We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ALAMOS GOLD Inc.

317 Bernard Street, PO Box 173 Matachewan, Ontario POK1M0 Brookfield Place, Suite 3910, 181 Bay Street Toronto, Ontario M5J2T3

<u>Telephone: 416-368-9932</u> Fax: 416-278-8364

REPORT FOR WORK AND EXPENDITURES ON MINING CLAIMS WORKED UPON FOR THE 2017 FIELD MAPPING SEASON ON ALAMOS GOLD'S YOUNG-DAVIDSON PROPERTY

NTS Map Sheet 41P15 Latitude 47°56′48″ N and Longitude 80°40′28″ W UTM: 522230E, 5310205N

Work performed from June 1, 2017 to September 30, 2017

Located in the Timiskaming District Northeastern Ontario

Prepared by

A Anwar SM Reese, MSc. Geological Engineering, GIT DJ Harwood, HB.Sc. Geology, GIT

October 12, 2017

SUMMARY

This "Assessment Report of Work Done in 2017" was prepared to outline the summer field mapping activities carried out on Alamos Gold Inc.'s Young-Davidson property, between **June 1, 2017 and September 30, 2017**, for the purpose of submitting assessment work requirement for newly acquired mining claims on the Young-Davidson Property.

The Young-Davidson Property is located in the Powell, Yarrow and Cairo townships, within the Larder Lake Mining Division. The property is located in northeastern Ontario, 3 km west of the community of Matachewan, 60 km west of Kirkland Lake and 170 km southeast of Timmins. There are a number of other communities also within reasonable daily commuting distance to the Property. The Matachewan First Nation Reserve, located approximately 12 km north of the Young-Davidson Property, is the closest First Nation community to the site.

This report discusses the work done on the mining claims within the recently expanded Young-Davidson property, covering an area of 5,038.66 hectares. The leases are held 100% by Alamos Gold Inc. All mining claims are in good standing as of the effective date of this report. The address of Alamos Gold Inc. head office, in Toronto, is given on the title page of this report.

Geologically, the Young-Davidson mine site / property is situated in the southwest section of the Abitibi Greenstone Belt in northeast Ontario. The Abitibi Greenstone Belt consists of a complex and diverse array of volcanic, sedimentary, and plutonic rocks typically metamorphosed to greenschist facies grade, but locally attaining amphibolite facies grade. Volcanic rocks range in composition from rhyolitic to komatiitic and commonly occur as mafic to felsic volcanic cycles. Sedimentary rocks consist of both chemical and clastic varieties and occur as both intravolcanic sequences and as unconformably overlying sequences. A wide spectrum of mafic to felsic, pre-tectonic, syn-tectonic and post-tectonic intrusive rocks are present. All lithologies are cut by late, generally northeast-trending Proterozoic diabase dykes.

The Abitibi Greenstone Belt rocks have undergone a complex sequence of deformation events ranging from early fabric-less folding and faulting through later upright folding, faulting and ductile shearing resulting in the development of large, dominantly east-west trending, crustal-scale structures ("breaks") that form a lozenge-like pattern. The regional Larder Lake-Cadillac Fault Zone (LLCFZ) cuts across the property. The LLCFZ has a sub vertical dip and generally strikes east-west. The LLCFZ s characterized by chlorite-talc-carbonate schist and the deformation zone can be followed for over 120 miles from west of Kirkland Lake to Val d'Or.

Essentially, all of the historical production at the Young-Davidson Mine and approximately 60% of the production from the MCM Mine is from syenite-hosted gold mineralization (Lovell, 1967). Most of the current open pit and underground Mineral Resources are also related to syenite-hosted gold. The syenite-hosted gold mineralisation consists of a stockwork of quartz veinlets and narrow quartz veins, rarely greater than a few inches in thickness, situated within a broader halo of disseminated pyrite and potassic alteration. Visible gold is common in the narrower, glassy-textured quartz veinlets. In general, gold grades increase with quartz veinlet abundance, pyrite abundance, and alteration intensity. Mineralized areas are visually distinctive and are characterized by brick red to pink K-feldspar-rich syenite containing two to three percent disseminated pyrite and several orientations of quartz extension veinlets and veins. The quartz veins and veinlets commonly contain accessory carbonate, pyrite and feldspar.

TABLE OF CONTENTS

INTRODUCTION	5
PROPERTY LOCATION, ACCESS, AND CLAIM DATA	5
GEOMORPHOLOGY AND CLIMATE	8
HISTORY OF PREVIOUS WORK	8
SUMMARY OF 2017 WORK	8
GEOLOGICAL SETTING	14
REGIONAL GEOLOGY	14
LOCAL GEOLOGY	17
PROPERTY GEOLOGY Tisdale Ultramafic and Mafic Volcanic Rocks Timiskiming Sedimentary Rocks Young-Davidson Syenite	20
STRUCTURAL GEOLOGY	21
ALTERATION	23
MINERALIZATION	23
MINERAL RESERVES AND RESOURCES, MEASURED, INDICATED AND INFE	RRED
RESOURCES	24
RESULTS AND CONCLUDING REMARKS	25
VEINING	25
RESULTS AND CONCLUDING REMARKS	26
REFERENCES	28
STATEMENT OF QUALIFICATIONS	30

APPENDICIES

- I MAPS
- II CERTIFICATES OF ANALYSIS
- III TOTAL EXPENDITURES

LIST OF FIGURES

<u>No.</u>	<u>Description</u>	<u>Page</u>
Figure 1 -	Young-Davidson Property Location	6
Figure 2 -	Young-Davidson Property highlighting 9 New Claims and Claims worked upon duri	ng
	2017 Field Mapping	7
Figure 3 -	Young-Davidson Property Map with Mining Claims Worked Upon	10
Figure 4 -	Young-Davidson Property Map with Sample Locations	12
Figure 5 -	General Geology of the Subprovinces of the Superior Province in the	
	Canadian Shield showing location of Young-Davidson	15
Figure 6 -	Location of Major Structures and Au deposits in the Southern Abitibi Greenstone	
	belt. Insert shows location of areas in the Superior Province	16
Figure 7 -	Local Geology of the Matachewan Area	18
Figure 8 -	Young-Davidson Stratigraphic Column and Rock Descriptions	19
Figure 9 -	Geology of the Young-Davidson Mine site	22
Figure 10	-Updated Detailed 2017 Surface Mapping completed around Young-Davidson Pit;	
	Area covered shown in red outline	27

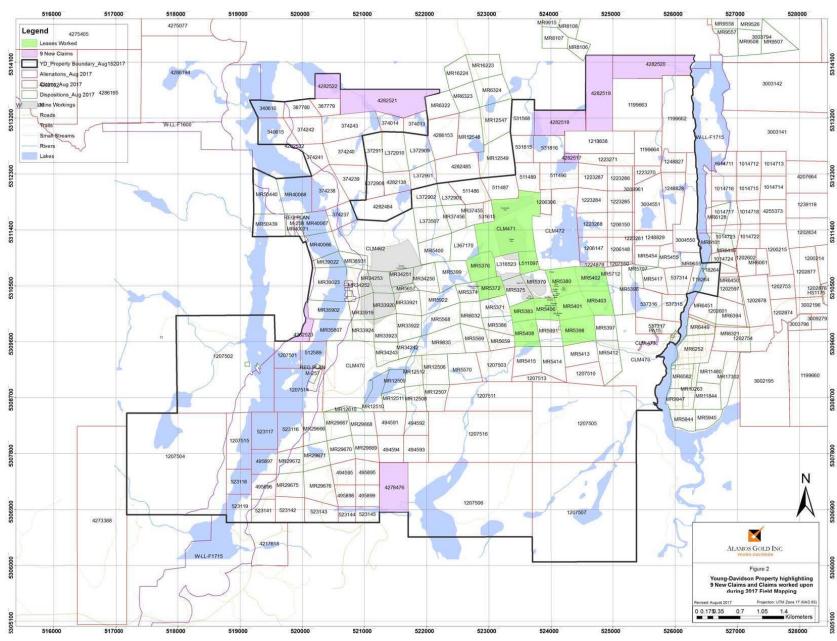
LIST OF TABLES

<u>No.</u>	<u>Description</u>	<u>Page</u>
Table 1 -	2017 Field Mapping- Mining Claims and total days spent on each Claim	9
Table 2 -	Table showing number of samples taken from each Mining Claim	11
Table 3 -	Table showing samples taken from respective Mining Claims	13

INTRODUCTION

The Young-Davidson (YD) property consists of contiguous mineral leases and mining claims totalling approximately 12,450 acres and is situated on the site of two past producing mines that produced almost one million ounces from 1934-1957. Young-Davidson is comprised of 210 tenures (covering 5,038.66 hectares) related to mining claims, mining leases, surface leases, patents, and licenses of occupation that were acquired either through staking, application, or option agreements. The YD claim block is located in the Powell, Yarrow and Cairo townships, within the Larder Lake Mining district. A majority of the claim block is found between Mistinikon Lake to the west and the West Montreal River to the east.

As Young-Davidson was the site of two former producing gold mines, there is existing surface disturbance in the form of old workings, building foundations and tailings sites. Although there is no clean up order on these sites, AuRico designed infrastructure to incorporate these sites where possible so that they are remediated as part of the mine closure plan.


PROPERTY LOCATION, ACCESS, AND CLAIM DATA

Access to the Young-Davidson property can be gained via highway 566 from the town of Matachewan, which is approximately 4 km west of the property. A maintained gravel road is used to access the west side of the property from highway 566. Old drill trails and logging roads are used to access the northern, central and southern portions of the property by ATV. The town of Kirkland Lake is 60 km east of the project site and Timmins, which is the regional center, is located 170 km, by road, northwest of the site. There are a number of other communities also within reasonable daily commuting distance to the Project. The Matachewan First Nation Reserve, located approximately 12 km north of the Project is the closest First Nation community to the site.

The YD project is situated on the Northgate claim block which occupies an area of approximately 5,038 hectares (ha). The claim block consists of contiguous mineral leases and mining claims and is situated on the site of two past producing mines that produced almost one million ounces from 1934-1957. Alamos Gold's land ownership and mineral tenures are registered with the Government of Ontario. All permits required to operate the mine are currently in place.

Alamos Gold owns 100% of the mineral rights to all of the mineral resource related claims at the Young-Davidson Mine and the adjoining Matachewan Consolidated Mines Limited Mine (MCM Mine), which together comprise the modern-day Young-Davidson Mine. The contiguous claim block that covers the YD Mine, the MCM Mine, and the surrounding extensions, is referred to as the YD Property and the Young-Davidson Project. The most up to date Young-Davidson Land Tenure Map is shown in Figure 2 (also found in Appendix I) highlighting the claims to which the 2017 work credits are being applied to.

Alamos Gola Inc.

2017 Young-Davidson Field Mapping Assessment Report October 2017

GEOMORPOHOLGY AND CLIMATE

The Young-Davidson property is typical of northern Ontario with forest covered low rolling hills, small lakes and wetlands with numerous gravel roads providing access to all areas of the property. Average elevation on the property is 330 meters above sea level.

The topography of the property is rather rugged, characterized by a series of north-south trending ridges that define drainage and are separated by valleys often filled with swamps. The property also contains a number of large hills with abundant rock outcroppings. The Montreal River flows a looping path, flowing first northwards, then turning and flowing southwards. The Young-Davidson property is located in the intervening area between the two branches of the river. Vegetation is typical of the Boreal Forest, consisting predominantly of cedar, alder and birch in the low areas, and a mixture of poplar, spruce and jack pine in the high areas.

The daily average mean temperature in nearby Kirkland Lake, Ontario is 1.7°C. The extreme maximum temperature of 38.9°C was recorded on July 31, 1975, and the extreme minimum temperature of -47°C was recorded in January 17, 1982. The average annual precipitation in Kirkland Lake was 884 mm, comprising 590 mm as rainfall and 294 mm as snowfall. Given this climate range, exploration and mining development activities are carried out at all times of the year.

HISTORY AND PREVIOUS WORK

A great deal of exploration and development work has been done on the Matachewan Consolidated property over the years since 1916, including 3 shafts and 20 production levels. Historic production of gold from this property took place mainly from 1934 to 1954. More recently, Royal Oak obtained the property in 1995 and conducted an extensive drilling program. Advance exploration was halted when the company went into receivership. The Royal Oak property and surrounding claims was acquired by Obradovich Exploration in 2000. This company did extensive drilling, ground geophysical surveys and surface mapping which outlined an open pit deposit. In November 2005, Northgate Minerals acquired the property and continued exploration around the developing mine site and obtained a successful prefeasibility study. AuRico Mining acquired the property in October 2011 and brought the mine into production and continued with surface drilling exploration. In June 2015, AuRico Gold and Alamos entered into a friendly merger with Alamos becoming the controlling company and continued developing underground while the exploration work has been halted.

