We are committed to providing accessible customer service.
If you need accessible formats or communications supports, please contact us.

Nous tenons à améliorer l'accessibilité des services à la clientèle.
Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez nous contacter.

Assessment Report

Magnetometer Survey
 On the
 Bader and Marsh
 Township Properties

Sault Ste. Marie Mining Division

Northeastern Ontario
NTS: $42 \mathrm{~B} / 4$ and $42 \mathrm{C} / 1$
Written by;
Claudia Wilck, RR 1, Parry Sound ON, P2A 2W7
January 29, 2008
For
Golden Chalice Resources Inc

TABLE OF CONTENTS

Page
Introduction - ownership, description and overview 1
Location and Access 1
General Geology 1
Magnetometer Survey 2
Personnel 3
Magnetometer Survey VTEM_03 -access, interpretation and recommendation 4
Magnetometer Survey Dyke 669 (2nd pass) -access, interpretation, recommendation 5
Magnetometer Survey B_07-access, interpretation and recommendation 6
Magnetometer Survey B_09-access, interpretation and recommendation 7
Magnetometer Survey B_23-access, interpretation and recommendation 8
Magnetometer Survey B_24-access, interpretation and recommendation 9
Magnetometer Survey B_25-access, interpretation and recommendation 10
Qualifying Statement 11
References 12

Figures in back pocket
Figure 1 - Golden Chalice Resources Inc. Claim Location Map access to Bader and Marsh Township Claims and Magnetometer Survey Grid Location Map

Figure 2 - Key location map of Golden Chalice Resources Inc. - Project Area - Chapleau Diamond Project

APPENDICES

Appendix 1 - Magnetometer Survey Statistics and Total Field Magnetics (color contours) scale: 1:2500 for Grids:

VTEM_03, Dyke 669 ($2^{\text {nd }}$ Pass), B_07, B_09, B_23, B_24 \& B_25

- Dyke 69 - Grid lines Map - $1^{\text {st }}$ pass vs $\overline{2}^{\text {nd }}$ pass

NOTE: Tabulation of Line, Station and Raw and Corrected Magnetometer Survey Values (nT) for Grids ARE NOT PROVIDED AS THE SURVEY WAS CONDUCTED IN WALKING MAG MODE

Introduction - Ownership, Description and Overview

Golden Chalice Resources Inc. of Vancouver, British Columbia holds 100\% interest in claim numbers: 4208623 (9 units/144 ha), 4202723 (16 units/256 ha), 4202724 (16 units/256 ha), 4209177 (15 units/240 ha), 4209163 (16 units/256 ha) and 4209161 (16 units/256 ha) all situated in Bader Township and 4201382 (15 units/240 ha) and 4202794 (10 units/160ha) both situated in Marsh Township.

All of the above mentioned claim blocks are contiguous and are located @50km northeast of Wawa in northeastern Ontario. See figure 1 - Claim Locations Map

Total field magnetometer surveys were conducted over Keating magnetic anomalies and to map out ultramafic dikes in the search for diamond commodity. Chained and flagged grids were established comprising of a total of 7 control grids: 6 control grids in Bader Township and 1 grid in Marsh Township; followed by the Total field magnetic survey, with subsequent processing, presentation of field data as contours, interpretation and recommendations for further follow-up. See figure 1 - Geophysical Grid Location Map

The costs associated with conducting the work program outlined in this report are to be applied to claim numbers: 4202716 (12 units/192 ha) and 4202715 (12 units/192 ha) having an imminent due date of March 1, 2008, 4208623 (9 units/144 ha) and 4208611 (12 units/192 ha) having an imminent due date of March 6, 2008 and 4202794 (10 units/160 ha) having an imminent due date of April 4, 2008.

Location and Access

The claims are located @50 km northeast of Wawa in northeastern Ontario in the Sault Ste. Marie Mining Division. To access the property, from Wawa ON, take Hwy 101 about 65 km east, turning north onto Hwy 651. The grid locations vary to the east of Highway 651 along the Dalton Road - @ 27 km north on Hwy 651. The town of Missanabie is @ 57 km north on Hwy 651 from the Hwy 101 turn. (See each grid area for detailed access and location.) See figure 1 - Map of the Grid Locations

General Geology (after Bennett, Gerald, 1978, GR172 OGS)
The major lithologic units are of Precambrian age. The oldest recognized rocks are metamorphosed basaltic flows, intermediate to felsic pyroclastics and flows, detrital metasediments and minor iron formation which form a metavolcanic-metasedimentary complex of Early Precambrian age. The metavolcanics have been intruded by a variety of metamorphosed intermediate to felsic porphyries and metagabbros.

