STILLWATER CANADA INC. - DIAMOND DRILL CORE LOG DDH: FD-13-07 NTS: UTM 42 D / 16 Northing 5409222 Lease/Claim: 1240552 (Nad27) Easting 547641.3 Elevation (m): 389.7 Dip at Collar: -44.6 Property: Zone: Coldwell Complex Four Dams South 25-May-13 Date start: Azimuth: 28.91 Date finish: 26-May-13 Total Depth: 75 Contractor: Chibougamau Diamond Drilling Core Size: NQ Logged by: Yonggang Feng Remarks: Core stored in Stillwater Canada Inc. warehouse, Marathon, Ontario Assistant: Julien Meric

DIAMOND DRILL CORE LOG

Reflex EZ Shot- Diamond Drillhole Survey

Depth	Dip	Azimuth
Casing	-44.6	28.91

	GEOLO	DGY		Mineralization SAMPLE INTERVAL		LE INTERVAL WIDTH Au Pt Pd Rh TPGM Ag Cu									Cu Ni P S C					Job			
From	То	Maj Rock	່ອັດ ແມ່ນ ເອັ	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	10.42	OB - Overbur	len			N504001		10.4	12	1.6	0.005	0.009	0.005			1		3690	188	>10000	1.27		TB13097085
						N504002		12	14	2.0	0.006	0.014	0.003			1.2		3820	169	9470	1.38		TB13097085
10.42	13.04	2f - Medium te	coarse grained oxide augite melatroctolite	0.5% to 1% disse	minated sulphides	N504003		14	16	2.0	0.005	< 0.005	0.001			0.6		2830	110	8810	1.29		TB13097085
			moderately to strongly altered rock is dominated by pyroxene, magnetite, apatite and		10.42-10.9 m. overall, pyrrhotite and chalcpyrite below 1%	N504004		16	18	2.0	0.003	< 0.005	0.001			0.7		3010	125	9830	1.41		TB13097085
			plagioclase with minor olivine and biotite, strongly magnetic, biotite as alteration mineral likely		Po:Cpy	N504005		18	20	2.0	0.003	< 0.005	0.001			0.5		2460	95	7920	1.14		TB13097085
			replaces pyroxene. >20% Mag.			N504006		20	22	2.0	0.004	0.005	0.002			0.7		2910	115	>10000	1.3		TB13097085
			2b - Coarse grained olivine gabbro with modal layering	3-5% disseminate	d sulphides	N504007		22	24	2.0	0.005	< 0.005	0.002			0.8		3250	121	8980	1.43		TB13097085
			10.9-11.06m. graditional with the above unit. Strongly magnetic. Moderately altered. Slightly		10.9-11.06m. 2.5% po, 1%Cpy (Po:Cpy=2.5:1). Cpy commonly	N504008		24	26	2.0	0.006	< 0.005	0.002			0.8		3700	121	9320	1.65		TB13097085
			layered rock mainly composed of medium to coarse grained pyroxene and plagioclase with lesser		rimms Po.	N504009		26	28	2.0	0.002	< 0.005	0.001			0.3		1520	51	8690	0.84		TB13097085
			biotite and chlorite.	0.5% to 1% disse	minated sulphides	N504010		28	30	2.0	0.004	< 0.005	0.002			0.7		3410	93	8340	1.9		TB13097085
			Pyroxene is partially replaced by biotite and chlorite.		11.06-13.04 mainly Po, 0.5- 1 % Po.	N504011		30	32	2.0	0.002	< 0.005	0.001			0.5		2030	54	9290	1.3		TB13097085
13.04	18.95	2b - Coarse g	ained olivine gabbro with modal layering	3-5% disseminate	d sulphides	N504012		32	34	2.0	0.004	0.005	0.002			0.6		2750	85	8520	1.68		TB13097085
			same as the unit from 10.90 to 11.06 m. Gradational contact with the above 2f. Moderately altered.		13.04-18.95, 2.5:1, po:Cpy	N504013		34	36	2.0	0.001	< 0.005	0.001			<0.2		93	1	9410	0.3		TB13097085
			The layering is defined by variations in OI and Mag contents.	3-5% disseminate	d sulphides	N504014		36	38	2.0	0.012	< 0.005	0.001			<0.2		64	1	9820	0.3		TB13097085
					15.2-15.34 3.5:1 po: Cpy relatively coarse grained.	N504015	mpg1				0.279	0.97	3.4			3.2		7160	386	1320	1.05		TB13097085
					Chalcpyrite commonly mantles pyrrhotite.	N504016		38	40	2.0	0.001	< 0.005	0.001			<0.2		79	<1	>10000	0.31		TB13097085
				3-5% disseminate	d sulphides	N504017		40	42	2.0	0.001	< 0.005	0.003			<0.2		66	1	8150	0.23		TB13097085
					17.1-17.3 3.5:1 po:Cpy Sulfide-rich segments are moderately	N504018		42	44	2.0	0.001	0.005	0.01			<0.2		27	3	1930	0.04		TB13097085
					to strongly altered and chlorite is the common mineral,	N504019		44	46	2.0	0.001	< 0.005	0.003			<0.2		216	8	7430	0.32		TB13097085
					possibly replacing pyroxene.	N504020		46	48	2.0	0.001	< 0.005	< 0.001			<0.2		136	4	9500	0.36		TB13097085
18.95	19.53	5b - Augite sy	enite	Trace to 0.5% dis	seminated sulphides	N504021		48	50	2.0	< 0.001	< 0.005	< 0.001			<0.2		95	1	9060	0.26		TB13097085
			rock type not sure. Augite syenite? Apparently sharp contact with the above unit. Overall dark		18.95-19.53m. sulfides not obviously visible	K004151		50	59	9.0											0.21	0.05	TB13118918
			in color. Rock texture is choatic. Strongly magnetic and altered. Mainly composed of K-spar,			K004152		59	68	9.0											0.22	0.05	TB13118918
			apatite, chlorite, and carbonate stringers. K-spar is coarse grained and partially replaced by			K004153		68	75	7.0											0.23	0.06	TB13118918
			chlorite. Apatite is medium grained and disseminated.																				
19.53	41.21	2b - Coarse g	ained olivine gabbro with modal layering	3-5% disseminate	d sulphides																		
			sharp contact with the above unit. Overall same as the unit from 13.04 to 18.95 m.		19.53-33.71m 4:1.5 po:Cpy																		
			Moderately altered. Locally medium altered (chloritisation-epidotisation) to altered(chloritisation-	Trace to 0.5% dis	seminated sulphides																		
			epidotisation-pinkitisation). The rock becomes fine grained and strongly altered 20.42 - 20.79 m.		33.71-41.21 m. Sulfides in trace amounts.																		
			40.22-41.21 alternation of 2b (60%) and 2f (40%) with magnetite cumulate in 2f																				
			strong pinkitisation in 2b(40.29-40.87 m)																				
41.21	44.63	2g - Gabbroic	anorthosite																				
			Abrupt into this unit. The rock is dominated by PI with mafic minerals (Cpx, Mag) in pathces.																				
			2b - Coarse grained olivine gabbro with modal layering																				
			43.88- 43.93 m Abrupt into this unit from 2g. Same as previous 2b.																				
44.63	75.00	2b - Coarse g	ained olivine gabbro with modal layering	Local blebs to 1-2	% sulphides																		
			slightly layered rock shows variation in alteration extent and mafic and sulfide contents.		44.63-47 begin at the end of anorthosite, and medium to																		
			Overall similar to 2b unit from 19.53 to 41.21 m.		coarse grain sulfide in fractured zone, predominantly Po																		
				Trace to 0.5% dis	seminated sulphides																		
			45-45.67m. The rock is slightly altered. Chl is the predominant alteration mineral.		47-74.40 1 :1 po:Cpy Low sulfide content.	1	1				1												
			45.67-46.6m.The rock becomes strongly altered and shows choatic textures in a		Sulfides are predominantely chalcpyrite.	1	1				1												
			fracture zone. Alteration minerals include biotite, chlorite and possibly serpentine (?).		Sulfides are not obviously visible.	1	1				1												
			46.6- 55.84 m. The rock is the same as the unit of 45 - 45.67 m.	Trace to 0.5% dis	seminated sulphides	1	1				1												
			55.84-74.4 m. The rock becomes dark and relatively mafic. Greenish euhedral to subhedral		74.40-74.88 not obviously visible and grain in a	1	1				1												
			mineral is likely altred olivine that is replaced by sericite (?).		fracture at the end of the hole	1	1				1												
			59.35 - 59.39 m. 4 cm wide plagioclase - rich gabbro within this part.			1	1				1												
1			74.4-75m.layered coarse grained rock consists of plagioclase-rich and mafic mineral-rich layers.			1	1				1												
			Moderately altered. Low sulfide content. Biotite is the common alteration mineral and replaces			1	1				1												
L			igneous mafic minerals (pyroxene?).			1	1				1												

rom To To EQH EOH - End of Hole	Mineraliz	Comments									TPGM		Cu						Job
5.00 EOH - End of Hole			NO.	QC	FROM	то		ppm p	pm ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
																			I
																			I
																			I
																			I
																			I
																			I
																			I
			÷																I
																			I
	_		ł																I
			ţ																I
			-																I
																			I
			-																I
																			I
			+																I
																			I
																			I
			-																I
			-																I
			-																I
			-																I
																			I
			-																I
																			I
																			I
			-																I
			+																I
			-																I
																			I
			-																I
			-																I
			ł																I
			Į																I
			ł																I
			Į																I
			ł																I
			1																I
			ł																I
			I																I

NTS:		42 D / 16	
UTM	Northing	5409188	
(Nad27)	Easting	547626.1	
Elevation	n (m):	396.5	
Dip at Co	ollar:	-59.28	
Azimuth:		25.45	
Total Dep	oth:	75	
Core Size	e:	NQ	
Remarks	:	Core store	d in Stillwater Canada Inc. warehouse, Marathon, Ontario

DDH:	FD-13-08
Lease/Claim:	1240552
Property:	Coldwell complex
Zone:	Four Dams South
Date start:	26-May-13
Date finish:	27-May-13
Contractor:	Chibougamau Diamond Drilling
Logged by:	Renata Smoke (0-44.4m), Julien (44.4-EOH)
Assistant:	

DIAMOND DRILL CORE LOG

Reflex EZ Shot- Diamond Drillhole Survey

Depth	Dip	Azimuth
Casing	-59.28	25.45

	.27 OB	3 - Overburde		Comments	Mineraliz	Comments	NO.																
0.00 2.2	.27 OB				Min		NU.	QC	FROM	то		ppm	ppm	ppm	ppm p	pm ppn	%	ppm	ppm	ppm	%	%	#
																				1			
2.27 33.	3.43 2b -	- Coarse grai	ned olivine ga				N504022		2.28	4	1.7	0.005	0.007	0.003		0.6		2060	114	>10000	0.57		TB13097084
2.27 33.	3.43 2b -	- Coarse grai	ned olivine ga				N504023		4	6	2.0	0.003	< 0.005	0.001		0.3		802	71	>10000	0.24		TB13097084
				abbro with modal layering (0.5% to 1% disse	ninated sulphides	N504024		6	8	2.0	0.004	< 0.005	0.001		0.5		1260	126	>10000	0.36		TB13097084
				Weakly layered with approximately 10% plag rich layers. Layers are 15 cm to 1m wide		6.75-9.21m 1% pyrrhotite, trace chalcopyrite	N504025		8	10	2.0	0.007	0.01	0.001		0.8		3100	176	9830	1.13		TB13097084
				Mafic layers contain up to 60% magnetite.	3-5% disseminate	d sulphides	N504026		10	12	2.0	0.009	0.013	0.004		1.4		5120	217	>10000	2.05		TB13097084
				biotite and chlorite veinlets (1-20mm wide) dispered throughout interval. Wider veins are associated		9.21-32.24m 5-8% pyrrhotite, trace chalcopryite	N504027		12	14	2.0	0.012	0.009	0.004		1.2		4720	197	>10000	1.92		TB13097084
				with an increase in chalcopyrite proportions (relative to pyrrhotite). Specific intervals noted below.	3-5% disseminate	d sulphides	N504028		14	16	2.0	0.01	0.012	0.004		1		4160	213	>10000	1.83		TB13097084
						19.3-21.06m 5% pyrrhotite, 1% chalcopyrite	N504029		16	18	2.0	0.01	0.009	0.004		1.2		4220	225	9440	1.78		TB13097084
				20.13-20.40m zone of intense epidote alteration in plag rich layer	2-3% disseminate	d sulphides	N504030	d	16	18	2.0	0.009	0.007	0.004		1.2		4200	219	>10000	1.72		TB13097084
				19.3-22.6m unaltered to intensely altered (chlorite biotite and talc), controlled by intermittant faulting		32.24-37.06m 3% pyrrhotite, trace chalcopyrite	N504031		18	20	2.0	0.011	0.008	0.005		1.1		4330	214	>10000	1.72		TB13097084
				20.47-20.6m fault gauge			N504032		20	22	2.0	0.01	0.008	0.003		1.1		3960	204	>10000	1.56		TB13097084
				21.67-22.03m fault gauge			N504033		22	24	2.0	0.006	0.005	0.006		0.7		2410	197	>10000	0.93		TB13097084
33.43 37.0	7.06 2f -	- Medium to c	oarse grained	d oxide augite melatroctolite	2-3% disseminate	d sulphides	N504034		24	26	2.0	0.011	< 0.005	0.007		1.2		4280	264	9400	1.57		TB13097084
				Contact between 2b and 2f (upper) is almost indistinguishable (gradational) and is marked by the		2% pyrrhotite, 1% chalcopyrite commonly intergranular with	N504035		26	28	2.0	0.009	< 0.005	0.006		1.1		3970	196	8020	1.64		TB13097084
				start of pegmatitic poikilitic cpx, with the plag content lowering further away from the contact and into		magnetite.	N504036		28	30	2.0	0.005	< 0.005	0.003		0.9		2840	134	6840	1.05		TB13097084
				this unit. This is a medium grained (overal) utlramafic unit with: 2-3% apatite (fine, euhedral),			N504037		30	32	2.0	0.01	< 0.005	0.007		1		4090	206	9290	1.68		TB13097084
				40% magnetite, 20% olivine,5-10% plag, 5% biotite, 20% cpx (pegmatitic, poikilitic)			N504038		32	34	2.0	0.006	0.005	0.004		0.4		1525	134	>10000	0.68		TB13097084
37.06 38.8	3.82 3d -	- Very coarse	grained to pe	egmatitic, ophitic gabbro	Local blebs to 2-4	% sulphides	N504039		34	36	2.0	0.005	0.009	0.004		0.7		1885	186	7410	0.46		TB13097084
				Contact between upper 2f and 3d is gradational, and the start is marked by 4cm thick apatite and		3% pyrrhotite, 1% chalcopyrite: exclusively forms psuedomorphs	N504040		36	38	2.0	0.006	0.006	0.004		0.7		2250	153	7750	0.62		TB13097084
				actinolite rich layer/alteration vein, and below this a biotite and sulfide rich vein.		of CPX, cg	N504041		38	40	2.0	0.002	< 0.005	0.002		0.4		1310	80	>10000	0.54		TB13097084
				36.89-36.93m apatite and actinolite rich layer (15% v. fine equant euhedral apatite, 55% euhedral	3-5% disseminate	d sulphides	N504042		40	42	2.0	0.002	< 0.005	0.001		0.3		1260	64	>10000	0.58		TB13097084
				medium grained actinolite)		37.05-37.09m associated with biotite vein, 7% chalcopryite,	N504043		42	44	2.0	0.004	< 0.005	0.002		0.6		2660	114	9460	1.15		TB13097084
				37.05-37.09m biotite and sulfide rich vein with 7% chalcopyrite, 7% pyrrhotite		7%pyrrhotite . Often intergrown with biotite.	N504044		44	46	2.0	0.005	< 0.005	0.002		0.8		3040	117	9180	1.36		TB13097084
38.82 66.6	6.68 2b -	- Coarse grai	ned olivine ga	abbro with modal layering	2-3% disseminate	d sulphides	N504045	b				< 0.001	< 0.005	< 0.001		<0.2		19	2	70	0.03		TB13097084
				moderate chlorite, sericite, and potassic alteration (plag is all pink, greenish tinge to mafics), patchy		2% pyrrhotite, 1% chalcopyrite, fg, throughout unit.	N504046		46	48	2.0	0.006	< 0.005	0.002		0.9		3880	145	9080	1.52		TB13097084
				epidote alteration (2-3%)	3-5% disseminate	d sulphides	N504047		48	50	2.0	0.008	<0.005	0.003		1.1		4490	182	8840	1.74		TB13097084
				44.08-44.4m pegmatitic vein with biotite, actinolite, k-feldspar, cpx, magnetite (all cm scale in size),		44.08-44.4m 4% pyrrhotite, 2% chalcopyrite in pegmatitic vein	N504048		50	52	2.0	0.007	< 0.005	0.004		1		4180	167	9060	1.7		TB13097084
				1-3mm apatite (5%)		coarse grained, dispersed throughout vein	N504049		52	54	2.0	0.007	< 0.005	0.004		1		4240	162	9200	1.8		TB13097084
				49.66-66.68 2e with heterogeneous epidotization replacing plagioclase.	3-5% disseminate		N504050		54	56	2.0	0.003	< 0.005	0.001		0.4		1820	58	8830	0.91		TB13097084
				Chlorite principally associated with fractures. Slightly to medium Pink alteration		49.66-55 medium to fine intersticial grains, 3%Po-2%Cpy	N504051		56	58	2.0	0.001	< 0.005	0.001		<0.2		131	3	8050	0.24		TB13097084
				52.45 (30 cm) with more mafic stuf enriched in mgt and hem	Trace to 0.5% dis	eminated sulphides	N504052		58	60	2.0	0.001	< 0.005	< 0.001		0.2		559	18	8420	0.55		TB13097084
				57.70-58.17 carbonate veins (1mm) sometime in fracture plan		55-66.68 coarse grains associated with fractures	N504053		60	62	2.0	0.001	< 0.005	< 0.001		<0.2		73	1	9240	0.25		TB13097084
				59.33 8 cm of rublle little fault		(chloritisation) Po and Cpy surrounding Po	N504054		62	64	2.0	0.001	< 0.005	< 0.001		<0.2		53	1	8360	0.25		TB13097084
				63-66.68 lot of fracture and a little fault (8cm)			N504055	1	64	66	2.0	0.001	<0.005	<0.001		<0.2		59	<1	7850	0.23		TB13097084
66.68 67.8	7.80 FZ	- fault or she	ar zone	1	Trace to 0.5% dis	eminated sulphides	N504056	1	66	68	2.0	0.001	<0.005	<0.001		<0.2		97	1	>10000	0.34		TB13097084
				highly altered, rubbled and lot of chlorite, 14 cm competent 2b at the end of the fault		66.68-67.80 trace in fault but mostly pyrite	N504057		68	70	2.0	0.001	0.016	0.002		<0.2		63	1	7200	0.21		TB13097084
67.80 75.0	5.00 2b -	- Coarse grai	ned olivine ga	abbro with modal layering	Trace to 0.5% dis	eminated sulphides	N504058		70	72	2.0	0.001	<0.005	<0.001		<0.2		83	1	7750	0.2		TB13097084
				alternance of rich plagioclase layer and more mafic layer (richer in mgt and olivine)		Po and Cpy and pyrite associated with fractures																	1
				Epidotization and chlorite principally associated with fractures. Slightly to medium Pink alteration																			1
		2	g - Gabbroic	anorthosite																			1
				67.80-68.76 gradual contact with 2b at the bottom and sharp contact at the top																			1
				really rich in plag, but not sure it's anorthosite ?																			1
75.00	EO	OH - End of H	ole				4	1															1
							4	1															1
							4	1															1
							1	1													1		1
							1	1															1
							1	1															1
							1	1															

TS:		42 D / 16
тм и	Northing	5409206
lad27)	Easting	547662
evation ((m):	384.5
ip at Coll	lar:	-45.65
zimuth:		30.9
otal Dept	th:	66
ore Size:		NQ
emarks:		Core stored

DDH:	FD-13-09	
.ease/Claim:		1240552
Property: Zone:		Coldwell Complex Four Dams South
Date start:		27-May-13
Date finish:		27-May-13
Contractor:	Chib	ougamau Diamond Drilling
ogged by:	Katr	ina McLean, Renata Smoke
Assistant:		Renata Smoke

DIAMOND DRILL CORE LOG Reflex EZ Shot- Diamond Drillhole Survey Depth Dip Azimuth Casing -45.65 30.9

	GEOLO	:OLOGY Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TPG	VI Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Xoon Xoon Xoon Xoon Image: Second sec	NO.	QC	C FROM	то		ppm	ppm	ppm	ppm ppr	ppm	%	ppm	ppm	ppm	%	%	#
0.00	7.60	OB - Overburden	N504059		7.6	9	1.4	0.005	0.009	0.005		0.7		1940	222	9470	0.46		TB13097086
7.60	45.00	2b - Coarse grained olivine gabbro with modal layering 0.5% to 1% disseminated sulphides	N504060	mpg	g2			0.062	0.34	0.787		1.3		2730	277	1630	1.07		TB13097086
		layered with sericitization and minor actinolite/chlorite alteration. Overall alteration is weak-mod. 7.6-9.44, 3:1, Po:Cpy, more mafic, obvious band	ng N504061		9	11	2.0	0.003	<0.005	0.003		0.4		1130	130	9510	0.26		TB13097086
		Alteration of plag to sericite fades in and out. Local blebs to 1-2% sulphides	N504062		11	13	2.0	0.004	< 0.005	0.001		0.4		1870	85	>10000	0.43		TB13097086
		7.6-13.55m More and larger matic bands that have higher magnetite content. This seems to 9.44-10.1, 5:1 Po:Cpy, fine grained small zones	of net N504063		13	15	2.0	0.001	<0.005	0.001		0.4		2160	96	9550	0.48		TB13097086
		correlate to mineralization. Mafic bands contain increase olivine (in comparison to textured po. Cpy often associated with Po	N504064		15	17	2.0	0.001	<0.005	0.001		<0.2		434	21	9770	0.12		TB13097086
		leucocratic layers. 0.5% to 1% disseminated sulphides	N504065		17	19	2.0	<0.001	0.005	0.001		0.2		362	15	9890	0.12		TB13097086
		27.4-29.35m contains 3 irregular syenite intrusions (<10cm each) 10.1-12.5m, 3:1 Po:Cpy	N504066		19	21	2.0	<0.001	<0.005	<0.001		<0.2		355	12	9890	0.13		TB13097086
		30.8-33.5m Alteration increases with addition of potassic (sodic?) and very minor epidote. 3-5% disseminated sulphides	N504067		21	23	2.0	0.001	<0.005	0.001		<0.2		309	9	9030	0.12		TB13097086
		Alteration is less patchy than above 12.53-13.5m, 3:1 Po:Cpy	N504068		23	25	2.0	<0.001	<0.005	0.001		<0.2		326	1	9550	0.16		TB13097086
		33.5-45 atteration is more consistent and has "dalmation" look. Trace to 0.5% disseminated sulphides	N504069		25	27	2.0	<0.001	<0.005	0.001		<0.2		102	1	9920	0.25		TB13097086
		21 - Medium to coarse grained oxide augite melatroctolite 113.5m-22.8m, widely spreadout, fine grained. Bot			27	29	2.0	0.001	< 0.005	0.001		<0.2		43	1	9520	0.25		TB13097086
		33.243.43m 21 malic band with sulfide increase, sharp contacts but doesn't look intrusive. The 0.5% to 1% disseminated sulphides	N504071		29	31	2.0	0.001	<0.005	0.001		<0.2		29	<1	9670	0.26		TB13097086
		rock is dominated by med grained OI, Cpx and Mag. Mag-rich. Mag is typically interstitial to 22.8-27.55m, 1:2 po.Cpy subhedral OI.	N504072		31	33	2.0	0.002	<0.005	< 0.001		<0.2		51	1	9220	0.23		TB13097086
		subhedral OI. 0.5% to 1% disseminated sulphides 27.65-29.4m, 2:1 po/Cpy fine grained disseminate	N504073		33 35	35 37	2.0 2.0	<0.001 0.001	<0.005 <0.005	0.001 <0.001		<0.2 <0.2		41 60		9390 9550	0.23		TB13097086 TB13097086
		Trace to .0% discrimination of the second se	d N504074 N504075		35	37	2.0	<0.001	<0.005	0.001		<0.2		62	1	>10000	0.25		TB13097086
		Trace to U.S. asseminated suppriors 29.4-45 Small zones with trace-5% vfg suppriors 29.4-5 Small zones with trace-5% vfg suppriors		a	35	39	2.0	<0.001	<0.005	<0.001		<0.2		63	<1	8000	0.26		TB13097086
		2 3 4 4 3 1 at 2 2 4 3 1 at 2 2 4 3 1 at 2 2 4 4 3 1 at 2 2 4 3 1 at 2 3	N504070		39	41	2.0	0.001	<0.005	<0.001		<0.2		71	<1	8450	0.21		TB13097086
45.00	53.00		N504077 N504078		39 41	41	2.0	<0.001	<0.005	0.001		<0.2		73	<1	9250	0.21		TB13097086
40.00	33.00	ar meduaring clease granted base granted base approximation approximati approximation approximation approximation approximation approxima	N504079		43	45	2.0	0.001		<0.001		<0.2		73	1	8300	0.24		TB13097086
		Conductor all free and out in the other boards of the other board in the other back of the other	N504080		45	47	2.0	0.001	<0.005	<0.001		<0.2		110	<1	>10000	0.37		TB13097086
		Ol and intersitial Mag. The 2b unit shows consistent sericite/chlorite/actinolite alteration. 30.8-31, 5:1 po:Cpy	N504081		47	49	2.0	0.001	<0.005	<0.001		<0.2		90	<1	9880	0.27		TB13097086
		0.5% to 1% disseminated sulphides	N504082		49	51	2.0	< 0.001	<0.005	0.001		<0.2		146	2	>10000	0.44		TB13097086
53.00	66.00	2b - Coarse grained olivine gabbro with modal layering 33.28-33.43, 5:1 po:Cpy	N504083		51	53	2.0	0.001	< 0.005	< 0.001		<0.2		141	<1	>10000	0.47		TB13097086
		Gradational into this unit. Same as the 2b of 7.6-45m. Overall, the rock is PI-rich with layering 0.5% to 1% disseminated sulphides	N504084		53	55	2.0	0.001	<0.005	<0.001		<0.2		98	<1	9710	0.3		TB13097086
		defined by variation in OI and Mag contents intermittant patches (5-15 cm wide) of alteration: 38.72-38.85, 5:1 po:Cpy	N504085		55	57	2.0	0.001	<0.005	<0.001		<0.2		95	<1	8190	0.25		TB13097086
		chlorite, actinolite, ser, very coarse grained biotite. 0.5% to 1% disseminated sulphides	N504086		57	59	2.0	< 0.001	<0.005	< 0.001		<0.2		74	<1	8300	0.2		TB13097086
		63.61-63.91m zone of intense alteration (vcg. could have been syenite dyke): kadinitization, 44.29-66m 1-2% fg pyrrhotite, trace chalcopyrite	nostly K004154		59	66	7.0										0.24	0.02	TB13118918
		sericitization, vuggy with vcg bi. At edge, vcg bi, cpx, k-feldspar. concentrated in malic layers																	
		Trace sulphides in most of the hole, mafic layers have approx 1% po:Cpy 10:1																	
66.00		EOH - End of Hole																	
\vdash																			
				I	I	1	1	1	1 1	I	I	1	1	1	1	1	1	1	I

NTS:		42 D / 16		DDH:
UTM	Northing	5409206		Lease/Claim:
(Nad27)	Easting	547660.5		Property:
Elevation	n (m):	385.3		Zone:
Dip at Co	Dip at Collar:			Date start:
Azimuth	:	22.41		Date finish:
Total De	pth:	102		Contractor:
Core Siz	e:	NQ		Logged by:
Remarks	:	Core stored	l in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:

DH:	FD-13-10	
ase/Claim:	1240552	
operty: ne:	Coldwell Complex Four Dams South	
te start:	27-May-13	
te finish:	28-May-13	
ontractor:	Chibougamau Diamond Dril	ling
gged by:	Yonggang Feng	
sistant:	Julien Meric, Katrina McLe	an

Depth Dip Azimuth Casing -85.19 22.41

DIAMOND DRILL CORE LOG

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	C .
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%
0.00		OB - Overburd	en				N504087		4.5	6	1.5	0.002	<0.005	<0.001			0.2		635	107	>10000	0.2	TB131
4.50	63.20	2b - Coarse gra	ained olivine ga	bbro with modal layering	0.5% to 1% disser	ninated sulphides	N504088		6	8	2.0	0.001	<0.005	<0.001			0.2		468	92	>10000	0.15	TB131
				Coarse grained, layered gabbro with thick layers (0.5-2 m) of magnetite-olivine cumulate and 1-5		4.5-63.2m mineralization is apparently related to moderately	N504089		8	10	2.0	0.002	< 0.005	<0.001			0.2		931	138	7810	0.26	TB131
				cm PI-rich layers. Overall moderately altered. Rock is mainly composed of PI, Py, OI, Bt and Mag.		altered Mag-OI cumulate where Po dominates sulfides.	N504090	b				0.001	< 0.005	<0.001			<0.2		4	1	70	0.01	TB131
				Bt is interstitial to and replacing Py and Ol.	3-5% disseminated		N504091		10	12	2.0	0.004	0.007	0.002			0.5		1685	202	8430	0.41	TB131
				30-47.04m rock is relatively fractured. Chl is the infilling mineral in fractures. Rock is overall dark	1	9.5-10.8 m 3-5% Po + Cpy (4:0.5), Cpy not obviously visible	N504092		12	14	2.0	0.004	< 0.005	0.002			0.4		1430	136	8290	0.33	TB131
				and shows no typical layering. Moderately to strongly altered.	3-5% disseminated		N504093		14	16	2.0	0.002	< 0.005	0.001			0.4		1615	92	>10000	0.37	TB131
				47.04-47.09 m PI-rich layer.		11-11.1 m 3% Po + Cpy (3:0.5), Cpy not obviously visible	N504094		16	18	2.0	0.002	< 0.005	<0.001			0.6		3340	118	9060	0.8	TB131
			2g - Gabbroic		2-3% disseminated		N504095		18	20	2.0	0.002	< 0.005	<0.001			0.2		1110	50	>10000	0.29	TB131
				51.27-51.95 m. Fine grained anorthosite shows gradational contact with the previous unit. White		12.5-13.0 m 2% Po + Cpy (4:1)	N504096		20	22	2.0	<0.001	< 0.005	<0.001			<0.2		431	32	9970	0.13	TB131
				rock is dominated by >90% PI with mafic minerals in minor amounts.	2-3% disseminated		N504097		57	59	2.0	<0.001	< 0.005	<0.001			<0.2		104	<1	9180	0.31	TB131
				51.95-63.2 m, graditional into this unit (2b). Apparently unmineralized.		14.5-14.6 m 2% Po + Cpy (5:1)	N504098		59	61	2.0	0.001	< 0.005	<0.001			<0.2		122	<1	8730	0.29	TB131
					2-3% disseminated		N504099		61	63	2.0	<0.001	< 0.005	<0.001			<0.2		94	<1	7280	0.24	TB13
						16.0-16.24 m 1-2% Po + Cpy (1:1) in PI-rich layer	N504100		63	65	2.0	0.001	< 0.005	<0.001			0.2		176	<1	8800	0.38	TB13
					2-3% disseminated	l sulphides	N504101		65	67	2.0	< 0.001	< 0.005	<0.001			<0.2		269	1	>10000	0.56	TB131
						16.24-16.54 m 3% Po, invisible Cpy	N504102		67	69	2.0	<0.001	< 0.005	<0.001			<0.2		214	<1	9540	0.5	TB131
					2-3% disseminated	f sulphides	N504103		69	71	2.0	<0.001	<0.005	<0.001			<0.2		103	<1	9190	0.32	TB131
						16.54-17.0 m 2-3% Po + Cpy (1:1)	N504104		71	73	2.0	0.001	< 0.005	<0.001			<0.2		80	<1	7890	0.27	TB131
					2-3% disseminated	f sulphides	N504105	mpg1				0.422	0.785	3.04			3.4		7030	373	1370	1.1	TB131
						18.4-19.2 m 1-2% Po + Cpy (2:1)	N504106		73	75	2.0	0.001	<0.005	0.001			<0.2		100	<1	7260	0.33	TB131
					Trace to 0.5% diss	eminated sulphides	N504107		75	77	2.0	0.001	<0.005	<0.001			<0.2		121	<1	8530	0.38	TB131
						30-47.04 m trace to 0.5% Po + Cpy, hard to see	N504108		77	79	2.0	0.002	<0.005	<0.001			<0.2		150	<1	8250	0.44	TB131
					Trace to 0.5% diss	eminated sulphides	N504109		79	81	2.0	0.001	<0.005	<0.001			<0.2		178	<1	>10000	0.5	TB131
						51.27-51.95 m. No visible sulfides	N504110		81	83	2.0	<0.001	<0.005	<0.001			<0.2		133	<1	9350	0.37	TB131
					Trace to 0.5% diss	eminated sulphides	N504111		83	85	2.0	<0.001	<0.005	<0.001			<0.2		72	<1	6330	0.21	TB13
						51.95-63.2 m. trace to 0.5% Po + Cpy, difficult to see	N504112		85	87	2.0	0.001	<0.005	<0.001			<0.2		81	<1	7480	0.23	TB13
							N504113		87	89	2.0	0.001	<0.005	<0.001			<0.2		89	<1	8500	0.24	TB13
							N504114		89	91	2.0	<0.001	<0.005	<0.001			<0.2		216	<1	8430	0.23	TB13
63.20	68.16	2f - Medium to	coarse grained	oxide augite melatroctolite	0.5% to 1% disser	ninated sulphides	N504115		91	93	2.0	<0.001	<0.005	<0.001			<0.2		311	<1	>10000	0.4	TB13
				Magnetite-olivine cumulate layer that is very thick. Typical 2f. The dark rock is dominated by		63.2-68.16m. 0.5-1% fine grained disseminated po+Cpy (5:1)	N504116		93	95	2.0	0.001	<0.005	<0.001			<0.2		301	1	9740	0.22	TB13
				OI and Mag with lesser Cpx and PI.			K004155		22	31	9.0											0.09	0.03 TB131
							K004156		31	40	9.0											0.13	0.05 TB13
68.16	73.96	2b - Coarse gra	ained olivine ga	bbro with modal layering	Trace to 0.5% diss	eminated sulphides	K004157		40	49	9.0											0.22	0.04 TB13
				Coarse grained layered gabbro with thick layers (0.5-1.5 m). The layering is defined by variation		68.16-73.96m. trace-0.5% very fine grained and	K004158		49	57	8.0											0.22	0.19 TB13
				in OI and Mag contents.		disseminated po+Cpy (5:1)	K004159		95	102	7.0											0.22	0.04 TB13
							_																
73.96	75.10	2f - Medium to	coarse grainec	l oxide augite melatroctolite		eminated sulphides																	
				Gradational into this unit. Same as previous 2f. Typical 2f. The dark rock is dominated by		73.96-75.1 m. trace to 0.5% Po + Cpy, not obviously visible																	
75.40	80.00			OI and Mag with lesser Cpx and PI.	T . 0.500 F		-																
75.10	80.00	∠u - Coarse gra	aned olivine ga	bbro with modal layering	I race to U.5% diss	eminated sulphides			1							1							
-+			of Madin 1	Gradational with the above 2f. Same as previous 2b.		75 4 00 m terres to 0 5% Dr One and she involve 1 1			1							1							
+			zr - Medium to	coarse grained oxide augite melatroctolite		75.1-80 m. trace to 0.5% Po + Cpy, not obviously visible			1							1							
				similar to the previous 2b unit. Mag-OI cumulate layers are 20-30 cm.					1							1							
									1							1							
80.00	81.76	2f - Medium to	coarse grainec	l oxide augite melatroctolite same as the 2f unit of 73.96-75.10m. Typical 2f. The dark rock is dominated by OI and Mag with	Trace to 0.5% diss	eminated sulphides 80-81.76m. trace to 0.5% Po + Cpy, not obviously visible																1	

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TPO	GM Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	pm pp			ppm	ppm	ppm	%	%	#
81.76	91.09	2b - Coarse gr	ained olivine ga	abbro with modal layering	Trace to 0.5% dis	seminated sulphides																	
				same as the unit of 75.10-80m. Light green mineral (epdiote?) is replacing PI. Strongly altered rock.		81.76-91.09 m. trace to 0.5% Po + Cpy, not obviously visible																	
				OI < 3% in this unit.																			
91.09	92.63	2f - Medium to		d oxide augite melatroctolite	0.5% to 1% disse	minated sulphides																	
				same as the unit of 80-81.76 m. Typical 2f. The dark rock is dominated by OI and Mag with		91.09-92.63m. 1% disseminated Po, invisible Cpy																	
				lesser Cpx and Pl.																			
92.63	102.00	2b - Coarse gr		abbro with modal layering		seminated sulphides																	
				Moderately to strongly altered rock. Py is partially replaced by ChI + Bt. Pl is commonly sericitized. Ol content is below 2%.		92.63-102 m. 0.5% Po + Cpy (1:3). Cpy dominates sulfides.																	
				Of content is below 2%.																			
102.00		EOH - End of	Hole																				
102.00		EOT - End of	lidio																				
								1															
								1															
								1															
								1															
								1															
\vdash					+			1															
					+			1															
					1							1											
					1							1											
												1											
		· · · · ·										1											
								1															
												1											
								1															
												1											
					+							1											
								1															
├ ──┤					+							1											
					+			1															
					-			1															
					1							1											
								1															
												1											
								1															
						•		•	•	•	•	•							• •				

		STILLWATER CANADA INC DIAMOND DRILL CORE LOG	
	42 D / 16		
Northing	5409222		
Easting	547615.8		
n (m):	396.8		
ollar:	-84.15		
	358		
oth:	102		
e:	NQ		
:	Core stored in	tillwater Canada Inc. warehouse, Marathon, Ontario	
	Easting (m): Ilar: oth:	Northing 5409222 Easting 547615.8 (m): 396.8 Illar: -84.15 358 - oth: 102 e: NQ	Northing 5409222 Easting 547615.8 (m): 396.8 Illar: -84.15 358

DDH: FD-13-11

 Lease/Claim:
 1240552

 Property:
 Coldwell Complex

 Zone:
 Four Dams South

 Date start:
 28-May-13

 Date finish:
 29-May-13

 Contractor:
 Chibougamau Diamond Drilling

 Logged by:
 Renata Smoke

 Assistant:
 Example of the start of

DIAMOND DRILL CORE LOG Reflex EZ Shot- Diamond Drillhole Survey Depth Dip Azimuth Casing -84.15 358

		OGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TPGN	Ag	Cu	Cu	Ni	Р	S	C J	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	0.38	OB - Overburd	len				N504117		0.38	3	2.6	0.003	< 0.005	0.002		0.2		721	84	>10000	0.26	TB131	03749
							N504118		3	5	2.0	0.002	< 0.005	0.001		0.2		611	79	>10000	0.23	TB131	03749
0.38	6.42	2b - Coarse gra	ained olivine g	abbro with modal layering			N504119		5	7	2.0	0.002	< 0.005	0.002		<0.2		504	73	>10000	0.2	TB131	03749
				minimal alteration, pristine			N504120	d	5	7	2.0	0.002	< 0.005	0.001		<0.2		485	73	>10000	0.2	TB131	03749
6.42	29.35	2f - Medium to	coarse graine	id oxide augite melatroctolite	3-5% disseminated	Isulphides	N504121		7	9	2.0	0.003	< 0.005	0.003		0.3		735	121	>10000	0.25	TB131	03749
				Larger proportion of magnetite rich ultramafic with disseminated po and cpy. Still layered, with		6.42-19.28m fg diss 3% po, 0.5% cpy concentrated in mafic	N504122		9	11	2.0	0.003	< 0.005	0.003		0.2		756	125	>10000	0.23	TB131	03749
				approx 10% plag rich layers 2-20cm thick.		layers (none in plag rich)	N504123		11	13	2.0	0.004	< 0.005	0.003		0.2		734	114	10000	0.22	TB131	03749
				22.3-29.35m, greater proportion of magnetite in layers, 65% (from approx 40-50%)		19.28-29.35m FG-MG diss 6% po, 1.5% cpy concentrated in	N504124		13	15	2.0	0.003	< 0.005	0.003		0.3		831	118	9400	0.25	TB131	03749
				Alteration:		mafic layers	N504125		15	17	2.0	0.003	< 0.005	0.002		<0.2		733	101	>10000	0.2	TB131	03749
				18.66-22.5m, moderate potassic alteration of plag (pink to creamy), and chlorite alteration			N504126		17	19	2.0	0.003	< 0.005	0.001		<0.2		590	93	>10000	0.17	TB131	03749
				especially evident in plag rich layers			N504127		19	21	2.0	0.003	< 0.005	0.001		<0.2		792	106	>10000	0.21	TB131	03749
29.35	55.20	2b - Coarse gra	ained olivine g	abbro with modal layering	3-5% disseminated	I sulphides	N504128		21	23	2.0	0.004	< 0.005	0.001		0.2		1370	137	>10000	0.36	TB131	03749
				Alteration:		29.35-32.91m 4% cpy, 2% po in more plag rich layers	N504129		23	25	2.0	0.008	0.011	0.004		0.6		2930	275	>10000	0.67	TB131	03749
				29.35-47.6m strong homogenous potassic (pink) alteration, and patchy and moderate epidote		(associated with intense ser and pink alteration of plag, bi, chlor,	N504130		25	27	2.0	0.006	0.005	0.003		0.5		2250	250	5640	0.42	TB131	03749
				alteration alteration of plag, chloritization		and epidote alteration). Magnetite rich bands have a greater	N504131		27	29	2.0	0.004	0.005	0.003		0.5		2130	172	5360	0.41	TB131	03749
						proportion of po (6:1 po to cpy in mafic layers and 1:2 in plag rich)	N504132		29	31	2.0	0.004	< 0.005	0.001		0.8		3950	143	7950	1.21	TB131	03749
					3-5% disseminated	sulphides	N504133		31	33	2.0	0.002	< 0.005	0.001		0.2		2030	75	9690	0.92	TB131	03749
						32.91-43.73m patches of mineralization (2-40cm wide,	N504134		33	35	2.0	0.001	< 0.005	< 0.001		<0.2		435	19	>10000	0.32	TB131	03749
						approx 15% of entire rock within this zone) concentrated in	N504135	b				< 0.001	< 0.005	<0.001		<0.2		12	<1	70	0.01	TB131	03749
						magnetite rich mafic layers. 5% f-mg po, 1% cpy	N504136		35	37	2.0	0.002	< 0.005	< 0.001		<0.2		913	38	8660	0.48	TB131	03749
					3-5% disseminated	sulphides	N504137		37	39	2.0	0.001	< 0.005	<0.001		<0.2		376	18	8880	0.28	TB131	03749
						32.91-43.73m 4% cpy, 2% po only in 3d stringers. 3d stringers	N504138		39	41	2.0	0.002	< 0.005	<0.001		<0.2		622	19	9600	0.5	TB131	03749
						account for 5% of entire rock in this zone	N504139		41	43	2.0	0.002	< 0.005	<0.001		<0.2		1225	23	>10000	0.99	TB131	03749
55.20	65.40	2f - Medium to	coarse graine	id oxide augite melatroctolite	3-5% disseminated	sulphides	N504140		43	45	2.0	0.001	< 0.005	<0.001		<0.2		372	7	>10000	0.36	TB131	03749
				Still layered, with a lager proportion of magnetite rich mafic layers, 10% Plag rich layers 2-28cm thick.		55.2-65.40 vfg 5% po, .5% cpy (10:1 po:cpy)	N504141		53	55	2.0	0.001	< 0.005	<0.001		<0.2		25	<1	8210	0.24	TB131	03749
							N504142		55	57	2.0	0.001	< 0.005	<0.001		<0.2		34	<1	9240	0.26	TB131	03749
			3d - Very coa	irse grained to pegmatitic, ophitic gabbro	3-5% disseminated	sulphides	N504143		57	59	2.0	0.001	< 0.005	<0.001		<0.2		50	<1	8810	0.25	TB131	03749
				64.19-65.22m 3d dyke with a 30cm core of augite syenite. Hosts cpy and po mineralization.		64.19-65.22m mg diss 10% po, 2% cpy hosted in 3d dyke, but	N504144		59	61	2.0	0.001	< 0.005	< 0.001		<0.2		68	<1	8120	0.26	TB131	03749
				Augite syenite dyke: feld are zoned (potassic alteration on rims) and contains		not syenite core	N504145		61	63	2.0	< 0.001	< 0.005	0.001		<0.2		86	<1	9520	0.26	TB131	03749
				15% calcite filling vugs and bounded by chlorite and biotite			N504146		63	65	2.0	0.001	< 0.005	0.002		<0.2		217	2	9230	0.53	TB131	03749
				Alteration:			N504147		65	67	2.0	0.001	< 0.005	< 0.001		<0.2		156	3	7850	0.3	TB131	03749
				3d is intensely altered (chlorite, ser, calcite, potassic)			N504148		67	69	2.0	0.001	< 0.005	0.001		<0.2		300	4	>10000	0.71	TB131	03749
65.40	102.00	2b - Coarse gra	ained olivine g	abbro with modal layering	3-5% disseminated	sulphides	N504149		69	71	2.0	0.001	< 0.005	0.001		<0.2		186	4	8980	0.36	TB131	03749
				Contains abundant 3d stringers with up to 25% apatite		67.33-67.99m 8% po, 2% cpy in 2f layer	N504150	mpg2				0.068	0.274	0.839		1.3		2880	282	1650	1.12	TB131	03749
				Alteration:			N504151		71	73	2.0	0.001	< 0.005	<0.001		<0.2		251	5	>10000	0.47	TB131	
				65.4-81m strong homogenous potassic (pink), patchy and moderate epidote alteration alteration of			N504152		73	75	2.0	<0.001	< 0.005	0.001		<0.2		162	4	9680	0.35	TB131	03749
				plag, chloritization			N504153		75	77	2.0	0.001	< 0.005	< 0.001		<0.2		212	2	>10000	0.53	TB131	
				67.33-67.99 2f layer, mineralized			N504154		77	79	2.0	0.001	< 0.005	<0.001		<0.2		120	<1	8580	0.3	TB131	03749
			3d - Very coa	arse grained to pegmatitic, ophitic gabbro	3-5% disseminated	l sulphides	K004160		45	53	8.0										0.26	0.01 TB131	
				67.5-76.29m 3d stringers: make up 20-30% of unit, 20-40cm thick, moderate-intensely altered		67.5-76.29m 4% cpy, 2% po only in 3d stringers	K004161		79	84	5.0										0.28	0.01 TB131	
				(chlorite, potassic (pink), ser, epidote, bi (especially at joints)). Most intensely altered core contain	1		K004162		86	95	9.0										0.4	0.02 TB131	
				20-35% apatite, 20% pegmatitic biotite (coarsest at joints).			K004163		95	102	7.0										0.57	0.01 TB131	
				76.29-97.9m 3d stringers are sparse and contain less apatite (also un-mineralized)						1													
				Alteration:			1			1													
				99.8-100m, 100.25-100.36m very intense alteration of 3d or syenite dyke (kaolinite, ser, chlor, vugs)			1			1													
102.00		EOH - End of H	Hole				1			1													
							1			1													

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG					
NTS:		42 D / 16		DDH: FD-	<u>-13-12</u>	DIAMOND DRI	LL CORE L	OG
UTM	Northing	5409224		Lease/Claim:	1240552	Reflex EZ Sho	t- Diamond	Drillhole Sur
(Nad27)	Easting	547614.8		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation	(m):	394.9		Zone:	Four Dams South	Casing	-45.11	28.69
Dip at Co	llar:	-45.11		Date start:	29-May-13			
Azimuth:		28.69		Date finish:	29-May-13			
Total Dep	th:	75		Contractor:	Chibougamau Diamond Drilling			
Core Size	:	NQ		Logged by:	Yonggang Feng			
Remarks:		Core stored in S	Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Julien Meric	complete downhole	survey in Fou	r Dams masterlis

No No No No No <th>S C</th> <th>S</th> <th>Р</th> <th>Ni</th> <th>Cu</th> <th>Cu</th> <th>Ag</th> <th>TPGM</th> <th>Rh</th> <th>Pd</th> <th>Pt</th> <th>Pt</th> <th>Au</th> <th>WIDTH</th> <th></th> <th>INTERVAL</th> <th></th> <th>SAMPLE</th> <th>Mineralization</th> <th></th> <th>9Y</th> <th>GEOLO</th> <th></th>	S C	S	Р	Ni	Cu	Cu	Ag	TPGM	Rh	Pd	Pt	Pt	Au	WIDTH		INTERVAL		SAMPLE	Mineralization		9Y	GEOLO	
1 1	%	%	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	pm	ppm	ppm		то	FROM	QC	NO.	Comments	xy comments zreading	Maj Rock	То	From
2 100 30. consistent decision deproducts (build on deprodeproduts (build on deproducts (build on deproducts (b	TB1		0.2	>10000	97	726	0.2			0.001	.005	< 0.00	0.002	2.0	16	14		N504155		purden	OB - Overburg	2.40	0.00
Image: Note: Section 1 Books protected scores definition 1 Bioks protec	TB1		0.32	>10000	99	1180	0.3	ı	1 I	0.001	.005	< 0.00	0.004	2.0	18	16		N504156					
Image: space	TB1		0.77	>10000	199	2300	0.5	ı	1 I	0.002	005	0.005	0.007	2.0	20	18		N504157	seminated sulphides	e grained olivine gabbro with modal layering Trace to 0.5% diss	2b - Coarse gr	18.70	2.40
In In<	TB1		1.13		275	4150	0.9	ı	1 I	0.005	800	0.008	0.007	2.0	22	20		N504158	2.18-15.9. Sulfdies are hard to see.	Obviously layered rock is composed of PI,Cpx, OI and Mag. Chl alteration is pervasive. Mafic-rich			
13.70 2.70 8.70 8.70 8.70 7.70	TB1					3550		ı	1 I	0.002	.005	< 0.00	0.004	2.0						layers are commonly 10-50 cm. Cpx and OI are partially replaced by Chl. 2-3% disseminate			
- -	TB1							ı	1 I														
Image: Note: Image:	TB1							ı	1 I												2f - Medium to	22.60	18.70
Image: Note of the set o	TB1							1	1 I														
Image: Note of the stand o	TB1							1	1 I														
Image:	TB1							1	1 I										Unit. Cpy commonly mantles Po.	0l.			
220 40.10 2	TB1							1	1 I						- · ·		d						
1 1 men as the und 12.18-7.7m kink sight probes 1000 kis 200 members beam method means and method means and method means 2.8-49.6m Approx 2.9.5m (1000 km 2.9.5m (10000 km 2.9.5m (10000 km 2.9.5m (10000 km 2.9.5	TB1							1	1 I														
i i	TB1							1	1 I												2b - Coarse gr	49.18	22.60
	TB1							1	1 I														
in in 302.03 the Step context bit. Like 36 stome with synte (1) wey statiste takes 4 302.03 the Step CP 100000000000000000000000000000000000	TB1							1	1 I														
Image: Control in the contro	TB1							1	1 I														
Image:	TB1							1	1 I											50.02-50.10 m. Sharp Contact wiri 20. Elkely 5d burmixed wiri syenite (1), very chabite textures.			
Image:	TB1							1	1 I														
Image: Note of the section of the sectin of the sectin of the section of the section of the section of	TB1							1	1 I														
	TB1							1	1 I											Semi massive to n			
Image: Note: Note	TB1							1	1 I										45.6-45.7m. 8% Po, 1-2% Cpy (Po: Cpy 7:1).				
4018 50.97 5b-Augle genete 7cd 2cd 2cd 2cd 2cd 2cd <td>TB1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>1 I</td> <td></td>	TB1							1	1 I														
Image: Note: Note	TB1							1	1 I							56							
Image:	TB1							ı	1 I							58					5b - Augite sy	50.97	49.18
Image:	TB1							ı	1 I					2.0	62	60							
Image:	TB1 TB1					-		1	1 I								D						
Image: Normal image: Norma	TB1							1	1 I											Fine grained green soft mineral may be serpentine or little (7). This unit cross-cuts zb. 3-5% disseminate			
Image: Normalize in the second se								1	1 I							• ·							
Image: Note that the second	TB1 TB1							1	1 I														
50.97 75.00 $2b$ - Cares grained olivine gabbro with modal layering. $2.3%$ disseminated sulphides N504186 72 74 2.0 0.001 0.02 76.00 0.02 76.00 0.02 76.00 0.020	TB1							1	1 I										49.91m. Chi-Py Vein.				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TB1							1	1 I											a vela de la constante de	0	75.00	50.07
Image: Section 1 and Mage contents. Pinkish color may be due to Kfs or Ab alteration (?). 3-5% deseminated sulphides K004164 2.4 12 9.6 Image: Section 2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	TB1							1	1 I												20 - Coarse gr	75.00	50.97
Image: space spac		0.24	0.29	8130	2	07	<0.2	1	1 I	<0.001	.005	<0.00	0.001										
Image: Section Content. Image: Section Content. Image: Section Content. Image: Section Content. 0.5% to 1% disserilated supplies Image: Section Content. 0.5% to 1% disserilated supplies Image: Section Content. 0.5% to 1% disserilated supplies Image: Section Content. 62.56.2.7m. Suffides are dominated by Py. No visible Po or Cpy Image: Section Content. 62.56.2.7m. Suffides are dominated by Py. No visible Po or Cpy Image: Section Content. 62.56.2.7m. Suffides are dominated by Py. No visible Po or Cpy Image: Section Content. 64.73m. Suffide stringer is mainly composed by Py and possibly		0.18						1	1 I				1										
Image: Constraint of the service of	0 0.02 101	0.10						1	1 I				1	2.0	14	12		1004105					
Image: Specific symple 62.5-62.7m. Suffides are dominated by Py. No visible Po or Cpy Image: Specific symplectic sympl								1	1 I				1										
Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Coarse grained pink feldspar (KS?) and Interstitial Cpx. Image: Separate Control of Cpx (KS?) and Imag								1	1 I				1										
Cpx is almost completely repaiced by fine grained Chi. The syenite cross-cuts 2b. 64.73m. Sulfide stringer is mainly composed by Py and possibly								1	1 I				1						ozio ozimili odinalo ale dominale by Fy. No violo Fo or opy				
								1	1 I				1						64 73m. Sulfide stringer is mainly composed by Py and possibly				
								1	1 I				1										
62.963.4m. Minor unit 21. Rich in Mag, Ol and Ap. Ol is strongly altered. Chi is the predominant								1	1 I				1										
alteration mineral.								ı I	1 I				1										
64.65-64.9 m. Same as the rock from 62.9 to 63.4 m.								ı I	1 I				1										
								ı I	1 I				1										
75.00 EOH - End of Hole								ı I	1 I				1							l of Hole	EOH - End of		75.00
								ı I	1 I				1										
								ı I	1 I				1										
								1 I	1 I				1										

