We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Assessment Report on a Soil Geochem Survey and Stripping, Jacobson Township

Sault Ste. Marie Mining Division
District of Algoma
NTS: 41N/01

Comstock Metals Ltd. 310-850 West Hastings Street. Vancouver, B.C., V6B 1N2

December, 2017 Version: V 1.0 Author: John Walmsley

REVISION HISTORY

Version/ Release	Date	Description of Revisions
1.0	January 4, 2019	Final

Table of Contents

INTRODUCTION	. 1
PROPERTY DESCRIPTION	. 4
PREVIOUS WORK	. 6
RECENT WORK HISTORY	. 6
REGIONAL GEOLOGY	. 8
PROPERTY GEOLOGY	. 9
WORK PERFORMED - 2017	13
PROSPECTING/TRENCH LAYOUT SOIL GEOCHEMISTRY SURVEY	14 14 14 17
DISCUSSION OF RESULTS	19
SOIL GEOCHEM SURVEYTRENCHING, CHANNEL SAMPLING	
CONCLUSIONS AND RECOMMENDATIONS	20
CONCLUSIONS	
REFERENCES	22
CERTIFICATE OF QUALIFICATIONS	23
LIST OF FIGURES Figure 1. Property Location Figure 2. Old Cabin Property Claim Location. Claim fabric from MNDM Claims database, December, 2017 Figure 3. Sage (1993) Geology Map, COD 2006 Ground Magnetometer and trench	
ocations	
Figure 5. Sketch from AFRI Report 42C08SW0148 0031A1 illustrating location of trenches and cross section of gold mineralization at the Reid Vein	13
LIST OF TABLES Table 1. Project Location	17 18

APPENDICES

Appendix A – Claim Schedule	24
Appendix B – Sample Descriptions	26
Appendix C – Assay Certificates and QC Certificate of Analysis (ALS)	36
Appendix D - Maps of the 2017 Stripped Areas and Soil Gechem Survey Results	37

Introduction

In the fall of 2017, Comstock Metals Ltd. completed an exploration program on their Old Cabin Property in Jacobson Township, Northeastern Ontario. The program consisted of stripping/channel sampling and a soil geochem survey. Stripping was carried out to expose historical, known areas of interest for examination/mapping and sampling. The soil geochem survey was conducted to test for anomalous auriferous zones to help trace and possibly connect both historical and more recent exploration results.

Location and Access

The Old Cabin Project is located 48 kilometers northeast of Wawa, Ontario and 20 kilometers southeast of the town of Dubreuiville in the southeast corner of Jacobson Township of the Sault Ste Marie Mining Division (Figure 1). The specific project location is described in the following table.

Table 1. Project Location

Area: Algoma District Township: Jacobson

Mining Division: Sault Ste Marie

Claim Map: M-1583
NTS: 42 C/8
Latitude: 48 17" 30"
Longitude: 84 18" 00"

Access to the property is via the Trans Canada Highway #17 for 38 km north of Wawa. From this point access is obtained by turning east along Hwy 519 and traveling towards the town of Dubreuilville. Approximately 1 km before reaching the town of Dubreuiville, one has to cross a single lane bridge. Immediately to the right is the Goudreau Road which is followed for 14 km. At this point one arrives at the Goudreau-Lochalsh Road. A left turn at the Lochalsh section of the road for approximately 6.7 km takes one to the turn-off for the Edwards Mine. From this juncture, one follows the road for 8.4 km., at which point you arrive on the southeast corner of the property.

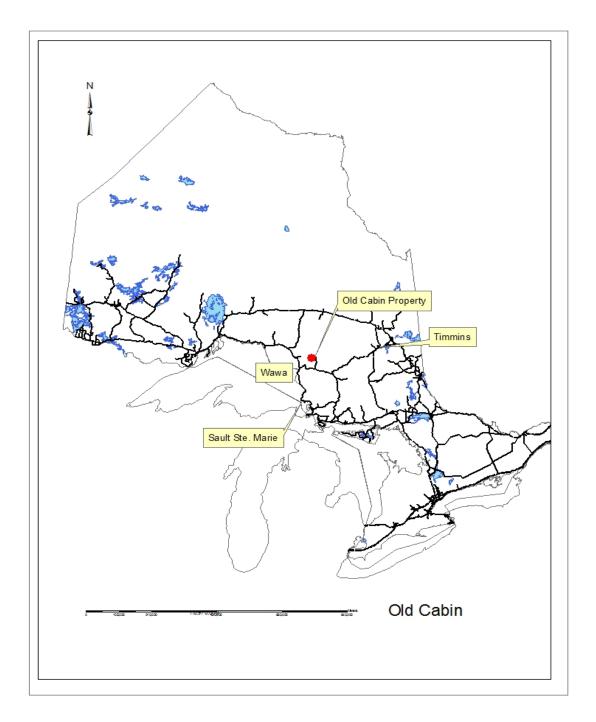


Figure 1. Property Location

Property Description

The Old Cabin Project is comprised of four (4) unpatented claims covering approximately 480 hectares and which include claim numbers 1228575, 3013762, 3013761 and 4218098. See Figure 2.

A schedule of claims can be found in Appendix A.

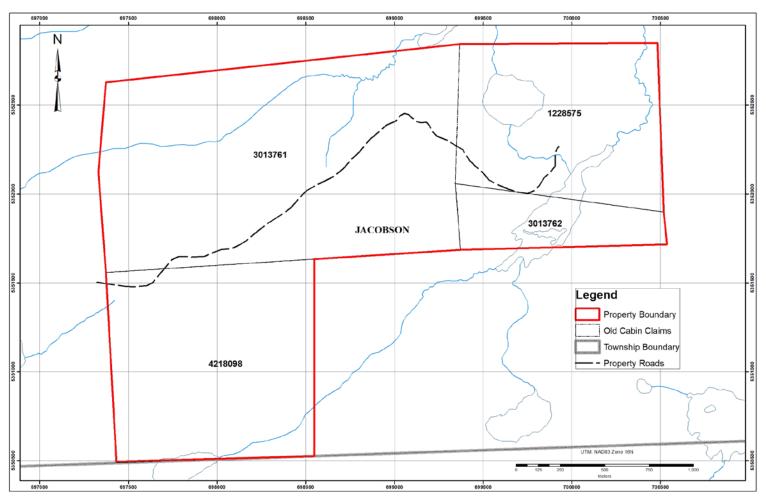


Figure 2. Old Cabin Property Claim Location. Claim fabric from MNDM Claims database, December, 2017.

Previous Work

The first recorded work on the property was done in the mid 1920's by C. Reid who discovered gold and carried out trenching and stripping on what is now known as the Reid Prospect. Around 1937, Lake Godin Mining Syndicate acquired or staked the present property and carried out an extensive prospecting and stripping program. An 11 hole diamond drill program was reported but the results were not submitted for assessment. A near BQ(?) sized drill hole with an easterly azimuth and approximate collar dip of -45 was observed in the Reid Vein stripped area may be one of these holes

From 1940 to 1980, no record of assessment work was reported and the claims undoubtly changed hands between individuals over this period.

In 1980, Noranda Mines acquired the property and cut 27 km of line, conducted geological mapping and a V.L.F. survey. In 1983, they drilled three (3) short Winkie drill holes for a total of 345 feet. Assays were not submitted and the claims were allowed to lapse.

In 1985, Cymball Exploration Inc. performed magnetometer and VLF surveys and followed up with two (2) drill holes. No assays were reported for the drilling. In 1994 the company did some trenching and reported gold assays up to 130 g/t Au.

In 1998, Dave Healey and Todd Keast conducted an exploration program as part of an OPAP submission which consisted of line cutting, soil geochemical surveys, mapping and prospecting. Trenches were mapped and three new gold showings were discovered with assays running as high as 173 g/t Au. Further work was recommended including a detailed magnetometer survey, mechanical stripping, limited IP surveys and diamond drilling.

In 1999, Dave Healey performed a VLF survey on the group of claims and recognized a series of anomalies corresponding with mag lows and recognized shear zones.

Recent Work History

In July of 2005, Golden Chalice Resources Inc. (Golden Chalice), accompanied by Dave Healey, spent a day investigating and sampling three of the gold occurrences. One grab sample from what was described as a "sugary textured" quartz vein with minor ankeritic and hematitic alteration hosted within chloritized mafic metavolcanics returned an assay of 211.82 g/t Au.

In 2006, Golden Chalice completed a total field ground magnetic survey using the old grid established by Healy. This survey delineated a distinct magnetic high transecting the property east-north-east that is believed to define the contact between the mafic volcanics/sediments to the south, and a gabbroic intrusive to the north. Golden Chalice subsequently acquired 100% interest in the property in 2007 and later that year transferred 100% interest to Chalice Diamond Corp, (Chalice Diamond).

In 2009, Chalice Diamond stripped nine (9) areas to expose and sample areas of interest determined from both historical results and known areas of high alteration and/or deformation. Five (5) of the stripped areas were channel sampled and assayed, but only the Reid Vein (which had consistently high gold values from an historic trench), samples were submitted for assessment (2010).

In 2011, Chalice Diamond changed its name to La Ronge Gold Corp. (La Ronge) and completed geological mapping of all the stripped areas. The results of the 2009 channel sampling that were not submitted for assessment in 2010 were also reported as part of this submission. Channel samples cut on the South Zone stripped area but not extracted were chipped out and described but not submitted for analysis. No new sampling was completed.

In 2014, La Ronge spent three (3) days prospecting and sampling the previous Chalice Diamond stripping and other areas of interest on the property. This included a tour day with MNDM personnel.

In 2016, La Ronge carried out six (6) days of a more detailed prospecting effort; more detailed in both the level of examination of the previously stripped Chalice Diamond areas, following up on results from the 2014 sampling, and in coverage of the over all property.

Regional Geology

The regional geology has been adeptly summarized by Pope (2016) and is herein quoted verbatim:

The Old Cabin property is situated in the Michipicoten greenstone belt which is part of the Wawa Subprovince of the Superior Province of the Canadian Shield. The Michipicoten greenstone belt is approximately 140 km long and a maximum of 45 km wide (Williams et al, 1991). The belt is comprised of three volcanic-sedimentary cycles of Archean age. The age of the rocks from oldest to youngest are: 2,889 Ma for the Hawk assemblage (cycle 1); 2,750 Ma for the Wawa assemblage (cycle 2), and 2,700 Ma for the Catfish assemblage (cycle 3). Shearing along the contacts has often obscured the original relationship between the assemblages.

The intermediate to felsic volcanic rocks that form the upper part of the Wawa assemblage consist of tuff, quartz-feldspar crystal tuff, lapilli tuff, oligomictic and polymictic breccia and scarce spherulitic flows (Williams et al, 1991). Capping the Wawa assemblage is a 100 to 150m thick section of iron formation with a total strike length exceeding 100 km. Overlying the Wawa assemblage is the lower Catfish assemblage, consisting of massive and pillowed magnesium- and iron-rich tholeitic flows.

The volcanic rocks have been intruded by a number of mafic sills and stocks ranging from quartz diorite to gabbro in composition and felsic to intermediate sills and stocks ranging from nepheline syenite to tonalite-trondhjemite in composition (Williams et al, 1991).

Two regionally extensive, subparallel zones of deformation have been defined in the Goudreau-Lochalsh area of the Wawa Gold Camp by Heather and Arias (1992). The Goudreau Lake Deformation Zone (GLDZ) and the Cradle Lakes Deformation Zone (CLDZ) have been defined using deformation or strain intensity, deformation style and the distribution and density of high strain zones. The majority of the known gold deposits and occurrences are located within the GLDZ, a 4.5 km wide by over 30 km long, east-northeast- to east striking arcuate zone subparallel to the major lithological and foliation trends (Heather and Arias, 1992). The GLDZ is situated approximately 2 to 3 km north of the Old Cabin property in the vicinity of the Edwards and Cline past producing gold mines. The CLDZ is located approximately 2 to 3 km south of the Old Cabin property, it is at least 5 to km in length and approximately 1 to 2 km in width.

The Old Cabin property is situated on the south limb of the Goudreau Anticline which strikes eastnortheast-to east to east-southeast across the northern boundary of the property (Sage, 1990) (Map 1). The Goudreau Anticline is interpreted as a thrust faulted inverted anticline of an early recumbent nappe fold (Heather and Arias, 1992).

