We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Report on the 2017Midlothian Drilling Program

on behalf of Canadian Gold Miner

Prepared By: Peter McIntyre – PGeo (APGO) Greg Collins – PGeo (APGO) August 31, 2017

Contents

Introduction1
Location1
Land Tenure1
Previous Work2
Regional Geology7
Local Geology
Summary of Work9
Diamond Drilling9
Summary of 2017 Diamond Drill Holes10
Sampling11
Interpretation11
Conclusions
New Gold Bearing Vein Identified13
References
Appendix A: Drill Logs17
Appendix B: Drill Plan
Appendix C: Drill Sections
Appendix D: Assay Certificates

Figure 1: Midlothian property location	.3
Figure 2: Midlothian Property Claim Distribution	.4
Figure 3: 2017 Drill Collar Locations1	3

Introduction

Between August 25th 2015 and July 7th 2016, Transition Metals, on behalf of Canadian Gold Miner, completed a drill program consisting of 9 drill holes totaling 346.85m, in which each hole was sampled for prospective gold and base metal mineralization. The property is considered prospective for gold and base metal mineralization to current work programs.

This report was prepared by Peter McIntyre (P.Geo – APGO) and Greg Collins (P.Geo – APGO) effective August 31, 2018. Both parties are agents of Transition Metals, who served as project operator for the program on behalf of Canadian Gold Miner, a private subsidiary controlled by Transition Metals Corp., of Sudbury Ontario. Both companies share an office at 410 Falconbridge Road, Unit 5, Sudbury Ontario, P3A 4S4.

Location

The Midlothian property is located in Midlothian Township, approximately 20km south west of the town of Matachewan Ontario (Figure 1). Access to the property from Matachewan can be gained by following Highway 566 west for 3.5km to the Asbestos Mine Road. Follow the Asbestos Mine Road for another 20kms to where a washout prevents further vehicle access. From here ATV's can be used to cross a makeshift bridge and continue on the Asbestos Mine Road for another 8km to access the centre of the property. Alternatively, the property can be accessed by vehicle by heading west from Matachewan on Hwy 566 then turning south on the Wilson Lumber Road and heading south for approximately 15km until the Asbestos Mine Road is reached west of the washout. From here the centre of the property is approximately 8km.

Land Tenure

The Midlothian property is comprised of 11 mining claims in Midlothian Township, summarized in Table 1. Figure 2 shows the distribution of the claims.

The claims are registered 100% to Canadian Gold Miner, client number 412952, and are subject to a Purchase and Sale Agreement between Canadian Gold Miner, Kiska Metals and Rimfire Resources dated February 29th, 2016. The Midlothian property is subject to underlying Purchase and Sale agreement and Royalty Agreements dated July 18, 2014 amongst Laurion Mineral Exploration Inc., Rimfire and Kiska that conveys under certain circumstances a 2.5% NSR with respect to any precious metals and a 1.5% NSR with respect to any other minerals derived from the property.

Table 1: Summary of the Midlothian Property claims

Township / Area	Claim Number	Recording Date	Claim Due Date	Status	Percent Option	Work Required	Total Applied	Total Reserve
MIDLOTHIAN	<u>4220776</u>	2007-Jul-09	2017-Sep-11	А	100%	\$4,000	\$32,000	\$0
MIDLOTHIAN	<u>4220777</u>	2007-Jul-09	2017-Sep-11	А	100%	\$6,000	\$48,000	\$0
MIDLOTHIAN	4220778	2007-Jul-09	2017-Sep-11	А	100%	\$6,000	\$48,000	\$15,752
MIDLOTHIAN	<u>4220779</u>	2007-Jul-09	2017-Sep-11	А	100%	\$6,000	\$48,000	\$0
MIDLOTHIAN	4220780	2007-Jul-09	2017-Sep-11	А	100%	\$6,000	\$48,000	\$0
MIDLOTHIAN	<u>4220781</u>	2007-Jul-09	2017-Sep-11	А	100%	\$6,000	\$48,000	\$0
MIDLOTHIAN	4220782	2007-Jul-09	2017-Sep-11	А	100%	\$6,000	\$48,000	\$0
MIDLOTHIAN	4220785	2007-Jul-09	2017-Sep-11	А	100%	\$3,200	\$25,600	\$0
MIDLOTHIAN	<u>4220786</u>	2007-Jul-09	2017-Sep-11	А	100%	\$4,800	\$38,400	\$98
MIDLOTHIAN	4220787	2007-Jul-09	2018-Jul-09	А	100%	\$6,400	\$57,600	\$929
MIDLOTHIAN	4220788	2007-Jul-09	2017-Sep-11	А	100%	\$6,400	\$51,200	\$929

Previous Work

1946: Ontario Geological Survey mapping covered Midlothian Township at a 1 inch to 1,000 ft with the results published as a preliminary report with map (Marshall, 1947).

1952: Dominion Gulf Company completed a ground magnetic survey and a program of geological mapping on the area north of Lloyds Lake (Patcliffe, 1953). A single diamond drill holes was completed undercutting the Bray Lake Zn-Cu showing, as shown on the accompanying map although no drill log was included in the report.

1963: Stairs Exploration and Mining Company covered the western half of the property with an airborne magnetic survey.

1967: Ontario Geological Survey mapped Midlothian Township at 1 inch to ¼ mile (1:15,840) with the results published in 1970 as a geological report with colour map at 1: 31 680 scale (Bright, 1970).

1968: Timiskaming Nickel Ltd. completed an airborne electromagnetic and magnetic survey on the western half of the property.

1969: Canadian Johns Manville Company completed an airborne magnetic survey over the central part of the property.

1970: Canadian Johns-Manville completed a three hole diamond drill program totalling 1604 ft (488.9 m) testing the ultramafic intrusions in the area northwest of the Lloyds Lake (Can. Johns-Manville, 1970). An additional 4 holes totalling 2217 ft (675.7 m) are shown on the accompanying maps but no logs were include in the assessment file.

Figure 1: Midlothian property location

Figure 2: Midlothian Property Claim Distribution

1971: Denison Mines Ltd. completed a two hole diamond drill program totalling 636 ft (193.9 m) testing the sulphide mineralization hosted by the felsic to intermediate volcanic rocks northwest of Strange Lake (Denison Mines, 1971).

1971: Stump Mines completed a geological examination of the mineral occurrences on an area covering the northern portion of the current property, including the Bray and Strange lake areas (Hutchinson, 1971). An IP survey was also completed over the property during this period.

1971: Allied Mining Corp. drilled two diamond drill holes on the north shore of Lloyds Lake totalling 801 ft. (244.1 m) testing the ultramafic intrusions (Hagan, 1971).

1972: International Trust Company completed a four hole diamond drill program with two holes totalling 852 ft (259.7 m) undercutting the Bray Lake Cu-Zn showing and two holes totalling 962 ft (293.2 m) testing ultramafic intrusions to the southeast of Bray Lake (Hagan, 1972).

1972: Allied Mining completed a diamond drill hole totalling 481 ft testing the ultramafic intrusion in the area northwest of Lloyds Lake (Allied Mining, 1972).

Allied Mining also completed four diamond drill holes totalling 2,824 ft on the northeast part of Lloyds Lake to test the ultramafic intrusions (Hagan, 1972b).

An additional two holes totalling 800 ft (243.8 m) were drilled on the south side of the west arm of Lloyds Lake (Hagan, 1972c).

1973: Tojaro Holdings Limited completed a ground magnetic survey on claims located south of Strange Lake and covering the west side of Mitre Lake (DesRosier, 1973, 1973b).

1973: Stump Mines Ltd. completed two holes totalling 611 ft (186.2 m) testing the ultramafic intrusions northeast of Lloyds Lake (Hagan, 1973).

1973: United Asbestos completed a three hole program totalling 911 ft (277.7 m) testing the ultramafic intrusions in the area northeast of Lloyds Lake (Hagan, 1973b).

1973: Hanna Mining Company completed a ground magnetic survey over a portion of the west side of the current property along north-south oriented picket lines. A program of geological mapping was also completed (Hogg, 1974).

1974: Hanna Mining completed a follow-up program of six diamond drill holes was completed with three of the holes totalling 1,082 ft (329.8 m) located on the western half of the current property (Hogg, 1974; Lake and Hogg, 1974). There holes intersected pyrite with lesser amounts of pyrrhotite returning assays of up to 660 ppm Cu and 590 ppm Zn.

1975: Northrim Mines completed a two hole diamond drill program totalling 1002 ft (305.4 m) testing a ground electromagnetic survey in the area south of the west arm of Lloyd Lake (Darke, 1975, 1975b).

1975: International Trust Company completed a ground magnetic survey on claims peripheral to the mine (Hagan, 1975).

1976: International Trust Company completed a three hole diamond drill program totalling 1050 ft (320 m) testing the ultramafic intrusions east of Lloyds Lake (Hagan, 1976).

1997: Dale Pyke completed line cutting, induced polarization and magnetometer surveys on the eastern part of the property.

2003: Ontario Geological Survey published an airborne magnetic and electromagnetic survey of the Halliday Dome area, under the Discover Abitibi Initiative Program that covered Midlothian Township (Ontario Geological Survey, 2003).

2004: Mustang Minerals had Aeroquest complete an airborne survey totalling 380.8 line km with an AeroTEM time domain helicopter electromagnetic system and a high sensitivity cesium vapour magnetometer. The lines were oriented at 360° with a 100 m spacing and an EM bird terrain clearance was ~30m. Bedrock EM anomalies were interpreted and graded according to the estimated conductance.

2008: In March, Geotech Ltd. carried out a helicopter-borne geophysical survey for Laurion Mineral Exploration Inc. which included a versatile time domain electromagnetic (VTEM) system and a cesium magnetometer completed over 548 line-km. The lines were oriented at 360° with a 100 metre spacing and an average height of 44 meters above ground for the bird-mounted VTEM system and 66 metres for the magnetic sensor. The processed survey results were presented as total magnetic intensity and B-field time gate 1.151 ms.

2008: Laurion Mineral Exploration Inc. completed a 3 hole diamond drill program totalling 1086.7 m to test several airborne EM conductors identified in a recently completed VTEM survey by Geotech Ltd. The most significant intersection in terms of base metal mineralization in diamond drill hole LM08-01 which returned an interval of 348.8 m grading 0.26% Ni and 0.22% Cr (Kleinboeck, 2009).

2011: Ontario Geological Survey provided the preliminary observations on the geology and mineral potential for Midlothian Township (Prefontaine, 2011).

2013: A report of prospecting work completed by Ruth Bjorkman was filed for assessment. The report highlighted the discovery of a new Bonanza grade gold occurrence exposed in the north bench wall of the main asbestos pit north of Lloyd Lake dubbed the "Bjorkman Showing". Assay results from the Bjorkman showing returned values up to 12,700 g/t Au (370 Oz/t).

In 2014, Kiska Metals completed a soil sampling survey consisting of the collection of 311 soil samples which were analyzed geochemically via the mobile metal Ion (or MMI) methodology. The MMI data was used to define 22 multi-sample and point anomalies that have enrichment consistent with orogenic gold, magmatic Ni-Cu-PGE and/or other types of mineralization in the area.

2015: Transition Metals geologists visited the property for an initial evaluation of gold mineralization associated with the "Bjorkman Showing", a high grade gold occurrence discovered in 2013. One sample hosting visible gold – light coloured and rose coloured was collected from the Bjorkman showing for geochemical analysis. Sample L783824 returned a 2,990 g/t gold result. Two other samples were submitted to SGS Research in Lakefield for petrographic and scanning electron microscopy (SEM) work. A report entitled, "An Investigation into Two Gold and Copper Bearing Samples from Matachewan Area Rocks" was completed.

Regional Geology

The following description of the Abitibi greenstone belt has been summarized from Hart (2011), and was extracted from Ayer et al. (2002, 2005) and Thurston et al. (2008) and on the references found in those papers.

The Abitibi greenstone belt is composed of east-trending synclines of mainly volcanic rocks and intervening domes cored by synvolcanic and/or syntectonic plutonic rocks (gabbro-diorite, tonalite, and granite) alternating with east-trending bands of turbiditic wackes. Most of the volcanic and sedimentary rock dip vertically and are generally separated by east-trending faults with variable dips. Some of these faults, such as the Porcupine-Destor fault, display evidence for overprinting deformation events including early thrusting, later strike-slip and extension events. There are two ages of unconformable successor basins, early, widely distributed "Porcupine-style" basins of fine-grained clastic rocks, followed by later "Timiskaming-style" basins of coarser clastic and minor volcanic rocks which are largely proximal to major strike-slip faults (e.g. Porcupine-Destor, Larder-Cadillac). Numerous late-tectonic plutons from syenite and gabbro to granite with lesser dikes of lamprophyre and carbonatite cut the belt.

Metavolcanic and metasedimentary rocks of the Abitibi greenstone belt have been subdivided into a series of assemblages, the Pacaud, Deloro, Stoughton-Roquemaure, Kidd-Munro, Tisdale, and Blake River. The 2710 to 2703 Ma Tisdale assemblage consists of mafic tholeiitic flows with locally developed komatiite and intermediate to felsic calc-alkaline volcanic rocks and iron formation, and has been interpreted to underlie the area of the Midlothian property.