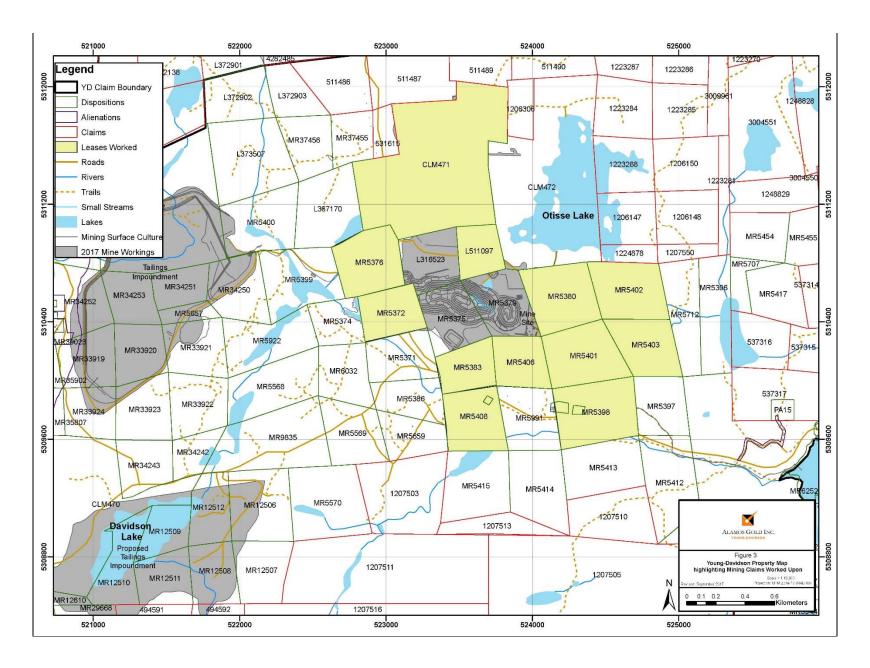
The Young-Davidson open pit mine achieved commercial production on September 1, 2012, upon the completion of construction activities associated with surface infrastructure and the processing plant, and upon achieving sustained targeted daily tonnage rates in both the open pit and mill.

On October 31, 2013, Northgate declared commercial production at the Young-Davidson underground mine following the commissioning of the shaft hoisting system. Prior to declaration of commercial production all related revenues generated from ounces sold were credited against capitalized development costs.

SUMMARY OF 2017 WORK

This assessment filing is for summer mapping and rock sample assays covering the period from June 1, 2017 to September 30, 2017. The mapping was carried out by Dane J. Harwood and Steven Reese. A total

of 35 days were spent on the 2017 mapping project, with 23 days spent in the field and 12 days spent in the office with a total of 42 rock samples / assays taken. Total expenditures for the mapping and assaying during the 2017 field mapping program amounted to \$39,680.42 (Appendix III). This work was completed under the supervision of Jim Janzen, Site Exploration Manager and Asmaa Anwar, Project Manager, both at 407 Bernard Street, Upper Unit, Matachewan, Ontario, POK 1MO. Field mapping was carried out using a GPS, iPad and field notebooks. Maps were created using ArcGIS and Corel Draw and the report written using Microsoft Office.

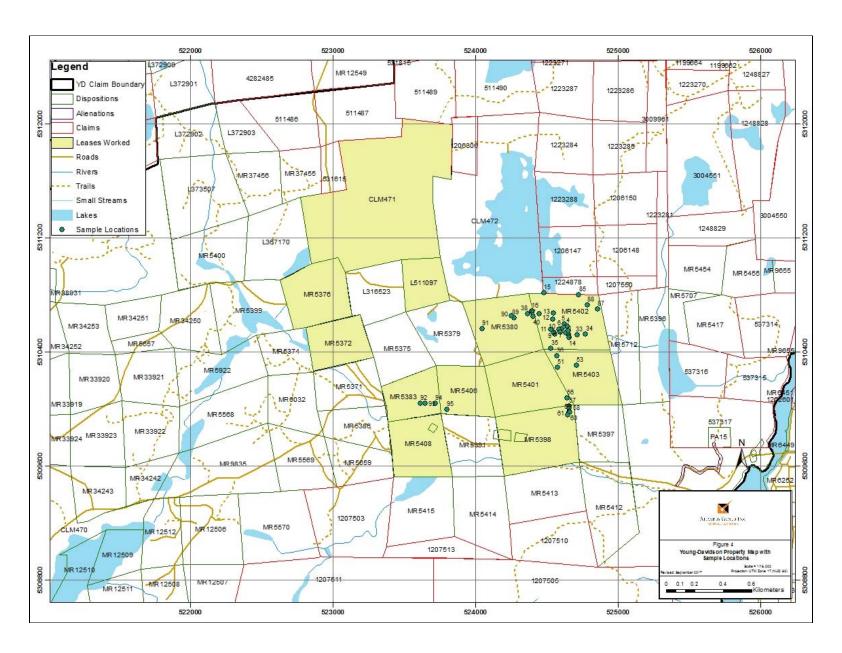

The purpose of the mapping project was to focus on the area east of the deposit and surrounding the YD pit. The two geologists focused on finding new outcrops as well as any visible structures. The geologists also revisited previously mapped areas looking for structures that may have been missed the first time around. New contacts were found between a mafic and syenite unit and a diabase and porphyry unit. The final geology map is presented in Figure 10, below (also found in Appendix I).

Mining Claims which were worked upon during the 2017 mapping project are shown in Figure 3 (also found in Appendix I). A breakdown of days worked on individual mining claim is shown in Table 1.

Field mapping was conducted on the following mining claim units:

Mining Claim No.	Mining Lease No.	Number of Days
CLM 471	108632	2
MR5376	109693	2
L511097	107440	2
MR5372	108696	1
MR5408	109580	1
MR5380	19632	2
MR5402	109443	5
MR5401	109580	2
MR5403	109580	2
MR5398	109580	2
MR5383	108697	1
MR5406	109580	1
Total Days		23

Table 1: 2017 Field Mapping- Mining Claims and total days spent on each claim



Alamos Gold Inc. 2017 Young-Davidson Field Mapping Assessment Report October 2017

Sample locations were determined by GPS and are shown in Figure 4. A breakdown of samples collected from each mining claim that was worked upon is shown in Table 2. The number of samples taken from each claim was dependent on the number of outcrops found on that claim. Table 3 outlines the mining claims which the samples were taken from and their eastings and northings. Assay results and certificates are presented in Appendix II.

Mining Claim No.	Mining Lease No.	Number of Samples Taken	
CLM 471	108632	0	
MR5376	109693	0	
L511097	107440	0	
MR5372	108696	0	
MR5408	109580	0	
MR5380	19632	7	
MR5402	109443	22	
MR5401	109580	1	
MR5403	109580	3	
MR5398	109580	5	
MR5383	108697	3	
MR5406	109580	1	
Total Samples Taken		42	

Table 2: Table showing number of samples taken from each Mining Claim

Alamos Gold Inc. 2017 Young-Davidson Field Mapping Assessment Report October 2017

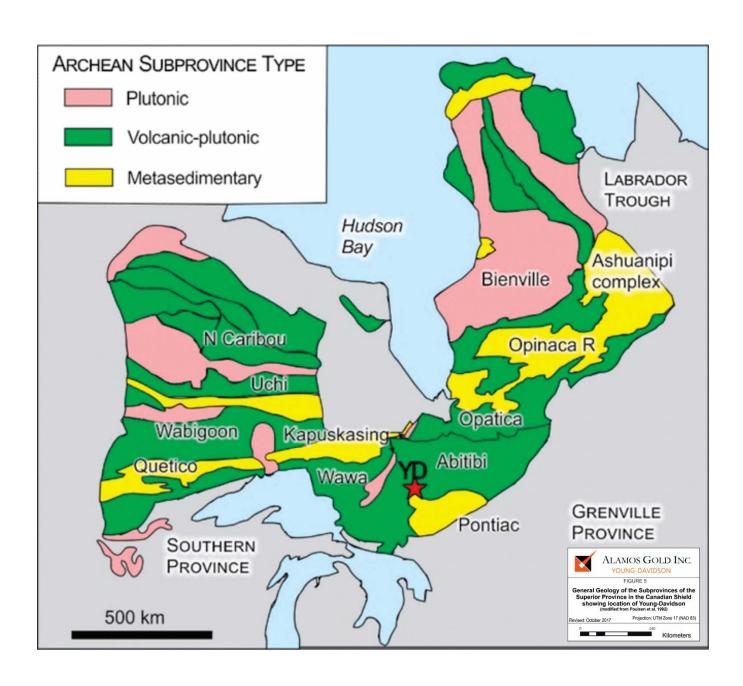
Cample No	Claim No	Facting	Northing
Sample No. 45401	Claim No. MR5402	Easting	Northing 5310523
		524650	
45402	MR5402	524632	5310533 5310548
45403	MR5402	524652	
45404	MR5402	524640	5310578
45405	MR5402	524621	5310595
45406	MR5402	524601	5310561
45407	MR5402	524586	5310554
45408	MR5402	524591	5310535
45409	MR5402	524556	5310521
45410	MR5402	524546	5310536
45411	MR5402	524526	5310555
45412	MR5402	524543	5310628
45413	MR5402	524547	5310669
45414	MR5402	524653	5310499
45415	MR5402	524479	5310812
45416	MR5380	524394	5310685
45426	MR5402	524714	5310518
45427	MR5402	524771	5310524
45428	MR5402	524528	5310424
45429	MR5403	524570	5310368
45430	MR5402	524447	5310664
45431	MR5380	524363	5310664
45432	MR5380	524403	5310646
45436	MR5403	524572	5310290
45437	MR5403	524707	5310305
45439	MR5401	524641	5310073
45440	MR5398	524655	5310016
45441	MR5398	524657	5310003
45442	MR5398	524657	5309973
45443	MR5398	524662	5309972
45444	MR5398	524646	5309953
42261	MR5402	524724	5310798
42263	MR5402	524855	5310698
42265	MR5402	524784	5310728
42267	MR5380	524267	5310639
42268	MR5380	524250	5310649
42270 & 42271	MR5380	524045	5310561

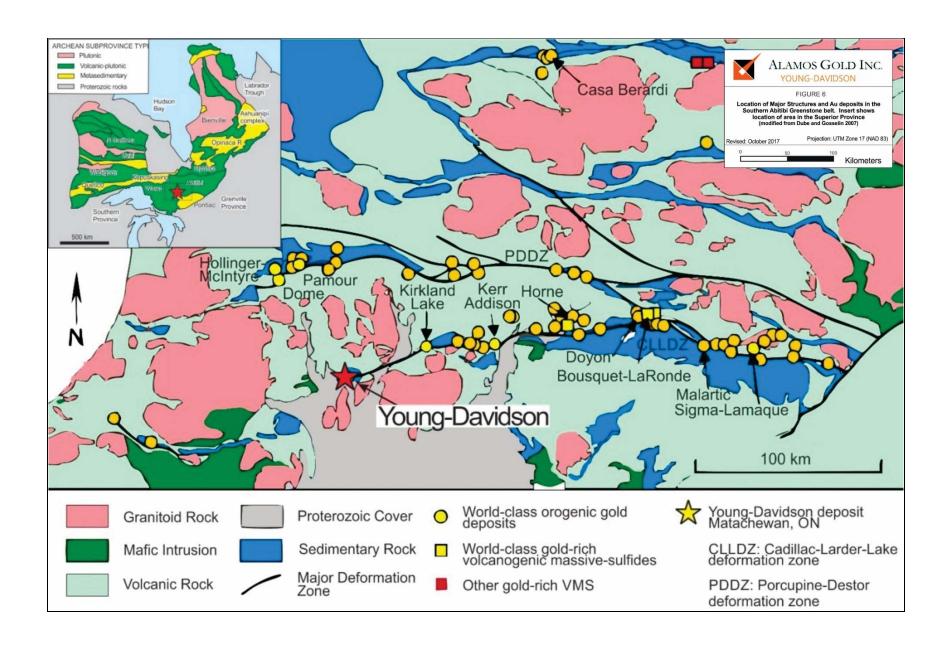
42272	MR5383	523611	5310037
42273	MR5383	523645	5310034
42274	MR5383	523716	5310035
42275	MR5406	523797	5309995

Table 3: Table showing samples taken from respective Mining Claims

GEOLOGICAL SETTING

REGIONAL GEOLOGY


The YD property is situated within the southwestern part of the world-renowned Abitibi greenstone belt, in the Superior Province of the Canadian Shield. The Abitibi is the largest preserved Archean greenstone belt in the world, and one of the most continuous units in the Superior Province. The Abitibi is bounded by the Grenville Province to the east, the Kapuskasing Gneiss Belt to the west, the Opatica Gneissic Belt to the north and Proterozoic Huronian sediments to the south. The Abitibi covers an area approximately 760 km east-west and 160 km north-south (Figure 5).

