We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

PROSPECTING REPORT

Vr

on the

"Albert Lake" Property

Claims 4282586, 4282589 and 4285588

Riggs Township, Ontario

for

2548304 Ontario Inc.

Submitted by:

Bruce Edgar (HBSc, P. Geo.)

November 21, 2017

1

SUMMARY

In September, 2017, the author was given the mandate by Mr. Richard Wells, President, 2548304 Ontario Inc., to complete a prospecting program on a portion of the company's claims in Riggs Township, Ontario.

From October 4 through 7, 2017, the author Bruce Edgar (HBSc, P. Geo.) and Mr. Brian Edgar (HBSc.) travelled to and from the area and completed prospecting of claims 4282586 (3 units), 4282589 (4 units) and 4285588 (3 units) in Riggs township, Ontario. All claims are 100% owned by the company.

Traverses were completed with GPS (Garmin Etrex Legend HCx- NAD 83, Zone 16) and compass. Any witnessed Claim posts and line posts were noted, as were any areas of outcrop. In general, the area has a considerable layer of glacial till and sands, and the amount of outcropping is limited.

A total of 13 samples were taken with GPS coordinates noted, type of forest (locale) and a complete rock description. All samples were sent to Swastika Laboratories of Swastika, Ontario, an accredited laboratory (CALA) meeting the requirements of ISO/IEC 17025:2005. Samples were sent for multi-element analysis (ICP-OES) and assaying for gold. Swastika Laboratories uses Activation Laboratories of 41 Bittern Street, Ancaster, Ontario to perform the multi-element analysis. Activation Laboratories is ISO 17025 accredited and/or certified to 9001:2008.

None of the samples returned significant assays for gold, with all values reported hovering around the lower detection limit of 0.01 grams per metric tonne (g/Mt). (See assay certificate in the Appendices of this report)

The multi-element analysis results were also unremarkable. As expected, rocks labelled as "granitoids' returned lower percentage values for iron, manganese, magnesium and aluminium. Results for copper, nickel and zinc were not significant, and only one value (0.8 ppm) for silver was higher than the base detection limit. Results for other metals and the rare earth elements were also close to lower detection limits.

Prospecting of the "Albert Lake" property did not reveal any characteristics commonly associated with various Deformation Zones in the area as described by government geologists. No areas of high strain, shearing or tension shears were observed. Only minimal quartz veining was observed in one location, associated with rock fracturing, and no slickenslide was observed on the host rock margins.

The author recommends a more detailed geological study of the property with GPS run lines and sampling in order to attempt to explain the VLF conductors in claim 4282589, and also to check for the contact areas between the Albert Lake Stock and surrounding volcanics and felsic intrusive (quartz-feldspar) porphyries described by government geologists as an area for potential mineralization.

Summary2
Introduction4
Location, Access and Physiography4
History7
Geological Setting
Regional Geology7
Property Geology8
Work completed10
Results12
Discussion14
Conclusions and Recommendations14
References15
Certificate of Author16
Appendix 1, Swastika Laboratories Assay Certificate17
Appendix 2, Activation Laboratories Assay Certificate19

TABLE OF CONTENTS

List of Figures

Figure 1, Location Map, Albert Lake Claims6	
Figure 2, Geology of Riggs and West Townships9	
Figure 3, Albert lake Prospecting Sample Locations13	;

INTRODUCTION

In September, 2017, the author was given the mandate by Mr. Richard Wells, President, 2548304 Ontario Inc., to complete a prospecting program on a portion of the company's claims in Riggs Township, Ontario.

From October 4 through 7, 2017, the author Bruce Edgar (HBSc, P. Geo.) and Mr. Brian Edgar (HBSc.) travelled to and from the area and completed prospecting of claims 4282586 (3 units), 4282589 (4 units) and 4285588 (3 units) in Riggs township, Ontario. All claims are 100% owned by the company.

ownship Claim Recordin / Area Number Date	Glaim Due Status Date	Percent Option	Work Required	Total Applied	Total Reserve	Claim
--	-----------------------------	-------------------	------------------	------------------	------------------	-------

SAULT STE. MARIE Mining Division - 413214 - 2548304 ONTARIO INC.

RIGGS	4282586	2016-Apr- 01	2018- Apr-01	А	100 %	\$1,200	\$0	\$0	\$0
RIGGS	4282589	2016-Apr- 01	2018- Apr-01	А	100 %	\$1,600	\$0	\$0	\$0
RIGGS	4285588	2016-May- 03	2018- May-03	А	100 %	\$1,200	\$0	\$0	\$0

This report summarizes the results of the prospecting program on the company's claims.

LOCATION, ACCESS, and PHYSIOGRAPHY

The company's claims in Riggs Township are located approximately 50 kilometers north-east of Wawa, Ontario. Claims 4282586, 4282589 and 4285588 are located some 33 kilometers east-southeast of the town of Dubreuilville.

