DRILL REPORT ON DRILL
HOLES AK0509-10 & AK09-05/06/07
And Wedges
AMALGAMATED KIRKLAND PROPERTY
KIRKLAND LAKE, ONTARIO
LARDER LAKE MINING DIVISION
NTS 42-A-01

FRANK R. PLOEGER, BSc., P. GEO. QUEENSTON MINING INC.

Kirkland Lake, ONTARIO August 19, 2011

DRILL REPORT ON DRILL HOLES AK0509-10 & AK09-05/06/07 And Wedges AMALGAMATED KIRKLAND PROPERTY

KIRKLAND LAKE, ONTARIO LARDER LAKE MINING DIVISION NTS 42-A-01

TABLE OF CONTENTS

	<u>P</u>	<u>ige</u>
1.0	Introduction	4
2.0	Property, Location and Access	4
3.0	Previous Work	7
4.0	Property Geology and Mineralization	8
5.0	Drill Program	11
6.0	Core Logging, Sampling and Assaying	13
7.0	Drill Results	14
8.0	Conclusions and Recommendations	15
9.0	References	16

LIST OF FIGURES

Figure 1 Queenston Property Map

Figure 2 Property Claim Map

Figure 3 Property Geology

Figure 4 Geology Legend

APPENDICIES

Appendix I Drill Logs

Appendix II Assay Certificates

Appendix III Amalgamated Kirkland Drill Plan 1:2,500 and Drill Hole Cross Sections 1:2,500

Appendix V Swastika Laboratory Ltd. Procedures

DRILL REPORT ON DRILL HOLES AK0509-10 & AK09-05/06/07 And Wedges AMALGAMATED KIRKLAND PROPERTY KIRKLAND LAKE, ONTARIO LARDER LAKE MINING DIVISION NTS 42-A-01

1.0 INTRODUCTION

In October 2007, Queenston Mining Inc. (QMI) initiated a deep surface drilling program on the Amalgamated Kirkland property (AK), located in Teck Township in northeastern Ontario. The purpose of this drilling was to test for the eastern strike extension of the South Mine Complex (SMC) which is currently being explored and mined by Kirkland Lake Gold Inc on the Macassa property on the 5300 foot level near the northwest corner of the AK property. The possible eastern extension of the SMC was intersected in holes AK08-02W2, 02W3, 02W4. 02W5 and 02W6. Hole AK0509_10 was extended to test the SMC along strike to the west while a series of holes were collared about 1300m to the west to attempt to find a westerly extension of the zone.

2.0 PROPERTY, LOCATION and ACCESS

The AK property is located in the southeastern quadrant Teck Township south of Chaput Hughes in the Town of Kirkland Lake in the Larder Lake Mining Division in northeastern Ontario Figure 1. Highway 66 (Government Road West) crosses the northwestern corner of the property and Archer Drive traverses the northern portion the property from west to east. The property is contiguous to the Teck A property to the south and the Rand property to the east. Excellent access is provided by old drill roads leading off Archer Drive.

The property, as shown on Figure 2, consists of one mining lease # 106667, CLM 328, (Mining Rights Only), 417.658 hectares, which is due for renewal June 1, 2012. The surface rights are owned by the Town of Kirkland Lake who has been developing an Industrial Park on this land since 1992.

After D. R Alexander, 2007

3.0 PREVIOUS WORK

The initial discovery of gold at the AK was in 1920 when the Hunton shaft was sunk on the northern portion of the property to a depth of 120 m with four levels being established. From 1925 to 1939 the Hunton shaft was deepened to 750 feet where further lateral development and drilling was completed. From 1939 to 1988 various interests owned the property and a variety of exploration was completed including 9 programs of diamond drilling. In 1989 Queenston acquired the property and formed a joint venture with Battle Mountain Canada who completed geophysics, trenching and diamond drilling that led to the discovery of the AK gold deposit. In 1993 Cyprus Canada optioned the property, completed further diamond drilling and outlined a mineral resource of 1.800.000 tonnes grading 5.5 g/t Au including 1,300,000 tonnes grading 6.8 g/t. In 1996 Queenston regained full title to the property and formed a joint venture with Franco Nevada Mining Corporation who later formed Newmont Mining Corporation of Canada Limited. In 1997 a new inferred resource was calculated totaling 2,639,338 tonnes grading 4.46 g/t Au. These historic resources are NI 43-101 noncompliant. In 2002 Queenston purchased Newmont's interest in the property and in 2003 and 2005 completed further diamond drilling on the property.

A summary of previous work on the property follows:

1911-13: Hunton Gold Mines incorporated (1913) on a claim staked in 1911; surface trenching. **1920-25**: Hunton Gold Mines; shaft to 400 ft, levels at 125, 250 and 375 ft; north crosscut started on 375-ft level (main exploration level with 550 m development and 1,220 m diamond drilling); further surface and underground drilling.

1921: Canadian Kirkland Mines; shaft to 100 ft on current AK property; further work immediately west of claim group reported as shaft to 816 ft, levels at 80, 250, 400, 800 ft with 641 m lateral development, and; a third shaft some 610 m west with 122 m lateral development on 65 and 125 ft levels; 2,439 m of diamond drilling to 1939 (?) – separate from Hunton property.

1922-23: Highland Kirkland Gold Mines; 4 drill holes (977 m), 1,220 m surface trenching, inclined shaft to 100 ft (at –65 degrees) with some development on 60-ft level – south and east of Canadian Kirkland and Hunton prospects in Tisdale assemblage rocks.

1925-39: Kirkland Hunton Gold Mines; inclined winze from 375-ft to 675-ft level (1925), later extended to 750-ft level; shaft deepened to 500 ft (1928); 476 m underground development, 2,918 m of diamond drilling.

1936-37: Florena Kirkland Gold Mines; magnetic survey, 7 surface drill holes (2,396 m) on previous Highland Kirkland ground.

1939-44: Amalgamated Kirkland Mines (incorporated 1939) as amalgamation of Hunton, Honer and Canadian Kirkland lands (10 claims of current group); 27 surface drill holes (3,724 m); crosscut from Macassa 3000-ft level extended toward Amalgamated ground, 2 drill holes (844 m) drilled in 1944.

1945: Frobisher Exploration; 14 surface holes (1,305 m) on Amalgamated lands.

1972: Mayfield Explorations and Development; 11 surface drill holes (855 m).

1973: Orme Prospecting Syndicate; one drill hole (37 m) under Highland Kirkland inclined shaft.

1974: Kerr Addison Mines; magnetic surveys, mapping, trenching, 4 surface holes (101 m) into carb rocks.

1978: Newmont Exploration of Canada; geophysics (includes IP), mapping, 7 drill holes (1,903 m) on former Highland Kirkland / Florena property.

1981: Lampe Resources; one surface drill hole (61 m).

1983-84: Eden Rock Mineral Corp; three drill holes (359 m).

1986: Accord Resources; stripping, sampling at Hunton area.

1989: Queenston Gold Mines acquires current claim group.

1989-92: Battle Mountain Canada; airborne magnetic and VLF-EM survey; ground magnetic and IP surveys, mapping, stripping / trenching, 45 drill holes (11,838 m), AK Zone discovered. **1993-95**: Cyprus Canada; mapping, 23 drill holes and extensions (14,368 m); first resource

estimate.

1996: Canadian Golden Dragon Resources; three drill holes (1,721 m).

1997-98: property sold to Franco-Nevada (1997); property becomes part of Kirkland Lake Joint Venture (Queenston – Franco-Nevada) in 1998; no new work undertaken.

2002-03: Queenston purchased Franco-Nevada (then Newmont Mining Corp) interest; 3,010.7 m surface drilling in 7 holes.

2005: Queenston; 7 drill holes and a deepening of a prior Cyprus drill hole (6,126 m).

Note: from Technical Report on QMI-Kirkland Lake, D. Alexander, November, 2007

2007-09 Queesnton, surface deep drilling to test for the SMC on the AK property, 5 holes and 11wedge cuts (11,989 m).

4.0 PROPERTY GEOLOGY and MINERALIZATION

The AK property is bisected by the Cadillac-Larder Lake Break. In this area, the break follows the northern fringe of the Murdoch Creek Stock (syenite) and is represented by sheared ultramafics and green carbonate rocks of the Tisdale assemblage with local shearing in the adjacent Timiskaming suite to the north. The Tisdale assemblage is best developed in the eastern part of the property, but occurs as a relatively thin veneer (to 200 m thick) around the north contact of the Murdoch Creek Stock. The Timiskaming assemblage is dominated by fine to coarse clastic sedimentary rocks with lesser alkalic volcanics including fine to coarse pyroclastics, flows and intrusives.

The Murdoch Creek syenite stock trends parallel to the regional deformation fabric and is the dominant feature in the south part of the property. Its north contact is less contaminated than the southern contact on the Teck A & B lands but mafic syenite sections and carb rocks are found within the system and in the contact aureole. Other syntectonic syenites are found in the north part of the property – most prominent at the Hunton shaft area (north). The volcanic and sedimentary rocks are cut by east-west and north-south Keewatin diabase dykes (See Figures 3 and 4).