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG					
NTS:		42 D / 16		DDH: FI	<u>D-13-13</u>	DIAMOND DRI	LL CORE L	.0G
UTM	Northing	5409172		Lease/Claim:	1240552	Reflex EZ Shot	t- Diamono	I Drillhole Survey
(Nad27)	Easting	547686.8		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation	n (m):	381.9		Zone:	Four Dams South	Casing	-59.9	30.37
Dip at Co	ollar:	-59.9		Date start:	30-May-13			
Azimuth:		30.37		Date finish:	30-May-13			
Total De	pth:	75		Contractor:	Chibougamau Diamond Drilling			
Core Size	e:	NQ		Logged by:	Julien Meric			
Remarks	:	Core stored i	n Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Yonggang Feng (sampling)	complete downhole	survey in Fou	ur Dams masterlist

	GE	EOLOGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	2.40	0 OB - Overbu	rden				N504188		8	10	2.0	0.002	< 0.005	<0.001			<0.2		426	56	>10000	0.12		TB13103771
							N504189		10	12	2.0	0.001	< 0.005	<0.001			<0.2		303	55	8490	0.1		TB13103771
2.40	8.00	0 2f - Medium	o coarse graine	d oxide augite melatroctolite	Trace to 0.5% dis	seminated sulphides	N504190		12	14	2.0	0.003	< 0.005	0.001			<0.2		1035	126	>10000	0.29		TB13103771
				70 % mafic layers (around 40% mgt, 10-20 % olivine, cpx) and 30 % plagioclase rich layers		2.8-8.0 trace of Po and Cpy	N504191		14	16	2.0	0.005	< 0.005	0.002			0.2		1310	154	>10000	0.38		TB13103771
							N504192		16	18	2.0	0.009	0.012	0.006			0.6		2460	275	>10000	0.63		TB13103771
8.00	12.0	00 2b - Coarse	grained olivine ga	abbro with modal layering		seminated sulphides	N504193		18	20	2.0	0.006	< 0.005	0.004			0.4		2070	170	9630	0.46		TB13103771
				70% plag rich layers, 30% mafic layers (mgt and olivine richer), epidotization of plag (green color),		8.0-10.3 trace of Po and Cpy	N504194		20	22	2.0	0.003	0.005	0.003			0.3		1405	111	9970	0.33		TB13103771
				biotite.	0.5% to 1% disse	minated sulphides	N504195	mpg1				0.254	0.862	3.52			3.9		7010	384	1350	1.06		TB13103771
						10.3-12.0 trace and smal path of medium grain Po and Cpy	N504196		22	24	2.0	0.002	< 0.005	0.004			<0.2		644	64	>10000	0.23		TB13103771
							N504197		24	26	2.0	0.012	0.005	0.001			0.4		2460	100	9530	0.69		TB13103771
12.00	31.0	00 2f - Medium	o coarse graine	d oxide augite melatroctolite		minated sulphides	N504198		26	28	2.0	0.001	< 0.005	<0.001			<0.2		384	30	>10000	0.16		TB13103771
				70% Mafic unit, 30% plag rich layers		12.0-13.73 trace and smal path of medium grain Po and Cpy	K004166		2.4	8	5.6											0.18	0.04	TB13118918
				15-15.3 2 dykes of syenite with coarse grain biotite and feldpath K, possibly Qtz ?	3-5% disseminate		K004167		28	37	9.0											0.08	0.1	TB13118918
				Chlorite associated with fractures		13.73-25.4 Mostly medium to fine grain of Po 4-5%, Cpy<1%	K004168		37	46	9.0											0.17	0.14	TB13118918
						mineralization principally in mafic layers	K004169		46	55	9.0											0.27	0.07	TB13118918
						Pyrite associated with fractures filled by chlorite	K004170		55	64	9.0											0.26	0.04	TB13118918
-			-		Trace to 0.5% dis	seminated sulphides	K004171		64	73	9.0											0.27	0.1	TB13118918
			-			25.4-31.0 unmineralized to trace, sometimes smal patch of	K004172		73	75	2.0											0.24	0.02	TB13118918
						Po and Cpy associated with smal heterogeneities richer	-																	
						in cpx in 2b	-																	
							-																	
31.00	75.0	00 2b - Coarse	grained olivine ga	abbro with modal layering	Trace to 0.5% dis	seminated sulphides	-																	
				70-90 plag rich layer, no mafic layer (maybe 2e ?), coarse grain plag, olivine, cpx, mgt		31.0-74.9 unmineralized to trace, sometimes smal patch of	-																	
				and biotite; more layered between 40-45m with 30% of mafic layers (around 50% mgt).		Po and Cpy associated with smal heterogeneities richer	-																	
				36.8-37.7 fractured zone with lot of chlorite		in cpx in 2b	-																	
				48-54 3 or 4 syenitic dyke			-																	
			2f - Medium te	o coarse grained oxide augite melatroctolite	2-3% disseminate		-																	
				from 74.90-75.0m: mgt and olivine rich with sulfide		74.9-75; 10cm of 2f mostly Po and few Cpy <1%	-																	
75.00		EOH - End o	f Hole				-																	
							-																	
			-				-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							1		1															
							1		1															
							1		1															
-							1		1															
			1		-		+		1															
							1		1															
							1		1															
	1		1		1		1	1	1	1	1	1	1	1	1	ļ			I I		I	1		1

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG					
NTS:		42 D / 16		DDH: FD-1	<u>3-14</u>	DIAMOND DRI	L CORE L	.OG
UTM	Northing	5409152		Lease/Claim:	1240552	Reflex EZ Shot	- Diamond	Drillhole Survey
(Nad27)	Easting	547686		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation	n (m):	383.1		Zone:	Four Dams South	Casing	-70.14	27.85
Dip at Co	ollar:	-70.14		Date start:	30-May-13			
Azimuth:	:	27.85		Date finish:	31-May-13			
Total Dep	pth:	102		Contractor:	Chibougamau Diamond Drilling			
Core Size	e:	NQ		Logged by:	Renata Smoke (0-40.40m, Julien Meric 40.40-EOH)			
Remarks	:	Core stored	l in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Yonggang Feng and Julien Meric	complete downhole	survey in Fou	r Dams masterlist

	GEOL	LOGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	MILLERALIZ	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	3.00	OB - Overburg	ien				N504199		4	6	2.0	0.002	< 0.005	0.002			<0.2		487	52	>10000	0.14		TB13103747
							N504200		6	8	2.0	0.002	< 0.005	0.002			<0.2		620	82	>10000	0.15		TB13103747
3.00	27.94	2b - Coarse gr	ained olivine g	abbro with modal layering 2-3% dis	seminate	d sulphides	N504201		8	10	2.0	0.002	< 0.005	0.001			<0.2		849	71	>10000	0.22		TB13103747
				Mag rich layers are up to 0.5m in length, and compose approx 60% of unit.		6.41-9m 2% fg po, 0.5% vfg cpy mostly found in mag rich layers	N504202		10	12	2.0	0.003	< 0.005	0.002			<0.2		1195	87	>10000	0.3		TB13103747
				alteration: 3-5% dis		d sulphides	N504203		12	14	2.0	0.003	< 0.005	0.001			<0.2		802	80	>10000	0.21		TB13103747
				3-12.93 m Moderate to strong chlorite alteration		9-11.1m 6% fg po, 1% fg-vfg cpy found in a thicker and more	N504204		14	16	2.0	0.003	< 0.005	0.003			<0.2		878	74	>10000	0.2		TB13103747
				9-12.93m Abundant (5% total of rock) ch and cal veinlets (1-3mm thick), no textural relationship to		chlorite altered mag rich layer	N504205		16	18	2.0	0.004	< 0.005	0.003			<0.2		1115	96	>10000	0.29		TB13103747
				mineralization 3-5% dis	seminate	d sulphides	N504206		18	20	2.0	0.003	< 0.005	0.007			<0.2		767	97	>10000	0.21		TB13103747
				3-9m Weak pink, ser, ep alteration of plag.		11.1-27.94m 4% fg po, 1% vfg cpy mostly found in mag rich	N504207		20	22	2.0	0.003	< 0.005	0.001			<0.2		690	95	>10000	0.2		TB13103747
				12-12.60m Fault (broken, intense ch and cal alteration)		mafic layers	N504208		22	24	2.0	0.002	< 0.005	0.001			<0.2		401	79	>10000	0.14		TB13103747
				12.6-27.94 Weak ch, ep, and bi alteration			N504209		24	26	2.0	0.002	< 0.005	0.002			<0.2		640	134	>10000	0.17		TB13103747
							N504210	d	24	26	2.0	0.002	< 0.005	0.002			<0.2		628	135	>10000	0.17		TB13103747
27.94	36.30	2f - Medium to	coarse graine	d oxide augite melatroctolite 3-5% dis	seminate	d sulphides	N504211		26	28	2.0	0.007	0.014	0.005			0.3		2130	183	>10000	0.51		TB13103747
				Mag rich mafic layers are dominant. Plag rich layers are 2-15cm wide, and compose approx 10% of		27.94-36.3m 8% fg-mg po, 2% fg-mg cpy associated with	N504212		28	30	2.0	0.008	0.011	0.007			0.5		2630	301	9490	0.55		TB13103747
				the unit.		mag rich layers	N504213		30	32	2.0	0.003	0.007	0.002			0.3		1860	147	9520	0.59		TB13103747
				alteration:			N504214		32	34	2.0	0.005	0.006	0.003			0.6		3290	132	>10000	0.74		TB13103747
				30.68-30.75m Ap rich (15%, vfg, equant, euhedral) and strongly altered (ch, bi, act) zone or layer			N504215		34	36	2.0	0.01	< 0.005	0.002			0.3		1865	96	>10000	0.57		TB13103747
				within mag rich mafic layer			N504216		36	38	2.0	0.004	< 0.005	0.002			0.4		3360	115	9640	1.17		TB13103747
				27.94-36.3m Moderate ch alteration.			N504217		38	40	2.0	0.002	< 0.005	< 0.001			<0.2		1120	30	>10000	0.68		TB13103747
							N504218		40	42	2.0	0.001	< 0.005	0.001			<0.2		267	12	9950	0.2		TB13103747
							N504219		42	44	2.0	0.001	< 0.005	0.001			<0.2		279	8	8900	0.18		TB13103747
36.30	102.00	2b - Coarse gr	ained olivine g	abbro with modal layering 3-5% dis	seminate	d sulphides	N504220		44	46	2.0	0.002	< 0.005	0.001			<0.2		299	2	>10000	0.12		TB13103747
				homogenous and continuous 2b >80 plag rich layers.		36.3-40.46m 4% fg-mg po, 2% fg-mg cpy found throughout all	N504221		73	75	2.0	0.001	< 0.005	< 0.001			<0.2		93	<1	9770	0.17		TB13103747
				35.3-41m Weak to moderate (decreasing downhole) ch and pink alteration.		layers (mafic and plag rich)	N504222		75	77	2.0	0.001	< 0.005	<0.001			<0.2		102	1	>10000	0.3		TB13103747
				36.3-39.12m Abundant (2-5% of total rock) ca and ch veins (1-5mm thick). A large concentration of 2-3% dis	seminate	40.46-41m 1% fg po, 0.5% fg cpy found throughout all	N504223		77	79	2.0	0.001	< 0.005	<0.001			<0.2		88	<1	10000	0.27		TB13103747
				sulfides (20% of vein, 2:1 po:cpy) occurs in a ca vein.		layers (mafic and plag rich)	N504224		79	81	2.0	0.001	< 0.005	0.001			<0.2		99	<1	>10000	0.28		TB13103747
				few very small mafic layers <5cm with a sharp contact and fine grains (Mag, olivine), and also few 2-3% dis	seminate	d sulphides	N504225	b				0.001	< 0.005	< 0.001			<0.2		2	<1	70	<0.01		TB13103747
				really rich plag layers (>80%plag0		40.46-41m 1% fg po, 0.5% fg cpy found throughout all	N504226		81	83	2.0	0.001	< 0.005	<0.001			<0.2		94	<1	9130	0.28		TB13103747
				40.5-40.75m Pegmatitic syenite dyke, Contacts are highly altered (vcg bi, ch, act) and have 1-2cm		layers (mafic and plag rich)	K004173		46	55	9.0											0.17	0.02	TB13118918
				cpx grains. Vugs are filled by calcite, feldspars are pink. cpx grains. 0.5% to 1	1% disser	minated sulphides	K004174		55	64	9.0											0.23	0.01	TB13118918
				Vugs are filled by calcite, feldspars are pink.		41-43.32 mostly cpy, present in all layers	K004175		64	73	9.0											0.22	<0.01	TB13118918
				54-56 more leucocratic part of 2b, 60-70% plag Trace to	0.5% dis	seminated sulphides	K004176		83	92	9.0											0.26	0.05	TB13118918
				75-81 mafic layers (around 50%) with mag cumulate and olivine		43.32-75 unminerallized or trace	K004177		92	101	9.0											0.23	0.02	TB13118918
				81-102 few pegmatitic syenite dyke with coarse grain feldspath K, biotite,and cpx associated Local ble	bs to 1-2	% sulphides																.		
				with sulfide and altered at the border.		75-81 mineralization in mafic part, content increase close to																.		
				41-102 heterogeneous epidotization and pink alteration (<10%)		the fractures, cpy=Po																.		
			5a - Quartz sy	yenite Trace to	0.5% dis:	seminated sulphides																.		
				40.5-40.75m Pegmatitic syenite dyke, Contacts are highly altered (vcg bi, ch, act) and have 1-2cm		81-102, coarse grain sulfide cpy and Po assiociated with the																.		
				cpx grains. Vugs are filled by calcite, feldspars are pink. cpx grains.		syenite dyke, at the border, enclose in a mafic part (mag and																,		
				81-102 few pegmatitic syenite dyke with coarse grain feldspath K, biotite,and cpx associated		olivine rich)																.		
				with sulfide and altered at the border.																		,		
102.00		EOH - End of	Hole																			.		
																						.		
																						,		
]															,		
																						.		
									1			1	1	1					1	1		.		

NTS:		42 D / 16	STILLWATER CANADA INC DIAMOND DRILL CORE LOG	DDH:	FD-13-15	DIAMOND DRI	LL CORE L	OG
υтм	Northing	5409141		Lease/Claim:	1240552	Reflex EZ Sho	t- Diamond	Drillhole Surve
(Nad27)	Easting	547721.7		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation	(m):	383.1		Zone:	Four Dams South	Casing	-44.76	32.97
Dip at Col	lar:	-44.76		Date start:	31-May-13			
Azimuth:		32.97		Date finish:	01-Jun-13			
Total Dept	th:	66		Contractor:	Chibougamau Diamond Drilling			
Core Size:		NQ		Logged by:	Julien Meric			
Remarks:		Core stored in Stil	water Canada Inc. warehouse, Marathon, Ontario	Assistant:	Renata Smoke (RQD)	complete downhole	survey in Fou	r Dams masterlist

	GEOLC	IGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	3.00	OB - Overburd	en				N504227		4	6	2.0	0.012	<0.005	0.002			<0.2		596	92	>10000	0.22		TB13103770
							N504228		6	8	2.0	0.003	< 0.005	0.001			<0.2		610	98	>10000	0.18		TB13103770
3.00	25.37	2f - Medium to	coarse grained	l oxide augite melatroctolite	Trace to 0.5% diss	seminated sulphides	N504229		8	10	2.0	0.003	< 0.005	0.003			<0.2		664	87	>10000	0.21		TB13103770
				10-15% plag rich layers		3-8m trace of very fine grain sulfides Po and Cpy	N504230		10	12	2.0	0.004	< 0.005	0.003			<0.2		926	117	>10000	0.25		TB13103770
				18.2-18.4 leucocratic layer with >80% plag, with sharp contact ;	0.5% to 1% disser	ninated sulphides	N504231		12	14	2.0	0.003	< 0.005	0.001			<0.2		924	135	>10000	0.25		TB13103770
				19.1-19.55 altered mafic layer with mag, olivine and lots of apatite, it is in contact with a syenite dyke		8-10m fine grain of Po and Cpy	N504232		14	16	2.0	0.006	0.005	0.003			0.2		1065	165	>10000	0.26		TB13103770
				with pink alteration and strong epidotization and coarse grain cpx, plag and biotite.	2-3% disseminate		N504233		16	18	2.0	0.007	0.012	0.006			0.5		2090	247	9010	0.46		TB13103770
						10-20m medium to fine grain interstitial sulfide; 4% Po 1% Cpy	N504234		18	20	2.0	0.004	0.007	0.003			0.3		1435	187	>10000	0.31		TB13103770
<u> </u>						texture of subeuhedral grain of pyrrhotite surrounding a	N504235		20	22	2.0	0.002	< 0.005	<0.001			<0.2		699	96	>10000	0.17		TB13103770
<u> </u>						chlorite ? At the border of a syenite dyke	N504236		22	24	2.0	0.001	< 0.005	<0.001			<0.2		602	59	>10000	0.15		TB13103770
					Trace to 0.5% diss	seminated sulphides	K004178		24	33	9.0											0.12		TB13118918
						20-25.37m unmineralized or trace sulfides.	K004179		33	42	9.0											0.13		TB13118918
<u> </u>						Sulfide (medium grain of Po and Cpy) mineralisation seems to	K004180		42	51	9.0											0.17	0.01	TB13118918
						increase when associated with syenite but just locallly	K004181		51	60	9.0											0.22	0.05	TB13118918
						We can also see mineralisation in mafic material	K004182		60	66	6.0											0.29	0.01	TB13118918
							+																	1
25.37	66.00	2b - Coarse gra	ained olivine ga	abbro with modal layering	Trace to 0.5% diss	seminated sulphides	+																	1
				plag rich layer no mafic layers, coarse grain plag, cpx cumulate, olivine and mag		25.37-66m unmineralized or trace sulfides.	ŧ																	1
				51.15 vug 5cm long 2 cm wide highly altered and filled by actinolite and carbonate ?		Sulfide (medium grain of Po and Cpy) mineralisation seems to	ŧ																	1
				Several syenite dyke (3-4) with epidotization		increase when associated with syenite but just locally	ŧ																	1
				60-62 2 intrusion of mafic material 5-10 cm widw, cumulate of olivine cpx, and magnetite and		We can also see mineralisation in mafic material	ŧ																	
				very rich in apatite (around 5-8%), they are associated with medium grain sulfides (maybe 3h lithology) ?, and presence of chlorite.			+																	
66.00		EOH - End of H	lolo	(naybe on innoidgy) ?, and presence or chlorite.			†																	
00.00		EOH - ENU OI I	1018				t																	1
							1																	1
							1																	1
							1																	1
							1																	l I
							1																	1
							1																	1
							1																	l I
							1																	1
							T																	1
]																	1
																								1
																								1
																								1
																								1
																								1
							1																	1
L							1																	1
							1							1										1
<u> </u>							1					1		1										1
<u> </u>							1					1		1										1
<u> </u>							1					1		1										1
L							1																	1 I
'							4																	
							1			1		1	1	1							I	ı		ı l

			STILLWATER CANADA INC DIAMOND DRILL CORE LO
NTS:		42 D / 16	
UTM	Northing	5409140	
(Nad27)	Easting	547721.7	
Elevation	(m):	383.1	
Dip at Co	llar:	-84.3	
Azimuth:		33.31	
Total Dep	oth:	102	
Core Size	:	NQ	
Remarks	:	Core stored	d in Stillwater Canada Inc. warehouse, Marathon, Ontario

DDH: FD-13-16 Lease/Claim: 1240552 Property: Zone: Coldwell Complex Four Dams South Date start: 01-Jun-13 Date finish: 02-Jun-13 Contractor: Chibougamau Diamond Drilling Logged by: Julien Meric Assistant: Renata Smoke

DIAMOND DRILL CORE LOG Reflex EZ Shot- Diamond Drillhole Survey Depth Dip Azimuth Casing -84.3 33.31

-84.3	33.31
	-84.3

	GEOL	.OGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TPG	l Ag	Cu	Cu	Ni	Р	S	C Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	pm ppn	ppm	%	ppm	ppm	ppm	%	% #
0.00	1.58	OB - Overburg	en				N504237		2	4	2.0	0.003	<0.005	0.004		<0.2		737	88	>10000	0.27	TB13103746
							N504238		4	6	2.0	0.003	< 0.005	0.003		<0.2		716	96	>10000	0.27	TB13103746
1.58	2.25	2b - Coarse gr	ained olivine ga	abbro with modal layering	0.5% to 1% disse	minated sulphides	N504239		6	8	2.0	0.027	< 0.005	0.002		<0.2		728	103	>10000	0.23	TB13103746
				Med to crs gr plag, cpx, ol, mag, continuous and homogenous.		1.58-2.25 Mostly Po, trace of cpy	N504240	mpg2				0.197	0.468	0.916		1		2780	272	1660	1.12	TB13103746
							N504241		8	10	2.0	0.003	< 0.005	0.002		<0.2		721	112	>10000	0.2	TB13103746
2.25	23.47	2f - Medium to	coarse grained	oxide augite melatroctolite	0.5% to 1% disse	minated sulphides	N504242		10	12	2.0	0.004	< 0.005	0.004		<0.2		875	101	>10000	0.23	TB13103746
				15% 3-15cm plag rich layers. Med gr ol, cpx, mag plag		2.25-13.70 Mostly Po, trace of cpy, sulfides concentrated	N504243		12	14	2.0	0.004	< 0.005	0.006		<0.2		872	113	>10000	0.23	TB13103746
				20.48-22.2m Thick mg mag (45%), ol (40%), and apatite (5%) rich layer of 2f (<5%) plag layers and		in mafic layers (mag rich)	N504244		14	16	2.0	0.005	< 0.005	0.003		0.2		1245	142	>10000	0.31	TB13103746
				contain lots of chlorite veins (18-20 times)	2-3% disseminate		N504245		16	18	2.0	0.004	< 0.005	0.002		<0.2		1045	131	>10000	0.26	TB13103746
			3h - Apatitic cl	linopyroxenite		13.70-19.2 1-2% po, <0.5% cpy concentrated in mafic layers (mag rich)	N504246		18	20	2.0	0.007	< 0.005	0.004		0.3		1735	167	>10000	0.41	TB13103746
				several intrusive stringer or blebs of 3h (3-10cm wide), Cpx, mag, olivine rich. sometime associated	3-5% disseminate		N504247		20	22	2.0	0.009	0.014	0.008		0.5		2770	298	9890	0.53	TB13103746
				with fractures or syenite (looks like a mixing of both ?) . Most of the time these stringer and blebs are		19.2-23.47 6% fg-mg po, 2% fg cpy found within mag, by	N504248		22	24	2.0	0.004	0.005	0.001		0.5		2400	195	>10000	0.48	TB13103746
				minerallized in sulfide.		rich outer zone of dyke	N504249		24	26	2.0	0.001	< 0.005	0.001		<0.2		588	60	9120	0.12	TB13103746
				4.42-5.54m ; 19.16-19.30m			N504250		26	28	2.0	0.001	< 0.005	0.001		<0.2		547	53	9950	0.15	TB13103746
23.47	27.00	2b - Coarse gr	ained olivine ga	abbro with modal layering	3-5% disseminate		N504251		28	30	2.0	0.001	< 0.005	0.001		<0.2		642	48	9720	0.23	TB13103746
				Med to crs gr plag, cpx, ol, mag, continuous and homogenous.		23.47-24.2 6% fg-mg po, 2% fg cpy	N504252		30	32	2.0	0.002	< 0.005	0.001		<0.2		512	48	>10000	0.17	TB13103746
					0.5% to 1% disse	minated sulphides	N504253		32	34	2.0	0.001	< 0.005	0.001		<0.2		400	19	9790	0.14	TB13103746
						24.2-27.0 fine grain in mafic part with 4:1 Po/cpy and cpy ratio	N504254		53	55	2.0	0.001	< 0.005	0.001		<0.2		298	4	8270	0.13	TB13103746
						increase in the 2b part 1:1	N504255	d	53	55	2.0	0.001	<0.005	0.001		<0.2		302	2	8340	0.13	TB13103746
27.00	27.85	FZ - fault or sh	ear zone		0.5% to 1% disse	minated sulphides	N504256		55	57	2.0	0.001	<0.005	<0.001		<0.2		305	2	9770	0.18	TB13103746
				lots of chlorite infills, and rubble		27.0-27.85 fine grain in mafic part with 4:1 Po/cpy and cpy ratio	N504257		57	59	2.0	<0.001	<0.005	0.001		<0.2		184	4	9100	0.17	TB13103746
						increase in the 2b part 1:1	N504258		59	61	2.0	0.001	<0.005	0.001		<0.2		160	5	7480	0.12	TB13103746
27.85	102.00	2b - Coarse gr	ained olivine ga	abbro with modal layering	0.5% to 1% disse	minated sulphides	N504259		61	63	2.0	0.001	<0.005	0.001		<0.2		124	11	9690	0.23	TB13103746
				Med to crs gr plag, cpx, ol, mag, continuous and homogenous.		27.85-31.2 fine grain in mafic part with 4:1 Po/cpy and cpy ratio	N504260		63	65	2.0	0.001	< 0.005	0.001		<0.2		105	5	9020	0.25	TB13103746
				27.9-28.09m Pegmatitic dyke, labradorite core of feld with pink outer zoning. Vcg to pegmatitic		increase in the 2b part 1:1	N504261		65 67	67 69	2.0	0.001	< 0.005	< 0.001		<0.2		104 95	1	>10000	0.26	TB13103746
				cpx, mag, and bi at outer rims of dyke		locally associated with stringer and blebs of 3h	N504262				2.0	0.001	<0.005	0.001		<0.2		95	1	>10000	0.25	TB13103746
				56.12-58.1m Greater proportion of mafic mag rich layers, with 5% apatite (adjacent to, and at	Local blebs to 2-4		K004183		34	43	9.0										0.1	0.08 TB13118918
				contact with 3h unit directly down hole).		56.4-63.3 closely associated with 3h material in blebs with	K004184 K004185		43 69	52 78	9.0 9.0										0.09	0.23 TB13118918
				58.10-60.12 Possible intrusion of marathon series? coarse grained plag with possible ophitic		medium to fine grain sulfides 3:1 Po cpy	K004185 K004186		69 78	78 87	9.0										0.2	<0.01 TB13118918 0.02 TB13118918
				texture, not sure. with 10-15% of 3h present in blebs, the contact with 2b unit is diffuse and difficult		few sulfide present in all lithology, mostly cpy in 2b plag rich	K004186 K004187		78 87												0.21	
				to distinguish. Plag rich leucopod occurs. Really rich in apatite (around 10%).			K004187 K004188		87	96 102	9.0 6.0										0.22	0.04 TB13118918 0.01 TB13118918
			3h - Apatitic cl	editor's note: plg-rich leucopods are most likely 2e lenses (R. Epstein July 31, 2013)	Local blebs to 2-4	0/ sub-kidas	KUU4166		96	102	6.0										0.19	0.01 1013110910
			511 - Apauluc G	several intrusive stringer or blebs of 3h (3-10cm wide), Cpx, mag, olivine rich. sometime associated	LOCAI DIEDS to 2-4	66-102 sulfides associated with 3h material 3-5% sometime																
				with fractures or syenite (looks like a mixing of both ?). Most of the time these stringer and blebs are		more 4:1 Po, cpy.																
				minerallized in sulfide.		more at the object																
				29.34-29.56m ; 43.3-43.4 ; 43.65																		
				62.03-62.5; 65.8-65.9; 66.4-66.7 (bleb with syenite); 68.05-68.10 (no sulfide); 73.8-73.84;																		
				82.12-82.16 (with syenite) ; 82.25-82.34 (with fracture) ; 82.48-82.56 (blebs) ; 91.95-92.05 ;																		
				100.97-101.03 ; 101.23 (3cm thick and mag >50% and assciated with syenite)																		
102.00		EOH - End of	Hole				1		1				1									
							1		1				1									
									1				1									
									1				1									
									1				1									
									1				1									
									1				1									
									1				1									
									1				1									
							-											•	•	•		

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG		
NTS:		42 D / 16		DDH:	FD-13-17
UTM	Northing	5409097.6		Lease/Claim:	1240552
(Nad27)	Easting	547759.2		Property:	Coldwell Complex
Elevation	ı (m):	387.6		Zone:	Four Dams South
Dip at Co	ollar:	-60		Date start:	02-Jun-13
Azimuth:		28.69		Date finish:	02-Jun-13
Total De	oth:	54		Contractor:	Chibougamau Diamond Drilling
Core Size	e:	NQ		Logged by:	Renata Smoke
Remarks	:	Core stored	in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Julian Meric

downhole survey not available

No. No. </th <th></th> <th>GEOLO</th> <th>DGY</th> <th></th> <th></th> <th></th> <th>Mineralization</th> <th>SAMPLE</th> <th></th> <th>INTERVAL</th> <th></th> <th>WIDTH</th> <th>Au</th> <th>Pt</th> <th>Pd</th> <th>Rh TF</th> <th>GM Ag</th> <th>Ci</th> <th>ı Cu</th> <th>Ni</th> <th>Р</th> <th>S</th> <th>С</th> <th>Job</th>		GEOLO	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TF	GM Ag	Ci	ı Cu	Ni	Р	S	С	Job
i i </th <th>From</th> <th>То</th> <th>Maj Rock</th> <th>Min Rock</th> <th>Comments</th> <th>Mineraliz</th> <th>Comments</th> <th>NO.</th> <th>QC</th> <th>FROM</th> <th>то</th> <th></th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>ppm p</th> <th>om ppn</th> <th>%</th> <th>ppm</th> <th>ppm</th> <th>ppm</th> <th>%</th> <th>%</th> <th>#</th>	From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm p	om ppn	%	ppm	ppm	ppm	%	%	#
Image: Problem intermediate intermediat	0.00	1.60	OB - Overburden	1				N504263		11	13	2	0.003	< 0.005	0.004		<0.2		833	103	>10000	0.25	TP	313106371
III <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>N504264</td><td></td><td>13</td><td>15</td><td>2</td><td>0.002</td><td>< 0.005</td><td>0.006</td><td></td><td><0.2</td><td></td><td>694</td><td>88</td><td>>10000</td><td>0.24</td><td>TP</td><td>313106371</td></th<>								N504264		13	15	2	0.002	< 0.005	0.006		<0.2		694	88	>10000	0.24	TP	313106371
41.0 1.0<	1.60	6.16	2b - Coarse grain	ied olivine ga	abbro with modal layering			N504265		15	17	2	0.003	< 0.005	0.006		<0.2		641	108	>10000	0.21	TE	313106371
					More ol rich than usual. 20%, mg ol			N504266		21	23	2	0.002	< 0.005	0.002		<0.2		689	104	>10000	0.21	TE	313106371
	6.16	26.42	2f - Medium to co	oarse grained		Trace to 0.5% d	sseminated sulphides	N504267		23	25	2	0.007	0.012	0.005		0.5		2310	213	>10000	0.53	TE	313106371
					15-20% plag rich layers, 2-15cm		2:1 po:cpy, trace-1% po in mag rich layers	N504268		25	27	2	0.007	0.011	0.004		1		3740	303	>10000	0.81	TE	313106371
					Alteration:			N504269		27	29	2	0.001	< 0.005	0.001		0.4		1590	107	8850	0.34	TB	313106371
					8.6-26.42m Moderate to intense pink and weak ser alteration of plag			N504270	b				< 0.001	< 0.005	<0.001		<0.2		13	<1	50	0.02	TE	313106371
					13-14.77m intense chlor, and bi alteration in mafic rich zones (coincides with 3i stringers)			N504271		29	31	2	< 0.001	< 0.005	<0.001		<0.2		383	46	9860	0.12	TB	313106371
			3i	- Apatitic oli	ivine clinopyroxenite	2-3% dissemina	ed sulphides	N504272		31	33	2	< 0.001	0.015	0.031		<0.2		212	18	7480	0.08	TP	313106371
Image: Mark in the second state and which if a gray is a second state and which if a gray i					13.18-14.46m			N504273		33	35	2	0.001	0.01	0.021		<0.2		196	14	6540	0.09	TB	313106371
1 <td< td=""><td></td><td></td><td></td><td></td><td>Broken. Lower contact is back and forth with 2f and 3i.</td><td></td><td></td><td>N504274</td><td></td><td>35</td><td>37</td><td>2</td><td>0.001</td><td>< 0.005</td><td>0.004</td><td></td><td><0.2</td><td></td><td>291</td><td>10</td><td>7360</td><td>0.08</td><td>TE</td><td>313106371</td></td<>					Broken. Lower contact is back and forth with 2f and 3i.			N504274		35	37	2	0.001	< 0.005	0.004		<0.2		291	10	7360	0.08	TE	313106371
1 1								N504275		37	39	2	0.005	< 0.005	0.001		<0.2		344	7	>10000	0.18	TE	313106371
1 <td< td=""><td></td><td></td><td></td><td></td><td>Alteration:</td><td></td><td></td><td>N504276</td><td></td><td>47</td><td>49</td><td>2</td><td>0.001</td><td>0.012</td><td>0.001</td><td></td><td><0.2</td><td></td><td>43</td><td><1</td><td>1900</td><td>0.03</td><td>TE</td><td>313106371</td></td<>					Alteration:			N504276		47	49	2	0.001	0.012	0.001		<0.2		43	<1	1900	0.03	TE	313106371
1 <td< td=""><td></td><td></td><td></td><td></td><td>10% chlor and bi veins (<5mm)</td><td></td><td></td><td>N504277</td><td></td><td>49</td><td>51</td><td>2</td><td>< 0.001</td><td>< 0.005</td><td>0.001</td><td></td><td><0.2</td><td></td><td>470</td><td>11</td><td>>10000</td><td>0.25</td><td>TP</td><td>313106371</td></td<>					10% chlor and bi veins (<5mm)			N504277		49	51	2	< 0.001	< 0.005	0.001		<0.2		470	11	>10000	0.25	TP	313106371
A20 A: 0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0										51	53	2		< 0.005	<0.001		<0.2			13	>10000	0.19	TP	313106371
	26.42	31.22	2b - Coarse grain	ied olivine ga		2-3% dissemina	ed sulphides	N504279		53	54	1	< 0.001	< 0.005	<0.001		<0.2		265	9	>10000	0.22	TP	313106371
1 1								K004189		2	11	9										0.21	0.01 TF	313118918
								K004190		17	21	4										0.13		
1 1 1 1 1 1 200 4 for 200 4 fo										38	47	9										0.06		
1 1					Alteration:																			
1 1						3-5% dissemina	ed sulphides																	
Image: Image																								
image: space of the space o																								
Image:			30	g - Medium te		Local blebs to 2-																		
Image:																								
112 20 VEXP attracting (velocity (velocity, table), (velocity) 0.5% to 1%, (velocity),							, , , , , , , , , , , , , , , , , , , ,																	
11.2 36.6 3																								
indication indication Contaction indication indication <td>31.22</td> <td>36.65</td> <td>3b - Coarse grain</td> <td>ed. ophitic a</td> <td></td> <td>0.5% to 1% diss</td> <td>eminated sulphides</td> <td></td>	31.22	36.65	3b - Coarse grain	ed. ophitic a		0.5% to 1% diss	eminated sulphides																	
initial Grain size is corresonand. but not homogenose. Prosebile interminging with synethe throughout initial initial Ophile interview, and catege quend it agente throughout and up to 20% in mag rich pods (pods are spans). initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial initial <																								
Image:																								
Image:																								
Image:																								
Image: Image																								
Image: Image					36.55-36.65m 10cm leucopod (98% plag)																			
indication altered 3b and not 2e (R. Epstein) indication																								
ind Alteration: Alteration: Index alteration and participant and partipant and participant and participant and par																								
Image: Interse and homogenous pink alteration on plag. Image: Interse and homogenous pink alteration alteration on plag. Image: Interse and homogenous pink alteration alterat																								
Image:								1						1		1								
Image: Index of these sugs there is intense seritization and tremolite alteration. Image: Index of these sugs there is intense seritization and tremolite alteration. Image: Index of these seritization and tremolite alteration. Image: Index of the series alteralteration. Image: Index of the series a																								
Image on the section of cyx. Image on the section of cyx. Image on the section of cyx. 366 46.79 2b - Coarse grained olivine gabbro with modal layering. Trace to 0.5% disseminated subphides 366 46.79 2b - Coarse grained olivine gabbro with modal layering. Trace to 0.5% disseminated subphides 366 46.79 2b - Coarse grained olivine gabbro with modal layering. Image on the section of cyx. 366 46.79 2b - Coarse grained olivine gabbro with modal layering. Image on the section of cyx. 366 46.79 2b - Coarse grained olivine gabbro with modal layering. Image on the section of cyx. 367 3c - Mich regrainer and section of cyx. 1mage on the section of cyx. Image on the section of cyx. 368 46.79 3c - Mich regrainer and section of cyx. Image on the section of cyx. Image on the section of cyx. 368 46.79 3c - Mich regrainer and section of cyx. Image on the section of cyx. Image on the section of cyx. 369 3c - Mich regrainer and section of cyx. 1mage on the section of cyx. Image on the section of cyx. 369 3c - Mich regrainer and cyx. 3c - Mich regrainer and cyx. Image on the cyx. Image on the cyx. 360 3								1						1		1								
Active Intense chlor alteration of cpx Intense chlor alteration of cpx Intense chlor alteration of cpx 366 46.79 2b - Coarse grad-othive jabbro with model layering Tace to 0.5% disseminated subplides Active 3cm chlor with marks contact of 3e leucopod, and this unit. cy only Image: State														1		1								
36.65 46.79 2b - Coarse grained olivine gaboro with modal layering Trace to 0.5% disseminated sulphides - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -								1						1		1								
3cm chlor vein marks contact of 3e leucopod, and this unit. cpy only Image: Specific Layers more prominent (60%), but low mag (5-10%), and high of 30% Image: Specific Layers more prominent (60%), but low mag (5-10%), and high of 30%	36.65	46.79	2b - Coarse orain	ied olivine na		Trace to 0.5% d	sseminated sulphides	1						1		1								
Addic layers more prominent (60%), but low mag (5-10%), and high of 30%			generation of the second se	go				1						1		1								
								1						1		1								
	46.79	48.84	2g - Gabbroic an	orthosite				1						1		1				1	1			

	GEO	DLOGY				Mineralization	SAMPLE	IN	TERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S C	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	% %	#
				Patchy. Upper contact is sharp, lower marked by 10cm thick zone of 75% vcg cpx and 20% ap (cpy																			
				mineralization see to right, intensely altered)																			
				40.96-41.94m intermingling with apatite rich (10-15%) zones of 50% cg cpx, and small (<4cm) of mag, cpx (both cg) and apatite (as inclusions) rich patches.	2-3% disseminate	g-mg cpy ONLY found in cpx, mag, and apatite rich zones																	
			3i - Apatitic oli	Iving clinopyroxenite	2-3% disseminate	d sulphides																	
				46.79-50.75m Stringers compose approx 30% of rock.		fg-mg cpy ONLY found in cpx, mag, and apatite rich zones																	
				Alteration:																			
40.04	E4.00	Of Markinster		Intensely altered (chlor, pegm bi) d oxide augite melatroctolite																			
40.04	54.00	21 - Medium to	coarse grained	Plag rich layers compose 30% of rock, 5-20cm wide.																			
				livine clinopyroxenite	2-3% disseminate	d sulphides																	
				46.79-50.75m Stringers compose approx 30% of rock.		fg-mg cpy ONLY found in cpx, mag, and apatite rich zones																	
				Alteration:																			
54.00		EOH - End of H		Intensely altered (chlor, pegm bi)																			
J4.00		EQT - EIGOF	1010																1				
																			1				
																			1				
_																							
																			1				
																			1				
																			1				
																			1				
																			1				
-					1			1 1	1	1		1	1		1 1	I I	1		1	1	1	1 1	1

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG		
NTS:		42 D / 16		DDH: FD-	<u>13-18</u>
UTM	Northing	5409082		Lease/Claim:	1240552
(Nad27)	Easting	547750.8		Property:	Coldwell Complex
Elevation	n (m):	388.1		Zone:	Four Dams South
Dip at Co	ollar:	-69.81		Date start:	02-Jun-13
Azimuth:		33.43		Date finish:	03-Jun-13
Total Dep	oth:	102		Contractor:	Chibougamau Diamond I
Core Size	e:	NQ		Logged by:	Renata Smoke
Remarks	:	Core stored	l in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Julien Meric

DIAMOND DRILL CORE LOG 1240552 Reflex EZ Shot- Diamond Drillhole Survey well Complex Depth Dip Azimuth Casing -69.81 33.43 02-Jun-13 03-Jun-13 03-Jun-13 03-Jun-13 04 Diamond Drilling nata Smoke

	GE	OLOGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	4.13	OB - Overb	urden				N504280		17	19	2.0	0.001	<0.005	0.001			<0.2		388	44	>10000	0.17	-	TB13103719
							N504281		19	21	2.0	0.003	< 0.005	0.003			0.3		777	84	>10000	0.31	-	TB13103719
4.13	19.54	4 2b - Coarse	grained olivine g	gabbro with modal layering	0.5% to 1% disse	minated sulphides	N504282		21	23	2.0	0.003	<0.005	0.002			0.2		691	85	>10000	0.25	-	TB13103719
						trace-1% po, trace cpy	N504283		23	25	2.0	0.005	<0.005	0.004			0.4		1090	126	>10000	0.35	-	TB13103719
			3c - Coarse	grained, ophitic gabbro with leucogabbro lenses	Trace to 0.5% dis	seminated sulphides	N504284		25	27	2.0	0.004	<0.005	0.005			0.3		857	113	>10000	0.22	-	TB13103719
				13-13.4m 3cm wide interval of 3h at the upper contact, sharp lower contact		trace fg cpy and po (2:1 po:cpy) as inclusions in pegm mag	N504285	mpg1				0.222	0.867	3.68			3.8		7610	404	1380	1.15	-	TB13103719
				18.6-18.77m		and/or as inclusions in cpx	N504286		27	29	2.0	0.005	<0.005	0.007			0.3		1130	160	>10000	0.3	-	TB13103719
				Alteration:			N504287		29	31	2.0	0.005	<0.005	0.009			0.3		1090	167	>10000	0.4		TB13103719
				Intensely altered throughout:			N504288		31	33	2.0	0.003	<0.005	0.005			0.3		812	124	>10000	0.2		TB13103719
				Chlor and bi alteration of 3h			N504289		33	35	2.0	0.003	<0.005	0.001			0.3		725	110	>10000	0.18		TB13103719
				Pink and ser alteration of plag in 3c, with qtz and trem filled vugs			N504290		35	37	2.0	0.003	<0.005	0.001			0.3		771	122	>10000	0.18		TB13103719
19.54	45.10) 2f - Mediun	to coarse grain	ed oxide augite melatroctolite	3-5% disseminate	-	N504291		37	39	2.0	0.008	0.015	0.007			0.8		2860	262	>10000	0.52		TB13103719
				30% plag rich layers, 10-50cm thick.		rare (<1% of rock), only in small (<3cm) chlor and act altered	N504292		39	41	2.0	0.007	0.013	0.009			0.8		2880	286	9290	0.51		TB13103719
				32.25-33.45m Several (approx 40% of interval) 3g or 3i stringers. Contains pegm mag (20%),		blebs (within 1.5m uphole from below mentioned mineralized zone)	N504293		41	43	2.0	0.004	0.005	0.003			0.5		1610	160	9920	0.3		TB13103719
				cpx (20%), and plag (20%); coarse ol (20%), fg apatite (15%), and 1-2%cpy	3-5% disseminate		N504294		43	45	2.0	0.006	0.012	0.004			1		3840	187	>10000	0.74		TB13103719
				Alteration:		38.46-40.1m 3%po, 1% cpy. In mag rich layers, and adjacent to	N504295		45	47	2.0	0.003	< 0.005	0.001			0.6		2610	119	>10000	0.63		TB13103719
				21.3-27m moderate chlor alteration		chlor veins (1:1 cpy:po near veins). Throughout unit.	N504296		47	49	2.0	0.004	< 0.005	0.001			0.3		1560	56	8850	0.48		TB13103719
				27-30.26m intense chlor alteration, and an increased concentration of chlor bi veins (<8mm, 5%			N504297		49	51	2.0	0.002	<0.005	0.001			0.3		1600	47	7930	0.54		TB13103719
				of rock)			N504298		51	53	2.0	0.002	< 0.005	0.001			<0.2		309	26	9250	0.15		TB13103719
				30.26-38.45m moderate chlor alteration			N504299		77	79	2.0	0.001	<0.005	0.001			<0.2		80	<1	8660	0.25		TB13103719
			ah Carrier	38.45-43.66m Intense chlor alteration, with associated chlor/actin veins (<8mm, 10% of total rock)	l anal blaba ta d (0/	N504300 N504301	a	77 79	79 81	2.0	0.001	<0.005	0.001 <0.001			<0.2 <0.2		79 69	<1	8870 7140	0.25 0.18		TB13103719 TB13103719
			30 - Coarse	grained, ophitic gabbro (>5mm) 40.93-41.53m Also mixed with pod or stringer of 3i	Local blebs to 1-2	1-2mm, cpy, 0-1% of unit			79 81	83	2.0	0.001	<0.005 <0.005				<0.2		83	<1	7970	0.18		TB13103719
45.10	E0 2/	1 2h Coorre	arained elisine (abbro with modal layering	3-5% disseminate		N504302 N504303		83	85	2.0 2.0	0.001	<0.005	0.001			<0.2		63 76	3	8110	0.16		TB13103719
40.10	30.34	+ 20 - Coarsi	grained olivine ç	45.1-70.7m weak to mod chlor and pink alteration	3-3 % disseminate	46.46-46.52m 3%cpy, 3%po in chlor and bi altered pod	N504304		85	87	2.0	0.001	<0.005	<0.002			<0.2		99		9380	0.24		TB13103719
				43.1*70.711 Weak to mod chior and pink alteration	3-5% disseminate		N504305		87	89	2.0	0.001	< 0.005	0.001			<0.2		55 63	1	7520	0.29		TB13103719
					5-576 013361111100	46.68-47.04 3% po, trace cpy, found throughout unit	K004192		4.13	13	8.9	0.001	20.000	0.001			NO.2		00		7520			TB13118918
58.34	59.00) FZ - fault o	shear zone		3-5% disseminate		K004193		13	17	4.0										1			TB13118918
00.01	00.00		Unida Zunio	faulting of 2b, chlor coated slickenslides	o o /o diodorninad	48.54-49.64m 3% po, 1% cpy Concentrated in mafic layers	K004194		53	62	9.0										1			TB13118918
59.00	79.47	7 2b - Coarse	grained olivine of	gabbro with modal layering		lot in the point of the point o	K004195		62	71	9.0										1			TB13118918
				same unit as above			K004196		71	77	6.0										1			TB13118918
				Alteration:			K004197		89	98	9.0										1			TB13118918
				70.7-79.47 Intense pink alteration, moderate chlor			K004198		98	102	4.0										1			TB13118918
79.47	83.23	3 3c - Coarse	grained, ophitic	gabbro with leucogabbro lenses	3-5% disseminate	ed sulphides															1			
				Difficult to determine contacts (intermingled with 2b), but the ophitic texture is distinctive.		79.47-80.51m 5% po, trace cpy concentrated in chlor veins															1			
				80% leucopods	0.5% to 1% disse	minated sulphides															1			
				82.94-83.23m 2b patchy xenolith		80.42-81.48m 1% po, trace cpy near lower contact with 3c															1			
				Alteration:																	1			
	_			Strong ep, chlor alteration and bi alteration rims on bi.																	ı			
83.23	102.0	0 2b - Coarse	grained olivine o	abbro with modal layering																	, I			
				88-102m plag alignment			_														, I			
				96.76-102m increase in mafic layers (60%), but distinctive from 2f (less ol and mag)			_														, I			
				Alteration:			4														, I			
				83.23-87m Intense pink alteration, mod chlor			4														, I			
				87-90.5 mod pink and chlor alteration	_		4														, I			
			3h - Apatitic	clinopyroxenite	2-3% disseminate	d sulphides	4														, I			
				85.59-85.98m		1-2% po, trace cpy			1												, I			

	GEOLOGY				Mineralization	SAMPLE	INT	TERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni P	S	С	Job
From	То СК	Rock	Comments	raliz	Comments	NO.	QC F	ROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm ppr	n %	%	#
From	Maj Ro	Min Roe	Comments	Mine	Comments	NO.		NOM I	10		ppin	ppm	ppm	ppm	ppm	ppm	76	ppin	ppin ppi	. ^	78	*
			86.26-86.37m																			
			86.67-86.77m with 3i																			
_			Alteration: Relatively unaltered (slight chlor), sharp contacts (no gradation).																			
102.00	EOH - End	of Hole	Relatively diffacted (sight chick), sharp contacts (no gradation).																			
_																						
																						1
																						1
																						1
																						1
																						1
																						I
																						I
		_																				
		_																				
																						1
																						1
																						1
																						1
																						1
																						1
																						1
																						1
		_																				1
																						1
																						1
		_																				1
																						1
																						1
										I												

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG	
NTS:		42 D / 16	<u>DDH:</u> <u>FD-13-19</u>	
UTM No	orthing	5409066	Lease/Claim:	1240552
(Nad27) Ea	asting	547800.6	Property: Co	Idwell Comp
Elevation (m):	397.6	Zone: Fo	our Dams Sou
Dip at Collar:	:	-45.31	Date start:	03-Jun-13
Azimuth:		29.42	Date finish:	03-Jun-13
Total Depth:		66	Contractor: Chibouga	amau Diamon
Core Size:		NQ	Logged by:	Julien Meric

DDH:	FD-13-19
Lease/Claim:	1240552
Property: Zone:	Coldwell Complex Four Dams South
Date start:	03-Jun-13
Date finish:	03-Jun-13
Contractor:	Chibougamau Diamond Drilling
Logged by:	Julien Meric
Assistant:	Yongang Feng, Renata Smoke

Reflex EZ Shot- Diamond Drillhole Survey DepthDipAzimuthCasing-45.3129.42

complete downhole survey in Four Dams masterlist

DIAMOND DRILL CORE LOG

Core stored in Stillwater Canada Inc. warehouse, Marathon, Ontario

Remarks:

	GEOLO	DGY			Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	s	с	Job
	OLOLU				Willeranzation					morn	~			N.I		~9	- Cu	- Ou					000
From	То	Maj Rock Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	1.83	OB - Overburden				N504306		11	13	2	0.002	< 0.005	0.001			<0.2		387	51	>10000	0.14		TB13103718
						N504307		13	15	2	0.006	0.005	0.002			0.4		1330	114	>10000	0.4		TB13103718
1.83	26.70	2b - Coarse grained olivir	e gabbro with modal layering	Trace to 0.5% dis	seminated sulphides	N504308		15	17	2	0.003	< 0.005	0.001			0.2		636	78	>10000	0.21		TB13103718
			1.83-22.6 med to crs interstitial plag, and cumulate ol, px, mag apatite and biotite. 80-90 % of		8.3-13 unmineralized to trace	N504309		17	19	2	0.002	< 0.005	0.001			0.2		612	77	>10000	0.2		TB13103718
			plag rich layers. Locally the mafic layer increase. We can see plag anlignment	0.5% to 1% disse	minated sulphides	N504310		19	21	2	0.003	< 0.005	0.002			0.2		675	73	>10000	0.2		TB13103718
			22.6-26.7 gradual increase of mafic layers rich in olivine		13-22.59, globally trace, but patchy sulfides occurs and could	N504311		21	23	2	0.003	< 0.005	0.003			0.2		700	92	>10000	0.21		TB13103718
					reach 2-3% even 8% (14.24-14.5). Mostly Po 8:1	N504312		23	25	2	0.004	< 0.005	0.007			0.3		912	145	>10000	0.26		TB13103718
				2-3% disseminate	ad sulphides	N504313		25	27	2	0.003	< 0.005	0.009			0.2		595	110	>10000	0.18		TB13103718
					22.59-26.70 discontinous mostly fine grain Po	N504314		27	29	2	0.003	< 0.005	0.002			0.3		670	103	>10000	0.19		TB13103718
26.70	43.84	2f - Medium to coarse gra	ined oxide augite melatroctolite	2-3% disseminate	ed sulphides	N504315	b				0.001	< 0.005	0.001			<0.2		2	1	20	0.02		TB13103718
			26.7- 43.84 Gradual contact with 2b at the top		26.70-27.6 discontinuous mostly fine grain Po	N504316		29	31	2	0.003	< 0.005	0.002			0.2		636	99	>10000	0.18		TB13103718
			med to crs px, mag, plag, ol , apatite (richer in Px than the mafic layers saw above)	3-5% disseminate	ed sulphides	N504317		31	33	2	0.005	0.005	0.003			0.4		1330	169	>10000	0.34		TB13103718
					27.6-34.45 med to fine grain 6:1 Po, Cpy	N504318		33	35	2	0.004	0.007	0.004			0.7		2290	203	7360	0.47		TB13103718
		2e - Medi	im to coarse grained olivine gabbro	3-5% disseminate	ed sulphides	N504319		35	37	2	0.003	< 0.005	0.003			0.6		2770	105	7900	0.71		TB13103718
			28.08-28.57 ; 28.95-29.55 ; 34.06-34.29 kind of intrusion but diffuse contact, med to crs Plag, px,		34.45-36.93; 5-10% medium to fine grain 8:1 Po, Cpy	N504320		37	39	2	0.001	< 0.005	< 0.001			<0.2		373	16	7060	0.2		TB13103718
			mag, ol; with split core: definitely without ophitic texture	Trace to 0.5% dis	seminated sulphides	N504321		39	41	2	0.001	< 0.005	0.001			<0.2		340	17	7830	0.17		TB13103718
		2g - Gabb	roic anorthosite		36.93-37.77 trace but 0.5% at the end where px increase	N504322		41	43	2	0.001	< 0.005	0.001			0.2		733	22	7540	0.33		TB13103718
			36.93 - 37.77, px content increase at the bottom and sharp contact with 2f	3-5% disseminate	ed sulphides	N504323		43	45	2	0.001	< 0.005	< 0.001			<0.2		282	2	7870	0.18		TB13103718
					37.77- 43.84 fine to med sulfide with patchy richer even	N504324		45	47	2	0.001	< 0.005	0.001			<0.2		205	1	8320	0.2		TB13103718
					10 % (41.47-41.76). Globally lot of fine grain with an	N504325		47	49	2	0.001	< 0.005	<0.001			<0.2		110	<1	7910	0.21		TB13103718
					homogeneous repartition	N504326		49	51	2	0.001	< 0.005	< 0.001			<0.2		100	<1	7610	0.21		TB13103718
43.84	66.00	2b - Coarse grained olivir	e gabbro with modal layering	3-5% disseminate	ed sulphides	N504327		51	53	2	0.001	< 0.005	<0.001			<0.2		78	<1	6540	0.2		TB13103718
			50-60% plag rich layers ; med to crs plag interstitial, med px, mag, ol, apatite, presence of		43.84-54.44 fine to med sulfide	N504328		53	55	2	0.001	< 0.005	0.001			<0.2		49	<1	7860	0.25		TB13103718
			biotite and chlorite.plag anlignment		globally lot of fine grain with an homogeneous repartition	N504329		55	57	2	< 0.001	< 0.005	< 0.001			<0.2		57	1	7970	0.25		TB13103718
				2-3% disseminate	ed sulphides	N504330	mpg2				0.072	0.194	0.779			1.3		3020	299	1790	1.24		TB13103718
		3b - Coars	e grained, ophitic gabbro (>5mm)		from 54.44-66.0m:	N504331		57	59	2	0.001	< 0.005	<0.001			<0.2		62	<1	7260	0.24		TB13103718
			62-64.20 intrusion of two duck gabbro 3b ? sharp contact with 2b and stingers at the botom		very fine grain, homogeneous repartion until the end of the hole	N504332		59	61	2	0.001	< 0.005	0.001			<0.2		137	3	7210	0.2		TB13103718
			crs grain fedpath, intercumulate Px (ophitic texture), and strong pink and epidot alteration.		within 2b (3b is unmineralized)	N504333		61	63	2	0.001	< 0.005	0.001			<0.2		54	<1	7290	0.14		TB13103718
			Presence of a syenite dyke inside with sharp contact with the two duck gabbro crs grain feldsp K, Px			N504334		63	65	2	0.001	< 0.005	0.001			<0.2		42	<1	6230	0.14		TB13103718
			and very altered, strong green color.			N504335		65	66	1	0.001	< 0.005	0.001			<0.2		58	<1	7200	0.24		TB13103718
66.00		EOH - End of Hole				K004199		2	11	9											0.1	0.09	TB13118918
																							1
																							1
																							1
																							1
																							1
																							1
						1														1			1
																							1
		1 1				1														1			1
						1														1			1
		1 1				1														1			1
						1														1			1
		1				1					1	1					1			1		1	1 L
		1					1	1		1	1	1	1				1	1	1	1	1	1 1	