Access to the area is gained by taking the Trans-Canada Highway 17 for 40 kilometers north of Wawa, then turning east on highway 519 for 32 kilometers to Dubreuilville. The Goudreau road (locally "Cemetery Road") is taken for approximately 15 kilometers east- southeast to the historical Goudreau-Lochalsh road. Turning left, Richmont's Island Gold Mine is passed after 1 kilometer, and the road is taken an additional 5 kilometers to the junction with road 48 (historical lumber road).

The "Albert Lake" claims 4282586, 4282589 and 4285588 are accessed by taking road 48 south at the junction and travelling approximately 1.5 kilometers and turning east on a lumber road. The main lumber road is taken for approximately 9 kilometers east. Overgrown skidder trails can be taken to within 50 meters of the #4 post of claim 4282589. This claim is centered at approximately 0706260E,

and 5352000N. Claim 4285588 is located adjacent to the east, and claim 4282586 is approximately 1 kilometer south-southeast.

The area features typical northern Ontario bush, with Balsam, Pine, Birch and Poplar forest, Spruce lowland and Cedar swamps. Numerous creeks and small lakes are found in the area, and Albert Lake covers a good portion of claims 4282589 and 4285588 which are adjacent to one another. An arm of Dog Lake cuts across the north-western portion of claim 4282589. Topography in the area can vary by approximately 50 metres. Parts of the area have been lumbered in the past resulting in prolific new growth of small trees, bushes and tag alder making traversing the claims difficult.

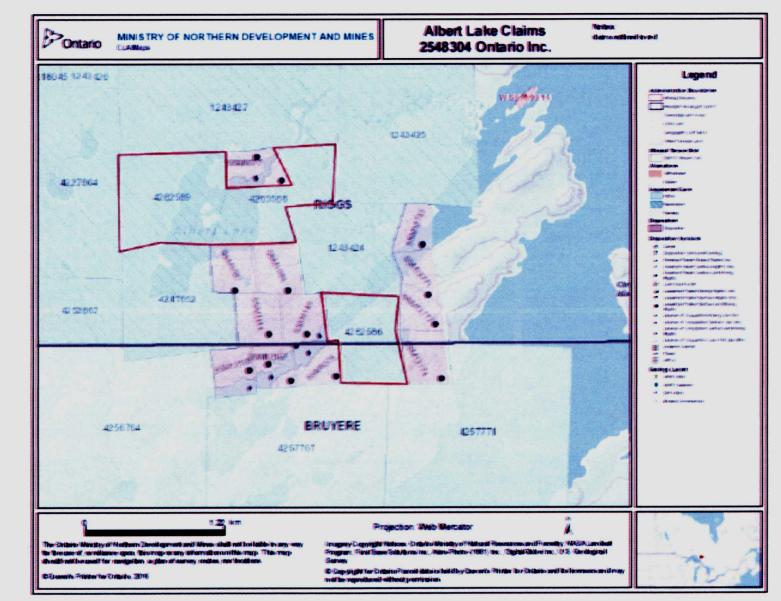


Figure 1 Location Map, Albert Lake Claims

6

HISTORY

Gold was first discovered in the area on the north shore of Emily Bay in 1896. The Emily Bay mine property is located on patented claims immediately west of claim 4282589. Reports on the Emily Bay Mine property exist from 1900 through the 1930's, but none of the reports describe any work outside of the patented ground. It is likely that a good deal of prospecting occurred in much of the area surrounding the original discovery, but any records of that work are not located in the assessment files.

Records of assessment work on the current Albert Lake property of 2548304 Ontario Inc. are very limited. In 1992, Jason Gerdes performed prospecting traverses on a portion of the current claim 4285588, reporting few outcrops consisting of amphibolite (?) close to Albert Lake, and a few outcrops of mafic volcanic and feldspar porphyry east of the lake. No samples were taken.

In 1999, Dr. Derek McBride completed prospecting traverses for Arlington Resources in the area. Unfortunately, the traverses were confined to logging roads and skidder trails, none of which cross the current property.

In 2010, Graham Stone completed a VLF survey across the area of current claims 4282589 and 4285588 for Chalice Diamonds. The survey indicated five east/west, easily discernable conductors, three of which lie under Albert Lake. Two parallel conductors are shown in the north-west portion of claim 4282589. The survey was conducted in the winter with snow cover and there appears to have been no follow-up to look for the surface expression of the conductor trace during snow-free months.

In October 2017 the author and Mr. Brian Edgar (HBSc) completed prospecting of the Albert Lake claims which is the subject of this report.

