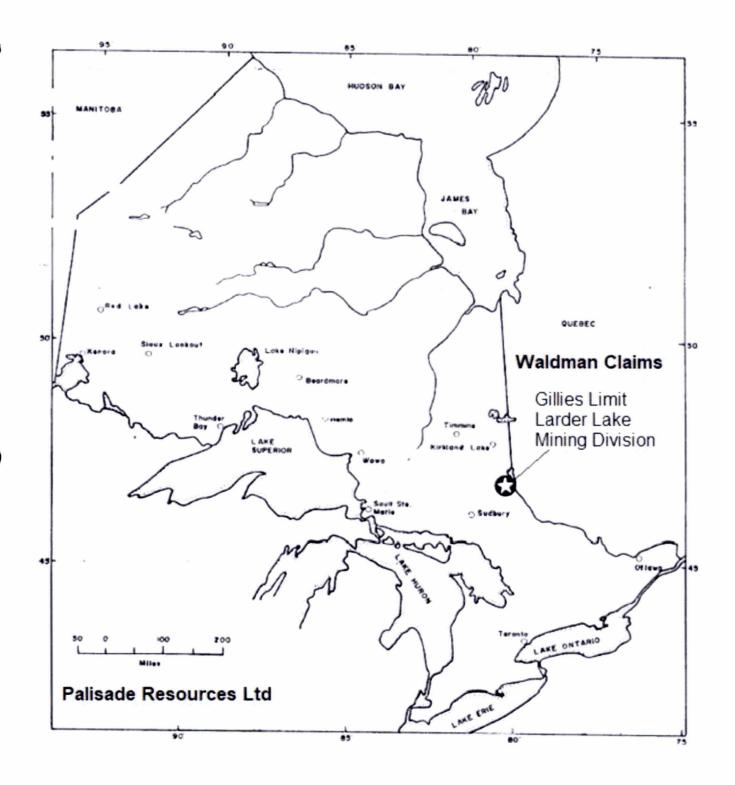

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Work Report


On The Waldman Claims
For Palisade Resources Ltd

By Alan Kon

June 19, 2017

Index

Introduction	1
Access & Location Topographical & Vegetation	2
Geology & Property Geology	2
Wildlife & History	3
Work Program	4
Daily Logs	5
Recommendations	6
Sample Data & Assay Results	Appendix I
Prospecting, Beep Mat Maps & Data	Appendix II
Equipment Descriptions	Appendix III
Claim Map	Back Page

Introduction

A prospecting, sampling & Beep Mat survey program was undertaken on the Waldman claims located in the north half of Gillies Limit Township, Larder Lake Mining Division Ontario, from May 31 to June 16, 2017. The work was performed on behalf of the current claim owner Palisade Resources Ltd by Alan Kon of North Cobalt/Haileybury Ontario. The Waldman claims include: 4278619, 4283637, 4283638, 3007689, 4276127, 4275151, 4275174, 4278616, 4278605, 4278606, and 4282360.

Transportation to the claims was by Chevrolet pickup, Honda ATV and on foot. A Garmin GPSmap 62stc was used for navigation and sample recording. A Tesoro Lobo SuperTraq prospecting metal detector was used along with a Beep Mat BM 8 which was supplied by the Kirkland Lake MNDM.

Assaying was done by ALS Labs in Timmins Ontario.

The original headframe which was built by J Waldman in 1909 still stands.

Property Location and Access

The Waldman claims are located in township of Gillies Limit. The area was once known as the "A" claims and all are within close proximity of the historical silver mining town of Cobalt, Ontario. These claims can be accessed fairly easily by taking Coleman Rd south from Cobalt to Hound Chutes Rd. The Waldman claims can also be accessed via a trail that was once the rail/street car line which begins at the Little Silver Vein mine on the west side of Cobalt along Coleman Road.

Topographical & Vegetation

The topographical setting for the property is much the same as elsewhere in the Cobalt camp. Rolling hills, steep but low cliffs, and an average amount of exposed rock. There a few small hills in the area. Water is sparse is the area with only few small lakes and creeks. Giroux Lake is a large lake which is less than a kilometer from the Waldman claims. Several swamps and low wet areas are fairly common.

Vegetation is very heavy. Tree types are varied from small to medium sized cedar, birch and willow to medium and large poplar. There are also a few very large old white and red pines in the area. Undergrowth is thick with dogwood, scrub brush and other vegetation.

Regional and Property Geology

The Waldman claims are located within a geological area known as the Cobalt embayment. The rocks that underlie the project area include basement forming Keewatin mafic to felsic metavolcanics and Algoman granitic rocks overlain by relatively flat lying Huronian metasediments. A Nipissing aged diabase unit, in the form of sills and dykes, intrudes all of these rock types. Younger diabase dykes locally cross cut all of these rocks. Lamprophyre dykes of various ages intrude the Keewatin and Algoman rocks. The youngest rock in the area is Kimberlite at ~ 153.5 Ma.