A number of mafic dyke swarms cut the rocks of the Abitibi greenstone belt (Osmani 1991). The 2454 Ma Matachewan dykes are north-trending, vertical to sub-vertical and composed of quartz diabase and commonly contain plagioclase phenocrysts up to 20 cm in length.

The Archean rocks are unconformably overlain by Paleoproterozoic rocks of the Huronian Supergroup, which were deposited in a north-trending graben referred to as the Cobalt Embayment in the area overlying the Abitibi greenstone belt. Four formations, the Gowganda, Lorrain, Gordon Lake, and Bar River, were deposited in the Embayment and form the upper most sedimentary cycle of the Huronian Supergroup collectively referred to as the Cobalt Group (Bennett et al. 1991). The Gowganda Formation has been subdivided in to the lower Coleman Member consisting of clast and matrix supported conglomerate, and the upper Firstbrook Member consisting of pebbly wacke, wacke, siltstone, mudstone, and arenite. The Coleman Member conglomerates have been interpreted to have been

glacial or alternatively debris flows or turbidity currents. The finer sediments of the Firstbrook Member are interpreted to have been deposited in a deltaic environment.

Supracrustal units in the Abitibi greenstone belt are dominated by east-west striking volcanic and sedimentary assemblages and east-trending Archean deformation zones and folds. Larger batholithic complexes external to the supracrustal rocks (e.g. Round Lake) represent centres of structural domes. The intervening areas define belt-scale synclinoria that deformed during a number of distinct periods. This pattern is interrupted by the trends of Porcupine and Timiskaming assemblage rocks which unconformably overlie the older assemblage. Older syntectonic intrusions (2695–2685 Ma) may be related to the compressive stresses that induced early folding and faulting related to the onset of continental collision between the Abitibi and older sub provinces to the north. Younger syntectonic intrusions (2680–2670 Ma) are coeval with the Timiskaming assemblage and are spatially associated with the Porcupine Destor and Cadillac Larder Lake deformation zones. The late tectonic intrusions (2670–2660 Ma) are possibly synchronous with D4 folding within the Timiskaming assemblage rocks in the Timmins area and represent the final stage in transpressional deformation along the Porcupine Destor deformation zone and may be correlative with the D2 event identified in the Kirkland Lake-Larder Lake area. The regional deformation zones commonly occur at assemblage boundaries and are spatially closely associated with long linear belts representing the sedimentary assemblages (i.e., Porcupine and Timiskaming). It has been proposed that the regional association of the Porcupine Destor and Larder Lake Cadillac deformation zones and major assemblage boundaries are proximal to the locus of early synvolcanic extensional faults.

Local Geology

Midlothian Township has most recently been covered by an Ontario Geological Survey mapping project in 2011 and the descriptions relevant to the Midlothian property are hereafter taken from that report (Prefontaine, 2011).

Intermediate to Felsic Volcanic rocks underlie much of the Midlothian property and are comprised of massive flows and volcaniclastic rocks. They are homogenous with minor quartz and calcite filled amygdules. Felsic metavolcanic fragmental and volcaniclastic rocks are widespread on the property and are described as autobrecciated flows, with 'jigsaw-fit' fragments in a sericitic matrix. Brecciation may be partially related to hydrothermal alteration which is observed as veins of dark silicified material crosscutting the felsic volcanic rocks. The southern portion of the dome is dominated by massive intermediate flows, though lapilli tuff and tuff breccia is also observed. Quartz and calcite veinlets are observed to cut the rock. Pillow breccias are noted to occur at the southern edge of the volcanic package but are poorly formed, preventing accurate top directions.

Ultramafic volcanic rocks are mapped in the centre of the township and comprised of magnesite, ankerite and green mica altered massive flows with occasional spinifex texture and flow top breccias. One outcrop of massive ultramafic volcanic rocks is mapped within the centre of the Timiskaming conglomerate unit that transects the property. It is unclear as to the origin of this unit. Mafic-ultramafic intrusions intrude the volcanic rocks of the Halliday Dome, one of which hosts a historic asbestos mine on the north shore of Lloyd Lake. They are compositionally zoned with gabbroic rims and more primitive peridotite to dunite cores. They are typically strongly altered to serpentine and rarely talc.

Timiskaming type metasedimentary rocks extend across the northern portion of the property and are disconformable to locally conformable with the metavolcanic rocks of the Halliday Dome. They are dominantly matrix supported polymictic conglomerates with rounded clasts of felsic metavolcanic rocks, mafic-ultramafics, chert, quartz, argillite, feldspar porphyry, granitoids and sulphide. Sandstone, siltstone and mudstone are interbedded with the conglomerate. Sandstones are lithic and feldspathic arentites where interlayered with conglomerate and feldspathic wacke and lithic wacke where interlayered with siltstone. The siltstone and mudstone are laminated and carbonaceous.

Summary of Work

Diamond Drilling

The objective of the 2017 Midlothian drill program was to assess the subsurface extent of the "Bjorkman Showing" in the vicinity of the surface showing and to test for a possible extension to the high grade mineralization exposed at surface. Work on the Midlothian property was preceded by a site visit between Greg Collins and a representative of Laframboise drilling on June 1, 2017 with drilling activities initiated on June 26th, 2017. Between June 27th and July 5th, 2017 a total of 9 drillholes were completed from 2 locations established on a single drill pad area created in a safe operating position near the edge of the uppermost bench on the north side of the historically excavated main pit located north or Lloyd Lake, In total, 346.85 meters of NQ coring was completed. Hole locations are summarized in table 2 and shown in in figure 3. All holes were logged by G.Collins assisted by Peter McIntyre.

BHID	Easting	Northing	Elevation	Azimuth	Dip	EOH
MD-17-001	499709	5303223	354	220	-60	29m
MD-17-002	499709	5303223	354	220	-45.4	29m
MD-17-003	499709	5303223	354	220	-83.9	35m
MD-17-004	499709	5303223	354	256	-49.3	19.85m
MD-17-005	499727	5303229	354	260	-89	53m
MD-17-006	499727	5303229	354	260	-55	38m
MD-17-007	499727	5303229	354	220	-50	67m
MD-17-008	499727	5303229	354	280	-50	38m
MD-17-009	499727	5303229	354	300	-50	38m
					TOTAL:	346.85m

Figure 3: 2017 Drill Collar Locations

Summary of 2017 Diamond Drill Holes.

MD-17-001 (29m:220°/-60°): Intersected the vein material from 19.75m to 20.47m with elevated gold (1.19 g/t Au from 20.10 to 20.45m), followed by fault zone in serpentinite from 20.5-20.81 and second silicified zone in serpentinite not hosting elevated gold values from 24.75 to 25.5.

MD-17-002 (29m:220°/-45.4°): Intersected veining in dacite at a depth of 18.70m to 18.95m followed by zone of altered dacite hosting clay alteration, green sericite and quartz veining hosting elevated gold values up to 0.71 g/t Au between 18.95 and 20.0m. Zone of faulting from 20.0 to 21.2m.

MD-17-003 (29m:220°/-83.9°): Intersected veining at a depth of 24m to 25.2m. Only weakly anomalous gold values were returned (0.16g/t Au from 24.25 to 25.2m). Zone of faulting within serpentinites intersected from 27.75 to 28.75m.

MD-17-004 (29m:220°/-49.3°): Intersected veining at a depth of 16.40m to 16.85m and 17.75m to 18m within silicified dacite. Zone of faulting noted at 18.0-18.35 metres, at contact with serpentinite.

MD-17-005 (29m:260°/-89°): Intersected vein at a depth of 39.32m to 39.44m followed by bleached section from 39.44 to 41.00 however neither interval returned elevated gold values. The contact between the dacite and serpentinite at 41.0m was marked by a fault zone.

MD-17-006 (29m:260°/-55°): Intersected vein at a depth of 29.65m to 29.81m and 29.91m to 30.05m however neither interval returned elevated gold values. The contact between the dacite and serpentinite at 30.26m was marked by a fault zone.

MD-17-007 (29m:220°/-50°): Did not intersect the targeted vein horizon. Did intersect fault zone in serpentinite from 33.25 to 35.0m that lines up well with the other fault intersections.

MD-17-008 (29m:280°/-50°): Intersected strong alteration and veining from of 28.5m to 29.25m where fault contact exists between dacite and serpentinite. No elevated gold values returned.

MD-17-009 (29m:300°/-50°): Intersected vein at a depth of 31.95m to 32.9m and 34.3m to 34.6m. Hole passed through fault zone from 32.9 to 34.3 through interval of serpentinite to pass back into dacite downhole from quartz veining at 34.6m. Hole would appear to have highlighted a transition in rock type footwall to the zone of faulting intersected by other holes which my help highlight fault offset.

Sampling

All samples were submitted for 48 element ICP analyses (ALS code ME-MS61) and for gold with fire assay (ALS code AU-ICP21). The samples were submitted to ALS Minerals Sudbury location in one batch, on July 14th. Results from these samples were received on August 3rd. QAQC of the results showed no failures on company standards or blanks; as such the results are accepted as reported from ALS Minerals.

Interpretation

Transition Metals Corp drilled 9 holes to test the extent and grade of the Bjorkman showing. All holes intersected the similar geology, collaring in dacite, and then intersecting the ultramafic serpentinite. All holes with the exception of the southernmost hole, MD-17-007, intersected the quartz vein target horizon.

The best result from the drill program was sample L782755 from hole MD-17-001, which returned 1.19 g/t Au over 0.35 meters. The sample occurred in a clay like fault gouge at a depth of 20.1-20.45 meters, this similar clay like material hosted the Bjorkman showing in which samples ran 2,990 g/t gold in 2015. This intersection was located approximately 10 metres beneath the surface exposure of the Bjorkman occurrence. Drilling in other holes intersected similar clay like fault gouge in several other holes returning no assay results of significance. The results from the drill program provide further evidence that the spectacular visible gold mineralization exposed at the Bjorkman occurrence is quite localized, irregular and nuggety.

At surface, some of the native alloy gold species were observed in very soft, friable clay like seams, and interstitial to green epidote crystals developed within these seems. In some cases the clay like material (unidentified amorphous aluminous mineral) saw also extremely hard, resembling porcelain. In core, some possible visual specks of VG were identified in gouge like material retrieved from the core barrel by G. Collins, but that gold was not reflected by the assays.

A review of the QAQC data did not identify any issues associated with lab error or precision, nor did they highlight any issues with contamination during the sampling process. It is possible that some gold may not have being either recovered during the coring process, or was lost during sample cutting. A small amount of visible gold was obtained from panned saw cuttings upon completion of the program which would support this thesis.

Additionally, one sample was collected from a historically drilled hole (DLM-08-01) located 400m west of the Bjorkman occurrence. An unsampled interval of similar looking vein material to the Bjorkman occurrence with quartz/epidote – clay/wollastonite alteration in hole DLM-08-01 returned 1.57 g/t Au from 51.55m to 51.8m (Sample L782751).

Conclusions

Drilling indicates that the Bjorkman zone of alteration and veining persists at depth from surface over a panel area approximately 30m by 50m, however the gold mineralization appears to be quite localized and nuggety. The best mineralization appears to be associated with a quartz-epidote and clay alteration assemblage within a 1 to 5m wide zone of strong pervasive silicification and carbonatization developed proximal to a reverse fault striking 340 degrees azimuth dipping 60 degrees to the east that offsets a contact between serpentinized ultramafics and dacite.

Of the 9 holes drilled, eight of the holes encountered intervals overprinted by silicification, quartz veining, and clay/quartz +/- epidote alteration. This provides evidence that the structure associated with the Bjorkman occurrence has a roughly planar morphology that may extend beyond the limits of the areas investigated by drilling. Only one hole returned elevated gold values which provide evidence that the gold distribution may be very localized.

The best gold assay derived from the program (Sample L782755 - 1.19 g/t Au over 30 cm in hole MD-17-001) was obtained from a strongly silicified overprinted by strong clay type alteration projected to be less than 10 metres below the site where some of the highest grade samples were collected from the Bjorkman showing.

Photo 1. Silicified dacite overprinted by quartz veining and Clay Alteration at 20.47m (sample L782755) downhole from hole MD-17-001

Exploration to further evaluate the potential of this structure at depth and along strike to host other/larger accumulations of gold is merited, but additional work to better understand the controls on gold mineralization should be undertaken before additional drilling is considered.

New Gold Bearing Vein Identified

The elevated assay results from sampled historical hole DLM-08-01 located 400m to the west of Bjorkman showing are comparable to the results of the current program. This provides evidence that there may be additional veins in the area similar to the Bjorkman vein and that the gold mineralization on the property may be more widely distributed than previously known. Photo 2 shows the unsampled interval in historical hole DLM-08-01 which has similar mineralogy and is in a similar stratigraphic position to the Bjorkman vein.