GEOLOGICAL SETTING

REGIONAL GEOLOGY

The geology of the area features a typical Archean Greenstone belt. P. Srivastrava and G. Bennet of the Ontario Geological Survey described the geology of Riggs and West Townships (1978) as follows:

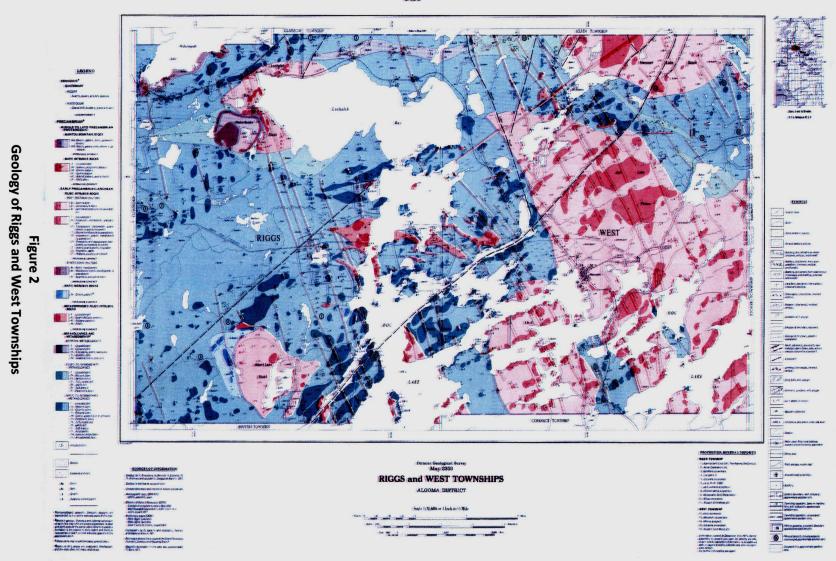
Most of the area is underlain by rocks of Early Precambrian age intruded by swarms of diabase dikes and an olivine gabbro stock of younger age. Except along the shoreline of Dog Lake, the out crop is generally poor because of thick Pleistocene deposits of sand, gravels, and tills. Thick and complex volcanogenic accumulation of subaqueous mafic flows and pyroclastic rocks, felsic to intermediate pyroclastic rocks, and locally derived metasediments underlies most of the area. This metavolcanic belt is a part of the northeastern extension of the Michipicoten metavolcanicmetasedimentary belt. Minor iron formations are present at the top of the mafic metavolcanic sequence. Several large sheets, dikes, and pods of feldspar porphyry and quartz-feldspar porphyry and a few sheets of diorite-gabbro have intruded the metavolcanics.

All these rocks are folded in a northeast-trending anticline and east-west-trending syncline. Fold plunge is variable but generally east or northeast to southeast. The axes of these folds change in trend from northeast or east-west to southeast and appear to be cross folded. The region was in truded during folding by a large mass of biotite trondhjemite gneiss, most of which lies northwest of the area; and after folding, by four masses of biotite trondhjemite and granodiorite-syenite. The metavolcanic-metasedimentary rocks are metamorphosed to lower greenschist facies in the interior of the belt and to high greenschist-lower almandine-amphibolite facies near felsic intrusive rocks. Subsequently, these formations were intruded by north-northwest-trending diabase dikes, quartz dior ite, and an olivine-rich gabbro stock. The stock is the youngest consolidated rock in the area in as much as it cuts through the diabase dikes.

Several small faults, and three major faults of regional extent are present in the area. The larger faults strike north-northeast to northeast, and north-northwest.

Gold was first discovered in Riggs Township in 1896. Since then the area has been explored for gold and several prospects have been established. All occurrences of gold are associated with felsic in trusive rocks which are either early feldspar porphyry or trondhjemite intrusions.and are localized by shear zones.

Thin magnetite-chert bands occur within the metavolcanics but are too thin to be of significance as iron deposits. Minor pyrite and pyrrhotite occur throughout in metavolcanics. Pleistocene sand, gravel, and boulder deposits are extensive in the area. Sand and gravel north and east of Missanabie have been used in road construction.


Work in the area by government geologists R. P. Sage, K. Heather and G. Arias during the late 1980's and early 1990's concentrated on describing deformation zones in the Goudreau-Lochalsh area. The Goudreau Lake Deformation Zone (GLDZ) is located north and west of the current Albert lake property. The Cradle Lakes Deformation Zone (CLDZ) is located south and west, and the Emily Bay Deformation Zone is located to the south.

PROPERTY GEOLOGY

The dominant geological rock type evident on the Albert Lake property, and covering the majority of claims 4282589 and 4285588, is the Albert Lake stock. As described by P. Srivastrava and G. Bennet, the rock is a typically massive to sub-foliated, medium- grained, equigranular, biotite trondhjemite to granodiorite. It weathers pale grey to white and is light pink on fresh surface. Rounded grains of quartz to 3mm in size are abundant on the weathered surface. In thin section, the Albert Lake stock is composed of 60% oligoclase, 5 to 10% potassic feldspar (microcline), 10 to 15% quartz, and 5 to 10% biotite. Hornblende, chlorite, sphene, serecite and epidote are present in minor amounts.

Surrounding the Albert Lake stock is a dark grey feldspar and quartz-feldspar porphyry, which weathers to a medium grey. The porphyries are massive and characterized by the presence of medium to coarse grained, euhedral to subhedral phenocrysts of plagioclase in a dark grey, fine grained to aphanitic, felsic groundmass.