Heather and Arias (1992) summarized the gold mineralization in the Goudreau-Lochalsh area as follows: 1) gold is found in a number of geological settings, significant gold mineralization is associated with quartz veins, siliceous zones and sulphide schists within discrete brittle-ductile high strain zones in the GLDZ and CLDZ; 2) the high strain zones have systematic orientations at both regional and detailed scales; 3) the GLDZ can be subdivided into domains within which certain high strain orientations appear more favorable for gold mineralization; 4) there is a spatial relationship between felsic intrusions and gold mineralization; 5) locally felsic dike contacts are particularly favourable for gold mineralization; 6) alteration associated with gold mineralization consists of variable biotite, sericite, iron-carbonate, quartz, chlorite, k-feldspar, calcite, pyrite and pyrrhotite, and 7) gold occurrences in the GLDZ

appear to be clustered along the margins of a regionally extensive mafic to intermediate sill or dike.

Record first quarter 2016 gold production, increased gold grades and exploration success both laterally and at depth by Richmont Mines Inc. at their Island Gold Mine (Richmont Mines Inc., 2016) situated in the GLDZ has renewed interest in gold exploration in the Goudreau-Lochalsh area. At the Island Gold Mine, gold mineralization occurs in a number of sub-parallel zones consisting of moderate to high strain intensity or shearing, intense quartz-sericite-pyrite-carbonate +/- tourmaline +/- albite alteration with white to grey ribbon-banded quartz veins containing specks or clouds of visible gold (Adam and Vachon, 2014). Ore reserves at Island Gold as of December 31, 2015 are reported as 2,115,500 tonnes at a grade of 8.26 g/t totaling 561,700 ounces of gold, with most of reserves and resources below the 400m level (Richmont Mines Inc., 2016).

Property Geology

As mentioned, the Old Cabin property lies on the south limb of the Goudreau Anticline whose interpreted axis strikes through the northern portion of the property. The axis is mapped by Sage (1993) as striking north-northwest from the east side of the property, and bending to the southwest near the approximate centre of the property. Sage has mapped the lithology as striking and bending in a similar pattern. Though there is no mention in the literature of a later fold event causing this bending, it is interesting that the most intense deformation was observed in the 2009 Boulder trench which is near the intersection of the Goudreau Anticline and a north-northwest striking fold. See Figure 3.

The property itself is underlain by mafic to intermediate metavolcanics and intermediate to felsic metavolcanics and pyroclastics. The ground magnetometer survey has defined a high mag zone striking through the centre of the property that has been interpreted as being a (or multiple) gabbro intrusive(s). This unit is exposed by the Reid Vein stripping completed by Chalice Diamond in 2009. Though often difficult to distinguish between the mafic gabbro and the mafic metavolcanics, the gabbro is more massive and coarse grained with chlorite "clots" on a weathered surface appearance.

Sage has mapped a quartz gabbro unit within the area of the high mag zone which is not exposed at the Reid Vein stripping. There is a felsic unit interpreted in the 2011 mapping that could possibly represent fractionation/degassing of the gabbro intrusive. Possibly the quartz gabbro may also be fractionation event of the gabbro intrusion and is non-magnetic.

Diabase was exposed at the 2009 South Trench along with lamprophyre.

Similar to the intense deformation observed in the Boulder Trench, it is of note that the magnetic high defining the intrusive is broken up and more dispersed in this same area. See Figure 3.

Without detailed geological and structural mapping it is difficult to understand the deformation on a property scale. As a cursory interpretation, it does appear that there is both a ductile phase and a more brittle phase and there are intense zones of ductile

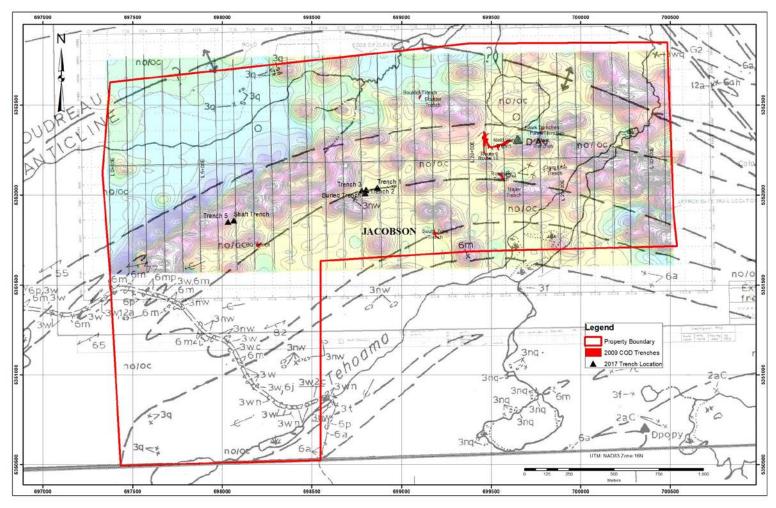


Figure 3. Sage (1993) Geology Map, COD 2006 Ground Magnetometer and trench locations

deformation as exhibited at the Boulder Trench. Whether these phases are both part of the GLDZ event or are more closely associated with the intrusion is not well understood. Shearing at the Boulder Trench exhibits chevron folding (Pope 2016) but may instead represent 2 phases of deformation. Crenulation fabric observed in a channel sample from 2017 stripping also suggests at least 2 phases of deformation. See Figure 4.

Figure 4.Channel sample from Trench #3, 2017 trenching exhibiting strong sericite/silicification/carb alteration, strong shearing with crenulation cleavage, cut by a fairly fresh, vuggy quartz vein.

The problem with interpreting deformation events is evident when trying to line up the deformation/alteration observed in the stripped areas, including the 2017 stripping. The more brittle shearing observed at the 2017 Shaft Trench matches the type of brittle shearing observed at the Reid Vein stripping and may mark the contact between the intrusive and the metavolcanics. Following the strike of the lithology, it would appear that the Boulder Trench is in the same structural domain. However, the shearing observed at the Boulder Trench is more intense and ductile with the crenulated shear foliation (Pope's chevron folding) and boudined quartz veins and is different than that observed in the Shaft Trench and Reid Vein Trench. The iron carbonate alteration at the Boulder trench is also significantly different than observed at the other 2 trenches. The shearing, alteration and boudined quartz veining of the BQ Trench is similar, though less intense, to the Boulder Trench. Originally, the BQ zone has been interpreted as being within a high strain zone that links up with the 2009 South Trench rather than the Boulder Trench.

From previous mapping, at least 2 generations of quartz veining have been discerned (Pope 2016). An earlier generation, sugary in appearance, is deformed by the shearing with the host rocks and is often boudined (Boulder Trench). Pope describes a second

generation as also being deformed by shearing but without the sugary appearance (BQ Trench). Both generations are observed at the BQ Trench.

A third generation quartz veining has also been observed in the stripped areas. These are generally quartz/carb stringers, near perpendicular to the east-west shearing. The 2017 stripping uncovered a quartz vein (orientation unknown) that was milky-white and vuggy, hosted by a strongly sheared, crenulated host (Figure 4). The vein contacts were near perpendicular to the shearing and oblique to the crenulation axis (described from channel sample).

There is significant iron carbonate alteration throughout the centre portion of the property occurring both as pervasive to patchy rust staining of the host rock and as ankerite associated with quartz veining. This is often associated with deformation and quartz veining. Chlorite alteration is also pervasive and quite strong in the gabbroic and metavolcanic rocks. Other alteration, associated with quartz-carbonate veining includes sericite, silicification and some tourmaline. Channel samples from the 2017 Shaft Trench also exhibit a weak to moderate, ready reaction to HCl indicating calcium carbonate alteration.

Mineralization associated with the quartz veining is predominantly pyrite with lesser pyrrhotite and occurs in low concentrations as disseminated subhedral, fine grained crystals and very fine grained, discontinuous stringers. Minor chalcopyrite and bornite was found as a "glob" at the intersection of an east-west brittle shear and a north-south brittle shear (the latter is terminated by the former) at the Reid Vein stripped area. Sphalerite may have been observed in the 2017 Trench 3.

Historically, gold mineralization on the property has been described as occurring in a series of stacked en-echelon east-west trending quartz lenses and stringers relegated to shear zones which trend from northeast to southwest. The most significant of these has been the Reid Vein where a thin east-west striking shear has been exposed and trenched, extending from the edge of the outcrop for approximately 8-10 metres before petering out. The trenches along this shear have produced the highest and most consistent results (Chalice Diamond, 2006 sampled 211.82 g/t Au). Though no recent reports have mentioned visible gold, older reports have reported significant free gold (though the author believes have been exaggerated). See Figure 5.

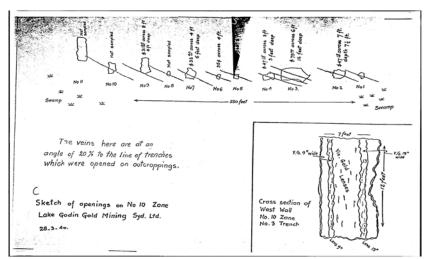


Figure 5. Sketch from AFRI Report 42C08SW0148 0031A1 illustrating location of trenches and cross section of gold mineralization at the Reid Vein.

Work Performed - 2017

Comstock Minerals obtained an MNDM Work Plan that became active as of October 13th, 2017. Work submitted as part of the Plan includes surface stripping (<100 sq metres within 200 metres), line cutting, soil geochem survey, IP and other geophysical surveys.

The work performed in the 2017 exploration program included 2 days of prospecting/trench layout, a soil geochem survey and the stripping of six (6) small trenches that were subsequently channel sampled.

Prospecting/Trench Layout

The author travelled to the property on two separate occasions prior to October 13th to prospect the 2 areas chosen for stripping and layout trenches. The first area was in the Cymbal Shaft area where an historical shaft (Cymbal Shaft) and trench were known to exist. A trench was laid out beside each feature. Grab samples were taken from the debris pile of the trench and shaft, and the east and west walls of the shaft were also sampled.

The second area was approximately 740m east-northeast of the Cymbal Shaft area in the highly trenched area. Two trenches were laid out beside 2 historical trenches on the north side of a low rise. These trenches are approximately 25m apart. Only one historical trench was sampled; bedrock could not reached in the second trench for sampling.

Soil Geochemistry Survey

The grid for the soil geochemistry survey was laid out starting near the western edge of the property moving eastward to cover the Cymbal Shaft area, the BQ Trench, the "highly trenched" area (Healey 1996) (and referred to by Pope as the High Strain Zone) between the BQ Trench and the South Trench, and northward to cover the Boulder Trench.

Geochem samples were humus samples, taken on lines 100 metres apart at 25m centres. The sampler removed leaf litter to expose the top layer of soil which was then scooped out filling soil sample bags. The 2006 Healey grid was used as guidance when possible, but GPS was used for control and sample location. A total of 245 samples were taken including QC samples. Sample numbers were derived from the grid line number (Healey grid) and a sequential number which started at 1 for each line; e.g. L5-010 is on Line 5 and is the 10th sample. Field methodology was defined by and sampling was completed by Lordan Exploration Services with a crew of 2.

Samples were submitted to ALS Canada (ALS) in Thunder Bay, Ontario where they were dried and screened to 180um (ALS' Prep-41). The original method of analysis chosen was ALS' Au-TL35 which uses ICP-MS and analyzing for gold only. However, after drying the samples, 99 were found to be too light for analysis by this method. After discussions with the lab, it was decided to analyze these samples using ALS' method ME-MS41L which also uses ICP-MS but only requires 0.5g sample weight. This was to ensure that any results from these samples that returned below detection limit values were not due to insufficient material.

See Figure 6 for a map of sample locations and the Appendices for maps of the results.

Quality Control – Soil Samples

Because of the small size of the survey, quality control was largely dependent on the internal procedures (standards, blanks and duplicates) of ALS. The only external control procedure was to include a duplicate soil sample in every 20 samples. A second soil sample was taken from the wall of the hole of the sample being duplicated. These samples are denoted by a "**B**" at the end of the sample number.

Stripping and Channel Sampling

A total of six (6) trenches were dug over 2 days to expose bedrock in 2 areas, the Cymbal Shaft area and the highly trenched area. One trench (Shaft Trench) in the Cymbal Shaft area is immediately adjacent to the west side of the shaft. The second trench (Trench 5) is approximately 35m to the west of the shaft and on the east side of a north-south trench.

In the highly trenched area, 4 trenches were dug: 2 trenches (Trench 2 and Trench 3) that were laid out beside historical trenches and along the north side of a low topographic rise; 1 trench approximately 15m south of these two trenches (Buried Trench) to expose the south edge of the rise; and 1 trench (Trench 1) approximately 60m east of the first two trenches at the eastern edge of the rise.