Photo 2. Unsampled vein material identified in historical hole DLM-08-01 located 400m west of the Bjorkman occurrence. Sample L782751 returned 1.57 g/t Au from 51.55m to 51.8m. This result is very similar to the result obtained in hole MD-17-001, which was located less than 10 metres from bonanza grade gold. This result highlights that other portions of the Midlothian project remains prospective to host vein systems similar to the Bjorkman showing and that other high grade gold occurrences may be nearby. The potential to expose this vein by mechanical trenching should be looked at. Additional study is merited to further assess the curious aspects of the mineralogy style of mineralization observed at the Bjorkman showing to better understand the larger scale geological processes involved.

References

Aeroquest Ltd. 2004. Report on a Helicopter-borne magnetic and electromagnetic survey, Midlothian Property, Midlothian Township, Matachewan Area, Ontario for Mustang Minerals Corp.; Ministry of Northern Development and Mines assessment file 2.29935 (20001293), 41 pages with maps.

Allied Mining, 1972. diamond drill plan for Allied Mining Corp Ltd.; Ministry of Northern Development and Mines assessment file 41P14NE0130, 3 pg.

Bright, E.G. 1970. Geology of Halliday and Midlothian Townships, District of Sudbury and Timiskaming; Ontario Department of Mines, Geological Report 79, 48 pg with map M2187 (1:31 680 scale).

Can. Johns-Mansville, 1970. diamond drill logs for Canadian Johns-Mansville Co. Ltd.; Ministry of Northern Development and Mines assessment file 41P14SE0016, 6 pg.

Darke, K. 1975. diamond drill logs for Northrim Mines Inc.; Ministry of Northern Development and Mines assessment file 41P14SE0003, 4 pg.

Darke, K. 1975b. diamond drill logs for Northrim Mines Inc.; Ministry of Northern Development and Mines assessment file 41P14SE0013, 6 pg.

Denison Mines 1971. diamond drill logs for Stump Mines Ltd.; Ministry of Northern Development and Mines assessment file 41P14NE0349, 20 pg.

DesRosier, D.F., 1973. Magnetometer Survey on the Midlothian Claims of Tojaro Holdings Limited.; Ministry of Northern Development and Mines assessment file 41P14NE0029, 9 pg.

DesRosier, D.F., 1973b. Magnetometer Survey on the Midlothian Claims of Tojaro Holdings Limited.; Ministry of Northern Development and Mines assessment file 41P14NE8411, 7 pg.

Geotech Ltd. 2008. Report on a helicopter-borne versatile time domain electromagnetic (VTEM) geophysical survey, Raymond and Midlothian Blocks, Shining Tree, Ontario for Laurion Minerals Exploration Inc.; Ministry of Northern Development and Mines assessment file 20005989, 52 pages with maps.

Hagan, J.D., 1976. diamond drill logs for International Trust Company.; Ministry of Northern Development and Mines assessment file 41P14NE0112, 15 pg.

Hagan, J.D., 1975. Geological Report on property of International Trust Company.; Ministry of Northern Development and Mines assessment file 41P14NE0024, 10 pg.

Hagan, J.D., 1973. diamond drill logs for Stump Mines Ltd.; Ministry of Northern Development and Mines assessment file 41P14NE0050, 9 pg.

Hagan, J.D., 1973. diamond drill logs for United Asbestos Inc.; Ministry of Northern Development and Mines assessment file 41P14NE0051, 5 pg.

Hagan, J.D. 1972. diamond drill logs for International Trust Company; Ministry of Northern Development and Mines assessment file 41P14NE0040, 10 pg.

Hagan, J.D. 1972b. diamond drill logs for Allied Mining Company; Ministry of Northern Development and Mines assessment file 41P14NE0014, 14 pg.

Hagan, J.D. 1972c. diamond drill logs for Allied Mining Company; Ministry of Northern Development and Mines assessment file 41P14NE0017, 5 pg.

Hagan, J.D., 1971. diamond drill logs for Allied Mining Corp.; Ministry of Northern Development and Mines assessment file 41P14NE0012, 7 pg.

Hogg, N., 1974. Report on Diamond Drilling, dated June 1, 1974; Ministry of Northern Development and Mines assessment file 41P14NE0023, 12 pages with maps.

Hutchinson, R.W., 1971. Report on Geological Examination and Appraisal of the Midlothian Township Property Ontario for Stump Mines: includes a report on an IP survey; Ministry of Northern Development and Mines assessment file 41P14NE0034, 106 pages with maps.

Kleinboeck, J. 2009. 2008 Diamond Drill Program: Midlothian Property, Midlothian Township for Laurion Mineral Exploration Inc.; Ministry of Northern Development and Mines assessment file 20005964, 81 pg.

Lake, J. and Hogg, N., 1974. Diamond drill logs for Hanna Mining Company, Report No.27; Ministry of Northern Development and Mines assessment file 41P14SE0019, 72 pages with maps and sections.

Marshall, H.I., 1947. Preliminary Report on The Geology of Midlothian Township, District of Timiskaming; Ontario Department of Mines Preliminary Report 1947-1, 6 pg with map M1947-4 (1:12 000).

Ontario Geological Survey, 2003. Map 81 763.

Patcliffe, J.K. 1953. Assessment report for Dominion Gulf Company; Ministry of Northern Development and Mines assessment file 41P14NE0038, 23 pages with maps.

Prefontaine, S. 2011. Project Unit 06-002. Geology and Mineral Potential of Midlothian Township, Halliday Dome, Abitibi Greenstone Belt. in Summary of Field Work and Other Activities 2011, Ontario Geological Survey, Open File Report 6270, p.4-1 to 4-12 with Map P.3772. Appendix A: Drill Logs

Detailed Log Report Hole Number MD-17-001

	Project	Coordi			Collar			
Project Name:	Midlothian	Primary Coordinates Grid:	UTM83-	17	Collar Dip:		Collar Az:	
Project Code:	052		North: East:	5,303,222.69 499,709.21	Length:	29.00		
Start Date:	Jun 28, 2017		Elev:	354.00	Hole Size: Hole Type [.]	NQ DD		
Completed Date:	Jun 28, 2017	Destination Coordinates Grid:	LL83		Casing:	00		
Contractor:	Laframboise Drilling		North:	47.88	Collar Survey:	N	Plugged: N	
Core Storage:	Laframboise Core Yard		East:	-81.00	Multishot Survey	··N F	Pulse FM Survey: N	
Units:	METRIC		Elev:	354.00				

Detailed Lithology							
From To Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
0.00 1.70 CAS, CASING AND OVERBURDEN							
1.70 19.75 3_Vlq, Dacite							
DACITE - LIGHT TO DARG GREY IN COLOUR; MAINLY FINE GRAINED WITH SPORATIC MEDIUM	L782752	2.90	3.30	0.40	0.113	0.030	0.010
GRAINED SECTIONS. 2.8-3.3 - 2-3CM WIDE SERICITIC ALTERED VEIN RUNNING ~80 DEGREE TCA. VISIBLE BLEBS OF SULPHIDES (PYRITE?) WITHIN QUARTZ VEINLETS. OTHER BLACK NON MEGNETIC CHL VEINIL RULLING PARALLEL WITH ALTERED VEINS. 3.3-9.73 - DACITE CONTANS VISIBLE ANGULAR FRAGMENTS OF VARYING SIZE (4-5CM). NUMEROUS MICRO QTZ VEINLETS THROUGHOUT RUNNING @ 30 TCA WHICH XCUTS AN OLDI QTZ VEIN ~1CM IN SIZE RUNNING ~60 TCA.	ETS ER	19.30	19.75	0.45	0.001	0.010	0.010
19.75 20.10 15 QV. Quartz Vein							
QUARTZ VEIN - BRIGHT WHITE QUARTZ VEIN, MASSIVE WITH NO OBVIOUS STRUCTURE; SLIG OVERPRINTING OF MINOR FRACTURE CONTROLLED CLAY ALTERATION.	^{HT} L782754	19.75	20.10	0.35	0.003	0.030	0.010
20.10 20.47 15_QV, Quartz Vein							
In situ brecciated serpentinite overprinted by qtz/clay, green sercitie alteration. At 20.3 some sort of alteration front switches from having a pale green matrix with dark green serpentine group minerals, to of a buff colour hosting brown serpentine group minerals. Photo 100-2868, 69 taken	L782755	20.10	20.45	0.35	1.190	0.590	0.010
20.47 20.50 8_IMsp, Serpentinite SERPENTINITE - DARK BROWN TO BLACK HEAVILY SERPENTINZED WITH WISPY XCUTTING Q VEINLETS THROUGHOUT. UNTILL ~21.4M WHERE ALTERATION SUBSIDES AND QTZ VEINLETS BECOME SPORATIC @60 DEGREES TCA	тz						

Hole Number: MD-17-001

From	То	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
20.50 FAULT GOU	20.54 IGE	9_CSftg, Fault Gouge							
20.54 SERPENTIN VEINLETS T BECOME SF	20.80 ITE - DARK BR(HROUGHOUT. PORATIC @60 [8_IMsp, Serpentinite OWN TO BLACK HEAVILY SERPENTINZED WITH WISPY XCUTTING QTZ UNTILL ~21.4M WHERE ALTERATION SUBSIDES AND QTZ VEINLETS DEGREES TCA							
20.80	20.81	9_CSftg, Fault Gouge							
20.81 SERPENTIN VEINLETS T BECOME SF	24.75 ITE - DARK BR(HROUGHOUT. PORATIC @60 [8_IMsp, Serpentinite OWN TO BLACK HEAVILY SERPENTINZED WITH WISPY XCUTTING QTZ UNTILL ~21.4M WHERE ALTERATION SUBSIDES AND QTZ VEINLETS DEGREES TCA	L782757	24.35	24.75	0.40	0.001	0.070	0.050
24.75 SERPENTIN OVERPRINT DEVELOPEI Alteration: 24.75 - 25.5(25.50 ITE - STRONG ED BY GREEN D BY NEAR LOV D: Sericite, Perv	8_IMsp, Serpentinite ZONE OF SILICIFICATION OVERPRINTING SERPENTINITES SERICTE AND CLAY ALTERATION. 30% IRREGULAR QTZ VEINING VER CONTACT.PHOTO 100-2871 rasive, Strong	L782758	24.75	25.50	0.75	0.002	0.020	0.010
25.50 SERPENTIN Alteration:	26.10 ITE - AS ABOVI	8_IMsp, Serpentinite E WITH SERICITE ALTERATION	L782759	25.50	26.10	0.60	0.001	0.030	0.010
25.50 - 26.10	i: Sericite, Perv	asive, Strong							
26.10 DUNITE - DA GRAINED; V	29.00 ARK BROWN/BL VITH QHISPY Q	8_IMba, Dunite ACK WITH BRIGHT GREEN OLIVINE VISIBLE THROUGHOUT. MEDIUM UARTZ VEINLETS THROUGHOUT.	L782760	26.10	26.45	0.35	0.001	0.060	0.080
Survey Da	ata Azimuth	Dip Test Flag Comments							

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	220.00	-59.40	UK	0	

Detailed Log Report Hole Number MD-17-002

	Project	Coordi	Collar					
Project Name:	Midlothian	Primary Coordinates Grid:	UTM83-	17	Collar Dip:	-45.40	Collar Az:	220.00
Project Code:	052		North: Fast:	5,303,222.69 499,709,21	Length:	29.00		
Location:	hun 00, 0017		Elev:	354.00	Hole Size:	NQ		
Start Date:	Jun 28, 2017 Jun 28, 2017	Destination Coordinates Grid:	1183		Hole Type:	DD		
Completed Date.	Laframboise Drilling	Destination Coordinates Ond.	North:	47.88	Casing:	Removed		
Core Storage:	Laframboise Core Yard		East:	-81.00	Collar Survey:	N N	Plugged:	N
Units:	METRIC		Elev:	354.00	wultishot Survey	: IN	Puise EN Survey:	IN

Detailed L	ithology								
From	То	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
0.00	2.50	CAS, CASING AND OVERBURDEN							
2.50	18.70	3_VIq, Dacite							
DACITE - LIC	GHT GREY IN CO	DLOUR; MG/CG WITH FG SEGMENTS.	L782762	15.90	16.20	0.30	0.033	0.400	0.220
0-11.7M - DA 11.7-18.1 - D FG/MG. 18.1-18.7 - S	ACITE CONTAIN DACITE LOSES F BERICITIC BLEA	S FRAGMENTS THROUGHOUT WITH LOTS OF QTZ FILLED VESTICULES. RAGMENTS AS WELL AS QTZ FILLED VESTICULES BECOMING MORE CHING OF DACITE BECOMMING STRONGER TOWARDS LCT WITH	L782763	18.10	18.70	0.60	0.002	0.030	0.010
QUARTZ VE	IN. LCT HEAVIL	Y BROKEN.							
@16.1M ~1- UCT/LCT.~2 BLEBBY PY	2 CM QTZ VEIN 0CM ON EACH S +CPY SULPHIDE	@ 20DEGREES TCA WITH VISIBLE BLEBBY SULPHIDES (PY?+CPY?) @ SIDE OF VEIN IS NOTABLE ALTERATION WITH BLACK VEINLETS OF ES.							
18.70 QUARTZ VE QUARTZ VE CONTACT.	18.95 IN - HEAVILY BR IN WITH CLAY A	15_QV, Quartz Vein ROKEN QTZ VEINING, UNSURE OF ACTUAL CORE LENGTH. WHITE ALTERATION AND SILICIFICATION INCREACSING TOWARDS LOWER	L782764	18.70	18.95	0.25	0.001	0.020	0.010
18.95	20.00	3_VIq, Dacite							
DACITE - SI	LICIFIED ZONE	OF CLAY ALTERATION, GREEN SERICITE, QUARTZ VEINING WITH	L782765	18.95	19.30	0.35	0.158	0.160	0.020
MINOR EPIE	DOTE.		L782766	19.30	20.00	0.70	0.712	0.160	0.080
Alteration:									
18.95 - 20.00): Sericite, Perva	nsive, Strong							