Mafic to Intermediate volcanics trend northeast on the property and can show variations in colour from grey to green-grey, and are generally fine grained and massive. The flows can be locally carbonitized and often pillowed. Coarser varieties can display a gabbroic texture. Mafic volcanics occur in the northeast of claim 4285588 and the northwest of claim 4282586. It is possible that the flows could be interbanded with fine grained tuffs or pyroclastics, but this determination is difficult in the field.

Winstryof Natural Contern S. Mer Natural Contern S. Mer Ontario

Centerie Georgical Barrey Mare 2353 Riggs and West Townships

9

WORK COMPLETED

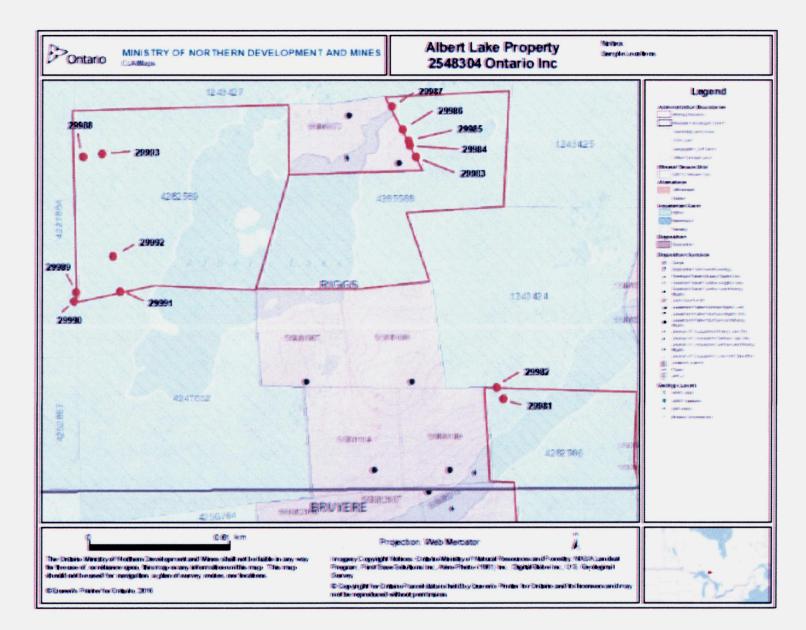
From October 4 through 7, 2017, The author and Mr. Brian Edgar (HBSc) travelled to the property and completed prospecting traverses. Access to the area was difficult in lieu of overgrown lumber roads and the growth of small trees, bushes and alders after lumbering in the area 15 to 20 years previous.

Traverses were completed with GPS (Garmin Etrex Legend HCx- NAD 83, Zone 16) and compass. Any witnessed Claim posts and line posts were noted, as were any areas of outcrop. In general, the area has a considerable layer of glacial till and sands, and the amount of outcropping is limited.

A total of 13 samples were taken with GPS coordinates noted, type of forest (locale) and a complete rock description. All samples were sent to Swastika Laboratories of Swastika, Ontario, an accredited laboratory (CALA) meeting the requirements of ISO/IEC 17025:2005. Samples were sent for multi-element analysis (ICP-OES) and assaying for gold. Swastika Laboratories uses Activation Laboratories of 41 Bittern Street, Ancaster, Ontario to perform the multi-element analysis. Activation Laboratories is ISO 17025 accredited and/or certified to 9001:2008.

Sample#	Claim #	Locale	UTM	Description
29981	4282586	Mixed Forest	0707771 5351262	chloritic green mafic volcanic (MV), med to coarse grained - granular magnetite - moderately to locally strongly magnetic - blocky, rusty fractures - probable coarser MV flow, or gabbroic texture
29982	4282586	Mixed Forest	0707744 5351322	chloritc green MV (as above), locally coarser grained - locally finely disseminated pyrite - fine (F) to very fine (VF) calcite stringers
29983	4285588	Outcrop Face on Hillside striking 015° Mixed Forest	0707336 5352266	very fine grained (VFG), drk. Grey to chloritic green grey MV - locally weakly magnetic - weakly to locally strongly carbonitized - blocky, rusty weathered fractures - carbonate stringers with local 2-2.5 cm micro faulting

29984	4285588	as above	0707314 5352234	as above (taken from same outcrop ridge)
29985	4285588	Outcrop under uprooted tree Mixed Forest	0707292 5352319	slightly epidotized locally, VFG MV - VF carbonate stringers - pyrite agglomeration locally to 2mm - pyrrhotite specs and agglomerations locally <2mm
29986	4285588	Rocky Hillside Mixed Forest	0707259 5352380	VFG MV, drk. Grey to slightly chloritic green - moderately to quite strongly magnetic, probable magnetite - local massed sulphides - VF carbonate stringers - blocky, rusty weathered fracturing
29987	4285588	Outcrop by lake estuary, 10m inside claim boundary Mixed Forest, mostly cedar	0707226 5352474	F - VFG MV - 1-2cm quartz veinlet with few pyrite agglomerations - several <1mm carbonate stringers
29988	4282589	Young Growth with older cedar forest 2% birch	0705906 5352220	40-50% quartz granitoid with up to 5mm quartz phenocrysts - minor <5% mafic accessory mineral content - local silver metallic lustred agglomeration to 2mm, possible molybdenite? - local 10-15% pyrite agglomerations - disseminated 1% rusty specs
29989	4282589	Mixed Forest Mostly Birch Old Growth	0705898 5351647	Less than 20% quartz granitoid with up to 3mm quartz and 5mm plagioclase phenocrysts, probable granodiorite - ~5 - 7% biotite - quartz crystals are brown to drk. brown - local 2mm philosilicate faces, light coloured - up to 1mm specs and agglomerations of pyrite