The rocks in the area are strongly influenced by at least four major northwest trending regional scale fault structures. These include the Temiskaming Fault, the Crosswise Lake Fault, the Montreal River Fault and the Latchford Fault. Numerous cross-faults connect these major structures.

Wildlife

Besides some of the residents of Cobalt, the wildlife in the area is much the same as other areas of northern Ontario although in lesser numbers now. Where the animal population seemed to be teaming with bears, moose, big cats, and wolves at one time, very few can be seen. Only one friendly bear was encountered during the work program. The bugs were a nightmare.

Historical Work

The Waldman claims have had several owners over the years and has not sat idle for very long. The original Waldman property consisted of 5 "A" claims; A10, 12, 13, 21, & 22 but has since grown to include the Wallingford mine property, the Sagdola mine property, the east part of the Red Jacket mine property and 1 claim from the Mensilvo mine property.

Some of the previous owners are: J Waldman, Mining Corp of Canada, Camburn Silver Mines, Waldag Mining Company, Sisco Metals Corp, Teck Cominco, Outcrop Resources optioned to Cabo Mining Ent and Canagco Mining Corp.

Even though the Waldman claims have 3 shafts on the original property, all production came from shaft #1. A total of 33500oz of silver and 2066lbs of cobalt was recorded with unknown amounts of copper and nickel. The Wallingford shaft produced an unknown amount of cobalt and silver but massive cobalt has been observed in the muck/waste piles beside the shaft.

The Red Jacket North and south shaft which is now part of the Waldman property on claim 4283637 reported an undisclosed amount of silver and cobalt.

The Sagdola shaft which was sunk to a depth of ~ 100 feet did not record any production.

Trenching and pits are abundant on the Waldman claims and it would be very difficult to map them all. The depth and lengths of the trenches varies widely from less than a metre in depth to 3 + metres deep. Lengths are varied as well with some trenches less than 5 metres long and others 50 + metres long. The size and depth of the pits are varied as well with some only a metre or so deep and others 10 + deep. Several pits are situated at the end of intersecting trenches. One such pit on claim 4275174 is situated midway between 2 long trenches. The exact depth is unknown but longer than the extended arm and bucket of a 25 ton excavator.

Current Work Program

The field work for the current work program started on May 31 and ended June 17. The majority of the work consisted of prospecting, sampling and the use of a Beep Mat for detecting metal mineralization with the main focus on the metal cobalt.

The old rail/street car line that runs north to south on the west side of the claim group provided good access to most of the west and south claims and Hound Chutes Road provided good access to the east side claims. A few trails leading further across some of the claims provided fairly good access as well.

The work program started with recording potential targets of the old workings and showings of mineralization taken from old reports and maps such as the Thompson map M2051, Cobalt Silver Area which has provided some of best geological information to date. Some of the potential targets were also obtained from the MNDM OGS Earth map site but can be unreliable and has been known to display phantom shafts and workings.

With the exception of 4283637, claims 4278616, 4278605, 4278606, 4278619, 4282360 can be accessed via the old rail line and a trail that leads south west to North Beaver Lake. This trail passes several trenches, small pits and an Adit and the Sagdola shaft.

The southern half of the Waldman claim group included the south east part of claim 4278519, 4283638, 4275151, 4276127, 4275174 and claim 3007689 on the far east side. These claims can be accesses via both the rail line and Hound Chutes Road and by a few trails. An old skidder trail on claim 4275151 passes by the Wallingford shafts, several trenches and pits providing fairly easy access to some of the area.

The prospecting started on the north half of the claim group and proceeded south covering as much ground as possible in the short time allotted. Most of the bush on the Waldman claim group is extremely dense and in some cases nearly in-accessible, especially with a Beep Mat. A total of 20 samples were taken including 17 rock samples and 3 tailings samples from the old dried up pond on claim 3007689. Sample descriptions and results can be reviewed in Appendix 1.

Beep Mat Prospecting

A BM 8, borrowed from the Kirkland Lake MNDM was used as more of a prospecting tool rather than for a grid geophysical survey. In other words, it was used as a giant metal detector. In some cases a Tesoro SuperTraq prospecting metal detector was used to help better define a Beep Mat high/low conductor signal by pin pointing indicating the target depth. The Beep Mat data and map can be viewed in Appendix II.