Hole Number: MD-17-002

From To Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
20.00 20.50 8_IMsp, Serpentinite SERPENTINITE - MG; BLUISH GREY IN COLOUR WITH PLENTY OF GRRENISH OLIVIN THROUGHOUT.	L782767	20.00	20.50	0.50	0.011	0.110	0.080
20.50 20.70 9_CSftg, Fault Gouge HEAVILY BROKEN FAULT GOUGE							
20.70 21.18 8_IMsp, Serpentinite SERPENTINITE - AS ABOVE							
21.18 21.20 9_CSftg, Fault Gouge HEAVILY BROKEN FAULT GOUGE							
21.20 29.00 8_IMsp, Serpentinite SERPENTINITE - AS ABOVE; 23.4-23.77 - STRONG ZONE OF SILICIFICATION OVERPRINTING SERPENTINITES; ACCOMPANIED BY GREEN MICAS AND CLAY ALTERERATION IWTH SMALL PATCHES OF EPIDOTE NOTED.	L782768 L782769 L782770	23.00 23.45 23.70	23.45 23.70 24.10	0.45 0.25 0.40	0.001 0.001 0.001	0.070 0.020 0.070	0.080 0.010 0.100
Alteration: 23.45 - 23.70: Sericite, Pervasive, Strong							

I	Survey Data											
	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments						
	0.00	220.00	-45.40	UK	0							

Detailed Log Report Hole Number MD-17-003

	Project	Coordi	nates		Collar			
Project Name:	Midlothian	Primary Coordinates Grid:	UTM83-	17	Collar Dip:	-83.90	Collar Az:	220.00
Project Code:	052		North: East:	5,303,222.69 499.709.21	Length:	35.00		
Location: Start Date:	lul 12 2017		Elev:	354.00	Hole Size:	NQ		
Completed Date:	our 12, 2017	Destination Coordinates Grid:	LL83		Hole Type:	DD Romovod		
Contractor:	Laframboise Drilling		North:	47.88	Casing: Collar Survey:	N	Plugged.	N
Core Storage:	Laframboise Core Yard		East:	-81.00	Multishot Survey	• N	Pulse FM Survey:	N
Units:	METRIC		Elev:	354.00	Manashot Gal Vey			

Detailed L	.ithology								
From	То	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
0.00	1.10	CAS, CASING AND OVERBURDEN							
1.10 DACITE - LIC VARYING SI 8.94-12.2 - M 12.2-24 - FR @ 12.5M - CL 22.15M - 23M QTZ/CHL/SE RUNNING O Alteration: 22.15 - 23.00	24.00 GHT GREY IN C ZE WHICH ARE IG-FG HOMOGE AGMENTS REA LUSTER OF QTZ A - INCREASING RICITE ALTER BLIQUE TCA FF Sericite, Perv	3_VIq, Dacite OLOUR WITH CG/MG TO FG SEGMENTS, CONTAINS FRAGMENTS OF ANGULAR TO ROUNDED TO 8.94M. ENOUS DACITE WITH NO FRAGMENTS. PPEAR DOWN TO LOWER CONTACT. Z+CHL VEINLETS FOR ~15-20CM S SILICIFACTION WITH 1-5% FRACTURE CONTROLLED ATION. TRACE PY, CP, SPH OVSERVED IN 1 CM WIDE STRINGER ROM 22.85 TO 23.3M.	L782772	22.15	23.00	0.85	0.001	0.030	0.010
24.00 QTZ VEIN - 7 POSSOBLE	25.20 10CM VEIN WIT SPH? PHOTO 1	15_QV, Quartz Vein H QTZ/EPIDOTE/ CLAY ASSEMBLAGE WITH BROWN STAINING, 00-2851.	L782774	24.25	25.20	0.95	0.160	0.060	0.010
25.20 SERPENTIN CONTACT.	25.70 ITE - WEAKLY S	8_IMsp, Serpentinite SILICIFIED SERPENTINITES. 5CM QTZ/ALBITE VEINLET NEAR LOWER	L782775	25.20	25.70	0.50	0.101	0.150	0.140

Hole Number: MD-17-003

From	То	Lithology				Sample #	From	То	Length	Au ppm	Ag ppm	S pct	
25.70	27.75	8_IMsp, S	Berpentin	ite									
SERPENTINI	TE - HEAVILY	FAULTED WITH	BROWN THE	GREEN	I "BEDS" AROUND DACITE	L782776	25.70	26.50	0.80	0.013	0.110	0.050	
FRAMENTS.	PROGRESSIV	LY GREYER TO	WARDS LCT.			L782777	26.50	27.10	0.60	0.001	0.130	0.090	
						L/82//8	27.10	27.70	0.60	0.001	0.210	0.170	
27.75	27.83	9_CSftg,	Fault Go	uge									
27.83	28.00	8 IMsp, S	Serpentin	ite									
SERPENTINI	TE - HEAVILY	FAULTED WITH	BROWN THE	GREEN	I "BEDS" AROUND DACITE								
FRAMENTS.	PROGRESSIV	LY GREYER TO	WARDS LCT.										
28.00	29.12	9 CSfta	Fault Go										
20.00	20.12	9_00ng,		uye									
28.12	28.60	8 IMsp. S	Serpentin	ite									
SERPENTINI	TE - HEAVILY	FAULTED WITH	BROWN THE	GREEN	I "BEDS" AROUND DACITE								
FRAMENTS.	PROGRESSIV	LY GREYER TO	WARDS LCT.										
20.60	00.75	0 CSfta	Equit Go										
20.00 SERPENTINI	20.70 TE - HEAVII Y	FAULTED WITH	BROWN THE	GREEN	I "BEDS" AROUND DACITE								
FRAMENTS.	PROGRESSIV	LY GREYER TO	WARDS LCT.										
				•									
28.75	31.10	8_IMSP, S	Serpentin				00.40	~~~~		0.004			
FRAMENTS.	PROGRESSIV	LY GREYER TO	WARDS LCT.	GREEN	I BEDS AROUND DACITE	L/82/81 L782782	29.40	30.25	0.85	0.001	0.030	0.010	
29 4-31 1 - SY	(ENITE BI EAC	HED STRONG	Y SILICIEIED	CLAY A	TERED ROCK WITH YELLOW AND	2102102	00.20	01.10	0.00	0.001	0.040	0.010	
GREEN SERI	CITE AND TRA	ACE DISSEMINA	TED SULPHI	DES.									
Alteration:		anius Cteans											
29.40 - 29.40:	Sericite, Perv	asive, Strong											
31.10	35.00	8 IMba. D	Dunite										
DUNITE - BLA	ACKISH, MG W	ITH VISIBLE GR	EEN OLIVINI	E THROL	JGHOUT.	L782783	31.10	32.00	0.90	0.001	0.170	0.140	
Survey Da	ta												
Depth	Azimuth	Dip	Test	Flag	Comments								
	Decimal	Decimal	Туре	Ĩ									
0.00	220.00	-83.90	UK	0									

Detailed Log Report Hole Number MD-17-004

	Project	Coordi	nates		Collar			
Project Name:	Midlothian	Primary Coordinates Grid:	UTM83-	17	Collar Dip:	-49.30	Collar Az:	256.00
Project Code:	052		North: East	5,303,222.69 499 709 21	Length:	19.85		
Location: Start Date:	lul 12 2017		Elev:	354.00	Hole Size:	NQ		
Completed Date:	our 12, 2017	Destination Coordinates Grid:	LL83		Hole Type:	DD Bomovod		
Contractor:	Laframboise Drilling		North:	47.88	Casing: Collar Survey:	N	Plugged:	N
Core Storage:	Laframboise Core Yard		East:	-81.00	Multishot Survey	: N	Pulse FM Survey:	N
Units:	METRIC		Elev:	354.00		• • •		

Detailed Lithology							
From To Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
0.00 2.40 CAS, CASING AND OVERBURDEN							
 2.40 16.40 3_VIq, Dacite DACITE - LIGHT TO DARK GREY IN COLOUR, CG/MG TO FG, FRAGMNET FILLED WITH SPORATIC VEINLETS @ 70 DEGREES TCA. QTZ FILLED VESICULES. 15.6-16.4 - WEAKLY SILICIFIED DACITE WITH THIN QUARTZ SERICITE VEINLETS AT 16.15. SIX PARALLEL VEINLETS RUNNING 50 DEG TCA OBSERVED BERWEEN 16.25-16.35 Alteration: 15.60 - 16.40: Sericite, Pervasive, Weak 	L782784	15.60	16.40	0.80	0.001	0.010	0.010
16.4016.8515_QV, Quartz VeinQTZ VEIN - QTZ VEIN WITH SERICITIC FRACTURES. THIS STLE IS OVERPRINTED BY CM SCALEVEINLETS OF WHITISH CAR (BARITE?). PHOTO 100-2845.LCT IS IN FLT GOUGE OR CLAY.	L782785	16.40	16.85	0.45	0.001	0.010	0.010
16.8517.75 3_VIq, Dacite DACITE - BRECCIATED SILICIFIED DACITE.16.85-17M 30% IRREGULAR QTZ VEINING, WITH DACITE BECOMING INCREASINGLY SILICIFIEDNEAR CONTACT WITH VEINS AT UPPER AND LOWER CONTACTS.	L782786	16.85	17.75	0.90	0.001	0.020	0.010
17.75 18.00 15_QV, Quartz Vein							

Hole Number: MD-17-004

From To Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
QTZ VEIN - QTZ VEING CONTAINING GREEN SERICITE FRACTURES AND A GREEN AMORPHOUS SILICATE MATERIAL.	L782787	17.75	18.00	0.25	0.001	0.010	0.010
LCT IS IN A FLT GOUGE OR "CLAY" MATERIAL.							
18.0018.353_VIq, DaciteDACITE - HEAVILY ALTERED AND BLEACHED DACITE WITH BRIGHT GREEN EPIDOTE LIKE ALTERATION.SILICIFIED BRECCIATED UNIT. STRINGLY OVERPRINTED BY PERVASIVE SILICIFICATION WITH GREEN AMORPHOUS MINERALS, CLAY ALTERATION. LOOKS LIKE HEALED, SILICIFED FAULT BRECCIA NEW LOWER CONTAC. PHOTO 100-2846.Alteration:18.00 - 18.35: Sericite, Pervasive, Strong	L782788	18.00	18.35	0.35	0.001	0.010	0.010
18.35 19.10 8_IMsp, Serpentinite SERPENTINITE - UPPER 20CM CONSISTS OF STRONG SILICIFICATION AND CLAY GOUGE GRADING INTO SHEARED SERPENTINITE BELOW 18.5M. ROUNDED PIECES IN GOUGE WITH BORNITE, CP AND POSSIBLEY VG AT 18.5M. APPEARS STRUCTUALLY EFFECTED.	L782789	18.35	19.10	0.75	0.078	0.800	0.120
19.10 19.85 8_IMba, Dunite DUNITE - DARK GREY/BLACK TO BLUISH IN COLOUR WITH VISIBLE PATCHES OF GREEN OLIVINE.	L782790	19.10	19.70	0.60	0.004	0.230	0.190

Survey Da	ta				
Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	256.00	-49.30	UK	0	

Detailed Log Report Hole Number MD-17-005

	Project	Coordinates Collar				ar		
Project Name:	Midlothian	Primary Coordinates Grid:	UTM83-	17	Collar Dip:	-89.00	Collar Az:	260.00
Project Code:	052		North: East:	5,303,228.68 499,727.00	Length:	53.00		
Location: Start Date:	Jul 12, 2017		Elev:	354.00	Hole Size:	NQ		
Completed Date:		Destination Coordinates Grid:	LL83		Hole Type: Casing:	Removed		
Contractor:	Laframboise Drilling		North:	47.88	Collar Survey:	Ν	Plugged:	N
Core Storage:	Laframboise Core Yard		East:	-81.00	Multishot Survey	: N	Pulse EM Survev:	N
Units:	METRIC		Elev:	354.00			·	

Detailed Lithology								
From To	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
0.00 1.50	CAS, CASING AND OVERBURDEN							
1.50 39.32 DACITE - GREY TO LT GRE 1.5-11.8M - DACITE IS NOT 11.8M. GRAGMENTS NOTA @8.9M - 1-2CM QTZ VEIN (0 ~20CM ALTERATION ZONE @36.13~2MM QTZ EPIDOT 39.07-39.32 - WHITE SERIC Alteration: 39.07 - 39.32: Sericite, Perv	3_VIq, Dacite Y IN COLOUR, MG/CG-FG. ABLY PURPLISH IN COLOUR, THEN TURNS GREYISH GREEN AFTER BLE THROUGHOUT WITH WHISPY XCUTTING QTZ VEINS. CUTTING PERPINDICULAR TCA. VEIN HAS EPIDOTE THROUGHOUT WITH UP DIP OF VEIN. E VEIN @30 DEGREES TCA. ITE BLEACHING TO LCT. asive, Strong	L782799	38.15	39.15	1.00	0.001	0.060	0.010
39.32 39.44 QTZ VEIN - MASSIVE, WHI	15_QV, Quartz Vein TE WITH SPORATIC XCUTTING BLACKISH (CHL?) VEINLETS							
39.44 41.00 DACITE - AS ABOVE	3_VIq, Dacite	L783901	39.50	40.45	0.95	0.001	0.060	0.170
39.44-39.54 - WHITE BLEAC Alteration: 39.44 - 39.54: Sericite, Perv	CHED ALTERED ZONE. LCT IN HEAVILY BROKEN CORE.							