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG		
NTS:		42 D / 16		DDH: FD-13-20	
UTM	Northing	5409064		Lease/Claim:	1240552
(Nad27)	Easting	547799.1		Property:	Coldwell Complex
Elevation	n (m):	394.7		Zone:	Four Dams South
Dip at Co	ollar:	-84.81		Date start:	03-Jun-13
Azimuth:		28.35		Date finish:	04-Jun-13
Total De	pth:	102		Contractor:	Chibougamau Diamond Drilling
Core Size	e:	NQ		Logged by:	Rachel Epstein
Remarks	:	Core stored	I in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Yonggang Feng

GEOLOGY			Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TPGN	Ag	Cu	Cu	Ni	Р	S	С	Job
From To X Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00 1.50 OB - Overburden				N504336		1.5	4	2.5	0.004	<0.005	<0.001		<0.2		379	39	>10000	0.12		TB13103715
				N504337		4	6	2.0	0.006	< 0.005	<0.001		<0.2		336	41	9600	0.11		TB13103715
1.50 27.15 2b - Coarse grained olivine	gabbro with modal layering	Trace to 0.5% dis	sseminated sulphides	N504338		6	8	2.0	0.003	< 0.005	<0.001		<0.2		283	39	9230	0.1		TB13103715
	coarse grained pcofA with plag alignment at 70-80deg to ca; modal layering defined by variations		from 4.55-12.30m up to 0.5% very fine gr disseminated po	N504339		8	10	2.0	0.002	<0.005	<0.001		<0.2		297	40	9320	0.1		TB13103715
	of cpx, ol, mt on a cm to 10cm scale		in local pockets	N504340		10	12	2.0	0.002	< 0.005	<0.001		<0.2		291	40	>10000	0.1		TB13103715
2f - Medium	to coarse grained oxide augite melatroctolite	0.5% to 1% disse	minated sulphides	N504341		12	14	2.0	0.003	< 0.005	0.001		0.2		597	79	>10000	0.19		TB13103715
	medium grained OCfpA to COfpA with very fine grained apatite:		from 12.30-22.0m up to 1% very fine to fine gr disseminated po	N504342		14	16	2.0	0.001	<0.005	<0.001		<0.2		330	43	9380	0.1		TB13103715
	from 13.33-14.07, 16.06-16.28, 16.43-16.87, 16.94-17.92, 18.90-19.0, 21.84-22.36, 23.55-23.76		particularly in the 2f lenses (see meterages to left)	N504343		16	18	2.0	0.003	<0.005	<0.001		<0.2		526	72	>10000	0.17		TB13103715
5a - Quartz		3-5% disseminate		N504344		18	20	2.0	0.004	< 0.005	0.001		0.2		467	62	>10000	0.14		TB13103715
	from 22.36-22.46, 26.16-26.65m pegmatitic and both with dark green colouring (epidote alt?)		from 22.0-22.36m up to 5% fine to med gr po, cpy (10:1)	N504345	d	18	20	2.0	0.003	< 0.005	0.001		0.2		499	64	>10000	0.17		TB13103715
			disseminated within 2f	N504346		20	22	2.0	0.003	< 0.005	0.001		<0.2		526	69	>10000	0.16		TB13103715
		Trace to 0.5% dis	sseminated sulphides	N504347		22	24	2.0	0.004	< 0.005	0.002		0.3		695	82	>10000	0.2		TB13103715
			from 22.46-27.15m up to 0.5% very fine gr disseminated po	N504348		24	26	2.0	0.003	< 0.005	0.001		0.2		473	61	>10000	0.14		TB13103715
			in local pockets of 2b, 2f (not 5a)	N504349		26	28	2.0	0.003	< 0.005	0.002		0.2		549	73	>10000	0.17		TB13103715
27.15 34.67 2f - Medium to coarse grain	ed oxide augite melatroctolite	0.5% to 1% disse	eminated sulphides	N504350		28	30	2.0	0.005	0.006	0.004		0.3		883	125	>10000	0.23		TB13103715
	medium grained OCfpA to COfpA; scattered plg-rich intervals (OCpfA) have same plg alignment as		up to 2% fine to med gr po, cpy (10:1) disseminated within 2f	N504351		30	32	2.0	0.005	0.007	0.006		0.3		908	155	>10000	0.23		TB13103715
	the 2b major unit			N504352		32	34	2.0	0.005	< 0.005	0.007		0.2		777	147	>10000	0.2		TB13103715
34.67 35.02 FZ - fault or shear zone				N504353		34	36	2.0	0.006	< 0.005	0.007		0.3		925	150	>10000	0.23		TB13103715
	intense chlorite alteration of 2f as well as chlorite coated fractures; gouge at 35.0-35.02m			N504354		36	38	2.0	0.005	0.008	0.005		0.3		949	138	>10000	0.21		TB13103715
35.02 56.52 2f - Medium to coarse grain	ed oxide augite melatroctolite	0.5% to 1% disse	eminated sulphides	N504355		38	40	2.0	0.006	0.012	0.004		0.4		1490	170	>10000	0.32		TB13103715
	medium grained OCfpA to COfpA; scattered plg-rich intervals (OCpfA) have same plg alignment as		up to 1% fine to med gr po, cpy (10:1) disseminated within 2f	N504356		40	42	2.0	0.002	< 0.005	<0.001		0.2		723	121	8730	0.15		TB13103715
	the 2b major unit EXCEPT FOR:		in local pockets	N504357		42	44	2.0	0.001	< 0.005	<0.001		<0.2		423	46	6510	0.1		TB13103715
	from 41.55-48.60m approx 20-30% scattered plagioclase+mt "leucopods" and stringers that			N504358		44	46	2.0	0.001	< 0.005	<0.001		<0.2		273	18	5440	0.07		TB13103715
	crosscut the plag alignment (of the 2f); these are possibly TDL gabbro but ophitic texture is not			N504359		46	48	2.0	0.001	< 0.005	<0.001		<0.2		362	23	7780	0.1		TB13103715
	recognizable; one anorthosite xenolith is readily distinguishable; disseminated po (with trace cpy)			N504360	b				0.001	< 0.005	<0.001		<0.2		2	<1	30	0.01		TB13103715
	is present in both the 2f intervals as well as the leucopods and stringers: plg-rich 2e confirmed by split core			N504361		48	50	2.0	0.001	< 0.005	<0.001		<0.2		321	15	7530	0.11		TB13103715
2g - Gabbro	ic anorthosite			N504362		50	52	2.0	0.001	< 0.005	<0.001		<0.2		450	12	7570	0.15		TB13103715
	from 44.04-44.48m with cpx and mt oikocrysts			N504363		52	54	2.0	0.001	< 0.005	<0.001		<0.2		440	8	8080	0.17		TB13103715
56.52 102.00 2b - Coarse grained olivine		0.5% to 1% disse	eminated sulphides	N504364		54	56	2.0	0.001	< 0.005	<0.001		<0.2		386	3	8190	0.15		TB13103715
	coarse grained pcofA with plag alignment at 70-80deg to ca; modal layering defined by variations		from 56.52-69.50m up to 1% very fine gr to fine gr po, cpy (10:1)	N504365		56	58	2.0	0.001	< 0.005	<0.001		<0.2		363	2	8260	0.15		TB13103715
	of cpx, ol, mt on a cm to 10cm scale		disseminated within 2b (local pockets)	N504366		58	60	2.0	0.001	< 0.005	<0.001		<0.2		247	3	8590	0.19		TB13103715
2f - Medium	to coarse grained oxide augite melatroctolite			N504367		60	62	2.0	0.001	< 0.005	<0.001		<0.2		105	2	8050	0.22		TB13103715
	from 84.69-85.63, 85.93-86.27 med gr OCfpA	Trace to 0.5% dis	sseminated sulphides	N504368		62	64	2.0	0.002	< 0.005	0.001		<0.2		97	3	7560	0.21		TB13103715
3h - Apatitic	clinopyroxenite		from 84.90-89.20m very fine gr po disseminated within 2b, 2f	N504369		64	66	2.0	0.001	<0.005	<0.001		<0.2		63	1	6810	0.2		TB13103715
	from 89.20-90.13 med to crs gr CCOfpA intermixed with approx 30% very crs gr, ophitic TDL		in pockets	N504370		66	68	2.0	0.001	< 0.005	<0.001		<0.2		41	3	7280	0.22		TB13103715
	gabbro stringers; up to 15% fine gr apatite; diffuse upper contact, well defined lower contact with 2b	2-3% disseminate		N504371		68	70	2.0	0.002	< 0.005	<0.001		<0.2		47	1	8270	0.25		TB13103715
5a - Quartz			from 89.20-91.0m very fine gr to med gr po with trace v. fine gr	N504372		70	72	2.0	0.001	<0.005	<0.001		<0.2		62	2	8330	0.25		TB13103715
	from 94.25-94.47m 2cm thick syenite stringer subparallel to core axis		cpy disseminated within 3h and 2b; med gr po only within 3h	N504373		84	86	2.0	0.001	<0.005	<0.001		<0.2		72	2	8460	0.29		TB13103715
3b - Coarse	grained, ophitic gabbro (>5mm)	I race to 0.5% dis	sseminated sulphides	N504374		86	88	2.0	0.001	<0.005	<0.001		<0.2		71	2	8360	0.27		TB13103715
	from 101.21-101.42m crs gr, ophitic gabbro with moderate potassic alteration	1	from 91.0-92.20m trace v. fine gr disseminated po	N504375	mpg1				0.299	0.946	3.72		3.2		7030	367	1320	1.12		TB13103715
102.00 EOH - End of Hole		1		N504376		88	90	2.0	<0.001	<0.005	<0.001		<0.2		75	1	9040	0.29		TB13103715
		1		N504377		90	92	2.0	0.001	< 0.005	<0.001		<0.2		68	1	8470	0.28		TB13103715
		1		N504378		92	94	2.0	0.001	<0.005	<0.001		<0.2		71	1	7610	0.26		TB13103715
				K004200		72	81	9.0										0.2	<0.01	TB13118918
		1		K008501		81	84	3.0										0.19	0.01	TB13118918
		1		K008502		94	102	8.0										0.19	0.02	TB13118918
		1		L	1	1	1	1	I	I		I	1	1	1 1	l	1	1		1 1

DIAMOND DRILL CORE LOG Reflex EZ Shot- Diamond Drillhole Survey Depth Dip Azimuth Casing -84.81 28.35

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG	
NTS:		42 D / 16	<u>DDH:</u> <u>FD-13-21</u>	
UTM	Northing	5409044	Lease/Claim: 1	240552
(Nad27)	Easting	547851.9	Property: Coldw	ell Complex
Elevation	n (m):	388.1	Zone: Four I	Dams South
Dip at Co	ollar:	-84.9	Date start: 04	-Jun-13
Azimuth:		28.63	Date finish: 05	-Jun-13
Total De	pth:	102	Contractor: Chibougama	u Diamond Drilling
Core Size	e:	NQ	Logged by: Yong	gang Feng
Remarks	:	Core stored	d in Stillwater Canada Inc. warehouse, Marathon, Ontario Assistant: Julien Merie	c, Rachel Epstein

DIAMOND DRI	LL CORE L	.OG	
Reflex EZ Shot	- Diamond	I Drillhole S	urve
Depth	Dip	Azimuth	
Casing	-84.9	28.63	

	GEOLOGY		Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TP	GM Ag	Cu	Cu	Ni	Р	S	С	Job
From	To X Or Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm pp	m ppm	%	ppm	ppm	ppm	%	%	#
0.00	2.00 OB - Overburden			N504379		2	4	2.0	0.004	< 0.005	0.001		0.2		591	69	>10000	0.22	7	TB13103717
				N504380		4	6	2.0	0.002	< 0.005	0.002		<0.2		639	84	>10000	0.21	-	TB13103717
2.00	11.15 2b - Coarse grained olivine gabbro with modal layering	Trace to 0.5% di	sseminated sulphides	N504381		6	8	2.0	0.003	< 0.005	0.002		0.2		662	82	>10000	0.2	7	TB13103717
	Rock is composed of coarse grained pco. Slightly layered. Cpx and OI are partially replaced by Chl		Po in trace amounts, <5%, Cpy is apparently invisible.	N504382		8	10	2.0	0.003	< 0.005	0.002		0.2		769	97	>10000	0.22	7	TB13103717
	and possibly by Bt. Pl is partially altered to sericite.			N504383		10	12	2.0	0.002	< 0.005	0.002		0.2		577	76	>10000	0.16	7	TB13103717
	2f - Medium to coarse grained oxide augite melatroctolite	Trace to 0.5% di	sseminated sulphides	N504384		12	14	2.0	0.004	< 0.005	0.006		0.3		931	143	>10000	0.21	7	TB13103717
	9-9.4m. OI-Mag rich layer. Rock is dominated by coarse grained Cof and shows strong Chl		9-9.4m. sulfides are apparently insivible. 2-3% Ap.	N504385		14	16	2.0	0.005	< 0.005	0.008		0.3		1080	165	>10000	0.24	7	TB13103717
	alteration. Chl generally replaces Cpx. Gradational contact with 2b unit.			N504386		16	18	2.0	0.005	< 0.005	0.009		0.3		1050	161	>10000	0.24	7	TB13103717
				N504387		18	20	2.0	0.005	< 0.005	0.008		0.4		1050	144	>10000	0.23	7	TB13103717
11.15	21.80 2f - Medium to coarse grained exide augite melatroctolite	2-3% disseminat	ed sulphides	N504388		20	22	2.0	0.003	< 0.005	0.004		0.3		797	129	>10000	0.17	۲	TB13103717
	Layered rock is dominated by med-grained CopfA. Ap is roughly 5-8% and disseminated through		11.15-21.80m. 2% Po, <0.5% Cpy (Po: Cpy = 8:1).	N504389		22	24	2.0	0.006	0.01	0.004		0.6		1880	211	>10000	0.38	7	TB13103717
	the rock. Gradational conact with the rock of 2-11.15m.			N504390	d	22	24	2.0	0.006	0.01	0.004		0.6		1840	213	>10000			TB13103717
				N504391		24	26	2.0	0.009	0.012	0.008		2.6		8180	442	6640	1.44	7	TB13103717
21.80	22.04 FZ - fault or shear zone			N504392		26	28	2.0	0.001	< 0.005	<0.001		0.2		960	58	6990	0.36	7	TB13103717
	Rock is 2f but quite altered. Strong ChI alteration as well as abundant chlorite filled healed fractures			N504393		28	30	2.0	0.001	< 0.005	0.001		<0.2		292	20	7060	0.09	7	TB13103717
	from 21.92-21.96m gouge (very very soft 2f)			N504394		30	32	2.0	0.001	< 0.005	0.001		<0.2		357	17	7600	0.14		TB13103717
				N504395		32	34	2.0	<0.001	< 0.005	0.001		<0.2		209	7	7260	0.16		TB13103717
22.04	43.00 2f - Medium to coarse grained oxide augite melatroctolite	3-5% disseminal	ed sulphides	N504396		34	36	2.0	0.001	< 0.005	<0.001		<0.2		223	4	7650	0.17	7	TB13103717
	same as the unit from 11.15 to 21.80 m.		22.04-26.23m. 5% Po, 0.5% Cpy (Po: Cpy=10:1). 15% med-	N504397		36	38	2.0	0.002	< 0.005	<0.001		<0.2		190	1	7280	0.15		TB13103717
	26.23-32.45m. The rock shows PI-rich pods or stringers (leuco TDL intrusion?) .		grained Mag. Po commonly interstitial to Cpx and Mag.	N504398		38	40	2.0	0.001	< 0.005	<0.001		<0.2		130	<1	8310	0.2		TB13103717
	Mineralogy changes to pcAf. No visible OI. 5-8% Ap is disseminated through this interval.	Semi massive to	massive sulphides	N504399		40	42	2.0	0.001	< 0.005	0.001		<0.2		131	<1	9310	0.27		TB13103717
	Gradational contact with 2f unit. Cpx is partially replaced by Chl.		24.96-25.06m. Sufides are coarse grained and apparently	N504400		42	44	2.0	<0.001	< 0.005	<0.001		<0.2		104	<1	8740	0.24	7	TB13103717
	Mag is very fine grained and present in Cpx-rich patches.		replaces Bt and Cpx. 10% Po, 5% Cpy (Po: Cpy 2:1). Po and Cpy	N504401		44	46	2.0	0.001	< 0.005	0.001		<0.2		100	<1	8400	0.24		TB13103717
			are intergrown.	N504402		46	48	2.0	0.001	< 0.005	0.001		<0.2		93	<1	8010	0.22		TB13103717
		Trace to 0.5% di	sseminated sulphides	N504403		48	50	2.0	<0.001	< 0.005	0.001		<0.2		64	<1	7840	0.24		TB13103717
	5b - Augite syenite		26.23-32.45 m. No visible sulfides.	N504404		88	90	2.0	0.001	0.005	0.007		<0.2		17	1	2500	0.04		TB13103717
	24.96-25.06m. Pinkish rock is dominated by Kfs and Cpx. Cpx is paritally to completely replaced by	Trace to 0.5% di	sseminated sulphides	N504405	b				<0.001	< 0.005	0.001		<0.2		2	1	50	0.01		TB13103717
	Chl and Bt.		32.45-40m. Sulfides in trace amounts. Hard to estimate Po: Cpy	N504406		90	92	2.0	0.001	< 0.005	0.003		<0.2		81	<1	9830	0.23		TB13103717
	40-40.2m. Pinkish rock is dominated by coarse grained Kfs and Cpx. Kfs: Cpx 5:1. Cpx is partially to	Trace to 0.5% di	sseminated sulphides	N504407		92	94	2.0	0.001	< 0.005	0.001		<0.2		73	<1	8720	0.26		TB13103717
	completely replaced by Chl. Sharp contact with 2f unit.		40-40.2m. No visible Sulfides.	N504408		94	96	2.0	0.001	< 0.005	0.001		<0.2		90	1	>10000			TB13103717
		2-3% disseminat		N504409		96	98	2.0	0.001	< 0.005	0.001		<0.2		77	<1	7860	0.25		TB13103717
			40.2-43m. Very fine grained Po anc Cpy. 2% Po, 0.5% Cpy (Po	K008503		50	59	9.0										0.2		TB13118918
			:Cpy=4:1).	K008504 K008505		59 68	68 77	9.0 9.0										0.22		TB13118918 TB13118918
43.00	85.42 2b - Coarse grained olivine gabbro with modal layering	0.50/ 1- 40/ 5	eminated sulphides	K008506		77	88	9.0										0.26		TB13118918 TB13118918
43.00		0.5% to 1% diss	· ·	K008506		98	102	4.0										0.25		TB13118918 TB13118918
	Layered rock is dominated by med to coarse grained pcc. Layering is defined by Cpx and OI. Bt commonly replaces Cpx and OI.	Trace to 0 E% di	43-46.65m. 1% Po, invisible Cpy. Hard to estimate Po:Cpy. sseminated sulphides	K006507		90	102	4.0										0.19	0.06 1	B13110910
	Commonly replaces opt and Or.	Trace to 0.5% u	46.65-83.96m. No visible Po or Cpy.																	
	2f - Medium to coarse grained oxide augite melatroctolite	Trace to 0.5% di	sseminated sulphides																	
		11206 10 0.370 0	83.96-85.42m. No visible Po or Cpy.																	
	Gradational into this unit. Rock shows OI-Mag cumulate. 84.45-84.55m. Rock is dominated by med grained pcofA.		color coment. No visible i o or opy.	1																
	84.75-85.42m. Rock is dominated by Midd granted people.			1																
85.42	90.56 2g - Gabbroic anorthosite	Trace to 0.5% di	sseminated sulphides	1																
00.72		11000 to 0.3% u	85.42-90.56m. No visible Po or Cpy.	1																
	White rock is dominated by med grained ppc. PI is partially sericitized while Cpx is altered to fine grained Chl. The contact between this unit and the previous one is not very sharp.		contraction and visible for on opy.	1																
1	3h - Apatitic clinopyroxenite	2-3% disseminat	ed sulphides	1																
	90-90.05m. Cross-cuts 2g. Dominated by coarse grained Cpx and med grained Ap.		90-90.05m. 3% Po, no visible Cpy. Po is interstitial to Cpx.	1																
	30-30.00m. Cross-cuts zg. Dominiated by coarse grained opx and med grained Ap.	I	ao-ao.oom. a /a no, no visible opy. no is interstitianto opx.	J	1	1	1	1	1	1	1 1	1	1	1	1		1	1	1 1	1

	GEOLO	DGY					Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz		Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
00.50	400.00	0h . Carara a			T																				
90.56	102.00	2b - Coarse g	rained olivine ga	abbro with modal layering sharp contact with the above unit. Rock is same as the 2b unit from 43 to 83.96m. Shows 20-30 cm	I race to 0.5% di	sseminated sulphides Overall, sulfides in trac	e amounts. 0.5% Po, <0.5 Cpy. Po:Cpy																		
				mafic-rich layers as at 91-91.3m and 94.84-95.05m.		6:01																			
			5b - Augite sy	venite	0.5% to 1% diss	eminated sulphides																			
				100.08-100.15m. Syenite dike cross-cuts 2b.		91-91.3m. 1.5% Po, in	visible Cpy.																		
				100.66-100.71m. Syenite dike.	0.5% to 1% diss	eminated sulphides 94.84-95.05m. 1.5% P	o invisible Cov																		
102.00		EOH - End of	Hole			94.84*95.05m. 1.5% P	o, musible opy.																		
-																									
-																									
		+				+																			
 																									
I																									
I						+																			
		+				+																			
 																									
]																	
I		<u> </u>				+																			
			1																						
<u> </u>		1	1																						
<u> </u>			1																						
						1																			
	0	r						1				1	1	1		. 1	1			1			. 1		

NTS:		42 D / 16	DDH:	FD-13-22
UTM	Northing	5409044.4	Lease/Claim:	
(Nad27)	Easting	547851.9	Property:	
Elevation	n (m):	388.6	Zone:	
Dip at Co	ollar:	-45	Date start:	
Azimuth	:	25.61	Date finish:	
Total De	pth:	51	Contractor:	Chibou
Core Siz	e:	NQ	Logged by:	
Remarks	:	Core stored	in Stillwater Canada Inc. warehouse, Marathon, Ontario Assistant:	Julier

	FD-13-22
laim:	1240552
/ :	Coldwell Complex Four Dams South
rt:	05-Jun-13
ish:	05-Jun-13
tor:	Chibougamau Diamond Drilling
by:	Yonggang Feng
nt:	Julien Meric, Rachel Epstein

 Depth
 Dip
 Azimuth

 Casing
 -45
 25.61

DIAMOND DRILL CORE LOG

downhole survey not available

GEOI	LOGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TF	GM Ag	Cu	Cu	Ni	Р	S	С	Job
From To	Maj Rock	Min Rock	Comments		Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm p	om ppm	%	ppm	ppm	ppm	%	%	#
0.00 3.00	OB - Ov	verburden				N504410		3	5	2.0	0.002	< 0.005	0.001		<0.2		557	75	>10000	0.19	т	FB13106370
						N504411		5	7	2.0	0.003	< 0.005	0.002		0.2		629	85	>10000	0.2	т	FB13106370
3.00 11.18	2b - Coa	arse grained olivine ga	bbro with modal layering Trace to 0	.5% diss	eminated sulphides	N504412		7	9	2.0	0.003	< 0.005	0.003		0.2		635	81	>10000	0.18	т	FB13106370
			Rock is composed of coarse grained pcof. Secondary Bt and Chl replace Cpx and Ol. Pl is partially		3-9.54m. Sulfides <0.5%. Hard to estimate Po: Cpy.	N504413		9	11	2.0	0.004	< 0.005	0.006		0.2		883	129	>10000	0.24		FB13106370
			altered to sericite. The fractures are highly oxidized. 0.5% to 1	% dissen	ninated sulphides	N504414		11	13	2.0	0.004	< 0.005	0.006		0.2		822	138	>10000	0.21	Т	B13106370
		2f - Medium to	coarse grained oxide augite melatroctolite		9.54-11.18m. 0.5% Po, invisible Cpy.	N504415		13	15	2.0	0.004	0.005	0.006		0.2		918	138	>10000	0.23		B13106370
			9.54-11.18m. Rock is dominated by Mag-OI cumulate. Ap <1%. Highly oxidized fractures.			N504416		15	17	2.0	0.004	< 0.005	0.005		0.2		780	113	>10000	0.19		B13106370
11.18 12.00	FZ - fau	It or shear zone				N504417		17	19	2.0	0.004	0.011	0.003		0.2		1050	132	>10000	0.24		FB13106370
	_		11.18-11.55 m. Rock is faulted syenite that is composed of coarse grained Kfs and Cpx. Cpx is			N504418		19	21	2.0	0.009	0.015	0.008		1		3450	324	7820	0.67		FB13106370
			almost replaced by Bt and Chl. Highly oxidized.			N504419		21	23	2.0	0.003	< 0.005	0.004		0.4		1400	144	6020	0.26		FB13106370
			11.55-12m. Rock is broken 2f and highly oxidized			N504420	mpg2				0.062	0.215	0.891		1.3		2880	288	1880	1.19		FB13106370
12.00 18.55	2b - Coa	arse grained olivine ga	bbro with modal layering 0.5% to 1 Rock is dominated by coarse grained pcofA. Layering is defined by Cpx and Ol. Bt is secondray and		ninated sulphides 12-13.11m. 0.5% Po, invisible Cpy.	N504421 N504422		23	25 27	2.0 2.0	0.001	< 0.005	0.002		<0.2 <0.2		340 340	34 37	6830 7010	0.08		FB13106370 FB13106370
					12-13.11m. 0.5% Po, invisible Cpy. ninated sulphides	N504422 N504423		25 27	27	2.0		< 0.005			<0.2		340 271	27	7010	0.1		
		or 14 m			ninated suipnides 13.11-18.55m. 1% Po, invisible Cpy.	N504423 N504424		27 29			< 0.001	< 0.005	<0.001		<0.2			27		0.1		FB13106370
		2t - Medium to	coarse grained oxide augite melatroctolite 12-13.11m. Gradational contact with 2b. Ol-Mag rich cumulate. Rock is dominated by med grained		13.11-18.55m. 1% Po, invisible Cpy.	N504424 N504425		29	31 33	2.0 2.0	<0.001 0.001	<0.005 <0.005	0.001		<0.2		329 289	16	8280 8800	0.13		FB13106370 FB13106370
	-		cofpA. 1-2% Ap disseminated in the rock.			N504425		33	35	2.0	0.001	<0.005	0.001		<0.2		142	<1	9020	0.17		B13106370
18.55 25.77	Of Mod	dium to ocorroo grainas		ominator	I sulphides	N504426		35	35	2.0	0.001	<0.005	<0.001		<0.2		142	۱ <1	8900	0.24		FB13106370
18.55 25.77	21 * WIEU	ulum to coarse graine.	The rock is dominated by med grained oFcpA. OI and Mag form cumulate layered. Rock shows		18.55-21.33m. Sulfides are dominated by Po and interstitial to	N504427		35	39	2.0	<0.002	<0.005	0.001		<0.2		94	<1	8360	0.24		B13106370
			strong ChI alteration. ChI fills fractures.1% Ap disseminated in the rock.		Mag and Cpx. 4-5% Po, Cpy <0.5% (Po: Cpy=9:1).	N504428		39	41	2.0	0.001	<0.005	0.001		<0.2		51	<1	7910	0.24		B13106370
					eminated sulphides	N504430		41	43	2.0	< 0.001	<0.005	0.001		<0.2		53	<1	8910	0.25		B13106370
			24-25.77m. The 2f unit changes to a rock that is characterized by PI-rich pods and Cpx-Mag rich	.570 0133	21.33-25.77m. Sulfides in trace amounts. Hard to estimate Po:	N504431		43	45	2.0	<0.001		<0.001		<0.2		60	<1	8790	0.25		B13106370
			patches. The texture is apparently chaotic. 2-3% disseminated Ap.		Cpv	N504432		45	47	2.0	< 0.001	< 0.005	0.001		<0.2		57	<1	9010	0.27		B13106370
		2g - Gabbroic				N504433		47	49	2.0	0.001	< 0.005	<0.001		<0.2		58	<1	8240	0.26		FB13106370
			22.5-24m. Anorthosite xenolith.White rock is dominated by coarse grained ppc. Cpx is interstitial to			N504434		49	51	2.0	< 0.001	< 0.005	0.001		<0.2		58	<1	8240	0.25	т	FB13106370
			PI. Diffuse contacts with the 2f unit.			N504435	d	49	51	2.0	0.001	< 0.005	0.001		<0.2		59	<1	8080	0.24	т	FB13106370
25.77 51.00	2b - Coa	arse grained olivine ga	bbro with modal layering Trace to 0	.5% diss	eminated sulphides																	
			Gradational contact with the above 2f unit. The rock is composed of med to coarse grained		25.77-51m. Very fine grained sulfides. Possibly 0.5% Po, no																	
			pocf. Layering is defined by variations in OI and Cpx contents on a cm scale. Bt as alteration mineral		visible Cpy.																	
			replaces OI and Cpx. Plagioclase alignment is throughout unit at 70-80deg to ca																			
51.00	EOH - E	End of Hole																				
						_																
						_																
						-																
						-														1		
	_					-																
	_					-														1		
	_					-																
	_					-														1		
	_					4																
						_	1	1 1		I	1	1	1 1	1	I	1	1	I	I	1		I

NTS:		42 D / 16		DDH: FD-13-23		DIAMOND DRI	LL CORE L	.0G
UTM	Northing	5409027		Lease/Claim:	1240552	Reflex EZ Shot	- Diamond	Drillhole S
Nad27)	Easting	547890.1		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation	n (m):	387.1		Zone:	Four Dams South	Casing	-59.93	30.28
Dip at Co	ollar:	-59.93		Date start:	05-Jun-13			
zimuth:		30.28		Date finish:	06-Jun-13			
otal Dep	pth:	153		Contractor:	Chibougamau Diamond Drilling			
Core Size	e:	NQ		Logged by:	Renata Smoke			
Remarks	:	Core stored in	Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Julian Meric, Yongang Feng	complete downhole	survey in Fou	ir Dams master

	GEOL	OGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM Ag	Cu	Cu	Ni	Р	S	C Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm ppm	%	ppm	ppm	ppm	%	% #
0.00	4.83	OB - Overburd	en				N504436		5	7	2	0.007	0.008	0.004		0.4		1725	179	>10000	0.77	TB13103716
							N504437		7	9	2	0.011	0.01	0.006		1		3630	255	>10000	1.35	TB13103716
4.83	19.34	2f - Medium to	coarse graine	d oxide augite melatroctolite	2-3% disseminate	ed sulphides	N504438		9	11	2	0.013	0.011	0.008		1		4010	274	>10000	1.67	TB13103716
				OI content decreases considerably after 10.9m, with cpx, plag, and mag being the dominant		4.83-7.32m 2% po, trace to 1% cpy Throughout (not just in mag	N504439		11	13	2	0.007	0.007	0.006		0.3		1290	144	>10000	0.57	TB13103716
				minerals (also coincides with a lower proportion of plag rich layers which make up approx 5-10% of		rich layers)	N504440		13	15	2	0.006	0.005	0.003		0.7		2940	171	7680	0.98	TB13103716
				entire unit). Below 10.9m ol makes up <5% of rock.	3-5% disseminate	ed sulphides	N504441		15	17	2	0.011	0.006	0.005		0.9		3520	171	7250	1.28	TB13103716
				alteration:		7.32-19.87m 5% po, 1% cpy. Throughout.	N504442		17	19	2	0.009	0.007	0.004		0.9		3360	211	>10000	1.29	TB13103716
				Weak chlor alteration throughout.		12.9-13.5m 10% cpy infilling in chlorite vein (3mm wide)	N504443		19	21	2	0.006	< 0.005	0.005		0.6		1740	174	>10000	0.74	TB13103716
				18.36-19.84m Increase in chlor veins (5-15mm wide, approx 10% of rock)			N504444		21	23	2	0.01	0.019	0.005		0.6		2190	223	>10000	0.57	TB13103716
19.34	19.38	FZ - fault or sh	ear zone				N504445		23	25	2	0.009	0.027	0.005		1		3820	292	6480	0.88	TB13103716
				Almost complete chlor and talc alteration of fault gauge (within 2f unit)			N504446		25	27	2	0.007	0.009	0.002		1		4450	214	8330	1.48	TB13103716
19.38	19.84	2f - Medium to	coarse graine	d oxide augite melatroctolite			N504447		27	29	2	0.008	0.009	0.003		1		4550	163	8900	1.97	TB13103716
				see above description, unit only interrupted by fault gauge			N504448		29	31	2	0.008	0.007	0.001		0.8		4040	135	8730	1.83	TB13103716
19.84	23.25	3b - Coarse gr	ained onhitic o		2-3% disseminate	ed sulphides	N504449		31	33	2	0.001	<0.005	<0.001		<0.2		349	8	6640	0.31	TB13103716
	-0.20			Cg to pegm (coarsest at upper and lower contact with 2f). In order of decreasing abundance, cpx,		3% cpy at contact of 2f and 3b (upper). In chlor and bi alteration	N504450	h			_	0.001	<0.005	<0.001		<0.2		20	2	50	0.02	TB13103716
				plag, mag, bi. Ophitic texture is not obvious but the pegm cpx makes it distinguishable.		vein. Bi is pegm, pegm cpx almost completely altered to chlor	N504451	5	33	35	2	0.003	<0.005	0.001		0.2		1495	39	7430	1.11	TB13103716
				pag, mag, or opinio tokorolo ne ovida bar no pogni opinitiko ir aleringalonable.	3-5% disseminate		N504452		35	37	2	0.002	<0.005	<0.001		<0.2		141	3	7910	0.21	TB13103716
				Intermingled with 2f (POSSIBLE 3g), 50% layers of 2f within this unit, sharp to somewhat	3-376 0336111180	19.84-23.28m patches (5% of rock) of vcg 8% po,	N504453		37	39	2	0.002	<0.005	<0.001		<0.2		65	2	7330	0.22	TB13103716
				gradational contacts with it, up to 0.5m wide. Different from typical 2f by low ol and high cpx		trace-2% cpy associated with cg mag and bi. Adjacent to upper	N504454		39	41	2	0.001	<0.005	<0.001		<0.2		45	2	6450	0.22	TB13103716
				abundance and it's somewhat gradational contact with 3b		and lower contact with 2f. COMMONLY forms psuedomorphs of	N504454		41	41	2	0.001	<0.005	<0.001		<0.2		43	<1	7240	0.22	TB13103716
				alteration;		cpx. Higher proportion of cpy at lower contact with 2f.	N504456		43	45	2	0.001	<0.005	<0.001		<0.2		102	2	7760	0.25	TB13103716
				Chlor veins (<5mm) are common (10% of unit) within 2f.	2-3% disseminate		N504458		45	43	2	0.001	<0.005	<0.001		<0.2		1215	18	7420	1.14	TB13103716
				Chlor alteration in 2f is moderate to intense (almost complete alteration at fault gauge,	2-3 % disseminate	19.84-23.28m In 2f mag rich parts, 2-3% po, trace cpy (fg-mg)	N504458		43	49	2	0.004	<0.005	<0.001		<0.2		407	2	7420	0.52	TB13103716
				19.34-19.38m and in some chlor veins)		19.04-23.20m in 21 mag non parts, 2-3% po, trace opy (ig-ing)	N504459		49	49 51	2	0.001	<0.005	<0.001		<0.2		55	<1	6660	0.52	TB13103716
23.25	29.75	Of Modium to	ocorco graino		3-5% disseminate	ad autobidas	N504460		51	53	2	0.001	<0.005	<0.001		<0.2		54	<1	6690	0.2	TB13103716
23.23	23.15	21 - Medium to	cuarse graine	d oxide augite melatroctolite Plag rich layers compose approx 15% of rock. Mafic mag rich layers are low in ol (<5%) and contain	3-5 % disseminate		N504460		53	55	2	0.002	<0.005	<0.001		<0.2		61	<1	7500	0.22	TB13103716
						6% po, 1% cpy (fg-mg), throughout layers.	N504461		55	57	2	0.001	<0.005	<0.001		<0.2		58	<1	7190	0.22	TB13103716
				in order of decreasing abundance; cpx, mag, plag, po, bi, cpy			N504462		57	57	2	0.001	<0.005	<0.001		<0.2		58	<1	7190	0.21	TB13103716
				Upper contact with 3b is sharp.			N504463		57	59 61				<0.001		<0.2		56 67	<1			TB13103716
				alteration:			-		29	01	2	0.001	<0.005 0.932	3.57		<0.2		6950	388	8520 1360	0.25	TB13103716
				Overall, weak chlor alteration.			N504465	mpg1								<0.2			- 300 - <1			
29.75	74,77	0h . Commo an	sinced all income	23.25-24.6m Increase in chlor and act veins (3-5mm wide, 10% of rock), but no sulf associations.	0.50/ disconsistent		N504466		61 63	63 65	2	0.001	< 0.005	<0.001		<0.2		72 60	<1	8130 7170	0.24	TB13103716
29.75	74.77	20 - Coarse gr	ained olivine g	abbro with modal layering	3-5% disseminate		N504467			67	2	0.001	< 0.005	<0.001				56				TB13103716
					T	29.75-34.39m 4% po, 2% cpy (fg), in mag rich mafic layers sseminated sulphides	N504468 N504469		65 67	67		0.002	<0.005	0.001		<0.2 <0.2		56	<1 <1	6950	0.21	TB13103716
				Almost no alteration (VERY weak chlor)	Trace to 0.5% dis					71	2	0.001	< 0.005	0.001		<0.2		51	<1	6640	0.2	TB13103716
			2g - Gabbroic			34.39-45.6m 1-2% po, trace cpy (fg), throughout layers	N504470		69		2	0.001	<0.005							7420	0.2	TB13103716
				69.82-70.04m 2g anorth xeno. Pegm cpx at upper contact. Sharp contacts.	3-5% disseminate		N504471		71	73	2	0.001	< 0.005	< 0.001		<0.2		57	<1	7490	0.24	TB13103716
						45.6-47.6m 5% po, 1% cpy (fg-mg) found throughout layers	N504472		73	75	2	0.001	<0.005	0.001		<0.2		61	<1	8500	0.25	TB13103716
					0.5% to 1% disse	eminated sulphides	N504473	1	75	77	2	0.004	< 0.005	0.001		<0.2		32	1	4390	0.12	TB13103716
		+				47.6-74.77m trace-1% po, trace cpy (fg), found throughout	N504474	1	77	79	2	0.001	<0.005	0.001		<0.2		91	<1	>10000	0.33	TB13103716
		-				layers	N504475	1	79	81	2	0.001	<0.005	0.001		<0.2		180	<1	>10000	0.52	TB13103716
74.77	76.70	2g - Gabbroic a	anorthosite				N504476	1	81	83	2	0.005	0.03	0.005		<0.2		213	<1	9420	0.35	TB13103716
				Xenolith, sharp upper and lower contact. Contains 25cm wide band of 2b, pegm cpx near this contact.			N504477	1	83	85	2	0.001	0.122	0.005		<0.2		27	3	550	<0.01	TB13103716
				Intermingled with pegm syenite (60% 2g, 40% pegm syenite (5b?) stringer)			N504478	1	85	87	2	0.001	0.066	0.005		<0.2		39	2	640	<0.01	TB13103716
				Syenite is pegm, composed largely of pink feld (with zoning), and cpx. Cpx is poikilitic with up to			N504479	1	87	89	2	0.002	0.051	0.005		<0.2		63	3	630	<0.01	TB13103716
				50% apatite.			N504480	d	87	89	2	<0.001	0.054	0.005		<0.2		67	2	700	0.01	TB13103716
,				alteration:			N504481	1	89	91	2	0.001	0.016	0.009		<0.2		19	18	840	<0.01	TB13103716
				Moderate to intense chlor and ser alteration.			N504482	1	91	93	2	<0.001	< 0.005	0.001		<0.2	I	106	<1	9790	0.36	TB13103716

	GEOLOG	Y			Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TPG	M Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	opm ppi	n ppm	%	ppm	ppm	ppm	%	%	#
76.70	80.67 2t	b - Coarse grained olivine	jabbro with modal layering	2-3% disseminate	d sulphides	N504483		93	95	2	0.001	<0.005	<0.001		<0.2		121	<1	10000	0.41	1	TB13103716
			Moderate to intense chlor alteration, weak to moderate ep alteration.		2-3% fg-mg po, trace cpy (most concentrated in mag rich	N504484		95	97	2	<0.001	<0.005	<0.001		<0.2		96	<1	8290	0.32	1	TB13103716
			79-80.67m Fairly broken and coinciding with intense alteration.		layers)	N504485		97	99	2	0.001	<0.005	<0.001		<0.2		128	<1	>10000	0.45	1	TB13103716
80.67	91.80 20	g - Gabbroic anorthosite		Trace to 0.5% dis	seminated sulphides	N504486		99	101	2	0.001	< 0.005	<0.001		<0.2		422	<1	5750	1.31		TB13103716
			Intermingled with mineralized mg ophitic textured rock (contact indistinguishable)		rare patchy zones of 2% cpy, 1%po (<2% of rock)	N504487		101	103	2	0.001	<0.005	0.001		<0.2		467	<1	5740	1.8		TB13103716
			Sharp upper and lower contact.			N504488		103	105	2	0.001	<0.005	<0.001		<0.2		163	<1	9970	0.76		TB13103716
			Same alteration as above.			N504489		105	107	2	<0.001	<0.005	0.001		<0.2		113	<1	>10000	0.4		TB13103716
91.80	98.78 2t	t - Medium to coarse grain	ed oxide augite melatroctolite	3-5% disseminate		N504490		107	109 111	2	0.001	<0.005 <0.005	0.001		0.2		937 272	<1	9440 7870	0.89		TB13103716 TB13103716
			At contact, mg 5% po, 1% cpy within cg to pegm cpx rich zone (stringer of 3d?) 94.83-95.5m Mag rich layer is dominated by cpx with <5% ol		4% po, trace cpy (vfg) concentrated in mafic mag rich layers	N504491 N504492		109 111	111 113	2	0.001	<0.005	0.001		<0.2 0.5		272 1680	1	7870 >10000	0.25 0.8		TB13103716 TB13103716
			25% plag rich layers, up to 60cm thick			N504492 N504493		113	115	2	0.002	<0.005	0.002		<0.2		3	3	50	0.8 <0.01		TB13103716
98.78 1	03.66 26	e - Medium to coarse grain		3-5% disseminate	d sulphides	N504493		115	115	2	0.001	<0.005	0.001		<0.2		4330	7	50 8510	<0.01		TB13103716
30.70	03.00 26	e - Medium to coarse grain	Sharp upper, somewhat gradational lower contact.	5-5 % disseminate	101.8-103.66m 3-4% po, 1% cpy (fg-mg)	N504494	b	115	117	2	0.003	<0.005	0.001		0.9		3740	8	9480	1.85		TB13103716
			Intense pink, moderate to intense chlor, and patchy intense ep alteration.		To to to to to the point of the	N504496	5	117	119	2	0.002	<0.005	0.002		0.7		3020	7	>10000	1.51		TB13103716
			No plag alignment.			N504497		119	121	2	0.002	<0.005	0.001		0.9		3440	8	>10000	1.38		TB13103716
103.66 1	23.95 2f	f - Medium to coarse grain	ad oxide augite melatroctolite	3-5% disseminate	d sulphides	N504498	1	121	123	2	0.001	<0.005	0.002		1.1		3360	6	>10000	1.2		TB13103716
		giant and grant	OI content is variable throughout this unit, but generally <15% (5-20%). The dominant minerals		103.66-107.46m 3-4% po, trace to 1% cpy (vfg-mg),	N504499	1	123	125	2	0.001	<0.005	0.002		1.1		4090	8	9570	1.7		TB13103716
			are cpx, mag, plag, and to a lesser extent ol.		concentrated in mafic mag and ol rich layers	N504500		125	120	2.0	0.002	<0.005	0.001		1.1		3980	7	5280	1.64		TB13103716
			109.45-111.17m Patchy alteration (20% of rock). Intense pink, moderate chlor and ser, and weak ep	3-5% disseminate		N504501		127	129	2.0	0.001	< 0.005	<0.001		<0.2		273	1	6020	0.16		TB13103716
			alteration.		107.46-110.49m 5% po, 1% cpy (fg-cg) in mafic and plag rich	N504502		129	131	2.0	0.002	< 0.005	0.001		<0.2		176	1	5880	0.1		TB13103716
			117.2-123.95m Moderate chlor alteration, also coincides with a greater proportion of ol content		layers	N504503		131	133	2.0	< 0.001	< 0.005	0.001		<0.2		310	1	8050	0.2	1	TB13103716
			(generally >10% and up to 15-20% in the most mafic layers), and an increase in chlor veins (10% of	3-5% disseminate	d sulphides	N504504		133	135	2.0	0.001	< 0.005	<0.001		<0.2		248	1	8030	0.18	7	TB13103716
			rock, 2-4mm wide)		110.49-121.16m 10% po, 2-3% cpy In plag and mag rich layers	N504505		135	137	2.0	< 0.001	< 0.005	0.001		<0.2		330	1	8520	0.18	1	TB13103716
		5b - Augite s	yenite		but more concentrated in mag rich	N504506		137	139	2.0	0.001	< 0.005	0.001		<0.2		437	3	>10000	0.25	1	TB13103716
			Pegm syenite dyke: 106.7-106.92, 107.28-107.33, 107.82-108, 116.4-116.5, 116.97-117.05	3-5% disseminate	d sulphides	N504507		139	141	2.0	0.001	< 0.005	0.001		<0.2		373	2	>10000	0.21	1	TB13103716
					121.16-124.69 10% po, 4% cpy (patchy in cpy concentration,	N504508		141	143	2.0	< 0.001	< 0.005	0.001		<0.2		297	1	9310	0.14	1	TB13103716
					goes up and down). MOST concentrated (up to 6%) in chlor, bi	N504509		143	145	2.0	0.001	< 0.005	<0.001		<0.2		340	1	8410	0.19	1	TB13103716
					altered pod	N504510	mpg2				0.077	0.199	0.938		1.3		2910	288	1760	1.13	1	TB13103716
123.95 1	24.69 30	d - Very coarse grained to	pegmatitic, ophitic gabbro	3-5% disseminate	d sulphides	N504511		145	147	2.0	0.001	<0.005	<0.001		0.2		404	1	>10000	0.23	1	TB13103716
			Sharp upper, gradational lower contact.		4-5% cpy, 4% po (cg). Either as round blebs (1-4mm), or	N504512		147	149	2.0	0.001	< 0.005	0.001		<0.2		328	1	8810	0.19	7	TB13103716
			VERY messy textures. Appears to be a mix between pegm syenite (or pink altered plag, there is a		interstitial to main minerals.	N504513		149	151	2.0	0.001	< 0.005	<0.001		<0.2		335	2	9330	0.2		TB13103716
			grey core with a pink rim in some occasions), 3d, and 2e. Difficult to distinguish between them.			N504514		151	153	2.0	0.001	< 0.005	<0.001		<0.2		311	2	9250	0.17	1	TB13103716
			Likely an altered 3d. Contains dominantly pegm plag, cpx and bi.			-																1
			Mag content is <10%			-																1
124.69 1	53.00 2e	e - Medium to coarse grain		3-5% disseminate		-																1
			Lathlike plag, no alignment (could be 3d?). Some sections have a fairly distinct ophitic texture, but		124.69-126.75m 4-5% cpy, 4%po	-																1
			it is not constant	2-3% disseminate		-																1
					126.75-153m 0.5-2% cpy, 0.5-2% po (concentration is	-																1
			131-153m Possible layering. Not well defined. Greater proportion of mafics (cpx dominant).		somewhat discontinuous within this interval)	-																1
			133.96-134.1m pegm syenite dyke (pegm cpx, feld, and bi) 138.49-139.17m, 140.39-141m layers of 2f with sharp to slightly gradational contacts. Relatively	3-5% disseminate		-																1
				3-5% disseminate		-																1
			low of content (<5%), with cpx and mag as the dominant minerals.		4% po, trace cpy in 2f units (see intersections to left)																	1
			124.69-127m Plag is cloudy cream to pink (less so pink, very weak), minimal chlor																			1
			127-144m intense pink alteration (patchy but fairly continuous)																			1
			127-153m moderate to strong chlor alteration																			1
			144-153m Plag is cloudy cream to pink																			1
153.00	E	OH - End of Hole																				1
						1					1											1
						1	1										1					1
							1										1					1
						1	1				1											1
							1										1					1
]	1				1											1
							1										1					1
						1	1		1	1	1	1	1	1	1	1	1					1
																						1

NTS:		42 D / 16	
UTM	Northing	5409004	
(Nad27)	Easting	547877.3	
Elevation	ı (m):	386.4	
Dip at Co	llar:	-74.18	
Azimuth:		27.41	
Total Dep	oth:	174	
Core Size	e:	NQ	
Remarks	:	Core stored	in Stillwater Canada Inc. warehouse, Marathon, Ontario

DDH: F	D-13-24	DIAMOND DRI	LL CORE L	.OG
Lease/Claim:	1240552	Reflex EZ Sho	t- Diamond	Drill
Property:	Coldwell Complex	Depth	Dip	Azi
Zone:	Four Dams South	Casing	-74.18	2
Date start:	06-Jun-13			
Date finish:	07-Jun-13			
Contractor:	Chibougamau Diamond Drilling			
Logged by:	Julien Meric			
		-		

Reflex EZ Shot- Diamond Drillhole Survey DepthDipAzimuthCasing-74.1827.41

Assistant: Renata Smoke (quick log) Yongang Feng (RQD) complete downhole survey in Four Dams masterlist

