We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Work Report On Claim # 4277651 Grew River Property

Holly Lake Area Thunder Bay South Mining Division

September 2017

Cameron McLean P.Geo.

Table of Contents

Introduction	3
Location & Access	3
Previous Work	4
Regional Geology & Property Geology	4
Exploration Work Conducted	5
Conclusions & Recommendations	6
References	7
Table of Figures Figure 1: Location map of Grew River property Figure 2: Claim map of Grew River Property Figure 3: Regional Geology of the Garden Lake Greenstone belt (from Ontario Geological Section of Se	4 urvey 2011) 5
Appendices Assay Certificates	opendix A
Daily Log	opendix B
Traverse Map Ap	opendix C

Introduction

The Grew River Property consists of one 8-unit claim (4277651) that was staked in August of 2015. The claim was staked based on its proximity to an MNDM recommendation for exploration and based on review of a regional airborne magnetic survey. The property was visited to evaluate road and lake access and also to conduct preliminary prospecting.

Location & Access

The property is located within the Holly Lake Area and is ~135 km NW of Thunder Bay. It can be accessed by travelling North of Thunder Bay on Highway 527, then along highway 811, travelling along Grew Road and then by hiking in or canoeing from Kearns Lake. The property is at the SW corner of Kearns Lake.

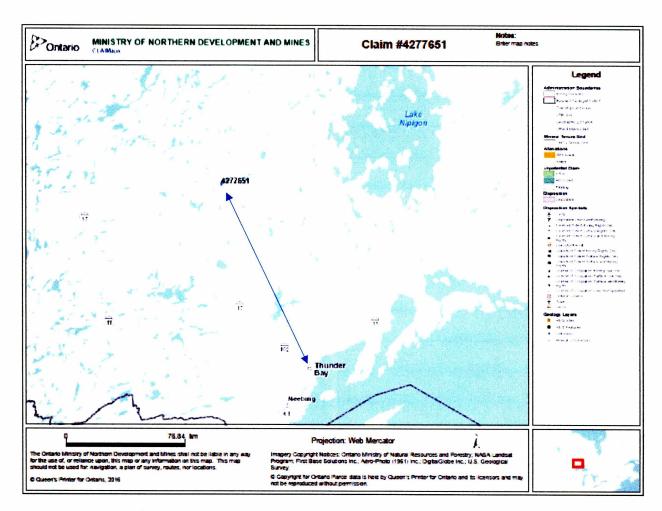


Figure 1: Location map of Grew River property

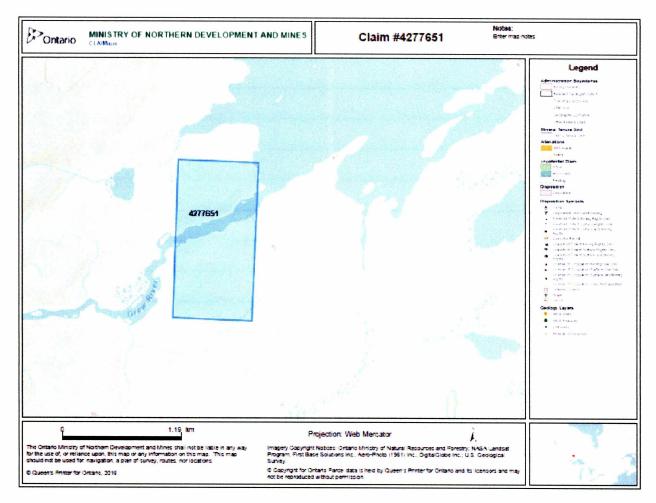


Figure 2: Claim map of Grew River Property

Previous Work

The Garden Lake Belt has been explored for shear and vein hosted gold as early as the 1930's (Puumala, 2015). Several gold occurrences exist including a few in proximity to the Garden Lake Deformation Zone. The Kearn's Road occurrence is one of those and was reported to have 0.69 ounce per ton gold (Hart, 2000). The Kearn's Road occurrence is within 2 km of the Grew River Property. Additionally, the Garden Lake Belt has the potential to host and has been explored for volcanogenic massive sulfide (VMS) style mineralization.