Waldman Claims Daily Prospecting Log

- May 31 Waldman Claims access and recon.
- June 1 Prospect upper NW corner of claim 4278616 and parts of 4278605 &4278606. Locate Sagdola shaft, Adit, pits and several shafts on claims 4278605 & 4278606.
- June 2 Prospect Waldman shaft #3 area on claim 4278605, and pits and large muck pile from rail line blasting on claim 4278616.
- June 5 Prospect and detect Sagdola shaft and several large trenches on claim 4278606 and Adit and trenches on claim 4278605.
- June 6 Tried to access Red Jacket mine shafts North and South on claim 4283637 (A-5) via old mine road through Silver Queen property along ONR railway, (no luck). Prospected claim 4278619.
- June 7 Prospected north half of claim 4278619 and located Waldman shaft #2 and several trenches. Prospected along old rail line on westside claims.
- June 8 Prospected Waldman shaft #2 area and took 2 rock samples. Prospected along old rail line and found several large angular boulders most likely from blasted trench nearby.
- June 9 Prospect claims 4282360 & 4283638, large outcropping and some old trenches, ate lots of bugs.
- June 10 Prospected Wallingford shafts area on claim 4275151. Took 2 Cobalt and 2 sulphide samples.
- June 12 Dragged Beep Mat (2.3km) over eastside of claim 4278619 and westside of claim 3007689. Recorded several high/low conductor hits including one next to an old blasted pit on claim 4278619.
- June 13 Dragged the Beep Mat (2.5km) over east and south claims 4278519, 4275151, 4275174. Fewer high/low conductors than the previous day. Had problems with the Beep Mat possibly due to the very high Magnetite in the pillowed VC south of the Waldman headframe.
- June 14 Dragged Beep Mat (1.3km) over claims 4278606, 4292360, 4275174. Recorded only a few low frequency conductors. Prospected and located pyrite vein on claim 4275174 and took 1 sulphide sample. A bear paid a visit.
- June 15 Dragged Beep Mat (500m) and prospected claims 4278616, 4278619, 4282360. Took 3 sulphide samples. Had another visit with a bear.
- June 16 Dragged Beep Mat (800m) over claim 3007689 and got several low frequency hits in the tailings pond. Waldman mine site muck. Took 4 samples.
- June 17 Prospected claim 3007689 and took 1 rock sample and 3 tailings samples.

Recommendations

Once all the assay results have been returned and reviewed it is highly recommended that follow up prospecting and possibly a more advanced exploration program such as a geophysical survey along with surface stripping and trenching be conducted over some of the Waldman claims.

The claims on the east side on the claim group along with the area around the old Wallingford shafts should be further explored. Although there is no exact numbers to confirm the amount of cobalt left in the Wallingford shaft property it is believed that there could still be a fair amount

It is well known that most of the cobalt and silver mineralization is in close proximity to the contact between the Coleman conglomerates and Keewatin volcanics. Claims 3007689, 4278619, 4275151 should be further explored.

Thank you.

Submitted by:

alan Kon

Alan Kon

APPENDIX I

Waldman Claim Property Samples

Claim #	Sample #	Description	Coordinates	Elavation	Time/Date
4275174	296451	PYRR IN VC OC	17 T 598422 5246822	332 m	5/31/2017 13:38
4278619	296452	CPY IN MUCK	17 T 599052 5247535	335 m	6/8/2017 13:55
4278619	296453	HEM IN MUCK	17 T 599055 5247533	337 m	6/8/2017 14:24
4283638	296454	SEMI MASS PYRR/PY	17 T 599082 5246847	323 m	6/9/2017 11:04
4282360	296455	PY/CPY?	17 T 598825 5246911	333 m	6/9/2017 14:01
4275151	296456	COBALT STRINGERS II	17 T 599138 5246724	328 m	6/10/2017 11:23
4275151	296457	MASS COBALT VEIN	17 T 599137 5246721	327 m	6/10/2017 11:25
4275151	296458	PYRR/CPY MUCK	17 T 599152 5246731	328 m	6/10/2017 12:50
4275151	296459	PYRR/CPY/ZN	17 T 599146 5246719	329 m	6/10/2017 13:25
4275174	296460	PY/PYRR VEINS	17 T 598421 5246812	337 m	6/14/2017 12:45
4278616	296461	PYRR CPY BLDRS	17 T 598790 5247824	330 m	6/15/2017 10:39
4278619	296462	CPY IN BRKN ROCK	17 T 598809 5247680	331 m	6/15/2017 20:10
4282360	296463	PY IN VC FAULt?	17 T 598828 5246909	332 m	6/15/2017 13:53
4278619	296464	COBALT IN MUCK	17 T 599261 5247194	325 m	6/16/2017 13:33
4278619	296465	COBALT IN MUCK	17 T 599281 5247192	324 m	6/16/2017 13:31
4278619	296466	COBALT IN MUCK	17 T 599277 5247211	321 m	6/16/2017 13:49
4278619	296467	PYRR CPY IN MUCK	17 T 599287 5247202	319 m	6/16/2017 14:01
3007689	296468	PYRR PY INSITU	17 T 599321 5247317	332 m	6/17/2017 10:51
3007689	296469	TAILS	17 T 599399 5247335	321 m	6/17/2017 11:58
3007689	296470	TAILS	17 T 599425 5247342	324 m	6/17/2017 12:09
3007689	296471	TAILS	17 T 599447 5247368	318 m	6/17/2017 12:20
CPY = CH	ALCOPYR	ITE			
CO = COB	ALT				
PY = PYR	ITE				
PYRR = P	YRROHOTI	TE			
HEM = HE	MATITE				
ZN = ZINC	/SPHALER	RITE			
BLDRS = I	BOULDERS	S			

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: PALISADE RESOURCES CORP. **69 YONGE STREET SUITE 1010** TORONTO ON M5E 1K3

Page: 1 Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12- IUL- 2017

Account: PRCDVOXH

CERTIFICATE TM17124106

Project: WALDMAN CLAIMS

This report is for 21 Rock samples submitted to our lab in Timmins, ON, Canada on 20- JUN- 2017.

