We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2017 Assessment Report

On the Kirkland North Property

Kirkland Lake, Ontario Larder Lake Mining Division NTS 42A/1

Canadian Malartic Corporation August 01, 2017

Table of Contents

1
5
5
3
Э
)
1
1

List of Figures

Figure 1 Location map of Kirkland North Property in Ontario, Canada	.3
Figure 2 Kirkland North Property Location map - Teck Township	.4
Figure 3 Kirkland North Property - Mineral Tenure	.5
Figure 4: Regional Geology of the Kirkland Lake Gold Camp and Abitibi Greenstone Belt. Modified from Alexander 2007.	
Figure 5 Local Geology in the Claim area north of Kirkland Lake. The map shows the bands of Temiskaming meta- sediments intruded with felsic-intermediate intrusives and Keewatin volcanics in contact to the north of the	
Temiskaming sediments.	.9
Figure 6 Geology Legend to accompany cross-sections	15

List of Tables

Table 1 Kirkland North Property - 2017 Drill-hole summary	10
Table 2 Kirkland North Property Claim List	
Table 3 Kirkland North - Drill-hole lengths by claim	13
Table 4 Legend to accompany drill-logs	14

Appendix 1

Diamond Drill Logs FED17-001

Appendix 2

Assay Certificates

Appendix 3

Drill-hole location map (scale 1:3500)

Appendix 4

Drill-hole Cross Sections (scale 1:2500)

Cross Section 572432E

Introduction

The Kirkland North Property (incorporating the Federal Kirkland Mine sub-property – known as the Federal) is located within the Larder Lake Mining Division, in the east end of Teck Township, immediately north of the Town of Kirkland Lake (NTS 42-A/1), in northeastern Ontario (See Figure 1). The property is owned 100% by Canadian Malartic Corporation (CMC).

This report summarizes the results from a portion of Canadian Malartic Corporation's 2017 exploration diamond drilling program conducted on the Kirkland North property during the period of July 11th to August 3rd, 2017. The work reported on herein consists of 530.5 metres and 352 core samples of diamond drilling in one (1) bore-hole.

Diamond drilling was contracted to Major Drilling of Rouyn-Noranda, QC in partnership with Matachewan First Nation. Program planning, site supervision, inspections, location spotting and surveying were conducted by Canadian Malartic personnel.

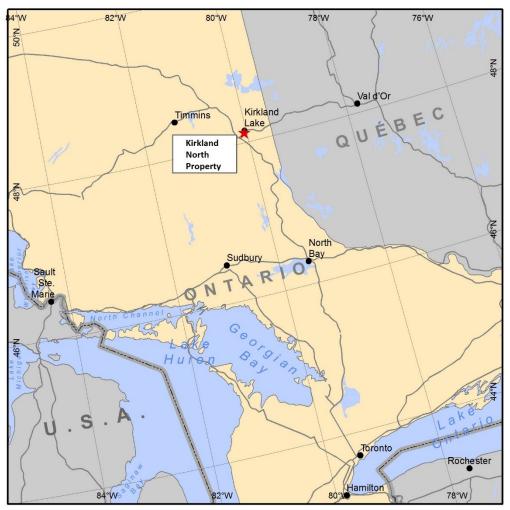


Figure 1 Location map of Kirkland North Property in Ontario, Canada

Property Description and Location

The Kirkland North property is located within the Larder Lake Mining Division, in the east end of Teck Township, immediately north of the Town of Kirkland Lake (NTS 42-A/1), in northeastern Ontario (Figure 2).

The Kirkland North property is comprised of 15 mining claims, spilt into three non-contiguous groups, covering approximately 248.24 hectares, (Figure 2). The easternmost group of claims is the largest and is centred on the former Federal Kirkland Mine hence its referral as the Federal Kirkland sub-property. The majority of the surface rights are held by The Corporation of the Town of Kirkland Lake (Table 2). The Kirkland North property is bounded on the south and west by ground held by Kirkland Lake Gold (Macassa Mine) apart from the Sylvanite Mine property which is held by CMC.

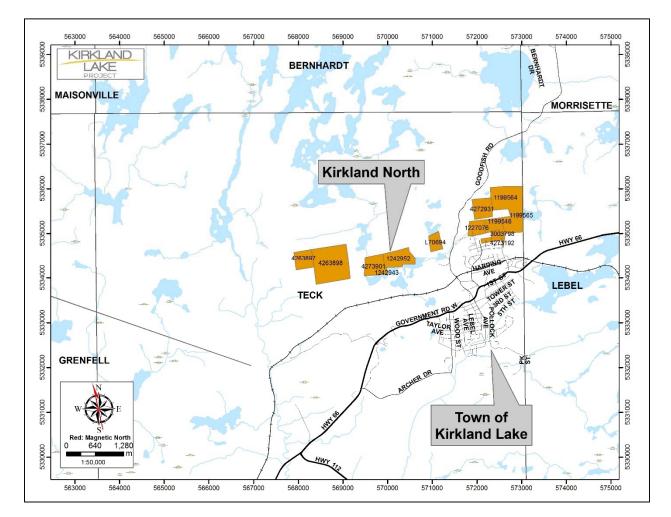


Figure 2 Kirkland North Property Location map - Teck Township

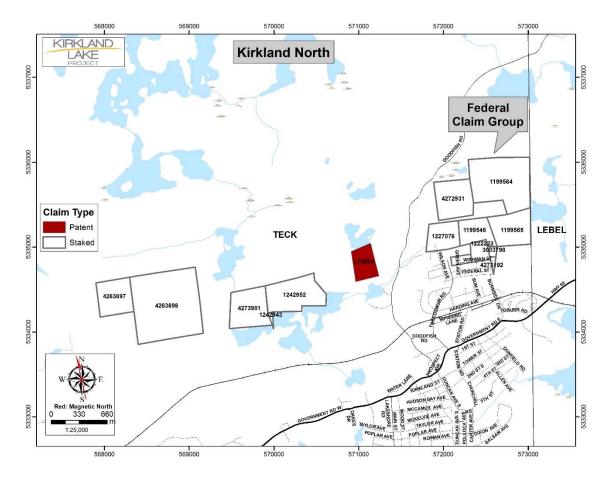


Figure 3 Kirkland North Property - Mineral Tenure

All necessary work permits, as well as consultations with First Nations, were obtained for the property prior to the commencement of work undertaken in 2017. An exploration plan and permit was received from the Ministry of Northern Development and Mines in accordance with section 78.3 of the Mining Act (Permit # PR-15-10784) which expires on November 18, 2018.

The Kirkland North property is accessible from Goodfish Road which bisects the western & eastern claims groups while the eastern-most group (the Federal Kirkland sub-property) can be accessed via Wishman Street and Foss Road from the south in the town of Kirkland Lake. There are several ATV trails/old dirt roads leading to the claims. The Federal Kirkland sub-property is almost immediately north of a residential neighborhood and abandoned residential lots. To the immediate east of the claim is a man-made dam which defines the Wright-Hargreaves mine tailings pond to the east.

History

The Federal Kirkland sub-property. The most recent work the Federal Kirkland sub-property was reported by Canadian Malartic Corporation from 2015 to 2017 and consisted of prospecting and geochemical sampling. Work was also conducted by Vault Minerals in 2006 and published in 2013 under assessment files AFRI# 20000001685 and 20000001686. The Vault Minerals work was designed to assess the

Kirkland Basin and Federal Kirkland historic properties. Vault Minerals was 100% acquired by Queenston Mining Inc. which in turn was 100% acquired by Osisko Mining Ltd and was then acquired by a 50-50% agreement between Agnico Eagle and Yamana Gold who formed the Osisko properties into the Canadian Malartic Corporation. Vault Minerals conducted a mapping and sampling program on their claims on the Federal Mine property.

Historically, The Federal Kirkland Mine property has had extensive and near continuous work conducted on it, most notably a 745 ft shaft which is currently capped in the northeast corner of claim #1222223. The underground workings consist of four levels situated at 200, 400, 500 and 700 feet below surface with pervasive drifting. Another notable period in the Federal Mine property was in 1986 and 1987, when a drill program was initiated by Goldhunter Explorations Inc. The drill program consisted of 27 diamond drill holes primarily targeting the mine workings on claim #1222223 and 1227076.

Regional Geology

In terms of regional disposition, the Kirkland North property is part of the southern Abitibi Greenstone belt within the Kirkland Lake Gold Camp. The Abitibi Greenstone Belt is a northeast-southwest trending, Archean-age intracratonic tectonic unit within the southern Superior Province of the Canadian Shield and is acknowledged for its world-class gold deposits. The Kirkland Lake Gold Camp is situated on the south limb of the regional Blake River synclinorium. The northern and southern limbs of the synclinorium are truncated respectively by the east-trending, Destor-Porcupine and the Cadillac-Larder Lake breaks. The majority of the historical gold production in the Abitibi Greenstone Belt is spatially associated with these two regional structures. The current geological classifications (Ayer et al, 2005) subdivide the Timmins – Kirkland Lake segment of the Abitibi Greenstone Belt into 11 supracrustal assemblages as:

Timiskaming (youngest)	Sediments and alkalic volcanics + iron formation
Porcupine	Sediments and calc-alkalic volcanics + iron
	formation
Upper Blake River	Calc-alkalic and tholeiitic volcanics
Lower Blake River	Tholeiitic volcanics
Upper Tisdale	Calc-alkalic volcanics
Lower Tisdale	Komatiitic, tholeiitic and calc-alkalic volcanics +
	Iron formation
Upper Kidd-Munro	Komatiitic, tholeiitic volcanics + iron formation
Lower Kidd-Munro	Calc-alkalic volcanics
Stoughton-Roquemaure	Komatiitic, tholeiitic and calc-alkalic volcanics
Deloro	Tholeiitic and calc-alkalic volcanics + iron formation
Pacaud (oldest)	Komatiitic, tholeiitic and calc-alkalic volcanics

Intrusive rocks are subdivided into three broad categories: synvolcanic, syntectonic and post tectonic intrusions (Ayer et al., 2005). Synvolcanic intrusives are tied, via geochronology, to the eleven supracrustal assemblages noted above. They are not well represented in the Kirkland Lake area with the felsic to intermediate Round Lake batholith to the southwest being the best example (Figure 4). Synvolcanic mafic to ultramafic intrusions and post tectonic intrusions are similarly not well represented in the Kirkland Lake area. More important in the project area, are the syntectonic intrusives, particularly the late syntectonic members. Ayer (2005) indicates that the late syntectonic intrusives are "broadly coeval with the Timiskaming assemblage", relatively small, and occur in close proximity to the regional structures. Larger intrusions of this type include the Otto Stock, Lebel Stock and Murdoch Creek Stock.

They tend to be alkalic, ranging from syenite to mafic syenite in composition. The syenite stocks often have contaminated margins and variably altered to metamorphosed contact aureoles.

The Kirkland Lake Gold Camp is essentially defined by a 5 km corridor around the Cadillac-Larder Lake Break (Figure 4). This major, east-trending, south-dipping, regional structure has juxtaposed Tisdale assemblage mafic to ultramafic rocks against much younger alkalic rocks and sediments of the Timiskaming assemblage. Thus the Blake River and Porcupine assemblages are absent in the immediate area of the break.

Canadian Malartic Corporation's large land package is assembled along the Cadillac-Larder Lake Break across three townships as the primary target area. The claims are underlain by both Timiskaming and Tisdale assemblage rocks and related intrusives with a number of gold occurrences including the past producing Upper Canada, McBean, Sylvanite, Crescent and Golden Gate mines. The Upper Canada and Sylvanite deposits occur within the Timiskaming assemblage, while the McBean open pit, Crescent and Golden Gate deposits are in Tisdale assemblage rocks. The past producing Upper Beaver deposit is disconnected from the LLCDZ and occurs within Upper Tisdale and Lower Blake River assemblage volcanics with associated sediments and felsic intrusives in northeastern Gauthier Township.