Modified after D. R Alexander, 2007

BCS, July 2007

Figure 4

LEGEND for GEOLOGY and DRILLING FIGURES

SURFA	CE FEATURES	LITHOI	LOGY
	Local Road	LATE ST	TAGE
	Highway		12 - Diabase
, <u> </u>	Rail		11 - Huronian Sediments
53	Lake/River		10 - Deformation/Alteration Zone (carbonated trachyte)
~~~	Creek		9 - Deformation/Alteration Zone (carbonated komatiite)
		TIMISKA	MING ASSEMBLAGE
GOLD	<u>DEPOSITS</u>		8T - Alkalic Intrusive
	Past Producer		6T - Conglomerate-Greywacke
	Advanced Prospect		
<b>☆</b>	Current Resource		5T - Greywacke-Conglomerate
^			4T - Alkalic Tuff
	Historic Resource		3T - Alkalic Flow
+	Showing	BLAKE	RIVER ASSEMBLAGE
	Shaft/Adit		8B - Felsic Intrusive
RECE	NT_DRILLING		7B - Mafic Intrusive
•	Collar	MANAGE PARK	4B - Felsic-Intermediate Tuff
	Surface Trace		
·			3B - Felsic-Intermediate Flow
FAULT		LOWER	BLAKE RIVER ASSEMBLAGE
	Cadillac-Larder Lake Break		8K - Felsic Intrusive
~	Main Break		7K - Mafic Intrusive
~	South Break		2K - Mafic Flow
	Upper Canada Break	TISDALI	E ASSEMBLAGE
$\sim$	Upper Canada Break (South Branch)		8L - Felsic Intrusive
~	North Break		7L - Mafic Intrusive
~	103 Break		IF - Iron Formation
/=× .	Minor Fault		6L - Conglomerate - Greywacke
~ >	WINO F BUR	40.48	5L - Greywacke - Conglomerate
			4L - Felsic-Intermediate Tuff (Upper Tisdale Group)
			2L - Mafic Flow
			1L - Ultramafic Flow

After D. R Alexander, 2007

The AK deposit consists of lode-style gold mineralization hosted by altered and pyritic Timiskaming trachytic volcanics. The volcanics wedge out or thin at depth between two sedimentary units. The zone strikes at 070 degrees, dips steeply south, and, exhibits a westerly plunge of 50 degrees.

Mineralization is characterized by blue-grey, brecciated and 'wormy', quartz-ankerite veins and silicified zones which contain up to 10% fine-grained pyrite and lesser amounts of galena, chalcopyrite, sphalerite, molybdenite and visible gold. The sulphides and gold commonly occur along fractures and wallrock inclusions in the veins. Native gold occurs as fine pinpoints distributed in one to five mm sized clusters of up to ten or more grains. Auriferous veins are found within a quartz-ankerite-sericite-pyrite alteration assemblage that is enveloped by a broader zone of ankerite-sericite-pyrite +/- hematite and quartz alteration up to 60 m wide.

The AK deposit is estimated by QMI to contain historic (NI 43-101 Noncompliant) inferred resources of 2,639,338 tonnes grading 5.5 g/t Au.

### 5.0 DRILL PROGRAM

In October 2007, QMI commenced a surface deep diamond drilling program on the property. The primary target for this program is the New South Mine Complex ("SMC") currently being explored, developed and mined by Kirkland Lake Gold Inc. ("KL Gold") on the adjacent Macassa property. A secondary target was the western strike extension of the AK deposit at depth.

The SMC is interpreted to dip onto the AK property at a depth of approximately 1,800 - 2,200 m (6,000 – 8,200 ft). The SMC is a multiple-zone gold system discovered by KL Gold in 2005. It represents a new-style of mineralization in the camp located some 600 m south of the main Kirkland Lake productive trend at a depth of 1200 m (5300 ft). In July 2009, KL Gold reported a proven and probable reserve on their 100% owned property totaling 696,000 oz of Au (935,000 tons grading 0.74 oz/ton (25.4 g/t) plus measured and indicated resources comprising 302,000 oz. of Au (475,000 tons grading 0.64 oz/ton (21.8 g/t)) and inferred resources of 590,000 oz. of Au (704,000 tons grading 0.84 oz/ton (28.7 g/t)).

As a result of new ore reserve estimate released July 15, 2009, the total resource on the JV property is now 66,097 t grading 42.5 g/t (72,858 tons grading 1.24 oz/ton) indicated and 113,179 t grading 42.2 g/t (124,756 tons grading 1.23 oz/ton) inferred.

A total of 11,989 metres of NQ diameter drilling in 5 holes and 11 wedge cuts were drilled by Benoit Diamond Drilling Ltd. from Val d'Or, Quebec from October 2007 to August 2009. Encouraging anomalous gold mineralization was intersected in wedge holes AK08-02W2, W3 and W4. Hole AK08-04/ 4A was collared to test the SMC zone at depth and holes AK09_02W5 and AK09_02W6 were designed to test the SMC along strike.

Hole AK09_02W5 was wedged from 1474m to 2000m between May 1 and June 4, 2009 for a total of 526 m. Another wedge was set at 1365m and drilled to 2000m (635m) as hole AK09-02W6 between July 1 and August 21, 2009.

The deep drilling program was continued in August, 2009 using Cabo as the contractor (see Table 1) with the deepening of an old hole (AK05_10) originally drilled in 2005, from 1117 to 1638m (521m) between August 25 and November 11, 2009 (hole AK05/09_10). The hole was subsequently wedged as AK05/09_10W1, from 1104 to 1854 (750m) between November 12 and, 2009 and February 5, 2010, and again, from 1066- 1913m (847m) from February 7 to May 6, 2010.

In October 2009, second Cabo rig was added to drill a hole about 1300m west of the SMC to test for a possible westerly extension of the zone. Numerous attempts (AK09_05/ 05A/ 06/ 06A/ 06B/ 06C) totaling 1036m, were made to establish a pilot hole but were all abandoned due to excessive deviation. Finally, AK09_07, with some directional wedging, was completed to a depth of 1271m between November 26, 2009 and February 10, 2010. Two additional wedges totaling 1515m were cut from this pilot hole (AK09_07W1/ W2) to June 15, 2010.

In total, 6018m of coring was completed with the 2 rigs over this period.

Hole Number	Total	Dates Drilled From To		Grid Location		Comments	
Hole Number	Footage			Easting	Northing	Comments	
AK09_05	548m	Oct 16	Nov 4/ 09	8750E	10150N	Abandoned- too much deviation	
AK09_05A	20m	Nov 4	Nov 5/ 09	8750E	10148N	Abandoned- too much deviation; no log	
AK09_06A	29.5m	Nov 5	Nov 10/ 09	8750E	10146N	Abandoned- too much deviation	
AK09_06B	122m	Nov 10	Nov 11/ 09	8750E	10144N	Abandoned- too much deviation	
AK09_06C	50m	Nov 12	Nov 13/ 09	8750E	10142N	Abandoned- too much deviation	
AK09_06	266m	Nov 13	Nov 25/ 09	8750E	10120N	Abandoned- too much deviation	
AK09_07	920m	Nov 26	Jan 20/ 10	8750E	10160N	Stopped- flattening too quickly, wedged	
AK09_07	429m	Jan 20	Feb10/ 10	8750E	10160N	Cont'd after wedging, from 842- 1271m	
AK09_07W1	185m	Feb 11	Mar 2/ 10	8750E	10160N	Wedged from 865- 1049m, abandoned	
AK09_07W2	1330m	Mar 3	Jun 15/ 10	8750E	10160N	Wedged from 553- 1883m	
AK0509_10	521m	Aug 25	Nov 11/ 09	7500E	10030N	Old hole AK05_10 extended to 1638m	
AK0509_10W1	750m	Nov 12	Feb 5/ 10	7500E	10030N	Wedged from 1104- 1854m	
AK0509_10W2	847m	Feb 7	May 6/ 10	7500E	10030N	Wedged from 1066- 1913m	
TOTAL	6018m						

TABLE 1: Summary of AK Drilling- August 2009 to June 2010.

The drill program was planned and supervised by Senior Geologist Frank Ploeger, P.Geo., Queenston Mining Inc., and is also logged and sampled by Mr

Ploeger at Queenston's Upper Canada mine site. The drill core is stored at the Upper Canada mine site and all core samples were cut with a diamond saw by QMI technicians on site. Swastika Laboratories Ltd. at Swastika, Ontario assayed all samples for geochemical gold ppb (Fire Assay - one assay ton). Samples with > 1000 ppb gold were check by fire assay using a gravimetric finish.

Holes AK05/09_10/ 10W1/ 10W2 were collared at 74+50E while the other cluster of holes centred around 87+50E. Reflex down hole azimuth and dip tests were taken at 60/ 80 metre intervals down the hole by the drillers.

The results of the drilling are presented in drill logs in Appendix I, and, assay certificates are located in Appendix II. The drill hole location and drill hole trace are shown on a drill plan at a scale of 1:2,500 and shown on drill hole cross sections looking 251⁰ Azimuth at a scale of 1:2,500. (Appendix III).

# 6.0 CORE LOGGING, SAMPLING, ASSAYING

The core is placed in wooden boxes by the drillers. The boxes are picked up by Queenston technicians at the drill site and delivered to the core-logging facility at the former Upper Canada mine site.

Core logging protocol by Queenston geologists is summarized as follows:

The core is first measured to check that the driller's metre blocks are correct. The metreage is marked at the start and end of each box. Any lost or ground core is noted and zones of poor RQD are note (i.e. <75%).

The core is logged in detail and recorded in a digital format using an excel spreadsheet. Special attention is given to alteration, mineralization and structural information. Mineralization and alteration are sampled. The samples are marked by the geologist and sample tickets are inserted. Depending on the lithology, alteration and mineralization, sample widths vary from 0.30 m to 1.4 m average 1.0 m. The samples are entered on the drill logs. For each sample the percentage of quartz-carbonate veining, % pyrite are estimated and entered on the log.

The samples are then cut in half by a Queenston technician using a diamond core saw. Half the core is placed in a plastic bag with a sample ticket and the other half is put back in the box with a duplicate sample ticket at the end of the sampled interval. Samples with visible gold are flagged and the core cutter is advised to take special care to clean the saw blade after cutting the potentially high grade sample in order to avoid contamination of the next sample. The assay lab is also advised of visible gold samples to avoid batch contamination.

Metal tags with the hole number and the depth of hole for the contained core interval are nailed to the end of each box as a permanent identification. The boxes are placed in racks outside for future reference. The unmineralized sections of the drill holes with no samples are stacked on wooden pallets to save core rack space. The samples for assay are placed in plastic burlap bags, a lab work order is prepared and the samples are delivered by the technicians by truck to Swastika Laboratories Ltd.

The primary lab for the AK samples is Swastika Laboratories Ltd, Swastika, Ontario. All samples were assayed by geochemical methods using atomic absorption spectrometer for Au ppb (1AT). Samples assaying equal or greater than 1 g/t Au were reassayed with gravimetric finish using a second pulp from the reject. (See Appendix IV for sample preparation and assaying procedures)

# 7.0 DRILL RESULTS

The significant drill results from the Amalgamated Kirkland drilling between August 2009 and June 2010 are summarized below.

Hole AK05_10, initially drilled in 2005, was extended and wedged several times. The initial extension, designated as AK0509_10 intersected unaltered to weakly altered greywackes and conglomerates that were cut by minor quartz-carbonate vein zones and diabase dikes before entering a deformation zone, within which, it encountered values of 1.27gm/ 4.1m. Below the deformation zone, the hole traversed mainly mafic trachytes and trachyte tuffs cut by syenite porphyry dikes.

Hole AK05/09_10W1 did not deflect sufficiently eastwards and therefore was stopped before the Kirkland Lake Gold boundary. It intersected the SMC type rocks consisting of trachytic tuffs, syenite porphyry and syenite after passing through a fault zone at 1349.7m, however, no significant assays were returned.

Another steel wedge plus a series of retrievable wedges were set in the pilot hole to push the hole (AK05/09_10W2) further east. It passed into the SMC package below a fault zone at 1333.7m and encountered 2.13gm/ 0.85m in a silicified section of trachyte tuff. At 1901m, it intersected a zone of altered mafic syenite cut by a series of quartz veins, returning 1.75gm/ 6.2m.

About 1300m to the east, a number of attempts were made to complete a deep hole probing for the easterly extension of the SMC zone below the area of the Hunton shaft. Holes AK09_05/05A/06/06A/06B/06C/07/07W1 were all abandoned because of excessive deviation in strike and dip. The only significant assays were obtained in holes AK09_05, returning 8.46gm/3.5m including 39.60gm/0.65m at 445m in a quartz vein zone in wacke, and, hole AK09_07 in which a pyritic zone ran 5.48gm/1.50m at 786m. It is believed that the holes

entered SMC type rocks below a diabase dike and strong fault zone (Hunton Fault?) around 1142.6 and 1176.9m, respectively.

An initial wedge cut (AK09 07W1) from the pilot hole, which was abandoned after 185m and restarted as AK10 07W2 was drilled from 865m to 1883m and wedged numerous times to keep the hole on track. A mineralized quartzcarbonate vein, returning values of 4.28gm/ 1.0m, appears to correlate with similar pyritic zones in holes AK09 05 and 07 and may reflect an extension of the main AK zone mineralization.

# 8.0 CONCLUSIONS and RECOMMENDATIONS

Holes AK0509 10/10W1/10W2 were extensions and wedges of an old hole (AK05_10) which attempted to locate SMC type mineralization in the northwest corner of the AK property. All of the holes encountered lithologies similar to those hosting the SMC below a deformation/ fault zone including values to 1.75gm/6.2m.

About 1300m to the west, a number of attempts were made to establish a hole to test for the possible eastward extension of the SMC under the Hunton shaft area. Most of the holes (AK09 05/05A/06/06A/06B/06C/07/07W1) had to be abandoned due to excessive deviation to the west and/ or flattening. Hole AK09 07W2 was finally wedged sufficiently to stay within the Hunton claim and test for the SMC zone at depth, yielding values of of 4.28gm/ 1.0m. This intercept appears to correlate with pyritic zones in holes AK09 05 and 07 and may reflect an extension of the main AK zone mineralization.

It is recommended that additional wedges be placed in the pilot holes in both areas to push the holes as far east as possible. This would aid in establishing continuity of the SMC in the western portion of the AK claim, and, possibly extending the AK/ Cyprus type mineralization further east and confirming the deeper structures associated with the SMC.

> Frank R Ploeger, BSc, P. Geo. August 21, 2011

# 9.0 REFERENCES

- 1. Alexander, D.R., 2007: Technical Report on the Mineral Properties of Queenston Mining Inc. in the Kirkland Lake Gold Camp.
- 2. Ayer, J.A. and Trowell, N.F., 2000: Geological Compilation of the Kirkland Lake area, Abitibi greenstone belt; Ontario Geological Survey (OGS), Preliminary Map P.3425, scale 1:100,000
- 3. Ayer, J.A. and Trowell, N.F., 2001: The Abitibi Greenstone Belt: A Program Update; in Summary of Field Work and Other Activities 2001, OGS, Open File Report 6070, pp. 4-1 to 4-9.
- 4. Ayer, J. A. et al, 2005: Overview of Results from the Greenstone Architecture Project: Discover Abitibi Initiative; OGS Open File Report 6154, 146 pp. Martinez E. et al, 2007
- 5. Benham, W. R., 2009: Drill Report, 2007-2008 Drill Program, Amalgamated Kirkland Property, Kirkland Lake, Ontario.
- 6. Benham, W. R., 2009: Drill Report, AK08-03, Amalgamated Kirkland Property, Kirkland Lake, Ontario.
- 7. Kirkland Lake Gold Inc., 2009: Exploration; in website www.klgold.com/exp, downloaded June 3, 2009.
- 8. Ploeger, F. R., 2010: Drill Report, Drill Holes Ak08-04/ 04A, Amalgamated Kirkland Property, Kirkland Lake, Ontario.
- 9. Queenston Mining Inc, 2009: Projects; in website www.queenston.ca/projects, downloaded June 3, 2009.

# DRILL REPORT ON DRILL HOLES AK0509-10 & AK09-05/06/07 And Wedges AMALGAMATED KIRKLAND PROPERTY KIRKLAND LAKE, ONTARIO LARDER LAKE MINING DIVISION NTS 42-A-01

# **APPENDIX I**

**DIAMOND DRILL LOGS** 

# **Lithological Codes**

OVB	overburden
S1	conglomerate
S3	greywacke

S3a altered greywacke

S7 mudstone

GS carbonaceous sediments

V4V9/ V4T trachyte tuff

V4V9I trachyte lapilli tuff

V9 tuff BX breccia 1S syenite

1Sa altered syenite1Sp syenite porphyry

1Spa altered syenite porphyry

1SMa mafic syenite

3D diabase

CZ contact zone SZ silicified zone DZ deformation zone

SHZ shear zone FAZ fault zone

QVZ quartz vein zone

QCVZ quartz carbonate vein zone CARB strongly carbonated rock

BBC badly broken core

LC lost core

HOLE	DEPTH	DIP	AZIMUTH
AK09_07	0	-83.48	5.92
AK09_07	10	-83.77	8.24
AK09_07	20	-83.53	6.94
AK09_07	30	-83.49	6.68
AK09_07	40	-83.48	5.76
AK09_07	50	-83.43	4.75
AK09_07	60	-83.46	4.48
AK09_07	70	-83.45	4.7
AK09_07	80	-83.37	3.55
AK09_07	90	-83.17	1.96
AK09_07	100	-82.94	359.22
AK09_07	110	-82.82	357.09
AK09_07	120	-82.77	356.6
AK09_07	130	-82.76	356.3
AK09_07	140	-82.66	355.91
AK09_07	150	-82.55	355.26
AK09_07	160	-82.41	354.2
AK09_07	170	-82.31	352.77
AK09_07	180	-82.41	352.56
AK09_07	190	-82.35	352.06
AK09_07	200	-82.36	351.96
AK09_07	210	-82.24	351.33
AK09_07	220	-82.18	350.16
AK09_07	230	-82.01	349.36
AK09_07	240	-81.51	354.22
AK09_07	250	-81.26	354.46
AK09_07	260	-81.2	353.95
AK09_07	270	-80.84	352.47
AK09_07	280	-80.52	350.73
AK09_07	290	-80.48	349.5
AK09_07	300	-80.42	348.32
AK09_07	310	-80.39	347.29
AK09_07	320	-80.27	346.37
AK09_07	330	-80.21	345.34
AK09_07	340	-80.11	344.58
AK09_07	350	-80.01	
AK09_07	360	-79.94	343.64
AK09_07	370	-79.93	343.51
AK09_07	380	-79.85	342.66
AK09_07	390	-79.72	341.44
AK09_07	400	-79.5	340.59
AK09_07	410	-79.37	340.45
AK09_07	420	-79.32	340.35
AK09_07	430		338.78
AK09_07	440		
AK09_07	450	-78.94	336.37

AK09_07	460	-78.77	335.57
AK09_07	470	-78.62	335.17
AK09_07	480	-78.09	334.26
AK09_07	490	-77.52	332.45
AK09_07	500	-77.23	331.17
AK09_07	510	-77	330.4
AK09_07	520	-76.71	329.48
AK09_07	530	-76.34	329.96
AK09_07	540	-75.06	330.59
AK09_07	550	-74.02	330.4
AK09_07	560	-73.64	330.2
AK09_07	570	-71.63	329.09
AK09_07	580	-69.81	327.39
AK09_07	590	-69.41	326.42
AK09_07	600	-69.23	326.22
AK09_07	610	-69.1	325.99
_ AK09_07	620	-68.98	325.75
_ AK09_07	630	-68.83	325.67
AK09 07	640	-68.68	326.02
_ AK09_07	650	-67.98	326.88
AK09_07	660	-66.92	327.16
AK09_07	670	-66.3	326.98
AK09_07	680	-66.02	326.84
AK09_07	690	-65.74	326.71
AK09_07	700	-65.5	326.7
AK09_07	710	-65.29	326.48
AK09_07	720	-64.89	326.22
AK09_07	730	-64.4	325.91
AK09_07	740	-63.95	325.54
AK09_07	750	-63.26	326.08
AK09_07	760	-62.06	327.09
AK09_07	770	-60.98	327.28
AK09_07	780	-60.38	327.11
AK09_07	790	-59.77	326.79
AK09_07	800	-59.1	326.51
AK09_07	810	-58.51	326.22
AK09_07	820	-57.87	326.02
AK09_07	830	-57.27	325.76
AK09_07	840	-56.93	326.55
AK09_07	854	-55.8	330.1
AK09_07	899	-55.8 -49	330.1
<del></del>	,	-43 -47.3	330.6
AK09_07	920		
AK09_07	965 1004	-39 -37.9	328.3
AK09_07	1004		332
AK09_07	1031	-37.3	332.6
AK09_07	1067	-36.3	329.1
AK09_07	1100	-35.3	327.9

AK09_07	1133	-33.9	324.6
AK09_07	1163	-33.6	328.4
AK09_07	1193	-32.2	332
AK09_07W2	0	-84.17	4.59
AK09_07W2	10	-83.78	7.78
AK09_07W2	20	-83.7	6.83
AK09 07W2	30	-83.67	6.95
_ AK09_07W2	40	-83.61	5.46
AK09 07W2	50	-83.6	5.15
AK09_07W2	60	-83.53	4.53
AK09_07W2	70	-83.53	4.27
AK09_07W2	80	-83.46	3.52
AK09_07W2	90	-83.26	0.77
AK09 07W2	100	-83.08	358.85
AK09_07W2	110	-82.95	357.24
AK09_07W2	120	-82.84	356.41
AK09_07W2	130	-82.82	356.36
AK09_07W2	140	-82.75	355.69
<del></del>	150		
AK09_07W2		-82.62 -82.48	354.82
AK09_07W2	160		353.18
AK09_07W2	170	-82.5	352.79
AK09_07W2	180	-82.51	352.5
AK09_07W2	190	-82.53	352.4
AK09_07W2	200	-82.45	351.72
AK09_07W2	210	-82.4	350.81
AK09_07W2	220	-82.26	350.17
AK09_07W2	230	-82.22	350
AK09_07W2	240	-81.58	354.83
AK09_07W2	250	-81.4	354.31
AK09_07W2	260	-81.3	353.69
AK09_07W2	270	-81.01	351.97
AK09_07W2	280	-80.78	350.2
AK09_07W2	290	-80.61	349.54
AK09_07W2	300	-80.52	348.5
AK09_07W2	310	-80.44	347.71
AK09_07W2	320	-80.4	347.69
AK09_07W2	330	-80.3	346.79
AK09_07W2	340	-80.21	345.82
AK09_07W2	350	-80.03	344.97
AK09_07W2	360	-80.06	344.89
AK09_07W2	370	-80.04	344.31
AK09_07W2	380	-79.87	343.73
AK09_07W2	390	-79.9	343.41
AK09_07W2	400	-79.67	342.3
AK09_07W2	410	-79.46	341.52
AK09_07W2	420	-79.48	340.75
AK09_07W2	430	-79.33	339.34

•

AK09_07W2	440	-79.19	338.39
AK09_07W2	450	-79.01	337.62
AK09_07W2	460	-78.87	336.86
AK09_07W2	470	-78.72	336.12
AK09_07W2	480	-78.21	334.69
AK09_07W2	490	-77.6	333
AK09_07W2	500	-77.34	331.76
AK09_07W2	510	-77.04	330.75
AK09_07W2	520	-76.8	330.08
AK09_07W2	530	-76.65	331.06
AK09_07W2	540	-75	332.36
AK09_07W2	550	-73.91	331.76
AK09_07W2	560	-72.71	335.32
AK09_07W2	570	-71.98	333.28
AK09_07W2	580	-71.19	332.05
AK09_07W2	590	-71.36	330.97
AK09_07W2	600	-70.54	329.44
AK09_07W2	610	-70.08	328.8
AK09_07W2	620	-70.07	329.84
AK09_07W2	630	-69.15	329.08
AK09_07W2	640	-68.32	327.57
AK09_07W2	650	-68.47	328.18
AK09_07W2	660	-68.44	329.14
AK09_07W2	670	-68.07	329.28
AK09_07W2	680	-67.76	329.41
AK09_07W2	690	-67	329.2
AK09_07W2	700	-66.96	328.91
AK09_07W2	710	-67.17	330.26
AK09_07W2	720	-66.16	329.94
AK09_07W2	730	-65.86	331.43
AK09_07W2	740	-65.33	331.44
AK09_07W2	750	-65.27	331.16
AK09_07W2	760	-65.13	329.75
AK09_07W2	770	-64.9	332.02
AK09_07W2	780	-64.1	332.97
AK09_07W2	790	-63.19	332.27
AK09_07W2	800	-62.99	331.51
AK09_07W2	810	-62.08	331.3
AK09_07W2	820	-61.36	331.22
AK09_07W2	830	-60.92	331.28
AK09_07W2	840	-61.17	331.49
AK09_07W2	850	-60.49	331.62
AK09_07W2	860	-59.98	331.52
AK09_07W2	870	-59.49	331.93
AK09_07W2	880	-58.63	331.93
AK09_07W2	890	-58.4	331.91
AK09_07W2	900	-58.6	331.19

910	-57.94	331.07	
920	-58.3	330.47	
930	-57.68	330.42	
940	-57.68	329.86	
950	-56.77	329.5	
960			
		323.07	
		322.98	
1310		323.03	
1320		323.03	
1330	-45.42	322.74	
		322.66	
1350	-44.66	322.57	
1360		322.49	
1370	-44.8	324.97	
	920 930 940 950 960 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320 1330 1340 1350 1360	920       -58.3         930       -57.68         940       -57.68         950       -56.77         960       -56.32         970       -56.54         980       -55.82         990       -55.58         1000       -54.92         1010       -54.77         1020       -54.47         1030       -54.18         1040       -53.72         1050       -53.93         1060       -53.8         1070       -53.98         1080       -54.49         1090       -53.7         1100       -54.3         1110       -53.89         1120       -52.82         1130       -51         1140       -50.24         1150       -50.59         1160       -49.8         1170       -50.5         1180       -49.85         1190       -49.63         1200       -50.2         1210       -49.6         1240       -49.9         1260       -49.8         1270       -48.75         1280       -48	920       -58.3       330.47         930       -57.68       329.86         950       -56.77       329.5         960       -56.32       329.37         970       -56.54       328.87         980       -55.82       328.72         990       -55.58       328.68         1000       -54.92       328.55         1010       -54.77       328.08         1020       -54.47       327.79         1030       -54.18       327.66         1040       -53.72       327.52         1050       -53.93       327.5         1060       -53.8       327.19         1070       -53.98       327.41         1080       -54.49       326.65         1090       -53.7       326.33         1110       -53.89       326.17         1120       -52.82       325.83         1130       -51       324.91         1140       -50.24       324.77         1150       -50.59       323.77         1160       -49.8       323.5         1170       -50.5       323.45         1180       -49.85 <td< td=""></td<>

AK09_07W2	1380	-44.64	325.19
AK09_07W2	1390	-44.44	325.29
AK09_07W2	1400	-44.51	325.31
AK09_07W2	1410	-44.6	325.33
AK09_07W2	1420	-44.56	325.33
AK09_07W2	1430	-44.45	325.33
AK09_07W2	1440	-44.55	325.33
_ AK09_07W2	1450	-44.74	325.49
AK09_07W2	1460	-44.64	325.45
AK09 07W2	1470	-44.63	325.36
AK09_07W2	1480	-44.8	325.55
_ AK09_07W2	1490	-44.73	325.52
AK09_07W2	1500	-44.65	325.49
_ AK09_07W2	1510	-44.89	325.64
AK09_07W2	1520	-44.77	325.61
AK09_07W2	1530	-45.17	325.79
_ AK09_07W2	1540	-45.22	325.85
_ AK09_07W2	1550	-45.26	325.91
_ AK09_07W2	1560	-45.17	325.8
AK09_07W2	1570	-45.12	325.81
_ AK09_07W2	1580	-45.36	326.05
_ AK09_07W2	1590	-45.3	325.96
AK09_07W2	1600	-45.28	325.97
AK09_07W2	1610	-45.29	326.07
AK09_07W2	1620	-45.33	326.14
AK09_07W2	1630	-45.3	326.14
AK09_07W2	1640	-45.3	326.25
AK09_07W2	1650	-45.41	326.38
AK09_07W2	1660	-45.33	326.35
AK09_07W2	1670	-45.44	326.53
AK09 07W2	1680	-45.45	326.73
AK09_07W2	1690	-45.26	
AK09_07W2	1700	-45.3	326.86
AK09_07W2	1710	-45.34	327.01
AK09_07W2	1720	-45.46	327.22
AK09_07W2	1730	-45.46	
AK09_07W2	1740	-45.45	327.45
AK09_07W2	1750	-45.29	327.48
AK09_07W2	1760	-45.36	327.56
AK09 07W2	1770	-45.42	327.69
AK09_07W2	1780	-45.4	327.77
_ AK09_07W2	1790	-45.2	327.54
AK09_07W2	1800	-45.23	327.56
AK09_07W2	1810	-45.22	327.77
AK09_07W2	1820	-45.13	327.82
_ AK09_07W2	1830	-45.07	327.81
_ AK09_07W2	1840	-45.25	327.95
-			

AK09_07W2	1850	-45.09	327.85
AK09_07W2	1860	-45.26	327.88
AK09_07W2	1870	-45.46	328.1
AK09 07W2	1880	-45.3	328.09

PROPERTY:	AMALGAMA	TED KIRKLAND	<u> </u>		HOLE	NUMBER AKO	9-07W1		
Province:	Ontario	DATE LOGGED: Feb 12- Mar 2, 2010		Grid: 8	8750 E	Method	Depth	Az	Dip
Township	Teck	LOGGED BY: FR Ploeger		1	0170 N	Compass	Collar		 
Started:		DRILLED BY: Cabo Diamond Drilling			70863 E	reflex			
Completed:	2-Mar-10	UNITS: Metres		NAD 83 5331	1377N				
CORE SIZE:	NQ	CORE LOCATION: Upper Canada		ELEV: 3					
00.12				LENGTH:	1049 m			_	
-		Location: leased clm 328 (106667)							
PURPOSE:			-						
COMMENTS:									
_									-
SUMMARY L	OG	AK09-07W1	-						
From	To	Lithology		From	То	Metres	Au g/t		
0.00	7.30	CAS							
7.30	53.82	S3a							ļ
53.82	55.40	1Sa							
55.40	82.00	S3a/ DZ			<u> </u>				
82.00	235.90	S3a							
235.90	237.90	Wedge/ LC							
237.90	262.77	S3							
262.77	380.40	S7/ S3							
380.40	417.55	S3							
417.55	443.25	V4T/ 1S/ S2							
443.25	533.00	S3							
533.00	535.10	Wedge							
535.10	562.90	S3							
562.90	564.25	Wedge							
564.25	614.55	S3							
614.55	647.11	S1							
647.11	649.23	Wedge/ LC							
649.23	663.60	S7							<u> </u>
663.60	670.15	S1							<u> </u>
670.15	673.90	DZ							<u> </u>
673.90	684.84	S3/ S1							
684.84	691.00	SHZ/ S3				,			<u> </u>
691.00	698.90	S1							

698.90	720.25	S3					I -	
720.25		S1						
751.90		WEDGE/ LC						
754.30		S1						
759.40		S3			-			
770.65		S1						
794.90	831.24	S3						
831.24		S1						
852.00		S3						
860.00		Wedge/ Wedge Cut						
862.60		S3						
902.00	920.00	S1						
920.00		ЕОН						
842.00		Wedge						
843.00	844.30	Wedge Cut/						
844.30	851.65	S1	1		_			
851.65	864.50	S3						
864.50	866.32	Wedge/ Wedge Cut/ AK09_07W1						
866.32	905.00	S3						
905.00	906.81	Wedge/ LC						
906.81	909.00	S1			_			
909.00	929.00	S3						
929.00	931.39	Wedge/ LC		1000000				
931.39	933.20	FAZ/ S7						
933.20	942.60	S3a/ S1a [°]				_		
942.60		S2/ S3						
953.00	954.70	Wedge/ LC						
957.45	977.00	S1				_	_	
977.00	979.20	Wedge/ LC						
979.20		S1						
1010.90		S3						
1025.00		Wedge/ LC						
1026.94	1049.00	S3				_		
1049.00		EOH		_				
10.000					-			
						1		<del></del>
49617	49622	10-602	10-Mar-10					
49623	49625	10-635	10-Mar-10					
			1 . 5	l	I .		L	

Prom		DESCRIPTION (Hole no AK09-07W1)							Sam	ples / A	ssays		TO DESCRIPTION OF THE PERSON O
7.30 5.382 5.38 5.38 5.38 5.59 5.59 5.59 5.59 5.59 5.59 5.59 5.5		To (m)	Description		Py/Po (%)	Dip	Desc.		From	То	Length	Au g/t	
\$5.40 \$2.00 \$3 abr 22 \$2.590 \$3 abr 2 \$2.590 \$3 abr 2 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.590 \$2.5													
82.00   338-07   Sisa													
23.59 of 237-90 Wedge/ LC 237-90 262.77 S3 1 237-90													
237.90   Wedgel LC													
22.77   30.90   377.35   33.90.40   417.55   53.25   33.90.40   417.55   53.25   33.90.40   417.55   53.25   33.90.40   417.55   53.25   33.90.40   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.51   53.90   53.90   53.51   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90   53.90													
28277 380.40 \$77.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.55 \$13  417.5													
147.55   432.5   V31*15   S2													
417.55   433.26   VAIT ISI S2													
Hard													
533.00   595.10   Wedge											_		
582.90   584.25   Wedge													
562.90   564.25   Wedge													
564.25   614.55   83						- G							
State   Stat													
649.23   636.05   75   75   75   75   75   75   75							<u> </u>						
649.23 653.60 877 653.50 1571.5 15 673.90 1584.84 153/51													
Sea 50   \$70.15   \$1													
1873.90   DZ   1873.90   DZ   1873.90   DZ   1873.90   DZ   1873.90   DZ   1873.90   DZ   DZ   DZ   DZ   DZ   DZ   DZ   D							-						
1673.98   684.84   \$3/.51													
S84.84   S91.00   SH2/S3   S91.00   SH2/S3   S93.00   S											_		
S91.00   S98.90   S1   S98.90   S1   S98.90   T20.25   S3   S1   S1   S1   S1   S1   S1   S1													
S88.90   720.25   S3							-				_		
1720.25   751.90   S1													
751.90 754.30 WEDGE/ LC 754.30 759.40 770.65 S1 770.65 794.90 S1 770.65 794.90 S1 831.24 852.00 S1 852.00 860.00 S3 860.00 852.00 Wedge/ Wedge Cut 862.60 902.00 S1 862.00 920.00 S1 862.00 920.00 S1 862.00 860.00 S0 860.00 860.00 S1 862.00 Wedge S2 862.00 Wedge S2 862.00 Wedge Wedge Cut/ AK09 07W1 862.00 Wedge S2 862.00 Wedge Wedge Cut/ AK09 07W1 862.00 Wedge Wedge Cut/ AK09 07W1 862.00 Wedge Wedge Cut/ AK09 07W1 863.00 Wedge Wedge Cut/ AK09 07W1 863.00 Wedge Wedge Cut/ AK09 07W1 864.00 Wedge Wedge Cut/ AK09 07W1 865.00 Wedge Wedge Cut/ AK09 07W1 866.00 Wedge Wedge Cut/ AK09 07W1 866.00 Wedge Wedge Cut/ AK09 07W1 866.00 Wedge S2 866.00 Wedge Wedge Cut/ AK09 07W1 866.00 Wed													
759.40   770.65   S3							-						
759.40 770.65 93.3 770.65 794.90 S1 770.65 794.90 S1 784.90 S31.24 S3 851.24 S52.00 S1 852.00 S60.00 S3 860.00 862.60 Wedge/Wedge Cut 862.60 902.00 S1 902.00 S2 S44.30 Wedge Cut/ AK09 Cut/ S450 S3 S51.65 S1 S51.65 S64.50 S3 S51.65 S64.50 S3 S65.32 Wedge/ Wedge Cut/ AK09 OTW1 Interview of the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by later blocks suggest that coring began at 866.32m with a thin wedge expanding to full core width by later blocks suggest that coring began at 866.32m wit													
770.65 794.90 831.24 83 831.24 852.00 860.00 \$3 860.00 862.60 Wedge/ Wedge Cut 862.00 920.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$20.00 \$3 902.00 \$3 902.00 \$3 902.00 \$3													
794,90 831,24 853 831,24 852.00 S1 831,24 852.00 S1 862.00 860.00 S3 860.00 820.00 S3 862.60 902.00 S1 902.00 S1 902.00 EDH 842.00 843.00 Wedge 843.00 8443.0 Wedge Cut/ 844.30 851.65 S1 851.65 864.50 S3 864.50 S66.32 Wedge/ Wedge Cut/ AK09_07W1 The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3 The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to							<del>                                     </del>						
831.24 852.00 S1 852.00 S0.00 S3 852.00 Wedge/Wedge Cut 862.60 902.00 S3 902.00 S1 902.00 S1 902.00 EOH 842.00 Wedge 843.00 Wedge 843.00 Wedge 844.30 Wedge Cut/ 845.65 S1 864.50 S3 864.50 S66.32 Wedge/Wedge Cut/ AK09_07W1 The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3 The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to													
852.00 860.00 S3 860.00 S2.60 Wedge/ Wedge Cut  902.00 920.00 S1 902.00 EOH 842.00 843.00 Wedge Cut/ 844.30 851.65 S1 851.65 864.50 S3 866.32 Wedge/ Wedge Cut/ AK09_07W1 The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3 The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to													
860.00       862.60       Wedge/ Wedge Cut         862.60       902.00       S3         902.00       920.00       EOH         842.00       843.00       Wedge         843.00       844.30       Wedge Cut/         844.30       851.65       S1         851.65       86.50       S3         864.50       866.32       Wedge/ Wedge Cut/ AK09_07W1         The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m       867.22m         866.32       905.00       S3       The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to       Image: Size of the size													
862.60   902.00   S3					_								
920.00													
920.00 B43.00 Wedge 843.00 Wedge Cut/ 843.00 S51.65 S1 851.65 S3 864.50 S3 864.50 Wedge/Wedge Cut/ AK09_07W1 The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m 866.32 905.00 S3 The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to													
842.00 843.00 Wedge 843.00 844.30 Wedge Cut/ 844.30 851.65 S1 851.65 864.50 S3 864.50 866.32 Wedge/ Wedge Cut/ AK09_07W1 The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3 The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to		920.00											
843.00 844.30 Wedge Cut/ 844.30 851.65 S1 851.65 864.50 S3 864.50 866.32 Wedge/ Wedge Cut/ AK09_07W1 The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3 The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to		843.00											
844.30 851.65 S1 851.65 864.50 S3  864.50 866.32 Wedge/ Wedge Cut/ AK09_07W1 The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3 The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to													
851.65 864.50 S3  864.50 866.32 Wedge/ Wedge Cut/ AK09_07W1  The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3  The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to													
864.50 866.32 Wedge/ Wedge Cut/ AK09_07W1  The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3  The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to													
The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3  The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to	001.00	004.50											
The drillers leading block indicates that the steel wedge was set at 864.5m, but measurements back from later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by 867.22m  866.32 905.00 S3  The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to	864 50	866 32	Wedne/ Wedne Cut/ AK09, 07W1										
later blocks suggest that coring began at 866.32m with a thin wedge, expanding to full core width by  867.22m  866.32 905.00 S3  The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to	004,00	000.02	The drillers leading block indicates that the steel wedge was set at 864 5m, but measurements back from					i		Ì			
867.22m  866.32 905.00 \$3  The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to													
866.32 905.00 S3  The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to								-					
The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to													
The wedge hole begins in a wacke dominated regime typified by a fine grain size, granular texture, massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to	866.32	905.00	53										
massive nature with local scattered clasts and pebbly/ gritty lenses, and, a mottled medium greyish to	000.02	300.00		$\vdash$									Ī
vellowish green colour. It is moderately pervaded with ankerite (minor sericite) and veined with 2-3% pale				l									
			yellowish green colour. It is moderately pervaded with ankerite (minor sericite) and veined with 2- 3% pale										Ī

		DESCRIPTION (Hole no AK09-07W1)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		pink/ white ankerite veinlets and streaky stringers. Mineralization consists of trace Py and Cp grains and splashes.						· · ·				
		877.10-893.10 ; S1										
		Gradational contact into a gritty to pebbly wacke/ fine conglomerate zone with clasts to 6cm but generally										
		less then 3cm in length. They tend to be subrounded to subangular, elongate in shape and heterolithic in composition (including jasper). The matrix is pervaded with moderate ankerite and minor sericite while					-			_		
		veining comprises 2-3% pale pink calcite veinlets and stringers with minor ankerite. Sulphides run trace.						_	_	-		
		The state of the s										
		893.10- 902.40 : S3										
		Back into a massive, fine grained wacke with very few clasts (including jasper) over 2cm and local gritty	_			-						
		lenses. The matrix remains pervasively ankeritic and the colour lightens to light yellowish green in sericite						_				
		altered patches up to a metre.										
<u> </u>	-	902,40- 905.00 : S3										
		This is more of a pea gravel to gritty lens with rare clasts to 4cm.							_			
<u> </u>	-	This is more of a pea graver to gritty lens with falle classe to 4cm.			_							
905.00	906.81	Wedge/ LC										
		A wedge was set to deflect the hole down and right (roll angle 120) with reaming past the wedge resulting										
		in the lost core.						_				
906.81	909.00	S1										
		The pea gravel/ gritty conglomerate lens continue s below the wedge. It is ankeritic, weakly veined with 3%										
		creamy white ankerite veinlets and streaky stringers, and poorly mineralized with trace sulphides.										
909 00	929.00	S3								_		
000.00	0.00.00	Back into the fine grained, massive to gritty wacke with local scattered clasts and pebbly/ gritty lenses,										
		and, a mottled medium greyish to yellowish green colour. There is a pronounced foliatio fabric developed									_	
		in the unit along which clasts and veinlets are aligned @ about 50 DTCA.It is moderately pervaded with										
		ankerite (minor sericite) and veined with 2- 3% pale pink/ white ankerite veinlets and streaky stringers.										
		Mineralization consists of trace Py and Cp grains and splashes.										
<u> </u>		928.56- 929.00 : S7										
		A short interval of finely laminated/ foliated (@ 50 DTCA), very fine grained, dark olive grey coloured mudston is interlensed with the wacke here.										
000.00	024.22	Wednett C										
929.00	931.39	Wedge/ LC  A wedge was set to deflect the hole down and right (roll angle 120) with reaming past the wedge resulting					-					
		in the lost core.										
										0.5-	0.00	
931.39	933.20	FAZ/S7 The mudetone as described above (009 FSm) continues but is incremented with soveral fragmental leaking	3 5	tr			49617 49618	931.40 932.25	932.25 933.20	0.85 0.95	0.02	0.02
		The mudstone as described above (928.56m) continues but is iverprinted with several fragmental looking sections over 10- 15cm that appear to represent cataclastic zones (20% of the interval overall) @ 50		tr tr			49619	932.25	933.20	0.80	0.02	0.02
		DTCA.		u			70010	555.20	304.00	0.00	0.02	
933.20	942.60	S3a/ S1a										
$\vdash$		The protolith reverts to a fine grained to gritty wacke that contains gritty to fine pebbly lenses and scattered larger clasts. The entire package is well microfractured/ foliated @ 50 DTCA, with sericite and ankerite										
		fillings imparting a streakines to a background overall mottled medium grevish green to light greenish										
		5. F. S. F. F. S. F.							l			

	DESCRIPTION (Hole no AK09-07W1)								Samples / Assays				
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
			yellow colour. Gritty and pebbly zones occur as lenses with clasts to 7cm in places. It is prevaded with										
			ankerite and sericite and straked with 5-7% creamy white ankerite veinlets and stringers with sericitic				<u> </u>						
			patches. Only trace sulphides were noted.			<u>.</u>	ļ						
	_		040.55, 040.00 . 547	<u> </u>			-				_		
			942.55- 942.60 : FAZ				-						$\overline{}$
			This is a fairly strong chlorite shear cataclastic fault @ 60 DTCA that appears to terminate the deformed wacke although some fracture/ foliation fabric persists for about a metre down hole.										
			wacke although some fracture/ foliation rabbic persists for about a metre down note.	-			+						
942.60	Q.F	57.45	92/ 93	<del>                                     </del>	-					-			
342.00	3,		Within a metre or so of the fault, the foliation fabric disappears and the host becomes massive, fine										
	-		grained, granular textured, and pale creamy yellowishto greenish brown/ orange/ pink coloured, somewhat										
			resembling an arkose. No pebbles, bedding or mudstone lenses were noted. The pinkish tone may result										
			from pervasive weak hematite alteration while yellowish and creamy colours probably reflect ankerite and										
			sericite. It is veined with 4- 6% white ankerite veinlets nad streaky stringers and sulphides run trace.										
953.00	95	54.70	Wedge/ LC										
			A wedge was set to deflect the hole down and right (roll angle 135) with reaming past the wedge resulting						_				
			in the lost core.										
ļ	-		954.70- 957.45 ; \$2/ \$3	├									
			The hole continues in massive arkose/ wacke(?) below the wedge.	_									
957.45	97	77.00	S1										
			Below the massive arkose (wacke?), the hole enters a thick unit of typical Timiskaming conglomerate lesd									_	
			by 5.5m of pebbly wacke. The conglomerate is characterized by: a heterolithic nature including jasper										
			clasts; a clast supported (intact) framework; variable clast sizes from grit size to 22cm with a good reange					1					
			in between; rounded and sperical to oblong shapes; and, a dark greyish to yellowish green wacke matrix.										
			There is a penettrative fracture/ foliation fabric @ 45 DTCA which gradually fades by about 970m										
			corresponding with 12% fractures, veinlets, patches and streaky stringers of white ankerite and quartz		ļ								
			which decrease to 2% below. The package is pervaded by ankerite and mineralized with trace Py with very										
			slight anomalous increases around some of the wider vein zones.		<u> </u>		001/7	40000	004.00	000.00	1.10	0.03	
				15	tr		QCVZ		964.90	966.00 967.00	1.10 1.00	0.03	
			964.90- 968.25 : QCVZ	15	tr		QCVZ		966.00 967.00	968.25	1.25	0.01	0.02
	ļ_		Quartz- ankerite veining increases to 20% @ 45 DTCA as stringers and irregular patches with very minor	15	tr		QCVZ	49022	967.00	900.23	1.25	0.02	0.02
<u> </u>	├		enrichments of fine dusty Py around some vein margins.	<b></b> -	ļ.,		+						
977.00	97	79.20	Wedge/ LC										
			A wedge was set to deflect the hole down and right (roll angle 135) with reaming past the wedge resulting										<u> </u>
			in the lost core.		-			<del> </del>					
979.20	10	10.90	S1									_	
3,0.20	· ·		Back into the polymict conglomerate with a variety of clast sizes including a large 12cm clast of jasper. As										
	T		mentioned, the veining decreases to 2% and mineralization is trace. Below about 987m, the clast sizes										
			decrease and the unit becomes gritty with clasts more commonly of a pea gravel size and few greater then										<b></b>
			4cm. Lenses of massive to gritty wacke are morte abundantand there are intermittent patches of										ļ
			bleachinig (light buff yellowish green sericite/ ankerite) that prefer the wackes. The unit is pervaded with										<b></b>
			ankerite and poorly mineralized with trace sulphides.	L	L								<u> </u>
								-				-	<del>                                     </del>
		-	1010.69- 1010.90 : QVZ					L		L			

		DESCRIPTION (Hole no AK09-07W1)						Sam	ples / A	Ssays	100	
From (m)	To (m	) Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		A massive dry, dull grey- creamy white quartz- ankerite vein @ 20 DTCA ends the conglomerate.										
040.00	1025.0	1 62				-						
010.90	1025.0	Massive to crudely bedded, fine to medium grained, granualr textured, medium greenish to yellow grey										
		wacke containing gritty to fine pebbly zones and minor mudstone units predominates below the quartz										
		vein. It remains pervasively ankeritic with sericititized sections and is weakly veined with 4% white ankerite										
		and quartz veinlets and gashy stringers. Only trace sulphides occur in the wacke with very slight										
		anomalous rims around some structures (see below).										
		1018.82- 1018.95 : FAZ										
		The fault leads with a 1cm seritized, fissile, gouge zone followed by a 5cm sericite shear and finally, a 6cm	6	tr			49623		1018.00		< 0.01	-
		chloritic cataclastic zone, all trending @ approximately 65 DTCA. There are rims of anomalous fine dusty	7	tr	65	FAZ	49624		1019.00		0.01	-
		Py within the zone.	4	tr			49625	1019.00	1020.00	1.00	< 0.01	
		4004.00 4004.07 + 0.0047										
		1024.30- 1024.87 : QCVZ 25% white quartz- carbonate veining @ 65/ 70 DTCA with trace sulphides.			-				_			
		23 % write quartz- carbonate verning @ 607 70 DTCA with trace sulprinces.				-			<del> </del>	-		_
025.00	1026.9	Wedge/ LC										
		A wedge was set to deflect the hole down and right with reaming past the wedge resulting in the lost core.										
						ļ						
026.94	1049.0									_		
		The fine grained, massive, granular textured, light/ medium yellowish grey/ green wacke with local								-		
		mudstone lenses continues below the wedge. It is pervasively ankerite sericite altered with 2% white				<u> </u>			<del> </del>	<del> </del>		lant.
	_	ankerite and pink calcite veinlets and trace sulphides.							-			
		1028.25- 1030.65 : S7	-		-					·		
		A streaked to bedded (@ 50- 60 DTCA), medium dark olive grey to grey coloured with bright lime yellow			i							
		highlights, mudstone lens is intercalated with the wacke. Some sections show evidence of slump folding										
		but most bedding is regular. It is veined with 3% carbonate veinlets and streaky speckles and mineralized										
		with trace fine dusty Py with local slightly anomalous halos around some fractures.										
		1030.65- 1049.00 : S3						<u> </u>		<u> </u>		
		Back to massive, granular textured, fine grained light/ medium yellowiash grey/ green wacke as described					-			<del>                                     </del>		
		above. Veining amounts to 3% white and pink ankerite and calcite fractures and veinlets with some local					_		-	<del>                                     </del>		
	_	veins. Mineralization comprises trace sulphides.								_		
		1039.46-1039.54 : QVZ										
		Ffractured quartz vein with ankerite/ calcite fillings @ 75 DTCA and trace sulphides.										
		1040.78- 1040.80 : FAZ										
		The fault comprises a 1cm mud zone @ 50 DTCA with no significant deformation fabric, alteration, or			-	<u> </u>		_	ļ	+		
		mineralization in the walls.			ļ	-			<del> </del>	+	-	_
		1041.80- 1042.15 : FAZ			<del> </del>	-	-	<del>                                     </del>	-	+	<del>                                     </del>	<del>                                     </del>
		The fault is defined by a couple of fissile fracture zones, minor (1cm) carbonate/ quartz stringers and a			<del> </del>	<del> </del>		<del></del>		+		
<del></del>		trailing 0.5cm mud- shear fault @ 50 DTCA. Sulphides remain trace.		<del>                                     </del>				<del>                                     </del>		<u> </u>		
		training 5.55() that should little 50 b 1 5/1. Outphiloso fermion (1005).										
049.00		ЕОН								L .		
							1			1		

	DESCRIPTION (Hole no AK09-07W1)								Samples / Assays									
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk						
		about 550m.																
												ļ						
<del></del>		<u> </u>					-											
		<del>-</del>																

PROPERTY:	AMALGAMA	TED KIRKLAND		HOLE N	IUMBER AK	(09-07W2		
Province:	Ontario	DATE LOGGED: Mar 4- June 16, 2011	Grid:	8750 E	Method	Depth	Az	Dip
Township	Teck	LOGGED BY: FR Ploeger	+	10170 N	Compass			
Started:	3-Mar-10	DRILLED BY: Cabo Diamond Drilling	UTM:	570863 E	reflex	1041	331.2	-53.5
Completed:	15-Jun-10	UNITS: Metres	NAD 83 53	331377N	- " -	1053	330.3	-53.0
CORE SIZE:	NQ	CORE LOCATION: Upper Canada	ELEV :	312 m		1058	329.5	-53.8
		· · · · · · · · · · · · · · · · · · ·	LENGTH	l: 1883 m		1074	328.9	-53.2
		Location: leased clm 328 (106667)	Depth	Az	Dip	7082	329	-54.0
PURPOSE:		<u> </u>	563	338.3	-72.8	1097	329.8	-53.2
			596	331.4	-71.2	1106	328.7	-54.0
COMMENTS:			629	332.2	-69.4	1143	327.1	-49.9
			650	329.0	-67.8	1152	326	-50.2
			659	330.4	-68.5	1167	326.3	-49.5
			680	332.6	-67.5	1172	325.9	-49.8
			704	331.3	-66.8	1193.5	329.3	-49.2
			710	332.3	-65.1	1202	324.5	-49.8
			737	332.8	-65.5	1217.5	325.6	-48.9
			752	332.8	-64.8	1229	325.5	-49.5
			761	333.2	-65.1	1244	325.1	-49.0
			776	331.8	-64.4	1256	329	-49.3
			785	333.8	-63.5	1281	329.6	-48.1
			809	332.5	-62.9	1311	328.4	-46.5
			800	333.0	-62	1341	325	-44.5
			848	330.4	-56.3	1371	328.2	-44.8
			869	329.7	-56.1	1402	323.7	-44.4
			780	335.3	-64.6	1435	328.5	-44.4
			778	335.3	-64.2	1468	324.7	-44.5
			798	333.0	-62.6	1495		-44.6
			803	333.5	-62.8	1525	326.1	-44.8
			840	334.2	-60.6	1555	325.1	-44.9
			851	332.6	-60.4	1615		-45.0
			864	332.4	-59.5	1675	331.3	-54.3
			872	335.4	-59.3	1705		-45.2
			890	334.2	-57.8	1735	336.4	-45.3
			899	333.4	-58.7	1765	332.8	-45.3
			914	333.9	-57.7	1795		-45.2
			926	333.0	-58	1835		-45.0
			939	332.4	-57.9	1865	334.1	<b>-4</b> 5.2

	<u> </u>		0.40	001.0	500	I		
			948	331.9	-56.9			
			964	331.7	-56			
			974	331.9	-56.4			
			1004	332.3	-55.5			
			1019	329.0	-54.6			
SUMMARY L		AK09-07W2						
From	То	Lithology	From	To	Metres	Au g/t		
0.00	7.30	CAS						
7.30	53.82	S3a						
53.82	55.40	1Sa						
55.40	82.00	S3a/ DZ						
82.00	235.90	S3a						
235.90	237.90	Wedge/ LC						
237.90	262.77	S3						
262.77	380.40	S7/ S3						
380.40	417.55	<b>S3</b>						
417.55	443.25	V4T/ 1S/ S2						
443.25	533.00	S3						
533.00	535.10	Wedge						
535.10	553.45	S3						
553.45	554.55	Wedge Cut- Start of Hole AK10_07W2						
554.55	587.00	S3						
587.00	588.95	Wedge/ LC						
588.95	620.00	S3						
620.00	622.00	Wedge/ LC						
622.00	636.00	S3						
636.00	645.95	S1						
645.95	650.00	S7						
650.00	651.87	Wedge/ LC						
651.87	663.18	S7		_		_		
663.18	680.00	S1						
680.00	681.83	Wedge/ LC						
681.83	692.55	S1						
692.55	704.00	S3/ S1					ļ	
704.00	705.75	Wedge/ LC						
705.75	721.60	S3/ S7						
721.60	728.00	S1						
728.00	729.60	Wedge/ LC					<u> </u>	

_

729.60	752.00	S1				_		
752.00	753.83	Wedge/ LC	_					
753.83	761.95	S1		-				
761.95	771.83	S3	-					
771.83	775.77	S1						
775.77	777.60	Wedge/ LC						
777.60	789.33	S1	_					
789.33	800.00	S3	790.80	793.00	2.20	2.06		
800.00	801.30	Wedge/ LC						
801.30	869.00	S3	839.00	840.50	1.50	0.88		
869.00		EOH						
766.00	768.30	Wedge/ LC - UC10_07W2						
773.30	769.42	Wedge Cut		_			_	
769.42	788.60	S1						
788.60	793.86	S3	790.00	791.90	1.90	2.68		
		incl	790.90	791.90	1.00	4.28		
793.86	795.73	Wedge/ LC						
795.73	864.00	S3						
864.00	865.65	Wedge/ LC						
865.65	874.20	S3						
874.20	889.90	S1	884.00	887.05	3.05	1.35		
889.90	891.50	Wedge/ LC						
891.50	914.25	S1						
914.25	915.29	Wedge/ LC						
915.29	956.86	S3/ S7						
956.86	1005.35	S3/ S2						
1005.35	1010.10	S3					_	
1010.10	1012.63	Wedge/ LC						<u> </u>
1012.63	1043.15	S3				1.		
1043.15	1049.50	S1		<u> </u>				
1049.50	1050.90	Wedge/ LC						
1050.90	1073.50	S1						
1073.50	1075.05	Wedge/ LC				-		
1075.05	1097.60	S3		_		-	<del> </del>	
1097.60	1098.63	Wedge/ LC		_				
1098.63	1142.64	S3					<u> </u>	<del>                                     </del>
1142.64	1145.27	Wedge/ LC						<del>                                     </del>
1145.27	1154.10	S3						
1154.10	1167.39	S1/ V4aggl				<u> </u>		

•

					 1	
1167.39		Wedge/ LC				
1167.85		S3a				
1182.90		S3		_	_	
1200.10		S3a				
1217.56		Wedge/ LC				
1218.80	1244.43	S3				
1244.43	1246.06	Wedge/ LC				
1246.06	1284.40	S3				
1284.40	1314.00	S1				
1314.00	1329.15	S3				
1329.15	1334.90	S7				
1334.90	1349.95	S3/ FAZ				
1349.95	1352.30	FAZ				
1352.30	1360.26	1SMa (alt'd)				
1360.26	1362.37	Wedge/ LC				
1362.37	1376.00	1SMa (alt'd)				
1376.00	1732.90	1SMa		<u> </u>		igsquare
1732.90	1743.10	1Sp				igsquare
1743.10	1767.45	1SMa		_		
1767.45	1785.60	1Sp				
1785.60	1861.25	1SMa				
1861.25	1876.70	S3/ S1				
1876.70	1883.00	S1				
1883.00		EOH				
					 <u> </u>	
				_	 	<del>                                     </del>
20031	20036			25-May-10	 ļ	
49626	49636			1-Apr-10	ļ	
49637	49653			16-Apr-10	↓	
49654	49664			20-May-10	<u> </u>	
49665	49671			17-Jun-10		
49672	49729			9-Jul-10		<u> </u>
49730	49754			21-Jul-10		
49755	49764		10-2160	21-Jul-10		

		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
0.00	7.30	CAS										
7.30		S3a										
53.82	55.40											
55.40		S3a/ DZ									_	
82.00	235.90		<b> </b>									
235.90	262.77	Wedge/ LC	<u> </u>					-				
262.77	380.40		$\vdash$			_						
	417.55		<del>                                     </del>					_				
		V4T/ 1S/ S2	<u> </u>					-			-	
443.25	533.00	S3										
533.00	535.10	Wedge										
	553.45											
553.45	554.55	Wedge Cut- Start of Hole AK10_07W2				_						
		The core is tapered from a thin wedger to full size over this interval, the host being an altered wacke as										
	·	described below.	<del>                                     </del>				<del>                                     </del>		_		-	
FEAFE	587.00	62	_								-	
554.55	567.00	The wacke is characterized by a light greyish to yellowish green colour, fine grain size, granular texture	├									
<u> </u>	·	(including jasper grains), massive nature and local scattered (<1%) mudstone rip up clasts and other felsic				-						
		looking pebbles. A few whispy, limey yellow, very fine grained mudstone seams were also noted. It is		_	_						_	
		pervaded with sericite and ankerite but only lightly veined with 2% creamy white ankerite fractures and										
		veinlets with an average of trace sulphides.										_
		569.00- 569.20 : FAZ										
		Broken fissile core represents a minor fault that appears to cut the core at a low angle.	<del> </del>									
587.00	588.95	Wedge/ LC	<del>                                     </del>									
		The core was reamed past the wedge at this point.			_							
588.95	620.00											
		The sericitized and carbonatized light yellowish grey green wacke continues as described, becoming										
		slightly more gritty and beginning with a weakly chlorite fractured (@ 10- 15 DTCA) and carbonatized		-								
		section over the upper 2m. It remains poorly mineralized with trace sulphides.	$\vdash$				<del>                                     </del>					
		614.10- 619.65 : S1	$\vdash$	-								
<u> </u>		The wacke contains a lens of conglomerate (40- 50% clasts) in which many of the clasts are light yellowish					<del> </del>					$\overline{}$
		green coloured and elongated or in the shape of a cusp (closed horseshoe) although overall it is polymict.										
-	_	Clasts range up to 18cm in length and are generally rounded to subrounded in shape. It remains poorly										
		mineralized with trace sulphides.		-								
620.00	622.00	Wedge/ LC										
		The core was reamed past the wedge at this point.										
622.00	636.00		ļ			ļ	<b> </b>					
		The hole continues through the wacke package as described above, massive, fine grained to gritty,					<del>                                     </del>					
	_	granular textured and medium/ light greyish to yellowish green coloured with a central mudstone lens. The					<del>                                     </del>		-			
		wacke is pervaded with ankerite and sericite, is veined with 2-3% white creamy ankerite fractures and	ļ				<del> </del>					
		veinlets except for a massive 25cm dull white quartz vein at 630.10m (see below). Mineralization amounts	Ц			<u> </u>						

			DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
			to trace.										
-		-	628.65- 632.50 ; S7	<u> </u>									
		$\overline{}$	A light to medium greenish grey to grey, very fine grained, massive mudstone unit is interlensed with the				<del> </del>						
			wacke at this point. The lower contact abuts against a lens of grit while the lower one is flamed(?) into the			-							
			wacke.										
													-
		$\overline{}$	623.00- 630.25 : QCVZ										
		-	Massive, dry dull white, quartz- ankerite vein with contacts @ 85 DTCA.										i
636.00	64!	5.95	S1										
			A serrated, flamey contact leads into a unit of polymict conglomerate in which the clasts range up to 8cm										
			and are clast supported, but, they are all coloured in light shades of yellow to green to grey with no pink/										
	_		porphyritic/ dark green ones. They tend to be rounded to subrounded, ovoid to spherical with an elongation										-
	_	_	plane @ about 30 DTCA. Pervasive ankerite and sericite continue with veining dropping off to									_	
-		$\dashv$	approximately 1%. Sulphides remain trace.										
645.95	650	0.00	S7										
			A serrated contact leads back into a fairly mudstone that is characterized by a very fine grain size, massive										
			nature, and medium/ dark olive greenish grey to slate grey colour. It is pervasively ankeritic and sericitic										
			with <1% veining and trace mineralization.										-
0.50.00	0.54	4 07	W. J. J. J. O						_				
650.00	651		Wedge/ LC The core was reamed past the wedge at this point.										
	$\vdash$	$\neg$	The core was realined past the wedge at this point.										
651.87	663	3.18	S7										
			Below the wedge, the hole continues in the very fine grain size grading to fine grained (wacke), massive,										
			medium/ dark olive greenish grey to slate grey coloured mudstone cut by 1% 1.5- 5cm quartz- ankerite										-
			stringers and veins @ 35 DTCA. Ankerite and sericite continue to pervade the matrix and mineralization					-					
	-		continues to run trace.										
_		-	662.20-663.18 : S7a				-						
			The mudstone becomes foliated/ laminated with limey yellow green alteration/ fracture(?) planes along the										
			core axis through this segment, ending in a possible carbonate fracture fault @ 25 DTCA.										
													-
663.18	680	0.00		<u> </u>			ļ	ļ					
	<u> </u>		The hole again, traverses conglomerate that is polymict, including pink- orange felsic/ alkalic and red				-						
		_	jasper clasts, clast supported with local wacke lenses and matrix, and more alkalic looking (higher proportion of orange clasts) below 679m. As above, sericite and ankerite pervade the matrix, however,	<u> </u>				-					
			streaky white/ dull grey ankerite and quartz- ankerite veinlets and stringers increase to 2- 4%. The sulphide										
			content remains negligible but there appears to be a weak fracture/ foliation fabric developing @ about 20										
			DTCA along which some of the veining tracks.										
				7	tr		0.5: :-	49626	676.00	677.00	1.00	0.01	-
		_	677.24- 677.70 : QCVZ	50	tr	20	QCVZ		677.00 678.00	678.00 679.00	1.00	0.05 0.06	
	_		60% white quartz- ankerite vein material @20/ 25 DTCA mineralized with anomalous streaks of Py.	4	tr		-	49628	0/8,00	018.00	1,00	0.00	<u> </u>
680.00	684	1 83	Wedge/ LC	<del> </del>									
300.00	30		The core was reamed past the wedge at this point.										
681.83	692	2.55	S1										

u 1		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		
From (m)	To (m		Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
		In this section, the conglomerate consists mainly of pale orange toned alkalic clasts to 10cm (no jasper)										
ļ		that are generally subrounded in shape and range from clast supported near the start, to scattered within a							l			
		gritty matrix, by the end. The matrix does not seem to be as granular textured as the previous conglomerate intervals but is rather more ashy looking suggesting that this portion of the unit may be				ļ	ļ					
		derived from trachyte. It is moderately pervaded with ankerite and minor sericite while veining consists of 2										
		4% streaky mosaic textured, carbonate fractures and veinlets. Mineralization is negligible.										
		The state of the s										
692.55	704.00	S3/ S1										
		Subtle change to a more typical gritty pebbly wacke that contains minor conglomerate lenses and										
		concentrations of polymict clasts (including jasper). Total pebble content may average 10- 15% with some										
		clasts to 7cm but most smaller within a fine grained to gritty, granular textured, massive, medium greyish										
		green coloured, wacke matrix. The interval is ankeritic throughout but becomes slightly calcitic near the				ļ						
		end; similarly, the 1- 2% fine carbonate fractures and veinlets are also ankeritic until the end and the	<u> </u>									
		sulphide content remains trace.	-									
		693.40- 697.50 : BBC	-									
		The core is splintered into small pieces and chips at low to moderate angles (30 degrees) with a small mud	-									
		fault @ 10 DTCA at 694.60m (RQD 15).	-	<u> </u>								
		Takin (@ 10 B 1 0/1 at 004.00m (N@D 10).	<del> </del> -	<del> </del>	<del> </del>						_	
704.00	705.75	Wedge/ LC										
		The core was reamed past the wedge at this point.										
705.75	721.60					ļ						
		Immediately below the wedge, there are no pebbles in the wacke until the lower portion of the interval.										
		Overall, it is medium/ dark greyish green coloured, granular textured, fine grained and massive with local	<u> </u>			<u> </u>						
		gritty lenses and banded segments of mudstone. The matrix was found to be calcitic at the start but			<b></b>	-						
		becomes ankeritic at about 714m. There are clusters of pink calcite stringers and veins (8% over3m)										
		around 709m, otherwise, veining runs at 1% and mineralization is negligible.	_									
721.60	728 00	<u></u>	$\vdash$			<del> </del>	<del>   </del>					
721.00	720.00	Into a polymict conglomerate to pebbly wacke with wide sections of medium grey, granular textured, gritty										
		wacke. The clasts are generally ovoid/ elongated to 7cm but usually less then 3cm in length (including										
		jasper). The host is weakly to non ankeritic and veined with 2% irregular veinlets and streaks of ankerite										
		and calcite. Only trace sulphides were noted.										
728.00	729.60	Wedge/ LC		ļ								
		The core was reamed past the wedge at this point.										
			_		-	<del>                                     </del>				+		
729.60	752.00		$\vdash$	<del> -</del>	-	-	-		-	+		
		The conglomerate begins as described at 721.60m but soon grades more typical, heterolithic (including jasper), clast supported type in which the clasts range up to 8cm, are rounded, and ovoid to elongated in	$\vdash$			<del>                                     </del>			<del>                                     </del>	+		
		Jasper), clast supported type in which the clasts range up to 8cm, are rounded, and ovoid to elongated in shape. The matrix consists of fine grained to gritty, dark greyish green wacke but generally does not form	$\vdash$				<del>                                     </del>					
		thick lenses as before. The host remains weakly to non ankeritic and veined with 2- 3% white ankerite and								<u> </u>		
		calcite fractures, veinlets and irregular streaks but is only weakly mineralized with trace fine Py and Cp.		1								
	-	Salesto Hastards, Follinots and irregular streams but to only meanly ministrated with trace into 1 y and op.		1					1			
		-										
		732.17- 732.25 : FAZ										
		the FAZ is defined by several flakey gouge slips and quartz- ankerite streaks @ 25 DTCA bearing only										
		trace sulphides. The walls are fractured for 20- 50cm up and down hole.										
				L								

	to the second	DESCRIPTION (Hole no AK09-07W2)						Samı	oles / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
752.00	753.83	Wedge/ LC			·							
		The core was reamed past the wedge at this point.										
752.02	761.95	C4					_					
755.65	761.55	The conglomerate continues as described at 729.60m but becomes weakly fractured with a fracture/								_		
		foliation fabric developed @ approximately 40 DTCA around a sericite altered (weak fault) zone (see										
		below). The matrix is weakly pervaded with ankerite but 4% fractures, veinlets and stringers are mostly										
		calcitic. Mineralization consists of trace Py.					40000	758.70	759.75	1.05	< 0.01	< 0.01
	-	759.75- 760.40 : FAZ	3 8	tr tr	40	FAZ	49629 49630	759.75	760.40	0.65	0.02	- 0.01
-	-	This is a zone of weak sericite slips and alteration @ 40+/- DTCA with only trace sulphides.	2	tr	40_	174	49631	760.40	761.30	0.90	0.01	-
		This to a zone of mount only and another the first only those outprinted.										
761.95	771.83											
		Back into a gritty to fine grained, medium grey coloured, granular textured (including jasper), massive				ļ						$\vdash$
		wacke that includes a few (0.5%) scattered clasts to 4cm. The matrix is very weakly pervaded with ankerite, veined with 5% gashy white/ pale pink calcite and ankerite stringers to 1.5cm, and, mineralized										
		with trace sulphides.										
		militade submees.										
771.83	775.77	\$1								_		
