (CONT'D)* Figure 5 is a screen grab from *ProSysControl[™]* showing an alarm for high contact resistance (red box) that has been accepted (green bar) and plotted, showing the decay curve (red) and normalized decay curve (blue) for the selected reading, highlighted in blue.
- □ *IPOWER3D*[®] *INVERSION* Apparent resistivity and chargeability values were inverted using RES3DINV x 64 version 3.04.98 from GEOTOMO (<u>http://www.geoelectrical.com</u>). This software calculates three dimensional patterns of resistivity and chargeability of the subsurface that best explain the values recorded at surface. The software generates a model consisting of rectangular prisms and applies a nonlinear algorithm to minimise the difference between the calculated model and field measurements.
- □ *MAPS PRODUCED* The following colour maps (page 12) are bound or inserted in pouches at the end of this report.

Our Quality System requires every final map to be inspected by at least two qualified persons before being approved and included within a final report.

Min (Vp			in (Rho) 1		 MxTolera 			▼ MxTolera			Thargability														
: 🗁 🖢		🔲 📴 N	Javigate Alei	rts : All Al	erts(2)	- 0	▶ • •	••	V 🔾	🍼 🗍 Dupl	icates: (c1,c.	2,p1,p2) 🏅	8 22 88												
	м	Valid Window Count	s Standard Deviation		IpPower	C1-x	С1-у	C2-x	С2-у	P1-x	P1-y	P2-x	P2-y	Vp	In	Rho	OriginalM	Dev	Channel	Overload	NbCren	RsChk			1ax Min <u>▲</u> <mark>478</mark> 0.14
	4.25	19	0.42	lh.		7575	2600	7612.5	2600	7650	2400	7537.5	2400	119.06	160	-10045.3	3.53	0.11	0		8	19.49	In	474.05 3	500 30.00
	1.02	19	0.35	lh.		7575	2600	7612.5	2600	7537.5	2400	7687.5	2400	-142.08	160	-10026.4	0.91	0.16	1		8	0.52			564 -1.06
	0.58	19	0.33	Ìh.		7575	2600	7612.5	2600	7687.5	2400	7500	2400	137.41	160	-8333.4	0.56	0.2	2		8	0.44	IMI	27.59 7	32.50 0.01
	0.86	19	0.33	ih.		7575	2600	7612.5	2600	7500	2400	7725	2400	-148.47	160	-8553.6	0.78	0.18	3		8	0.39	Dev	0.27 6	5.28 0.00
	-0.69	19	0.34	Ìh.		7575	2600	7612.5	2600	7725	2400	7425	2400	117.21	160	-6481.3	-0.48	0.35	4		8	0.35	RsChk	74.33 9	<mark>38.06</mark> 0.00 🖵
	-0.83	19	0.34	lh.		7575	2600	7612.5	2600	7425	2400	7762.5	2400	-121.51	160	-6772	-0.59	0.38	5		8	0.65	Stat		Value
	-7.41	18	0.64	Ĩh.		7575	2600	7612.5	2600	7762.5	2400	7350	2400	65.91	160	-4019.7	-5.97	1.08	6		8	0.05	Ok Wind	ows	96.27% (213172
	-5.68	18	0.56	- fi		7575	2600	7612.5	2600	7350	2400	7837.5	2400	-113.51	160	-7643.3	-4.58	0.85	7		8	0.9	Ok Meas	ures	97.00% (11071/
	0.46	19	0.25			7575	2600	7612.5	2600	7650	2500	7537.5	2500	142.2	160	-2048	0.44	0.08	0		8	0.73	RsChk u	nsolved	2
	0.22	19	0.28	lh.		7575	2600	7612.5	2600	7537.5	2500	7687.5	2500	-180.2	160	-2602	0.25	0.08	1		8	0.61			1 1 1 1
	0.09	19	0.29			7575	2600	7612.5	2600	7687.5	2500	7500	2500	186.49	160	-2699.6	0.15	0.09	2		8	2.07			-80
	0.05	19	0.3	- di		7575	2600	7612.5	2600	7500	2500	7725	2500	-210.3	160	-3366.7	0.11	0.08	3		8	0.72			++-
	-2.09	19	0.29	-af		7575	2600	7612.5	2600	7725	2500	7425	2500	181.85	160	-3685.3	-1.62	0.15	4		8	7.54			60 🖉
	-1.82	19	0.33	- di		7575	2600	7612.5	2600	7425	2500	7762.5	2500	-205.11	160	-4788	-1.39	0.16	5		8	8.61	e la		
	-27.35	20	1.59	-di		7575	2600	7612.5	2600	7762.5	2500	7350	2500	75.16	160	-2198.5	-22.02	1.02	6		8	20.77	requ		-40 ²
	-20.29	20	1.16			7575	2600	7612.5	2600	7350	2500	7837.5	2500	-103.01	160	-4033.6	-16.34	0.84	7		8	20.93			
	10.38	19	0.57	j.		7575	2600	7612.5	2600	7650	2600	7537.5	2600	9156.25	100	-21573.9	8.47	0.01	0		8	97.58			20
Þ	10.04	20	0.66	aí		7575	2600	7612.5	2600	7537.5	2600	7687.5	2600	-7847.77	100	-27736.3	8.1	0.01	1		8	130.2			
	7.5	20	0.21	lin.		7575	2600	7612.5	2600	7687.5	2600	7500	2600	2917.5	100	-20622.6	6.06	0.02	2		8	108.03			
	8.17	20	0.24	af		7575	2600	7612.5	2600	7500	2600	7725	2600	-2783.28	100	-26231.8	6.6	0.02	3		8	739.26	0.94	66566	8,000
0	4.96	12	0.57	lh.		7575	2600	7612.5	2600	7725	2600	7425	2600	1506.38	100	-26620	0.95	0.08	4		8	672.66		Confidence	(%)
		25																					 Toler Norm 		
		00																					🗕 Real		
		20																						nal Average Offset DI	
		15																					M: 10).03852 m\ idence: 95	IN
	×	13						-																Windows:	
	2	10																					Vp: -	7847.771	
				•	•	•	•	•	•	•	•														
		5																-	_	1	1				
																					•				
		0																			_	_			
		0	1	2	3	4	5	6	7	8	9 1	0 11	12	13	14	15	16	17	18	19	20	21			
Current I	File: C:\1	1Abitibi\Proie	cts\14N001	\IPower3D	ProSysCon	rol\14N00	1_all.qualit	y.bin Unsol	ved alarms	: (2/723)			olor codes	Eliminater	d Automal	tically		Charge	ability Reject	ed Automa	itically Cha	argeabilty Acce	epted By Use	r	
Current File: C:\1Abitibil\Projects\14N001\IPower3D\ProSysControl\14N001_all.quality.bin Unsolved alarms : (2/723) color codes: Eliminated Automatically Chargeability Rejected Automatically Chargeability Accepted By User																									