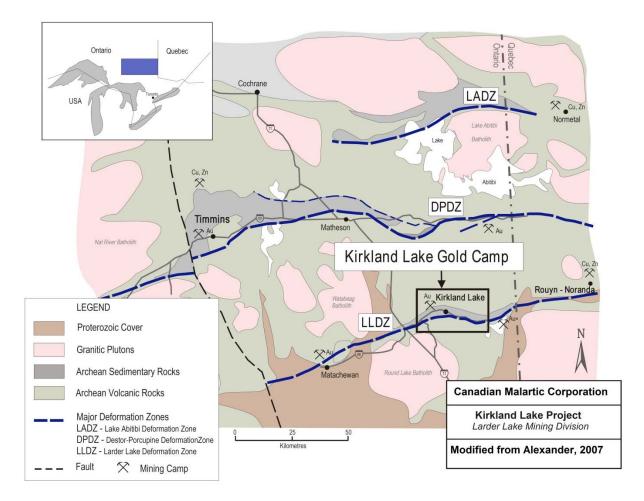


Figure 4: Regional Geology of the Kirkland Lake Gold Camp and Abitibi Greenstone Belt. Modified from Alexander, 2007.

Property Geology

The Federal Kirkland sub-property is situated within the prolific Kirkland Lake gold camp which is part of the Abitibi Greenstone belt in the Superior Province. The Abitibi Greenstone belt is Archean in age and is composed of greenschist facies volcanic and sedimentary rocks with localized syn-post tectonic intrusions of granitic to dioritic dykes to batholiths. The Abitibi Greenstone belt forms an east plunging synclinorium between the Abitibi batholith, northeast of Timmins and the Round Lake batholith, south of Kirkland Lake. Mesozoic aged kimberlitic dykes are also present in the Kirkland Lake Camp but are rare in occurrence. The Kirkland Lake Camp hosts Keewatin (2750-2700 Ma) and Temiskaming (2690-2670 Ma) aged assemblages associated with the Abitibi Greenstone belt. The Keewatin assemblages within the Kirkland Lake Camp are composed of the greenschist facies volcanco-sedimentary lithologies of the: Pacaud, Deloro, Stoughton-Roquemaure, Kidd-Munro, Tisdale, Kinojevis, and Blake River groups. The Temiskaming assemblage within the Kirkland Lake camp is the Temiskaming group, noted for its nonmarine, variably metamorphosed, pyroclastic and clastic-sedimentary (conglomerate) lithological units. Temiskaming group meta-sedimentary rocks form along the north facing side of the Larder Lake-Cadillac Deformation Zone (LLCDZ), a major east-west structural control associated with chemical alteration and sulphide mineralization. The LLCDZ length coincides with a folded and deformed sinuous belt of sedimentary rocks of Temiskaming age.

The Federal Kirkland sub-property hosts Temiskaming meta-sediments (conglomerate) as well as synpost volcanic syenite intrusives and a Kinojevis mafic intrusive suite. The Timiskaming sediments and syenite intrusives are present in the south of the claim while the mafic intrusives are in the north of the claim. The inferred contact from Ontario Geological Survey maps is striking northeast, through the centre of the claim. Both map units host various degrees of structural deformation from brittle (faults) to ductile (foliation/shearing).

To the North of the claims are a series of Keewatin aged basic volcanics (greenstone) of the Kinojevis Group. To the south are a series of Temiskaming meta-sedimentary units and felsic-intermediate intrusives (syenite-diorite).

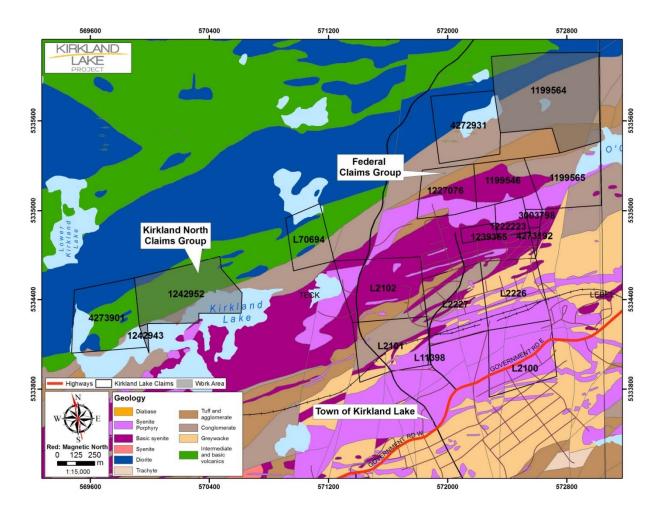


Figure 5: Local Geology in the Claim area north of Kirkland Lake. The map shows the bands of Temiskaming metasediments intruded with felsic-intermediate intrusives and Keewatin volcanics in contact to the north of the Temiskaming sediments.

Summary of Work Completed

During the period of July 11th to August 3rd, 2017 one (1) NQ diameter drill hole totalling 530.5 metres of core and 352 core samples was completed on the Kirkland North property. The drill-core is stored at CMC's Kirkland Lake office complex in Dobie, Ontario (former Upper Canada mine site). Drill-hole data is summarised in Table 1. Diamond drilling was carried out by Major Drilling of Rouyn-Noranda, QC. The focus of the drilling program was designed to explore the down-dip extension of mineralization previously defined on the property in the mid-late 1980's which is associated with the Federal Kirkland Shear Zone (FKSZ).

The historic drilling and stripping programs listed by Goldhunter Explorations Inc. formed the basis of the interpretation for the Federal Kirkland shear zone and its associated mineralization. The historic drill holes and assays were imported into GoCAD (a 3-D modelling software) where they were modelled resulting in an interpreted strike and dip of the mineralization. Coupled with modelled structures and lithologies, several possible drill pads were considered with the main criteria being low-impact and respectful of the residential neighbourhood.

Due to the proximity of residential housing the rig operated on day-shift only. Measures were taken to ensure public safety and to limit the noise from the operation as much as possible. To these ends a sound barrier was erected around the drill, the exhaust from the rig and water supply pump was muffled, a sump was dug to control drill-cuttings at the drill site and run-off with a fence erected around the sump. At the completion of drilling the sump was back-filled and graded. The drill casing was removed with a Vanruth plug inserted 30m down the borehole so the bore-hole could be cemented. The borehole was then covered with fill.

The following is a summary of the drill hole. Detailed geological descriptions are available within the accompanying drill log including assays and assay certificates. Drill-hole summary data is listed in Table 1 below.

Drill-hole FED17-001

The bore-hole encountered a Kirkland Lake style 'mafic' syenite (augite phenocrysts), a Kirkland Lake style bi-modal Feldspar porphyry, mafic intrusive, syenite porphyry and Temiskaming style conglomerate. The interpreted sub-vertical to south dipping FKSZ was intersected along with a broad corridor surrounding the shear zone composed of uniform sericite-potassic alteration with thin, sub-vertical fracture infills of black chlorite-molybdenum-pyrite. Weak gold mineralization was intersected along the FKSZ corridor.

Further exploration is warranted to follow-up on these anomalous intersections.

 Table 1 Kirkland North Property - 2017 Drill-hole summary

DDH	Azimuth	Dip	Length(m)	UTM-Nad83 - East	UTM-Nad83 - North	UTM-Nad83 - Elevation
FED17-001	190	-55	530.5	572429.992	5335129.999	326.609

Core Logging, Sampling and Assaying Procedures

After being recovered from the tube, the drill core was placed in wooden boxes by the drill crew. The wooden boxes were then wrapped shut with plastic wrap and delivered to the CMC Dobie facility by the drill contractor (Major Drilling).

The core was then logged and sampled by a CMC geologist as summarized below:

The core was first measured to check that the driller's metre blocks were correct and conformed to the shift reports. The core boxes were then marked with their respective starting and ending meterage. The core was logged in detail using, Geotic, a core logging computer program. Special attention was given to alteration, mineralization and structures within the core.

The drill hole was sampled top to bottom. Sample intervals were 1.5m long. The samples were then cut in half lengthwise by CMC technicians using a diamond core saw. Half of the cut core was then placed in plastic sample bags with their respective assay lab sample tags. The remaining half of the cut core was then returned to its respective core box with a corresponding assay lab tag stapled into the box corresponding to the sample tag interval. A sample blank and standard (lab standard CM-28 and GS5U)

was inserted at every twenty-fifth sample (alternating between the two standards) and a sample duplicate was taken at every twentieth sample. The bagged samples were then bundled and placed in plastic fibre (rice) bags; the rice bags were then placed into wooden crates and shipped to ALS Minerals' processing facility in Timmins with an associated work order and inventory. The remaining core in the core boxes were then inventoried with metal tags inscribed with their intervals, identifier and loaded onto pallets or core-racks depending on available space.

The CMC samples were sent to ALS Minerals where they underwent a fire assay. All samples were assayed by geochemical methods using atomic absorption spectrometry for Au ppb (1AT). Samples assaying equal or greater than 1g/t Au were re-assayed with a gravimetric finish using a second pulp from the reject. Sample pulps and rejects were returned to the CMC Dobie facility once ALS had completed their analysis. The pulps and rejects were inventoried and then stored in wooden crates.

Conclusions and Recommendations

Diamond drilling reported herein as part of the Kirkland Federal Kirkland exploration program of the Kirkland North property by Canadian Malartic Corp. has successfully outlined areas of weak gold mineralization along the FKSZ and intersected weak gold mineralization along the down-dip extension of the FKSZ.

A continued exploration program is warranted to follow-up on anomalous low-grade and sub-economic mineralization intersected in the 2017 diamond drilling program.

Authorship

This report was prepared and completed by Canadian Malartic Corp. geological staff member Christopher Clarke P.Geo at the Company's Kirkland Lake Office. 72 Upper Canada Drive, Dobie ON P0K 1B0 (705) 567-4377.

Christopher Clarke P.Geo Geologist

References

Ayer, J. A. et al, 2005: Overview of Results from the Greenstone Architecture Project Discover Abitibi Initiative; OGS open File Report 6154, 146 pp.

Alexander, D. R., 2007: Technical Report on Mineral Properties of Queenston Mining Inc. in the Kirkland Lake Gold Camp; NI 43-101 Report filed for Queenston Mining Inc. on SEDAR.

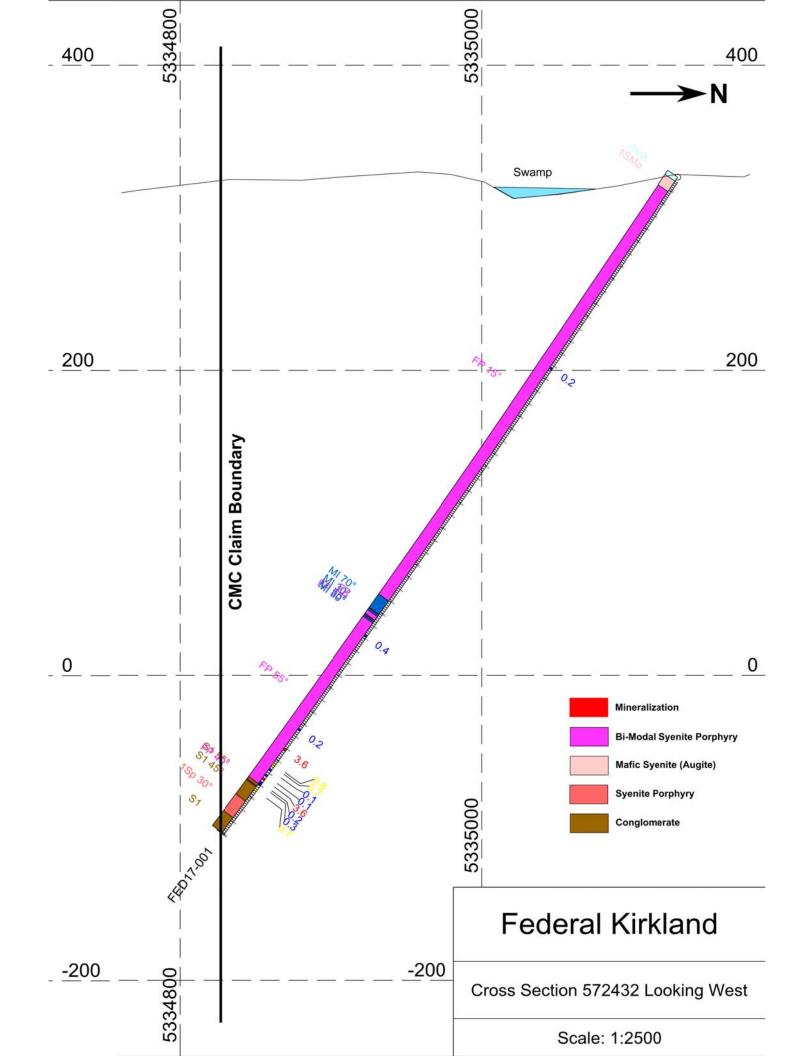
Claim_Number_ID	Township	Tenure_Type	Claim_Rights
L70694	Teck	Patent	MRO
3003798	Teck	Staked	MRO
1199564	Teck	Staked	MRO
4263897	Teck	Staked	MRO
1227076	Teck	Staked	MRO
1222223	Teck	Staked	MRO
4272931	Teck	Staked	MRO
1239355	Teck	Staked	MRO
1199546	Teck	Staked	MRO
4273901	Teck	Staked	MRO
1242943	Teck	Staked	MRO
1242952	Teck	Staked	MRO
4263898	Teck	Staked	MRO
1199565	Teck	Staked	MRO
4273192	Teck	Staked	MRO