Hole Number: MD-17-005

From	То	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
41.00 DUNITE - GF HEAVILY BR	46.32 REY TO GREEN OKEN CORE.	8_IMba, Dunite ISH IN COLOUR, BRIGHT GREEN OLIVINE THROUGHOUT. UCT IN							
46.32	46.40	9_CSftg, Fault Gouge							
46.40 DUNITE - AS	46.80 8 ABOVE	8_IMba, Dunite							
46.80	46.85	9_CSftg, Fault Gouge							
46.85 DUNITE - AS	53.00 8 ABOVE.	8_IMba, Dunite							

S	Survey Data												
	Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments							
	0.00	260.00	-89.00	UK	0								

Detailed Log Report Hole Number MD-17-006

	Project	Coordi	nates			Coll	ar	
Project Name:	Midlothian	Primary Coordinates Grid:	UTM83-	-17	Collar Dip:	-55.00	Collar Az:	260.00
Project Code:	052		North: East:	5,303,228.68 499,727.00	Length:	38.00		
Location: Start Date:	Jul 12, 2017		Elev:	354.00	Hole Size:	NQ		
Completed Date:		Destination Coordinates Grid:	LL83		Hole Type: Casing:	Removed		
Contractor:	Laframboise Drilling		North:	47.88	Collar Survey:	Ν	Plugged:	N
Core Storage: Units:	Laframboise Core Yard METRIC		East: Elev:	-81.00 354.00	Multishot Survey	: N	Pulse EM Survey:	Ν

Detailed L	ithology								
From	То	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
0.00	2.00	CAS, CASING AND OVERBURDEN							
2.00 DACITE - LT LOTS OF SU 17.55-17.58 -	29.65 TO DARK GRE LPHIDE BEARI	3_VIq, Dacite Y IN COLOUR, MG/CG TO FG, FRAGMENTS FILLED THROUGHOUT WITH NG QTZ VEINS AND VEINLETS.	L782796	29.00	29.65	0.65	0.001	0.010	0.010
17.80-17.88 - 18.77-18.9 - SLIGHT GRE 19.1-19.25 - 19.36 - 1CM 24.4 - <1CM 25 - ~1-2CM	QTZ VEIN @80 QTZ STOCKWO ENSIH AND BL QTZ VEIN @80 QTZ VEIN @ 70 QTZ VEIN RUNI QTZ VEIN @ 60	DEG TCA WITH LARGE BLEBS OF OXIDIZED SULPHIDES. RK ZONE WITH VEIN RUNNING 708,70,40, AND 10 DEG TCA. WITH ACK VEINS WITHIN. DEG TCA, WITH LARGER BLEBS OF OXIDIZED SULPHIDES. DEG TCA WITH NOTABLE EPIDOTE ALTERATION. WING @ 80 DEG TCA WITH LARGE BLEBS OF EXIDIZED SULPHIDES. DEG TCA WITH NOTABLE EPIDOTE ALTERATION.							
29-29.65 - M GREEN SER Alteration: 29.00 - 29.65	ODERATELY SI ICITE INCREAS : Sericite, Perva	LICIFIED DACITE. PATCHY FRACTURE CONTROLLED TO PERVASIVE ES TOWARDS LOWER CONTACT. PHOTO 100-2847. Isive, Moderate							
29.65 QTZ VEIN - (THROUGHO	29.81 DTZ VEIN MASS UT.	15_QV, Quartz Vein IVE WHITE QTZ VEIN WITH SMALLER BLACK (CHL?) VEINLETS							
29.81	29.91	3_VIq, Dacite							

Hole Number: MD-17-006

From	То	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
DACITE - BLE	ACHED AS A	BOVE.							
Alteration: 29.81 - 29.91:	Sericite, Perv	vasive, Strong							
29.91 QTZ VEIN - M WITH TRACE 100-2848,2849	30.05 IXED ALTERA DISSEMINAT 9.	15_QV, Quartz Vein ATION ZONE CONSISTING OF SILICIFIED CLAY, QTZ, GREEN SERICITE TED SULPHIDES - POSSIBLY VG. MINOR WISPS OF EPIDOTE. PHOTO							
30.05 DACITE - BLA GREEN STAIN Alteration: 30.05 - 30.26:	30.26 ,CK TO GREE NING. Sericite, Perv	3_VIq, Dacite IN MG WITH VISIBLE OLIVINE THROUGHOUT. BLEACHED ZONE WITH vasive, Strong							
30.26 BRECCIATED	32.00 SERPENTIN	9_CSftg, Fault Gouge ITE WITH NUMEROUS GOUGE INTERVALS. NOT SILICIFIED.	L782798	30.26	31.65	1.39	0.007	1.310	0.120
32.00 DUNITE - BLA	38.00 ACK TO GREE	8_IMba, Dunite In, MG WITH VISIBLE OLIVINE THROUGHOUT.							
Survey Dat	ta Azimuth	Dip Test Flag Comments							

ourrey but					
Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	260.00	-55.00	UK	0	

Detailed Log Report Hole Number MD-17-007

	Project	Coordi	nates			Colla	ar	
Project Name:	Midlothian	Primary Coordinates Grid:	UTM83-	17	Collar Dip:	-50.00	Collar Az:	220.00
Project Code:	052		North:	5,303,228.68 499 727 00	Length:	67.00		
Location:			Elev:	354.00	Hole Size:	NQ		
Start Date:	Jul 13, 2017	Destination Coordinates Gride	1183		Hole Type:	DD		
Completed Date.		Destination Coordinates Ond.	North:	47.88	Casing:	Removed		
Core Storage:	Laframboise Core Yard		East:	-81.00	Collar Survey:	N	Plugged:	N
Units:	METRIC		Elev:	354.00	Multishot Survey	: N	Pulse EM Survey:	N

Detailed L	ithology								
From	То	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
0.00	1.80	CAS, CASING AND OVERBURDEN							
1.80	28.80	3_VIq, Dacite							
DACITE - LIG X-CUTTING	GHT GREY TO E VEINLETS.	ARK GREY, MG/CG TO FG WITH FRAGMENTS THROUGHOUT. REGULAR	L782792	27.00	27.80	0.80	0.001	0.070	0.010
@23.7 - 2-3C VEIN @ 60 D	M QTZ VEIN W EGREES TCA.	TH SLIGHT BLEACHING ALTERATION FOR 10CM ON EACH SIDE OF							
27-28.8 - DAG POSSIBLY S Alteration:	CITE BECOMES PH (SPHALERI	BLEACHED/SERICITIC, WITH BROWN AREAS WITH DISSEMINATED PY, TE STAINING). PHOTO 100-2843							
27.00 - 28.80	: Sericite, Perva	nsive, Strong							
28.80	33.25	8_IMsp, Serpentinite							
SERPENTINI	ITE - BLACK TO I PATCHES, PC	GREEN, MG PORTIONS CONTAINING VISIBLE OLIVING WITH BROWN SSIBLY SPH STAINING SIMILAR TO REDDISH PATCHES IN THE DACITE	L782793	31.60	32.00	0.40	0.001	0.020	0.060
CONTACT.									
SPHALERITE	E-BRONZITE? D	DOTTE HOSTING 1-3% PATCHY RED MATERIAL-POSSIBLY OES NOT APPEAR TO BE HEMATITE. PHOTO 100-2844.							
33.25	35.00	9_CSftg, Fault Gouge							
MULTIPLE IN SERPENTINI ZONE.	ITERVALS OF (ITE. NOT QTZ V	GOUGE INFILLED BY CLAY MATERIAL AND FRAGMENTS OF EINS OR CLAY ALTERATION OBSERVED. REDISH PATCHES END IN FLT	L782795	34.00	35.00	1.00	0.001	0.090	0.080

Hole Number: MD-17-007

From	То	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
35.00 DUNITE - AS WHISPY QT2	67.00 ABOVE. NO N Z VEINS WITH	8_IMba, Dunite IOTABLE REDDISH PATCHES. FROM FLT TO EOH REGULAR X-CUTTING OCCASIONAL SERICITE + TALC ALTERED VEINS.							

Survey Da	ita				
Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	220.00	-50.00	UK	0	

Detailed Log Report Hole Number MD-17-008

	Project	Coordi	nates			Coll	ar	
Project Name:	Midlothian	Primary Coordinates Grid:	UTM83-	17	Collar Dip:	-50.00	Collar Az:	280.00
Project Code:	052		North: East:	5,303,228.68 499.727.00	Length:	38.00		
Location: Start Date:	Jul 05, 2017		Elev:	354.00	Hole Size:	NQ		
Completed Date:		Destination Coordinates Grid:	LL83		Hole Type: Casing:	DD Removed		
Contractor:	Laframboise Drilling		North:	47.88	Collar Survey:	N	Plugged:	N
Core Storage:	Laframboise Core Yard		East:	-81.00	Multishot Survey	- N	Pulse FM Survey:	N
Units:	METRIC		Elev:	354.00				

Detailed Lithology							
From To Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
0.00 1.70 CAS, CASING AND OVERBURDEN BROKEN ROCKS USED FOR DRILL PAD							
1.7028.503_VIq, DaciteDACITE - MODERATELY SILICIFIED MASSIVE TO FRAGMENTAL TEXTURED DACITE. WEA FRACTURING INFILLED BY HAIRLINE TO CM SCALE QTZ/SERICITE/CHL ALTERATION ALC FRACTURES. NOTABLE QTZ/CHL VEINLETS OVSERVED AT 6.2M, FROM 10.55-10.65M CM VEINLET AT 23.9M HOSTIN TRACE PY. INTERVAL BECOMES INCREASINGLY SILICIFED F 	AK IN SITU ONG 1. 1 CM ROM 28M	28.00	28.50	0.50	0.001	0.020	0.010
28.50 28.85 15_QV, Quartz Vein QTZ VEIN - QTZ/SERICITE/CLAY/EPIDOTE HOSTING ZONE OF VEINING CONTAINING FRA CONTROLLED CP, AND POSSIBLY SOME VG. VEIN HAS IRREGULAR UPPER AND LOWER CONTACTS.	ACTURE L783908	28.50	28.85	0.35	0.029	0.010	0.010
28.85 29.25 3_VIq, Dacite DACITE - STRINGLY SILICIFIED DACITE. WHITE, APHYRIC VRECCIATED INTERVAL OVER BY STRONG PERVASIVE SILICIFICATION, CLAY ALTERATION HOSTING TRACE DISSIMIN SULPHIDES.	RPRINTED L783909	28.85	29.25	0.40	0.032	0.010	0.010
29.25 29.90 8_IMsp, Serpentinite							

Hole Number: MD-17-008

From To Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
SERPENTINITE - SILICIFIED SERPENTINITE FAULT ZONE. JADE GREEN SERPENTINE GROUP MINERALS OBSERVED AT UPPER CONTACT, FOLLOWED BY 30CM OF GREEN GOUGE FOLLOWED BY 30CM OF QTZ VEINING WITH CALCITE/BARITE? INVADING WHAT APPEARS TO BE A HEALED SERPENTINITE FAULT GOUGE. LOWER CONTACT MARKED BY 5CM SEAM OF GREEN GOUGE - CONTAINING SOME SULPHIDES AND POSSIBLE VG.	L783910	29.25	29.90	0.65	0.031	0.070	0.150
29.90 38.00 8_IMsp, Serpentinite SERPENTINITE - SERPENTINIZED PERIDOTITE. UNIT IS POLYSUTURED INFILLED BY MAGNETITE-TALC-SERPENTINE GROUP FRACTURE FILLING MINERALS.	L783912	29.90	30.80	0.90	0.001	0.240	0.150

Survey Da	ta				
Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	280.00	-50.00	UK	0	