Figure 5. Screen grab from *ProSysControlTM*, Abitibi Geophysics' Proprietary QC software

Table 2. Maps produced

Map Number	Description							
L24+00E to L33+00E (19 plates)	IPower3D [®] Induced Polarization Survey – Vertical Sections (1-01 anomalies only)	1:5000						
L24+00E to L33+00E (19 plates)	IPower3D [®] Induced Polarization Survey – Vertical Sections (excluding 1-01 anomalies)	1:5000						
1.1	Ground Magnetic Field Survey – Total Field Profiles (nT)	1:5000						
1.2	Ground Magnetic Field Survey – Total Field Contours (nT)	1:5000						
1.4	Ground Magnetic Field Survey – Vertical Derivative Colour (nT/m)	1:5000						
1.5	Ground Magnetic Field Survey – Tilt Derivative Contours (radians)	1:5000						
8.2_25	IPower3D [®] IP Survey - Inverted Resistivity at a depth of 25 m (Oh-m)	1:5000						
8.2_50	IPower3D [®] IP Survey - Inverted Resistivity at a depth of 50 m (Oh-m)	1:5000						
8.2_75	IPower3D [®] IP Survey - Inverted Resistivity at a depth of 75 m (Oh-m)	1:5000						
8.2_100	IPower3D [®] IP Survey - Inverted Resistivity at a depth of 100 m (Oh-m)	1:5000						
8.2_150	IPower3D [®] IP Survey - Inverted Resistivity at a depth of 150 m (Oh-m)	1:5000						
8.3_25	IPower3D [®] IP Survey - Inverted Chargeability at a depth of 25 m (mV/V)	1:5000						
8.3_50	IPower3D [®] IP Survey - Inverted Chargeability at a depth of 50 m (mV/V)	1:5000						
8.3_75	IPower3D [®] IP Survey - Inverted Chargeability at a depth of 75 m (mV/V)	1:5000						
8.3_100	IPower3D [®] IP Survey - Inverted Chargeability at a depth of 100 m (mV/V)	1:5000						
8.3_150	IPower3D [®] IP Survey - Inverted Chargeability at a depth of 150 m (mV/V)	1:5000						
8.4_25	IPower3D [®] IP Survey – Calculated Metal Factor at a depth of 25 m	1:5000						
8.4_50	IPower3D [®] IP Survey - Calculated Metal Factor at a depth of 50 m	1:5000						
8.4_75	IPower3D [®] IP Survey - Calculated Metal Factor at a depth of 75 m	1:5000						
8.4_100	IPower3D [®] IP Survey - Calculated Metal Factor at a depth of 100 m	1:5000						
8.4_150	IPower3D [®] IP Survey - Calculated Metal Factor at a depth of 150 m	1:5000						
8.6_25	IPower3D [®] IP Survey – Calculated Gold Index at a depth of 25 m	1:5000						
8.6_50	IPower3D [®] IP Survey - Calculated Gold Index at a depth of 50 m	1:5000						
8.6_75	IPower3D [®] IP Survey - Calculated Gold Index at a depth of 75 m	1:5000						
8.6_100	IPower3D [®] IP Survey - Calculated Gold Index at a depth of 100 m	1:5000						
8.6_150	IPower3D [®] IP Survey - Calculated Gold Index at a depth of 150 m	1:5000						
10.1	Geophysical Interpretation (I-01 series of chargeability anomalies only)	1:5000						
10.2	Geophysical Interpretation (chargeability anomalies excluding I-01 series)	1:5000						

DIGITAL DATA

The above-described maps are delivered in the Oasis Montaj map file format on DVD-Rom.

A copy of all survey acquisition data (ASCII text format) and processed data (Geosoft Montaj databases) are also delivered on DVD-Rom.

6. DISCUSSION

□ The IPower3D[®] System

The IPower3D[®] configuration has been designed to maximize the sensitivity of the induced polarization survey and is especially effective under conditions of high conductance overburden (conductance is the product of conductivity and thickness). The values of apparent chargeability measured in the field by the IPower3D[®] configuration can be many times greater than the values measured by a conventional electrode configuration, however the background response is not amplified as it occupies the entire range of sensitivity (both positive and negative). The advantage of the IPower3D[®] configuration is that it is able to detect anomalies that would otherwise be within the noise envelope of conventional IP arrays.

The apparent chargeability anomalies measured in the field have a large range of values; up to 782 mV/V. The inversion results of the IPower3D[®] data show that the calculated chargeabilities are within the range that would be expected with the inversion of data collected using a conventional electrode configuration such as dipole-dipole. The disadvantage of conventional configurations is that sensitivity is often not sufficient to allow the inversion to resolve the source of a polarizable anomaly beneath thick conductive overburden.