The metavolcanic-metasedimentary belt is folded into a shallow plunging, generally southeast trending syncline. The metamorphic grade ranges from lower green-schist in the northwest to almandine-amphibolite in the south and southeast. A variety of syntec-tonic and post-tectonic granitic plutons intrude the metavolcanic-metasedimentary complex.

The presence of extensive areas of catazonal igneous and metamorphic rocks in the southern and southeastern parts of the area indicates considerable uplift relative to the northern part. This uplift may coincide with that of the Kapuskasing structures.

Numerous diabase dikes intrude all of the major lithologic units of the area.
A syenite dike and a few ultrmafic lamprophyres are the youngest known rock types of the area.

Magnetometer Survey

Possible kimberlite targets have been identified from the residual magnetic intensity data, based on the identification of roughly circular anomalies. This procedure was automated by using a known pattern recognition technique (Keating, 1995), which consists of computing, over a moving window, a first-order regression between a vertical cylinder model anomaly and the gridded magnetic data. Only the results where the absolute value of the correlation coefficient is above a threshold of 75% were retained. The results are depicted as circular symbols, scaled to reflect the correlation value. The most favorable targets are those that exhibit a cluster of high amplitude solutions. Correlation coefficients with a negative value correspond to reversely magnetized sources. It is important to be aware that other magnetic sources may correlate well with the vertical cylinder model, whereas some kimberlite pipes of irregular geometry may not.

Keating Correlation Coefficients (modified from Ontario airborne geophysical surveys, magnetic data, Wawa area; Ontario Geological Survey, Geophysical Data Set 1009-Revised, 2003)

Total Field Magnetometer surveys were conducted over Keating magnetic anomalies identified from Geological Survey of Canada 2001: First Vertical Derivative of Magnetic Field with Keating Coefficients Map Ontario: Bolkow Open File 4064 / OGS Map 81707 and Manitowik Lake Open File 4076 OGS Map 81719.

The magnetometer surveys were performed on control grids established and were chained and flagged in 25 m intervals, with a base line, followed by the Total Field Magnetic survey, with subsequent post processing and presentation of field data as contours, interpretation and recommendations for further follow-up. A total of 7 control grids and magnetic surveys were conducted. See figure 1 -Geophysical Grid Location Map

See Appendix 1 - Magnetometer Survey Statistics for Grids: VTEM_03, B_07, B_09, B_23, B_24 and B_25 (in Bader Township), and Dyke 669(2 ${ }^{\text {nd }}$ pass) (in Marsh Township), for details regarding grids and magnetometer survey parameters. Accompanying each of the grid statistic reports are the Total Field Magnetics (Color Contours).

NOTE- Tabulation of Line, Station and Raw and Corrected Magnetometer Survey Values (nT) for Grids ARE NOT PROVIDED AS THE SURVEY WAS CONDUCTED IN WALKING MAG MODE

Personnel

The following personnel worked on this property and conducting the following work activities summarized below:

Personnel	Activity	Dates Worked	Man-days
Dan Cyr	Grid	Dec 4, 52007	2 days
Dan Cyr	Mag	Dec. 8, 9 \& 102007	3 days
Steve Therrien	Grid	$\begin{aligned} & \text { Dec 2, } 3 \& 5,2007 \\ & \text { Jan 17, } 2008 \end{aligned}$	4 days
Dakota Souliere	Grid	Dec. 2, 3 \& 5, 2007	3 days
Peter Smith	Grid	Dec. 2,3,4 \& 52007	4 days
Alain Sigouin	Grid	Dec. 2,3,4 \& 52007 Jan 17, 2008	5 days
Alain Sigouin	Mag	Jan 22, 2008	1 day
Jonathan Savard	Data	Dec 9, 10(half day), 11 (half day), 2007 Jan 10, 13, 16 (all half days) 2008 Jan 22, 25 \& 26(half day) 2008	6 days
Jonathan Savard	Mag	Dec. 8, 2007 (half day) Jan 10 (half day), 11 \& 172008	3 days
Graham Stone	Interp. \& recom. \& logistics	$\text { Jan } 14 \text { \& 19(3/4 day), } 2008$	1.75 days
Claudia Wilck	Report	Jan 23(half day), 24 to 29, 2008	6.5 days