Detailed Log Report Hole Number MD-17-009

	Project	Coordi	nates			Coll	ar	Az: 300.00				
Project Name:	Midlothian	Primary Coordinates Grid:	UTM83-	-17	Collar Dip:	-50.00	Collar Az:	300.00				
Project Code:	052		North: East:	5,303,228.68 499,727.00	Length:	38.00						
Location: Start Date:	Jul 05, 2017		Elev:	354.00	Hole Size:	NQ						
Completed Date:		Destination Coordinates Grid:	LL83		Hole Type: Casing:	DD Removed						
Contractor:	Laframboise Drilling		North:	47.88	Collar Survey:	N	Plugged:	N				
Core Storage: Units:	Laframboise Core Yard METRIC		East: Elev:	-81.00 354.00	Multishot Survey	: N	Pulse EM Survey:	Ν				

Detailed L	ithology								
From	То	Lithology	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
0.00 BROKEN RC	2.00 PCK FROM DRIL	CAS, CASING AND OVERBURDEN L PAD.							
2.00 DACITE - MA SILICIFIED C DOWNHOLE VEINING AC CM OBSERV MARKED BY	31.95 SSIVE AND FR VERPRINTED , UNIT BECOM COMPANIED B 'ED LOCALLY. FAULT GOUGE	3_VIq, Dacite AGMENTAL TEXTURED DACITE. INTERVAL IS WEAK TO MODERATELY BY HAIRLINE FRACTURES INFILLED BY QTZ/SERCITE/CHL. BELOW 17M IS MORE FRAGMENTAL IN TEXTURE. FRACTURE CONTROLLED QTZ CHLORITE AND WEAK SERCITIC ALTERATION DEVELOPED OVER 1-2 TR CP NOTED IN FRACTURE AT 22.0M. LOWER CONTACT IS SHARP	L783903	31.00	31.95	0.95	0.001	0.020	0.010
31.95 QTZ VEIN - E SERICITIC W 30-35% OF II NOTED AT 3 OBSERVED.	32.90 BRECCIATED F. /ALL ROCK - PF NTERVAL. VEIN 2.4M. MINOR F	15_QV, Quartz Vein AULT ZONE WITH VEINING. FAULT GOUGE, BROKEN SECTIONS OF ROBABLY DACITE FRAGMENTS AND QUARTZ VEINING OCCUPYING S CONSISTS OF QTZ, SERCITE WITH A SMOKEY PHASE OF VEINING RACTURE CONTROLLED CARB AND SILICIFIED CLAY ALTERATION	L783904	31.95	32.90	0.95	0.001	0.030	0.010
32.90 SERPENTIN	34.30 IZED PERIDOTI	9_CSftg, Fault Gouge TE. BADLY BROKEN INTERVAL WITH GOUGE	L783905	32.90	33.50	0.60	0.001	0.030	0.010
34.30	34.60	15_QV, Quartz Vein							

FromToLithologyQTZ VEIN - BRECCIATED QTZ VEINING AND FAULT ZONE. 30% QTZ VEINS AS BEFORE WITH FRACTURE CONTROLLED SERICITE IN THE VEINS. INTERVAL WITH 5-10% VEINING NOTED BETWEEN 34.1 AND 34.5. 5CM QTZ/CHL - CALCITE VEIN NOTED AT 34.3M	Sample #	From	То	Length	Au ppm	Ag ppm	S pct
34.60 38.00 3_VIq, Dacite DACITE - MASSIVE, WEAKLY SILICIFIED DACITE.							
Survey Data	1						

Depth	Azimuth Decimal	Dip Decimal	Test Type	Flag	Comments
0.00	300.00	-50.00	UK	0	

Appendix B: Drill Plan

Appendix C: Drill Sections

Appendix D: Assay Certificates

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 3- AUG- 2017 Account: CGMYDARY

CERTIFICATE SD17140998

Project: CGM009

This report is for 63 Drill Core samples submitted to our lab in Sudbury, ON, Canada on 10- JUL- 2017.

The following have access to data associated with this certificate:

JAKE BURDEN	GREG COLLINS	THOMAS HART
PETER MCINTYRE		

SAMPLE PREPARATION							
ALS CODE	DESCRIPTION						
WEI- 21	Received Sample Weight						
LOG- 22	Sample login - Rcd w/o BarCode						
CRU- QC	Crushing QC Test						
CRU- 31	Fine crushing - 70% < 2mm						
PUL- QC	Pulverizing QC Test						
SPL- 21	Split sample - riffle splitter						
PUL- 32	Pulverize 1000g to 85% < 75 um						
LOG-23	Pulp Login - Rcvd with Barcode						

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
Au- ICP21 ME- MS61	Au 30g FA ICP- AES Finish 48 element four acid ICP- MS	ICP- AES

To: CANADIAN GOLD MINER ATTN: PETER MCINTYRE 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 www.alsglobal.com Fax: +1 (604) 984 0218

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 3- AUG- 2017 Account: CGMYDARY

Project: CGM009

CERTIFICATE OF ANALYSIS SD17140998

Sample Description	Method	WEI- 21	Au- ICP21	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.02	0.001	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
L782751		0.56	1.570	0.43	3.15	74.5	<10	0.18	0.04	13.00	<0.02	3.44	47.6	463	0.13	19.6
L782752		0.76	0.113	0.03	8.51	<0.2	170	0.69	0.01	3.55	0.02	17.80	16.1	56	0.75	10.3
L782753		0.94	0.001	0.01	8.76	7.5	450	0.40	0.01	1.86	<0.02	21.7	20.9	47	1.61	34.8
L782754		0.79	0.003	0.03	1.25	<0.2	50	0.07	0.01	2.60	<0.02	3.74	3.5	25	0.19	2.0
L782755		0.86	1.190	0.59	4.95	21.3	<10	0.53	0.02	12.85	0.20	2.68	14.6	95	2.29	34.5
L782756 L782757 L782758 L782759 L782759 L782760		0.76 1.42 2.16 0.25 0.78	0.067 <0.001 0.002 <0.001 <0.001	0.34 0.07 0.02 0.03 0.06	1.79 3.94 7.56 6.88 1.35	15.6 <0.2 <0.2 <0.2 1.0	<10 30 820 10 <10	<0.05 0.23 0.86 0.48 <0.05	0.02 <0.01 0.01 <0.01 0.01	1.33 9.78 13.65 19.80 0.32	0.10 0.05 0.02 0.03 <0.02	1.96 7.27 20.4 16.90 1.14	24.7 66.7 14.1 11.3 86.9	1030 1460 38 54 1790	0.13 0.48 3.05 2.91 0.08	269 51.4 1.8 3.9 3.3
L782761		0.11	<0.001	0.02	0.04	<0.2	<10	<0.05	0.01	0.01	<0.02	2.48	0.2	4	<0.05	1.0
L782762		0.60	0.033	0.40	8.21	9.0	40	0.78	0.02	5.78	0.06	40.7	27.0	82	0.77	2340
L782763		0.77	0.002	0.03	8.36	5.8	100	0.65	0.02	7.90	<0.02	40.5	19.3	74	0.11	65.5
L782764		0.38	0.001	0.02	3.66	6.1	<10	0.32	0.02	10.40	0.21	12.55	10.7	45	0.06	9.6
L782765		0.65	0.158	0.16	3.26	120.5	<10	0.33	0.02	19.85	0.03	4.87	52.1	776	0.05	6.1
L782766		1.10	0.712	0.16	2.36	28.5	30	0.51	0.01	11.70	0.87	2.10	73.1	1030	0.07	52.5
L782767		0.69	0.011	0.11	1.43	11.2	20	<0.05	0.01	1.95	<0.02	1.82	130.5	1840	0.08	37.1
L782768		0.89	<0.001	0.07	1.32	0.9	<10	<0.05	<0.01	0.39	<0.02	0.79	81.9	1860	<0.05	4.2
L782769		0.98	<0.001	0.02	4.35	<0.2	<10	0.34	0.01	15.85	0.03	13.55	29.2	270	<0.05	2.1
L782770		0.64	<0.001	0.07	1.20	<0.2	<10	<0.05	0.01	0.17	<0.02	0.93	86.6	1780	<0.05	3.3
L782771		0.06	0.759	0.16	7.11	433	500	1.56	0.25	3.92	0.06	55.2	30.8	155	4.91	63.3
L782772		2.01	<0.001	0.03	7.81	0.3	110	0.63	0.01	5.02	0.03	22.7	17.5	44	0.22	15.5
L782773		2.52	<0.001	0.04	8.69	1.0	60	0.47	0.01	9.76	<0.02	30.3	14.3	40	0.10	65.7
L782774		2.40	0.160	0.06	5.32	1.1	<10	0.59	0.01	17.20	0.09	20.9	23.9	71	0.07	7.9
L782775		1.66	0.101	0.15	3.16	1.0	<10	0.08	0.01	7.87	1.25	3.08	85.1	1030	0.35	129.0
L782776		1.49	0.013	0.11	4.37	2.3	<10	0.36	0.01	13.40	10.05	11.50	37.8	262	0.33	287
L782777		1.11	<0.001	0.13	1.95	0.3	<10	0.14	0.01	6.52	2.06	2.73	99.3	1180	0.37	309
L782778		1.67	<0.001	0.21	1.91	0.7	<10	0.06	0.01	4.40	0.70	2.63	99.6	1180	0.46	137.5
L782779		1.70	0.001	0.11	1.90	<0.2	<10	0.05	0.01	3.13	0.22	1.97	96.4	1340	0.34	41.5
L782780		1.54	<0.001	0.10	1.95	<0.2	<10	<0.05	0.01	4.08	0.06	1.67	101.5	1380	0.44	44.9
L782781 L782782 L782783 L782783 L782784 L782785		2.67 2.47 1.76 1.44 0.76	<0.001 <0.001 <0.001 <0.001 <0.001	0.03 0.04 0.17 0.01 0.01	6.97 6.45 1.55 8.04 2.66	<0.2 <0.2 <0.2 0.4 0.3	<10 <10 <10 210 180	0.58 0.41 <0.05 0.49 0.09	0.01 <0.01 0.03 0.03 0.02	21.5 20.5 2.37 2.11 2.42	0.46 0.25 0.04 <0.02 <0.02	23.5 22.7 1.47 25.4 8.25	16.4 15.0 99.9 20.7 5.5	34 33 1660 48 29	0.69 0.57 0.28 0.61 0.42	3.7 13.8 141.5 7.0 1.7
L782786 L782787 L782788 L782788 L782789 L782790		2.32 0.61 0.79 1.45 1.30	<0.001 <0.001 <0.001 0.078 0.004	0.02 0.01 0.01 0.80 0.23	7.54 4.23 6.21 1.94 2.02	0.7 1.6 1.4 19.4 0.7	770 10 <10 <10 <10	0.19 0.62 0.61 0.52 0.09	0.04 0.02 0.03 0.03 0.02	4.23 8.89 14.20 5.27 4.30	0.03 <0.02 0.02 1.88 0.10	27.3 5.16 22.9 4.63 3.84	17.9 11.0 14.6 52.2 97.7	43 11 30 633 1340	0.60 0.46 0.57 0.81 0.41	7.3 18.9 2.7 365 271

ALS

Minerals

2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 3- AUG- 2017 Account: CGMYDARY