	GEOLO	DGY				Mineralization	SAMPLE		INTERVAL	-	WIDTH	Au	Pt	Pd	Rh Ti	GM	Ag	Cu	Cu	Ni	Ρ	S	С	Job
From	То	MajRock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm p	om	ppm	%	ppm	ppm	ppm	%	%	#
0.00	3.00	OB - Overburde	en				N504515		6	8	2.0	0.002	<0.005	<0.001			<0.2		886	50	>10000	0.28	Т	TB13111457
							N504516		8	10	2.0	0.001	<0.005	<0.001			<0.2		651	66	>10000	0.34		TB13111457
3.00	9.03	2f - Medium to c			% to 1% disse	minated sulphides	N504517		10	12	2.0	<0.001	<0.005	<0.001			<0.2		268	43	>10000	0.18		TB13111457
				d to crs gr cpx, plag, ol and mag and heterogeous 2f you have variation of the content in plag		3-9.03 fine grain mostly po few trace of cpy.	N504518		12	14	2.0	<0.001	<0.005	<0.001			<0.2		329	62	>10000	0.2		TB13111457
				mafic parts. Several fractures with chlorite infill and chlorite veins surrounding by a strong			N504519 N504520		14 16	16 18	2.0	<0.001 0.001	<0.005	<0.001			<0.2		401 878	58 97	>10000 >10000	0.16 0.25		TB13111457 TB13111457
			chiù	orite alteration replacing cpx.			N504520		18	20	2.0 2.0	0.001	<0.005 <0.005	<0.001 <0.001			<0.2 <0.2		1325	97 127	>10000	0.25		TB13111457 TB13111457
9.03	9.30	FZ - fault or she	ear zone	0.5	% to 1% disse	minated sulphides	N504522		20	22	2.0	0.012	<0.005	0.006			1		5210	244	>10000	1.55		TB13111457
				orite coated slikenslide		9.03-9.30 fine grain mostly po few trace of cpy	N504523		22	24	2.0	0.007	0.009	0.006			0.6		3360	180	>10000	1.14	Т	TB13111457
							N504524		24	26	2.0	0.001	<0.005	0.004			<0.2		950	88	>10000	0.34	Т	TB13111457
9.30	36.63	2f - Medium to c	coarse grained oxid	de augite melatroctolite 0.5	% to 1% disse	minated sulphides	N504525	d	24	26	2.0	0.002	<0.005	0.004			<0.2		924	90	>10000	0.34	Т	TB13111457
			9.3-	3-12.25 Med to crs gr cpx, plag, ol and mag and apatite and heterogeous 2f you have variation		9.30-16.7 fine grain mostly po few trace of cpy	N504526		26	28	2.0	0.001	<0.005	0.003			<0.2		1140	105	>10000	0.5		TB13111457
			of th	the content in plag vs mafic parts. 2-3	% disseminate		N504527		28	30	2.0	0.004	<0.005	0.004			0.3		2090	169	>10000	0.82		TB13111457
						16.7-20.3	N504528		30	32	2.0	0.001	<0.005	0.001			<0.2		1340	88	8460	0.41		TB13111457
					% disseminate		N504529 N504530		32 34	34 36	2.0	0.003	<0.005	0.003			0.2 <0.2		1420	113	>10000	0.49 0.34		TB13111457 TB13111457
			ther	n homegeous typical 2f.	% disseminate	5-10% 20.3-23.1 medium to fine gr mostly Po, cpy <1%	N504530 N504531		34	36	2.0 2.0	0.002	<0.005 <0.005	0.002			<0.2		904 855	125 133	>10000 >10000	0.34		TB13111457 TB13111457
			35-1	-39 medium mag ol rich, grain size variation med to crs gr	76 UISSEITIITIAU	23.1-36.63 fine grain and variation of content, patches could	N504532		30	40	2.0	0.001	0.01	0.001			0.6		2940	277	>10000	0.23		TB13111457 TB13111457
			001	oo moaan mag ornen, grain eizo vanation mod to ero gr		reach 8% (28.5-28.6) mostly Po 8:1 cpy	N504533		40	42	2.0	0.001	<0.005	0.001			<0.2		1200	168	>10000	0.23		TB13111457
		2	2b - Coarse grained	d olivine gabbro with modal layering			N504534		42	44	2.0	0.001	<0.005	<0.001			<0.2		839	74	>10000	0.16		TB13111457
			12.2	25-16.66 more plag rich layers 50-60%, med to crs gr plag, cpx, ol, mag , there is a gradual with			N504535		44	46	2.0	<0.001	< 0.005	<0.001			0.2		1465	63	8460	0.39	Т	TB13111457
			the :	2f unit at the top and bottom; 15.73 smal leucopod			N504536		46	48	2.0	0.002	0.006	0.001			0.4		3050	75	6660	0.62	Т	TB13111457
							N504537		48	50	2.0	<0.001	<0.005	<0.001			<0.2		1645	41	7230	0.89	т	TB13111457
		5	5b - Augite syenite	3-:	% disseminate	ed sulphides	N504538		50	52	2.0	0.001	<0.005	<0.001			<0.2		2340	32	6090	1.94	Т	TB13111457
			20.9	9-21.3 and 29.5-29.92 dykes of syenite, crs grain felds K, biotite and px. Chlorite alteration.		very crs and euhedral grain sulfides associated with syenite,	N504539		52	54	2.0	<0.001	<0.005	<0.001			<0.2		353	5	7490	0.22		TB13111457
						seems replacing biotite and px, located at the border of the	N504540	Ь				< 0.001	< 0.005	< 0.001			<0.2		10	<1	50	< 0.01		TB13111457
36.63	29.46	FZ - fault or she	007 7000	21	% disseminate	dyke Po 2:1 cpy	N504541 N504542		54 56	56 58	2.0 2.0	<0.001 <0.001	<0.005 <0.005	<0.001 <0.001			<0.2 <0.2		116 77	<1 <1	7850 7820	0.19 0.21		TB13111457 TB13111457
30.03	30.40	FZ * Iduit OF SHE		uge and rubble 2parts rubble (put mesure)	76 UISSEITIITIAU	36.63-38.46 fine grain Po:cpy 8:1	N504543		58	60	2.0	<0.001	<0.005	<0.001			<0.2		57	<1	7190	0.21		TB13111457
			000	age and rabble (particidate)		Solo de la ma grann clopy d. l	N504544		60	62	2.0	0.001	<0.005	0.001			<0.2		46	<1	7230	0.21		TB13111457
38.46	43.66	2f - Medium to c	coarse grained oxid	de augite melatroctolite 2-3	% disseminate	ed sulphides	N504545		102	104	2.0	< 0.001	< 0.005	< 0.001			<0.2		79	1	8010	0.26		TB13111457
				42.1 typical 2f olivineand mag rich and apatite		38.46-42.1 fine grain and variation of content, patches could	N504546		104	106	2.0	<0.001	<0.005	<0.001			<0.2		175	<1	>10000	0.49	Т	TB13111457
						reach 8% (38.7-39.36) mostly Po 8:1 cpy	N504547		106	108	2.0	<0.001	<0.005	<0.001			<0.2		85	1	7760	0.29	Т	TB13111457
		2	2e - Medium to coa	arse grained olivine gabbro Tra	ice to 0.5% dis	seminated sulphides	N504548		108	110	2.0	<0.001	<0.005	<0.001			<0.2		118	<1	9040	0.39	Т	TB13111457
			42.1	1-43.66 med to crs gr plag, cpx ol and mag, no alignment, increase of felsic part since the 2f until		42.1-43.66 trace	N504549		110	112	2.0	<0.001	<0.005	<0.001			<0.2		119	<1	9920	0.39		TB13111457
			the e	end.			N504550		112	114	2.0	<0.001	<0.005	<0.001			<0.2		86	<1	8910	0.32		TB13111457
43.66	E1 10	21 Med to coor	rea ar alivina aabbr	ro to melatroctolite with MS intrusions 2-:	% disseminate	ad autobidon	N504551 N504552		122 124	124 126	2.0 2.0	<0.001 <0.001	<0.005 <0.005	<0.001 <0.001			<0.2 <0.2		104 504	<1 <1	>10000 7820	0.37 0.6		TB13111457 TB13111457
43.00	51.10	21 * Weu to coal		d to crs gr gabbro, probably 2e and also 2f and mix with	/o uissenninau	43.66-45.7 but more cpy 2:1	N504553		124	120	2.0	0.003	<0.005	<0.001			0.4		18	<1	500	0.04		TB13111457
					ce to 0.5% dis	seminated sulphides	N504554		128	130	2.0	<0.001	<0.005	<0.001			<0.2		165	<1	6400	0.19		TB13111457
						45.7-46.35 just small patches in anorthosite verys fine grain	N504555	mpg1				0.239	0.978	3.89			3.3		7340	401	1390	1.12		TB13111457
			46.2	23-51.10 principally 2f with olivine and mag with around 20% of marathon series (3c ?) contacts		mostly Po	N504556		130	132	2.0	<0.001	<0.005	0.001			<0.2		218	<1	8050	0.23	Т	TB13111457
					% disseminate	ed sulphides	N504557		132	134	2.0	<0.001	< 0.005	<0.001			<0.2		223	<1	7960	0.23	Т	TB13111457
						46.35-47.2 med to fine grain really rich in cpy 2:1, variation	N504558		134	136	2.0	<0.001	<0.005	0.001			<0.2		219	<1	7390	0.22		TB13111457
		3		rained to pegmatitic, ophitic gabbro		content could reach around 8%, minerallization start in the	N504559		136	138	2.0	<0.001	<0.005	<0.001			<0.2		237	<1	7660	0.23		TB13111457
\vdash				66-44.07 pegmatitic gabbro with euhedral plag and ophitic cpx and mag trace of apatite.		possble two duck	N504560		138	140	2.0	<0.001	<0.005	<0.001			<0.2		181	<1	7310	0.18		TB13111457
					ice to 0.5% dis	seminated sulphides	N504561		140	142	2.0	<0.001	<0.005	<0.001			<0.2		294	<1	9050	0.27		TB13111457
			pres	sence of coarse grain mag and biotite. It is possibly a syenite mixed with the TDL gabbro.	0(discontinut	47.2-49.1 very fine grained	N504562		142	144	2.0	< 0.001	<0.005	<0.001			<0.2		382	<1	9530	0.28		TB13111457
		-	20. Modium to		% disseminate		N504563 N504564		144 146	146 148	2.0 2.0	<0.001 <0.001	<0.005 <0.005	<0.001 <0.001			<0.2 0.2		192 558	<1 <1	7310 8910	0.18 0.34		TB13111457 TB13111457
				arse grained olivine gabbro .07-45.7 med to crs gr plag, cpx ol and mag, no alignment		49.1-51.1 med to fine grain really rich in cpy 2:1, variation content could reach around 8%, minerallization principally	N504565		146	148	2.0	<0.001	<0.005	<0.001			<0.2		558 441	<1	8910 8510	0.34		TB13111457 TB13111457
			44.0			present in the mixing part	N504566		148	150	2.0	<0.001	<0.005	<0.001			<0.2		279	<1	7480	0.28		TB13111457 TB13111457
		2	2g - Gabbroic anort	thosite		Level - and have	N504567		152	154	2.0	<0.001	<0.005	<0.001			<0.2		517	1	8420	0.32		TB13111457
				7-46.23 typical anorthosite xenolith with cpx, ol, mag oikocrysts. Sharp contact at the top but			N504568		154	156	2.0	<0.001	<0.005	<0.001			0.2		599	1	8570	0.34		TB13111457

	GEOLO	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	C Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	% #
				the bottom contact is really diffuse and seems to continue until 46.83m but more altered and			N504569		156	158	2.0	<0.001	<0.005	<0.001			0.2		628	1	8360	0.34	TB13111457
				mineralized. (maybe mixing with TDL 3c)			N504570	d	156	158	2.0	<0.001	< 0.005	<0.001			0.2		612	<1	8790	0.34	TB13111457
							N504571		158	160	2.0	<0.001	< 0.005				<0.2		553	<1	8070	0.31	TB13111457
		3c -		ained, ophitic gabbro with leucogabbro lenses			N504572		160	162	2.0	<0.001	< 0.005				<0.2		576	1	8800	0.32	TB13111457
				46.45-46.83, 47.88-47.99, 48.06-48.14, 48.28-48.47, 48.52-48.61, 48.7-48.77 possible 3c ?			N504573		162	164	2.0	< 0.001	< 0.005	< 0.001			0.3		892	<1	8860	0.46	TB13111457
				looks like the anorthosite but you see smal individual grains of plag, presence of sericite and strong minerallization, ophitic texture is not obvious.			N504574 N504575		164 166	166 168	2.0 2.0	<0.001 <0.001	<0.005 <0.005	<0.001 <0.001			0.6 0.5		2160 1540	5 3	8940 6340	0.91 0.65	TB13111457 TB13111457
							N504576		168	170	2.0	<0.001	<0.005	<0.001			0.2		721	<1	8060	0.36	TB13111457
51.10	98.65	2b - Coarse graine	d olivine ga	abbro with modal layering	3-5% dissemir	ated sulphides	N504577		170	172	2.0	<0.001	< 0.005	<0.001			0.2		476	1	8280	0.25	TB13111457
				40-60 plag rich layers, med to crs grain plag cpx, ol mag . Plag alignment but not obvious.		51.1-52.2 med to fine grain really rich in cpy 2:1, variation	N504578		172	174	2.0	<0.001	< 0.005	<0.001			0.2		552	2	9600	0.27	TB13111457
				presence of few leucopds max 5 cm wide <1%		content could reach around 8%, minerallization principally	K008508		62	71	9.0											0.2	0.02 TB13118918
					0.500 + 400 -	present in the mixing part	K008509		71	80	9.0											0.22	0.03 TB13118918
				51.10-64.5, 5% blebs or pods of altered plag with sericite and biotite, they also appear as small veins	0.5% to 1% di	seminated sulphides 52.2-98.65 mostly Po trace of cpy, present in all lithologies	K008510 K008511		80 89	89 98	9.0 9.0											0.19 0.21	0.03 TB13118918 0.01 TB13118918
		2f -	Medium to	coarse grained oxide augite melatroctolite		very fine grain very continuous and homogenous	K008512		98	102	4.0											0.24	0.02 TB13118918
				74.10-75.79 wide mafic layers with more mag and ol			K008513		114	122	8.0											0.26	0.02 TB13118918
							-																
				85.35-87-56, alteration of 2b strong green color (epidot ?) and olivine looks really altered, and also			-																
				pink alteration. The alteration is maximum around a vein of carbonate with crystals of calcite (vein			-																
00.65	00.70	Da Madium ta an		around 3 cm wide from 86.05-86.33)	0.50(+= 40(==		-																
98.65	99.76	2e - Medium to coa		Possible 3d. No plag alignment, lathlike feld and pink alteration or felds K ?, ophitic textur. Mg-cg.	0.5% 10 1% 0	seminated sulphides 98.65-99.76 mostly Po trace of cpy, present in all lithologies	-																
				reddinio dd. No plag angrinnent, admine fold and print anordaen er folde R, oprinte texter. mg eg.		very fine grain very continuous and homogenous																	
99.76	104.05	2b - Coarse graine	d olivine ga	abbro with modal layering	0.5% to 1% di	seminated sulphides																	
				plag rich layers, med to crs grain plag cpx, ol mag . Plag alignment but not obvious.		99.76-104.05 mostly Po trace of cpy, present in all lithologies	-																
		3b -	Coarse gr	ained, ophitic gabbro (>5mm)		very fine grain very continuous and homogenous	-																
				101.2-101.34m Dyke in 2b. Sharp contact. Ophitic texture, intense pink alteration. Lathlike felds med			-																
		20	- Gabbroic a	to crs gr.			-																
		2y -		102-102.22 anorthosite xenolith associated with a part of two duck ophitic gabbro (3b) same color			-																
				and texture but the contact between them is diffuse, there is probably a mixing between them .																			
104.05	105.85	2f - Medium to coa		d oxide augite melatroctolite	0.5% to 1% di	seminated sulphides	-																
				ol rich (35%), mag, plag, cpx.		104.05-105.85 fine grain very ho; ogenous, could reach 2%	-																
105.05	400.07		1.18.11.1		T	mostly Po trace of cpy	-																
105.85	108.97	2b - Coarse graine		abbro with modal layering 30-50% plag rich layers, med to crs grain plag cpx, ol mag . Plag alignment but not obvious.	Trace to 0.5%	disseminated sulphides 105.85-108.97 very fine gr	-																
				50-50% plag inciniayers, med to cis grain plag cpx, ormag i riag alignment bat not obvious.		103.03-100.37 very line gi																	
108.97	111.12	2f - Medium to coa	rse grained	d oxide augite melatroctolite	0.5% to 1% di	seminated sulphides																	
				ol rich (35%), mag, plag, cpx.		108.97-111.12 fine grain very homogeneous, could reach 2%	-																
						mostly Po trace of cpy	-																
111.12	125.70	2b - Coarse graine		abbro with modal layering			-																
				45-65% plag rich layers, med to crs grain plag cpx, ol mag. Plag alignment.but variation of the content in mafic and felsic layers.	3-5% dissemir	124.26 125 7 free to med at no trace of any	-																
125.70	128.27	5a - Quartz syenite			Trace to 0.5%	124.36-125.7 fine to med gr po trace of cpy disseminated sulphides																	
				crs gr felds K, and biotite strong alteration (green color) the dyke looks like silicified. Stong pink		few trace of mineralization in the syenite dyke																	
				alteration in the 2b at the contact. Sharp contact it is a big dyke.			-																
128.27	153.00	2b - Coarse graine		abbro with modal layering	3-5% dissemir	ated sulphides	-																
\vdash		+		50-70% plag rich layers, med to crs grain plag cpx, ol mag . Plag alignment.	0.000	128.27-128.6 med to fine grain po trace of cpy,	-																
		20	Modium to		2-3% dissemir	128.6.120.2 mod to fine grain po trace of any	-																
		20 -		o coarse grained olivine gabbro Possible 3d. No plag alignment, lathlike feld and pink alteration or felds K ?, ophitic texture. Same	0.5% to 1% di	128.6-130.3 med to fine grain po trace of cpy, seminated sulphides	1																
				material see at 98.65m. But diffuse contact with 2b and stringer and blebls at the top and bottom.	2.070101700	130.3-153 very fine grain	1				1]			
		2f -		coarse grained oxide augite melatroctolite	-		1																
\vdash				147-148.88 2f mafic unit rich in ol and plag			-																
153.00	174.00	2f - Medium to coa		d oxide augite melatroctolite	2-3% dissemir		-																
474.00				rich 20-30% in ol and 10-20 % mag , interstitial plag and cpx		153-174 med to fine grain po trace of cpy,	-																
174.00		EOH - End of Hole					1				1]			
							1																
							1						1										
]						1										
	-						1						1										
		ļ					-						1										
├ ──┤							-				1]			
\vdash		<u>├</u> ───					1						1										
I		I			-		1	1	I	1	1	1	1	1	1	I.			1	I.	I	1	l I

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG	
NTS:		42 D / 16	DDH: FD-13-25	
UTM	Northing	5408990	Lease/Claim:	
(Nad27)	Easting	547921.5	Property:	c
Elevation	n (m):	392.7	Zone:	F
Dip at Co	ollar:	-45.13	Date start:	
Azimuth:		29.83	Date finish:	
Total De	pth:	156	Contractor: Chil	bou
Core Size	e:	NQ	Logged by:	

Core stored in Stillwater Canada Inc. warehouse, Marathon, Ontario

Remarks:

1240552 Coldwell Complex Four Dams South 07-Jun-13 08-Jun-13 ougamau Diamond Drilling Yonggang Feng Logged by: Assistant: Renata Smoke, Julien Meric

Reflex EZ Shot- Diamond Drillhole Survey DepthDipAzimuthCasing-45.1329.83 complete downhole survey in Four Dams masterlist

DIAMOND DRILL CORE LOG

From To Model From NO. OC FROM TO pm		GEOLO	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh 1	PGM	Ag	Cu	Cu	Ni	Р	S	С	Job
Image Image <th< th=""><th></th><th></th><th></th><th>*</th><th></th><th>N</th><th></th><th>oralli EE</th><th></th><th></th><th></th><th></th><th>7.0</th><th></th><th></th><th></th><th></th><th>A g</th><th></th><th></th><th></th><th></th><th></th><th><u> </u></th><th></th></th<>				*		N		oralli EE					7.0					A g						<u> </u>	
Image	om	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
101 1.0 0.0	.00	1.00	OB - Overburde	en				N504579		6	8	2.0	0.001	<0.005	<0.001			<0.2		383	49	>10000	0.16	7	TB13111455
Image: Sector Secto								N504580		8	10	2.0	0.001	< 0.005	0.001			0.2		468	63	>10000	0.17	7	TB13111455
1 1 1 4 4 4 4 4 5 4 6 6 6 6 6 6 7 </td <td>.00</td> <td>15.88</td> <td>2b - Coarse gra</td> <td>ined olivine ga</td> <td>abbro with modal layering</td> <td>Trace to 0.5% dis</td> <td>seminated sulphides</td> <td>N504581</td> <td></td> <td>10</td> <td>12</td> <td>2.0</td> <td>0.003</td> <td>< 0.005</td> <td>0.001</td> <td></td> <td></td> <td>0.2</td> <td></td> <td>872</td> <td>111</td> <td>>10000</td> <td>0.3</td> <td>7</td> <td>TB13111455</td>	.00	15.88	2b - Coarse gra	ined olivine ga	abbro with modal layering	Trace to 0.5% dis	seminated sulphides	N504581		10	12	2.0	0.003	< 0.005	0.001			0.2		872	111	>10000	0.3	7	TB13111455
Image: Image					Rock is composed of med grained PI, Cpx, OI and fine grained Mag. The layering is defined by		1-11m. <0.5% Po. Almost invisible Cpy	N504582		12	14	2.0	0.003	< 0.005	0.001			0.3		751	98	>10000	0.23	7	TB13111455
Image: Set in the set in t					variations in OI and Cpx contents. The mafic layer is a cm to 20 cm.		hard to estimate Po: Cpy.	N504583		14	16	2.0	0.002	< 0.005	0.001			0.4		1090	115	>10000	0.25	7	TB13111455
1 1 </td <td></td> <td></td> <td></td> <td></td> <td>Med grained Bt is mainly present as a secondary mineral. Pl is partially altered and likely sericitized.</td> <td>0.5% to 1% disse</td> <td>eminated sulphides</td> <td>N504584</td> <td></td> <td>16</td> <td>18</td> <td>2.0</td> <td>0.004</td> <td>< 0.005</td> <td>0.001</td> <td></td> <td></td> <td>0.9</td> <td></td> <td>3100</td> <td>169</td> <td>>10000</td> <td>0.95</td> <td>7</td> <td>TB13111455</td>					Med grained Bt is mainly present as a secondary mineral. Pl is partially altered and likely sericitized.	0.5% to 1% disse	eminated sulphides	N504584		16	18	2.0	0.004	< 0.005	0.001			0.9		3100	169	>10000	0.95	7	TB13111455
ind ind </td <td></td> <td></td> <td></td> <td></td> <td>Cpx and OI are likely replaced by Bt and Chl. 1% disseminated Ap.</td> <td></td> <td>11-15.88m. Predominantly Po. 0.5-1% Po. Almost invisible Cpy</td> <td>N504585</td> <td>b</td> <td>16</td> <td>18</td> <td>2.0</td> <td><0.001</td> <td><0.005</td> <td><0.001</td> <td></td> <td></td> <td><0.2</td> <td></td> <td>7</td> <td>1</td> <td>50</td> <td>0.01</td> <td>7</td> <td>TB13111455</td>					Cpx and OI are likely replaced by Bt and Chl. 1% disseminated Ap.		11-15.88m. Predominantly Po. 0.5-1% Po. Almost invisible Cpy	N504585	b	16	18	2.0	<0.001	<0.005	<0.001			<0.2		7	1	50	0.01	7	TB13111455
ind ind </td <td></td> <td></td> <td></td> <td></td> <td>15-15.88. Fractures are very oxidized.</td> <td></td> <td>hard to estimate Po: Cpy.</td> <td>N504586</td> <td></td> <td>18</td> <td>20</td> <td></td> <td></td> <td>< 0.005</td> <td>0.005</td> <td></td> <td></td> <td>0.9</td> <td></td> <td></td> <td>176</td> <td>>10000</td> <td>1.53</td> <td></td> <td>TB13111455</td>					15-15.88. Fractures are very oxidized.		hard to estimate Po: Cpy.	N504586		18	20			< 0.005	0.005			0.9			176	>10000	1.53		TB13111455
11 11 12 <				2f - Medium to	o coarse grained oxide augite melatroctolite			N504587		20	22	2.0	0.007	< 0.005	0.006			1		3740	230	>10000	1.41	7	TB13111455
111 111 </td <td></td> <td></td> <td></td> <td></td> <td>6.27-6.5 m. The rock is dominated by med grained OI, Mag and PI. OI and Mag are subhedral to</td> <td></td> <td></td> <td>N504588</td> <td></td> <td>22</td> <td>24</td> <td>2.0</td> <td>0.002</td> <td>< 0.005</td> <td>0.002</td> <td></td> <td></td> <td>0.5</td> <td></td> <td>1755</td> <td>101</td> <td>8720</td> <td>0.74</td> <td>7</td> <td>TB13111455</td>					6.27-6.5 m. The rock is dominated by med grained OI, Mag and PI. OI and Mag are subhedral to			N504588		22	24	2.0	0.002	< 0.005	0.002			0.5		1755	101	8720	0.74	7	TB13111455
11.1 12.1					euheral. Gradational contacts with 2b.			N504589		24	26	2.0	0.001	< 0.005	0.001			0.4		1065	71	>10000	0.44	7	TB13111455
Image: Image					8-8.4m. Same as the 2f unit of 6.27-6.5m.			N504590		26	28	2.0	0.003	< 0.005	0.002			0.4		913	120	>10000	0.33	7	TB13111455
Image: state Image: state <t< td=""><td></td><td></td><td></td><td></td><td>15.68-15.88 m. Same as the 2f unit above.</td><td></td><td></td><td>N504591</td><td></td><td>28</td><td>30</td><td>2.0</td><td>0.002</td><td>< 0.005</td><td><0.001</td><td></td><td></td><td>0.3</td><td></td><td>801</td><td>128</td><td>>10000</td><td>0.33</td><td>7</td><td>TB13111455</td></t<>					15.68-15.88 m. Same as the 2f unit above.			N504591		28	30	2.0	0.002	< 0.005	<0.001			0.3		801	128	>10000	0.33	7	TB13111455
1 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N504592</td> <td></td> <td>30</td> <td>32</td> <td>2.0</td> <td>0.001</td> <td>< 0.005</td> <td>0.001</td> <td></td> <td></td> <td>0.4</td> <td></td> <td>905</td> <td>147</td> <td>>10000</td> <td>0.31</td> <td>7</td> <td>TB13111455</td>								N504592		30	32	2.0	0.001	< 0.005	0.001			0.4		905	147	>10000	0.31	7	TB13111455
ind ind </td <td>.88</td> <td>16.86</td> <td>LC - Lost Core</td> <td></td> <td></td> <td></td> <td></td> <td>N504593</td> <td></td> <td>32</td> <td>34</td> <td>2.0</td> <td>0.004</td> <td>0.008</td> <td>0.003</td> <td></td> <td></td> <td>0.6</td> <td></td> <td>1775</td> <td>218</td> <td>>10000</td> <td>0.47</td> <td>7</td> <td>TB13111455</td>	.88	16.86	LC - Lost Core					N504593		32	34	2.0	0.004	0.008	0.003			0.6		1775	218	>10000	0.47	7	TB13111455
10.10 2.00 2.00 0.00					Possibly a fault zone.			N504594		34	36	2.0	0.006	0.01	0.008			1		3030	297	9090	0.58	7	TB13111455
Image: Series in the series of the serie								N504595		36	38	2.0	0.002	0.005	0.002			0.5		1985	151	7550	0.37	7	TB13111455
ind	.86	25.80	2f - Medium to	coarse grained	d oxide augite melatroctolite	3-5% disseminate	ed sulphides	N504596		38	40	2.0	0.001	< 0.005	<0.001			0.3		1260	49	6510	0.44	7	TB13111455
Image: spin and base of the spin and the spin and base of the spin and the					Dark rock is dominated by subhedral OI and Mag and ahedral PI with minor Cpx. OI and Cpx are		16.86-23.63m. Predominantly Po. 5% Po, Cpy in trace amount.	N504597		40	42	2.0	< 0.001	< 0.005	<0.001			0.2		395	22	7250	0.15	7	TB13111455
Image: spin of the spi								N504598		42	44	2.0	< 0.001	< 0.005	<0.001			<0.2		311	21	8040	0.13	7	TB13111455
Image: Since series of the part of				3d - Very coar		2-3% disseminate	ed sulphides	N504599		44	46	2.0	< 0.001	< 0.005	<0.001			<0.2		245	12	7990	0.15	7	TB13111455
Image: Image							23.63-25.80m. 2-3% Po, invisible Cpy.	N504600	mpg2	44	46	2.0	0.089	0.281	0.913			1.3		2950	286	1810	1.19	7	TB13111455
Image: Note on the state of the state o					Gradational contacts with 2f but the grain size of Mag dramatically changes at the contacts. Pl			N504601		46	48	2.0	< 0.001	< 0.005	<0.001			<0.2		265	8	8330	0.16	7	TB13111455
Image Image <td< td=""><td></td><td></td><td></td><td></td><td>shows pink rim possibly due to Kfs alteration. Possibly TDL (?).</td><td></td><td></td><td>N504602</td><td></td><td>48</td><td>50</td><td>2.0</td><td>< 0.001</td><td>< 0.005</td><td><0.001</td><td></td><td></td><td><0.2</td><td></td><td>132</td><td>1</td><td>8720</td><td>0.25</td><td>7</td><td>TB13111455</td></td<>					shows pink rim possibly due to Kfs alteration. Possibly TDL (?).			N504602		48	50	2.0	< 0.001	< 0.005	<0.001			<0.2		132	1	8720	0.25	7	TB13111455
Image: Note on the set of the set o								N504603		50	52	2.0	< 0.001	< 0.005	<0.001			<0.2		71	2	9290	0.28	-	TB13111455
Image: Note on the set of the set	.80	26.80	FZ - fault or she	ar zone				N504604		52	54	2.0	< 0.001	< 0.005	0.001			<0.2		67	2	8960	0.27	-	TB13111455
Image: Note on the set of the set					The rock is 2f but very fractured.			N504605		54	56	2.0	0.001	< 0.005	<0.001			<0.2		87	2	8040	0.23		TB13111455
2.8.8 3.7.3 2.4.Medum Locate grade mediatocitie add and account is relatively P1-rich. P1 alignments are 1 to 0 m 2.3% dissent add account is relatively P1-rich. P1 alignments are 1 to 0 m 2.3% dissent add account is relatively P1-rich. P1 alignments are 1 to 0 m 9.8000 9.8000 6.80 <								N504606		56	58	2.0	< 0.001	< 0.005	<0.001			0.2		104	5	7890	0.26		TB13111455
Image: Note on the set of the set	.80	37.13	2f - Medium to	coarse grained	d oxide augite melatroctolite	2-3% disseminate	ed sulphides	N504607		58	60	2.0	< 0.001	< 0.005	0.001			<0.2		154	8	9420	0.32		TB13111455
Image: Normal and the synthesis of the synthese interstitied population of the synthese inters								N504608		60	62							<0.2		118	2	>10000	0.33		TB13111455
Image: Note the stand of						2-3% disseminate		N504609		62	64				<0.001			<0.2		76		9110	0.28		TB13111455
Image: Note of the synthesis of the synthese intersteint process of the synthese intersteint proces intersteint process of the synthese inters				3d - Very coar				N504610		94	96	2.0	< 0.001	< 0.005	<0.001			<0.2		89	3	9260	0.34		TB13111455
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								N504611		96	98	2.0	< 0.001	< 0.005	<0.001			<0.2		86	4	8250	0.33		TB13111455
Image: Note the section of the secting and the se								N504612		98	100				<0.001			<0.2		89	4	8380	0.36		TB13111455
Image: Note of the synthetic synthetic synthet				5b - Augite sv				N504613		100	102				<0.001			<0.2		98	4	9000	0.36	-	TB13111455
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										102										69	3	7810	0.26		TB13111455
111 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>d</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>7740</td><td>0.27</td><td></td><td>TB13111455</td></th<>									d												3	7740	0.27		TB13111455
1 1		-							-												4	9540	0.35		TB13111455
3.7.3 40.87 2n-Gabbraic Face to 0.5% disseminated subhides N56468 108 108 100 0.000	\rightarrow							1													3	9780	0.4		TB13111455
Image: Contract of the white rock is dominated by Pl with lesser interstitial pyroxene. Pyroxene is partially to completely 37.13-38.9m. Trace amount of Po and Cpy. Hard to estimate N504619 110 112 2.0 <0.001	(13	40.87	2g - Gabbroic a	northosite		Trace to 0.5% dis	seminated sulphides														4	9670	0.33		TB13111455
	<u> </u>				The white rock is dominated by PI with lesser interstitial pyroxene. Pyroxene is partially to completely	and to the first of the		1													3	8570	0.27		TB13111455
		-	1																		3	7680	0.26		TB13111455
and 39.2m. The PI-Cpx patches seems to be rocks dissolved in the anorthosite (?). 2-3% disseminated sulphides N504621 114 116 2.0 < 0.001 < 0.005 < 0.001 < 0.2 263	-+					2-3% disseminate		1													2	9020	0.29		TB13111455
Bit Model: The Pop particul desired of these desired of these desired of the excellence of the exc	-+			5h - Augite sy																	- 4	8070	0.26		TB13111455
Operation Operation <t< td=""><td>+</td><td></td><td> </td><td>oo i nugite Sy</td><td></td><td>Trace to 0 5% dis</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>8740</td><td>0.20</td><td></td><td>TB13111455</td></t<>	+			oo i nugite Sy		Trace to 0 5% dis		1													3	8740	0.20		TB13111455
Operating Operating <t< td=""><td>+</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3</td><td>8740 8940</td><td>0.29</td><td></td><td>TB13111455</td></t<>	+																				3	8740 8940	0.29		TB13111455
Image: Constraint as the unit of 36:05/36.72th 40/40.67th, F0 and Cpy in race amounts. NOM624 120 122 2.0 40.001 40.001 40.2 402 Image: Constraint as the unit of 36:05/36.72th 40/40.67th, F0 and Cpy in race amounts. NOM625 122 124 2.00 40.001 40.00 40.2 402	+				10.00-10.00110 do trib Utilit UF 30.00*30.7211.	-	Hornolorm. Fo and opy in trace amounts.											<0.2			3	8580	0.38		TB13111455

	GEOLOG	3Y				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh 1	PGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	opm	ppm	%	ppm	ppm	ppm	%	%	#
40.87	56.15 21	2b - Coarse gra	ained olivine gat	obro with modal layering	0.5% to 1% disse	minated sulphides	N504626		124	126	2.0	<0.001	< 0.005	<0.001			<0.2		236	3	8430	0.21		TB13111455
				Similar to the 2b unit of 1-15.88m. The layering is defined by variations in OI content. Shows		40.87-56.15m. Overall, 1% fine grained disseminated Po, very	N504627		126	128	2.0	<0.001	< 0.005	<0.001			<0.2		232	2	8420	0.22		TB13111455
				diffusive contact with 2g. Week Chl ateration. Chl commonly replaces Cpx and Ol.		little Cpy.	N504628		128	130	2.0	<0.001	< 0.005	0.001			<0.2		206	4	8200	0.24		TB13111455
			5b - Augite sye				N504629		130	132	2.0	<0.001	< 0.005	<0.001			<0.2		206	3	7740	0.21		TB13111455
				41.09-41.18m. The rock is composed of megacrystic subhedral to euhedral Kfs and Cpx. The			N504630	b	130	132	2.0	< 0.001	< 0.005	<0.001			<0.2		2	1	50	0.01		TB13111455
⊨				contacts with 2b is not distinctively sharp.			N504631		132	134	2.0	<0.001	< 0.005	<0.001			<0.2		224	3	7670	0.21		TB13111455
$ \longrightarrow $							N504632		134	136	2.0	< 0.001	< 0.005	<0.001			<0.2		361	5	8840	0.29		TB13111455
56.15	61.23 21	2f - Medium to		oxide augite melatroctolite	0.5% to 1% disse	minated sulphides	N504633		136	138	2.0	<0.001	< 0.005	<0.001			0.3		527	5	9520	0.36		TB13111455
\vdash				Same as the 2f unit of 26.8-37.13m. Gradational contact with the above 2b.		56.15-61.23m. Overall 0.5-1% Po, invisible Cpy.	N504634		138	140	2.0	<0.001	< 0.005	<0.001			0.3		487	7	8350	0.3		TB13111455
	404.00						N504635		140	142	2.0	<0.001	< 0.005	<0.001			<0.2		431	6	7970	0.25		TB13111455
61.23	134.30 21	2b - Coarse gra		obro with modal layering	Trace to 0.5% dis	seminated sulphides	N504636		142	144	2.0	< 0.001	< 0.005	< 0.001			0.2		592	7	8650	0.35		TB13111455 TB13111455
+				Same as the previous 2b unit. The rook shows fractures roughtly 70 degree to the core axis.		61.23-100.4m. Po and Cpy in trace amounts. Difficult to	N504637		144	146	2.0	< 0.001	< 0.005	<0.001			0.2		548	5	8950 8360	0.33		
+				106-106.2m. Coarse grained PI and Cpx, slightly ophitic. Possibly TDL unit (?).	0.59/ 4- 49/ -	estimate Po:Cpy.	N504638		146	148	2.0	< 0.001	< 0.005	< 0.001			0.2		681	7		0.37		TB13111455
⊢ −+				No sharp contact with 2b. Very short interval.	U.5% IO 1% DISSE	minated sulphides 100.4-102.1m. 1% Po, invisible Cpy.	N504639 N504640		148 150	150 152	2.0 2.0	<0.001 <0.001	<0.005 <0.005	<0.001 <0.001			<0.2 <0.2		445 381	3 <1	9640 9890	0.24		TB13111455 TB13111455
├ ───┼				120.38-120.6m. Carbonate-chlorite vein that is dominated by megacrystic calcite and fine grained interstitial Chl.	Trace to 0.5% dia	seminated sulphides	N504640 N504641	1	150	152	2.0	<0.001	<0.005	<0.001			<0.2 <0.2		381 254	<1	9890 10000	0.24		TB13111455 TB13111455
├ ───┼				129.2-129.37m. Carbonate-chlorite vein.		102.1-103.84m. No visible sulfides.	N504642	1	152	154	2.0	<0.001	<0.005	<0.001			<0.2 <0.2		206	<1	7970	0.18		TB13111455 TB13111455
├ ───┼				coarse grained oxide augite melatroctolite		minated sulphides	K008514	1	104	6	5.0	<0.001	<0.005	<0.001			<u.2< td=""><td></td><td>200</td><td><1</td><td>1910</td><td>0.2</td><td></td><td>TB13111455 TB13118918</td></u.2<>		200	<1	1910	0.2		TB13111455 TB13118918
				100.4-102.1. Same as the 2f unit above. Gradational contact with the 2b above.	0.376 10 176 01336	103.84-104m. Sulfide is predominantly Po (1%). Hard to see	K008515		64	73	9.0											0.03		TB13118918
				ained, ophitic gabbro (>5mm)		Cov.	K008516		73	82	9.0											0.29		TB13118918
				102.1-102.6m. Sharp contact with the 2f above and 2d below. Typical ophitic texture. The rock is	Trace to 0.5% dis	seminated sulphides	K008517		82	91	9.0											0.31		TB13118918
				composed of medium to coarse grained PI and Cpx. PI is pinkish possibly due to K metasomatism.		104-108m. Invisible Po and Cpy.	K008518		91	94	3.0											0.36		TB13118918
						minated sulphides																		
						108-121.3m. 1% Po, invisible Cpy.																1		
					2-3% disseminate																	1		
						121.3-124m. 2-3% Po, <0.5% Cpy. Hard to estimate Po: Cpy																		
					0.5% to 1% disse	minated sulphides																1		
					124-134.3m. Invisible Cpy, 0.5-1% Po.																			
						-															1			
134.30	150.76 21	2f - Medium to	coarse grained	oxide augite melatroctolite	d sulphides	-																		
⊨				Gradational contact with the 2b unit above. Same as the previous 2f unit in mineralogy. Fractures	134.3-141.3m. 3% Po, invisible Cpy.	-															1			
\vdash				in the rock are filled by carbonates and Chl. Fractures are roughly 70-80 degrees to the core	Trace to 0.5% dis	seminated sulphides	-																	
1+				axis.		141.3-141.7. No visible sulfides.	-															1		
\vdash			2b - Coarse gra	ained olivine gabbro with modal layering	3-5% disseminate		-																	
┝───┼				134.44-134.7m. Same as the previous 2b.		141.7-145m. Predominantly Po, 3-5%; very little Cpy.	-															1		
├ ────┼				135.03-135.64m. Same as the previous 2b.	0.5% to 1% disse	minated sulphides	-																	
⊢ −+				144.72-146.3m. Same as the previous 2b. 147.4-147.7m. 2b unit.		145-150.78m. Sulfide is dominated by Po (0.5-1%). <0.5% Cpy.	1															.		
+			5b - Augite sye		-		1	1						1								ı		
				141.3-141.7m. Syenite dike. Highly altered. Feldpsar is completely replaced by quartz+ epdidote (?)	1		1	1						1								ı		
				Cpx is partialy replaced by Chl. Syenite is cross-cut by late carbonte-chl veins.			1															.		
				and the second			1															.		
150.76	156.00 21	2b - Coarse gra	ained olivine gat	bro with modal layering	0.5% to 1% disse	minated sulphides	1	1						1								1		
				Similar to the 2b unit above but the layering is not very obvious. Pl is partially sericitized. Cpx and Ol		150.76-156m. 0.5% Po, <0.5% Cpy (Po: Cpy=2:1).]															, I		
				is replaced by Chl. Pinkish feldpsar is likely Kfs that replaces Pl.																		, I		
			5b - Augite sye					1						1								ı		
				154.7-154.35m. Same as the syenite at 141.3-141.7m, cross-cutting 2b. Feldpsar in the 2b close				1						1								ı		
				to the sharp contact between syenite and 2b is pink and likely Kfs.			1	1						1								ı		
							1	1						1								ı		
156.00	E	EOH - End of H	lole				-															.		
							4	1						1								ı		
└───┤							4	1						1								.		
⊢							4															, I		
							4															, I		
⊨							-	1						1								.		
⊨							-	1						1								.		
⊨							4															, I		
└─── ┤					-		-															, I		
					1	1	1			1	1	1	1	1	1				1	1	1			

NTS:		42 D / 16	DDH:	FD-13-26
UTM	Northing	5408992	Lease/Claim:	
(Nad27)	Easting	547924	Property:	c
Elevation	n (m):	391.4	Zone:	F
Dip at Co	ollar:	-82.94	Date start:	
Azimuth	:	352.12	Date finish:	
Total De	pth:	144	Contractor:	Chibou
Core Siz	e:	NQ	Logged by:	
Remarks	:	Core stored	I in Stillwater Canada Inc. warehouse, Marathon, Ontario Assistant:	Yonga

<u>H:</u>	FD-13-26	
se/Claim:	1240554	
perty:	Coldwell Complex	
e:	Four Dams South	
start:	08-Jun-13	
finish:	09-Jun-13	
tractor:	Chibougamau Diamond Drilling	
ged by:	Renata Smoke	
stant:	Yongang Feng, Julian Meric	

Depth Dip Azimuth Casing -82.94 352.12

DIAMOND DRILL CORE LOG

	GEOLO	OGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM Ag	Cu	Cu	Ni	Р	S	С	
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm ppm	%	ppm	ppm	ppm	%	%	
0.00	0.52	OB - Overburg	len				N504643		10	12	2.0	<0.001	<0.005	<0.001		<0.2		495	62	>10000	0.18		TB13
							N504644		12	14	2.0	0.001	<0.005	0.002		<0.2		697	91	>10000	0.23		TB13
0.52	12.70	2b - Coarse gr	ained olivine ga	bbro with modal layering			N504645	mpg1				0.247	1.15	3.65		3.1		7040	380	1380	1.09		TB1
				ol < 5%, relatively unaltered (very weak, rare, and patchy pink alteration of plag)			N504646		14	16	2.0	<0.001	<0.005	0.001		<0.2		726	103	>10000	0.23		TB
12.70	41.59	2f - Medium to	coarse grained	l oxide augite melatroctolite	2-3% dissemina	ed sulphides	N504647		16	18	2.0	<0.001	< 0.005	0.001		<0.2		811	108	>10000	0.23		TE
				12.7-19.53m ol content relatively low (<10%). Dominant minerals include cpx, plag, mag, bi.		12.7-21.83m 2% po, vfg-fg Mostly in mag rich layers. No visible cpy	N504648		18	20	2.0	<0.001	< 0.005	0.002		0.2		911	127	>10000	0.24		TE
				Relatively unaltered (very weak to no chlor alteration). Plag rich layers have patchy ser and pink	3-5% dissemina	ed sulphides	N504649		20	22	2.0	0.001	< 0.005	0.002		0.3		1470	97	>10000	0.34		Т
				(very weak) alteration and composes 10% of rock		21.83-40.08m 4% po, no visible cpy	N504650		22	24	2.0	0.004	< 0.005	0.003		0.3		1915	106	>10000	0.69		Т
				19.53-30.15m Higher ol content (15%), and fewer plag rich layers (1%, < 5cm wide). 55% mag,			N504651		24	26	2.0	<0.001	< 0.005	0.001		0.3		1465	98	8020	0.55		٦
				35% cpx, 5% bi, 5% apatite.			N504652		26	28	2.0	<0.001	<0.005	<0.001		<0.2		764	72	8610	0.38		1
				Chlor veins common, (10% of rock, 1-3 cm thick with associated act alteration). Moderate chlor			N504653		28	30	2.0	0.001	< 0.005	<0.001		<0.2		854	67	8230	0.39		1
				alteration throughout.			N504654		30	32	2.0	0.002	<0.005	0.003		<0.2		1100	61	>10000	0.5		ŀ
				30.15-40m Same description as 12.7-19.53m			N504655		32	34	2.0	0.004	<0.005	0.001		<0.2		682	100	>10000	0.25		
			3b - Coarse gr	ained, ophitic gabbro (>5mm)	3-5% dissemina	ed sulphides	N504656		34	36	2.0	0.002	<0.005	0.001		<0.2		543	118	>10000	0.24		
				40-41.59m Contact is difficult to distinguish, marked by change from intergranular to ophitic texture with a		4% po, no visible cpy In 2f ONLY	N504657		36	38	2.0	0.001	<0.005	<0.001		<0.2		589	130	>10000	0.24		
				chlor/act vein (with slickenslide) running along it, and high ap content (20%, fg).		2% cpy, 2% po in 3b	N504658		38	40	2.0	0.001	<0.005	0.002		<0.2		725	141	>10000	0.27		
				Contains 20cm 2f layer within it, sharp contact.			N504659		40	42	2.0	0.004	0.012	0.006		0.4		1720	173	>10000	0.5		
				higher cpy mineralization starts directly below this unit.			N504660	d	40	42	2.0	0.004	0.011	0.005		0.4		1635	189	>10000	0.49		
59	53.95	2f - Medium to	coarse grained	l oxide augite melatroctolite	Local blebs to 2-	1% sulphides	N504661		42	44	2.0	0.006	0.009	0.01		0.9		3150	306	8100	0.62		
				41.59-43.73m: Zone of intermingled 2f, possible 3b (ophitic texture, like above unit), and		41.59-43.73 5-10% cpy, 5-10% po (1:1), mg-cg associated with	N504662		44	46	2.0	0.001	< 0.005	0.004		0.4		1640	202	9150	0.34		·
				3c stringers. 30% stringers, 10-15cm wide.		pegm 3d stringers. Wraps around main minerals.	N504663		46	48	2.0	0.002	0.007	0.002		0.6		2690	136	9800	0.43		·
				2f layers: Higher ol content (15%), 40% mag, 25% cpx, 5% bi, 15% apatite.	3-5% dissemina	ed sulphides	N504664		48	50	2.0	< 0.001	<0.005	<0.001		0.2		1095	70	9480	0.27		ŀ
				3c stringers (approx 20% of rock, one sub-parallel): Pegm cpx, bi, plag associated with cg cpy and		41.59-43.73m 3% po in 2f layers	N504665		50	52	2.0	0.001	<0.005	<0.001		<0.2		395	23	8150	0.12		·
				po blebs (see to right for description)	2-3% dissemina	ed sulphides	N504666		52	54	2.0	<0.001	<0.005	<0.001		<0.2		243	12	6940	0.09		ŀ
				>10% apatite throughout this zone		43.73-45.72m 2-3% po, 1% cpy (3:1)	N504667		54	56	2.0	< 0.001	< 0.005	<0.001		<0.2		504	17	7660	0.17		
				Strong to intense chlor alteration, particularly near 3d stringers.	2-3% dissemina	ed sulphides	N504668		126	128	2.0	< 0.001	<0.005	<0.001		<0.2		84	<1	8760	0.33		·
				43.73-51.09 Plag rich layers have 20% ol (higher than usual) and compose 25% of rock (up to		45.72-51.09m 2% po, trace cpy	N504669		128	130	2.0	< 0.001	< 0.005	<0.001		<0.2		72	<1	7490	0.28		
				.5 meter in width)			N504670		130	132	2.0	< 0.001	< 0.005	<0.001		<0.2		67	<1	8160	0.26		
				weak chlor alteration.			N504671		132	134	2.0	< 0.001	< 0.005	<0.001		<0.2		69	<1	7880	0.25		
				45.4-45.6m POSSIBLE FZ. Intense chlor alteration, and slickenslide on surface of veins.	Local blebs to 2-	1% sulphides	N504672		134	136	2.0	< 0.001	< 0.005	<0.001		<0.2		307	<1	8630	0.38		
				49.65-49.75m syenite vein with local po and cpy blebs (pegm)		3% po, 2% cpy (3:2), cg, at bndry of syenite dyke and 2f	N504673		136	138	2.0	< 0.001	< 0.005	<0.001		<0.2		207	<1	7310	0.23		
			2g - Gabbroic				N504674		138	140	2.0	< 0.001	< 0.005	<0.001		<0.2		217	<1	7820	0.23		
				51.09-53.95m POSSIBLE 2g. Zone of irregular mixing between 2b, and possibly anorth xeno. Sharp upper,			N504675	b				< 0.001	< 0.005	<0.001		<0.2		4	2	80	0.01		
				gradational or irregular lower. Patchy, no plag alignment. At the upper contact, 6cm wide zone of			N504676		140	142	2.0	< 0.001	< 0.005	<0.001		<0.2		277	<1	7940	0.22		
				intense chlor, ser, and act alteration associated with a chlor vein. At the lower contact, there is			N504677		142	144	2.0	< 0.001	< 0.005	<0.001		<0.2		291	<1	8010	0.24		
				irregular/chaotic mixing of 2b and plag rich patches with cg bi, chlor altered cpx, and pink altered			K008519		0.52	10	9.5										0.1	0.02	
				plag (<3% of rock) intermingled followed by several chlor veins, and associated chlor and ser			K008520		56	65	9.0										0.23	0.02	-
				alteration of 2b.			K008521		65	74	9.0										0.16	0.05	
.95	72.20	2b - Coarse gr	ained olivine ga	bbro with modal layering			K008522		74	83	9.0										0.25	0.04	
				Layers are up to .3 meters in width, more mafic compose 40-50% of rock			K008523		83	92	9.0										0.31	0.04	
				Plag is aligned, ol content 5-15% in plag rich, up to 35% in mafic (but less than 40% mag)			K008524		92	101	9.0										0.32	0.03	
				Weak chlor alteration			K008525		101	110	9.0										0.32	0.03	
		İ	2f - Medium to	o coarse grained oxide augite melatroctolite			K008526		110	119	9.0										0.32	0.04	
		İ		68.52-70.93m Very ol rich (35-45%), plag layers compose 5% of rock (<5cm)			K008527		119	126	7.0										0.31	0.03	
				Sharp upper and lower contacts.			1000027			.20	1.0										0.01	0.00	
		1	anorthosite		Local blebs to 2-		-	1			1	1	1		1			1	1	1	1	1	

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S C	Job
		×	ĸ		<u>.12</u>																		
From	То	Maj Roo	Min Ro	Comments	Mineral	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	% %	#
						Coincides with a wavy mag rich zone (1cm thick, on side closest																	
						to 2b) and cg to pegm bi and cpx																	
74.40	90.10	2b - Coarse gr	ained olivine ga	abbro with modal layering																			
				Typical 2b, plag aligned. OI content 5-15%, dominant minerals are plag, cpx, and oI, with minor bi. Mag in mafic layers <40%																			
				Mag in matic layers <40% Weak to no chlor alteration.																			
90.10	90.90	FZ - fault or sh	0001 7000	Weak to no chior alteration.	0.5% to 1% disse	minated sulphides																	
30.10	00.00	12-18010131		faulting of 2b. Chlor filled joints. Moderate to intense chlor alteration.		1% cpy in gabbro, only where this FZ occurs.																	
90.90	96.00	2b - Coarse gr	ained olivine ga	abbro with modal layering		······································																	
				90.9-96m Irregular lengthwise zones of more mafic material (same comp as mafic layers, but																			
				lengthwise following core).																			
96.00	97.45	FZ - fault or sh	near zone																				
				lengthwise continuous chlor filled joint and fault zone of 2b																			
97.45	144.00	2b - Coarse gr	ained olivine ga	abbro with modal layering	0.5% to 1% disse																		
				Continuation of above unit (same description as 74.4-122m)		128.38-135.16m trace to 1% po, fg																	
					3-5% disseminate								1										
						135.16-135.45m 4% fg-mg po																	
					0.5% to 1% disse																		
						135.45-144.0 m 1% fg po																	
144.00		EOH - End of	Hole																				
													1										
													1										
├ ──┤																							
├ ──┤													1										
┣───┤													1										
					1																		
													1										
													1										
					1																		
					1																		
													1										
					1																		
					1																		
													1										
			-																				

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG	
NTS:		42 D / 16	DDH: F	FD-1
UTM	Northing	5408977.6	Lease/Claim:	
(Nad27)	Easting	547973.3	Property:	
Elevation	n (m):	378.7	Zone:	

DDH:	FD-13-27
Lease/Claim:	1240554
Property: Zone:	Coldwell Complex Four Dams South
Date start:	09-Jun-13
Date finish:	09-Jun-13
Contractor:	Chibougamau Diamond Drilling
Logged by:	Julien Meric
Assistant:	Rachel Epstein and Renata Smoke

Reflex EZ Shot- Diamond Drillhole Survey DepthDipAzimuthCasing-84.7629.02

complete downhole survey in Four Dams masterlist

DIAMOND DRILL CORE LOG

Core stored in Stillwater Canada Inc. warehouse, Marathon, Ontario

Dip at Collar:

Total Depth:

Core Size:

Remarks:

From

0.00 3.70

18.00

33.93

51.92

52.30

111.00

Azimuth:

-84.76

29.02

111

NQ

To NO. QC FROM TO ppm ppm ppm ppm % 3.70 0B - Overburder	Cu ppm 511 694 1255	ppm		Ni	Р	S	С	Job
$\overline{8}$ $\overline{8}$	511 694		n pp					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	694			pm	ppm	%	%	#
18.00 2b-Carse submitted layering Trace to 0.5% distance of upfic layers without plag alignment (50/50), libods like an an antipate submitted su				104	>10000			TB13111453
Image: Constraint layers and plag rich layers without plag alignment (50/50), It looks like an image of mark layers without plag alignment (50/50), It looks like an image of plag rich layers has med to ers gr ol, epx, mag and plag. Plag ric layers has 3.7-16.54 trace of very fine grain mostly Po N504681 20 22 2.0 0.006 1 Image: Constraint layers has med to ers gr ol, epx, mag and plag. Plag ric layers has 0.5% to 1% dissuminated sulphides N504681 20 22 24 2.0 0.006 1 Image: Constraint layers has med to ers gr plag, epx, of and mag. 16.54-18.00, around 1% fine grained mostly Po, trace epy N504683 24 26 2.0 0.006 0.006 0.006 1 Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr plag, epx, of and mag. Image: Constraint layers has med to ers gr p	1255			127	8420	0.18		TB13111453
Image: Section Control Contrectic Control Control Control Control Contr	1			135	8770	0.34		TB13111453
Image: Construction of the state o	2760			299	9790	0.6		TB13111453
Image: Image:	3790			321	8720	0.69		TB13111453
	2300 1955			174	8190 8520	0.42		TB13111453 TB13111453
				90 106	8520 6880	1.26		TB13111453 TB13111453
	3050 4580			106	6480	2.47		TB13111453 TB13111453
	2800			73	6800	1.38		TB13111453
	532			18	6480	0.27		TB13111453
	171			4	6690	0.16		TB13111453
	2830			275	1700	1.08		TB13111453
	120			1	6530	0.19		TB13111453
Image: Constraint of the second sec	56			1	6030	0.19		TB13111453
	53		<	<1	7160	0.22		TB13111453
3-5% disseminated sulphides K008528 3 14 11.0	1					0.16	0.03	TB13118918
28.41-33.93 Med to fine gr mostly Po K008529 44 53 9.0	1					0.24	0.03	TB13118918
51.92 2b - Coarse grained olivine gabbro with modal layering 3-5% disseminated sulphides 53 62 9.0	1					0.26	0.03	TB13118918
Med to crs gr interstitial plag, cpx, ol and fine gr mag. Visible plag alignment. 33.93.35.18 Med to fine gr an poccpy 5:1 K008531 62 71 9.0	1					0.31	0.05	TB13118918
0.5% to 1% disseminated sulphides 100 100 100 100 100 100 100 100 100 10	1					0.29	0.04	TB13118918
35.18-41.96 very fine grain po 5:1 cpy seems homogenous K008533 80 89 9.0	1					0.33	0.04	TB13118918
Trace to 0.5% disseminated sulphides K008534 89 98 9.0	1					0.32	0.05	TB13118918
41.96-51.92 very fine gr mostly po few trace of cpy K008535 98 106 8.0	1					0.29	0.03	
52.30 FZ - fault or shear zone Trace to 0.5% disseminated sulphides 100 111 5.0	1					0.23	0.05	TB13118918
rubble and slicken slide. Really strong chlorite alteration. 51.92-52.30 very fine gr mostly po few trace of cpy	1							
111.00 2b - Ccarse grained olivine gabbro with modal layering Trace to 0.5% disseminated sulphides	1							
Med to crs gr interstitial plag, cpx, ol and fine gr mag. Visible plag alignment. 52:30-104.66 very fine gr mostly po few trace of cpy	1							
53.37-53.50 fracture zone rwith strong chlorite alteration Richer in sulfide (around 1% with 0.5% to 1% disseminated sulphides	1							
sub-exhedral po/ 104.66-111.0 fine gr mostly po few trace of cpy	1							
54.3254.48 fracture zone riviti strong chlorite alteration and carbonate infills. Richer in sulfide	1							
Image: second and the second and t	1							
0.10 Year o system 2 Jain' wate, win reads A and Octate: 70.14 Yo 228 Small folluse vein (around 1 cm wide) of alteration, with sericite and med to	1							
	1							
EOH - End of Hole	1							
	1							
	1							
	1							
	1							
	1							
	ı							
	ı							
	ı							
	ı							
	ı							
	r I				l	1	1	

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG		
NTS:		42 D / 16		DDH:	FD-13-28
UTM	Northing	5408979.2		Lease/Claim:	124
(Nad27)	Easting	547974.3		Property:	Coldwel
Elevation	ı (m):	378.1		Zone:	Four Da
Dip at Co	llar:	-45		Date start:	09-J
Azimuth:		29.85		Date finish:	10-J
Total Dep	oth:	54		Contractor:	Chibougamau
Core Size	e:	NQ		Logged by:	Yongga
Remarks	:	Core stored	l in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Rachel

DIAMOND DRILL CORE LOG 1240554 well Complex Dams South 9-Jun-13 0-Jun-13 au Diamond Drilling ggang Feng hel Epstein

Reflex EZ Shot-	Diamond	Drillhole S	Survey
Depth	Dip	Azimuth	
Casing	-45	29.85	

downhole survey not available

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TP	GM Ag	Cu	Cu	Ni	Р	S	С	Job
		ĸ	÷		<u>N</u>																		
From	То	Maj Ro	Min Ro	Comments	Mineral	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm pj	om ppm	%	ppm	ppm	ppm	%	%	#
0.00	4.30	OB - Overburde	n				N504694		13	15	2.0	0.002	< 0.005	<0.001		<0.2		589	107	>10000	0.17	TB1	13111570
							N504695		15	17	2.0	0.008	< 0.005	0.002		0.4		1315	160	>10000	0.33	TB1	13111570
4.30	15.37	2b - Coarse gra	ined olivine gal	abbro with modal layering	Trace to 0.5% c	sseminated sulphides	N504696		17	19	2.0	0.009	0.009	0.009		1.1		3530	334	>10000	0.69	TB1	13111570
				The rock is composed of med grained Cpx, OI and coarse grained PI with minor fine grained Mag.		4.3-15m. No visible sulfides	N504697		19	21	2.0	0.006	< 0.005	0.008		0.9		3540	236	7340	0.61	TB1	13111570
				Pl is the most predominant mineral and likely takes up 40-50%.	0.5% to 1% diss	eminated sulphides	N504698		21	23	2.0	0.003	< 0.005	0.001		<0.2		633	35	6510	0.25	TB1	3111570
				Ap is fine grained and disseminated and likely 0.5% in the rock. Bt and Chl are common alteration		15-15.37m. 0.5% Po, 0.5% Cpy (Po:Cpy=1:1).	N504699		23	25	2.0	0.002	< 0.005	0.001		<0.2		285	22	7500	0.12		13111570
				minerals, replacing Cpx and OI. PI is commonly sericitized. Some pinkish feldspar is like PI that is			N504700		25	27	2.0	0.001	< 0.005	0.001		<0.2		537	29	7210	0.23		13111570
				partially replaced by Kfs. The layering is defined by variations in OI and Cpx contents.			N504701		27	29	2.0	0.003	< 0.005	0.001		<0.2		230	8	6290	0.14		13111570
		1	5a - Quartz sy				K008537		4.3	13	8.7										0.18	0.03 TB1	13118918
				9.68-9.82m. Slightly sharp contact with 2b. The rock is dominated by coarse grained alkali feldspar			K008538		29	38	9.0										0.18	0.03 TB1	13118918
				, quartz and Cpx. Qtz is interstitial to feldspar. Cpx is partially replaced by Bt.			K008539		38	47	9.0										0.26	0.03 TB1	13118918
		1	5b - Augite sye				K008540		47	54	7.0										0.25	0.04 TB1	13118918
				10.87-12.36m. Sharp contact with 2b. The rock is composed of megacrystic feldspar and coarse																			
				grained Cpx. Some feldspar crystals show labradorite's play of color. Cpx is replaced by Bt.			_																
				Qtz and carbonates are likely secondary and interstitial to and replace PI and Cpx. At the contact			_																
				between the syenite and 2b. The 2b unit is OI-Mag-Ap rich. OI, Mag and Ap form cumulate-like			_																
				zones.																			
15.37	20.51	2f - Medium to o	coarse grained	d oxide augite melatroctolite	3-5% dissemina	ted sulphides																	
				Gradational into this unit. The dark rock is dominated by med grained subhedral OI, Cpx and Mag		15.37-20.51m. Fine to medium grained sulfide is dominated by																	
				and fine to med grained ahedral PI. Strongly magnetic. Fractures in the rock are filled by ChI. Mafic		Po. Roughly 5% Po, 0.5% Cpy (Po:Cpy=10:1).																	
				minerals OI and Cpx is partially replaced by Chl.																			
20.51	54.00	2b - Coarse gra	ined olivine ga	abbro with modal layering	2-3% dissemina	ted sulphides																	
				Graditional into this unit from 2f. The rock is dominated by med grained subhedral PI, Cpx and OI with		20.51-22m. 2%Po, 1% Cpy (Po:Cpy=2:1).																	
				lesser Mag. Cpx and OI are commonly replaced by Bt and Chl. Similar to the 2b unit of 4.3-15.37m.	Trace to 0.5% of	sseminated sulphides																	
				Locally, PI alignments on 2 to 5 cm scale are 70-80 degrees to the core axis.		22-26m. Sulfides in trace amounts.																	
				20.51-23.9m. The rock is relatively PI-rich and shows roughtly 10cm wide PI-rich pods. Similar to	2-3% dissemina	ted sulphides																	
				leucogabbro in the Marathon series. Fractures are filled by Chl.		26-27m. 2%Po, 1% Cpy (Po:Cpy=2:1).																	
		5	5b - Augite sye	enite	Trace to 0.5% of	sseminated sulphides																	
				39.88-40m. Very thin syenite dike, roughly 2cm in width. The dike is 15 degrees to the core axis and		27-54m. Overall, Po and Cpy are <0.5%. Difficult to estimate																	
				mainly composed of med graind alkali feldpsar and Cpx. Sharp contac with 2b. Cpx is partially		Po:Cpy. In fractures, secondary Py is present.																	
				replaced by Chl.																			
				42.39-42.65m. Same as the syenite from 39.88 to 40m.																			
							_	1															
54.00		EOH - End of H	ole																				
								1															
								1															
								1															
								1															
					1			1															
							1	1															
							1	1															
							1	1															
					*		-	•		· ·			•										

NTS:		42 D / 16		DDH:
UTM	Northing	5408943.2		Lease/Cla
(Nad27)	Easting	548009.1		Property:
Elevation	n (m):	383.5		Zone:
Dip at Co	ollar:	-45		Date start
Azimuth:		34.62		Date finis
Total De	pth:	51		Contracto
Core Size	e:	NQ		Logged b
Remarks	:	Core stored	l in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant

DDH:	FD-13-29
Lease/Claim:	1240554
Property: Zone:	Coldwell Complex Four Dams South
Date start:	11-Jun-13
Date finish:	11-Jun-13
Contractor:	Chibougamau Diamond Drilling
Logged by:	Renata Smoke
Assistant:	Julien Meric, Yongang Feng

Depth Dip Azimuth Casing -45 34.62

DIAMOND DRILL CORE LOG

downhole survey not available

	GEOLO	DGY		Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	PGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock Min Rock	Comments	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	8.17	OB - Overburden			N504702		8.17	10	1.8	0.002	< 0.005	0.002			0.2		809	102	>10000	0.19	TB	13111452
					N504703		10	12	2.0	< 0.001	<0.005	<0.001			<0.2		671	52	9010	0.18	TB	13111452
8.17	25.79	2f - Medium to coarse grain	ed oxide augite melatroctolite 3-5% dia	seminated sulphides	N504704		12	14	2.0	< 0.001	< 0.005	0.002			<0.2		784	49	7970	0.2	TB	13111452
			The entire unit is rich in ol and mag, and low in plag. In the less mafic layers, there is a max of	3-6% po, trace cpy. fg-mg, most concentrated in most mafic	N504705	d	12	14	2.0	< 0.001	< 0.005	<0.001			0.2		807	47	8080	0.2	TB	13111452
			20% plag, generally <15% and 30-40% ol. 60-95% mag in most mafic layers, which compose approx	and mag rich layers	N504706		14	16	2.0	< 0.001	<0.005	0.001			0.2		1125	66	5380	0.38	TB	13111452
			40% of rock, 10-40cm wide.		N504707		16	18	2.0	0.001	< 0.005	<0.001			0.3		1615	90	9810	0.63	TB	13111452
			Strong to intense chlor alteration throughout, and abundant chlor veins (< 1cm, 5-10% of rock)		N504708		18	20	2.0	< 0.001	<0.005	<0.001			0.2		1085	87	7490	0.43	TB	13111452
			18.95-20.2m Most intense chlor alteration associated with very broken rock (FZ?) and chlor coated		N504709		20	22	2.0	< 0.001	<0.005	<0.001			0.4		1120	119	5280	0.42	TB	13111452
			slickenslides.		N504710		22	24	2.0	0.001	<0.005	<0.001			0.4		1790	103	5670	0.64	TB	13111452
25.79	31.66	5b - Augite syenite	Local bit	os to 2-4% sulphides	N504711		24	26	2.0	< 0.001	< 0.005	<0.001			0.3		1025	102	>10000	0.33	TB	13111452
			Cg to pegm. MANY replacement textures between main lithology forming minerals, and po and cpy	6% (3:1 to 1:1) in patches (patches are approx 5-10% of unit).	N504712		26	28	2.0	0.002	<0.005	0.004			0.6		2320	141	9660	0.65	TB	13111452
			(listed and described below).	MOST common at the contact between 2f and the syenite	N504713		28	30	2.0	< 0.001	< 0.005	0.001			0.2		626	48	7400	0.2	TB	13111452
			Upper to lower contact is sharp.	and associated with, intergrown with, and replacing mag	N504714		30	32	2.0	0.003	< 0.005	0.001			0.3		1305	92	9790	0.43	TB	13111452
			The overall texture is highly variable, as is modal %'s of main minerals. In sections which are thinner,	and bi. Po:cpy is on average 3-4, but as low as 1:1. Rare in the	N504715		32	34	2.0	0.002	0.007	0.002			1		4600	156	6190	1.55	TB	13111452
			sandwiched between 2f xenos, the grain size is 1-3cm, and in order of decreasing abundance	zones which have very large pegm labadorite. See alteration	N504716		34	36	2.0	0.001	0.005	0.002			0.5		2760	76	6810	1.58	TB	13111452
			include plag, cpx, bi, and rare ol (although this is found in patches within the thicker section as well)	description for more detailed textural relationships.	N504717		36	38	2.0	0.002	< 0.005	0.002			0.5		3320	91	6310	2.26		13111452
			The other main texture has a lager proportion of feld (labradorite, 70-80%, 3-7cm), and these	Also as blebs which are intergranular to rock forming minerals.	N504718		38	40	2.0	0.002	<0.005	0.002			0.5		3400	88	6280	2.38		13111452
				seminated sulphides	N504719		40	42	2.0	0.001	< 0.005	0.003			0.6		3510	88	6500	2.5		13111452
			be seen and is somewhat gradational.	3% po, 1% cpy, (3:1)	N504720	b				< 0.001	< 0.005	<0.001			<0.2		5	1	60	0.02		13111452
			81.1-82.4m Intermingling (subparralel contact) of coarse grained (5-10mm) ophitic gabbro with pegm	Virtually devoid in the zones which are composed mostly of feld,	N504721	-	42	44	2.0	< 0.001	< 0.005	0.001			<0.2		907	22	6880	0.76		13111452
			syenite-like (type that has a greater proportion of cpx), and 2f xenos (slightly gradational). 15% of	and which have very large pegm zoned labradorite. <1% of unit.	N504722		44	46	2.0	< 0.001	< 0.005	<0.001			<0.2		104	2	6060	0.18		13111452
			this interval.		N504723		46	48	2.0	< 0.001	< 0.005	<0.001			<0.2		86	<1	6140	0.22		13111452
			Replacement textures and detailed mineralization textures:		N504724		48	50	2.0	< 0.001	<0.005	0.001			<0.2		79	<1	6850	0.24		13111452
			Near the contact between 2f and 5b (xenos of 2f, 20-35cm wide, 20% of unit) mag forms psuedos		N504725		50	51	1.0	< 0.001	< 0.005	<0.001			<0.2		57	1	7220	0.22		13111452
			of cpx, which in turn is either replacing or is being replaced by bi. cpy forms psuedos of this mag																			
			(common occurance) type.																	'		
			cpy and po, commonly replace poikilitic bi which has chadacrysts of mag.																	'		
			Feld have strong zoning, intensely ep altered, with pink alteration rims, although some have been																	'		
			altered completely to pink.																	'		
			A bluish and finely fibrous mineral (reibikite??) forms psuedos of cpx in the zones which have less,																	'		
			and somehwat smaller feld, which in turn commonly has rims of bi.																	'		
			Intense chlor, pink, and ep alteration throughout, ca veins cut everything (including all alteration																	'		
			mins).																	'		
31.66	32.37	2e - Medium to coarse grain	ned olivine gabbro 3-5% di	seminated sulphides																'		
			Very plag rich. Up to 70% for 1.5m near the upper contact, and down to 60% after.	31.66-32.37m 4% po, 2% cpy (2:1),																'		
			Composed of plag, cpx, and bi.																	'		
			31.66-37.3m Patchy and intense ser, pink, and chlor alteration. Most intense near chlor and/or																	'		
			calcite veins (veins and local alteration compose 10-15% within this interval)																	'		
32.37	33.10	FZ - fault or shear zone		seminated sulphides																'		
			FZ within 2e unit. Up to 2 cm thick chlor filled veins, very intense to complete chlor, ser, kaol (?), and	32.37-33.1m 4% po, 2% cpy (2:1)																'		
			pink alteration of 2e unit, and 10cm up into 5b unit. See description above for 2e.		1			1												1 1		
33.10	42.45	2e - Medium to coarse grain		seminated sulphides	7			1												1 1		
			Continuation of above 2e unit, see above for detailed description.	33.1-33.85m 4% po, 2% cpy (2:1)	1			1												1 1		
				seminated sulphides	1			1												1 1		
				33.85-41.84m 6% po, 3% cpy (2:1)	1			1												1 1		
			3-5% di	seminated sulphides	1			1												1 1		
			50700	41.84-42.45m 5%po, trace-1% cpy (5:1)	1			1												1 1		
•		I		the the solution of the opy (only		1	1	1		1	1 1					1		1		• •		1

	GEOLO	DGY				Mineralization	SAMPLE		INTERVAL	١	VIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
42.45	51.00	2b - Coarse gr	rained olivine ga	ubbro with modal layering	0.5% to 1% disseminated sulphides																			
					1% po																			
51.00		EOH - End of	Hole				-																	
							-																	
	From To XO X						-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							1																	
		-	-																					
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							-																	
							1																	
]																	
		+	+																					
]																	
		-																						
							1																	
]																	
L																								
L	I	I	1	1	1		ו ו		I.	1 1	1	1		I	1	1	I		1 I	I	1	I	I	1

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG					
NTS:		42 D / 16		DDH:	FD-13-30	DIAMOND DRIL	L CORE L	OG
UTM	Northing	5408942		Lease/Claim:	1240554	Reflex EZ Shot-	Diamond	Drillhole Survey
(Nad27)	Easting	548009.1		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation	n (m):	382.4		Zone:	Four Dams South	Casing	-83.33	19.99
Dip at Co	ollar:	-83.33		Date start:	11-Jun-13			
Azimuth:		19.99		Date finish:	12-Jun-13			
Total Dep	pth:	102		Contractor:	Chibougamau Diamond Drilling			
Core Size	e:	NQ		Logged by:	Yonggang Feng			
Remarks	:	Core stored	I in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Rachel Epstein, Renata Smoke, Julien Meric	complete downhole s	urvey in Fou	r Dams masterlist

ILL CORE LOG t- Diamond Drillhole Survey Dip Azimuth -83.33 19.99

GEOLOGY SAMPLE INTERVAL WIDTH Au Pt Pd Rh TPGM Ag Cu Cu Ni P Mineralization S С Job NO. QC FROM то ppm ppm ppm % % From То Comments Comments ppm ppm ppm ppm % ppm ppm # Maj Min 0.00 3.49 OB - Overburden N504726 8 10 2.0 < 0.001 < 0.005 0.002 0.2 823 88 >10000 0.18 TB13111456 TB13111456 N504727 10 12 2.0 < 0.001 < 0.005 < 0.001 <0.2 742 54 >10000 0.17 3.49 6.75 2b - Coarse grained olivine gabbro with modal layering Trace to 0.5% disseminated sulphides N504728 12 14 2.0 0.001 < 0.005 <0.001 0.2 903 49 >10000 0.23 TB13111456 The overall white rock is dominated by coarse grained subhedral PI, medium grained anhedral to 3.65-6.75m. Overall, sulfides in trace amounts. N504729 14 16 2.0 <0.001 <0.005 <0.001 0.2 839 51 9590 0.28 TB13111456 N504730 16 18 2.0 <0.001 < 0.005 <0.001 0.2 949 50 7330 0.32 TB13111456 subhedral OI and Cpx with lesser disseminated Mag. The layering is defined by variations in OI and Cpx contents. Also PI alignments are 5-15 cm wide and generally 60 degrees to the core axis. N504731 18 20 2.0 0.003 < 0.005 <0.001 0.2 1360 81 >10000 0.57 TB13111456 N504732 < 0.005 <0.001 8780 TB13111456 20 22 2.0 < 0.001 <0.2 800 75 0.34 Cpx and OI are paritally replaced by Bt and ChI while PI partailly by sericite. 45% PI, 20% Cpx, 25% OI, 5% Mag, 5% Bt + Chl. N504733 22 24 2.0 0.001 < 0.005 0.001 0.2 827 85 9940 0.38 TB13111456 < 0.005 116 TB13111456 5b - Augite syenite N504734 24 26 2.0 0.003 0.001 0.3 1130 >10000 0.43 N504735 0.325 1.065 3.45 3.5 6940 394 1370 1.11 TB13111456 5.8-6.1m. The syenite is cross-cutting 2b. The rock is dominated by megacrystic Kfs and interstitial mpg1 mafic mineral (possibly Cpx) that is completely replaced by Chl. Chl is also present in fractures in Kfs N504736 26 28 2.0 0.004 0.006 0.001 0.8 3350 202 9460 0.98 TB13111456 N504737 0.004 < 0.005 0.001 0.4 1480 169 >10000 0.36 TB13111456 Carbonates are secondary and interstitial to Kfs and likely replace Chl. 28 30 2.0 6.6-6.75m. Same as the unit of 5.8-6.1m. N504738 30 32 2.0 0.007 0.018 0.009 0.7 2660 337 >10000 0.52 TB13111456 N504739 32 34 2.0 0.001 < 0.005 0.003 0.6 1880 249 >10000 0.36 TB13111456 6.75 7.50 FZ - fault or shear zone N504740 34 36 2.0 0.011 0.027 0.004 0.7 2660 145 9450 0.66 TB13111456 The rock is syenite. Very altered rock is composed of coarse grained Kfs and Cpx (?) N504741 36 38 2.0 0.005 0.008 0.002 1.1 5140 194 4200 1.97 TB13111456 0.008 2390 TB13111456 Chl alteration is pervasive. Magmatic mafic minerals have been completely replaced by Chl. N504742 38 40 2.0 0.002 0.001 0.4 53 5730 1.62 The rock is highly broken. N504743 40 42 2.0 <0.001 < 0.005 <0.001 <0.2 160 4 6340 0.16 TB13111456 < 0.005 TB13111456 N504744 42 44 2.0 < 0.001 < 0.001 < 0.2 125 4 6620 0.15 7.50 20.48 2f - Medium to coarse grained oxide augite melatroctolite 0.5% to 1% disseminated sulphides N504745 44 46 2.0 < 0.001 < 0.005 <0.001 <0.2 113 2 6610 0.2 TB13111456 Dark rock is dominated by medium grained subhedral Mag, OI and med grained anhedral PI. 30% 7.5-13.1m. 0.5-1% Po, no visible Cpy. N504746 46 48 2.0 < 0.001 < 0.005 <0.001 <0.2 82 1 6160 0.19 TB13111456 Mag, 30% OI, 25% PI and 15% other minerals (including Cpx, Bt and sulfides). The rock has millimeter N504747 48 50 2.0 <0.001 < 0.005 <0.001 <0.2 209 3 5310 0.26 TB13111456 2-3% disseminated sulphides wide fractures sealed by Chl-carbonate infilling. Those fractures are 60 to 80 degrees 13.1-16m. 2-3% Po, Cpy in trace amount. N504748 50 52 2.0 < 0.001 < 0.005 <0.001 <0.2 472 8 5580 0.56 TB13111456 54 2.0 < 0.001 < 0.005 <0.001 <0.2 251 5700 0.34 TB13111456 N504749 52 to the core axis. OI and Cpx near fractures are compeletly altred and likely replaced by ChI 0.5% to 1% disseminated sulphides 3 16-16.75m. Roughly 1% Po, no visible Cpy. N504750 52 54 2.0 <0.001 < 0.005 <0.001 <0.2 238 2 5770 0.33 TB13111456 TB13111456 2-3% disseminated sulphides N504751 54 56 2.0 < 0.001 < 0.005 < 0.001 < 0.2 47 <1 6590 0.19 16.75-20.48m. 2-3% Po, Cpy<0.5%. N504752 58 2.0 <0.001 < 0.005 <0.001 <0.2 45 <1 6790 0.2 TB13111456 56 N504753 58 60 2.0 <0.001 <0.005 <0.001 r0 2 38 <1 6220 0.18 TB13111456 20.75 FZ - fault or shear zone 60 62 2.0 < 0.001 < 0.005 <0.001 <0.2 6660 0.19 TB13111456 N504754 36 <1 20.48 N504755 62 64 2.0 <0.001 < 0.005 <0.001 <0.2 47 <1 7170 0.21 TB13111456 The rock is highly broken 2f unit that also shows very strong chl alteration. The fault gauge is 921 TB13111456 dominated by Chl. Slickenslide on the fault planes. N504756 64 66 2.0 < 0.001 < 0.005 0.001 <0.2 18 6960 0.86 N504757 66 68 2.0 0.001 < 0.005 <0.001 <0.2 115 1 6940 0.23 TB13111456 20.75 24.60 2f - Medium to coarse grained oxide augite melatroctolite 2-3% disseminated sulphides N504758 68 70 2.0 <0.001 < 0.005 <0.001 <0.2 317 3 7950 0.52 TB13111456 Same as the 2f unit from 7.5 to 20.48m. Few fractures in this unit. Rock is dominated by medium 20.75-24.6m. Overall, 2% Po, 0.5% Cpy (Po:Cpy=4:1). N504759 70 72 2.0 <0.001 < 0.005 <0.001 <0.2 469 3 9600 0.83 TB13111456 grained subhedral Mag, OI and med grained anhedral PI. 30%Mag, 30% OI, 25% PI and 15% N504760 72 74 2.0 <0.001 < 0.005 <0.001 <0.2 226 2 8850 0.35 TB13111456 other minerals K008541 3.49 8 4.5 0.25 0.03 TB13118918 K008542 0.02 TB13118918 24.25-24.3m. 5 cm wide Chl-carbonate fracture infilling . 74 83 9.0 0.26 24.60 24.89 FZ - fault or shear zone K008543 83 92 9.0 04 0.03 TB13118918 K008544 92 102 10.0 0.32 0.04 TB13118918 Same as the fault zone above. No fault gauge present. 35.95 2f - Medium to coarse grained oxide augite melatroctolite 24.89 0.5% to 1% disseminated sulphides 24.89-25.4m. Predominantly Po. 0.5-1% Po, invisible Cpy. Same as the 2f unit above. 3% disseminated fine grained Ap throughout this 2f unit. 3d - Very coarse grained to pegmatitic, ophitic gabbro 3-5% disseminated sulphides 32.6-32.7m. The rock is composed of megacrystic euhedral PI and coarse grained euhedral Cpx. 25.4-27.4m. Very concentrated sulfides. 7% Po, 1% Cpy (Po The contact between this unit and 2f is slightly sharp and defined by Mag cumulate-like layer. 0.5% to 1% disseminated sulphides 27.4-29.56m, Low sulfide content, 1% Po, trace Cpv, 34.1-35.14m. The rock is very heterogenous and likely a mixture between 3d and 3i (?). Slightly sharp contact with 2f is defined by Mag layer. The rock is dominated by megacrystic euhedral Pl 2-3% disseminated sulphides

	GEOLOGY					Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
	÷	ъ ,	÷		ž																			
From	То	Maj Ko	Min Ro	Comments	Minera	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
				and coarse grained euhedral to subhedral Mag with 7% dessiminated fine grained euhedral Ap.		29.56-30.42m. Sulfides are dominated by Po. 2-3% Po, trace																		
				nows labradorite's play of color. Pl is rimmed and partially replaced by Kfs. Cpx is partially		Cpy. Difficult to estimate Po:Cpy ratio.																		
				aced by Bt and Chl. Close to the contact, this unit is relatively Ap-rich (8-10% Ap).		minated sulphides																		
		3i - Ap		linopyroxenite		30.42-30.94m. 1% Po, trace Cpy.																		
				4-35.95m. The rock is composed of coarse grained euhedral OI, coarse grained anheral Mag,	2-3% disseminate																			
				arse grained subhedral Cpx, anheral PI and fine to med grained Ap.		30.94-32.6m. 3% Po, trace Cpy.																		
				accounts for 10%. Ol and Cpx are commonly replaced ChI and Bt. contact between this unit and 2f is not sharp and not characterized by a Mag layer.	Local blebs to 2-4	% sulprides 32.6-32.7m. Coarse grained Po and med grained Cpy. %3 Po,																		
			The			1% Cpy (Po:Cpy=3:1). Po and Cpy are anhedral and mantle																		
						Cpx, Mag and Bt.																		
						minated sulphides																		
						32.7-34.1m. 1-0.5% Po, no visble Cpy.																		
					3-5% disseminate																			
						34.1-35.14m. Coarse grained anhedral Po and med grained																		
						anhedral Cpy are interstitial to silicate minerals and Mag. Po is																		
						commonly rimmed by Cpy. 4% Po, 1% Cpy(Po:Cpy=4:1).																		
						seminated sulphides																		
						35.14-35.64m. Po and Cpy in trace amounts.																		
					2-3% disseminate																			
						35.64-35.95m. Sulfides likely postdates most silicate minerals																		
						and Mag. 2% Po, 1% Cpy (Po:Cpy=2:1).																		
35.95	51.08 2e - M	edium to coars			3-5% disseminate																			
				dational into this unit. Overall white massive rock is dominated by coarse grained PI, and med		35.95-42.2m. Med grained sulfides interstitial to PI and Bt.																		
				ed Cpx and Mag with minor OI. PI is partially replaced by sericite. No layering. 5-42.2m. The top is relatively PI-rich. 80% PI, 12% Cpx and 8% Sulfides.		6% Po, 2% Cpy (Po:Cpy=3:1). Po is commonly rimmed by Cpy. minated sulphides																		
				rock consists of PI-rich pods and Mafic-rich patches.	0.5% to 1% disser	42.2-51.08m. 0.5-1% Po, Cpy in trace amounts.																		
						42.2-51.06m. 0.5-1% P0, Cpy in trace amounts.																		
				ath can be observed. Cpx is interstitial to PI and completely relpaced by secondary Bt. -51m. The rock is less PI-rich and relatively Ap-rich. Ap is commonly fine grained and may																				
				ch 5%.																				
		5b - A	ugite syenite																					
				-46.4m. Syenite is cross-cutting 2e and cross-cut by late carbonate veins. The syenite dike																				
				ughly 45 degree to the core axis.																				
51.08	102.00 2b - Co	oarse grained o	livine gabbro	with modal layering	2-3% disseminate																			
				ational into this unit. Same as the 2b unit from 3.49-6.75m. The rock is composed of medium		51.08-72.2m. Overall, 2% Po, <0.5% Cpy.																		
\vdash				ned PI, Cpx, OI and fine grained Mag and Ap. 50% PI, 30% Cpx, 10% OI, 6% Mag and 4% Ap.	3-5% disseminate																			
				and OI are partially to completely replaced by Bt and Chl. Mag and Ap are quite disseminated.		51-52.15m. 5% Po, Cpy in trace amounts.																		
				ally, PI alignments are 5-10 cm and 80 degrees to the core axis. The rock is slightly layred.	3-5% disseminate																			
			layer	ring is defined by variations in mafic minerals such as OI and Cpx.	3-5% disseminate	65-66m. 7% Po, 0.5% Cpy (Po:Cpy=14:1).																		
						69.74-71.4m. 7% Po, 0.5% Cpy (Po: Cpy=14:1).																		
		2f - M	edium to coars	se grained oxide augite melatroctolite		seminated sulphides																		
		-		2.15m. Same as the previous 2f unit. Gradational contact with 2b. Dark rock is dominated by		72.2-102m. Sulfides in trace amounts.																		
				ium grained subhedral Mag, OI and med grained anhedral PI.																				
102.00	EOH -	End of Hole																						
\vdash																								
\vdash																								
\vdash																								
L					1			I	1	1	1	1	1	I	1 I	ļ		I	1	I I	ı I	1	1	1

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG					
NTS:		42 D / 16		DDH: FD	<u>-13-31</u>	DIAMOND DRI	LL CORE L	OG
UTM	Northing	5408888		Lease/Claim:	1240554	Reflex EZ Sho	t- Diamond	Drillhole Surve
(Nad27)	Easting	548047.7		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation	n (m):	381.5		Zone:	Four Dams South	Casing	-43.88	31.36
Dip at Co	ollar:	-43.88		Date start:	12-Jun-13			
Azimuth:	:	31.36		Date finish:	12-Jun-13			
Total Dep	pth:	72		Contractor:	Chibougamau Diamond Drilling			
Core Size	e:	NQ		Logged by:	Julien Meric			
Remarks	:	Core stored in	Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Yongang Feng and Rachel Epstein	complete downhole	survey in Fou	r Dams masterlist
							, ,	

GEOLOGY						Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Aaj Rock	Ain Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
		2	2		-																			
0.00	6.00	OB - Overburg	den				N504761		6	8	2.0	0.005	0.007	0.003			0.5		1920	119	>10000	0.7		TB13123249
6.00	22.30	or Mar i		l oxide augite melatroctolite	0.500 . 400 .	eminated sulphides	N504762 N504763		8 10	10	2.0	0.005	0.005	0.002			0.6 0.8		2710 3750	196 188	>10000 >10000	0.72		TB13123249 TB13123249
6.00	22.30	2f - Medium to	coarse grained		0.5% to 1% dis		N504763 N504764			12	2.0 2.0			0.004			0.8		3750 1130	188		0.4		TB13123249 TB13123249
			0h 0	standard 2f with crs to med gr cpx, mag, ol and plag, with 10-25% plag rich layers. rained olivine gabbro with modal layering	3-5% dissemina	6-8.3 fine gr mostly po trace of cpy	N504765		12	14	2.0	0.004	<0.005 <0.005	<0.003			<0.2		39	100	>10000 200	0.4		TB13123249 TB13123249
			20 - Coarse gr		3-5% dissemina		N504766	D	14	16	2.0	0.003	<0.005	<0.001			<0.2 0.2		787	4	>10000	0.02		TB13123249 TB13123249
				6-7.3 and 10.8-12.7 standard 2b with crs to med plag, ol, cpx and mag and there is a gradual contact with 2f in term of plag content.		8.3-12.7 med to fine gr mostly po in mafic part but po 2:1 cpy in 2b part.	N504767		14	18	2.0	0.003	<0.005	0.005			0.2		760	120	>10000	0.3		TB13123249 TB13123249
					0 E9/ to 19/ dia	eminated sulphides	N504768		18	20	2.0	0.004	<0.005	0.006			0.2		878	150	>10000	0.28		TB13123249 TB13123249
					0.5% to 1% dis	12.7-22.30 fine gr mostly po trace of cpy	N504769		20	20	2.0	0.004	<0.005	0.005			0.3		726	128	>10000	0.22		TB13123249
22.30	22.20	FZ - fault or sh	2007 7000		0 E9/ to 19/ dia	eminated sulphides	N504770		20	22	2.0	0.003	<0.005	0.005			0.2		843	146	>10000	0.23		TB13123249 TB13123249
22.30	23.29	FZ * Iduit UI SI		Presence of Gouge and rubble stuf. And lot of chlorite alteration.	0.5% t0 1% dis	22.30-23.29 fine gr mostly po trace of cpy	N504771		24	24	2.0	0.003	<0.005	0.005			0.2		816	139	>10000	0.23		TB13123249
				Tresence of Gouge and Tabble star. And for or chlorite alteration.		22.30-23.23 line gr mostly po trace of opy	N504772		24	28	2.0	0.003	<0.005	0.003			0.2		875	121	9660	0.22		TB13123249
23.29	61.21	2f - Medium to	coarse grained	I oxide augite melatroctolite	0.5% to 1% dis	eminated sulphides	N504773		28	30	2.0	0.005	<0.005	0.005			0.3		1230	113	>10000	0.22		TB13123249 TB13123249
20.20	01.21	21 - MiGuluini tu	Coarse grained	standard 2f with crs to med gr cpx, mag, ol and plag, with 10-25% plag rich layers.	0.576 to 176 dia	23.29-27.44 fine gr mostly po trace of cpy	N504774		30	32	2.0	0.002	<0.005	0.002			<0.2		726	73	>10000	0.18		TB13123249
				37.3-46.19 interval really rich in plag, they occurs in pods between 30-50%. Plag are partially	2-3% dissemina		N504775		30	34	2.0	0.002	<0.005	0.002			0.2		720	103	>10000	0.18		TB13123249 TB13123249
				replaced by sericite, and mafic mineral partially replaced by chlorite and biotite.	2=3 % dissemina	27.44-36.5 content variation and patches 5:1 Po:cpy	N504776		34	34	2.0	0.003	<0.005	0.002			0.2		904	103	>10000	0.23		TB13123249 TB13123249
					3-5% dissemina		N504777		34	38	2.0	0.003	0.026	0.002			1.3		5060	407	7820	0.28		TB13123249 TB13123249
				The beginning 37.3-38.38 is even richer in plag and looks like anorthosite (2g) beside there is a sharp contact with 2f at 37.3m. This zone seems to be a mixing zone or more altered zone or both.	3-5% dissemina	36.5-37.3 med to crs grain in mafic part, 5:1 po:cpy, crs gr	N504778		38	40	2.0	0.017	< 0.026	0.013			0.2		973	407 56	7620	0.98		TB13123249 TB13123249
							N504779		40	40	2.0	< 0.001	<0.005	<0.001			<0.2		434	45	8350	0.27		TB13123249 TB13123249
				50.55-55.64 altered and fractured zone, strong chlorite and pink alteration. 54.88-55.10 leucopod		sulfide surronding biotite they seems to replacing biotite. Presence of a smal sulfide vein <1mm at 37.17.	N504779	mpg2	40	42	2.0	<0.001	<0.005	<0.001			<0.2 1.1		2880	45 279	1700	1.08		TB13123249 TB13123249
			5b - Augite sy		3-5% dissemina		N504781	mpgz	42	44	2.0	<0.001	<0.005	0.004			<0.2		2660	279	8390	0.1		TB13123249 TB13123249
			5D - Augite sy	anite 34.54-34.65 stringer of augite syenite, crs grained feds K, labrador, biotite and sub-rounded cpx.	3-5% dissemina	37.3-38.38 dans plag rich part, 2:1 po:cpy. cpy is always richer	N504782		42	44	2.0	<0.001	<0.005	0.004			<0.2		377	18	8450	0.19		TB13123249 TB13123249
				34.54-34.65 stringer of augite syenite, crs grained feds K, labrador, blotte and sub-rounded cpx.		in the plag rich part.	N504783		44	40	2.0	<0.001	< 0.005	0.001			<0.2		890	32	9020	0.19		TB13123249 TB13123249
					0 E9/ to 19/ dia	eminated sulphides	N504784		46	48 50	2.0	0.001	<0.005	<0.001			<0.2		388	17	9020	0.4		TB13123249 TB13123249
					0.5% to 1% dis	38.38-45.03 around 1% with few patches 3:1 po:cpy	N504785		48 50	52	2.0	0.009	<0.005	<0.001			<0.2		249	15	>10000	0.21		TB13123249
					2-3% dissemina		K008545		50	61	9.0	0.001	<0.005	<0.001			<0.2		249	15	>10000	0.18	0.02	TB13123249 TB13118918
					2-3% dissemina	45.03-48.52 fine to med grain, 3:1 po:cpy, and patches richer.	K008545		61	72	9.0											0.26	0.02	TB13118918
					Trace to 0 E%	isseminated sulphides	K006546		01	12	11.0											0.22	0.03	1013110910
					Trace to 0.5% 0	48.52-61.21 very fine gr mostly po homogenous in mafic part	-																	
						48.52-61.21 Very line gr mostly po nomogenous in manc part	-																	
61.21	64.27	FZ - fault or sh	2007 7000		Trace to 0 E%	isseminated sulphides	-																	
01.21	04.27	FZ * Iduit UI SI	Idal Zurie	Slickenslide and strong chlorite and pink alteration.	Trace to 0.5% (very fine gr mostly po	-																	
64.27	72.00	2b - Coarse or	rained olivine da	bbro with modal layering	Trace to 0.5%	isseminated sulphides																		
01.27	12.00	20 Occibo gi	dinica cirrino go	Med to crs grained plg, ol, cpx, mag	11000 10 0.070 0	very fine gr mostly po; few blebs in 2b																		
72.00		EOH - End of	Hole	mod to oro grainou pig, or, opx, mag																				
		EON ENGO																						
							1				1								1					
							1				1								1					
							1				1								1					
							1				1								1					
							1				1								1					
		1	1		1	1	1	I	1	1	1	1	1	1	i 1			1	1	I.	1	1		1 1

The rock is cross-cut by Chl stringers. Slightly sharp contact with 2f.

sericitized.

2b - Coarse grained olivine gabbro with modal layering

53.84-53.96m. Same as the 3h above. The 2f in contact with this unit is PI-rich and PI is strongly

45.3-46.7m. Gradational into this unit. Same as the other 2b units. 40-50% PI, 20% OI, 20-30%

NTS:		42 D / 16
UTM	Northing	5408888
(Nad27)	Easting	548045.7
Elevation	n (m):	382.2
Dip at Co	ollar:	-84.93
Azimuth:		14.17
Total De	pth:	102
Core Size	e:	NQ
Remarks	:	Core stored

DDH:	FD-13-32
Lease/Claim:	1240554
Property:	Coldwell Complex
Zone:	Four Dams South
Date start:	12-Jun-13
Date finish:	13-Jun-13
Contractor:	Chibougamau Diamond Drilling
Logged by:	Yonggang Feng
Assistant:	Julien Meric, Rachel Epstein, Renata Smoke

 Depth
 Dip
 Azimuth

 Casing
 -84.93
 14.17

S

%

0.25

1.07

0.55

0.32

0.47

0.61

0.29

0.27

0.26

0.25

0.21

0.24

0.17

0.17

0.3

0.39

0.4

0.37

0.27

0.52

0.41

0.49

1.13

1.26

<0.01

1.05

1.57

0.98

0.19

0.15

0.36

0.22

0.29

0.25

0.17

0.26

0.25

0.11

0.04

0.04

С

%

Job

#

TB13118916

B13118916

TB13118916

TB13118916

TB13118916

TB13118918

TB13118918

0.03 TB13118918

0.12 TB13118918

DIAMOND DRILL CORE LOG

complete downhole survey in Four Dams masterlist GEOLOGY SAMPLE INTERVAL WIDTH Au Pt Pd Rh TPGM Ag Cu Cu Ni P Mineralization NO. QC FROM то ppm From То Comments Comments ppm ppm ppm ppm ppm ppm % ppm ppm Maj Min 0.00 3.58 OB - Overburden N504786 3.58 5 1.4 0.002 < 0.005 0.001 0.2 946 97 >10000 171 N504787 5 2.0 0.007 0.006 0.002 0.6 3060 >10000 3.58 13.40 2f - Medium to coarse grained oxide augite melatroctolite 2-3% disseminated sulphides N504788 7 9 2.0 0.005 0.005 0.001 0.4 1820 156 >10000 The rock is composed of med grained PI, OI, Mag and Cpx. OI, Cpx and Mag are mainly subhedral 3.58-6.65m. 2-3% Po, trace Cpy. N504789 q 11 2.0 0.002 <0.005 0.001 0.2 1195 131 >10000 PI is anhedral. 40-50% PI, 20% OI, 20-30% Mag and 10-20% Cpx. Cpx and OI are partially N504790 11 13 2.0 0.005 < 0.005 0.002 0.4 1880 174 >10000 0.5% to 1% disseminated sulphides replaced by Bt and Chl. Fractures in the rock are 60-70 degrees to the core axis and are filled by 6.65-8.07m. Sulfide content drops. 0.5-1% Po, trace Cpy N504791 13 15 2.0 0.005 0.007 0.003 0.5 2310 132 >10000 N504792 < 0.005 0.004 94 >10000 15 17 2.0 0.004 <0.2 698 Chl-carbonate infillings. 2-3% disseminated sulphides 2b - Coarse grained olivine gabbro with modal layering 8.07-13.4m. 3% Po, trace Cpy. N504793 17 19 2.0 0.003 < 0.005 0.006 <0.2 804 111 >10000 < 0.005 121 3.58-4.7m. Gradational contact with 2f. The rock is dominated by PI, Cpx and OI with lesser fine N504794 19 21 2.0 0.003 0.005 < 0.2 784 >10000 grained Mag. OI and Cpx are commonly replaced by Bt. The layering is defined by variations in OI N504795 19 21 2.0 0.003 < 0.005 0.005 0.2 767 123 >10000 and Cpx contents. N504796 21 23 2.0 0.003 < 0.005 0.006 0.2 730 128 >10000 N504797 2.0 0.004 < 0.005 0.007 0.2 907 159 >10000 23 25 N504798 25 27 2.0 0.001 < 0.005 0.003 <0.2 592 91 >10000 13.40 13.67 FZ - fault or shear zone N504799 27 29 2.0 0.002 < 0.005 0.004 0.2 601 98 >10000 The broken rock includes 2f and 2b. Mafic minerals including OI and Cpx are completely altered to N504800 29 31 2.0 0.003 < 0.005 0.002 0.3 1250 132 9930 Chl. Slickenslide on fault planes. 2f and 2b shows a gradational contact. N504801 31 33 2.0 0.002 0.005 0.004 0.3 1275 105 >10000 < 0.005 N504802 33 35 2.0 0.002 0.002 0.2 931 83 >10000 13.67 15.78 2b - Coarse grained olivine gabbro with modal layering N504803 35 37 2.0 0.003 < 0.005 0.002 <0.2 784 104 >10000 2-3% disseminated sulphides 13.67-15.78m. Overall, 2-3% Po, trace Cpy. < 0.005 0.002 606 133 Mineralogy and texture are the same as the 2b unit pf 3.58-4.7m. Pl is partially altered and likely N504804 37 39 2.0 0.002 < 0.2 >10000 replaced by sericite. 3-5% disseminated sulphides N504805 39 41 2.0 0.007 0.021 0.009 0.4 1945 222 >10000 2f - Medium to coarse grained oxide augite melatroctolite 14.24-14.38m. Short 2f interval shows relatively high sulfide N504806 41 43 2.0 0.004 0.01 0.009 0.6 2180 255 7780 14.24-14.38m. Same as the 2f unit above. Gradational contact with 2b. Content. 5% Po, Cpy in trace amounts. N504807 43 45 2.0 0.005 0.007 0.004 0.7 2670 184 9410 N504808 45 47 2.0 0.006 0.012 0.006 4440 203 >10000 49 2.0 0.004 0.007 0.004 0.8 3630 126 >10000 15.78 55.13 2f - Medium to coarse grained oxide augite melatroctolite N504809 47 2-3% disseminated sulphides 15.78-18.13m. Overall, 2-3% Po, Cpy is not visible. N504810 <0.001 < 0.005 <0.001 <0.2 9 Gradational into this unit from the 2b above. The rock shows the same mineralogy and texture as <1 40 3170 103 the 2f units above. 2-3 cm wide PI-rich pods are locally distributed. 0.5% to 1% disseminated sulphides N504811 49 51 2.0 0.004 0.006 0.004 0.8 8960 N504812 53 2.0 0.004 0.007 0.002 0.8 3960 114 8240 38-39m. The rock is relatively PI-rich. 18.13-18.62m. Medium grained subrounded Po, 0.5%. Very 51 53.5-55.13m. The rock is PI-rich. PI is strongly sericitized. locally distributed. N504813 53 55 2.0 0.001 <0.005 0.001 r0 2 1590 34 8780 57 2.0 0.001 < 0.005 <0.001 <0.2 236 8100 N504814 55 5b - Augite syenite 0.5% to 1% disseminated sulphides 5 18.13-18.62m. Sharp contact with 2f. The rock is composed of coarse grained Kfs and Cpx. Kfs and 18.62-25.52m. 1% Po, trace Cpy. N504815 57 59 2.0 <0.001 < 0.005 <0.001 <0.2 163 4 8610 Cpx are paritally to completely replaced by Chl. Carbonates and Qtz are present as secondary Trace to 0.5% disseminated sulphides N504816 59 61 2.0 < 0.001 < 0.005 < 0.001 <0.2 395 4 8640 25.52-26.15m. Med grained anhedral Py associated with Chl. N504817 61 63 2.0 <0.001 < 0.005 <0.001 <0.2 158 3 9720 minerals and commonly interstitial to Kfs and Cpx. 25.52-26.15m. Sharp contact with 2f. The rock is dominated by megacrystic feldpsar and coarse Py is likely secondary. N504818 63 65 2.0 0.001 < 0.005 <0.001 <0.2 238 6 >10000 grained Cpx. Cpx is almost completely replaced by Chl. Feldspar crystals show a labradorite core 0.5% to 1% disseminated sulphides N504819 65 67 2.0 <0.001 < 0.005 <0.001 <0.2 214 5 >10000 and pink Kfs rim. 26.15-30m. 1% Po, no visible Cpy. K008547 67 76 9.0 47.1-47.37m. 2-10cm in width. Roughly 10 degrees to the core axis. The rock is composed of med 2-3% disseminated sulphides K008548 76 85 9.0 K008549 grained Kfs and Cpx. 30-30.38m. 3% Po, trace Cpy. 85 94 9.0 2-3% disseminated sulphides K008550 94 102 8.0 3h - Apatitic clinopyroxenite 30.38-30.54m. 2% Po, 0.5% Cpy (Po:Cpy=4:1). Sulfides are interstitial to silicate minerals and Mag. 30.38-30.54m. The rock is dominated by coarse graine subhedral Cpx (60%), anhedral PI (12% anhedral Mag (20%) and fine to med grained euhedral Ap (8%). Cpx is partially replaced by Chl. 2-3% disseminated sulphides

30.54-38m. Overall, 2% Po, trace Cpy.

38-39m. 0.5-1% Po, Cpy in trace amounts.

39-41.2m. 2% Po, 1% Cpy (Po:Cpy=2:1).