STEM 03

Access:

The target is located in North West Bader Township. From the town of Missanabie, travel south, by truck, on Highway 651 about 27 Km to the village of Dalton. Turn East and take Dora Jones Logging road for 9 km . Turn West and skidoo down secondary logging road for 1 km to end of road. Then snowshoe 450 m West to the center of the grid - point of origin - UTM 16U 722108E 5339351N in claim 4202723

Interpretation:

This target was a result of an in house VTEM survey.
The VTEM anomaly is very likely caused by the intersection of two dykes in the South East part of the grid.
There may also be other dyke intersections in the South West and North West portions of the grid. The grid does not cover enough of the suspected dyke to be certain.

Recommendations:

Follow up prospecting is warranted to try and establish rock types of these suspected dykes. Further investigation would be pending on the results of prospecting.

Dyke 669 (2 ${ }^{\text {nd }}$ Pass)

Abstract

Access: The target is located in South-Central Marsh Township. From the town of Missanabie, travel south, by truck, on Highway 651 approximately 27 km to the village of Dalton. From Dalton travel east by vehicle on Dora Jones seasonal logging road for 14.5 km . Take the right fork and continue for another 1.4 km and take the right fork again; Continue for 350 m and take a left at this point Dyke 669 Grid crosses this road. - point of origin - UTM 17U 282253E 5343509N in claims 4202794 and 4201382

Interpretation:

This grid was extended in the hopes of finding the source of the float boulders that were found by road prospecting. It was and still is believed that this float was local and brought to surface by road construction activities. The first pass of ground magnetic survey did not show any conclusive evidence. With the second pass, paralleling linear features were found to the west of the North South diabase dyke. These features may be dykes, which may be the source of the float boulders. They run on an azimuth of 110 true and are perpendicular to most of the known kimberlitic dykes in the region. Also, to west of the Diabase dyke there is a noticeable drop in Magnetic values. The same operator read the entire grid and the instrument was working fine, so it remains to be seen why the values are lower.

Recommendations:

Further ground prospecting along with trenching in the area where the kimberlitic boulder was found would be highly recommended.

B_07

Access:

The target is located in South-Western Bader Township. From the town of Missanabie, travel south, by truck, on Highway 651 approximately 27 kms to the village of Dalton. From Dalton travel east by truck on Goldie River seasonal logging road for 4.4 Km . Turn South onto seasonal logging road and travel 1.4 km . Turn East and travel 800 m . From here it is approximately 400 m East through the bush to the target area - point of origin - UTM 16U 723179E 5332830N in claims 4208623 and 4209177

Interpretation:

This target was a Keating anomaly indicated on the Map:
Dumont R., Coyle M., Potvin J.
Geological Survey of Canada
2001: First Vertical Derivative of Magnetic Field With Keating Coefficients Map
Ontario: Manitowik Lake, NTS 42 C/1
Open File 4076 / OGS Map 81719
Scale 1:50000
This target displays an irregular circular magnetic high located in the center of the grid. It has a very smooth build up which seems indicative of either a deep source or a peridotite source. The anomaly appears to match the government airborne location but is approximately half the size.

Recommendations:

Further ground work is definitely recommended. Prospecting the area to determine rock types seen on the surface and sampling of any interesting rock. Further follow up based upon those results.

B_09

Access:

The target is located in South-Central Bader Township. From the town of Missanabie, travel south, by truck, on Highway 651 approximately 27 kms to the village of Dalton. From Dalton, travel east, by truck on seasonal logging road for 7.6 kms . From here it is approximately 1 km north-west by foot through the bush to the target area - point of origin - UTM 17U 278307E 5336014N in claim 4209163

Interpretation:

This target was a Keating anomaly indicated on the Map:
Dumont R., Coyle M., Potvin J.
Geological Survey of Canada
2001: First Vertical Derivative of Magnetic Field With Keating Coefficients Map
Ontario: Bolkow, NTS 42 B/4
Open File 4064 / OGS Map 81707
Scale 1:50000

The ground magnetic survey shows what appears to be a diabase dyke running north/south. There is also a lower amplitude dyke intersecting the diabase dyke trending north/west. On the west central portion of the grid there is a mag high.