Because Healey's map (2006) indicates numerous trenches further west of this area (though a cursory exploration did not find them), it was decided to dig Trench 1 to the east of Trenches 2 and 3 in an attempt to extend the structure eastward.

Trenches were excavated with a general azimuth of 330° and extended in both north and south directions well past the expected zone of interest to ensure the entire width of the zone was uncovered. Once the zone was confirmed, the ends of the trenches were examined/mapped and then backfilled to stay within the limit of 100 sq m within 200m.

Trench 4 was completely backfilled as nothing of interest was exposed and no sampling was completed.

Excavator work was completed by M.T. Enterprise out of Wawa, Ontario under the direction of the author. The 2 days included mob and demob of personnel and equipment.

See Figure 6 for a sketch of the trench locations.

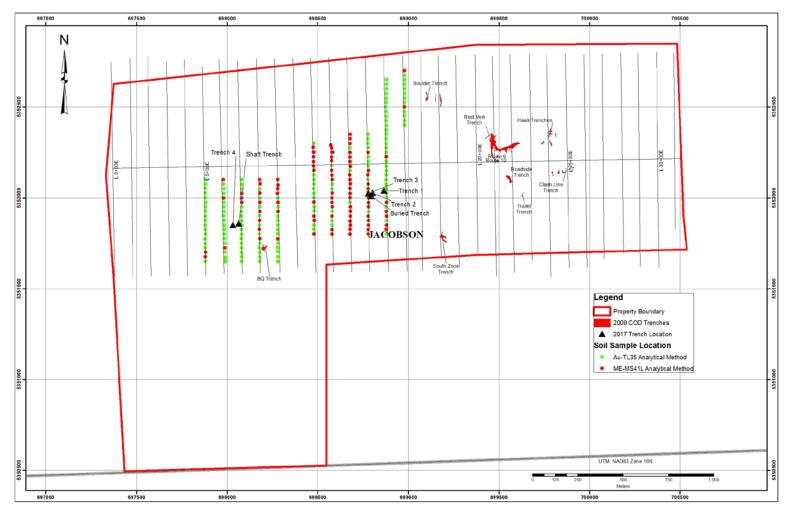


Figure 6. Location of 2009 Trenches, 2017 Trenches and 2017 Soil Sampling

Once the trenching was complete, the trenches were power washed for mapping and channel sampling. Washing and exposing the surface of the rock in trenches 2 and 3 was difficult due to the depth of overburden and lack of places for water to run.

The trenches were mapped by the author once the washing was complete.

Channel samples were cut using a handheld rock saw, chipped out using chisel and moil, and placed in plastic samples bags, sealed with zip ties by the contractors. The bags were unsealed later by the author for describing and then resealed. Samples were shipped to ALS in Thunder Bay for analysis using their ME-MS61 ICP-MS method with Au-AA24 AA finish.

Washing and channel sampling was completed by Lordan Exploration Services. Channel samples were laid out by the author.

Maps of the trenches, location and description of channel samples and results can be found in the Appendices.

Quality Control

Because of the small size of the survey, quality control was largely dependent on internal procedures (standards, blanks and duplicates) of ALS. The only external control procedure was to request a lab duplicate of every 19th sample in every 20 samples.

Summary of Work

Table 2. Summary of dates, operators and work tasks for the project

Date	Operator	Description
September 14, 2017	John Walmsley	Prospecting, trench layout, Cymbal Shaft area
September 27, 2017	John Walmsley	Prospecting, trench layout, highly trenched area
October 15, 2017	Lordan Exploration (2	Mob to property
	operators)	
October 16, 2017	MT Enterprise	Mob to property, stripping Cymbal Shaft trenches
	John Walmsley	Supervision of trenching
	Lordan Exploration (2	Initiate soils sampling, start washing trenches
	operators)	
October 17, 2017	MT Enterprise	Stripping highly trenched area, demob
	John Walmsley	Supervision of trenching
	Lordan Exploration (2	Soil sampling
	operators)	
October 18, 2017	Lordan Exploration (2	Soil sampling
	operators)	
October 19, 2017	Lordan Exploration (2	Soil sampling, washing trenches 1, 2 and 3
	operators)	
October 20, 2017	Lordan Exploration (2	Soil sampling, channel sampling trenches 1, 2 and
	operators)	3
	John Walmsley	Mapping all trenches, laying out channel samples
October 21, 2017	Lordan Exploration (2	Soil sampling, channel sampling trenches 1, 2 and
	operators)	3
October 22, 2017	Lordan Exploration (2	Soil sampling, channel sampling Shaft Trench and
	operators)	Trench 5
October 23, 2017	Lordan Exploration (2	Soil sampling, channel sampling Shaft Trench and
	operators)	Trench 5, demob from property

Summary of Costs

Table 3. Summary of Work Costs

Contractor	Cost	Total with HST
MT Enterprises (includes personnel, equipment and travel)	\$4,940.00	\$5,582.20
Lordan Exploration Services (includes personnel, equipment and travel)	\$8,702.96	\$9,834.34
ALS – Soil Sample Analysis	\$4,680.58	\$5,289.06
ALS – Rock Sample Analysis	\$3,166.36	\$3,577.99
PensInk Technical Services (J. Walmsley) (includes personnel, travel, report writing and map preparation, and smaple shipping expenses)	\$6,194.56	\$6,999.85
Total	\$27,684.46	\$31,283.44

All work was carried out on claim 3013761.

Discussion of Results

Soil Geochem Survey

Results of the soil geochem survey can be found in the appendices.

The results do not define any consistent trends across the property but there are some interesting anomalous areas. Significant areas include: west of the 2009 Boulder Trench; west of the 2009 BQ Trench; and an area between the Boulder Trench and the BQ Trench north-northwest of the 2017 trenches 1, 2 and 3. The sampling in the Boulder Trench area is too sparse to define an anomalous trend but it is the most significant area of this limited survey.

Results from around the Cymbal Shaft 2017 trenching and the eastern trenches 1, 2 and 3, though fairly consistently above detectable levels, did not return significant anomalies.

It is interesting to note that almost 75% of the samples from the survey are above the bottom detection limit.

Table 4. Stats from Soil Geochem Survey

	Value	Count	Percentage
Average (ppm)	0.004	245	100
Minimum (ppm)	<0.001 (below detection limit)	63	26
Maximum (ppm)	0.227	1	
Standard Deviation	0.0184		
Between 0.001 and 0.003 (ppm)		104	42
Between 0.003 and 0.005 (ppm)		10	4
Between 0.005 and 0.01(ppm)		8	3
Between 0.01 and 0.1 (ppm)		5	2
Greater than 0.1 (ppm)		3	1

Trenching, Channel Sampling

Mapping of the eastern trenches 1, 2, 3 and Buried Trench was difficult because of the poor exposure. The lithology is mainly inferred from the description of the channel samples. Very few structural measurements were obtained. The trenches did however expose a significant alteration and deformation zone with a general east-northeast strike and steep dip. The deformation is observed in the samples taken but attitudes could not be determined.

The quartz veining is predominantly sugary type described by Pope (2016). Another type of vein, being milky-white, vuggy with sharp contacts oblique to the foliation, was also observed.

Sulphide mineralization observed in the samples includes pyrite, chalcopyrite and possibly sphalerite. On the whole, mineralization is fairly sparse and mainly associated with quartz veining being both in the quartz and in the host close to the vein contacts. Only in the Shaft Trench was pyrite observed in noticeable quantities.

Alteration includes iron carbonate, sericite and silicification.

A description of the channel samples and grab samples can be found in the appendices.

The 2 most significant results returned were from grab samples taken from the Cymbal Shaft (2.82g/t and 2.22g/t). A third grab sample from Trench #3 returned 0.897g/t.

The most consistently significant results from channel sampling came from the Shaft Trench (highest 0.635gt/1.0m) with Trench 5 being the next most consistent (highest 0.292gt/1m).

Maps of the channel and grab sample results can be found in the appendices.

Lab assay certificates can be found in the appendices.

Conclusions and Recommendations

Conclusions

- Though the soil geochemistry did not find significant results in the Cymbal Shaft area or the area of Trenches 1, 2 and 3, it did find anomalous results west of the Boulder Trench which also had anomalous Au from historical rock sampling. Overall the survey does appear to have worked though follow-up is required to confirm the results.
- 2. Stripping did expose significant deformation and alteration in trenches 1, 2 and 3 along with significant quartz veining. Mineralization was sparse and channel samples did not return any consistent results. The stripping exposed the zone over an east-northeast strike length of almost 100m
- 3. Stripping in the Cymbal Shaft area exposed the shear zone upon which the shaft was presumably sunk. Though low, the highest values returned from the channel sampling was from the Shaft Trench immediately west of the shaft. It appears that this shear zone is at the contact of a mafic intrusive and mafic metavolcanics.
- 4. Though the 2017 exploration did not discover any extreme results, this work and previous work indicates that structural, alteration, and lithology favorable for gold emplacement do exist and there is potential for a significant discovery.

Recommendations

1. As it appears that the soil geochem survey was successful, continuation of the survey to fill in the holes west of the Boulder Trench, south of Trenches 1, 2 and 3 and eastward to the west edge of the Reid Vein.

- 2. Re-establish the existing grid to be used as control for further work.
- 3. An IP survey is strongly recommended to at least cover the same area as the 2017 soil geochem survey and the continued survey recommended above. The mineralization observed in the Shaft Trench may be concentrated enough to produce an IP response. The alteration observed in Trenches 1, 2 and 3 could respond to a resistivity survey to helpdetermine whether this zone can be traced to the Boulder Trench or eastward to the South Trench.
- 4. Detailed geological mapping/prospecting/sampling to try and define structural domains and alteration domains. One area of principal interest is the Boulder Trench area.
- 5. Compile all existing data and re-interpret existing property and regional geophysics to help define structure and lithology.
- 6. Based on the results of the above, define targets for possible diamond drilling.

References

- Pope, Pat (2016) Old Cabin Project Prospecting Report, Jacobson Township, Ontario, MNDM Assessment Report (AFRI number not yet assigned)
- Walmsley, J. (2011) Assessment Report on a Mapping/Stripping Program, Jacobson Township, Sault Ste Marie Mining Division, Ontario; for Chalice Diamond Corp; in Ministry of Northern Development and Mines assessment work report files, AFRI number: 20009455
- Sage, R.P. (1993) Geology of Aguonie, Bird, Finan and Jacobson Townships, District of Algoma; Ontario Geological Survey, Open file Report 5588.
- Sage, R.P. (1990) Precambrian Geology, Jacobson Township; Ontario Geological Survey, Preliminary Map P.3170, scale 1:15,840
- Lake Godin Mining Syndicate (1938); Reid Property; in Ministry of Northern Development and Mines assessment work report, AFRI number: 42C08SW0148

Certificate of Qualifications

I, John R. Walmsley, B.SC., residing at RR #1, Richards Landing, Ontario, do certify that:

- 1. I am a contract geologist of PensInk Information Technologies Ltd.
- 2. I graduated with a Bachelor of Science in Geology from the University of Western Ontario in 1984.
- 3. I am a member of the Prospectors and Developers Association of Canada.
- 4. I have been employed continuously as a geologist for the past 33 years since my graduation from University
- 5. I have had prior involvement with the property that is the subject of the Assessment Report in conducting exploration work in 2009 and 2011
- 6. I completed portions of the work described in this report and supervised all other work completed and I am the sole author of this Technical Report
- 7. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.

Dated this 27th day of December, 2017.

John R. Walmsley, B.Sc.