0.5% to 1% disseminated sulphides

2-3% disseminated sulphides

	GEOL	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
		×	×		N																	-	-	_
From	То	Maj Roc	Min Roc	Comments	Minerali	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
				Mag and 10-20% Cpx. Cpx and OI are partially replaced by Bt and Chl.	0.5% to 1% disse																			
				48.39-49.5m. Same as the 2b unit from 45.3 to 46.7m.		41.2-43.27m. 1% Po, trace Cpy.																		
					3-5% disseminate																			
						43.27-53.5m. 5-7% Po, <0.5% Cpy.																		
					2-3% disseminate																			
						53.5-55.13m. 2% Po, 1% Cpy (Po:Cpy=2:1)																		
					2-3% disseminate																			
						53.84-53.96m. In this short interval of 3h sulfides are med																		
						grained. Cpy commonly rims Po. Po 2%, Cpy 1% (Po:Cpy=2:1).																		
55.13	63.67	~ ~			0.501 . 401 . 5																			
55.13	63.67	2b - Coarse g	rained olivine g	abbro with modal lavering Same as the other 2b unit. 5-20cm wide PI alignments are roughly 80 degrees to the core axis.	0.5% to 1% disse	ninated sulphides 55.13-63.67m. Overall, 1% Po, trace Cpy.																		
				Gradational contact with the 2f unit above.		55.13-63.67m. Overall, 1% Po, trace Cpy.																		
			Of Modium (to coarse grained oxide augite melatroctolite																				
			21 - Meulum	59.32-59.39m. Same as the other 2f units in this drillhole. The rock is composed of med grained Pl,																				
				OI, Mag and Cpx. OI, Cpx and Mag are mainly subhedral PI is anhedral. 40-50% PI, 20% OI, 20-																				
				30% Mag and 10-20% Cpx. Cpx and Ol are partially replaced by Bt and Chl.																				
				So /s mag and 10-20 /s Opx. Opx and Or are partially replaced by bit and Oni.																				
63.67	65.62	FZ - fault or s	hear zone																					
00.07	00.02		TIOUR LOTIO	Fractured rock is 2b. Slickenslide on fault planes. The rock shows strong Chl alteration.																				
65.62	68.70	2b - Coarse o	rained olivine o	abbro with modal layering	Trace to 0.5% dis	seminated sulphides																		
				Same as previous 2b. The rock is dominated by PI, Cpx and OI with lesser fine grained Mag. OI and		65.62-68.7m. Sulfides in trace amounts.																		
				Cpx are commonly replaced by Bt. The layering is defined by variations in OI and Cpx.																				
68.70	70.33	FZ - fault or s	hear zone																					
				Fractured rock is 2b. Slickenslide on fault planes. The rock shows strong ChI alteration.																				
70.33	85.30	2b - Coarse g	rained olivine g	abbro with modal layering	Trace to 0.5% dis	seminated sulphides																		
				Same as the 2b unit of 65.62-68.7m. Dominated by PI, Cpx and OI and lesser fine grained Mag.		70.33-85.30m. Sulfides in trace amounts.																		
				75-85.3m. The rock becomes pinkish due to possible Kfs alteration of PI. The rock near contact																				
				with the syenite dikes shows relatively high pink feldspar content. Fractures in this unit are 60-70																				
				degree to the core axis and are filled by Chl and carbonates.																				
			5b - Augite s																					
				76.58-76.8m. Syenite dike cross-cuts 2b. The rock is dominated by coarse grained Kfs and mafic																				
				minerals that are completely replaced by ChI and carbonates. The rock is vuggy.																				
				83.41-84m. Same as the syenite of 76.58-76.8m.																				
-																								
85.30	85.87	FZ - fault or s	hear zone																					
				Fractured rock is 2b. Slickenslide on fault planes. The rock shows strong Chl alteration.																				
85.87	00.56	2h Coore -	rained elivir	jabbro with modal layering	Trace to 0 E% -	seminated sulphides																		
05.07	90.00	zu - Coarse g	ranieu ulivine g	aboro with modal layering Same as the 2b unit from 70.33 to 85.30m but has less pink feldpsar. The rock is fractured.	Trace to 0.5% dis	seminated sulphides 85.87-90.56m. Sulfides in trace amounts.																		
		1	1	Same as the 20 unit from 70.55 to 65.50m but has less pink religisar. The rock IS fractured.		op.or-sol.com. collides in trace amounts.																		
90.56	91 70	FZ - fault or s	hear zone																					
30.30	31.10	- rauk OFS	1001 2010	Fractured rock is 2b. Slickenslide on fault planes. The rock shows strong Chl alteration.																				
			1																					
91.70	96.71	2b - Coarse d	rained olivine o	abbro with modal layering	Trace to 0.5% dis	seminated sulphides																		
				Same as the 2b unit of 85.87-90.56m. Dominated by PI, Cpx and OI and lesser fine grained Mag.		91.7-96.71m. Trace Po and Cpy.																		
				Ol and Cpx are commonly replaced by Bt. The layering is defined by variations in Ol and Mag																				
				Contents.																				
			3b - Coarse o	grained, ophitic gabbro (>5mm)																				
				93.4-94.06m. Sharp contact. 2b is cross-cut by this unit. The rock is composed of coarse grained																				
				euhedral PI and anhedral Cpx. The rock shows typical ophitic texture. PI:Cpx is 1:1. PI is pinkish																				
L				possibly due to Kfs alteration.																				
96.71	102.00	2g - Gabbroic	anorthosite	White rock is very homogeneous, composed of fine to med grained PI and a small portion of mafic	Trace to 0.5% dis	seminated sulphides																		
				minerals (mainly Cpx). Cpx is partially to completely replaced by Chl. 80% PI, 20% mafics.		96.71-102m. Overall, Po and Cpy in trace amounts.																		
					0.5% to 1% disse																			
			3h - Apatitic	clinopyroxenite		97.54-97.58m. Med grained Po is rimmed by Cpy. 1% Po, 0.5%							1											

	GEOLO	DGY					Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz		Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
				96.95-96.95m. 1cm in width. Cross-cutting 2g. The rock is Cpx-Mag cumulate. Cpx and Mag are		Cpy (Po:Cpy=2:1).																			
				coarse grained and subhedral to euhedral. No OI present. Cpx is partially replaced by Chl.				-																	
				Carbonates are present as secondary minerals intersitial to Cpx and Mag. White acicular mineral is possibly apatite. The rock is dike-like and roughly 45 degrees to the core axis.				-																	
				97.54-97.58m and 99.45-99.47m. Same as the previous 3h unit of 96.95-96.95m.																					
								-																	
102.00		EOH - End of H	ole					-																	
								-																	
								-																	
								1			1														
											1														
								-																	
								1																	
								-																	
								1																	
								-																	
								1																	
								-																	
								1																	
								-																	
								-																	
								-																	
											1														
								-			1														
											1														
								-			1														
											1														
											1														
								-																	
								1			1														
					-																				
								-			1														
								1																	
											1														
I		I				I		1 1	I	1	1	I	1	1 1		I I	I			I	I I	1	ļ	1	1

NTS:		42 D / 16
UTM	Northing	5408855.2
(Nad27)	Easting	548085.1
Elevation	n (m):	378.2
Dip at Co	ollar:	-60
Azimuth:		28.62
Total De	pth:	258
Core Size	e:	NQ
Remarks	:	Core stored

DDH:	FD-13-33
Lease/Claim:	1240554
Property:	Coldwell Complex
Zone:	Four Dams South
Date start:	13-Jun-13
Date finish:	15-Jun-13
Contractor:	Chibougamau Diamond Drilling
Logged by:	Renata Smoke
Assistant:	Julien Meric, Yongang Feng

DIAMOND DRILL Reflex EZ Shot-			Survey
Depth	Dip	Azimuth	
Casing	-60	28.62	

downhole survey not available

	GEOL	OGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TPO	M Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm pp	n ppm	%	ppm	ppm	ppm	%	%	#
0.00	3.92	OB - Overburg	len				N504820		3.92	6	2.1	0.007	0.008	0.005		0.5		3370	179	>10000	1.56		TB13118919
							N504821		6	8	2.0	0.009	0.013	0.007		1		4180	227	>10000	1.39		TB13118919
3.92	30.90	2f - Medium to	coarse graine	id oxide augite melatroctolite	3-5% disseminate	d sulphides	N504822		8	10	2.0	0.002	< 0.005	<0.001		<0.2		579	74	>10000	0.21		TB13118919
				Med gr PI-OI-Mg-Cpx in more leuco layers. 5-20cm thick, 20% of rock in following intervals and		3.92-7.05m fine gr 5% Po, trace Cpy (5:1)	N504823		10	12	2.0	0.001	< 0.005	0.001		<0.2		570	78	>10000	0.19		TB13118919
				<5% otherwise (<5cm thick): 7.77-13.5m, 25.6-27.45m, 37.75-38.7m		6-7m fine-med gr 5% Po, 2% Cpy adjacent to Chlor and Ca	N504824		12	14	2.0	0.002	< 0.005	0.001		0.2		980	106	>10000	0.34		TB13118919
				3.92-16.3m Fine gr-med gr Mag-OI-Cpx-PI in melano layers,		filled veins associated with intense Bi and Chlor alteration (60%	N504825	mpg1				0.235	1.095	3.63		3.2		6860	372	1350	1.11		TB13118919
				16.3-38.77m Med gr Mag-Cpx-OI Plag (variable Mag and Cpx) in melano layers		of this interval)	N504826		14	16	2.0	0.006	0.006	0.003		0.6		2690	197	>10000	0.82		TB13118919
				29.5-34.26 Very Mag rich layer (50-55%) 3	3-5% disseminate	d sulphides	N504827		16	18	2.0	0.006	0.005	0.004		0.3		1405	135	>10000	0.5		TB13118919
				38.7743.15 Fine-med gr Mag-Ol-Cpx-Plag in melano layers (see change in mineralization to right)		13.6-15.1m fine gr 1% Po, 4% Cpy (1:4)	N504828		18	20	2.0	0.006	< 0.005	0.005		0.4		1450	162	>10000	0.4		TB13118919
					3-5% disseminate	d sulphides	N504829		20	22	2.0	0.005	< 0.005	0.004		0.8		2980	191	>10000	0.83		TB13118919
				Alteration:		15.1-30.90m fine-med gr 6-8% Po, tr-1% Cpy (8:1)	N504830		22	24	2.0	0.009	0.009	0.008		0.7		2940	166	>10000	1.12		TB13118919
				Moderate Chlor and Bi alteration throughout. Intense Chlor, Act, Bi alteration in the following		EXCEPT FOR:	N504831		24	26	2.0	0.013	0.007	0.009		1.3		5320	251	>10000	1.91		TB13118919
				intervals: 5.85-6.6m (also with broken and jointed core), 13.7-17.4m (associated with Chlor veins,	Local blebs to 2-4	% sulphides	N504832		26	28	2.0	0.003	< 0.005	0.004		<0.2		819	111	>10000	0.39		TB13118919
				20% of interval, OI psuedos), 33.25-34.28m (10% Chlor veins, increase in Chlor altered joints)		22-24.5m V crs gr Po and Cpy (4:1) blebs associated with or	N504833		28	30	2.0	0.005	< 0.005	0.006		0.4		1570	173	>10000	0.62		TB13118919
				38.85-43.15m Chlor alteration throughout + 5% veins (associated with med-crs gr sulfides		replacing Crs gr Bi (patchy, <2% of interval)	N504834		30	32	2.0	0.002	< 0.005	0.002		0.3		1280	100	>10000	0.4		TB13118919
30.90	31.45	FZ - fault or sh	ear zone		3-5% disseminate	d sulphides	N504835		32	34	2.0	0.005	< 0.005	0.002		0.7		4460	170	>10000	1.44		TB13118919
				within very Mag rich melano layer of 2f unit. Intense Chlor, Bi, Act alteration. Act forms psuedos of Ol.		fine-med gr 6-8% Po, tr-1% Cpy (8:1)	N504836		34	36	2.0	0.006	< 0.005	0.002		0.5		2610	138	>10000	0.68		TB13118919
31.45	45.34	2f - Medium to	coarse graine	d oxide augite melatroctolite	3-5% disseminate	d sulphides	N504837		36	38	2.0	0.001	< 0.005	0.001		<0.2		396	62	>10000	0.25		TB13118919
				Continuation of above 2f unit. See above for textural, mineralization, and alteration details.		31.45-45.34m fine-med gr 6-8% Po, tr-1% Cpy (8:1)	N504838		38	40	2.0	0.002	< 0.005	0.002		0.2		856	110	8370	0.37		TB13118919
						INCLUDING:	N504839		40	42	2.0	0.008	0.008	0.008		0.9		3660	280	>10000	0.93		TB13118919
					Local blebs to 2-4	% sulphides	N504840	d	40	42	2.0	0.005	0.01	0.007		0.9		3490	285	>10000	0.97		TB13118919
						38.77-45.34m same as above, plus local pods	N504841		42	44	2.0	0.004	0.005	0.005		0.5		2220	166	>10000	0.62		TB13118919
						of med gr 10% Po, 5% Cpy associated with Bi and Mag	N504842		44	46	2.0	0.001	< 0.005	0.001		0.3		1050	92	>10000	0.27		TB13118919
						layers/Chlor veins 10% of this interval (2:1)	N504843		46	48	2.0	0.003	0.008	0.002		0.6		2790	149	>10000	0.86		TB13118919
45.34	48.14	2I - Med to coa	arse gr olivine g	gabbro to melatroctolite with MS intrusions	3-5% disseminate	d sulphides	N504844		48	50	2.0	0.003	< 0.005	0.002		0.7		3270	130	8240	1.19		TB13118919
				Possible 3g? 2f with 3h intrusions (15% of rock, 5-15 cm wide)		med-crs gr 6-8% Po, 1% Cpy (6:1) in 2f	N504845		50	52	2.0	<0.001	< 0.005	<0.001		0.2		998	45	6400	0.47		TB13118919
				Overall Med-crs gr, Mag-Cpx-OI-Plag- 10-20% Ap (most concentrated at 3h intrusions)	Local blebs to 2-4		N504846		52	54	2.0	<0.001	< 0.005	0.001		<0.2		392	9	7380	0.29		TB13118919
				Upper contact marked by 5b (4cm thick), lower is sharp.		Crs gr 8% Po, 2-3% Cpy (4:1)associated with 3h intrusions, at	N504847		54	56	2.0	0.003	< 0.005	0.001		<0.2		703	8	7660	0.76		TB13118919
				45.34-45.45m Pegm 5b, possibly mixing with 3h (both pegm, euhedral Cpx)		the contact. Most commonly intergrown with Bi and Mag	N504848		56	58	2.0	<0.001	< 0.005	0.001		<0.2		226	5	8960	0.26		TB13118919
				Alteration:			N504849		58	60	2.0	<0.001	< 0.005	<0.001		<0.2		225	2	9490	0.27		TB13118919
				Mod-intense Chlor alteration throughout, most intense at 3h intrusions (up to 4cm Chlor vein at			N504850		60	62	2.0	0.001	< 0.005	<0.001		<0.2		92	1	8870	0.26		TB13118919
				intrusion)			N504851		62	64	2.0	<0.001	< 0.005	<0.001		<0.2		58	<1	8140	0.27		TB13118919
48.14	59.36	2f - Medium to	coarse graine		3-5% disseminate		N504852		64	66	2.0	<0.001	<0.005	<0.001		<0.2		52	<1	8050	0.25		TB13118919
				Med gr leuco layers: Plag-Cpx-Ol-Mag		Med gr 48.14-55.28m 4% Po, 1% Cpy (4:1)	N504853		66	68	2.0	<0.001	<0.005	0.001		<0.2		249	3	8430	0.4		TB13118919
					3-5% disseminate		N504854		68	70	2.0	<0.001	<0.005	<0.001		<0.2		192	2	8030	0.31		TB13118919
				Med gr melano layers: Cpx-Plag-Mag-Ol		Fine-med gr 55.26-55.96m 6% Po, 1% Cpy (6:1)	N504855	b				<0.001	<0.005	0.001		<0.2		3	1	40	0.01		TB13118919
-					2-3% disseminate		N504856		70	72	2.0	0.003	<0.005	0.003		0.6		3730	91	7940	2.37		TB13118919
50.05	00.05			Relatively unaltered, very weak Chlor. 55.26-59.36 increase in Chlor veins (5-10% of interval, <1cm)		Fine gr 55.96-59.36m 2-3% Po, 0-tr Cpy	N504857		72	74	2.0	0.004	< 0.005	0.003		0.7		3420	93	7810	2.11		TB13118919
59.36	69.65	2b - Coarse g	ained olivine g		Trace to 0.5% dis	seminated sulphides	N504858		74	76	2.0	<0.001	<0.005	0.005		<0.2		269	5	1830	0.36		TB13118919
		-		Weak layering, very close to homogenous. Plag-Cpx-Mag-Bi-Ol		Fine gr Tr Po	N504859		76	78	2.0	0.001	< 0.005	0.004		<0.2		344	7	7860	0.45		TB13118919
		-		Gradational upper and lower contact.			N504860		78	80	2.0	0.003	0.005	0.004		0.4		2550	67	7960	1.59		TB13118919
				Alteration:			N504861		80	82	2.0	0.003	< 0.005	0.003		0.7		3570	93	8060	2.15		TB13118919
				Weak Chlor and Bi alteration, <2% Chlor and Bi veins			N504862		82	84	2.0	0.004	0.005	0.002		0.2		1710	45	8570	1.45		TB13118919
69.65	73.95	2f - Medium to	coarse graine	d oxide augite melatroctolite	3-5% disseminate		N504863		84	86	2.0	<0.001	< 0.005	0.001		<0.2		102	6	8230	0.22		TB13118919
		-		Weak layering, leuco layers <10%, <5cm wide. Med gr Cpx-Plag-Po-Mag-Bi		Fine-med gr 10% Po, 1% Cpy (10:1)	N504864		100	102	2.0	<0.001	<0.005	0.001		<0.2		97	1	9020	0.31		TB13118919
		-		Alteration:			N504865		102	104	2.0	0.001	< 0.005	0.001		<0.2		94	2	9320	0.32		TB13118919
		1		Weak-moderate Chlor and Bi alteration, more intense associated with subparallel Chlor filled joints			N504866	1	104	106	2.0	<0.001	< 0.005	<0.001	I	<0.2	1	75	1	7430	0.24	I	TB13118919

	GEOLOGY	Y				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh T	GM Ag	Cu	ı C	u M	li	Р	S	C Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm p	om ppr	· %	PF	m pş	om	ppm	%	% #
				(<5% of rock unit, 1cm thick)			N504867		106	108	2.0	<0.001	<0.005	<0.001		<0.	:	9) <		9100	0.33	TB13118919
73.95	76.86 2g -	- Gabbroic anort	hosite		Semi massive t	o massive sulphides	N504868		108	110	2.0	0.001	<0.005	0.001		<0.	1	1:	6	2 >	10000	0.43	TB13118919
				with 5% 3h intrusions.		local blebs in 3h intrusions (5% total of this unit)	N504869		110	112	2.0	<0.001	<0.005	<0.001		<0.		7	2	1 :	8770	0.25	TB13118919
				Sharp upper and lower contact.		20% Po, 5% Cpy (4:1) Intergrown with 2ndary Mag, and Bi, or	N504870	mpg2				0.079	0.318	0.739		1.2		29			1740	1.18	TB13118919
				3h intrusions: 2-5cm, patchy and irregular. Sulfides commonly semi-massive in these pods. Mag		forming pseudos of Cpx	N504871		112	114	2.0	<0.001	<0.005	0.001		<0.		6			7280	0.22	TB13118919
				forms pseudos of cpx (common, sometime 90% Mag in pods with sulfides intergrown in Mag)			N504872		114	116	2.0	0.001	<0.005	<0.001		<0.		7			7850	0.23	TB13118919
				Alteration:			N504873		116	118	2.0	<0.001	<0.005	0.001		<0.		2			8430	0.25	TB13118919
				Strong Chlor, Bi, Pink alteration within and adjacent o 3h intrusions, moderate Chlor alteration			N504874		118	120	2.0	<0.001	<0.005	0.001		<0.		3			7990	0.24	TB13118919
				throughout			N504875		120	122	2.0	0.001	<0.005	0.004		<0.		2			5230	0.15	TB13118919
76.86	77.30 2f -	- Medium to coar	se grained	l oxide augite melatroctolite	3-5% dissemination		N504876		122	124	2.0	0.006	0.015	0.013		<0.		1			650	<0.01	TB13118919
				10% euhedral Py and very intense to complete Chlor and Talc alteration at upper contact (10cm		10% Po, Tr Cpy	N504877		165	167	2.0	<0.001	< 0.005	<0.001		<0.		2			8590 9160	0.18	TB13118919 TB13118919
				zone)			N504878		167	169	2.0	<0.001	< 0.005	0.001		0.2		6	-			0.33	
				Melano layers: Med gr Cpx-Plag-Mag-Po-Bi-Ol			N504879 N504880		169	171	2.0	< 0.001	< 0.005	0.001		0.2		4	-		8920	0.21	TB13118919
77.00	77.45 57			Leucolayers: <5%, <15cm Meg-crs gr Plag-Cpx-Mag			1100 1000		171	173	2.0	< 0.001	< 0.005	0.001		0.2		4:			10000	0.22	TB13118919
77.30	77.45 FZ -	Z - fault or shear z					N504881 N504882		173	175 177	2.0	0.001	< 0.005	0.002		<0. <0.		3			10000	0.22	TB13118919 TB13118919
				FZ of above 2f unit. Associated with Very intense Chlor, Talc, and Bi alteration and possible 3h			N504882 N504883		175 177	177	2.0	< 0.001	<0.005	0.001 <0.001		<0.		2			>10000 9940	0.21	TB13118919
77.45	79.10 2f -	Ma diversita ana		stringers (Very crs gr, Cpx-Plag-Mag) I oxide augite melatroctolite			N504883 N504884		177	179	2.0	0.001	<0.005	<0.001		<0		2			>10000	0.19	TB13118919
11.45	79.10 21-	- Medium to coar					N504885	d	179	181	2.0	0.007	<0.005	<0.001		<0.		- 23			>10000	0.31	TB13118919
				Continuation of above unit. Melano layers: Med gr Cpx-Plag-Mag-Po-Bi-Ol			N504885	a	179	183	2.0	<0.002	<0.005	0.001		<0.		3			>10000	0.34	TB13118919
				Leucolayers: <5%, <15cm Meg-crs gr Plag-Cpx-Mag			N504887		181	185	2.0	<0.001	<0.005	0.001		<0.		4	-		>10000	0.43	TB13118919
79.10	79.36 FZ -	Z - fault or shear z	000	Eeuculayeis. <3%, <13uni megruis gi FlagropArmag			N504888		185	187	2.0	0.002	0.005	<0.001		0.2		6			>10000	0.53	TB13118919
73.10	73.50 12-			FZ of above 2f unit. Associated with Very intense Chlor, Talc, and Ser alteration (Kaol??)			N504889		187	189	2.0	0.002	< 0.005	<0.001		0.2		5			>10000	0.31	TB13118919
79.36	83.37 2f -	- Medium to coar		I oxide augite melatroctolite			N504890		189	103	2.0	0.001	< 0.005	0.001		0.2		7			>10000	0.69	TB13118919
10.00	00.01 21	inicalari to oca	oo grainoa	Continuation of above unit.			N504891		191	193	2.0	0.004	<0.005	0.001		0.4		10			>10000	0.45	TB13118919
				Melano layers: Med gr Cpx-Plag-Mag-Po-Bi-Ol			N504892		193	195	2.0	0.001	0.006	0.001		0.6		13			>10000	0.4	TB13118919
				Leucolayers: <5%, <15cm Meg-crs gr Plag-Cpx-Mag			N504893		195	197	2.0	0.001	< 0.005	0.001		<0.		6			>10000	0.38	TB13118919
83.37	107.02 2b -	- Coarse grained		bbro with modal layering	2-3% dissemina	ated sulphides	N504894		197	199	2.0	< 0.001	< 0.005	0.002		<0.		10			10000	0.38	TB13118919
				Leuco layers: Med gr Plag-Cpx-OI (1:1 Cpx:OI)-Bi		Fine gr 83.37-83.92m 1-2% Po, Tr Cpy	N504895		199	201	2.0	0.004	0.011	0.012		0.2		5			10000	0.15	TB13118919
				Melano layers have an increase in Cpx, 10% of unit, 5-20cm thick	Trace to 0.5% of	disseminated sulphides	N504896		201	203	2.0	0.005	0.032	0.037		<0.		3	2 2	02	2340	0.06	TB13118919
				Gradational upper and lower contact.		Fine gr 83.92-102.44m 0-Tr Po	N504897		203	205	2.0	0.004	0.062	0.077		<0.		10			1000	<0.01	TB13118919
				Alteration:	0.5% to 1% dis	seminated sulphides	N504898		205	207	2.0	0.004	0.049	0.048		<0.		1:	7 2	70	1020	0.01	TB13118919
				Weak-moderate Chlor, Bi, Act and mostly associated with Chlor veins (5% of unit, 1-3cm thick)		Fine gr 102.44-107.02m 1-2% Po	N504899		207	209	2.0	0.004	0.044	0.045		<0.		1	1 1	66	2820	0.03	TB13118919
							N504900	b				< 0.001	< 0.005	<0.001		<0.		<		:1	30	<0.01	TB13118919
107.02	109.74 2f -	- Medium to coar	se grained	l oxide augite melatroctolite	3-5% dissemination	ated sulphides	N504901		209	211	2.0	0.003	0.021	0.039		<0.		1:	4 ε	15	2020	0.04	TB13118919
				Fine-med gr Cpx-Mag-OI-Plag		Fine gr 3-4% Po, Tr Cpy	N504902		211	213	2.0	0.005	0.048	0.068		<0.		9	3 1	05	1370	0.01	TB13118919
				Leuco layer <5%, 1-3cm thick			N504903		213	215	2.0	0.01	0.162	0.334		<0.	1	1-	9 9	0	2430	0.02	TB13118919
				Alteration:			N504904		215	217	2.0	0.01	0.186	0.33		<0.		2	2 1		8860	0.14	TB13118919
				Strong to intense Chlor alteration associated with Chlor veins (some with slickenslides, 1-2cm thick,			N504905		217	219	2.0	0.006	0.145	0.21		<0.		3	7 9	13 >	>10000	0.07	TB13118919
				25% of unit total)			N504906		219	221	2.0	0.015	0.288	0.622		<0.		2			3540	0.04	TB13118919
109.74	121.26 2b -	 Coarse grained 	l olivine gat	bbro with modal layering	0.5% to 1% dis	seminated sulphides	N504907		221	223	2.0	0.021	0.402	1.1		<0.		1			2780	0.03	TB13118919
				Med gr Plag-OI-Cpx-Mag-Bi		Fine gr 109.74-116.15m 0-1% Po	N504908		223	225	2.0	0.06	0.431	1.39		<0.		3			5970	0.05	TB13118919
				Alteration:	2-3% dissemination		N504909		225	227	2.0	0.359	0.487	1.02		1.1		16			4020	0.23	TB13118919
				Weak Bi and Chlor alteration throughout		Fine gr 116.15-121.26m 2% Po	N504910		227	229	2.0	0.427	0.465	1.195		1		23			6300	0.32	TB13118919
121.26	125.50 1a -	a - Footwall rheom					N504911		229	231	2.0	0.216	0.215	0.542		0.7		16			7250	0.23	TB13118919
				Fine gr, silicified, 10-15% Fine gr xenos (5-25 mm)			N504912		231	233	2.0	0.186	0.111	0.143		0.7		17			3710	0.21	TB13118919
105				Sharp upper and lower contact.	-		N504913	1	233	235	2.0	0.258	0.031	0.041		1.5		27			5730	0.31	TB13118919
125.50	167.40 2b -	 Coarse grained 		bbro with modal layering	I race to 0.5% of	disseminated sulphides	N504914		235	237	2.0	0.048	0.012	0.02	1	0.7		17			8550	0.2	TB13118919
				Med gr Plag-Ol-Cpx-Mag-Bi Melano layers 10% (Cpx-Plag-Ol-Mag)	0.501 . 401	Fine gr 125.5-128.8m Tr Po	N504915	mpg1				0.247	0.91	3.41	1	3.1		68			1320	1.04	TB13118919
				Alteration:	0.5% to 1% dis	seminated sulphides	N504916		237	239	2.0	0.043	0.029	0.06	1	0.5		14			10000	0.17	TB13118919
				Weak to moderate Chlor alteration. Strong Chlor and Bi alteration associated with Chlor veins (8%		Fine gr 128.8-167.4m 1-2% Po, Tr-1% Cpy (2:1)	N504917		239	241	2.0	0.052	0.089	0.144	1	0.5		12			7000	0.15	TB13118919
167.40	168.20 2f -	Marking 1		of unit, dispersed somewhat continuously throughout), 0.5-2cm thick.	0.00/ -**		N504918 N504919		241 243	243 245	2.0	0.017	0.019	0.03		0.2		6			1910 820	0.06	TB13118919 TB13118919
167.40	100.20 21-	- wedium to coar		l oxide augite melatroctolite	2-3% dissemina		N504919 N504920		243 245	245 247	2.0 2.0	0.013	0.007	0.009		0.4		21			820 >10000	0.06	TB13118919 TB13118919
				Meg gr Ol-Mag-Cpx-Plag-Bi Alteration:		167.4-175.89m Fine gr 2% Po, Tr Cpy	N504920 N504921		245			0.095		0.076		0.9		21			>10000 >10000	0.21	TB13118919 TB13118919
				Alteration: Moderate to strong Chlor alteration mostly associated with Chlor veins (10% or unit) and FZ			N504921 N504922		247	249 251	2.0 2.0	0.065	0.061 0.076	0.082		1.1		26			>10000 >10000	0.28 0.36	TB13118919
168.20	168.86 F7 -	Z - fault or shear z	000	information to surving Chilor alternation mostly associated with Chilor Vents (10% of Unit) and PZ	1		N504922 N504923	1	249	251	2.0	0.075	0.076	0.098		1.2		31			1270	0.36	TB13118919
100.20	100.00 FZ -	- raun of shear 2		FZ of 2I. Intense to complete Chlor alteration.	1		N504923 N504924	1	251	253	2.0	0.003	0.009	0.011		<0.2		4			1270	0.07	TB13118919 TB13118919
168.86	175.89 04	- Medium to coor		exide augite melatroctolite	1		K008551	1	253	255	9.0	0.001	0.007	0.000		<0.			· 1		140	0.08	0.04 TB13118918
106.80	110.09 21-	- weaturn to coar	se grained	i usue augite meial/UCIUIRE	1		1008221	1	86	95	9.0	1	ı I	I	1	I.	I	I	I	I	1	0.29	0.04 [1813118

	GEOLOGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	Waj Kock Waj Kock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
		Con	tinuation of above 2f unit.			K008552		95	100	5.0											0.34	0.03 T	FB13118918
			g gr Ol-Mag-Cpx-Plag-Bi			K008553		124	133	9.0											0.17		B13118918
			ration:			K008554		133	142	9.0											0.23	0.07 T	FB13118918
			derate to strong Chlor alteration mostly associated with Chlor veins (10% or unit) and FZ			K008555		142	151	9.0	1										0.24	0.05 T	FB13118918
175.89	179.56 2b - Coarse grain	ed olivine gabbro v	with modal layering	2-3% disseminate		K008556		151	160	9.0	1										0.22		FB13118918
		2b w	with 30% 2f layers. Cpx increases downhole in 2f. Relatively homogenous (some variation		1% Po, 1% Cpy in 2b, 2% Po, 2% Cpy in 3g intrusions (1:1)	K008557		160	165	5.0	1										0.21	0.05 T	FB13118918
			r size and Cpx:OI ratio in 2f).			K008558		255	258	3.0											0.05	0.03 T	FB13118918
			.72-175.9m Largest 2f layer. Sharp to slightly gradational contacts. 176-179.56m 2f			-																	
			rs (<10cm wide) account for <10% of interval. ration:			-					1										1		
						1																	
			nse Chlor alteration of 2f, and intense Chlor and moderate pink alteration of 2b (with 10% Chlor s, <1cm thick)			-					1										1		
179.56	199.47 2f - Medium to co			3-5% disseminate	d culnhidae	1					1										1		
113.30	21 - Median to co		in size and modal %s is variable throughout unit (most prominent differences occur in Cpx and		179.56-184.45m Fine-med gr 2% Po, 2% Cpy (1:1)	1					1										1		
			content, and Med to crs gr texture)	3-5% disseminate		1					1										1		
			60% of unit is made up of Med-crs gr type with 40%Cpx (crs)-30%Mag (med)- 15%Ap (fine)-		184.45-193.48m Fine-med gr 4% Po, 1% Cpy (4:1)	1					1										1		
			GPlag (med)-5% OI (Fine-med)	3-5% disseminate		1					1										1		
			50% of unit is made up of Fine-med gr type with 40% Mag-30%Cpx-20%OI-15%Ap-5%Plag		193.48-199.22m Fine gr 2-4% Po, 2% Cpy (2:1 to 1:1)						1										1		
		Арр	rox 5% is made up of layers which are >90% Mag (Fine gr), which are located within the more	Local blebs to 2-4	% sulphides																		
		Ol ri	ich 2f, are 2-5 cm thick, and can resemble stringers in addition to layers.		179.56-199.21m <5% of unit. 4-6% Po, 3-4% Cpy (2:1) in Bi						1										1		
			.88-194.93m 3h stringer cuts 2f		blebs (and intergrown with Bi), or very Chlor altered Crs gr Cpx																		
		Upp	per contact is sharp, and marked by an increase in Bi alteration within 3g (179.56-180m)		pods (5-20mm, irregular shaped)						1										1		
			GENERAL a higher Cpy proportion associated with the Crs gr variety.			-					1										1		
			ration:			-					1										1		
			derate to intense Chlor alteration throughout, intense Ep alteration of plag			-					1										1		
		Mod	derate Bi alteration, strongest in Crs gr patches (often with Crser gr Cpy mineralization)			-					1										1		
						-					1										1		
199.47	225.47 3h - Apatitic clinor			3-5% disseminate		-					1										1		
			erall, rock is composed of 60% 3h (Crs gr) with 40% Crs to pegm 3d. Contacts btwn the units are		1-2% Po, 1-2% Cpy (4:1 to 1:1), patchy (not homogenous						1										1		
			dational. "stop sign" texture is common within 3h, and apatite content is variable: most :entrated in heavily Ep, pink, (of Plag) Bi, and Chlor altered pods with a high Mag content (>20%).		mineralization)	-					1										1		
			t separated according to 3h % and detailed mineralization textures:								1										1		
			.21-207.36m: >90% 3h, Med-crs gr. CpxPlag-OI (somewhat variable, Med gr)-Bi. Moderate to			1																	
			vy Chlor and Bi alteration. Patches which have the highest Po and Cpy mineralization (3% Po,			1					1										1		
			Cpy) are associated with heavily Chlor and Bi altered patches (<5% of interval)																				
			.36-220.15m: 50-60% 3h (with Med gr-pegm 3d). Cpx is much Crser within 3h in this interval			1					1										1		
			e description above). 212-212.7m <2cm thick subparallel syenite (90% pink feld) dikelets.																				
		Mod	derate to intense pink alteration of Plag throughout this interval, moderate to intense Chlor																				
			ration. Pegm 3h has approx 50% Mag within this interval. Mineralization patchy, concentrated in								1										1		
		Bi a	and Chlor alteration pods (up to 5% Sulfides, 1:4). OI content is higher (10%) 219.54-220.15m.								1										1		
		220.	.15-225.47m: 40% 3h, 70% 3d. Same description as above, just with a higher proportion of 3d			-																	
			in this interval, and no pink alteration. Again, sulfide mineralization is patchy, and mostly fond in			-					1										1		
		more	re Mag rick zones (5%, 1:4)			-					1										1		
						-					1										1		
			.77-216.87m Vein, or zone of >60% Med gr Ap, and complete alteration of Cpx to Bi and Chlor			4					1										.		
			ration:			-					1 I										1		
		Plag	g is commonly replaced by Ca, with a Bi rim around this.			1	1														, I		
225 47	251.43 4c MO here !!	ronoio with First C	rained apply varalities	2 E0/ dii ·	d subbides	1					1 I										ı		
223.41	251.43 4a - MS hosted bi		rrained gabbro xenoliths 6 3d, 3i, 3h intrusions: contacts btwn 2a and MS are sharp.	3-5% disseminate	d sulphides 2-6% Cpy, but patchy.	1					1										.		
			 47-231m: Mostly 3i, Crs gr to pegm. 		2-6% Cpy, but patchy. 224.1-251.43m: Most consistent Cpy (>3%) mineralization (in 3i)	1					1 I										ı		
			-238.4m: Mostly 3b, 3d		242.5-243.3m: 2-3%, very strong association with Crs-pegm Bi	1					1										.		
			#236.4m: Mostly 3b			1					1										.		
			-251.43m: Mostly 3i (25-50% Ap)		Common Mineralization associations:	1					1 I										, I		
		240			With Mag rich layers/intergrown with Mag	1					1 I										ı		
		Apat	atite zones >10%:		In Ap and OI rich zones	1															ı		
		226.	.85-227.3m: 20% Ap, 25% Mag in 3h type. 4% Cpy, 1% Po within this zone.																				
			.85-227.3m: 20% Ap, 25% Mag in 3h type. 4% Cpy, 1% Po within this zone. .7-238.8m: 15% Ap, 15% Mag in Chlor vein/Chlor and Bi zone of alteration. 3% Cpy in this zone.		In heavily Chlor and Bi altered patches (forming pseudos of Cpx, or intergrown with Bi and Chlor, or forming core of Chlor which																		

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
251.43	258.00	2a - Fine graine	ed homogeneou	us gabbro																				
				Contact is somewhat sharp-somewhat gradational (possible mixing). Xenos (slightly Crser gr, 10%, <5cm)																				
258.00		EOH - End of H	lole																					

NTS:		42 D / 16		DDH:	FD-13-34	DIAMOND DRI	LL CORE L	OG
υтм	Northing	5408836		Lease/Claim:	1240554	Reflex EZ Shot	- Diamond	Drillhole Su
Nad27)	Easting	548073.2		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation	ı (m):	375.7		Zone:	Four Dams South	Casing	-69.56	32.87
Dip at Co	llar:	-69.56		Date start:	15-Jun-13			
zimuth:		32.87		Date finish:	24-Jun-13			
otal Dep	oth:	336		Contractor:	Chibougamau Diamond Drilling			
ore Size	e:	NQ		Logged by:	Julien Meric			
Remarks		Core stored in	Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Yonggang Feng, Renata Smoke and Rachel Epst	ein complete downhole	survey in Fou	r Dams masterli

GI	GEOLOG	Y				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From To	o	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00 4.90	90 O	DB - Overburd	en				N504925		4.9	7	2.1	0.004	< 0.005	0.001			0.2		962	80	>10000	0.41	-	TB13121162
							N504926		7	9	2.0	0.002	< 0.005	<0.001			<0.2		286	45	9550	0.15		TB13121162
4.90 47.1	.16 21	f - Medium to	coarse grained	l oxide augite melatroctolite	2-3% disseminate	ed sulphides	N504927		9	11	2.0	0.004	< 0.005	0.004			<0.2		537	106	>10000			TB13121162
				10-30% plag rich layers, med to fine ol, cps, mag, plag. Biotite and chlorite as secondary minerals		4.9-6.55. Overall, 2% Po, trace Cpy. Fine grained to med	N504928		11	13	2.0	0.005	< 0.005	0.006			0.3		1210	129	>10000	0.39		TB13121162
				Chlorite content increases close to the fractures.	Trace to 0.5% dis	sseminated sulphides	N504929		13	15	2.0	0.007	< 0.005	0.005			0.6		2860	143	>10000	0.87		TB13121162
			5b - Augite sye	•		6.55-13.32 very fine grained	N504930	d	13	15	2.0	0.006	< 0.005	0.005			0.6		2560	138	>10000	0.78		TB13121162
				from 7.9-12m <5% of dykes and blebs of syenite between 1 to 5cm wide. Crs gr cpx, plag. Seems	2-3% disseminate		N504931	-	15	17	2.0	0.005	< 0.005	0.006			<0.2		850	150	>10000	0.38		TB13121162
				really alterd, with stong chlorite alteration.		13.32-20.36 med to fine grained variation Cpy content 8:1	N504932		17	19	2.0	0.008	< 0.005	0.006			0.7		2680	222	>10000	1.04		TB13121162
			2b - Coarse or	ained olivine gabbro with modal layering		to 4:1. Cpy seems to increase in plag rich layers.	N504933		19	21	2.0	0.006	< 0.005	0.004			0.5		2500	191	>10000	0.94		TB13121162
				21.64-25.4 between 40-65% plag rich layers, with gradual contacts with 2f.	Trace to 0.5% dis	sseminated sulphides	N504934		21	23	2.0	0.002	< 0.005	0.001			<0.2		375	65	>10000	0.15		TB13121162
				Enter 2011 - Detween the bolk plag her hayere, with gradual contacto with En	11000 10 0.070 0	20.36-26.90 trace with few blebs	N504935		23	25	2.0	0.002	<0.005	0.001			<0.2		575	84	>10000	0.18		TB13121162
					2-3% disseminate	*	N504936		25	27	2.0	0.003	<0.005	0.001			<0.2		1085	122	>10000	0.31		TB13121162
					2-376 03361111100	26.90-33.13 med to fine gr, blebs at the beginning then	N504937		27	29	2.0	0.006	<0.005	0.001			0.6		2790	180	>10000	0.92		TB13121162
						continuous, mostly po, trace Cpy	N504938		29	31	2.0	0.008	<0.005	0.002			0.7		3250	184	>10000	1.31		TB13121162
					2 E% discomingt		N504939		31	33	2.0	0.008	0.005	0.003			0.7		2910	182	>10000	0.91		TB13121162
					3-5% disseminate	33.13-37.10 med to fin gr, but size increase. Po 5:1 Cpy	N504939		33	35	2.0	0.008	< 0.005	0.003			0.5		3270	162	>10000	1.27		TB13121162
					0.50/ += 40/ -5==												••••							
					0.5% to 1% disse	eminated sulphides	N504941		35 37	37	2.0	0.009	0.006	0.007			0.8		2870	106	>10000	0.82		TB13121162
	4.0					37.10-47.16 fine gr occurs in blebs	N504942			39	2.0	0.003	< 0.005	0.004			<0.2		654	99	>10000			TB13121162
47.16 60.1	.10 21	I - Med to coa	rse gr olivine g	abbro to melatroctolite with MS intrusions	3-5% disseminate		N504943		39	41	2.0	0.002	< 0.005	0.004			<0.2		542	108	>10000	0.26		TB13121162
				20-30% of marathon intrusions in a 2f unit, with sharp contacts between both. Marathon units are		47.16-60.10 fine to crs gr in 2f unit really continuous the	N504944		41	43	2.0	0.004	<0.005	0.005			0.2		846	113	>10000	0.37		TB13121162
				richer in Cpy than 2f unit. Presence of few magnetite layers in 2f >50% mag.		sulfide content vary and could reach 8% with 6:1 Po:Cpy.	N504945	b				0.001	< 0.005	<0.001			<0.2		11	2	170	<0.01		TB13121162
						In 3i and 3h unit 4-6% med to crs grained sulfide, the ratio vary	N504946		43	45	2.0	0.005	<0.005	0.002			0.2		1225	101	9640	0.38		TB13121162
			3i - Apatitic oliv	vine clinopyroxenite		from 2:1 to 1:1 po:Cpy.	N504947		45	47	2.0	0.005	< 0.005	0.002			0.6		2450	134	8340	0.99		TB13121162
				med to crs grained cpx, ol, plag, mag. <5% apatite. interstitial mag and plag, also lathlike plag.			N504948		47	49	2.0	0.006	< 0.005	0.001			0.9		3620	162	9650	1.32		TB13121162
				58.03-58.64 ; 58.86-59 ; 59.18-59.4			N504949		49	51	2.0	0.006	< 0.005	0.003			0.8		3360	155	8950	1.5		TB13121162
							N504950		51	53	2.0	0.004	0.007	0.002			0.4		2090	119	9380	1.11		TB13121162
			3h - Apatitic cl				N504951		53	55	2.0	0.004	0.007	0.002			0.3		1305	118	>10000	0.72		TB13121162
				Blebs or dykes with crs grained cpx, plag (labradorite), biotite. Strong chlorite alteration replacing			N504952		55	57	2.0	0.008	0.005	0.004			0.8		3150	262	>10000	0.89		TB13121162
				cpx and pink alteration (K feldspar ?) but no apatite. This unit could also be a syenite (5b) ?			N504953		57	59	2.0	0.005	< 0.005	0.002			0.7		3060	192	>10000	1.03	-	TB13121162
				47.16-47.44 ; 48.27-48.48 ; 49.58-49.60 ; 49.76-50.39 ; 54.12-54.25			N504954		59	61	2.0	0.007	< 0.005	0.002			0.9		3960	204	>10000	1.37	-	TB13121162
							N504955		61	63	2.0	0.005	< 0.005	0.003			0.9		4150	169	7500	1.68	-	TB13121162
60.10 66.0	.00 2f	f - Medium to	coarse grained	oxide augite melatroctolite	3-5% disseminate	ed sulphides	N504956		63	65	2.0	0.002	< 0.005	0.001			0.5		2100	80	7460	1.02	-	TB13121162
				see 2f description above		60.10-64.79 fine to med gr po, cpy po:cpy 6:1	N504957		65	67	2.0	<0.001	< 0.005	0.001			<0.2		212	11	7480	0.14	-	TB13121162
					Trace to 0.5% dis	sseminated sulphides	N504958		110	112	2.0	<0.001	< 0.005	<0.001			<0.2		113	1	>10000	0.29	-	TB13121162
						64.79-66.0 trace mostly po	N504959		112	114	2.0	0.001	< 0.005	<0.001			0.2		1335	31	9010	1.15		TB13121162
66.00 87.5	.58 21	b - Coarse gr	ained olivine ga	bbro with modal layering	Trace to 0.5% dis	sseminated sulphides	N504960	mpg2				0.064	0.3	0.827			1.2		2760	273	1710	1.12		TB13121162
				plag content variation, between 40 to 70% plag rich layers. Really stong chlorite alateration		trace mostly po	N504961		114	116	2.0	0.004	< 0.005	0.002			0.4		2480	60	9460	1.84		TB13121162
				(green color of the rock) and trace of carbonate alteration close to the fractures and carbonate infill.			N504962		116	118	2.0	0.001	< 0.005	< 0.001			<0.2		287	7	8770	0.46		TB13121162
							N504963		118	120	2.0	0.001	< 0.005	< 0.001			<0.2		64	1	5410	0.23		TB13121162
87.58 89.8	.80 F.	Z - fault or sh	ear zone		Trace to 0.5% dis	sseminated sulphides	N505157		232	234	2.0	0.001	< 0.005	<0.001			<0.2		524	3	>10000	0.24		TB13121162
				Chlorite coated slickenslide, rubble, infil of chlorite and carbonate sometime. Gouge		trace mostly po	N505158		234	236	2.0	0.003	< 0.005	<0.001			<0.2		616	4	>10000	0.44		TB13121162
							N505159		236	238	2.0	0.001	< 0.005	<0.001			<0.2		582	6	>10000	0.61		TB13121162
89.80 118.9	3.90 21	b - Coarse ar	ained olivine da	bbro with modal layering	Trace to 0.5% dis	sseminated sulphides	N505160		238	240	2.0	0.001	< 0.005	< 0.001			<0.2		666	4	>10000	0.53		TB13121162
				plag content variation, between 40 to 70% plag rich layers. Really stong chlorite alateration		89.80-112.64 trace mostly po	N505161		240	242	2.0	0.001	< 0.005	< 0.001			<0.2		832	5	>10000	0.38		TB13121162
				(green color of the rock) and trace of carbonate alteration close to the fractures and carbonate infill.	3-5% disseminate		N505162		242	244	2.0	0.001	<0.005	<0.001			<0.2		683	5	>10000	0.36		TB13121162
				strong fracturation. The mafic content increase after 110m and you have 40-50% plag rich layers		112.64-116.36 med to fine gr homogenous and continuous.	N505163		244	246	2.0	<0.001	<0.005	<0.001			<0.2		834	5	>10000	0.48		TB13121162
				(close to 2f unit).		Mostly in mafic part and mostly Po, trace Cpy	N505164		244	240	2.0	0.002	<0.005	<0.001			<0.2		587	6	>10000	0.43		TB13121162
I I				Toroad to zi dring.	1	mosty in mane part and mostly FO, trace Opy	11000104	I	240	240	2.0	0.002	<0.005	<0.001	1	1	<0.2		307	U	1 210000	0.43	1	1013121102

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
		ock	ock		aliz																			
From	То	Maj Re	Min R	Comments	Miner	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
							N505165		248	250	2.0	0.001	<0.005	0.001			<0.2		524	5	>10000	0.24		TB13121162
118.90	122.00	5a - Quartz sy		rr k foldener (strong erenge color), and interatitial quarty, and oblarite infill in fractures	I race to 0.5% dis	eminated sulphides 118.9-122 Pyrite in chlorite joints within the syenite.	N505166 N505167		250 252	252 254	2.0 2.0	0.001	<0.005 <0.005	<0.001 <0.001			<0.2 <0.2		619 602	7 10	>10000 >10000	0.21		TB13121162 TB13121162
				gr k feldspar (strong orange color), and interstitial quartz, and chlorite infill in fractures. 1 also have pyrite in the chlorite joints.		118.9-122 Pyrte in chiorite joints within the syenite.	N505167		252	254	2.0	<0.001	<0.005	<0.001			<0.2		651	10	>10000	0.26		TB13121162
			100				N505169		256	258	2.0	<0.001	<0.005	<0.001			<0.2		579	14	>10000	0.24		TB13121162
122.00	124.75	FZ - fault or sh	iear zone		Trace to 0.5% dise	seminated sulphides	N505170	b				<0.001	< 0.005	<0.001			<0.2		23	1	610	0.04	1	TB13121162
			Chlo	prite coated slickenslide, filled with chlorite and carbonate. Highly fractured and presence of		fine gr trace to 0.5 mostly po. Few trace of Cpy.	N505171		258	260	2.0	<0.001	<0.005	<0.001			<0.2		779	18	>10000	0.26	٦	TB13121162
			goug	<u>]</u> e.			N505172		260	262	2.0	<0.001	<0.005	<0.001			0.2		983	24	>10000	0.32	٦	TB13121162
							N505173		262	264	2.0	0.001	<0.005	0.001			0.2		850	23	>10000	0.21	1	TB13121162
124.75	126.00	2b - Coarse gr	ained olivine gabbro		Trace to 0.5% dise	seminated sulphides	N505174		264	266	2.0	0.002	<0.005	0.001			0.6		2310	50	>10000	0.47		TB13121162
			sam	e description as the 2b above, but strong carbonate alteration and carbonate infill in fractures.		fine gr trace to 0.5 mostly po. Few trace of Cpy.	N505175		266	268	2.0	0.002	<0.005	0.002			0.3		1380	50	>10000	0.28		TB13121162
	107.00						N505176		268	270	2.0	0.007	0.005	0.009			<0.2		999	84	>10000	0.17		TB13121162
126.00	127.00	FZ - fault or sh		nia	Trace to 0.5% dist	seminated sulphides	N505177		270	272	2.0	0.06	0.031	0.066			0.5		1745	150	>10000	0.21		TB13121162
			Chio	rite coated slickenslide, filled with chlorite and carbonate. Highly fractured		fine gr trace to 0.5 mostly po. Few trace of Cpy.	N505178 N505179		272 274	274 276	2.0 2.0	0.928 0.314	0.191 0.32	0.556 0.387			3 3.1		5620 6440	207	8040 >10000	0.55		TB13121162 TB13121162
127.00	146.57	2b - Coarse or	ained olivine gabbro	with modal lavering	Trace to 0.5% dise	seminated sulphides	N505179		274	276	2.0	0.314	0.32	0.367			2.6		6440 4820	256 183	7210	0.62		TB13121162
121.00	. 10.07	000100 gi		to crs gr plag, cpx, ol and mag. between 50 to 60% plag rich layers. Really stong chlorite		fine gr trace to 0.5 mostly po. Few trace of Cpy.	N505181		278	280	2.0	0.028	0.02	0.017			0.4		967	65	8500	0.19		TB13121162
				ation (green color of the rock) and trace of carbonate alteration close to the fractures and		······ ·······························	N505182		280	282	2.0	0.019	0.014	0.018			0.3		857	70	>10000	0.27		TB13121162
				onate infill. Strong fracturation. And also pink alteration (<10%)			N505183		282	284	2.0	0.01	<0.005	0.006			0.2		555	51	6240	0.17	٦	TB13121162
							N505184		284	286	2.0	0.014	< 0.005	0.002			0.3		640	63	7900	0.14	1	TB13121162
			136.	24-136.44 leucopod, sharp contact above and fracture filled with chlorite below.			N505185	mpg1				0.219	0.974	3.35			3.4		7200	404	1400	1.14	1	TB13121162
			mos	tly plag but pink alteration (albite alteration ?), chlorite alteration (green color of the feldspar).			N505186		286	288	2.0	0.041	0.021	0.027			0.5		1110	79	1960	0.19		TB13121162
							N505187		288	290	2.0	0.05	0.008	0.008			0.4		1160	83	3210	0.18		TB13121162
146.57	147.16	FZ - fault or sh			Trace to 0.5% dist	seminated sulphides	N505188		290	292	2.0	0.246	0.177	0.284			1.8		3990	194	3270	0.44		TB13121162
			Chlo	rite coated slickenslide, fractures filled with chlorite and carbonate.		fine gr trace to 0.5 mostly po. Few trace of Cpy.	N505189		292	294	2.0	0.233	0.205	0.357			2		4250	195	9730	0.54		TB13121162
147.16	000.40	01- 0	ained all incompletes.	with soudal to write	T		N505190		294	296	2.0	0.071	0.046	0.075			1.1		2690	218	9290	0.44		TB13121162
147.16	200.49	2b - Coarse gr	ained olivine gabbro		Trace to 0.5% dist	seminated sulphides	N505191 N505192		296 298	298 300	2.0 2.0	0.023	0.007	0.017			0.5		1240 612	78 70	>10000 6500	0.32		TB13121162 TB13121162
				16- 170 med to crs gr plag, cpx, ol and mag. between 50 to 60% plag rich layers. Less altered fractured than th 2b from 127-146.57.	0.5% to 1% disser	147.16-151.03 fine gr trace to 0.5 mostly po. Few trace of Cpy.	N505192 N505193		298 300	300	2.0	0.009	0.008	0.079			0.2		1550	210	5980	0.11		TB13121162 TB13121162
				200.49 homogenous 2b <10% mafic rich layers.	0.370 10 170 01336	151.03-164.33 variation between 0.5-1, fine gr mostly po, trace	N505194		302	304	2.0	0.099	0.043	0.053			1.2		3010	168	>10000	0.41		TB13121162
						of Cpy. Presence of feww patches wich could reach 1 -2%.	N505195		304	306	2.0	0.142	0.051	0.072			1.2		3020	147	8320	0.38		TB13121162
			165-	165.04 carbonate vein, with a green halo of alteration (mostly chlorite transformation)	Trace to 0.5% dise	seminated sulphides	N505196		306	308	2.0	0.057	0.013	0.019			0.2		788	86	5230	0.11		TB13121162
						164.33-200.49 fine gr, trace to 0.5 mostly po presence of Cpy	N505197		308	310	2.0	0.054	0.014	0.016			0.5		1080	81	5300	0.14	1	TB13121162
							N505198		310	312	2.0	0.055	0.028	0.037			0.6		1650	110	>10000	0.22	٦	TB13121162
							N505199		312	314	2.0	0.028	0.023	0.019			0.6		1500	110	>10000	0.2	٦	TB13121162
							N505200	d	312	314	2.0	0.031	0.021	0.023			0.6		1460	119	>10000	0.2	1	TB13121162
200.49	271.57	2f - Medium to		e augite melatroctolite	Trace to 0.5% dist	seminated sulphides	N505201		314	316	2.0	0.019	0.008	0.008			0.3		1080	123	4960	0.15		TB13121162
				0.49-233.7 med gr ol, cpx, mag and palg. But 30-50%plag rich layers not evenly distributed.		200.49-206.63 increase close to 0.5 but higher in mafic parts.	N505202		316	318	2.0	0.085	0.053	0.048			1.3		3170	196	>10000	0.44		TB13121162
				dual contact with 2b above.	0.5% to 1% disser		N505203		318	320	2.0	0.047	0.022	0.024			1.1		2620	220	>10000	0.34		TB13121162
+				7-241.21 mag content increase from 15-20 to 30% presence of magnetite layers 0% magnetite) around 1-3 cm wide. Presence of apatite and content increase.		206.63-211.12 in mafic parts.fine gr mostly po, presence of Cpy. seminated sulphides	N505204 N505205		320 322	322 324	2.0 2.0	0.062 0.054	0.038 0.046	0.053			1.5 1.4		3570 3100	210 180	>10000 >10000	0.49		TB13121162 TB13121162
				.21- 247.44 Grain size increasing, med to crs gr cpx, med.		211.12-234 in mafic parts.fine gr mostly po, presence of Cpy.	N505205		322	324	2.0	0.054	0.046	0.049			2.2		5280	305	>10000	0.4		TB13121162 TB13121162
			241		Local blebs to 1-2		N505207		324	328	2.0	0.073	0.033	0.07			1.5		3670	217	>10000	0.46		TB13121162
			247	.44-263.4 plag rich 2f, sharp contact above (with mafic 2f), with med to crs gr Plag, ol, mag,		234-247.44 disseminated, 1 to 2% med to fine. 6:1, po Cpy.	N505208		328	330	2.0	0.084	0.052	0.057			2.3		6260	317	>10000	0.81		TB13121162
				. Plag content vary between 20-50% and is not evenly distributed. Around 20-30 % of the plag		Presence of few blebs and patches.	N505209		330	332	2.0	0.06	0.032	0.041			1.7		4380	248	>10000	0.61		TB13121162
				altered, albitisation or sericitisation? This alteration altered first the border the reach the centre,		237.08-237.35 po vein 3mm wide, po seems to replace chlorite	N505210		332	334	2.0	0.041	0.018	0.022			1.3		3180	150	>10000	0.47	٦	TB13121162
			the	e part altered is whiter.		seminated sulphides	N505211		334	336	2.0	0.026	<0.005	0.017			0.9		2110	88	8000	0.36	T	TB13121162
			The	en from 263.4 to 271.57 the plag content and the grain size decrease gradually		247.44-263.4 mostly 0.5 with 4:1 po:Cpy. Presence of few	K008559		67	76	9.0											0.25	0.02	TB13118918
				til med to fine ol30-40%, mag 20-30%, cpx10-20%, plag10-20% and 5-10%apatite.		blebls and patches richer.	K008560		76	85	9.0											0.28		TB13118918
				sence of few blebls (<5%) with very crs plag and cpx wich could be pegmatitic 3d, but the	Local blebs to 1-2		K008561		85	94	9.0											0.22		TB13118918
			con	tacts are diffuse.		263.4-271.57 disseminated, 1 to 2% med to fine. 4:1, po Cpy.	K008562		94	103	9.0											0.3	0.02	TB13118918
074.57	207.04	01- 4				Presence of few blebs and patches. Sulfides in mafic part.	K008563		103	110	7.0											0.32		TB13118918
271.57	291.04	3h - Apatitic cl		aronanous unit with roughly 50% of 3h 30% 3; 10% 3d and 10% 3a vanalithe	3-5% disseminate		K008564 K008636		120 126	126 135	6.0 9.0											0.1 0.25		TB13118918 TB13118918
+				erogenous unit with roughly 50% of 3h, 30% 3i, 10% 3d and 10% 2a xenoliths.	1	271.57-277.92 fine to crs gr with heterogenous gr size repartion	K008636 K008637		126	135	9.0											0.25		TB13118918 TB13118918
				orite and biotite alteration, and sometime blebs (<5%) of chlorite alteration with 30% of the erals transformed in chlorite.294.2-294.9 really strong chlorite alteration with strong	1	You could have agregates. Ratio vary from 1:1 to 1:3 po:Cpy. Crs gr sometime arounding biotite and seems to replace	K008637 K008638		135	144	9.0											0.23	0.02	TB13118918 TB13118918
				erais transformed in chiome.294.2-294.9 really strong chiome alteration with strong	1	it and also replacing chlorite.	K008639		144	162	9.0											0.25	0.03	TB13118918
				is med to crs gr cpx, mag,ol, plag with grain size variation, You also have around 5% of apatite.		Trace of bornite, med gr generally associated with crs gr.	K008640		162	171	9.0											0.21	0.08	TB13118918
				the tree is a spring that grant once transition, for allow have around 070 of apartet.	1	there are extended in the grigonomaly approximate man one gri		1 1		1	0.0	1 1			1						1	0.10	0.00	TB13118918