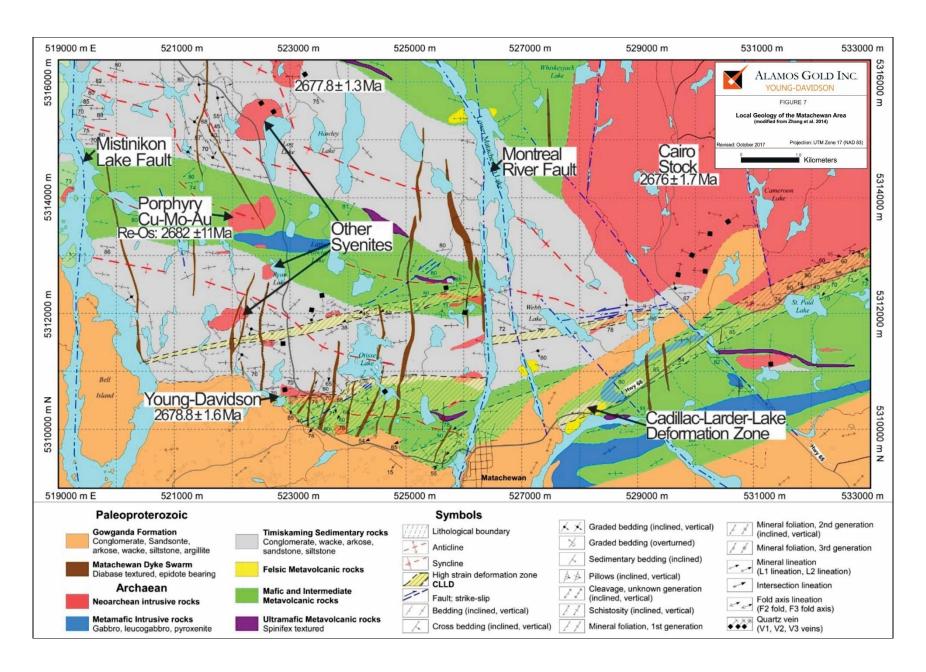

The Abitibi greenstone belt consists of a complex, diverse and variably deformed array of volcanic, sedimentary, and plutonic rocks that are typically metamorphosed to greenschist facies. Amphibolite facies grade metamorphism is locally attained adjacent to large plutons and along the boundary with the Grenville Province to the southeast. Based on age dating and stratigraphic correlation, Ayer et al. (2002) subdivide the rocks in the Abitibi into 9 supracrustal assemblages consisting of 7 ultramafic, mafic to felsic volcanic rock assemblages with two younger sedimentary assemblages.

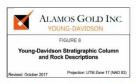
Volcanic rocks range in composition from komatitic to rhyolitic, and commonly occur in mafic-to-felsic packages. Sedimentary rocks consist of both chemical and clastic varieties, and occur in intravolcanic sequences and as unconformably overlying sequences. The two major recognized sedimentary assemblages, the Porcupine and Timiskaming, are spatially associated with major crustal-scale structures through the Abitibi, and formed during periods of crustal shortening and uplifts after the major volcanic construction phases (Ayer et al. 2002). A wide spectrum of mafic to felsic, pre-tectonic, syn-tectonic and post-tectonic intrusive rocks are present. All lithologies are cut by late, generally north trending Proterozoic diabase dykes of the Matachewan Swarm and Nipissing Swarm, and overlain by Huronian Proterozoic sediments of the Cobalt Group to the south.

The Abitibi Greenstone Belt rocks have a complex structural history that includes early folding and faulting through later upright folding, faulting and intense ductile shearing that resulted in the development of the two dominantly east-west trending crustal-scale structures ("breaks"), with associated secondary fault and splay structures.

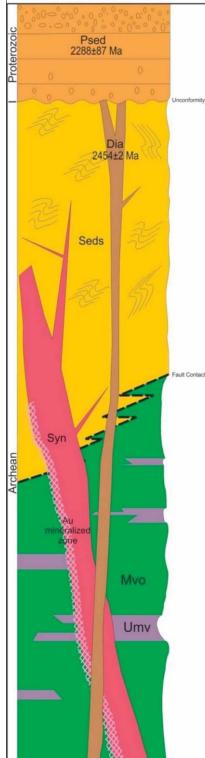
The regional Cadillac-Larder Lake Deformation Zone (CCLDZ) that transects the YD property has a subvertical dip and strikes generally east-west. The CCLDZ is characterized by chlorite-talc-carbonate schist, multiple episodes of ductile deformation, and is a high strain zone that can be followed for over 200 km from Matachewan, through Kirkland Lake, to Val d'Or (Figure 6).

LOCAL GEOLOGY


The volcanic rocks in the Matachewan area are the oldest and most abundant rock type. Volcanic rocks in the Matachewan area are generally composed of komatiite overlain by magnesium and iron-tholeiitic units, which grade into calc-alkaline flows (Figure 7). This volcanic package correlates regionally to the Tisdale assemblage found in the Kirkland Lake area, and are synonymous with the historical Larder Lake group (2730-2700 Ma; Corfu et al. 1989, Linnen et al. 2013, Zhang et al. 2014). These rocks comprise massive flows, variolitic flows, brecciated flows and basaltic pillows that are found in 3 northwest-southeast trending bands, intercalated with clastic sediments of the Timiskaming assemblage (Figure 7; Linnen et al. 2013).


Timiskaming sedimentary rocks are the youngest supracrustal assemblage (2676-2670 Ma; Ayer et al. 2002) in the southern Abitibi greenstone belt. In the Matachewan area, the Timiskaming assemblage consist of clastic and chemical sediments that form two northwest-southeast bands, intercalated with the volcanic rocks (Figure 7; Linnen et al. 2013). Timiskaming sediments range from fine to coarse grained sandstone, wacke, chert, siltstone, conglomerate and polymictic conglomerate (Linnen et al. 2013, Zhang et al. 2014).

The older volcanic and sedimentary rocks have been intruded by Archean aged syenite intrusions (2676-2682 Ma; Zhang unpublished. data, Zhang et al. 2014), which occur as dikes, sills, and small to large plutons. The largest pluton in the area is the Cairo stock, found in the east portion of Figure 7 in Cairo Township. Felsic intrusions in the Matachewan area are generally coarse grained, and have a range of compositions that include syenite, mafic syenite and feldspar porphyry. Syenite intrusions crosscut both volcanic and sedimentary rocks, and contain structures that indicate weak to moderate deformation from the CLLDZ.


All Neoarchean rocks are intruded by the Paleoproterozoic Matachewan Diabase dikes (2454 \pm 2 Ma; Heaman 1988), which strike generally N-S. Huronian Proterozoic sedimentary rocks onlap and define the southern limit of Neoarchean rocks in the area; these rocks correlate to the Gowganda Formation, a tillite yielding an age date of 2288 \pm 87 Ma (Fairbairn et al. 1969). Flat lying sills of the Nipissing Diabase (2219 \pm 4 Ma; Corfu and Andrews 1986) that crosscut Huronian sediments in the Cobalt area have not been observed in the Matachewan area.

The lithologic assemblage exposed on the Young-Davidson Property is described below in Figure 9, in order of super-position or from the oldest to youngest (Edmunds, 2007). The descriptions and interpretations are based on previous studies (Micon, 2004; Panterra Geoservices (PGI), 2003; Powell et al., 1991) complemented by direct core observations.

Young Davidson Stratigraphic Column

Legend

Proterozoic

Cobalt Group Conglomerates, Sandstones & Mudstones (Psed)

The unit is interbedded red and grey-green conglomerate (tillite), sandstone, and mudstone of a glaciogenic origin as indicated by the presence of drop stones. The composition of coarse clasts in the conglomerate ranges from granitic to cherty. The unit contains little to no alteration and has a sharp lower contact with the underlying units.

Matachewan Swarm Diabase Dykes (Dia)

The rocks in this unit are grey-green fine to medium grained diabase. The unit has strong contacts with surrounding units, often showing chilled margins. This unit has little to no alteration.

Archean

Mineralized Zone

Gold mineralization occurs at or proximal to the contact of the Algoman intrusives with both the Timiskiming sediments and Larder Lake Groups. Gold values are associated with increased pyrite content \pm sphalerite, galena, specular hematite, and electrum.

Algoma Group Syenite Intrusives (Syn)

Syenite feldspar porphyry and trachyitic feldspar porphyry comprised of 60-70 % fine to medium grained alkali feldspar in a finer grained matrix of similar composition dominate this unit. These rocks range in colour from brick red to brown or grey due to hematite alteration. The term "trachyitic" describes flow aligned feldspar laths in the syenite which can be up to 2cm in length.

Timiskiming Group Undifferentiated Sediments and Jasperoidal Sediments (Seds + Jsed)

The rocks in this unit are undifferentiated quartz-wacke, greywacke, and siltstone with a basal polymictic conglomerate. Local beds of sandstone and siltstone containing weak hematitic alteration and chert clasts are described as jasperoidal sediments.

Larder Lake Group Mafic and Ultramafic Volcanic Flows (Mvo + Umv)

This unit consists of massive to flow banded interbedded mafic and ultramafic flows. These flows are tholeittic to komatiitic in composition with the ultramafic rocks occurring as dark grey-green talc-chlorite schist. Tholeittic basalts occur as very fine to fine grained massive to foliated chlorite-sericite schist. Both mafic and ultramafic flow may be carbonate altered. Local sections of mafic lapilli tuff have been intersected in drill holes.

(descriptions after Powell, 1991)

PROPERTY GEOLOGY

Lithological descriptions of the major rock types found on the Young-Davidson property (Figure 9) are summarized from the studies by Martin (2012), Linnen et al. (2013), and Zhang et al. (2014).

Tisdale Ultramafic and Mafic Volcanic Rocks

The volcanic rocks in Matachewan were formerly known as the Larder Lake group, but are now considered synonymous with the Tisdale assemblage, deposited at 2710 to 2703 Ma (Ayer et al. 2002). At Young-Davidson this group is dominantly mafic volcanic flows, with lesser ultramafic and felsic volcanic flows (Lovell 1967, Zhang et al. 2014). Undeformed ultramafic and mafic flows north of the CLLDZ show well preserved primary spinifex and pillow structures, respectively. Mafic volcanic rocks are typically very finegrained (< 200 μ m), dark green to green-grey in color, and are composed primarily of chlorite, ironcarbonate, calcite, magnetite and hematite with accessory rutile, pyrite, quartz and feldspar. Mafic volcanic rocks close to the mine site and CLLDZ tend to be weakly to strongly foliated, with chlorite defining the local foliation, and possessing variable intensities and compositions of alteration. Ultramafic volcanic rocks are also encountered in drill core close to the Young-Davidson syenite, however within the CLLDZ the ultramafic rocks are pervasively altered and strongly deformed.

Timiskaming Sedimentary Rocks

Timiskaming sediments were deposited between 2687 to 2675 Ma (Ayer et al. 2002). In the Matachewan area these sediments consist of conglomerate, sandstone, fine sandstone, siltstone, wacke and chert. Coarse clastic varieties of Timiskaming sediments may contain between 1-15% subangular to subrounded sedimentary, volcanic or intrusive clasts that are < 5 mm to 10 cm in diameter. Close to the CLLDZ, these clasts are ellipsoidal and elongated parallel to the major penetrative S_2 foliation. Further north from the CLLDZ, clast elongation in sediments is rarer but occurs locally in shear zones. Timiskaming sediments are generally grey, to grey-green, but are locally reddish-brown in color proximal to the Young-Davidson syenite. Sedimentary rocks within a few 10's of meters of altered syenite intrusions have commonly acquired similar alteration styles as the neighboring intrusive rocks.