Appendix A – Claim Schedule

Claim Number	Date Due	Recording Date	Required	Township/Area	GPlan	Units
1228575	12/05/2019	12/05/1998	\$2400	JACOBSON	M-1583	6
3013761	13/04/2019	13/04/2004	\$6000	JACOBSON	M-1583	15
3013762	13/04/2019	13/04/2004	\$1200	JACOBSON	M-1583	3
4218098	10/06/2019	10/06/2009	\$3600	JACOBSON	M-1583	9

Appendix B - Sample Descriptions

Channel Sample Descriptions

Sample Number	Trench	Width (m)	Description
50101	Trench 1	1.00	mafic to intermediate voclanic (tuff?), medium light grey-green, moderayely soft, easily scratched with a knife <1% py as disseminated patches and subhedral to euhedral crystals, some appear to be replacing host fragments weak foliation weak to locally mod sericite as light tan wisps mod rust to white carb alteration, no reaction to HCl non-magnetic
50102	Trench 1	1.00	mafic to intermediate voclanic (tuff?), medium light grey-green, moderayely soft, easily scratched with a knife <1% py as disseminated patches and subhedral to euhedral crystals, some appear to be replacing host fragments weak foliation weak to locally mod sericite as light tan wisps mod rust to white carb alteration, no reaction to HCl non-magnetic
50103	Trench 1	1.00	mafic to intermediate voclanic (tuff?), medium light grey-green, moderayely soft, easily scratched with a knife <1% py as disseminated patches and subhedral to euhedral crystals, some appear to be replacing host fragments weak foliation weak to locally mod sericite as light tan wisps mod rust to white carb alteration, no reaction to HCl non-magnetic
50104	Trench 1	1.00	as 50101 mod to strong shearing, brecciated at contacts with qv strong brown cb alteration near qc contacts, frags partially replaced by cb 20% qv, milky-white, barren with limonite coated vugs & cracks no visible min
50105	Trench 1	1.00	as 50101, strongly sheared, sample quyite broken, no fresh faces silicified, strong tan ser, mod cb alertation - brown, weathered <1% very fine grained disseminated (vfgd) py in host 1-2% qtz patches
50106	Trench 1	1.00	more mafic in appearance than 50101, med grey-green, mod soft, no reaction to HCl 1% discontinuous, irreg chl filled fract 1-2% wispy tan ser? Leucoxene? Tr vfgd py blebs

Sample Number	Trench	Width (m)	Description
50107	Trench 1	1.00	as 50106 <1% very fgd py as anhedral to subhedarl crytals and blebs
50108	Trench 1	1.00	as 50106 3-5% vfgd black flecks (biotite?) tr py
50109	Trench 2	1.00	mafic to intermediate volcanic mod-strong ser/sil/cb alteration 15% qtz/cb 1% vfgd py as blebs, mainly in qtz, minor in host 1-2% chl clots in host mod foliation
50110	Trench 2	1.00	as 50109, faint brecciation, crackled 1-2% very vfgd py strong sil alt'n
50111	Trench 2	0.80	int to mafic volc, med grey-green mod-strong shear, local mod sil weak overall, mod to strong cb tr py
50112	Trench 2	1.00	75% qv, 25% host (too broken for descrip) qv milky-white with 10% limonite lined vigs qv with yellowish, cg cb patches tr vfg py in sheared host at contact with qv
50113	Trench 2	1.00	90% qv as 50112 qv barren, 15% cb 5% chl alt host inclusions no visible min.
50114	Trench 2	1.00	as 50112, 5% vfgd py in host along contacts and minor vfgd py as blebs and patches along fract in qtz
50115	Trench 2	1.00	mafic to int volcanic, fg, med grey-green, mod hard mod to strong cb alt'n, weak ser 3% qs' no visible min
50116	Trench 3	1.00	mafic volcanic, med grey-green, weak sh weak to mod ser, sil, cb sil patchy with locally up to 1% associated vfgd py <1% subhedral to anheadral py overall

Sample Number	Trench	Width (m)	Description
50117	Trench 3	0.85	as 50116 local strong sh and sil with up tp 3% vfgd assocaited py and discontinuos py stringers no qs' patchy to perv cb alt'n
50118	Trench 3	0.05	intensley sheared, crenulated, sil host - laminated, poss mylonite? Strong sil and cb alt'n 5% vuggy qv, milky-white shearing near perpendicular to qv contact axis of crenulation oblique to qv contact <1% vfgd py as patches & subhedral crystals in host
50119	Trench 3	1.00	as 50118, less intense shearing patchy tan-brown cb with lighter, thin feathered reaction rims minor fg py patches
50120	Trench 3	1.00	assay duplicate of 50119
50121	Trench 3	1.00	as 50118, sheared but no crenualation 30% qtz/cb weining, cb as waxy off-white, cg patches in qtz 2 flecks of rust-brown patches along qtz contact - sphalerite?, no observable streak
50122	Trench 3	1.00	as 50118, mod shear, mod sil, no cren 25% qtz/cb veining, qtz milky-white transucent, cb as off-white waxy cg patches with rust-brown rims
50123	Trench 3	1.00	mafic-int volcanic, med grey-green, weak to mod chl alt'n 15% qtz/cb veinlets, cb as waxy patchs in qtz with light tan-brown, thin rims mod sh, weak to mod cb, weak ser tr vfgd py in host
50124	Trench 3	1.00	as 50118/50122, strong chl alt'n, no crenulation <5% qtz/cb tr py in host
50125	Trench 3	0.85	sample quite broken strong sh, mafic volcanic strong chl/sil/cb.ser, no crenulation laminated alt'n tr py <5% milky-white qtz patches
50126	Trench 3	0.50	60% qtz/cb veining, 40% host as 50123 qtz is vuggy (weathered out cb patches) host quite broken, strongly sheared, strong chl alt'n tr py in host

Sample Number	Trench	Width (m)	Description
50127	Trench 3	1.00	60% qtz/cb, host weakly sh, less chl alt'd than 50126 cb as patches in qtz <1% vfgd py blebs and patches in qtz, no visible py in host host bleaced within 1cm of qtz contact
50128	Trench 3	1.00	as mod sh, mod sil, no crenulation strong chl alt'n tr py
50129	Shaft Trench	1.00	mg, massive mafic volc, mod hard mod patchy to perv cb alt'n, ready mod reaction to HCl tr ubiquetous, fg-mg subhed-anhedral py 3 fg wispy leucoxene
50130	Shaft Trench	1.00	60% host as 50129 40% sil/cb/chl host, weak to mod sh patchy, ready reaction to HCl <1% vgfd py
50131	Shaft Trench	1.00	mafic volcanic, strong, perv cb alt'n, ready reaction to HCI, mod soft mod foliation perp to channel cut <1% vfgd med grain subhedral dissem py
50132	Shaft Trench	1.00	as 50131 5% discontinuous qtz stringers, some boudin qtz belbs qtz with rust cb qtz appears recrystalized, sugary tr py in host
50133	Shaft Trench	1.00	as 50129
50134	Shaft Trench	0.75	as 50129 very strong perv cb alt'n, strong ready reaction to HCl lineation perp to channel cut tr py
50135	Shaft Trench	1.00	mafic volcanic, sil/cb/chl alt'n, cb patchy react'n to HCl 15% qtz blebs, patches and discontinuous stringers sample quite broken fol weak to mod tr py as patches and vfgd both in host and qtz

Sample Number	Trench	Width (m)	Description
50136	Shaft Trench	1.00	as 50129 weak sh, locally mod <5% boundined qtz patches, milky-white with rust cb satining tr py in host strong perv react'n to HCL
50137	Shaft Trench	0.50	as 50129, weak sh weak patchy cb no visible min
50138	Shaft Trench	1.00	as 50129 weak lineation/sh weak to strong perv react'n to HCI <1% diffuse cb stringers, very strong react'n to HCI trace ubiquetous py, vfd
50139	Shaft Trench	1.00	as 50129/50138, sample quite broken
50140	Shaft Trench	1.00	sample duplicate of 50139
50141	Shaft Trench	1.00	25% as 50129/50138, 65% broken, mod sh, mod sil host 10% qtz patches and disctinuous stringers, qtz appears recryst, sugary weak to mod react'n to HCl along fract in qtz <1% fgd subhedral py and py patches in hostno visible min in qtz
50142	Shaft Trench	1.00	as 50129/50138 minor disc, irreg cb stringers, strong react'n to HCI weak lin/sh tr py
50143	Shaft Trench	1.00	mg mfic volc, quite soft, strong chl alt'n weak patchy reaction to HCl, 5% cb 1-2% fg wispy leucoxene tr py
50144	Trench 5	1.00	mafic volc, fg-mg, mod dark grey-green weak to mod patchy react'n to HCl fairly soft, non-magn tr fg subhedral, ubiquetous py
50145	Trench 5	1.00	as 50144
50146	Trench 5	1.00	sample quite broken, as 50147 strong sh minor qtz/cb

Sample Number	Trench	Width (m)	Description
50147	Trench 5	1.00	sample quite broken strong chl alt'n, very soft, strong sh
	Trench 5	1.00	more competent pieces as 50144 5% irreg qtz/cb stringers <1% vfgd py in host along qtz contacts
50148	Trench 5	1.00	mafic volc, strong chl, cb alt'n, strong sh cb oth ank (rust to tan coloured) with delayed, weak react'n to HCl and cbv with mod ready react'n to HCl sample quite broken 5-10% qtz/cb, qtz recryst, sugary tr py in host

Grab Sample Descriptions

Sample Number	Date (2017)	Description
138016	Sept 14	
		old trench west of Cymbal shaft
		mafic volcanic, med dark grey-greenm, fg, , mod to strong sh almost schistose mod soft
		weak spotty rect'n to HCl strong chl alt'n, especially along shear faces
		3% qtz/cb stringers
420047	Cont 44	minor vfgd py
138017	Sept 14	as 139016
138018	Sept 14	
		Cymbal shaft rubble mafic volcanic, med dark grey green, mod soft
		strongly sheared
		weak spoty reaction to HCL, mod stretched patches of ank alt'n 3-5% fg brown mica
		<1% vfgd py
138019	Sept 14	
		Cymbal shaft east wall as 138018
		mafic volcaninc, strong chl alt'n, strong, ready react'n to HCl, cb perv and as irreg discontinuous stringers
		minor qtz assoc. with cb stringers tr py
		mod sh
138020	Sept 14	Complete the fit was to wall
		Cymbal shaft west wall as 138019
		strong sh
138021		rust brown ank cb plus spotty to perv ready react'n to HCl
138022	Sept 27	tag discarded
100022	00pt 27	grab from west wall of old trench beside Trench 3
		qv, milky-white, translucent
		5-10% brown cb patches, slow weak react'n to HCl minor weak react'n to HCl along fract
		5-10% chl alt'd host inclusions
		no visible min

Sample Number	Date (2017)	Description
138023	Oct 17	grab from Trench 3, unknown location within trench mafic to int volc, sh mod cb/chl alt'n, weak sil fairly soft tr vfgd py
138024	Oct 17	grab from Trench 3 65% qv as 138022, 35% host as 138023
138025	Oct 17	grab from Trench 3 as 138023 15% qtz/cb veining, cb as cg, off-white to tan patches in qtz host strong sh, stong cb alt'n, weak sil
138026	Oct 17	grab from Trench 3 grab from trench 3 from escavtor strong sh/crenulated strong sil/cb/ser, weak spotty react'n to HCl <1% vfgd py light grey-green, translucent in parts
138027	Oct 17	as 138026
138028	Oct 17	as 138026
138029	Oct 17	grab from Trench 2 north end (buried part of trench) cg mafic volc (gb?) strong chl alt'n non-magnetic mod cb patches, no react'n to HCl mod lineation tr vfgd ubiquetous py
138030	Oct 17	grab from Trench 2 as 138029
138031	Oct 17	grab from Trench 2 as 138029, strong rust weather rhine

Sample Number	Date (2017)	Description
138032	Oct 17	
		grab from Trench 2 qv, 3-4cm, milky-white translucent 5-10% cg ank patches, rust weathered 5% chl/ser alt'd host along contacts minor vfgd py in qtz poss spec cpy in qtz
138033	Oct 17	grab from Trench 2 mfic to int volcanic, mod sh, mod chl alt'n, weak cb/sil alt'n tr py
138034	Oct 17	grab from Trench 2 qv as 138032

Assessment Repo	ort on a Strip	ping Progran	n, Jacobson [*]	Township	

Appendix C – Assay Certificates and QC Certificate of Analysis (ALS)

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017

Account: COMSTOM

CERTIFICATE TB17253553

Project: Old Cabin

This report is for 66 Rock samples submitted to our lab in Thunder Bay, ON, Canada

on 14- NOV- 2017.