Recommendations:

Prospecting the areas of mag high as well as the lower amplitude dyke is recommended as a means of follow up to determine rock types and sampling of any interesting rock.
Trenching to uncover the small North-west trending dyke is also recommended.

B_23

Access:

This target is located in Western Bader Township. From the town of Missanabie, travel south, by truck, on Highway 651 approximately 27 kms to the village of Dalton. From Dalton travel east by snowmobile on seasonal logging road for 3.6 kms to the target area - point of origin - UTM 16U 722729E 5337261N in claim 4209161

Interpretation:

This target was a Keating anomaly indicated on the Map:
Dumont R., Coyle M., Potvin J.
Geological Survey of Canada
2001: First Vertical Derivative of Magnetic Field With Keating Coefficients Map Ontario: Manitowik Lake, NTS 42 C/1
Open File 4076 / OGS Map 81719
Scale 1:50000

The ground magnetic survey shows two intersecting dykes. The intersection is located in the center of the grid. The first dyke appears to have a North East tend and the second has a North West trend. The cause of the Keating anomaly is the intersection of the two dykes.

Recommendations:

Detailed prospecting around the area of the intersection of these dykes would be recommended as follow up as this would be a favourable structural feature. The prospecting results would dictate any further efforts.

B_24

Access:

This target is located in Western Bader Township. From the town of Missanabie, travel south, by truck, on Highway 651 approximately 27 kms to the village of Dalton. From Dalton, travel east by snowmobile on seasonal logging road for 4 kms to the target area point of origin - UTM 16U 723103E 5337686N in claim 4209161

Interpretation:

This target was a Keating anomaly indicated on the Map:
Dumont R., Coyle M., Potvin J.
Geological Survey of Canada
2001: First Vertical Derivative of Magnetic Field With Keating Coefficients Map
Ontario: Manitowik Lake, NTS 42 C/1
Open File 4076 / OGS Map 81719
Scale 1:50000
The ground magnetic survey shows two intersecting dykes. The intersection is located in the South-Western quadrant of the grid. The first dyke appears to have a North East tend and the second has a North West trend. The cause of the Keating anomaly is the intersection of the two dykes.

Recommendations:

Detailed prospecting around the intersection of these two dykes would be recommended as follow up. The prospecting results would dictate any further efforts.

B_25

Access:

This target is located in North West Bader Township. From the town of Missanabie, travel south, by truck, on Highway 651 for approximately 27 km to the village of Dalton. Upon crossing the railroad tracks turn left and follow tracks by skidoo down the road until you arrive at Ogasiwi Lake. From here travel along the East shore of Ogasiwi Lake for 2 km . A 250 m walk East into the bush to the target - point of origin - UTM 16U 722254 E 5340692 N in claim 4202724

Interpretation:

This target was a Keating anomaly indicated on the Map:
Dumont R., Coyle M., Potvin J.
Geological Survey of Canada
2001: First Vertical Derivative of Magnetic Field With Keating Coefficients Map
Ontario: Manitowik Lake, NTS 42 C/1
Open File 4076 / OGS Map 81719
Scale 1:50000

There appears to be a North-East trending diabase dyke running through the grid. It seems to break in the center of the grid and either a small magnetic anomaly (25 by 50 m) can be seen or it could be a narrowing of the diabase dyke. There is also an interesting linear mag low running East-West in the Southern portion of the grid.

Recommendations:

Follow up prospecting is warranted to determine rock type of the North-East and EastWest structures. The break in the diabase dyke should also be investigated. Further work would depend on prospecting results.

Qualifying Statement

I, Claudia Wilck, residing at RR \#1, Parry Sound, ON, P2A 2W7 state the following with respects to this report:

I wrote this report and produced the accompanying tables and maps based on information provided by Golden Chalice Resources Inc. of 771-675 West Hastings Street Vancouver, British Columbia V6B 1 N2.

That I hold no beneficial interest in these properties held by Golden Chalice Resources Inc. as stated in this report.