A conventional 2D IP survey only collects data in two dimensions, along parallel lines, however, the structures being surveyed are three dimensional. On this property, where the geology is quite complex it is crucial to obtain true 3D data to ensure a reasonable inversion result.

The depth of investigation of IPower3D[®], or any conventional survey can be limited by a number of factors. On the Miller Gold Property extremely high contrasts in resistivity / conductivity were encountered. Current will preferentially flow through regions with low resistivity while "avoiding" resistive regions. It appears that the resistive zone and underlying conductive zone, interpreted as the #1 quartz vein, and associated clays and fault gouge has acted as a barrier to the induced current. The region above this zone has been well sampled and the inversion results appear to have resolved some complex structures. Below this zone the inversion results appear to be less reliable and structures such as vertical faults are not resolved below this zone. When reviewing the inversion results and planning targets it is important to consider the possible ambiguities of the results at depth.

The Miller Gold Project

The Miller Gold Project has a long exploration history which includes several phases of diamond drilling, prospecting and the excavation of exploration shafts. This past exploration endeavour has been focused on mineralization associated with the #1 quartz vein. Previous drilling has shown this vein to be near surface on the southern part of the grid (Miller DDH-2 on line 27+50E, station 76+00N) and dipping gently to the North reaching depth of 150 m or so. Mineralization in the #1 quartz vein includes disseminated sulphide and stringers with associated gold. Beneath the #1 quartz vein lies a layer of clays, fault gouge and broken rock. Anomalous gold is also associated with this zone. The #1 quartz vein correlates well with a resistive layer immediately overlying a highly conductive layer that was detected by the IPower3D[®] survey. The survey results indicate that this zone extends significantly further than the area known from drilling. The results of the chargeability inversion have also shown that the chargeable mineralization forms bands the stretch across the grid, branching and forking.

Previous drilling also located a syenite body on the eastern side of the grid. This appears to be well defined as a high resistivity zone and includes some significant chargeable character.

The Catharine fault zone is a mapped fault that crosses the eastern side of this grid and is clearly visible in both the ground magnetic survey results and in the IPower3D[®] inversion results. The resistivity inversion sections for the eastern block show a conductive zone dipping at about -45 degrees to the South; this is interpreted as the Catharine fault zone. The chargeability inversion results indicate some chargeable mineralization associated with this feature.

In addition to the known sub-horizontal #1 quartz vein there are a number of northwest trending prophyrys crossing the grid. These appear as magnetic highs and are also known to contain anomalous gold. These do not show a strong IP response; however, where they intersect the horizontal zones where the IP responses are increased.

7. RESULTS AND RECOMMENDATIONS

Resistivity and chargeability anomalies have been interpreted by studying the 3D inversion models, the true-depth sections and the inverted resistivity and chargeability maps. A total of 9 anomalous trends have been interpreted, the inferred surface projection of the resistivity / chargeability sources are shown along the survey lines on the *Geophysical Interpretation* maps (10.1 and 10.2) and on the true-depth section plates. The anomalies have been correlated from line-to-line and are fully described in appendix A, found at the end of this report.

Because many of the anomalies interpreted on this project are sub-horizontal there are some anomalies that lie above others. When plotted on an interpretation map some of these anomalies overlap. In order to view the anomalies without overlap two interpretation maps and two sets of vertical sections have been produced. *Geophysical Interpretation* maps 10.1 shows only the I-01 series of anomalies while 10.2 shows all other anomalies.

□ RESISTIVITY

The inversion results suggest a complex three dimensional pattern of resistivity. Resistive zones on this property are believed to be due to zones of silicification, quartz veining, or porphyry intrusions. On the *Geophysical Interpretation* maps (10.1 & 10.2), the high resistivity zone is defined by values greater than 100 000 Ω •m, at a depth of 100 m and can been seen in blue. Because of the complex nature of the resistive zones, in particular the high contrasts observed in the vertical direction, in the study area it is important to review all resistivity depth maps and vertical sections.

The inversion results also reveal a number of conductive zones within the survey area. These zones are defined by values less than 8000 Ω •m, at a depth of 100 m and can been seen in pink on the *Geophysical Interpretation* maps (10.1 and 10.2). This zone highlights conductive regions that are interpreted as fault / shear zones that contain conductive clays and fault gouge. Because of the complex nature of the conductive zones in the study area it is important to review all resistivity depth maps and vertical sections.

An important feature interpreted from the inversion of resistivity data is a sub-horizontal resistive zone that appears to dip slightly to the North. This zone is immediately underlain by a conductive zone. This feature is believed to represent a known sub-horizontal quartz vein (#1 quartz vein). The #1 quartz vein is known from drilling and is host to sulphide +/- gold mineralization. The #1 quartz vein is underlain by a zone of clays, fault gouge and broken rock which is likely responsible for the conductive zone that lies directly beneath the resistive zone. The resistive zone appears to be broken, whereas the conductive zone is reasonably continuous and may provide a more reliable signature for tracing this structure.