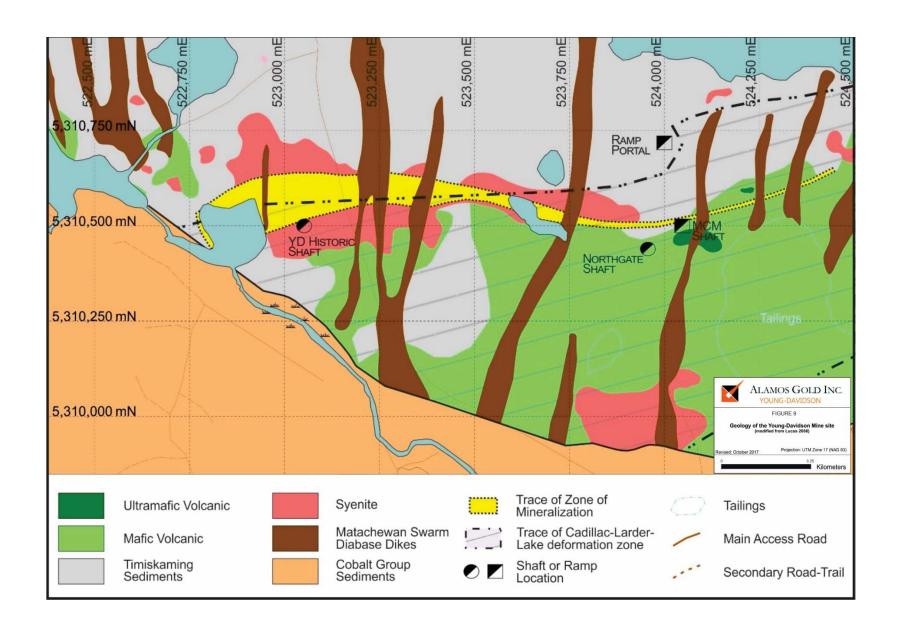
Young-Davidson Syenite

The Young-Davidson syenite is an elongate, roughly E-W trending, intrusion measuring $^{\sim}1$ km east-west, $^{\sim}300$ m north-south and dipping steeply to the south. The Young-Davidson syenite is 2678.8 \pm 1.6 Ma (Zhang unpublished. data), which is roughly coeval with Timiskaming sedimentation (2680 to 2675 Ma; Ayer et al. 2002). The Young-Davidson syenite is a multiphase intrusion that includes different textures and compositions: fine to coarse-grained (< 500 μ m to > 2 cm), porphyritic, trachytic, massive, and mafic to felsic in composition. All intrusive rocks within the Young-Davidson stock can be classified as alkalifeldspar syenite, syenite, mafic syenite, quartz-syenite or feldspar porphyry depending on the amount of quartz, biotite (or amphibole) and K- and Na-feldspars. Least-altered syenite consists of approximately 40-50% K-feldspar (orthoclase, microcline), 20-30% Na-feldspar (albite), up to 10% perthite, and the rest of the rock consisting of secondary alteration minerals (chlorite, carbonates minerals, hematite) as primary amphibole, biotite and magnetite grains are rarely observed.

The Young-Davidson syenite is slightly older than the Cairo stock (2676 ± 1.7 Ma; Berger 2006) found northeast of Young-Davidson, however, both intrusions show evidence that indicate overprint from the CLLDZ. Intrusive contacts of the Young-Davidson syenite with volcanic and sedimentary rocks are commonly deformed proximal to the CLLDZ. Porphyritic textures and the coeval nature of syenite and sedimentary rocks indicate that syenite has intruded at relatively shallow crustal depths (Robert and Poulsen, 1997).

STRUCTURAL GEOLOGY

Four generations of deformation are recorded in the Neoarchean rocks of the Matachewan area. The reader is directed to the study by Zhang et al. (2014) for a detailed summary including crosscutting relationships, structural maps, photos and measurements.


The D_1 deformation can be summarized as open folding and development of penetrative foliation. The D_1 deformation can be split into two parts, the D_{1a} and D_{1b} . The D_{1a} deformation generated the upright folding of volcanic and sedimentary rocks, which caused younging reversals and generated the repetitive volcanic-sedimentary map patterns visible in Figure 7. The D_{1b} deformation generated penetrative S_{1b} fabrics that are recorded in volcanic, sedimentary and intrusive rocks in the map area. Syenite intrusions were emplaced after the D_{1a} and before the D_{1b} as they retain intrusive contacts with the upright-tilted host country rocks, and are pervasively overprinted by the S_{1b} penetrative foliation.

The structures and folding that characterizes the D_2 deformation are related to the main stage of CLLDZ development. A number of ductile structures formed during the D_2 deformation including folds, crenulation cleavages, and penetrative foliations. Isoclinal folding and transposition structures can be found in areas of high strain, whereas open folding is more commonly preserved peripheral to high strain zones.

The D_3 deformation reworked the earlier fabrics in a more brittle-ductile environment and resulted in large-scale open folding of the earlier D_1 and D_2 fabrics.

The final D₄ deformation mostly consisted of brittle faults, oriented generally N-S, demonstrated by the Montreal River Fault and the Mistinkon Lake Fault (Figure 7).

The east-west trending CLLDZ is the most important structure in the Matachewan area and developed during the D_2 deformation. Based on local detailed structural mapping, Zhang et al. (2014) determined that the CLLDZ nearly completely envelops the Young-Davidson syenite and the surrounding sedimentary and volcanic rocks (Figure 9). The Young-Davidson syenite hosts several vein generations that are related to the different deformation events (Zhang et al., 2014). Although minor, auriferous volcanic-hosted quartz-carbonate veins have been historically mined at Young-Davidson. These volcanic-hosted veins possess alteration and mineralization characteristics that are similar to volcanic-hosted quartz-carbonate vein mineralization elsewhere in the Abitibi (e.g., McCuaig and Kerrich, 1998).

ALTERATION

The most obvious form of alteration in the volcanic units of the Larder Lake Group is extensive carbonate alteration, manifested by distal calcite and proximal iron carbonate adjacent to mineralization. Timiskiming sediments show a comparatively minor amount of carbonate alteration, however, they can become hematitic adjacent to mineralized portions of the syenite masses.

The predominant alteration empirically associated with syenite-hosted gold mineralization is quartz veining, microcline development, and sulphidation in the form of increased pyrite content with accessory chalcopyrite, sphalerite and galena. Semi-quantitative ICP analyses show that, through mineralized sections of syenite, iron contents remain relatively constant, while sulphur, pyrite and gold contents vary antithetically with magnetic susceptibility and reported ICP barium. This suggests that iron oxide as magnetite is being reduced during the mineralization process, and the silicates are metasomatized capturing barium in an insoluble silicate such as feldspar. Thin section petrology may help understand some of these observations from the ICP analyses.

MINERALIZATION

All gold produced from the YD side and about 60% of that from the MCM side was from syenite-hosted gold mineralization (Lovell 1967). Most of the current open pit and underground resource is also hosted by syenite, where gold mineralization is characterized by quartz ± carbonate veins containing variable amounts of pyrite, situated within a broader halo of disseminated pyrite and potassic alteration. Visible gold may be hosted in quartz veins in strongly potassic-hematite-pyrite altered zones within the syenite, or in quartz veins in the neighboring volcanic rocks. Although syenite is the dominant host of gold at Young-Davidson, gold may be found in all lithologies; petrographic studies show gold is strongly pyrite and vein dependent with the only exception to pyrite being free gold hosted in quartz-carbonate veins (Martin 2012).

At least five styles of gold mineralization are recognized at the Young-Davidson Project (listed in order of importance).

- 1. Syenite-hosted gold mineralization
- 2. Mafic volcanic-hosted gold mineralization (MCM Mine)
- 3. Timiskaming sediment-hosted gold mineralization
- 4. Ultramafic-hosted gold mineralization
- 5. Hanging wall contact gold mineralization

The majority of the open pit and underground resources are hosted by syenite. Characteristics of each mineralization style are described in detail in the unpublished reports for Northgate Minerals by Micon (2004) and Rhys (2003).

Gold mineralization at Young-Davidson is associated with a syenite intrusive rock. Within this syenite the gold mineralization is associated with a stockwork of quartz veinlets and narrow quartz veins, rarely greater than a few centimetres thick that are within a broader halo of disseminated pyrite and potassic

alteration. From Jason Zhang's study, it is thought that at YD, the gold is more structurally controlled (dilatational veins?) rather than porphyry controlled (Martin, 2014).

At least two orientations for the quartz veins and veinlets are recognized. Most dip gently to the north and are ladder-type flat veins and 2nd orientation dip steeply to the north. The flat veinlets are common in the large outcrop exposures and small pits on surface. Previous workers noted that the syenite-hosted gold mineralization is generally more extensive and lower grade near surface and appears to be more channeled and concentrated into higher grade corridors at depth (SWRPA, 2007).

In 2008 as part of a Northgate – NSERC funded research study; the Young-Davidson property was structurally mapped in detail, which included a N-S oriented ore cross cut in the Upper Boundary Zone (UBZ). Based on this structural study of the Young-Davidson property, 4 structurally distinct vein generations were identified (from Zhang et al. 2014): V_1) boudinaged ankerite-quartz-pyrite veins, V_2) slightly folded quartz-pyrite veinlets, V_3) en echelon quartz-pyrite-carbonate veins and V_4) planar carbonate-quartz \pm hematite veins. The V_2 quartz-pyrite veinlets contain the majority of gold, found as inclusions and along cracks in the pyrite. These veins developed from rheological contrasts with the host country rocks during the regional D_2 ductile deformation along the Cadillac-Larder Lake deformation zone. The structural events in Matachewan are synonymous with those that are responsible for gold mineralization in the Kirkland Lake and Val d'Or areas of the southern Abitibi greenstone belt (Zhang et al. 2014).

In the Young-Davidson syenite, gold grades increase with quartz veinlet abundance, pyrite abundance, and alteration intensity. Mineralized areas are visually distinctive and are characterized by brick red-to-pink K-feldspar rich syenite that contains two to three percent disseminated pyrite and several orientations of quartz \pm pyrite extension veinlets and veins. The quartz veins and veinlets commonly contain accessory carbonate, K-feldspar, and chlorite, and trace amounts of chalcopyrite, galena and scheelite. Gold mineralization in Timiskaming sediments is related to V_3 veins and potassic alteration proximal to the Young-Davidson syenite. The volcanic rocks host gold in small shear zones within the CLLDZ that are pervasively albitized and pyritized, and crosscut by quartz-iron-carbonate veins.

MINERAL RESERVES and RESOURCES, MEASURED, INDICATED AND INFERRED RESOURCES

RESERVES AND RESOURCES

MINERAL RESERVES

		Р	ROVEN AND PRO AS AT I	BABLE MIN DECEMBER		RVES			
		PROVE	N		PROBAB	LE	PF	ROVEN + PR	OBABLE
RESERVE AREA	TONNES (000)	GRADE (G/T AU)	CONTAINED OUNCES (000)	TONNES (000)	GRADE (G/T AU)	CONTAINED OUNCES (000)	TONNES (000)	GRADE (G/T AU)	CONTAINED OUNCES (000)
Young-Davidson									
Surface	1,165	0.91	34	-	-		1,165	0.91	34
Underground	14,851	2.80	1,336	27,203	2.65	2,317	42,054	2.70	3,653
Total Young-Davidson	16,016	2.66	1,370	27,203	2.65	2,317	43,220	2.65	3,687

	MEASURED	AND INDIC	ATED GOLD MIN	ERAL RESC	OURCES (AS	AT DECEMBER	31, 2016)		
	MEA	SURED RE	SOURCES	IND	CATED RES	SOURCES	TOTAL M	EASURED A	AND INDICATED
	TONNES (000)	GRADE (G/T AU)	CONTAINED OUNCES (000)	TONNES (000)	GRADE (G/T AU)	CONTAINED OUNCES (000)	TONNES (000)	GRADE (G/T AU)	CONTAINED OUNCES (000)
Young-Davidson - Surface	496	1.13	18	1,242	1.28	51	1,739	1.24	69
Young-Davidson - Underground	5,876	3.33	629	4,916	3.47	548	10,792	3.39	1,177
Total Young-Davidson	6,373	3.16	647	6,158	3.03	599	12,531	3.09	1,246

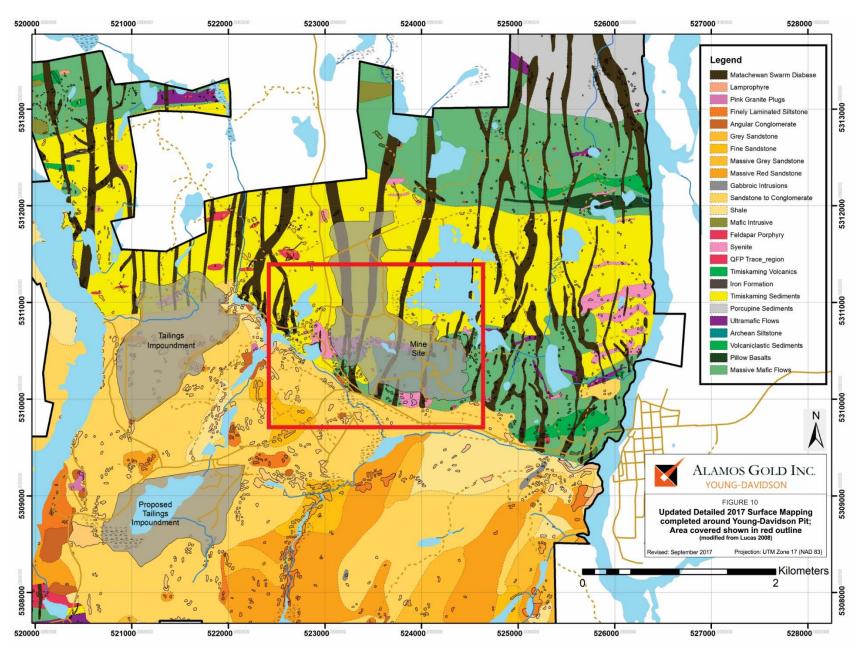
INFERRED GOLD MINERAL RESOURCES (AS AT DECEMBER 31, 2016)							
	TONNES	GRADE	OUNCES				
	(000°S)	(G/T AU)	(000°S)				
Young-Davidson - Surface	31	0.99	1				
Young-Davidson - Underground	3,524	2.76	313				
Total Young-Davidson	3,555	2.75	314				

RESULTS AND CONCLUDING REMARKS

VEINING

Veining found throughout the 2017 mapping area was limited and typically clustered into areas which tended to have higher deformation.