The following have access to data associated with this certificate:

DAVID TERRY JOHN WALMSLEY

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
LOG- 22d	Sample login - Rcd w/o BarCode dup
SPL- 21d	Split sample - duplicate
PUL- 32d	Pulverize Split - Dup 85% < 75um
DRY- 22	Drying - Maximum Temp 60C
CRU- QC	Crushing QC Test
PUL- QC	Pulverizing QC Test
CRU- 32	Fine Crushing 90% < 2mm
SPL- 21	Split sample - riffle splitter
PUL- 32	Pulverize 1000g to 85% < 75 um
BAG- 01	Bulk Master for Storage

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	
ME- MS61	48 element four acid ICP- MS	
Au- AA24	Au 50g FA AA finish	AAS

TO: COMSTOCK METALS LTD.
ATTN: JOHN WALMSLEY
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

50140

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017 Account: COMSTOM

Project: Old Cabin

(, , ,									С	ERTIFIC	CATE O	F ANAL	_YSIS	TB172	53553	
Sample Description	Method	WEI- 21	Au- AA24	ME- MS61												
	Analyte	Recvd Wt.	Au	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
	LOR	0.02	0.005	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2
50101		2.59	0.010	0.06	8.36	6.4	310	0.87	0.09	1.17	0.07	52.5	15.8	27	1.27	56.8
50102		2.49	0.010	0.04	7.85	5.4	250	0.64	0.07	1.45	0.11	52.9	14.6	32	1.08	33.8
50103		2.33	0.022	0.17	8.26	8.0	320	0.75	0.18	1.42	0.17	59.4	28.4	37	1.23	69.2
50104		2.45	0.011	0.05	10.25	6.2	450	1.06	0.09	0.85	0.11	53.1	17.2	30	1.89	45.2
50105		2.61	0.013	0.06	8.26	7.4	440	0.81	0.11	2.49	0.10	47.6	15.6	33	1.48	41.5
50106		1.85	0.009	0.09	8.75	21.8	380	0.55	0.05	1.49	0.13	20.8	41.6	184	1.31	118.5
50107		1.87	0.012	0.10	8.65	15.6	290	0.36	0.07	1.49	0.11	12.30	58.5	254	0.95	132.5
50108		3.55	0.006	0.09	6.97	6.8	170	0.40	0.01	4.42	0.19	7.85	44.1	199	0.52	124.0
50109		2.45	0.064	0.14	7.14	5.2	310	0.78	0.12	3.49	0.24	49.6	18.1	45	1.70	128.0
50110		3.35	0.133	0.10	7.06	6.5	420	0.76	0.12	2.40	1.11	43.5	16.4	37	2.10	78.8
50111		2.18	0.018	0.06	7.94	4.3	430	0.83	0.06	2.43	0.21	60.7	16.0	59	2.12	56.6
50112		1.46	0.009	0.04	4.61	1.1	260	0.38	0.01	1.44	0.23	26.2	4.5	21	1.51	44.8
50113		2.28	<0.005	0.01	1.02	2.2	50	0.09	0.01	0.25	0.07	3.97	2.8	25	0.41	7.2
50114		1.75	0.016	0.16	4.09	3.4	220	0.36	0.03	1.70	0.15	9.35	11.7	55	1.20	202
50115		2.91	<0.005	<0.01	9.66	0.2	630	0.95	0.01	2.65	0.05	24.1	24.0	85	2.47	11.2
50116		3.06	0.097	0.04	7.43	3.1	440	1.28	0.01	3.39	0.12	29.7	14.0	8	2.17	40.2
50117		2.54	0.024	0.17	7.46	7.9	270	1.00	0.22	3.05	1.17	54.8	18.9	46	1.61	83.4
50118		2.04	0.018	0.07	7.66	3.2	410	1.03	0.09	0.62	0.28	44.0	6.6	10	2.44	42.5
50119		2.40	0.110	0.17	6.79	7.7	390	0.83	0.18	0.73	1.20	44.1	17.3	12	2.19	137.5
50120		<0.02	0.056	0.17	6.97	7.6	400	0.84	0.18	0.71	1.17	43.8	17.6	13	2.26	136.0
50121		2.44	0.039	0.13	6.20	6.7	370	0.78	0.22	1.53	1.29	34.2	14.9	16	2.05	74.7
50122		2.97	0.008	0.03	6.13	1.8	280	0.77	0.03	1.42	0.54	50.3	10.9	54	1.76	62.9
50123		2.23	0.010	0.06	9.51	2.6	570	0.97	0.02	1.32	0.16	52.9	19.2	56	2.84	83.1
50124		2.51	0.016	0.12	7.82	4.7	440	0.73	0.08	2.77	0.20	16.70	30.2	124	1.77	113.5
50125		1.54	0.064	0.21	7.44	14.5	370	0.89	0.33	0.98	0.91	52.1	27.8	23	2.17	141.5
50126		1.38	0.013	0.06	4.74	2.7	260	0.60	0.08	0.30	0.07	33.4	8.9	32	1.58	34.9
50127		2.23	0.021	0.19	8.06	8.3	380	0.87	0.12	1.37	0.15	42.7	38.7	75	2.19	111.5
50128		2.04	0.015	0.10	8.37	1.7	380	0.67	0.02	3.47	0.24	10.45	42.5	197	1.68	185.0
50129		3.66	0.008	0.02	8.48	14.1	90	0.32	0.02	4.56	0.11	8.34	33.7	34	0.42	9.0
50130		2.74	0.107	0.11	8.86	8.0	250	0.66	0.03	2.93	0.14	9.44	35.5	25	1.34	19.7
50131		3.10	0.219	0.01	8.57	0.6	230	0.70	0.03	3.40	0.06	8.92	31.9	3	1.35	13.3
50132		2.47	0.365	0.02	7.71	1.5	210	0.67	0.03	2.56	0.10	8.97	42.7	3	1.05	15.3
50133		2.43	0.095	0.01	7.39	27.6	150	0.56	0.04	3.04	0.06	8.93	46.0	2	0.68	11.4
50134		2.08	0.005	0.01	8.16	17.4	40	0.26	0.03	4.99	0.05	8.73	33.9	33	0.27	11.4
50135		3.04	0.635	0.28	8.26	1.2	340	0.68	0.04	1.88	0.08	9.94	34.6	26	1.84	36.1
50136		2.42	0.323	0.02	8.49	1.7	320	0.76	0.03	2.52	0.13	10.90	43.0	17	1.70	32.1
50137		1.87	0.020	0.01	7.80	2.4	200	0.56	0.04	1.44	0.07	9.93	47.2	2	0.99	20.6
50138		2.78	0.012	0.05	7.04	1.6	30	0.33	0.03	3.44	0.08	8.96	44.1	1	0.18	40.0
50139		3.52	0.007	0.06	6.97	2.0	10	0.24	0.03	4.67	0.51	7.77	44.0	1	0.14	38.6

3.3

7.15

0.07

10

0.24

0.03

4.83

0.55

8.81

46.9

0.14

39.6

< 0.02

0.006

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017 Account: COMSTOM

Project: Old Cabin

CERTIFICATE OF ANALYSIS TB17253553

									_							
Sample Description	Method Analyte Units LOR	ME- MS61 Fe % 0.01	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10
50101 50102		2.71 3.45	22.1 21.6	0.22 0.15	3.4 3.3	0.033 0.039	0.86 0.72	24.1 24.4	20.9 24.6	0.71 1.06	253 473	1.82 0.56	1.68 1.47	4.4 4.0	27.3 38.0	840 850
50103		3.94	21.1	0.18	3.2	0.049	0.95	27.8	19.9	0.96	733	1.15	1.62	3.4	34.3	900
50104		2.68	24.8	0.11	3.5	0.044	1.40	21.8	18.4	0.51	503	0.86	1.91	4.4	25.8	930
50105		3.15	19.95	0.18	3.0	0.032	1.29	20.6	12.3	1.10	752	0.84	1.76	3.4	26.8	820
50106		6.77	19.70	0.09	1.4	0.063	1.08	11.5	27.9	2.13	997	0.28	1.04	2.1	65.2	480
50107		9.91	19.10	0.07	1.3	0.063	0.78	7.3	32.3	3.34	1150	0.37	0.58	1.8	104.5	360
50108		9.10	15.50	0.05	0.9	0.065	0.45	3.6	28.7	4.05	1420	0.22	0.62	1.9	86.9	310
50109		3.44	19.70	0.07	3.7	0.062	1.60	21.7	9.6	0.77	774	0.71	1.27	1.9	40.3	810
50110		3.01	21.4	0.12	3.8	0.099	2.16	20.4	5.4	0.59	667	2.02	0.77	2.0	32.1	690
50111		3.93	22.1	0.14	4.1	0.062	2.16	26.8	8.7	0.64	999	0.56	1.01	1.6	51.8	1030
50112		2.48	12.80	0.10	3.3	0.056	1.35	12.6	4.8	0.36	676	0.91	0.41	2.1	14.8	240
50113		1.31	3.07	0.05	0.4	0.012	0.26	1.9	2.2	0.16	241	0.56	0.07	0.3	8.9	90
50114		2.43	10.70	0.07	1.5	0.049	1.17	4.7	4.7	0.74	472	0.96	0.28	1.5	31.8	340
50115		5.12	26.7	0.09	2.8	0.036	3.12	10.6	17.7	2.15	686	0.40	0.53	2.3	66.0	620
50116		3.76	21.6	0.14	4.0	0.044	2.13	12.9	13.6	0.88	1020	0.26	0.97	3.1	17.1	650
50117		3.92	20.0	0.18	3.8	0.130	1.52	28.1	15.4	1.23	912	1.20	0.93	2.8	49.3	840
50118		2.06	19.30	0.20	5.1	0.077	2.42	25.3	9.7	0.45	533	1.09	0.57	4.8	10.9	460
50119		2.50	17.50	0.18	4.8	0.159	2.29	24.9	4.2	0.28	603	1.41	0.44	4.1	21.1	410
50120		2.54	17.70	0.17	4.7	0.152	2.36	24.9	4.1	0.28	608	1.54	0.46	4.0	21.3	410
50121		2.43	15.80	0.15	3.6	0.157	2.12	16.2	3.8	0.34	469	1.22	0.37	2.8	18.3	390
50122		3.14	14.80	0.21	2.9	0.058	1.52	25.9	9.6	0.75	762	0.44	0.77	1.4	35.7	670
50123		5.35	25.7	0.17	4.5	0.093	2.86	25.4	20.0	1.60	697	0.70	0.46	2.7	49.1	570
50124		6.48	18.95	0.14	2.3	0.104	1.86	7.5	25.7	2.36	933	0.73	0.24	2.3	77.2	430
50125		3.86	19.75	0.15	5.1	0.178	2.22	25.3	10.3	0.66	603	1.62	0.49	4.4	39.6	490
50126		1.99	11.45	0.14	2.6	0.036	1.40	16.3	4.6	0.28	616	0.78	0.39	1.7	15.9	440
50127		5.49	19.30	0.15	3.3	0.061	2.04	22.8	15.5	1.36	844	0.86	0.65	1.7	67.4	620
50128		9.87	21.0	0.12	1.5	0.082	1.73	5.7	34.6	3.39	1910	0.24	0.29	2.4	116.0	370
50129		9.38	19.35	0.09	0.8	0.073	0.35	3.1	16.5	2.11	1380	0.27	2.96	2.2	36.4	370
50130		9.49	21.9	0.10	1.0	0.090	1.59	3.2	19.9	2.12	1290	0.21	1.50	2.3	32.4	320
50131		9.56	21.5	0.11	1.0	0.080	1.74	2.9	15.9	1.87	1260	0.15	1.37	2.7	14.6	190
50132		11.40	20.9	0.09	1.4	0.089	1.43	2.9	14.5	2.21	1430	0.25	0.24	2.6	8.0	400
50133		12.45	21.0	0.08	1.0	0.097	0.77	2.9	15.4	2.52	1580	0.22	0.65	3.0	2.8	530
50134		9.18	19.20	0.10	0.9	0.064	0.21	3.2	17.3	2.19	1330	0.33	3.04 0.19	2.2	37.1	350
50135		9.19	20.4	0.08	0.8	0.074	2.13	3.4	15.9	1.96	1180	0.36		1.9	31.4	360
50136		10.65	22.0	0.09	1.0	0.100	2.16	3.8	15.9	2.02	1440	0.45	0.22	2.7	24.2	420
50137		12.75	22.5	0.09	1.1	0.094	1.19	3.1	14.7	2.20	1700	0.18	0.52	3.5	4.8	420
50138		12.55	20.8	0.08	0.9	0.091	0.11	2.8	12.5	2.10	1910	0.17	1.65	3.3	2.4	430
50139 50140		12.35 12.65	20.0 20.5	0.07 0.08	0.9 1.0	0.092 0.095	0.03 0.03	2.5 2.8	11.0 11.2	2.05 2.09	1900 1980	0.14 0.13	1.80 1.86	3.0 3.2	2.1 2.1	480 480
30140		12.00	20.5	0.00	1.0	0.055	0.03	2.0	11.4	2.05	1900	0.13	1.00	3.2	۷.۱	400