		Transition back into a fine gritty to pea gravel type polymict conglomerate in which the clasts tend to be										<del>   </del>
		less then 1.5cm in size, subrounded and ovoid in shape, and lacking any pink/ orange felsitic or syenitic										<del></del>
		pebbles, although jasper was noted. The matrix comprises medium greenish grey wacke which is weakly ankeritic and poorly veined with 1-2% fine calcite fractures and wormy veinlets. Sulphides run trace.										
		amende and poonly verified with 1 270 line colone hactares and wormly verified. Calphaes fair trade.										
												I
775.77	777.60	Wedge/ LC								_		$\longmapsto$
		The core was reamed past the wedge at this point.	-									
777 60	789.33	<u></u>	<del>                                     </del>									
1111.00	100.00	Fine pea gravel/ gritty conglomerate as described above the wedge at 771.83m. These lenses are										
		interdigitated with lenses of massive fine to medium grained gritty wacke. All is weakly pervaded with										
		ankerite and minor sericite and veined with 1- 2% white carbonate fractures and veinlets.		-		_	ļ					<del></del>
		789.18- 789.33 : QCVZ										
		The pea conglomerate terminates with a 15cm patchy quartz- carbonate vein zone @ 20/ 50 DTCA.		-								
		The pod oor ground at the state of the state										
789.33	800.00	S3										
		Below the QCVZ, the hole traverses another section of light/ medium yellowish green (sericitized),			_							
		massive, granular textured, fine grained to gritty wacke that includes lenses of massive very fine grained mudstone @ 40/ 50 DTCA. It is well sericitized and ankeritized with local concentrations of ankerite				-			-			
<b></b>	<del></del>	veinlets and stringers that average 3% overall. The matrix generally contains only trace sulphides but				_						
		some of the veined areas are mineralized with Py, Cp and Ga (galena- possibly some moly). These are										
		detailed separately below.										ļ
				ļ		-	10000	700.00	700.00	4.00	0.04	<u> </u>
		790.80-791.80 : QCVZ	2 8	tr			49632 49633	788.00 789.00	789.00 790.00	1.00	0.04	<del>  -</del>
	<del>  -</del>	The interval contains approximately 15% white ankerite (- quartz) stringers @ 35- 45 DTCA, mainly near the contacts, that are crackle fractured and lined with chlorite. Mixed (streaked and disseminated) with the		tr	-		49634	790.00	790.80	0.80	0.06	1
		chlorite are various proportions of Py, Cp and a silver metallic (black streak), probably galena with possibly		0.5	40	QCVZ	49635	790.80	791.80	1.00	2.71	2.85
		some moly and graphite. The sulphide content averages about 0.5% but increases to 10% over 15- 20cm	2	tr			49636	791.80	793.00	1.20	1.51	1.89
		in the vein zones,	2	tr		infill	20031	793.00	794.00	1.00	0.03	

		DESCRIPTION (Hole no AK09-07W2)						Samı	oles / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
			4	tr		infill	20032	794.00	795.00	1.00	0.01	-
800.00	801.30	Wedge/ LC	<u> </u>									
		The core was reamed past the wedge at this point.	<u> </u>									
			<u> </u>									
801.30	869.00											
		Below the wedge, the hole continues in a very fine grained, streaked to contorted to patchy, limey yellow										
		green mudstone for about 1.3m before traversing back into the light yellowish grey green, massive, granular textured (including jasper), fine grained wacke that contains a few scattered lenses of mudstone										
		and is pervaded with ankerite and sericite. Veining is confined to a zone near the start (see below)										$\overline{}$
		otherwisde it amounts to <1%. Mineralization consists of trace sulphides.										
		Otherwiode it amounts to <170. Wineralization consists of trace surprises.										
		802.55- 803.55 :: FAZ/ SZ	10	tr			49637	801.30	802.55	1.25	0.02	-
		The interval is moderately fractured around a series of sericite/ carbonate/ cataclastic slips over 15cm @	35	tr	40	FAZ	49638	802.55	803.55	1.00	0.09	
		40 DTCA at 803,00m and veined with 35% streaky carbonate- quartz streaks/ stringers and patches. The		tr			49639	803.55	804.60	1.05	0.11	-
		structure at the centre of the zone is followed by a 25cm patch of creamy white silicification but much of the										
		veining is within a metre or so outside of the interval. Sulphides both in and out of the zone are minimal.										
		836.00- 837.55 : S1	1	tr		infill	20033	837.00	838.00	1.00	0.05	-
		The wacke is interrupted by a lens of polymict conglomerate.	3	tr		infill	20034	838.00	839.00	1.00	0.06	-
			4	tr			49640	839.00	839.80	0.80	0.74	0.62
		839.90- 839.95 :Py	20	1	30	ру	49641	839.80	840.50	0.70	1.03	0.93
		A 0.5- 1cm lens of semi massive, disseminated Py grains in carbonate cuts the core @ 30 DTCA.	12	tr			49642	840.50	841.40	0.90	0.08	0.09
		840.65- 847.00 : S1										
		A second thicker lens of conglomerate is interbedded with the wacke at this point. There are several low										
		angle (about 10- 15 DTCA) slips with gashy calcite veining in the walls cutting the unit as well.	-									
		047 00 000 00 . COLVAT	-									
		847.00- 869.00 : S3/ V4T  Below the conglomerate, the wacke becomes medium/ dark green to yellowish green coloured, fine										
		grained, more ashy then granular textured, and massive with local gradations into grit. It is weakly										
		magnetic and weakly pervaded with ankerite but veined with 4% pink calcite veinlets and stringers to										
		2.5cm. The sulphide content remains trace.										
		2.56th. The sulphide content remains trace.										
869.00	<del> </del>	EOH										
000.00		Hole was stopped due to excessive flattening and a wedge set at 771m.										
												1
766.00	768.30	Wedge/ LC										
1,00.00	7 00.00	A steel wedge was set at this point to deflect the hole to the east										
	<del>                                     </del>	restaurance of the political annual restaurance of the same										
773.30	769.42	Wedge Cut										
		The wedge cut tapers from a thin sliver to full width in a gritty wacke/ fine conglomerate.										
												$\longrightarrow$
769.42	788.60	S1										
		The hole is recollared in the fine conglomerate (pea gravel) previously described at 771.83m as fine gritty										$\vdash$
		to pea gravel type polymict conglomerate in which the clasts tend to be less then 1.5cm in size,								-		
		subrounded and ovoid in shape, and lacking any pink/ orange felsitic or syenitic pebbles, although jasper										igwdown
		was noted. The matrix comprises medium greenish grey wacke which is weakly ankeritic and poorly			ļ							$\vdash$
		veined with 1- 2% fine calcite fractures and wormy veinlets. Sulphides run trace. Towards the lower half of	<u> </u>	<u> </u>	<u> </u>					-		
		the interval, there are several thick lenses of wacke interbedded with the pea gravel.	L			L _						

		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
		776.90- 777.12 : QCVZ	2	tr			49643	776.00	776,80	0.80	< 0.01	
		Streaky dull grey, cherty looking carbonate- quartz vein zone @ 25/ 30 DTCA well mineralized with 8%	20	1	30	QCVZ	49644	776.80	777.40	0.60	0.12	-
		clumps/ streaks of disseminated Py and Ga (galena).	4	tr	30	QCVZ	49645	777.40	778.50	1.10	0.06	
		and the street of about micros if y and say garding.		-		<del>                                     </del>	100.10	117110	770.00	1.10		
788.60	793.86	S3								_		_
		At this point there is a general change to a relatively massive, fine grained, granular textured, medium										
		yellowish green coloured wacke unit that contains irregular lenses of grit/ fine conglomerate as well as										
		mudstone. Core angles of the mudstone seem to trend around 40- 45 DTCA although some slump (soft										
		sediment deformation) textures are evident. The wacke is pervaded with sericite and ankerite, and is										
		veined with 5- 7% fine whispy, dull white ankerite (+/- quartz/ sericite/ chlorite) fractures, veinlets and										
		streaks that are sometimes accompanied by Py and Ga (see below) although the matrix generally carries										
		only trace.	4	tr		infill	20035	788.00	789.00	1.00	0.34	0.26
			10	tr		infill	20036	789.00	790.00	1.00	0.03	
		791.00- 791.85 : QCVZ	3	tr			49646	790.00	790.90	0.90	0.90	0.95
		Zone of 10% ankerite- quartz veinlets and streaks @ 35/ 45 DTCA which are mineralized with 3% blebs,	10	3	40	QCVZ	49647	790.90	791.90	1.00	4.28	4.70
		streaks, disseminations of Py and Ga.	1	tr _	_		49648	791.90	793.00	1.10	0.07	-
			3	tr			49649	793.00	793.85	0.85	0.12	-
793.86	795.73	Wedge/ LC		_								
		The core was reamed past the wedge at this point. The drillers also appear to have counted the rods and				1						
		adjusted the meterage downwards by about 3m.										
						ŀ	_					
795.73	864.00		_	-								
		Massive wacke with mudstone and gritty/ fine conglomerate interbeds as described above at 788.60m,										
		namely, massive, fine grained, granular textured (including jasper), and medium yellowish green coloured. The yellow tone is due to pervasive weak to moderate sericite and ankerite alteration while veining		<del></del>		<del> </del>						
		consists of 1- 2% creamy white ankerite (- quartz) veinlets and stringers outside of a weak deformation					<del>                                      </del>					
		zone (see below). Mineralization runs trace.	-									
		ZOTIE (See Delow). Wilheralization funs trace.	12	tr	50	DZ	49650	801.80	803.00	1.20	0.02	-
		801.80- 806.30 : DZ	12	tr	50	DZ	49651	803.00	804.00	1.00	0.05	0.07
		The interval begins weakly foliated @ 45/ 50 DTCA to 803.60m and fractured and veined below. Overall, it		tr	50	DZ	49652	804.00	805.00	1.00	0.04	-
		is veined with 15- 20% streaky to irregular dull white/ grey ankerite/ guartz/ chlorite/ sericite fractures,		tr	50	DZ	49653	805.00	806.30	1.30	0.04	,
		veinlets, streaks and stringers and mineralized with trace Py.										
	_											
		834,00- 851.00 : S3a/ DZ										
		The wacke becomes fractured to weakly foliated @ 35- 45 DTCA as well as moderately sericitized (limey										
		yellow green altered). Otherwise, it remains fine grained to gritty with local clasts and fine (pea gravel type)										
		conglomerate lenses in which many of the clasts are elongated in the plane of the fabric. The deformation										
		decreases down hole and veining changes from quartz- ankerite to pink calcite. Sulphides continue to run										
_		at trace.								ļ		
										1		
		851.00- 864.00 : S3					<u> </u>					
		Below this point, the wacke becomes dark/ medium greyish green coloured, massive, granular textured				<b>_</b>	<del> </del>		-			
	ļ	(no jasper), and fine grained with minor gritty lenses an occasional scattered clasts. Furthermore, the					ļ		-			
		matrix becomes calcitic, more chloritic (none/ very little sericite), weakly magnetic (tuffaceous?), and	1			<b></b>	ļ. <u> </u>			-		
				-			-			-		
_		veined with 3% fine calcite veinlets and stringers (to 2cm). Mineralization remains insignificant.		ļ			-					
				<b>_</b>		<del> </del>			<del>-</del>	-		<del></del>
864.00	865.65	Wedge/ LC		-			<del>                                     </del>			-		
		The core was reamed past the wedge at this point.						L	L		l	l

		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		457-1-
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
OCE CE	874.20	C2										
665.65	074.20	The wacke continues massive, ashy to granular textured, fine grained to gritty with local scattered clasts,	-									
		and dark greyish green coloured although a slight yellowish tone is noticeable towards the end. There is a	<b>—</b>	1								
		corresponding gradual change from a calcitic to ankeritic matrix down hole but the 2-3% pink carbonate							_			
		veinlets and stringers remain calcitic. Mineralization continues to run trace.								_		
	_	<u>-</u>							_			
874.20	889.90	S1										
		A sharp contact on a 1.5cm calcite stringer @ 30 DTCA marks a change to a gritty, fine pebbly, heterolithic										
		conglomerate (including jasper) in which the clasts are elongate/ ovoid, rounded to subrounded, and up to										
		10cm in length although most tend to be <4cm. The clast alignment/ bedding trends @ about 30 DTCA										
		which mimics a weak foliation fabric which is highlighted by sericitic fractures/ shear planes. The matrix is										
		weakly ankeritic (and sericitic) while veining amounts to 1% fine ankerite and calcite fractures and streaks.									_	
		The sulphide content averages trace.		<u> </u>								
		000 05 007 05 00 17 (D.)	3	tr			49654	884.00	885.00	1.00	1.58	1.71
		886.05-887.05 : QCVZ (Py)	2	tr	-10	0017	49655	885.00	886.05	1.05	0.75 1.76	4 24
		Most of the veining comprises segmented patches of dull white ankerite- quartz vein material with scattered streaks, veinlets and stringers of quartz (35% overall) oriented @ 30-40 DTCA, parallel with the	35 2	2 tr	40	QCVZ	49656 49657	886.05 887.05	887.05 888.00	1.00 0.95	0.04	1.34
		local foliation and fracture fabrics. The zone is mineralized with fine Py trains and grains (some Cp)	3	tr			49658	888.00	889.00	1.00	0.04	
		averaging 2% through the interval. The zone ends on a fissile 05cm mud slip/ fault @ 40 DTCA.	3_	11		<del></del>	49000	000.00	009.00	1.00	0.02	
		averaging 270 through the interval. The 2016 ends on a hissile.cool in that slip hadring 40 b 107.										
889.90	891.50	Wedge/ LC								_		
		The core was reamed past the wedge at this point, however, the wedge was not pushed to the bottom of										
		the hole and drilled beside the wedge cut leaving a thin sliver of core over 30cm.										
891.50	914.25		-			ļ						
		The hole continues in the fine conglomerate/ coarse grit as described above at 874.20m, as a fine pebbly,				-						
		heterolithic conglomerate (including jasper) in which the clasts are elongate/ ovoid, rounded to subrounded, and up to 10cm in length although most tend to be <4cm. The direction of elongation/	<del></del>	$\vdash$								
		imbrication is roughly @ 25- 30 DTCA which parallels a weak foliation fabric. The bost is weakly pervaded				<b></b>						
		with ankerite and sericite while secondary veining comprises 2- 4% white ankerite and calcite (- quartz)	-									
		veinlets, streaks and stringers. Sulphides continue to run trace. The lower 40cm consist of fine/ very fine	-									
		grained mudstone/ wacke.										
			_									
		903.13- 903.15 : FAZ										
		1cm shear/ gouge fault @ 40 DTCA										
	04=00											
914.25	915.29	Wedge/ LC		ļ								
		The core was reamed past the wedge at this point.	-									
915.29	956.86	S3/ S7	-			<del>                                     </del>						
313.23	330.00	The fine/ very fine wacke that ended the conglomerate above the wedge, continues through this interval. It										
		comprises fairly thick lenses of massive, fine grained, granular textured, medium/ light yellowish to greyish				<u> </u>						
		green wacke with streaks, lenses, bands of very fine grained, dull medium yellowish grey to limey yellow										
		green mudstone @ about 45 DTCA and occasional gritty lenses. The matrix is pervaded with ankerite and										
		sericite with 2-3% creamy white veinlets, stringers and streaks of ankerite. It is poorly mineralized with										
		trace Py.										
	_	951.87- 956.86 : S1/ S3										
$ldsymbol{\sqcup}$		This is a gritty interval within the fine wacke package that is characterized by a variety of lithological types										

n.m.ore			DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		
From (m)	Тс	o (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
			although most clasts are dark greenish grey coloured within a light limey yellow green (sericitized) finer grained matrix (in which jasper grains were noted. Clasts tend to be less then 1.5cm in size and are generally subrounded and equant/ stubby in shape.										
956.86	10		S3/ S2  Beyond this point, the host wacke becomes creamy beigy pink coloured while remaining massive, fine grained with local gritty and mudstone lenses, granular textured, sericitized, pervaded with ankerite, and, weakly veined with 2- 4% white ankerite veinlets and stringers. In places, it grades into light/ medium shades of beigey/ pinkish green grey which may reflect a change to a less altered state (less hematized) or a primary change to more normal wacke composition. It is non magnetic and poorly mineralized with trace to slightly anomalous very fine dusty Py.										
			997.30- 997.70 : QVZ  Zone of 35% quartz (- carbonate) veining @ 45 DTCA with local internal chlorite fractures @ 35/ 55 DTCA.  The walls are well sericitized but 0.5- 1% fine splashes and grains of Py and Cp are confined mainly to the vein material.	2 35 4	tr 0.5 tr	45	QCVZ	49659 49660 49661	996.30 997.30 997.80	997.30 997.80 998.70	1.00 0.50 0.90	0.01 0.02 0.02	0.02
1005.35	10		Below this footage, the wacke becomes more typical, medium/ dark greyish green coloured, massive, granular textured (with jasper grains and pebbles), and fine grained with local gritty and conglomerate/pebbly sections, as well as, local very fine grained mudstone lenses. The conglomerate zones, which are heterolithic and range up to 2m in width, contain rounded, spherical to lensoid shaped, clasts to 8cm within a clast supported framework. The matrix is weakly ankeritic to non reactive although the 3% white to pale pink veinlets and stringers (to 1cm) are calcitic. The sulphide content averages trace Py grains and splashes of Cp.									-	
1010.10	10		Wedge/ LC The core was reamed past the wedge at this point.										
1012.63	10		S3  Back into the massive wacke with conglomerate lenses as described at 1005.32m.										
1043.15	10		S1  At about this point, conglomerate begins to dominate over wacke with the fine grained to gritty, dark greyish green wacke forming the matrix and lenses. Overall, the clast supported conglomerate is heterolithic with clasts being rounded and spherical to ovoid in shape, and, up to 9cm in size. It is weakly veined with 1- 2% white and pink calcite veinlets, streaks and stringers with a very weakly ankeritic matrix that becomes weakly calcitic around 1049m, the unit is poorly mineralized with trace Py and rare splashes of Cp in some veining.										
			1049.50- 1049.67 : QCVZ Pale pink calcite- quartz (breccia) vein zone @ 50/ 65 DTCA with no significant alteration of the walls and only minor (trace) overall mineralization comprising a few splashes of Cp.										
40.46.76			NOTE: at block 1050m, the drillers crossed out the footage and marked a "correction" to 1047m although there was no footage error noted in boxes.										
1049.50	10		Wedge/ LC The core was reamed past the wedge at this point.	_									

		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dìp	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
		NOTE: at block 1052m below the rods, the drillers indicated that they recounted the rods and have adjusted the footage accordingly. Therefore, the adjusted footage is being used in the logging.			_							
1050.90	1073.50											
	_	The polymict conglomerate continues below the wedge but the overall average clast size decreases to less										
		then 3cm with local larger clasts to 6cm and much of the unit resembles pea gravel or is gritty textured.										
<u> </u>		Clasts tend to be rounded and ovoid to spherical with typical dark greyish green, fine grained to gritty,										
		granular textured wacke matrix and lenses. The matrix alternates back and forth between weakly										
		pervasive ankerite and calcite in the matrix and the 3-5% carbonate veinlets and stringers are similarly		<u> </u>				<del></del> _				
	_	mixed and include some quartz. Some of the ankeritic sections occur in conjunction with sericte altered										
<u> </u>		zones as at 1051.50 and 1069.70m but there are no anomalous mineralized sections and the sulphide content averages trace overall.				-						
		content averages trace overail.	<u> </u>								_	
		1068.60- 1070.00 : CARB/ QCVZ	7	tr			49662	1068 00	1068.90	0.90	< 0.01	
	_	A core of swirly and cataclastically broken quartz- carbonate veining (1068.90-1069.40m) @ 25 DTCA is		tr	25	QCVZ	49663		1069.40	0.50	< 0.01	
		rimmed by pale yellowish/ greenish buff carbonate- sericite alteration. No significant sulphides were noted.	7	tr	20	QUVZ	49664		1070.00	0.60	< 0.01	
		grands and an annual state of the state of t	<u> </u>	, ,			10001	1000,10	1070.00	0.00	0.01	
1073.50	1075.05	Wedge/ LC		1								
	_	The core was reamed past the wedge at this point.										
4077.05	4007.00		<u> </u>				_					
10/5.05	1097.60		<u> </u>									
		There is about 1m of grit immediately below the wedge that leads into a gritty to pebbly wacke composed of massive lenses of fine grained, granular textured, medium/ dark yellowish grey green wacke with gritty				_					_	
		zones and scattered pebbles, grading into heterolithic, pebble rich lenses in which clasts range up to 3cm	⊢—								_	
		but most being less then 1cm in length. The matrix is weakly pervaded with ankerite and sericite while										
		veining amounts to 1- 2% pale pink/ white ankerite veinlets and streaky stringers. The host is poorly										
		mineralized with trace sulphides. A few scattered narrow mudstone lenses (bedding @ 55/ 70 DTCA)							_			
		were also noted.					_					
											_	
1097.60	1098.63	Wedge/ LC										
		The core was reamed past the wedge at this point.						99-22-11	A. C.	47.600		
1098.63	1142.64		ļ <u>.</u>			<u> </u>						
		The fine grained to gritty, granular textured, massive, light yellowish grey green coloured, ankeritic, mildly	L								_	
		veined (1%), poorly mineralized (trace) wacke continues below the wedge.	<u> </u>									
		4400 05 4400 45 · C4	<del>                                     </del>				_					
		1122.95- 1128.45 : S1 The wacke turns gritty/ pebbly grading into local polymict (including jasper) conglomerate lenses in which				-						
		the clasts are subrounded to rounded, ovoid in shape, and range up to 7cm in size.				<del>                                     </del>						
		the clasts are subfounded to founded, ovoid in snape, and range up to 7 cm in size.				$\vdash$						
_		1138.70- 1138.74 : FAZ	l									
		Small pile of chips and gouge indicates a minor late FAZ, possibly @ 65 DTCA										
1142.64	1145.27	Wedge/ LC										
		The core was reamed past the wedge at this point.										
1145.27	1154.10											
		The wacke continues as described but is less altered as indicated by the medium/ dark greyish green										
L		colour and the lack of significant sericite in the matrix. It remains weakly pervaded with ankerite, lightly										

		DESCRIPTION (Hole no AK09-07W2)					T-2	Saill	oles / A	ssays	<del></del>	
From (m)	To (m)	·	Q° (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	A Ch
		veined with 1% white/ pink calcite and ankerite fractures, veinlets and streaks, and, poorly mineralized with trace sulphides.										
		1152.55- 1153.70 : S3a			_							$\vdash$
		The wacke through this interval becomes creamy greyish beige altered ending with some gashy dull white quartz- carbonate streaks @ 25 DTCA.										
1454.40	4407.20	S1/ V4aggl					ļ					-
1154.10	1167.39	The hole grades into a fragmental in which most of the clasts are subrounded and ovoid shaped, ranging up to at least 12cm and consisting mainly of alkalic compositions as suggested by their colours- creamy pale to medium pinks, beiges, and oranges. Clast margins tend to be somewhat diffuse/ hazy. The host is moderately well pervaded with ankerite, veined with 1- 3% ankerite fractures and veinlets along with ankerite/ calcite streaks and gashy stringers while sulphides average trace.										
		4400 45 4407 00 + 04-400-					<u> </u>					-
		1162.45- 1167.39 : S1a/ S3a The proportion of wacke (tuff?) lenses not only increases through the lower section of the interval, but also becomes more pale brownish to pinkish altered through probable pervasive weak hematite in the system as well as the ankerite alteration.										
167.39	1167.85	Wedge/ LC										
		The core was reamed past the wedge at this point. The drillers may have mislabeled their footage since there appears to have been only 0.5m reamed.										
	1182.90											<u> </u>
		Approximately 0.6m of fine gritty fragmental continues below the wedge before grading into fairly massive fine grained, to gritty, to very fine grained, medium/ light yellowish to brownish grey green streaked to patchy wacke. The wacke may be partially tuffaceous in origin because it lacks the jasper grains of the true sediment. The colours indicate that it has been weakly pervaded in part with sericite and hematite while staining reveals that it is moderately pervaded with ankerite. In places, there is a weak foliation/ fracture pattern developed @ about 45 DTCA. Veining and sulphides are minimal at 1% and trace, respectively.										
		4404 45 4404 05 × 547		ļ			_			-		
		1181.15- 1181.35 : FAZ  2mm mud slip/ fault @ 15 DTCA with weak cataclastic fracturing in the wall (trace sulphides).										
		1181.61- 1182.00 : LC/ Ground										
		The end of the core is rounded and measurements indicate that approximately 0.4m of core was lost here.							_			$\vdash$
			10	tr			49665	1180.75	1181.60	0.85	< 0.01	$\vdash$
		1182.76- 1182.90 : FAZ	,,,				LC		1182.00	0.40		
		Possibly a very strong healed mylonite fault zone @ 40 DTCA comprising a leading 4cm altered, foliated	12	tr			49666		1182.50	0.50	< 0.01	_
		zone, a 5cm sheared chloritic mylonite zone and a trailing 1cm pink calcite stringer. The alteration/ sericitization and weak foliation/ fracturing end abruptly at this structure.	12 4	tr tr	40	FAZ	49667 49668	1182.50 1182.90		0.40 1.10	0.01 < 0.01	_
182 90	1200.10	<u></u>		1			-					$\vdash$
	.200.10	As mentioned above, there is an abrupt change to a fresh looking, dark green coloured, massive, granular textured, fine (to very fine) grained, undeformed wacke below the FAZ. Not only does the colour and texture change immediately below the structure, but the pervasive ankerite is replaced by calcite and										
		veining comprises 1% pale pink calcite veinlets and stringers. It remains unmineralized. Over the lower 3m, the host becomes increasingly more altered and the matrix more weakly ankeritic as well as calcitic.										-

. .

		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / As	says		
From (m)	To (r	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
1200.10	1217.5	6 S3a						_				
		The wacke continues but has become well altered to a light/ medium greyish brown to brownish green										
		oxedge colour while remaining fine grained, granular textured and massive. Scattered red jasper grains were noted		1								
		in the matrix which is pervaded with ankerite. Veining consists of 1- 2% white ankerite and calcite fractures										<u> </u>
		and veinlets while mineralization ranges from trace to very slightly anomalous fine disseminated Py grains.										-
		The upper contact coincides with a gashy white carbonate stringer @ 55 DTCA.										
		1212.00- 1216.45 : S1										
	_	At this point, the wacke gradually becomes pebbly and grades into a gritty lens containing scattered										
	_	pebbles from 1213.40- 1215.50m with the lower section carrying several 0.35cm conglomerate lenses.										
		pebbles from 1210.40 1210.00ff with the lower section carrying several occordinate length from the lower section.										
		1215.50- 1215.55 : FAZ										
		A 0.4-1.2cm wedge of chlorite lined ankerite forms a fault/ vein zone @ 55 DTCA. A halo of fine Py was										
		also noted in the walls of the structure.										
1217.56	1218.8	0 Wedge/ LC										<del></del>
_		The core was reamed past the wedge at this point.										
1218.80	1244	3 83									_	
12 10.00	1244	The wacke begins weakly altered below the wedge as indicated by the light/ medium pinkish grey green										
		colour. It gradually becomes less altered to dark/ medium yellowish green but remains fine (to very fine		_								
		grained) and granular textured. The matrix is mildly pervaded with ankerite but veining consists of 3-5%										
		veinlets and stringers of white ankerite and pink calcite. Sulphides remain minimal at trace.										
	ļ											
		1219.45- 1219.57 : QCVZ  Massive 7cm pink and white quartz-calcite vein @ 35 1DTCA. The walls are fractured (chlorite/ carbonate)	$\vdash$									
		and altered (pinkish/ brownish) for 1m up and 0.5m down hole but are not mineralized.										
	<u> </u>	and affered (printish brownish) for thirdp and otom fore but are instrumeduness.										
		1242.13- 1243.37 : S3a										
		The wacke within this interval is altered to a creamy greyish pink colour, possibly through mild										
		hematization.										<del></del>
			<u> </u>		<u> </u>	ļ	ļ. ——					-
1244.43	1246.0	6 Wedge/ LC										<del></del>
		The core was reamed past the wedge at this point.					_					
1246.06	1284.4	0 S3										
		The wacke continues as described, dark/ medium yellowish green but remains fine (to very fine grained)										——
		and granular textured. Veining consists of 6% mixed pink calcite and white ankerite veinlets and stringers	<u> </u>		-	-			-			<del></del>
		while the matrix is ankeritic and unmineralized.				-					<u> </u>	
		1259.10-1259.23 : QCVZ	5	tr	<del> </del>		49669	1258:00	1259.00	1.00	0.01	<b>—</b> -
		Zone of crackle fractured pink calcite and dull pinkish grey quartz @ 40 DTCA mineralized with 0.5% fine		tr	40	QCVZ			1259.50	0.50	0.01	
		Py along fractures. Alteration and mineralization does not extend into the walls for any distance.	4	tr			49671		1260.50	1.00	0.01	-
									-			<del> </del>
		1261.95- 1262.15 : FAZ			-	<del>                                     </del>			<del> </del>			<del> </del>
		The core is broken into small chips along a weak late fault with minor gouge @ 35? DTCA.	<u> </u>		<u></u>		L					

		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
		1275.00- 1284.40 : S3a						_				
		The wacke, again, becomes grungy light to medium greyish pink altered through this section due to										
		hematization(?) possibly related to a couple of 2cm wide shear zones at 1277.90/ 1280.91m @ 40/ 40 DTCA. The interval becomes weakly sericitized over the lower 0.5m.										
1284.40	1314.00	S1										
		The interval leads with a 1.5m gritty lens that grades into a unit of heterolithic, clast supported conglomerate with a dark greyish green coloured, fine grained to gritty wacke matrix and lenses. Clasts tend to be rounded to subrounded and ovoid in shape, the elongation due partially to a persistent fracture/foliation fabric @ about 40 DTCA. This is enhanced by 2-3% fine, white to pale pink, fractures, veinlets and stringers with a pervasive weak ankeritized matrix. No significant mineralization was noted.										
		4244 00, 4242 4E + VII-I		ļ								
		1311.30- 1313.15 : V4xl  This appears to represent a lens of massive, crystal (phenocrystic) tuff or sediment which contains 10%, white, 2-3mm, subhedral/anhedral feldspar phenocrysts.								-		
4244.00	4220.45											
1314.00	1329.15	Back into a fine grained, massive, granular textured (with jasper) medium greyish/ yellowish green		-								
		coloured wacke that contains <1% scattered clasts and local (5%) very fine grained mudstone lenses @						_				
		50 DTCA. Although the matrix is weakly pervaded with ankerite and sericite, the veining consists of 1- 2%										
	_	fine white ankerite and pink calcite fractures and veinlets with the odd stringer. Sulphides generally run										
		trace.					_					
		1327.50- 1327.51 ; FAZ										
		0.3cm mud seam forms the fault @ 50 DTCA.	-									
		S. SOIN THAT SOME THE TABLE OF STATE										
1329.15	1334.90	S7										
		Gradation into a massive to weakly bedded (fractured/ foliated @ 45- 50 DTCA), mottled light/ medium										
		yellowish green mudstone. The matrix remains pervaded with ankerite and minor sericite while veining comprises 2% fine white ankerite and calcite fractures and veinlets. Sulphides run trace to slightly										
		anomalous.										
	_	1334.80- 1334.90 ; FAZ					-			_		
		The FAZ is broken into small pieces and chips but appears to centre on a chlorite fractured/ weak		-			-					
		cataclastic zone oriented @ 50 DTCA. The FAZ is preceded by 30cm of chlorite/ carbonate fracturing.				<del> </del>						
			6	tr			49672	1335.00	1336.00	1.00	0.05	-
1334.90	1349.95		6	tr			49673		1337.00	1.00	0.03	-
		Return to a moderately to well altered, mottled light/ medium yellowish/ buff/ greyish green to pale brown,	6	tr			49674		1338.00	1.00	0.03	-
		fine grained, massive, granular textured wacke (with jasper grains) as above at 1314m. The matrix is	6	tr		-	49675		1339.00	1.00	0.05	-
		pervaded with sericite and ankerite while veining comprises 5- 8% broken/ fractured/ segmented creamy	6	tr		-	49676 49677		1340.00 1341.00	1.00	0.04	-
	-	dull white ankerite streaks and stringers. The entire interval is well fractured @ 40- 45 DTCA with chlorite fillings, sericitic shears, and local braided and protomylonitic zones leading to the major fault zone (Hunton	6	tr tr		<del>                                     </del>	49677		1341.00	1.00	0.03	-
		Break) below. Despite the increase in alteration and deformation, mineralization is negligible.	6	tr		<del> </del>	49679		1343.00	1.00	0.02	-
			6	tr		i	49680		1344.00	1.00	0.04	-
			6	tr			49681	1344.00	1345.00	1.00	0.09	0.03
		1337.67- 1337.9 : QCVZ	6	tr					1346.00	1.00	0.02	-
		Dull grey, 17cm, quartz-ankerite- breccia vein @ 40 DTCA centred on a chloritic fracture zone and	6	tr			49683		1347.00	1.00	0.19	-
		mineralized with trace sulphides.	6	tr		L	49684	1347.00	1348,00	1.00	0.02	-

		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays	1	
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
			6	tr			49685	1348.00		1.00	0.02	-
1349.95	1352.30		6	tr			49686	1349.00		0.95	0.05	-
		Mix of gouge, ground/ crushed rock and mud seams form this break zone @ 45- 50 DTCA which was	2	tr	_	Brk	49687		1351.10	1.15	0.02	-
		cored intact. No significant veining or mineralization occurs within the structure, however, it represents a	2	tr		Brk	49688	1351.10	1352.30	1.20	0.02	-
		major change in host rock lithology with the sedimentary sequence above and a trachyte/ syenite package below.										
1352.30	1360.26	1SMa (alt'd)	3	tr		1SMaa	49689		1353.00	0.70	0.02	-
		Below the FAZ, the mafic (augite/ basic) syenite is very strongly tectonized with myriads of black chlorite/	3	tr		1SMaa			1354.00	1.00	0.05	-
		specularite fractures and protomylonitic faults/ slips at random orientations but commonly around 40	3	tr		1SMaa			1355.00	1.00	0.02	0.02
		DTCA. The host is well altered within the limits of patches of fractures to various shades of light to medium	3	tr		1SMaa			1356.00	1.00	0.03	-
		grungy greyish pink/ orange and buff/ yellowish green, to dark greys. The medium to coarse grained	3	tr		1SMaa	49693	1356.00	1357.00	1.00	0.02	-
		texture of the augite syenite is visible locally (1369m) as 15- 25%, altered, euhedral, 3-8mm, stubby to	3	tr		1SMaa			1358.00	1.00	0.06	-
		tabular augite phenocrysts in a medium grained, light pinkish coloured, feldspathic groundmass. Apart	3	tr		1SMaa			1359.00	1.00	0.05	-
		from the fracturing, secondary veining accounts for 2- 4% dull white/ pink ankerite and calcite fractures,	3	tr		1SMaa	49696	1359.00	1360.26	1.26	0.10	-
		veinlets and streaks within an overall carbonate alteration package that is mildly ankeritic at the start and										
		becomes pervasively calcitic by 1366m. Mineralization consists of trace fine Py, mainly associated with the										
		fractures.										
1360.26	1362.37	Wedge/ LC	<del> </del>			ļ						
		The core was reamed past the wedge at this point.				LC		1360.26	1362.37	2.11		
4000.07	4070.00	AON. CHUB										<u> </u>
1362.37	13/6.00	1SMa (alt'd)	3	tr		1SMaa			1363.00	0.63	0.02	-
		The altered and fractured mafic syenite continues as described above the wedge as medium to coarse	3	tr		1SMaa			1364.00	1.00	0.03	-
		grained, well (chlorite/ specularite) fractured, and coloured in shades of light to medium grungy greyish	3	tr		1SMaa			1365.00	1.00	0.03	-
		pink/ orange and buff/ yellowish green, to dark greys in mottled patches. It is mineralized with trace Py.	3	tr		1SMaa		1365.00		1.00	0.02	-
		The deformation and alteration decrease down hole.	3	tr		1SMaa		1366.00		1.00	0.02	0.03
			3	tr		1SMaa		1367.00		1.00	0.02	-
			3	tr		1SMaa			1369.00	1.00	0.03	-
			3	tr		1SMaa			1370.00	1.00	0.04	-
			3	tr		1SMaa			1371.00	1.00	0.02	-
			3_	tr		1SMaa	49706		1372.00	1.00	0.02	-
			3	tr		1SMaa			1373.00	1.00	0.02	-
			3	tr		1SMaa			1374.00	1.00	0.02 0.01	-
		-	3	tr		1SMaa	49709		1375.00	1.00	< 0.01	-
4070 00	4700.00		3	tr		1SMaa			1376.00	1.00	0.04	0.06
1376.00	1/32.90		3	tr		1SMaa			1377.00	1.00	< 0.04	- 0.06
		As mentioned, there is a gradual decrease in the intensity of deformation and alteration in the augite	3	tr		1SMaa		1377.00	1378.00		0.02	
		syenite to this point, at which it becomes dark/ medium orange to pinkish grey coloured, medium to coarse	3_	tr			49713	1378.00	1379.00	1.00	0.02	-
		grained, massive, homogenous textured with 20- 25%, dark greyish green altered, euhedral to diffuse,										
		mafic (augite) phenocrysts in a medium/ fine grained, medium orange speckled, feldspathic groundmass. It		-		-						
		is weakly magnetic, non reactive to very weakly calcitic with 1-3% fine white calcite fractures and veinlets.	<u> </u>	4		-	40744	4005.00	4200.00	1.00	0.01	-
	_	No significant sulphides were noted.	2	tr		-	49714		1386.00 1387.00	1.00	< 0.01	-
-		1388.35- 1388.55 : QVZ	2	tr tr			49715 49716	1386.00		1.00	< 0.01	-
		The interval is cut by 35% dark grey silicified bands/ guartz veins/ breccia @ 45- 50 DTCA that are	35	tr	45	QVZ	49717		1389.00	1.00	< 0.01	-
		mineralized with trace fine Py and Cp. The walls are mildly to moderately altered (hematite/ ankerite) and	2	tr	40	Q VZ	49717	1389.00		1.00	0.01	-
		chlorite/ specularite fractured for approximately 2m up and down hole.	2	tr		<del>                                     </del>	49718		1390.00	1.00	< 0.01	-
							,0,10	. 500.00	.551,50			
		1404.96- 1407.50 : 1Sp										

			DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
			The augite syenite is cut by a syenite porphyry dike with well defined contacts (partly rolling) @ 45/30 DTCA. The porphyry is relatively fresh looking, dark/ medium greyish maroon/ brown coloured, massive, homogenous and medium grained, comprised of 10-15% diffuse, subhedral, dull grey, 2-3mm, feldspar phenocrysts in a fine/ medium grained, medium/ dark greyish brown, feldspathic groundmass that contains 3% mafic inclusions. It is finely fractured with 3%\$ fine calcite fractures but non reactive to carbonate										
			testing and weakly to non magnetic. No significant sulphides were noted.										
			1413.35- 1420.45 : QCVZ  The interval includes about 15% dull grey, porcelainic looking, ankerite (- cherty silica) stringers and veinlets cutting the core @ 60 DTCA. There is no associated alteration nor mineralization.										
			1423.37- 1426.16 : 1Sp  Another syenite porphyry dike as described previously at 1404.96m, intersects the basic syenite with well defined, but irregular contacts.										
			1482.64- 1482.66 : FAZ The FAZ comprises a 1cm sericite/ chlorite/ alteration shear zone @ 30 DTCA accompanied by chlorite	2	tr tr	30	FAZ	49720 49721	1482.50	1482.50 1483.00	0.50	0.01	0.15
		_	fracturing and orange hematitic alteration over 2.5m and 0.5m up and down hole, respectively. However, there are no significant sulphides noted in the zone apart from slightly anomalous Py around the shear.	2	tr			49722	1483.00	1484.00	1.00	0.02	-
		$\exists$	1491.80- 1494.80 : 1SMa (alt'd)	2	tr			49723		1492.50		< 0.01	-
			The mafic syenite becomes red/ orange altered (hematized) through this within a zone of fine chlorite fracturing but no definitive structure. It contains some specularite fractures and local anomalous grains and splashes of Py and Cp. Minor alteration and Cp were noted at 1501.55m.	2 2 2	tr tr tr			49724 49725 49726		1493.50 1494.40 1495.40	0.90	0.01	-
			1509.34- 1511.00 : CZ  At first glance, this appears to be a fine/ very fine grained, dark grey, massive tuffaceous inclusion with a sharp jagged leading contact, but, on closer examination, the trailing contact is gradational back into a well defined mafic syenite. Therefore, this interval constitutes a chilled margin of a second phase of mafic (augite) syenite intrusion.	3 3	tr tr tr			49727 49728 49729	1501.00	1501.00 1502.00 1503.00	1.00	0.16 0.06 0.03	-
			1511.00- 1643.06 : 1SMa  Below, the mafic syenite comprises 50% densely packed chlorite/ tremolite (?) altered mafic phenocrysts in a medium/ fine grained, fine yellowish grey speckled (sericite altered) feldspathic and mafic groundmass, looking very much like a gabbro. The mafic syenite is very weakly magnetic, weakly pervaded with										
			ankerite, mildly veined (<0.5%), and poorly mineralized (trace).  1598.60- 1599.30 : CZ  Another fine grained chilled flow contact area to the mafic syenite dike grading from medium, through fine										
			grained, to a sharp chilled contact @ 45 DTCA.  1643.06- 1647.34 : 1Sp										
			Rolling contact @ about 45 DTCA into a fresh, medium grained, massive, dark brownish grey coloured syenite porphyry dike characterized by 10- 18%, dull white/ pink, 1-4mm, subhedral feldspar phenocrysts in a fine/ medium grained, feldspathic groundmass containing 8- 15%, dark/ medium grey/ black, tabular and interstitial mafic phenocrysts and grains and scattered (<1%) mafic inclusions. The dike is weakly magnetic, non reactive to carbonate, mildly veined (<0.5%), and unmineralized.										
		$\dashv$											

			DESCRIPTION (Hole no AK09-07W2)			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)			Samı	ples / A	ssays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
_			1647.34- 1704.35									_	
		_	Back into the gabbroic looking mafic syenite as previously described.							_			
		$\dashv$	1694.20- 1695.52 : BBC	-									
	_		The core is splintered into small fragments/ chips for no apparent reason (destressing?).										
			The core is applicated into small fragments, chips for no apparent reason (desiressing.).	<del>                                     </del>			<del>                                     </del>						_
			1704.35- 1706.41 : 1Sp							_			
			Another syenite porphyry dike as at 1643.06m with an upper rolling contact @ 25 DTCA and a trailing contact partially following a slip @ 45 DTCA.							·			
				0.5	tr			49730	1712.80	1713.75	0.95	0.03	-
			1713.75- 1714.40 : QCVZ	25	tr	30	QCVZ	49731		1714.40	0.65	< 0.01	-
_			Zone of 25% diffuse light grey calcite veining roughly @ 30 DTCA mineralized with 1- 2% splashes of fine Cp.	0.5	tr			49732	1714.40	1715.45	1.05	0.22	0.23
		_					<u> </u>						
1732.90	1743.				$\vdash$		<del> </del>			_			
			This represents a thicker version of the dikes described above as dark greyish brown coloured, medium grained, and massive comprised of 20%, dull white, 1.4mm (rare to 1cm), sub to euhedral, feldspar	-			├						
			gramed, and massive comprised of 20%, dull white, 1.4mm (rare to ficin), sub-to-euhedrar, relaspar phenocrysts in a fine/ medium grained feldspathic groundmass containing submillimetric feldspars, and 8-	<del></del>			-	1					
			phenocrysts in a liner median grained leaspathic groundmass containing subminimetric leaspais, and s- 15% laths and interstitial mafic material. It is weakly magnetic, nonreactive to slightly calcitic, mildly veined	<b>-</b>			_						
			(<0.5%), and weakly hematized (orange altered) over the last 1.5m. No significant sulphides were noted.										
			The leading contact is sharp, intrusive @ 20 DTCA, the trailing one, likewise, @ 55 DTCA.										
1743.10	1767	45	1SMa										
1140.10	1,0,,	_	Back to the mafic syenite as described at 1376m as dark/ medium brownish/ greenish grey coloured,	<b>i</b>			_						
			medium to coarse grained, massive, homogenous textured with 20- 25%, dark greyish green altered,								_		
			euhedral to diffuse, mafic (augite) phenocrysts in a medium/ fine grained, medium white speckled, dark										
		$\neg$	grey, feldspathic groundmass. It is weakly magnetic, non reactive to very weakly calcitic and generally										
			poorly veined. However, there are 5% networks of fine spidery calcite fractures surrounding a silicified										
		_	calcitic vein (fault?) zone at 749.30m. Mineralization runs trace outside of the vein zone.										
		_		_				49733	4740.00	1749.05	1.05	0.05	
			1749.05- 1749.70 : QCVZ Dull grey and white, 4cm wide, silicified- calcite- quartz vein zone @ 10 DTCA mineralized with trace Py	5 25	tr tr	10	QCVZ			1749.05		0.03	
			duil grey and white, 4cm wide, shichled- calcite- quartz vein zone @ 10 b1 CA mineralized with trace Fy crystals and Cp splashes.	5	tr	10	QCVZ	49735		1750.70		0.04	
	<del>                                     </del>	┪	Cijotalo and op spiasnos.	۲Ť	- u			1,0,00		1			
		$\dashv$	1760.10- 1761.90 : 1Sp										
			Typical syenite porphyry dike similar to those above with irregular contacts @ 35/ 30 DTCA.										
		コ											
1767.45	1785.	.60		-	<del>                                     </del>		<b></b>	40700	4760.00	1769.00	1.00	0.02	
		4	The syenite porphyry begins with a well defined contact @ 30 DTCA leading into a grungier version of the		tr	45	FAZ	49736 49737		1769.00		0.02	<del> </del>
			previous unit at 1732.90m. It retains the overall characteristics- dark greyish brown coloured, medium grained, and massive comprised of 20%, dull white, 1.4mm (rare to 1cm), sub to euhedral, feldspar		tr tr	45	FAZ	49737		1770.00		0.00	<u> </u>
			grained, and massive comprised of 20%, dull white, 1.4mm (rare to 1cm), sub to editedral, leidspar phenocrysts in a fine/ medium grained feldspathic groundmass containing mafic laths and interstitial mafic		tr	20	FAZ	49739		1771.00		0.03	0.03
			material- but it is moderately chlorite fractured which has masked the texture locally. It was found to be		tr			49740		1773.00		0.03	-
			weakly magnetic, non reactive to weakly calcitic, and mildly veined (outside of the chlorite fractures) with		tr			49741		1774.00		0.10	
			<1% calcite fractures and veinlets except as noted. Only trace Py was noted.	0.5	tr		L	49742		1775.00		0.31	0.35
		丁		0.5	tr			49743		1776.00		0.02	-
		_	1769.78- 1769.81 : FAZ	0.5	tr			49744		1777.00		< 0.01	
			A chlorite slip with highly chloritized and fractured walls @ 45 DTCA marks a possible strong early fault.	0.5	tr		ļ	49745		1778.00	1.00	0.04	
			No significant sulphides are associated with the structure or wall.	0.5	tr		L	49746	1778.00	1779.00	1.00	0.01	

		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	ssays		
From (m)	To (m	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
			0.5	tr			49747	1779.00	1780.00	1.00	0.11	-
		1771.40- 1771.55 : FAZ	0.5	tr			49748	1780.00	1781.00	1.00	0.05	-
		Another chlorite slip with highly chloritized and fractured walls @ 20 DTCA marks a second possible strong		tr	25/35	FAZ	49749		1782.20	1.20	0.10	0.10
		early fault with no associated sulphides.	25	tr			49750		1783.00	0.80	0.01	-
			10	tr			49751		1784.00	1.00	0.03	-
		1771.55- 1773.36 : 1SMa	5	tr			49752		1785.00	1.00	0.14	-
		A short interval of mafic syenite is included within the porphyry bounded by the FAZ above and a natural trailing contact @ 30 DTCA.	4	tr tr			49753 49754		1785.60 1786.60	0.60 1.00	0.03 0.02	-
		(70) 00 (70) 00 (70)	ļ									
_		1781.20- 1782.20 : FAZ										
		The interval consists of leading and trailing quartz- calcite vein zones and chlorite slips and fracturing with the dominant orientation @ 35/ 25 DTCA. 15% QCV'g and chlorite fracturing continue down hole for about 2.5m. Trace to slightly anomalous Py grains are associated with the zone and down hole veining.										
400000												<u> </u>
1785.60	1861.25	ISMa  Return to the mafic (augite/ basic) syenite as described previously, dark/ medium brownish/ greenish grey coloured, medium to coarse grained, massive, homogenous textured with 20- 25%, dark greyish green altered, euhedral to diffuse, mafic (augite) phenocrysts in a medium/ fine grained, medium white speckled, dark grey, feldspathic groundmass. It is moderately to weakly magnetic, non reactive to very weakly calcitic and generally poorly veined (<0.5%). There are local irregular elongate patches of medium orange felsic syenite that may represent riblets. It contains no significant mineralization.										
												<u> </u>
		1816.65- 1820.58 : 1Sp										
		The mafic syenite is intruded by a syenite porphyry dike similar to those exhibiting the typical phenocrystic										
		textures that were previously described. The middle of the dike becomes moderately chlorite and calcite										<del></del>
		fractured/ microfractured with minor wall rock alteration that masks some of the original features, but does										-
		not generate any mineralization. The leading contact falls along a chlorite slip @ 60 DTCA while the										-
		trailing one is natural, rolling @ 50 DTCA.	8	tr			49755	1042 EO	1843.50	1.00	0.49	0.50
		1842.50- 1849.10 : CZ/ 1SMa	8	tr			49755		1843.50	1.00	0.43	- 0.50
_		This represents a fairly fine/ medium grained contact zone of the mafic syenite in which the large mafic	8	tr			49757		1845.50	1.00	0.10	-
		(altered augite) phenocrysts are absent or obscured. The host is finer/ medium textured with local normal	1	tr			49758		1846.50	1.00	0.01	-
		augite bearing patches, massive looking, and mottled in shades of medium to dark grey and brownish/	$\frac{1}{1}$	tr		-	49759		1847.50	1.00	< 0.01	-
		maroonish grey. It ranges from very weak to moderately magnetic, is very weakly pervaded with calcite,	5	tr			49760		1848.50	1.00	0.77	0.72
		and mildly veined with 0.5% fine calcitic fractures and 1% larger gashy calcite/ quartz stringers. Sulphides	1	tr	l		49761		1849.10	0.60	0.02	-
		consist of trace fine Py in the walls of some fractures and as disseminations.	8	0.5	_		49762		1849.60	0.50	0.07	-
		contact of wase first by in the waits of contact made and all all all all all all all all all al	4	tr			49763	1849.60		0,55	0.02	-
		1849.10- 1850.15 : V4	1	tr			49764		1851.00	0.85	< 0.01	< 0.01
		A subtle contact @ 55 DTCA leads into a narrow inclusion of very fine grained/ aphanitic, dark/ medium brownish grey with lighter alteration around fractures, massive, weakly magnetic, non reactive, trachyte tuff										
		or flow material that is mineralized with 1% fine disseminated Py over 5cm around a 2cm pink quartz-calcite stringer @ 75 DTCA at 1849.40m.										
		1850.15- 1852.95 : 1Sp										
		Faintly visible rolling lead contact @ 55 DTCA into a typical syenite porphyry dike as described many times previously and is weakly magnetic, non reactive, mildly veined and unmineralized. The trailing contact falls on minor broken core @ 85 DTCA.										
+		on minor protein core to do bit on.	<del></del>									
		1852.95- 1861.25 : 1SMa/ CZ										

		DESCRIPTION (Hole no AK09-07W2)						Sam	ples / A	lssays		
From (m)	To (m)		Qcv (%)	Py/Po (%)	Dip	Desc.	SampleN umber	From	То	Length	Au g/t	Au Chk
		The typical phenocrystic mafic syenite textures fade in and out with contact phase ones (1842.50m)										
		leading to an overall dark grey to brownish grey, fine to medium grained, massive textured unit that is										
		weakly pervaded with calcite weakly magnetic and mildly veined with 1% white calcite fractures and										
		veinlets. Mineralization runs trace.										
1861.25	1876.70	S3/ S1										<del></del>
		Subtle bounding contacts blend in with the enclosing contact phases of the mafic syenite making attitudes				_						
		difficult to determine. The sediments stand out mainly by the scattered clasts and pebbly lenses. Overall,										
		they are fine grained, massive looking, and dark brownish grey coloured containing clasts that are						_				
		heterolithic, rounded, and ovoid to spherical in shape. The matrix was found to weakly calcitic, mildly										
		veined with 1% calcite fractures and veinlets, and devoid of significant mineralization.										
		1865.83- 1867.20 : 1SMa/ CZ										
		Mix of contact zone and regular mafic syenite.								<u> </u>		
		1867.20- 1867.90 : 1Sp	$\vdash$									
		Narrow dike of typical syenite porphyry with nebulous contacts.	$\vdash$									
		That on all of typical system polphyty maintenance contacts.	1									
		1867.90- 1871.95 : 1SMa					T					
		Back into a mixed zone of fine grained contact type and regular phenocrystic type mafic syenite.										
		1871.95- 1876.70 : S3/ S1		ļ <u>.</u>								
		With the wacke partially "cooked" by the mafic syenite, it was difficult to pick out the exact contact but it					ļ <u></u>					
		appears to trend @ 65 DTCA. As above, the host comprises fine grained, massive, dark grey wacke					ļ					
		containing polymict clasts and lenses of clast supported conglomerate. Pebbles tend to be ovoid to										
		spherical, rounded, and up to 10cm in length with 5cm being common. Veining consists of <1% calcite										
		fractures and veinlets while the matrix is weakly calcitic and devoid of significant mineralization.										
1876.70	1883.00	S1										
10700	1000.00	By this point, the host has become a well formed, mature, polymict, clast supported conglomerate in which										
		there are an abundant variety of rock types represented by the clasts including numerous types of										
		porphyries. Clasts tend to be rounded, spherical to ovoid, of various sizes to 20cm and matrixed by fine										
		grained wacke that appears to be partially metasomatized by the basic syenite. Notably, no jasper clasts or										
		grains were observed. When tested for carbonate, the conglomerate was found to be non reactive to								1		
		weakly calcitic near the start, becoming weakly ankeritic around 1905m. There were no significant										
		sulphides found in the conglomerate.	ļ						ļ			
			<u> </u>									
		1936.17- 1920.50 : CZ	$\vdash$			-						
		The wacke and conglomerate are slightly bleached to a medium/ light greenish to yellowish grey colour leading to the contact of the porphyry dike. The host is pervaded with patches that are weakly calcitic,	<del></del>									
		weakly ankeritic, non reactive, and, weakly sericitic.	<u> </u>			<u> </u>						
		weakly alikefflict floor feactive, and, weakly senctice.										
			<del>                                     </del>									
1883.00	<del></del>	EOH										
		The hole was stopped at the KLG/ JV boundary.										
		<u> </u>										
			I									

PROPERTY:	AMALGAMA	TED KIRKLAND		HOLE N	UMBER AK	05/09-10		
Province:	Ontario	DATE LOGGED: Sept 4- Nov 12, 2009	Grid: 7	′500 E	Method	Depth	Az	Dip
Township	Teck	LOGGED BY: FR Ploeger	1	0030 N	Compass	1177	324.3	-60.4
Started:		DRILLED BY: Major Diamond Drilling	UTM: 56	9710 E	reflex	1240	320.3	-58.6
Completed:		UNITS: Metres	NAD 83 53	30628N		1256.5	322.4	-58.2
CORE SIZE:	NQ	CORE LOCATION: Upper Canada	ELEV: 3	332 m		1299	324.6	-54.6
		1	LENGTH:	712 m		1303	321.9	-56.5
		Location: leased clm 328 (106667)	Depth	1638m		1375	329.6	-54.4
PURPOSE:			·			1435	322.4	-54.0
						1454	326.3	-54.0
COMMENTS:						1501	326.2	-53.8
						1531	329.8	-53.9
						1539	332.0	-53.3
						1589	335.0	-54.6
						1649	337.1	-53.2
						1730	336.9	-52.7
SUMMARY L	200	AK05/09-10						
From	To	Lithology	From	То	Metres	Au g/t		
	1117.00	Previously drilled as Hole AK05-10 to this point (see		10	Metres	Au g/t		
0.00	1117.00							
1117.00	1249.00	log for AK05-10)S1					_	
1249.00		Wedge						
1249.00		S1/ S3						
1263.70		S3						
1263.70		S1						
1283.42		\$7			<del>  </del>			
1288.70	1298.50	S3						
1298.50	1300.30	Wedge						
1300.30	1306.65	S3						
1306.65		DZ	1311.00	1315.10	4.10	1.27		
1314.85		FAZ						
1315.10	1321.95	1\$						
1321.95	1371.53	V4T/ V4						
1371.53	1384.05	1Sp						
1384.05	1438.00	V4T/ V4	1410.00	1411.00	1.00	2.03		
1438.00		Wedge						
1439.60	1440.00	V4T/ V4						
1700.00	1770.00	<u> </u>						

 $\neg$ 

1440.00	1444.73	1Sp	
1444.73	1486.45	V4T/ V4	-
1486.45	1496.00	V4M	
	1501.00	V4T	
1496.00	1501.00		
1501.00	4500.00	Wedge	
1501.00	1502.80	LC	
1502.80	1531.00	V4T/ V4	
1531.00	1532.50	Wedge/ LC	
1532.50	1563.62	V4T	
1563.62	1565.05	Wedge	
1565.05	1570.00	V4T	
1570.00		Stuck Rods	
1566.00		Wedge	
1564.95	1622.00	V4T	
1622.00	1638.00	V4rs	
1638.00		EOH	
92610	92664	9W-3003-RG1	26-Oct-09
92665	92696	9W-3004-RG1	22-Oct-09
92697	92702	9W-3107-RG1	2-Nov-09
92703	92738	9W-3300-RG1	16-Nov-09
92739	92762	9W-3301-RG1	16-Nov-09
32/33	02102	344-3301-1101	101100 00
<u> </u>			

		DESCRIPTION (Hole no AK05/09-10)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
0.00	1117.00	Previously drilled as Hole AK05-10 to this point (see log for AK05-10)										
		There were 5' of cement drilled and recovered from the start of the hole as it had been cemented.				1						
1117.00	1249.00	S1										
		The restarted hole begins in typical Timiskaming conglomerate which is characterized by a heterolithic										
		nature with a variety of clasts including various granites/ syenites/ porphyries, light to dark grey/ green										
		coloured volcanics and sediments, jasper; rounded to subrounded clasts with generally ovoid shapes to										
		16cm in length: a fine to gritty, dark greyish green wacke matrix: conglomerate lenses intertongued with	ļ									
		wacke and grit zones; and, a clast supported (intact) framework for the conglomerate lenses. The matrix is										
		generally pervaded with calcite with local ankeritic patches and veined with 2-3% white calcite and										
	<u> </u>	ankerite (some quartz) fractures, veinlets and stringers. Mineralization generally consists of trace pyrite				<u> </u>						
		(Py) grains and crystals.										
		1128.90- 1129.40 : FAZ				<del> </del> -	1					
		The FAZ consists of a series of ragged chlorite slips with calcite streaks @ 15- 25 DTCA that collectively										
	<del> </del>	form weak a fault zone. There is no significant alteration or mineralization associated with the structure.										
		Total a ladit gold. Those is no significant altoration of minoralization according to										
		1192.30- 1201.0 : S1 (ank'c)										
		This segment is weakly pervaded with ankerite and the 3% veinlets tend to be ankeritic as well.				ļ						
		1207.0- XXX : S1 (ank'c)				-						
		The polymict conglomerate becomes weakly pervasively ankerite through this section and 4- 6% white				-						
		carbonate fractures, veinlets and stringers are also ankeritic.										
		4004.00 4004.00					-					
	-	1224.63- 1224.66 : SHZ  Weak 1.5cm sericite ankerite shear zone @ 40 DTCA. Local weak hematitic (light orange altered) halo					-					
		with trace fine Py.				_						
		1239.57- 1239.70 : QCVZ/ FAZ										
		Zone of chloritic crackle fractured, dull grungy pink/ white/ grey ankerite- quartz veining with sericitic shears										
		@ 50 DTCA but with curved bounding slips @ 25/ 20 DTCA. The zone is mineralized with trace to slightly anomalous Py.										
	<del> </del>	alionalous ry.										
1249.00	1250.75											
		The drillers were asked to set a retrievable wedge at this point on Sept 4. Actual measurements from the										
	ļ	drillers blacks indicate that the wedge was set at 1250.10m.										
1250.75	1263.70	S1/ S3	8	tr		+	92610	1252.00	1253.00	1.00	0.01	-
.200.70	,200.70	Below the wedge, the hole continues in a gritty phase of the conglomerate in which the clasts rarely attain	8	tr			92611		1254.00	1.00	0.02	-
		lengths greater then 5cm and most are less then 2cm in length. It remains heterolithic (including jasper),	8	tr		Ср	92612		1255.00	1.00	0.01	-
	T	the clasts are generally subrounded and ovoid in shape, there is a preferred orientation @ 35 DTCA to the	8	tr			92613		1256.00	1.00	0.03	-
		elongate clasts including local weak foliation at a similar attitude, and, as mentioned, the matrix comprises	8	tr			92614		1257.00	1.00	0.01	-
		fine to gritty wacke.	8	tr			92615		1258.00	1.00	0.14	0.09
	ļ.,	The matrix of the gritty conglomerate was found to be weakly pervaded with ankerite with local patches of	8	tr			92616		1259.00	1.00	0.02	-
		dull orange hematite alteration and fairly persistent streaky sericite alteration along microfractures and	8	tr		<b>_</b>	92617		1260.00	1.00	0.02	-
		microshears. Veining consists of a mixture of 2- 4% white ankerite fractures and veinlets with an additional	8	tr			92618 92619		1261.00 1262.00	1.00	0.02	-
		4- 6% black specularite veinlets and stringers trending mainly @ 60/ 40 DTCA. Sulphides generally	8	tr tr		-	92619		1262.00	1.00	0.02	
		comprise trace pyrite (Py) with rare local coarse splashes of chalcopyrite (Cp) as at 1254.70m.	8	tr		-	92621		1263.00	0.70	NIL.	

Promise.		DESCRIPTION (Hole no AK05/09-10)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
4000 70	4074.70		8	tr		Ср	92622	1263 70	1264.90	1,20	0.05	_
1263.70	1274.72		8				92623		1266.00	1.10	0.05	
		The conglomeratic and gritty lenses are gradually replaced by more extensive wacke zones to the point	8	tr_		Ср	92623	1264.90			0.03	-
		where wacke predominates. Overall, it is fine grained, granular textured (including jaspers), massive with	l °	ιτ		1	92024	1200.00	1207.00	1.00	0.01	
		local gritty lenses and scattered pebbles, and grungy greenish orange/ brown/ yellow coloured. The				-						
		colours represent various overlapping styles of semi pervasive alteration such as sericite (yellow),		-		<del>                                     </del>	<b></b>					
		hematite/ K spar (orange), and ankerite (yellow/ buff. The combination of dull white ankerite (- quartz) and				-						
		black specularite/ chlorite fractures, veinlets and stringers continues, aggregating a combined 7%. Apart				-						
		from two Cp streaked fractures at 1264.28m (3mm @ 45 DTCA) and 1265.15m (1- 3mm @ 40 DTCA), the				<del>                                     </del>						
		sulphide content of the wacke runs trace.										
107170	4000 40		7	tr		1	92625	1074.05	1275.50	0.85	0.08	0.07
12/4./2	1283.42				40	FAZ, cr			1275.50	0.50	0.36	
		A sharp contact along a 1cm wide black specularite stringer @ 35 DTCA leads back into a unit of gritty	7	tr	40	FAZ, CL	92626		1275.00		0.03	-
		conglomerate. As above, is characterized by ovoid/ elongate, rounded to subrounded clasts to 6cm, a	/	tr			92627	1276.00	1277.00	1.00	0.03	
		heterolithic composition including jasper), gritty wacke lenses and matrix, and a foliation/ layering fabric @				-						
		35+/- DTCA. Ankerite and minor sericite continue to invade the matrix while veining drops to approximately										
		3- 4% ankerite and specularite gashy/ irregular streaky veinlets. Sulphides remain negligible (trace).				<u> </u>						
						-						
		1275.83- 1275.90 : FAZ										
		This black specularite vein containing carbonate fragments forms a minor fault @ 40 DTCA that may				ļ						
		represent the focus of the foliation fabric in the conglomerate. It is mineralized with 3% fine slivers of Cp.				ļ						
1283.42	1288.70					-						
		The leading contact is sharp, natural @ 45 DTCA into a light to medium limey to dull green, very fine					-					
		grained, bedded mudstone which contains local very fine grained/ aphanitic limey olive green laminae/				ļ	<u> </u>					
		beds @ 45 DTCA. Overall, it is moderately sericitized and weakly pervaded with ankerite. Veining amounts				-						
		to 7% irregular creamy white fractures, veinlets and stringers as well as 0.5% orange/ red syenite dikelets										
		to 1cm. Sulphides run trace with a few minor streaks of Cp associated with a 1cm red syenite ribbon at				-						
		1286.81m @ 45 DTCA.										
		-				-						
1288.70	1298.50					-						
		A 1.5cm sericite shear zone @ 45 DTCA leads into a thick package of wacke that is fine grained but has				-						