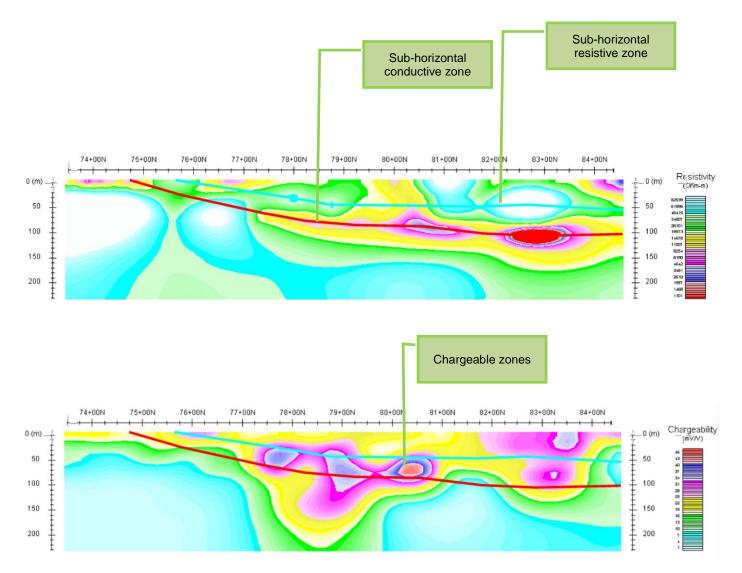


Figure 6. Line 27+00E section showing resistive and conductive zones and associated chargeable zones

A highly resistive, roughly circular feature centered on line 29+50E, station 80+00N is coincident with a known syenite porphyry intrusive. The resistivity anomaly reaches its maximum where it intersects the sub-horizontal resistive zone interpreted as the #1 quartz vein. The chargeability anomaly **I-Of** crosses this feature and broadens in this area.

A North East trending conductive zone crosses the western side of the grid and is interpreted as a fault/shear zone. Where this zone crosses chargeable trends, they generally appear to weaken or become narrower, with the exception of chargeable trend **I-01g**, which reaches its maximum amplitude where it crosses this feature.

CHARGEABILITY

The shallow dipping resistive and conductive layers interpreted as the #1 quartz vein appear to be the focus of a number of chargeability anomalies. These anomalies appear to lie between the resistive zone and the conductive zone, suggesting that the mineralization responsible for the chargeability response is found at the contact of the resistive and conductive zones. It should also be noted that the zone of clays and fault gouge beneath the quartz vein may contribute to the chargeability response. Chargeability features associated with this zone are shown as **I-01 a** to **h** on the *Geophysical interpretation* map (10.1) These anomalies are sub-horizontal and appear as a number of bands stretching predominantly East West across the grid.

A number of other chargeability features were also interpreted on this grid, some appear to be close to surface, other are at depth. These are shown on *Geophysical interpretation* map (10.2) and are fully described in appendix A of this report.

Gold Index

In addition to resistivity and chargeability, the sections and maps also display the calculated Gold Index, this value is the product of the squared chargeability multiplied by the resistivity ($M^2 * R$). This highlights regions that are both resistive and chargeable, helping to localize the areas with a high potential for hosting gold mineralization associated with quartz veining, or silicified zones. In the case of the Miller Gold property, the Gold Index has highlighted the known syenite porphyry as the strongest response and a number of other trends that are associated with resistive zones.

GROUND MAGNETIC SURVEY

The results of the ground magnetic survey conducted by Meegwich Consultants Inc. have been interpreted by studying the *total field pro*file map (1.1), *the total field colour shaded contour* map (1.2) the colour contoured *calculated vertical gradient* map (1.4) and the colour contoured *tilt derivative map* (1.5). Seven magnetic lineaments and two magnetic domains have been identified and plotted on the *Geophysical interpretation* maps (10.1 and 10.2)

The boundary between the two magnetic domains interpreted from these data trace the known location of the Catharine fault. To the South West of this feature the magnetic trends interpreted on this property all follow a distinct northwest trend. These features correlate with known porphyry dykes. It is suspected that iron in the basaltic host rock has been mobilised and oxidized during the emplacement of the porphyry system resulting in the observed magnetic lineaments. Breaks in these lineaments are interpreted as faults/shear zones. To the northeast of the domain boundary the magnetic response is significantly lower, indicating a change in lithology at this boundary.

DRILLING RECOMMENDATIONS

Diamond drilling is recommended in order to test the chargeability anomalies detected. The figures of prioritized drilling targets (see below and following pages) and list is shown in table 3 below and in appendix A.

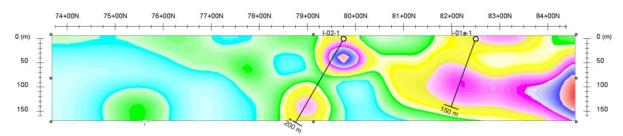
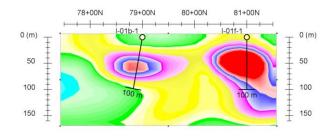
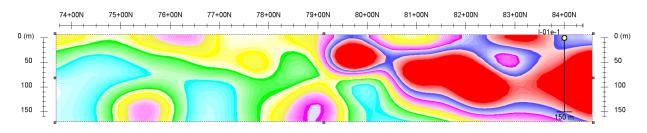

		DDH Target (not co	ollar)	
Anomaly	Easting	Northing	Estimated vertical depth to center (m)	Priority
I-01a	24+50	82+15	90	
I-01b	30+00	78+90	55	
I-01e	25+50	84+00	90	1
I-01f	30+00	81+00	50	
I-01g	28+00	82+90	90	
I-01c	27+00	77+75	40	
I-01d	33+00	77+50 ♥	50	2
I-02	24+50	79+00	140	2
I-09	31+00	81+25	125	
I-04	25+00	75+50	145	2
I-07	33+00	77+50	175	3

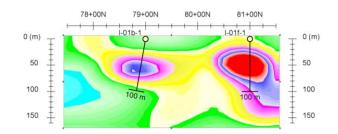
Table 3. IPower3D[®] - Diamond drilling targets

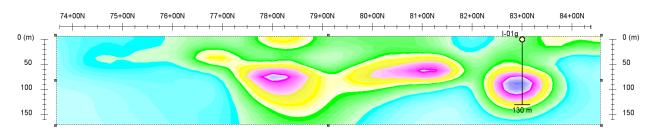
♥ Ideally locate hole 50 m to the south if claim boundaries allows it.