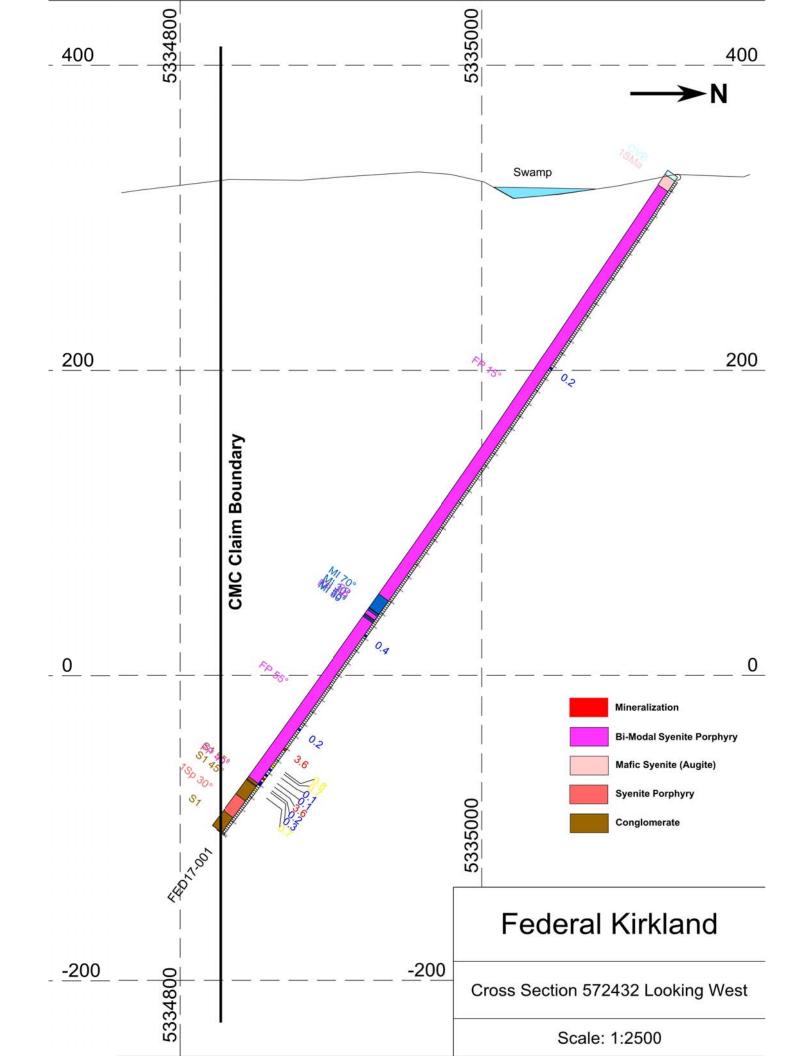
Table 2 Kirkland North Property Claim List

Table 3 Kirkland North - Drill-hole lengths by claim

HOLE ID	CLAIM	FROM	то	TOTAL (m)	CLAIM	FROM	то	TOTAL (m)
FED17-001	1199546	0	112	112	1222223	112	530.5	418.5

Table 4 Legend to accompany drill-logs


	Lithological Codes
Code	Unit Name
3D	Diabase
1Sp	Syenite Porphyry
1Spa	Altered Syenite Porphyry
Alt	Altered
ALZ	Altered Zone
DZ	Deformation Zone
FAZ	Fault Zone
SHZ	Shear Zone
MNZ	Mineralized Zone
OVB	Overburden
QCVZ	Quartz Carbonate Vein Zone
S1	Conglomerate
S3	Greywacke
S6	Siltstone
S7	Mudstone
V4	Trachyte
V4a	Trachyte Altered
V4S	Trachyte Spotted
V9	Tuff
V9BX	Tuff Breccia
V9L	Lapilli Tuff


Alterat	Alteration Descriptions					
Code	Description					
Ank	Ankerite					
Ca	Calcite					
Cl	Chlorite					
Ep	Epidote					
He	Hematite					
К	Potassic					
Se	Sericite					
Si	Silica					

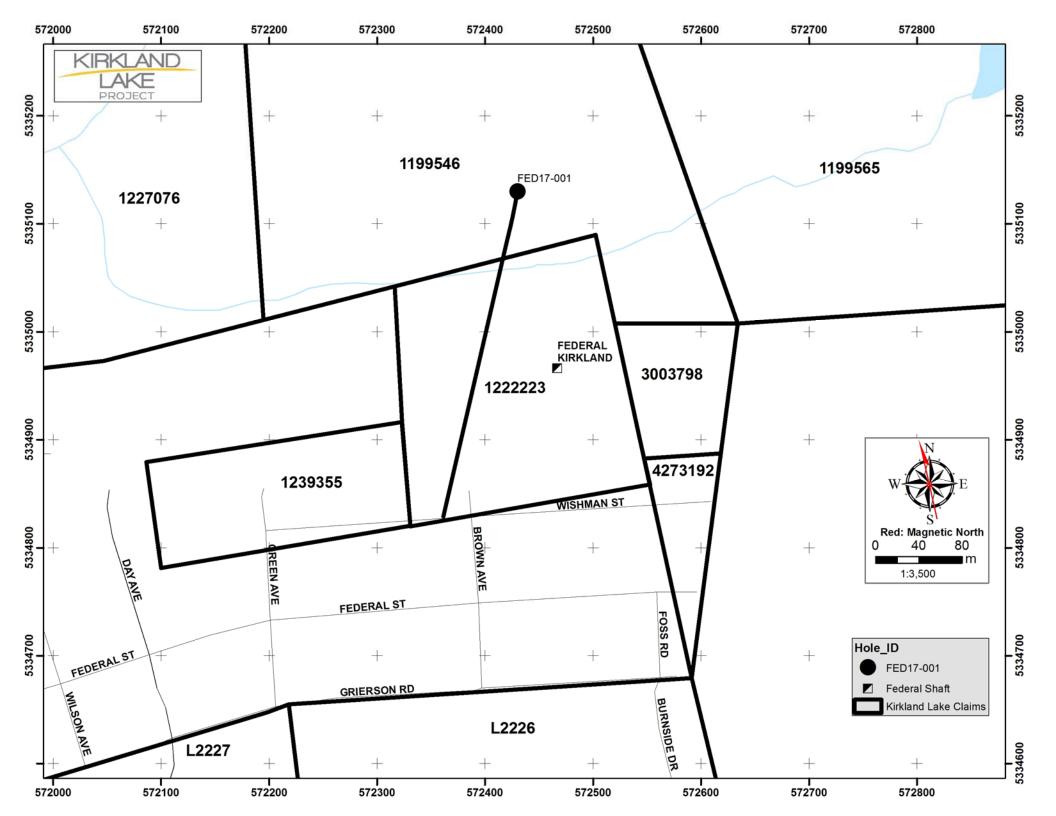

Structu	Structural Descriptions						
Code	Description						
Bxh	Breccia healed						
FLT	Fault						
Gg	Fault Gouge						
FAZ	Fault Zone						
Shrh	Shear healed						
SZ	Shear Zone						
SLP	Slip						

Figure 6 Geology Legend to accompany cross-sections

DDH:	FED17-001		Claims title: Township:	Teck			KIRK)
Contractor: Author:	Major-Matac Christopher	hewan Drilling Clarke	Section: Start date:	13/07/2017			PRO	KE	
—Collar———			End date:	01/08/2017		Description c	late: 15	5/07/2017	
Azimuth: Dip: Length: Down hole surv	190.00° -55.00° 531.00			Ele	UT East North vation	M-Nad83 572429.992 5335129.999 326.609			
	Depth	Azimuth	Dip	Invalid	Туре	Depth	Azimuth	Dip	Invalid
Multishot Multishot Multishot ReflexEZS Multishot Multishot	9.00 12.00 15.00 15.00 18.00 21.00	189.72° 191.42° 190.92° 191.92° 192.42° 192.42°	-55.50° -55.40° -55.50° -55.40° -55.50° -55.40°	No No No Yes No No	Multishot Multishot Multishot Multishot Multishot	24.00 27.00 30.00 33.00 36.00 	192.72° 193.02° 192.22° 192.32° 193.62° 	-55.50° -55.20° -55.40° -55.30° -55.30°	No No No No
Number of sa Number of Q/ Total sample —Description: —	AQC samples:	352 66 527.30	1						
Target at 440m and scouting of		ly 11-13th. Dri	Il completed ho			ent). Drill rig was m bolization was com		•	· ·
	Core size:	NQ			Cemented: Ye	es		Store	ed: No

		Description	Assay						
			From	То	Sample	Length	Au_AA24	Au_GRA	
0.00	3.20	OVB							
		Overburden							
		Overburden							
3.20	11.50	1SMa	3.20	4.50	V365352	1.30	<0.005		
		Mafic Syenite	4.50	6.00	V365353	1.50	<0.005		
		Augite Mafic Syenite (Kirkland Lake variety). A mafic syenite with black,	6.00	7.50	V365354	1.50	<0.005		
		1-3mm augite grains in a coarse grained matrix. The unit has a	7.50	9.00	V365355	1.50	<0.005		
		sea-green colour to it (moderate chlorite alteration) with interstial milky	9.00	10.50	V365356	1.50	0.012		
		calcite and calcite replacement alteration of mafic grains. There are	10.50	12.00	V365357	1.50	0.008		
		trace amounts of 1mm calcite stringers oriented at 20-40dtca. There are	10.50	12.00	V365357U		0.019		
		no visible sulphides. The unit is strongly magnetic.							
		lower contact is sharp = 45dtca							
3.20	11.50	D Cl; Ca							
		Chlorite; Calcite							
		The unit has a sea-green colour to it (moderate chlorite alteration)							
		with interstial milky calcite and calcite replacement alteration of mafic							
		grains							
11.50	340.60	FP	12.00	13.50	V365358	1.50	<0.005		
		Feldspar Porphyry 15°	12.00	13.50	V365359	1.50	<0.005		
		Bi-Modal Porphyry (typical Kirkland Lake style). A syenite with two	13.50	15.00	V365360	1.50	<0.005		
		populations of plagioclase phenocrysts: the first type is 1-2mm in size	15.00	16.50	V365361	1.50	<0.005		
		while the second is 5-10mm in size with zonations. The zoned plag can	16.50	18.00	V365362	1.50	<0.005		
		have red alteration in it's core (hematite alteration). The groundmass is	18.00		V365363	1.50	<0.005		
		fine grained and reddish-grey. Alteration is weak hematite-calcite. There	19.50	21.00	V365364	1.50	< 0.005		
		are trace amounts of 1-4mm thick veinlets of qtz-cc oriented at 35dtca.	21.00		V365365	1.50	< 0.005		
		There are trace amounts of 1-2mm anhedral pyrite disseminated within	22.50	24.00	V365366	1.50	<0.005		
		the unit matrix, the altered plag cores and the qtz-cc veining. The unit is	22.50	25.50	V365367	1.50	<0.005		
		weakly magnetic near the upper contact but quickly becomes					<0.005		
		non-magnetic.	25.50		V365368	1.50			
		42-47m: Hem alt'n is slightly stronger and there is a weak, wispy-patchy	27.00		V365369	1.50	< 0.005		
		sericite alt'n. calcite alt'n is no longer present	28.50		V365370	1.50	<0.005		
		100-100.3: Fracture in sericite altered wallrock oriented at 35dtca;	30.00	31.50	V365371	1.50	<0.005		