		lost the granular texture through strong sericite- ankerite alteration that has bleached/ altered the host				-						
		wacke to various shades of pale greenish orange/ brown to grungy pale orange green/ grey. It contains the										
		odd scattered clast but is otherwise massive with a faint bedding/ foliation fabric @ 45 DTCA. Veining										
		consists of 6- 8% irregular wormy to gashy ankerite/ quartz veinlets and stringers while mineralization				-						
		comprises trace to slightly anomalous fine disseminated Py.	<b></b>	ļ		<del>-</del>						
1005 7-	4000 0						-					
1298.50	1300.30		<u> </u>			-	-					
		On Sept 22/ 09, the drillers were asked to set another retrievable wedge to deflect the hole further to the				-						
		east. The wedge was set at 1298.5m and coring resumed at 1300.30m.					-		_			
4000.00	4000.00			<del>                                     </del>		-	-					
1300.30	1306.65					1	-	-				
		Coring resumes in the altered wacke described above at 1288.70m as fine grained with the massive	<u> </u>	$\vdash$		-						
		granular texture obliterated by the strong mottled pale greenish/ greyish brown to brownish green sericite	<u> </u>	$\vdash$		-			_			
		and hematite/ k spar alteration. It is pervasively ankeritic and cut by 4% dull white ragged ankerite		$\vdash$		-	-					
		fractures and veinlets, many of which are associated with a minor shear zone at 1300.75- 1301.55m (see		1		-	<del>                                     </del>					
		below). The interval is mineralized with trace sulphides.			_	<u> </u>						

		DESCRIPTION (Hole no AK05/09-10)				And Service Control		COMMISSION OF THE PARTY OF THE	ples / A			
From (m)	To (m	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
			20	tr			92628	1305.00	1306.00	1.00	NIL	-
306.65	1314.85	DZ	20	tr		DZ	92629		1306.65	0.65	0.02	-
		The wacke described above begins to be progressively more deformed and strongly veined, ending with a	20	tr		DZ	92630		1307.25	0.60	0.79	-
		quartz- hematite vein zone and strong FAZ. Overall, the host remains fine grained, massive, light limey	20	tr		DZ	92631		1308.00	0.75	0.28	-
		green and grungy light brownish green mottled wacke that is cut by 15- 25% irregular/ ragged/ gashy white	20	tr		DZ	92632	1308.00	1309.00	1.00	0.29	1.5
		ankerite and orange K spar/ hematite veinlets, stringers, veins and streaks that roughly follow a crude	20	tr		DZ	92633		1310.00	1.00	0.29	18
		foliation developed @ 45- 55 DTCA. The matrix is impregnated with ankerite and sericite, but despite the	20	tr		DZ	92634		1311.00	1.00	0.14	-
		strong alteration and deformation, mineralization averages trace with local concentrations of Py and Cp in	20	tr		DZ	92635		1312.00	1.00	0.72	-
		some of the vein zones.	20	tr		DZ	92636		1313.00	1.00	0.48	-
			20	tr		DZ	92637		1313.85	0.85	2.30	2.43
		1313.85- 1314.85 : QVZ	70	tr	40	QVZ	92638	1313.85	1314.85	1.00	1.85	2.00
		Dark purple grey, fractured, quartz (- hematite) vein (65% quartz) with sericitic wall rock inclusions @ 35-										
		45 DTCA. The vein zone is weakly mineralized with only trace sulphides.										
										*		
314.85	1315.10	FAZ	0.5	tr			92639	1314.85	1315.10	0.25	0.76	-
		The FAZ was recovered as a pile of chips and gouge with a possible orientation of 60 DTCA although this										
		attitude is tenuous. This structure and accompanying hanging wall deformation is reminiscent of the										
		structure further to the east in the AK 08- 09 02W drilling that commonly is intruded by a diabase dike.										
					_							1
					_							1
315.10	1321.95	15	0.5	tr	_		92640	1315.10	1316.00	0.90	0.06	-
		Below the fault there is a dark brownish grey coloured, massive, medium grained unit that exhibits a faint	0.5	tr			92641	1316.00	1317.00	1.00	0.06	-
		porphyritic texture with fine altered mafic laths and fine grains of leucoxene in a feldspathic groundmass	0.5	tr			92642	1317.00	1318.00	1.00	0.11	-
		that is visible in a few select windows. Generally, however, the host is non magnetic and laced with fine	0.5	tr			92643	1318.00	1319.00	1.00	0.15	-
		microfractures and weakly pervaded with calcite while veining consists of 3% fine calcite fractures and										
		wormy patches of dull grey quartz. Mineralization comprises trace Py.										1
					_							1
321.95	1371.53	V4T/ V4										
		The interval appears to comprise a trachytic sequence made up of tuff interfingered with a series of flows	0.5	tr			92644	1331.00	1332.00	1.00	0.02	-
		and cut by faintly discernable syenite (porphyry) dikes. Both the tuff and flows tend to be dark brownish the	0.5	tr			92645	1332.00	1333.00	1.00	0.01	-
		greenish grey mottled and generally fine grained making it difficult to distinguish contacts between the two.	0.5	tr			92646	1333.00	1334.00	1.00	0.01	-
		In a window of relatively fresh tuff at 1325.90m, the host appears to maintain a granular texture including a	0.5	tr			92647	1334.00	1335.00	1.00	0.03	-
		fine grained, dark medium green matrix with small grains and crystals of k feldspar or minute syenite	0.5	tr			92648	1335.00	1336.00	1.00	0.07	-
		clasts. The trachytes tend to exhibit a fine crystalline texture comprised of euhedral looking fine mafic and										
		feldspar crystals (1535.90m) or a clearly (pseudo leucite) spotted texture as at 1337.90m. No attempt was										
		made to separate the two but tuff appears to predominate with 65%.										i
										i		
		The trachyte tuffs and flows are both weakly to non magnetic and weakly pervaded with both ankerite and										
		calcite. They are finely fractured with chlorite fillings and veined with 0.5% fine irregular white carbonate										
		fractures and veinlets. No significant sulphides were noted in the package but spot samples were taken.										
		3	0.5	tr			92649	1352.40	1353.40	1.00	0.08	-
			0.5	tr			92650		1354.40	1.00	0.02	-
		1326.20- 1327.11 : 1S(p)	0.5	tr			92651		1355.40	1.00	0.03	-
		There is a fairly well defined, but irregular contact @ 55 DTCA into a massive, medium grained, dark	0.5	tr	_		92652		1356.40	1.00	0.05	-
		maroonish grey coloured syenite porphyry dike in which the sub to anhedral phenos are faintly visible. The	0.5	tr		<del>                                     </del>	92653		1357.40	1.00	0.05	0.04
		dike is non magnetic, non reactive, weakly veined (<0.5%), and unmineralized. The trailing contact is less	0.5	tr			92654		1358.40	1.00	0.02	-
		clear but was taken @ 75 DTCA. Another narrow dike cuts the package at 1329.83- 1330.13m.	L	,,			52301					
		plical but was taken by 10 0100. Another harrow tike cuts the package at 1023.00- 1000.1011.										
			<del> </del>									
		There is a possible mafic syenite dike here with a leading contact that is irregular/ lobed and diffuse and a	<del></del>	$\vdash$		<del>                                     </del>	1					

			DESCRIPTION (Hole no AK05/09-10)						Sam	ples / A	ssays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
			sharp trailing one @ 40 DTCA. With a lens, the dike is observed to be medium grained, roughly										
			equigranular, massive, with 15-20% dark grey green, mafic grains/ phenocrysts and interstitial material in										
			a medium grained, dark reddish brown/ maroon coloured feldspathic groundmass. It is weakly magnetic,										
			both weakly pervasively calcitic and ankeritic, weakly veined (<1%), and poorly mineralized with trace Py.										<u> </u>
	╆			0.5	tr			92655	1363.00	1364.00	1.00	0.03	_
	<del>                                     </del>	$\neg$	1363.45- 1371.52 : V4T/ 1Sp (alt'd)	8	tr			92656	1364.00		1.00	0.01	-
			This section of the tuff is cut by a syenite porphyry dike from 1364.65- 1367.40m, both the dike and	8	tr			92657	1365.00	1366.00	1.00	NIL	-
			tuffaceous host are moderately well fractured and altered to a grungy mottled light to medium greyish	8	tr			92658	1366.00	1367.00	1.00	NIL	-
			orange colour. They are well fractured and laced with 6- 8% dark grey chlorite/ silica/ specularite fractures	8	tr			92659	1367.00	1368.00	1.00	0.02	0.02
			and veinlets with local concentrations into cataclastic zones (see below). The altered zone is non reactive	8	tr			92660		1368.70	0.70	NIL	-
			when tested for carbonate in the matrix, non magnetic and weakly mineralized with trace to slightly	50	ţr			92661		1369.25	0.55	0.01	-
			anomalous Py.	8	tr			92662		1370.00	0.75	0.01	-
			<u> </u>	8	tr			92663		1370.75	0.75	NIL	-
	<u> </u>		1364.65- 1367.40 : 1Spa	15	tṛ			92664		1371.55	0.80	0.02	-
	ļ		The leading contact is formed by a brecciated zone with no clear orientation and the trailing contact is	7	tr			92665		1372.50	0.95	0.01	-
	_		equally nebulous, possibly undulating @ 20 DTCA. The dike is medium brick orange/ red altered, medium	3	tr		<del>                                     </del>	92666	13/2.50	1373.50	1.00	0.07	-
	-		grained, massive but fractured 4% chlorite/ specularite and carbonate/ quartz fractures and veinlets.										
	-		Mineralization runs trace.	-									
	+		1368.75- 1369.00 : FAZ	_									
	+	$\dashv$	This is a dark grey, chlorite/ specularite cataclastic zone containing 40% dull orange altered host rock										
			fragments that does not appear to have a preferred orientation. No significant sulphides were noted.				_						
		-	magnification that does not appear to have a preferred orientation. No significant surprises were noted.	_									
		$\neg$	1370.87- 1370.97 : FAZ		<b>-</b>								
			Another cataclastic fault, this one filled with a dark grey silica (-chlorite/ specularite) matrix with 10% wall										
			rock inclusions and trace sulphides. The contacts were measured @ 35 DTCA.										
	100		40										
371.53	1384	_											
	-		Sharp contact @ 45 DTCA leading into a massive, medium grained, homogenous, medium maroon grey syenite porphyry dike that comprises 15%, dull white, 2-4mm, subhedral feldspar phenocrysts in a fine/	$\vdash$									
	_	_	medium grained, grungy orange coloured, feldspathic groundmass that contains 1- 15% fine, dark green to										
	+		light grey altered mafic grains. Typically, it also contains 2% mafic inclusions and was found to be non to										
			very weakly magnetic. Testing for carbonate reveals that it is non reactive to very weakly ankeritic locally										
		-	while veining, comprised of calcite/ ankerite/ chlorite fractures and veinlets, is strongest near the contacts										
		$\neg$	(4-6%) and weak in the middle (1-2%). There is no significant mineralization in the unit. The lower contact	5	tr			92667	1381.00	1382.00	1.00	0.08	-
	Ī		is highly irregular/ embayed and brecciated.	5	tr			92668	1382.00	1383.00	1.00	0.03	0.03
				2	tr			92669		1384.05	1.05	0.05	-
384.05	1438		V4T/ V4	2	tr			92670		1385.00	0.95	0.02	-
			Back into the mixed trachyte tuff/ trachyte flow package as described above at 1321.95m. Overall, it is fine	2	tr		ļ	92671		1386.00	1.00	0.03	-
			grained, massive, relatively homogenous, and dark grey to brownish grey coloured. The tuffs tend to be	2	tr			92672	1386.00	1387.00	1.00	0.02	-
		_	granular textured with small crystals and grit sized (1- 3mm) clasts while the flows tend to be more	L.							1.00		
	<u> </u>		uniformly fine textured without any distinctive graining, however, no attempt was made to differentiate the	4	tr_			92673		1409.00	1.00	0.03	-
	<u> </u>		two. Overall, they were found to be moderately to strongly magnetic where unaltered and moderately to	4_	tr			92674	1409.00		1.00	0.10 <b>2.03</b>	2.07
	-		weakly magnetic where partially altered. Veining amounts to 2- 3% fine irregular calcite and ankerite	4	tr			92675		1411.00 1412.00	1.00	0.06	2.07 0.05
	-		fractures and veinlets while the matrix tested slightly calcitic to non reactive. Only trace fine sulphides were	4	tr			92676 92677	1411.00	1412.00	1.00	0.08	0.05
	-	$\dashv$	noted. A few weakly altered zones were check sampled.	4	tr			92678		1414.00	1.00	0.08	-
	$\vdash$		1415.75- 1460.60 : V4alt	4	tr tr			92678		1414.00	1.00	0.04	-

		DESCRIPTION (Hole no AK05/09-10)	0	Du/Da			Cample				and the second second	۸.,
rom (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
·		slightly anomalous increase in sulphides.	4	tr			92681	1416.00	1417.00	1.00	0.08	-
		1426.90- 1427.55 : V4alt	3	tr			92682	1426.00	1426.80	0.80	0.05	-
		As above at 1415.75m, the host tuff is weakly altered to a grungy medium greyish pink/ maroon colour with	3	0.5			92683		1427.80	1.00	0.14	-
		perhaps 0.5% Py through the interval.	3	tr			92684	1427.80	1429.00	1.20	0.04	-
138.00		Wedge										
		A retrievable wedge was set at a roll angle of 90 degrees to deflect the hole to the east. The hole was reamed for several metres to bypass the wedge and coring restarted at 1439.60m.										
130 60	1440.00	VAT/ VA										
33.00	10.00	Short interval of trachyte tuff as described above at 1384.05m, as fine grained, massive, relatively										
		homogenous, and dark grey to brownish grey coloured for the flows, and, granular textured with small		<u> </u>								
		crystals and grit sized (1- 3mm) clasts for the tuffs.										
40.00	1444.73	1Sp										
		Back into typical Timiskaming syenite porphyry as detailed above at 1371.53m, comprising 15%, dull				L						
		white, 2- 4mm, subhedral feldspar phenocrysts in a fine/ medium grained, grungy orange coloured,										
		feldspathic groundmass that contains 1- 15% fine dark green to light grey altered mafic grains. Typically, it										
		also contains 2% mafic inclusions and was found to be non to very weakly magnetic. It is weakly veined	-									
		with 1% dull grey calcite veinlets that contain the odd splash of Cp.										
44.72	1486.45		<b>-</b>									
44.73	1400.43	A sharp rolling contact @ 80 DTCA leads back into the mixed package of fine grained, massive, relatively										
		homogenous, and dark grey to brownish grey coloured trachyte flows, and, granular textured, (with small										
		crystals and grit sized 1- 3mm) clasts), dark brownish/ purplish grey tuffs. They tend to be moderately to										
		strongly magnetic where relatively unaltered and weakly to very weakly magnetic where slightly altered.										
		Overall, veining amounts to 1-2% fine calcite fractures and veinlets - the matrix is calcitic- and the weaker										
		magnetic areas tend to be more medium brownish altered. There appears to be a corresponding slight	1	tr			92685		1448.30	1.00	0.04	0.0
		increase in sulphides to anomalous from a background of trace. Areas of increased alteration were spot	1	tr			92686		1449.00	0.70	0.03	-
		sampled	1	tr			92687	1449.00	1450.00	1.00	0.04	-
				<b>.</b>			00000	4.400.00	4404.00	4.00	0.15	
		1448.60 - 1448.66 : FAZ	2	tr		ļ	92688 92689	1464.00	1464.00 1465.00	1.00	0.15	0.1
		The fault actually consists of a chlorite- hematite- carbonate stringer @ 30 DTCA mineralized with	2	tr tr			92690		1466.00	1.00	0.21	
		anomalous splashes of Cp and grains of Py. The walls are altered over 30cm.	- 4	fı			92090	1405.00	1400.00	1.00	0.04	
			1	tr			92691	1469.50	1470.50	1.00	0.04	-
		There is a chlorite- specularite slip with patchy altered walls that arcs down the core axis though this	1	tr			92692		1471.50	1.00	0.06	0.0
		interval. The walls are altered to a mottled medium grungy greyish pink/ orange and fractured with calcite/	1	tr			92693		1472.40	0.90	0.04	-
		chlorite/ specularite fillings. Sulphides average trace overall with local weakly anomalous patches closer to	3	tr			92694	1472.40	1473.20	0.80	0.05	-
		the fracture.	1	tr			92695		1474.00	0.80	0.05	-
			1	tr			92696	1474.00	1475.00	1.00	0.03	-
36.45	1496.00											
		At this point, there is a distinctive change to a massive, fine grained, medium grevish brown coloured unit	<u> </u>			<u> </u>	ļ					
		that maintains a fine crystalline texture and contains 3- 6% round/ spherical, 2-4mm (some to 12mm),	<u> </u>									
		black (chlorite?) spots. It is unclear whether these are a primary feature representing filled vesicles or										
		nodules or alteration features. The matrix was found to be weakly to moderately magnetic and pervasively										
		calcitic while veining consisted of 1% fine chlorite/ calcite fractures and veinlets. Sulphides run trace. The		-		<b></b>						
- 1	1	upper contact is lost in ground core and the core is intermittently broken over the upper 2m.	I					l	ı	l		

		DESCRIPTION (Hole no AK05/09-10)		D. (D.			0		ples / A			z nondonie
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		1488.60-1489.00 : LC										
		The core is broken up through this section and about 0.40m lost.										
		The core is broken up through this section and about 6.46th lost.										
		1492.00- 1496.00 : V4M										
		The trachyte flow continues but the spots detailed above are no longer present. The host is fine grained,										
		massive, homogenous and dark maroon/ brown grey coloured. The lower contact is sharp @ 25 DTCA										
		and it appears that the flow has cooked about 20cm of the underlying flow to form fine yellow sericite										<b>—</b>
		streaks.		$\vdash$							0.00	0.00
		=	0.5	tr			92697		1496.00	1.00	0.03	0.02
196.00	1501.00		25	tr		-	92698		1497.10 1498.00	1.10 0.90	NIL	-
		Sharp contact @ 25 DTCA back into another trachyte tuff and flow sequence in which the two are indistinguishable. The upper 20cm or so are laced with 60% sericite fractures which decrease to 10% over	1	tr			92699	1497.10	1490.00	0.90	INIL	<del>-</del>
		the next metre and lead into a medium greyish brown mottled, fairly massive looking, fine grained host. At										
		about 1500m, the fine/ patches of fracturing/ microfracturing decrease and the tuff becomes dark brownish					_					
		grey. Generally, it is moderately magnetic, pervasively calcitic, and weakly veined with 0.5% fine calcite/										
		chlorite fractures outside of the upper metre. Mineralization consists of trace Py.										
		onone nactares exists of the appearments. Himeranization contacts of trace of y.										
501.00		Wedge										
		The drillers were asked to place a retrievable wedge at this point to deflect the hole back on line to the										
		east.						_				
												<b>—</b>
501.00	1502.80											
		The hole was reamed past the wedge through this section.										<del></del>
E02 00	1531.00	\/AT/\/A	1	tr		<del> </del>	92700	1504 30	1505.30	1.00	NIL	-
302.00	1551.00	Below the wedge, the hole continues in another trachyte tuff (+flow?) package that consists of very fine	1	0.5			92701		1506.20	0.90	0.33	0.30
		grained, hard (cherty textured) zones, bedded zones (bedding @ 55 DTCA) that are defined by fine	1	tr			92702		1507.00	0.80	0.01	-
		sericitic fractures/ foliation planes, and crystal tuff/ finely fragmental lenses that consist of broken and intact										
		crystals and small fragments/ gritty grains in a fine grained matrix and a few clasts to 4cm Overall, the										
		sequence is fine to very fine grained, massive, with the local bedded segments, dark greyish brown/										
		maroon/ pink coloured, moderately to strongly magnetic, non reactive to weakly pervaded with calcite, and										
		veined with 1% fine calcite/ chlorite fractures, many with pinkish alteration halos. Sulpides are negligible										<u> </u>
		except as noted.										<del></del>
		4405.00.4405.00147.(10.0)										<del></del>
	-	1405.38- 1405.83 : V4T (alt'd) The tuff is altered to a medium/ light greyish pink colour within a zone of microfracturing/ fracturing which is										
		mineralized with 0.5% splashes/ fine streaks of Py/ Cp along some of the fractures.										
		Infilieralized with 0.5 % spiasiles/ file streaks of Fy/ op along some of the fractores.										
		1510.81- 1510.85 : FAZ										
		The FAZ actually comprises a weak chlorite- calcite slip/ fracture @ 45 DTCA that is rimmed with a 15cm										
		altered aureole on the down hole side. There are no sulphides associated with the fracture.										
531.00	1532.50	Wedge/ LC										<b>—</b>
		A wedge was set to deflect the hole back to the east. This section was reamed to bypass the retrievable				ļ						-
		wedge.										
***	1800.00	NAT.		<b> </b>								<del></del>
532.50	1563.62											
		The hole continues in the trachyte tuff as described previously with hints of bedding defined by weak sericite altered zones @ 55- 65 DTCA. Overall, it consists of a fine grained, massive, dark grey maroon		$\vdash$		<del></del>	-					

	2- (Varia) 1000 (1/2	DESCRIPTION (Hole no AK05/09-10)		D'D			Contract Contract		ples / A		The state of the state of the	211200000000000000000000000000000000000
From (m)	To (m)	Description	(%)	Py/Po (%)	Dip	Desc.	Sample   Number	From	То	Length	Au g/t	Au Chk
		coloured matrix with local gritty patches with feldspar crystals, and 3-5% scattered cobbles (and bombs?)										
		of porphyritic trachyte/ syenite up to 35cm (1544.70m). It was found to be weakly pervaded with calcite to				<u> </u>						L
		non reactive, especially in very weakly altered patches, but moderately to strongly magnetic with weaker										
		responses, again, within the altered patches. Veining comprises <1% fine calcite fractures and there are										
		no significant sulphides (trace), even within the weakly altered zones.										
63.62	1565.05											<u> </u>
_		The drillers were asked to set a retrievable wedge at this point to deflect the hole to the east (roll angle of 90 degrees). After setting the wedge, the hole was reamed from 1663.62-1565.05m.										
CE NE	1570.00	NAT		-								
<u>53.U3</u>	15/0.00	As with the previous wedge, the hole continues in the trachyte tuff as described previously although there	-			· ·						
		are no distinctive well bedded zones evident. Overall, it is fine grained, massive, dark grey maroon									-	
		coloured matrix with local gritty patches, small subangular clasts (to 3cm), and zones of feldspar crystals. It	<u> </u>	<del>                                     </del>								
	-	was found to be non reactive to weakly pervaded with calcite, especially in very weakly altered patches,	$\vdash$	$\vdash$								
	-	but moderately to strongly magnetic with weaker responses, again, within the altered patches. Veining				<del> </del>						$\overline{}$
	-	comprises <1% fine calcite fractures and there are no significant sulphides (trace), even within the weakly		<del>-  </del>		-					<u> </u>	
		altered zones.										
		altered zones.										$\overline{}$
70.00		Stuck Rods										
0.00		At this point, the drillers stuck the rods (not enough water/ fried the bit according to Brad Pullen) and the										
		rods had to be blasted. Blocks indicate that once the rods had been blasted, the drillers set a steel wedge										
		at 1566m.										
												i
66.00		Wedge										
64 95	1622.00	V4T				-						
		The hole continues in the trachyte tuff as described above at 1565.05m beginning with a 0.5m tapered										
		section of core where it was wedged. Overall, it is characterized by a fine grain size, massive nature with										
		gritty zones, scattered small rounded clasts (to 4cm (1570.80m), and sections containing feldspar crystals										
		and small black crystals and clasts, and a dark orange to plum grey colour. The matrix is generally non										
		reactive with local weak calcitic and ankeritic patches while veining comprises 2- 3% fine calcite/ quartz/										í –
		chlorite/ specularite fractures and veinlets along with rare dull white quartz stringers to 3cm. Most of the										
		matrix is moderately magnetic with very minor patches that are weakly magnetic in areas that are slightly										
		altered. Mineralization consists of trace fine grains and splashes of Py and Cp (chalcopyrite) except as										
		noted.										
							00===		4570.00	1.50	0.05	<del></del>
		1572.07- 1572.45 : FAZ	3	tr		1.547	92703		1573.00	1.00	0.05	-
		Actually, there is a weak fault comprising chlorite fracture zones at each end of the interval @ 65/ 40	3	tr		wk FAZ	-		1573.80	0.80	0.07	<u> </u>
		DTCA. The trachyte tuff in between and 5- 20cm outside of these structures, is partially altered to a light/	3	tr			92705		1574.70	0.90	0.05	-
		dull mottled grey colour (ankeritized) with slightly anomalous to 0.5% pyritic fillings in some of the chloritic fractures.	3	tr			92706	15/4./0	1575.60	0.90	0.09	0.0
		4574.70.4570.50										
		1574.79- 1578.50 : 1Sp	_									
		A syenite porphyry dike that cuts the tuff @ 50/ 80 (irregular) DTCA, has slightly bleached both contacts for										
		15- 10cm. Typically, the dike is massive, medium/ dark greyish pink coloured, and medium grained with 10	L								_	
		15%, dull white, 2- 4mm, subhedral, feldspar phenocrysts in a fine/ medium grained, feldspathic	<u> </u>			<del></del>						<del></del>
		groundmass. It is weakly magnetic, non reactive to carbonate testing, veined with 2- 3% fine calcite and										
		chlorite fractures (plus a 1.5- 3cm quartz stringer @ 40 DTCA), and poorly mineralized with trace	L									<del></del>
		sulphides.										

		DESCRIPTION (Hole no AK05/09-10)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		1583.29- 1583.30 : AMZ	2	tr			92707	1582.00	1583.00	1.00	0.09	_
		A 0.8cm Cp- chlorite vein intersects the core at 70 DTCA. The walls are medium pink mottled over 5-	2	1	70	Cp vn	92708		1583.50	0.50	0.05	1 -
		10cm and weakly mineralized with slightly anomalous Cp splashes.	2	tr	70	CP VIII	92709		1584.50	1.00	0.06	-
		Tourn and weakly minieralized with siightly anomalous op sprasnes.	2	tr			92710	1584.50		0.50	0.04	-
			2	tr			92711	1585.00	1586.00	1.00	0.07	-
			2	tr			92712	1586.00		1.00	0.17	-
			2	tr			92713	1587.00			0.16	-
			2	tr			92714		1589.00	1.00	0.15	-
			2	tr			92715		1590.25	1.25	0.20	0.21
		1590.25- 1598.10 : V4T (alt'd)	0.5	0.5			92716		1591.00		0.14	-
		The tuff in this section becomes mottled with shades of grungy dull greyish oranges, pinks and browns and	0.5	tr			92717		1592.00	1.00	0.75	0.81
		also exhibits considerable gritty/ fine fragmental/ crystal tuff textures within the tuffaceous matrix. There is	0.5	tr		-	92718	1592.00		1.00	0.04	-
		also a loss of the magnetic signature through the interval and weak response to testing for calcite in the	0.5	tr			92719		1594.00	1.00	0.03	-
		matrix. There is no significant veining (<0.5%) and mineralization consists of trace to anomalous Cp and	0.5	tr			92720		1595.00	1.00	0.15	-
		Py confined mainly to chlorite fractures, excepting a large patch (1cm) of Cp at the start.				-						
		1595.21- 1595.23 ; FAZ	0.5	tr			92721	1595.00	1596.00	1.00	0.03	_
		A 2.5cm calcite- quartz- chlorite laminated wafer with chloritic fractured walls @ 55 DTCA forms the fault. It	0.5	tr	55	FAZ	92722		1597.00	1.00	0.05	-
		is mineralized with 5% splashes of Cp over the 2.5cm but there is no evidence of related alteration or	0.5	tr	- 55	172	92723	1597.00		1.10	0.08	-
		increase in sulphides in the walls of the structure.	1	tr		<del>                                     </del>	92724	1598.10		0.90	0.09	_
		inclease in Suprides in the waits of the structure.	1	tr			92725	1599.00		1.00	0.07	
			1	tr			92726	1600.00		1.00	0.15	0.11
		-	1	tr			92727		1602.00	1.00	0.12	-
			1	tr		<del>                                     </del>	92728			1.00	0.10	-
			1	tr			92729		1604.00	1.00	0.13	-
			$-\frac{1}{2}$	tr			92730		1605.00	1.00	0.06	
			1	tr			92731	1605.00		1.00	0.04	-
		1606.05- 1612.20 : V4Tl/ V4Taggl	1	tr			92732	1606.00		1.00	0.05	-
		The tuff in this section exhibits gritty/ fine fragmental/ crystal tuff textures within the tuffaceous matrix, often	1	tr		<del>                                     </del>	92733	1607.00		1.00	0.02	-
		containing zones of corroded, eroded (pseudo)leucite crystals. There is also a loss of the stronger	1	tr		<u> </u>	92734	1608.00		1,00	0.01	-
		magnetic signatures resulting in weak to very weak responses. The crystals are generally light greyish pink	1	tr			92735	1609.00		1.00	0.05	-
		coloured while clasts vary from light to medium grungy greyish pink within a darker pinkish grey matrix.	1	tr			92736	1610.00		1.00	0.02	-
		The host is non reactive to very weakly calcitic and the 0.5% fractures and veinlets are calcitic as well.	1	tr			92737	1611.00		1.00	0.06	0.04
		Mineralization consists of trace splashes and grains of Cp and Py.	1	tr			92738	1612.00		1.00	0.03	-
		This condition of the c	1	tr			92739		1614.00	1.00	0.01	-
			1	tr			92740		1615.00	1.00	0.01	-
			1	tr			92741		1616.00	1.00	0.01	-
			1	tr			92742		1617.00	1.00	NIL	NIL
		<del></del>	3	tr			92743		1618.00	1.00	NIL	-
		1618.15- 1619.96 : 1Sp	3	tr			92744		1619.00	1.00	0.02	-
		The trachyte tuff/ fine fragmental package is intruded by a syenite porphyry dike that, typically, is	1	tr			92745	1619.00		1.00	0.01	-
		composed of 15- 20% subhedral, 2-5mm, pale pink/ white feldspar phenos in a fine/ medium grained,	1	tr			92746	1620.00		1.00	0.80	0.77
		medium greyish brown coloured, feldspathic groundmass. The contacts are jagged/ irregular but sharp @		tr			92747	1621.00		1.00	0.14	-
		30/ 70 DTCA.			_							
	4020.00	V/Aro.	3	tr			92748	1622.00	1623.00	1.00	0.07	
1622 00 1		IVAIS						1 1022.00	1 1023.00			1
1622.00	1636.00	The hole enters a red spotted trachyte flow through a dark greyish brick red altered/ streaked zone that	3	tr			92749	1623.00		1.00	0.03	-

,

		DESCRIPTION (Hole no AK05/09-10)						Sam	ples / A	ssays	MARIE.	
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		consistently euhedral dark/ medium pink pseudoleucite phenocrysts from 0.3- 1.2cm in size, some of them	3	tr			92751	1625.00	1626.00	1.00	0.03	-
		zoned with concentrations ranging from 10- 30% in a fine (to medium) grained, medium pinkish grey		tr			92752	1626.00	1627.00	1.00	0.01	-
		groundmass. When tested for carbonate content, it was found that the core was generally non reactive		tr			92753	1627.00	1628.00	1.00	0.02	-
		with local weak calcitic and ankeritic patches while the 1% fractures and veinlets were calcitic and chloritic.		tr			92754	1628.00	1629.00	1.00	0.03	-
		The spotted flow is non magnetic and weakly mineralized with trace splashes of Cp, grains of fine Py and		1		Ср	92755	1629.00	1630.00	1.00	0.02	-
		specularitic fractures.	1	tr			92756	1630.00	1631.00	1.00	0.03	-
			1	tr			92757	1631.00	1632.00	1.00	0.03	-
			1	tr			92758	1632.00	1633.00	1.00	0.03	-
			5	tr			92759	1633.00	1634.00	1.00	NIL	-
			5	tr			92760	1634.00	1635.00	1.00	0.03	0.04
			5	tr			92761	1635.00	1636.00	1.00	0.03	-
_			1	tr			92762	1636.00	1637.00	1.00	0.03	-
												-
1638.00		EOH										

Province:	Ontario	<b>DATE LOGGED:</b> Nov 13/ 09- Feb 8/ 10	Grid:	7500 E	Method	Depth	Az	
Township	Teck	LOGGED BY: FR Ploeger		10030 N	Compass	Collar		
Started:		DRILLED BY: Major Diamond Drilling		69710 E	reflex			+
Completed:		UNITS: Metres	NAD 83 5		10110%			╁
CORE SIZE:	NQ	CORE LOCATION: Upper Canada	ELEV:				_	
OOKE OILL.	1102	ONE EGGATION. Opper Garidua	LENGTH:					+-
		Location: leased clm 328 (106667)	Depth	1854 m				
PURPOSE:		, ,						ļ
COMMENTS:								
	_							$\perp$
SUMMARY L	OG	AK05/09-10W1						$^{+}$
From	То	Lithology	From	То	Metres	Au g/t		
0.00	1117.00	Previously drilled as Hole AK05-10 to this point (se	е					
		log for AK05-10)						
	_					_		╙
1104.00		Wedge						
1104.00	1248.32	S1						$\perp$
1248.32	1248.50	Wedge						$\bot$
1248.50	1306.85	S1	13085.00	1306.00	1.00	3.98		_
1306.85	1317.13	S7/ S3						_
1317.13	1322.15	1Sp						$\perp$
1322.15	1337.60	S3	1335.00	1336.00	1.00	1.13		_
1337.60		Wedge						$\perp$
1324.70	1325.80	Wedge Cut						+
1324.70	1345.75	S3						+
1345.75	1349.68	V4						+
1349.68	1351.90	FAZ						+
1351.90	1378.75	V4T/ V4	100000	100100	100	2.22		+
1378.75	1392.45	1Sp	1383.00	1384.00	1.00	2.33		+
1392.45	1614.10	V4T						+
1614.10	1682.70	V4RS						+
1682.70	1694.58	V4T						+
1694.58	1695.88	Wedge/ LC					-	+
1695.88	1721.40	V4T		_				+-
1721.40	1726.25	18	1	1	1	1	1	- 1

. - -

,

1726.25	1749.84	V4T/ V4aggl			
1749.84	1854.00	1Sp			
1854.00		ЕОН			
40000	40077	40.404	07 lan 40		 <del>                                     </del>
19868	19877_	10-184	27-Jan-10		 <del> </del>
19878	19897	10-356	11-Feb-10		
92815	92833	9W-3738-RG1	6-Jan-10		
92834	92840	9W-3758-RG1	4-Jan-10		
92841	92898	9W-3804-RG2	5-Jan-10	 	
92899	92900	10-184	27-Jan-10		
		· ·			
		·			

·

		DESCRIPTION (Hole no AK05/09-10W2)	, or , or , a , ,		and the second				ples / A		91.3	
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
0.00	1066.00	AK05-10										
		This portion was drilled in 2005 as AK05-10.										<u> </u>
												<u> </u>
066.00	1066.53	Wedge/ AK05/09_10W2										
	1000.00	W. J O 4										
166.53	1068.00	Wedge Cut This represents the start of of coring (conglomerate for wedge 2 beginning with a thin wafer and thickening										
		to full width by the end. The drillers time sheets indicate that the wedge was set at 1070m.										
		to tall width by the end. The affile's time sheets indicate that the wedge was set at 197 on.										
68 00	1096.45	S1										
00.00	1000.40	Wedge 2 begins in typical Timiskaming conglomerate which is characterized by a heterolithic nature										
		(including jasper clasts), an intact (clast supported) framework in areas where the clasts are densely										
		packed, and a dark greyish green coloured, fine grained to gritty wacke matrix. It was found to be										
		moderately pervaded with ankerite (slight amount of calcite by 1077m) and veined with 2% creamy white										
		ankerite (some calcite) fractures and veinlets while mineralization consists of trace pyrite (Py) grains and										-
		crystals.										-
												-
96.45	1098.06	Wedge/ LC	ļ									<u> </u>
		A retrievable wedge was set at this point (roll angle 120) and about 1.2m lost to reaming past the wedge.				_						
			-									
	4447.00		-					<u> </u>				
98.06	1147.36		-									
		The hole continues in typical Timiskaming conglomerate which is characterized by a heterolithic nature (including jasper clasts), an intact (clast supported) framework in areas where the clasts are densely										
		packed, and a dark greyish green coloured, fine grained to gritty wacke matrix. It is both moderately										
	1	pervaded with ankerite and calcite in places and mildly veined with 0.5% pink calcite fractures and veinlets										
		while mineralization consists of trace pyrite (Py) grains and crystals. Overall, it has a darker greyish green										
		appearance, possibly as a result of stronger chlorite alteration.										
47.36	1149.40	Wedge/ LC										-
		The drillers blocks read 1147.50- 1149.00m for the location of the wedge, but actual measurements are as										
		stated. The wedge was set as part of a series to steer/ deflect the hole to the east and down. The hole was										-
		reamed past the wedge and therefore no core recovered.	ļ									$\vdash$
	<u> </u>		-									$\vdash$
49.40	1262.50		-			-						<del>                                     </del>
	<del>                                     </del>	Again, the hole continues in typical Timiskaming conglomerate which is characterized by a heterolithic nature (including jasper clasts), an intact (clast supported) framework in areas where the clasts are	-									
	-	densely packed, and a dark greyish green coloured, fine grained to gritty wacke matrix. Clast range up to										
		12cm but generally average 0.5 to 5cm in size and are rounded with spherical to ovoid shapes. It is both										
	<u> </u>	moderately pervaded with ankerite and calcite in places and mildly veined with 0.5% pink calcite fractures										
	<del>                                     </del>	and veinlets while mineralization consists of trace pyrite (Py) grains and crystals. Overall, it has a darker										
		greyish green appearance, possibly as a result of stronger chlorite alteration.										
_		<u></u>										
		1186.40- 2000.20 : S1a										<u> </u>
		Through this segment, the conglomerate is weakly pervaded with ankerite and veined with a mix (2%) of										
		both ankerite and calcite fractures and streaky veinlets.										<u> </u>
			L			L	L				0.00	<del></del>
		1196.22- 1196.27 : QCVZ	2	tr	40	QCVZ			1197.00	1.00	0.02	-
		Minor looking fractured, carbonate- quartz vein (possible fault) @ 40 DTCA followed by a fractured 5cm	2	tr			19899		1198.00	1.00	0.02	-
	1	quartz vein at 1196.55m, also @ 40 DTCA but dipping opposite the former. A few scattered grains of Py	2	l tr l		I	19900	1 1198.00	1199.00	1,00	0.02	1

			DESCRIPTION (Hole no AK05/09-10W2)						7411	ples / /		nan yarang an inapa	
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		$\exists$	(anomalous) were noted. These may represent the source of the surrounding ankerite alteration.										
			1199.28- 1199.34 : FAZ/ QCVZ										
			A fractured/ brecciated quartz- carbonate vein forms a minor fault @ 30 DTCA.										
			2000.20- 1254.20 : \$1/ \$3										
			The conglomerate continues basically as described above but the overall average size of the clasts										
			appears to decrease. The conglomerate seems to be more gritty textured with only rare clasts to 7cm,				-						
		_	most being less then 3/4cm in length. The alteration of the matrix also constitutes zones and mixing of										
			both ankerite and calcite, although ankerite predominates. There is no significant increase in veining (2-										
		-	3%) and the sulphide content remains trace.	<del>                                     </del>			-						
		$\dashv$	1254.20- 1258.50 : S3				-						
	-	$\rightarrow$	There is a thicker, more continuous lens of massive, fine grained, granular textured wacke through this	$\vdash$			+			<u> </u>			
			section that is mottled in shades of medium/ light yellowish to greyish green. It is pervaded with ankerite					1					
			and sericite (minor) but remains poorly mineralized with trace sulphides.										
		T	and sensite (minor) but remains poorly minoranged with rudes suprises.										
		$\dashv$	1258.50- 1262.50 : \$1										
		$\overline{}$	The hole now enters a more typical conglomerate, being polymict with a variety of clast sizes to 11cm with										
			a high proportion between 0.5 to 4cm. It is weakly pervasively ankeritic and contains trace sulphides. A										
			wedge cuts the conglomerate between 1262.50 and 1264.00m.	2	tr			19901		1261.60	1.00	0.02	-
				2	tr			19902		1262.50		0.10	0.09
			1261.97- 1262.02 : QVZ	3	tr	50	QVZ	19903		1264.00		0.03	-
			The conglomerate is cut by two very weak, 0.5cm grey cherty quartz veinlets with streaky ankerite and K	2	tr			19904	1264.00	1265.00	1.00	0.02	0.02
		-	spar @ 50 DTCA that are mineralized with 1- 2% fine Py and Cp.				_						
262.50	1264.		Wedge/ LC										
		$\dashv$	A retrievable wedge was set at this point (roll angle 120) and about 1.5m lost to reaming past the wedge.										
204.00	4202	50											
264.00	1292.		Polymict conglomerate as described at 1258.50m continues below the wedge.										
			r dyfnict conglotherate as described at 1230.30th continues below the wedge.										
		7	1285.00- 1292.56 : S1a										
		$\overline{}$	The conglomerate becomes progressively more strongly altered down hole through a light yellowish olive										
			green phase and gradually to more orange/ brownish olive mottled colour representing a change from										
			sericite- ankerite to hematite- ankerite. This coincides with an increase in dark grey chlorite/ specularite										
			fracturing and two creamy white ankerite veins/ vein zones (4cm @ 50 DTCA) which are concentrated at		_								
		$\dashv$	1287.50m and 1288.17m. Some of the chlorite/ specularite fractures are mineralized with splashes of Cp.										
		$\exists$						4000-	1005.65	4000.00	4.00	. 0.04	
			1287.5- 1288.17 : QCVZ/ FAZ/ BBC	3	tr		-	19905		1286.00 1287.00		< 0.01	-
			Leading and trailing creamy white coloured, chlorite fractured, ankerite veins to 3cm @ 30 DTCA. The core	8	tr 0.5	20	0017	19906 19907		1287.00		< 0.01	-
			is broken through his section as well perhaps indicating a coincident FAZ. There are no anomalous	8	0.5 tr	30	QCVZ QCVZ			1289.00		< 0.01	-
		$\dashv$	sulphides associated with the zone.	12	tr	50	FAZ	19908		1289.00		< 0.01	
		-	1289.17- 1289.32 : FAZ/ QCVZ	6	tr	50	174	19910		1291.00		0.06	-
		$\overline{}$	Here, the core is fractured around a central 6cm cataclastic zone with fractured/ disjointed carbonate	-	U I		1	10010	1203.73	1237.00	1.20	0.00	
			riore, the dore is madared distant a central semi catablastic fone with madared disjointed carbonate				1						
			veining and weak shearing, all @ 50- 55 DTCA, in the walls. Sulhides run trace through the interval.										

		DESCRIPTION (Hole no AK05/09-10W2)						San	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
292.56	1294.08	Wedge/ LC										
		A retrievable wedge was set at this point resulting in about 1.5m of lost core in reaming past the wedge.										
1294.08	1319.50											
		Below the wedge, the hole continues in a mix of altered wacke that contains gritty and pebbly lenses. The sequence consists mainly of fine grained to gritty, granular textured (with jasper) mottled light yellowish to orange greyish green coloured wacke grading in and out of 25% gritty lenses (clasts to 1cm, and 15% intact framework, pebbly lenses with subrounded, elongate clasts to 4cm. The unit is moderately well										
		altered with pervasive ankerite and sericite along with patches that are weakly hematitic (pale orange). In addition, it becomes more fractured/ foliated and white ankerite veining, concentrated mainly around 1303-1305.5m, amounts to 3%, while reddish black specularite fractures, veinlets and stringers to 3cm, average										
		approximately 3% as well. No significant sulphides (trace) were noted.										
1319 50	1321.00	Wedge/ LC										
		A retrievable wedge was set at this point resulting in about 1.5m of lost core in reaming past the wedge.				_						
1321.00	1333.65	S1a/ DZ	8	tr			19911		1322.00	1.00_	0.05	0.06
		Just above the wedge, there was a noticeable progressive increase in the pebble content as well as a	8	0.5			19912	1322.00	-	1.00	1.00	1.37
		strengthening persistent fracture and foliation fabric @ about 40- 50 DTCA which continues into the altered	8	tr			19913	1323.00		1.00	0.36	-
		polymict conglomerate unit. The structural features are enhanced by irregular sericite and ankerite streaks	8	tr			19914	1324.00		1.00	0.22	-
		while pebbles tend to be segmented or streaked along the fabric plane. Overall, the colour comprises a	8	tr		_	19915	1325.00		1.00	0.02	-
		mélange of pale yellows, limey greens and oranges overprinted with 7- 9% broken to streaky creamy white	8	tr			19916	1326.00		1.00	0.21	-
		ankerite fractures and veinlets. The sulphide content is anomalous with local concentrations to 0.5% over	8	tr tr			19917 19918	1328.00	1328.00	1.00	0.44	-
		short intervals.	8	tr			19918	1329.00		1.00	0.11	0.21
		1024 FO 4020 CF + C7/DDC	15	tr			19919	1329.00		0.75	0.12	0.21
		1331.50- 1333.65 : SZ/ BBC There appears to be a sharp transition into a massive, textureless/ featureless (no clasts/ pebbles),	7	tr			19921		1331.50	0.75	0.12	
		medium/ dull grey coloured, fractured, cherty looking silicified/ siliceous zone located between the	100	tr		SZ	19922	1331.50		0.75	0.25	
-		conglomerate and the following fault. It is well microfractured and contains trace to anomalous Py and Cp	100	tr		SZ	19923	1332.25		0.75	0.36	
		along some fractures. This is somewhat similar to the silicified zones associated with the diabase in some		tr		SZ	19924	1333.00		0.65	0.38	-
		of the AK08/ 09-02 wedge holes. Essentially, the entire section is broken up with RQD zero.	1	tr	20	FAZ	19925	1333.65		1.35	0,17	-
		or the ratios of the second se	2	tr		1Sa	19926	1335.00		1.00	0.06	-
333.65	1335.00	FAZ	2	tr		1Sa	19927	1336.00	1337.00	1.00	0.02	-
		This probably represents the major structure below which the south mine complex stratigraphy begins. It	2	tr		1Sa	19928	1337.00	1338.00	1.00	0.07	-
		comprises a leading 0.5m section of solid but crushed syenite porphyry with fractures and mud/ gouge	2	tr		1Sa	19929	1338.00	1339.00	1.00	0.04	-
		slips @ around 20 DTCA, followed by a massive to crumbled 0.85m section of gouge and ground/ crushed	2	tr		1Sa	19930	1339.00		1.00	0.09	-
		rock.	2	tr		1Sa	19931	1340.00		1.00	0.76	0.86
			2	tr		1Sa	19932	1341.00		1.00	0.16	-
1335.00	1342.85		2	tr		1Sa	19933_	1342.00	1342.85	0.85 _	0.04	-
		The unit below the FAZ appears massive, medium grained/ textured and medium/ dark brick greyish red/										
		orange/ brown coloured. The reddish tones are caused by pervasive hematite alteration but the host is										
		also well microfractured (mainly chloritic) with weak pervasive <u>calcite</u> alteration and 2% secondary white	-							1		
		pink calcite veinlets. It is mineralized with trace to anomalous fine to medium Py and minor Cp and there is	<u> </u>									
		no preferred orientation to the microfracturing. This may be an altered syenite or tuff.								-		
$\longrightarrow$						<del>                                     </del>	<del>                                     </del>			<b> </b>		
		Wedge/ LC	<del>                                     </del>			-			<del>                                     </del>	<u> </u>		

		DESCRIPTION (Hole no AK05/09-10W2)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		A retrievable wedge was set at this point resulting in about 1.5m of lost core in reaming past the wedge.										
1344.70	1345.85		-			-						<del></del>
		The altered syenite continues as described, massive, medium grained/ textured and medium/ dark brick greyish red/ orange/ brown coloured ending with a bulbous irregular trailing contact. As mentioned, it may actually represent a hematized trachytic tuff.										
1345.85	1389.00	VAT	-									
	1303.00	At this point, there is a change to a massive, somewhat granular/ flakey textured, medium greyish brown/ pink coloured lithology designated as trachyte tuff. The upper section to 1360m is weakly to moderately magnetic, while below, it becomes non magnetic. Also, it is pervasively calcitic with very minor (<0.5%) calcitic fracturing/ veining although chloritic fracturing becomes more prevalent coincidentally with the decrease in magnetism. Sulphides average trace overall but increase to slightly anomalous to trace within										
		the chlorite fractured sections.	0.5	tr			19934	1366.00	1367.00	1.00	0.02	_
	<del> </del>	ure chiorite mactured sections.	0.5	tr			19935		1368.00		0.02	-
		1369.35- 1370.05 : FAZ	0.5	tr			19936	1368.00			0.01	-
		Chlorite crush- cataclastic fault zone @ 25/ 15 DTCA comprising brecciated tuff fragments with a chloritic	0.5	tr	25	FAZ	19937		1370.05	0.80	0.04	-
		matrix and chloritic fractures. There are slightly anomalous grains of disseminated Py in the walls outside	0.5	tr			19938	1370.05		0.95	0.04	-
•		of the interval.	0.5	tr			19939	1371.00	1372.00	1.00	0.03	0.03
							40040	4000.00	1207.00	1.00	0.02	
	-		3	tr			19940		1387.00 1388.00	1.00	0.02	-
			3	tr			19941 19942	1388.00		1.00	0.02	-
1000 00	1395.82	46	3	tr tr			19942		1390.00		0.04	
		A lobed contact along the core axis over 45cm leads into a typical, Kirkland Lake type syenite porphyry dike characterized by a homogenous massive nature, a medium greyish pink colour, and, a medium grain size comprising 15%, dull white, somewhat diffuse/ corroded, sub to anhedral, 2-4mm feldspar phenocrysts in a medium/ fine grained, feldspathic groundmass that contains 0.5% mafic inclusions. The porphyry is weakly to moderately microfractured, non reactive to carbonate testing, weakly veined with 3% fine carbonate fractures, and poorly mineralized with trace sulphides. It has moderately fractured and altered the host tuff over 0.5- 2m into the contacts. The lower contact is fairly well defined/ sharp @ 80 DTCA.										
												-
395.82	1488.58		1	tr			19944		1396.85	0.85	0.04	
		Back into a fine to very fine grained, massive, locally granular textured, dark/ medium brownish/ pinkish	1	tr		01.17	19945		1397.70		0.09	-
		grey wacke that contains local zones of moderate microfracturing with corresponding zones of mottled	10 15	0.5		QVZ QVZ	19946 19947		1398.50 1399.35		0.19 0.44	-
		zones of greyish pink (hematized) and greyish yellow (sericitized) alteration. Generally, it is weakly	15	0.5 tr		UVZ	19947	1398.50			2.13	2.19
		pervaded with ankerite and veined with 3% dull grey carbonate and quartz fractures and wormy veinlets and 2-3% black specularite/ chlorite fractures. Sulphides average trace overall but are slightly anomalous	1	tr		<del>                                     </del>	19948		1400.20		0.25	0.22
		to 0.5% in some of the altered and veined zones (see below).	1	tr tr			19949		1402.00		0.25	-
		4007.70. 4000.05 · OV71.67				-	-					·
		1397.70- 1399.35 : QVZ/ SZ  Zone of 10- 12% wormy grey quartz veinlets and stringers and silicification (random distribution/ orientation) overprinting a fractured grungy greyish pink altered zone with up to 0.5% sulphides over the							-			
		lower 0.5m.	_			<u> </u>						
			$\vdash$				-					
		Through this segment, the tuff is specularite/ chlorite fractured (4- 6%) and altered to a mottled greyish tan/	$\vdash$	<del>                                     </del>								
		i corporu una acontent, que jun la specimante, colonie d'actureu 14- 0761 ano altereu 10 a monteu grevisti fabri		i l		i						

		DESCRIPTION (Hole no AK05/09-10W2)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		1419.15- 1488.58 : V4T										
		The tuff, again, becomes relatively fresh and fine/ very fine grained, assuming a dark maroon/ purple grey hue. Beginning at about 1442m, the matrix becomes weakly pervaded with calcite.										
		1462.08- 1463.06 : 1Sa	<u> </u>									ĺ
		Altered massive, medium grained, grungy medium/ dark greyish pink coloured syenite dike with sharp contacts @ 60/ 68 DTCA.			_							
488.58	1508.00	1Sp/1S										_
		The interval begins on a subtle, but visible, contact @ 65 DTCA into a medium grained, dark pinkish grey to greyish pink coloured, massive looking syenite that is very weakly porphyritic (<0.5% white subhedral feldspar phenos) and contains 0.5- 1% mafic inclusions. The inclusions are typical of Timiskaming syenite porphyries but the lack of phenocrysts implies a "felsic syenite" protolith. At any rate, it is weakly to moderately magnetic, pervasively calcitic, very weakly veined (<0.5%), and poorly mineralized (trace). The lower contact coincides with a chlorite slip @ 25 DTCA.										
	4007.75											
508.00	1607.75	The hole returns to the trachyte tuff assemblage as described above at 1419.15m and 1395.82m, fine to medium grained, massive, locally granular textured and dark greyish brown/ pink coloured. It remains moderately magnetic, calcitic, weakly veined and poorly mineralized.										
		1518.10- 1518.16 : FAZ	0.5	tr			19951	1516.80	1517.80	1.00	0.12	0.11
		Zone of minor chlorite slips and cataclastic textures @ 40 DTCA with local chlorite/ specularite fracturing	0.5	tr	40	FAZ	19952		1518.60	0.80	0.04	-
		for a metre or so up and down hole. The fractured walls are also altered to a grungy medium greyish orange colour but are not mineralized.	0.5	tr			19953		1519.50	0.90	0.03	-
		1531.00- 1561.00 : V4T/ V4										
		At about this point, the tuff begins to contain very fine grained, massive, dark greyish maroon coloured, irregular masses and blobs which may represent trachyte bombs or narrow segments of trachyte flows. Overall, it remains moderately to strongly magnetic with local weakly magnetic patches, pervaded with calcite, weakly veined (1%), and poorly mineralized with trace Py grains.										
		1561.00- 1578.50 : V4T				<b></b>						
		Back to the typical dark greyish pink/ brown, massive, fine grained trachyte tuff which becomes slightly lighter coloured in areas of specularite/ chlorite fracturing. It remains weakly pervaded with calcite, weakly veined with 1% dull white/ pink calcite fractures and veinlets, and poorly mineralized with trace Py.										
		1578.50- 1580.10 : 1Sp  Sharp leading and trailing contacts @ 25/ 25 DTCA into a typical, massive, dark greyish brown, medium grained syenite porphyry that consists of 20- 25Y, dull white, 1-4mm sized, sub to euhedral feldspar										
		phenocrysts in a fine/ medium grained feldspathic groundmass. It is weakly to moderately magnetic, non reactive to carbonate testing, and essentially unveined and unmineralized.										
		1580.10- 1593.85 : V4T	<u> </u>			-	<del>                                     </del>					
		Back into the trachyte tuff as described.										
		4500.05, 4500.00, 440-										
		1593.85- 1596.00 : 1Sp  Another syenite porphyry dike as at 1578.50m, intersects the tuff with sharp contacts @ 55/ 30 DTCA. The										

	The state of the s	DESCRIPTION (Hole no AK05/09-10W2)	Qcv	Dv/Da	and the second		Sample		ples / A	The second secon		۸
rom (m)	To (m)	Description	(%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		dike is weakly to moderately altered around a central 7.5cm quartz breccia vein which is detailed separately below.										
							_			_		
		A quartz breccia zone consisting of 20% angular chips of porphyry in a cloudy grey quartz vein intersects	1	tr			19954	1592 00	1593.00	1.00	< 0.01	_
		the core @ 70 DTCA. It is cut by a later chlorite carbonate slip which offsets the vein by about 3cm along	1	tr	-		19955		1593.80	0.80	0.03	0.0
		the core length. The vein contains only trace Py but the later slip is mineralized with 2% splashes of Cp	25	0.5	70	QVZ	19956	1593.80	1594.30	0.50	< 0.01	-
		over the interval.	1	tr			19957		1595.00		< 0.01	
			1	tr			19958		1596.00	1.00	< 0.01	-
		1594.09- 1607.75 : V4T/ V4RS	1	tr			19959		1597.00	1.00	0.02	-
		The hole continues in a splotchy trachyte which may contain sections of spotted trachyte flow material.	1	tr			19960		1598.00 1599.00		< 0.01 < 0.01	0.0
	_	Generally, the host resembles medium/ light yellowish brown altered massive trachyte tuff with an	1	tr tr			19961 19962		1600.00		< 0.01	
		overprinted microfracture pattern which partially channels the alteration, but, in places, there are distinctive euhedral looking dull to dark grey ghosts of (hexagonal?) phenocrysts (pseudoleucite?). The host remains	1	2			19962		1601.00		0.01	
-		weakly magnetic, and becomes weakly pervaded with ankerite. Veining and mineralization remains low at	1	tr			19964		1602.00		< 0.01	
		<1% and trace, respectively. Several porphyry dikes continue to cut the sequence. Approximately 4% Cp										
		fracture fillings occur between 1600.70- 1601.00m.										
		1598.72- 1599.87; 1605.37- 1607.75 : 1Sp										
		Two syenite porphyry dikes intrude the tuff/ spotted trachyte package with well defined contacts @ 30/ 30 & 50/ 45 DTCA.						<del>_</del> _				_
		VVD0										
)7.75	1668.37	The porphyritic nature of the protolith becomes more pronounced below the latter dike consisting of 15-										
	_	30% somewhat diffuse to reasonably well formed, hexagonal shaped, reddish altered/ coloured, feldspar/						<del>-</del>				
		feldspathoid phenocrysts in a fine grained, light/ medium grey/ yellowish buff groundmass. in places, the										
		matrix is microfractured causing the yellowish buff (sericite- ankerite) alteration to alter the groundmass										
		and rim the phenos. The trachyte is moderately magnetic, weakly pervaded with ankerite and weakly microfractured with <1% veining. No significant sulphides were noted.									-	
		microfractured with <1% veining. No significant sulprides were noted.										
	_	1659.50- 1668.37 : V4RS/ V4										
		There is a change to a less obviously spotted phase in which faint outlines of pseudoleucite phenocrysts										
		are visible within a more ophitic textured, medium grained, light greyish pink mottled, mafic to feldspathic										
		groundmass. The spots become coarser near the base of the unit and terminate abruptly @ about 55										
		DTCA.										
8.37	1675.55	V4MT The upper section consists of fine grained, massive, dark brownish/ maroonish grey coloured mafic							<b></b>	<b></b>		
		trachyte tuff that is cut by a syenite porphyry dike. The tuff is moderately magnetic, weakly pervaded with										
		calcite, weakly veined (<0.5%), and poorly mineralized with trace sulphides.						_				
		odiolo, nodity romas ( 5.577), dire poorly minoralized with trace darkings.										
		1670.20- 1673.03 : 1Sp										
		The unit is moderately fractured and microfractured which partially obscures the porphyritic texture but in										
		places it becomes obvious comprising 20- 25%, dull white, subhedral, 2-4mm, feldspar phenocrysts in a										
		fine grained, in a medium greyish pink coloured feldspathic groundmass. It is laced with 8% fine dull pink/										
		grey calcite fractures but essentially unmineralized (trace). The contacts are well defined @ 55/70 DTCA.						<u> </u>	<del> </del>			
75 EE	1702.60	\/A	_	$\vdash$		<del>                                     </del>						
5.55	1702.00	The host becomes more crystalline textured below a well defined contact @ 20 DTCA. It is generally fine		$\vdash$		<b>—</b>						

From . (m)	To (m)	Description	Qcv	Py/Po	1	1	10	ı	1	I	ı	*
		Description	(%)	(%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		grained, grading to medium grained in places, massive, homogenous, and dark pinkish grey coloured with zones of fine, euhedral, tabular, black to green/ grey altered mafic crystals and areas that contains 1- 2%, 1-3mm, pink/ red grains which may represent tiny leucite nuclei. It is moderately magnetic, weakly pervaded with both calcite and ankerite, mildly veined (<1%) with calcite fractures and veinlets, and, essentially barren (trace Py).					-					
702 60	1718.34	1Sn										
1702.00		Sharp contact @ 25 DTCA into a typical syenite porphyry dike that is characterized by 20%, dull white to light orange coloured, 2-5mm, slightly bimodal, subhedral, feldspar phenocrysts in a medium to fine grained, dark/ medium purple/ violet grey, feldspathic groundmass that contains up to 15% altered mafic grains and inclusions. The porphyry is moderately magnetic except in the centre of a QVZ (see below) where it becomes non magnetic. Outside of this zone, veining and sulphides are negligible (<0.5%/ trace).										
		Where it becomes from magnetic. Outside of this zone, vorting and outprinted are negligible ( 0.070 table).										
		1706.70- 1707.40 : QCVZ The interval contains approximately 15% dull white, quartz- calcite veinlets and stringers to 3cm that trend @ 65 DTCA. Apart from some specularite streaks in fractures along the edges of the veins, mineralization runs trace.					40005	1705 70	4700 70	1.00	< 0.01	_
-			0.5 15	tr tr	55	QCVZ	19965 19966		1706.70 1707.40	0.70	< 0.01	-
		About 20- 25% dull grey quartz veining mostly along the core axis with several 1cm quartz- carbonate stringers cutting the flat veins @ 45 DTCA. The veins and immediate walls are mineralized with trace to	0.5 0.5	tr tr		QOVE.	19967 19968	1707.40 1708.30	1708.30 1709.40	0.90 1.10	< 0.01 < 0.01	-
		very slightly anomalous Py, Cp, specularite and very minor moly on some slips. There is a possibility that some of the brassy yellow grains are calaverite (telluride). This does not look like the SMC type	0.5	tr tr			19969 19970		1710.00 1711.00	0.60 1.00	< 0.01	-
		mineralization and there is no associated chloritic structure.	35 25	tr tr		QVZ QVZ	19970 19971 19972	1711.00	1712.00 1712.70	1.00	0.01	-
718.34	1730.08	V4MT	12	tr		QVZ	19973		1713.40	0.70	< 0.01	-
		An irregular rolling contact @ about 55 DTCA leads into a dark grey, purple black coloured, fine grained,	0.5	tr			19974	1713.40	1714.20	0.80	< 0.01	< 0.01
		granular/ ashy textured, massive, mafic tuff that contains scattered, rounded local alkalic (syenite/ trachyte) clasts (to 8cm) and narrow pebbly lenses. The unit is moderately magnetic, veined with 4% fine whispy calcite fractures and veinlets and weakly pervaded with calcite. Sulphides run trace.										
		1729.33- 1730.08 : 1S(p)						_				
	1	Weakly porphyritic massive, medium grained, medium greyish pink coloured syenite dike intrudes the tuff with well defined contacts @ 45/ 85 DTCA, ending the unit.										
730,08	1750.82	V4aqql										
		The contact into a more strongly pebbly to agglomeratic/ conglomeratic host was arbitrarily taken at the base of the dike. Generally, it consists of a dark greenish grey, fine grained, granular/ ashy textured tuff (/ wacke) matrix with numerous scattered clasts and lenses of polymict, clast supported, conglomerate/ agglomerate in which the clasts are rounded, spherical to ovoid in shape, and mostly mafic to alkalic (including porphyritic) in composition. It is moderately to strongly magnetic, pervasively calcitic, veined with 6% zones of fine lacey calcite fractures and veinlets, and essentially barren.										
750.82	1759.50	-										
		The contact was taken below the last clasts at a change from a fine to a very fine grain size where the host becomes dark grey to brownish grey, and massive with no hints of bedding but with some scattered clasts near the end. It is weakly pervaded with calcite, moderately magnetic, veined with 1% calcite fractures and										

			DESCRIPTION (Hole no AK05/09-10W2)				CHENE THE		Jan	ples / A	coufo		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
1759 50	179	3 32	1Sp/ 1S									-	
1759.50	179		A very subtle rolling contact along the core axis @ 15 degrees leads into an odd syenite porphyry dike which is characterized by 5% dull white subhedral, 2-3mm feldspar and 5% dark green/ black altered mafic tabular 3- 5mm mafic phenocrysts in a fine/ medium grained dark grey/ purple grey coloured groundmass that consists of mixed feldspathic and altered mafic material. The host contains a number (1- 2%) mafic inclusions and is moderately to weakly magnetic, weakly calcitic to non reactive, veined with 1% calcite veinlets and devoid of sulphides.										
793.32	1831	1 40	19n				-						
			The contact between the two porphyry dikes (@ 75 DTCA) falls in some minor broken core making the exact nature of the intrusive relationships unclear. However, there is a definite change to a more typical syenite porphyry that consists of 15- 25%, dull white, 2-5mm, sub to euhedral, feldspar phenocrysts in a fine/ medium grained, dark purple/ brownish grey coloured, feldspathic groundmass. The unit is weakly calcitic to non reactive, mildly veined with 0.5% fine calcitic fractures and veinlets, weakly magnetic, and devoid of sulphides (trace). In addition, the core is broken up along random fractures resulting in an RQD estimated at 50%, and, in areas that are fractured and altered, the porphyritic texture is masked/ faded.										
		$\dashv$	1830.30- 1831.40 : 1Sp/ CZ				<u> </u>						
			There is a sharp contact at the start of the interval al @ 90 DTCA with a fine grained mafic section (inclusion?) of the contact phase, but, overall, it seems to grade in and out of phenocrystic zones until the lower contact which seems to meander at a low angle to the core axis over about 25cm.										
831.40	1856	6 88	1SM2										
			The low angle contact leads into a typical, medium/ coarse grained, massive, homogenous, and dark maroonish grey coloured mafic (basic/ augite) syenite that is cut by minor syenite porphyry dikes. In the best preserved areas (i.e. 1835.55m), the texture comprises 25-35%, dull/ medium grey altered, euhedral, 3-7mm, tabular to hexagonal shaped augite phenos in a fine/ medium grained, dark greyish maroon coloured, feldspathic groundmass that is moderately magnetic, weakly pervaded with calcite, and moderately veined/ fractured with 3-5% fine calcitic fractures and veinlets. sulphide mineralization continues to run trace.										
		-	1853.17- 1856.88 : 1Sp/ 1SMa										
		_	The lower section consists of irregular amorphous lenses of syenite porphyry cutting the host mafic syenite at various attitudes.										
856.88	1860	9.65	1Sn										