Surrounding Otisse Lake, within the Timiskiming Sediments and Larder Lake units, veins were usually small <1mm-3cm, milky white quartz or as quartz carbonate stringers. One larger milky white quartz vein, which was up to 75cm thick, was also found. Most veins were found to be dipping 60°-80° and in a W-NW direction. These veins were also found to be void of mineralization with assay results <0.1 g/t. Alteration is minor and was typically found as small epidote stringers <1mm thick with one exception of a 2cm thick patchy vein visible on one outcrop. Some minor hematite alteration is also locally present.


To the west of the current open pit, along the outcrops next to highway 566, quartz veins are visible in a mixed syenite body of the Algoma Unit. The veins in this section / area are structurally controlled with most being parallel sets of echelon veins striking 230°, 1-4cm thick and 5-15cm long and can come in sets of 3 and up to 15 veins. The veins were white to milky white in colour and had small amounts of black tourmaline and up to 40% pyrite in the unit surrounding the veins. A second set of small veinlets were also present. They cross cut the echelon veins, are <1-3mm, strike E-W and dip around 90°. These veins were not sampled for this study.

To the east of the mine site, in the Larder Lake unit, veining is only found as small <1mm stringers, however, veins up to larger 1cm thick quartz/quartz-carbonate are also locally present.

RESULTS AND CONCLUDING REMARKS

The updated geological map produced from the 2017 detailed mapping project is shown in Figure 10, below.

The majority of the assay results returned from the mapping project were all <0.1% with the exception of two anomalous values, which came from samples taken from two outcrops adjacent to previously mined out structures. These samples ran 26.4g/t and 0.566 g/t Au. Further exploration is not recommended from surface at this time; however, additional exploration is recommended to test for the potential to test if the Young-Davidson deposit is down-dropped to the west and is folded or faulted into the hanging wall to the east. This, however, cannot be tested until an underground drilling platform is available. Drilling (from south to north) into the hanging wall from surface has been problematic in the past and, thus, we are awaiting an underground platform from which to drill. Until that happens, no further exploration from surface will happen in the near future.

Alamos Gold Inc. 2017 Young-Davidson Field Mapping Assessment Report October 2017

LIST OF REFERENCES

Annual Information Form, For the year ended December 31, 2013, March 3, 2014

Anwar, Dalziel, Ruck-Fournier. Work Completed on The Schaus, Clarke and Shirriff Claim Group, Young Davidson Property From 2006-2013, Internal Report, 61 pages, January 2014

Anwar, Dalziel, Ruck-Fournier. Work Completed on The Shirriff Claim Group, Young-Davidson Property From 2006-2013, Internal Report, 75 pages, April 2014

Alamos Gold Inc., Website

Ayer, J., Amelin, Y., Corfu, F., Kamo, S., Ketchum, J., Kwok, K. and Trowell, N. Evolution of the southern Abitibi greenstone belt based on U-Pb geochronology; autochthonous volcanic construction followed by plutonism, regional deformation and sedimentation. Precambrian Research, 115, pp 63-95, 2002

Berger, B.R. Geological synthesis along Highway 66 from Matachewan to Swastika; Ontario Geological Survey, Open File Report 6177, 125p, 2006

Bostwick, C., J. Volk. NI-43-101 Technical Report for the Young-Davidson Mine, Matachewan, Ontario. 256 pages, January 25, 2017.

Corfu, F. and Andrews, A.J. A U-Pb Age for Mineralized Nipissing Diabase, Gowganda, Canadian Journal of Earth Sciences, v. 23, p.107-109, 1986

Corfu, F., Krogh, T.E., Kwok, Y.Y., and Jensen, L.S. U-Pb zircon geochronology in the southwestern Abitibi greenstone belt, Superior Province. Canadian Journal of Earth Sciences. 26, pp 1747-1763, 1989

Dubé, B. and Gosselin, P. Greenstone-hosted quartz-carbonate vein deposits (orogenic, mesothermal, lode gold, shear-zone-related quartz-carbonate or gold-only deposits). [online]. Mineral Deposits of Canada, available from: http://gsc.nrcan.gc.ca/ [cited 07-2014], 2007

Edmunds, Carl. Technical Report on Underground and Open Pit Mineral Resource Estimates, Young-Davidson Property, Matachewan, Ontario, Prepared for Northgate Minerals Corporation, Report under NI 43-101. 38 pages, January 2009

EG Resource Consultants Inc., North Vancouver, Personal Communication and Editing, 2017

Fairbairn, H. W., Hurley, P. M., Card, K.D., and Knight, C. J. Correlation of Radiometric Ages of Nipissing Diabase and Metasediments with Proterozoic Orogenic Events in Ontario, Canadian Journal of Earth Sciences, v. 6, p. 489-497, 1969

Heaman, L. M. A Precise U-Pb Zircon Age for a Hearst Dyke, Geological Association of Canada V13:A53, 1988

Linnen, R.L., Lin, S., Zhang, J., Martin, R.D., Naderi, N., Davis, D.W., Hamilton, M.A., Creaser, R.A., Berger, B.R., Banerjee, N.R., Wing, B.A. and Wu, C. Section 3: A synthesis of the structure, petrology, geochronology and geochemistry of the Young–Davidson gold deposit and surrounding area; report in

Results from the Shining Tree, Chester Township and Matachewan Gold Projects and the Northern Cobalt Embayment Polymetallic Vein Project, Ontario Geological Survey, Miscellaneous Release—Data 294, 2012

Lovell H.L. Geology of the Matachewan Area, Ontario Department of Mines, Geological Report 51. 61 pages, 1967

Lucas, Katie. Report on the 2007 Geological Mapping on the Young-Davidson Property, Internal Report, 25 pages, February 2008

Lucas, Katie. 2007 Geological Map of the Young-Davidson Property

Martin, Ryan. Comprehensive Geology. 2014.

Martin, Ryan. Maps, 2008-2014.

Martin, Ryan. Mineralization. 2014.

Martin, Ryan. Syenite-hosted gold mineralization and hydrothermal alteration at the Young-Davidson deposit, Matachewan Ontario, Master of Science Thesis in Earth Science, University of Waterloo. 172 pages, 2012.

McCuaig, T.C. and Kerrich, R. P-T-t-deformation-fluid characteristics of lode gold deposits: evidence from alteration systematics. Ore Geology Reviews, 12, pp 381-453, 1998.

Poulsen, K., Card, K., and Franklin, J. Archean tectonic and metallogenic evolution of the Superior Province of the Canadian Shield. Precambrian Research, 58, pp 25-54, 1992

Robert, F. and Poulsen, K.H. World-class Archean gold deposits in Canada: An overview. Australian Journal of Earth Sciences, 44, pp 329-351, 1997

Scott Wilson Roscoe Postle Associates Inc. Technical Report of the Lower Boundary Zone, Lucky Zone, and Lower YD Zone Mineral Resource Estimates, Young-Davidson Mine, Matachewan, Ontario, Prepared for Northgate Minerals Corporation

Zhang, Jian. 2011 Field Guidebook of Geological Excursion in the Matachewan Area, Southern Abitibi Greenstone Belt, University of Waterloo, May 2011

Zhang, J., Lin, S., Linnen, R.L., and Martin, R. Structural setting of the Young-Davidson syenite-hosted gold deposit in the western Cadillac-Larder Lake Deformation Zone, Abitibi greenstone belt, Superior Province, Ontario. Precambrian Research, 278, pp 39-59, 2014

2017 Young-Davidson Field Mapping Assessment Report October 2017

STATEMENT OF QUALIFICATIONS

I, Asmaa Anwar, geologist, with business addresses in Matachewan and Toronto, Ontario, and residential address in Sidney, British Columbia do hereby certify that:

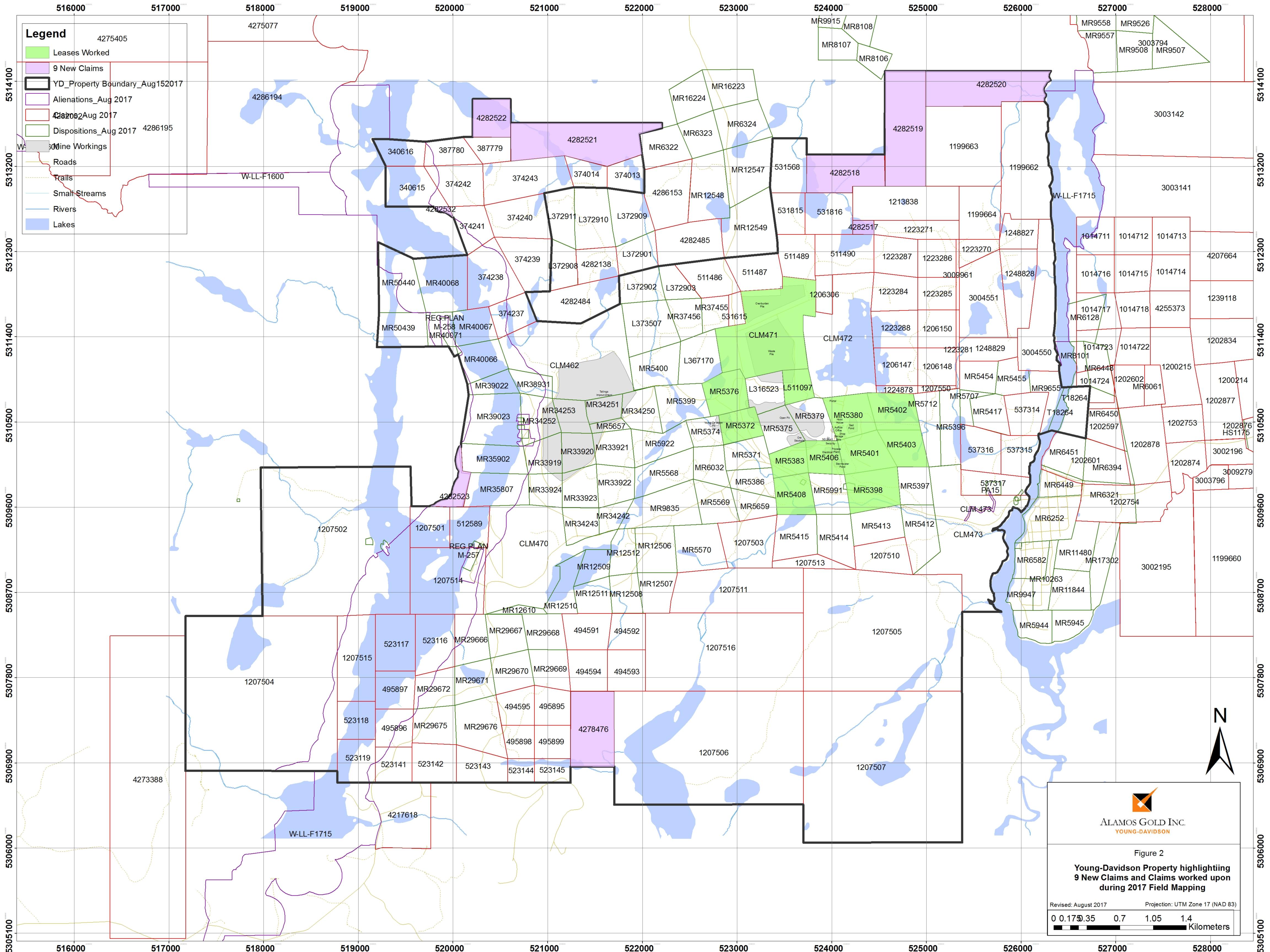
- 1. I graduated from the University of Western Ontario in 1995 with a BA in Geology.
- 2. From 2001 to present, I have been actively engaged in mineral exploration in Saskatchewan, British Columbia, the Northwest Territories, and Ontario.