The followi

ollowing have access	to data associated with this	certificate:
PALISADE DATA	KEN RATTEE	

SAMPLE PREPARATION					
ALS CODE	DESCRIPTION				
WEI- 21	Received Sample Weight				
LOG- 22	Sample login - Rcd w/o BarCode				
CRU- 31	U-31 Fine crushing - 70% < 2mm				
CRU- QC	Crushing QC Test				
PUL- QC	Pulverizing QC Test				
SPL- 21	Split sample - riffle splitter				
PUL- 31	Pulverize split to 85% < 75 um				

ANALYTICAL PROCEDURE	:S
DESCRIPTION	INSTRUMENT
Au 30g FA- AA finish	AAS
35 Element Aqua Regia ICP- AES	ICP- AES
Ore Grade Ag - Aqua Regia	ICP- AES
Ore Grade Elements - AquaRegia	ICP- AES
Ag 30g FA- GRAV finish	WST- SIM
Ore Grade Co - Aqua Regia	ICP- AES
Ore Grade Ni - Aqua Regia	ICP- AES
	DESCRIPTION Au 30g FA- AA finish 35 Element Aqua Regia ICP- AES Ore Grade Ag - Aqua Regia Ore Grade Elements - AquaRegia Ag 30g FA- GRAV finish Ore Grade Co - Aqua Regia

To: PALISADE RESOURCES CORP. ATTN: KEN RATTEE **69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3**

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221

www.alsglobal.com
Fax: +1 (604) 984 0218

To: PALISADE RESOURCES CORP. 69 YONGE STREET **SUITE 1010** TORONTO ON M5E 1K3

Page: 2 - A Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12- JUL- 2017

Account: PRCDVOXH

Project: WALDMAN CLAIMS

Minera	15								CE	RTIFIC	ATE O	F ANAL	YSIS	TM171	24106	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- AA23 Au ppm 0.005	ME- ICP41 Ag ppm 0.2	ME- ICP41 Al % 0.01	ME- ICP41 As ppm 2	ME-ICP41 B ppm 10	ME-ICP41 Ba ppm 10	ME-ICP41 Be ppm 0.5	ME- ICP41 Bi ppm 2	ME- ICP41 Ca % 0.01	ME- ICP41 Cd ppm 0.5	ME- ICP41 Co ppm 1	ME- ICP41 Cr ppm 1	ME- ICP41 Cu ppm 1	ME- ICP41 Fe % 0.01
Q296451 Q296452 Q296453 Q296454 Q296455		1.53 0.94 1.11 1.33 0.55	0.008	0.2 <0.2 0.2 1.3 <0.2	2.19 3.40 6.04 1.52 6.51	31 5 11 94 9	<10 <10 <10 <10 <10	10 <10 <10 20 <10	<0.5 0.5 1.1 <0.5 <0.5	<2 <2 2 7 2	0.95 2.69 0.28 0.69 2.17	<0.5 <0.5 <0.5 <0.5 <0.5	30 39 71 131 90	111 150 202 107 141	165 165 140 128 100	4.91 6.68 10.75 6.44 14.15
Q296456 Q296457 Q296458 Q296459 Q296460		0.75 8.46 1.76 1.28 2.06		17.6 >100 35.2 2.4 0.2	1.45 0.86 1.12 2.77 1.85	>10000 >10000 885 255 35	<10 <10 30 <10 <10	<10 10 10 20 10	1.5 0.6 <0.5 <0.5 <0.5	73 255 7 3 <2	11.2 3.55 1.44 0.55 1.15	<0.5 <0.5 1.0 1.9 <0.5	>10000 >10000 251 91 39	52 46 37 358 229	8 51 4540 235 186	7.49 11.30 7.58 8.46 3.81
Q296461 Q296462 Q296463 Q296464 Q296465	,	0.86 1.41 2.18 0.82 2.08		1.2 0.3 <0.2 69.0 22.2	3.62 2.66 4.17 2.73 1.31	80 21 8 >10000 >10000	<10 <10 <10 <10 <10	10 <10 <10 <10 <10	0.6 0.8 <0.5 1.9 1.0	5 <2 2 1095 >10000	0.11 0.92 1.92 16.0 4.73	<0.5 <0.5 <0.5 <0.5 <0.5	136 39 53 >10000 >10000	118 141 89 87 43	6350 1980 95 17 26	7.42 5.17 9.44 7.47 5.64
Q296466 Q296467 Q296468 Q296469 Q296470		1.77 3.28 1.72 0.53 0.50		>100 6.0 5.1 7.0 5.7	6.06 0.73 3.07 2.51 2.18	>10000 610 185 2390 2230	<10 <10 <10 <10 <10	<10 10 10 20 10	1.9 <0.5 <0.5 1.1 1.1	267 43 6 122 130	3.88 4.15 0.28 2.94 2.79	<0.5 <0.5 <0.5 1.4 1.1	7460 352 115 744 912	213 9 159 135 95	504 1605 149 474 443	13.50 16.50 8.54 6.20 5.92
Q296471		0.52		22.4	2.46	1175	<10	30	1.1	149	1.86	2.5	341	106	904	6.02