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - C
Total # Pages: 3 (A - D)
Plus Appendix Pages
Finalized Date: 28- NOV- 2017
Account: COMSTOM

Project: Old Cabin

CERTIFICATE OF ANALYSIS TB17253553 ME- MS61 ME- MS61 ME- MS61 ME- MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME-MS61 ME- MS61 ME- MS61 ME- MS61 ME-MS61 Method Pb Rb Re S Sb Sc Se Sn Sr Ta Te Th Τi ΤI U Analyte % % ppm Units Sample Description LOR 0.5 0.1 0.002 0.01 0.05 0.1 0.2 0.2 0.05 0.05 0.01 0.005 0.02 0.1 0.254 50101 3.5 21.6 < 0.002 0.86 0.19 10.4 1.0 268 0.35 0.05 2.97 0.19 0.6 50102 3.3 18.0 0.002 0.53 0.19 10.3 0.8 231 0.30 0.07 2.89 0.225 0.13 0.6 50103 4.0 22.8 < 0.002 0.56 0.25 10.9 1.0 229 0.26 0.15 2.87 0.206 0.17 0.6 3.9 32.0 < 0.002 0.20 0.18 8.8 1.4 293 0.33 0.11 3.31 0.263 0.27 0.6 50104 2.7 27.5 0.002 0.31 0.19 9.3 <1 0.9 211 0.26 2.56 0.217 0.22 50105 0.10 0.5 2.3 26.0 0.8 154.5 0.343 0.2 50106 < 0.002 0.33 0.23 36.8 0.12 0.05 0.95 0.21 2.0 18.9 < 0.002 0.33 0.17 45.4 0.6 91.7 0.10 0.45 0.393 0.14 0.1 50107 0.11 < 0.002 36.5 82.4 < 0.05 0.25 0.08 < 0.1 50108 1.0 10.7 0.07 0.12 0.4 0.14 0.435 50109 4.2 36.0 0.002 0.66 0.11 8.7 2 0.9 176.0 0.13 0.20 3.61 0.202 0.33 8.0 3.6 51.1 8.3 2 0.9 50110 < 0.002 0.72 0.12 140.0 0.17 0.24 3.34 0.180 0.40 8.0 3.7 48.8 0.20 10.8 0.8 150.5 0.07 4.30 0.217 0.37 0.9 50111 <0.002 0.12 0.10 50112 2.2 34.4 < 0.002 0.01 0.11 5.4 <1 1.5 75.4 0.18 < 0.05 2.37 0.094 0.23 0.6 0.5 6.8 < 0.002 < 0.01 0.07 1.4 0.2 11.5 < 0.05 < 0.05 0.19 0.018 0.07 0.1 50113 28.9 < 0.002 6.6 0.9 56.7 0.21 0.3 50114 1.9 0.10 0.13 0.10 0.10 1.24 0.123 1.9 47.2 0.003 < 0.01 0.09 18.3 <1 101.5 0.17 < 0.05 1.47 0.268 0.51 0.4 50115 1.1 12.6 0.9 50116 2.8 41.9 < 0.002 0.18 0.08 <1 157.5 0.25 < 0.05 1.63 0.230 0.41 0.4 50117 5.5 38.6 0.003 0.63 0.13 10.2 1.7 189.5 0.20 0.31 3.84 0.302 0.28 0.9 131.5 3.6 63.0 < 0.002 0.09 8.7 <1 0.41 3.36 0.241 0.46 0.9 50118 0.15 1.8 0.15 4.0 60.8 < 0.002 0.93 0.13 6.9 1.8 99.9 0.39 0.34 3.60 0.168 0.44 0.9 50119 50120 4.2 62.0 < 0.002 0.94 0.13 7.1 1.8 101.0 0.37 0.43 3.60 0.167 0.46 1.0 3.9 56.7 <0.002 1.00 6.1 1.4 89.2 0.24 0.42 2.63 0.157 0.42 0.7 50121 0.15 50122 2.7 41.4 0.002 0.09 0.07 8.2 <1 0.9 98.2 0.09 < 0.05 3.29 0.189 0.32 0.7 < 0.05 50123 2.6 74.1 0.002 0.05 0.09 16.8 <1 1.9 107.5 0.24 3.51 0.239 0.52 0.7 50124 2.1 32.1 < 0.002 0.18 0.11 29.6 1.1 74.3 0.16 0.13 1.01 0.375 0.33 0.3 4.8 58.9 0.002 1.45 0.14 8.0 2 2.0 113.5 0.38 4.24 0.180 0.45 1.1 50125 0.68 2.5 38.9 0.002 0.25 0.10 5.4 0.9 68.2 0.14 0.09 2.22 0.121 0.28 0.5 50126 50127 3.9 53.1 0.002 0.79 0.11 14.8 1.2 104.0 0.13 0.23 3.16 0.199 0.41 0.7 1.9 23.8 0.002 0.03 0.13 45.0 <1 1.2 77.0 < 0.05 0.40 0.515 0.38 0.2 50128 0.14 33.7 0.5 0.1 50129 0.6 7.4 0.003 0.02 0.08 <1 105.0 0.14 < 0.05 0.28 0.909 0.03 50130 1.0 25.4 0.002 0.07 0.15 39.6 <1 0.6 91.8 0.15 < 0.05 0.28 0.987 0.13 0.1 31.0 <0.002 37.5 0.5 0.32 50131 1.2 0.20 0.08 107.0 0.18 < 0.05 1.035 0.15 0.1 0.003 42.5 69.9 1.250 50132 0.8 27.0 0.27 0.07 <1 0.4 0.18 < 0.05 0.29 0.11 0.1 <0.002 50133 0.9 15.1 0.33 0.13 46.9 <1 0.5 59.0 0.20 < 0.05 0.31 1.490 0.07 0.1 0.5 < 0.002 0.02 0.08 33.7 0.3 103.0 0.14 < 0.05 0.27 0.851 0.03 0.1 50134 4.1 <1 0.9 41.7 0.003 33.8 0.5 0.13 0.1 50135 0.25 0.11 <1 72.5 < 0.05 0.27 0.874 0.19 1.0 45.4 <0.002 0.29 0.10 41 2 0.5 78.6 0.17 0.05 0.32 1 190 0.19 50136 <1 0.1 23.6 < 0.002 0.26 0.08 51.5 0.5 51.7 0.23 < 0.05 0.37 1.585 0.11 0.1 50137 1.1 1 50138 0.6 2.3 < 0.002 0.16 0.08 47.6 <1 0.3 65.6 0.22 < 0.05 0.28 1.410 0.02 < 0.1 0.6 0.7 < 0.002 0.09 0.3 0.26 0.02 < 0.1 50139 0.17 44.6 1 71.0 0.19 < 0.05 1.345 0.7 0.6 < 0.002 0.17 0.10 45.8 <1 0.3 73.9 0.20 < 0.05 0.26 1.435 < 0.02 < 0.1 50140

To: COMSTOCK METALS LTD.
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017 Account: COMSTOM

Project: Old Cabin

(, , , ,							CERTIFICATE OF ANALYSIS TB17253553
	Method Analyte	ME- MS61 V	ME- MS61 W	ME- MS61 Y	ME- MS61 Zn	ME- MS61 Zr	
Sample Description	Units LOR	ppm 1	ppm 0.1	ppm 0.1	ppm 2	ppm 0.5	
50101		80	0.2	8.2	63	131.5	
50102		78	0.2	8.7	96	127.5	
50103		81	0.3	8.7	82	120.5	
50104		81	0.5	6.8	46	133.0	
50105		76	0.4	6.7	52	114.0	
50106		248	0.6	7.4	132	51.7	
50107		316	0.9	7.0	171	39.7	
50108		266	0.4	5.1	124	28.0	
50109		90	1.4	8.0	126	142.5	
50110		86	1.5	8.4	350	145.5	
50111		95	1.0	10.2	129	155.5	
50112		33	2.2	6.5	100	127.5	
50113		12	0.2	1.3	38	13.3	
50114		52	1.7	3.2	90	58.3	
50115		157	1.2	5.3	207	108.5	
50116		105	1.7	9.3	86	152.5	
50117		79	0.9	9.7	340	140.0	
50118		54	1.3	11.0	117	190.5	
50119		34	1.0	10.0	346	171.5	
50120		35	1.1	10.2	355	176.0	
50121		34	0.8	7.4	350	130.0	
50121		73	0.9	7.0	201	108.5	
50123		117	1.3	7.9	246	165.0	
50124		218	1.7	6.2	246	83.5	
50125		45	1.1	10.5	352	190.5	
50126		43	1.0	6.3	48	96.8	
50127		124	1.0	7.3	189	125.0	
50128		295	3.3	5.8	413	56.2	I
50129		389	1.3	20.0	90	33.0	
50130		434	18.9	18.1	89	35.7	
		338	12.0	16.8	97	41.0	
50131 50132		228	12.0 18.2	16.8 16.0	97 102	41.0 35.7	
50132		226 185	12.3	15.3	79	39.5	
50134		368	4.8	19.6	79 86	36.2	
50135		374	9.7	16.8	77	30.2	
50136		348	13.9	18.5	90	39.9	
50137		206	6.3	17.4	94	46.4	l l
50138		170 167	5.3	18.6	103	41.8	
50139 50140		167 172	4.5 4.9	14.9 15.4	138 141	36.6 33.1	
30140		172	7.3	13.4	1+1	JJ. I	

^{*****} See Appendix Page for comments regarding this certificate *****

138034

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - A
Total # Pages: 3 (A - D)
Plus Appendix Pages
Finalized Date: 28- NOV- 2017
Account: COMSTOM

Project: Old Cabin

(ALS)											CERTIFICATE OF ANALYSIS TB17253553								
Sample Description	Method	WEI- 21	Au- AA24	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61										
	Analyte	Recvd Wt.	Au	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu			
	Units	kg	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm			
	LOR	0.02	0.005	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2			
50141		2.77	0.071	0.04	6.36	1.6	20	0.26	0.02	3.55	0.09	6.89	36.0	3	0.23	30.6			
50142		3.27	0.080	0.02	6.71	9.6	30	0.29	0.03	3.78	0.08	9.28	43.3	2	0.29	27.1			
50143		2.42	0.009	0.01	7.48	2.4	20	0.34	0.02	3.47	0.07	9.01	29.7	16	0.23	8.4			
50144		3.15	<0.005	0.02	8.05	8.3	100	0.27	0.02	4.77	0.06	8.82	30.8	8	0.43	19.2			
50145		4.05	0.009	0.03	7.81	10.2	180	0.29	0.02	3.28	0.08	8.18	38.4	10	0.68	34.7			
50146		2.47	0.054	0.04	8.38	1.3	460	0.67	0.02	1.29	0.14	10.95	44.9	11	1.72	59.4			
50147		2.36	0.136	0.05	8.87	1.5	490	0.69	0.02	0.95	0.20	14.40	42.2	8	1.99	37.1			
50148		2.99	0.292	0.05	6.51	13.4	390	0.53	0.03	1.96	0.97	9.37	27.2	8	1.25	23.9			
138016		1.46	0.014	0.01	8.07	1.2	90	0.28	0.02	3.90	0.04	9.59	39.3	11	0.28	23.6			
138017		2.15	0.007	0.01	8.02	4.6	380	0.39	0.02	5.99	0.04	9.75	34.5	10	0.89	23.8			
138018		2.16	2.82	0.22	9.04	718	480	1.12	0.07	2.06	0.06	4.10	52.1	3	2.57	116.0			
138019		1.44	2.22	0.21	7.11	7.7	190	0.65	0.03	6.10	0.08	10.30	34.4	3	1.06	26.3			
138020		0.91	0.161	0.02	7.92	5.8	250	0.55	0.03	7.00	0.08	9.88	31.1	2	1.33	21.1			
138022		0.89	0.018	0.11	0.70	2.1	30	0.06	0.06	1.31	0.67	3.39	3.7	20	0.37	61.9			
138023		1.24	0.007	0.04	7.00	1.6	440	0.86	0.05	0.21	0.36	34.1	5.8	9	2.61	21.9			
138024		1.59	0.897	0.17	1.55	2.2	80	0.20	0.04	4.12	1.26	18.55	2.3	19	0.66	217			
138025		1.36	0.024	0.13	3.35	1.8	220	0.37	0.02	3.93	0.48	357	15.6	15	1.29	149.0			
138026		1.52	0.012	0.07	6.76	3.8	410	0.80	0.10	0.27	0.39	50.3	7.1	7	2.44	39.3			
138027		1.72	0.031	0.26	8.16	12.4	380	1.12	0.25	1.89	0.88	68.3	27.3	41	2.21	162.5			
138028		1.76	0.048	0.23	6.39	11.3	340	0.82	0.30	0.78	0.60	35.4	20.7	13	2.06	92.3			
138029		0.58	0.008	0.07	7.85	2.3	240	0.67	0.09	1.21	0.11	50.5	14.6	27	0.93	10.0			
138030		1.72	<0.005	0.04	7.53	1.3	90	0.36	0.02	1.21	0.07	42.0	9.1	23	0.40	132.5			
138031		1.03	0.051	0.30	8.24	10.4	250	0.65	0.12	1.00	0.24	37.7	26.3	57	0.98	37.5			
138032		1.88	0.005	0.03	1.24	0.8	70	0.15	0.01	4.61	1.18	9.87	1.5	19	0.55	50.0			
138033		2.36	0.057	0.17	8.13	13.5	210	0.68	0.09	2.07	0.15	48.7	27.4	54	0.93	36.2			