Regional Geology & Property Geology

The Grew Property is located within the Wabigoon Sub province of the Superior Craton. The property overlies the western edge of the Garden Lake greenstone belt which is dominated by mafic metavolcanics rocks.

Bedrock exposure on the property is limited due to extensive thick overburden. Outcrop can be found along the shoreline of Kearns Lake and exposed along the sides of steep hills. The exposures that were visited were dominantly mafic metavolcanics and frequently had quartz veining.

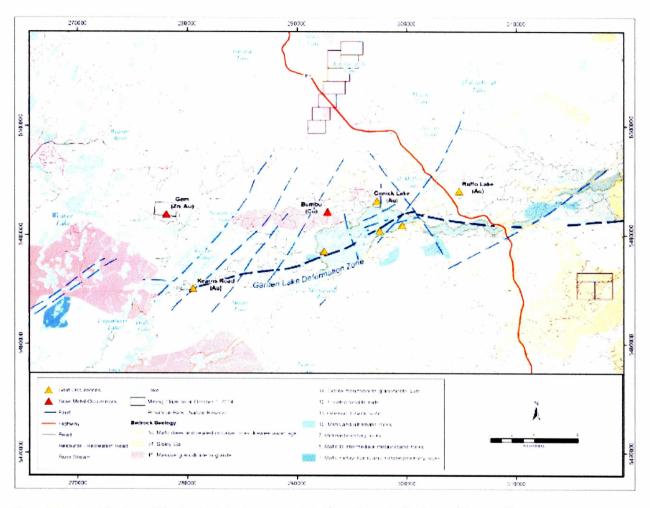


Figure 3: Regional Geology of the Garden Lake Greenstone belt (from Ontario Geological Survey 2011)

Exploration Work Conducted

The property was visited to evaluate access and to conduct preliminary prospecting and sampling (see Appendix B&C). To date the prospecting completed has been preliminary in nature. On October 9th, 2016 a total of 6 samples were collected and assayed (see table and figure 4 below). No significant assays were returned.

Sample #	easting	northing	elevation	UTM Zone	Sample Description
36276	713855	5486206	487	15U	quartz vein in fine grained, grey, mafic volcanic
36277	713861	5486191	484	15U	quartz vein in fine grained, grey, mafic volcanic
36278	713759	5485909	489	15U	fine grained, grey, mafic volcanic
36279	713771	5485901	498	15U	quartz vein in fine grained, grey, mafic volcanic
36280	713806	5485900	508	15U	fine grained, grey, mafic volcanic

Table 1: Sample location and description

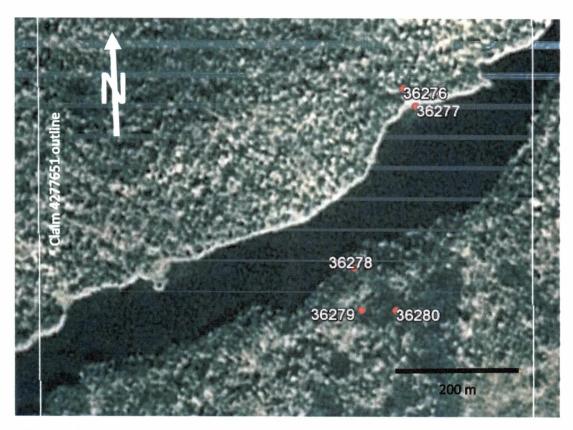


Figure 4: Plan map of sample locations on satellite photo

Conclusions & Recommendations

There has not been enough work completed on this property to make definitive conclusions. However, this property remains deserving of exploration due to the coincidence of prospective geology, regional structure, proximity to mineral occurrences and intriguing geophysics. It is recommended that additional prospecting and bedrock mapping be conducted on this property.

References

Hart, T.R. 2000. Precambrian geology, Garden Lake area; Ontario Geological Survey, Open File Report 6037, 82p.

Ontario Geological Survey 2011. 1:250 000 scale bedrock geology of Ontario; Ontario Geological Survey, Miscellaneous Release Data 126 Revision 1.