Q296471

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

20

0.19

2.08

876

To: PALISADE RESOURCES CORP. **69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3**

Page: 2 - B Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12-JUL-2017 Account: PRCDVOXH

Project: WALDMAN CLAIMS

mmera	13								CE	RTIFIC	ATE O	FANAL	YSIS	TM171	24106	
Sample Description	Method	ME-ICP41	ME-ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME-ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME- ICP41	ME-ICP41	ME- ICP41
	Analyte	Ga	Hg	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	S	Sb	Sc	Sr
	Units	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	ppm
	LOR	10	1	0.01	10	0.01	5	1	0.01	1	10	2	0.01	2	1	1
Q296451		<10	<1	0.07	<10	1.57	850	<1	0.08	53	200	<2	0.63	<2	5	29
Q296452		10	<1	0.04	<10	3.64	1120	<1	0.04	135	290	<2	0.09	<2	11	14
Q296453		20	<1	0.04	<10	6.17	1650	<1	0.02	240	90	2	0.04	<2	27	3
Q296454		10	<1	0.07	<10	1.08	595	<1	0.08	130	320	39	2.89	<5	8	8
Q296455		20	<1	0.01	<10	5.17	2660	<1	0.01	169	290	<2	0.67	<2	30	12
Q296456		10	<1	0.02	20	1.06	800	15	0.02	1260	1630	64	3,11	146	5	28
Q296457		<10	<1	0.04	40	0.62	360	15	0.03	1290	800	510	6.00	271	4	11
Q296458		10	<1	0.04	<10	0.74	626	5	0.03	138	260	305	5.84	6	2	11
Q296459		10	<1	0.39	10	1.80	1010	<1	0.07	183	250	395	0.81	<2	7	5
Q296460		<10	<1	0.06	<10	1.47	772	<1	0.07	59	160	2	0.51	<2	4	26
Q296461 Q296462 Q296463 Q296464 Q296465		20 10 10 10 10 <10	<1 <1 <1 <1 1	0.02 0.02 0.01 0.01 0.01	<10 10 10 <10 <10	3.06 2.49 2.69 2.63 1.02	830 544 2280 2240 783	2 1 <1 18 5	0.04 0.05 0.03 0.02 0.03	83 71 102 4460 >10000	420 480 450 230 110	18 8 <2 20 120	0.77 0.29 0.21 2.04 >10.0	<2 <2 <2 <2 58 29	18 13 11 15	4 8 29 52 18
Q296466 Q296467 Q296468 Q296469 Q296470		20 <10 10 10 10	20 <1 1 <1 <1	0.02 0.05 0.03 0.09 0.09	<10 <10 <10 20 30	5.60 0.39 2.95 2.24 1.88	1950 617 804 979 881	5 1 <1 3 4	0.01 0.04 0.05 0.04 0.04	1630 208 116 218 240	200 110 330 580 420	930 238 79 862 536	0.26 6.75 2.22 0.07 0.10	77 <2 5 10	25 1 25 13 11	17 7 3 19 17

6

0.05

115

540

1730

0.19

14

12

13

10

1

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221

Fax: +1 (604) 984 0218

www.alsglobal.com

To: PALISADE RESOURCES CORP. 69 YONGE STREET **SUITE 1010** TORONTO ON M5E 1K3

Page: 2 - C Total # Pages: 2 (A - C) Plus Appendix Pages Finalized Date: 12-JUL- 2017 Account: PRCDVOXH