	1000		A well defined undulating contact @ 25 DTCA leads into another syenite porphyry dike as previously described, 10- 20%, dull white, 1-4mm, subhedral, equant to tabular feldspar phenocrysts in a fine/medium grained, dark maroon grey feldspathic groundmass with 1-2% mafic inclusions. Furthermore, it is weakly to moderately magnetic, non reactive to weakly pervaded with calcite, veined with 2-3% fine calcite fractures and veinlets, and unmineralized.										
869.65	1000	0.75	1CMa	<u> </u>					<del></del>				
003.05	1900		Table  Back into a mafic syenite below a chlorite- calcite veinlet @ 45 DTCA. As above, it is medium/ coarse grained, massive, relatively homogenous, and dark maroonish/ brownish grey coloured. It was found to be moderately magnetic, moderately to weekly pervasively calcitic, and veined with 3-5% calcite veinlets and stringers with some local orange K spar(?)/ calcite/ chlorite patches. The mafic syenite remains poorly	3 3	tr tr tr			19975 19976 19977	1892.00	1892.00 1893.00 1894.00	1.00	< 0.01 0.02 0.05	- -
		:	mineralized with trace Py grains and minor specularite (along fractures). The lower 11m or so become		tr		<b>-</b>	19977	1894.00		1.00	0.01	_

		DESCRIPTION (Hole no AK05/09-10W2)	100					Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		moderately chlorite fractured leading up to the QVZ.	3	tr			19979	1895.00	1896.00	1.00	1.23	0.99
			3	tr			19980	1896.00	1897.00	1.00	0.02	-
		1885.00- 1886.85 : 1Sp	3	tr			19981	1897.00	1898.00	1.00	0.02	-
		A syenite porphyry dike cuts the basic syenite with irregular contacts.	3	tr			19982	1898.00	1899.00	1.00	0.11	-
			3	tr			19983	1899.00		1.00	0.18	
900.75	1906.95	QVZ	3	tr			19984	1900.00		0.75	0.28	0.29
		The mafic syenite is intersected by a series of quartz/ quartz breccia veins, patches and stringers with	75	7		QVZ	19985	1900.75		0.85	4.53	4.09
		accompanying silicification (20%) that all trend roughly @ 75- 85 DTCA. Veining consists of dull white to	12	3		QVZ	19986		1902.40		0.75	-
		grey silicification and discrete veining, often emanating from fracture sets, thereby causing a breccia like	8	1		QVZ	19987	1902.40		0.75	0.81	-
		pattern in places. Some of the veining overprints a syenite porphyry dike from 1901.60- 1903.15m, but	10	0.5		QVZ	19988	1903.15		0.85	1.03	1.07
		most is concentrated over the leading 0.5m and lower 0.25m. The vein walls and inclusions/ fractures are	5	0.5		QVZ	19989	1904.00	1905.00	1.00	1.04	0.99
		mineralized with up to 10% fine grains, crystals and splashes of Py and Cp, perhaps averaging	8	0.5		QVZ	19990	1905.00	1906.00	1.00	1.65	1.60
		approximately 1- 2% throughout. The mafic syenite remains calcitic through the interval while the porphyry	25	4		QVZ	19991	1906.00	1906.95	0.95	2.36	2.23
		is non reactive. No structure nor obvious vg or tellurides were noted.										
000.05	4000.00	4CM-	5	tr		-	10000	1006.05	1907.00	0.05	0.05	
906.95	1923.30		5	tr tr			19992 19993		1907.00	1.00	0.05	-
		Back into the mafic syenite as described previously at 1869.65m, medium/ coarse grained, massive,		-		<b> </b>					0.08	0.13
		relatively homogenous, dark maroonish/ brownish grey coloured, moderately magnetic, moderately to	5	tr			19994		1909.00	1.00	0.13	_
		weakly pervasively calcitic, and veined with 5- 7% lacey networks of fine calcite fractures and veinlets. No		tr			19995		1910.00		0.10	-
		significant sulphides were observed although specularite fracture fillings were noted locally.	5 5	tr tr			19996 19997		1911.00 1912.00	1.00	0.21	-
		1950.58- 1918.66 : 1Sp		u		1	19991	1911.00	1912.00	1.00	0.10	_
		A typical syenite porphyry dike comprised of 20%, dull white, subhedral, 2-4mm, feldspar phenocrysts in a										
		fine/ medium grained, medium/ dark greyish pink feldspathic groundmass, intersects the host with well										
		defined contacts @ 80/ 35 DTCA. It is veined with 3% fine pink calcite veinlets and weakly mineralized										
		(trace).										
			1	tr			19998	1922.20	1923.30	1.10	0.11	-
923.30	1938.65	1Sa	1	tr	1		19999	1923.30	1924.00	0.70	0.56	-
		There is an apparent change in lithology at a fractured carbonate stringer @ 35 DTCA into a medium	1	tr	0.5		20000	1924.00	1925.00	1.00	0.32	-
		grained, massive syenitic unit that is grungy medium greyish orange/ pink coloured where moderately	1	tr			45501	1925.00	1926.00	1.00	1.10	1.05
		fractured/ microfractured, and more fine textured and dark brownish/ pinkish grey coloured where less	1	tr			45502	1926.00	1927.00	1.00	0.41	-
		deformed. Both phases are weakly calcitic but the more strongly altered sections are non magnetic while	1	tr			45503	1927.00	1928.00	1.00	0.25	-
		the less altered sections are moderately to weakly magnetic. Veining is minimal overall (1%) but sulphide	1	tr			45504	1928.00	1929.00	1.00	0.04	-
		content increases to 0.5- 2% in the altered sections, dropping to trace in the least altered.	1	tr			45505	1929.00	1930.00	1.00	0.11	0.09
			1	tr			45506	1930.00	1931.00	1.00	0.12	-
		1937.12- 1937.28 : FAZ	1	tr			45507	1931.00	1932.00	1.00	< 0.01	-
		Crush chlorite fault/ slip at a low angle (10 degrees) to the core axis with some local grungy chlorite	1	tr			45508	1932.00	1933.00	1.00	< 0.01	-
		fracturing in the walls. There are no anomalous sulphides associated with the structure.	1	tr			45509	1933.00	1934.00	1.00	0.09	
							45515	100:	100===	4.50	0.40	
020.05	40.40.00	NII 4C	8	1 **		-	45510 45511	1934.00 1935.00	1935.00 1936.00	1.00	0.13	-
<b>938.65</b>	1946.30	Somewhat ragged, low angle (15- 20 degree) contact with a fine grained, medium grey/ brownish grey	1	tr tr		1	45511	1935.00		1.00	< 0.02	<del></del>
		coloured, massive lithology that resembles a wacke but is crystalline textured. It is non magnetic at the	3	tr	-	ļ	45512		1937.00	1.00	0.29	
		start but becomes moderately magnetic by the end and is pervasively ankeritic although the 5- 7% fine,	3	tr	_		45514		1939.00	1.00	0.44	
		dull white/ grey lacey fractures and veinlets cutting the unit are mostly calcitic (some quartz and ankerite).	7	tr		-	45515		1940.00	1.00	0.56	
		Mineralization consists of an average of trace sulphides with increases to 2% over 5- 10cm in the walls of	<del>-</del> 7	tr		1	45516		1941.00	1.00	0.56	0.58
		altered some slips/ fractures.	7	1			45517	1941.00		1.00	0.53	
		uncred donne disportituatures.	<del>-</del> 7	tr			45518		1943.00	1.00	0.02	-
242.22	1977.20	LONG.	7	tr			45519	1943.00		1.00	0.01	

1 State		DESCRIPTION (Hole no AK05/09-10W2)		Highestellants				Jan	ples / A	issays		
rom (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		The leading contact of the altered mafic syenite is obscured by a small section of broken core. Overall, it is	7	tr			45520	1944.00	1945.00	1.00	0.05	
		massive, relatively homogenous, medium/ coarse grained, and dark to medium pinkish to orange/	7	tr			45521	1945.00	1946.00	1.00	0.02	-
		brownish grey mottled. When tested for carbonate, it was generally non reactive although 2- 4% fine	3	tr			45522	1946.00	1947.00	1.00	0.15	-
		fractures and veinlets tended to be calcitic. The more orange altered sections, which were associated with		tr			45523	1947.00	1948.00	1.00	0.17	-
		fractures, contained slightly anomalous Py while the remainder is mineralized with trace.	3	tr			45524	1948.00	1949.00	1.00	1.00	0.9
	_		3	tr			45525	1949.00	1950.00	1.00	0.67	-
			1	tr			45526	1950.00	1951.00	1.00	0.46	-
		1974.50- 1974.77 : QCVZ	1	tr			45527	1951.00	1952.00	1.00	0.19	0.2
		Minor QCVZ zone comprising a leading, 1cm, pale pink, quartz- carbonate breccia vein @ 80 DTCA	1	tr			45528	1952.00	1953.00	1.00	0.18	_
		followed by 25% conjugate(?) calcite- quartz cross stringers ending at a chlorite slip @ 55 DTCA. Veining	1	tr			45529	1953.00	1954.00	1.00	0.11	-
		amounts to 25- 30% overall and mineralization consists of 2% fine disseminated Py. The vein zone is	1	tr			45530	1954.00	1955.00	1.00	0.19	Γ-
		preceded by a 2mm quartz- chlorite slip @ 60 DTCA with 1% Py mineralized walls over 5cm about 0.5m	1	tr			45531	1955.00	1956.00	1,00	0.14	_
Î		up hole.	1	tr			45532	1956.00	1957.00	1.00	0.47	-
			3	tr			45533	1957.00	1958.00	1.00	0.78	
77.20	2048.55	1Sp	3	tr			45534	1958.00	1959.00	1.00	0.36	0.4
		The leading contact is lost in a small section of broken/ ground core but appears natural. The upper 2m of	3	tr			45535	1959.00	1960.00	1.00	0.27	
	_	the porphyry are well microfractured, silicified and altered to a light/ medium greyish pink/ orange colour.	3	tr			45536	1960.00	1961.00	1.00	0.33	
Ī		There is a gradation over another 2m into fresh porphyry which is characterized by: a dark brownish grey	3	tr			45537	1961.00	1962.00	1.00	3.26	3.7
		colour; medium grain size; and, a distinctive porphyritic texture formed by 20%, 1- 5mm, dull grey/ white,	1	tr			45538	1962.00	1963.00	1.00	0.08	
		sub to euhedral, feldspar phenocrysts in a fine/ medium grained, feldspathic groundmass that contains	1	tr			45539	1963.00	1964.00	1.00	0.19	
		smaller feldspar phenos and mafic grains. The matrix tends to be non reactive but minor fractures and										
		veinlets (1%) are calcitic or quartz. Also, fresher sections are moderately magnetic while the altered ones										
		are non magnetic, and, correspondingly, the altered zones are better mineralized with up to 4% fine Py.										
	_											
			2	tr			45540		1973.90	0.90	0.03	
		1977.20- 1979.00 : 1Spa	12	0.5			45541	1973.90		1.10	0.82	-
		As mentioned, the upper 2m are well microfractured, silicified and altered to a light/ medium greyish pink/	8	tr			45542		1976.00	1.00	0.66	
		orange colour as well as mineralized with 1-4% fine disseminated Py. There is no dominant structure to	2	tr			45543		1977.00	1.00	0.45	-
		account for the alteration and mineralization. Locally, there are minor (<0.5m) altered zones with	2	4		1Spa	45544			1.00	0.67	
		anomalous to 0.5% disseminated sulphides scattered through the unit. They are usually associated with	2	2		1Spa	45545		1979.00	1.00	2.26	1.7
$\longrightarrow$		minor chlorite slips/ fractures @ 55- 65 DTCA.	2	tr			45546	1979.00	1980.00	1.00	0.18	-
			2	tr			45547	1980.00	1981.00	1.00	0.36	-
$\rightarrow$			2	tr		<del>                                     </del>	45548	1986.30	1987,30	1.00	0.19	<u> </u>
		A local altered segment of the porphyry is centred on a 0.8cm dull grey quartz stringer and chlorite slip @	7	0.5		1Spa	45549	1987.30	1988.00	0.70	0.93	0.8
		30 DTCA with 0.5% Py mineralization in the walls.	2	tr		10,55	45550	1988.00	1989.00	1.00	0.11	-
		1998.54- 1998.55 : QVZ	1	tr			45551	1997.00	1998.00	1.00	0.15	-
		Streaky 0.7cm dull grey quartz veinlet (looks like ore type) @ 60 DTCA accompanied by 45cm of medium	4	0.5		1Spa	45552	1998.00	1998.70	0.70	0.49	
		greyish pink alteration up hole (only) and 0.5% disseminated fine to medium Py.	1	tr			45553	1998.70	1999.70	1.00	0.02	
		2003.40- 2004.30 : 1Spa	0.5	tr			45554		2003.40	1.00	0.69	
		Weakly altered zone with 0.5% fine disseminated sulphides around weak chlorite fractures @ about 45	0.5	0.5		1Spa	45555		2004.30	0.90	0.09	
		DTCA	0.5	tr			45556	2004.30	2005.35	1.05	0.26	_
			L									<u> </u>
		2012.32- 2012.33 : FAZ	<u> </u>									<del></del>
		Weak chlorite slip @ 60 DTCA followed by 0.3m of alteration and anomalous sulphides.	<u> </u>			L						<del></del>
			<u> </u>								_	—
		2023.91- 2023.92 : FAZ		1 1		1	1	1			1	1

		DESCRIPTION (Hole no AK05/09-10W2)						Vall	ples / A			numicina (MCC)
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		zones up and down hole, respectively.										
		2032.00- 2033.00 : 1Spa	1	tr			45557	2031.00	2032.00	1.00	0.19	<del> </del>
		The zone is altered and weakly mineralized with trace/ anomalous sulphides around several chlorite slips	4	tr		<u> </u>	45558		2033.00	1.00	0.45	<del></del>
		@ 55/ 70 DTCA.	1	tr			45559		2034.00	1.00	0.06	-
_	<del>                                     </del>		<u> </u>	- "			10000	2000.00	2001.00	1.00	0.00	
48.55	2067.60	1Spa	1	tr		1Spa	45560	2047.55	2048.55	1.00	0.17	-
		This segment of the porphyry is moderately fractured and altered to a grungy medium greyish orange/	10	1		1Spa	45561	2048.55	2049.20	0.65	0.04	-
		brown colour beginning with a ragged low angle quartz (- specularite) vein zone (15% over 35cm) followed	2	tr		1Spa	45562	2049.20	2050.00	0.80	0.09	-
		by a chlorite slip @ 35 DTCA. Within the altered zone, the phenocrystic textures are obscured but in the	2	tr		1Spa	45563	2050.00	2051.00	1.00	0.03	-
		less altered windows, it is clearly visible as described at 1977.20m. Most of the interval, is fractured/	2	tr		1Spa	45564		2052.00	1.00	0.20	-
		microfractured with weak calcite/ chlorite fillings and altered walls. Mineralization consists of trace to 2%	8	0.5		1Spa	45565		2053.00	1.00	0.20	-
		sulphides with the higher concentrations of Py around the stronger fractured and veined areas.	2	tr		1Spa	45566		2054.00	1.00	0.14	0.1
			2	tr		1Spa	45567		2055.00	1.00	0.21	-
		2000 50 2000 50 2007	2	tr		1Spa	45568	2055.00		1.00	0.41	-
		2066.50- 2066.60 : QVZ	2	0.5		1Spa	45569		2057.00	1.00	0.18	-
		Mottled medium/ light purplish grey quartz vein @ 75/ 80 DTCA with vein and walls mineralized with 2%	2	tr tr		1Spa	45570		2058.00	1.00 1.00	0.07	-
		fine grains/ crystals of Py and minor splashes of Cp. It looks like a typical KL type vein.	2	tr		1Spa 1Spa	45571 45572		2060.00	1.00	0.02	
			2	2		1Spa	45573		2061.00	1.00	2.81	2.7
	-	<u> </u>	2	1		1Spa	45574		2062.00	1.00	0.15	
			2	0.5		1Spa	45575		2063.00	1.00	0.24	
			2	1		1Spa	45576		2064.00	1.00	0.58	0.6
			2	0.5		1Spa	45577	2064.00		1.00	0.27	-
			2	1		1Spa	45578		2066.20	1.20	0.38	-
			20	2		QVZ	45579	2066.20	2066.70	0.50	0.69	-
67.60	2113.10	1Sp	2	tr		1Spa	45580	2066.70	2067.80	1.10	0.11	0.1
		At about this point, the continuous alteration of the porphyry ends and becomes intermittent, affecting										
		about 10- 15% of the interval. Otherwise, it is relatively fresh looking, dark maroonish grey coloured,										
		massive, mildly fractured/ microfractured, homogenous comprised of 15% diffuse, subhedral, white, 1-										
		4mm, feldspar phenocrysts in a fine/ medium grained, feldspathic groundmass. Whereas non to weakly										
		magnetic in the altered sections, it becomes moderately magnetic where fresher and is non reactive with										
		very minor (<1%) veining and trace sulphides except in altered areas as noted. Some of the better altered zones were sampled.					_					
		zones were sampled.						<b>-</b>				
		2083.00- 2083.90 : 1Spa	1	tr			45581	2082.00	2083.00	1.00	0.16	-
		Moderately altered zone centred on 10% irregular dull grey quartz stringers and anomalous to 0.5% fine	15	0.5		1Spa	45582		2083.90	0.90	0.41	-
		disseminated Py.	1	tr		1000	45583		2085.00	1.10	0.12	-
		2096.71- 2096.72 : QVZ	1	tr			45584	2095.50	2096.55	1.05	0.21	-
		Less than 1cm dull grey quartz stringer @ 65 DTCA with halo of 2% disseminated Py over 5cm in the	6	tr		1Spa	45585		2097.50	0.95	0.20	-
		altered walls. There is minor spotty alteration over 0.5m down hole.	1	tr			45586	2097.50	2098.50	1.00	0.13	-
												L
		2011.36- 2011.37 : QVZ	1	tr			45587		2111.15	1,15	0.23	-
_		Up to 1cm white quartz breccia vein @ 75 DTCA rimmed with a 5cm halo of 4% fine Py.	10	1		QVZ	45588		2111.55	0.40	0.48	-
			2	tr				2111.55		0.65	0.07	-
13.10	2126.25		2	tr			45590		2113.00		0.19	
13.10		1Spa  Back into another weakly to moderately altered syenite porphyry zone in which the phenocrystic texture is obscured by fine fracturing/ microfracturing and light/ medium greyish pink/ orange/ maroon alteration of	2 2 2	tr 0.5 tr			45591	2113.00	2114.00 2115.00	1.00 1.00	0.19 0.51 1.17	0.9

1,000		DESCRIPTION (Hole no AK05/09-10W2)						Sam	ples / A	ssays		
From . (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		dull white feldspar phenocrysts are faintly visible. Veining remains minimal to that point (<1%, calcitic) and	2	tr			45594	2116.00	2117.00	1.00	0.19	-
		sulphides run trace to 0.5% over 10- 30cm, but below, irregular blebby quartz veining increases with a	2	tr			45595		2118.00	1.00	0.06	-
		corresponding increase in fine disseminated Py mineralization to as high as 6% over 20- 40cm. The	2	tr			45596		2118.85	0.85	0.19	0.23
		altered porphyry also has lost its magnetism.	5	0.5			45597		2119.60		0.69	-
			35	2		QVZ	45598		2120.15		22.23	22.00
		2119.75- 2120.05 : QVZ	10	3			45599		2121.00		0.13	-
		40% patches of dull white quartz veining with some steep (75degree) attitudes and 4% fine disseminated	12	4					2122.00		1.58	1.51
		sulphides in the walls.	6	4			45601		2123.00	1.00	1.16	1.37
$\longrightarrow$			20	2		QVZ	45602		2123.75	0.75	1.92	2.04
$\longrightarrow$		2123.56- 2123.58 : FAZ	10	2					2124.80	1.05	0.89	-
		A weak chlorite fault/ slip @ 35 DTCA seems to end the quartz vein zone. There are a few weaker fracture zones/ slips approximately 0.5m up and down hole @ 40/ 65 DTCA, respectively.	8 5	0.5					2125.40 2126.25	0.60 0.85	0.29	-
		-					15000	2122.25	2427.00	. 7.	0.40	0.40
126.25	2366.50		3	tr			45606		2127.00		0.12 0.12	0.12
$\longrightarrow$		Below this point, the syenite porphyry passes out of the fractured and altered section back into fresher	1	tr			45607	2127.00	2128.00	1.00	0.12	-
		looking host in which the phenocrysts are clearly visible throughout. It is locally altered, but, where fresh,		<del> </del>		_						
		consists of 15- 20%, dull white,1- 4mm, subhedral feldspar phenos in a dark brownish grey/ grey coloured,										
		fine/ medium grained, feldspathic groundmass. Below 2142.50m, it becomes weakly bimodal. It is non reactive to weakly calcitic, mildly veined (1%) with calcite fillings, moderately to weakly magnetic, and				-						
$\longrightarrow$		essentially unmineralized.										
+		essentially unimineralized.										
		2127.00- 2138.50 : BBC										
-		The upper portion of the porphyry is broken up into small pieces resulting in an estimated RQD of 40%.										
		Below, the RQD climbs to 85% in totally unaltered host.										
		Actually a chlorite slip @ 15 DTCA with fine chlorite crackle fracturing and weak/ moderate alteration over 0.4m up and down hole accompanied by anomalous/ 0.5% fine Py.										
		2212.07- 2212.09 : SZ	7	tr			45608	2210.85	2211.85	1.00	< 0.01	< 0.01
		2cm zone of porcelainic to cherty type silicification at roughly 45 DTCA enclosed within a 10- 20cm halo of	15	tr		SZ	45609		2212.30	0.45	0.14	-
		moderate alteration containing 1- 2% fine disseminated Py.	1	tr			45610	2212.30	2213.30	1.00	0.03	-
		2233.65- 2233.97 : : QCVZ										
		Pink/ white, 2- 3cm quartz- calcite vein @ 15 DTCA that has altered the walls for 0.5m up and down hole accompanied by 0.5% disseminated Py. The core is splintered around the vein and bounding slips.						_				
		2257.25-2257.31 : FAZ		$\vdash$								
$\longrightarrow$		Zone of chlorite fracturing between 2 chlorite slips @ 50 DTCA with minor alteration over 20cm but no	<u> </u>	4-		-	45044	0070.00	0074.00	1.00	0.08	
$\longrightarrow$		significant mineralization in the walls.	1 15	tr 2	75	0.77	45611 45612		2274.20 2274.70	1.00 0.50	1.03	1.20
$\longrightarrow$		2274 40 2274 50 · 01/7	4		75	QVZ		2274.20		1.10	0.66	1.20
$\longrightarrow$		2274.40- 2274.50 : QVZ  Zone of 15% purplish silicified fractures and 0.6cm white quartz vein @ 75 DTCA accompanied by 10cm	2	tr tr			45614		2275.80	1.20	0.00	-
			1			-	45615		2278.00	1.00	0.19	-
-		sericitic alteration and 2% fine sulphides.	1	tr tr			45615		2278.00	0.85	0.05	-
$\Box$												
		2270.05, 2270.20 + 4022				1500						
		2278.85- 2279.30 : 1Spa The grungy medium/ light greyish pink alteration is centred on a chlorite slip @ 55 DTCA but sulpide	1	tr tr		1Spa	45617 45618	2278.85	2279.30 2280.20	0.45	0.12 0.01	0.13

		DESCRIPTION (Hole no AK05/09-10W2)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		2286.95- 2287.00 : QVZ	1	tr			45619	2286 00	2286.80	0.80	< 0.01	-
		Wormy 1cm dull white quartz stringer intersects the core @ 85 DTCA and is rimmed by a 10cm alteration	15	3	85	QVZ	45620	2286.80	2287.10	0.30	0.25	-
		halo and 2- 3% fine Py.	1	tr			45621	2287.10	2288.00	0.90	< 0.01	
		2328,79- 2328,80 : FAZ An altered chlorite slip here may represent a FAZ @ 55 DTCA. Coarse Py (3%) was noted in the walls										
		over 5cm.						_				
			4	tr			45622	2333.90	2334.75	0.85	< 0.01	-
		This segment is moderately altered to a mottled medium/ light brownish grey colour which appears to be		tr		1Spa	45623		2335.80	1.05	0.02	-
		related to a chloritic fracture pattern along the core axis accompanied by 15- 20% diffuse, patchy dull grey quartz veining and trace to anomalous fine Py.	2	tr			45624	2335.80	2337.00	1.20	0.03	
2366.50		ЕОН			_			_				
		The hole was stopped at the north boundary of the Hurd claim.										
		NOTE: The drillers were asked to place 30m of cement at 2200m, 2000m, 1800m, and 1600m before pulling off the hole. Furthermore they were also asked to leave the casing and cap the hole.										
								_	_			
			_					-				

PROPERTY:	AMALGAMA	ATED KIRKLAND		HOLE NU	MBER AK05/	09-10W2		
Province:	Ontario	DATE LOGGED: Feb 10- May 12, 2010	Grid: 7	500 E	Method	Depth	Az	Dip
Township	Teck	LOGGED BY: FR Ploeger	1	0030 N	Compass	Collar		
Started:		DRILLED BY: Major Diamond Drilling		9710 E	reflex			
Completed:	6-May-10	UNITS: Metres	NAD 83 5330					<u> </u>
CORE SIZE:	NQ	CORE LOCATION: Upper Canada		32 m				
OOKE GIEEK			LENGTH:					
		Location: leased clm 328 (106667)					-	
PURPOSE:								
								<u> </u>
COMMENTS								
SUMMARY L		AK05/09-10W2			7.7	A 16		—
From	То	Lithology	From	То	Metres	Au g/t		<del></del>
0.00	1066.00	AK05-10						<b>↓</b>
	_							<del> </del>
1066.00 _	1066.53	Wedge/ AK05/09_10W2						
1066.53		Wedge Cut						<del> </del>
1068.00	1096.45	S1					<del></del>	
1096.45		Wedge/ LC						-
1098.06	1147.36	S1						+
1147.36		Wedge/ LC						
1147.40	1262.50	S1						<del> </del>
1262.50	1264.00	Wedge/ LC						+
1264.00	1292.56	<u></u>						<del>                                     </del>
1292.56		Wedge/ LC					_	+
1294.08	1319.50	S3a						
1319.50		Wedge/ LC	1322.00	1323.00	1.00	1.00		+
1321.00		S1a/ DZ	1322.00	1323.00	1.00	1.00		+
1333.65		FAZ						+
1335.00	1342.85	1Sa						+
1342.85	1344.70	Wedge/ LC						-
1344.70	1345.85	1Sa	-					+
1345.85	1389.00	V4T						_
1389.00	1395.82	1Sp						<del> </del>
1395.82	1488.58	V4T	1399.35	1400.20	0.85	2.13		
1488.58	1508.00	1Sp/ 1S						

1508.00	1607.75	V4T						
1607.75	1668.37	V4RS						
1668.37	1675.55	V4MT						
1675.55	1702.60	V4						
1702.60	1718.34	1Sp						
1718.34	1730.08	V4MT						
1730.08	1750.82	V4aggl						
1750.82	1759.50	V4MT						
1759.50	1793.32	1Sp/ 1S						
1793.32	1831.40	1Sp						
1831.40	1856.88	1SMa						
1856.88	1869.65	1Sp	_					
1869.65	1900.75	1SMa						
1900.75	1906.95	QVZ		1900.75	1906.95	6.20	1.75	
1906.95	1913.00	1SMa	incl	1900.75	1901.60	0.85	4.53	
1913.00		EOH						
							_	
19898	19904			10-555	10-Mar-10			
19905	19909			10-634	10-Mar-10	•		
19910	19950			10-837	30-Mar-10			
19951	19964			10-1004	15-Apr-10			
19965	19997			10-1206	10-May-10			

		DESCRIPTION (Hole no AK05/09-10W2)	S. Carlo					San	ples / /	Assays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Díp	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
0.00	1066.00	AK05-10										
		This portion was drilled in 2005 as AK05-10.										
066.00	1066.53	Wedge/ AK05/09_10W2										
												⊢—
066.53	1068.00	Wedge Cut										<del></del>
		This represents the start of of coring (conglomerate for wedge 2 beginning with a thin wafer and thickening to full width by the end. The drillers time sheets indicate that the wedge was set at 1070m.				_						
<u> </u>	1096.45					-						<del></del>
		Wedge 2 begins in typical Timiskaming conglomerate which is characterized by a heterolithic nature (including jasper clasts), an intact (clast supported) framework in areas where the clasts are densely packed, and a dark greyish green coloured, fine grained to gritty wacke matrix. It was found to be				,						
		moderately pervaded with ankerite (slight amount of calcite by 1077m) and veined with 2% creamy white				-						
		ankerite (some calcite) fractures and veinlets while mineralization consists of trace pyrite (Py) grains and crystals.										
200 45	4000.00	W1				-						
J96.45		Wedge/ LC  A retrievable wedge was set at this point (roll angle 120) and about 1.2m lost to reaming past the wedge.	_									<del>                                     </del>
		A retrievable wedge was set at this point (roll angle 120) and about 1.2m lost to reaming past the wedge.										
												<b>—</b>
98.06	1147.36		├									<del></del>
		The hole continues in typical Timiskaming conglomerate which is characterized by a heterolithic nature	⊢—									<del></del>
		(including jasper clasts), an intact (clast supported) framework in areas where the clasts are densely	<u> </u>									
		packed, and a dark greyish green coloured, fine grained to gritty wacke matrix. It is both moderately pervaded with ankerite and calcite in places and mildly veined with 0.5% pink calcite fractures and veinlets	-									
		while mineralization consists of trace pyrite (Py) grains and crystals. Overall, it has a darker greyish green	<u> </u>									
		appearance, possibly as a result of stronger chlorite alteration.										
45.00	1110 10					-						<b>—</b>
47.36	1149.40	Wedge/ LC The drillers blocks read 1147.50- 1149.00m for the location of the wedge, but actual measurements are as	-									
		stated. The wedge was set as part of a series to steer/ deflect the hole to the east and down. The hole was										
		reamed past the wedge and therefore no core recovered.		1								
	_	realited past the wedge and therefore no core recovered.										
49.40	1262.50	S1										
70110		Again, the hole continues in typical Timiskaming conglomerate which is characterized by a heterolithic										
		nature (including jasper clasts), an intact (clast supported) framework in areas where the clasts are										
		densely packed, and a dark greyish green coloured, fine grained to gritty wacke matrix. Clast range up to										
		12cm but generally average 0.5 to 5cm in size and are rounded with spherical to ovoid shapes. It is both										
		moderately pervaded with ankerite and calcite in places and mildly veined with 0.5% pink calcite fractures										l
		and veinlets while mineralization consists of trace pyrite (Py) grains and crystals. Overall, it has a darker										<b></b>
		greyish green appearance, possibly as a result of stronger chlorite alteration.										
			<u> </u>									<b>—</b>
		1186.40- 2000.20 : S1a										<del>  -</del>
		Through this segment, the conglomerate is weakly pervaded with ankerite and veined with a mix (2%) of both ankerite and calcite fractures and streaky veinlets.										
			L_							1.00		<b>—</b>
- 1		1196.22- 1196.27 : QCVZ	2	tr	40	QCVZ	19898		1197.00	1.00	0.02	-
		Minor looking fractured, carbonate- quartz vein (possible fault) @ 40 DTCA followed by a fractured 5cm	2	l tr l			19899		1198.00	1.00	0.02	

		DESCRIPTION (Hole no AK05/09-10W2)						San	ples / /	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		(anomalous) were noted. These may represent the source of the surrounding ankerite alteration.										
			_									<b>—</b>
		1199.28- 1199.34 : FAZ/ QCVZ	ļ									
		A fractured/ brecciated quartz- carbonate vein forms a minor fault @ 30 DTCA.	$\vdash$	-								
		2000.20- 1254.20 : S1/ S3										
		The conglomerate continues basically as described above but the overall average size of the clasts										<u> </u>
		appears to decrease. The conglomerate seems to be more gritty textured with only rare clasts to 7cm,		_								<u> </u>
		most being less then 3/4cm in length. The alteration of the matrix also constitutes zones and mixing of										<u> </u>
		both ankerite and calcite, although ankerite predominates. There is no significant increase in veining (2-										<b>—</b>
	_	3%) and the sulphide content remains trace.		_								
		1254,20- 1258.50 ; \$3	<del> </del>									
		There is a thicker, more continuous lens of massive, fine grained, granular textured wacke through this						-				
		section that is mottled in shades of medium/ light yellowish to greyish green. It is pervaded with ankerite										
		and sericite (minor) but remains poorly mineralized with trace sulphides.										
		1000 50 1000 50 101	<u> </u>									<b>—</b>
		1258.50- 1262.50 : S1 The hole now enters a more typical conglomerate, being polymict with a variety of clast sizes to 11cm with	<del>                                     </del>									
		a high proportion between 0.5 to 4cm. It is weakly pervasively ankeritic and contains trace sulphides. A	<u> </u>									
		wedge cuts the conglomerate between 1262.50 and 1264.00m.	2	tr			19901	1260 60	1261.60	1.00	0.02	_
		Wedge cals the congramerate perwoon 1202.00 and 1204.00m.	2	tr			19902		1262.50		0.10	0.09
		1261.97- 1262.02 : QVZ	3	tr	50	QVZ	19903		1264.00	1.50	0.03	-
		The conglomerate is cut by two very weak, 0.5cm grey cherty quartz veinlets with streaky ankerite and K	2	tr			19904	1264.00	1265.00	1.00	0.02	0.02
		spar @ 50 DTCA that are mineralized with 1- 2% fine Py and Cp.										
262 50	1264 00	Wedge/ LC	_									
	1204.00	A retrievable wedge was set at this point (roll angle 120) and about 1.5m lost to reaming past the wedge.										
264.00	1292.56											<b></b>
		Polymict conglomerate as described at 1258.50m continues below the wedge.										
		The conglomerate becomes progressively more strongly altered down hole through a light yellowish olive		1								
		green phase and gradually to more orange/ brownish olive mottled colour representing a change from										
		sericite- ankerite to hematite- ankerite. This coincides with an increase in dark grey chlorite/ specularite										i .
		fracturing and two creamy white ankerite veins/ vein zones (4cm @ 50 DTCA) which are concentrated at										
		1287.50m and 1288.17m. Some of the chlorite/ specularite fractures are mineralized with splashes of Cp.										
		1287.5- 1288.17 : QCVZ/ FAZ/ BBC	3	tr			19905	1285.00	1286.00	1.00	< 0.01	-
		Leading and trailing creamy white coloured, chlorite fractured, ankerite veins to 3cm @ 30 DTCA. The core	8	tr			19906		1287.00		< 0.01	-
		is broken through his section as well perhaps indicating a coincident FAZ. There are no anomalous	8	0.5	30	QCVZ	19907		1288.00		< 0.01	-
		sulphides associated with the zone.	8	tr	30	QCVZ	19908		1289.00		< 0.01	-
			12	tr	50	FAZ	19909	1289.00			< 0.01	-
		1289.17- 1289.32 : FAZ/ QCVZ	6	tr		-	19910	1289.75	1291.00	1.25	0.06	-
	-	Here, the core is fractured around a central 6cm cataclastic zone with fractured/ disjointed carbonate veining and weak shearing, all @ 50-55 DTCA, in the walls. Sulhides run trace through the interval.				<del>-</del>						
	1	iveining and weak snearing, all (0) 50-55 DTCA. In the walls, Sulhides run trace through the interval.				1	1	I	I	I		

		DESCRIPTION (Hole no AK05/09-10W2)				posture of Party		Jan	ples / A	issays		11000 (A. 1000)
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
1292.56	1294.08	Wedge/ LC										
		A retrievable wedge was set at this point resulting in about 1.5m of lost core in reaming past the wedge.										
1294.08	1319.50											
		Below the wedge, the hole continues in a mix of altered wacke that contains gritty and pebbly lenses. The sequence consists mainly of fine grained to gritty, granular textured (with jasper) mottled light yellowish to orange greyish green coloured wacke grading in and out of 25% gritty lenses (clasts to 1cm, and 15% intact framework, pebbly lenses with subrounded, elongate clasts to 4cm. The unit is moderately well altered with pervasive ankerite and sericite along with patches that are weakly hematitic (pale orange). In										
		addition, it becomes more fractured/ foliated and white ankerite veining, concentrated mainly around 1303- 1305.5m, amounts to 3%, while reddish black specularite fractures, veinlets and stringers to 3cm, average approximately 3% as well. No significant sulphides (trace) were noted.										
1240 50	1221.00	Wedge/ LC										<u> </u>
1319.50	1321.00	A retrievable wedge was set at this point resulting in about 1.5m of lost core in reaming past the wedge.										
	1000.05	04.(07	8	tr			19911	1221.00	1322.00	1.00	0.05	0.06
321.00	1333.65	Just above the wedge, there was a noticeable progressive increase in the pebble content as well as a	8	0.5			19911		1323.00	1.00	1.00	1.37
		strengthening persistent fracture and foliation fabric @ about 40- 50 DTCA which continues into the altered		tr			19913		1324.00	1.00	0.36	- 1.07
		polymict conglomerate unit. The structural features are enhanced by irregular sericite and ankerite streaks	8	tr			19914		1325.00	1.00	0.22	-
		while pebbles tend to be segmented or streaked along the fabric plane. Overall, the colour comprises a	8	tr			19915		1326.00	1.00	0.02	-
		mélange of pale yellows, limey greens and oranges overprinted with 7-9% broken to streaky creamy white	8	tr			19916	1326.00	1327.00	1.00	0.21	-
		ankerite fractures and veinlets. The sulphide content is anomalous with local concentrations to 0.5% over	8	tr			19917	1327.00	1328.00	1.00	0.44	-
		short intervals.	8	tr			19918	1328.00	1329.00	1.00	0.11	-
			8	tr			19919		1330.00	1.00	0.22	0.21
		1331.50- 1333.65 : SZ/ BBC	15	tr			19920		1330.75	0.75	0.12	-
		There appears to be a sharp transition into a massive, textureless/ featureless (no clasts/ pebbles),	7	tr			19921		1331.50	0.75	0.10	-
		medium/ dull grey coloured, fractured, cherty looking silicified/ siliceous zone located between the	100	tr		SZ	19922		1332.25	0.75	0.25	-
		conglomerate and the following fault. It is well microfractured and contains trace to anomalous Py and Cp	100	tr		SZ SZ	19923 19924		1333.00 1333.65	0.75 0.65	0.36	-
		along some fractures. This is somewhat similar to the silicified zones associated with the diabase in some	100	tr tr	20	FAZ	19924		1335.00	1.35	0.38	-
		of the AK08/ 09-02 wedge holes. Essentially, the entire section is broken up with RQD zero.	2	tr	20	1Sa	19925		1336.00	1.00	0.06	-
333 EE	1335.00	<u></u>	2	tr		1Sa	19927		1337.00	1.00	0.02	-
000.00	1000.00	This probably represents the major structure below which the south mine complex stratigraphy begins. It	2	tr	-	1Sa	19928		1338.00	1.00	0.07	-
		comprises a leading 0.5m section of solid but crushed syenite porphyry with fractures and mud/ gouge	2	tr		1Sa	19929		1339.00	1.00	0.04	-
		slips @ around 20 DTCA, followed by a massive to crumbled 0.85m section of gouge and ground/ crushed		tr		1Sa	19930		1340.00	1.00	0.09	-
		rock.	2	tr		1Sa	19931	1340.00	1341.00	1.00	0.76	0.86
			2	tr		1Sa	19932	1341.00		1.00	0.16	-
335.00	1342.85		2	tr		1Sa	19933	1342.00	1342.85	0.85	0.04	-
_		The unit below the FAZ appears massive, medium grained/ textured and medium/ dark brick greyish red/ orange/ brown coloured. The reddish tones are caused by pervasive hematite alteration but the host is										
		also well microfractured (mainly chloritic) with weak pervasive <u>calcite</u> alteration and 2% secondary white pink calcite veinlets. It is mineralized with trace to anomalous fine to medium Py and minor Cp and there is no preferred orientation to the microfracturing. This may be an altered syenite or tuff.										
342.85	1344 70	Wedge/ LC										

		DESCRIPTION (Hole no AK05/09-10W2)						Sam	ples / A	Assays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		A retrievable wedge was set at this point resulting in about 1.5m of lost core in reaming past the wedge.			-							-
1344.70	1345.85	1Sa										
		The altered syenite continues as described, massive, medium grained/ textured and medium/ dark brick greyish red/ orange/ brown coloured ending with a bulbous irregular trailing contact. As mentioned, it may actually represent a hematized trachytic tuff.										
1345 85	1389.00	VAT	<del>                                     </del>									
1040.00	1303.00	At this point, there is a change to a massive, somewhat granular/ flakey textured, medium greyish brown/ pink coloured lithology designated as trachyte tuff. The upper section to 1360m is weakly to moderately magnetic, while below, it becomes non magnetic. Also, it is pervasively calcitic with very minor (<0.5%) calcitic fracturing/ veining although chloritic fracturing becomes more prevalent coincidentally with the decrease in magnetism. Sulphides average trace overall but increase to slightly anomalous to trace within										
		the chlorite fractured sections.	0.5	tr			19934	1366.00		1.00	0.02	-
		4000 05 4070 05 4 547	0.5	tr			19935 19936		1368.00 1369.25	1,00 1.25	0.01	-
		1369.35-1370.05 : FAZ Chlorite crush- cataclastic fault zone @ 25/ 15 DTCA comprising brecciated tuff fragments with a chloritic	0.5	tr tr	25	FAZ	19936		1370.05		0.01	-
		matrix and chloritic fractures. There are slightly anomalous grains of disseminated Py in the walls outside	0.5	tr		174	19938		1371.00	0.95	0.04	
		of the interval.	0.5	tr			19939		1372.00	1.00	0.03	0.03
			3	tr			19940	1386.00	1387.00	1.00	0.02	_
			3	tr			19941		1388.00		0.02	_
			3	tr		<b>-</b>	19942		1389.00	1.00	0.04	-
1389.00	1395.82	1Sp	3	tr			19943	1389.00	1390.00	1.00	0.03	-
		A lobed contact along the core axis over 45cm leads into a typical, Kirkland Lake type syenite porphyry dike characterized by a homogenous massive nature, a medium greyish pink colour, and, a medium grain size comprising 15%, dull white, somewhat diffuse/ corroded, sub to anhedral, 2-4mm feldspar phenocrysts in a medium/ fine grained, feldspathic groundmass that contains 0.5% mafic inclusions. The porphyry is weakly to moderately microfractured, non reactive to carbonate testing, weakly veined with 3% fine carbonate fractures, and poorly mineralized with trace sulphides. It has moderately fractured and										
		altered the host tuff over 0.5- 2m into the contacts. The lower contact is fairly well defined/ sharp @ 80 DTCA.										
		UTVA.				1						
1395.82	1488.58	V4T	1	tr			19944	1396.00	1396.85	0.85	0.04	-
		Back into a fine to very fine grained, massive, locally granular textured, dark/ medium brownish/ pinkish	1	tr			19945	1396.85	1397.70	0.85	0.09	-
		grey wacke that contains local zones of moderate microfracturing with corresponding zones of mottled	10	tr		QVZ	19946		1398.50	0.80	0.19	-
		zones of greyish pink (hematized) and greyish yellow (sericitized) alteration. Generally, it is weakly	15	0.5		QVZ	19947		1399.35	0.85	0.44	-
		pervaded with ankerite and veined with 3% dull grey carbonate and quartz fractures and wormy veinlets	1_	tr			19948		1400.20	0.85	2.13	2.19
		and 2-3% black specularite/ chlorite fractures. Sulphides average trace overall but are slightly anomalous	1	tr			19949		1401.10	0.90	0.25	0.22
		to 0.5% in some of the altered and veined zones (see below).	1	tr		-	19950	1401.10	1402.00	0.90	0.10	-
		1397.70- 1399.35 : QVZ/ SZ										
		Zone of 10- 12% wormy grey quartz veinlets and stringers and silicification (random distribution/ orientation) overprinting a fractured grungy greyish pink altered zone with up to 0.5% sulphides over the lower 0.5m.										
		1418.35- 1419.15 : V4Ta										
		Through this segment, the tuff is specularite/ chlorite fractured (4- 6%) and altered to a mottled greyish tan/ brownish yellow colour. It is weakly mineralized with trace to very slightly anomalous Py.										

Erom	The second secon	DESCRIPTION (Hole no AK05/09-10W2)	Qcv	Py/Po			Sample					Au
From (m)	To (m)	Description	(%)	(%)	Dip	Desc.	Number	From	То	Length	Au g/t	Chk
		1419,15- 1488,58 : V4T	-									
		The tuff, again, becomes relatively fresh and fine/ very fine grained, assuming a dark maroon/ purple grey hue. Beginning at about 1442m, the matrix becomes weakly pervaded with calcite.										
		1462.08- 1463.06 : 1Sa	<del> </del>						-			ſ
		Altered massive, medium grained, grungy medium/ dark greyish pink coloured syenite dike with sharp contacts @ 60/ 68 DTCA.										
												<b>—</b>
88.58	1508.00											
		The interval begins on a subtle, but visible, contact @ 65 DTCA into a medium grained, dark pinkish grey to greyish pink coloured, massive looking syenite that is very weakly porphyritic (<0.5% white subhedral feldspar phenos) and contains 0.5- 1% mafic inclusions. The inclusions are typical of Timiskaming syenite										
		porphyries but the lack of phenocrysts implies a "felsic syenite" protolith. At any rate, it is weakly to moderately magnetic, pervasively calcitic, very weakly veined (<0.5%), and poorly mineralized (trace). The lower contact coincides with a chlorite slip @ 25 DTCA.										
00 00	1607.75	NAT										
08.00	1007.73	The hole returns to the trachyte tuff assemblage as described above at 1419.15m and 1395.82m, fine to medium grained, massive, locally granular textured and dark greyish brown/ pink coloured. It remains										
		moderately magnetic, calcitic, weakly veined and poorly mineralized.										
		1518.10- 1518.16 : FAZ	0.5	tr			19951	1516.80	1517.80	1.00	0.12	· 0.1
		Zone of minor chlorite slips and cataclastic textures @ 40 DTCA with local chlorite/ specularite fracturing	0.5	tr	40	FAZ	19952		1518.60		0.04	-
		for a metre or so up and down hole. The fractured walls are also altered to a grungy medium greyish orange colour but are not mineralized.	0.5	tr			19953	1518.60	1519.50	0.90	0.03	-
						-						·
		At about this point, the tuff begins to contain very fine grained, massive, dark greyish maroon coloured,	-									
		irregular masses and blobs which may represent trachyte bombs or narrow segments of trachyte flows.										
		Overall, it remains moderately to strongly magnetic with local weakly magnetic patches, pervaded with										
		calcite, weakly veined (1%), and poorly mineralized with trace Py grains.										
		1561.00- 1578.50 : V4T		-								
		Back to the typical dark greyish pink/ brown, massive, fine grained trachyte tuff which becomes slightly										
		lighter coloured in areas of specularite/ chlorite fracturing. It remains weakly pervaded with calcite, weakly										
		veined with 1% dull white/ pink calcite fractures and veinlets, and poorly mineralized with trace Py.										
		1578.50- 1580.10 : 1Sp										
		Sharp leading and trailing contacts @ 25/ 25 DTCA into a typical, massive, dark greyish brown, medium										
		grained syenite porphyry that consists of 20- 25Y, dull white, 1-4mm sized, sub to euhedral feldspar						<u> </u>				
		phenocrysts in a fine/ medium grained feldspathic groundmass. It is weakly to moderately magnetic, non reactive to carbonate testing, and essentially unveined and unmineralized.										
		Back into the trachyte tuff as described.										
		Dack into the tracityte tull as described.										
		1593.85- 1596.00 : 1Sp				İ						
		Another syenite porphyry dike as at 1578.50m, intersects the tuff with sharp contacts @ 55/ 30 DTCA. The										

		DESCRIPTION (Hole no AK05/09-10W2)	_			2 24 2 2 2 2	Ī.,		ples / A			
rom (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
	– .	dike is weakly to moderately altered around a central 7.5cm quartz breccia vein which is detailed separately below.										
		A quartz breccia zone consisting of 20% angular chips of porphyry in a cloudy grey quartz vein intersects	1	tr			19954	1592.00	1593.00	1.00	< 0.01	_
-		the core @ 70 DTCA. It is cut by a later chlorite carbonate slip which offsets the vein by about 3cm along	1	tr			19955	1593.00			0.03	0.0
		the core length. The vein contains only trace Py but the later slip is mineralized with 2% splashes of Cp	25	0.5	70	QVZ	19956		1594.30		< 0.01	-
		over the interval.	1	tr			19957	1594.30	1595.00	0.70	< 0.01	-
			1	tr			19958	1595.00		1.00	< 0.01	•
		1594.09- 1607.75 : V4T/ V4RS	1	tr			19959	1596.00			0.02	-
		The hole continues in a splotchy trachyte which may contain sections of spotted trachyte flow material.	1	tr			19960	1597.00		1.00	< 0.01	0.0
		Generally, the host resembles medium/ light yellowish brown altered massive trachyte tuff with an	1	tr			19961	1598.00			< 0.01	-
		overprinted microfracture pattern which partially channels the alteration, but, in places, there are distinctive	1	tr			19962	1599.00 1600.00		1.00	< 0.01	
		euhedral looking dull to dark grey ghosts of (hexagonal?) phenocrysts (pseudoleucite?). The host remains	1	2 tr		_	19963 19964	1600.00		1.00	< 0.01	
		weakly magnetic, and becomes weakly pervaded with ankerite. Veining and mineralization remains low at <1% and trace, respectively. Several porphyry dikes continue to cut the sequence. Approximately 4% Cp		Ţſ			19964	1001.00	1002.00	1.00	V 0.01	
		fracture fillings occur between 1600.70- 1601.00m.										
		macture minings occur between 1000.70- 1001.00m.										
		1598.72- 1599.87; 1605.37- 1607.75 : 1Sp										
		Two syenite porphyry dikes intrude the tuff/ spotted trachyte package with well defined contacts @ 30/30										
		& 50/ 45 DTCA.										i
												<u> </u>
7.75	1668.37											<u> </u>
		The porphyritic nature of the protolith becomes more pronounced below the latter dike consisting of 15-										_
		30% somewhat diffuse to reasonably well formed, hexagonal shaped, reddish altered/ coloured, feldspar/										
		feldspathoid phenocrysts in a fine grained, light/ medium grey/ yellowish buff groundmass, in places, the										_
		matrix is microfractured causing the yellowish buff (sericite- ankerite) alteration to alter the groundmass and rim the phenos. The trachyte is moderately magnetic, weakly pervaded with ankerite and weakly						<del></del> -				_
		microfractured with <1% veining. No significant sulphides were noted.		-								$\overline{}$
		micronactured with 1170 voliming. No significant sulprinces were noted.										
		1659.50- 1668.37 : V4RS/ V4										
		There is a change to a less obviously spotted phase in which faint outlines of pseudoleucite phenocrysts										
	·	are visible within a more ophitic textured, medium grained, light greyish pink mottled, mafic to feldspathic										
		groundmass. The spots become coarser near the base of the unit and terminate abruptly @ about 55										
		DTCA.										
												_
8.37	1675.55											
		The upper section consists of fine grained, massive, dark brownish/ maroonish grey coloured mafic trachyte tuff that is cut by a syenite porphyry dike. The tuff is moderately magnetic, weakly pervaded with										
		calcite, weakly veined (<0.5%), and poorly mineralized with trace sulphides.										
		calcite, weakly vertica ( 10.070), and poorly mineralized with nace sulphides.										
		1670.20- 1673.03 : 1Sp										
		The unit is moderately fractured and microfractured which partially obscures the porphyritic texture but in										
		places it becomes obvious comprising 20- 25%, dull white, subhedral, 2-4mm, feldspar phenocrysts in a										
		fine grained, in a medium greyish pink coloured feldspathic groundmass. It is laced with 8% fine dull pink/										
		grey calcite fractures but essentially unmineralized (trace). The contacts are well defined @ 55/70 DTCA.										_
									-			
5.55	1702.60	V4 The host becomes more crystalline textured below a well defined contact @ 20 DTCA. It is generally fine										

20 4

• .

		DESCRIPTION (Hole no AK05/09-10W2)				rancounts.		Sain	ples / A	lesays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
-		grained, grading to medium grained in places, massive, homogenous, and dark pinkish grey coloured with zones of fine, euhedral, tabular, black to green/ grey altered mafic crystals and areas that contains 1- 2%, 1-3mm, pink/ red grains which may represent tiny leucite nuclei. It is moderately magnetic, weakly pervaded with both calcite and ankerite, mildly veined (<1%) with calcite fractures and veinlets, and, essentially barren (trace Py).										
702.60	1718.34	Sharp contact @ 25 DTCA into a typical syenite porphyry dike that is characterized by 20%, dull white to light orange coloured, 2-5mm, slightly bimodal, subhedral, feldspar phenocrysts in a medium to fine grained, dark/ medium purple/ violet grey, feldspathic groundmass that contains up to 15% altered mafic grains and inclusions. The porphyry is moderately magnetic except in the centre of a QVZ (see below)										
		where it becomes non magnetic. Outside of this zone, veining and sulphides are negligible (<0.5%/ trace).										
		1706.70- 1707.40 : QCVZ  The interval contains approximately 15% dull white, quartz- calcite veinlets and stringers to 3cm that trend  @ 65 DTCA. Apart from some specularite streaks in fractures along the edges of the veins, mineralization runs trace.										
			0.5	tr		0.01/7	19965		1706.70		< 0.01	-
		1711.05- 1714.40 : QVZ  About 20- 25% dull grey quartz veining mostly along the core axis with several 1cm quartz- carbonate	15 0.5	tr tr	55	QCVZ	19966 19967	1707.40	1707.40 1708.30	0.90	< 0.01	-
		stringers cutting the flat veins @ 45 DTCA. The veins and immediate walls are mineralized with trace to very slightly anomalous Py, Cp, specularite and very minor moly on some slips. There is a possibility that	0.5	tr tr			19968 19969	1709.40	1709.40 1710.00	0.60	< 0.01	-
		some of the brassy yellow grains are calaverite (telluride). This does not look like the SMC type mineralization and there is no associated chloritic structure.	35	tr tr		QVZ	19970 19971	1711.00	1711.00 1712.00	1.00	< 0.01	-
			25	tr		QVZ	19972		1712.70	0.70 0.70	< 0.01 < 0.01	-
718,34	1730.08	NAM irregular rolling contact @ about 55 DTCA leads into a dark grey, purple black coloured, fine grained,	12 0.5	tr tr		QVZ	19973 19974		1713.40 1714.20	0.70	< 0.01	< 0.0
		granular/ ashy textured, massive, mafic tuff that contains scattered, rounded local alkalic (syenite/ trachyte)				!	13374	17 13.40	17 14.20	0.00	4 0.01	- 0.0
		clasts (to 8cm) and narrow pebbly lenses. The unit is moderately magnetic, veined with 4% fine whispy							_			
		calcite fractures and veinlets and weakly pervaded with calcite. Sulphides run trace.										
			-								-	
		Weakly porphyritic massive, medium grained, medium greyish pink coloured syenite dike intrudes the tuff with well defined contacts @ 45/ 85 DTCA, ending the unit.									_	
730 08	1750.82	V4angl					_	-		_		
30.08		The contact into a more strongly pebbly to agglomeratic/ conglomeratic host was arbitrarily taken at the base of the dike. Generally, it consists of a dark greenish grey, fine grained, granular/ ashy textured tuff (/ wacke) matrix with numerous scattered clasts and lenses of polymict, clast supported, conglomerate/ agglomerate in which the clasts are rounded, spherical to ovoid in shape, and mostly mafic to alkalic (including porphyritic) in composition. It is moderately to strongly magnetic, pervasively calcitic, veined with 6% zones of fine lacey calcite fractures and veinlets, and essentially barren.										
EN 02	1750 50					-			-			
50.82	1759.50	V4M1  The contact was taken below the last clasts at a change from a fine to a very fine grain size where the host becomes dark grey to brownish grey, and massive with no hints of bedding but with some scattered clasts near the end. It is weakly pervaded with calcite, moderately magnetic, veined with 1% calcite fractures and										

Sec.

	K. Alline	DESCRIPTION (Hole no AK05/09-10W2)						Sam	ples / A	soayo		
rom (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
750.50	4702 22	1Sp/ 1S										
59.50	1/93.32	A very subtle rolling contact along the core axis @ 15 degrees leads into an odd syenite porphyry dike										
		which is characterized by 5% dull white subhedral, 2-3mm feldspar and 5% dark green/ black altered mafic										
		tabular 3- 5mm mafic phenocrysts in a fine/ medium grained dark grey/ purple grey coloured groundmass										
		that consists of mixed feldspathic and altered mafic material. The host contains a number (1- 2%) mafic										
		inclusions and is moderately to weakly magnetic, weakly calcitic to non reactive, veined with 1% calcite										
							<u> </u>					
		veinlets and devoid of sulphides.										
02 22	1831.40	450			-							
93.32	1031.40	The contact between the two porphyry dikes (@ 75 DTCA) falls in some minor broken core making the										
-	_	exact nature of the intrusive relationships unclear. However, there is a definite change to a more typical										
		syenite porphyry that consists of 15- 25%, dull white, 2-5mm, sub to euhedral, feldspar phenocrysts in a										
		fine/ medium grained, dark purple/ brownish grey coloured, feldspathic groundmass. The unit is weakly										
		calcitic to non reactive, mildly veined with 0.5% fine calcitic fractures and veinlets, weakly magnetic, and										
		devoid of sulphides (trace). In addition, the core is broken up along random fractures resulting in an RQD										
		estimated at 50%, and, in areas that are fractured and altered, the porphyritic texture is masked/ faded.										
		estimated at 50%, and, in aleas that are fractured and affered, the polyhyritic texture is masked laded.										
							-					
<del></del>		1830.30- 1831.40 : 1Sp/ CZ										
		There is a sharp contact at the start of the interval al @ 90 DTCA with a fine grained mafic section										
		(inclusion?) of the contact phase, but, overall, it seems to grade in and out of phenocrystic zones until the										
		lower contact which seems to meander at a low angle to the core axis over about 25cm.										
		Towar contact which seems to meanure and now angle to the core axis over about 20cm.										
31 40	1856.88	1SMa										
01.40	1000.00	The low angle contact leads into a typical, medium/ coarse grained, massive, homogenous, and dark										
		maroonish grey coloured mafic (basic/ augite) syenite that is cut by minor syenite porphyry dikes. In the										
		best preserved areas (i.e. 1835,55m), the texture comprises 25-35%, dull/ medium grey altered, euhedral,										
		3-7mm, tabular to hexagonal shaped augite phenos in a fine/ medium grained, dark greyish maroon										
		coloured, feldspathic groundmass that is moderately magnetic, weakly pervaded with calcite, and										
		moderately veined/ fractured with 3- 5% fine calcitic fractures and veinlets, sulphide mineralization								_		
	_	continues to run trace.										
		1853.17- 1856.88 : 1Sp/ 1SMa										
		The lower section consists of irregular amorphous lenses of syenite porphyry cutting the host mafic syenite										
		at various attitudes.										
56.88	1869.65											
		A well defined undulating contact @ 25 DTCA leads into another syenite porphyry dike as previously										
		described, 10- 20%, dull white, 1-4mm, subhedral, equant to tabular feldspar phenocrysts in a fine/										
		medium grained, dark maroon grey feldspathic groundmass with 1-2% mafic inclusions. Furthermore, it is										
		weakly to moderately magnetic, non reactive to weakly pervaded with calcite, veined with 2-3% fine calcite										
	_	fractures and veinlets, and unmineralized.			L							
69.65	1900.75			-		-						
$\rightarrow$		Back into a mafic syenite below a chlorite- calcite veinlet @ 45 DTCA. As above, it is medium/ coarse	_	4-			10075	1001.00	1002.00	1.00	< 0.01	
		grained, massive, relatively homogenous, and dark maroonish/ brownish grey coloured. It was found to be	3	tr		-	19975		1892.00	1.00	0.01	
		moderately magnetic, moderately to weekly pervasively calcitic, and veined with 3- 5% calcite veinlets and	3	l tr l	I	1	19976	1892.00	1893.00	1.00	0.02	-
		stringers with some local orange K spar(?)/ calcite/ chlorite patches. The mafic syenite remains poorly	3	tr	-		19977	4000 00	1894.00	1.00	0.05	-

		DESCRIPTION (Hole no AK05/09-10W2)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		moderately chlorite fractured leading up to the QVZ.	3	tr			19979	1895.00	1896.00	1.00	1.23	0.99
		, ,	3	tr			19980	1896.00	1897.00	1.00	0.02	-
		1885.00- 1886.85 : 1Sp	3	tr			19981	1897.00	1898.00	1.00	0.02	-
		A syenite porphyry dike cuts the basic syenite with irregular contacts.	3	tr			19982	1898.00	1899.00	1.00	0.11	-
			3	tr			19983	1899.00	1900.00	1.00	0.18	-
1900.75	1906.95	QVZ	3	tr			19984	1900.00	1900.75	0.75	0.28	0.29
		The mafic syenite is intersected by a series of quartz/ quartz breccia veins, patches and stringers with	75	7		QVZ	19985	1900.75	1901.60	0.85	4.53	4.09
		accompanying silicification (20%) that all trend roughly @ 75- 85 DTCA. Veining consists of dull white to	12	3		QVZ	19986	1901.60	1902.40	0.80	0.75	-
		grey silicification and discrete veining, often emanating from fracture sets, thereby causing a breccia like	8	1		QVZ	19987	1902.40	1903.15	0.75	0.81	-
		pattern in places. Some of the veining overprints a syenite porphyry dike from 1901.60- 1903.15m, but	10	0.5		QVZ	19988	1903.15	1904.00	0.85	1.03	1.07
		most is concentrated over the leading 0.5m and lower 0.25m. The vein walls and inclusions/ fractures are	5	0.5		QVZ	19989	1904.00	1905.00	1.00	1.04	0.99
		mineralized with up to 10% fine grains, crystals and splashes of Py and Cp, perhaps averaging	8	0.5		QVZ	19990	1905.00	1906.00	1.00	1.65	1.60
		approximately 1- 2% throughout. The mafic syenite remains calcitic through the interval while the porphyry	25	4		QVZ	19991	1906.00	1906.95	0.95	2.36	2.23
		is non reactive. No structure nor obvious vg or tellurides were noted.										
1906.95	1913.00	1SMa	5	tr			19992	1906.95		0.05	0.05	-
		Back into the mafic syenite as described previously at 1869.65m, medium/ coarse grained, massive,	5	tr			19993	1907.00	1908.00	1.00	0.08	-
		relatively homogenous, dark maroonish/ brownish grey coloured, moderately magnetic, moderately to	5	tr			19994	1908.00	1909.00	1.00	0.13	0.13
		weakly pervasively calcitic, and veined with 5- 7% lacey networks of fine calcite fractures and veinlets. No	5	tr			19995		1910.00	1.00	0.10	
		significant sulphides were observed although specularite fracture fillings were noted locally.	5	tr			19996	1910.00	1911.00	1.00	0.21	-
			5	tr			19997	1911.00	1912.00	1.00	0.13	-
1913.00		EOH										
		The hole was stopped at the north boundary.										
												1

PROPERTY:	AMALGAMA	ATED KIRKLAND			HOLE NUM	IBER AK09-0	5		
Province:	Ontario	DATE LOGGED: Oct 17- Nov 5, 2009	Grid:	87+50 E		Method	Depth	Az	Dij
Township	Teck	LOGGED BY: FR Ploeger	10	0+150 N		Compass	Collar		
Started:	16-Oct-09	DRILLED BY: Cabo Drilling Ontario Corp	UTM: E	E		reflex			
Completed:	4-Nov-09	UNITS: Metres	NAD 83 N						
CORE SIZE:	NQ	CORE LOCATION: Upper Canada		311.7 m					
			LENGTH	: <b>548</b> m					
		Location: leased clm 328 (106667)							
PURPOSE:						_			
COMMENTS:									
								•	-
SUMMARY L	OG	AK09-05							
From	То	Lithology	Fi	rom	То	Metres	Au g/t		
0.00	15.50	Casing							
15.50	100.10	S3			_				
100.10	109.75	V4aggl							
109.75	115.08	S1							
115.08	122.45	V4aggi							
122.45	146.50	S3							
146.50	197.20	S1							
197.20	227.00	S3							ļ
227.00	258.52	V4T							
258.52	269.75	S2							
269.75	301.15	S3	·						
301.15	321.20	S7/ S3							
321.20	333.00	S1							
333.00	349.42	S3/ V4T							+
349.42	354.20	S7							<del> </del>
354.20	361.78	S3a		14.00	440.50	2.50	0.40		+
361.78_	445.50	S3	44	14.00	446.50	3.50	8.46		+
445.50	447.50	<u></u>							+
447.50	449.00	Wedge			<del></del>				+
449.00	477.70	<u></u>	40	)F 0F	400.00	0.05	2.00		
477.70	487.67	S3	48	35.35	486.00	0.65	2.00		+
487.67	489.94	Wedge	40	20.04	400.55	0.04	12.21		<del> </del>
489.94	492.75	S3a	48	39.94	490.55	0.61	12.21		+
492.75	497.22	S3						<del></del>	+-
497.22	498.50	FAZ							Щ.

498.50	548.00	S1/ Bx			
548.00		EOH			
From	То	Certificate Number	Date		
20013	20015	9W- 3535- RG1	30-Nov-09		
92793	92800	9W- 3535- RG1	30-Nov-09	 	
20023	20027	9W-3682-RG1	11-Dec-09		

		DESCRIPTION (Hole no AK09-05)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
0.00	15.50	Casing										
		The drillers time sheets indicate 14m of casing in the hole but coring begins at 15.5m according to the	L	·								
		drillers blocks. Measurements back to the top of the hole indicates that only about 0.3 m was recovered							_			
		between 15.5 and 16m and that all the core between 14 and 15.5 was lost.	├─									
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and										
		potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in							_			
		the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite										
_		content.										
15.50	100.10	C2									_	<del>  </del>
15.50	100.10	The hole is collared in a sericite- ankerite altered wacke that is medium/ light yellowish green coloured,								<del></del>		
		fine grained to gritty with local scattered pebbles and mudstone clasts, and massive with local diffuse				1			_			
		layering/ bedding/ (weak foliation) @ about 20 DTCA which is defined mainly in very fine/ fine grained										
		mudstone lenses and the flat mudstone clasts. Clasts tend to range up to 7cm in length but generally										
		average < 3cm and vary in composition from mafic to felsic looking (volcanics and sediments), to										
		ultramafic in which the clasts are altered to green carbonate, and red jasper which also occurs as widely	<u> </u>									
L		scattered grains.	<b></b>						_			<b></b>
L		Staining indicates that the wacke is permiated with ankerite and the yellowish tone denotes that it also is	<u> </u>									
	-	pervasively sericite altered. It tends to be non magnetic although less altered zones may be weakly magnetic. Secondary veining consists of a combination of 5- 7% white ankerite veinlets and stringers,										
<b></b>	<del> </del>	ankerite chlorite veinlets and stringers, sericite streaks and veinlets, and quartz- ankerite stringers and	<b>├</b>				1					
-		veins. Attitudes of the veinlets vary, but many, particularly the sericite and carbonate- chlorite ones, tend to					-					
		mimic the bedding attitudes. Mineralization consists of trace fine pyrite (Py), mainly associated with the										
		veining and as scattered grains.										
												<b></b>
		16.73- 16.82 : QVZ					1			-		$\vdash$
		Massive dull white/ grey quartz and creamy white ankerite veins cut the core @ 85 DTCA. No anomalous sulphides were noted in the vein or walls.	<u> </u>			<b>_</b>	<del>  </del>					
		Sulphildes were noted in the vein of walls.										
		54.90- 57.30 : S3 (bl'd)										
		The fine to very fine grained wacke through this section, is massive and pale greenish yellow altered by										
		moderately strong pervasive ankerite and sericite alteration. There is no local structure to account for the								ļ		
		alteration and no increased mineralization.		-			ļ <u>.</u>					_
		89.00- 100.10 : SHZ	_				<b></b>			-		
		The wacke reamins fine grained, granular textured and relatively massive, but it becomes increasingly			l							
		more foliated and sericitized towards the end of the interval. The shear/ foliation fabric trends mainly @					T					
		around 15- 25 DTCA and is mimicked by 6- 8% creamy white annkerite fractures/ veinlets and stringers										
		and limey yellow sericite streaks. Despite the strong alteration and deformation, there is no significant										
		increase in sulphides.					<u> </u>			<b>├</b> ──		ļ [']
				<b>_</b>			ļ	-		<b></b>		<del> </del>
	ļ .	100.00- 100.10 : FAZ					<del> </del>	-		<del>                                     </del>		
	<del> </del>	The shear zone and wacke end on a strong, shallow angle sericite slip @ 10 DTCA.				<del>                                     </del>	<del> </del>			<del>                                     </del>		
100.10	109.75					<u> </u>	<del> </del>					
100.10	100.10	The faulted contact leads into a mafic looking tuff that contains grit sized clasts at the start and cobble										
		sized, kidney shaped fragments (to 15cm) in the lower portion. The matrix is generally fine grained,										
		massive and dark greyish green coloured while the clasts tend to be medium/ dark orange coloured, fine to										<u> </u>
		medium grained to porphyritic, and almost exclusively syenitic/ alkalic in composition. The matrix ranges							l			