29990	4282589	Mixed Forest Small Hillside Striking 015°	0705884 5351607	As above host rock - 2 parallel QUARTZ VEINLETS up to 2cm - crystalline veinlets with no visible sulphides
29991	4282589	Mixed Forest Blocky Outcrop	0706080 5351633	FG mafic intrusive, grey black in colour - fine disseminated biotite - non magnetic - non effervescent siliceous stringers with rusty colouring no visible sulphides
29992	4282589	Mixed Forest	0706055 5351806	As above host rock of Sample 9 with less mafic accessory mineral content - granitoid with pronounced weathered bands - few pyrite specs
29993	4282589	Cedar Forest	0705987 5352237	As above host rock of Sample 9 with less mafic accessory mineral content - granitoid with pronounced weathered bands - disseminated <1% rusty mineral

RESULTS

None of the samples returned significant assays for gold, with all values reported hovering around the lower detection limit of 0.01 grams per metric tonne (g/Mt). (See assay certificate in the Appendices of this report)

The multi-element analysis results were also unremarkable. As expected, rocks labelled as "granitoids' returned lower percentage values for iron, manganese, magnesium and aluminium. Results for copper, nickel and zinc were not significant, and only one value (0.8 ppm) for silver was higher than the base detection limit. Results for other metals and the rare earth elements were also close to lower detection limits.

Figure 3 Albert Lake Property Sample Locations

13

DISCUSSION

The description of the area, by OGS Geologists P. Srivastava and G. Bennet (1978), correlates well with the field observations made by the author. A relatively thick Pleistocene cover of glacial till and sands limits the amount of visible outcrop.

Two samples taken from a 015° trending ridge on claim 4282586 are medium to coarser grained with a gabbroic texture, but could represent a coarse grained flow of metavolcanics. The rocks do not appear to demonstrate any of the deformation characteristics of the major deformation zones in the area as described by Heather and Arias (1992). No shearing was noted on the visible outcrop.

Five samples were taken from claim 4285588. All samples appear to be of a fine grained, medium to darker chloritic green-grey, mafic volcanic. In most instances the rock exhibits blocky, rusty weathered, fractures and fine disseminated trace sulphides. There is fine carbonate fracture fill and in one instance microfaulting has occurred. These volcanics also fail to demonstrate characteristics associated with deformation zones in the area.

Six samples were taken from claim 4282589. Five of the samples are granitoid in nature, corresponding to previous descriptions of the Albert lake stock (Tronjemite-granodiorite composition). One sample appears to exhibit a much higher quartz content (40– 50%) and up to 10% agglomerations of pyrite, and a platy, silvery- metallic mineral (molybdenite?). In another location two 2-3cm quartz veinlets inhabit a narrow fracture. There is no slickenslide evident on the fracture margins, and no shearing was witnessed in any of the sample locations.

Assay results are unremarkable.

CONCLUSIONS and RECOMMENDATIONS

Prospecting of the "Albert Lake" property did not reveal any characteristics commonly associated with various Deformation Zones in the area as described by government geologists. No areas of high strain, shearing or tension shears were observed. Only minimal quartz veining was observed in one location, associated with rock fracturing, and no slickenslide was observed on the host rock margins.

Prospecting samples returned no significant assays for gold, and the multi-element analysis indicated no anomalous values for any metals or rare earth elements.

The reason for the east-west trending VLF-EM conductors appearing from the work of Chalice Diamonds in 2010 is still unknown. Ample overburden in the area limits the amount of visible outcrop.

The author recommends a more detailed geological study of the property with GPS run lines and sampling in order to attempt to explain the VLF conductors in claim 4282589, and also to check for the contact areas between the Albert Lake Stock and surrounding volcanics and felsic intrusive (quartz-feldspar) porphyries described by government geologists as an area for potential mineralization.

REFERENCES

Gerdes, Jason- Prospecting Technical report, Area #3, Riggs Township, January 1992

McBride, Derek, P. Eng, Report on the Riggs and Bruyere township property, Arlinton Resources Inc., November 30, 1999

Stone, Graham- Assessment Report- VLF Survey on the Albert Lake property for Chalice Diamond Corporation

Srivastava, P. and Bennett, G. – Geology of Riggs and West Townships, District of Algoma, Ontario Geological Survey report 174, 1978

Heather, K. B. and Arias, Z. G.- Regional Structural Geology Related to Gold Mineralization in the Goudreau- Lochalsh Area, District of Algoma, Ontario Geological Survey Paper, 1987

CERTIFICATE OF AUTHOR

I, Bruce Alexander Edgar, Honors BSc., P. Geo, do hereby certify that: I am currently employed as a Consulting Geologist residing at: 5782 Highland Avenue, Niagara Falls, Ontario, L2G-4X4

I graduated with an Honors Bachelor of Science Degree in Geological Sciences from Brock University in 1981.