Puumala, M.A., Campbell, D.A., Tims, A., Debicki, R.L., Pettigrew, T.K. and Brunelle, M.R. 2015. Report of Activities 2014, Resident Geologist Program, Thunder Bay South Regional Resident Geologist Report: Thunder Bay South District; Ontario Geological Survey, Open File Report 6303, 75p.

Completed Sept 14 2017

Appendix A Assay Certificates

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221

www.alsglobal.com

Fax: +1 (604) 984 0218

To: LIANE BOYER **428 DUFFERIN ST** THUNDER BAY ON P7B 1N8

Page: 1 Total # Pages: 2 (A - E) Plus Appendix Pages Finalized Date: 9- NOV- 2016

This copy reported on 10- NOV- 2016

Account: LBPETNJY

CERTIFICATE TB16180313

Project: Grew Road Property

This report is for 5 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 21-OCT-2016.

The following have access to data associated with this certificate:

iowing	nave	access	ιο	uala	associated	with	this	cer
LIANE BO	YFR		1				- 1	

	SAMPLE PREPARATION								
ALS CODE	DESCRIPTION								
WEI- 21	Received Sample Weight								
LOG- 22	Sample login - Rcd w/o BarCode								
CRU- 31	Fine crushing - 70% < 2mm								
CRU- QC	Crushing QC Test								
PUL- QC	Pulverizing QC Test								
SPL- 21	Split sample - riffle splitter								
PUL- 31	Pulverize split to 85% < 75 um								

	ANALYTICAL PROCEDURES	
ALS CODE	DESCRIPTION	INSTRUMENT
ME- ICP06	Whole Rock Package - ICP- AES	ICP- AES
C- IR07	Total Carbon (Leco)	LECO
S- IR08	Total Sulphur (Leco)	LECO
ME- MS81	Lithium Borate Fusion ICP- MS	ICP- MS
ME- MS42	Up to 34 elements by ICP- MS	ICP- MS
OA- GRA05	Loss on Ignition at 1000C	WST- SEQ
TOT- ICP06	Total Calculation for ICP06	ICP- AES
ME- 4ACD81	Base Metals by 4- acid dig.	ICP- AES
PGM- ICP23	Pt, Pd, Au 30g FA ICP	ICP- AES

To: LIANE BOYER **ATTN: LIANE BOYER 428 DUFFERIN ST** THUNDER BAY ON P7B 1N8

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218

www.alsglobal.com

To: LIANE BOYER **428 DUFFERIN ST THUNDER BAY ON P7B 1N8**

Page: 2 - A Total # Pages: 2 (A - E)
Plus Appendix Pages ·
Finalized Date: 9- NOV- 2016

Account: LBPETNJY

IIIInera	15								Cl	ERTIFIC	CATE O	F ANAL	YSIS	TB161	80313	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	PGM- ICP23 Au ppm 0.001	PGM- ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	ME- ICP06 SiO2 % 0.01	ME- ICP06 AI2O3 % 0.01	ME- ICP06 Fe2O3 % 0.01	ME- ICP06 CaO % 0.01	ME- ICP06 MgO % 0.01	ME- ICP06 Na2O % 0.01	ME- ICP06 K2O % 0.01	ME- ICP06 Cr2O3 % 0.01	ME- ICP06 TiO2 % 0.01	ME- ICP06 MnO % 0.01	ME- ICP06 P2O5 % 0.01
36276 36277 36278 36279 36280		0.80 1.65 2.17 0.71 1.79	<0.001 0.003 0.001 0.001 0.001	<0.005 <0.005 <0.005 <0.005 <0.005	<0.001 <0.001 0.001 <0.001 0.001	95.0 76.9 48.1 67.0 49.0	1.58 9.58 15.10 17.00 13.50	0.66 4.78 16.85 5.07 12.90	0.29 2.63 6.08 2.45 11.45	0.10 2.00 6.35 2.15 5.77	0.51 1.13 3.30 3.51 2.10	0.18 1.64 0.15 1.54 0.34	<0.01 <0.01 0.03 <0.01 0.03	0.07 0.27 1.57 0.53 1.29	0.02 0.17 0.24 0.08 0.21	<0.01 0.12 0.15 0.20 0.12