Project: WALDMAN CLAIMS

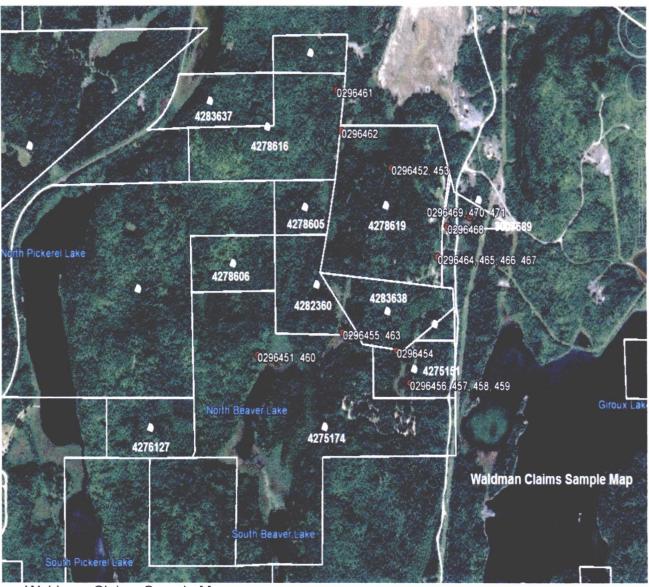
Illinera	13								CI	RTIFIC	ATE O	F ANALYSIS	TM17124106
Sample Description	Method Analyte Units LOR	ME- ICP41 Th ppm 20	ME- ICP41 Ti % 0.01	ME-ICP41 TI ppm 10	ME-ICP41 U ppm 10	ME- ICP41 V ppm 1	ME- ICP41 W ppm 10	ME-ICP41 Zn ppm 2	Ag- OG46 Ag ppm 1	Ag- GRA21 Ag ppm 5	Co- OG46 Co % 0.001	Ni- OG46 Ni % 0.001	
Q296451 Q296452 Q296453 Q296454 Q296455		<20 <20 <20 <20 <20	0.17 0.19 0.18 0.24 0.24	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	68 180 225 102 298	<10 <10 <10 <10 <10	50 115 210 56 168					
Q296456 Q296457 Q296458 Q296459 Q296460		<20 <20 <20 <20 <20 <20	0.02 0.02 0.10 0.25 0.14	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	89 60 57 169 63	<10 <10 <10 <10 <10	32 19 260 665 44	103		1.510 1.890		
Q296461 Q296462 Q296463 Q296464 Q296465		<20 <20 <20 <20 <20	0.01 0.01 0.26 0.03 0.02	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	187 123 225 132 87	<10 <10 <10 <10 <10	67 43 131 43 28			2.64 12.70	4.75	
Q296466 Q296467 Q296468 Q296469 Q296470		<20 <20 <20 <20 <20	0.05 0.03 0.22 0.10 0.08	<10 <10 <10 <10 <10	<10 <10 <10 <10 <10	241 14 270 130 113	<10 <10 <10 <10 <10	96 35 142 493 391	>1500	1850			
Q296471		<20	0.13	<10	<10	133	<10	791		d Martin Community and a Marine			

ALS Canada Ltd.

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221

Fax: +1 (604) 984 0218

www.alsglobal.com


To: PALISADE RESOURCES CORP. **69 YONGE STREET SUITE 1010 TORONTO ON M5E 1K3**

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 12- JUL- 2017 Account: PRCDVOXH

Project: WALDMAN CLAIMS

CERTIFICATE OF ANALYSIS TM17124106

		CERTIFICATE COM	MENTS				
Applies to Method:	Processed at ALS Vancouver locate Ag- GRA21 ME- ICP41						
Applies to Method:	Processed at ALS Timmins located CRU- 31 PUL- QC	l at Unit 10 - 2090 Riverside D CRU- QC SPL- 21	Orive, Timmins, ON, Canada. LOG- 22 WEI- 21	PUL- 31			

Waldman Claims Sample Map

APPENDIX II

Waldman Prospecting Tracks Data

Point Name	Description	Coordinates	Elavation	Date/Time
ADIT	OPEN	17 T 598573 5247375	324 m	5/31/2017 14:36
BLSTD TRCH	LRG ANGLR BLDRS	17 T 598760 5247493	324 m	6/8/2017 11:45
BRCKN ROCK	FROM RR LINE?	17 T 598814 5247669	321 m	5/30/2017 13:11
CLM LN	Unknown Line	17 T 598531 5247316	328 m	5/31/2017 12:28
CNG OC	LRG OC	17 T 598706 5247179	333 m	6/7/2017 15:28
DB/LAMP? OC		17 T 598951 5246853	331 m	6/9/2017 11:50
DDH1	2008 DDH	17 T 598779 5247562	320 m	5/30/2017 13:14
END OF TRL		17 T 598423 5246795	326 m	5/31/2017 13:16
G. L. CLAIM Pit	sml trnch?	17 T 598413 5247488		6/1/2017 19:05
Good Trail	WELL TRVLD	17 T 598808 5247748	323 m	5/30/2017 13:08
JJ gray trench1		17 T 598788 5247857		5/31/2017 9:01
OC TOP	large outcrop	17 T 598572 5247194	350 m	6/5/2017 14:48
OLD RR LINE		17 T 599368 5247018	308 m	5/30/2017 12:35
OLD STRPPD AREA	VC VNS/SHEAR	17 T 599133 5246578	322 m	5/30/2017 13:47
OLD TELE POLE		17 T 599186 5247611	329 m	6/2/2017 10:21
OLD TRL	SKIDDER TRL?	17 T 598760 5247398	322 m	5/30/2017 13:24
Phantom shaft	Prov shaft- non exsist	17 T 598578 5247797		5/31/2017 9:04
PIT/TRNCH?		17 T 598381 5247046	343 m	5/31/2017 14:10
RED JACKET shft A	19m deep?	17 T 598153 5247753		5/31/2017 9:08
RED JACKET shft B	SHAFT - 2 COMP 20m	17 T 598053 5247753		5/31/2017 9:10
Sagdola shaft	SHAFT & MUCK	17 T 598443 5247185	339 m	5/31/2017 12:46
SKIDDER TRL	OVERGROWN	17 T 599159 5246868	320 m	5/30/2017 13:55
TRENCH1	LONG 4FT DEEP	17 T 598508 5247208	346 m	6/5/2017 14:15
TRENCH2	LONG 75FT, 4FTDEEP	17 T 598531 5247202	342 m	6/5/2017 14:34
Waldman Shaft 1		17 T 599253 5247240		6/6/2017 20:00
Waldman shaft 3	Capped	17 T 599220 5247634	330 m	6/2/2017 10:15
Waldman Shaft 2	FENCED WITH TIN BL	17 T 599050 5247532	330 m	6/7/2017 14:38
Wallingford Shaft 1	FENCED	17 T 599158 5246815	322 m	5/30/2017 13:38
Wallingford Shaft 2		17 T 599150 5246726		6/20/2017 18:03
2 TRENCHS	50FT + LONG	17 T 598512 5247204	337 m	5/31/2017 14:30