I am a practising member of the Association of Professional Geoscientists of Ontario (Registration Number 2018).

I have worked as a geologist for over 30 years since graduation from Brock University. My experience includes conception, planning/budgeting, implementation and completion of numerous surface geological, geophysical, geochemical programs, and underground programs on many properties for numerous Exploration and Mining companies. The work has included the writing of project reports and technical reports.

This report is <u>not</u> an NI 43-101 technical report. This Report has been completed for 2548304 Ontario Inc., to provide summary data on the Prospecting program on the "Albert Lake" property, claims 4282586, 4282589 and 4285588 in Riggs township, Ontario, and to act as a tool to plan future exploration activities.

I have had prior involvement with the Goudreau – Lochalsh- Missinabie area having worked as a geologist for a number of companies on claims in the area over the past 30 years.

I have received no compensation for this report other than normal consulting fees.

Dated this 21st day of November, 2017.

Bruce Edgar, Honors BSc, P. Geo.

APPENDIX 1 – Assay Certificate Swastika Laboratories- Au Assays

nnonu

Swastika Laboratories Ltd

Assaying - Consulting - Representation

Page 1 of 1

Assay Certificate

D.....Ed

Certificate Number: 17-2832

Company.	Bruce Edgar		
Project:	JACOBSON/RIGGS	Report Date:	13-Nov-17
Attn:	BRUCE EDGAR		

We hereby certify the following Assay of 13 rock/grab samples submitted 17-Oct-17 by BRUCE EDGAR

ALBERT LAKE

Sample Number	Au FA-AAS g/Mt	Au Chk FA-AAS g/Mt			
29981	< 0.01				
29982	< 0.01				
29983	< 0.01				
29984	< 0.01		<i>F</i>		
29985	0.02				
29986	0.01		n na se		
29987	< 0.01				
29988	0.01				
29989	0.01				
29990	< 0.01	< 0.01			
Blank Value	< 0.01	n e sant ar e	······································	A MARK AND A REAL AND A REAL AND A	
SG84	0.97				
29991	< 0.01				
29992	< 0.01				
29993	0.01				
		a 2			 a na ana

Certified by	

Valid Abu Ammar

1 Cameron Ave., P.O. Box 10, Swastika, Ontario P0K 1T0 Telephone (705) 642-3244 Fax (705) 642-3300 APPENDIX 2- Assay Certificate Activation Laboratories- Multi-Element Analysis Quality Analysis ...

Innovative Technologies

 Date Submitted:
 09-Nov-17

 Invoice No.:
 A17-12707

 Invoice Date:
 17-Nov-17

 Your Reference:
 Edgar 17-2832

Swastika Labs Box 10, 1 Cameron Ave. Swastika ON P0K 1T0 Canada

ATTN: Colleen Chouinard

CERTIFICATE OF ANALYSIS

13 Pulp samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1E3 Aqua Regia ICP(AQUAGEO)

REPORT A17-12707

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5 TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results

Activation Laboratories Ltd.

Report: A17-12707

	1-																						
Analyte Symbol	Th	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	В	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	к	La
Unit Symbol	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm								
Lower Limit	20	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	AR-ICP		AR-ICP	AR-ICP	AR-ICP	AR-ICP		AR-ICP															
29981	< 20	< 0.2	< 0.5	139	502	< 1	47	2	62	4.04	< 2	< 10				3.05	23	_				AR-ICP	
29982	< 20	< 0.2	< 0.5	109	553	< 1	59	< 2	46	2.96	<2	< 10		4 010						10	< 1	0.19	< 10
29983	< 20	< 0.2			988	< 1	61	<2	70	3.99					< 2	2.65	26	109	4.91	< 10	< 1	0.03	< 10
29984	< 20	< 0.2			779	<1	43	<2			< 2	< 10		< 0.5	< 2	1.79	45	58	7.99	10	< 1	0.03	< 10
29985	< 20	< 0.2							73	3.06	7	< 10		< 0.5	< 2	2.42	32	50	6.47	< 10	< 1	0.12	< 10
29986			< 0.5		854	< 1	35	< 2	58	2.72	< 2	< 10	38	< 0.5	< 2	3.15	32	61	5.22	< 10	< 1	0.11	< 10
	< 20	< 0.2	< 0.5		1200	5	51	< 2	102	3.48	< 2	< 10	64	< 0.5	< 2	2.43	49	61	8.21	10	< 1	0.14	< 10
29987	< 20	< 0.2	< 0.5	38	891	< 1	34	< 2	61	2.79	< 2	< 10	34	< 0.5	< 2	3.02	28	79	5.75	< 10	< 1	0.11	< 10
29988	< 20	< 0.2	< 0.5	6	51	5	11	5	7	0.23	< 2	< 10	29	< 0.5	< 2	0.12	< 1	289	1,18	< 10	< 1	0.06	< 10
29989	< 20	< 0.2	< 0.5	11	225	2	12	6	32	0.73	< 2	< 10	135	< 0.5	< 2	0.39	5	240	1.22	< 10	<1	0.33	11
29990	< 20	0.8	< 0.5	9	118	2	16	14	41	0.39	< 2	< 10	87	< 0.5	< 2	0.20	2	393	0.87	< 10			
29991	< 20	< 0.2	< 0.5	24	1650	12	50	< 2	52	1.86	< 2	< 10	69		<2	2.60	22	229	4.93	< 10	< 1	0.20	< 10
29992	< 20	< 0.2	< 0.5	32	185	1	9	3	36	1.00	< 2	< 10	138	< 0.5	<2	0.75					< 1	0.36	< 10
29993	< 20	< 0.2	< 0.5	11	152	< 1	4	4	24	0.32	<2						5	175	1.20	< 10	< 1	0.31	19
		4 0.12	L 0.0		102		4	4	24	0.32	<2	< 10	108	< 0.5	< 2	0.34	2	90	0.74	< 10	< 1	0.21	10