PRIORITY 1 TARGETS

Diamond drill hole I-01a-1 on line 24+50E

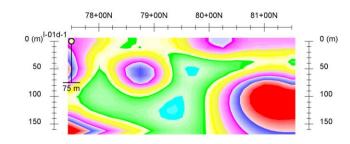



Diamond drill hole I-01b-1 on line 30+00E

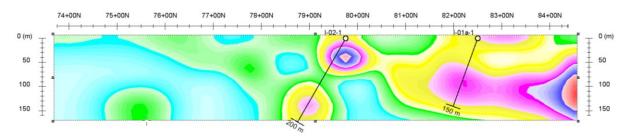

Diamond drill hole I-01e-1 on line 25+50E

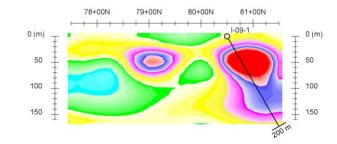
Diamond drill hole I-01f-1 on line 30+00E

Diamond drill hole I-01g-1 on line 28+00E



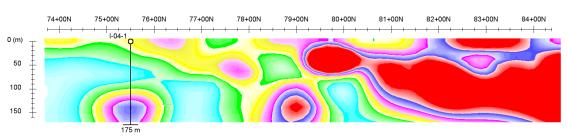
PRIORITY 2 TARGETS


Diamond drill hole I-01c-1 on line 27+00E

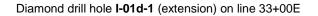

Diamond drill hole I-01d-1 on line 33+00E

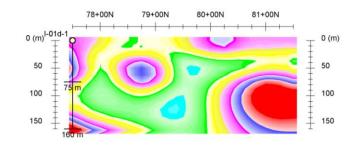
Diamond drill hole I-02-1 on line 24+50

Diamond drill hole I-09-1 on line 31+00


0 (m)

50


100


150

D PRIORITY 3 TARGETS

Diamond drill hole I-04-1 on line 25+00E

□ IP SURVEY EXTENSIONS

The majority of the chargeable trends detected are open to the East and West, with some also open to the South and North. Where claim boundaries permit it, it is recommended to extend the IPower3D[®] IP survey to the North of both the western and eastern grids, to the South of the eastern grid and to the East and West. Priority should be given to a northerly extension to explore the northerly continuation of the sub-horizontal feature that is interpreted as the #1 quartz vein.

□ HOLE-TO-HOLE IP SURVEY

The high resistivity contrasts encountered on the horizontal features on this property may have limited the depth of investigation attainable by surface IP surveys. Following a drilling program a Hole-to-Hole IP survey should be considered in order to explore for chargeable targets that have been shielded from surface exploration. This technique may also help to better resolve some of the vertical structures on this property.

The interpretation of the geophysical data embodied in this report is essentially a geophysical appraisal of the Miller Gold Project. As such, it incorporates only as much geoscientific information as the author had on hand at the time. Geologists thoroughly familiar with the area may be in a better position to evaluate the geological significance of the various geophysical signatures. Moreover, as time passes and data provided by follow-up programs are compiled, the priority and significance of exploration targets reported in this study may be downgraded or upgraded.

Respectfully submitted, Abitibi Geophysics Inc.

Pierre Bérubé, P.Eng., PEO # 100173563 Senior Geophysicist

TL/mw

Thomas Loader

Thomas Loader, P.Geo., Project Geophysicist

		Location		Cont	rast	Magnetic	Strike		Recommendations	
Anomaly	Line	From	То	Charg.	Res.	Association	Length & Orientation	Comments	P: Prospecting DDH: Drilling X: Survey extension	Priority
	24+00E	81+25N	84+50N	4	(C)	-		I-01a is part of the I-01 series of anomalies that appear to be		
	24+50E	81+50N	84+50N	4	(C)	M-01a		associated with a northerly extension of the #1 quartz	DDH: I-01a-1	
I-01a	25+00E	80+75N	84+50N	4	(C)	M-01a	250 m	vein and associated conductive zone. Drilling to	Line: 24+50E Station: 82+50N	1
1-01a	25+50E	81+00N	82+25N	4		-	East	the south east has intersected mineralization associated with	Azimuth: 180 Dip: -70	ľ
	26+00E	80+75N	82+50N	4		-		the #1 quartz vein. Drilling on the I-01a trend is	Depth: 150 m	
	26+50E	81+50N	82+00N	4		-		strongly recommended.		
	24+00E	79+50N	80+00N	4	(R)	-				
	24+50E	79+50N	80+00N	4	$\uparrow\uparrow$	-				
	25+00E 79+50N 80+00N 4 ↑↑ - I-01b is part of the I-01 series									
	25+50E	79+50N	80+00N	4	$\uparrow\uparrow$	-		of anomalies that appear to be		
	26+00E	79+50N	80+00N	4	-	-		associated with the #1 quartz vein and associated		
	26+50E	79+00N	79+50N	3	(C)	M-01b-		conductive zone. Holes N-87-		
	27+00E	79+00N	79+25N	3	(C)	M-01b-		6 and N-87-2 intersected high		
	27+50E	77+75N	78+75N	4	-	M-01b-	900 m	grade ore within and adjacent to this trend.	DDH: I-01b-1	
	28+00E	77+75N	78+75N	4	-	M-01b-	East, south		Line: 30+00E	
l-01b	28+50E	78+00N	78+25N	4	-	-	east where	Between lines 26+00E and	Station: 79+00N Azimuth: 180	1
	29+00E	78+25N	78+75N	4	-	-	parallel to M-01b	27+50E this trend turns to the south east and runs adjacent	Dip: -080	
	29+50E	78+50N	79+25N	4	1	-	in orig	to magnetic trend M-01b	Depth: 100 m	
	30+00E	78+50N	79+50N	4	\uparrow	M-03b		which traces a known syenite		
	30+50E	78+50N	79+50N	4	\uparrow	M-03b		dyke and associated mineralized zone at surface.		
	31+00E	78+75N	79+25N	4	-	M-03b				
	31+50E	78+75N	79+25N	4	-	M-03b		Further drilling along this trend		
	32+00E	78+75N	79+25N	4	-	-		is recommended.		
	32+50E	78+75N	79+25N	3	-	-				
	33+00E	78+50N	79+00N	3	-	-				

NORTHSTAR GOLD CORP.