Waldman Claims Beep Mat Data

Waypoint	Description	Coordinates	Eleavation	Date/Time
BLSTD PIT	DEPTH UNKN	17 T 599282 5247460	327 m	6/12/2017 12:56
BROKEN ROCK	FROM RR LINE?	17 T 598816 5247658		6/12/2017 21:16
DDH'08	Drill Collar	17 T 599336 5247388	328 m	6/12/2017 12:23
DDH'08 2	Drill Collar	17 T 599253 5247405	324 m	6/12/2017 13:12
DEEP PIT	~12' DEEP	17 T 598790 5247810		6/19/2017 21:16
H/L CNDTR	99%RT NEAR PIT	17 T 599273 5247264	323 m	6/12/2017 13:39
H/L CNDTR 2	86%RT	17 T 599318 5247426	329 m	6/12/2017 12:31
H/L CNDTR 4	99% RT	17 T 599246 5247434	323 m	6/12/2017 13:08
H/L CNDTR1	+100HL 99%RT	17 T 599341 5247358	327 m	6/12/2017 11:42
H/L CONDUCTER 6	Very H/ L FRQCY, Steel	117 T 598969 5246579	333 m	6/13/2017 14:40
L/H FQCY HITS	Area around shaft	17 T 598459 5247197	341 m	6/14/2017 14:51
LANSAT STN		17 T 599313 5247377	328 m	6/12/2017 11:56
LOW Conductor	STPPD OC NO RT	17 T 599297 5247479	329 m	6/12/2017 12:51
LOW Conductor	>20 FQCY IN TAILS	17 T 599418 5247308	321 m	6/16/2017 10:35
LOW CONDUCTER	SEVERAL CNDTRS	17 T 599139 5246684	323 m	6/13/2017 13:02
LOW CNDTR AREA	AWIDE AREA CONDUC	17 T 598397 5246819		6/14/2017 20:26
LRG STRIPPED OC		17 T 599086 5246536	326 m	6/13/2017 13:53
OLD PROSP SHAK		17 T 599246 5247440	323 m	6/12/2017 13:05
OLD STRPPD AREA	VC VNS SHEAR	17 T 599133 5246578	322 m	5/30/2017 13:47
PBS/AG VN	QU CALC Pbs Ag	17 T 599271 5247132	317 m	6/13/2017 11:50
Pit2	Old Pit	17 T 598952 5246643		6/13/2017 14:26
Waldman #1	Headframe	17 T 599235 5247240		6/19/2017 20:30
Wallingford Shaft 1	FENCED	17 T 599147 5246803		6/19/2017 20:04
Wallingford Shaft 2	FENCED	17 T 599150 5246721	321 m	5/30/2017 13:42

APPENDIX III

1.2 Beep Mat Components

When you receive your Beep Mat, check if it contains all components shown at illustration 1. Please notice the terminology used on that illustration since it will be used next in this manual.

The following optional components may also be included:

- a solar battery with a recharging battery
- a dumping cable

Make sure there are no apparent breakings and if you have all components shown at illustration 1. Contact Instrumentation ODD Inc. if necessary.

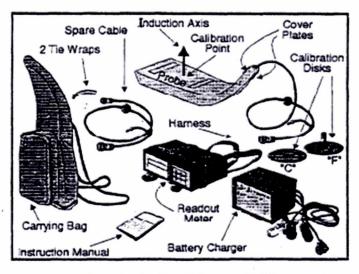


Illustration 1: Beep Mat components

1.3 Specifications

Power supply: Battery life:

Storage capacity: Size: Reading unit:

Probe: Weight: Reading unit:

Probe: Operating temperature:

Operating temper Humidity: 2 rechargeable 6-V batteries over 10 hours

3,000 readings 18 x 20 x 6.4 cm

30 x 91 x 7.6 cm 1.9 kg 3.8 kg

from -10 °C to 40 °C

can be operated on rainy, foggy or snowy days

TESORO LOBO SUPERTRAQ

SPECIFICATIONS

Operating Frequency	17.8 kHz				
Searchcoil Type	Elliptical, widescan				
Searchcoil Size	10" elliptical (length)				
Searchcoil Family	Delta				
Cable Length	Approx. 8'				
Audio Frequency	Approx 330 Hz to 550 Hz				
Audio Output	1 1/2" speaker and headphone jack				
Headphone Compatibility	1/4" stereo plug				
Weight (may vary slightly)	3.5 lbs				
Battery Requirement	Eight AA cells (alkaline)				
Battery Life (typical)	20 to 30 hours				
Optimum Temp. Range	30° to 100° F				
Optimum Humidity	0 to 75% R H				
Operation Modes	All Metal (motion required)				
Operating Modes	Silent Search Discriminate				
All Metal Tuning Mode	Fast Auto Tune				
Pinpoint Mode	No-Motion All Metal (no Auto Tune)				

Garmin GPSMAP 62stc

Physical & Performance:

unit dimensions, 2.4" x6.3" x 1.4" (6.1 x 16'0 x 3'6 cm)

Display size, WxH 1.43" x2'15" (3'6 x 5'5 cm); 2'6" diag (6'6 cm)

Display resolution, WxH 160 x 240 pixels

Display type transflective, 65-K color TFT

Weight 9.2 oz (260.1 g) with batteries

Battery2AAbatteries (not included);NIMHLithium recommended

Battery life 20 hours

Waterproof Yes (IPX7)

Floats No

High-sensitivity receiver Yes

interface high-speed USB and NMEA 0183 compatible

Maps & Memory:

Base map Yes

Preloaded maps Yes (topographic)

Ability to add maps Yes

Built-in memory 3-5GB

Accepts data cards micro SD card (not included)

Waypoints/favorites/locations 2000

Routes 200

Track log 10,000 points, 200 saved tracks

Features & Benefits:

Automatic routing (turn by turn routing on roads) Yes (with optional mapping for detailed roads)

Electronic compass Yes (tilt-compensated 3-axis)

Touchscreen No

Barometric altimeter Yes

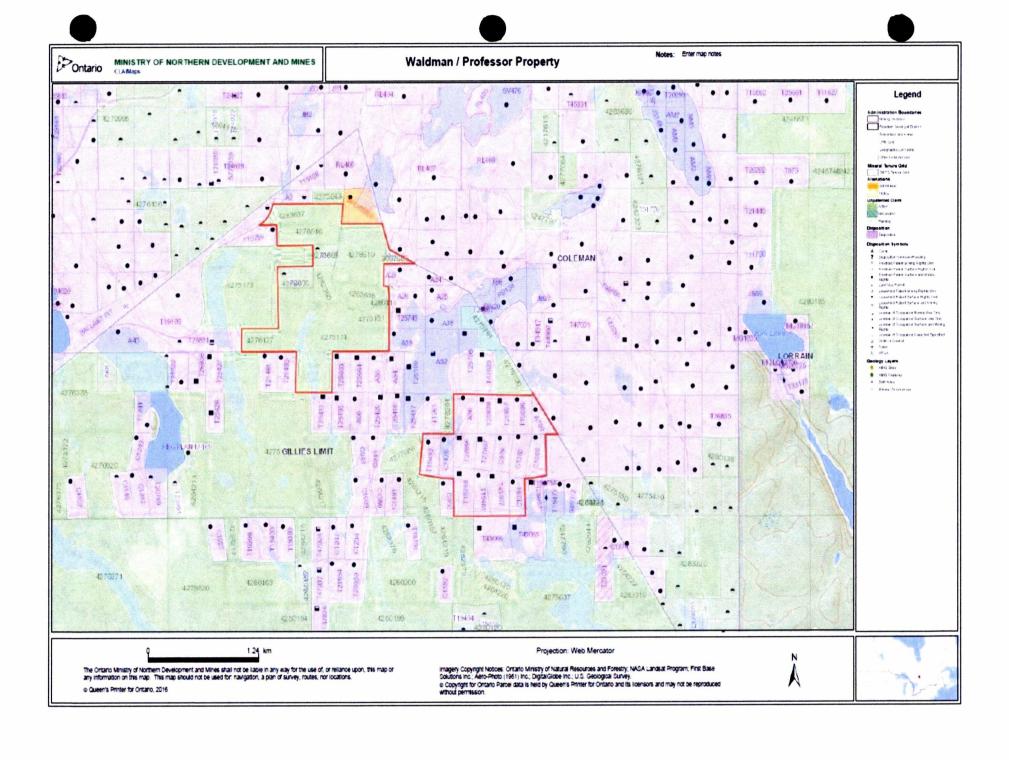
Camera no

Geocaching-friendly Yes (Paperless)

Custom maps compatible Yes

Photo navigation (navigate to geotagged photos) Yes

Hunt&fish calendar yes


Sun and moon information Yes

Tide tables productTemplate.tab.specs-picklist'yes-with-optional-bluechart

Area calculation Yes

CustomPols (abilitytoaddadditionalpointsofinterest)Yes

Unit-to unit transfer (shares data wirelessly with similar units) Yes