infilled with translucent (like kelp) mineral (chlorite) soft to scratch with steel. 3. lower contact is sharp = 15dtca 3. 1.50 42.00 Hmt; Ca Hematite; Calcite 3. Alteration is weak hematite-calcite 3. 1.50 340.60 Py00.1 3.	33.00 34.50 34.50 34.50 34.50 36.00	34.50 36.00 36.00 36.00		Length 1.50 1.50 1.50	Au_AA24 <0.005 <0.005 <0.005	Au_GRA
steel. 33 lower contact is sharp = 15dtca 340.60 Py00.1 540.00 Py00.1 550 Py0	33.00 34.50 34.50 34.50 34.50 36.00	34.50 36.00 36.00 36.00	V365373 V365374 V365376	1.50 1.50	<0.005	
lower contact is sharp = 15dtca 3. 1.50 42.00 Hmt; Ca Hematite; Calcite 3. Alteration is weak hematite-calcite 3. 1.50 340.60 Py00.1 3.	34.50 34.50 34.50 36.00	36.00 36.00 36.00	V365374 V365376	1.50		
1.5042.00Hmt; Ca3.Hematite; Calcite3.Alteration is weak hematite-calcite3.1.50340.60Py00.1Durite 0.40%3.	34.50 34.50 36.00	36.00 36.00	V365376		<0.005	
Hematite; Calcite 3. Alteration is weak hematite-calcite 3. 1.50 340.60 Py00.1 3.	34.50 36.00	36.00		4 50	-0.000	
Alteration is weak hematite-calcite	36.00			1.50	1.265	
1.50 340.60 Py00.1 3			V365375	1.50	<0.005	
		37.50	V365377	1.50	0.009	
Pyrite 0.1%	36.00	37.50	V365377U	1.50	0.010	
	37.50	39.00	V365378	1.50	0.007	
There are trace amounts of 1-2mm anhedral pyrite disseminated 3	37.50	39.00	V365379	1.50	<0.005	
within the unit matrix, the altered plag cores and the qtz-cc veining	39.00	40.50	V365380	1.50	0.006	
4	10.50	42.00	V365381	1.50	<0.005	
2.00 47.00 Hmt; Ser 44	12.00	43.50	V365382	1.50	<0.005	
Hematite; Sericitic 4	13.50	45.00	V365383	1.50	<0.005	
42-47m: Hem alt'n is slightly stronger and there is a weak, 4	15.00	46.50	V365384	1.50	<0.005	
wispy-patchy sericite alt'n 4	16.50	48.00	V365385	1.50	<0.005	
7.00 340.60 Hmt; Ser 44	18.00	49.50	V365386	1.50	<0.005	
Hematite; Sericitic 4	19.50	51.00	V365387	1.50	<0.005	
weak hematite alteration with isolated 1-5cm (trace abundant) weak, 5	51.00	52.50	V365388	1.50	<0.005	
wispy sercite alteration. 5	52.50	54.00	V365389	1.50	0.008	
5	54.00	55.50	V365390	1.50	<0.005	
5	55.50	57.00	V365391	1.50	<0.005	
5	57.00	58.50	V365392	1.50	<0.005	
5	58.50	60.00	V365393	1.50	0.005	
6	50.00	61.50	V365394	1.50	<0.005	
6	61.50	63.00	V365395	1.50	<0.005	
6	63.00	64.50	V365396	1.50	<0.005	
6	64.50	66.00	V365397	1.50	<0.005	
6	64.50	66.00	V365397U	1.50	0.008	
6	6.00	67.50	V365398	1.50	<0.005	
6	6.00	67.50	V365401	1.50	5.090	

Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
	66.00	67.50	V365400	1.50	<0.005	
	66.00	67.50	V365399	1.50	<0.005	
	67.50	69.00	V365402	1.50	<0.005	
	69.00	70.50	V365403	1.50	<0.005	
	70.50	72.00	V365404	1.50	<0.005	
	72.00	73.50	V365405	1.50	<0.005	
	73.50	75.00	V365406	1.50	0.011	
	75.00	76.50	V365407	1.50	<0.005	
	76.50	78.00	V365408	1.50	<0.005	
	78.00	79.50	V365409	1.50	<0.005	
	79.50	81.00	V365410	1.50	<0.005	
	81.00	82.50	V365411	1.50	<0.005	
	82.50	84.00	V365412	1.50	<0.005	
	84.00	85.50	V365413	1.50	<0.005	
	85.50	87.00	V365414	1.50	<0.005	
	87.00	88.50	V365415	1.50	<0.005	
	88.50	90.00	V365416	1.50	<0.005	
	90.00	91.50	V365417	1.50	<0.005	
	90.00	91.50	V365417U	1.50	0.007	
	91.50	93.00	V365418	1.50	<0.005	
	91.50	93.00	V365419	1.50	<0.005	
	93.00	94.50	V365420	1.50	<0.005	
	94.50	96.00	V365421	1.50	<0.005	
	96.00	97.50	V365422	1.50	<0.005	
	97.50	99.00	V365423	1.50	<0.005	
	99.00	100.50	V365424	1.50	0.010	
	99.00	100.50	V365426	1.50	1.535	
	99.00	100.50	V365425	1.50	<0.005	
	100.50	102.00	V365427	1.50	0.040	
	102.00	103.50	V365428	1.50	0.014	

Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
	103.50	105.00	V365429	1.50	0.013	
	105.00	106.50	V365430	1.50	0.054	
	106.50	108.00	V365431	1.50	0.012	
	108.00	109.50	V365432	1.50	0.005	
	109.50	111.00	V365433	1.50	<0.005	
	111.00	112.50	V365434	1.50	<0.005	
	112.50	114.00	V365435	1.50	<0.005	
	114.00	115.50	V365436	1.50	0.005	
	115.50	117.00	V365437	1.50	<0.005	
	115.50	117.00	V365437U	1.50	0.005	
	117.00	118.50	V365438	1.50	<0.005	
	117.00	118.50	V365439	1.50	<0.005	
	118.50	120.00	V365440	1.50	<0.005	
	120.00	121.50	V365441	1.50	0.006	
	121.50	123.00	V365442	1.50	<0.005	
	123.00	124.50	V365443	1.50	0.005	
	124.50	126.00	V365444	1.50	<0.005	
	126.00	127.50	V365445	1.50	<0.005	
	127.50	129.00	V365446	1.50	<0.005	
	129.00	130.50	V365447	1.50	<0.005	
	130.50	132.00	V365448	1.50	<0.005	
	132.00	133.50	V365449	1.50	0.011	
	132.00	133.50	V365450	1.50	0.005	
	132.00	133.50	V365451	1.50	4.950	
	133.50	135.00	V365452	1.50	0.007	
	135.00	136.50	V365453	1.50	<0.005	
	136.50	138.00	V365454	1.50	0.006	
	138.00	139.50	V365455	1.50	0.012	
	139.50	141.00	V365456	1.50	<0.005	
	141.00	142.50	V365457	1.50	<0.005	
		I	1	I	1	

Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
	141.00	142.50	V365457U	1.50	0.006	
	142.50	144.00	V365458	1.50	<0.005	
	142.50	144.00	V365459	1.50	<0.005	
	144.00	145.50	V365460	1.50	<0.005	
	145.50	147.00	V365461	1.50	<0.005	
	147.00	148.50	V365462	1.50	<0.005	
	148.50	150.00	V365463	1.50	<0.005	
	150.00	151.50	V365464	1.50	<0.005	
	151.50	153.00	V365465	1.50	0.196	
	153.00	154.50	V365466	1.50	<0.005	
	154.50	156.00	V365467	1.50	<0.005	
	156.00	157.50	V365468	1.50	0.007	
	157.50	159.00	V365469	1.50	<0.005	
	159.00	160.50	V365470	1.50	<0.005	
	160.50	162.00	V365471	1.50	<0.005	
	162.00	163.50	V365472	1.50	<0.005	
	163.50	165.00	V365473	1.50	<0.005	
	165.00	166.50	V365474	1.50	0.016	
	165.00	166.50	V365475	1.50	<0.005	
	165.00	166.50	V365476	1.50	1.325	
	166.50	168.00	V365477	1.50	0.015	
	166.50	168.00	V365477U	1.50	0.018	
	168.00	169.50	V365478	1.50	<0.005	
	168.00	169.50	V365479	1.50	<0.005	
	169.50	171.00	V365480	1.50	0.018	
	171.00	172.50	V365481	1.50	0.005	
	172.50	174.00	V365482	1.50	0.005	
	174.00	175.50	V365483	1.50	0.008	
	175.50	177.00	V365484	1.50	<0.005	
	177.00	178.50	V365485	1.50	<0.005	

Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
	178.50	180.00	V365486	1.50	<0.005	
	180.00	181.50	V365487	1.50	<0.005	
	181.50	183.00	V365488	1.50	0.006	
	183.00	184.50	V365489	1.50	<0.005	
	184.50	186.00	V365490	1.50	0.010	
	186.00	187.50	V365491	1.50	0.007	
	187.50	189.00	V365492	1.50	0.014	
	189.00	190.50	V365493	1.50	<0.005	
	190.50	192.00	V365494	1.50	<0.005	
	192.00	193.50	V365495	1.50	0.031	
	193.50	195.00	V365496	1.50	0.008	
	195.00	196.50	V365497	1.50	<0.005	
	195.00	196.50	V365497U	1.50	0.009	
	196.50	198.00	V365498	1.50	<0.005	
	196.50	198.00	V365499	1.50	0.005	
	196.50	198.00	V365501	1.50	5.330	
	196.50	198.00	V365500	1.50	<0.005	
	198.00	199.50	V365502	1.50	0.009	
	199.50	201.00	V365503	1.50	0.005	
	201.00	202.50	V365504	1.50	<0.005	
	202.50	204.00	V365505	1.50	<0.005	
	204.00	205.50	V365506	1.50	0.007	
	205.50	207.00	V365507	1.50	<0.005	
	207.00	208.50	V365508	1.50	<0.005	
	208.50	210.00	V365509	1.50	<0.005	
	210.00	211.50	V365510	1.50	0.006	
	211.50	213.00	V365511	1.50	<0.005	
	213.00	214.50	V365512	1.50	0.006	
	214.50	216.00	V365513	1.50	<0.005	
	216.00	217.50	V365514	1.50	0.006	

Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
	217.50	219.00	V365515	1.50	0.006	
	219.00	220.50	V365516	1.50	<0.005	
	220.50	222.00	V365517	1.50	0.005	
	220.50	222.00	V365517U	1.50	0.007	
	222.00	223.50	V365518	1.50	<0.005	
	222.00	223.50	V365519	1.50	0.005	
	223.50	225.00	V365520	1.50	0.008	
	225.00	226.50	V365521	1.50	0.020	
	226.50	228.00	V365522	1.50	0.021	
	228.00	229.50	V365523	1.50	0.008	
	229.50	231.00	V365524	1.50	<0.005	
	229.50	231.00	V365526	1.50	1.315	
	229.50	231.00	V365525	1.50	<0.005	
	231.00	232.50	V365527	1.50	0.011	
	232.50	234.00	V365528	1.50	<0.005	
	234.00	235.50	V365529	1.50	<0.005	
	235.50	237.00	V365530	1.50	<0.005	
	237.00	238.50	V365531	1.50	<0.005	
	238.50	240.00	V365532	1.50	<0.005	
	240.00	241.50	V365533	1.50	<0.005	
	241.50	243.00	V365534	1.50	0.009	
	243.00	244.50	V365535	1.50	0.010	
	244.50	246.00	V365536	1.50	<0.005	
	246.00	247.50	V365537	1.50	0.021	
	246.00	247.50	V365537U	1.50	0.049	
	247.50	249.00	V365538	1.50	0.009	
	247.50	249.00	V365539	1.50	<0.005	
	249.00	250.50	V365540	1.50	0.008	
	250.50	252.00	V365541	1.50	<0.005	
	252.00	253.50	V365542	1.50	0.014	

Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
	253.50	255.00	V365543	1.50	<0.005	
	255.00	256.50	V365544	1.50	0.008	
	256.50	258.00	V365545	1.50	0.058	
	258.00	259.50	V365546	1.50	<0.005	
	259.50	261.00	V365547	1.50	<0.005	
	261.00	262.50	V365548	1.50	0.006	
	262.50	264.00	V365549	1.50	<0.005	
	262.50	264.00	V365550	1.50	<0.005	
	262.50	264.00	V365551	1.50	4.730	
	264.00	265.50	V365552	1.50	0.005	
	265.50	267.00	V365553	1.50	0.015	
	267.00	268.50	V365554	1.50	0.032	
	268.50	270.00	V365555	1.50	<0.005	
	270.00	271.50	V365556	1.50	0.007	
	271.50	273.00	V365557	1.50	0.008	
	271.50	273.00	V365557U	1.50	0.007	
	273.00	274.50	V365558	1.50	<0.005	
	273.00	274.50	V365559	1.50	<0.005	
	274.50	276.00	V365560	1.50	<0.005	
	276.00	277.50	V365561	1.50	<0.005	
	277.50	279.00	V365562	1.50	<0.005	
	279.00	280.50	V365563	1.50	<0.005	
	280.50	282.00	V365564	1.50	<0.005	
	282.00	283.50	V365565	1.50	<0.005	
	283.50	285.00	V365566	1.50	0.020	
	285.00	286.50	V365567	1.50	<0.005	
	286.50	288.00	V365568	1.50	<0.005	
	288.00	289.50	V365569	1.50	0.007	
	289.50	291.00	V365570	1.50	<0.005	
	291.00	292.50	V365571	1.50	<0.005	

Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
	292.50	294.00	V365572	1.50	<0.005	
	294.00	295.50	V365573	1.50	<0.005	
	295.50	297.00	V365574	1.50	0.016	
	295.50	297.00	V365576	1.50	1.450	
	295.50	297.00	V365575	1.50	<0.005	
	297.00	298.50	V365577	1.50	0.013	
	297.00	298.50	V365577U	1.50	0.016	
	298.50	300.00	V365578	1.50	0.010	
	298.50	300.00	V365579	1.50	<0.005	
	300.00	301.50	V365580	1.50	<0.005	
	301.50	303.00	V365581	1.50	<0.005	
	303.00	304.50	V365582	1.50	<0.005	
	304.50	306.00	V365583	1.50	<0.005	
	306.00	307.50	V365584	1.50	<0.005	
	307.50	309.00	V365585	1.50	<0.005	
	309.00	310.50	V365586	1.50	<0.005	
	310.50	312.00	V365587	1.50	<0.005	
	312.00	313.50	V365588	1.50	<0.005	
	313.50	315.00	V365589	1.50	<0.005	
	315.00	316.50	V365590	1.50	<0.005	
	316.50	318.00	V365591	1.50	0.006	
	318.00	319.50	V365592	1.50	<0.005	
	319.50	321.00	V365593	1.50	<0.005	
	321.00	322.50	V365594	1.50	<0.005	
	322.50	324.00	V365595	1.50	<0.005	
	324.00	325.50	V365596	1.50	<0.005	
	325.50	327.00	V365597	1.50	<0.005	
	325.50	327.00		1.50	0.007	
	327.00	328.50	V365598	1.50	<0.005	
	327.00	328.50	V365601	1.50	4.860	

Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
	327.00	328.50	V365600	1.50	<0.005	
	327.00	328.50	V365599	1.50	<0.005	
	328.50	330.00	V365602	1.50	<0.005	
	330.00	331.50	V365603	1.50	<0.005	
	331.50	333.00	V365604	1.50	<0.005	
	333.00	334.50	V365605	1.50	<0.005	
	334.50	336.00	V365606	1.50	<0.005	
	336.00	337.50	V365607	1.50	<0.005	
	337.50	339.00	V365608	1.50	<0.005	
	339.00	340.50	V365609	1.50	<0.005	
	340.50	342.00	V365610	1.50	<0.005	
340.60 351.50 MI	342.00	343.50	V365611	1.50	0.011	
Mafic Intrusion 70°	343.50	345.00	V365612	1.50	0.015	
A mafic intrusion/mafic flow. The unit is fine grained with 5% abundant	345.00	346.50	V365613	1.50	<0.005	
1-3mm euhedral sericite-epidote altered amphiboles; there are also	346.50	348.00	V365614	1.50	<0.005	
1mm needles of amphibole. The unit matrix is a grey colour and is	348.00	349.50	V365615	1.50	<0.005	
moderately ankerite altered. There are no visible sulphides. The unit is	349.50	351.00	V365616	1.50	<0.005	
moderately magnetic.	351.00	352.50	V365617	1.50	<0.005	
lower contact is sharp = 70dtca	351.00	352.50	V365617U	1.50	0.010	
340.60 351.50 Ank; Ser; Ep						
Ankerite; Sericitic; Epidote						
The unit is fine grained with 5% abundant 1-3mm euhedral						
sericite-epidote altered amphiboles; there are also 1mm needles of						
amphibole. The unit matrix is a grey colour and is moderately ankerite altered.						
351.50 351.90 FP						
Feldspar Porphyry						
Bi-Modal Porphyry (typical Kirkland Lake style). A syenite with two						
populations of plagioclase phenocrysts: the first type is 1-2mm in size						
while the second is 5-10mm in size with zonations. The zoned plag can						
have red alteration in it's core (hematite alteration). The groundmass is						

	Description				Assay		
		From	То	Sample	Length	Au_AA24	Au_GRA
351.50 351.9 351.50 351.9 351.90 353.30	 Hematite; Sericitic weak hematite alteration with isolated 1-5cm (trace abundant) weak, wispy sercite alteration. 90 Py00.1 Pyrite 0.1% There are trace amounts of 1-2mm anhedral pyrite disseminated within the unit matrix, the altered plag cores and the qtz-cc veining. MI Mafic Intrusion 30° A mafic intrusion/mafic flow. The unit is fine grained with 5% abundant 1-3mm euhedral sericite-epidote altered amphiboles; there are also 1mm needles of amphibole. The unit matrix is a grey colour and is moderately ankerite altered. There are no visible sulphides. The unit is moderately magnetic. 		354.00 354.00	V365618 V365619	1.50 1.50	<0.005 <0.005	
351.90 353.3	 lower contact is sharp = 30dtca 30 Ank; Ser; Ep Ankerite; Sericitic; Epidote The unit is fine grained with 5% abundant 1-3mm euhedral sericite-epidote altered amphiboles; there are also 1mm needles of amphibole. The unit matrix is a grey colour and is moderately ankerite altered. 						
353.30 356.30		354.00 355.50	355.50 357.00	V365620 V365621	1.50 1.50	<0.005 <0.005	

Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
while the second is 5-10mm in size with zonations. The zoned plag can						
have red alteration in it's core (hematite alteration). The groundmass is						
fine grained and reddish-grey. Alteration is weak hematite-calcite. There						
are trace amounts of 1-4mm thick veinlets of qtz-cc oriented at 35dtca.						
There are trace amounts of 1-2mm anhedral pyrite disseminated within						
the unit matrix, the altered plag cores and the qtz-cc veining. The unit is						
non-magnetic.						
lower contact is sharp = 55dtca						
353.30 356.30 Hmt; Ser						
Hematite; Sericitic						
weak hematite alteration with isolated 1-5cm (trace abundant) weak,						
wispy sercite alteration.						
353.30 356.30 Py00.1						
Pyrite 0.1%						
There are trace amounts of 1-2mm anhedral pyrite disseminated						
within the unit matrix, the altered plag cores and the qtz-cc veining.						
356.30 356.80 MI						
Mafic Intrusion 55°						
A mafic intrusion/mafic flow. The unit is fine grained with 5% abundant						
1-3mm euhedral sericite-epidote altered amphiboles; there are also						
1mm needles of amphibole. The unit matrix is a grey colour and is						
moderately ankerite altered. There are no visible sulphides. The unit is						
moderately magnetic.						
lower contact is sharp = 55dtca						
356.30 356.80 Ank; Ser; Ep						
Ankerite; Sericitic; Epidote						
The unit is fine grained with 5% abundant 1-3mm euhedral						
sericite-epidote altered amphiboles; there are also 1mm needles of						
amphibole. The unit matrix is a grey colour and is moderately						
ankerite altered.						
356.80 357.50 FP	357.00	358.50	V365622	1.50	<0.005	
Feldspar Porphyry 30°						

From To Sample Length Au_AA24 Au_GRA Bi-Modal Porphyry (typical Kirkland Lake style). A syenite with two opopulations of plaglocalese phenocrysts: the first type is 1-2mm in size while the second is 5-10mm in size with zonations. The zoned plag can have red alteration in it's core (hermatite alteration). The groundmass is fine grained and reddish-grey. Alteration is weak hematite-calcite. There are trace amounts of 1-4mm thick veinlets of qtz-cc oriented at 35dtca. There are trace amounts of 1-4mm thick veinlets of qtz-cc oriented at 35dtca. There are trace amounts of 1-4mm thick veinlets of qtz-cc oriented at 35dtca. There are trace amounts of 1-2mm anhedral pyrite disseminated within the unit matrix, the altered plag cores and the qtz-cc veining. 356.80 357.50 Hm; Ser Hematite; Sericitic week hematite alteration with isolated 1-5cm (trace abundant) weak, wispy sericite alteration. 358.50 360.00 V365623 1.50 0.022 357.50 Jm; Ser Mafic Intrusion 50° A mafic intrusion agree colour and is moderately ankerite altered. There are no vi	Description	Assay						
populations of plagioclase phenocrysts: the first type is 1-2mm in size while the second is 5-10mm in size with zonations. The zoned plag can have red alteration in it's core (hematile alteration). The groundmass is fine grained and reddish-grey. Alteration is weak hematite-calcite. There are trace amounts of 1-4mm thick veinlets of qtz-cc oriented at 35dtca. There are trace amounts of 1-4mm nahedral pyrite disseminated within the unit matrix, the altered plag cores and the qtz-cc veining. The unit is non-magnetic. lower contact is sharp = 30dtca 356.80 357.50 Hint: Ser Hematite; Sericitic weak hematite alteration with isolated 1-5cm (trace abundant) weak, wispy sercite alteration. 356.80 357.50 Py00.1 Pyrite 0.1% There are trace amounts of 1-2mm anhedral pyrite disseminated within the unit matrix, the altered plag cores and the qtz-cc veining. 357.50 358.60 MI Mafic Intrusion 50° A mafic intrusion 50° A mafic intrusion/mafic flow. The unit is fine grained with 5% abundant 1-3mm euhedral sericite-epidote altered amphiboles; there are also 1mm needles of amphibole. The unit matrix is agrey colour and is moderately mkerite altered. There are no visible sulphides. The unit is moderately mkerite altered. There are no visible sulphides. The unit is moderately mkerite altered amphiboles; there are also 157.50 358.60 Ank; Ser; Ep Ankerite; Sericittic; Epidote The unit is fine grained with 5% abundant 1-3mm euhedral sericite-epidote altered amphiboles; there are also 1mm needles of The unit is fine grained with 5% abundant 1-3mm euhedral sericite-epidote altered amphiboles; there are also 1mm needles of		From	То	Sample	Length	Au_AA24	Au_GRA	
ankerite altered.	 populations of plagioclase phenocrysts: the first type is 1-2mm in size while the second is 5-10mm in size with zonations. The zoned plag can have red alteration in it's core (hematite alteration). The groundmass is fine grained and reddish-grey. Alteration is weak hematite-calcite. There are trace amounts of 1-4mm thick veinlets of qtz-cc oriented at 35dtca. There are trace amounts of 1-2mm anhedral pyrite disseminated within the unit matrix, the altered plag cores and the qtz-cc veining. The unit is non-magnetic. lower contact is sharp = 30dtca 356.80 357.50 Hmt; Ser Hematite; Sericitic weak hematite alteration. 356.80 357.50 Py00.1 Pyrite 0.1% There are trace amounts of 1-2mm anhedral pyrite disseminated within the unit matrix, the altered plag cores and the qtz-cc veining. 357.50 358.60 MI Mafic Intrusion 50° A mafic intrusion/mafic flow. The unit is fine grained with 5% abundant 1-3mm euhedral sericite-epidote altered amphiboles; there are also 1mm needles of amphibole. The unit matrix is a grey colour and is moderately magnetic. lower contact is sharp = 50dtca 357.50 358.60 Ank; Ser; Ep Ankerite; Sericitic; Epidote The unit is fine grained with 5% abundant 1-3mm euhedral sericite-epidote altered amphiboles; there are also 1mm needles of amphibole. The unit is fine grained with 5% abundant 1-3mm euhedral sericite; Epidote 						AU_GRA	