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsglobal.com

Fax: +1 (604) 984 0218

To: LIANE BOYER **428 DUFFERIN ST THUNDER BAY ON P7B 1N8**

Page: 2 - B Total # Pages: 2 (A - E) Plus Appendix Pages . Finalized Date: 9- NOV- 2016 Account: LBPETNJY

Minera	115								C	ERTIFIC	TB16180313					
Sample Description	Method Analyte Units LOR	ME- ICP06 SrO % 0.01	ME- ICP06 BaO % 0.01	OA- GRA05 LOI % 0.01	TOT- ICP06 Total % 0.01	C- IR07 C % 0.01	S- IR08 S % 0.01	ME- MS81 Ba ppm 0.5	ME- MS81 Ce ppm 0.5	ME- MS81 Cr ppm 10	ME- MS81 Cs ppm 0.01	ME- MS81 Dy ppm 0.05	ME- MS81 Er ppm 0.03	ME- MS81 Eu ppm 0.03	ME- MS81 Ga ppm 0.1	ME- MS81 Gd ppm 0.05
36276 36277 36278 36279 36280		<0.01 0.02 0.01 0.05 0.01	0.01 0.03 0.01 0.06 0.02	0.42 1.86 2.03 1.97 1.85	98.84 101.13 99.97 101.61 98.59	0.12 0.31 0.21 0.08 0.49	<0.01 0.04 0.20 <0.01 0.04	98.6 277 73.8 559 143.0	0.6 31.9 12.7 48.6 12.7	20 30 230 20 200	0.07 1.73 0.51 1.50 0.34	<0.05 1.46 5.23 1.93 4.25	0.03 0.72 3.25 1.21 2.62	<0.03 0.52 1.06 0.87 1.10	1.2 12.8 21.4 22.1 18.3	0.11 1.52 4.03 2.31 3.68

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: LIANE BOYER 428 DUFFERIN ST THUNDER BAY ON P7B 1N8

Page: 2 - C Total # Pages: 2 (A - E)
Plus Appendix Pages
Finalized Date: 9- NOV- 2016 Account: LBPETNIY

									C	ERTIFIC	CATE O	F ANAL	<u> YSIS</u>	TB161	80313	
Sample Description	Method Analyte Units LOR	ME- MS81 Ge ppm 5	ME- MS81 Hf ppm 0.2	ME- MS81 Ho ppm 0.01	ME- MS81 La ppm 0.5	ME- MS81 Lu ppm 0.01	ME- MS81 Nb ppm 0.2	ME- MS81 Nd ppm 0.1	ME- MS81 Pr ppm 0.03	ME- MS81 Rb ppm 0.2	ME- MS81 Sm ppm 0.03	ME- MS81 Sn ppm 1	ME- MS81 Sr ppm 0.1	ME- MS81 Ta ppm 0.1	ME- MS81 Tb ppm 0.01	ME- MS81 Th ppm 0.05
36276		<5	<0.2	0.01	<0.5	0.01	<0.2	0.3	0.08	4.7	0.08	<1	17.9	<0.1	<0.01	0.05
36277		<5	2.4	0.28	13.5	0.14	3.4	11.6	3.22	49.5	1.87	1	221	0.2	0.22	4.36
36278		<5	2.8	1.10	4.3	0.44	3.4	10.5	2.01	5.8	3.43	1	112.5	0.2	0.76	0.81
36279		<5	4.6	0.36	21.3	0.21	6.5	19.4	5.15	55.1	3.14	1	445	0.5	0.31	7.17
36280		<5	2.4	0.89	4.7	0.37	2.7	8.5	1.73	11.7	2.77	1	148.5	0.1	0.60	0.56

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsglobal.com

Fax: +1 (604) 984 0218

To: LIANE BOYER **428 DUFFERIN ST THUNDER BAY ON P7B 1N8**

Page: 2 - D Total # Pages: 2 (A - E) Plus Appendix Pages · Finalized Date: 9- NOV- 2016