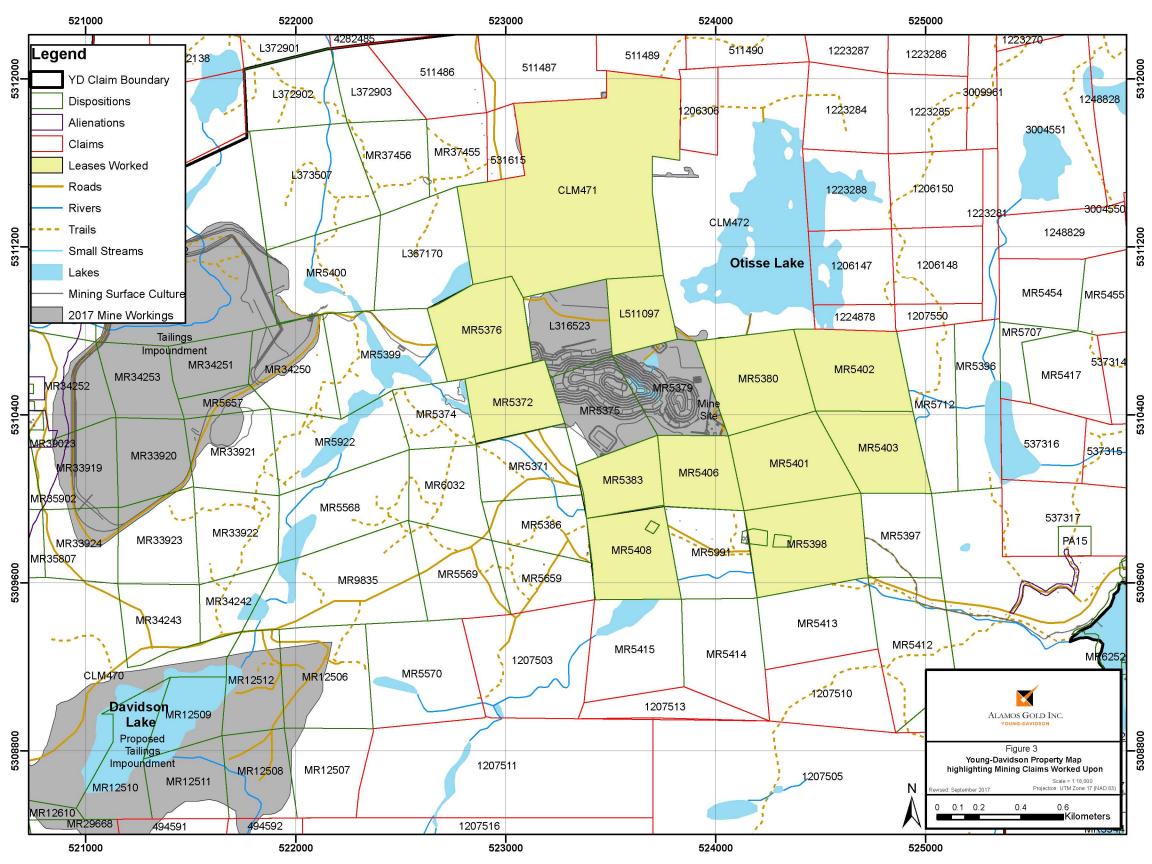
Asmaa Anwar

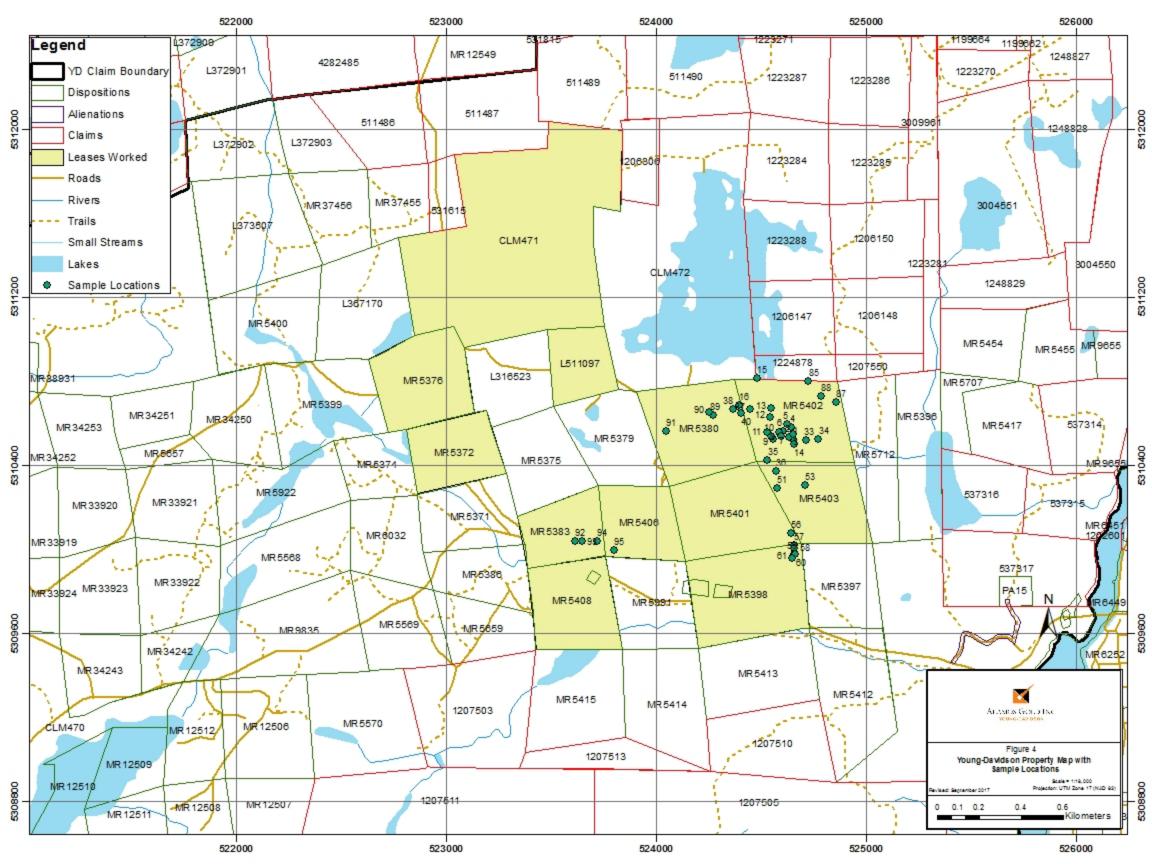
STATEMENT OF QUALIFICATIONS

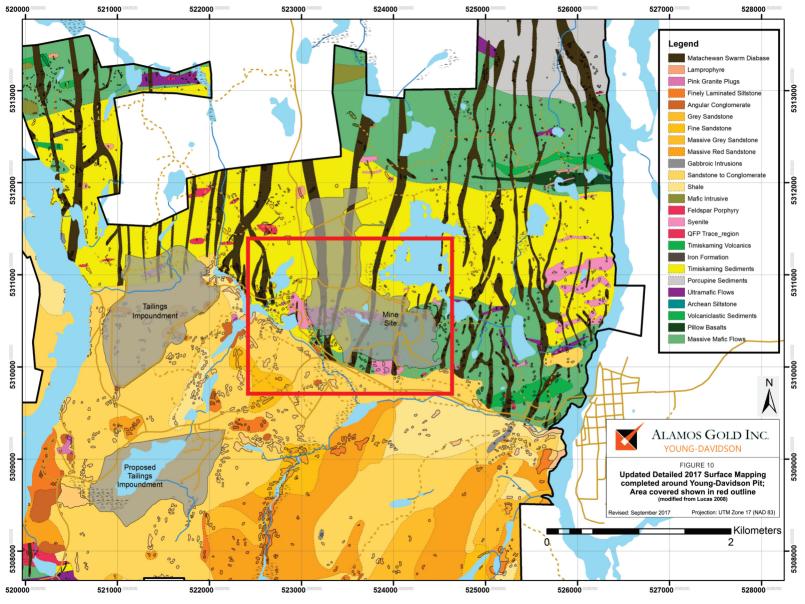
- I, Dane J Harwood, geologist, with business addresses in Matachewan and Toronto, Ontario, and residential address in Chatham, Ontario do hereby certify that:
 - 1. I graduated from the University of Western Ontario in 2015 with an Honours B.Sc. in Geology.
 - 2. From 2014 to present, I have been actively engaged in mineral exploration in Ontario.
 - 3. I am a Geoscientist in Training (GIT) with the Association of Professional Geoscientists of Ontario (Member Number 10311)

Dane J. Harwood, HB.Sc, GIT


STATEMENT OF QUALIFICATIONS


I, Steven M Reese, geologist, with business addresses in White River and Toronto, Ontario, and residential address in Kingston, Ontario do hereby certify that:


- 1. I graduated from the University of Western Ontario in 2015 with an Honours B.Sc. in Geology.
- 2. I graduated from Queen's University in 2017 with a Masters in Geological Engineering.
- 3. From 2014 to present, I have been actively engaged in mineral exploration in Ontario.
- 4. I am a Geoscientist in Training (GIT) with the Association of Professional Geoscientists of Ontario (Member Number 10400).


Steven M. Reese, M.Sc, GIT

APPENDIX I MAPS

APPENDIX II ASSAYS AND CERTIFICATE OF ANALYSIS

TM17196956 - Finalized

CLIENT: NORTEX - Alamos Gold Inc. - Young-Davidson

of SAMPLES: 76

DATE RECEIVED: 2017-09-14 DATE FINALIZED: 2017-10-06

PROJECT: 17-002

CERTIFICATE COMMENTS:

CERTIFICATE COMMENTS:														
PO NUMB														
		Au-GRA21		31		CP61		P61		:P61		CP61		²61
SAMPLE		Au	Ag		Al		As		Ва		Ве		Bi	
DESCRIP	•	g/t	ppm		%		ppm		ppm		ppm		ppm	
YD45401	<0.005		<0.5			6.82	<5			30	<0.5		<2	
YD45402	<0.005		<0.5			6.71		11		30	<0.5			2
YD45403	<0.005		<0.5			7.16	<5			40	<0.5		<2	
YD45404	< 0.005		<0.5			6.79	<5			30		0.6	<2	
YD45405	< 0.005		<0.5			7.22		20		130		0.6	<2	
YD45406	0.005		<0.5			6.95		10		40		0.6		2
YD45407	< 0.005		< 0.5			6.78		10		90		0.5	<2	
YD45408	< 0.005		< 0.5			7.07		9		40	< 0.5			3
YD45409	< 0.005		< 0.5			7.89		18		30		1		3
YD45410	< 0.005		< 0.5			8.09		5		100	<0.5			3
YD45411	< 0.005		<0.5			8.41		12			<0.5			5
YD45412	< 0.005		<0.5			6.29	<5				<0.5			2
YD45413	< 0.005		<0.5			7.61		7			<0.5			2
YD45414	< 0.005		<0.5			7.13		13			<0.5			2
	< 0.005		<0.5			7.04		6			<0.5			2
	< 0.005		<0.5			6.56	<5	ŭ		120		0.6		2
YD45427	< 0.005		<0.5			7.43					<0.5	0.0		3
YD45428	< 0.005		<0.5			6.89	10	24			<0.5			4
YD45429	< 0.005		<0.5			6.51		27		60	٦٥.٥	0.5		2
YD45430	0.006		<0.5			6.77		11		220		0.5		3
YD45431	<0.005		<0.5			7.35	<5	• •		130		2.1		3
	>10.0	26.4		.1		5.88	10	20		60		0.7	- 2	Ü
	<0.005	20.1	<0.5	• •		4.62		6			<0.5	0.7	<2	
YD45437	<0.005		<0.5			6.78		10			<0.5		~_	2
	<0.005		<0.5			7.2	- 5	10		240	\0.0	1.7	-2	_
YD45439	<0.005		<0.5			6.57				50		0.5	~_	4
	<0.005		<0.5			7.1				750		1.7	-2	7
YD45441	<0.005		<0.5			7.32	\ 0	5		90			<2	
YD45442	<0.005		<0.5			7.29	- 5	J		500		0.6	\ Z	2
YD45443	<0.005		<0.5			7.19	\ 0	5		540		1.2	-2	_
YD45444	<0.005		<0.5			6.7	-5	J		180		1.3		
YD42261	<0.005		<0.5			5.1	\ J	8		280		1.1		
YD42263	0.014		<0.5			6.6		12		300		0.9		
YD42265	0.014		<0.5			5.56		7			<0.5	0.9	<2	
YD42267	<0.005		<0.5			6.98		7		250	\0. 5	1	\ 2	4
YD42268	0.006		<0.5			6.85		7		160		1.2	.0	3
YD42270	0.008		<0.5			5.17		5		480			<2	2
YD42271	0.566		<0.5			7.04	.E	8		500		1.2	-0	2
	< 0.005		<0.5			5.47					<0.5	0.0	<2	2
YD42273	0.007		<0.5			6.71				100		0.6		2
YD42274			<0.5			7.25				50		0.5		3
YD42275	<0.005		<0.5			7.38	<0			600		1.1		2