	GEOLOGY					Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
		ck	ock		aliz																			
From	То	Maj Ro	Min Ro	Comments	Minera	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
						MS intrusion blebs or stingers.	K008642		180	189 198	9.0 9.0											0.17		TB13118918 TB13118918
				290.02-290.2 syenite dyke with crs gr feldspar K,and biotite. Green color, chlorite alteration ?	-3% disseminate	273-273.33 vein of Cpy, 2mm wide, replacing a chlorite vein.	K008643 K008644		189 198	198 207	9.0											0.16 0.18		TB13118918 TB13118918
			2.	20-230 strong prink alkoration on plag.	-576 013361111100	277.92-297.04 fin to crs gr with heterogenous gr size repartition	K008645		207	216	9.0											0.36		TB13118918
		3i - Ap	patitic olivine	e clinopyroxenite		You could have agregates. Ratio vary from 2:1 to 1:3 po:Cpy.	K008646		216	225	9.0											0.19		TB13118918
				Ned to crs gr ol, cpx, mag, plag. You also have around 5% of apatite.		Crs gr sometime arounding biotite and seems to replace it and	K008647		225	232	7.0											0.23	0.05	TB13118918
			В	Siotite and chlorite as secondary minerals.Contacts are always graduals with 3h.		also replacing chlorite.	_																	
						Trace of bornite, med gr generally associated with crs gr.	_																	
		3d - V		grained to pegmatitic, ophitic gabbro		In the fine grain gabbro (2a bodies) you have just trace mostly in	_																	
				Verys crs gr cpx and plag, in stringers and blebs. Contacts are sometimes sharp and sometimes		MS intrusion blebs or stingers.	-																	
			u	andse with the others units.																				
		2a - F	Fine grained	homogeneous gabbro																				
				ine gr of plag, cpx, ol and mag. All 2a in this interval contains 20 to 30 intrusions of Marathon series																				
			in	n blebs and stringers.																				
			fr	rom 278.2-278.8 ; 279.36-280.10 ; 283.74-284.58 ; 286.35-287.13 ; 289.10-289.86.			_																	
┣───┤							4																	
				- · · · · · · · · · · · · · · · · · · ·			_																	
297.04	315.75 4a - M	MS hosted breco		e Grained gabbro xenoliths 0. Heterogenous unit with roughly 30% of 3h, 30% 3i, 15% 3d and 25% 2a xenoliths.	.5% to 1% disse	minated sulphides 297.04-315.75 you vary between trace to 2%, you have less	_																	
				Chlorite and biotite alteration, and sometime blebs (5%) of chlorite alteration with 30% of the		sulfide principally due to the higher content of 2a. 1:1 po Cpy.	-																	
				ninerals transformed in chlorite.300.28-300.50 really strong chlorite alteration.		sunde principally due to the higher content of za. 1.1 po opy.																		
				a could contains MS intrusions in blebs or stringer but is mostly homogenous.																				
			30	09.59-309.67 syenite with crs gr feldspar K, labradorite and biotite.																				
							_																	
		3h - A	Apatitic clinop				_																	
				th is med to crs gr cpx, mag,ol, plag with grain size variation, You also have around 5% of apatite. Biotite and chlorite as secondary minerals.			-																	
			в	siotite and chionite as secondary minerals.			-																	
		3i - Ar	patitic olivine	e clinopyroxenite																				
				Aed to crs gr ol, cpx, mag, plag. You also have around 5% of apatite.																				
				Biotite and chlorite as secondary minerals.Contacts are always graduals with 3h.																				
							_																	
		3d - V		grained to pegmatitic, ophitic gabbro			_																	
				/erys crs gr cpx and plag, in stringers and blebs. Contacts are sometimes sharp and sometimes			_																	
				liffuse with the others units. Biotite and chlorite as secondary minerals.			-																	
			В																					
		2a - F	Fine grained	homogeneous gabbro																				
				ine gr of plag, cpx, ol and mag.Some intervals contain 20 to 30 intrusions of Marathon series																				
				n blebs and stringers, but most of them are homogenous.			4																	
				197.04-297.36 ; 297.92-298.12 ; 298.7-300.88 ; 305.21-306.78 with MS intrusions			4																	
├ ──┤			3	109.03-310.2 with MS intrusions ; 313.47-313.67 ; 314.31-315.02 ; 315.4-315.79 with MS intrusions.			-																	
315 75	327.48 3i - A	Apatitic cliving -"	inonviewor		-3% disseminate	d subbides	-																	
313.75	321.40 3I - A	npauluo olivine Cli		e 2- Herogenous unit with mostly 3i, around 70%, but you have also 20% of 3h and 10% of 3d.	-o /o uisseminate	a sulprides fine to crs gr with heterogenous gr size repartition.	1																	
				bi is med to crs gr ol, cpx, mag, plag. You also have around 5-10% of apatite. The olivine content		You could have agregates. Ratio vary from 2:1 to 1:3 po:Cpy.	1																	
				could vary and you have also grain size variation. Olivine content decrease gradually until the 3h.		Crs gr sometime arounding biotite and seems to replace it				1	1													
				Chlorite and biotite as secondary minerals and strong chlorite alteration in all lithologies.		and also replacing chlorite.	1																	
						Trace of bornite, med gr generally associated with crs gr.	4																	
┣───┥		3h - A	Apatitic clinop				-																	
┣───┤				It is med to crs gr cpx, mag,ol, plag with grain size variation, You also have around 5% of apatite.			-																	
			В	Siotite and chlorite as secondary minerals.			-																	
\vdash		24 1	Very cooreo	grained to pegmatitic, ophitic gabbro																				
		50 - 1		graned to beginatine, opinite gaboro /erys crs gr cpx and plag, in stringers and blebs. Contacts are sometimes sharp and sometimes			1			1	1													
				liffuse with the others units.]																	
			в	Biotite and chlorite as secondary minerals.						1	1													

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	PGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm p	pm	%	ppm	ppm	ppm	%	%	#
327.48	329.81	3j - Apatitic we	hrlite	med to crs gr ol, cpx, apatite, mag and plag. Up to 20% apatite.	2-3% disseminate	d sulphides fine to crs gr with heterogenous gr size repartition.																		
				Contacts are graduals with units above and below.		You could have agregates. Ratio vary from 2:1 to 1:3 po:Cpy.																		
						Crs gr sometime arounding biotite and seems to replace it																		
						and also replacing chlorite.																		
						Trace of bornite, med gr generally associated with crs gr.																		
329.81	333.40	3i - Apatitic oliv	rine clinopyroxe		2-3% disseminate																			
				3i is med to crs gr ol, cpx, mag, plag. You also have around 5-10% of apatite. The olivine content could vary and you have also grain size variation.		fine to crs gr with heterogenous gr size repartition. You could have agregates. Ratio vary from 2:1 to 1:3 po:Cpy.																		
				Chlorite and biotite as secondary minerals and strong chlorite alteration is present.		Crs gr sometime arounding biotite and seems to replace it																		
						and also replacing chlorite.																		
						Trace of bornite, med gr generally associated with crs gr.																		
┣──┼												1												
333.40	336,00	3d - Verv coar	se grained to pe	gmatitic, ophitic gabbro	2-3% disseminate	d sulphides						1												
000.10	000.00	ou vory ooun	o granou to pe	Verys crs gr plag, cpx and ol. Sharp contacts with 3i and syenite.	2 070 dioborninate	fine to crs gr with heterogenous gr size repartition.																		
						You could have agregates. Ratio vary from 2:1 to 1:3 po:Cpy.																		
			5b - Augite sye	nite		Crs gr sometime arounding biotite and seems to replace it																		
				patches and stringer of syenite.med to crs gr felds K, biotite. Strong green color, epidot or chlorite		and also replacing chlorite.																		
				alteration ?		Trace of bornite, med gr generally associated with crs gr.																		
				333.66-333.84 ; 334.54-334.91 ; 335.5-336.																				
						Syenite at the end is not mineralized but you have med to crs gr at the border with 3d associated with biotite.																		
336.00		EOH - End of				med to crs gr at the border with 3d associated with blottle.																		
000.00																								
┣───┼																								
┣──┼																								
┣──┼																								
\vdash												1												
 +																								
⊢ +												1												
												1												
┣──┼												1												
								1			1	1												

NTS:		42 D / 16		DDH:
UTM	Northing	5408833		Lease/0
(Nad27)	Easting	548126.9		Propert
Elevation	n (m):	375.3		Zone:
Dip at Co	ollar:	-44.02		Date sta
Azimuth:		31.34		Date fir
Total Dep	pth:	84		Contrac
Core Size	e:	NQ		Logged
Remarks	:	Core stored	d in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assista

DDH:	FD-13-35	
Lease/Claim:	1240554	
Property: Zone:	Coldwell Complex Four Dams South	
Date start:	16-Jun-13	
Date finish:	16-Jun-13	
Contractor:	Chibougamau Diamond Drilling	
Logged by:	Yonggang Feng	
Assistant:		

DIAMOND DRILL CORE LOG Reflex EZ Shot- Diamond Drillhole Survey Depth Dip Azimuth Casing -44.02 31.34

	GEOL	OGY				Mineralization	SAMPLE		INTERVA	L	WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	4.30	OB - Overburden	1				N504964		10	12	2.0	0.003	< 0.005	0.003			<0.2		671	102	9750	0.17		TB13121160
							N504965		12	14	2.0	0.004	< 0.005	0.005			0.2		942	137	>10000	0.2	1	TB13121160
4.30	23.19	2f - Medium to co	oarse grained	d oxide augite melatroctolite	Trace to 0.5% dis	sseminated sulphides	N504966		14	16	2.0	0.004	< 0.005	0.005			0.2		889	151	>10000	0.21	1	TB13121160
				The rock is composed of med to coarse grained anhedral to subhedral PI, OI, Cpx and Mag. 55% PI		4.3-23.19m. Overall, 0.5% Po, trace Cpy. Difficult to estimate	N504967		16	18	2.0	0.006	< 0.005	0.009			0.3		1140	187	>10000	0.26	1	TB13121160
				,20% OI, 20% Mag and 5% Cpx. The rock shows PI-rich layers with 5-10 cm width. The fratures are		Po: Cpy.	N504968		18	20	2.0	0.005	< 0.005	0.008			<0.2		882	160	>10000	0.2	1	TB13121160
				high weathered in the rock. Cpx and OI is partially replaced by Chl.			N504969		20	22	2.0	0.003	< 0.005	0.003			<0.2		666	118	9980	0.16	1	TB13121160
		21	b - Coarse gr	rained olivine gabbro with modal layering			N504970		22	24	2.0	0.003	< 0.005	0.005			0.2		844	105	9390	0.2	1	TB13121160
				9.46-10.09m. Gradational with 2f. PI-rich rock is composed of 65% PI, 15% Cpx, 10%OI and 10%			N504971		34	36	2.0	0.006	< 0.005	0.001			<0.2		383	41	3900	0.08	1	TB13121160
				Mag. Cpx and OI are commonly replaced by ChI and Bt.			N504972		36	38	2.0	0.001	< 0.005	0.001			<0.2		620	71	8040	0.14	1	TB13121160
				10.83-11.43m. Same as the 2b from 9.46 to10.09m.			N504973		38	40	2.0	< 0.001	< 0.005	< 0.001			<0.2		189	18	6270	0.1	1	TB13121160
							N504974		40	42	2.0	0.001	< 0.005	0.001			<0.2		223	24	6390	0.1	1	TB13121160
		51	b - Augite sy	venite			N504975	d	40	42	2.0	0.001	< 0.005	0.001			<0.2		242	23	6310	0.1	1	TB13121160
				19.76-20.1m. Syenite dike cross-cuts 2f. The rock is dominated by coarse grained to megacrystic			K008565		4.3	10	5.7											0.21	0.05	TB13118918
				Kfs with minor intersitial Cpx. Kfs 85%, Cpx 15%.			K008566		24	34	10.0											0.09	0.65	TB13118918
				The rock shows strong alteration. Kfs is green and likely replaced by Chl and epdiote (?).			K008567		42	51	9.0											0.13	0.03	TB13118918
				Cpx is completely replaced by ChI that has been further replaced by carbonate			K008568		51	60	9.0											0.27	0.02	TB13118918
							K008569		60	69	9.0											0.24	0.02	TB13118918
23.19	26.26	5b - Augite syenit	ite		Trace to 0.5% di	seminated sulphides	K008570		69	78	9.0											0.19	0.03	TB13118918
				Sharp contact with 2f.		23.19-26.26m. No visible sulfides.	K008571		78	84	6.0											0.16	0.04	TB13118918
				23.19-24.7m. Pink rock is composed of coarse grained subhedral Kfs and med grained																				
				Cpx. Cpx is interstitial to Kfs and partially replaced by Chl. Equigranular texture.																			1	
				24.7-26.26m. The rock gradually becomes dark and the grain size increases. The rock is dominated																			1	
				by megacrystic Kfs and quartz with minor Cpx. Quartz is likely secondary and interstitial to Kfs.																			1	
				Kfs is dark green and possibly pseudomorphed by Chl or epidote (?). Cpx is completely replaced by																			1	
				Chl. Carbonates are present as secondary minerals, replacing Kfs and Cpx as well.																			1	
																							1	
26.26	28.25	2f - Medium to co	narse grained	d oxide augite melatroctolite	0.5% to 1% diss	eminated sulphides																	1	
20.20	20.20	21 Middidin to be	odroo grainod	Sharp contact with the above syenite. Same as the previous 2f unit but has 3-5% fine grained	0.0701017704000	26.26-28.25m. Overall, 1% Po, <0.5% Cpy (Po:Cpy=3:1). Po																	1	
				disseminated Ap.		is rimmed by Cpy.																	1	
				27.1-27.16m. Leucopods in this 2f unit.																			1	
28.25	36.62	5a - Quartz syeni	ite		Trace to 0.5% di	seminated sulphides																	1	
20.20	00.02	du duante oyoni	no -	Sharp contact with 2f. The dark rock is composed of coarse grained to megacrystic Kfs and Qtz	11000 10 0.070 0	28.25-36.62m. Trace sulfides. Almost invisible.																	1	
				with minor mafic minerals (Cpx?). Kfs is subhedral to euhedral and almost completely replaced by																			1	
				Chl or epidote. Qtz may be secondary and is interstitial to Kfs. Some Qtz crystals show zoning.																			1	
				Original mafic minerals (Cpx?) are competely altered to Chl. Pink Kfs is still present as a relic phase.																			1	
				The rock is cross-cut by carbonate stringers. Carbonates as secondary minerals are also intersitial																			1	
				to Kfs and replacing mafic minerals.			-																1	
																							1	
36.62	40.17	2f - Medium to co	oarse grained	d oxide augite melatroctolite	0.5% to 1% diss	eminated sulphides	1															1 '	1	
			Juli Branko	Sharp contact with the above syenite. Similar to the previous 2f unit in this drillhole.		36.62-37m. 1% Po, <0.5% Cpy (Po:Cpy=5:1).	1															1 '	l I	
				The rock is composed of med to coarse grained anhedral to subhedral PI, OI, Cpx and Mag. 55% PI			1															1 '	l I	
				,20% OI, 20% Mag and 5% Cpx.			1															1 '	l I	
				37.4-40.17m. The rock is relatively rich in PI and mafic minerals are present in dark patches. The	Trace to 0.5% di	seminated sulphides	1															1 '	l I	
				appearance is similar to that of anorthosite. Gradational into this interval from the interval of 36.62-	1400 10 0.070 01	37-40.17m. Trace Po and Cpy.	1															1 '	l I	
		1 1		appearance is similar to that or anormosite. Gradational into this interval norm the interval of 30.02* 37.4m.		or service reader of and opy.	1															1 '	1	
		1 1		MI-HIL			1															1 '	1	
40.17	43.20	2h - Coarse aroin	and olivine an	abbro with modal layering	Trace to 0 E% dia	sseminated sulphides	1															1 '	l I	
-10.17	40.20	- Overse grain	iou onvind ga	aboro marinioda ayoning	1 ace to 0.3% up	wommakou oupmid68	_	1	1	1	1	1	1	1				1	1	I	1	1		1 1

	9	EOLOGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TP	M A	a C	u (Cu	Ni	Р	S	с	Job
		U	×		N	millionalization	0/1111 22		AL							~	, ,				-	-	•	
From	Тс	Maj Roch	Min Roc	Comments	Minerali	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm pp	n pp	m e	6 р	pm	ppm	ppm	%	%	#
				Gradational into this unit. The rock is dominated by med grained subhedral PI, subhedral Cpx and OI		40.17-43.2m. Sulfides are in trace amounts.	1										1							
				and anhedral Mag. 60%PI, 15% Cpx, 10% OI and 10% Mag. PI is partially sericitized. Cpx and OI			-																	
				are partially replaced by Bt. Mag is intersitial to Cpx and OI. The rock is slightly layered and the			-																	
				layering is defined by variations in OI and Cpx contents. Roughly 5% fine grained Ap is dessiminated			-																	
				throughout this unit.			-																	
43.20	54 1	19 2f - Medium to cor	benicro arsi	oxide augite melatroctolite	Trace to 0.5% dis	seminated sulphides	-																	
43.20		13 21 - Medium to cu		Gradational into this unit. Same as the previous 2f unit in this drillhole. 2-5 cm wide PI-layers are 70		43.2-54.19m. Sulfides are in trace amounts.																		
				degrees to the core axis. Some PI is pink likely due to Kfs alteration (?).																				
		5b	- Augite sye																					
				48-48.28m. 2-5cm wide syenite dike cross-cuts 2f. The rock is composed of med grained Kfs and			-																	
				Cpx. Cpx is replaced by Chl.			-																	
							-																	
54.19	70.6	60 2b - Coarse graine		bbro with modal layering		seminated sulphides	-																	
				Gradational contact with the above 2f unit. Similar to the 2b from 40.17 to 43.2m but more PI-rich. 70% PI, 15% Cpx, 10%OI% and 5% Mag. Slightly layered.		54.19-70.60m. Trace Po and Cpy.																		
				70% Pi, 15% Cpx, 10%Of% and 5% Mag. Signity layered.			-																	
70.60	70.7	77 FZ - fault or shear	zone																					
				Broken rock is 2b. Slickenslide on fault planes. Chl infillings in the fault zone.																				
70.77	73.8	80 2b - Coarse graine		bbro with modal layering	Trace to 0.5% dis	seminated sulphides	-																	
				Same as the 2b unit from 54.19 to 60.6m. 70% PI, 15% Cpx, 10%OI% and 5% Mag. Slightly layered.		70.77-73.80m. Sulfides in trace amounts.	4																	
				PI is partially sericitized. Cpx and OI are partially replaced by Chl.			-																	
		2f		coarse grained oxide augite melatroctolite			-																	
				72-73.80m. Similar to the previous 2f unit. Relatively PI-rich. 55% PI, 20% OI, 20% Mag, 5% Cpx. ChI-filled fractures cross-cut the rock at an angel of 45 degrees to the core axis.			-																	
-				Chimined nactures cross-cut the fock at an angel of 45 degrees to the core axis.			-																	
73.80	78.6	66 3b - Coarse graine	ed. ophitic aa	abbro (>5mm)	Trace to 0.5% dis	seminated sulphides																		
				The contact between this unit and the above 2b unit is slightly sharp. Overall white rock is		73.80-78.66m. Sulfides in trace amounts.																		
				dominated by coarse grained subhedral to euhedral PI and anhedral Cpx. Cpx is interstitial to PI.																				
				Typcial ophitc texture. The grain size of the rock increases with depth. Strong Chl alteration.			-																	
				Cpx is partially replaced by ChI. Dark green patches in the rock may be caused by late alteration.			4																	
				Some PI crystals show pink color likely due to Kfs or Ab alteration.			-																	
70.00					T		-																	
78.66	80.6	66 20 - Coarse graine		bbro with modal layering Slightly sharp contact with the above 3b. The rock is the same as the 2b unit of 70.77-73.8m.		eminated sulphides 78.66-80.66m. Trace Po and Cpy.	-																	
				PI is partially sericitized. Cpx and OI are partially replaced by Chl. Slightly layered.		78.66-80.66m. Trace Po and Cpy.	-																	
80.66	81.1	14 FZ - fault or shear																						
				Broken rock is 2b. Slickenslide on fault planes. Chl infillings in the fault zone.]																	
																	1							
81.14	84.0	00 2b - Coarse graine		bbro with modal layering		seminated sulphides	4																	
	<u> </u>			Same as 2b of 78.66-80.66m. The rock is dominated by med grained subhedral PI, subhedral Cpx	1	81.14-84m. Almost invisble sulfides.	-																	
				and OI and anhedral Mag.			1										1							
		2f		coarse grained oxide augite melatroctolite 82.05-82.82m. Same as the 2f unit from 72 to 73.80m. Gradational contact with 2b.	-		1										1							
				82.05-82.82m. Same as the 2t unit from 72 to 73.80m. Gradational contact with 20. Relatively PI-rich. 55% PI, 20% OI, 20% Mag, 5% Cpx.			1										1							
84.00		EOH - End of Hole		нованову н ноль со ло на, 20 ло Са, 20 ло таду, 0 ло орх.			1										1							
]										1							
]										1							
			-														1							
							-																	
							4																	
							-										1							
					-		4										1							
					-		4																	
					1		1																	
							1										1							
							1										1							
	1			1	1		L	1	1	1	1	1 I	1	1	I.	1	1	1	1	1	1	1	1	

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG				
NTS:		42 D / 16		DDH: FD-	<u>13-36</u>	DIAMOND DRIL	L
UTM	Northing	5408832		Lease/Claim:	1240554	Reflex EZ Shot-	· C
(Nad27)	Easting	548125.9		Property:	Coldwell Complex	Depth	
Elevatio	on (m):	374.5		Zone:	Four Dams South	Casing	
Dip at C	Collar:	-84.45		Date start:	16-Jun-13		
Azimut	n:	16.55		Date finish:	17-Jun-13		
Total D	epth:	111		Contractor:	Chibougamau Diamond Drilling		Γ
Core Si	ze:	NQ		Logged by:	Julien Meric		
Remark	s:	Core stored	in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Rachel Epstein and Renata Smoke	complete downhole :	su

DIAMOND DRIL	L CORE L	OG	
Reflex EZ Shot-	Diamond	Drillhole S	urvey
Depth	Dip	Azimuth	
Casing	-84.45	16.55	

	GEOI	LOGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	2.42	OB - Overburd	en				N504976		9	11	2.0	0.005	< 0.005	0.003			0.2		1020	141	>10000	0.25		TB13118917
							N504977		11	13	2.0	0.004	< 0.005	0.002			0.2		800	109	>10000	0.19		TB13118917
2.42	41.84	2f - Medium to	coarse grained	I oxide augite melatroctolite	Trace to 0.5% dis	seminated sulphides	N504978		13	15	2.0	0.004	< 0.005	0.005			0.3		949	114	>10000	0.22		TB13118917
				2f with high content in plag rich layers, (50/50), but we still see layering but you are at the border to		2.42-11 just trace very fine	N504979		15	17	2.0	0.005	< 0.005	0.006			0.3		978	145	>10000	0.22		TB13118917
				call that unit 2b.	0.5% to 1% disse	minated sulphides	N504980		17	19	2.0	0.005	< 0.005	0.005			0.2		859	141	>10000	0.19		TB13118917
				In plag rich parts, you have med to crs gr plag, cpx, ol, mag and in mafic rich parts you have med to		11-32.07 fine + few blebs	N504981		19	21	2.0	0.006	< 0.005	0.009			0.2		1080	185	>10000	0.23		TB13118917
				crs gr ol, cpx, plag, mag. You can have all the the content variation between both.	2-3% disseminate	d sulphides	N504982		21	23	2.0	0.005	< 0.005	0.007			0.2		905	170	>10000	0.19		TB13118917
				Biotite and chlorite as secondary minerals. Few fracture with chlorite infill.		32.07-37.83 med to fine gr, mostly in more mafic parts.	N504983		23	25	2.0	0.005	< 0.005	0.009			0.2		899	157	>10000	0.19		TB13118917
				26-41.34 more fractured zone, mostly chlorite infill and also carbonate. Chlorite alteration is stronger		6:1 po:cpy	N504984		25	27	2.0	0.004	< 0.005	0.006			0.2		797	139	>10000	0.17		TB13118917
				close to the fractures.	Trace to 0.5% dis	seminated sulphides	N504985		27	29	2.0	0.006	< 0.005	0.009			0.2		1120	170	>10000	0.23		TB13118917
				30.92-37.10 leucopod, probably a rich plag 2e richer in cpy		37.83-41.84Trace, more rich in mafic part (0.5) very fine gr	N504986		29	31	2.0	0.006	< 0.005	0.007			0.3		1305	193	>10000	0.26		TB13118917
			2b - Coarse gr	rained olivine gabbro with modal layering			N504987		31	33	2.0	0.008	0.013	0.005			0.4		1785	202	>10000	0.37		TB13118917
				See description above. med to crs gr plag, cpx, ol, mag.			N504988		33	35	2.0	0.008	0.017	0.012			0.8		2480	299	8010	0.49		TB13118917
			5b - Augite sy	enite			N504989		35	37	2.0	0.005	0.008	0.008			0.5		2150	239	8630	0.38		TB13118917
				18.66-19.15 crs gr feldsK, labradorite, biotite and cpx?. Low to med chlorite alteration.			N504990	b				0.002	< 0.005	0.001			<0.2		36	4	170	<0.01		TB13118917
			2e - Medium te	o coarse grained olivine gabbro			N504991		37	39	2.0	0.002	< 0.005	0.001			0.2		910	101	8820	0.16		TB13118917
				40.41-41.84 unit really rich in plag, without alignement (looks like anorthosite) continue into FZ.			N504992		39	41	2.0	0.002	< 0.005	0.001			<0.2		704	56	8100	0.14		TB13118917
41.84	53.48	FZ - fault or sh	ear zone		Trace to 0.5% dis	seminated sulphides	N504993		41	43	2.0	0.001	< 0.005	<0.001			<0.2		220	7	4170	0.07		TB13118917
				2 lithologies begins with 2e and continue with quartz syenite. All the interval is highly altered ,		Trace, more rich in mafic part (0.5) very fine gr	K008572		2.42	9	6.6											0.2	0.03	TB13118918
				strong chlorite alteration in 2e part. Carbonate alteration and carbonate veins in both lithologies			K008573		43	52	9.0											0.09	0.51	TB13118918
				Some parts are not highly fractured but presence of gouge at 41.9-42 and 50.57-50.77.			K008574		52	61	9.0											0.27	0.25	TB13118918
			2e - Medium te	o coarse grained olivine gabbro			K008575		61	70	9.0											0.27	0.02	TB13118918
				41.84-46.17 begins before the FZ, but more altered in the FZ, pink alteration and maybe carbonate			K008576		70	79	9.0											0.28	0.05	TB13118918
				alteration presence of carbonate veins and fractures. The part closer to syenite seem completely			K008577		79	88	9.0											0.26	0.06	TB13118918
				transformed in chlorite			K008578		88	97	9.0											0.14	0.05	TB13118918
			5a - Quartz sy	enite		no sulfide in syenite	K008579		97	106	9.0											0.45	0.06	TB13118918
				sharp contact with 2e. Crs gr feldsK and quartz, its difficult to see texture because really altered,			K008580		106	111	5.0											0.41	0.09	TB13118918
				strong orange color. Presence of carbonate and probably chlorite veins.			_															, I		
				49.10-49.93 and 51-51.15 rock completely altered tranformed in chlorite possibly 6a lamprophyre or																		,		
				a 2e part in the syenite dyke.			_															, I		
																						,		
53.48	78.28	2b - Coarse gra	ained olivine ga	bbro with modal layering	Trace to 0.5% dis	seminated sulphides	_															, I		
				50-70% plag rich layers. Med to crs gr plag, cpx, ol, mag. Biotite and chlorite as secondary minerals.		Trace, more rich in mafic part (0.5) very fine gr																, I		
				plag alignment. <5% sericiite alteration.																		, I		
																						,		
				55.12-57.55 more fractured zone, mostly chlorite infill and also carbonate																		, I		
																						,		
78.28	78.42	FZ - fault or sh	ear zone				4					1										,		
				rubble and chlorite coated slickenslides			4					1										,		
L							4					1										,		
78.42	84.27	2b - Coarse gra	ained olivine ga	Ibbro with modal layering	Trace to 0.5% dis	seminated sulphides	4					1										,		
└───┼		_		50-70% plag rich layers. Med to crs gr plag, cpx, ol, mag. Biotite and chlorite as secondary minerals.		Trace, more rich in mafic part (0.5) very fine gr	4					1										,		
		_		plag alignment. <5% sericiite alteration.			4					1										,		
		_		87.94-84.27 no plag alignment and grain size variation it could be 2e.			4					1										,		
⊢−−−∔		_					4					1										,		
84.27	94.06	1a - Footwall rh	eomorphic intr			no sulfide in footwall lithology	4					1										,		
				fine gr, silicified, few xenolith (around 10%), sharp contact above and below.	1		_	1	1	1	I	1	1	1	1			I	1		l	. I		1 1

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh TP	GM Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm pj	om ppm	%	ppm	ppm	ppm	%	%	#
	05.50	or 11 11 1			T																		
94.06	95.50	2t - Medium to		l oxide augite melatroctolite med to crs gr ol, mag, cpx, plag. 10-20% plag rich layers.		eminated sulphides Trace, more rich in mafic part (0.5) very fine gr																	
						very few small blebs.																	
95.50	95.66	FZ - fault or sh																					
				rubble and chlorite coated slickenslides																			
95.66	110.04	2f - Medium to	coarse grained	I oxide augite melatroctolite	Trace to 0.5% dis	eminated sulphides																	
				med to crs gr ol, mag, cpx, plag. 10-20% plag rich layers.		Trace, more rich in mafic part (0.5) very fine gr																	
						very few small blebs.																	
110.04	110.40	FZ - fault or sh																					
				rubble and chlorite coated slickenslides																			
110.40	111.00	2f - Medium to	coarse grained	d oxide augite melatroctolite	Trace to 0.5% dise	eminated sulphides																	
				med to crs gr ol, mag, cpx, plag. 10-20% plag rich layers.		Trace, more rich in mafic part (0.5) very fine gr																	
						very few small blebs.																	
111.00		EOH - End of	Hole																				
															1						1		
┣───┤																							
┣───┤															1						1		
																					1		
			-		-																1		
 																					1		
├ ──┤																							
├ ──┼			1																				
			-		-																1		
┣───┤																							
├ ──┤																							
																					1		
																					1		
			I					1		I	I			1	1		1	I	1		1		

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG					
NTS:		42 D / 16		DDH:	FD-13-37	DIAMOND DRI	LL CORE L	OG
UTM	Northing	5408790		Lease/Claim:	1240554	Reflex EZ Sho	t- Diamond	I Drillhole Survey
(Nad27)	Easting	548162.3		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation	n (m):	375.8		Zone:	Four Dams South	Casing	-44.6	31.43
Dip at Co	ollar:	-44.6		Date start:	17-Jun-13			
Azimuth:		31.43		Date finish:	18-Jun-13			
Total De	pth:	78		Contractor:	Chibougamau Diamond Drilling			
Core Siz	e:	NQ		Logged by:	Julien Meric			
Remarks	:	Core stored in \$	Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Rachel Epstein	complete downhole	survey in Fou	r Dams masterlist

VICTOR VICTOR </th <th></th>	
No. X X No. X No.	372 58 >10000 0.13 TB1312324 0.3 918 119 >10000 0.24 TB1312324 0.7 2760 321 8000 0.57 TB1312324 0.5 2170 172 7590 0.42 TB1312324 -0.2 838 47 7160 0.18 TB1312324 -0.2 576 37 7120 0.15 TB1312324 -0.2 576 37 7120 0.18 TB1312324 -0.2 576 37 58 8160 0.14 TB1312324 -0.2 320 29 8050 0.11 TB131891 -0.3 0.02 TB131891 0.33 0.02 TB131891
Image: Image	0.3 918 119 >10000 0.24 TB1312324 0.7 2760 321 8000 0.57 TB1312324 0.5 2170 172 7590 0.42 TB1312324 -0.2 838 47 7160 0.18 TB1312324 -0.2 576 37 7120 0.15 TB1312324 -0.2 462 35 8160 0.14 TB131234 -0.2 462 35 8160 0.14 TB131234 -0.2 320 29 8050 0.1 TB131234 -0.3 0.02 TB131891 0.3 0.02 TB131891 -0.4 0.31 0.04 TB131891 0.24 0.31 0.41 TB131891
2.08 78.00 2b-Cararse grained obvine gather with modal layering Trace to 0.5% disseminated sulphides N504996 40 42 4.0 0.00 0.00 0.00 C C	0.7 2760 321 8000 0.57 TB1312324 0.5 2170 172 7590 0.42 TB1312324 -0.2 838 47 7160 0.18 TB1312324 -0.2 576 37 7120 0.15 TB1312324 -0.2 462 35 8160 0.14 TB1312324 -0.2 462 35 8160 0.14 TB1312324 -0.2 462 35 8160 0.14 TB1312324 -0.2 320 29 8050 0.1 TB1312324 -0.2 320 29 8050 0.1 TB1312324 -0.2 320 29 8050 0.1 0.08 TB13131891 -0.3 0.02 10.1 0.03 0.02 TB131891 -0.3 0.22 0.03 TB131891 0.1 0.03 TB1311891 -0.2 0.22 0.04 TB131891 0.24 0.03 <td< td=""></td<>
Image: space spa	0.5 2170 172 7590 0.42 TB1312324 <0.2
Image: Image	-0.2 838 47 7160 0.18 TB1312324 -0.2 576 37 7120 0.15 TB1312324 -0.2 576 37 7120 0.15 TB1312324 -0.2 462 35 8160 0.14 TB1312324 -0.2 462 35 8160 0.14 TB1312324 -0.2 462 320 29 8050 0.1 TB1312324 -0.2 320 29 8050 0.1 TB1312324 -0.1 0.04 TB131891 0.13 0.04 TB131891 -0.3 0.21 TB131891 0.21 0.03 TB131891 -0.4 -0.28 0.02 18131891 0.22 0.04 TB131891
Image: Normal and the series of the serie	-0.2 576 37 7120 0.15 TB1312324 -0.2 462 35 8160 0.14 TB1312324 -0.2 320 29 8050 0.1 TB1312324 -0.2 320 29 8050 0.1 0.131 130.0 -0.1 0.11 0.06 TB131891 0.3 0.02 TB131891 -0.1 0.2 0.04 TB131891 0.1 0.3 102 TB131891 -0.2 0.2 0.2 0.24 TB131891 0.2 0.24 TB131891 -0.2 0.22 0.03 TB131891 0.22 0.03 TB131891
Image: Note that the series like 2b with layers d 2f. Image: Note t	<0.2 462 35 8160 0.14 TB1312324 <0.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	<0.2 320 29 8050 0.1 TB1312324 0.11 0.06 TB131891 0.11 0.06 TB131891 0.31 0.04 TB131891 0.33 0.02 TB131891 0.41 0.41 0.33 0.02 TB131891 0.41 0.41 0.33 TB131891 0.42 0.42 0.43 TB131891 0.22 0.04 TB131891 0.22 0.03 0.28 0.03 TB131891 0.28 0.03 TB131891
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.11 0.06 TB1311891 0.13 0.04 TB1311891 0.3 0.02 TB1311891 0.1 0.03 TB1311891 0.1 0.03 TB1311891 0.22 0.04 TB1311891 0.28 0.03 TB1311891
IndI	0.13 0.04 TB1311891 0.3 0.02 TB1311891 0.1 0.03 TB1311891 0.22 0.04 TB1311891 0.28 0.03 TB1311891 0.28 0.03 TB1311891
Image: Sector	0.3 0.02 TB1311891 0.1 0.03 TB1311891 0.22 0.04 TB1311891 0.28 0.03 TB1311891 0.28 0.03 TB1311891
Image: Second second	0.1 0.03 TB1311891 0.22 0.04 TB1311891 0.28 0.03 TB1311891
Image: Section of the section of th	0.22 0.04 TB1311891 0.28 0.03 TB1311891
Image: Note of the secondary minerals. 0.5% to 1% disseminated sulphides K008586 61 70 9.0 Image: Note of the secondary minerals. 2e - Medium - Conservation additional additinadditionadditadditional additional additional additiona	0.28 0.03 TB1311891
Image: Section Control Contecontrol Control Control Control Control Con	
Image: Section Contact Delow with 2b and diffuse above with 2f. Really rich in plag, pods of Trace to 0.5% disseminated sulphides Image: Section Contact Delow with 2b and diffuse above with 2f sometimes. Image: Section Contact Delow with 2f sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2f sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2f sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image: Section Contact Delow with 2g sometimes. Image:	
lot of sericitization. Biotite and chlorite as secondary minerals. mostly pp.	
78.00 EOH - End / Hole Image: Company and the second	
Image: Image:	
Image: Image:	
Image: Image:	
Image: Image:	

NTS:		42 D / 16
UTM	Northing	5408790
(Nad27)	Easting	548161.3
Elevation	n (m):	380.3
Dip at Co	ollar:	-84.76
Azimuth:		16
Total De	pth:	105
Core Siz	e:	NQ
Remarks	:	Core stored

DDH: FD-13-38 Lease/Claim: 1240554 Coldwell Complex Property: Zone: Four Dams South Date start: 18-Jun-13 Date finish: 18-Jun-13 Contractor: Chibougamau Diamond Drilling Logged by: Renata Smoke Assistant: Yonggang Feng, Julien Meric

DIAMOND DRILL CORE LOG Reflex EZ Shot- Diamond Drillhole Survey Depth Dip Azimuth Casing -84.76 16

	GEOLOGY			Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh T	PGM A	g	Cu	Cu	Ni	Р	S	С	Job
From	Maj Rock Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm pp	om	%	ppm	ppm	ppm	%	%	#
0.00	1.94 OB - Overburden				N505002		27	29	2.0	0.003	<0.005	0.004).2		420	78	>10000	0.12		FB13121161
					N505003		29	31	2.0	0.003	< 0.005	0.006			0.2		485	92	>10000	0.15		FB13121161
1.94	44.83 2b - Coarse grained olivine g		0.5% to 1% diss	minated sulphides	N505004		31	33	2.0	0.003	< 0.005	0.007).2		623	112	>10000	0.18		FB13121161
		1.94-27.9m Plag-Ol-Cpx-Mag (approx equal proportions of Ol, Mag in melano layers) 27.9-44.8m Plag-Cpx-Mag-Ol (greater proportion of Cpx in melano layers)	2-3% disseminat	1.96-29.8m Tr-1% Po concentrated in melano layers	N505005 N505006	mpg1	33	35	2.0	0.246	0.926 <0.005	3.34 0.005		:	3).2		6660 698	355 110	1340 >10000	1.05 0.19		FB13121161 FB13121161
		1.96-29.8m 10% melano layers (5-10 cm wide), 29.8-44.8m 30% melano layers (5-20 cm wide)	2*3 % disseminat	1-2% Po, 0-Tr Cpy concentrated in melano layers	N505007		35	35	2.0	0.004	<0.005	0.003).2		613	98	>10000	0.19		B13121161
		Weak Chlor and moderate Ser (cloudy white) alteration throughout.		1-276 F 0, 0- TF 0 by concentrated in metallionaryers	N505008		37	39	2.0	0.003	<0.005	<0.002).2		378	68	9390	0.10		B13121161
44.83	55.60 2f - Medium to coarse graine	ed oxide augite melatroctolite	3-5% disseminat	ad sulphides	N505009		39	41	2.0	0.001	<0.005	0.001			0.2		428	68	9520	0.12		FB13121161
		44.83-50m Approx equal proportions of Mag, OI, Cpx. 50-55.6m OI content is higher than Cpx;		3-4% Po, <1% Cpy (6:1-8:1)	N505010		41	43	2.0	0.005	< 0.005	0.001).2		510	90	>10000	0.14		FB13121161
		Maq-OI-Cpx-Plag	3-5% disseminat	ad sulphides	N505011		43	45	2.0	0.002	< 0.005	< 0.001		<().2		460	86	>10000	0.13	т	FB13121161
				Rare patches of Crs gr 4% Po, 3% Cpy (4:3, <1% of rock)	N505012		45	47	2.0	0.003	< 0.005	0.002		0	.2		1100	172	>10000	0.26	т	B13121161
		Somewhat gradational upper, and sharp lower contact.		associated with Bi and Chlor veins (<5% of unit, <1 cm) and	N505013		47	49	2.0	0.009	0.017	0.01		0	.7		2730	295	>10000	0.57	т	FB13121161
				patchy Bi rich zones	N505014		49	51	2.0	0.007	0.009	0.007		1	.1		4360	262	7000	0.75	т	FB13121161
			3-5% disseminat	ed sulphides	N505015		51	53	2.0	0.006	0.008	0.007		0	.9		3610	198	>10000	0.68	т	FB13121161
				55.35-55.6m 3% Po, 1-2% Cpy associated with contact of 2g	N505016		53	55	2.0	0.002	< 0.005	0.001		<().2		896	82	>10000	0.18	т	FB13121161
				and an increase in Bi content	N505017		55	57	2.0	0.003	< 0.005	0.001		0	.2		1130	51	7940	0.26	т	FB13121161
55.60	69.27 2b - Coarse grained olivine of		0.5% to 1% diss	minated sulphides	N505018		57	59	2.0	0.001	< 0.005	0.001			0.2		359	16	6180	0.1	т	FB13121161
		55.6-60.85m Patchy zone of very Plag rich and mag rich areas, associated with intense Chlor		55.6-60.85m Tr-1% Cpy, Tr Po in patchy zone	N505019		59	61	2.0	<0.001	< 0.005	<0.001		<0).2		265	11	6260	0.1		FB13121161
		alteration.	Local blebs to 2-		N505020	d	59	61	2.0	0.001	< 0.005	<0.001).2		218	9	5850	0.1		FB13121161
		60.85-61.66m 5b Pegm syenite stringer (intense pink alteration, composed largely of Feld, Bi, Cpx)		Crs gr 6% Cpy, 2%Po	N505021		61	63	2.0	0.002	< 0.005	<0.001			0.2		954	18	6820	0.17		FB13121161
				Within Pegm syenite intrusion forming psuedos of Bi and Cpx	N505022		63	65	2.0	<0.001	< 0.005	<0.001			0.2		321	6	8430	0.14		FB13121161
		Sharp upper, diffuse lower contact. Lower contact marked by Pegm 5b or 3c stringer (difficult to	Trace to 0.5% di	seminated sulphides	N505023		65	67	2.0	<0.001	< 0.005	<0.001			0.2		216	<1	8890	0.24		FB13121161
		determine due to degree of pink Chlor, and Ep alteration) and V Crs Mag rich zone (2-3 cm wide)		Tr Po in melano layers	N505024		67	69	2.0	0.001	< 0.005	0.001).2		297	<1	8210	0.17		FB13121161
69.27	87.14 2g - Gabbroic anorthosite		T . 0.500 F		N505025 N505026		69 71	71 73	2.0	0.001	<0.005 <0.005	0.001).2).2		123	<1	4760 980	0.09		FB13121161 FB13121161
69.27	87.14 2g - Gabbroic anorthosite	Patchy texture, intense Ser, Chlor and moderate Pink alteration.	I race to 0.5% di	seminated sulphides 3% Po, 1% Cpy in rare (<1% of unit) 3g stringers	N505026 N505027		71	73	2.0 2.0	<0.001 0.001	<0.005	0.001).2		20	1	980 1830	<0.01 0.03		IB13121161 IB13121161
		State of the second	Local blebs to 2-		N505028		75	75	2.0	< 0.001	<0.005	0.000).2		13	2	880	0.03		IB13121161
		Sharp lower contact,	Local biebs to 2-	Rare blebs of Po within complete Chlor alteration patch	N505029		77	79	2.0	0.001	< 0.005	0.004).2		13	2	1310	0.02		IB13121161
			2-3% disseminat		N505030		79	81	2.0	0.001	<0.005	0.002).2		15	1	1500	0.01		FB13121161
			E 070 diobomina	69.45-69.55m 3% Med gr Po associated with Mag rich layer	N505031		81	83	2.0	0.001	0.026	0.002).2		69	4	4970	0.17		FB13121161
	3h - Apatitic	clinopyroxenite	3-5% disseminat		N505032		83	85	2.0	0.001	0.008	0.002).2		63	8	4660	0.15		FB13121161
		80.9-81.72m, 83.9-84.5m Possible 3h. Sharp to diffuse and irregular contacts. Cpx-Mag-Plag-Ap,		3% Po, Tr Cpy in possible 3h unit (see intervals to right)	N505033		85	87	2.0	0.001	< 0.005	0.006			0.2		19	4	1890	0.03		FB13121161
		mod-intense Chlor alteration			N505034		87	89	2.0	<0.001	< 0.005	0.001		<0	0.2		74	5	8590	0.22		FB13121161
87.14	105.00 2b - Coarse grained olivine g	gabbro with modal layering	Trace to 0.5% di	seminated sulphides	N505035	b				< 0.001	< 0.005	<0.001		<0).2		2	1	50	<0.01	т	FB13121161
		15% Melano layers, 5-20cm wide. Plag-Cpx-OI-Mag		Tr-1% Po in melano Ol-Mag rich layers	N505036		89	91	2.0	0.001	< 0.005	<0.001		<0).2		54	1	6820	0.18	т	FB13121161
		Upper contact marked by an 18cm 2f type layer with OI-Mag-Cpx-Plag (greater proportion of OI than	2-3% disseminat	ed sulphides	N505037		91	93	2.0	0.001	< 0.005	<0.001		<0).2		162	<1	7720	0.24	т	FB13121161
		the rest of the unit.		1-2% Po in 2f layers	N505038		93	95	2.0	<0.001	< 0.005	<0.001		<(0.2		111	<1	8580	0.23	т	FB13121161
		95.7-102m Increase in Chlor veins (10% of interval, <1 cm thick			N505039		95	97	2.0	0.001	< 0.005	<0.001		<(0.2		84	<1	7410	0.21	т	FB13121161
		Weak to moderate Chlor alteration throughout			K008588		1.94	11	9.1										, İ	0.07	0.04 T	FB13118918
	2f - Medium	to coarse grained oxide augite melatroctolite			K008589		11	20	9.0										,	0.13	0.03 T	FB13118918
		OI-Mag-Cpx-Plag-Ap: 87.14-87.32m, 91.80-93.40m,			K008590		20	27	7.0										,	0.17	0.04 T	FB13118918
105.00	EOH - End of Hole				K008591		97	105	8.0											0.24	0.03 T	FB13118918
					-																	
					1																	
						1		I				l			1		1	1				

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG					
NTS:		42 D / 16		DDH:	FD-13-39	DIAMOND DRIL	L CORE L	OG
UTM	Northing	5409269		Lease/Claim:	1240552	Reflex EZ Shot	- Diamond	Drillhole Surv
(Nad27)	Easting	547729.1		Property:	Coldwell Complex	Depth	Dip	Azimuth
Elevation ((m):	378.8		Zone:	Four Dams South	Casing	-69.05	30.88
Dip at Coll	lar:	-69.05		Date start:	18-Jun-13			
Azimuth:		30.88		Date finish:	19-Jun-13			
Total Dept	th:	201		Contractor:	Chibougamau Diamond Drilling			
Core Size:	:	NQ		Logged by:	Yongang Feng			
Remarks:		Core stored	I in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Julien Meric, Renata Smoke, Rachel Epstein	complete downhole	survey in Fou	r Dams masterlist