Account: LBPETNJY

IIIInera	115								CI	ERTIFIC	CATE O	F ANAL	YSIS	TB161	80313	
Sample Description	Method Analyte Units LOR	ME- MS81 Tm ppm 0.01	ME- MS81 U ppm 0.05	ME- MS81 V ppm 5	ME- MS81 W ppm 1	ME- MS81 Y ppm 0.5	ME- MS81 Yb ppm 0.03	ME- MS81 Zr ppm 2	ME- MS42 As ppm 0.1	ME- MS42 Bi ppm 0.01	ME- MS42 Hg ppm 0.005	ME- MS42 In ppm 0.005	ME- MS42 Re ppm 0.001	ME- MS42 Sb ppm 0.05	ME- MS42 Se ppm 0.2	ME- MS42 Te ppm 0.01
36276 36277 36278 36279 36280		<0.01 0.14 0.46 0.20 0.38	<0.05 2.13 0.19 1.44 0.15	13 48 414 82 349	<1 <1 <1 1 <1	0.5 9.0 27.8 11.0 23.1	0.04 0.95 3.03 1.28 2.38	3 91 104 187 82	0.4 0.3 0.3 <0.1 0.2	0.01 0.04 0.04 0.10 0.03	<0.005 <0.005 <0.005 <0.005 0.005	<0.005 0.007 0.024 0.011 0.011	<0.001 <0.001 0.001 <0.001 0.001	0.07 0.16 0.05 0.08 0.05	<0.2 <0.2 0.5 <0.2	<0.01 <0.01 0.01 <0.01 0.02

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
Fax: +1 (604) 984 0218 www.alsglobal.com

To: LIANE BOYER **428 DUFFERIN ST THUNDER BAY ON P7B 1N8**

Page: 2 - E Total # Pages: 2 (A - E) Plus Appendix Pages . Finalized Date: 9- NOV- 2016

Account: LBPETNJY

mmera	13								C	ERTIFIC	CATE C	F ANALYSIS	TB16180313
Sample Description	Method Analyte Units LOR	ME- MS42 TI ppm 0.02	ME- 4ACD81 Ag ppm 0.5	ME- 4ACD81 Cd ppm 0.5	ME- 4ACD81 Co ppm 1	ME- 4ACD81 Cu ppm 1	ME- 4ACD81 Li ppm 10	ME- 4ACD81 Mo ppm 1	ME- 4ACD81 Ni ppm 1	ME- 4ACD81 Pb ppm 2	ME- 4ACD81 Sc ppm 1	ME- 4ACD81 Zn ppm 2	
36276 36277 36278 36279 36280		<0.02 0.13 0.02 0.03 <0.02	<0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 0.5 <0.5 0.7	2 14 55 11 59	1 35 166 2 74	<10 10 10 20 <10	<1 1 <1 <1 <1	3 16 98 12 109	<2 10 4 10 4	1 4 38 8 42	3 69 134 67 157	

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221
www.alsglobal.com

Fax: +1 (604) 984 0218

To: LIANE BOYER
428 DUFFERIN ST
THUNDER BAY ON P7B 1N8

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 9- NOV- 2016

Account: LBPETNJY

Project: Grew Road Property

CERTIFICATE OF ANALYSIS TB16180313

		CERTIFICATE COM	MENTS										
	LABORATORY ADDRESSES												
Applies to Method:	Processed at ALS Thunder Bay loca CRU- 31 PUL- QC	hunder Bay, ON, Canada LOG- 22 WEI- 21	PUL- 31										
Applies to Method:	Processed at ALS Vancouver locate C- IR07 ME- MS81 TOT- ICP06	ed at 2103 Dollarton Hwy, Nor ME- 4ACD81 OA- GRA05	th Vancouver, BC, Canada. ME- ICP06 PGM- ICP23	ME- MS42 S- IR08									