Page 2/5

Results

Activation Laboratories Ltd.

Report: A17-12707

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Те	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm						
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	1	2	10	1	10	1	1
Method Code	AR-ICP														
29981	1.18	0.511	0.044	0.06	< 2	5	86	0.36	< 1	< 2	< 10	168	< 10	10	
29982	1.68	0.068	0.041	0.03	< 2	5	65	0.48	1	< 2	< 10	140	< 10	10	16
29983	3.78	0.117	0.040	< 0.01	< 2	15	10	0.55	4	< 2	< 10	202	< 10	12	5
29984	2.52	0.210	0.034	0.06	< 2	14	44	0.48	< 1	< 2	< 10	154	< 10	10	5
29985	1.36	0.121	0.034	0.06	< 2	13	74	0.49	< 1	< 2	< 10	142	< 10	11	7
29986	2.65	0.146	0.043	0.17	< 2	15	41	0.52	2	< 2	< 10	190	< 10	9	5
29987	1.77	0.185	0.035	0.05	< 2	16	64	0.50	2	< 2	< 10	160	< 10	12	5
29988	0.03	0.152	0.017	0.52	2	< 1	9	< 0.01	< 1	< 2	< 10	3	< 10	3	25
29989	0.24	0.095	0.025	0.08	< 2	2	38	0.07	< 1	< 2	< 10	19	< 10	2	10
29990	0.19	0.073	0.016	0.10	< 2	1	52	0.04	< 1	< 2	< 10	13	< 10	1	3
29991	1.58	0.241	0.025	0.09	< 2	22	10	0.33	2	< 2	< 10	145	< 10	11	5
29992	0.30	0.085	0.035	0.01	< 2	2	131	0.13	< 1	< 2	< 10	16	< 10	3	8
29993	0.12	0.055	0.020	0.15	< 2	< 1	16	0.02	< 1	< 2	< 10	9	< 10	2	18

Page 3/5

QC

Activation Laboratories Ltd.