		Location		Cont	rast	Magnetic	Strike		Recommendations	
Anomaly	Line	From	То	Charg.	Res.	Association	Length & Orientation	Comments	P: Prospecting DDH: Drilling X: Survey extension	Priority
	24+00E	77+50N	78+00N	4	-	-		I-01c appears to be a southern branch of the I-01b		
	24+50E	77+50N	78+00N	3	-	-		trend and is part of the I-01 series of anomalies that		
	25+00E	77+50N	78+00N	3	(C)	M-06a		appear to be associated with sub-horizontal resistive zone	DDH: I-01c-1	
I-01c	25+50E	77+50N	78+00N	2	(C)	-	350 m	that is underlain by a conductive zone. The resistive zone is known from past	Line: 27+00E Station: 77+85N	2
1-010	26+00E	77+75N	78+00N	2	(C)	-	East	drilling to be a sub-horizontal quartz vein and is known to	Azimuth: 180 Dip: -080	2
	26+50E	77+75N	78+00N	3	(C)	M-05b		contain significant mineralization.	Depth: 75 m	
	27+00E	77+50N	78+00N	3		-		There is no historical drilling		
	27+50E	77+75N	78+75N	4	-	-		on the I-01c trend. Drilling on I-01c is recommended.		
	24+00E	76+50N	76+75N	3	-	-		I-01d appears to be part of the I-01 series of anomalies that		
	24+50E	76+12N	76+37N	3	-	-		appear to be associated with sub-horizontal resistive zone	P: West of 28+00E	
	25+00E	76+25N	76+50N	3		-		that is underlain by a conductive zone. The resistive	DDH: I-01d-1	
I-01d	25+50E	76+00N	76+50N	3		-	900 m	zone is known from past drilling to be a sub-horizontal quartz vein and is known to	Line: 33+00E Station: 77+50E Dip: -90	2
1-010	26+00E	76+00N	76+50N	3		-	East	contain significant mineralization.	Dip: -90 Azimuth: 0 Depth: 75 m	2
	26+50E	75+75N	76+25N	3				Holes DDH-02 , DDH-03, N- 87-17 and GW-88-5 have	Ideally drill 50 m to the	
	27+00E	76+00N	76+50N	3		-		intersected mineralization along this trend. West of	south if land to the south is acquired	
	27+50E	76+00N	76+50N	2	-	-		28+00E this trend appears to be at, or near surface.		

		Location		Cont	rast	Magnetic	Strike		Recommendations		
Anomaly	Line	From	То	Charg.	Res.	Association	Length & Orientation	Comments	P: Prospecting DDH: Drilling X: Survey extension	Priority	
	28+00E	76+50N	77+00N	3	-	-					
	28+50E	76+75N	77+00N	3	\downarrow	-		the easterly extension of this			
l-01d (cont'd)	31+00E	77+75N	78+00N	4	-	-	900 m East			2	
	31+50E	77+50N	78+00N	2	-	-		recommended.			
	32+00E	77+50N	77+75N	2	-	-					
	25+00E	80+75N	84+50N	4	(C)	-		I-01e is part of the I-01 series of anomalies that appear to be associated with sub-horizontal resistive zone that is underlain			
l-01e	25+50E	83+75N	84+50N	4		-	150 m	by a conductive zone. The resistive zone is known from past drilling to be a sub- horizontal quartz vein and is	DDH: I-01e-1 Line: 25+50E Station: 84+00N	1	
Pore	26+00E	83+75N	84+50N	4		mineralization. Azimuth: 0 Depth: 150 m	mineralization. I-01b does not appear to hav	mineralization. Azimuth: 0		Azimuth: 0	
	26+50E	83+75N	84+50N	3		-		been drilled previously. Drilling of this trend is recommended.			

		Location		Cont	rast	Magnetic	Strike		Recommendations	
Anomaly	Line	From	То	Charg.	Res.	Association	Length & Orientation	Comments	P: Prospecting DDH: Drilling X: Survey extension	Priority
	26+00E	80+75N	82+50N	4	-	-		I-01f is part of the I-01 series		
	26+50E	80+75N	81+25N	4	(C)	-		of anomalies that appear to be associated with sub-horizontal resistive zone that is underlain		
	27+00E	80+25N	80+75N	4		-		by a conductive zone. The resistive zone is known from		
	27+50E	80+00N	80+50N	4		-		past drilling to be a sub- horizontal quartz vein and is known to contain significant		
	28+00E	80+25N	81+50N	4	-	MD-03b		mineralization.		
	28+50E	79+75N	81+25N	4	$\uparrow \uparrow$	MD-03b		I-01f also appears to cross a highly resistive zone located	DDH: I-01f-1 Line: 30+00E	
	29+00E	79+75N	81+50N	4	$\uparrow \uparrow$	MD-03b		30+50E. This resistive zone	Station: 81+00N Azimuth: 0 Dip: -90 Depth: 100 m Station: 81+00N Azimuth: 0 Dip: -90 Depth: 100 m Station: 81+00N Azimuth: 0 Dip: -90 Depth: 100 m	1
I-01f	29+50E	80+25N	81+50N	4	$\uparrow \uparrow$	-	700 m East south east	intrusive that is known to exist at this location. Hole N-87-5		
	30+00E	80+50N	81+75N	4	$\uparrow \uparrow$			intersected high grade ore within this trend. Additional drilling of this trend is		
	30+50E	80+25N	81+50N	4	$\uparrow \uparrow$	MD-02b		recommended.	through the periphery of I-09	
	31+00E	80+25N	81+50N	4	↑	MD-02b		This trend also appears to cross the Catharine fault at		
	31+50E	80+50N	81+50N	4	-	-		depth. The chargeability anomaly appears to deepen where it meets the fault,	pen Irine J as a n.	
	32+00E	80+75N	81+25N	4	-	-		indicating that the Catharine fault zone may be acting as a		
	32+50E	80+75N	81+50N	4	↑	-		conduit for mineralization. Drilling on this intersection is		
	33+00E	80+75N	81+75N	4	↑	-		suggested.		