	GI	EOLOGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	2.86	6 OB - Overb	urden				N505040		8	10	2.0	<0.001	< 0.005	<0.001			<0.2		235	3	9810	0.3	-	TB13123278
							N505041		10	12	2.0	< 0.001	< 0.005	<0.001			<0.2		189	<1	8420	0.34	-	TB13123278
2.86	11.4	43 2b - Coarse	grained olivine g	gabbro with modal layering	Trace to 0.5% dis	seminated sulphides	N505042		12	14	2.0	< 0.001	< 0.005	<0.001			<0.2		218	2	8920	0.48	7	TB13123278
				The rock is composed of med grained anhedral PI, OI and Mag and med grained subhedral Cpx.		2.86-11.43m. <0.5% sulfides. Sulfides are dominated by Po.	N505043		14	16	2.0	0.001	< 0.005	0.001			<0.2		182	<1	>10000	0.41	7	TB13123278
				50% PI, 15%Cpx, 10% OI and 20-25% Mag. Mag is commonly interstitial to Cpx and OI. The rock is		Po:Cpy=2:1.	N505044		16	18	2.0	<0.001	<0.005	<0.001			<0.2		188	1	9730	0.37	7	TB13123278
				pinkish possibly due to Kfs alteration.			N505045		18	20	2.0	<0.001	<0.005	0.001			<0.2		184	<1	>10000	0.39	7	TB13123278
			5b - Augite s	yenite			N505046		20	22	2.0	<0.001	<0.005	<0.001			<0.2		268	<1	>10000	0.59	7	TB13123278
				6.45-6.47m. Thin syenite dike cross-cuts 2b. The rock is dominated by coarse grained Kfs (70%)			N505047		22	24	2.0	<0.001	< 0.005	<0.001			<0.2		465	<1	>10000	0.86	7	TB13123278
				and intersitial Cpx (30%).			N505048		24	26	2.0	<0.001	<0.005	<0.001			<0.2		242	2	>10000	0.47	7	TB13123278
							N505049		26	28	2.0	0.009	<0.005	0.001			<0.2		230	<1	9080	0.41	Ŧ	TB13123278
11.43	30.6	65 3h - Apatitio	clinopyroxenite		2-3% disseminate	d sulphides	N505050	mpg2				0.066	0.232	0.898			1.2		2930	285	1770	1.2	Ŧ	TB13123278
				Abruptly into this unit though the boundary is not disticntly sharp. Dark rock is dominated by		11.43-30.65m. Overall, 2% Po, 0.5% Cpy (Po:Cpy=4:1).	N505051		28	30	2.0	<0.001	< 0.005	<0.001			<0.2		157	<1	6910	0.24		TB13123278
				coarse grained subhedral to euhedral Cpx, med grained subhedral OI and med grained anhedral	3-5% disseminate		N505052		30	32	2.0	<0.001	< 0.005	<0.001			<0.2		190	<1	8470	0.31	7	TB13123278
				PI and Mag. PI and Mag are intersitital to Cpx and OI. Bt and ChI are secondary, commonly		18-20m. 3% Po, 0.5%Cpy (Po:Cpy=6:1).	N505053		32	34	2.0	0.001	< 0.005	<0.001			<0.2		183	<1	7470	0.25	7	TB13123278
				replacing Cpx and Ol. 70% Cpx, 15% Ol, 5% Pl, 5-8% Mag and 2-5% fine grained disseminated Ap.	Local blebs to 2-4	% sulphides	N505054		34	36	2.0	0.002	< 0.005	<0.001			<0.2		772	<1	>10000	0.77	7	TB13123278
			5b - Augite s	yenite		21.9-22m. Po+Cpy aggregate on 10 cm scale. 3% Po, 1% Cpy	N505055		36	38	2.0	<0.001	< 0.005	<0.001			<0.2		191	1	9950	0.23	7	TB13123278
			-	21.13-21.33m and 29.37-30.11m. Syenite dikes cross-cut 3h.		(Po:Cpy=3:1). Po is rimmed by Cpy.	N505056		38	40	2.0	<0.001	< 0.005	<0.001			<0.2		440	<1	>10000	0.49		TB13123278
			-				N505057		40	42	2.0	0.001	< 0.005	<0.001			<0.2		484	3	>10000	0.7	7	TB13123278
							N505058		42	44	2.0	<0.001	< 0.005	<0.001			<0.2		222	1	8850	0.36		TB13123278
30.65	38.2	25 2b - Coarse	grained olivine g	pabbro with modal layering	Trace to 0.5% dis	seminated sulphides	N505059		44	46	2.0	<0.001	< 0.005	<0.001			<0.2		158	<1	7840	0.21	7	TB13123278
			-	Abruptly into this unit. The contact between this unit and the above 3h is likely defined by a Mag-		30.65-33.78m. Sulfides are dominated by Po. 0.5% Po, trace	N505060		46	48	2.0	<0.001	< 0.005	<0.001			<0.2		224	<1	8760	0.31		TB13123278
				rich layer. This unit is similar to the previous 2b unit but shows stronger Kfs alteration. Secondary		Сру.	N505061		48	50	2.0	<0.001	<0.005	<0.001			<0.2		293	<1	9890	0.28		TB13123278
				ChI and Bt replace Cpx and OI.	2-3% disseminate		N505062		74	76	2.0	<0.001	< 0.005	<0.001			<0.2		294	1	>10000	0.21		TB13123278
			2f - Medium t	to coarse grained oxide augite melatroctolite		33.78-35m. Sulfide veins cross-cut the rock at 40-45 degrees	N505063		76	78	2.0	<0.001	<0.005	<0.001			<0.2		545	1	>10000	0.29		TB13123278
				33.78-34.71m. The dark is dominated by med grained subhedral OI (60%) and med grained		to the core axis. The veins are dominated by Po and Cpy (Po:	N505064		78	80	2.0	0.001	<0.005	<0.001			<0.2		936	4	9620	0.42		TB13123278
				anhedral Mag (40%). Mag is interstital to OI.		Cpy=5:1). Po is med grained subhedral while Cpy is interstitial	N505065	d	78	80	2.0	<0.001	<0.005	<0.001			<0.2		1010	3	>10000	0.44		TB13123278
			5b - Augite s			to Po. The overall Po and Cpy contents of this interval are	N505066		80	82	2.0	< 0.001	<0.005	0.001			0.6		2740	7	>10000	0.85		TB13123278
				29.36-30.6m. Syenite cross-cuts 2b. The rock is composed of coarse grain Kfs and Cpx. Kfs and		2% Po, <0.5% Cpy.	N505067		82	84	2.0	0.002	<0.005	0.001			0.4		2110	4	>10000	0.68		TB13123278
			-	Cpx are almost completely altered. Kfs is likely replaced by epidote. Cpx is replaced by Chl.			N505068		84	86	2.0	< 0.001	< 0.005	< 0.001			<0.2		535	3	>10000	0.29		TB13123278
			-	32.6-32.9m. 5 cm wide syenite dike cross-cuts 3h at an angel of 15 degree to the core axis.	T		N505069		86	88	2.0	< 0.001	< 0.005	< 0.001			<0.2		451	2	>10000	0.25		TB13123278
				33.81-33.9m. Syenite dike cross-cuts 2f.	I race to 0.5% dis	seminated sulphides 35-38.25m. Trace sulfides.	N505070 N505071		131	90 133	2.0	<0.001 <0.001	<0.005 <0.005	<0.001 0.002			<0.2 <0.2		502 730	3 23	>10000 >10000	0.33 0.19		TB13123278 TB13123278
			on - Apaulic i	clinopyroxenite		35-36.25m. Trace sundes.	N505071		131	135	2.0			<0.002			<0.2		595	23 17	>10000	0.19		TB13123278 TB13123278
				32.4-32.9m. Possibly 3h.The unit is dominated by Cpx but shows pink color likely due to Kfs			N505073		135	135	2.0 2.0	<0.001 <0.001	<0.005 <0.005	<0.001			<0.2		82	2	1650	0.27		TB13123278 TB13123278
				24.7.25.42m Abrunth into this unit from the above 2f. The contrast between this unit and 2f is			N505074		135	137		<0.001	<0.005	<0.001			<0.2		169	7	4130	0.17		TB13123278 TB13123278
				34.7-35.43m.Abruptly into this unit from the above 2f. The contact between this unit and 2f is			N505075		137	139	2.0 2.0	<0.001	<0.005	0.003			<0.2		269	15	4130	0.17		TB13123278 TB13123278
				defined by a Mag layer. Same as the previous 3h unit. Secodary carbonates are interstitial to Cpx. 37.61-38.25m. Same as previous.			N505076		166	141	2.0	0.001	<0.005	<0.003			<0.2		163	40	4920 80	0.29		TB13123278 TB13123278
				Sr.01-36.25m. Same as previous.			N505077		168	170	2.0	0.002	< 0.005	<0.001			<0.2		299	49	400	0.03		TB13123278 TB13123278
38.25	30.0	00 FZ - fault or	shear zone				N505078		170	170	2.0	0.002	<0.005	<0.001			<0.2		359	49	2950	0.21		TB13123278 TB13123278
30.23	55.0	1 2 - Tault of	311681 20116	The broken rock is 3h. The rock shows strong Chi atteration. Chi commonly replaces Chy			N505079		172	172	2.0	0.001	< 0.005	0.001			<0.2		409	80	3680	0.49		TB13123278
				The broken rock is 3h. The rock shows strong ChI alteration. ChI commonly replaces Cpx.			N505079	ь	1/2	1/4	2.0	< 0.002	<0.005	<0.001			<0.2		409	11	3080	<0.01		TB13123278 TB13123278
39.00	41 9	96 3h - Apatitio	clinonyrovenito		1		N505081		174	176	2.0	0.001	<0.005	<0.001			<0.2		275	49	190	0.2		TB13123278 TB13123278
39.00	-1.3		. cm/opyroxer/lite	Same as the above 3h unit but has stronger Chl alteration. Ap content increases to 5-7%.	Trace to 0.5% die	seminated sulphides	N505081		174	176	2.0	0.001	<0.005	<0.001			<0.2		422	49 89	3800	0.2		TB13123278 TB13123278
					1.306 to 0.378 UIS	39-41.96m. Sulfides in trace amounts.	N505083		178	1/8	2.0	0.002	<0.005	<0.001			<0.2		422	56	240	0.21		TB13123278 TB13123278
				Composed of coarse grained subhedral to euhedral Cpx, med grained subhedral OI and med grained anhedral PI and Mag.	1		K008592		2.86	8	5.1	0.000	<0.00J	-0.001			-0.2		101	50	240	0.09		TB13123278 TB13118918
41.96	76.4	14 2h - Coares	arained olivine o	galaneo anneo anneo mag. jabbro with modal layering	Trace to 0.5% die	seminated sulphides	K008593		2.00	59	9.0											0.27		TB13118918
41.00	. 0.4		granioù unville g	Abruptly into this unti from the above 3h. Same as the previous 2b unit but has 5-50cm wide 3h and	1.306 to 0.378 UIS	41.96-76.44m. Overall sulfide content is <0.5%.	K008593		59	68	9.0											0.2		TB13118918
· · · · ·		I	1	prevenue and and and norm the above on, came as the previous 20 and out has 5-30011 wite on and	1	The rest of the re	1000004	1		00	0.0	1				1	1	1				0.22	0.01	5.0110310

	GEOL	LOGY				Mineralization	SAMPLE		INTERVAL	_	WIDTH	Au	Pt	Pd	Rh T	PGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm j	opm	ppm	%	ppm	ppm	ppm	%	%	#
				10 cm to 1 m wide 2f layers in the unit. In the 2f lyayers sulfide content is relatively high, ranging from			K008595		68	74	6.0											0.19	0.01	TB13118918
				0.5 to 2%.			K008596		90	99	9.0											0.22		TB13118918
			3h - Apatitic cl				K008597		99	108	9.0											0.23		TB13118918
				43.47-43.52m, 43.71-44.07m and 45.3-45.43m.Same as previous 3h. Distinct contact with 2b.			K008598		108	117	9.0											0.24		TB13118918
				Composed of coarse grained subhedral to euhedral Cpx, med grained subhedral OI and med			K008599		117	126 131	9.0 5.0											0.18		TB13118918 TB13118918
				grained anhedral PI and Mag. 46.10-46.31m. Same as previous 3h. Likely cross-cuts a 2f layer.			K008600 K008601		126 141	131	9.0											0.13		TB13118918 TB13118918
			5b - Augite sye				K008602		141	150	9.0											0.02	0.03	TB13118918
				50.9-51.12m. Fine grained synite dike cross-cut 2b. The rock is composed of 80% Kfs and 20%			K008603		159	166	7.0											0.04	0.02	TB13118918
				intersitital Cpx (?). Kfs is strongly altered.			K008604		180	189	9.0											0.05		TB13118918
				63.98-64.18m. The pink syenite cross-cuts 2b. The rock is dominated by med grained Kfs (80%)			K008605		189	201	12.0											0.04	0.12	TB13118918
				and intersitial Cpx (20%).																		.		
																						.		
76.44	126.00	2f - Medium to	coarse grained	oxide augite melatroctolite	0.5% to 1% disser																			
				Gradational contact with the above 2b. The unit is the same as the previous 2f but shows 5-50 cm		76.44-79.65m. Overall, 1% Po, <0.5% Cpy (Po: Cpy=3:1).	_															.		
				wide 2b layers.		Po and Cpy are fine grained. Cpy commonly rims Po.	-															.		
				84.19-126m. The rock is not typical 2f. Gradational into this coarser grained and PI-rich interval.	2-3% disseminate		-															.		
				The rock is composed of coarse grained to megacrystic PI and Cpx, and med grained subhedral		79.65-81m.1-2% Po, 0.5-1% Cpy (Po:Cpy=2:1).	-															.		
				OI and anhedral Mag. Still very Mag-rich (20%Mag). Likely mixture between 2f,2e and TDL gabbro.	2-3% disseminate		-															.		
				TDL units are dike-like and exhibit pegmatitic and obscured ophitic texture but the contact		81-83.2m. Overall, 1% Po, 2% Cpy (Po:Cpy=1:2). Cpy and Po	-															.		
				between TDL and 2f or 2e is not distinctly sharp. 50%PI, 20%Cpx, 20%Mag and 10%	T	commonly occur together and Cpy rims Po.	-															.		
				OI. PI is strongly sericitized. Cpx and OI are partially replaced by ChI. The possible TDL units are		seminated sulphides 83.2-84.19m. Sulfides in trace amounts.	-															.		
				20-50 cm intervals and composed of coarse grained PI and Cpx. PI and Cpx in the possible TDL units are partially replaced by Kfs and Chl, respectively.		eminated sulphides	-															.		
				TDE units are partially replaced by Kis and Chil, respectively.		84.19-126m. Sulfide content is 0.5%, hard to estimate Po:	-															.		
						Cpv.																.		
																						.		
126.00	126.18	LC - Lost Core																				.		
				18 cm core is missing.																		.		
																						.		
126.18	134.33	2f - Medium to	coarse grained	oxide augite melatroctolite	Trace to 0.5% diss	seminated sulphides	_															.		
				Same as the 2f unit of 84.19-126m. Not typical 2f.		126.18-133.7m. Po and Cpy are in trace amounts. Difficult to	_															.		
				The rock is composed of coarse grained to megacrystic PI and Cpx, and med grained subhedral		estimate Po:Cpy.	-															.		
				OI and anhedral Mag. Still very Mag-rich (20%Mag). Likely mixture between 2f,2e and TDL gabbro.	0.5% to 1% disser		-															.		
				TDL units are dike-like and exhibit pegmatitic and obscured ophitic texture but the contact		133.7-134.33m. Sulfide is dominated by Cpy instead of Po.	-															.		
				between TDL and 2f or 2e is not distinctly sharp. 50%PI, 20%Cpx, 20%Mag and 10% OI.		1% Cpy, 0.5%Po (Po:Cpy=1:2). Sulfides are closely associated	-															.		
						with Mag.	-															.		
134.33	140.83	2L- Med to coa	ree ar olivine a	L abbro to melatroctolite with MS intrusions	Trace to 0.5% diss	seminated sulphides	-															.		
104.00	140.00	21 - Mild to coa		Gradational contact with the above 2f unit. The rock is highly heterogeneous. Overall, the rock is		134.33-140.83m. Trace sulfides.	-															.		
				likely composed of three different units, namely, 2e, 2f and 3d. The 3d represents the MS intrusions			1															,		
				and is characterized by coarse grained to megacrystic PI and interstitial Cpx (typcial ophitic texture]															,		
). Cpx is altered to Chl that has further been replaced by carbonates. The TDL intrusion takes up																		,		
				30% of the entire interval. PI is strongly altered and paritally replaced by pinkish Kfs throughout																				
				the entire 2l interval. The red-brown rim of feldpsar crystals may be due to hematite alteration.			1															,		
				This interval is cross-cut by fractures at 60-70 degree to the core axis. The fractures are filled by			4																	
└── ↓				carbonates and ChI with minor Py.			4															,		
└ ──┤					-		4															,		
140.83	145.03	1c - Banded m	etasediments a	Ind banded iron formation		seminated sulphides	-															, I		
				Sharp contact with the above 2I. The rock is distinctly banded. The banding is defined by variations		140.83-145.03m. Sulfides in trace amounts.	-																	
				in mafic mineral contents and is roughly 45 degrees to the core axis.	+		-												1					
				The rock is composed of very fine grained minerals that are difficult to identify. Mafic minerals likely			-															, I		
				include Chl. The rock is cross-cut by carbonate veins as at 141.83m and 3h dikelets as at 142.24- 142.32m.	1 1		1												1					
					1		1												1					
			3h - Apatitic cl	Incopyroxenite 144.29-145.03m. 3h dike cross-cuts 1c. Sharp contact with 1c. The dark green rock is composed	1		1												1					
				of coarse grained subhedral to euhedral Cpx, coarse grained anhedral PI and Mag. PI and Mag.			1															, I		
				are intersitial to Cpx.75% Cpx, 10% PI, 10% Mag.and 5% sulfides.			1												1					
		-					1	1		1	1								1					1

	GEOLO	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm		ppm	ppm	%	ppm	ppm	ppm	%	%	#
145.03	168.75	2a - Fine grain	ed homogened	l us gabbro	Trace to 0.5% dist	seminated sulphides																		
, I				Sharp contact with 3h in the above interval. The grey rock is fine grained and homogeneous.		145.03-168.75m. Overall, trace sulfides.																		
				Carbonate veins cross-cut the rock at 30-45 degrees to the core axis.	0.5% to 1% disser	ninated sulphides																		
I			3h - Apatitic c	linopyroxenite		153-153.5m. 1% Cpy, invisible Po.																		
				145.03-145.6m. 3h dike cross-cuts 2a. Likely chill margins at the contact. The rock is dominated by	0.5% to 1% disser																			
				coarse grained Cpx and Mag with minor interstitial PI. PI is strongly altered and likely replaced by Kfs		154.88-155.46m. Sulfides are present in 3h. 0.5% Cpy,																		
l				. The 3h is cross-cut by a syenite dike from 145.21 to145.48m.		invisible Po.																		
				153-153.5m. Same mineralogy as the previous 3h but has less PI. PI is not altered in this interval.																				
 ∔				154.88-155.46m. Same as the above 3h.																				
ł			5b - Augite sy																					
ł				145.21-145.48m. Possibly a syenite dike. The pink rock is vuggy with carbonates filling the vugs. 90% Kfs, 10% mafic minerals.																				
,				90% Kis, 10% manc minerals.																				
168.75	176 76	2d - Fine grain	ed gabbro with	MS intrusions	Trace to 0.5% dise	seminated sulphides																		
100.10		integralit		Abruptly into this rock. The rock consists of 3 different units, namely, 2a, 3d and 3h, in which 3d	11000 to 0.070 UIS	168.75-176.76m. Overall, low sulfide content. But in 3h units,																		
			İ	and 3h represent MS intrusions. 2a is intruded by 3d and 3h. The 3d and 3h in this interval show	1	sulfide content is relatively high.																		
i 1				strong Kfs alteration.Pl is partially to completely replaced by Kfs. The MS intrusions take up 30%	0.5% to 1% disser																			
				length of the entire interval.		168.75-169m. 1% Cpy, trace Po.																		
			5b - Augite sy	enite	0.5% to 1% disser	ninated sulphides																		
				175.13-175.31m. Sharp contact with 2a. The rock is domainted by coarse grained Kfs and intersitial		170.9-171m. 1% Cpy, trace Po																		
				Cpx. Cpx is altered to ChI that has further been repalced by carbonates.	0.5% to 1% disser	ninated sulphides																		
						173-173.33m. 1% Po, 0.5% Cpy (Po:Cpy=2:1). Po and Cpy are																		
ı — — — — — — — — — — — — — — — — — — —						distributed close to the contract between 3h and 2a. Po is																		
						rimmed by Cpy.																		
					2-3% disseminate	d sulphides																		
 ↓						174.33-174.5m. 2% Po, 1% Cpy (Po:Cpy=2:1). Po and Cpy																		
						are distributed to the contract between 3h and 2a.																		
					2-3% disseminate																			
ł						175.13-175.31m. 2% Po, 1% Cpy (Po:Cpy=2:1). Sulfides are distributed close to the contract between syenite and 2a.																		
ł					2-3% disseminate																			
						173.9-174.05m. 2% Po, 0.5-1% Cpy (Po:Cpy = 3:1).																		
i I						110:0 11 100m 210 10, 0:0 110 0py (10:0py - 0:1).																		
176.76	201.00	2a - Fine grain	ed homogened	us gabbro	Trace to 0.5% diss	seminated sulphides																		
1				Same as previous. The grey rock is fine grained and homogeneous.		176.76-201m. Overall, sulfides in trace amounts.																		
			5b - Augite sy																					
,				176.81-176.93m and 189.22-189.34m. The rock is domainted by coarse grained Kfs and intersitial																				
				Cpx. Cpx is altered to ChI that has further been repalced by carbonates.																				
,				196.05-197.96m. The rock shows choatic textures and is likely mixture between 3h and syenite.																				
,↓				197.6-197.96m. The rock is rich in Mag.	+																			
			3h - Apatitic c																					
ł				179-179.12m and 181.93-182.2m.Same as the above 3h unit. Sharp contact with 2a. The rock is dominated by coarse grained Cpx and Mag with minor interstitial PI. PI is strongly altered	+																			
ł				and likely replaced by Kfs.	+																			
t		1			1																			
201.00		EOH - End of	Hole		1																			
, — I																								
, T																								
ت																								
لــــــــــــــــــــــــــــــــــــ		L																						
		L																						
ا ـــــر																								
,					+																			
l					+																			
					+																			
		1	1		1			1	1		1	1							1				1	

	FD-13-40
ana/Claim	
ase/Ciaiiii.	1240552
operty:	Coldwell Complex
ne:	Four Dams South
ate start:	19-Jun-13
ate finish:	20-Jun-13
ontractor:	Chibougamau Diamond Drilling
gged by:	Julien Meric
sistant:	Yongang Feng
	e start: e finish: ntractor: ged by:

0552 Complex ns South in-13 ın-13

DIAMOND DRILL CORE LOG Reflex EZ Shot- Diamond Drillhole Survey

Kellex L2 Shot-	Diamonu	Drinnole 3	u
Depth	Dip	Azimuth	

Deptil	Dip	Azimuun
Casing	-50.23	29.1

	GEOL	OGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	C Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	% #
0.00	2.21	OB - Overburd	en				N505084		3	5	2.0	0.001	< 0.005	<0.001			0.2		399	<1	7650	0.31	TB13123320
							N505085		5	7	2.0	0.001	< 0.005	< 0.001			0.2		425	<1	6590	0.3	TB13123320
2.21	26.56	2f - Medium to	coarse grained	d oxide augite melatroctolite	0.5% to 1% diss	eminated sulphides	N505086		7	9	2.0	0.001	< 0.005	< 0.001			0.2		373	<1	7320	0.27	TB13123320
				Around 10% plag rich layers. Med gr ol, mag, cpx, plag. Plg content could vary <5-10%.		4.07-14.71 fine gr, mostly po, trace of cpy	N505087		9	11	2.0	0.001	< 0.005	< 0.001			0.2		393	<1	7490	0.27	TB13123320
					2-3% dissemina		N505088		11	13	2.0	0.001	< 0.005	<0.001			<0.2		221	<1	7360	0.19	TB13123320
			2b - Coarse g	rained olivine gabbro with modal layering		14.71-19.14 fine gr, 6:1 po:cpy.	N505089		13	15	2.0	0.001	< 0.005	<0.001			<0.2		288	<1	7550	0.24	TB13123320
				10.49-14.71 and 19.78-24.04 Med to crs gr Plag, cpx, ol and mag.50-70% plag rich layers.Plag	3-5% dissemina		N505090		15	17	2.0	< 0.001	< 0.005	< 0.001			0.2		510	<1	7820	0.33	TB13123320
				alignment not obvious. Gradauk contact with 2f at the above and below.		19.14-20.04 med to fine gr, 6:1 po:cpy.	N505091		17	19	2.0	0.001	< 0.005	<0.001			0.3		639	<1	8520	0.35	TB13123320
					0.5% to 1% diss	eminated sulphides	N505092		19	21	2.0	0.008	< 0.005	<0.001			0.7		2070	1	9460	0.88	TB13123320
						20.04-24.05 fine gr, 6:1 po:cpy.	N505093		21	23	2.0	< 0.001	< 0.005	< 0.001			<0.2		238	<1	7990	0.19	TB13123320
					3-5% dissemina		N505094		23	25	2.0	0.001	< 0.005	< 0.001			0.2		567	<1	8730	0.34	TB13123320
						24.05-26.56 med to fine gr, 6:1 po:cpy	N505095	mpg1				0.261	0.893	3.47			3.1		7060	395	1350	1.11	TB13123320
26.56	43.04	2b - Coarse gra	ained olivine ga	abbro with modal layering	3-5% dissemina		N505096		25	27	2.0	0.001	< 0.005	< 0.001			0.8		2230	3	9190	0.93	TB13123320
				Med to crs gr Plag, cpx, ol and mag.60-80 % plag rich layers.		26.56-26.7 med to fine gr, po:cpy 2:1	N505097		27	29	2.0	0.002	< 0.005	< 0.001			0.2		508	<1	6240	0.23	TB13123320
					0.5% to 1% diss	eminated sulphides	N505098		29	31	2.0	0.001	< 0.005	< 0.001			<0.2		153	<1	6000	0.15	TB13123320
						26.7-43.04 with bleb around 1%. Fine gr, 3:1 Po:cpy	N505099		31	33	2.0	< 0.001	< 0.005	< 0.001			<0.2		150	<1	6110	0.17	TB13123320
							N505100		33	35	2.0	0.001	< 0.005	< 0.001			<0.2		135	<1	5570	0.16	TB13123320
43.04	69.44	2f - Medium to	coarse graine	d oxide augite melatroctolite	0.5% to 1% diss	eminated sulphides	N505101		35	37	2.0	0.002	< 0.005	< 0.001			<0.2		201	<1	7810	0.19	TB13123320
				Med gr ol, mag, cpx, plag.		43.04-44.76 with bleb around 1%. Fine gr, 3:1 Po:cpy	N505102		37	39	2.0	0.001	< 0.005	< 0.001			<0.2		213	<1	8550	0.12	TB13123320
				43.04-45.17 plag rich layer decrease gradually 20-40% plag rich layers.	3-5% dissemina		N505103		39	41	2.0	0.002	< 0.005	<0.001			<0.2		200	<1	8650	0.1	TB13123320
				47.2-69.44 Med to crs gr cpx plag, mag and ol. Plag content vry between 20-50% and is not		44.76-47.2 med to fine gr, 6:1 po:cpy.but cpy ratio increase	N505104		41	43	2.0	0.001	< 0.005	<0.001			<0.2		202	<1	7820	0.09	TB13123320
				evenly distributed, it looks like pods of plag. Mag is around 20%.		in the 2b part 1:2 po:cpy from 44.76-45.17.	N505105		43	45	2.0	0.001	<0.005	<0.001			<0.2		373	<1	9740	0.24	TB13123320
				Few times the cpx texture looks ophitic with crs gr plag, could be blebs of 3d, not sure.	0.5% to 1% diss	eminated sulphides	N505106		45	47	2.0	0.003	<0.005	<0.001			1		3280	7	>10000	1.32	TB13123320
				r ew unes une cox texture looks opniac with crs gr plag, could be blebs of 50, not sure.	0.576 10 176 0135	47.2-69.44 fine gr 4:1 po:cpy. Presence of few patches and	N505107		43	49	2.0	0.001	<0.005	<0.001			0.2		497	<1	>10000	0.26	TB13123320
			3h - Anatitic c	linopyroxenite		blebs that could reach more than 1%.	N505108		49	51	2.0	< 0.001	<0.005	<0.001			<0.2		353	<1	>10000	0.26	TB13123320
			511 - Apaulo C	58.42-58.54 Med to crs gr cpx, mag, ol, plag and apatite. Sharp contact above and below.		Diebs that could reach more than 176.	N505109		51	53	2.0	<0.001	<0.005	<0.001			0.3		750	1	>10000	0.41	TB13123320
				30.42-30.34 Web to cit's griebx, mag, or, plag, and apartle. On all bounder above and below.			N505110	d	51	53	2.0	0.001	<0.005	<0.001			0.3		864	1	>10000	0.45	TB13123320
69.44	70.34	3d - Very coars	e grained to p	egmatitic, ophitic gabbro	2-3% dissemina	ted sulphides	N505111	-	53	55	2.0	< 0.001	< 0.005	<0.001			<0.2		479	3	>10000	0.23	TB13123320
				Very crs to crs gr cpx, plag, ol, and mag, med gr apatite.		fine to crs gr, 1:1 po:cpy. Crs gr sulfide seems replace	N505112		55	57	2.0	0.001	< 0.005	< 0.001			<0.2		463	2	>10000	0.22	TB13123320
				crs gr biotite and chlorite replacing cpx sometimes (secondary minerals).		biotite and maybe cpx, there are secondary.	N505113		57	59	2.0	0.001	< 0.005	< 0.001			<0.2		470	4	>10000	0.25	TB13123320
							N505114		59	61	2.0	< 0.001	< 0.005	< 0.001			0.2		645	4	>10000	0.26	TB13123320
70.34	70.94	FZ - fault or sh	ear zone		2-3% dissemina	led sulphides	N505115		61	63	2.0	0.001	< 0.005	<0.001			0.2		598	5	>10000	0.2	TB13123320
				FZ in really altered part of 3d, with cpx transformed into chlorite and crs gr biotite,		fine to crs gr, 1:1 po:cpy. Crs gr sulfide seems replace	N505116		63	65	2.0	0.002	< 0.005	<0.001			<0.2		526	13	>10000	0.16	TB13123320
				Gouge at 70.65-70.85.		biotite and maybe cpx, there are secondary.	N505117	1	65	67	2.0	< 0.002	<0.005	<0.001			<0.2		648	15	>10000	0.18	TB13123320
							N505118	1	67	69	2.0	0.001	<0.005	<0.001			0.2		956	26	>10000	0.19	TB13123320
70.94	72.00	3d - Very coars	e grained to p	egmatitic, ophitic gabbro	2-3% dissemina	ted sulphides	N505119	1	69	71	2.0	0.014	0.008	0.014			1.2		3190	124	>10000	0.43	TB13123320
10.01	12.00	ou vory court	o grainoù to p	Very crs to crs gr cpx, plag, ol, and mag, med gr apatite.	2 070 000011110	fine to crs gr, 1:1 po:cpy. Crs gr sulfide seems replace	N505120		71	73	2.0	0.013	< 0.005	0.01			1.1		2610	98	5470	0.35	TB13123320
				71-63-71.84 Presence of xenolith (not sure its xenolith) of 2a fine gr gabbro.		biotite and maybe cpx, there are secondary.	N505121		73	75	2.0	0.002	<0.005	<0.001			<0.2		260	59	2820	0.05	TB13123320
				71-03-71.041 resence of xeronial (not sure to xeronial) of 2a nine grigabolo.		biolite and maybe cpx, there are secondary.	N505121		121	123	2.0	0.002	<0.005	<0.001			<0.2		159	42	150	0.05	TB13123320
72.00	124.24	2a - Fine grain	ad homogeneo	abhro	Trace to 0.5% d	sseminated sulphides	N505122	1	121	123	2.0	0.002	<0.005	<0.001			<0.2		314	42 50	210	0.08	TB13123320
12.00	127.24				1800100.3780	Just trace, po and cpy.	N505123	1	125	125	2.0	0.002	0.006	0.003			0.3		1105	103	1690	0.08	TB13123320
				Fine to very fine gr plag, cpx, ol, and mag. Equigranular.		EXCEPT FOR:	N505124 N505125	h	120	127	2.0	<0.007	< 0.005	<0.003			<0.2		4	<1	30	0.26	TB13123320
		1		72-80.64 more altered zone with chlorites veins and fractures with chlorite infill. Presence of plag pods (5-10 %).	2-3% dissemina		N505125		127	129	2.0	0.003	0.006	0.001			0.3		4 885	94	780	0.38	TB13123320
		1				105-10.51 med to fine gr 1:1 po cpy. In 3h	N505120	1	129	131	2.0	0.001	< 0.005	<0.001			<0.2		147	38	110	0.06	TB13123320
		1 1		77.59-77.95 Very crs to crs gr cpx, plag, ol, and mag, med gr apatite, probably 3d. We see also few blebs with crs gr plag (plag pods) wich could be 3d to, but hard to tell.		recercioner mediterine grifter pe opytiment	K008606	1	75	84	9.0	0.001	<0.000	-0.001			NU.2		147	50	110	0.00	0.03 TB13118918
		1 1		proces may one gripping policy with could be out to, but hard to tell.			K008607	1	84	93	9.0		1								1	0.03	0.01 TB13118918
			5b - Augite sy	l			K008608	1	93	93	9.0		1									0.03	0.03 TB13118918
			55 * Augité Sy				K008609	1	102	102	9.0		1								1	0.02	0.03 TB13118918
				89-89.2, 89; 32-89.42 and 98.98-99.35 syenite dykes , Med to crs gr felds K (pink color), cpx				1		111	9.0		1									0.01	0.01 IB13118918 0.38 TB13118918
		1		partiially replaced by chlorite.			K008610	1	111	116	5.0	1	1	I			I	1		I	1	0.02	0.30 1813118918

	GEOLO	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
				112.54-115.58 wide syenite dyke. Med to crs gr felds K (?), cpx partially replaced by chlorite.			K008611		116	121	5.0													TB13118918
				Felds K, seems really altered with a strong grey-green color, chlorite ?. Presence of carbonate			K008612		131	140	9.0													TB13118918
				filling some vugs.			K008613		140	144	4.0											0.14	0.01 T	TB13118918
				Presence of several small veins of syenite <2cm wide, and associated with fractures sometimes.																				
			3h - Apatitic c	linopyroxenite																				
				105-105.51 Med to crs gr cpx, mag, ol, plag and apatite. Sharp contact above and below.																				
124.24	128.29	3h - Apatitic cl	inopyroxenite		2-3% disseminated	sulphides																		
				Med to crs gr cpx, mag, ol, plag and apatite. Sharp contact above and diffuse below.		124.24-128.29 med to fine gr 1:1 po cpy. In 3h																		
128.29	144.00	2a - Fine grain	ed homogeneo	us cabbro	Trace to 0.5% diss	eminated sulphides																		
120.20	111.00	2d Thio gran		Fine to very fine gr plag, cpx, ol, and mag. Equigranular.		Just trace, po and cpy. 1% in 3h parts 1:1																		
			5b - Augite sy	renite																				
				131.46-132.36 syenite dyke. Med to crs gr felds K , cpx , labradorite. Biotite and chlorite as																				
				secondary minerals. Felds K, seems really altered with a strong grey-green color, chlorite ?.																				
				Presence of pink alteration at the border of feldspar sometimes.																				
			3h - Apatitic c	dinopyroxenite																				
				133.77-133.89 Med to crs gr cpx, mag, ol, plag and apatite. Sharp contact above and below.																				
144.00		EOH - End of	Hole																					
		1																						
		-																						
					-																			
		1	1																					
-		-	-																					

			STILLWATER CANADA INC DIAMOND DRILL CORE LOG		
NTS:		42 D / 16		DDH: FD	<u>-13-41</u>
UTM	Northing	5409252		Lease/Claim:	1240552
(Nad27)	Easting	547786.9		Property:	Coldwell Comp
Elevation	n (m):	380.7		Zone:	Four Dams So
Dip at Co	ollar:	-79.64		Date start:	20-Jun-13
Azimuth:		21.4		Date finish:	22-Jun-13
Total Dep	pth:	246		Contractor:	Chibougamau Diamor
Core Size	e:	NQ		Logged by:	Yonggang Fer
Remarks	:	Core stored	in Stillwater Canada Inc. warehouse, Marathon, Ontario	Assistant:	Julien Meric

DIAMOND DRILL CORE LOG Reflex EZ Shot- Diamond Drillhole Survey mplex South 13 13 nond Drilling Feng eric

DepthDipAzimuthCasing-79.6421.4

	GEOLO	GY			Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh T	PGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Yo OZ E W Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm p	pm	ppm	%	ppm	ppm	ppm	%	%	#
0.00	2.30	OB - Overburden				N505128		28	30	2.0	0.001	<0.005	:0.001			<0.2		191	2	6750	0.14		TB13123321
						N505129		30	32	2.0	<0.001	0.005	0.001			0.3		1835	5	8820	0.91	1	TB13123321
2.30	14.33	2f - Medium to co	arse grained oxide augite melatroctolite	Trace to 0.5% dis	seminated sulphides	N505130		32	34	2.0	0.001	<0.005	:0.001			<0.2		829	1	6710	0.43	1	TB13123321
			Overall dark rock is composed of med grained subhedral OI, anhedral Mag and PI with lesser Cpx.		2.3-4.5m. Overall, sulfides in trace amounts.	N505131		34	36	2.0	0.001	<0.005	:0.001			<0.2		162	<1	6130	0.16	1	TB13123321
			50% OI, 40% Mag, 5% PI, 3% Cpx and 2% other minerals. Mag is intersititla to OI. Rock exhibits 5-	Trace to 0.5% dis	seminated sulphides	N505132		36	38	2.0	0.001	<0.005	:0.001			<0.2		142	1	6020	0.16	1	TB13123321
			30 cm PI-rich layers (PI reaches 50% in these layers). These layers are gradational with the		4.5-14.33m. Roughly 0.5% Po, invisible Cpy.	N505133		38	40	2.0	<0.001	<0.005	:0.001			<0.2		190	<1	6600	0.18	1	TB13123321
			predominant OI-Mag-rich part.			N505134		40	42	2.0	<0.001	<0.005	:0.001			<0.2		146	<1	5690	0.16	1	TB13123321
		21	Coarse grained olivine gabbro with modal layering	-		N505135		42	44	2.0	0.001		:0.001			0.2		1450	5	8360	0.7	1	TB13123321
			2.3-4.5m. Gradational with 2f. The rock is composed of coarse grained anhedral PI and Cpx and	-		N505136		44	46	2.0	0.002		0.001			0.5		2530	7	9080	1.1	1	TB13123321
			med grained subhedral OI and fine grained anhedral Mag. 55% PI, 30% Cpx, 10% OI and 5% Mag.			N505137		46	48	2.0	0.001		0.001			<0.2		514	<1	6810	0.24	1	TB13123321
			PI is partially sericitized. Cpx and OI are slightly altered to ChI. Slightly layered. Layering is defined			N505138		48	50	2.0	<0.001		:0.001			<0.2		213	<1	8250	0.18	1	TB13123321
			by variation in OI and Mag contents.	_		N505139		50	52	2.0	<0.001		:0.001			<0.2		175	<1	7760	0.2	1	TB13123321
			13.55-14m. Same as 2b of 2.3-4.5m. Gradational contact with 2f.			N505140	mpg2				0.061	0.25	0.861			1.2		2780	286	1700	1.17	1	TB13123321
						N505141		52	54	2.0	<0.001		:0.001			<0.2		168	<1	6980	0.19	1	TB13123321
14.33	17.89	2b - Coarse grain	ed olivine gabbro with modal layering	Trace to 0.5% dis	seminated sulphides	N505142		54	56	2.0	<0.001		:0.001			<0.2		151	<1	6590	0.17	1	TB13123321
			Same as 2b of 2.3-4.5m but has more PI. 55% PI, 25% Cpx. 10%OI and 5%Mag. Bt occurs as a		14.33-17.89m. Trace sulfides.	N505143		56	58	2.0	0.001		:0.001			<0.2		399	1	>10000		1	TB13123321
			secondary mineral, replacing Cpx and OI. Gradational into this unit from the above 2f.			N505144		58	60	2.0	0.002		0.001			0.6		2880	8	9230	1.12	1	TB13123321
	04.00			-		N505145		60	62	2.0	0.001		:0.001			0.5		2370	4	8730		1	TB13123321
17.89	21.80	2t - Medium to co	arse grained oxide augite melatroctolite	0.500 + 400 5		N505146		62 64	64 66	2.0	< 0.001		:0.001			0.7 0.4		3140	8	9500	1.22	1	TB13123321
			Gradational into this unit. Overall, same as the previous 2f. The rock shows PI alignments on 2-10	0.5% to 1% disse	minated sulphides	N505147		66	68	2.0	0.001		0.001					1755	5	8320	0.54	1	TB13123321
		3	cm scale. PI alignments are roughly 70-80 degrees to the core axis Coarse grained olivine gabbro with modal layering		17.89-21.80m. 0.5-1% Po, trace Cpy. Hard to estimate Po:Cpy.	N505148 N505149		68	68 70	2.0 2.0	0.001		:0.001 :0.001			0.3 0.6		1675 1865	8	>10000 9880	0.79	1	TB13123321 TB13123321
		21				N505150		70	70	2.0	0.001		:0.001			0.7		2120	5	>10000		1	TB13123321
			20.52-20.94m. Gradational with 2f. Composed of coarse grained anhedral PI and Cpx and med grained subhedral OI and fine grained anhedral Mag. 55% PI, 30% Cpx, 10% OI and 5% Mag.			N505150		70	74	2.0	<0.001		:0.001			0.4		1620	4	>10000		1	TB13123321
			nied grained Subredrai Or and nine grained annedrar wag. 5576 FT, 5076 Opx, 1076 Or and 576 wag.			N505152		235	237	2.0	0.002		0.001			<0.2		204	55	430	0.29	1	TB13123321
21.80	42.80	2h - Coarse grain	ad olivine gabbro with modal layering	Trace to 0.5% dis	seminated sulphides	N505153		233	239	2.0	0.002		0.003			0.2		443	106	2090	0.32	1	TB13123321
21.00	12.00	20 Course gran	Gradational contact with the above 2f. Same as previous 2b but Pl in this unit is more altered.	11000 10 0.070 010	21.8-42.8m. Overall, trace sulfides.	N505154		239	241	2.0	0.001	<0.005	0.001			<0.2		187	56	3370	0.27	1	TB13123321
			32.31-39m. The rock is relatively pinkish and may have relatively strong Kfs alteration. Also, Cpx	Trace to 0.5% dis	seminated sulphides	N505155	d	239	241	2.0	0.003		:0.001			<0.2		184	49	3320	0.27	1	TB13123321
			and OI in this interval are more altered and partially to completely replaced by Chl.	11000 10 0.070 010	21.80-30.74m. Trace Po and Cpy.	N505156	ŭ	241	243	2.0	0.003		:0.001			<0.2		202	49	520	0.13	1	TB13123321
		21	Medium to coarse grained oxide augite melatroctolite	3-5% disseminate		K008614		2.3	11	8.7	0.000	40.000				-0.2		202	10	020	0.22	<0.01	TB13118918
			30-31.8m. Gradational into this unit from 2b. Relatively rich in PI (20% on average).		30.74-31.8m. Po is predominant and reaches 3-4%, Cpy in	K008615		11	20	9.0											0.23	0.01	TB13118918
			Same as 2f of 17.89-21.80m.		trace amounts. Po:Cpy>=10:1.	K008616		20	28	8.0											0.22	0.01	TB13118918
		31	- Coarse grained, ophitic gabbro (>5mm)	2-3% disseminate		K008617		74	83	9.0											0.18	0.01	TB13118918
			27.85-28.75m. Sharp contact with 2b. The rock is composed of coarse grained PI and Cpx. The		31.8-32.31m. 1.5%Po, 0.5%Cpy (Po:Cpy=3:1). Cpy rims Po.	K008618		83	92	9.0											0.37	0.01	TB13118918
			rock shows typical ophitic texture. The rock is pinkish possibly due to Kfs alteration. Cpx is partially	Trace to 0.5% dis	seminated sulphides	K008619		92	101	9.0											0.24	<0.01	TB13118918
			to completely replaced by Chl. Close to the contact between 2b and 3b, OI and Mag in 2b become		32.31-42.8m. Sulfides in trace amounts.	K008620		101	110	9.0											0.24	0.01	TB13118918
			relatively coarse grained.			K008621		110	119	9.0											0.17	0.01	TB13118918
						K008622		119	128	9.0											0.12	0.04	TB13118918
42.80	45.70	2f - Medium to co	arse grained oxide augite melatroctolite	2-3% disseminate	ad sulphides	K008623		128	137	9.0				1						1	0.07	0.03	TB13118918
			Gradational into this unit. Overall dark rock is composed of med grained subhedral OI, anhedral		42.8-45.7m. Overall, 2% Po, hard to see Cpy.	K008624		137	146	9.0											0.02	0.04	TB13118918
			Mag and PI with lesser Cpx.50% OI, 40% Mag, 5% PI, 3% Cpx and 2% other minerals. Mag is	2-3% disseminate	ed sulphides	K008625		146	155	9.0				1						1	0.02	0.02	TB13118918
			intersititla to OI. Rock exhibits 5-30 cm PI-rich layers (PI reaches 50% in these layers).		42.8-44.3m. 2-3%Po, no visible Cpy.	K008626		155	164	9.0				1						1	0.03	0.01	TB13118918
				0.5% to 1% disse	minated sulphides	K008627		164	173	9.0				1						1	0.05	0.01	TB13118918
					44.3-45.63m. 0.5-1% Po, no visble Cpy.	K008628		173	182	9.0				1						1	0.03	0.02	TB13118918
				3-5% disseminate	ed sulphides	K008629		182	191	9.0				1						1	0.03	0.01	TB13118918
					45.63-45.7m. 5-6% Po, no visible Cpy.	K008630		191	200	9.0				1						1	0.06	0.03	TB13118918
						K008631		200	209	9.0				1				1		1	0.02	0.16	TB13118918

	GEOLO	DGY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	с	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
45.70	66.09	2b - Coarse g	rained olivine ga	abbro with modal layering	Trace to 0.5% dis	seminated sulphides	K008632		209	218	9.0											0.14	0.01 T	B13118918
				Gradational into this unit. The rock is composed of coarse grained anhedral PI and Cpx and		45.7-56.1m. Trace sulfides.	K008633		218	227	9.0											0.19	0.05 T	B13118918
				med grained subhedral OI and fine grained anhedral Mag. 55% PI, 30% Cpx, 10% OI and 5% Mag.		seminated sulphides	K008634		227	235	8.0											0.13		B13118918
			5b - Augite sy			56.1-58.9m. Po close to 0.5%, no Cpy.	K008635		243	246	3.0											0.1	0.54 T	B13118918
				46.58-46.85m. The rock is composed of coarse grained Kfs and interstitial Cpx. Dike-like syenite	2-3% disseminate																			
				cross-cuts 2b. Intersitial Cpx is partially replaced by Chl.		58.9-60m. 2-3% Po, trace Cpy, Po:Cpy=10:1.																		
				47.47-47.74m. The syenite dike cross-cuts 2b at 45 degrees to the core axis. The rock is	2-3% disseminate																			
				dominated by coarse grained Kfs that is completely replaced by green minerals (epidote?). Coarse		60-60.41m. 2%Po, 0.5%Cpy (Po:Cpy=4:1).																		
				grained quartz is intersitial to Kfs and likely secondary. Cpx is completely replaced by Chl.		seminated sulphides																		
				52.15-52.3m, 54.23-54.34m, and 59.92-60m. Same as 5b from 46.58 to 46.85m. Cross-cuts 2b		60.41-61.82m. Trace sulfides.																		
				at 45 degrees to the core axis. 60.41-60.58m. Same as 5b from 46.58 to 46.85m. Cross-cuts 2b at 30 degrees to the core axis.		ninated sulphides 61.82-64.14m. 0.5-1% Po, little Cpy.																		
				00.41*00.30m. Same as 30 nom 40.36 to 40.65m. Cross-cuts 20 at 30 degrees to the core axis.	2-3% disseminate																			
			2f - Medium to	o coarse grained oxide augite melatroctolite		64.14-65m. 2%Po, trace Cpy.																		
				56.1-57.89m. Gradational with 2b. dark rock is composed of med grained subhedral OI, anhedral		seminated sulphides																		
				Mag and Pl with lesser Cpx.	11000 10 0.070 00	65-66.09m. Trace sulfides.																		
				58.15-59.4m, 61.82-62.88m, 63.62-64.14m, and 64.37-64.57m. Gradational with 2b. Same as 2f																				
				of 56.1-57.89m.																				
66.09	123.00	2f - Medium t	o coarse grained	d oxide augite melatroctolite	2-3% disseminate	d sulphides																		
				Ovarall, the rock has the same mineralogy as previous 2f in this drillhole but has relatively high PI		66.09-67.86m. 2%Po, invisible Cpy																		
				content.	0.5% to 1% disse	ninated sulphides																		
				67.86-117.13m. Not typical 2f.Relaitvely coarse grained and PI-rich. PI is strongly sericitized. The		67.86-69m. 0.5-1% Po, trace Cpy (Po:Cpy=8:1).																		
				unit is likely mixture between 2f and 2e. 2f is predominant. 2f and 2e are patchy and intertwined	Trace to 0.5% dis	seminated sulphides																		
				throughout the entire interval.		69-70.28m. Trace sulfides. Po:Cpy 3:1.																		
				70.28-70.37m. This interval may be an altered version of 2f. 75%Cpx, 10%Ol, 10%Mag, 5%sulfides.	3-5% disseminate	d sulphides																		
				Cpx is relatively coarse grained in this interval. The unit may also be considered to be 3h but Po is		70.28-70.37m. Sulfide is dominated by Po, 5% Po, trace Cpy.																		
				predominant instead of Cpy.		Po:Cpy= 10:1.																		
				117.13-123m. Heterogeneous rock with choatic textures. The rock is possibly mixture between 2f		seminated sulphides																		
				and 3h though no intrusive relationship is present. 2f in this interval is represent by rock composed		70.37-71.56m. 0.5% Po, trace Cpy.																		
				of med grained subhedral OI and intersitial Mag. The possible 3h is characterized by coarse	2-3% disseminate																			
				to megacrystic Cpx, Mag, OI and PI. Cpx is the predominant mineral in the possible 3h. 10-15% fine		71.56-71.7m. 2% Cpy, trace Po, Cpy : Po=10:1.																		
				to med grained Ap disseminated through the interval. This interval is gradational with 2f of 67.86- 117.13m.		seminated sulphides 71.7-97m. Trace Po and Cpy.																		
			3h - Anatitic d	Sinopyroxenite		seminated sulphides																		
			Sil - Apatitic G	71.56-71.7m. Abruptly into this unit from 2f. Dike-like rock is dominated by coarse grained		97-99.8m. 0.5% Po, trace Cpy. Po:Cpy (5:1).																		
				subhedral to euhedral Cpx, med grained anhedral Mag, OI and fine grained disseminated Ap. 85%		seminated sulphides																		
				Cpx, 5% Mag, 4% OI, 5% sulfides and 1% Ap. Cpx is partially to completely replaced by ChI and Bt.		99.8-101.82m. Sulfides in trace amounts.																		
				Cpy is predominant.	2-3% disseminate																			
			5b - Augite sy	yenite		101.82-102.15m. 2% Po, trace Cpy. Po is closely associated																		
				118.4-118.9m. Syenite dike cross-cuts 2f. The pinkish rock is dominated by coarse grained Kfs and		with fine to med grained Mag.																		
				intersitial Cpx. Both Kfs and Cpx are partially replaced by Chl. Secondary Qtz and carbonates		seminated sulphides																		
				replaces intersitial Cpx and Chl.		102.15-115m. Sulfides in trace amounts.																		
					Trace to 0.5% dis	seminated sulphides																		
						115-115.7m. 0.5% Cpy, invisible Po.																		
						seminated sulphides																		
						115.7-117.13m. Sulfides <0.5%.																		
						ninated sulphides																		
						117.13-117.48m. 0.5-1% Po, no visible Cpy.																		
					1 race to 0.5% dis	seminated sulphides																		
		1	1		Trace to 0.5% dia	117.48-118.9m. Trace sulfides. seminated sulphides				1														
		1			riace to 0.5% dis	118.9-119.5m. Fine grained disseminated Cpy <0.5%, no visible																		
		1	1		-	Po				1														
					Trace to 0 5% die	seminated sulphides																		
		1	1		11a06 10 0.5 % GIS	119.5-123m. Trace sulfides.				1														
		1	1							1														
123.00	133.00	2d - Fine arai	ned gabbro with	n MS intrusions	Trace to 0.5% dis	seminated sulphides																		
				Abruptly gradational into this unit. The unit is dominated by 2a with possible 3h in patches on a cm		123-133m. Trace sulfides.																		
·									1	1	1	1			1		1		1		i 1		1	

	GEOLO	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh T	PGM	Ag	Cu	Cu	Ni	Р	S	С	Job
		×	×		<u>.</u> N																			
From	То	Maj Rot	Min Ro	Comments	Mineral	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm p	opm	ppm	%	ppm	ppm	ppm	%	%	#
				to 50cm scale. 3h takes up 15% over the entire interval. In 3h patches, PI is strongly altered and																				
				partially replaced by Kfs. 2a is slightly layered and the layering is defined by variation in mafic																				
			3h - Apatitic cli	content.																				
				etasediments and banded iron formation																				
				131.62-132.2m. Sharp contact with 2d and is present as xenolith. Light grey rock is dominated by																				
				fine grained felsic minerals. Protolith is likely metasediments.																				
			5b - Augite sye																					
				132.2-132.22m. Very thin syenite dike cross-cuts 2a. The pinkish rock is dominated by coarse																				
133.00	126 10	FZ - fault or sh		grained Kfs and intersitial Cpx.																				
133.00	130.19	PZ - Tault of Sh		The faulted rock is vuggy augite syenite. The rock is composed of coarse grained Kfs and Cpx.																				
				Cpx is interstitial to Kfs and paritally replaced by Chl. Sharp contact between 2d and syenite is at																				
				the beginning of this interval.																				
136.19	138.93	2a - Fine grain			Trace to 0.5% dis	seminated sulphides																		
				Dark grey rock is dominated by fine grained minerals. The rock is cross-cut by 1-3 cm wide syenite		136.19-138.93m. Invisible to trace sulfides.																		
			3h - Apatitic cli	dikelets at an angel of 45 degrees to the core axis.	-																			
				136.78-137.02m. Abrupt into this unit from 2a. Rock is likely mixture between 3h and syenite. Cpx																				
				is coarse grained subhedral to euhedral in this unit. PI shows pink color and is likely replaced by																				
				Kfs.																				
			5b - Augite sye																					
				136.19-136.22m. Sharp contact with 2a. The pinkish rock is dominated by coarse grained Kfs and																				
400.00	4.40.00	FZ - fault or sh		intersitial Cpx.																				
136.93	140.69	PZ - Tault of Sh		Same as the rock of 133-138.93m. The faulted rock is augite syenite. The rock is composed of																				
				coarse grained Kfs and Cpx.																				
				• · ·																				
140.69	149.38	5b - Augite sye			Trace to 0.5% dis	seminated sulphides																		
				Same as the rock of 133-136.19m. The pinkish rock is dominated by coarse grained Kfs and		140.69-149.38m. Trace sulfides.																		
				intersitial Cpx. ed homogeneous gabbro																				
			za • Fine graine	ad nonrogeneous gaboro 143.76-144.1m and 146.88-148.56m. 2a xenolith in syenite.Sharp contact with 5b.																				
149.38	246.00	2a - Fine grain	ed homogeneou	s gabbro	Trace to 0.5% dis	seminated sulphides																		
				Same as previous 2a. The rock is cross-cut by 5-20mm wide syenite dikelets at 15-30 degrees to		149.38-246m. Overall, trace Sulfides.																		
				the core axis. Slightly banded from 171 to		ninated sulphides																		
				236.57-236.82m. A weird leucopod. Sharp contact with 2a. 273-273.4m. Abrupt into a relatively fesic-rich interval. The rock is texturally similar to 2a but is	3-5% disseminate	238.33-238.42m. 1.5% Po, invisible Cpy.																		
				273-273.4m. Abrupt into a relatively resic-rich interval. The rock is texturally similar to 2a but is dominated by white feldpsar (Ab?). May have strong Ab alteration. Layered rock. Layering is	3-5 % ulsseminate	a sulprides 239.96-240.1m. 7%Po, 1% Cpy (Po:Cpy=7:1). Sulfides are																		
				defined by matic minerals (mainly Bt).		interstitial to PI and Cpx.	1																	
				ained, ophitic gabbro (>5mm)																				
				156.12-156.18m. Sharp contact with 2a. Coarse grained gabbro.																				
				168.9-169.05m. Same as the unit of 156.12-156.18m.																				
			3h - Apatitic cli	nopyroxenite 172.94-172.96. Dike-like unit cross-cuts 2a. The rock is dominated by coarse grained subhedral																				
				Cpx with interstitial PI. Little OI and Mag present. The dike is 15 degrees to the core axis.																				
				173-173.1. Same as the unit of 172.94-172.96m.			1																	
				coarse grained oxide melatroctolite																				
				182.9-183.47m. The rock is dominated by Mag, Cpx and Pl with minor Ol.																				
				this unit is relatively rich in PI (40%). Mag content is 20%. Sharp contact with 2a.																				
				Heterogeneous rock is likely mixture between 3g and 3h. 196.93-198.04m, 206.34-206.61m. Same as the above 3g of 182.9-183.47m.																				
				196.93-198.04m, 206.34-206.61m. Same as the above 3g of 182.9-183.47m. 238.37-240.26m. Same as previous 3g but PI and Cpx are coarse grained to megacrystic. The																				
				grain size and PI content decrease with depth. Sharp contact with 2a.					1															
				e grained to pegmatitic, ophitic gabbro]																	
				205.51-205.61m. The rock is dominated by coarse grained to megacrystic subhedral to euhedral																				
				Pl and interstitial Cpx. Pl shows pink color possibly due to Kfs alteration (?). Sharp contact with 2a.			J	1	1	1	1			1										

	GEOLOG	GY				Mineralization	SAMPLE		INTERVAL		WIDTH	Au	Pt	Pd	Rh	TPGM	Ag	Cu	Cu	Ni	Р	S	С	Job
From	То	Maj Rock	Min Rock	Comments	Mineraliz	Comments	NO.	QC	FROM	то		ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	%	#
		51	o - Augite syer																					
				242.83-243.1m. Syenite cross-cuts 2a at an angle of 15 degrees to the core axis. Sharp contact			-																	
				with 2a. The syenite is dominated by med grained Kfs. Secondary carbonates are interstitial to Kfs. 245.65-245.83m. Same as 5b from 242.83 to 243.1m.			-																	
				245.05-245.65m. Same as 50 from 242.63 to 243.1m.			-																	
246.00	E	EOH - End of Ho	le																					
							_																	
							-																	
							_																	
							-																	
							-																	
							1																	
							4																	
							4																	
							-																	
							-																	
							-																	
							-																	
							-																	
							_																	
							-																	
							-																	
							-																	
							1																	
]																	
							4																	
							-																	
							-																	
							1																	
							-																	
	-						4																	
							1																	
]																	
							4																	
 							-																	
							1																	
							1																	
							4																	
L					1		l	I	I	1	1	1	1											