2.46

<0.005

<0.01

0.38

8.0

20

<0.05

0.01

0.30

0.06

5.13

1.8

22

0.21

4.9

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

Total # Pages: 3 (A - D)
Plus Appendix Pages
Finalized Date: 28- NOV- 2017
Account: COMSTOM

Project: Old Cabin

(ALS	,								CERTIFICATE OF ANALYSIS TB17253553								
Sample Description	Method	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61								
	Analyte	Fe	Ga	Ge	Hf	In	K	La	Li	Mg	Mn	Mo	Na	Nb	Ni	P	
	Units	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	
	LOR	0.01	0.05	0.05	0.1	0.005	0.01	0.5	0.2	0.01	5	0.05	0.01	0.1	0.2	10	
50141		11.25	17.95	0.07	0.7	0.072	0.03	2.3	10.0	1.90	1740	0.15	1.58	2.5	2.1	470	
50142		11.70	19.55	0.06	0.9	0.081	0.06	3.0	9.4	2.02	1930	0.17	1.75	3.0	2.8	520	
50143		8.92	18.50	0.06	1.6	0.077	0.05	3.1	11.9	2.19	1380	0.20	2.68	2.6	13.8	640	
50144		9.39	18.95	0.07	1.1	0.067	0.40	3.3	11.9	1.88	1400	0.14	2.75	2.6	23.0	470	
50145		9.69	19.30	0.06	1.1	0.074	0.74	3.0	13.3	2.00	1320	0.15	2.06	2.6	30.5	460	
50146		10.45	21.3	0.10	0.9	0.086	2.26	3.9	14.0	1.91	1520	0.28	0.24	3.2	30.1	510	
50147		10.50	21.6	0.10	1.1	0.093	2.38	4.9	14.1	1.97	1500	0.25	0.34	3.6	32.9	460	
50148		7.89	16.05	0.08	1.0	0.075	1.54	3.0	10.1	1.71	1160	0.31	0.31	2.4	15.6	290	
138016		10.00	18.65	0.08	1.1	0.075	0.25	3.4	10.2	2.08	1310	0.20	2.72	2.8	28.2	450	
138017		9.77	19.05	0.08	1.1	0.072	1.10	3.4	11.9	2.02	1460	0.20	1.53	2.7	27.7	470	
138018		9.45	25.2	0.10	1.1	0.094	4.04	1.3	8.1	0.48	598	0.47	0.30	2.3	19.2	550	
138019		8.75	19.05	0.07	0.9	0.062	1.38	3.7	10.4	1.71	1280	0.68	0.33	2.7	15.4	420	
138020		8.59	20.1	0.09	0.9	0.072	1.90	3.3	11.8	1.66	1410	0.27	0.58	2.5	10.9	450	
138022		1.12	1.90	0.05	0.5	0.067	0.21	2.1	1.2	0.10	446	0.73	0.05	0.4	4.5	290	
138023		1.53	18.25	0.11	5.0	0.044	2.51	17.0	5.3	0.35	411	0.94	0.37	3.7	8.8	310	
138024		1.22	3.98	0.09	1.2	0.158	0.49	9.4	1.2	0.15	899	0.78	0.13	1.0	4.0	100	
138025		5.17	10.80	0.39	1.9	0.099	1.11	153.0	2.1	0.84	1710	1.03	0.22	1.0	29.3	1080	
138026		1.25	18.30	0.11	5.6	0.081	2.52	25.7	3.2	0.18	221	1.42	0.40	3.9	8.4	230	
138027		3.28	22.5	0.17	4.8	0.152	2.18	36.3	8.7	0.69	779	4.25	0.77	4.6	35.4	920	
138028		2.54	15.90	0.11	4.8	0.111	2.10	18.5	4.7	0.29	470	1.70	0.47	3.5	22.7	280	
138029		2.85	20.3	0.13	2.9	0.032	0.80	24.3	9.2	0.87	499	0.32	3.97	3.1	25.1	810	
138030		2.72	15.05	0.12	3.5	0.031	0.29	19.2	9.1	0.90	547	0.42	4.73	3.0	17.8	700	
138031		5.44	20.4	0.12	2.6	0.037	0.83	20.4	14.3	0.94	1250	1.20	3.35	2.2	47.4	720	
138032		2.67	3.64	0.06	0.9	0.098	0.37	4.8	1.0	0.52	1010	0.72	0.13	0.4	5.4	80	
138033		4.94	19.20	0.11	2.8	0.035	0.83	21.9	13.6	1.18	1300	1.16	3.03	2.2	48.0	960	
138034		1.23	1.00	<0.05	0.1	0.015	0.06	2.6	0.5	0.04	276	0.50	0.07	0.2	2.9	60	

^{*****} See Appendix Page for comments regarding this certificate *****

138034

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - C
Total # Pages: 3 (A - D)
Plus Appendix Pages
Finalized Date: 28- NOV- 2017
Account: COMSTOM

Project: Old Cabin

<0.2

11.1

<0.05

<0.05

0.10

0.012

<0.02

<0.1

(ALS	,								CI	ERTIFIC	CATE O	F ANAL	YSIS	TB172	53553	
Sample Description	Method	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61
	Analyte	Pb	Rb	Re	S	Sb	Sc	Se	Sn	Sr	Ta	Te	Th	Ti	Tl	U
	Units	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
	LOR	0.5	0.1	0.002	0.01	0.05	0.1	1	0.2	0.2	0.05	0.05	0.01	0.005	0.02	0.1
50141 50142 50143 50144 50145		<0.5 0.6 0.6 0.5	1.2 1.9 1.7 8.7 13.4	<0.002 0.002 <0.002 0.002 0.002	0.14 0.17 0.05 0.05 0.06	0.07 0.10 0.08 0.06 0.08	39.4 44.1 34.9 33.1 32.3	<1 <1 <1 <1 1	0.3 0.4 0.6 0.4 0.6	56.6 61.5 71.2 78.7 67.5	0.16 0.20 0.17 0.17 0.16	<0.05 <0.05 <0.05 <0.05 <0.05	0.20 0.27 0.33 0.30 0.28	1.180 1.405 1.100 0.970 0.956	<0.02 <0.02 <0.02 0.03 0.07	<0.1 0.1 0.1 0.1 0.1
50146		0.9	40.6	0.002	0.05	0.11	37.6	<1	0.6	38.2	0.19	<0.05	0.33	1.080	0.21	0.1
50147		1.6	46.5	<0.002	0.06	0.17	38.6	<1	0.7	30.6	0.20	<0.05	0.43	1.100	0.22	0.1
50148		3.4	29.9	<0.002	0.23	0.08	25.7	<1	0.4	30.8	0.15	<0.05	0.36	0.786	0.12	0.1
138016		<0.5	5.2	0.003	0.07	0.10	33.8	<1	0.5	50.7	0.18	<0.05	0.28	1.010	<0.02	0.1
138017		<0.5	20.9	0.003	0.10	0.09	34.6	<1	0.5	57.2	0.17	<0.05	0.26	1.020	0.09	0.1
138018		6.8	70.9	0.004	5.92	0.44	33.6	3	0.7	118.5	0.16	0.09	0.26	1.005	0.30	0.1
138019		3.2	27.7	0.003	0.55	0.17	29.5	<1	0.5	126.5	0.19	<0.05	0.27	0.898	0.13	0.1
138020		1.4	38.8	0.004	0.40	0.11	31.1	<1	0.4	137.0	0.17	<0.05	0.24	0.907	0.17	0.1
138022		1.5	5.3	<0.002	0.12	0.10	0.9	<1	0.2	20.9	<0.05	0.06	0.31	0.021	0.04	0.1
138023		3.6	69.1	<0.002	0.11	0.11	6.5	<1	1.4	87.7	0.34	0.10	3.60	0.163	0.47	0.8
138024		3.3	12.9	<0.002	0.09	0.10	1.4	1	0.5	70.1	0.09	0.06	0.94	0.036	0.10	0.2
138025		2.8	29.1	<0.002	0.03	0.11	8.2	<1	0.7	61.7	0.10	<0.05	3.85	0.049	0.21	0.4
138026		3.5	68.6	0.002	0.40	0.11	5.4	1	1.6	95.4	0.34	0.24	3.80	0.142	0.50	0.9
138027		6.9	53.9	0.005	0.83	0.18	11.3	1	1.8	176.0	0.37	0.51	4.31	0.239	0.47	1.1
138028		4.4	57.8	<0.002	0.89	0.12	5.6	2	1.6	105.5	0.34	0.56	3.59	0.129	0.42	0.9
138029		2.3	20.7	<0.002	0.10	0.11	8.6	<1	0.6	113.5	0.26	<0.05	2.40	0.191	0.17	0.5
138030		1.6	7.6	<0.002	0.03	0.10	7.6	<1	0.4	74.9	0.25	<0.05	2.40	0.168	0.06	0.5
138031		6.7	22.4	<0.002	1.35	0.30	12.2	1	0.5	121.5	0.17	0.06	2.00	0.184	0.32	0.4
138032		1.6	9.5	<0.002	0.02	0.08	1.1	1	0.4	33.4	<0.05	<0.05	0.56	0.019	0.06	0.1
138033		7.6	20.0	<0.002	1.17	0.32	11.2	<1	0.5	157.5	0.17	<0.05	2.05	0.178	0.20	0.4

<0.5

1.5

<0.002

<0.01

0.08

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - D
Total # Pages: 3 (A - D)
Plus Appendix Pages
Finalized Date: 28- NOV- 2017
Account: COMSTOM

Project: Old Cabin

(ALS)							CERTIFICATE OF ANALYSIS TB17253553
Sample Description	Method Analyte Units LOR	ME- MS61 V ppm 1	ME- MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	
50141		157	14.9	9.8	101	26.1	
50141		175	39.8	12.1	97	42.7	
50142		239	3.8	21.9	69	52.0	
50143		377	0.9	24.8	84	48.2	
50145		380	1.2	25.7	90	42.3	
50146		425	3.9	23.0	92	35.1	
50146 50147		423 423	5.9 6.5	25.0 25.0	93	52.1	
50147		230	4.7	25.0 17.6	125	35.4	
138016		377	0.8	29.2	94	38.0	
138017		397	1.8	23.9	91	36.7	
138018		382	10.9	16.1	48	42.8	
138019		284	15.0	15.8	99	35.1	
138020		296	41.5	14.6	104	32.5	
138022		6	0.2	1.7	162	15.5	
138023		29	0.5	8.8	129	174.0	
138024		6	0.3	5.7	363	43.6	
138025		30	0.3	14.4	115	67.7	
138026		18	0.7	10.1	128	198.0	
138027		68	1.5	12.8	271	178.5	
138028		23	0.9	9.0	190	167.5	
138029		70	0.2	6.5	53	102.5	
138030		58	0.2	7.9	63	127.5	
138031		96	0.3	7.4	128	94.0	
138032		4	0.1	3.5	372	29.8	
138033		91	0.3	6.7	101	106.5	
138034		5	<0.1	1.7	11	4.0	

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 28- NOV- 2017 Account: COMSTOM

Project: Old Cabin

CERTIFICATE OF ANALYSIS TB17253553

		CERTIFICATE COM	MMENTS	
		ANAL	TICAL COMMENTS	
Applies to Method:	REE's may not be totally s ME- MS61	coluble in this method.		
		LABOR	ATORY ADDRESSES	
	Processed at ALS Thunde	r Bay located at 645 Norah Crescent,		
Applies to Method:	BAG- 01	CRU- 32	CRU- QC	DRY- 22
	LOG- 22	LOG- 22d	PUL- 32	PUL- 32d
	PUL- QC	SPL- 21	SPL- 21d	WEI- 21
	Processed at ALS Vancou	ver located at 2103 Dollarton Hwy, No	orth Vancouver, BC, Canada.	
Applies to Method:	Au- AA24	ME- MS61	, ,	

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET **VANCOUVER BC V6C 1E1**

Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017

Account: COMSTOM

QC CERTIFICATE TB17249931

Project: Old Cabin Property

This report is for 245 Soil samples submitted to our lab in Thunder Bay, ON, Canada on 14- NOV- 2017.