		Location		Cont	rast	Magnetic	Strike		Recommendations	
Anomaly	Line	From	То	Charg.	Res.	Association	Length & Orientation	Comments	P: Prospecting DDH: Drilling X: Survey extension	Priority
	27+00E	83+25N	83+50N	3	(C)	-		I-01g is part of the I-01 series of anomalies that appear to be associated with sub-horizontal resistive zone that is underlain by a conductive zone. The resistive zone is known from		
I-01g	27+50E	82+75N	83+25N	4	(C)	-	- horizontal quartz vein and is known to contain significant mineralization. - I-01g is located on the intersection of two East south geophysically inferred	known to contain significant mineralization.Li Li StI-01g is located on the intersection of two geophysically inferred faults/shear zones and the horizontal quartz vein. It is also bounded to the north east by a conductive zone and magnetic domain boundary that is interpreted as the Catharine fault. Although thisDi Li St	DDH: I-01g-1 Line: 28+00E Station: 82+90N Azimuth: 0 Dip: -90 Depth: 130 m	1
	28+00E	82+50N	83+25N	4		M-02a			X: Survey extension to the east is also recommended	
	28+50E	82+50N	83+00N	4		M-02a		structural associations make it a favorable target. Drilling of this feature is		
l-01h	29+00E	79+75N	81+50N	4	$\uparrow\uparrow$	M-03b	100 m	I-01h is a small branch of I-01f . Located in the resistive zone that is interpreted as a		4
1-0111	29+50E	79+50N	80+00N	4	$\uparrow\uparrow$	M-03b	South east	syenite porphyry. It may indicate a link between I-01f and I-01b .		4

		Location		Cont	rast	Magnetic	Strike		Recommendations	
Anomaly	Line	From	То	Charg.	Res.	Association	Length & Orientation	Comments	P: Prospecting DDH: Drilling X: Survey extension	Priority
	24+00E	78+75N	79+25N	4		M-06a		I-02 is located at a depth of		
	24+50E	78+75N	79+25N	4		M-06a		about 150 m and does not appear to be related to the sub-horizontal quartz vein,	DDH: I-02-1	
	25+00E	78+75N	79+25N	4		-		although it could represent a section that has been dropped	Line: 24+50E Station: 80+00N	
I-02	25+50E	78+50N	79+00N	3		-	300 m East	down by faulting. It is at the edge of a zone where the inversion results are	Azimuth: 180 Dip: 70 Depth: 150 m	2
	26+00E	78+50N	79+00N	3		-		somewhat questionable. Because this target appears	This hole also tests	
	26+50E	78+50N	79+00N	3	(C)	-		significantly chargeable and may be a previously un explored target, drilling should	anomaly I-01b	
	27+00E	78+75N	79+00N	2		-		explored target, drilling should be considered.		
	24+00E	82+50N	83+50N	4	(C)	-				
	24+50E	82+75N	83+50N	4	(C)	-				
	25+00E	82+50N	83+75N	4	(C)	M-03a				
	25+50E	82+75N	83+50N	4	(C)	M-03a		The I-03a and b trends are very shallow and appear open		
I-03a	26+00E	82+75N	83+25N	4	(C)	M-03a	500 m	to the surface. They may		2
1-038	26+50E	82+25N	83+50N	3	(C)	M-03a	East north east	represent areas of upward migration of mineralization	P: Prospecting	2
	27+00E	83+25N	83+75N	3	(C)	-		from sources below.	along the trends	
	27+50E	83+50N	84+00N	3	(C)	-		Prospecting and trenching		
	28+00E	83+50N	83+75N	3	(C)	-		should be considered in these trends.		
	28+50E	83+50N	83+75N	3	-	-				
Look	27+00E	82+37N	82+62N	2	(C)	-	50 m			2
I-03b	27+50E	82+50N	82+75N	3	(C)	-	North east			3

		Location		Cont	rast	Magnetic	Strike		Recom	mendations	
Anomaly	Line	From	То	Charg.	Res.	Association	Length & Orientation	Comments	P: Prospecting DDH: Drilling X: Survey extension		Priority
	24+00E	75+25N	75+75N	3	(R)	-	The I-04 trend is located at a depth of about 150 m in the				
	24+50E	75+25N	75+75N	3		Inversion results in this zone are questionable. DDH: I-04-1	are questionable.				
I-04	25+00E	75+25N	75+75N	4		-	200 m East	Additional IPower3D [®] survey lines to the west may help to better define this zone.	Line: Station: Azimuth: Dip:	25+00E 75+50N 0 -90	3
	25+50E	75+25N	75+75N	3	(C)	-	This target is suggested for drilling, however the questionable nature of this		175 m		
	26+00E	75+25N	75+75N	3	(C)	-		anomaly should be considered when prioritizing.			
	27+50E	74+25N	74+75N	2	(R)	-	M-06b- East north and the				
I-05	28+00E	74+50N	75+00N	2		M-06b-		and trenching along the		2	
	28+50E	74+75N	75+00N	2		M-06b-		other trends, its possible association with the sub- horizontal quartz vein is			