		DESCRIPTION (Hole no AK09-05)						Sam	ples / A	\ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		from weakly to moderately magnetic, is pervaded with ankerite, and is veined with 5% fine irregular, lacey ankerite fractures and veinlets. Sulphides run trace overall.										
109.75	115.08									ļ		
	<del>-</del>	A 25cm contact zone consisting of 50% quartz- ankerite vein material and mud slip trending @ 35 DTCA	ļ									
		separates the two lithologies. As with the trailing segment of the wacke (89- 100.1m), the conglomerate is		_		-						<del></del>
	-	well foliated to sheared (@ 25- 35 DTCA) and altered to a bright limey yellow colour. The clasts comprise a mixture of lithologies including jaspers and green carbonate as described above and are somewhat	<b></b>									
		elongated in the plane of deformation. Staining with KFC reveals that the matrix is strongly pervaded with										
		ankerite, and 6-8% streaky/ gashy quartz- carbonate veinlets and stringers tend to be ankeritic as well.										
		The host is non magnetic and only weakly mineralized (trace).										
		, , , , , , , , , , , , , , , , , , ,							_			
		115.00- 115.08 : FAZ										
		The sheared conglomerate is terminated by a 2.5cm sericite- ankerite fault that trends @ 20 DTCA.										
												<del></del>
115.08	122.45	V4aggl										-
		Below the fault, the hole rolls into another possible agglomerate (lapilli tuff) horizon similar to that detailed										
		at 100.10m, comprising a dark grey, fine grained matrix and light/ medium pink/ orange clasts of various								<del> </del>		<u> </u>
		sizes from grit to cobbles. The clasts are lighter coloured then those in the previous fragmental and are ladder fractured. As before, the matrix and 8% creamy white fractures, veinlets and stringers are ankeritic				-						<del></del>
		in compostion. The matrix was also found to be weakly magnetic and essentially unmineralized. LEading										
		and trailing contacts are sharp @ 20/ 25 DTCA.										
122.45	146.50	<del>S</del> 3										
		The hole reenters the strongly ankeritized and sericitized wacke below the tuffaceous/ agglomeratic										
		horizon through a sharp contact as noted @ 25 DTCA. The sediments tend to be well foliated to about										<u> </u>
		134.00 and then relatively massive to 142.10m, returning to a foliated texture below. In the deformed								-		<del></del>
		zones, the fabric is defined by elongated grains/ clasts and bright yellow sericitic shear planes @ 25- 35										-
		DTCA. The clasts are heterolithic including red jasper chips and green carbonate altered ultramafic ones,								+		<del></del>
_		generally in grit sizes but ranging up to 3cm. The more massive zone is broken out separately below.				-						<del></del>
		The foliated zone is pervaded with ankerite and sericite and cut by 3- 5% white gashy/ streaky ankerite				-						
		fractures, veinlets and stringers, mainly along the fabric plane. The unit is non magnetic, and, despite the										
		strong deformation and alteration, mineralization runs trace very fine Py.										
		134.00- 142.10 : S3 (massive)										
		As mentioned, there is a lack of the strong deformation which characterizes the bulk of the interval. In this										-
		segment, a weak fine, barely noticable fabric persists but the host is generally fine grained with local gritty										-
		lenses, granular textured (including jasper), massive looking, and light yellowish olive grey coloured. The										<del></del>
		enclosing contacts are well defined @ about 30 DTCA and the wacke remains strongly sericitic and								-		$\vdash$
	-	ankeritic, non magnetic, veined with 4% white ankerite fractures and veinlets, and, poorly mineralized with	<u> </u>							<del>                                     </del>		$\vdash$
	-	trace Py.	$\vdash$							+		$\vdash$
	-	146.40- 146.50 : FAZ	$\vdash$							1		
		A shear- sericite- ankerite slip/ fault @ 15 DTCA forms the contact between the wacke and a gritty fine	<del>                                     </del>									_
		conglomerate zone.										
146.50	197.20	S1										
		The upper 6m or so comprise a series of interlayered gritty/ finely conglomeratic lenses and fine grained										<u> </u>
		massive zones. Below, the host grades in and out of fine subangular grit and and fine pebbly horizons in		1	I		1	I	1	1	1	1

,

¢ ***	100		DESCRIPTION (Hole no AK09-05)						Sam	ples / A	Issays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
			which some clasts are rounded and some, subangular. Clasts are polymict and can range up to 18cm but generally average <1.5cm in size within a fine grained to gritty medium yellowish grey matrix. There is a penetrative, somewhat wavey foliation fabric @ 25- 35 DTCA defined by elongation of the clasts and sericitic whisp shear planes. The matrix remains pervaded with ankerite, weakly to moderately sericitic, non magnetic, and veined with 5- 7% fine white irregular, gashy ankeritic streaks, fractures and veinlets. It is weakly mineralized with trace sulphides.										
		-	is weakly mineralized with trace sulphides.										_
			168.67- 168.71 : CVZ										_
			3cm creamy white ankerite vein zone with chlorite fractures @ 40 DTCA with no significant auxilliary veining, alteration or mineralization.										
		-	172.73- 188.00 : S3										
			At this point, there is a gradual change in the character of the conglomerate whereby it becomes more massive looking (i.e., it loses the medium greyish foliated zones) although it is still very strongly sericitized. Clasts up to 7cm of varying composition are barely discernible through the strong pervasive sericite and ankerite alteration, but slight variations in shades of pale buff, yellow, grey, green and beige, often with rounded to subangular shapes, suggest that the protolith remains conglomeratic. The matrix is a gritty to fine grained wacke which includes jasper grains. It is non magnetic, weakly veined with 1- 2% irregular creamy white ankerite streaks, fractures and veinlets, and poorly mineralized with trace fine Py.										
		_											
			188.00- 197.20 : S1/ S3										
			The conglomerate continues essentially as described above, but the fine to gritty wacke lenses, which range from 10 to 70cm in thickness and constitute 40% of the interval, are not nearly as strongly altered as the conglomerate/ grit beds. They tend to be massive, relatively udefromed, fine grained to gritty, granular textured(with jasper), and medium/ dark grey to slightly yellowish grey coloured. The conglomeratic lenses continue to be well sericitized and fairly strongly veined with white ankeritic shreds, streaks, gashes, fractures and veinlets. Veining amounts to approximately 12% overall while the matrix is pervaded with and kerite and non magnetic. Sulphides run trace.										
197.20	227	00	C2								-		
197.20	221.		There is a gradual decrease in conglomeratic and gritty lenses until greywacke dominates the interval. With a decrease in the overall strength of the alteration, the wacke becomes medium brownish to yellowish grey coloured, becomes dominantly fine grained and granular textured, and is observed to be weakly bedded (@ 40- 45 DTCA) with faint yellowish sericite streaks/ lenses defining the bedding planes but also a weak remnant foliation. It remains weakly pervaded with ankerite, veined with 2- 4% white ankerite veinlets and stringers, and poorly mineralized with trace sulphides.										
227.00	258.	52	V4T										
			At about this point, the jasper grains disappear, the number gritty lenses/ zones decrease, and the host assumes a pinkish to purplish/ maroon tone while remianing fine grained and granular textured. Subtle differences in the grain size with gradational to sharp contacts define crude bedding features and a fine foliation fabric trending roughly @ 30- 45 DTCA. These features are further accented by weak streaks and lenses of bleaching as well as the 5- 7% foliation parallel and irregular pale creamy white/ pink ankerite veinlets, streaks and stringers. In addition to the purplish hue, a very weak to weak magnetic signature also contributes ti the difference between the tuff and wackes, the latter being non magnetic. Staining indicates pervasive ankerite alteration but the sulphide content remains weak (trace).										
			254.20- 258.52 : S1										

			DESCRIPTION (Hole no AK09-05)						Sam	ples / A	lssays		
From (m)	то	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		_	The interval begins with a 2.5cm rounded, spherical pebble and is followed by gritty to very finely pebbly conglomerate although a majority of clasts are alkalic in nature. The fine conglomerate/ greit horizons occur as lenses separated by fine tuff/ wacke bands.										
258.52	26	69.75	\$2									_	
			Technically, this probably represents a continuation of the tuff although the host is characterized by a fine grain size, granular texture, massive homogenous nature and light/ medium pinkish to greenish grey colour. A high proportion of the grains are light orange/ pink coloured which lends the orange tone to the host. Unlike the tuff, the arkose is non magnetic but remains pervaded iwth ankerite and is weakly vei+C141ned with 1% white/ pink/ orange, irregular ankerite (some calcite) veinlets and stringers. Mineralizations comprises trace fine Py. The leading contact is gradational from the fine gritty conglomerate and similarly into the following wacke.										
269.75	30	01.15	S3										
			As mentioned, transitional contact into the wacke, which, typically, is fine to very fine grained, massive to thick bedded with bedding attitudes @ 40 DTCA, granualr textured with rare jasper grains, and light/medium yellowish- gren grey coloured. Furthermore, it is non magnetic, pervasively ankeritic, weakly veined with 1-2% irregular ankerite fractures and veinlets, and poorly mineralized with trace fine Py.										
			288.20- 291.60 : S1										
			The wacke in this interval contains a number (8% by volume) of scattered light buff grey to green, subrounded to subangular clasts (sometimes dark speckled) that may possibly represent bombs(?). Locally there are patches containing smaller clasts as well.										
			207 20 204 45 204 07	<u> </u>									
			295.00- 301.15 : S3/S7  Here, the wacke includes 5- 8% irregular (slumped?) lenses of very fine grained/ aphanitic limey green to grey laminated mudstone. The irregular attitudes suggest that most of the lenses are slumped or contorted through soft sediment deformation.										
204.45	-	04.00	07/00	_									
301.15	3,		The contact was taken at a ribbony 10cm zone of creamy white ankerite veining @ 30 DTCA leading into a transitional facies of the sediment which is very fine grained but not necessarily aphanitic, medium grey to yellowish grey coloured, and massive to crudely bedded with variable bedding attitudes ranging from 15/										
			40/ 55 DTCA as well as soft sediment deformation textures such as disjointed beds, flame, and slump textres. The matrix is weakly sericitic and moderately pervaded with ankerite although veining is minimal, consisting of 2- 3% irregular white ankerite fractures and veinlets/ stringers. No significant sulphides were noted.										
224.22	2.	22.00	04		-		-	+		<del>                                     </del>	<del>                                     </del>		
321.20	3.	33.00	The interval actually comprises lenses of grit with rare rounded clasts to 7cm but average sizes range between a few mm and 1.0 cm. They tend to be heterolithic (including jasper) and are generally										
			subrounded to subangular and ovoid/ elongate in shape. The attitude of elongation/ weak foliation ranges from 30- 40 DTCA. The grit is pervaded with ankerite but is only weakly veined with 1% ankerite and minor calcite veinlets. It is only weakly mineralized with trace sulphides.										
333 00	34	49.42	S3/ V4T	-		-							
			A chlorite slip and accompanying 1cm calcite stringer @ 30 DTCA marks a change from the gritty zone to a more uniformly fine grained, massive, granular textured, dark grey coloured sediment that seems to contain an anomalous quantity (5- 15%) of feldspathic (pink/ orange/ red) grains when viewed with a lens.										
			The host is also mildly magnetic which suggests that it is of possible tuffaceous affinity. Otherwise, the									<u> </u>	

		DESCRIPTION (Hole no AK09-05)						Sam	ples / /	Assays		
From (m)	To (n	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		matrix remains weakly pervaded with ankerite, veining amounts to 5-7% irregular light pink calcite fractures and veinlets, and mineralization runs trace.										
349.42	354.20											
		The leading contact begins abruptly on a chlorite slip @ 30 DTCA, strongly contrasting the fine grained, dark grey wacke with a bright limey green/ yellow altered and well fractured and veined mudstone.								-		_
		Typically, the mudstone is very fine grained to aphanitic, finely bedded to laminated @ 30 DTCA, and		-		<del> </del>						
		limey green/ yellow altered to medium grey where less altered. Most of the interval is in situ fractured and								<u> </u>		
		disjointed by 15% networks of irregular segmented ankerite ankerite veinlets and stringers (and chlorite-				_				1		
		hematite fractures), many of which track along the core axis. The matrix remains permiated with ankerite										
		supplimented by sericte which adds the limey green/ yellow colour. Despite the strong deformation and										
		veining, mineralization runs trace.										
										1		
354.20	361.78				_							
		The mudstone ends with a zig zag type contact @ 35 DTCA leading into a strongly altered (sericite-								ļ <u>.</u>		
		ankerite) wacke which is fine grained to gritty with rare clasts to 1.5cm, granular textured where it is not										
		destroyed/ obscurred by alteration, and mottled in shades of light greyish yellow to medium yellowish grey										
	-	depending on the degree/ intensity of alteration. The upper section to about 356.80m, is the most strongly altered with pervasive, limey green/ yellow sericite whereas the lower portion is more chloritic and darker.								<u> </u>		
		Both are pervasively ankeritic and veined with an average of 15% choppy/ irregular white ankerite shreds,										
		streaks, veinlets and stringers (see below). It is weakly mineralized with trace Py.					_					
		358.25- 359.70 ; QCVZ										
		Jumbled mass of quartz- ankerite and chlorite fractured vein material that snakes along the core axis. This				_						
		$oxed{oxed}$ os probably the focus of much of the alteration through the mudstone and wacke. No significant sulphides				-						
		were noted.								-		
204 70	445.50	C1										<u> </u>
361.78	445.50	At this point, there is a gradation back into a progressively less altered wacke, which, typically, is fine				<del> </del>						
		grained, massive, granular textured and medium dark yellowish/ greensih grey coloured. Jasper grains are										
		rare but present, and the wacke includes local plebbly zones which are broken oput separately. Overall,										
		the matrix is weakly pervaded with ankerite while veining amounts to 3-4% (including major vein zones that										
		are separated below) ankeritic fractures, veinlets stringers and veins. No significant sulphides were noted										
		in the interval.	Ĺ									
		367.90- 370.15 S1										
		This is more of a pebbly zone containing 10% clasts, mostly trachytic/ alkalic, up to 7cm in length.	ļ			-						
			<u> </u>			-						
	<del> </del>	372.8-373.6 : QCVZ	_				<b></b>					
	<u> </u>	The interval is veined with 35% fractured/ cataclastically fragmented white ankerite vein material that					<del> </del>					
		partially meanders along and at various angles to the core axis. Most veining occurs at either end of the interval but no anomalous sulphides were noted.	<u> </u>			+	+					
	<del>                                     </del>	Interval but no anomajous sulphides were noted.				1		-				
	<del></del>	373.60- 386.90 : \$3/ V4T										
		Here, the massive, fine grained, granular textured wacke becomes dark slate to brownish grey coloured										
		and very weakly magnetic, locally, suggesting that there may be an increased trachytic/ alkalic component										
		although a few jasper grains were noted.										
		386.40- 386.60 : FAZ				L	Т.					

		DESCRIPTION (Hole no AK09-05)		A-71				Sam	ples / A	ssays		
From (m)	To (m		Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
	_	A mud seam and 1cm fissile zone @ 10 DTCA define this fault.										
		386.90- 391.66 : S1/ S3										
	_	Below the FAZ, a few weakly contorted, whispy sericite laminated mudstone lenses @ 10-20 DTCA, leads into a pebbly/ gritty zone mixed with wacke lenses. The start of the interval is affected by the FAZ but the deformation decreases down hole.										
		391.66- 444.95 : S3										
		A few gritty lenses persist over about 7m before the unit grades into a fairly clean fine grained, granular textured (including jaspers), massive light/ medium yellowish/ buff/ greyish green coloured wacke. Locally, it is punctuated by narrow, fine pebbly/ gritty lenses, thin laminated limey yellow, mudstone beds and scattered clasts and is pervaded with a weak foliation fabric @ 35- 45 DTCA. It is pervaded with sericite and ankerite and veined with 1- 3% dull white ankerite streaks, veinlets and stringers. Mineralization consists of tracec fine Py.										
		408.00- 408.22 : FAZ The FAZ comprises a leading 3mm mud slip, 12cm of streaky ankerite- quartz veining and 3cm fissile										
		zone @ 35 DTCA.										
						infill	20023K			1.00	0.81	-
		444.95- 445.50 ; QVZ		4-		infill	20024K			1.00	5.90 0.62	5.42
		The interval consists of two main quartz veins to 6cm @ 35/ 55 DTCA and swirly patchy quartz- carbonate vein material aggregating 20% overall. The zone is moderately well sericitized and mineralized with 2%	5 20	tr 2	35/ 45	QVZ	20013	444.00 444.95		0.95 0.55	39.6	40.42
		fine/ medium crystalline Py.	4	tr	33/ 43	QVZ	20014	445.50	446.50	1.00	1.51	1.37
		Inter medium drystaline Py.		u		infill	20015 20025K	446.50	447.55	1.05	0.12	0.14
445.50	447.50	S1		-		_		447.55	449.00	1.45		
		The lithology changes to a well altered (sericitized and ankeritized) conglomerate below the vein zone in				infill	20026K	449.00	449.35	0.35	0.03	-
		which the clasts range up to 6cm in size but average <1.5cm and are mostly angular to subangular in				infill	20027K	449.35	450.40	1.05	0.04	0.03
		shape. They represent a variety of compositions but most are of a grungy medium yellowish grey/ green										
		(mafic trachyte?) variety (no jaspers weer noted). The matrix comprises fine grained to gritty, well										
		sericitized ( yellow altered) wacke. Veining comprises 3% irregular streaky, veinlerts and stringers of										
		ankerite with accesory quartz/ sericite/ chlorite while the matrix is pervaded with ankerite and sericite.  Mineralization is negligible.	<u> </u>									
147.50	449.00	Wedge										;
		The drillers were asked to set a wedge to deflect the hole back to the east (roll angle 120) because it had							ļ			
		started to flatten and wander west too quickly. The interval rtepresents lost core due to bullnosing past the	<b> </b>									
		wedge	<u> </u>									
140.00	477.70		<del> </del>									
49.00	477.70	The lithology changes to a well altered (sericitized and ankeritized) conglomerate below the vein zone in	$\vdash$									
		which the clasts range up to 6cm in size but average <1.5cm and are mostly angular to subangular in										
		shape. They represent a variety of compositions but most are of a grungy medium yellowish grey/ green										
		(mafic trachyte?) variety (no jaspers were noted). The matrix comprises fine grained to gritty, well										
		sericitized ( yellow altered) wacke. Veining comprises 3% irregular streaky, veinlerts and stringers of										
_		ankerite with accesory quartz/ sericite/ chlorite while the matrix is pervaded with ankerite and sericite. Mineralization is negligible.										
	1		Γ									
		462.25- 462.90 : QCVZ/ FAZ										
		The vein zone, which probably also represents a FAZ, begins with a 20 cm chlorite fractured, quartz-										<b>——</b>
		carbonate vein zone @ 40 DTCA followed by a 20cm, massive, white quartz breccia vein, ending with		1								

To

12.00		100	DESCRIPTION (Hole no AK09-05)			or tripe-			Sam	ples / A	ssays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		_	10cm of jumbled/ random oriented carbonate stringers and a 1cm chlorite carbonate slip @ 20 DTCA. Only a few fine Py grains were observed.										
	<u> </u>		462.90- 477.70 : S1				_						
	┝		The conglomerate continues below the QCVZ but becomes more typical, i.e., polymict (including jasper),	_									
	<b>-</b>	-	clast supported in places and scattered pebbles and lenses in others, clasts to 7cm but generally ranging	<b>—</b>									
	Η.	-	between 0.5 and 3cm, a mix of rounded to subrounded and elongate to spherical shapes. The matrix		<del>                                     </del>								
	Η.		remains ankeritic in composition, while 1- 2% veining occurs as irregular white ankerite veinlets and										_
			streaky veins. Sulphides continue to run trace.							_			
477.70	407		02										
4//./0	487		Gradational change to a fine to very fine grained, massive to crudely bedded, medium/ light greenish grey	-									
	_		coloured, wacke that contains scattered small clasts and occasional gritty lenses. The matrix is pervaded										
	<u> </u>	-	with ankerite while veining comprises 1- 2% fine irregular white ankwerite fractures/ veinlets and zones of										
			fine shreds. Mineralization consists of trace fine Py.							_			
			•										
			485.35- 487.67 : FAZ										
			There is a progressive increase in alteration from sericite- ankerite (grungy yellowish green) at the start to										
			hematite- ankerite (medium pastel pinkish orange) through the middle and end with a corresponding								0.05	0.04	
	_		increase in finely mosaic cataclastic fracturing although there is no defining focussed structure. The host		tr			92793	484.50	485.35	0.85 0.65	0.21 2.00	-
		-	wacke appears to have become gritty at this point as well. Despite the deformation, no significant sulphides occur in the zone.	3	tr tr			92794 92795	485.35 486.00	486.00 487.00	1.00	0.02	
			sulphides occur in the zone.	3	tr		<del> </del>	92796	487.00	487.87	0.87	0.03	
487.67	489	9 94	Wedge	٣	1 11		LC	02.700	487.87	489.94	2.07	0.00	
407.01	400	3.34	The core through this section was drilled with a bull nosed bit past a retrievable wedge and therefore not						10/10/				
			recovered. The wedge was intended to deflect the hole down and east (roll angle 120)							T			
489.94	492	2.75											
			The wacke through this section below the wedge, is fairly well bleached (sericite- ankerite altered) to a light										
			greenish yellow colour and is intersected by a partially dilatant quartz vein zone and several chlorite altered										
	_		faults, all of which are detailed separately below. The wacke is fine grained with minor gritty lenses,		<del></del> -								
			granular textured, and massive. The only mineralization of note is associated with the pinch- and swell quartz stringer (see below), otherwise, sulphides run trace.				1						
			qualiz stilliger (see below), otherwise, sulprides full trace.	12	1		QVZ	92797	489.94	490.55	0.61	12.69	12.21
					_			92798	490.55	491.25	0.70	0.11	
			490 15- 490 25 · OVZ (Cyprus Zone)	1	tr			0.000	10105	492.00	0.75	0.02	0.02
			490.15- 490.25 : QVZ (Cyprus Zone)  A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant		tr			92799	491.25				
								92799	491.25	493.00	1.00	0.08	,
_			A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.	1	tr								•
, .			A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.  490.40- 490.50 : FAZ	1	tr								-
			A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.  490.40- 490.50 : FAZ Chloritic band that probably defines a FAZ (mylonite?) @ 30 DTCA around which the bleaching appears to	1	tr								-
			A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.  490.40- 490.50 : FAZ	1	tr								-
492 75	497		A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.  490.40- 490.50 : FAZ Chloritic band that probably defines a FAZ (mylonite?) @ 30 DTCA around which the bleaching appears to be centred. There is no significant mineralization associated with the FAZ.	1	tr								-
492.75	497		A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.  490.40- 490.50 : FAZ Chloritic band that probably defines a FAZ (mylonite?) @ 30 DTCA around which the bleaching appears to be centred. There is no significant mineralization associated with the FAZ.	1 1	tr								-
492.75	497		A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.  490.40- 490.50: FAZ  Chloritic band that probably defines a FAZ (mylonite?) @ 30 DTCA around which the bleaching appears to be centred. There is no significant mineralization associated with the FAZ.  S3  The alteration gradually decreases to the point where the wacke is relatively fresh, fine grained to gritty textured, massive, granular textured (including jasper), and medium/ light yellowish green coloured. Apart	1 1	tr								-
492.75	497		A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.  490.40- 490.50: FAZ  Chloritic band that probably defines a FAZ (mylonite?) @ 30 DTCA around which the bleaching appears to be centred. There is no significant mineralization associated with the FAZ.  S3  The alteration gradually decreases to the point where the wacke is relatively fresh, fine grained to gritty textured, massive, granular textured (including jasper), and medium/ light yellowish green coloured. Apart from some gashy carbonate- quartz veins associated with the fault zone, background secondary veining	1 1	tr								-
492.75	497		A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.  490.40- 490.50 : FAZ Chloritic band that probably defines a FAZ (mylonite?) @ 30 DTCA around which the bleaching appears to be centred. There is no significant mineralization associated with the FAZ.  53 The alteration gradually decreases to the point where the wacke is relatively fresh, fine grained to gritty textured, massive, granular textured (including jasper), and medium/ light yellowish green coloured. Apart from some gashy carbonate- quartz veins associated with the fault zone, background secondary veining amounts to <1% while the matrix remains weakly pervaded with ankerite. Only trace sulphides were noted	1 1	tr								-
492.75	497		A chlorite slip/ facture zone @ 30 DTCA mineralized with 8% fine/ medium Py and containing dilatant quartz vein zones (pods) to 2.5 x 7cm quartz patches. This may be the Cypruss Zone.  490.40- 490.50: FAZ  Chloritic band that probably defines a FAZ (mylonite?) @ 30 DTCA around which the bleaching appears to be centred. There is no significant mineralization associated with the FAZ.  S3  The alteration gradually decreases to the point where the wacke is relatively fresh, fine grained to gritty textured, massive, granular textured (including jasper), and medium/ light yellowish green coloured. Apart from some gashy carbonate- quartz veins associated with the fault zone, background secondary veining	1 1	tr								-

. . . . . .

54		DESCRIPTION (Hole no AK09-05)				Sam	ples / A	Assays				
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
497.22	498.50	FAZ										
		The FAZ consists of several mud slips and zones with some gashy veining as follows: 5cm pale pink gashy ankerite- quartz vein bounded by mud/ gouge slips @ 35 DTCA; 15cm braided crushed zone @ 35-40 DTCA; 12cm pile of gouge @,35 ? DTCA; 88cm of fractured to crushed host with local mud slips @ 15/										
		30 DTCA; and, a 5cm zone of fissile crushing and mud/ gouge @ 30- 35 DTCA to end the fault zone. There is 6- 8% whispy/ gshy carbonate fracturing throughout the interval but no anomalous mineralization.		_								
498.50	548.00	S1/ Bx										
		The hole now tracks through a moderately well altered (sericite- carbonate) package consisting mainly of										
		angular grit to fine conglomerate (could almost be classed as a breccia) interfingered with 20% finely										
		laminated mudstone lenses. Overall, the conglomerate could be described as polymict, including green										
		carbonate (altered u/m) clasts and jasper grains, with grain sizes ranging up to 10cm but generally <										
		2.5cm, and shapes ranging from angular to rounded. There is a fabric that may be related to bedding into										_
		which the tabular/ flat clasts are aligned @ around 35- 45 DTCA. The gritty/ wacke matrix is mottled in light										
		medium yellowish green shades resulting from pervasive sericite and ankerite alteration while veining										
		consists of several 4- 6cm diffuse dull white ankerite quartz vein and 1% smaller gashy veinlets and										
		stringers. Mineralization runs trace.										
		Typically, the mudstone lenses are finely laminated (@ approximately 40 DTCA), the laminae defined by										
		bright limey yellow (sericitic) shear/ foliatuion planes with medium/ dark grey thicker beds, all are very fine										
		grained to aphanitic. They generally range between 0.2 to 1m in thickness and tend to occur mainly in the				_						
		upper 10m of the unit. Most of the veining described above is also situated within the mudstone lenses but										
		sulphides are negligible (trace).										
						L .						
		520.50- 548.00 : S1										
		At this point, the conglomerate becomes more typical with a variety of compositions of clasts (including										
		jaspers), more rounded and spherical clasts with a larger overall average size, commonly up to 5cm (some										
		to 30cm), a clast supported framework in some areas, and a fine grained, medium/ dark greyish green				<u> </u>						
		wacke to gritty matrix with no mudstone lenses. It remains pervasively ankeritic, weakly veined with 2- 3%										
		carbonate/ quartz veinlets and stringers, and sparsely mineralized with trace sulphides.	-			-						_
548.00		EOH										
		At this point, the drillers were asked to stop the hole because it was deviating too far to the west and										
		flattening too rapidly as well. The hole was recollared as AK09_06.										

PROPERTY:	AMALGAMA	TED KIRKLAND		HOL	E NUMBER A	K09-06		
Province:	Ontario	<b>DATE LOGGED:</b> Nov 13- 26, 2009	Grid:	87+50 E	Method	Depth	Az	Dip
Township	Teck	LOGGED BY: FR Ploeger		10+120 N	Compass	Collar		
Started:	13-Nov-09	DRILLED BY: Major Diamond Drilling	UTM:	569788 E	reflex			
Completed:	25-Nov-09	UNITS: Metres	NAD 83	5330703N				
CORE SIZE:	NQ	CORE LOCATION: Upper Canada	ELEV:					
			LENGT	H: 266 m				
		Location: leased clm 328 (106667)						
PURPOSE:								
	•						*	
COMMENTS:		<del></del>			-			
SUMMARY L	OG	AK09-06						
From	То	Lithology	From	То	Metres	Au g/t		
0.00	11.00	CAS						
11.00	143.95	S1						
143.95	156.70	S3						
156.70	176.00	S1						
176.00	214.08	S3						
214.08	222.50	S7						
222.50	263.96	S3						
263.96	266.00	S7						
266.00	-	EOH						
		·						
		<u> </u>						

From			STREET,	A CONTROL OF THE CONTROL	The second	and are made at			ples / A	<b>6000000000000000000000000000000000000</b>	Control of the Control of the Control	
(m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
0.00	11.00	CAS										
		The hole was recollared because the previous holes had deviated too much to the west. From 10.20- 11m, the core consists of ground boulders of various lithologies. Solid coring actually begins at 11m.			_							
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in										
		the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.										
										_		
11.00	143.95					ļ						
		The hole begins in typical Timiskaming conglomerate that is characterized by a clast supported framework, heterolithic nature including various types of fine to medium grained mafic to felsic, porphyritic, sedimentary and volcanic lithologies (including jasper), clast sizes ranging from grit to 18cm, and rounded										
		to subangular and generally elongate shapes in a fine grained to gritty wacke matrix. It is pervaded with				<del> </del>	-			+		
		ankerite and veined with 6-8% dry white ankerite- quartz stringers and vein zones to 13cm that generally										
		intersect the core at steep angles of 65- 80 DTCA. The core is somewhat broken up along slips and fractures that track at lower angles of 15- 30 DTCA. No significant mineralization was noted (trace).										
										-	ļ	
		77.05- 77.73 : QVZ		-	<b></b>	<del> </del>				<del>                                     </del>		
		The interval contains a number of white/ dull grey quartz- ankerite and quartz- breccia veins (60%) to 16cm										
		that trend @ 80/ 45 DTCA. There is minor sericite alteration between the veins and up and down hole, but										
		no sulphides were noted.										
		89.60-104.00 : BBC								<del> </del>		
		Through this segment, there are a number of low angle fracture systems (@ 5- 25 DTCA) along which the					<del></del>		_			
		core is broken into splinters/ flakes resulting in an RQD of around 20%. There is no significant alteration,										
		structure or mineraliztion associated with the fracture zone.										
		100 CF 144 IS DD0							-			
		106.55- 114.45 : BBC  Again, the core is fractured at low angles to the core axis ranging between 10- 35 DTCA causing it to be		-					ł			
		broken into small pieces and chips. A few are lined with a thin seam of mud.										
		116.90- 117.17 : QCVZ										
		Dry white quartz- ankerite vein zone (70%) @ 70 DTCA.										
		120.20- 132.70 : BBC/ FAZ		1					1			
		Most of the fissile fracturing occurs in ther upper 6m and lower 3m of the interval along low angle mud slips										
		and fractures that meander along the core axis and are intersected by other steeper fracture zones. The										
	_	core in these areas is recovered as chips, flakes and small pieces with an overall RQD for the interval								<u> </u>		
		estimated at 35%. The upper section could be consisdered as a strong FAZ @ 10 DTCA.				ļ	-					
		120.20- 126.00 : FAZ										
		Fissile, fractured mud fault @ 10 DTCA.										
		132.00- 132.70 : FAZ	<u> </u>	-						+	-	<del> </del>
-		Mud/ gouge fractured fault along the core axis.		1		<del>                                     </del>						
$\longrightarrow$		grade management and the control										
						1 -	1	1	1	1	1	1

a state a National			DESCRIPTION (Hole no AK09-06)						Sam	pies / A	ssays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
			green grey coloured wacke. The pervasive ankerite alteration transgresses the contact and 4% veining										
		$\dashv$	continues as white ankerite/ quartz veinlets, stringers and veins with most at attitudes of 50- 80 DTCA. Trace very fine dusty pyrite (Py) was noted in the matrix and a few isolated splashes of chalcopyrite (Cp)				<del></del>	_	_				
		$\dashv$	were observed in the veins.										
			water observed in the vents.										
			155.45- 155.56 : QCVZ										
			This vein is different from those above because it is streaked with white ankerite, dull grey quartz, and										
			medium green chlorite @ 55 DTCA. No sulphides occur in the vein or walls.										
											-		
<del></del>			156.40- 158.50 : BBC/ FAZ								-		
			The core is broken into small pieces and flakes accompanied by mud slips and a small pile of gouge										
			indicating the presence of a fault although there was no preferred plane observed. The fractures appear to be random. The contact with the conglomerate is lost in the BBC.				<del></del>					-	
			be famount. The contact with the congionnerate is lost in the BBC.										$\overline{}$
156.70	176	00	S1										
100.70	-170		The hole reenters the conglomerate, basically as described above as polymict, with a high proportion of										
			orange/ pink/ brown coloured clasts of alkalic/ syenitic derivation (and fine jaspers), clast supported, with a										
			fine grained to gritty matrix. Clasts are rounded to subrounded and range up to 23cm in length although 1-										
			5cm is more common. The matrix remains pervaded with ankerite and, veining consists of 2- 4% fine				ļ						igspace
$\longrightarrow$			ankerite/ quartz veinlets and stringers with rare local wider veins to 7cm. No significant mineralization		-		1				<u></u>		<del>                                     </del>
<del></del>			occurs in the unit but a few splashes of Cp and Py were noted in some stringers.		<del></del>								$\vdash$
							-						$\vdash$
			A number of faults and fracture zones traverse down the core axis separated by more competent sections										$\vdash$
			of core. The estimated RQD for the interval is 30%. The zone of broken core also straddles the contact										
			between the conglomerate and the wacke at 176m.										
			163.60- 165.10 : FAZ										
			A 1.5cm mud- gouge fault runs down the core axisand forms the start of the zone of broken core.										ļ <i>!</i>
											_		
			171.35- 173.50 : FAZ										$\vdash$
			A zone of splayed fractures and minor faults with local mud and gouge on the fracture planes forms a				<del>                                     </del>						igwdapprox igwedge
<del></del>			braided network along the core axis.	<u> </u>							<del> </del>		<b></b>
				<b></b> -									$\vdash$
176.00	214	1.08	There is a transition into massive, fine grained to gritty, granular textured (with jasper), light greenish tan/	$\vdash$			_						
		-	brown coloured wacke that contains local gritty to finely conglomeratic lenses. It remains moderately				<del>                                     </del>				<del>                                     </del>		
			pervaded with ankerite as well as hematite and sericite to impart the brownish and greenish (yellowish)								Ī		
		_	tones, but, is only weakly veined with 1% ankerite/ chlorite fractures and veinlets. The unit is mineralized										
			with trace fine dusty Py. As mentioned in the BBC unit at 163.60m, the broken core along braided fracture										
			networks at low angles to the core axis has extended into the wackes.	L							ļ		
				L									<del>                                     </del>
			188.00- 192.60 : S1		<b>.</b>		<del> </del>			1	ļ. —		<del></del>
<b></b>			Lens of typical polymict conglomerate including jasper grains and green carbonate altered clasts is	<u> </u>	-			-		-	-	<del>                                     </del>	<del>                                     </del>
<b></b>			interdigitated with the wacke.	<u> </u>			-	-			+		<del>                                     </del>
			192.60- 194.95 : S7	$\vdash$							+		
		-	Ther lithology now changes to a very fine grained to aphanitic, finely banded @ 30 DTCA, light yellowy										
		-	green mudstone.			<b></b>							
			9										

		DESCRIPTION (Hole no AK09-06)						Sam	ples / /	Assays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		200.60- 202.75 : S1			-							
		Interbeded here is a gritty to finely conglomeratic lens in which most clasts are < 3cm in length and are elongated/ ovoid in shape but rounded including green carbonate and jaspers.										
214.08	222.50											
		Gradual fining of the wacke leads into a very fine grained to aphanitic, limey yellow green and grey, well bedded to laminated (@ 20 DTCA) mudstone that exhibits local variable bedding angles around slump features. It remains moderately well ankeritized and sericitized but generally weakly veined with 1- 2% calcite/ quartz veinlets and stringers. Very little mineralization (trace) was observed in the unit.										
222.50	263.96	S3										
		Fairly abrupt transition @ 30 DTCA into a massive, fine grained to gritty wacke with 10% local narrow bands/ laminae of sericitized mudstone as well as 5% scattered clasts and conglomeratic lenses. The clasts are well altered along with the rest of the unit but include green carbonate altered and jaspers. Overall, the wacke is pervaded with sericite and ankerite and veined with 10% combined gashy irregular quartz/ ankerite veinlets and stringers, chlorite/ sericite fractures and veinlets, and, a few wide quartz-ankerite veins to 16 cm that cut the core at high angles. There are no significant sulphides associted with the alteration or veining.										
263.96	266.00	S7  The mudstone starts abruptly at a 1cm quartz- ankerite stringer @ 75 DTCA although the mudstone bedding tracks at a low angle along the core axis. In fact the core is well broken up (RQD 0) along the core axis and is somewhat gougey in places. Overall, the host is very fine grained/ aphanitic, medium olive grey coloured and bedded along the core axis. It remains sericitized and ankeritized as the wacke above and veined with 7% quartz- ankerite veinlets and stringers with little or no mineralization.										
266.00	<del></del>	EOH	<del>-</del>			1						
200.00		The hole was stopped again because of a 15 degree deviation from the collar azimuth.										

PROPERIT	<u>AMALGAMA</u>	ATED KIRKLAND		HOLE	NUMBER A	K09-06A		
Province:	Ontario	DATE LOGGED: Nov 11, 2009	Grid:	7600 E	Method	Depth	Az	Di
Township	Teck	LOGGED BY: FR Ploeger		10080 N	Compass	Collar		
Started:	5-Nov-09	DRILLED BY: Major Diamond Drilling	UTM:	569788 E	reflex			
Completed:	10-Nov-09	UNITS: Metres	NAD 83	5330703N				
CORE SIZE:	NQ	CORE LOCATION: Upper Canada	ELEV:					
	•		LENGT	H: 29.5 m				
		Location: leased clm 328 (106667)						
PURPOSE:								
COMMENTS:								
COMMENTS:		·						
COMMENTS:								
		AK09-06A	,					
COMMENTS: SUMMARY L		AK09-06A Lithology	From	То	Metres	Au g/t		
SUMMARY L	OG To	Lithology	From	То	Metres	Au g/t		
SUMMARY L From 0.00	OG To 10.50	Lithology	From	То	Metres	Au g/t		
SUMMARY L From 0.00 10.50	OG To	Lithology CAS S3	From	То	Metres	Au g/t		
SUMMARY L From 0.00	OG To 10.50	Lithology	From	То	Metres	Au g/t		
SUMMARY L From 0.00 10.50	OG To 10.50	Lithology CAS S3	From	То	Metres	Au g/t		
SUMMARY L From 0.00 10.50	OG To 10.50	Lithology CAS S3	From	То	Metres	Au g/t		
SUMMARY L From 0.00 10.50	OG To 10.50	Lithology CAS S3	From	То	Metres	Au g/t		
SUMMARY L From 0.00 10.50	OG To 10.50	Lithology CAS S3	From	To	Metres	Au g/t		

		DESCRIPTION (Hole no AK09-06A)					Jan	Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
0.00	10.50	CAS										
		The hole was recollared because the casing at the previous set up had deviated too much to the west. From 10.1- 10.5m, the core consists of ground boulders of various lithologies.										
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.										
10.50	29.50											
		The hole is collared in a sericite- ankerite altered wacke that is medium/ light yellowish green coloured, fine grained to gritty with local scattered pebbles and mudstone clasts, and massive with local diffuse layering/ bedding/ (weak foliation) along and @ about 15 DTCA which is defined mainly in very fine/ fine grained mudstone lenses and the flat mudstone clasts. Clasts tend to range up to 7cm in length but generally average < 3cm and vary in composition from mafic to felsic looking (volcanics and sediments), to ultramafic in which the clasts are altered to green carbonate, and red jasper which also occurs as widely scattered grains.  Staining indicates that the wacke is permiated with ankerite and the yellowish tone denotes that it also is pervasively sericite altered. It tends to be non magnetic although less altered zones may be weakly magnetic. Secondary veining consists of a combination of 5- 7% white ankerite veinlets and stringers, ankerite chlorite veinlets and stringers, sericite streaks and veinlets, and quartz- ankerite stringers and veins. Attitudes of the veinlets vary, but many, particularly the sericite and carbonate- chlorite ones, tend to mimic the bedding attitudes. Mineralization consists of trace fine pyrite (Py), mainly associated with the veining and as scattered grains.  28.0-29.2: QVZ 25% massive dull white/ grey quartz and creamy white ankerite veins to 17cm cut the core @ 85 DTCA. No anomalous sulphides were noted in the vein or walls.										
29.50		The hole was stopped at this point because of excessive deviation to the west.										

PROPERTY:	AMALGAMA	TED KIRKLAND		HOLE	NUMBER A	K09-06B		
Province:	Ontario	DATE LOGGED: Nov 12, 2009	Grid:	7600 E	Method	Depth	Az	
Township	Teck	LOGGED BY: FR Ploeger		10080 N	Compass	Collar		
Started:	10-Nov-09	DRILLED BY: Major Diamond Drilling	UTM:	569788 E	reflex	_		Т
Completed:	11-Nov-09	UNITS: Metres	NAD 83	5330703N				Τ
CORE SIZE:	NQ	CORE LOCATION: Upper Canada	ELEV :	337 m				T
			LENGT	H: 122 m				
		Location: leased clm 328 (106667)						
PURPOSE:								T
	•							
COMMENTS	:							
	-	·						
SUMMARY L		AK09-06B						
From	То	Lithology	From	То	Metres	Au g/t		
0.00	10.50	CAS						
10.50	31.50	S3						Γ
31.50	40.40	S1						
40.40	107.30	S3						
107.30	116.40	S1						
116.40	119.23	S7						
119.23	122.00	S3				_		L
122.00		ЕОН						
								L
								I
								Ι
								Ι
								Τ
	1							

44		DESCRIPTION (Hole no AK09-06B)						Sam	ples / /	Assays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
0.00	10.50											
		The hole was recollared because the casing at the previous set up had deviated too much to the west.										
		From 10.1- 10.5m, the core consists of ground boulders of various lithologies.								ļ		
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and						-				
		potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite				-						
		the presence of ankente. In certain areas, the core is tested with a magnet to determine relative magnetic content.										
		Content.								<u> </u>		
10.50	31.50	S3 -										
10.50	01.00	The hole is collared in a sericite- ankerite altered wacke that is medium/ light yellowish green coloured,										
		fine grained to gritty with local scattered pebbles and mudstone clasts, and massive with local diffuse										
		layering/ bedding/ (weak foliation) along and @ about 15 DTCA which is defined mainly in very fine/ fine										
		grained mudstone lenses and the flat mudstone clasts. Clasts tend to range up to 7cm in length but										
		generally average < 3cm and vary in composition from mafic to felsic looking (volcanics and sediments), to										
		ultramafic in which the clasts are altered to green carbonate, and red jasper which also occurs as widely										
		scattered grains.			_							·
		Staining indicates that the wacke is permiated with ankerite and the yellowish tone denotes that it also is				<u> </u>						_
	-	pervasively sericite altered. It tends to be non magnetic although less altered zones may be weakly	<u> </u>			<del> </del>						
	<u> </u>	magnetic. Secondary veining consists of a combination of 5-7% white ankerite veinlets and stringers, ankerite chlorite veinlets and stringers, sericite streaks and veinlets, and quartz- ankerite stringers and	$\vdash$		<del></del>	-						
		veins. Attitudes of the veinlets vary, but many, particularly the sericite and carbonate- chlorite ones, tend to					<del>                                     </del>					
	-	mimic the bedding attitudes. Mineralization consists of trace fine pyrite (Py), mainly associated with the		<b> </b>					_			
		veining and as scattered grains.										
		26.45- 29.30 : QVZ										
		20% massive dull white/ grey quartz and creamy white ankerite veins to 17cm cut the core @ 85 DTCA.										_
		No anomalous sulphides were noted in the vein or walls.										<del>-</del>
			<b>├</b>									-
		100.00- 100.10 : FAZ	├			-						<del></del>
	<u> </u>	The shear zone and wacke end on a strong, shallow angle sericite slip @ 10 DTCA.	-			1						
04.50	40.40					1	_					
31.50	40.40	The contact was taken at a 1cm mudstone lens @ 10 DTCA. Overall, the conglomerate/ gritty wacke is		1								
		moderately fractured (chlorite- ankerite) @ 15- 25 DTCA and altered to a bright limey yellow colour. The				1			İ			
		clasts comprise a mixture of lithologies including jaspers and green carbonate and are somewhat										
-		elongated/ imbricated in the plane of fracturing (bedding as well?). They tend to be elongated, subrounded,										
		and up to 7cm in length although most are <3cm. Staining with KFC reveals that the matrix is strongly										
		pervaded with ankerite, and 6-8% streaky/ gashy quartz- carbonate veinlets and stringers tend to be									-	<del></del>
		ankeritic as well. The host is non magnetic and only weakly mineralized (trace).	ļ		<u> </u>						-	<b></b>
						-	<del></del>		1		-	<del></del>
		115.00- 1 <u>15.08</u> : FAZ	-			-						$\vdash$
		The sheared conglomerate is terminated by a 2.5cm sericite- ankerite fault that trends @ 20 DTCA.	-	<b>_</b>		+	<del>                                     </del>					
	177.0		<del> </del>			-			<del> </del>			<del></del>
40.40	107.30		$\vdash$	+		+	<del>                                     </del>		<del> </del>		<del>                                     </del>	
	ļ	Gradation back into wacke as described at the start, massive, granular textured (with jaspers), light yellowish green coloured and fine grained with local gritty lenses. Core angles of fractures and mudstone		<del> </del>		+	<u> </u>					
<u> </u>		yellowish green coloured and fine grained with local gritty lenses. Core angles of fractures and industries bedding trend at low angles (10 -20 degrees) to the core axis. It is pervasively sericitized and ankeritized				+	<del>                                     </del>					
	+	and is cut by 3% ankerite (/ quartz) veinlets and irregulaar stringers. Sulphides run trace.		<b> </b>		1	<u> </u>					
	<del>                                     </del>	and a serial and a domest touristo and made and and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a serial and a ser	1	1								

			DESCRIPTION (Hole no AK09-06B)					,	Sam	ples / A	Assays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
			85.55- 85.85 : QCVZ										
			23cm wide, chlorite ankerite streaked, quartz vein @ 30- 35 DTCA containing trace fine Py and possibly representing a fault.			_							
-			105.10- 106.25 : BBC		<del>                                     </del>		-						
			The core is splintered along a series of shallow dipping fractures in a limey yellow green, very fine grained mudstone lens, cutting the core @ about 20 DTCA.			_							
07.30	111	6.40	<u> </u>										<u> </u>
107.50			A 9cm wide quartz vein @ 80 DTCA, leads into a conglomerate in which the matrix is generally gritty to fine grained while the clasts tend to be heterolithic including clasts that are coloured in shades of light/medium orange to pink, light to dark yellowish grey and green, are fine to medium grained to porphyritic, and also include red jasper. They range in size from grit to 13cm (most are under 5cm) and are elongate and subangular in shape. The conglomerate is pervaded with ankerite, and is veined with 1% ankerite/quartz/ chlorite veinlets and stringers. Sulphides run trace overall.										
													<del></del>
			107.30- 107.19 : QVZ As mentioned, a 9cm quartz vein @ 80 DTCA leads the into the conglomerate zone. It is mineralized with anomalous to 0.5% fine splashes of Cp.										
116.40	111	0.23	\$7					<del> </del>					
10.40			Abrupt contact @ 30 DTCA into a fine grained to aphanitic, light limey yellow coloured, finely banded to laminated (@ 25- 30 DTCA) mudstone that contains a few interbeds of wacke. It is well sericitized and weakly ankeritic with 1- 2% chlorite fractures and fine ankerite gashes while mineralization amounts to trace.										
19.23	12												
			Sharp contact back into wacke as described above, fine grained with local gritty lenses and scattered clasts, massive, granualr textured (including jaspers), and light/ medium yellowish grey green coloured. It is pervaded with sericite and ankerite but is weakly veined (1%) and poorly mineralized (trace).			_							
22.00			EOH										
			The hole was stopped as the azimuth wandered too far west, again, and the hole was recollared.							ļ	-		-
	$\vdash$						-						$\vdash$
	$\vdash$												
													<u> </u>
								-					├
	_												$\vdash$
	$\vdash$						1	<del>                                     </del>					
	$\vdash$			$\vdash$									

PROPERTY:	AMALGAMA	TED KIRKLAND		HOLE	NUMBER A	K09-06C		
Province:	Ontario	DATE LOGGED: Nov 14, 2009	Grid:	7600 E	Method	Depth	Az	Dip
Township	Teck	LOGGED BY: FR Ploeger		10080 N	Compass	Collar		
Started:		DRILLED BY: Major Diamond Drilling	UTM:	569788 E	reflex			
Completed:		UNITS: Metres	NAD 83	5330703N				
CORE SIZE:	NQ	CORE LOCATION: Upper Canada	ELEV:	337 m				
			LENGT	<b>H:</b> 50 m				
		Location: leased clm 328 (106667)						
PURPOSE:					·			
COMMENTS								
SUMMARY L		AK09-06C						
From	То	Lithology	From	То	Metres	Au g/t		
0.00	13.50	CAS				4		
13.50	50.00	S1				•		
50.00		ЕОН						
			<u> </u>					
				-				
				ļ				
				1				
			1.	1	1			I

•

	177	DESCRIPTION (Hole no AK09-06C)						Sam	ples / /	Assays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
0.00	13.50	CAS										
		The hole was recollared because the previous hole had deviated too much to the west. From 9.2-11m, the core consists of ground boulders of various lithologies. Solid coring actually begins at 11m.										
		11.0-13.5 : S1				_						
		The hole is conglomerate as described below.										
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.										
13.50	50.00	The hole begins in typical Timiskaming conglomerate that is characterized by a heterolithic nature including various types of fine to medium grained mafic to felsic, porphyritic, sedimentary and volcanic lithologies (including jasper), clast sizes ranging from grit to 18cm, and rounded to subangular and generally elongate shapes in a fine grained to gritty wacke matrix. It is pervaded with ankerite and veined with 6-8% dry white ankerite- quartz stringers and veins to 13cm that generally intersect the core at steep angles of 65-80 DTCA. No significant mineraliztion was noted (trace).										
			├									
		36.50- 40.85 : S3  Gradual contact in and out of a strongly ankerite altered wacke lens in which the streams of ankerite and	<u> </u>									
		chlorite may define a faint bedding fabric that runs along the core axis throughout the interval. Overall, it is fine grained and pale creamy buff grey coloured 1% fine white ankerite/ quartz veinlets and trace Py.										
			├				<del> </del>					
50.00		<b>EOH</b> Although the hole was collared 5 degrees east of the front sights, it was stopped at this point because of excessive deviation to the west.										
										ļ		
	<b></b>									<del> </del>		
			<del></del>									
	<del>                                      </del>											
										1		
										-		
	<del> </del>	· · · · · · · · · · · · · · · · · · ·		<del>                                     </del>		<del> </del>						
	+			<del>                                     </del>								

PROPERTY:	AMALGAMA	TED KIRKLAND		HOLE	NUMBER AK	(09-07		
Province:	Ontario	<b>DATE LOGGED:</b> Nov 27, 2009- Feb 14, 2010	Grid:	8750 E	Method	Depth	Az	Dip
Township	Teck	LOGGED BY: FR Ploeger		I0170 N	Compass	Collar		
Started:		DRILLED BY: Major Diamond Drilling		70863 E	reflex			
Completed:		UNITS: Metres	NAD 83 533					
CORE SIZE:	NQ	CORE LOCATION: Upper Canada	ELEV:					
			LENGTH:	1271 m				
		Location: leased clm 328 (106667)						
PURPOSE:								
COMMENTS:								
!		<del></del>						
SUMMARY LO		AK09-07						_
From	То	Lithology	From	То	Metres	Au g/t		
0.00	7.30	CAS				•		
7.30	53.82	S3a						
53.82	55.40	1Sa						
55.40	82.00	S3a/ DZ						
82.00		S3a						
235.90		Wedge/ LC						
237.90	262.77	S3						
262.77		S7/ S3						
380.40		<u>S</u> 3						
417.55		V4T/ 1S/ S2	ļ					
443.25		S3						
533.00		Wedge		ļ				
535.10	562.90	S3						
562.90		Wedge						
564.25		S3						
614.55		<u>\$1</u>						
647.11		Wedge/ LC		-				_
649.23		S7						
663.60		S1						
670.15		DZ		4				
673.90		S3/ S1						
684.84		SHZ/ S3						
691.00	698.90	S1						

. .

698.90 720.25 S3			<u> </u>				1		1
751.90	698.90							ļ	
759.40									_
759.40									
770.65 794.90 S1 786.00 787.50 1.50 5.48 784.90 831.24 852.00 S1									
794.90 831.24 S3 831.24 852.00 S1 831.24 852.00 S1 831.24 852.00 S1 852.00 860.00 S3 860.00 862.60 Wedge/Wedge Cut 862.60 902.00 S3 902.00 920.00 S1 920.00 EOH 920.00 B44.30 Wedge 844.30 Wedge 844.30 Wedge Cut/ 844.30 851.65 S1 851.65 S75.00 S3 875.00 876.90 Wedge/Wedge Cut/LC 876.90 887.00 S1 887.00 888.70 Wedge/Wedge Cut/LC 888.70 909.00 S1 899.00 S1 888.70 909.00 S1 999.00 S1									
831.24 852.00 S1 852.00 880.00 S3 860.00 882.60 Wedge/Wedge Cut 862.60 902.00 S3 902.00 920.00 S1 920.00 EOH 842.00 843.00 Wedge 843.00 Wedge 843.00 S44.30 Wedge Cut/ 843.00 851.65 S1 851.65 875.00 S3 875.00 S76.90 Wedge/Wedge Cut/ LC 876.90 876.90 Wedge/Wedge Cut/ LC 888.70 888.70 S1 888.70 S1 888.70 S1 888.70 S1 888.70 S1 888.70 S1 887.00 S1 888.70 S1	770.65	794.90		786.00	787.50	1.50	5.48		
852.00 860.00 S3 860.00 862.60 Wedge/ Wedge Cut 862.60 902.00 S3 902.00 920.00 EOH 920.00 B43.00 Wedge 843.00 844.30 Wedge Cut/ 844.30 851.65 S1 851.65 875.00 S3 875.00 876.90 Wedge/ Wedge Cut/ LC 876.90 887.00 S1 887.00 909.00 S1 887.00 909.00 S1 999.00 S1 887.00 S1 887.00 S3 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S1 887.00 S2 887.00 S1 887.00 S1 887.00 S2 887.00 S1 887.00 S2 887.00 S1 887.00 S2 887.00 S2 887.00 S1 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S2 887.00 S	794.90	831.24	S3						
860.00     862.60     Wedge/Wedge Cut       862.60     902.00     S3       902.00     EOH       842.00     843.00     Wedge       843.00     Wedge Cut/       844.30     851.85     S1       851.65     875.00     S3       875.90     876.90     Wedge/Wedge Cut/ LC       887.00     887.00     S1       887.00     888.70     Wedge/Wedge Cut/ LC       888.70     99.00     S1       999.00     914.65     S3       914.65     941.00     S1       941.00     954.70     V4T/ S2       954.70     1025.15     S1       1025.15     1089.25     S3       1094.85     1108.85     S7       1108.85     S3a/ S2       1142.58     1143.90     3D/ MI       1154.85     S3a     S3a       1176.90     S3a     S3a       1177.80     177.80     FAZ	831.24	852.00	S1						
882.60       902.00       \$3         902.00       \$20.00       EOH         842.00       843.00       Wedge         843.01       844.30       Wedge Cut/         844.30       851.65       \$1         851.65       875.00       \$3         875.00       \$76.90       Wedge/ Wedge Cut/ LC         876.90       \$87.00       \$1         887.00       \$887.00       \$1         888.70       909.00       \$1         999.00       \$14.65       \$3         914.65       \$41.00       \$41.00         954.70       \$1       \$1         995.70       \$1       \$1         1025.15       \$1       \$1         1025.15       \$1       \$1         1089.25       \$1094.85       \$3a         1142.58       \$143.90       \$3D/ MI         1143.90       \$154.85       \$3a         \$148.85       \$155.90       MI         \$1176.90       \$3a       \$3a         \$1176.90       \$3a       \$3a         \$1177.80       \$1271.00       \$4T	852.00	860.00	S3						
902.00 920.00 EOH	860.00	862.60	Wedge/ Wedge Cut						
920.00	862.60	902.00	S3						
842.00 843.00 Wedge Wedge Cut/  844.30 Wedge Cut/  844.30 Wedge Cut/  851.65 S1  851.65 S75.00 S3  875.00 876.90 Wedge/ Wedge Cut/ LC  876.90 887.00 S1  887.00 888.70 Wedge/ Wedge Cut/ LC  888.70 909.00 S1  899.00 914.65 S3  914.65 S3  914.65 S3  941.00 954.70 V4T' S2  954.70 1025.15 S1  1025.15 1098.25 S3  1089.25 1094.85 S3a  1108.85 S3a/ S2  11142.58 1143.90 3D/ MI  1155.90 1172.40 1Sa/ 1Spa  1177.80 1277.00 V4T	902.00	920.00	S1						
843.00 844.30 Wedge Cut/ 844.30 851.65 S1 851.65 875.00 S3 875.00 876.90 Wedge/ Wedge Cut/ LC 876.90 887.00 S1 887.00 888.70 Wedge/ Wedge Cut/ LC 888.70 909.00 S1 909.00 914.65 S3 914.65 941.00 S1 941.00 954.70 V4T/ S2 954.70 1025.15 S1 1025.15 1089.25 S3 1089.25 1094.85 S3a 1094.85 1108.85 S7 1108.85 S7 11108.85 S7 11108.85 S1 1142.58 1143.90 3D/ MI 1155.90 1172.40 15a/ 1Spa 1176.90 1177.80 FAZ 1177.80 1271.00 V4T	920.00		EOH						
844.30 851.65 S1 881.65 875.00 S3 875.00 876.90 Wedge/ Wedge Cut/ LC 876.90 887.00 S1 887.00 888.70 Wedge/ Wedge Cut/ LC 888.70 909.00 S1 909.00 914.65 S3 914.65 941.00 S1 941.00 954.70 V4T/ S2 954.70 1025.15 S1 1025.15 1089.25 S3 1089.25 1094.85 S3a 1094.85 1108.85 S7 11108.85 S3a/ S2 11442.58 1143.90 3D/ MI 1143.90 1154.85 S3a 1155.90 MI 1172.40 15a/ 15pa 1177.80 1271.00 V4T	842.00	843.00	Wedge						
851.65       875.00       S3         876.90       876.90       Wedge/ Wedge Cut/ LC         887.00       888.70       988.70         888.70       999.00       S1         909.00       914.65       S3         914.65       941.00       S1         941.00       954.70       V4T/ S2         954.70       1025.15       S1         1025.15       1089.25       S3         1089.25       1094.85       S3a         1094.85       1108.85       S7         1108.85       S7       S3a/ S2         1142.58       1143.90       3D/ MI         1155.90       1172.40       1Sa/ 1Spa         1172.40       1177.80       S3a         1177.80       1271.00       V4T	843.00	844.30	Wedge Cut/						
875.00       876.90       Wedge/ Wedge Cut/ LC         887.00       888.70       Wedge/ Wedge Cut/ LC         888.70       909.00       S1         909.00       914.65       S3         914.65       941.00       S1         941.00       954.70       V4T/ S2         954.70       1025.15       S1         1025.15       1089.25       S3         1089.25       1094.85       S3a         1094.85       1108.85       S7         1108.85       S3a/ S2       S3a/ S2         1142.58       1143.90       3D/ MI         1154.85       1155.90       MI         1172.40       1172.40       15a/ 15pa         1177.80       1177.80       FAZ         1177.80       1271.00       V4T	844.30	851.65	S1						
876.90       887.00       S1         887.00       888.70       Wedge/ Wedge Cut/ LC         888.70       909.00       S1         909.00       914.65       S3         941.00       954.70       V4T/ S2         954.70       1025.15       S1         1025.15       1089.25       S3         1089.25       1094.85       S3a         1108.85       S7         1108.85       S3a/ S2         1142.58       1143.90       3D/ MI         1143.90       1154.85       S3a         1155.90       MI       MI         1172.40       1176.90       1177.80       FAZ         1177.80       1271.00       V4T	851.65	875.00	S3						
887.00 888.70 Wedge/ Wedge Cut/ LC  888.70 909.00 S1  909.00 914.65 S3  914.65 941.00 S1  941.00 954.70 V4T/ S2  954.70 1025.15 S1  1025.15 1089.25 S3  1089.25 1094.85 S3a  1094.85 1108.85 S7  1108.85 S3a/ S2  1142.58 1143.90 3D/ MI  1143.90 1154.85 S3a  1155.90 MI  1155.90 1172.40 1Sa/ 1Spa  1176.90 1177.80 FAZ	875.00	876.90	Wedge/ Wedge Cut/ LC						
887.00 888.70 Wedge/ Wedge Cut/ LC  888.70 909.00 S1  909.00 914.65 S3  914.65 941.00 S1  941.00 954.70 V4T/ S2  954.70 1025.15 S1  1025.15 1089.25 S3  1089.25 1094.85 S3a  1094.85 1108.85 S7  1108.85 S3a/ S2  1142.58 1143.90 3D/ MI  1143.90 1154.85 S3a  1155.90 MI  1155.90 1172.40 1Sa/ 1Spa  1176.90 1177.80 FAZ	876.90	887.00	S1						
909.00 914.65 S3 914.65 941.00 S1 941.00 954.70 V4T/ S2 954.70 1025.15 S1 1025.15 1089.25 S3 1089.25 1094.85 S3a 1094.85 1108.85 S7 1108.85 S3a/ S2 11142.58 1143.90 3D/ MI 1143.90 1154.85 S3a 1155.90 MI 1155.90 MI 1172.40 1176.90 S3a 1176.90 1177.80 FAZ 1177.80 1271.00 V4T	887.00	888.70	Wedge/ Wedge Cut/ LC						
914.65 941.00 S1 941.00 954.70 V4T/S2 954.70 1025.15 S1 1025.15 1089.25 S3 1089.25 1094.85 S3a 1094.85 1108.85 S7 1108.85 S3a/S2 1142.58 1143.90 3D/MI 1143.90 1154.85 S3a 1154.85 1155.90 MI 1155.90 1172.40 1Sa/1Spa 1172.40 1176.90 S3a 1177.80 1271.00 V4T	888.70	909.00							