	Description				Assay						
			From	То	Sample	Length	Au_AA24	Au_GRA			
358.60	489.80	FP	360.00	361.50	V365624	1.50	0.005				
		Feldspar Porphyry 55°	360.00	361.50	V365626	1.50	1.320				
		Bi-Modal Porphyry (typical Kirkland Lake style). A syenite with two	360.00	361.50	V365625	1.50	<0.005				
		populations of plagioclase phenocrysts: the first type is 1-2mm in size	361.50	363.00	V365627	1.50	0.011				
	while the second is 5-10mm in size with zonations. The zoned plag can	363.00	364.50	V365628	1.50	0.006					
	have red alteration in it's core (hematite alteration). The groundmass is	364.50	366.00	V365629	1.50	<0.005					
		fine grained and reddish-grey. Alteration is weak hematite-calcite. There	366.00	367.50	V365630	1.50	<0.005				
		are trace amounts of 1-4mm thick veinlets of qtz-cc oriented at 35dtca. There are trace amounts of 1-2mm anhedral pyrite disseminated within	367.50	369.00	V365631	1.50	0.350				
			369.00	370.50	V365632	1.50	0.037				
		the unit matrix, the altered plag cores and the qtz-cc veining. The unit is			V365633	1.50	0.008				
		non-magnetic. 444.3-444.45m: Sericite(sphalerite?-sulphur smell)-Moly-pyrite (45-45-10) vein/slip oriented at 30dtca and 8mm thick (with a 45dtca splay, 1mm thick). The moly forms a slip which is exposed along its			V365634	1.50	0.008				
					V365635	1.50	0.025				
					V365636	1.50	<0.005				
					V365637	1.50	<0.005				
		face. The sericite is beige and soft and forms in the core of the vein with			V365638	1.50	<0.005				
		the moly forming a soft, flakey rind like a geode. The pyrite forms 1-3mm anhedral blebs within the moly.		379.50	V365639	1.50	< 0.005				
		450.9-451.1m: Mafic dyke oriented at 80dtca			V365640	1.50	< 0.005				
		451.8-452.452.1m: Shear zone oriented at 30dtca and 8cm thick. There		382.50	V365641	1.50	< 0.005				
		is a 5mm thick sericite clay/gouge in the centre of the shear. Alteration			V365642	1.50	< 0.005				
		is weak-moderate sericite with faint pink kspar alteration. There is			V365643	1.50	< 0.005				
		0.5-1% pyrite in the host rock.		387.00	V365644	1.50	< 0.005				
				388.50	V365645	1.50	< 0.005				
		pink kspar alteration. Phenocrysts have a more resorbed texture.		390.00	V365646	1.50	0.008				
		461-462m: There is 2-4% irregular (20-30dtca) splayed <1-2mm thick		391.50	V365647	1.50	< 0.005				
		black chlorite fracture-fill with 0.5% disseminated pyrite		393.00	V365648	1.50	0.007				
		473-489m: qtz veinlets are 5% abundant and oriented at 60-70dtca and			V365649	1.50	< 0.005				
		5mm thick			V365650	1.50	<0.005				
		474.8-475.3m: There is 2-4% irregular (20-30dtca) splayed <1-2mm			V365651	1.50	<0.003 5.080				
		thick black chlorite fracture-fill with 0.5% disseminated pyrite.			V365651	1.50	0.010				
		477.95-478.05m: qtz-ank-moly vein (80-15-5%) oriented at 50dtca and		396.00 397.50	V365652 V365653	1.50	0.010				

Description	Assay					
	From	То	Sample	Length	Au_AA24	Au_GRA
 7cm thick. The qtz is translucent with microfractures infilled with cream ankerite or flecks of purplish moly. 478.1-478.4m: Vein/fault oriented at 30dtca and 6cm thick. The structure is composed of milled wallrock-black chlorite, moly and pyrite (33-33-30-3%). black clay gouge 5mm thick coats the margins of the structure. The structure is soft and crumbly. 485.3-485.4m: Black chlorite clay gouge 2mm thick oriented at 30dtca with a veneer of moly coating thre wallrock. 0.5% pyrite in the wallrock. 486.35-486.45m: Qtz-moly vein (95-5%) oriented at 50dtca and 6cm thick. The vein is primarily translucent qtz with scattered, 1-2mm flakes-clusters of purple moly disseminated in the qtz. lower contact is sharp = 55dtca 358.60 451.80 Hmt; Ser Hematite; Sericitic weak hematite alteration with isolated 1-5cm (trace abundant) weak, wispy sercite alteration. 358.60 453.00 Py00.1 Pyrite 0.1% There are trace amounts of 1-2mm anhedral pyrite disseminated within the unit matrix, the altered plag cores and the qtz-cc veining. 	397.50 399.00 400.50 402.00 403.50 405.00 405.00 408.00 409.50 411.00 412.50 414.00 415.50 414.00 415.50 417.00 421.50 422.00 421.50 423.00 424.50 426.00 426.00 426.00 427.50	399.00 400.50 402.00 403.50 405.00 405.00 406.50 408.00 409.50 411.00 412.50 414.00 415.50 417.00 415.50 417.00 418.50 420.00 421.50 423.00 424.50 426.00 427.50 427.50 427.50 429.00 430.50	Sample V365654 V365655 V365656 V365657 V365658 V365659 V365660 V365661 V365662 V365663 V365663 V365665 V365666 V365667 V365668 V365669 V365670 V365671 V365672 V365673 V365674 V365675 V365675 V365677 V365677	Length 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	<0.005 0.095 0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.006 <0.005 0.007 <0.005 0.007 0.025 <0.005 0.007 0.052 0.014 0.008 0.031 0.021 1.370 0.033 0.015	Au_GRA
	427.50	429.00	V365677	1.50	0.033	

	Description	Assay					
		From	То	Sample	Length	Au_AA24	Au_GRA
		436.50	438.00	V365684	1.50	<0.005	
		438.00	439.50	V365685	1.50	0.012	
		439.50	441.00	V365686	1.50	0.006	
		441.00	442.50	V365687	1.50	0.024	
		442.50	444.00	V365688	1.50	0.043	
		444.00	445.50	V365689	1.50	0.159	
444.30 444.45	Vn;;;;30°;Mo45 Py10;	445.50	447.00	V365690	1.50	0.014	
	vein (5 mm - 10 cm) 30° Molybdenite 45% Pyrite 10%	447.00	448.50	V365691	1.50	0.058	
	444.3-444.45m: Sericite(sphalerite?-sulphur smell)-Moly-pyrite	448.50	450.00	V365692	1.50	0.009	
	(45-45-10) vein/slip oriented at 30dtca and 8mm thick (with a 45dtca	450.00	451.50	V365693	1.50	<0.005	
	splay, 1mm thick). The moly forms a slip which is exposed along its	451.50	453.00	V365694	1.50	0.089	
	face. The sericite is beige and soft and forms in the core of the vein						
	with the moly forming a soft, flakey rind like a geode. The pyrite						
451.80 489.80	forms 1-3mm anhedral blebs within the moly.						
451.00 409.00	Ser; Kspar Sericitic; K-Feldspar						
	451.8m: Alteration becomes a uniform weak-moderate sericite with						
	faint pink kspar alteration. Phenocrysts have a more resorbed						
	texture.						
451.80 452.10							
	Shear Zone 30°						
	451.8-452.452.1m: Shear zone oriented at 30dtca and 8cm thick.						
	There is a 5mm thick sericite clay/gouge in the centre of the shear.						
	Alteration is weak-moderate sericite with faint pink kspar alteration.						
453.00 489.80	Ру00.5	453.00	454.50	V365695	1.50	0.026	
	Pyrite 0.5%	454.50	456.00	V365696	1.50	0.008	
	There are 0.5% amounts of 1-2mm anhedral pyrite disseminated	456.00	457.50	V365697	1.50	<0.005	
	within the unit matrix, the altered plag cores and the qtz-cc veining.	457.50	459.00	V365698	1.50	0.009	
		457.50	459.00	V365700	1.50	<0.005	
		457.50	459.00	V365701	1.50	5.270	
		457.50	459.00	V365699	1.50	0.005	

	Description				Assay		
		From	То	Sample	Length	Au_AA24	Au_GRA
		459.00	460.50	V365702	1.50	0.005	
		460.50	462.00	V365703	1.50	3.610	
		462.00	463.50	V365704	1.50	0.048	
		463.50	465.00	V365705	1.50	<0.005	
		465.00	466.50	V365706	1.50	0.012	
		466.50	468.00	V365707	1.50	0.028	
		468.00	469.50	V365708	1.50	0.015	
		469.50	471.00	V365709	1.50	0.063	
		471.00	472.50	V365710	1.50	0.091	
		472.50	474.00	V365711	1.50	0.772	
		474.00	475.50	V365712	1.50	0.672	
		475.50	477.00	V365713	1.50	0.013	
		477.00	478.50	V365714	1.50	0.105	
477.95 478.05	Vn;;;;50°;Qtz80 Ank15 Mo05;						
	vein (5 mm - 10 cm) 50° Quartz 80% Ankerite 15% Molybdenite						
	5%						
	477.95-478.05m: qtz-ank-moly vein (80-15-5%) oriented at 50dtca						
	and 7cm thick. The qtz is translucent with microfractures infilled with						
478.10 478.40	cream ankerite or flecks of purplish moly.						
470.10 470.40	Fault 30°						
	478.1-478.4m: Vein/fault oriented at 30dtca and 6cm thick. The						
	structure is composed of milled wallrock-black chlorite, moly and						
	pyrite (33-33-30-3%). black clay gouge 5mm thick coats the margins						
	of the structure. The structure is soft and crumbly.						
478.10 478.40	-						
	vein (5 mm - 10 cm) Chlorite 33% Molybdenite 30% Pyrite 3%						
	478.1-478.4m: Vein/fault oriented at 30dtca and 6cm thick. The						
	structure is composed of milled wallrock-black chlorite, moly and						
	pyrite (33-33-30-3%). black clay gouge 5mm thick coats the margins						
	of the structure. The structure is soft and crumbly.						

	Description				Assay		
		From	То	Sample	Length	Au_AA24	Au_GRA
478.40 478.70 FrZn;	;;;;30°;Chl50 Mo50 Py00.5;	478.50	480.00	V365715	1.50	0.005	
Fract	ture Zone 30° Chlorite 50% Molybdenite 50% Pyrite 0.5%	480.00	481.50	V365716	1.50	0.008	
485.3	3-485.4m: Black chlorite clay gouge 2mm thick oriented at	481.50	483.00	V365717	1.50	0.136	
30dtc	ca with a veneer of moly coating thre wallrock. 0.5% pyrite in the	483.00	484.50	V365718	1.50	0.081	
host	rock	483.00	484.50	V365719	1.50	0.100	
		484.50	486.00	V365720	1.50	3.560	
		486.00	487.50	V365721	1.50	0.092	
486.35 486.45 Vn;;;;	;50°;Qtz95 Mo05;	487.50	489.00	V365722	1.50	0.176	
vein	(5 mm - 10 cm) 50° Quartz 95% Molybdenite 5%	489.00	490.50	V365723	1.50	0.319	
486.3	35-486.45m: Qtz-moly vein (95-5%) oriented at 50dtca and 6cm						
thick.	. The vein is primarily translucent qtz with scattered, 1-2mm						
11	s-clusters of purple moly disseminated in the qtz.						
489.80 491.70 S1		490.50		V365724	1.50	0.024	
II *	nerate 55°	490.50	492.00	V365725	1.50	<0.005	
	I polymict conglomerate. There are 2-6% abundant pebble to	490.50	492.00	V365726	1.50	1.360	
	lasts with red jasper. There is a weak fabric oriented at 50dtca.						
	rix is a gritty, fine grained greywacke. There is faint sericite						
11	n but overall it is grey in colour. There are trace amounts of						
	rite disseminated within the unit matrix. The unit is non-magnetic.						
	ntact is sharp = 55dtca						
489.80 491.70 Ser							
Seric							
11	e is faint sericite alteration but overall it is grey in colour						
489.80 504.20 Py00	e 0.1%						
11	e or i make amounts of 1mm pyrite disseminated within the unit						
matriz							
491.70 492.30 FP		492.00	493.50	V365727	1.50	0.039	
	r Porphyry 40°	102.00					
	Porphyry (typical Kirkland Lake style). A syenite with two						
	ons of plagioclase phenocrysts: the first type is 1-2mm in size						