Project: CGM009

CERTIFICATE OF ANALYSIS SD17140998

Sample Description	Method Analyte Units LOR	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME-MS61 P ppm 10
L782751 L782752 L782753 L782754		6.17 2.86 4.75 1.03	4.96 16.60 18.05 2.75	0.07 0.07 0.13 <0.05	0.5 3.2 2.9 0.5	0.029 0.005 0.024 <0.005	0.01 0.69 1.62 0.16	1.5 8.0 9.1 2.0	17.8 14.2 40.0 7.2	9.98 1.61 2.78 0.90	2080 320 500 220	0.60 1.68 1.16 1.40	0.03 3.12 3.47 0.07	0.6 4.9 5.6 0.8	400 47.0 48.7 11.5	80 620 620 90
L782755 L782756 L782757 L782758 L782758 L782759		2.46 3.95 4.46 2.93 2.36	10.65 3.69 6.38 14.60 13.70	<0.05 0.06 0.05 0.07 0.06	0.3 0.9 1.8 1.6	0.020 0.010 0.010 0.016 0.014	0.01 <0.01 0.02 0.36 0.02	1.3 0.9 3.3 9.5 7.5	115.0 12.6 11.2 30.0 12.3	10.70 22.1 14.80 3.84 4.92	1850 1010 989 703 603	0.35 0.21 0.34 0.52 0.92	0.02 <0.01 0.06 2.21 0.05	0.9 0.4 1.7 4.4 3.8	168.0 1775 1370 54.0 69.3	60 70 170 470 430
L782760 L782761 L782762 L782763 L782764		4.47 0.02 4.56 2.54 1.94	3.12 0.13 18.70 16.65 7.47	0.11 <0.05 0.14 0.15 <0.05	0.1 0.9 2.8 2.5 1.0	0.010 <0.005 0.083 0.029 0.013	0.01 <0.01 0.19 0.26 0.01	<0.5 1.4 18.2 16.3 5.0	2.4 2.0 25.9 6.9 2.2	24.1 0.01 2.71 1.62 1.33	1120 <5 814 472 675	0.21 0.07 0.74 1.19 1.40	<0.01 <0.01 2.48 3.64 0.06	0.3 0.1 7.8 7.9 2.8	2450 2.6 83.3 65.7 30.8	30 20 1040 1030 330
L782765 L782766 L782767 L782768 L782768 L782769		4.74 4.97 4.48 4.52 5.57	7.17 5.53 2.93 2.70 6.06	<0.05 <0.05 0.10 <0.05 0.07	0.6 0.3 0.2 0.1 1.9	0.018 0.015 0.012 0.010 0.014	<0.01 <0.01 <0.01 <0.01 <0.01	2.1 0.9 1.0 <0.5 6.1	5.2 6.0 2.9 2.9 2.9 2.0	5.96 13.30 22.1 24.2 9.68	1320 1240 961 1150 1730	2.05 0.24 0.29 0.25 0.13	0.03 0.02 <0.01 <0.01 0.01	1.1 0.4 0.2 0.2 3.3	768 1330 2410 2490 484	160 70 40 40 330
L782770 L782771 L782772 L782773 L782774		5.18 7.56 3.72 3.18 5.33	3.04 18.05 17.35 16.25 13.85	0.07 0.21 0.13 0.13 0.07	0.2 3.2 2.9 3.2 2.3	0.009 0.069 0.028 0.023 0.030	<0.01 1.34 0.25 0.28 0.01	<0.5 27.9 10.1 14.3 9.9	2.4 24.1 13.4 11.8 4.1	23.6 2.95 2.14 2.05 4.00	1100 1620 564 509 1960	0.28 3.28 0.69 0.65 0.54	<0.01 1.55 3.61 2.76 0.07	0.1 16.0 5.1 5.5 3.8	2430 108.0 47.9 45.8 90.1	30 1420 580 580 410
L782775 L782776 L782777 L782778 L782779 L782779		5.28 4.45 4.90 5.42 5.85 5.72	7.54 7.20 4.82 4.27 4.52 4.62	<0.05 0.06 0.08 0.06 0.06	0.5 0.8 0.3 0.3 0.3 0.3	0.022 0.014 0.016 0.017 0.015 0.021	0.01 0.01 0.01 0.01 0.01	1.3 6.1 1.4 1.3 1.1	13.5 23.9 25.0 16.0 15.9 13.4	15.05 10.30 17.30 17.90 19.10 19.50	1200 1180 889 874 873 868	0.25 0.13 0.18 0.17 0.15 0.19	0.01 0.05 0.01 0.01 0.01 0.01	0.8 1.9 0.3 0.3 0.3 0.2	1480 479 1815 1950 1950 2130	110 310 60 60 70 70
L782783 L782782 L782783 L782784 L782784 L782785		3.43 3.40 6.12 4.36 1.44	13.85 12.45 4.15 17.55 5.79	0.08 <0.05 <0.05 0.06 <0.05	2.2 2.1 0.3 3.6 0.7	0.023 0.020 0.016 0.031 0.013	<0.01 <0.01 0.01 1.02 1.06	10.9 10.7 0.7 10.6 4,3	22.2 23.4 6.8 24.5 8.9	3.74 4.44 20.3 2.46 0.78	1120 1150 941 560 245	0.72 1.26 <0.05 0.73 1.58	0.02 0.02 0.01 3.93 0.08	4.5 4.2 0.3 5.9 1.0	50.0 40.3 2140 57.4 17.5	470 440 70 590 80
L782786 L782787 L782788 L782788 L782789 L782790		3.85 2.94 4.87 5.03 5.12	17.30 11.05 11.85 5.17 4.30	0.08 <0.05 0.05 <0.05 <0.05	2.9 0.4 2.5 0.3 0.4	0.038 0.033 0.015 0.037 0.018	2.52 0.05 0.01 0.02 0.01	12.9 2.5 10.1 1.9 1.9	16.7 17.9 36.3 38.4 14.2	2.38 3.12 5.60 15.45 18.80	486 870 2380 1160 955	1.06 0.71 0.46 0.47 0.06	2.35 0.05 0.07 0.03 0.02	5.5 0.8 5.0 0.5 0.4	43.3 24.7 25.1 916 2020	550 70 530 50 70

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 3- AUG- 2017 Account: CGMYDARY

Project: CGM009

CERTIFICATE O

_			
F	ANAI	VSIS	SD17140998

Sample Description	Method	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	Tl	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOR	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
L782751		<0.5	0.2	<0.002	0.01	10.30	15.2	1	0.2	5.3	<0.05	0.10	0.09	0.138	0.06	<0.1
L782752		1.0	15.8	<0.002	<0.01	0.10	13.1	<1	0.5	214	0.41	<0.05	1.56	0.383	0.05	0.5
L782753		0.5	27.1	<0.002	<0.01	0.07	14.8	1	0.8	194.5	0.43	<0.05	1.45	0.399	0.12	0.4
L782754 L782755		<0.5 3.5	3.6 1.1	<0.002 <0.002	<0.01 <0.01	0.09 7.79	2.6 3.8	1	0.2 0.7	12.9 4.2	0.07 0.06	<0.05 <0.05	0.29 0.18	0.061 0.064	<0.02 0.06	0.1 <0.1
L782756		5.4	0.3	<0.002	0.01	6.65	12.5	1	0.3	17.6	<0.05	0.06	0.08	0.092	0.21	<0.1
L782757		0.9	1.5	<0.002	0.05	0.16	12.6	1	0.2	20.5	0.11	<0.05	0.46	0.153	0.03	<0.1
L782758		<0.5	21.0	<0.002	<0.01	<0.05	13.0	1	0.2	414	0.34	0.07	1.32	0.318	0.05	0.2
L782759		1.7	2.0	<0.002	<0.01	0.06	11.0	1	0.4	18.7	0.28	<0.05	1.15	0.274	<0.02	0.2
L782760		1.0	0.7	<0.002	0.08	0.29	9.8	<1	<0.2	2.7	<0.05	<0.05	0.04	0.064	0.02	<0.1
L782761		0.7	0.2	<0.002	0.01	<0.05	0.2	1	<0.2	2.1	<0.05	<0.05	0.22	0.006	<0.02	0.2
L782762		1.3	4.0	<0.002	0.22	0.16	15.3	4	1.3	103.0	0.48	<0.05	1.50	0.447	0.07	0.3
L782763		0.8	3.6	<0.002	0.01	0.10	14.6	2	1.0	174.0	0.52	<0.05	1.60	0.445	0.03	0.4
L782764		3.6	0.2	<0.002	<0.01	0.20	7.7	1	0.4	9.2	0.18	<0.05	0.72	0.183	<0.02	0.1
L782765		7.9	0.1	<0.002	0.02	23.2	15.5	1	0.3	5.0	0.09	0.20	0.31	0.168	0.02	<0.1
L782766		0.7	0.2	<0.002	0.08	47.8	16.2	1	0.2	6.5	<0.05	0.08	0.06	0.119	0.14	<0.1
L782767		1.5	0.9	<0.002	0.08	2.95	12.2	1	<0.2	2.6	<0.05	0.07	0.04	0.085	0.36	<0.1
L782768		20.6	0.4	<0.002	0.08	0.30	9.7	<1	<0.2	1.0	<0.05	<0.05	0.03	0.061	0.04	<0.1
L782769		1.5	0.1	<0.002	0.01	0.10	11.1	2	0.2	9.3	0.23	<0.05	0.95	0.236	<0.02	0.1
L782770 L782771 L782772	-	3.0 10.9 0.8	0.2 68.9 1.8	<0.002 <0.002 <0.002	0.10 0.61 <0.01	0.07 0.91 0.08	9.0 16.8 12.5	1 1 1	<0.2 2.7 0.6	0.9 287 190.5	<0.05 1.00 0.37	0.05 0.10 <0.05	0.03 7.56 1.35	0.052 0.750 0.361	<0.02 0.31 0.03	<0.1 1.5 0.3
L782773		0.6	4.1	<0.002	0.01	0.17	14.6	2	0.6	112.0	0.40	<0.05	1.74	0.374	0.02	0.4
L782774		3.5	0.2	<0.002	<0.01	0.67	10.9	2	0.4	16.6	0.28	<0.05	1.20	0.266	<0.02	0.3
L782775		2.3	1.1	<0.002	0.14	0.38	18.6	1	<0.2	4.5	0.05	<0.05	0.13	0.205	0.56	<0.1
L782776 L782777 L782778 L782779 L782780		1.1 3.6 44.0 24.7 5.3	0.3 0.8 1.0 0.6 0.4	<0.002 <0.002 <0.002 <0.002 <0.002	0.05 0.09 0.17 0.15 0.16	4.08 0.49 0.33 0.33 0.22	10.2 14.3 14.7 14.0 14.1	1 1 1 <1	0.2 <0.2 <0.2 <0.2 <0.2	8.0 4.8 4.2 3.5 3.6	0.12 <0.05 <0.05 <0.05 <0.05	<0.05 <0.05 <0.05 0.06 <0.05	0.36 0.04 0.05 0.06 0.04	0.198 0.110 0.105 0.098 0.091	0.16 0.67 0.92 0.54 0.40	0.1 <0.1 <0.1 <0.1 <0.1
L782781 L782782 L782783 L782784 L782784		54.6 20.1 1.3 0.6	0.4 0.3 0.7 17.3 27.1	<0.002 <0.002 <0.002 <0.002 <0.002	<0.01 <0.01 0.14 <0.01	1.10 0.61 0.24 0.07	12.0 10.8 11.7 13.5	1 2 <1 <1	0.4 0.4 0.2 1.0	8.9 8.6 5.1 222 36.2	0.30 0.32 <0.05 0.44	<0.05 <0.05 <0.05 <0.05 <0.05	1.44 1.39 0.06 1.55	0.295 0.269 0.080 0.367 0.061	0.02 <0.02 0.65 0.11	0.3 0.3 <0.1 0.4
L782786 L782787 L782788 L782789 L782789 L782790		0.5 <0.5 <0.5 19.0 20.5	44.4 1.2 0.4 1.0 1.3	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.01 <0.01 <0.01 0.12 0.19	0.10 0.39 0.39 3.16 1.76	13.1 3.8 10.7 9.1 13.9	1 1 <1 1 <1	0.9 0.7 0.5 <0.2 <0.2	400 58.7 13.2 7.4 4.5	0.43 0.06 0.40 <0.05 <0.05	<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	1.57 0.26 1.64 0.11 0.07	0.353 0.047 0.318 0.081 0.113	0.23 <0.02 <0.02 0.84 1.18	0.4 0.1 0.3 <0.1 <0.1

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 3- AUG- 2017 Account: CGMYDARY

Project: CGM009

CERTIFICATE OF ANALYSIS SD17140998

Sample Description	Method Analyte Units LOR	ME-MS61 V ppm 1	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS6 Zn ppm 2	ME- MS61 Zr ppm 0.5	CRU-QC Pass2mm % 0.01	PUL- QC Pass75um % 0.01	
L782751 L782752 L782753 L782754 L782755		80 95 105 18 40	0.5 0.2 1.0 0.2 0.7	5.1 10.4 11.7 1.7 1.7	46 19 46 9 46	17.3 143.5 127.5 19.4 11 7	81.4	95.2	
L782756 L782757 L782757 L782758 L782759 L782759 L782759		60 63 78 68 50	0.7 0.1 0.1 0.2 <0.1	2.5 6.0 11.9 9.9 2.1	36 41 27 18 59	10.5 38.1 66.4 64.2 6.0			
L782761 L782762 L782763 L782764 L782764 L782765		<1 102 99 52 83	<0.1 0.8 0.9 0.4 1.4	1.8 14.7 14.4 5.8 5.8	2 64 24 116 53	32.4 133.0 114.5 41.3 22.4		91.9	
L782766 L782767 L782768 L782769 L782770		80 60 48 61 41	0.7 0.2 <0.1 0.3 <0.1	3.9 2.8 1.8 9.3 1.5	132 33 50 40 57	11.6 7.8 5.9 84.8 6.3		87.1	
L782771 L782772 L782773 L782774 L782775		134 94 93 64 134	2.1 0.2 0.3 0.3 1.0	19.6 12.0 13.9 10.2 5.9	118 65 32 74 181	137.0 136.5 147.5 100.0 19.3			
L782776 L782777 L782778 L782779 L782779 L782780		63 76 74 71 73	0.6 0.9 0.7 0.5 0.8	5.7 4.1 4.0 3.9 3.7	1900 377 140 67 33	34.0 12.4 12.1 11.5 10.8			
L782781 L782782 L782783 L782784 L782784		71 63 58 97 23	0.3 0.4 0.6 0.5 0.3	11.5 11.2 3.4 13.6 7.3	129 80 43 41 11	95.8 88.5 8.9 136.5 24.0			
L782786 L782787 L782788 L782789 L782790		90 50 53 56 77	0.6 0.3 0.3 0.8 0.5	14.4 3.5 12.9 4.0 4.9	36 22 37 377 40	112.5 14.9 90.9 12.6 12.5	76.4	94.4	