Respectfully Submitted

Claudia wile

Claudia Wick
Geological Technician
in Parry Sound, ON
29, January, 2008

References

First Vertical Derivative of Magnetic Field with Keating Coefficients Map Dumont R., Coyle M., Potvin J., Geological Survey of Canada, 2001 Ontario: Bolkow, NTS 42B/4 Open file 4064/OGS Map 81707

First Vertical Derivative of Magnetic Field with Seating Coefficients Map Dumont R., Coyle M. Potvin J., Geological Survey of Canada, 2001 Ontario: Manitowik Lake, NTS 42C/1 Open file 4076/OGS Map 81719

Ontario airborne geophysical surveys, magnetic data, Waw area; Ontario Geological Survey, Geophysical Data Set 1009 - Revised 2003

Bennett, Gerald, 1978: Geology of the Crooked Lake Area, District of Sudbury; Ontario Geological Survey Report 172, 46p. Accompanied by Maps 2380 and 2381, scale 1 inch to $1 / 2$ mile

Appendix 1

Magnetometer Survey Statistics and

Total Field Magnetics (color contours) scale: 1:2500
For Grids: VTEM_03, Dyke 669 (2 ${ }^{\text {nd }}$ pass), B_07, B_09, B_23, B_24 and B_25

Appendix : VTEM_03; magnetometer survey statistics

Grid	VTEM 03
Grid point of origin: Zone, UTM \& Datum	NAD 27 Zn 167221085339351
Survey Type	Total Field Magnetics
Claim	4202723
Township	Bader
Project	Chapleau Diamond Project
N.T.S.	42 C/1
Survey date	Jan 102008
Surveyed by	J. Savard
Base station instrument	GSM vs 4.0 Proton Magnetometer
Base station location:Zone UTM \& Datum	NAD 27 Zn 16 716205E 5354489N
Base station value	57500 nT
Base station reading interval	5 sec
Field instrument	GSM vs 7.0 Overhauser Magnetometer
Field instrument reading interval	1 sec.
Baseline azimuth	90 True
Total number of posted readings for grid	4854
Total Grid Km	2.363 Km
Map by	Jon Savard
Map scale	1 to 2500

Appendix : Dyke 669 (2nd Pass); magnetometer survey statistics

Grid	Dyke 669 (2nd Pass)
Grid point of origin: Zone, UTM \& Datum	NAD 27 Zn 172822535343509
Survey Type	Total Field Magnetics
Claim	4202794 (for 3.99 Km) and 4201382 (or 1.550 Km)
Claim 1st pass	4202794 (for 1.70 km) and 4201382 (for 0.100 Km)
Claim 2nd pass	4202794 (for 2.29 Km) and (4201382 for 1.450 Km)
Township	Marsh
Project	Chapleau Diamond Project
N.T.S.	42 B/4
Survey date	Jan 172008
Surveyed by	J. Savard
Base station instrument	GSM vs 4.0 Proton Magnetometer
Base station location:Zone UTM \& Datum	NAD 27 Zn 16 716205E 5354489N
Base station value	57500 nT
Base station reading interval	5 sec
Field instrument	GSM vs 7.0 Overhauser Magnetometer
Field instrument reading interval	1 sec.
Baseline azimuth	250 True
Total number of posted readings for grid	6935
Total number of posted readings for grid 1st pass	2400
Total number of posted readings for grid 2nd pass	4535
Total Grid Km	5.54 Km
Total Grid Km 1st pass	1.80 Km
Total Grid Km 2nd pass	3.74 Km
Map by	Jon Savard
Map scale	1 to 2500

Chalice Diamond Corporation

Appendix : B_07; magnetometer survey statistics

Grid	B_07
Grid point of origin: Zone, UTM \& Datum	NAD 27 Zn 167231795332830
Survey Type	Total Field Magnetics
Claim	4208623 and 4209177
Township	Bader
Project	Chapleau Diamond Project
N.T.S.	42 B/4 and 42 C/1
Survey date	Jan 112008
Surveyed by	J. Savard
Base station instrument	GSM vs 4.0 Proton Magnetometer
Base station location:Zone UTM \& Datum	NAD 27 Zn 16716205E 5354489N
Base station value	57500 nT
Base station reading interval	5 sec
Field instrument	GSM vs 7.0 Overhauser Magnetometer
Field instrument reading interval	1 sec
Baseline azimuth	90 True
Total number of posted readings for grid	3948
Total Grid Km	2.381 Km
Map by	Jon Savard
Map scale	1 to 2500