Appendix B Daily Log

Sept 19 2015

purchase food source, organize and pack field equipment Liane Boyer and Gerard Boyer depart Thunder Bay travel along Grew Road until it is grown over (~3 km East of claim 4277651) set up camp near forestry road

Sept 20 2015

pack up camp
hike along grown over forestry road for ~4 km
hike north from trail ~2 km on to claim 4277651 through blow down
prospect claim for ~3 hours with no success finding outcrop
cover is mixture of regrowth through blow down forrest and grassy swamp
hike back to truck and drive back to Thunder Bay

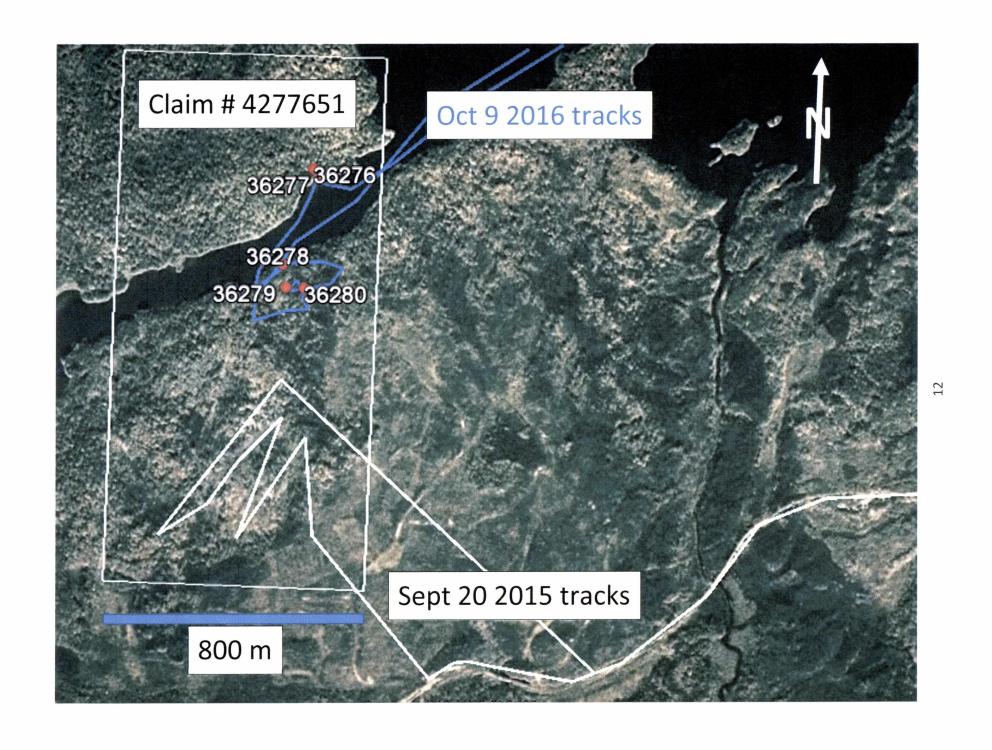
Sept 10 2016

purchase food source, organize and pack field equipment Liane Boyer and Gerard Boyer depart Thunder Bay travel along Grew Road until road is south of the east end of Kearns Lake set up camp near forestry road

Sept 11 2016

pack up camp
portage canoe through forrest to East end of Kearns Lake
start paddling west on Kearns Lake but weather degraded and could not continue
returned to truck and drive back to Thunder Bay

Oct 8 2016


purchase food source, organize and pack field equipment Liane Boyer and Gerard Boyer depart Thunder Bay travel along Grew Road until road is south of the east end of Kearns Lake set up camp near forestry road

Oct 9 2016

pack up snow covered camp
portage canoe through forrest to East end of Kearns Lake
start paddling west on Kearns Lake
conducted prospecting and sampling on claim #4277651
limited amount of outcrop found on shoreline
outcrop found was mafic metavolcanic
6 samples were collected
allsamples were from fine grained grey mafic metavolcanic, some containing qtz veins
overburden was composed of silt, gravel and boulders
forrest was dominantly black spruce intergrown with alder
returned to truck and drive back to Thunder Bay

Appendix C

Traverse Map