		Location		Cont	rast	Magnetic	Strike		Recom	mendations	
Anomaly	Line	From	То	Charg.	Res.	Association	Length & Orientation	Comments	P: Prospecting DDH: Drilling X: Survey extension		Priority
	28+00E	78+12N	78+37N	4		-					
	28+50E	78+00N	78+25N	4		-		I-06 lies directly above I-01b	P:	Prospecting	
I-06	29+00E	77+75N	78+25N	4		M-01c	200 m East	and may be the result of some upward migration of I-01b		and trenching along the	3
	29+50E	78+00N	78+25N	4		-		mineralization.		trend	
	30+00E	77+87N	78+12N	3		-					
	31+00E	77+50N	78+25N	4	-	-		The I-07 trend is located at a depth of about 150 m in the south western part of the grid.			
	31+50E	77+50N	78+25N	4	-	-		Inversion results in this zone are questionable.	DDH: I-07-1 Line: 33+00E Station: 75+50N Azimuth: 0 Dip: -90 Depth: 175 m	33+00E	
I-07	32+00E	77+50N	78+25N	4	-	-	250 m East, open to the east & south	Additional IPower3D [®] survey lines to the west and south may help to better define this zone.		0 -90	3
	32+50E	77+50N	78+25N	4	-	-		This target is suggested for drilling, however the	Dr This is an extension of I-01d-1		
	33+00E	77+50N	78+25N	4	-	-		questionable nature of this anomaly should be considered when prioritizing.			
	32+00E	80+00N	80+50N	3	-	-		I-08 is a short, near surface chargeability anomaly			
I-08	32+50E	80+00N	80+50N	2	-	(R)	100 m East	extending from surface to a depth of about 25 m. This feature is likely at, or near	P: Along trend	Along trend	3
	33+00E	80+00N	80+50N	3	-	(R)		surface and should be investigated by prospecting or trenching.			

		Location		Cont	rast	Magnetic		Recommendations			
Anomaly	Line	From	То	Charg.	Res.	Association	Length & Orientation	Comments	P: Prospecting DDH: Drilling X: Survey extension	Priority	
	29+50E	81+25N	81+75N	4		-		I-09 is a chargeable trend that appears to be related to the			
	30+00E	81+00N	81+75N	4		-		Catharine fault, although the chargeable zone does extend into the more resistive material on each side of the	chargeable zone does extend		
I-09	30+50E	79+75N	81+75N	4	(R)	M-02b	230 m		Line: 31+00E Station: 80+50N	2	
1-03	31+00E	80+50N	81+75N	4		M-02b	East	fault. This trend may also be linked to I-07 anomaly; however, the inversion at this	Azimuth: 0 Dip: -70	2	
	31+50E	80+75N	81+75N	4		-	depth is questionable.	Depth: 200 m			
	32+00E	80+75N	81+50N	4		-		Drilling of this target is recommended.			

	Legend										
Chargeability	Increase:	? = Marginal 1 = Weak 2 = Moderate 3 = High 4 = Very High									
	Increase:	 ↑ = Resistive ↑↑ = Very Resistive (R) = Wide Resistive Zone 									
Resistivity	Decrease:	$\begin{array}{l} \downarrow = \text{Conductive} \\ \downarrow \downarrow = \text{Very Conductive} \\ (\text{C}) = \text{Wide Conductive zone} \end{array}$									

DAILY REPORT OF THE GEOPHYSICAL SURVEY PERFORMED ON THE MILLER GOLD PROJECT

Date	14N001, Northstar Gold Corp., Miller Gold Project IPower3D [®] IP Survey		Invoicing							
(yyyy-mm-dd)	Comments	Mob/ demob	Stand -by	ATV/ Snowmobile	Production (km)					
Project geophysicist:	Thomas Loader									
Crew chief:	Christian Larochelle									
Assistants:	Simon Rioux, Michaël Picard-Rousson, Samuel Charette, Kevin Lussier, Christian Larochelle									
2014-01-31	Briefing & preparation.									
2014-02-02	Val-d'Or -> Kirkland Lake. Find grid access.	1		2						
2014-02-03	Safety meeting - Installation of first IPower3D [®] array.			3						
2014-02-04	Installation of first IPower3D [®] array.			3						
2014-02-05	Testing of first IPower3D [®] array – Start data acquisition Lines 25+00E, 25+00E, 26+00E, 26+50E & 27+00E, 73+50N to 75+75N.			3	1.125					
2014-02-06	Survey 25+00E, 25+00E, 26+00E, 26+50E & 27+00E.			3	2.625					
2014 02 07	Survey 25+00E, 25+00E, 26+00E, 26+50E & 27+00E.			3	1.6875					
2014-02-07	Survey 26+50E, 27+00E, 27+50E, 28+00E & 28+80E.			3	0.5625					
2014-02-08	Survey 26+50E, 27+00E, 27+50E, 28+00E & 28+80E.			3	1.6875					
2014-02-09	Survey 26+50E, 27+00E, 27+50E, 28+00E & 28+80E.			3	1.0125					
2014-02-10	Survey 29+00E, 30+00E, 31+00E 32+00E & 33+00E.			3	2.625					
2014-02-11	Pick up equipment and demobilization.	1		3	0					
	TOTAL	2	0	32	11.325					

APPENDIX C

INDUCED POLARIZATION SURVEY – VERTICAL SECTION IPOWER3D®

NORTHSTAR GOLD CORP.