941.00       954.70       V4T/ S2         954.70       1025.15       S1         1025.15       1089.25       S3         1089.25       1094.85       S3a         1094.85       1108.85       S7         1108.85       S3a/ S2         1142.58       1143.90       3D/ MI         1143.90       1154.85       S3a         1155.90       1172.40       1Sa/ 1Spa         1172.40       1176.90       S3a         1177.80       1271.00       V4T	909.00	914.65	S3						
954.70       1025.15       S1         1025.15       1089.25       S3         1089.25       1094.85       S3a         1094.85       1108.85       S7         1108.85       S3a/ S2         1142.58       1143.90       3D/ MI         1143.90       1154.85       S3a         1155.90       MI         1172.40       1176.90       S3a         1177.80       1271.00       V4T	914.65	941.00	S1						
1025.15       1089.25       S3         1089.25       1094.85       S3a         1094.85       1108.85       S7         1108.85       S3a/S2       S3a/S2         1142.58       1143.90       3D/MI         1143.90       1154.85       S3a         1155.90       MI       MI         1172.40       1176.90       S3a         1176.90       1177.80       FAZ         1177.80       1271.00       V4T	941.00	954.70	V4T/ S2						
1089.25       1094.85       S3a         1094.85       1108.85       S7         1108.85       S3a/ S2         1142.58       1143.90       3D/ MI         1143.90       1154.85       S3a         1155.90       MI       MI         1155.90       1172.40       1Sa/ 1Spa         1172.40       1176.90       S3a         1177.80       1271.00       V4T	954.70	1025.15							
1094.85       1108.85       S3a/ S2         1108.85       S3a/ S2       S3a/ S2         1142.58       1143.90       3D/ MI         1154.85       S3a       S3a         1155.90       MI       MI         1172.40       1Sa/ 1Spa       S3a         1176.90       S3a       S3a         1177.80       1271.00       V4T	1025.15	1089.25	S3						
1108.85       S3a/ S2         1142.58       1143.90         1154.85       S3a         1154.85       1155.90         MI       1155.90         1172.40       1Sa/ 1Spa         1176.90       S3a         1177.80       1271.00         V4T       1176.90	1089.25	1094.85	S3a						
1142.58       1143.90       3D/ MI         1143.90       1154.85       S3a         1154.85       1155.90       MI         1155.90       1172.40       1Sa/ 1Spa         1172.40       1176.90       S3a         1177.80       FAZ       Image: Control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control	1094.85	1108.85	S7						
1143.90     1154.85     S3a       1154.85     1155.90     MI       1155.90     1172.40     1Sa/ 1Spa       1172.40     1176.90     S3a       1177.80     FAZ       1177.80     1271.00     V4T	1108.85		S3a/ S2						
1154.85     1155.90     MI       1155.90     1172.40     1Sa/ 1Spa       1172.40     1176.90     S3a       1176.90     1177.80     FAZ       1177.80     1271.00     V4T	1142.58	1143.90	3D/ MI						
1155.90     1172.40     1Sa/ 1Spa       1172.40     1176.90     S3a       1176.90     1177.80     FAZ       1177.80     1271.00     V4T		1154.85	S3a						
1172.40 1176.90 S3a 1176.90 1177.80 FAZ 1177.80 1271.00 V4T			MI						
1172.40     1176.90     S3a       1176.90     1177.80     FAZ       1177.80     1271.00     V4T	1155.90	1172.40	1Sa/ 1Spa						
1176.90 1177.80 FAZ 1177.80 1271.00 V4T			S3a						
1177.80 1271.00 V4T			FAZ						
	1271.00		ЕОН						

-					
22801	22816	9W-3737-RGI	4-Jan-10		
22817	22819	9W-3757-RGI	21-Dec-09		
22820	22825	9W-3803-RGI	31-Dec-09		
22826	22850	10-148	26-Jan-10		
49501	49510	10-148	26-Jan-10		
49511	49546	10-306	18-Feb-10		
49547	49584	10-357	12-Feb-10		
49585	49616	10-456	24-Feb-10		
					,
_=					

		DESCRIPTION (Hole no AK09-07)				Section 1		Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
0.00	7.30	CAS										
		The hole was recollared ahead of the original front sights because all of the previous attempts had deviated too quickly to the west and hole 6C started in a bad FAZ. The first 20cm consists of ground boulders. Measurements from the drillers blocks indicates that coring begins at 7.30m although the time sheets state that 9m of casing were set.										
		NOTE: All the core is systematically tested for pervasive carbonate using dilute hydrochloric acid HCl) and potassium ferricyanide (KFC). The acid fizzes in contact with calcite and the KFC stains the core blue in the presence of ankerite. In certain areas, the core is tested with a magnet to determine relative magnetite content.										
							_			_		
7.30	53.82	The hole is collared in a sericite- ankerite altered wacke that is medium/ light yellowish green coloured, fine grained to gritty with local scattered mudstone clasts, and massive with local diffuse layering/ bedding/ (weak foliation) along and @ about 50 DTCA which is defined mainly in very fine/ fine grained mudstone lenses. Red jasper which also occurs as fine scattered grains. Staining indicates that the wacke is permiated with ankerite and the yellowish tone denotes that it also is pervasively sericite altered. It tends to be non magnetic although less altered zones may be weakly magnetic. Secondary veining consists of a combination of 5- 7% white ankerite veinlets and stringers. Mineralization consists of trace fine pyrite (Py), mainly associated with the veining and as scattered grains.										
		7.30- 21.00 ; S3a	-									
		Up to 21m, a number of fractures are well oxidized up to several cm into the host.										
		28.53-53.82 : \$3  The description of the lithology remains the same but the wacke loses the yellowish tone and becomes more light/ medium greyish green coloured with local pale orange/ pink and yellowish tints, particularly towards the end of the interval.  39.77-41.00 : \$3 (graded)  The interval comprises a thick graded bed fining upwards thereby suggesting that tops are up hole. This is followed by several other graded beds over the next few metres, all indicating tops up.										
		lollowed by several other graded beds over the next lew metres, an indicating tops up.	-									
		53.78-53.82 : FAZ 1cm mud fault @ 25 DTCA effectively forms the contact of the narrow syenite dike although there is a tongue of dike noted above the FAZ.	2 2 2	tr tr			22801 22802 22803	51.00 52.00 52.90	52.00 52.90 53.80	1.00 0.90 0.90	0.02 0.02 0.02	0.02
53.82	55.40	1Sa	10	0.5		1Sa	22804	53.80	54.60	0.80	0.01	-
		Narrow medium grained, massive, light greyish orange syenite dike(?) bounded by mud faults. The dike is well altered along networks of fine microfractures with greyish and white silicified and carbonate fractures superimposed on the host. It is veined with 7% gashy white ankerite stringers and mineralized with 0.5% fine pyrite (Py).	7	0.5 tr tr tr		1Sa DZ DZ DZ	22805 22806 22807 22808	54.60 55.40 56.00 57.00	55.40 56.00 57.00 58.00	0.80 0.60 1.00 1.00	NIL NIL NIL 0.01	
		55.67- 55.40 : FAZ A 1cm mud fault @ 35 DTCA ends terminates the syenite.										
55.40	82.00	S3a/DZ Faulted contact as described into a well altered, moderately foliated, fine grained to gritty, granular textured, medium olive grey geen coloured wacke that contains 7% very fine grained, limey yellow green coloured fractured bands/ beds/ laminaae of mudstone. The mudstone strips and sericite slips and										

			DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
			fractures define a persistent foliation and fracture fabric that tracks along and at low angles to the core axis. The host wacke is well sericitized as well as pervasively ankeritic and veined with 4% gashy hite ankerite veinlets and stringers that generally follow the fabric. Mineralization runs trace.										
			81.55- 82.00 : QVZ  Combination of 75% grey cherty quartz and silicification @ 30- 35 DTCA with fine lacey and ladder ankerite fractures in the veins and fine thready sericite shear planes. The interval is mineralized with 0.5% fine dusty Py.	10 10	tr tr		0.01/7	22809 22810	79.00 80.20	80.20 81.30	1.20	0.01 0.02 0.02	0.01
82.00	235	5.90	Except for a weak folaition fabric, the deformation zone essentially ends at the QVZ but the pervasive sericite and ankerite alteration continue into the wacke package. Overall, it is fine grained to gritty throughout with the odd scattered clast and fine conglomerate lenses, granular textured, massive with		0.5 tr tr		QCVZ	22811 22812 22813	81.30 82.10 83.00	82.10 83.00 84.00	0.80 0.90 1.00	NIL 0.01	-
			hints of bedding @ 25- 35 DTCA, and light to medium yellowish grey mottled. Clasts range up to 4.5cm in length but, most commonly, are less then 2cm in size and exhibit a variety of compositions including green carbonate (altered) and jasper. Some whispy medium grey foliation planes are mineralized with 1% fine dusty Py but the average content is trace. Ankerite/ quartz fractures and veinlets account for about 2% of the core.		0.5 0.5 0.5			22814 22815 22816	95.00 96.00 97.00	96.00 97.00 98.00	1.00 1.00 1.00	0.01 0.01 NIL	0.03
			123.24- 125.25 : S3 (*bl'd) The wacke through this segment is well sericitized and carbonatized to a light offive yellow colour while maintaining the character of the pebbly wacke. Contacts are gradational, mineralization is poor (trace), and there is no structure to account for the strong alteration.										
			130.27- S3 (gritty)  Here, the wacke unit continues but has become pebbly. It comprises a gritty to fine grained, light yellowish green grey coloured (sericitized/ ankeritized) matrix with 15% scattered subangular clasts to 6.5cm but averaging < 1.5cm in length. Although there are various lithologies represented (including green carbonate and jasper) most clasts are dark/ medium greenish grey coloured. The sulphide content remains trace.										
			143.60- 157.10 : \$3/\$1  The pebble content increases to about 25% grit to fine conglomerate through this section while the nature of the clasts remains unchanged ,i.e. subangular, mafic composition, however, they tend to be larger overall (up to 12cm), flat/ elongate, and fairly angular, appearing as a breccia. The composition of the mafic clasts seems to indicate that they may represent ripped up lapilli/ crystal(?) tuff beds. Contacts are gradational into the surrounding units.										
			157.10- 187.40 : S3a  Back into a wacke dominated package as described at the start with local scattered pebbles, gritty lenses and fine conglomerate zones. Beginning at about 164m, the core is intersected by a series of widely spaced chlorite/ carbonate slips that intersect @ about 5- 15 DTCA.										
			187.40- 220.85 : S3  Below about 187.40m, there are very few gritty gritty lenses or scattered clasts remaining within the wacke. It becomes massive, fine grained, granular textured and medium/ light grey to beigey grey coloured. It remains pervasively ankeritic and weakly sericitized but veining is reduced to 1- 2% irregular gashy white ankerite fractures and veinlets while sulphides remain sparce (trace).										
			220.85- 225.85 : S1/ S3										

4.10%		DESCRIPTION (Hole no AK09-07)					Sam	ples / A	ssays			
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	At Ch
		5m of gritty to finely conglomeratic wacke in which there is a slight pinkish grey caste to the matrix. This suggests that there is a weak hematite alteration overprint along with the sericite and ankerite. The zone ends on 2.5 and .5cm chlorite fractured quartz- carbonate stringers @ 30 DTCA.										
		205.05.00										-
		225.85-235.90 ; S3										
		Back into the fine grained, massive to faintly bedded @ 45 DTCA, granular textured, light/ medium brownish grey coloured wacke that becomes more medium greenish grey coloured down hole at about 233.50m. The matrix remains pervaded with ankerite and the 3% creamy white and pink stringers are ankeritic as well but the sericite content decreases. No significant sulphides were noted.										
235 90	237 90	Wedge/ LC					<del>                                     </del>					$\overline{}$
200.00	207.50	The core was reamed past the wedge accounting for a 2m loss according to the driller's blocks.										_
237 90	262.77	<u></u>										
237.30	202.11	The hole continues in massive to faintly bedded (@ 45 DTCA), fine grained, granular textured, medium										_
		greenish grey wacke, that contains rare clasts and gritty lenses as well as local very fine grained										
		(approaching mudstone) lenses. As above, it continues weakly/ moderately pervaded with ankerite and										
		minor sericite (and hematite) while overall veining decreases to approximately 2% ankerite (- quartz)										
,		stringers. Mineralization continues to be scarce (trace).										
	200.40											_
162.77	380.40	The hole traverses a sequence of mudstones mixed with lenses of typical, fine grained, massive, granular				-	-					
		textured, medium/ light yellowish grey green wacke with some scattered clasts. The mudstone units tend										_
		to be fine to very fine grained (to aphanitic), light/ medium yellowish green to limey yellow green coloured,										
		and thick bedded to diffusely finely bedded @ 10- 20 DTCA. The package remains pervaded with ankerite					1					
		and sericite while veining decreases to approximately 1% overall except fore a ragged 1.5cm, white and										
		orange (ankerite/ barite?) stringer with a bleached halo that meanders along the core axis over the leading										
		metre of the interval. It is mineralized with trace sulphides.										
		308.70- 346.35 : S7 In this section, the mudstone bedding runs almost down the core axis (2- 10 DTCA) with local slump										$\overline{}$
_		features. Pervasiver sericite and ankerite alteration continues but veining decreases to < 0.5% and										
		mineralization continues to run trace.										
		346.35- 355.80 : QCVZ	10	tr		QVZ	22817	349.00	350.00	1.00	0.01	
		The mudstones with the low bedding angles continue as described above but here, are veined with a	25	tr		QVZ		350.00	351.00	1.00	NIL	
		series of chlorite fractured, creamy white, ankerite (with minor quartz) stringers and vein zones to 5cm	10	tr		QVZ	22819	351.00	352.00	1.00	0.01	
		which aggregate 10- 12% and are poorly mineralized with trace fine Py. They intersect the core at angles										<u> </u>
		ranging from 15- 30 DTCA. The core of the vein zone was check sampled.				<u> </u>						
		359.60- 370.75 : V4Txl										
		There is a gradational contact into a medium grained, light dull olive grey coloured, granular textured										
		lithology that appears to contain 1-3mm, tabular mafic crystals suggesting that this may represent a crystal										ـــــ
		tuff. A few lenses of very fine grained mudstone are interlayered with the tuff in the upper portion.										$\vdash$
		Otherwise, it is pervaded with ankerite and sericite, non magnetic, veined with 1% ankerite fractures and	<u> </u>	-		-	-					$\vdash$
		veinlets, and mineralized with trace Py.										$\vdash$
		371,70- 371,80 : FAZ										
		The FAZ comprises a 1cm grungy pale orange/ white carbonate vein accompanied by chlorite fracturing	-									$\vdash$

		DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		and a 2mm mud slip @ 20 DTCA. It is preceded by a 6cm ragged, chlorite fractured, carbonate streaked vein zone with some sericitic fractures and trace fine Py.										
380.40	417.55											
		The main segment of the mudstone ends at a 2cm, yellowish olive band @ 25 DTCA. The sedimentary										
$\vdash$		package continues with a relatively massive, fine grained, granular textured, light/ medium tan to yellowish										<b></b>
		green grey coloured wacke that contains scattered clasts to 6cm and rare beds of mudstone. It reamins										<b></b> '
<b> </b>		strongly pervaded with andkerite and sericite but the tan/ brownish colouration indicates the introduction of	<u> </u>			-		_				<u> </u>
$\vdash$		hematite as well. Veining comprises 2- 4% dull white to light orange ankerite veinlets and stringers while mineralization consists of trace Pv.					_					<del> </del>
$\vdash$		Infineralization consists of trace Fy.				-						$\vdash$
		400.80- 403.40 : QCVZ										
		A 1- 2cm wide, fractured/ fragmented ankerite vein with chlorite fractures and partially lined with a mud slip										
		tracks along the core axis over the entire length of the interval.										
		410.00- 416.45 : S7						_				<u> </u>
		There is a unit of typical bedded/ laminated, very fine grained, olive grey mudstone interbedded with the										<b></b> '
		wacke.										
		140.05 140.40 000/7								-		
$\vdash$		412.65- 413.10 : QCVZ Fairly massive creamy white ankerite vein with orange (K spar) ladder fractures @ 35 DTCA followed by a										<del></del>
$\vdash$		similar 1.5- 3.5cm stringer that meanders along the core axis for another metre. Ther are no significant										
$\vdash$		sulphides associated with the vein.		-								
$\vdash$		Suprides associated with the veni.										<u> </u>
417.55	443.25	V4T/ 1S/ S2										
1111111		Fairly abrupt contact into a strange light pinkish grey/ greyish pink mottled protolith that may be either an										
		arkosic sediment, trachytic tuff (crystal to lapilli) or a syenite that contains a number of felsitic inclusions.										
		Overall, it is medium grained with distinctive altered mafic tabular phenos and some felsitic equant ones,										L
		greyish pink coloured as mentioned, massive/ homogenous with no apparent bedding/ layering or										
		compositional features and contains scattered alkalic, mafic and grey (carbonatized) inclusions/ clasts										<del></del> -
		averaging 4-7mm but ranging up to 5cm. The matrix/ groundmass appears to be crystalline but the				-						<del></del>
		original texture may be obscurred by pervasive hematite/ K spar and ankerite alteration. Veining amounts	<b></b> -									<del></del>
		to <1% and mineraliztion runs trace.								<del>                                     </del>		
$\vdash$		443.00- 443.25 : CZ										
		There are 2 possible contacts for the unit, at 443.00m @ 50 DTCA and at 443.25m @ 20 DTCA. Both are										
		sharp and well defined on sericite/ chlorite slips with associated alteration.	l									
443.25	533.00	<u></u>								<b></b>		
		The wacke begins with a 1.4m unit of jumbled (slumped?) mudstone with the texture defined by wavey				ļ						<del></del>
		limey yellow sericite streaks. This is followed by typical, fine grained, granular textured (including jasper),	<u> </u>			ļ				-	-	<del></del>
		massive to faintly bedded (@ 60 DTCA), medium/ light yellowish grey green coloured wacke that includes	<u> </u>			-				-	-	<del></del>
$\square$		a few scattered gritty lenses and mudstone bands and fragmented lenses as well as rare clasts. The host				<del> </del>				+	<del> </del>	
		sediments continue to be pervaded with ankerite and sericite, are veined with 2- 3% creamy white ankerite	<b> </b>			-						
$\vdash$		veinlets and stringers, and are essentially unmineralized.	$\vdash$							<b>+</b>		
$\vdash$		481.70- 481.85 : QCVZ										
		Creamy white ankerite vein with chlorite fractures and minor quartz streaks along with 10cm sericitized	$\vdash$			1				1		
		halos @ 35/ 45 DTCA and trace sulphides.										
	<del></del>	V		· 1								

٠,٠

		DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays		
From . (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		NOTE: at 491m a block was missed and therefore there should be 3m added.						_				
500.00	505 40	W										<del></del>
533.00	535.10	With the footage adjusted to account for the missing block at 491m, the wedge was set at 533m, however,	_									_
		the drillers blocks below the wedge indicate that coring began again at 432.10 after reaming. It seems that	<del>                                     </del>									·
		the drillers did not count their rods and carried the error through, therefore, the footages were adjusted										
		upwards by 3m above the wedge.										
-05.10	500.00											
535.10	562.90	Below the wedge, the hole continues in the fine grained to gritty wacke as described above, fine/ medium	-	<b></b>							ļ	
		grained, granular textured (including jasper), massive to faintly bedded (@ 60 DTCA), medium/ light		-								· · · ·
+		yellowish grey green coloured with scattered gritty lenses. Overall, the texture tends towards a more gritty										<u> </u>
		medium grain size with subangular clasts to 3.5cm. The matrix remains pervaded with ankerite and										
		sericite, veining decreases to about 1%, and mineralization is trace.										
500.00	F0 4 0°	Wadaa				<u> </u>	_					
562.90	564.25	The drillers blocks indicate a wedge at 560m but with the correction it is actually measured at 562.90m.	_									
		After the reaming, the coring continues at 564.25m (corrected). The foreman (Ray Millette) was asked to										
		have the drillers count the rods and add 3m to their next run.		_								
												ĺ
564.25	614.55	S3										
		Back into the wacke as described above, fine/ medium grained, granular textured (including jasper),										-
		massive to faintly bedded (@ 60 DTCA), medium/ light yellowish grey green coloured with scattered gritty		ļ								<del></del>
		lenses and clasts. The overall light colour and yellowish tone are imparted by pervasive ankerite and	<u> </u>									i
		sericite which is augmented by 2- 4% diffuse creamy ankerite veinlets and stringers. The wacke is weakly mineralized with trace Py.				<del>                                     </del>						
		Interdisco viar adoct y.	7	tr			22820	562.00	562.90	0.90	0.01	-
		56470- 564.85 : QCVZ				LC		562.90	564.25	1.35		
		Zone of dull grey silicification and fragmented quartz carbonate veining with sericite shears and fractures	15	tr			22821	564.25	565.00	0.75	0.01	-
		@ 35+/- DTCA mineralized with only trace sulphides.	6	tr			22822	565.00	566.00	1.00	0.01	-
		595.42- 495.44 : FAZ	2	tr			22823	594.10	595.20	1.10	0.02	0.02
		Weak 2mm mud gouge slip/ fault @ 35 DTCA with chlorite fractured, patchy ankerite vein material in the	50	tr			22824	595.20	595.60	0.40	0.01	- "
		walls.	1	tr			22825	595.60	596.55	0.95	0.01	NIL
			<u> </u>									
614.55	647.11			<del>                                     </del>								
		Gradation into a clast supported, polymict conglomerate with a fine grained to gritty wacke matrix and lenses. The overall colour is medium yellowish to greyis green with varied light pastel colours for the clasts				<del> </del>						
		(including jasper and green carbonate). They range from grit to small cobble sizes (16cm), are rounded but										
		oblong/ oval/ kidney shaped and are elongated in the plane of a weak foliation fabric @ about 25 DTCA.										
		The matrix is pervasively ankerite and weakly sericite altered while veining and mineralization are relatively										
		weak (0.5% and trace, respectively).										-
		630.30- 635.30 : S7			<b></b> -							<del></del>
		The conglomerate is interrupted by a lens of mudstone that is masssive, very fine grained and medium/	<del>                                     </del>									
<del>                                     </del>		dark greyish olive green coloured. It is ankeritic and is cut by a massive, 21cm, dry, creamy white/ yellow		1								
		ankerite- quartz vein @ roughly 70 DTCA at 630.75m.		İ								
		635.30- 638.00 : S3										
		Fairlly sharp contact, possibly slumped @ 65 DTCA into a massive, fine grained, granular textured (with			<u></u>				<u></u>			

			DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
			jasper), medium greyish green coloured wacke that is ankeritic, veined with 4% white ankerite veinlets and										
			stringers and poorly mineralized with trace sulphides.				ļ	-					
			638.00- XXX : S1										
		$\overline{}$	Back into the conglomerate as detailed above at 614.55m, clast supported, polymict, with a fine grained to										
			gritty wacke matrix and lenses, rounded ovoid/ elongate clasts to 9cm @ 25- 35 DTCA. The matrix is										
		_	pervaded with ankerite and veining consists of 2- 4% streaky ankerite (- quartz) streaks, stringers and	$\overline{}$								_	
		_	patches. Mineralization consists of trace sulphides with slightly anomious Cp and Py splashes in some						_				
			stringers	2	tr			22826	642.00	643.00	1.00	0.07	-
			640.25- 640.40 : QCVZ	30	tr	35	QCVZ		643.00	643.60	0.60	0.03	-
			Patch of ankerite- quartz vein material with streaky sericite margins @ 35 DTCA mineralized with slightly		tr			22828	643.60	644.50	0.90	0.10	-
			anomalous splashes and grains of Py and Cp.	3	tr			22829	644.50	645.30	0.80	0.25	0.21
			0.47.00.0.47.05	3 5	tr			22830	645.30 646.20	646.20 647.10	0.90	0.11	0.09
			647.03- 647.05 : QVZ  1cm streaky quartz- carbonate stringer @ 45 DTCA rimmed with sericite/ mud slips and mineralized with		tr		LC	22831	647.10	649.25	2.15	0.06	-
			2% fine Pv.				1 20	22832	649.25	650.30	1.05	0.01	
647.11	649	9.23	Wedge/ LC										
			A retrievable wedge was set here and the hole reamed past the wedge resulting in the lost core.				_						
649.23	663	2 60	S7	1				1					
045.23	003	3.00	The lost core of the wedge area forms the contact between the preceding conglomerate and the mudstone				<u> </u>						
			that follows. Overall, the mudstone is fine to very fine grained to aphanitic, massive, and dark/ medium										
			olive grey coloured. The matrix remains pervaded with ankerite and sericite while veining amounts to 2-4%										
			white ankerite/ quartz fractures, veinlets and stringers. Mineralization is scant at trace. The lowermost		tr			22833	661.30	662.40	1.10	0.01	-
			1.4m is moderately fractured/ foliated at low angles to the core axis with whispy sericite streams defining		tr			22834	662.40	663.60	1.20	0.02	- 0.00
			the fabric and accompanied by 15% irregular, creamy white, fracture controlled, carbonate- quartz veining.	10	tr			22835	663.60	664.40	0.80	0.02	0.02
663.60	670	).15	S1	-									
	-		Back into the typical conglomerate, polymict (including jasper), with medium/ dark yellowish to greyish green wacke matrix and lenses, and clasts that range up to 16cm and are generally rounded and oblong/	<del> </del>									
			elongate (some rounded) in shape. The clasts tend to be elongated along bedding planes and a weak										
			foliation fabric, defined by streaky ankerite fractures, @ 30+/- DTCA. Veining consists of 3- 5% of the										
			carbonate fractures defining the fabric along with wider (to 2.5cm) ankerite- quartz veinlets and stringers.										
			Mineralization remains poor at trace.										
				8	tr			22836	669.00	670.15	1.15	0.02	-
670.15	673	3.90	DZ	8	tr		-	22837 22838	670.15 671.00	671.00 671.80	0.85	< 0.01	-
			The deformation is characterized by leading and trailing fissile to gougy shear zones @ 25/ 25 DTCA over 40/ 10cm, respectively, light brownish yellow sericite alteration over the upper 2m, 12% ankerite fracture	10	tr	30	QCVZ		671.80	672.20	0.40	< 0.01	-
			filling and veining, and a weak to moderate penetrative foliation fabric @ 20 ~25 DTCA. Despite the		tr	- 50	4072	22840	672.20	673.10	0.90	0.03	
			deformation and alteration, there is no significant mineralization associated with the zone.	12	tr			22841	673.10	673.90	0.80	0.02	-
				8	tr			22842	673.90	675.00	1.10	< 0.01	-
			671.80- 671.95 : QCVZ										
			8cm wide, white ankerite- quartz vein @ 30 DTCA with a chlorite slip 1.5cm in from the leading edge. Only	′——			<del> </del> -	1				-	-
			trace sulphides were noted.		<del> </del>		-	+	-	<del>                                     </del>			
673.90	69.4	184	S3/ S1	1	<del> </del>			+			<del>                                     </del>		
3, 3,30	004		A weak foliation defined by sericite streaks and carbonate fractures continues through the pebbly wacke @	1			<b>—</b>						

			DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays	ays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk	
			about 25 DTCA. The host comprises a mark/ medium greyish green, fine grained, granular textured wacke											
-			containing up to 10% clasts from grit sizes to 12cm of variable compositions. The unit is pervaded with				-							
-			ankerite and veined with 6- 8% creamy white streaky ankerite fractures and veinlets along a nd cross cutting the fabric. It is weakly mineralized with trace sulphides.				ļ							
-		$\dashv$	country the faoric. It is weakly militeralized with trace sulphides.				1							
684.84	691	.00	SHZ/ S3	1	tr			22843	684.85	686.00	1.15	< 0.01	-	
-		$\overline{}$	The clasts seem to disappear and the strength of the streaky sericitic foliation/ microfracturing increases.	1	tr			22844	686.00	687.00	1.00	< 0.01	-	
			The host becomes medium yellowish green coloured, fine grained and granular textured with a	1	tr			22845	687.00	688.00	1.00	< 0.01	< 0.01	
			pronounced foliation @ 30- 40 DTCA. Despite the stronger fabric and alteration, veining is reduced to 2-	1	tr			22846	688.00	689.00	1.00	0.03	-	
			4% fine white ankerite fractures and veinlets with a few stronger vein zones to 4cm which are broken out	1	tr			22847	689.00	690.00	1.00	< 0.01	-	
	ļ		separately below. Mineralization also remains at trace.	12	tr	50	QCVZ	22848	690.00	691.00	1.00	< 0.01	-	
				12	tr	25	QCVZ	22849	691.00	692.00	1,00	0.04	0.05	
			689.50-689.60 : QCVZ				-							
			Zone of 50% quartz- carbonate veining and sericitic shearing @ 50 DTCA mineralized with only trace sulphides.											
			690.78- 690.82 : QVZ					,						
			Massive 2.5cm, dull white quartz vein @ 25 DTCA mineralized with trace fine Py.											
691.00	698.													
			Gradation into a wacke containing gritty lenses with elongate clasts as well as scattered clasts and pebbly				-							
-			lenses containing a variety of pebble types to 9cm. Because the clasts occur throughout the unit and				+	1						
			average about 15% it was considered as a conglomerate. Veining is reduced to 1% while the matrix renmains pervasively ankeritic with minor sericite. No significant sulphides were noted.											
		$\rightarrow$	Termains pervasively annemic with minor seriote. No significant surprides were noted.											
698.90	720	25	S3											
	1	$\overline{}$	Gradation back into a typical fine grained, massive, granular textured, medium/ dark greyish green											
			coloured wacke with some very fine grained patches that tend towards a mudstone. The unit contains 5%											
			scattered pastel pink elongate ankerite/ feldspar(?) clasts with rounded ends that generally cut											
			perpendicular to the core axis. The matrix is weakly to moderately magnetic and weakly pervaded with											
			ankerite while veining amounts to approximately 1% fine ankerite and calcite fractures and veinlets.											
		_	Mineralization copnsists of trace Py.	├─										
700.05				<del>                                     </del>			-							
720.25	/51.		S1  Another conglomerate zone begins with a gritty lens that leads into a typical polymict conglomerate with a	<del>                                     </del>			+							
			fine grained to gritty wacke matrix and lenses. Clasts, which are ovoid in shape (some spherical) and											
	1		exhibit rounded corners range up to 9cm in length but are generally less then 3-4cm in size. The elongate											
			nature of the clasts and weak foliation in the matrix define a fabric @ 45+/- DTCA. The general colour is											
			medium/ dark greyish green, the matrix is weakly anakeritic, veining averages 4% carbonate (/quartz)											
			fractures ans veinlets, and mineralization runs trace.											
				7	tr			22850	749.50	750.50	1.00	0.01	-	
			750.50- 751. <u>30</u> : SHZ	15	tr			49501	750.50	751.30	0.80	0.01	-	
			Zone of weak shearing/ foliation @ 50 DTCA accompanied by a few sericite/ ankerite slips and patchy	4	tr		<del>  -</del>	49502	751.30	751.90	0.60	< 0.01	-	
<u> </u>			qiartz- ankerite veining near the end. Only trace to slightly anomalous fine Py was noted.	<b></b>				1		-			-	
	L		INCRAFIL A				-	1		-			<del></del>	
751.90	754.	.30	WEDGE/ LC The ears have in lest through reaming with a bull pased bit past the wadge	<u> </u>	-		-	1	-	<del>                                     </del>			<del>                                     </del>	
-	1	$\dashv$	The core here is lost through reaming with a bull nosed bit past the wedge.	-						+				
754.30	759	1.40	S1				<del>                                     </del>							
1.54.50	7.55.	$\overline{}$	The conglomerate, as described at 720.25m, continues below the wedge.					1						

٠.٠

10.00		DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays		
From (m)	To (m	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
750.40	770.65	92										
759.40	770.05	There is a fairly abrupt contact into a fine grained, granular to finely gritty textured, massive, light to					-				-	
		medium yellowish to grey green coloured wacke which is pervasively ankeritic, non magnetic, veined with									_	
		7- 9% creamy white ankerite, fractures, veinlets, streaky stringers and patches, and mineralized with trace										
		Py.										
770.65	794.90											
		A series of intertongued fine gritty conglomerate and wacke bedds form the contact with another more										
		massive conglomerate lens. Here, it tends to be more gritty textured with only rare clasts to 8cm, most										
_		being less then 2- 3cm in length, although the variety of clasts (including green carbonate and jasper)										
		remain. The matrix is pervaded with moderate ankerite and some sericite while veining amounts to 2- 4%		ļ		<u> </u>						
		white ankerite fractures, veinlets and streaky stringers. Mineralization averages trace with local narrow										
		slightly anomalous pyritiferrous zones and local concentrations to 10% that are broken out below. The	8	4-			49503	784.00	785.00	1.00	0.02	
		lower 4.5m consist mainly of fine gritty lenses and wacke.	2	tr tr			49503	785.00	786.00	1.00	0.02	
		786.00-786.60 : Py Zone	3	10	45	Py Z	49504	786.00	786.60	0.60	4.04	3.98
		The interval contains 10% fine grained pyritic fracture fillings as well as trains/ streaks of coarse crystalline	1	tr	43	FyZ	49506	786.60	787.50	0.90	6.44	5.90
		Py through the interval. Fractures/ streaks/ fabric is oriented roughly @ 45 DTCA.	+	tr	-		49507	787.50	788.50	1.00	0.10	-
		Ty through the interval. Tractates streams facilities offences roughly to 51 ort.					10007	707.00	700.00		51.15	
		794.80- 794.90 : FAZ	4	tr			49508	793.60	794.60	1.00	0.02	-
		A narrow (3mm) mud gouge slip occurs within this sericitic fractured/ foliated zone @ 45 DTCA. Trace	4	tr	45	FAZ	49509	794.60	795.20	0.60	0.04	-
		sulphides are associated with the FAZ.	4	tr			49510	795.20	796.20	1.00	0.25	0.27
794.90	831.24											
		Below the FAZ, the hole reenters a thick unit of massive, fine grained, granular textured, light greenish		ļ								-
		yellow to medium/ light greyish green coloured wacke which contains fine jasper grains. The yellow tone	<u> </u>			-						
		results from pervasive sericite and ankerite alteration; secondary veining aggregates about 2- 3% white	<u> </u>		<b></b>	-		_				<b>—</b>
		ankerite (/quartz) fractures, veinlets and narrow stringers, generally aligned along a faint fabric and possibler bedding @ 35-40 DTCA. Sulphides run trace.	<u> </u>									
		possible) beduing @ 55- 40 DTCA. Sulphides full flace.				<del> </del>						
831 24	852.00	S1			·							
051.24	002.00	Through another transition of wacke lenses and conglomerate bands, the hole reverts back into a polymict										
		conglomerate dominated lithology in which the clasts tend to average between 1 and 4cm with a much less										
		prominent gritty component. The unit remains moderately well altered/ pervaded with ankerite and sericite										
		and relatively weakly veined with 2-3% irregular ankerite fractures and veinlets. It is poorly mineralized										
		with trace Py. The trailing section becomes more trachyte dominated.										
		835.85-835.90 : FAZ		ļ		<b>_</b>		-				-
		A small pile of rock chips/ broken core/ gouge represents a weak fault @ about 40 DTCA.	$\vdash$			_		-	-			<u> </u>
		817,20- 842.50 : BBC/ FAZ	$\vdash$		<del>                                     </del>			-		<u> </u>		
	-	Broken chips and pieces of core represent fracture zones and are separated by a 0.5m section of intact	<del> </del>			_				1		
		core. The lower BBC zone contains minor gouge representing a FAZ @ 35 DTCA.						<del>                                     </del>				
		Solic. The longs and concentrate minor godge representing a rince to order.	8	tr	45	SHZ	49511	847.50	848.50	1.00	0.03	-
		847.50-852.00 : SHZ	15	tr			49512	848.50	849.50	1.00	0.02	-
		There are weak sericitic shears at the start and end of the interval @ 45/30 DTCA that define a minor fault	6	tr		Ì	49513	849.50	850.50	1.00	0.03	-
		zone with sericite/ ankerite altered conglomerate in between. The shears and host are mineralized with	6	tr			49514	850.50	851.50	1.00	< 0.01	-
		trace sulphides.	6	tr	30	SHZ	49515	851.50	852.50	1.00	0.01	-

	100000	DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
52.00	860.00	S3										
		Back into a wacke dominated regime typified by a fine grain size, granular texture, massive nature with										
		local scattered clasts and pebbly/ gritty lenses, and, medium greyish green colour. It is moderately										
		pervaded with ankerite and veined with 2- 3% pale pink/ white ankerite veinlets and streaky stringers.										
		Mineralization consists of trace Py and Cp grains and splashes.										
60.00	862.60	Wedge/ Wedge Cut										
		The core here was drilled with a bullnosed bit past a retrievable wedge set to turn the hole down and east.								_		_
32.60	902.00	  S3										
		The hole continues in the massive to gritty to pebbly wacke as described above sporting a fine grain size,										
		granular texture, massive nature and medium/ light greyish to yellow ish green colour. It remains ankeritic,										
		veined with 2- 3% ankerite veinlets and streaky stringers and weakly mineralized (trace).										
		883.12- 884.60 :SHZ	5	tr			49516	883.00	883.80	0.80	< 0.01	-
		The start of another weak shear is marked by a 1- 2mm mud slip @ 50 DTCA while the zone itself	5	tr			49517	883.80	884.60	0.80	0.02	-
		comprises a series of sericitc microfractures and shear planes along with streaky veining and elongated	5	tr			49518	884.60	885.60	1.00	0.02	
		gritty and small clasts (@ 45+/- DTCA). Sulphides run trace.										
2.00	920.00											
		A 1.5m section of gritty wacke leads back into another thick lens of a pea gravel type polymict										
		conglomerate (including jasper), in which the clasts tend to be small, generally less then 2cm but ranging										
		up to 4cm. The matrix is composed of gritty to fine grained, medium olive grey green wacke, which is					ļ					
		ankeriotized, veined with 2-4% white ankerite veinlets and stringers, and poorly mineralized with trace fine										
		Py (except as noted).										
				<u> </u>								
		909.30- 911.85 : FAZ	5	tr			49519	909.30	910.10	0.80	0.02	
		Weak but persistent chlorite fracturing with local mud slips and elongated clasts are centred around a 20cm zone of light yellowish green coloured earthy altered fault zone with mud slips @ around 50 DTCA.	5	tr			49519	910.10		0.90	0.02	0.03
			5	tr	-		49521	911.00		0.85	0.01	
		There are some slightlu anomalous pyritic zones within the FAZ.					43321	311.00	311.00	0.00	0.01	
		911.85- 920.00 ; S1/ S3										
		There is a change to a more gritty wacke to wacke unit which is laced with 10- 15% yellowish sericitic										
	<del>                                     </del>	fractures and alteration networks but is not significantly mineralized (trace).		<u> </u>								
20.00		ЕОН										
		At this point the hole was stopped and wedged with steel wedge up at 842m according to the drillers										
		blocks. The hole is continued as AK09_07.										
42.00	843.00	Wedge										
		A steel wedge was set here to attempt to steepen the dip of the hole which was flattening too quickly.			-	-						
43.00	844 30	Wedge Cut/										
,0.00	5-4.00	The core tapers from a thin wedge to full size through this section in conglomerate (see below).										
				1	+			-				
44.30	851.65		<u> </u>				-	-	<del></del>			
		Below the wedge, the coring begins in a conglomerate in which the clasts tend to be paler coloured (light		-				<del>                                     </del>	-			
		beiges/ pinks/ orange/ greys), elongated, and diffuse textured blending in with the fine grained to gritty,		-			<del> </del>	<del></del>				
	1	light grey coloured wacke matrix. There is an increase in the pervasive background ankerite alteration as	Ц					L				

		DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays		
From (m)	To (n	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		well as sericite around a diffuse vein zone at 849.50m (see below). Overall, veining comprises 10 -12%										
		pale pink ankerite veinlets and stringers concentrated around the vein zone. Sulphides average trace but					10500	0.40.00		4.00	0.00	
		increase to slightly anomalous in the vein zone.	6 20	tr tr			49522 49523	848.00 849.00	849.00 850.00	1,00 1.00	0.02	-
		849.45- 849.60 : QCVZ	8	tr	50	QCVZ	49523	850.00	851.00	1.00	0.04	
		This constitutes a diffuse quart- carbonate vein zone within a 2.5m alterationzone that contains about 20%	4	tr	- 50	QUVZ	49525	851.00	851.70	0.70	0.01	-
		veining overall. The veinlets and stringers trend mainly @ 50+/- DTCA with trace to slightly anomalous sulphides throughout the 2.5m section.		tr			49526	851.70	852.50	0.80	0.01	-
851.65	875.00	9 83										
001.00	010.0	Back into a wacke dominated regime typified by a fine grain size, granular texture, massive nature with						_				
		local scattered clasts and diffuse pebbly/ gritty lenses, and, medium greyish green colour. It is moderately										
		pervaded with ankerite and veined with 2-3% pale pink/ white ankerite veinlets and streaky stringers.					_	_				
		Mineralization consists of trace Py and Cp grains and splashes.									_	
2= 00	070.0	Wester (Wester Ord) O				-	-					
875.00	876.90	Wedge/ Wedge Cut/ LC			<del></del>							
-		The core was bullnosed past the wedge through this section and, therefore, lost.				+						
876.90	887 N					<b>†</b>						
070.00	007.0	Below the wedge and through a series of gritty wacke/ wacke lenses and conglomerate bands, the hole				<u> </u>						
		reverts back into a polymict conglomerate dominated lithology in which the clasts tend to average between										
		1 and 4cm (one to 12cm) with a more prominent gritty to wacke component. The unit remains moderately										
	_	well altered/ pervaded with ankerite and sericite and moderately veined with 3- 5% variably oriented					ļ					
		ankerite veinlets and narrow stringers. It is poorly mineralized with trace Py.				-	<u> </u>					
887 00	888 7	Wedge/ Wedge Cut/ LC					<del></del>					
007.00	000.7	The core was bullnosed past the wedge through this section and, therefore, lost.										
888.70	909.0			1								·
		The gritty conglomerate continues as described above at 876.90m including fine jasper clasts.								<u> </u>		
ļ. —			-			+	<del> </del>					
		908.40- 909.00 : FAZ  The core is fractured and broken up (RQD zero) through this FAZ along chlorite and mud/ gouge slips and	-		<del></del>							
L.——		fractures that trend about @ 35- 45 DTCA. There is no significant alteration or mineralization associated	$\vdash$	1			-			<u> </u>		
l		with the structure.	<u> </u>									
		Will the Students.										
909.00	914.6	5 83										
		A fine grained, granular textured (with jasper), massive to faintly bedded/ banded @ 45 DTCA, light/										
		medium yellowish green grey coloured wacke containing a few scattered clasts continues below the fault. It	<u> </u>	_								
		is pervaded with ankerite and sericite, lightly veined with 2% irregular ankerite fractures and veinlets, and		-							-	<del></del>
		poorly mineralized with trace sulphides.		1			<del>  -</del>					
914.65	941.0	) e1	1	-		1						
914.05	341.0	Transition back into a ploymict conglomerate zones (note large jasper clast at 933.55m) interbedded with	<del>                                     </del>			1						
<u> </u>		local fine grained tyo gritty wacke beds/ lenses and matrix and also very fine grained mudstone lenses										
		(see below). Overall, the conglomerate is pervaded with ankerite and sericite which lends a general										
		yellowish tone to the medium/ light greenish grey colour and veined with 1-3% diffuse ankerite fractures					<u> </u>					
		and streaky veinlets, the sulphide content runs trace.		-		-			-	-		<del></del>
			├			+	<del> </del>		-	<del>                                     </del>		
		918.35- 918.40 : FAZ			<u> </u>				1		L	

		DESCRIPTION (Hole no AK09-07)						Şam	ples / A	ssays		
From (m)	To (m	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		A small pile of splinters and gouge/ mud indaicate a minor fault, probably @ around 50 DTCA.										
	<u> </u>	924.85- 926.40 : S7										
		Unit of fine/ very fine grained light limey yelloww green to medium greenish grey mudstone and wacke										
		bedded @ 50 DTCA with some pebbles (rip up clasts?) and streaky fragmented(?) dull creamy white										
		ankerite veining(?).										
		005.05.040.05	45				40507	005.05	007.45	4.00	0.00	-
		935.95- 940.85 : SHZ This represents a weak shear/ foliation zone @ 55+/- DTCA that precedes, and is probably related to, the	15 8	tr tr			49527 49528	935.95 937.15	937.1 <u>5</u> 938.00	1.20 0.85	0.02	
		FAZ below. It comprises zones of light limey yellow green altered wacke, chloritic fracturing, streaky	5	tr			49526	937.13	939.15	1.15	0.02	
		creamy white ankerite veining and elongation of more ductile clasts into the plane of the fabric. There is no	8	tr			49530	939.15	940.30	1.15	0.02	0.03
		concentrated alteration or structure, nor is there any anomalous mineralization, only trace background Py.	10	tr	65	FAZ	49531	940.30	941.00	0.70	0.02	-
			4	tr			49532	941.00	942.00	1.00	0.01	
		940.85- 941.00 : FAZ	_									
		Broken core, segmented/ broken up carbonate veins, and chloritic matrix @ 65 DTCA define a cataclastic fault that forms the contact between the conglomerate and the altered tuff/ arkose(?) that follows.										
		Tradit that forms the contact between the conglotherate and the aftered tull arkose(r) that follows:										
							<del> </del>					
941.00	954.70	V4T/ S2										
		The foliation fabric continues for about another 0.70m down the hole before the host becomes massive,										
		fine grained, granular textured, and light greyish beige/ pink/ brown coloured. It is not clear if the pink					_					
		colour is due to hematite alteration below the FAZ or reflects the primary colour of the fine grains. The host										
		remains pervaded with ankerite and minor sericite and is laced with 4-6%, randomly oriented fine ankerite										
		and chlorite fractures and veinlets. The tuff/ arkose contains only trace sulphides.	├──									
954.70	1025.15	S1										
		The core reverts back to typical, polymict (including jasper and green carbonate) conglomerate with clasts										
		to 14cm forming an intact (clast supported) framework with medium/ dark greyish green wacke matrix and										
		lenses. Clasts are rounded and generally ovoid in shape with elongation @ about 60 DTCA in the plane of				ļ						
		bedding a weak foliation fabric. The host remains pervasively ankeritic but veining mainly comprises					ļ					
		irregular patches of spidery ankerite fractures and veinlets. Sulphides continue to run trace overall.	$\vdash$				_					
							<del>                                     </del>					
		966.40- 966.85 : QVZ	5	tr			49533	965.00	966.10	1.10	0.02	-
		The interval contains 60% dull white quartz veining most of it oriented @ 60 DTCA. It iflanked up hole by	35	tr	60	QVZ	49534	966.10	966.90	0.80	0.02	-
		20cm of moderatem sericite shearing/ foliation with minor veining and trace to slightly anomalous very fine	7	tr			49535	966.90	968.00	1.10	0.03	-
-		Py										
		070.05.070.25 + 0.077		<b></b>		-						
		976.25- 976.35 : QVZ Patch of dry white quartz vein @ 65 DTCA.				<del> </del>	<del>                                     </del>					
		Fatch of dry write quartz verifice 63 DTCA.								<u> </u>		
		986.00- 987.96 : S3										
		Lens of fine grained, massive, uniform granular textured, medium greenish grey coloured wacke and a few										
		narrow (<1cm wide) beds of mudstone @ 60 DTCA.										
		989.40-995.00 : S3/ S7	_									
		Zone of interdigitated lenses/ beds of fine grained, medium greyish green wacke, very fine grained, light	<u> </u>									
		ghreyish yellow mudstone, and medium/ light greenish grey grit with bedding attitudes @ 55 DTCA.	l .									

From (m)		DESCRIPTION (Hole no AK09-07)	Took		secons 4			Odin	ples / A	Sauya		and the freehold from
	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		995.00- 1025.15 : S1										
		Back into a fine (pea gravel), polymict conglomerate in which most pebbles are elongated with rare clasts to 4cm but most around 1cm or less. These grade into fairly thick finer gritty to fine grained wacke lenses. Veining is sporadic, amounting to approximately 3% overall that is concentrated in vein zones (see below)										
	,	that are often included with a local foliated segment.										
		999.90- 1000.60 : QCVZ	1	tr			49536_	999.00	999.90	0.90	0.01	-
		20% quartz- ankerite veining concentrated mainly with a leading 4cm and middle 8cm dull grey quartz-ankerite veins @ 55 DTCA. There are no significant sulphides associated with the zone.	20 3	tr tr		QCVZ	49537 49538	999.90 1000.60		0.70 1.10	0.01 0.01	-
			6	tr			49539	1001.70		1.15	0.02	-
		1003.90- 1005.70 : SZ	2	tr			49540	1002.85		1.05	0.02	-
<del></del>		A section of finer grained wacke is overprinted with patches of very fine grained cherty looking pale grey	40 30	tr		SZ SZ	49541	1003.90		0.90	0.04	0.04
		silicification (and ankerite) that crudely follow the fabric. The zone is also well sericitized and mineralized with trace to anomalous (up to 0.5%/ 5cm) fine Py.	1	tr tr		SZ	49542 49543	1004.80		1.30	0.04	
		4047 OF 4040 FF + 00V7	_	4-			10511	4047.00	1017.95	0.95	0.04	-
		1017.95- 1018.55 QCVZ  Local zone of foliation with 15cm / 5cm carbonate- quartz- chlorite vein zones trending @ 55/ 65 DTCA at	8 25	tr tr	60	QCVZ	49544 49545		1017.95	0.60	0.04	-
		the beginning and end. The walls are sericitized over about 1.5m; sulphides run trace.	3	tr	00	QCVZ	49546		1019.50	0.95	0.03	-
												<b>——</b>
1025.15	1089.25											<u> </u>
		Here, the last of the gritty horizons ends and the core is dominated by typical, fine grained, massive,										<u> </u>
		granular textured, fine to medium grained (including jasper grains), and medium greyish to yellowish green coloured wacke that contains a few scattered pebbles. It is pervaively ankerite and sericite altered with	-					<u> </u>				
		relatively minor 1-2% veining. As before, mineralization consists of trace fine Py.										
		1054.60- 1089.25 : S3a						<u> </u>				
		At about this point, the wacke becomes medium/ light yellowish to brownish grey/ green coloured and the						·	·			
		ankerite veining increases to 3-5% as creamy white fractures, veinlets and narrow stringers. These are	<u> </u>									<del></del>
		probably related to a QCVZ near the start (see below). Otherwise, the protolith comprises typical, fine	⊢—									<del></del>
<del></del>		grained, massive, granular textured (with jasper grains), wacke that contains scattered clasts (3%) and	<b> </b>									
		ocassianal pebbly lenses to 1m or so. In places, it appears to grade into more tuffaceous (pinkish grains,	├									
<del></del>		weakly magnetic, and no jasper) looking material. Despite the overall increase in the degree of veining and alteration, sulphides run trace.						_				
		1055.85- 1055.95 : QCVZ						_				<del></del>
		Creamy white and pale orange quartz- ankerite vein zone @ 60 DTCA accompanied by local chloritic fracturing but devoid of sulphides. This may also represent a fault zone.										
							-	<del>                                     </del>	-			-
		1057.80-1057.90 : FAZ	$\vdash$				-	<del>                                     </del>				<del></del>
<b></b>		Weak pale pink altered zone with chlorite fractures and trace Py, defines a minor fault @ 60 DTCA.	4	tr			49547	1087.70	1088.70	1.00	0.02	-
		1088.85- 1089.25 : FAZ	15	tr	40	FAZ	49548		1089.25		0.66	0.75
		The wacke is terminated by this strong sericite- chlorite fracture/ shear fault with 15% quartz- carbonate	4	tr	, , , , , , , , , , , , , , , , , , ,	1.,,,,,,	49549	1089.25			0.05	-
		veins, all of which is trending @ 40 DTCA. No significant sulphides were noted in the zone.		,,			1					
						-						<del></del>
1089.25	1094.85		<del> </del>			-			<del>                                     </del>			<del></del>
		At first glance, the light orange to greyish orange coloured, massive, medium/ fine grained unit appears to							_			
		represent an altered syenite or syenite porphyry, however, there is a granularity to the texture and at 1093.70m, there are distinctive altered/stretched clasts. This suggests that the protolith is a hematite/ k							-			
		spar altered wacke that contains pebbly lenses. It is non magnetic, weakoly pervaded with ankerite, weakly	$\vdash$				<del>                                     </del>		-		<b>†</b>	

		DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays		
From (m)	To (		Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		veined 1- 2% ankerite and chlorite fractures and veinlets, and poorly mineralized (trace). The leading contact is sharp at the base of the FAZ @ 40 DTCA while the lower contact is equally well defined on a 1cm carbonate stringer with sericite slips @ 60 DTCA.										
1094.85	1108	25 57				-						
1034.03	1100.	The hole now rolls into a a fine to very fine grained, granular textured, bedded (@ 45-50 DTCA) unit that is generally mottled in shades of medium to dark greyish green (with tan tones) but lightens to a light/medium grey to buff grey by the end. A 40cm segment at 1099.20m contains elongate, fairly densely packed, light orange/ tan coloured (alkalic) clasts. The matrix was determined to be weakly to moderately magnetic near the start and weakly to non magnetic by the end. It is pervasively ankeritic and cut by 2-3% pale pink calcite and creamy white ankerite fractiures and veinlets. The sulphide content is trace.										
1108.85		S3a/ S2										
1100.03		The contact is marked by an abrupt change in colour @ 40 DTCA. The lithology reverts back to a light greyish beige/ orange/ pink coloured, massive, granular textured hematite/ K spar altered wacke or possibly an arkose. It is non magnetic but is well fractured in places with networks of irregular chlorite fractures along with 1- 2% carbonate veinlets. The fracturing may be related to a series of minor faults, some of which are broken out below. No significant mineralization was noted.										
		1109.70- 1109.80 : FAZ										
		Weak chlorite fracture fault zone @ 25 DTCA with 30cm of broken core below.				1						
		1119.80- 1119.90 : QCVZ/ FAZ										
		Zones of chlorite fracturing and minor carbonate (- quartz) veining define a weak fault @ 50 DTCA.										
		1125.15- 1129.20 : S1a/ V4aggl This is a fragmental horizon in which 80% of the clasts are medium/ light orange coloured, elongated, and fairly densely packed.										
		1129.20- 1129.85 : FAZ										
		A mud/ gouge slip (1-2mm) at the start, and a pile of splinters with some gouge/ mud at the end enclosing a middle section of streaky fracturing, define a moderately strong fault zone @ 50/ 45 DTCA.										
		1129.85- 1139.00 : S3a  The massive, granular textured, altered wacke continues below the FAZ, however, the colour has become				ļ. —	-					
		a mottled light beigey/ yellowy green grey and there were jasper grains noted in the matrix. Here, it is non magnetic, pervasively ankeritic, weakly veined with 1- 2% chlorite fractures and ankerite veinlets, and, unmineralized.										
		1400 00 4440 50 00104				<b>_</b>						
		1139.00- 1142.58 : S3/ S1  The wacke becomes more medium grained and gritty although there are only a few scattered flattened					-					
_		clasts visble. There is also a distinctive yellowish tone overprintin the unit that may reflect increased sericite alteration as well as a weak foliation fabric @ 55 DTCA.										
4440.50	4440	90 90 184				-						
1142.58	1143.	A 1cm black, very fine grained band @ 75 DTCA leads into a fine grained, massive, crystalline looking, dark greenish grey intrusive that is finer grained near the contacts and slightly coarser (but still fine										
-		grained) in the middle. It is non magnetic but appears to represent a narrow mafic intrusive or diabase dike. It was found to be weakly calcitic, mildly veined wqith 1- 2% fine carbonate fractures and veinlets,							<u> </u>			

		DESCRIPTION (Hole no AK09-07)			in.			Sam	ples / A	ssays		
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		and, unmineralized. The trailing contact is sharp, along a 1cm pink calcite stringer @ 75 DTCA.										
4442.00	4454.05	020					-					
1143.90	1154.85					<del></del>						
	_	The dike exits back into the altered wacke which is generally fine grained, granular textured, massive but foliated @ 50- 60 DTCA, and medium/ light yellowish geen coloured with buff and orange streaky zones. It				<del> </del>	<b></b>		_			
		appears to become progressively more deformed towards the lower contact with grungy chloritic fracture				<del>                                     </del>						
		networks. Overall, the host is pervaded with ankerite and intersected by a combination of pink calcite and		tr			49550	1150.00	1151.00	1.00	0.08	_
		cramy white ankerite fractures, veinlets and streaky stringers aggregating about 4% veining. Mineralization		tr		1	49551		1152.00	1.00	0.06	-
		averages trace sulphides with slightly anomalous fine dusty Py towards the end.		tr			49552		1153.00	1.00	0.05	
				tr			49553	1153.00	1154.00	1.00	0.04	
				tr			49554	1154.00	1154.85	0.85	0.08	-
1154.85	1155.90	MI		tr			49555	1154.85	1155.90	1.05	0.06	-
		There is another apparent mafic intrusive that cuts the sedimentary package that is characterized by a										
		dark/ medium grey colour, massive nature, aphanitic texture although it is non magnetic and weakly							_			
		calcitic as with the previous diabase/ mafic intrusive at 1147.58m. The leading contact is sharp @ 50										-
		DTCA while the trailing one is a little more ragged @ 55 DTCA with some splintering. In fact, the entire										
		dike is broken up into small pieces with an RQD of zero. It is weakly veined with 2% pink calcite fractures										-
		and veinlets and unmineralized.	ļ			ļ	-		_			
						-	-		_			
1155.90	1172.40	1Sa/1Spa	2	tr		-	49556	1155 00	1157.00	1.10	0.07	0.05
		Below the MI the hole cuts a medium grained, massive, medium brick orange altered syenite or syenite porphyry. The dike appears nonporphyritic but phenocrysts are visible locally with a lens and it contains	2	tr		-	49557		1157.00	1.00	0.07	
		mafic inclusions which is typical of the syenite porphyry dikes in the Kirkland Lake Camp. The dike is	2	tr		<del> </del>	49558		1159.00	1.00	0.05	
		strongly microfractured which has allowed it to become pervasively altered by hematite/ K spar and it is cut	2	tr			49559		1160.00	1.00	0.05	
		by 2-3% fine irregular chlorite, ankerite and calcite filed fractures. It is mineralized with trace to slightly	2	tr		<del>                                     </del>	49560		1161.00	1.00	0.02	-
		anomalous fine dusty Py.	2	tr			49561		1162.00	1.00	0.02	-
		anormaled me dady . j.	2	tr			49562	1162.00	1163.30	1.30	0.04	-
		1163.30- 1166.40 : S3a	6	tr			49563	1163.30	1164.00	0.70	0.07	-
		There is a fairly thick lens included within the two segments of syenite leading with a sharp contact @ 55	6	tr			49564		1165.00	1.00	0.02	-
		DTCA and ending with another sharp contact @ 60 DTCA, both accomanied by a small pile of splinters.	6	0.5			49565		1165.70	0.70	0.03	-
		The wacke is fine grained, dark/ medium streaky greenish to pinkish grey coloured, and well	6	1			49566		1166.40	0.70	0.05	-
		microfractured/ foliated @ 45- 50 DTCA. It is very weakly magnetic and weakly pervaded with ankerite	1	tr			49567		1167.00	0.60	0.11	0.10
		while veining consists of 5- 7% irregular streaks and segmented veinlets of calcite and ankerite along the	1	tr		<u> </u>	49568		1168.00	1.00	0.09	-
		fabric plane. Very fine dusty Py was noted through the interval with up to 1% over 50cm within the lower	4	tr		<u> </u>	49569		1169.00	1.00	0.02	
		contact.	6	tr		-	49570		1170.15	1.15 1.10	0.02	0.15
			2	tr		-	49571 49572		1171.25 1172.40	1.10	0.16	0.15
		1166.40- 1172.40 : 1Sa	2	tr		_	490/2	11/1.25	11/2.40	1.15	0.04	<del>-</del> -
		A return to the well altered and fractured/ microfractured, medium grained, medium/ light grungy greyish	<u> </u>			+	1			<b> </b>		
		orange/ pink coloured syenite that is deformed to the point where it develops a foliation fabric @ 55- 60 DTCA. Fractures are filled with sericite, chlorite and ankerite with 1% secondary irregular calcite fractures										
			<b></b>									
	-	and veinlets. It is weakly mineralized with trace fine Py.		1		1	<del>                                     </del>					
1172 40	1176.90	S32										
1112,40	1170.90	The hole rolls into a very strongly foliated/ microfractured/ fractured zone @ 45- 60 DTCA that is	4	tr			49573	1172.40	1173.20	0.80	0.02	-
		overprinted onto the fine grained, granular textured, light/ medium olive green to dark greyish green	6	tr			49574	1173.20	1174.00		0.03	-
		streaked wacke. The matrix is non reactive to weakly pervaded with calcite, non magnetic, and veined with	3	tr			49575		1175.00	1.00	0.02	-
		2- 3% irregular streaky calcite fractures and veinlets. Sulphides continue to run trace.	2	tr			49576		1176.00		0.01	-
			2	tr			49577		1176.90	0.90	0.02	-
1176.90	1177.80	FAZ	1	tr	50	FAZ	49578		1177.80	0.90	0.19	-
		The FAZ consists of a leading, massive, 55cm wide zone of gouge and mud @ 50 DTCA, followed by a	35	tr		SZ	49579	<u>  1177.</u> 80	1178.70	0.90	0.24	-

	- Farmer	DESCRIPTION (Hole no AK09-07)		SHIPPORK		entocovers actors over	Sam	ples / A	ssays			
From (m)	To (m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
		10cm piece of solid core (@ 50 DTCA), with then the remainder collected as broken chips and pieces. The	35	tr		SZ	49580	1178.70	1179.60	0.90	0.27	-
		FAZ probably represents the Hunton Break which is associated with the diabase dike on surface.	1	tr			49581		1180.75	1.15	0.11	-
			1	2			49582		1181.20	0.45	0.23	0.19
1177.80	1271.00		1	tr			49583		1182.00	0.80	0.25	-
		Below the FAZ, the hole continues in a strongly deformed and altered host, the protolith of which is difficult	2	tr			49584		1182.80	0.80	0.31	-
		to determine at the start. Generally, it resembles a fine to very fine grained trachyte tuff, but, in places, with		tr			49585		1183.70	0.90	0.12	-
$\vdash$		the aid of a lens, the host appears crystalline, somewhat similar to the odd mafic syenite that occurs in the		tr			49586		1184.65	0.95	0.12 0.38	-
		deep holes to the west and some underground holes at Kirkland Lake Gold.  At the start, much of the unit is fine to very fine grained and mottled in grungy shades of medium olive	1	tr			49587 49588		1185.90 1187.20	1.25	0.38	-
$\vdash$		green to greenish red/ orange with networks of chlorite- specularite filled fractures/ microfractures, around		tr tr			49589		1188.00	0.80	0.12	-
$\vdash$		which the host is usually red (hematite) altered. Overall, the host is very weakly to weakly to moderately	_	tr			49590		1189.00	1.00	0.16	-