Report: A17-12707

r																							
Analyte Symbol	Th	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	В	Ва	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	к	La
Unit Symbol	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm
Lower Limit	20	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP
GXR-1 Meas	< 20	28.4	2.2	1170	862	14	33	695	733	0.36	403	< 10	194	0.8	1520	0.82	5	7	23.7	< 10	3	0.03	< 10
GXR-1 Cert	2.44	31.0	3.30	1110	852	18.0	41.0	730	760	3.52	427	15.0	750	1.22	1380	0.960	8.20	12.0	23.6	13.8	3.90	0.050	7.50
DH-1a Meas	810																						
DH-1a Cert	910																						
GXR-4 Meas	< 20	3.2	< 0.5	6450	146	326	37	41	70	2.91	99	< 10	32	1.5	10	0.94	13	55	3.16	10	< 1	1.77	54
GXR-4 Cert	22.5	4.0	0.860	6520	155	310	42.0	52.0	73.0	7.20	98.0	4.50	1640	1.90	19.0	1.01	14.6	64.0	3.09	20.0	0.110	4.01	64.5
GXR-6 Meas	< 20	< 0.2	< 0.5	69	1090	1	22	97	126	6.98	241	< 10	1070	0.9	< 2	0.16	13	80	5.80	20	< 1	1.18	< 10
GXR-6 Cert	5.30	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
OREAS 45d (Aqua Regia) Meas	< 20			357	441		226	16	36	5.87	4		93		< 2	0.10	27	491	13.9	20		0.13	11
OREAS 45d (Aqua Regia) Cert	11.3			345.0	400.000		176.0	17.00	30.6	4.860	6.50		80		0.30	0.089	26.2	467	13.650	17.9		0.097	9.960
29984 Orig	< 20	< 0.2	< 0.5	52	779	< 1	44	< 2	74	3.03	7	< 10	37	< 0.5	< 2	2.42	32	51	6.49	< 10	< 1	0.13	< 10
29984 Dup	< 20	< 0.2	< 0.5	51	778	< 1	42	< 2	73	3.09	7	< 10	36	< 0.5	< 2	2.43	32	50	6.46	< 10	< 1	0.12	< 10
29986 Orig	< 20	< 0.2	< 0.5	80	1210	5	51	< 2	105	3.49	< 2	< 10	64	< 0.5	< 2	2.41	50	62	8.26	10	< 1	0.15	< 10
29986 Dup	< 20	< 0.2	< 0.5	79	1200	5	51	< 2	100	3.47	< 2	< 10	64	< 0.5	< 2	2.45	48	59	8.16	10	< 1	0.13	< 10
29988 Orig	< 20	< 0.2	< 0.5	6	50	5	11	5	7	0.23	< 2	< 10	28	< 0.5	< 2	0.12	< 1	282	1.17	< 10	< 1	0.05	< 10
29988 Dup	< 20	< 0.2	< 0.5	6	52	5	11	5	7	0.23	< 2	< 10	30	< 0.5	< 2	0.12	< 1	295	1.18	< 10	< 1	0.06	< 10
29990 Orig	< 20	0.8	< 0.5	9	116	2	17	14	35	0.38	< 2	< 10	84	< 0.5	< 2	0.20	2	386	0.86	< 10	< 1	0.19	< 10
29990 Dup	< 20	0.8	< 0.5	9	119	2	16	14	48	0.39	< 2	< 10	90	< 0.5	< 2	0.21	2	400	0.89	< 10	< 1	0.20	< 10
Method Blank	< 20	< 0.2	< 0.5	< 1	< 5	< 1	< 1	< 2	< 2	< 0.01	< 2	< 10	< 10	< 0.5	< 2	< 0.01	< 1	< 1	< 0.01	< 10	< 1	< 0.01	< 10

Page 4/5

QC

Activation Laboratories Ltd.

Report: A17-12707

Analyte Symbol	Mg	Na	Р	S	Sb	Sc	Sr	Ti	Te	TI	U	V	W	Y	Zr
Unit Symbol	%	%	%	%	ppm	ppm	ppm	%	ppm						
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	1	2	10	1	10	1	1
Method Code	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AR-ICP	AB-ICP
GXR-1 Meas	0.14	0.049	0.045	0.20	85	1	179	< 0.01	13	< 2	29	79	152	27	16
GXR-1 Cert	0.217	0.0520	0.0650	0.257	122	1.58	275	0.036	13.0	0.390	34.9	80.0	164	32.0	38.0
DH-1a Meas											2420			ouro	00.0
DH-1a Cert											2629				
GXR-4 Meas	1.65	0.135	0.127	1.67	3	7	79	0.14	<1	< 2	< 10	83	11	12	10
GXR-4 Cert	1.66	0.564	0.120	1.77	4.80	7.70	221	0.29	0.970	3.20	6.20	87.0	30.8	14.0	186
GXR-6 Meas	0.42	0.100	0.034	0.01	3	20	33		< 1	< 2	< 10	176	< 10	5	14
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		0.0180	2.20	1.54	186	1.90	14.0	110
OREAS 45d (Aqua Regia) Meas	0.17	0.045	0.034	0.04		41	13				< 10	210		4	
OREAS 45d (Aqua Regia) Cert	0.144	0.031	0.035	0.045		41.50	11.0				1.64	201.0		5.08	
29984 Orig	2.53	0.209	0.035	0.06	< 2	14	45	0.47	< 1	< 2	< 10	155	< 10	10	5
29984 Dup	2.52	0.211	0.034	0.06	< 2	15	44	0.48	< 1	< 2	< 10	154	< 10	10	5
29986 Orig	2.67	0.146	0.051	0.18	3	15	40	0.51	1	< 2	< 10	190	< 10	8	5
29986 Dup	2.63	0.146	0.035	0.17	< 2	16	42	0.52	2	< 2	< 10	190	< 10	9	6
29988 Orig	0.03	0.149	0.017	0.52	2	< 1	9	< 0.01	< 1	< 2	< 10	3	< 10	3	25
29988 Dup	0.03	0.154	0.017	0.52	2	< 1	9	< 0.01	< 1	< 2	< 10	3	< 10	3	25
29990 Orig	0.19	0.071	0.015	0.10	< 2	1	51	0.04	< 1	< 2	< 10	13	< 10	1	3
29990 Dup	0.20	0.076	0.016	0.10	< 2	1	53	0.04	2	< 2	< 10	13	< 10	1	3
Method Blank	< 0.01	0.012	< 0.001	< 0.01	< 2	< 1	< 1	< 0.01	< 1	< 2	< 10	< 1	< 10	< 1	< 1

Page 5/5