Appendix : B_09; magnetometer survey statistics

Grid	B 09
Grid point of origin: Zone, UTM \& Datum	NAD 27 Zn 172783075336014
Survey Type	Total Field Magnetics
Claim	4209163
Township	Bader
Project	Chapleau Diamond Project
N. T.S.	42 B/4
Survey date	Dec 102007
Surveyed by	Dan Cyr
Base station instrument	GSM vs 4.0 Proton Magnetometer
Base station location:Zone UTM \& Datum	NAD 27 Zn 16 716205E 5354489N
Base station value	57500 nT
Base station reading interval	5 sec
Field instrument	GSM vs 7.0 Overhauser Magnetometer
Field instrument reading interval	1 sec.
Baseline azimuth	90 True
Total number of posted readings for grid	6475
Total Grid Km	2.363 Km
Map by	Jon Savard
Map scale	1 to 2500

Colour Contour Scale (nT)

CHALICE DIAMOND CORP CHAPLEAU DIAMOND PROJECT
 Grid: B_09

Grid: B_09
Total Field Magnetics (Colour Contours)
Field Instrumentation: GSM vs. 7.0 Overhauser Magnetomete Base Instrumentation: GSM vs. 4.0 Proton Magnetometer Survey Date: Dec 102007 Survey By: Dan Cyr

Appendix : B_23; magnetometer survey statistics

Grid	B 23
Grid point of origin: Zone, UTM \& Datum	NAD 27 Zn 167227295337261
Survey Type	Total Field Magnetics
Claim	4209161
Township	Bader
Project	Chapleau Diamond Project
N.T.S.	42 C/1
Survey date	Dec 092007
Surveyed by	Dan Cyr
Base station instrument	GSM vs 4.0 Proton Magnetometer
Base station location:Zone UTM \& Datum	NAD 27 Zn 16 716205E 5354489N
Base station value	57500 nT
Base station reading interval	5 sec
Field instrument	GSM vs 7.0 Overhauser Magnetometer
Field instrument reading interval	1 sec
Baseline azimuth	90 True
Total number of posted readings for grid	6905
Total Grid Km	2.307 Km
Map by	Jon Savard
Map scale	1 to 2500

Appendix : B_24; magnetometer survey statistics

Grid	B 24
Grid point of origin: Zone, UTM \& Datum	NAD 27 Zn 167231035337686
Survey Type	Total Field Magnetics
Claim	4209161
Township	Bader
Project	Chapleau Diamond Project
N.T.S.	42 C/1
Survey date	Dec 082007
Surveyed by	Dan Cyr
Base station instrument	GSM vs 4.0 Proton Magnetometer
Base station location:Zone UTM \& Datum	NAD 27 Zn 16 716205E 5354489N
Base station value	57500 nT
Base station reading interval	5 sec
Field instrument	GSM vs 7.0 Overhauser Magnetometer
Field instrument reading interval	1 sec.
Baseline azimuth	90 True
Total number of posted readings for grid	4966
Total Grid Km	2.397 Km
Map by	Jon Savard
Map scale	1 to 2500

Grid	B 25
Grid point of origin: Zone, UTM \& Datum	NAD 27 Zn 16 U 7222545340692
Survey Type	Total Field Magnetics
Claim	4202724
Township	Bader
Project	Chapleau Diamond Project
N.T.S.	42 C/1
Survey date	Jan 222008
Surveyed by	A. Sigouin
Base station instrument	GSM vs 4.0 Proton Magnetometer
Base station location:Zone UTM \& Datum	NAD 27 Zn 16 716205E 5354489N
Base station value	57500 nT
Base station reading interval	5 sec
Field instrument	GSM vs 7.0 Overhauser Magnetometer
Field instrument reading interval	1 sec
Baseline azimuth	90 True
Total number of posted readings for grid	5872
Total Grid Km	2.310 Km
Map by	Jon Savard
Map scale	1 to 2500
Report writing by	
Date of report writing	

Fig. 2 Key location map of Golden chalice Resources Inc. Project Area.

- Chapleau diamond project
© Garmin Ltd. or its \mathbf{S}. aries 1995-2004