	Description				Assay		
		From	То	Sample	Length	Au_AA24	Au_GRA
	while the second is 5-10mm in size with zonations. The zoned plag can						
	have red alteration in it's core (hematite alteration). The groundmass is						
	fine grained and reddish-grey. Alteration is weak sericite-kspar. There						
	are trace amounts of 1-4mm thick veinlets of qtz-cc oriented at 35dtca.						
	There are trace amounts of 1-2mm anhedral pyrite disseminated within						
	the unit matrix, the altered plag cores and the qtz-cc veining. The unit is						
	non-magnetic.						
	lower contact is sharp = 40dtca						
491.70 492.3	30 Ser; Kspar						
	Sericitic; K-Feldspar						
	Alteration becomes a uniform weak-moderate sericite with faint pink						
	kspar alteration. Phenocrysts have a more resorbed texture.						
492.30 504.20	S1	493.50	495.00	V365728	1.50	0.707	
	Conglomerate 45°	495.00	496.50	V365729	1.50	0.035	
	A typical polymict conglomerate. There are 2-6% abundant pebble to	496.50	498.00	V365730	1.50	0.047	
	cobble clasts with red jasper. The matrix is a gritty, fine grained	498.00	499.50	V365731	1.50	0.009	
	greywacke. There is a weak fabric oriented at 50dtca. There is faint	499.50	501.00	V365732	1.50	0.014	
	sericite alteration but overall it is grey in colour. There are trace amounts		502.50	V365733	1.50	0.019	
	of 1mm pyrite disseminated within the unit matrix. The unit is	502.50	504.00	V365734	1.50	0.046	
	non-magnetic.	504.00	505.50	V365735	1.50	0.006	
	lower contact is sharp = 45dtca	504.00	505.50	v 3037 33	1.50	0.000	
492.30 504.2	20 Ser						
	Sericitic						
	There is faint sericite alteration but overall it is grey in colour						
504.20 518.00	1Sp	505.50	507.00	V365736	1.50	0.006	
	Porphyritic Syenite 30°	507.00	508.50	V365737	1.50	<0.005	
	A crowded syenite porphyry. The syenite hosts 2-5mm rounded grey	508.50	510.00	V365738	1.50	<0.005	
	plag grains with trace free quartz. The unit is a beige-pink colour	508.50	510.00	V365739	1.50	< 0.005	
	(weak-moderate sericite-kspar alteration). There are trace amounts of	510.00	511.50	V365740	1.50	0.007	
	mafic xenoliths 4-6cm in size within the unit. There are 0.5% amounts of		513.00	V365741	1.50	<0.005	
	qtz-ank veins oriented at 40-70dtca and 1-5mm thick. There are 0.5%		514.50	V365742	1.50	<0.005	
	amounts of 1mm pyrite disseminated within the unit matrix and along	515.00	514.50	V 30374Z	1.50	-0.005	

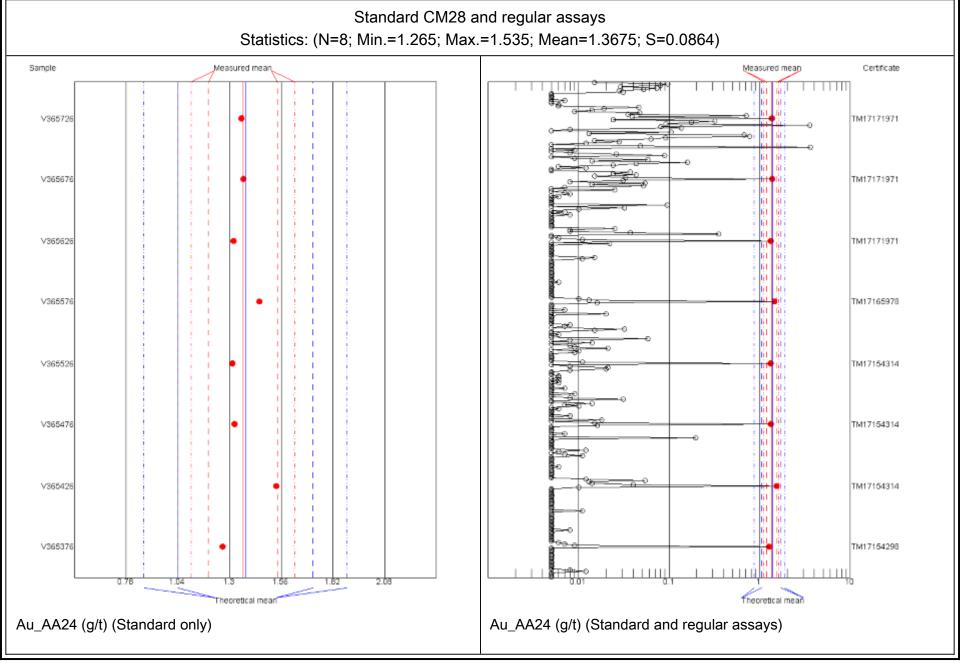
Description				Assay		
	From	То	Sample	Length	Au_AA24	Au_GRA
black chlorite slips and within the xenoliths. The unit is non-magnetic.	514.50	516.00	V365743	1.50	<0.005	
lower contact is sharp = 30dtca	516.00	517.50	V365744	1.50	<0.005	
504.20 518.00 Ser; Kspar	517.50	519.00	V365745	1.50	<0.005	
Sericitic; K-Feldspar						
The unit is a beige-pink colour (weak-moderate sericite-kspar						
alteration)						
504.20 518.00 Py00.5						
Pyrite 0.5%						
There are 0.5% amounts of 1mm pyrite disseminated within the unit						
matrix and along black chlorite slips and within the xenoliths	540.00		1005740	4.50	0.004	
518.00 530.50 S1	519.00		V365746	1.50	0.031	
Conglomerate	520.50	522.00	V365747	1.50	0.028	
A typical polymict conglomerate. There are 2-6% abundant pebble to cobble clasts with red jasper. There is a weak fabric oriented at 50dtca.	522.00		V365748	1.50	0.052	
The matrix is a gritty, fine grained greywacke. There is faint sericite	523.50		V365749	1.50	0.073	
alteration but overall it is grey in colour. There are trace amounts of	523.50	525.00		1.50	<0.005	
1mm pyrite disseminated within the unit matrix. The unit is non-magnetic	523.50	525.00	V365751	1.50	4.970	
518.00 530.50 Ser	525.00	526.50	V365752	1.50	0.029	
Sericitic	526.50		V365753	1.50	0.080	
There is faint sericite alteration but overall it is grey in colour	528.00	529.50	V365754	1.50	0.096	
518.00 530.50 Py00.1	529.50	530.50	V365755	1.00	0.015	
Pyrite 0.1%						
There are trace amounts of 1mm pyrite disseminated within the unit						
matrix						

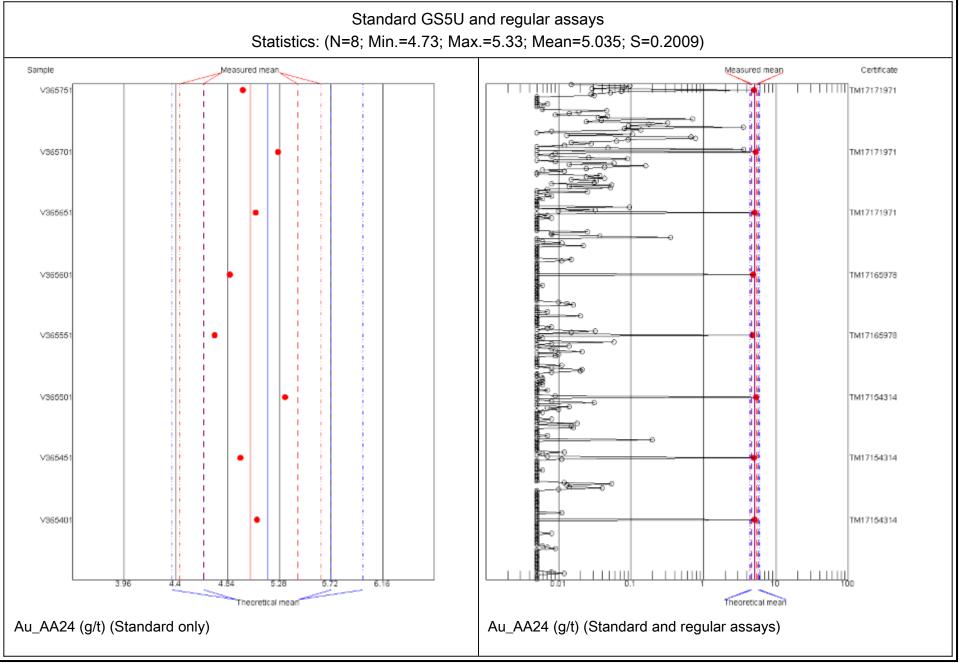
Туре	Depth	Azimuth	Dip	Invalid
Multishot	39.00	193.42°	-55.30°	No
Multishot	42.00	193.22°	-55.20°	No
Multishot	45.00	193.12°	-55.00°	No
Multishot	48.00	192.92°	-55.10°	No
Multishot	51.00	192.82°	-55.10°	No
Multishot	54.00	193.22°	-55.10°	No
Multishot	57.00	193.42°	-55.10°	No
Multishot	60.00	194.12°	-55.00°	No
Multishot	63.00	194.32°	-55.00°	No
Multishot	66.00	194.52°	-55.00°	No
ReflexEZS	66.00	194.42°	-55.20°	Yes
Multishot	69.00	194.52°	-55.00°	No
Multishot	72.00	196.42°	-54.00°	No
Multishot	75.00	194.92°	-55.00°	No
Multishot	78.00	195.12°	-55.00°	No
Multishot	81.00	195.32°	-55.00°	No
Multishot	84.00	187.82°	-54.90°	No
Multishot	87.00	195.72°	-55.00°	No
Multishot	90.00	192.12°	-54.90°	No
Multishot	93.00	195.22°	-54.60°	No
Multishot	96.00	195.22°	-54.90°	No
Multishot	99.00	195.32°	-54.90°	No
Multishot	102.00	195.02°	-54.90°	No
Multishot	105.00	192.42°	-56.40°	No
Multishot	108.00	195.12°	-54.90°	No
Multishot	111.00	195.32°	-54.90°	No
Multishot	114.00	195.12°	-54.90°	No
Multishot	117.00	194.82°	-55.00°	No
ReflexEZS	117.00	193.82°	-55.10°	Yes
Multishot	120.00	194.82°	-54.90°	No
Multishot	123.00	194.82°	-55.00°	No