ME-ICP61 ME-IC	P61 ME-I	CP61	ME-ICP61	ME-ICP61	ME-ICP61	ME-ICP61		ME-ICP61
Ca Cd	Co		Cr	Cu	Fe	Ga		La
% ppm	ppm		ppm	ppm	%	ppm	%	opm
3.62 < 0.5		54	10	158	11.85	20	0.06	<10
5.31 < 0.5		52	9	126	10.85	20	0.05	10
4.63 < 0.5		45	40	117	11.15	20	0.1	<10
3.63 < 0.5		48	27	153	9.76	20	0.06	<10
3.55 < 0.5		48	35	78	12.05	20		
2.81 < 0.5		50	36	235	11.6	20	0.1	<10
4.14 < 0.5		66	40	288	12.25	20		
3.99 < 0.5		58	116	66	11.95	20	0.09	<10
5.51 < 0.5		49	183	27	10.65	20		<10
6.1 < 0.5		54	166	88	10.25	20		
5.4 < 0.5		53	187	52	10.3	20		
5.09 < 0.5		50	10	140	11	20		
3 < 0.5		53	12	169	11.95	20		
4.92 < 0.5		55	14	155	11.35	20		
2.25 < 0.5		53	11	153	11.85	20		
3.22 < 0.5		43	10	116	10.9	20		<10
7.53 < 0.5		51	10	90	11.75	30		10
3.78 < 0.5		46	35	86	11.7	20		
2.08 < 0.5		50	36	37	11.9	20		
2.37 < 0.5		56	10	151	11.65	20		10
2.36 < 0.5		43	67	20	13.65	20		20
3.99	0.6	45	19	27	10.35	20		10
1.91 < 0.5		22	24	27	5.17	10		10
6.19 < 0.5		60	6	240	12.85	20		
0.49 < 0.5		9	63	33	2.23	20		10
3.19 < 0.5		46	18	31	11.4	20	0.11	10
1.27 < 0.5		8	57	8		20		10
1.39 < 0.5		43	100	92	9.62	20		
3.61 < 0.5		46	94	90		20		
1.91 < 0.5		7	58	19	2.23	20		10
0.33 < 0.5		21	65	4	2.08	20		10
2.58 < 0.5		8	116	53		10		20
4.2 < 0.5		34	8	65	12	30		10
2.74 < 0.5		40	10	92	10.05	10		
1.83 < 0.5		47	45	194	12.3	20		
4.1 < 0.5		44	36	123	10.6	20		<10
7.79 < 0.5		32	361	33	8.59	10		10
3.06 < 0.5		45	513	61	6.59	20		10
6.02 < 0.5		17	4	7		10		10
4.96 < 0.5		48	73	128	10.65	20		
3.26 < 0.5		46	58	99	10.1	20		10
1.79 <0.5		10	57	15	2.84	20	1.87	20

	Sb
	ppm
2.51 2190 <1 1.7 36 390 <2 0.01 <	
2.26 1880 <1 1.73 30 400 2 0.14 <	
3.75 1815 <1 2.42 51 400 4 0.01 <	
3.09 1570 <1 2.08 35 420 <2 0.01 <	
2.76 2040 1 2.17 41 690 2 0.17 <	
3.56 1710 1 2.19 43 660 3 0.09 <	
2.25 1225 1 1.61 41 620 2 0.13 <	
3.79 1750 1 2.51 108 560 5 0.21 <	
3.93 2130 1 1.41 133 430 4 0.01 <	
3.72 1680 <1 1.8 127 430 6 0.11 <	
4.04 1760 1 2.27 119 400 2 0.08 <	
2.7 1885 <1 2.01 35 420 2 0.05 <	
2.43 2240 1 3.33 37 470 6 0.21 <	
3.12 1750 <1 2.33 47 410 4 0.1 <	
3.08 1655 <1 1.62 38 430 <2 0.02 <	
2.45 1590 <1 3.08 34 440 56 0.14 <	<5
1.66 2360 <1 0.2 35 440 7 0.1 <	
2.71 1755 <1 2.34 33 690 2 0.09	5
3.05 2140 1 2.03 44 620 2 0.03 <	
1.93 1765 <1 1.95 38 460 3 0.14 <	
3.75 1140 <1 2.37 56 1690 8 0.15 <	
1.58 1410 1 4.94 34 600 7 >10.0	5
1.38 932 <1 0.34 23 500 <2 0.01 <	
3.34 1740 <1 1.13 66 370 5 0.46 <	
1.03 287 <1 5.31 41 600 5 0.15 <	
3.08 1570 <1 2.31 35 580 2 0.03 <	
0.77 266 <1 4.16 34 550 5 0.01 <	
3.8 1195 <1 2.54 67 450 4 0.08 <	
4.13 2220 <1 2.77 61 430 4 0.15 <	
1.37 503 <1 4.55 32 610 16 0.01 <	
1.06 209 <1 4.96 36 610 4 0.25 <	
1.26 486 <1 2.38 101 750 6 0.1 <	
0.95 1385 1 0.64 1 1620 7 1.01	5
1.34 1595 2 3.27 30 370 3 1.86 <	
2.45 640 <1 1.35 48 670 <2 0.08 <	
1.45 1985 1 1.07 45 600 4 0.2 <	<5
2.52 1580 <1 2.21 228 480 2 0.81 <	<5
2.34 1235 1 1.73 342 610 2 0.35 <	<5
1.56 1095 <1 3 5 810 <2 0.57 <	<5
2.36 1260 <1 0.52 58 430 <2 0.16 <	<5
3.47 1035 <1 1.36 45 600 2 0.13 <	<5
0.98 564 <1 3.52 25 800 5 0.01 <	<5

ME-ICP61 Sc	ME-ICP61 Sr	ME-ICP61 Th	ME-ICP61 Ti	ME-ICP61 TI	ME-ICP61 U	ME-ICP61	ME-ICP61 W	ME-ICP61 Zn
ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
42		<20	0.75		<10		<10	139
42		<20	0.71		<10		<10	126
46		<20	0.69		<10		<10	124
43		<20	0.72		<10		<10	123
40		<20	1.02		<10		<10	146
39	18	<20	0.97		<10	339	<10	200
39	160	<20	0.96	<10	<10	349	<10	93
38	84	<20	0.93		<10	349	<10	145
25	148	<20	0.74	<10	<10	278	<10	178
25	209	<20	0.71	<10	<10	253	<10	160
29	164	<20	0.67		<10	260	<10	168
39	51	<20	0.69		<10		<10	167
46		<20	0.82	<10	<10	369	<10	158
44		<20	0.71	<10	<10		<10	126
43		<20	0.51	<10	<10		<10	136
40		<20	0.73	<10	<10		<10	208
40	217	<20	0.7	<10	<10	396	<10	130
39		<20	0.98		<10		<10	125
38		<20	0.94		<10		<10	87
42		<20	0.46		<10		<10	151
43		<20		<10	<10	405		
24		<20		<10	<10	62		
17		<20	0.41		<10		<10	77
54		<20		<10	<10		<10	142
4		<20	0.16		<10		<10	38
43		<20	0.93		<10		<10	154
4		<20	0.12		<10		<10	35
39		<20	0.73		<10		<10	128
43		<20	0.73		<10		<10	150
4		<20	0.15		<10		<10	67
3		<20	0.15		<10		<10	37
6		<20	0.16		<10		<10	67
32		<20	0.96		<10		<10	127
33		<20		<10	<10		<10	84
44		<20	0.82		<10	377 306		
37		<20	0.42		<10			
16 23		<20 <20	0.13 0.12		<10 <10	170	<10	68 86
23 12					<10	68		
38		<20 <20		<10 <10	<10	98 277		
36 37		<20	0.46 0.47		<10	277	10	
8		<20	0.47		<10		<10	61
0	170	\ 20	0.14	\10	\10	76	\10	ΟI

		ME-ICP06						
SiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	Cr2O3	TiO2
%	%	%	%	%	%	%	%	%
48.7			5.06	4.22	2.28		<0.01	1.22
47.9					2.3		<0.01	1.15
51.3								1.13
52.9								1.15
49.9								1.65
50.7					3.02			1.63
50.6				3.86	2.2			1.58
47.4								
43.8			7.89		1.92			
46.6			8.52		2.38			
47.7			7.5		3.09			-
50.5				4.58	2.72		<0.01	1.16
50					4.5		<0.01	1.36
47.9			6.86		3.15		<0.01	1.18
50.3			3.09	5.15			<0.01	1.29
53.8			4.28				<0.01	1.17
49.8		17			0.27		<0.01	1.13
50.1					3.17			1.62
52.3								1.51
51.4							<0.01	1.24
46					3.16			2.21
41.1			5.56		6.73			1.09
73.1			2.57		0.48			0.66
45.3			9.19		1.52		<0.01	2.04
69.7					7.18			0.27
49.2				5.13			<0.01	1.52
69.5								
53			2.04			0.2		
50.5								
64.8		3.21	2.66					
72.8								0.26
72			3.52					
54.2			5.97	1.61	0.85		<0.01	1.67
54.5		15.5	3.89	2.41	4.57		<0.01	0.99
51.2			2.73		1.85			1.84
43.6				2.4	1.41	3.16		1.47
41.3			11	4.08	2.91	1.59		
54.8			4.3		2.32			
60.4			8.21	2.64		<0.01	<0.01	0.7
46.3			6.9					
49.5				5.47				
65.8	14.75	4.21	2.54	1.75	4.88	2.3	0.01	0.44

					TOT-ICP06
MnO	P2O5	SrO	BaO		Total
%	%	%	%		%
0.28 0.25	0.09 0.09		<0.01 <0.01	7.23 7.53	99.41 99.29
		0.01		3.36	99.29 101.49
0.23 0.21	0.08	<0.02	0.01	6.7	101.49
0.21	0.09	0.01	0.01	4.93	101.46
0.27		<0.01	<0.01	3.93	100.76
0.22	0.13	0.02		3.51	99.5
0.10	0.14		<0.01	3.17	99.88
0.23	0.13		<0.01	3.98	98.42
0.21	0.08	0.02	0.01	2.69	99.05
0.22	0.08	0.02		2.43	100.47
0.24	0.09		<0.01	5.6	100.47
0.28	0.1	0.01	0.02	2.64	99.93
0.22	0.09		<0.01	2.75	98.01
0.21	0.09	0.01	0.01	6.47	100.01
0.2	0.09	0.01	0.01	4.6	100.73
0.3	0.1		<0.01	4.49	100.6
0.22	0.16		<0.01	4.52	99.97
0.26		<0.01	0.01	5.33	98.76
0.21		<0.01	0.02	7.3	99.92
0.14		<0.01	0.01	4.12	99.37
0.18	0.12	0.03	0.01	8.34	91.47
0.11	0.12	<0.01	0.05	2.86	100.41
0.23	0.09	0.03	0.01	3.24	99.35
0.03	0.12	0.05	0.03	1.54	98.95
0.21	0.13	0.01	0.01	4.23	98.56
0.04	0.13	0.04	0.09	2.04	100.45
0.16	0.11	0.01	0.01	4.98	100.95
0.28	0.1	0.02	0.05	2.16	100.59
0.07	0.14	0.04	0.06	3.03	98.6
0.03	0.12	0.03	0.02	1.36	101.44
0.06	0.17	0.05	0.03	5.51	100.52
0.18	0.37	0.04	0.03	3.07	99.33
0.21	0.09	0.01	0.01	4.89	98.19
0.08		<0.01	0.03	5.16	100.38
0.25		<0.01	0.02	11.95	98.15
0.2	0.1	0.04	0.05	14.35	98.04
0.16	0.14	0.02	0.05	8.16	99.67
0.14	0.17		<0.01	7.3	100.76
0.17	0.1	0.01	0.01	11.5	100.73
0.13	0.14	0.01	0.01	8.65	99.23
0.08	0.19	0.02	0.07	4.65	101.69

TM17196956 - Finalized

CLIENT: NORTEX - Alamos Gold Inc. - Young-Davidson

of SAMPLES: 76

DATE RECEIVED: 2017-09-14 DATE FINALIZED: 2017-10-06

PROJECT: 17-002

CERTIFICATE COMMENTS:

CERTIFICATE COMMENTS.										
PO NUMBER :										
Au-AA23	Au-GRA21	ME-ICP61	ME-ICP61	ME-ICP6	61 ME-I	CP61	ME-ICF	P61	ME-ICP	'61
SAMPLE Au	Au	Ag	Al	As	Ba		Be		Bi	
DESCRIP1g/t	g/t	ppm	%	ppm	ppm		ppm		ppm	
YD45410										
YD45410										
YD45415		<0.5	7.23	}	7	1040		1.5	<2	
YD45415		<0.5	7.4		7	1070		1.6	<2	
YD45417 <0.005										
YD45417 <0.005										
YD45418										
YD45418										
YD45437 < 0.005										
YD45437 <0.005										
YD45444										
YD45444										
YD45446										
YD45446										
YD45478		<0.5	6.04	1	19	50	<0.5			4
YD45478		<0.5	6.22	! 1	16	50	<0.5			3
YD42274 <0.005										
YD42274 <0.005										
YD42275										
YD42275										

ME-ICP61 ME-ICP Ca Cd % ppm	61 ME-ICP61 Co ppm	ME-ICP61 Cr ppm	ME-ICP61 Cu ppm	ME-ICP61 Fe %	ME-ICP61 Ga ppm	ME-ICP61 K %	ME-ICP61 La ppm
1.39 <0.5 1.41 <0.5	14 14	_		2.41 2.46	20 20	_	20 20
3.42 <0.5 3.52 <0.5	38 40	_	_	10.7 10.9	_		

ME-ICP61 Mg %	ME-ICP61 Mn ppm	ME-ICP61 Mo ppm	ME-ICP61 Na %	ME-ICP61 Ni ppm	ME-ICP61 P ppm	ME-ICP61 Pb ppm	ME-ICP61 S %	ME-ICP61 Sb ppm
0.75 0.77	_		2.02 2.08			7 9	0.5 0.52	
2.26 2.33			1.55 1.6			2 2		