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 3- AUG- 2017 Account: CGMYDARY

Project: CGM009

Method Analyte Sample Description LOR	WEI- 21 Recvd Wt. kg 0.02	Au- ICP21 Au ppm 0.001	ME-MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME MS61 Cd ppm 0.02	ME-MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME-MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2
L782791 L782792 L782793 L782794 L782795	0.10 1.81 0.89 1.25 1.61	<0.001 <0.001 <0.001 0.002 <0.001	0.02 0.07 0.02 0.04 0.09	0.04 8.17 2.33 1.54 1.30	<0.2 <0.2 <0.2 4.7 <0.2	<10 250 <10 <10 <10	<0.05 0.58 <0.05 <0.05 <0.05	0.03 0.03 0.02 0.02 0.02	0.02 7.20 4.31 0.30 0.04	<0.02 0.04 <0.02 <0.02 <0.02	2.41 24.5 1.76 0.74 0.72	0.2 23.4 81.6 94.4 97.9	2 51 1820 1330 1750	<0.05 1.62 0.20 0.08 0.05	1.6 65.2 3.7 2.7 2.0
L782796 L782797 L782798 L782798 L782799 L782800	1.61 1.39 2.45 2.53 0.93	<0.001 0.043 0.007 <0.001 <0.001	0.01 0.20 1.31 0.06 0.05	8.06 4.11 1.66 8.08 8.09	1.3 51.0 14.4 <0.2 <0.2	210 <10 <10 280 110	0.59 0.60 0.13 0.64 0.52	0.03 0.04 0.03 0.03 0.03	4.54 18.70 4.28 4.18 13.95	<0.02 0.84 0.59 0.02 0.04	26.4 10.75 2.86 26.8 29.4	20.5 36.1 119.0 19.5 16.9	49 410 1210 49 50	0.45 0.14 0.38 0.87 0.33	8.3 87.6 907 59.0 33.6
L783901 L783902 L783903 L783904 L783904 L783905	2.68 0.07 2.21 1.85 1.17	0.001 9.31 <0.001 <0.001 <0.001	0.06 9.29 0.02 0.03 0.03	3.85 5.53 7.82 5.34 7.61	0.6 11.5 0.4 1.6 2.5	10 360 280 380 360	0.14 0.87 0.46 0.48 0.54	0.04 0.10 0.03 0.02 0.03	9.13 4.48 2.57 1.61 0.88	2.02 0.26 0.04 <0.02 <0.02	7.70 23.9 22.3 12.20 15.30	69.6 10.4 19.5 10.6 22.3	1150 23 53 38 37	1.21 4.40 0.52 2.86 3.22	35.3 63.2 16.9 26.3 9.3
L783906 L783907 L783908 L783909 L783910	1.92 1.09 0.85 0.86 1.19	<0.001 <0.001 0.029 0.032 0.031	0.01 0.02 0.01 0.01 0.07	7.36 8.45 4.36 8.14 4.85	1.1 2.4 4.1 11.4 18.9	100 60 <10 10 <10	0.30 0.34 0.33 0.63 0.44	0.02 0.03 0.02 0.03 0.03	1.44 9.36 8.07 15.60 9.61	<0.02 <0.02 <0.02 0.03 3.33	12.95 33.0 9.16 28.7 10.20	18.5 16.3 9.0 15.1 11.9	40 43 23 35 56	2.26 0.60 0.41 0.46 0.47	29.0 46.4 3.3 3.4 1260
L783911 L783912 L783913	0.12 2.00 Not Recvd	<0.001 <0.001	0.01 0.24	0.04 2.35	<0.2 0.8	<10 <10	<0.05 0.11	0.02	0.01 4.56	0.02	2.94 3.90	0.1 98.5	<1 1560	<0.05	2.2 67.1

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4 Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 3-AUG-2017 Account: CGMYDARY

Project: CGM009

Sample Description	Method Analyte Units LOR	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10
L782791 L782792 L782793 L782793 L782794 L782795		0.02 4.96 6.02 5.83 5.17	0.12 18.00 4.59 2.98 2.59	<0.05 0.06 <0.05 <0.05 <0.05	1.0 1.4 0.4 0.2 0.2	<0.005 0.031 0.017 0.011 0.013	0.01 0.46 0.02 0.01 <0.01	1.3 11.2 0.7 <0.5 <0.5	1.9 25.1 4.6 3.3 2.6	0.03 3.15 18.75 23.1 24.2	6 936 1580 1220 1240	0.07 0.87 0.07 0.06 0.05	<0.01 2.23 0.02 0.01 <0.01	0.1 5.0 0.4 0.2 0.2	2.6 51.8 1760 1950 2450	20 630 80 40 30
L782796 L782797 L782798 L782799 L782799 L782800		4.55 4.46 4.05 4.19 3.83	18.05 8.67 4.53 18.35 15.60	0.05 <0.05 <0.05 0.06 0.05	3.0 1.3 0.2 3.9 3.1	0.029 0.018 0.013 0.062 0.030	0.47 0.01 0.01 0.57 0.13	11.5 4.5 1.5 11.4 13.5	14.2 6.6 12.9 20.7 14.0	2.38 6.48 19.40 2.27 3.64	651 1920 1070 555 823	0.93 1.23 0.06 0.76 1.92	3.95 0.05 0.01 2.86 1.45	5.7 2.2 0.2 5.8 5.2	48.9 560 1910 50.0 43.4	580 240 40 590 550
L783901 L783902 L783903 L783904 L783905		6.68 3.22 4.40 2.72 5.72	8.00 11.25 17.40 10.80 17.40	<0.05 0.05 0.07 <0.05 0.07	0.8 1.8 3.9 2.1 2.7	0.067 0.039 0.017 0.036 0.034	0.06 1.78 0.90 2.22 2.74	3.1 11.1 9.4 5.0 5.6	18.8 42.2 27.1 112.0 143.5	12.85 1.16 2.48 4.23 5.77	1100 871 652 343 643	0.31 5.01 0.77 0.71 0.34	0.22 1.38 3.28 0.28 0.04	1.0 2.2 5.8 3.3 4.5	1010 11.0 44.8 31.1 50.8	150 670 590 330 440
L783906 L783907 L783908 L783909 L783910		3.83 3.40 2.25 3.06 3.23	16.25 15.35 10.05 15.20 8.70	0.06 0.07 <0.05 0.05 0.05	3.0 3.9 1.2 3.1 1.8	0.028 0.030 0.020 0.030 0.023	0.90 0.22 0.01 0.03 <0.01	4.7 15.1 4.6 13.4 4.1	81.3 28.2 12.6 18.2 54.2	2.95 2.41 2.38 3.00 12.65	467 558 988 2620 1460	0.39 0.78 1.25 0.50 0.54	3.31 1.76 0.03 0.07 0.02	5.6 6.1 2.0 5.5 3.2	43.3 50.2 21.5 23.9 61.1	570 640 190 590 340
L783911 L783912 L783913		0.02	0.12 5.62	0.05 <0.05	1.1 0.4	<0.005 0.024	0.01	1.6 2.3	1.5 12.8	<0.01 17.70	<5 896	0.15 0.20	<0.01 0.02	0.2 0.5	0.7 1740	10 80

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 3- AUG- 2017 Account: CGMYDARY

Project: CGM009

Sample Description	Method	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS61
	Analyte	Ръ	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	Tl	U
	Units	ррт	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOR	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
L782791		0.7	0.1	<0.002	0.01	0.06	0.2	<1	<0.2	2.2	<0.05	<0.05	0.24	0.006	<0.02	0.2
L782792		1.8	8.1	<0.002	<0.01	0.06	14.2	1	0.7	452	0.40	<0.05	1.12	0.374	0.12	0.3
L782793		<0.5	1.3	<0.002	0.06	0.05	15.4	<1	<0.2	7.1	<0.05	<0.05	0.07	0.128	<0.02	<0.1
L782794		2.1	0.4	<0.002	0.03	0.47	9.6	<1	<0.2	1.7	<0.05	<0.05	0.04	0.066	<0.02	<0.1
L782795		2.1	0.5	<0.002	0.08	0.06	10.0	<1	<0.2	0.7	<0.05	<0.05	0.02	0.064	<0.02	<0.1
L782796 L782797 L782798 L782799 L782799 L782800		1.1 5.3 6.1 1.2 0.9	4.3 0.2 0.7 6.5 2.5	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.01 0.02 0.12 <0.01 <0.01	0.06 9.21 3.27 0.08 0.13	12.6 10.0 10.4 13.1 12.1	1 1 1 1 <1	0.9 0.4 <0.2 1.1 0.8	333 8.2 4.7 284 188.0	0.46 0.18 <0.05 0.48 0.41	<0.05 0.06 <0.05 <0.05 <0.05	1.50 0.71 0.05 1.57 1.77	0.367 0.178 0.073 0.368 0.329	0.04 0.04 1.56 0.07 0.02	0.4 0.2 <0.1 0.4 0.4
L783901		0.5	1.3	<0.002	0.17	2.41	21.4	1	1.4	8.0	0.07	<0.05	0.24	0.222	0.13	0.1
L783902		16.4	62.7	<0.002	0.43	2.25	11.6	1	0.7	346	0.13	4.24	2.75	0.288	0.55	0.7
L783903		1.8	10.0	<0.002	<0.01	0.06	12.7	1	0.5	209	0.46	<0.05	1.37	0.366	0.08	0.4
L783904		0.7	35.5	<0.002	<0.01	0.15	8.6	<1	0.7	24.7	0.26	<0.05	1.05	0.218	0.13	0.2
L783905		<0.5	57.5	<0.002	<0.01	0.16	12.2	<1	0.7	22.0	0.35	<0.05	1.38	0.295	0.18	0.3
L783906 L783907 L783908 L783909 L783910		<0.5 <0.5 <0.5 8.4 40.3	5.6 3.7 0.4 0.8 0.2	<0.002 <0.002 <0.002 <0.002 <0.002	<0.01 <0.01 <0.01 <0.01 0.15	0.08 0.09 0.14 0.15 0.59	11.5 13.6 5.2 13.5 7.6	<1 1 <1 <1 1	0.9 0.6 0.6 0.7 0.3	42.1 128.5 42.7 11.7 11.7	0.43 0.50 0.16 0.44 0.26	<0.05 <0.05 <0.05 <0.05 <0.05	1.12 2.00 0.66 1.79 1.05	0.353 0.402 0.126 0.364 0.213	0.03 0.02 <0.02 <0.02 <0.02 0.05	0.3 0.5 0.1 0.4 0.2
L783911 L783912 L783913		1.3 36.5	0.2	<0.002 <0.002	0.01	0.05 0.34	0.2 16.5	<1 1	<0.2 <0.2	2.4 6.2	<0.05 <0.05	<0.05 0.05	0.30 0.09	0.006 0.128	<0.02 2.11	0.2 <0.1

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4 Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 3-AUG-2017 Account: CGMYDARY

Project: CGM009

Sample Description	Method Analyte Units LOR	ME- MS61 V ppm 1	ME-MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	CRU- QC Pass2mm % 0.01	PUL- QC Pass75um % 0.01				
L782791 L782792 L782793 L782794 L782794 L782795		<1 102 91 51 49	0.5 0.3 0.1 <0.1	1.9 12.2 4.8 2.6 2.4	2 63 55 51 57	35.0 50.0 13.5 7.1 6.4						
L782796 L782797 L782798 L782799 L782799 L782800		97 61 54 97 83	0.2 1.1 1.0 0.4 0.3	13.6 6.7 3.2 13.9 13.8	57 202 119 72 67	116.0 51.7 7.8 141.5 121.5						
L783901 L783902 L783903 L783904 L783905		136 108 98 60 85	0.3 1.8 0.4 0.6 1.0	10.0 10.0 13.0 10.9 12.8	357 73 48 12 34	26.0 65.7 143.5 84.5 105.5						
L783906 L783907 L783908 L783909 L783910		92 93 49 93 54	0.6 0.6 0.3 0.8 0.9	10.6 15.8 4.3 13.8 8.3	30 39 15 25 720	119.0 152.5 45.4 118.5 69.7						
L783911 L783912 L783913		<1 90	<0.1 0.6	2.1 5.7	2 77	40.1 15.8						

To: CANADIAN GOLD MINER 410 FALCONBRIDGE ROAD UNIT 5 SUDBURY ON P3A 4S4

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 3- AUG- 2017 Account: CGMYDARY

Project: CGM009

		CERTIFICATE COMMEN	TS									
	ANALYTICAL COMMENTS											
Applies to Method:	REE's may not be totally soluble in th ME- MS61	is method.										
		LABORATORY	ADDRESSES									
Applies to Method:	Processed at ALS Sudbury located at CRU- 31 PUL- 32	1351- B Kelly Lake Road, Unit #1, CRU- QC PUL- QC	Sudbury, ON, Canada. LOG- 22 SPL- 21	LOG- 23 WEI- 21								
Applies to Method:	Processed at ALS Vancouver located a Au- ICP21	at 2103 Dollarton Hwy, North Van ME- MS61	couver, BC, Canada.									