		magnetic, the strength increasing with decreasing alteration, and weakly pervasively calcitic to non		tr			49591		1190.00	1,00	0.10	
		reactive. Secondary veining amounts to <1% while the sulphide content averages trace but medium		tr			49592		1191.00	1.00	0.11	-
$\vdash$		grained Py crystal content increases to 1% over 10- 20cm in places.		tr			49593		1192.00	1.00	0.07	_
		gramed Ty crystal content marcases to 177 over 10-20cm in places.		tr			49594		1193.00	1.00	0.05	0.07
		1177.80- 1179.60 : SZ		tr			49595			1.00	0.04	-
		The leading 1.5m or so is overprinted with 35% patchy dull grey/ pale beige silicification but does not		tr			49596		1195.00	1.00	0.07	-
		contain any anomalous mineralization.		tr			49597		1196.00	1.00	0.05	-
				tr			49598			1.00	0.08	-
		1180.80- 1180.00 : V4T (Py)		tr			49599	1197.00	1198.00	1.00	0.09	
		The interval contains 2- 3% medium sized, disseminated and trains of Py crystals.		tr			49600	1198.00	1199.00	1.00	0.15	-
				tr			49601	1199.00	1200.00	1.00	0.07	-
		1184.65- 1187.18 : V4/ 1Sa										
		The colour suddenly becomes brick brownish red along a fragmental looking contact @ 70(?) DTCA and										
		ends abruptly along a well defined chloritized contact @ 70 DTCA. The contacts suggest that this may										
		represent a massive trachytic flow but the groundmass is more medium grained indicating a possible										
		syenite dike. It is very weakly magnetic, non reactive, weakly veined (<1%), and mineralized with trace to										
		anomalous scattered medium grained Py crystals.										
		1194.40- 1194.83 : 1SMa										
		There is a definite change to a medium grained, massive, mafic intrusive host here, probably a medium										
		greyish brown mafic syenite (porphyry) since it contains 35%, euhedral mafic phenocrysts in a fine/										
		medium grained, medium beige coloured, feldspathic groundmass. Contacts are well defijned @ 55/ 60										
$\vdash$		DTCA	<b></b>									
$\vdash$		404 40 4040 00 + 1447										
$\vdash$		1194.40- 1210.60 : V4T  The hole continues in the fine to very fine grained, dark maroon/ brown grey coloured, massive to faintly	<del>                                     </del>									
$\vdash$		bedded (@ 65+/- DTCA) trachyte tuff. The degree of deformation and alteration decrease significantly but										
$\vdash$		it remains weakly pervaded with calcite, weakly veined with 1% pink calcite, and poorly mineralized with										
		trace Pv.				<del>                                     </del>						
		1210.60- 1226.25 : V4/ V4T										
-		This interval contains a number of brick red/ orange to brown to grey, massive textured, fine grained zones				1						
		with sharp, as well as rubbly contacts that may represent a series of trachyte flows within the tuffaceous		tr		1	49602	1222.50	1223.50	1.00	0.07	
		sequence. They were not individually separated but contacts are generally at steeper angles above 60		tr			49603		1224.50	1.00	0.10	-
		DTCA. The package is very weakly to moderately magnetic, non reactive to weakly pervaded with calcite,	0.5	tr			49604	1224.50	1225.50	1.00	0.13	0.12
		veined with only 0.5% pink calcite gashes but laced with a network of fine chlorite/ specularite/ calcite	0.5	tr			49605	1225.50	1226.50	1.00	0.05	
		fractures, and mineralized with trace medium Py crystals and grains.	0.5	tr								
											0.10	
		1236.10- 1241.80 : V4/ V4T	0.5	tr			49606	1235.00	1236.00	1.00	0.10	-

			DESCRIPTION (Hole no AK09-07)						Sam	ples / A	ssays		
From (m)	То	(m)	Description	Qcv (%)	Py/Po (%)	Dip	Desc.	Sample Number	From	То	Length	Au g/t	Au Chk
			This is another dark brick red/ orange altered zone similar to that at 1210.60m, however, here, the		0.5			49607		1237.00	1.00	0.08	-
			contacts are less well defined and appear gradational. The host is fine to medium grained, massive		0.5			49608	1237.00	1238,00	1.00	0.15	-
			textured with local possible paches of mafic phenos. It is moderately well fractured with black specularite		3			49609	1238.00	1239.00	1.00	0.76	0.70
			fillings and <0.5% veining. The matrix is non reactive with local weak patches of calcite, the interval is		0.5			49610		1240.00	1.00	0.40	-
			generally mineralized with anomalous to 2-3% fine to coarse Py crystals and grains, averaging perhaps	0.5	0.5			49611		1241.00	1.00	0.26	-
			0.5- 1%.	0.5	tr			49612		1242.00	1.00	0.15	-
				0.5	tr			49613	1242.00	1243.00	1.00	0.08	-
			1241.80- 1265.40 : V4T										i
			Back into grungy dark grey to reddish/ brownish grey coloured, massive, fine grained to gritty trachyte tuff										
			that is weakly magnetic at the start and becomes moderately magnetic by 1250m. It is weakly pervaded										
			with calcite and veined with 1- 2% grungy pink calcite veinlets and stringers as well as local specularite										
			fractures. Mineralization consists of trace sulphides with several large (7mm) grains noted in places.										
			1262.00- 1262.05 : QCVZ										ĺ
			Brecciated/ splotchy quartz- calcite vein @ 60 DTCA mineralized with splashes of Cp. Calcitic fracturing										
			continues for several decimeters into the walls.										
			1265.40- 1271.00 : V4/ 1SMa										
			The interval comprises a dull brick orange/ brown coloured, medium grained, massive trachyte or syenite										
			that contains up to 25% black (altered) mafic phenocrysts which are easily visible with a lens, within a fine/										
			medium grained groundmass. It is moderately to weakly magnetic, non reactive, mildly veined (0.5%),	0.5	tr			49614	1264.00	1265.00	1.00	0.24	-
			moderately fracturedf (calcite/ chlorite/ quartz), and mineralized with trace sulphides with local	0.5	0.5			49615	1265.00	1266.00	1.00	0.06	-
			concentrations of Cp to 5% over 5cm (1267.40m).					49616	1266.00	1267.00	1.00	0.13	-
										•			
1271.00			EOH										
			The hole was stopped at this point because the angle became too shallow to retrieve the tube and take the										
_	_		reflex tests. The drillers were asked to back up, set a steel wedge and start again with AK09_07W1.										
			· <del> </del> - <del>- </del>										
			-										
				l									
		_											ĺ

# DRILL REPORT ON DRILL HOLES AK0509-10 & AK09-05/06/07 And Wedges AMALGAMATED KIRKLAND PROPERTY KIRKLAND LAKE, ONTARIO LARDER LAKE MINING DIVISION NTS 42-A-01

APPENDIX II
ASSAY CERTIFICATES





Assaying - Consulting - Representation

### Geochemical Analysis Certificate

9W-3535-RG1

Company: QUEENSTON MINING INC.

Date: NOV-30-09

Project:

Attn:

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 11 1/2 CORE samples submitted NOV-19-09 by.

Sample Number	Au ppb	Au Check ppb	Au g/tonne	Au Check g/tonne	
20013	617	_	0.62		
20014 39	600	-	39.60	40.42	
20015	509	-	1.51	1.37	
92793	207	-	0.21	-	
92794	15	-	002	-	
92795	19	-	0.02		
92796	29	_	0.03	_	
92797 12	686	-	12.69	12.21	
92798	106	-	0.11	-	
92799	24	21	0.02	0.02	
BLANK	3	-	NIL		
STD OxH66	286	-	1.29	-	
92800	82	-	0.08	-	





Assaying - Consulting - Representation

#### Geochemical Analysis Certificate

9W-3682-RG1

Company: QUEENSTON MINING INC.

Date: DEC-11-09

Project: Attn:

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 5 1/2 CORE samples submitted DEC-04-09 by .

	Check ppb	Au g/tonne	Au Check g/tonne	
806	_	0.81	-	
897	-	5.90	5.42	
122	144	0.12	0.14	
29	-	0.03	_	<u> </u>
38	34	0.04	0.03	
	-	NIL 1.28	- -	
	ppb 806 897 122 29	ppb ppb 806 - 897 - 122 144 29 - 38 34 NIL -	ppb         ppb         g/tonne           806         -         0.81           897         -         5.90           122         144         0.12           29         -         0.03           38         34         0.04           NIL         -         NIL	ppb         ppb         g/tonne         g/tonne           806         -         0.81         -           897         -         5.90         5.42           122         144         0.12         0.14           29         -         0.03         -           38         34         0.04         0.03           NIL         -         NIL         -



Assaying - Consulting - Representation

## Geochemical Analysis Certificate

9W-3737-RG1

Company:

QUEENSTON MINING INC.

Date: JAN-04-10

Project: Attn: ΑK

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 16 1/2 CORE samples submitted DEC-10-09 by .

Sample Number	Au ppb	Au Check ppb	Au g/tonne	Au Check g/tonne	
22801	15	21	0.02	0.02	
22802	15	-	0.02	_	
22803	17	-	0.02	_	
22804	9		0.01	-	
22805	3	-	NIL	-	
22806	NIL		NIL		
22807	NIL	-	NIL	_	
22808	9	-	0.01	-	
22809	12	-	0.01	-	
22810	22	14	0.02	0.01	
BLANK	NIL		NIL	-	
STD OxH66	1246	-	1.25	-	
22811	15	-	0.02	-	
22812	3	_	NIL	-	
22813 .	5	-	0.01	-	
22814	14	27	0.01	0.03	
22815	9	-	0.01	-	
22816	3	~	NIL	-	

Certified by Curr Club



Assaying - Consulting - Representation

## Geochemical Analysis Certificate

9W-3757-RG1

Company:

QUEENSTON MINING INC.

Date: DEC-21-09

Project: Attn:

AK

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 3 1/2 CORE samples submitted DEC-14-09 by .

Sample	Au	Au
Number	ppb	g/tonne
22817	5	0.01
22818	NIL	NIL
22819	7	0.01

Certified by Dein Clit



Assaying - Consulting - Representation

## Geochemical Analysis Certificate

9W-3803-RG1

Company:

QUEENSTON MINING INC.

Date: DEC-31-09

Project:

ΑK

Project: AK Attn: WA

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 6 1/2 CORE samples submitted DEC-17-09 by .

Sample Number	Au ppb	Au Check ppb	Au g/tonne	Au Check g/tonne	
22820	9	_	0.01		
22821	7	-	0.01		
22822	10	_	0.01	_	
22823	17	17	0.02	0.02	
22824	5	_	0.01	_	
22825	9	NIL	0.01	NIL	
BLANK	NIL	_	NIL	-	
STD OxH66	1286	-	1.29	-	

Certified by Dune Chilo

AK09-07

Certificate Number: 10-148



## Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 2

#### Assay Certificate

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

26-Jan-10

Attn:

Wayne Benham

We hereby certify the following Assay of 35 core samples submitted 19-Jan-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt	Au Chk FA-GRAV ppb	Au Chk FA-GRAV g/Mt
22826	71		0.07					
22827	26		0.03					
22828	103		0.10					
22829	255	208	0.25	0.21				
22830	109	89	0.11	0.09				
22831	80		0.08					
22832	13		0.01					
22833	12		0.01					
22834	19		0.02					
22835	21	17	0.02	0.02				
Blank Value	5		< 0.01					
0xH66	1256		1.26					
22836	19		0.02					
22837	< 2		< 0.01					
22838	< 2		< 0.01					
22839	< 2		< 0.01					
22840	28		0.03					
22841	16		0.02					
22842	5		< 0.01					
22843	< 2		< 0.01					
22844	8		< 0.01					
22845	5	7	< 0.01	< 0.01				
22846	33		0.03					
22847	6		< 0.01					
22848	9		< 0.01					

Certified by



Assaying - Consulting - Representation

Page 2 of 2

#### Assay Certificate

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

**Certificate Number: 10-148** 

26-Jan-10

Attn:

Wayne Benham

We hereby certify the following Assay of 35 core samples submitted 19-Jan-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt	Au Chk FA-GRAV ppb	Au Chk FA-GRAV g/Mt
22849	4 4	54	0.04	0.05				
22850	13		0.01					
49501	13		0.01					
49502	< 2		< 0.01					
49503	20		0.02					
Blank Value	4		< 0.01			<del></del>		
OxH66	1241		1.24					
49504	275		0.28					
49505	4043		4.04			3.98		
49506		•				6.44	6439	5.90
49507	98		0.10					
49508	20		0.02					
49509	37		0.04					
49510	252	270	0.25	0.27				

Certified by

Certificate Number: 10-306



## Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 2

## Assay Certificate

Company:

Queenston Mining Inc.

Project:

AK

Ren

Report Date:

18-Feb-10

Attn:

Wayne Benham

We hereby certify the following Assay of 36 core samples submitted 02-Feb-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	/=	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49511	28		0.03					
49512	21		0.02					
49513	34		0.03					
49514	. 10		< 0.01					
49515	13		0.01					
49516	9		< 0.01					
49517	17		0.02					
49518	15		0.02					
49519	20		0.02					
49520	13	34	0.01	0.03				
Blank Value	9		< 0.01					
OxF65	765		0.77					
49521	11		0.01					
49522	20		0.02					
49523	37		0.04					
49524	19		0.02					
49525	14		0.01					
49526	13		0.01					
49527	21		0.02					
49528	25		0.02					
49529	21		0.02					
49530	19	31	0.02	0.03				
49531	18		0.02					
49532	11		0.01					
49533	20		0.02					

Certified by



Assaying - Consulting - Representation

Page 2 of 2

#### Assay Certificate

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

Certificate Number: 10-306

18-Feb-10

Attn:

Wayne Benham

We hereby certify the following Assay of 36 core samples submitted 02-Feb-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49534	 19		0.02					
49535	31		0.03					
49536	11		0.01					
49537	12		0.01					
49538	12		0.01					
Blank Value	9		< 0.01				· <del></del>	
OxF65	785		0.78					
49539	18		0.02					
49540	21		0.02					
49541	40	42	0.04	0.04				
49542	41		0.04					
49543	30		0.03					
49544	39		0.04					
49545	38		0.04					
49546	32		0.03					

Certified by

Certificate Number: 10-357



# Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 2

#### Assay Certificate

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

12-Feb-10

Attn:

Wayne Benham

We hereby certify the following Assay of 38 core samples submitted 08-Feb-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49547	20		0.02					
49548	. 665	748	0.66	0.75				
49549	51		0.05					
49550	75		0.08					
49551	61		0.06					
49552	53		0.05					
49553	44		0.04					
49554	85		0.08					
49555	56		0.06					
49556	72	54	0.07	0.05				
Blank Value	4 4		0.04					
OxF65	802		0.80					
49557	54		0.05					
49558	54		0.05					
49559	49		0.05					
49560	24		0.02				-	
49561	24		0.02					
49562	43		0.04					
49563	74		0.07					
49564	19		0.02					
49565	29		0.03					
49566	55		0.05					
49567	108	103	0.11	0.10				
49568	87		0.09					
49569 — — — — — — — — — —	17		0.02					

Certified by



Assaying - Consulting - Representation

Page 2 of 2

Assay Certificate

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

Certificate Number: 10-357

12-Feb-10

Attn:

Wayne Benham

We hereby certify the following Assay of 38 core samples submitted 08-Feb-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb		Au Chk FA-GRAV g/Mt
49570 49571	18	1 4 6	0.02	0 15				
49572 49573	157 43	146	0.16	0.15				
49574	16 29		0.02					
Blank Value	5		< 0.01					
0xF65	788		0.79					
49575	15		0.02					
49576	13		0.01				*	
49577	17		0.02					
49578	193		0.19					
49579	244		0.24				¥	
49580	267		0.27					
49581	109		0.11					
49582	233	191	0.23	0.19				
49583	245		0.25					
49584	310		0.31					

Certified by

Certificate Number: 10-456



# Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 2

#### Assay Certificate

Company: Ou

Queenston Mining Inc.

Project:

AK

Report Date:

24-Feb-10

Attn:

Wayne Benham

We hereby certify the following Assay of 32 core samples submitted 18-Feb-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb		Au Chk FA-GRAV g/Mt
49585	123		0.12					— — — .
49586	124		0.12					
49587	378		0.38					
49588	120		0.12					
49589	198		0.20					
49590	158		0.16					
49591	210		0.21					
49592	110		0.11					
49593	66		0.07					
49594	51	67	0.05	0.07				
Blank Value	12		0.01					
0xF65	828		0.83					
49595	42		0.04					
49596	68		0.07					
49597	46		0.05					
49598	76		0.08					
49599	92		0.09					
49600	152		0.15					
49601	73		0.07					
49602	67		0.07					
49603	102		0.10					
49604	129	115	0.13	0.12				
49605	48		0.05					
49606	96		0.10					
49607	84		0.08				· —	

Certified by



Assaying - Consulting - Representation

Page 2 of 2

## Assay Certificate

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

Certificate Number: 10-456

24-Feb-10

Attn:

Wayne Benham

We hereby certify the following Assay of 32 core samples submitted 18-Feb-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49608	150		0.15					
49609	764	700	0.76	0.70				
49610	403		0.40					
49611	262		0.26					
49612	149		0.15					
Blank Value	11		0.01					
49613	81		0.08					
49614	243		0.24					
49615	62		0.06					
49616	131		0.13					

Certified by

AK09-07W1



# Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Certificate Number: 10-602

Company:

Queenston Mining Inc.

Project:

AK

A TZ

Report Date:

10-Mar-10

Attn:

Wayne Benham

We hereby certify the following Assay of 6 core samples submitted 03-Mar-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49617	21		0.02					
49618	20	24	0.02	0.02				
49619	18		0.02					
49620	25		0.03					
49621	11		0.01					
49622	22	19	0.02	0.02				

Certified by



Established 1928

Assaying - Consulting - Representation

Page 1 of 1

Assay Certificate

Certificate Number: 10-635

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

10-Mar-10

Attn:

Wayne Benham

We hereby certify the following Assay of 3 core samples submitted 05-Mar-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49623 49624 49625	7 13 7		< 0.01 0.01 < 0.01		 		

Certified by



AK09-07WZ

Established 1928

Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Queenston Mining Inc.

Company: Project:

AK

Report Date:

Certificate Number: 10-835

01-Apr-10

Attn:

Wayne Benham

We hereby certify the following Assay of 11 core samples submitted 22-Mar-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49626	14		0.01					
49627	51		0.05					
49628	60		0.06					
49629	10	8	< 0.01	< 0.01				,
49630	16		0.02					
49631	12		0.01					
49632	38		0.04					
49633	134		0.13					
49634	57		0.06					
49635					2706		2.71	2.85
Blank Value	5		< 0.01					
OxF65	824		0.82					
49636	< 2		< 0.01		1509 		1.51	1.89

Certified by



Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Certificate Number: 10-835

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

06-Apr-10

Attn:

Wayne Benham

We hereby certify the following Assay of 11 core samples submitted 22-Mar-10 by Wayne Benham

	Au	Au Chk	Au	Au Chk	Au	Au Chk	Au	Au Chk
Sample	FA-AAS	FA-AAS	FA-AAS	FA-AAS	FA-GRAV	FA-GRAV	FA-GRAV	FA-GRAV
Number	ppb	ppb	g/Mt	g/Mt	ppb	ppb	g/Mt	g/Mt
49626	14		0.01					
49627	51		0.05					
49628	60		0.06					
49629	10	8	< 0.01	< 0.01				
49630	16		0.02					
49631	12		0.01					
49632	38		0.04					
49633	134		0.13					
49634	57		0.06					
49635					2706		2.71	2.85
Blank Value	5		< 0.01					The second second
OxF65	824 .		0.82					
49636					1509		1.51	1.89

Certified by



Assaying - Consulting - Representation

Page 1 of 1

#### Assay Certificate

Certificate Number: 10-1611

Company:

Queenston Mining Inc.

Project:

Report Date:

25-May-10

Attn:

Wayne Benham

We hereby certify the following Assay of 6 core samples submitted 14-May-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
20031	31		0.03					
20032	. 11		0.01					
20033	54		0.05					
20034	63		0.06					
20035	341	257	0.34	0.26				
20036	26		0.03				·	
Blank Value	5		< 0.01					
OxF65	796 		0.80					

ertified by



AKOS/09-10WZ AKO9-07WZ

Assaying - Consulting - Representation

Page 1 of 1

#### Assay Certificate

Certificate Number: 10-1003

Report Date:

Company:

Queenston Mining Inc.

Project:

AK

16-Apr-10

Attn:

Wayne Benham

We hereby certify the following Assay of 17 core samples submitted 01-Apr-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49637	18		0.02					
49638	88		0.09					
49639	107		0.11					
49640	739	617	0.74	0.62				
49641	1029		1.03					0.93
49642	84	91	0.08	0.09				
49643	< 2		< 0.01					
49644	123		0.12					
49645	61		0.06					
49646	898	947	0.90	0.95				
Blank Value	2		< 0.01					
OxF65	817		0.82					
49647					4284		4.28	4.70
49648	65		0.07					
49649	117		0.12					
49650	17		0.02					
49651	49	67	0.05	0.07				
49652	40		0.04					
49653	37		0.04					

ertified by 🄎 👤



AK09-07WZ

Assaying - Consulting - Representation

Page 1 of 1

#### Assay Certificate

Certificate Number: 10-1728

Company:

Queenston Mining Inc.

Project:

AK

A TZ

Report Date:

17-Jun-10

Attn:

Wayne Benham

We hereby certify the following Assay of 7 core samples submitted 20-May-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49665	7		< 0.01					
49666	9		< 0.01					
49667	10		0.01					
49668	9		< 0.01					
49669	14		0.01					
49670	11		0.01					
49671	11		0.01					

Certified by



AK09-07WZ

Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Certificate Number: 10-1416

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

20-May-10

Attn:

Wayne Benham

We hereby certify the following Assay of 11 core samples submitted 30-Apr-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49654	1578		1.58					1.71
49655	755		0.75					
49656	1758		1.76					1.34
49657	44		0.04					
49658	16		0.02					
49659	12		0.01					
49660	20	21	0.02	0.02				
49661	18		0.02					
49662	5		< 0.01					
49663	7		< 0.01					
Blank Value	< 2		< 0.01					
OxF65	789		0.79					
49664	< 2		< 0.01				. — — — —	

Certified by



AK09-07WZ

Assaying - Consulting - Representation

Page 1 of 3

## Assay Certificate

Certificate Number: 10-1942

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

09-Jul-10

Attn:

Wayne Benham

We hereby certify the following Assay of 58 core samples submitted 03-Jun-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49672	46		0.05					
49673	29		0.03					
49674	30		0.03					
49675	47		0.05					
49676	42		0.04					
49677			0.03					
49678	21		0.02					
49679	33		0.03					
49680	44		0.04					
49681	92	25	0.09	0.03				
Blank Value	5		< 0.01					
OxF65	746		0.75					
49682	18		0.02					
49683	187		0.19					
49684	21		0.02					
49685	21		0.02					
49686	48		0.05					
49687	20		0.02					
49688	23		0.02					
49689	19		0.02					
49690	54		0.05				1	
49691	22	24	0.02	0.02				
49692	28		0.03					
49693	24		0.02					
49694	55		0.06					

Certified by Downs Eli



Established 1928

## Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 2 of 3

## Assay Certificate

Queenston Mining Inc.

Project:

Company:

AK

Report Date:

Certificate Number: 10-1942

09-Jul-10

Attn:

Wayne Benham

We hereby certify the following Assay of 58 core samples submitted 03-Jun-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49695	55		0.05					
49696	96		0.10					
49697	20		0.02				,	
49698	27		0.03				,	
49699	29		0.03					
Blank Value	6		< 0.01					
OxF65	764		0.76					
49700	20		0.02					
49701	24	34	0.02	0.03				
49702	20		0.02					
49703	32		0.03					
49704	44		0.04					
49705	21		0.02					
49706	15		0.02					
49707	24		0.02					
49708	16		0.02					
49709	15		0.01					
49710	2		< 0.01					
49711	59	41	0.04	0.06				
49712	5		< 0.01					
49713	18		0.02					
49714	14		0.01					
49715	5		< 0.01					
49716	6		< 0.01					
49717	8		< 0.01					

Certified by



Established 1928

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 3 of 3

## Assay Certificate

Certificate Number: 10-1942

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

09-Jul-10

Attn:

Wayne Benham

We hereby certify the following Assay of 58 core samples submitted 03-Jun-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt		Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49718	14		0.01					
49719	9		< 0.01					
Blank Value	7		< 0.01					
OxF65	775		0.78			•		
49720	11		0.01					
49721	151	139	0.14	0.15				
49722	17		0.02					
49723	9		< 0.01					
49724	11		0.01					
49725	23		0.02					
49726	98		0.10					
49727	158		0.16					
49728	64		0.06					
49729	31		0.03					

Certified by



AK05/69-10WZ AK09-07WZ

Assaying - Consulting - Representation

Page 1 of 1

Assay Certificate

Certificate Number: 10-2108

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

21-Jul-10

Attn:

Wayne Benham

We hereby certify the following Assay of 25 core samples submitted 14-Jun-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49730 49731 49732 49733	26 < 2 220 50	226	0.03 < 0.01 0.22 0.05	0.23				
49734	74		0.03					
49735 49736 49737	42 24 57		0.04 0.02 0.06					
49738 49739	13 26	27	0.01	0.03				
Blank Value OxF65 49740 49741	779 27 104		< 0.01 0.78 0.03 0.10	-				
49742	315	353	0.10	0.35				
49743 49744 49745 49746 49747	15 9 36 12 113		0.02 < 0.01 0.04 0.01 0.11					
49748 49749 49750 49751 49752	51 99 12 28 139	97	0.05 0.10 0.01 0.03 0.14	0.10				
49753 49754	29 22		0.03					

Certified by



AKO9-07WZ

Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Certificate Number: 10-2160

Company:

Queenston Mining Inc.

Project:

AK

Succuston Mining Inc.

Report Date:

21-Jul-10

Attn:

Wayne Benham

We hereby certify the following Assay of 10 core samples submitted 16-Jun-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
49755	487	501	0.49	0.50				
49756	14		0.01					
49757	97		0.10					
49758	15		0.01					
49759	4		< 0.01					
49760	768	723	0.77	0.72				
49761	15		0.02					
49762	74		0.07					
49763	19		0.02					
49764	3	4	< 0.01	< 0.01				
Blank Value	< 2		< 0.01					
0xF65	802		0.80					

Certified by



Assaying - Consulting - Representation

Page 1 of 2

## Geochemical Analysis Certificate

9W-3003-RG1

AK

Company:

QUEENSTON MINING INC.

Date: OCT-26-09

Project:

Attn:

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 55 1/2 CORE samples submitted OCT-02-09 by.

Number	<del>-</del>
+J	
92612 7 - 0.01 -	
92613 29 - 0.03 -	
92614 12 - 0.01 -	
92615 137 89 0.14 0.09	
92616 24 - 0.02 -	
92617 - 0.02 -	
92618 - 0.02 -	
92619 24 - 0.02 -	
BLANK NIL - NIL -	
STD OxH66 1299 - 1.30 ~	
92620 5 - 0.01 -	
92621 - NIL - NIL -	
92622 53 - 0.05 -	
92623 48 - 0.05 -	
92624 10 - 0.01 -	
92625 81 72 0.08 0.07	
92626 - 0.36 -	
92627 33 - 0.03 -	
92628 NIL - NIL -	
92629 - 0.02 -	
92630 794 - 0.79 -	
92631 - 0.28 -	
92632 286 - 0.29 -	
92633 285 - 0.29 -	
92634	
92635 723 - 0.72 -	
92636 477 - 0.48 -	
92637 2301 - 2.30 2.43	



Assaying - Consulting - Representation

Page 2 of 2

## Geochemical Analysis Certificate

9W-3003-RG1

Company: Project:

QUEENSTON MINING INC.

ĀΚ

WAYNE BENHAM Attn:

Date: OCT-26-09

We hereby certify the following Geochemical Analysis of 55 1/2 CORE samples submitted OCT-02-09 by.

Sample	70 - 4	7 Cl l-	77		
Number	Au	Au Check	Au	Au Check	
number.	ppb	ppb	g/tonne	g/tonne	
BLANK	NIL	_	NIL	~	
STD OxH66	1284	-	1.28	_	
92638	1848	-	1.85	2.00	
92639	758	_	0.76	_	
92640	58	-	0.06	-	
92641	55		0.06		
92642	105	_	0.11	_	
92643	146	_	0.15	_	
92644	15	_	0.02	-	
92645	14	_	0.01	_	
92646	<b>-</b> 5		0.01		
92647	27	_	0.03	_	
92648	72	_	0.07	_	
92649	77	_	0.08	_	
92650	17	_	0.02	_	
92651	33		0.03		
92652	48	_	0.05	_	
92653	45	36	0.05	0.04	
92654	17	_	0.02	_	
92655	27	-	0.03	-	
92656	9		0.01		
92657	NIL	_	NIL	_	
BLANK	NIL	-	NIL	_	
STD OxH66	1273	=	1.27	_	
92658	NIL	-	NIL	-	
92659	15	17	0.02	0.02	
92660	NIL	_	NIL	_	
92661	10	_	0.01	-	
92662	12	_	0.01	_	
92663	NIL	_	NIL	_	
92664	15		0.02		



Assaying - Consulting - Representation

Page 1 of 2

## Geochemical Analysis Certificate

9W-3004-RG1

Company:

QUEENSTON MINING INC.

Date: OCT-22-09

Project:

Attn:

ΑK

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 32 1/2 CORE samples submitted OCT-02-09 by .

Sample	Au	Au Check	Au	Au Check	
Number	ppb	ppb	g/tonne	g/tonne	
92665	10		0.01		
92666	67	_	0.07	_	
92667	81	-	0.08	-	
92668	26	34	0.03	0.03	
92669	51	~	0.05	_	
92670	17	-	0.02	-	
92671	34	_	0.03	-	
92672	17	_	0.02	_	
92673	29	-	0.03	-	
92674	96	<b>-</b>	0.10	_	
BLANK	3	-	NIL	-	
STD OxH66	1285	-	1.29	-	
92675	2030	-	2.03	2.07	
92676	58	51	0.06	0.05	
92677	84		0.08		
92678	39	-	0.04	-	
92679	38	-	0.04	-	
92680	70	-	0.07	-	
92681	77	-	0.08	_	
92682	48	-	0.05	_	
92683	142	_	0.14	-	
92684	43	-	0.04	-	
92685	39	41	0.04	0.04	
92686	34	-	0.03	-	
92687	36	_	0.04	_	
92688	151	-	0.15	-	
92689	213	192	0.21	0.19	
92690	41	-	0.04	-	
92691	39	_	0.04	-	
92692	62	45	0.06	0.05	



Assaying - Consulting - Representation

Page 2 of 2

## Geochemical Analysis Certificate

9W-3004-RG1

Company: QUI

QUEENSTON MINING INC.

Date: OCT-22-09

Project:

ΑK

Attn: WA

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 32 1/2 CORE samples submitted OCT-02-09 by .

Sample Number	Au ppb	Au Check ppb	Au g/tonne	Au Check g/tonne	
BLANK	7	-	0.01		
STD OxH66 .	1254	-	1.25	_	
92693	38	-	0.04	-	
92694	50	-	0.05	_	•
92695	46	_	0.05	_	
92696	29		0.03		

Certified by Done Club



Assaying - Consulting - Representation

## Geochemical Analysis Certificate

9W-3107-RG1

Company:

QUEENSTON MINING INC.

Date: NOV-02-09

Project:

ΑK

Project: AK Attn: WA

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 6 1/2 CORE samples submitted OCT-14-09 by .

Sample Number	Au ppb	Au Check ppb	Au g/tonne	Au Check g/tonne	
92697	34	21	0.03	0.02	
92698	21	_	0.02	_	
92699	NIL	-	NIL	-	
92700	NIL	-	NIL	-	
92701	329	302	0.33	0.30	
92702	12		0.01		
BLANK	NIL	-	NIL	_	
STD OxH66	1274	_	1.27	_	



Assaying - Consulting - Representation

Page 1 of 2

## Geochemical Analysis Certificate

9W-3300-RG1

Company: QUEENSTON MINING INC.

Date: NOV-16-09

Project:

A.K.

Attn: W

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 36 1/2 CORE samples submitted OCT-29-09 by .

Sample	Au	Au Check	Au	Au Check	
Number .	ppb	ppb	g/tonne	g/tonne	
92703	45		0.05	_	
92704	74	_	0.07	_	
92705	51	-	0.05	-	
92706	87	72	0.09	0.07	
92707	86	_	0.09	_	
92708	51		0.05	-	
92709	63	-	0.06	-	
92710	38	-	0.04		
92711	65	_	0.07	_	
92712	170	_	0.17	-	
BLANK	3	-	NIL	-	
STD OxH66	1294	-	1.29	_	
92713	161	-	0.16	-	
92714	154	-	0.15	-	
92715	199	206	0.20	0.21	
92716	141		0.14	_	
92717	747	809	0.75	0.81	
92718	36	-	0.04	_	•
92719	33	-	0.03	-	
92720	153	-	0.15		
92721	33	_	0.03	_	
92722	48	_	0.05	_	
92723	75	-	0.08	_	
92724	89	-	0.09	-	
92725	67	_	0.07	_	
92726	154	105	0.15	0.11	
92727	117	_	0.12	-	
92728	96	-	0.10	-	
92729	129	-	0.13	-	
92730	62		0.06		

Certified by Dem Clut



Assaying - Consulting - Representation

Page 2 of 2

## Geochemical Analysis Certificate

9W-3300-RG1

Company:

QUEENSTON MINING INC.

Date: NOV-16-09

Project:

A.K.

Attn: A.K. WA

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 36 1/2 CORE samples submitted OCT-29-09 by .

Sample Number	Au ppb	Au Check ppb	Au g/tonne	Au Check g/tonne	
BLANK	NIL	-	NIL	_	
STD OxH66	1269	-	1.27	_	
92731	41	-	0.04	_	
92732	45	-	0.05	-	
92733	19	-	0.02	_	
92734	12		0.01		
92735	48	-	0.05	_	
92736	17	-	0.02	_	•
92737	57	43	0.06	0.04	
92738	31	-	0.03	-	

Certified by Dems Clats



Assaying - Consulting - Representation

## Geochemical Analysis Certificate

9W-3301-RG1

Date: NOV-16-09

QUEENSTON MINING INC. Company: Project:

Attn:

A.K.

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 24 1/2 CORE samples submitted OCT-29-09 by.

Sample	Au	Au Check	Au	Au Check	
Number	ppb	ppb	g/tonne	g/tonne	
92739	14	-	0.01	-	
92740	10	-	0.01	-	
92741	12	-	0.01	-	
92742	3	NIL	NIL	NIL	~
92743	NIL		NIL		
92744	24	-	0.02	_	
92745	10	_	0.01	-	
92746	799	768	. 0.80	0.77	
92747	141	-	0.14	-	
92748	72	_	0.07		
BLANK	3		NIL	_	
STD OxH66	1269	-	1.27	_	
92749	31	-	0.03	-	
92750	22	_	0.02		
92751	34	-	0.03		
92752	14	_	0.01	_	
92753	21	-	0.02	-	
92754	46	_	0.03	-	
92755	17	-	0.02	-	
92756	27		0.03		
92757	31	-	0.03	-	
92758	32	-	0.03	-	
92759	3	-	NIL	-	
92760	34	36	0.03	0.04	
92761	26	-	0.03		
92762	27		0.03	-	

AK05/09-10W1



## Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

9W-3738-RG1

Company:

Queenston Mining Inc.

Report Date:

06-Jan-10

Project:

AK

Attn:

Wayne Benham

We hereby certify the following Assay of 19 core samples submitted 10-Dec-09 by Wayne Benham

	Au	Au	Au chk	Au chk	Au	Au	
Sample	FA-AAS	FA-AAS	FA-AAS	FA-AAS	FA-GRAV	FA-GRAV	
Number	ppb	g/Mt	ppb	g/Mt	ppb	g/Mt	
92815	8	< 0.01					
92816	9	< 0.01					
92817	41	0.04	56	0.06			
92818	32	0.03	3 0	0.00			
92819	9	< 0.01					
Blank Value	4	< 0.01					
92820 .	8	< 0.01	9	< 0.01			
92821	9	< 0.01					
92822	8	< 0.01					
92823	10	< 0.01					
92824	12	0.01					
Blank Value	< 2	< 0.01					
OxH66	1364	1.36					
92825	12	0.01	27	0.03			
92826	13	0.01					
92827		0.02					
92828	41	0.04					
92829	81	0.08					
92830	52	0.05					
92831					3975	3.98	
92832	198	0.20	101	0.10			
92833	122	0.12					

Certified by



Assaying - Consulting - Representation

## Geochemical Analysis Certificate

9W-3758-RG1

Company:

QUEENSTON MINING INC.

Date: JAN-04-10

Project:

ÃΚ

Attn: AK

**WAYNE BENHAM** 

We hereby certify the following Geochemical Analysis of 7 1/2 CORE samples submitted DEC-14-09 by .

Sample Number	Au ppb	Au Check ppb	Au g/tonne	Au Check g/tonne	
92834	514	511	0.51	0.51	
92835	38	_	0.04	_	
92836	45	-	0.05	-	
92837	74	-	0.07	-	
92838	5		0.01		
92839	617	624	0.62	0.62	
92840	15	_	0.02	-	

Certified by Deis Chity



Assaying - Consulting - Representation

Page 1 of 3

## Geochemical Analysis Certificate

9W-3804-RG1

Company:

QUEENSTON MINING INC.

Date: JAN-05-10

Project:

Attn:

WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 58 1/2 CORE samples submitted DEC-17-09 by.

Number         ppb         ppb         g/tonne         g/tonne           92841         84         -         0.08         -           92842         324         -         0.32         -           92843         87         -         0.09         -           92844         1131         -         1.13         1.06           92845         197         -         0.20         -           92846         926         -         0.93         -           92848         135         -         0.14         -           92849         926         -         0.93         -           92850         1097         -         0.10         0.96           BLANK         NIL         -         NIL         -           STD OxH66         1243         -         1.24         -           92851         358         -         0.36         -           92852         21         -         0.02         -           92853         271         -         0.27         -           92854         98         -         0.10         -           92859         27	Sample	Au	Au Check	Au	Au Check	
92842 324 - 0.32 - 92843 87 - 0.09 - 92844 1131 - 1.13 1.06 92845 197 - 0.20 - 92846 926 - 0.93 - 92847 789 - 0.79 - 92848 135 - 0.14 - 92850 1097 - 1.10 0.96 92850 1097 - 1.10 0.96 92851 358 - 0.36 - 92851 358 - 0.36 - 92852 21 - 0.02 - 92853 271 - 0.27 - 92853 271 - 0.27 - 92855 857 - 0.86 1.03 92855 857 - 0.86 1.03 92856 926 - 0.93 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92859 98 - 0.10 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 0.03 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92860 926 - 92	Number	ppb	ppb	g/tonne	g/tonne	
92842 324 - 0.32 - 92843 87 - 0.09 - 92844 1131 - 1.13 1.06 92845 197 - 0.20 - 92846 926 - 0.93 - 92848 135 - 0.14 - 92849 926 - 0.93 - 92848 135 - 0.14 - 92850 1097 - 1.10 0.96 92850 1097 - 1.10 0.96 92851 358 - 0.36 - 92851 358 - 0.36 - 92852 21 - 0.02 - 92853 271 - 0.02 - 92853 271 - 0.02 - 92855 857 - 0.86 1.03 92855 857 - 0.86 1.03 92855 9285 926 - 0.93 - 92856 926 - 0.93 - 92856 926 - 0.93 - 92856 926 - 0.93 - 92856 926 - 0.06 6 1.03 92857 305 - 0.31 - 92858 98 - 0.10 - 92859 92 7 - 0.03 - 92859 92 7 - 0.03 - 92859 92 7 - 0.03 - 92850 92860 26 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 - 0.03 - 92860 9286 9286 9286 9286 9286 9286 9286 9286	92841		-	0.08		
92844         1131         -         1.13         1.06           92845         197         -         0.20         -           92846         926         -         0.93         -           92847         789         -         0.79         -           92848         135         -         0.14         -           92849         926         -         0.93         -           92850         1097         -         1.10         0.96           BLANK         NIL         -         NIL         -           STD OXH66         1243         -         1.24         -           92851         358         -         0.36         -           92852         21         -         0.02         -           92853         271         -         0.27         -           92854         98         -         0.10         -           92855         857         -         0.86         1.03           92857         305         -         0.31         -           92859         27         -         0.03         -           92860         26	92842	324	_		-	
92845         197         -         0.20         -           92846         926         -         0.93         -           92848         135         -         0.14         -           92849         926         -         0.93         -           92850         1097         -         1.10         0.96           BLANK         NIL         -         NIL         -           STD OXH66         1243         -         1.24         -           92851         358         -         0.36         -           92852         21         -         0.02         -           92853         271         -         0.27         -           92854         98         -         0.10         -           92855         857         -         0.86         1.03           92856         926         -         0.93         -           92857         305         -         0.31         -           92859         27         -         0.03         -           92860         26         -         0.03         -           92861         55         - <td>92843</td> <td>87</td> <td>_</td> <td>0.09</td> <td>-</td> <td></td>	92843	87	_	0.09	-	
92846         926         -         0.93         -           92847         789         -         0.79         -           92848         135         -         0.14         -           92849         926         -         0.93         -           92850         1097         -         1.10         0.96           BLANK         NIL         -         NIL         -           STD OXH66         1243         -         1.24         -           92851         358         -         0.36         -           92852         21         -         0.02         -           92853         271         -         0.27         -           92854         98         -         0.10         -           92855         857         -         0.86         1.03           92856         926         -         0.93         -           92857         305         -         0.31         -           92859         27         -         0.03         -           92860         26         -         0.03         -           92861         55         - <td>92844</td> <td>1131</td> <td>-</td> <td>1.13</td> <td>1.06</td> <td></td>	92844	1131	-	1.13	1.06	
92847       789       -       0.79       -         92848       135       -       0.14       -         92849       926       -       0.93       -         92850       1097       -       1.10       0.96         BLANK       NIL       -       NIL       -         STD OxH66       1243       -       1.24       -         92851       358       -       0.36       -         92852       21       -       0.02       -         92853       271       -       0.27       -         92854       98       -       0.10       -         92855       857       -       0.86       1.03         92856       926       -       0.93       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       - <td>92845</td> <td>197</td> <td>_</td> <td>0.20</td> <td>-</td> <td></td>	92845	197	_	0.20	-	
92848       135       -       0.14       -         92849       926       -       0.93       -         92850       1097       -       1.10       0.96         BLANK       NIL       -       NIL       -         STD OXH66       1243       -       1.24       -         92851       358       -       0.36       -         92852       21       -       0.02       -         92853       271       -       0.27       -         92854       98       -       0.10       -         92855       857       -       0.86       1.03         92856       926       -       0.93       -         92859       98       -       0.10       -         92859       27       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -	92846	926	-	0.93	-	
92849       926       -       0.93       -         92850       1097       -       1.10       0.96         BLANK       NIL       -       NIL       -         STD 0xH66       1243       -       1.24       -         92851       358       -       0.36       -         92852       21       -       0.02       -         92853       271       -       0.27       -         92854       98       -       0.10       -         92855       857       -       0.86       1.03         92856       926       -       0.93       -         92857       305       -       0.31       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.01       -         92865       27       -       0.03       -	92847	789	-	0.79	-	
92850         1097         -         1.10         0.96           BLANK         NIL         -         NIL         -           STD OxH66         1243         -         1.24         -           92851         358         -         0.36         -           92852         21         -         0.02         -           92853         271         -         0.27         -           92854         98         -         0.10         -           92855         857         -         0.86         1.03           92856         926         -         0.93         -           92857         305         -         0.31         -           92858         98         -         0.10         -           92859         27         -         0.03         -           92861         55         -         0.06         -           92862         7         -         0.01         -           92863         31         -         0.03         -           92864         36         -         0.04         -           92865         27         -	92848	135	_	0.14	_	
BLANK         NIL         -         NIL         -           STD OXH66         1243         -         1.24         -           92851         358         -         0.36         -           92852         21         -         0.02         -           92853         271         -         0.27         -           92854         98         -         0.10         -           92855         857         -         0.86         1.03           92856         926         -         0.93         -           92857         305         -         0.31         -           92858         98         -         0.10         -           92859         27         -         0.03         -           92860         26         -         0.03         -           92861         55         -         0.06         -           92862         7         -         0.01         -           92863         31         -         0.03         -           92864         36         -         0.04         -           92865         27         -	92849	926	-	0.93	-	
STD OxH66       1243       -       1.24       -         92851       358       -       0.36       -         92852       21       -       0.02       -         92853       271       -       0.27       -         92854       98       -       0.10       -         92855       857       -       0.86       1.03         92856       926       -       0.93       -         92857       305       -       0.31       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92866       14       -       0.01       -      <	92850	1097	_	1.10	0.96	
92851       358       -       0.36       -         92852       21       -       0.02       -         92853       271       -       0.27       -         92854       98       -       0.10       -         92855       857       -       0.86       1.03         92856       926       -       0.93       -         92857       305       -       0.31       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92866       14       -       0.01       -         92867       19       0.02       -	BLANK	NIL	-	NIL	<del></del>	
92852       21       -       0.02       -         92853       271       -       0.27       -         92854       98       -       0.10       -         92855       857       -       0.86       1.03         92856       926       -       0.93       -         92857       305       -       0.31       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	STD OxH66	1243	-	1.24	-	
92853       271       -       0.27       -         92854       98       -       0.10       -         92855       857       -       0.86       1.03         92856       926       -       0.93       -         92857       305       -       0.31       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92851	358	-	0.36	-	
92854       98       -       0.10       -         92855       857       -       0.86       1.03         92856       926       -       0.93       -         92857       305       -       0.31       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92852	21	-	0.02	-	
92855       857       -       0.86       1.03         92856       926       -       0.93       -         92857       305       -       0.31       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92853	271	_	0.27	-	
92856       926       -       0.93       -         92857       305       -       0.31       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92854	98	_	0.10	_	
92857       305       -       0.31       -         92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92855	857	-	0.86	1.03	
92858       98       -       0.10       -         92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92856	926	-	0.93	-	
92859       27       -       0.03       -         92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92857	305	-	0.31	-	
92860       26       -       0.03       -         92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92858	98	-	0.10	_	
92861       55       -       0.06       -         92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92859	27		0.03		
92862       7       -       0.01       -         92863       31       -       0.03       -         92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92860	26	-	0.03	•••	
92863     31     -     0.03     -       92864     36     -     0.04     -       92865     27     -     0.03     -       92866     14     -     0.01     -       92867     19     -     0.02     -	92861	55	-	0.06	_	
92864       36       -       0.04       -         92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92862	7	_	0.01	_	
92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92863	31	_	0.03	-	
92865       27       -       0.03       -         92866       14       -       0.01       -         92867       19       -       0.02       -	92864	36	-	0.04		
92867 19 - 0.02 -	92865	27	-		_	
	92866	14	-	0.01	_	
92868 - 0.03 -	92867	19	-	0.02	-	
	92868	34	-	0.03	-	

Certified by Denis Clath



Assaying - Consulting - Representation

Page 2 of 3

## Geochemical Analysis Certificate

9W-3804-RG1

Company:

QUEENSTON MINING INC.

Date: JAN-05-10

Project: Attn:

**WAYNE BENHAM** 

We hereby certify the following Geochemical Analysis of 58 1/2 CORE samples submitted DEC-17-09 by.

Sample	Au	Au Check	Au	Au Check	
Number	ppb	ppb	g/tonne	g/tonne	
BLANK	NIL	-	NIL	-	
STD OxH66	1251		1.25	-	
92869	NIL	-	NIL	-	
92870	36	~~	0.04	-	
92871	24	41	0.02	0.04	
92872	36	_	0.04		
92873	14	-	0.01	-	
92874	12	_	0.01	-	
92875	NIL	_	NIL	-	
92876	17	-	0.02		
92877	29	-	0.03	_	
92878	29	_	0.03	~	
92879	41	_	0.04	-	
92880	21	-	0.02	-	
92881	86	34	0.09	0.03	
92882	15	-	0.02		
92883	33	_	0.03	_	
92884	24	_	0.02	_	
92885	55	-	0.06	-	
92886	14		0.01		
92887	15	-	0.02	-	
92888	17	_	0.02	_	
BLANK	NIL	-	NIL	-	
STD OxH66	1275	-	1.28	-	
92889	63	<b>_</b> _	0.06		
92890	2331	-	2.33	2.40	
92891	19	-	0.02		
92892	471	446	0.47	0.45	
92893	242	_	0.24	_	
92894	33		0.03		

Certified by Deinis Chi



Assaying - Consulting - Representation

Page 3 of 3

## Geochemical Analysis Certificate

9W-3804-RG1

Company:

Project:

QUEENSTON MINING INC.

Date: JAN-05-10

Attn: WAYNE BENHAM

We hereby certify the following Geochemical Analysis of 58 1/2 CORE samples submitted DEC-17-09 by.

Sample Number	Au ppb	Au Check ppb	Au g/tonne	Au Check g/tonne	 
92895	17	_	0.02	-	 
92896	113	_	0.11	-	
92897	81	~	0.08	-	
92898	307	-	0.31	-	
		•			

Dunis Cluts





Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Certificate Number: 10-184

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

27-Jan-10

Attn:

Wayne Benham

We hereby certify the following Assay of 12 core samples submitted 22-Jan-10 by Wayne Benham

	Au	Au Chk	Au	Au Chk
Sample	FA-AAS	FA-AAS	FA-AAS	FA-AAS
Number	ppb	ppb	g/Mt	g/Mt
92899	66		0.07	0.06
92900	46		0.05	
19868	47		0.05	
19869	51		0.05	
19870	49		0.05	
19871	66	71	0.07	0.07
19872	35		0.04	
19873	72		0.07	
19874	36		0.04	
19875	< 2	22	< 0.01	0.02
Blank Value	< 2		< 0.01	
0xH66	1326		1.33	
19876	20		0.02	
19877	15		0.01	

Certified by



Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Certificate Number: 10-356

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

10-Feb-10

Attn:

Wayne Benham

We hereby certify the following Assay of 20 core samples submitted 08-Feb-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
19878	14		0.01				
19879	84		0.08				
19880	17		0.02				
19881	29		0.03				
19882	11		0.01				
19883	10		< 0.01				
19884	60		0.06				
19885	264		0.26				
19886	30		0.03				
19887	28	20	0.03	0.02			
Blank Value	6		< 0.01				
OxF65	779		0.78				
19888	30		0.03				
19889	11		0.01				
19890	12		0.01				
19891	11		0.01				
19892	35		0.03				
19893	8		< 0.01				
19894	7		< 0.01				
19895	8		< 0.01				
19896	149	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	0.15				
19897	17 - — — — -	19	0.02	0.02			

Certified by



Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Certificate Number: 10-555

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

10-Mar-10

Attn:

Wayne Benham

We hereby certify the following Assay of 7 core samples submitted 25-Feb-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
19898	18		0.02					
19899	16		0.02					
19900	19		0.02					
19901	16		0.02					
19902	99	86	0.10	0.09				
19903	30		0.03					
19904	17	19	0.02	0.02				

Certified by



Assaying - Consulting - Representation

Page 1 of 1

Assay Certificate

Certificate Number: 10-634

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

10-Mar-10

Attn:

Wayne Benham

We hereby certify the following Assay of 5 core samples submitted 05-Mar-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
19905	6		< 0.01				
19906	< 2		< 0.01				
19907	2		< 0.01				
19908	< 2		< 0.01				
19909 — — — — — — — — — — —	3		< 0.01		 		

Certified by



Assaying - Consulting - Representation

Page 1 of 2

## Assay Certificate

Cortificate

Certificate Number: 10-837

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

30-Mar-10

Attn:

Wayne Benham

We hereby certify the following Assay of 41 core samples submitted 22-Mar-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
19910	58		0.06					
19911	50	59	0.05	0.06				
19912	996		1.00					1.37
19913	365		0.36					
19914	216		0.22					
19915	21		0.02					
19916	213		0.21					
19917	436		0.44					
19918	114		0.11					
19919	221	209	0.22	0.21				
Blank Value	< 2		< 0.01				· <del></del>	
OxF65	787		0.79					
19920	121		0.12					
19921	103		0.10					
19922	249		0.25					
19923	360		0.36					
19924	378		0.38					
19925	171		0.17					
19926	59		0.06					
19927	24		0.02					
19928	69		0.07					
19929	44		0.04					
19930	91		0.09					
19931	763	863	0.76	0.86				
19932	157		0.16					

Certified by



Assaying - Consulting - Representation

Page 2 of 2

#### Assay Certificate

Certificate Number: 10-837

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

30-Mar-10

Attn:

Wayne Benham

We hereby certify the following Assay of 41 core samples submitted 22-Mar-10 by Wayne Benham

Sample	Au FA-AAS	Au Chk FA-AAS	Au FA-AAS	Au Chk FA-AAS	Au FA-GRAV	Au Chk FA-GRAV	Au FA-GRAV	Au Chk FA-GRAV
Number	ppb	ppb	g/Mt 	g/Mt	ppb	ppb	g/Mt	g/Mt
19933	38		0.04					
19934	18		0.02					
19935	11		0.01					
19936	13		0.01					
19937	45		0.04					
Blank Value	2		< 0.01					
OxF65	769		0.77					
19938	39		0.04					
19939	33	31	0.03	0.03				
19940	17		0.02					
19941	18		0.02					
19942	41		0.04					
19943	28		0.03					
19944	38		0.04					
19945	94		0.09					
19946	194		0.19					
19947	435		0.44					
19948	2133		2.13					2.19
19949	255	215	0.25	0.22				
19950	101		0.10					

Certified by



Assaying - Consulting - Representation

Page 1 of 1

## Assay Certificate

Certificate Number: 10-1004

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

15-Apr-10

Attn:

Wayne Benham

We hereby certify the following Assay of 14 core samples submitted 01-Apr-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt		Au FA-GRAV ppb	Au Chk FA-GRAV ppb	FA-GRAV	Au Chk FA-GRAV g/Mt
19951	125	106	0.12	0.11				
19952	40		0.04					
19953	34		0.03					
19954	9		< 0.01					
19955	33	31	0.03	0.03				
19956	7		< 0.01					
19957	7		< 0.01					
19958	7		< 0.01					
19959	15		0.02					
19960	3	15	< 0.01	0.01				
Blank Value	3		< 0.01					
OxF65	854		0.85					
19961	9		< 0.01					
19962	2		< 0.01					
19963	13		0.01					
19964	4		< 0.01					

ertified by



Assaying - Consulting - Representation

Page 1 of 3

## Assay Certificate

Certificate Number: 10-1206

Company:

Queenston Mining Inc.

Project:

AK

Report Date:

10-May-10

Attn:

Wayne Benham

We hereby certify the following Assay of 70 core samples submitted 16-Apr-10 by Wayne Benham

Sample Number	Au FA-AAS ppb	Au Chk FA-AAS ppb	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt	Au FA-GRAV ppb	Au Chk FA-GRAV ppb	Au FA-GRAV g/Mt	Au Chk FA-GRAV g/Mt
19965	- <del></del> <del></del> 6		< 0.01					
19966	6		< 0.01					
19967	6		< 0.01					
19968	4		< 0.01					
19969	3		< 0.01	SEAS DOUBLE DOUBLE PRINTING	and their states and their			
19970	3		< 0.01					
19971	11		0.01					
19972	5		< 0.01					
19973	6		< 0.01		T.			
19974	8	5	< 0.01	< 0.01				
Blank Value	4		< 0.01					
OxF65	802		0.80					
19975	8		< 0.01					
19976	23		0.02					
19977	45		0.05					
19978	14		0.01					
19979	1229		1.23					0.99
19980	23		0.02					
19981	22		0.02					
19982	113		0.11					
19983	180		0.18					
19984	277	291	0.28	0.29				
19985					4533		4.53	4.09
19986	752		0.75					
19987	808		0.81					

Certified by

Denis Chartre

in chity



Assaying - Consulting - Representation

Page 2

## Assay Certificate

Certificate Number: 10-1206

Company:

Queenston Mining Inc.

Project:

AK

Autouston Minning Inc

Report Date:

10-May-10

Attn:

Wayne Benham

We hereby certify the following Assay of 70 core samples submitted 16-Apr-10 by Wayne Benham

	Au	Au Chk	Au	Au Chk	Au	Au Chk	Au	Au Chk
Sample	FA-AAS	FA-AAS	FA-AAS	FA-AAS	FA-GRAV	FA-GRAV	FA-GRAV	FA-GRAV
Number	ppb _	dqq	g/Mt	g/Mt 	ppb	ppb	g/Mt	g/Mt 
19988					1028		1.03	1.07
19989					1.04		1041	0.99
19990					1646		1.65	1.60
19991		,			2364		2.36	. 2.23
19992	50		0.05					
Blank Value	4		< 0.01					
OxF65	796		0.80					
19993	82		0.08					
19994	126	134	0.13	0.13				
19995	102		0.10					
19996	211		0.21			•		
19997	134		0.13					

Certified by

# DRILL REPORT ON DRILL HOLES AK0509-10 & AK09-05/06/07 And Wedges AMALGAMATED KIRKLAND PROPERTY KIRKLAND LAKE, ONTARIO LARDER LAKE MINING DIVISION NTS 42-A-01

**APPENDIX III** 

**DRILL PLAN and CROSS SECTIONS** 

# DRILL REPORT ON DRILL HOLES AK0509-10 & AK09-05/06/07 And Wedges AMALGAMATED KIRKLAND PROPERTY KIRKLAND LAKE, ONTARIO LARDER LAKE MINING DIVISION NTS 42-A-01

#### **APPENDIX V**

**SWASTIKA LABORATORY LTD. PROCEDURES** 

# Swastika Laboratories Ltd. Sample Preparation & Assay Procedures

Department: Fire Assay

Product/Process: Sample & flux weighing and fire assay furnace procedures

Document Owner: Swastika Laboratories Ltd.

Version	Date	Author	Change Description
FA-1	3.24.08	D. Chartre	

#### Purpose:

To produce precious metal beads from prepared drill core and chip samples for analysis.

#### Materials:

Pulverized samples of 300 - 400g, 90 - 95% of which passes through 100 mesh screen. Pre-mixed fire assay flux with silver sulphate (inquart) Flour, silica and borax 30g crucibles Size 6A cupels

#### Procedure:

- 1. A one (1) assay ton sample is drawn from the envelope containing pulverized material using a clean metal spatula, weighed and placed into 30g crucible containing flux. Crucibles are marked with the customer name, sample number and certificate number.
- 2. Depending on rock type, varying amounts of flour, silica and borax may be added to ensure a proper fusion and a smooth pour from the crucible
- 3. The crucible containing the sample, flux and other necessary ingredients are thoroughly mixed in a tumbler prior to fusion in the furnace oven.
- 4. The crucible is placed in the fusion oven and heated until a proper fusion (reduction) is completed, after which it is removed and the contents poured into a metal mold for cooling/solidification.
- 5. The solidified material from the mold is hammered to remove the slag and the lead button is placed in a cupel.
- 6. The cupel containing the lead button is loaded into a furnace until all the lead has been absorbed into the cupel (oxidation)

7. The cupel with the precious metal button is removed from the oven and allowed to cool before being placed onto a tray for gravimetric or AA analysis.

#### Precautions:

- Assays are repeated when there is an improper fusion or the lead button is undersized/oversized
- 10% of samples are re-assayed as part of our internal quality control procedures
- In the case of samples with a high percentage of sulphides or those with a complex matrix, the assayer may elect to re-assay the sample on a reduced assay sample size. This again is based on the assayer's experience and knowledge.
- Copper is added to certain fusions to ensure sample order is maintained

## Swastika Laboratories Ltd. Gold Assay Procedures

**Department: Wet Chemistry & Instrument Laboratories** 

Product/Process: Gold assays

Document Owner: Swastika Laboratories Ltd.

Version :	Date	Author!	Change Description
GA-1	3.24.08	D. Chartre	
		P. Chartre	

#### Purpose:

Assay of precious metal beads from the cupel furnace for gold content using atomic absorption spectrometry or gravimetric techniques.

#### **Applications:**

Drill core and rock samples said to contain gold and other precious metals

#### Materials:

Porcelain cups
Watch glasses
Aqua regia
Nitric acid
Distilled water
Element standards and blanks

#### Procedure:

The gold bead is carefully removed from the cupel and placed in a porcelain cup containing parting acid (7:1 concentration of nitric acid and distilled water). The contents are heated in a hot water bath and the solution is thereafter decanted. The bead is dried in a hot water bath and a visual assessment is made to proceed with either a gravimetric technique or an atomic absorption spectrometry technique.

#### **Gravimetric Technique**

- Gold bead is carefully removed from the porcelain cup and weighed using a micro balance.
   The gold calculation is based on a sample amount of 29.166g

#### **Atomic Absorption Spectrometry Technique**

- The gold bead is dissolved in 5ml of aqua regia (40% concentration) in a porcelain cup and then allowed to cool to room temperature.
- The solution is analyzed by an atomic absorption spectrometer and the readings are used to determine the gold content results.

#### Precautions:

• 10% of samples are re-assayed as part of our internal quality control procedures

## Swastika Laboratories Ltd. Pulp & Metallic Assay Procedures

**Department:** Sample Preparation

Product/Process: Pulp and metallic assays for gold

Document Owner: Swastika Laboratories Ltd.

Version	Date	Author	Change Description
PM-1	3.24.08	D. Chartre	
		P. Chartre	

#### Purpose:

Sample preparation and assay procedures to overcome sampling and pulverizing difficulties caused by coarse particles of gold.

This procedure covers additional sample preparation measures required to separate the coarse particles in the pulp sample, subsequent to crushing and pulverizing. These measures result in the production of 2 pulp fractions, + 100 mesh materials and – 100 mesh materials, which are individually assayed for gold. The assay results for the two fractions are incorporated in the final calculation

Crushing, splitting, pulverizing, fire assay, gravimetric and atomic absorption procedures are referred to in their specific versions.

#### **Applications:**

Samples that are known to or are suspected of containing coarse gold.

#### **Materials & Equipment:**

Mechanical sieve shaker 100 mesh screen and pan

#### Procedure:

The entire sample is crushed and pulverized as much as possible.

The pulp sample is placed onto a 100 mesh screen and mechanically shaken until it is visually apparent that all fine material has passed through the screen.

The + 100 mesh material on the screen is removed and placed in one envelope and the - 100 mesh material is placed in another envelope. Each fraction is separately assayed.

#### Precautions:

- All material remaining on the 100 mesh screen, including particles trapped in the screen, must be removed and placed in the envelope for that fraction
- Mechanical shaking times may have to be extended until any form of clumping is eliminated.

### Swastika Laboratories Ltd. Sample Receiving Procedures

Department:

Laboratory Receiving Area/ Bus Depot

Product/Process: Inspection of Sample Packaging & Corresponding Customer

Shipping/Order Documentation

Document Owner: Swastika Laboratories Ltd.

Version Date Author Change Description				
SR-1	8.22.08	D. Chartre		

#### Purpose:

To check the condition and verify the number of customer sample containers on receipt.

#### Materials:

Various types of customer sample containers, packaging, container seals and analysis instructions.

#### **Procedures:**

Upon receiving a sample shipment the Bill of Lading / Manifest is checked for:

- 1. Count of bags/pails/boxes
- 2. Condition of packaging
- 3. Integrity of customer seals
- 4. Customer's analysis instructions/order

Any damage, evidence of tampering, and/or missing sample containers is noted on the Bill of Lading/Manifest and is immediately reported to the office. The customer is then notified by phone, email or fax. Samples are not processed until further instructions are received from the customer.

Samples will not be processed until a written order/analysis instruction is received from the customer.

### Swastika Laboratories Ltd. Sample Preparation & Assay Procedures

**Department: Sample Preparation** 

Product/Process: Sample crushing, splitting and pulverizing

**Document Owner:** Swastika Laboratories Ltd.

Version	Date	Author	Change Description
SP-1	3.24.08	D. Chartre	
	5.29.08	D. Chartre	Recording of screen results
	6.04.08	D. Chartre	Reduction in minimum percentage of crushed material passing 10 mesh screen

#### Purpose:

### To produce pulp samples from customer drill core and chip samples meeting the following criteria:

- 90 95% of pulverized material passes through 100 mesh screen
- Final pulp sample weight of 300-400g

#### Applications:

Customer sample sizes up to 5kg, of varying material hardness and moisture content

#### Procedure:

- Depending on the moisture content of the customer sample, the entire sample is either air dried or oven dried in a clean metal pan prior to crushing.
- The entire dried sample is passed through a jaw crusher to arrive at a prepared sample, 80% or more of which is passing through a 10 mesh screen. The crushed material is split successively in a riffle divider to arrive at a subsample of 300 – 400g. The subsample is placed in a labeled manila envelope for pulverizing.
- The subsample is pulverized in a ring & puck pulverizer for sufficient time enabling 90 95% of the material to pass through a 100 mesh screen. Methyl hydrate is added to the sample prior to pulverizing to prevent clumping.

 The pulverized material from the bowl, ring and puck is carefully brushed onto a rubber mat from which it is poured back into the labeled manila envelope.

#### Precautions:

- The crushers are cleaned with compressed air after each sample pass. Barren material is crushed subsequent to each customer run to minimize sample contamination.
- Compressed air is used to clean the riffle divider after the final split of each sample.
- Compressed air is used to clean the bowl, ring, puck and rubber mat after each sample is pulverized. Silica sand is pulverized at the completion of each customer order or when there is a sample with apparent visible gold.
- A screen test is performed on a crushed sample and a pulverized sample each day, or more
  frequently when material hardness is in question. The results are recorded in a screen test book.
  Jaw plate clearance or pulverizing time is adjusted if necessary to meet prescribed particle size
  limits.