ME-ICP61 Sc ppm	ME-ICP61 Sr ppm	ME-ICP61 Th ppm	ME-ICP61 Ti %	ME-ICP61 TI ppm	ME-ICP61 U ppm	ME-ICP61 V ppm	ME-ICP61 W ppm	ME-ICF Zn ppm	P61
9		7 <20 0 <20	0.17 0.18	-	<10 <10	_	<10 <10		60 62
35 35		3 <20 <20	0.89 0.91	-	<10 <10		<10 <10		109 111

ME-ICPO SiO2 %	-	1203	ME-ICP06 Fe2O3 %	ME-ICP06 CaO %	ME-ICP06 MgO %	ME-ICP06 Na2O %	ME-ICP06 K2O %	ME-ICP06 Cr2O3 %	ME-ICP06 TiO2 %
46	.6	15.9	15	8.52	6.21	2.38	0.18	0.03	1.22
47	.6	16.3	15.15	8.7	6.31	2.45	0.2	0.03	1.19
38	3	10.4	10.1	10.65	6.42	3.48	1.76	0.07	0.74
	88	10.3	9.9	10.6	6.35	3.44	_	0.07	0.73
		10.0	0.0	10.0	0.00	0.11		0.01	0.70
72	.8	13.95	3.2	0.48	1.85	7.03	0.3	0.01	0.26
7	'3	13.95	3.24	0.49	1.85	7.04	0.29	0.01	0.26
61	.2	13.95	6.67	3.74	1.96	3.16	2.02	0.02	0.73
62	.4	14.25	6.84	3.82	2.02	3.2	2.02	0.02	0.75
65	.8	14.75	4.21	2.54	1.75	4.88	2.3	0.01	0.44
64	.5	14.5	4.18	2.51	1.72	4.79	2.23	0.01	0.44

ME-ICP06 MnO %	ME-ICP06 P2O5 %	ME-ICP06 SrO %	ME-ICP06 BaO %	OA-GRA05 LOI %	TOT-ICP06 Total %
0.21	0.08	0.02	0.01	2.69	99.05
0.21	0.09	0.02	0.01	2.61	100.87
0.31	0.31	0.06	0.05		
0.31	0.31	0.05	0.05		
0.03 0.03			0.02 0.02		
0.03			0.02	4.42	98.24
0.13	0.14	0.03	0.07	4.46	100.15
0.08		0.02	0.07	4.65	101.69
0.08	0.18	0.02	0.07	4.58	99.81

TM17196956 - Finalized

CLIENT: NORTEX - Alamos Gold Inc. - Young-Davidson

of SAMPLES: 76

DATE RECEIVED: 2017-09-14 DATE FINALIZED: 2017-10-06

PROJECT: 17-002

CERTIFICATE COMMENTS:

PO NUMBER:

Au	ı-AA23	Au-GRA21	ME-ICP61	ME-IC	P61	ME-ICF	P61	ME-I	CP61	ME-IC	P61	ME-ICF	P61
SAMPLE AU		Au	Ag	ΑI		As		Ba		Be		Bi	
DESCRIP1g/t	t	g/t	ppm	%		ppm		ppm		ppm		ppm	
LEA-16	0.471												
OREAS 50	0.68												
JK-17		1.95											
SRM88B													
SRM88B													
SRM88B													
SRM88B													
SY-4													
SY-4													
AMIS0286													
CDN-W-4													
CDN-W-4													
CDN-W-4													
AMISO085													
AMIS0167 AMIS0085													
AMIS0085													
AMIS0185													
AMIS0085													
MRGeo08			4.4		7.4		31		1060		3.1	<2	
OREAS-45b			<0.5		7.57		11		240		0.9		
OREAS-14P													
SRM 694													
AMIS0185													
AMIS0085													
G915-7		12.15											
G912-1	7.47												
AMIS0167													
SARM-43													
OREAS-45b			<0.5		7.58		16		250		1	<2	
AMIS0085			40.4				400						4.0
OGGeo08			19.1		6.65		123		920		2.8		12
OGGeo08			20.1		6.92		125		780		2.9		12
OREAS 602	4.005		>100		4.39	(677		110		8.0		63
JK-17 BLANK <0	1.965												
).005).005												
BLANK CO	.005	<0.05											
BLANK		<0.03	<0.5	<0.01		<5		<10		<0.5		<2	
BLANK			<0.5	<0.01		<5		<10		<0.5		<2	
BLANK			<0.5	<0.01		<5		<10		<0.5		<2	
BLANK			٧٥.٥	١٥.٥١		10		110		٧٥.٥		\ <u>_</u>	
BLANK													
BLANK													
BLANK													
BLANK													
BLANK													
BLANK													

BLANK BLANK BLANK BLANK

| ME-ICP61 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Ca | Cd | Co | Cr | Cu | Fe | Ga | K | La |
| ~ . | | | | | 0.4 | | 0.4 | |
| % | ppm | ppm | ppm | ppm | % | ppm | % | ppm |

	2.57 0.35		1.8	18 84					20 20	3 0.3	30 30
	0.35	<0.5		82	81	5 50	2 16.	5 5 3	30	0.3	30
	2.15 2.27 0.65		18.5 19.3 26	95 100 11	9	2 872	0 5	5.5 1	10 2	2.82 2.98 0.68	30 30 10
<0.01 <0.01 <0.01		<0.5 <0.5 <0.5	<1 <1 <1		<1 <1 <1	<1 <1 <1	<0.01 <0.01 <0.01	<10 <10 <10	<0.01 <0.01 <0.01	<10 <10 <10	

| ME-ICP61 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Mg | Mn | Мо | Na | Ni | Р | Pb | S | Sb |
| % | ppm | ppm | % | ppm | ppm | ppm | % | ppm |
| | | | | | | | | |

	1.31 0.23	564 1005	14 2	1.91 0.08	686 276	1020 590	1060 25	0.3 <5 0.03 <5	
	0.22	985	2	0.08	274	580	25	0.04 <5	
	1.22 1.29 0.2	490 536 245	877 941 5	1.77 1.88 0.45	8430 9110 63	830 870 590	6970 7570 1060	2.81 2.88 2.16	27 28 86
<0.01 <0.01 <0.01	<	5 .	<1	<0.01 <0.01 <0.01	<1 .	<10	<2	<0.01 <5 <0.01 <5 <0.01 <5	

| ME-ICP61 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sc | Sr | Th | Ti | TI | U | V | W | Zn |
| ppm | ppm | ppm | % | ppm | ppm | ppm | ppm | ppm |

	11 50	300 38 <20	20	0.48 1.37		<10 <10		107 <10 261 <10		794 198
	50	36 <20		1.35	<10	<10		261 <10		197
	9 9 4	250 261 471 <20	20 20	0.4 0.41 0.22	<10	<10 <10 <10		86 <10 92 <10 34	10	6850 7180 4290
<1 <1 <1	<1 <1 <1	<20 <20 <20	<0.01 <0.01 <0.01	1	<10 <10 <10	<10 <10 <10	<1 <1 <1	<10 <10 <10	<2 <2 <2	

	ME-ICP06 Al2O3 %	ME-ICP06 Fe2O3 %	ME-ICP06 CaO %	ME-ICP06 MgO %	ME-ICP06 Na2O %	ME-ICP06 K2O %	ME-ICP06 Cr2O3 %	ME-ICP06 TiO2 %
1.15 1.15 1.15 1.07 50.8 48.9	0.32 0.31	0.31 0.29 0.28 6.22	30.5 30.6 30	21 21.1 21 0.5	0.04 0.02 0.03 7.12	0.1 0.08 0.1 1.6	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	0.02 0.02 0.01 0.02 0.27 0.28
75.4 91.4 71.9	2.36 10.9	3.53	0.13 3.31	0.23 1.75	0.08 1.75	0.55 4.72	0.06 0.08	0.14 0.22
72 19.5 11.15 70.7	4.4 1.87		1.4 45.3	0.47 0.35	0.8 0.88	1.03 0.52	0.01 0.12	0.4 0.12
92.6 70.6	2.42 11.05	3.35 3.5				0.52 4.65		

<0.01	0.0	1 0.01	0.02	<0.01	0.01	<0.01	<0.01 <	<0.01
< 0.01	< 0.01	0.02	0.01	0.01	0.01	0.01	<0.01 <	<0.01
< 0.01	< 0.01	0.01	0.01	0.01	0.01	0.01	<0.01 <	<0.01
	0.01 < 0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01 <	<0.01
< 0.01	< 0.01	0.05	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01
< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01
< 0.01	0.0	1 0.01	0.04	0.01	<0.01	<0.01	<0.01	<0.01

ME-ICP06 MnO %	ME-ICP06 P2O5 %	ME-ICP06 SrO %	ME-ICP06 BaO %	OA-GRA05 LOI %	TOT-ICP06 Total %
0.02	<0.01 <0.01 <0.01 0.01 0.12 0.13	0.01 0.01 0.01 0.14		7.73 4.48	100.56 99.84 97.52
0.06 0.02 0.07	0.02	0.01	0.04 0.01 0.04	4.3 4.22 21.2 21	>102.00 99.97 100.52
0.08 0.01 0.06	0.12 30.2 0.07	0.12	0.04 0.01 0.04	20.4	95.89 91.42
0.02	0.04 0.07	<0.01 0.01	0.01	47.7	99.48

<0.01	< 0.01	< 0.01	< 0.01	
< 0.01	< 0.01	< 0.01	< 0.01	
< 0.01	< 0.01	< 0.01	< 0.01	
< 0.01	< 0.01	< 0.01	< 0.01	0.01
< 0.01	< 0.01	< 0.01	< 0.01	0.05
< 0.01	< 0.01	< 0.01	< 0.01	<0.01
< 0.01	< 0.01	< 0.01	< 0.01	0.07

0 -0.02 0.01 0

APPENDIX III TOTAL EXPENDITURES

2017 Summer Mapping Assessment Work Financials

Period: June 1, 2017 to September 30, 2017

Item	Cost
Geologists/Supervision (Field)	\$ 29,590.00
Housing/Food	\$ 3,300.00
Travel Expenses	\$ 1,950.00
Gasoline/Vehicle Rental	\$ 2,400.00
Office Supplies	\$ 100.00
Geological Supplies	\$ 450.00
Assays	\$ 1,890.42
TOTAL	\$ 39,680.42

_	Miring Le	uning ti	Total Wood	king	Days Geologists Su	peruis	housing for	/ ,8	Travel Exper	/ ses		nicle	Rental	plies		Supr	Assays Ass	nIsa	note Total Speach	Jun .
	108632	CLM471	3	\$	2,536.29	\$	282.86	\$	167.14	\$	205.71	\$	8.57	\$	38.57	\$	-	\$	3,239.14	
	107440	L511097	3	\$	2,536.29	\$	282.86	\$	167.14	\$	205.71	\$	8.57	\$	38.57	\$	-	\$	3,239.14	
	108696	MR5372	2	\$	1,690.86	\$	188.57	\$	111.43	\$	137.14	\$	5.71	\$	25.71	\$	-	\$	2,159.43	
	109693	MR5376	3	\$	2,536.29	\$	282.86	\$	167.14	\$	205.71	\$	8.57	\$	38.57	\$	-	\$	3,239.14	
	19632	MR5380	3	\$	2,536.29	\$	282.86	\$	167.14	\$	205.71	\$	8.57	\$	38.57	\$	315.07	\$	3,554.21	
	108697	MR5383	2	\$	1,690.86	\$	188.57	\$	111.43	\$	137.14	\$	5.71	\$	25.71	\$	135.03	\$	2,294.46	
	109580	MR5398	3	\$	2,536.29	\$	282.86	\$	167.14	\$	205.71	\$	8.57	\$	38.57	\$	225.05	\$	3,464.19	
	109580	MR5401	3	\$	2,536.29	\$	282.86	\$	167.14	\$	205.71	\$	8.57	\$	38.57	\$	45.01	\$	3,284.15	
	109443	MR5402	6	\$	5,072.57	\$	565.71	\$	334.29	\$	411.43	\$	17.14	\$	77.14	\$	990.22	\$	7,468.51	
	109580	MR5403	3	\$	2,536.29	\$	282.86	\$	167.14	\$	205.71	\$	8.57	\$	38.57	\$	135.03	\$	3,374.17	
	109580	MR5406	2	\$	1,690.86	\$	188.57	\$	111.43	\$	137.14	\$	5.71	\$	25.71	\$	45.01	\$	2,204.44	
	109580	MR5408	2	\$	1,690.86	\$	188.57	\$	111.43	\$	137.14	\$	5.71	\$	25.71	\$	-	\$	2,159.43	
		TOTALS	35	\$	29,590.00	\$ 3	3,300.00	\$:	1,950.00	\$	2,400.00	\$	100.00	\$	450.00	\$:	1,890.42	\$:	39,680.42	