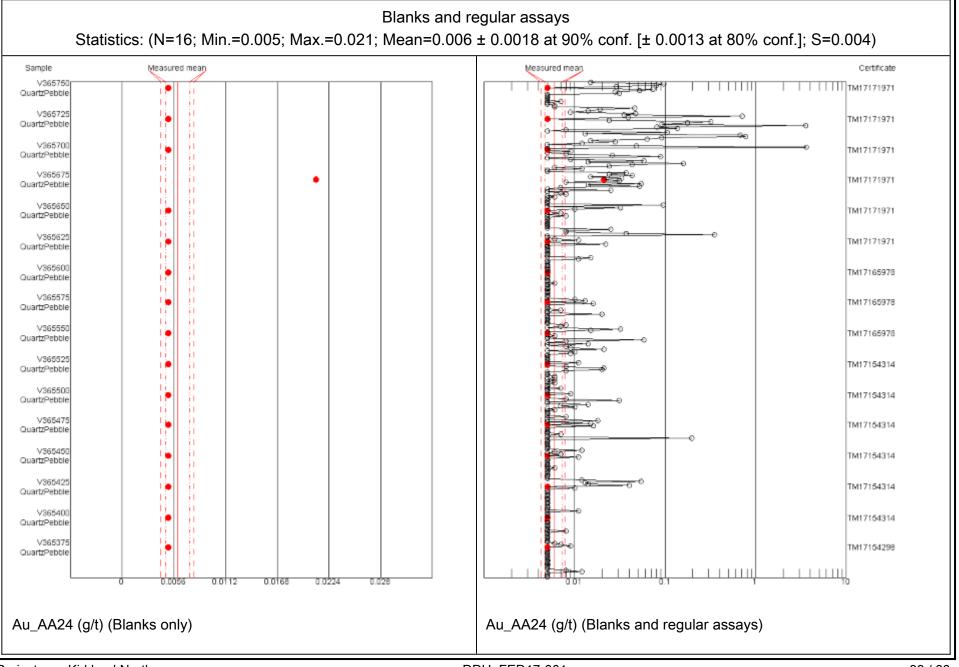
Туре	Depth	Azimuth	Dip	Invalid
Multishot	126.00	194.62°	-55.00°	No
Multishot	129.00	195.02°	-55.00°	No
Multishot	132.00	194.92°	-55.00°	No
Multishot	135.00	194.62°	-55.00°	No
Multishot	138.00	194.42°	-55.00°	No
Multishot	141.00	194.82°	-55.00°	No
Multishot	144.00	194.72°	-55.10°	No
Multishot	147.00	174.42°	-53.70°	No
Multishot	150.00	194.72°	-55.10°	No
Multishot	153.00	194.62°	-55.10°	No
Multishot	156.00	194.62°	-55.10°	No
Multishot	159.00	194.42°	-55.10°	No
Multishot	162.00	194.52°	-55.10°	No
Multishot	165.00	194.22°	-55.10°	No
Multishot	168.00	194.42°	-55.10°	No
ReflexEZS	168.00	193.82°	-55.10°	Yes
Multishot	171.00	191.32°	-55.10°	No
Multishot	174.00	194.02°	-55.00°	No
Multishot	177.00	194.12°	-55.00°	No
Multishot	180.00	194.02°	-55.00°	No
Multishot	183.00	193.72°	-54.90°	No
Multishot	186.00	193.72°	-55.00°	No
Multishot	189.00	193.42°	-55.00°	No
Multishot	192.00	193.42°	-54.90°	No
Multishot	195.00	193.42°	-54.90°	No
Multishot	198.00	193.32°	-54.80°	No
Multishot	201.00	193.32°	-54.80°	No
Multishot	204.00	192.92°	-54.70°	No
Multishot	207.00	193.22°	-54.70°	No
Multishot	210.00	193.42°	-54.70°	No
Multishot	213.00	193.32°	-54.60°	No
viuitisnot	213.00	193.32	-54.60*	INO

Туре	Depth	Azimuth	Dip	Invalid
Multishot	216.00	193.42°	-54.60°	No
Multishot	219.00	193.42°	-54.60°	No
ReflexEZS	219.00	194.52°	-55.00°	Yes
Multishot	222.00	192.92°	-54.60°	No
Multishot	225.00	193.12°	-54.50°	No
Multishot	228.00	193.02°	-54.40°	No
Multishot	231.00	193.02°	-54.40°	No
Multishot	234.00	193.02°	-54.40°	No
Multishot	237.00	193.12°	-54.40°	No
Multishot	240.00	193.12°	-54.40°	No
Multishot	243.00	193.12°	-54.30°	No
Multishot	246.00	192.92°	-54.30°	No
Multishot	249.00	193.02°	-54.30°	No
Multishot	252.00	193.02°	-54.20°	No
Multishot	255.00	192.82°	-54.20°	No
Multishot	258.00	192.92°	-54.20°	No
Multishot	261.00	193.22°	-54.10°	No
Multishot	264.00	193.02°	-54.10°	No
Multishot	267.00	193.02°	-54.10°	No
Multishot	270.00	193.02°	-54.10°	No
ReflexEZS	270.00	194.22°	-54.50°	Yes
Multishot	273.00	193.22°	-54.00°	No
Multishot	276.00	193.12°	-54.00°	No
Multishot	279.00	193.42°	-54.00°	No
Multishot	282.00	193.32°	-54.00°	No
Multishot	285.00	193.22°	-54.00°	No
Multishot	288.00	193.42°	-54.00°	No
ReflexEZS	290.00	194.02°	-54.10°	Yes
Multishot	291.00	193.42°	-53.90°	No
Multishot	294.00	193.32°	-53.90°	No
Multishot	297.00	193.52°	-53.90°	No

Туре	Depth	Azimuth	Dip	Invalid
Multishot	300.00	193.42°	-53.90°	No
Multishot	303.00	193.42°	-53.90°	No
Multishot	306.00	193.62°	-53.80°	No
Multishot	309.00	193.62°	-53.80°	No
Multishot	312.00	193.52°	-53.90°	No
Multishot	315.00	193.72°	-53.80°	No
Multishot	318.00	193.82°	-53.80°	No
Multishot	321.00	193.62°	-53.80°	No
ReflexEZS	321.00	193.22°	-54.00°	Yes
Multishot	324.00	193.82°	-53.80°	No
Multishot	327.00	193.82°	-53.70°	No
Multishot	330.00	193.92°	-53.70°	No
Multishot	333.00	194.02°	-53.70°	No
Multishot	336.00	194.52°	-53.80°	No
Multishot	339.00	194.62°	-53.70°	No
Multishot	342.00	192.92°	-53.70°	No
Multishot	345.00	192.82°	-53.70°	No
Multishot	348.00	192.02°	-53.70°	No
Multishot	351.00	192.62°	-53.70°	No
ReflexEZS	352.00	193.22°	-54.00°	Yes
Multishot	354.00	192.92°	-53.70°	No
Multishot	357.00	193.82°	-53.70°	No
Multishot	360.00	194.42°	-53.60°	No
Multishot	363.00	194.42°	-53.60°	No
Multishot	366.00	194.32°	-53.60°	No
Multishot	369.00	194.22°	-53.60°	No
Multishot	372.00	194.22°	-53.60°	No
ReflexEZS	372.00	193.72°	-53.80°	Yes
Multishot	375.00	194.22°	-53.50°	No
Multishot	378.00	194.42°	-53.50°	No
Multishot	381.00	194.42°	-53.50°	No


Туре	Depth	Azimuth	Dip	Invalid
Multishot	384.00	194.22°	-53.50°	No
Multishot	387.00	194.22°	-53.50°	No
Multishot	390.00	194.32°	-53.50°	No
Multishot	393.00	194.52°	-53.50°	No
Multishot	396.00	194.52°	-53.50°	No
Multishot	399.00	194.62°	-53.50°	No
Multishot	402.00	194.42°	-53.50°	No
Multishot	405.00	194.52°	-53.40°	No
Multishot	408.00	194.52°	-53.40°	No
Multishot	411.00	194.42°	-53.40°	No
Multishot	414.00	194.52°	-53.40°	No
Multishot	417.00	194.62°	-53.40°	No
Multishot	420.00	194.72°	-53.40°	No
Multishot	423.00	194.72°	-53.40°	No
ReflexEZS	423.00	194.52°	-53.50°	Yes
Multishot	426.00	194.72°	-53.40°	No
Multishot	429.00	194.72°	-53.30°	No
Multishot	432.00	194.82°	-53.40°	No
Multishot	435.00	194.82°	-53.30°	No
Multishot	438.00	194.72°	-53.30°	No
Multishot	441.00	194.52°	-53.30°	No
Multishot	444.00	194.72°	-53.30°	No
Multishot	447.00	194.72°	-53.30°	No
Multishot	450.00	194.62°	-53.20°	No
Multishot	453.00	194.62°	-53.20°	No
Multishot	456.00	194.72°	-53.10°	No
Multishot	459.00	194.62°	-53.10°	No
Multishot	462.00	194.52°	-53.10°	No
Multishot	465.00	194.52°	-53.10°	No
Multishot	468.00	194.52°	-53.10°	No
Multishot	471.00	194.42°	-53.10°	No


Туре	Depth	Azimuth	Dip	Invalid
Multishot	474.00	194.22°	-53.10°	No
ReflexEZS	474.00	193.52°	-53.10°	Yes
Multishot	477.00	194.12°	-53.10°	No
Multishot	480.00	194.02°	-53.00°	No
Multishot	483.00	194.02°	-53.00°	No
Multishot	486.00	193.92°	-53.00°	No
Multishot	489.00	193.72°	-52.90°	No
Multishot	492.00	193.52°	-52.80°	No
Multishot	495.00	193.32°	-52.70°	No
Multishot	498.00	193.02°	-52.60°	No
Multishot	501.00	192.72°	-52.50°	No
Multishot	504.00	192.82°	-52.40°	No
Multishot	507.00	192.52°	-52.40°	No
Multishot	510.00	192.22°	-52.30°	No
Multishot	513.00	192.52°	-52.30°	No
Multishot	516.00	191.72°	-52.20°	No
Multishot	519.00	191.72°	-52.20°	No
Multishot	522.00	191.42°	-52.10°	No
Multishot	525.00	191.62°	-52.10°	No
Multishot	528.00	191.52°	-52.10°	No
Multishot	531.00	190.22°	-52.10°	No


From	То	Sample number	Description	Au_AA24	Au_GRA22
10.50	12.00	V365357U		0.01 (9 /t)	(g/t)
12.00	13.50	V365359		<0.005	
34.50	36.00	V365375		<0.005	
34.50	36.00	V365376		1.265	
36.00	37.50	V365377U		0.010	
37.50	39.00	V365379		<0.005	
64.50	66.00	V365397U		0.008	
6.00	67.50	V365399		<0.005	
6.00	67.50	V365400		<0.005	
6.00	67.50	V365401		5.090	
90.00	91.50	V365417U		0.007	
91.50	93.00	V365419		<0.005	
99.00	100.50	V365425		<0.005	
99.00	100.50	V365426		1.535	
115.50	117.00	V365437U		0.005	
117.00	118.50	V365439		<0.005	
132.00	133.50	V365450		0.005	
132.00	133.50	V365451		4.950	
141.00	142.50	V365457U		0.006	
142.50	144.00	V365459		<0.005	
165.00	166.50	V365475		<0.005	
165.00	166.50	V365476		1.325	
166.50	168.00	V365477U		0.018	
168.00	169.50	V365479		<0.005	
195.00	196.50	V365497U		0.009	
196.50	198.00	V365499		0.005	
196.50	198.00	V365500		<0.005	
196.50	198.00	V365501		5.330	
220.50	222.00	V365517U		0.007	
222.00	223.50	V365519		0.005	
229.50	231.00	V365525		<0.005	

From	То	Sample number	Description	Au_AA24	Au_GRA22
229.50	231.00	V365526		1.31 (9 /t)	(g/t)
246.00	247.50	V365537U		0.049	
247.50	249.00	V365539		<0.005	
262.50	264.00	V365550		<0.005	
262.50	264.00	V365551		4.730	
271.50	273.00	V365557U		0.007	
273.00	274.50	V365559		<0.005	
295.50	297.00	V365575		<0.005	
295.50	297.00	V365576		1.450	
297.00	298.50	V365577U		0.016	
298.50	300.00	V365579		<0.005	
325.50	327.00	V365597U		0.007	
327.00	328.50	V365599		<0.005	
327.00	328.50	V365600		<0.005	
327.00	328.50	V365601		4.860	
351.00	352.50	V365617U		0.010	
352.50	354.00	V365619		<0.005	
360.00	361.50	V365625		<0.005	
360.00	361.50	V365626		1.320	
378.00	379.50	V365639		<0.005	
393.00	394.50	V365650		<0.005	
393.00	394.50	V365651		5.080	
103.50	405.00	V365659		<0.005	
426.00	427.50	V365675		0.021	
426.00	427.50	V365676		1.370	
429.00	430.50	V365679		0.011	
457.50	459.00	V365699		0.005	
57.50	459.00	V365700		<0.005	
157.50	459.00	V365701		5.270	
83.00	484.50	V365719		0.100	
490.50	492.00	V365725		<0.005	

From	То	Sample number	Description	Au_AA24	Au_GRA22	
490.50	492.00	V365726		1.36 09/t)	(g/t)	
508.50	510.00	V365739		<0.005		
523.50	525.00	V365750		<0.005		
523.50	525.00	V365751		4.970		