The following have access to data associated with this certificate:

DAVID TERRY JOHN WALMSLEY

ALS Canada Ltd.

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
SCR- 41	Screen to - 180um and save both

	ANALYTICAL PROCEDURES	5
ALS CODE	DESCRIPTION	INSTRUMENT
Au- TL43 ME- MS41L	Trace Level Au - 25g AR Super Trace Lowest DL AR by ICP- MS	ICP- MS

To: COMSTOCK METALS LTD. ATTN: JOHN WALMSLEY 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

QC CERTIFICATE OF ANALYSIS TB17249931

Page: 2 - A
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017
Account: COMSTOM

									<u> </u>		ICATE	01 /(14/	AL I DID		27333	•
Sample Description	Method Analyte Units LOR	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME-MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01	ME- MS41L Cs ppm 0.005
							STAN	DARDS								
LEA- 16 LEA- 16 LEA- 16 LEA- 16 LEA- 16 Target Range - Lower	Bound	0.051 0.048 0.053 0.043 0.061 0.482 0.479 0.490 0.494 0.425 0.577 0.672 0.624 0.699 0.587 0.797	0.0038 0.0034 0.0035 0.0033 0.0045 0.354 0.386 0.352 0.430 0.0010 0.0007 <0.0002 0.0004 0.0488 0.0457 0.0448 0.0552	4.47 4.08 4.38 4.01 4.91 0.506 0.519 0.463 0.569 0.090 0.088 0.110 0.251 0.233 0.224 0.276	2.56 2.55 2.50 2.44 3.00 0.76 0.73 0.91 2.44 2.28 2.18 2.68 3.29 3.06 2.98 3.66	29.9 30.9 30.9 29.7 36.3 32.1 29.8 28.5 34.9 4.32 5.06 3.93 4.83 11.65 11.35 11.25 13.75	10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	241 230 211 287 79.4 69.6 67.5 92.5 153.0 137.0 117.5 160.5	0.81 0.77 0.78 0.72 0.90 0.93 0.89 0.83 1.03 0.69 0.70 0.65 0.81 0.44 0.43 0.36 0.46	0.624 0.594 0.627 0.612 0.750 5.41 5.26 5.17 6.32 0.622 0.549 0.611 0.749 0.231 0.217 0.197 0.243	1.00 1.02 1.01 1.00 1.24 0.33 0.32 0.29 0.38 0.33 0.29 0.28 0.37 0.03 0.03 <0.01	2.11 2.02 2.04 2.02 2.47 0.327 0.316 0.305 0.058 0.056 0.070 0.016 0.018 0.018	70.9 66.4 70.2 66.2 81.0 74.4 77.0 72.0 88.0 74.1 69.1 64.8 79.2 18.60 16.85 15.95 19.45	18.35 17.85 18.95 17.10 20.9 13.65 13.75 12.50 15.30 14.15 14.45 13.50 16.50 51.7 50.9 46.8 57.2	88.5 88.3 88.4 82.3 100.5 17.00 16.10 15.85 19.35 41.7 41.6 38.2 46.8 865 806 764 934	10.30 9.50 10.30 9.45 11.55 1.185 1.215 1.185 1.455 1.935 1.885 2.32 0.695 0.655 0.623 0.773
Target Range - Lower Upper	Bound Bound	0.042 0.060														

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

QC CERTIFICATE OF ANALYSIS TB17249931

Page: 2 - B
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017

Account: COMSTOM

								<u> </u>		_	_	_				
Sample Description	Method Analyte Units LOR	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001	ME- MS41L Nb ppm 0.002
							STAN	DARDS								
LEA- 16 LEA- 16 LEA- 16 LEA- 16 Target Range - Lower	Bound Bound	615 633 613 587 675 1580 1510 1455 1670 109.5 108.5 102.5 117.5 732 693 659 759	3.47 3.55 3.50 3.23 3.95 3.44 3.31 3.15 3.85 3.62 3.39 3.27 3.99 23.4 22.5 20.4 25.0	9.07 9.08 9.67 8.77 10.75 6.13 6.08 5.78 7.08 6.29 6.29 6.17 7.55 12.55 12.15 11.25 13.75	0.166 0.176 0.178 0.161 0.207 0.101 0.135 0.107 0.112 0.100 0.134 0.402 0.399 0.319 0.401	0.697 0.682 0.731 0.658 0.808 1.150 1.160 1.095 1.345 0.552 0.547 0.673 0.860 0.800 0.703 0.863	0.053 0.052 0.059 0.047 0.075 0.013 0.012 0.005 0.023 <0.004 <0.004 0.008 0.009 0.008 <0.004 0.020	0.154 0.154 0.139 0.151 0.137 0.179 0.547 0.540 0.517 0.643 0.026 0.029 0.019 0.043 0.086 0.077 0.076 0.105	1.26 1.25 1.22 1.12 1.40 0.31 0.30 0.28 0.36 0.42 0.38 0.39 0.50 0.05 0.05 0.03	36.3 33.2 34.3 31.3 37.6 35.8 43.8 37.1 35.0 33.5 40.9 6.94 6.11 5.86 7.16	32.1 31.3 32.4 29.6 36.4 4.7 4.5 4.3 5.5 22.5 19.7 19.0 23.4 2.7 2.4 2.2 2.9	1.09 1.11 1.10 1.03 1.29 0.15 0.14 0.13 0.19 1.10 1.00 0.98 1.22 0.09 0.08 0.07 0.12	408 414 409 382 468 344 327 315 385 523 489 477 583 376 351 329 403	13.25 13.80 14.40 13.15 16.05 2.99 2.93 2.69 3.31 0.38 0.37 0.36 0.46 1.74 1.57 1.94	0.320 0.323 0.318 0.310 0.381 0.092 0.085 0.082 0.102 0.022 0.021 0.020 0.024 0.024 0.023 0.031	0.957 0.938 1.195 0.844 1.035 0.300 0.307 0.277 0.343 0.320 0.333 0.385 0.475 0.222 0.214 0.196 0.244
OREAS- 906 OREAS- 906 OREAS- 906 OREAS- 906 Target Range - Lower	· Bound · Bound · Bound	709	23.0	10./0	0.401	0.003	0.020	0.105	0.06	7.10	2.9	0.12	403	1.94	0.031	U.244

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - C
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC-2017

Account: COMSTOM

(ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TB17	724993	1
Sample Description	Method Analyte Units LOR	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005	ME- MS41L Te ppm 0.01
							STAN	DARDS								
LEA- 16 LEA- 16 LEA- 16 LEA- 16 Target Range - Lower	Bound Bound Bound	700 680 670 622	0.100 0.097 0.095 0.090	1040 1040 1020 959	0.003 <0.001 0.001 0.004	0.004 0.002 0.003 <0.002	147.0 137.0 144.5 132.5	0.007 0.007 0.007 0.006	0.29 0.29 0.29 0.29	3.06 2.91 3.33 2.84	6.90 7.14 8.30 6.83	0.8 0.9 1.0 0.8	3.11 3.20 3.25 3.05	73.8 72.9 74.6 72.3	0.011 0.011 0.024 <0.005	0.02 0.02 0.02 0.02 <0.01
OREAS 503c OREAS 503c OREAS 503c Target Range - Lower	Bound Bound Bound	760	0.113	1175	0.008	0.006	161.5	0.010	0.35	3.86	8.35	1.3	3.75	88.3	0.024	0.04
OREAS 905 OREAS 905 Target Range - Lower		8.57 9.07 7.97 9.83	0.023 0.022 0.020 0.026	15.95 15.65 15.40 18.80	<0.001 <0.001 <0.001 0.002	0.003 0.003 <0.002 0.004	17.80 17.85 17.35 21.2	<0.001 <0.001 <0.001 0.002	0.06 0.06 0.04 0.09	0.967 1.115 0.947 1.295	1.825 1.750 1.695 2.08	2.1 2.2 2.0 2.7	1.29 1.20 1.13 1.41	12.40 11.95 11.05 13.55	<0.005 <0.005 <0.005 0.010	0.06 0.07 0.04 0.09
OREAS 920 OREAS 920 Target Range - Lower Upper OREAS- 45e	Bound Bound	35.3 37.5 34.5 42.3 393	0.073 0.069 0.063 0.079 0.030	20.7 22.5 19.35 23.7 13.45	<0.001 <0.001 <0.001 0.002 0.063	0.004 0.002 <0.002 0.004 0.109	23.6 23.0 22.3 27.3 7.71	<0.001 <0.001 <0.001 0.002 <0.001	0.04 0.03 <0.01 0.05 0.05	0.630 0.609 0.514 0.707 0.527	3.09 2.97 2.61 3.21 82.9	0.3 0.2 <0.1 0.5 1.5	1.11 0.99 1.08 1.34 0.95	15.70 16.55 15.20 18.60 3.79	0.012 0.009 <0.005 0.018 <0.005	0.02 0.01 <0.01 0.04 0.10
OREAS- 45e Target Range - Lower	Bound Bound	371 321 393	0.028 0.025 0.033	13.05 12.85 15.75	0.055 0.055 0.069	0.098 0.097 0.123	6.96 7.13 8.73	0.001 <0.001 0.002	0.04 0.02 0.07	0.459 0.505 0.695	79.7 70.2 85.8	1.0 1.5 2.1	0.89 0.86 1.08	3.61 3.58 4.40	<0.005 <0.005 0.021	0.07 0.08 0.13
OREAS- 906 OREAS- 906 OREAS- 906 Target Range - Lower	Bound Bound															

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017

Account: COMSTOM

(ALS)							- · · · · · · ·		CEDTIC		TD17240021	
									QC	CEKTIF	ICATE OF ANALYSIS	TB17249931
ample Description	Method Analyte Units LOR	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01		
							STAN	IDARDS				
EA- 16 EA- 16	r Bound [*] Bound											
EA- 16 EA- 16												
arget Range - Lowe Uppei	r Bound ^r Bound											
1RGeo08 1RGeo08 1RGeo08		20.6 19.75 20.6	0.388 0.380 0.375	0.727 0.701 0.707	5.20 5.06 5.18	104.0 98.1 101.0	2.58 2.90 2.87	19.30 17.75 18.25	759 767 762	20.0 21.0 21.4		
arget Range - Lowe		19.25	0.342	0.661	4.97	90.8	2.49	17.55	710	18.60		
OREAS 503c OREAS 503c OREAS 503c Farget Range - Lowe Upper	r Bound r Bound r Bound	23.5	0.420	0.899	6.09	111.0	3.37	21.5	868	25.2		
DREAS 905 DREAS 905		8.35 8.46	0.019 0.018	0.103 0.095	2.15 2.11	5.5 5.5	0.607 0.617	6.77 6.48	63.6 61.5	46.4 43.6		
arget Range - Lowe		7.99	0.016	0.092	2.13	5.3	0.521	6.37	60.2	40.4		
Uppei REAS 920	Bound	9.77 15.70	0.022 0.121	0.129 0.138	2.61 1.970	6.8 23.5	0.707 0.454	7.79 17.50	73.8 100.5	54.6 19.25		
REAS 920		15.60	0.121	0.132	1.985	25.2	0.399	17.15	100.5	19.25		
arget Range - Lowe		13.75	0.110	0.103	1.930	23.6	0.390	16.90	95.3	18.10		
	Bound	16.85	0.136	0.143	2.37	29.0	0.530	20.7	116.5	24.5		
REAS- 45e REAS- 45e		10.55 9.71	0.103 0.099	0.058 0.051	1.680 1.695	298 281	0.095 0.082	5.87 5.56	31.5 30.7	27.7 26.3		
DREAS- 456 Farget Range - Lowe	r Bound	9.63	0.099	0.031	1.550	265	0.082	5.16	27.4	23.7		
	Bound	11.75	0.118	0.070	1.910	325	0.111	6.32	33.8	32.1		
DREAS- 906 DREAS- 906 DREAS- 906												
OREAS- 906 Target Range - Lowe Uppei	r Bound · Bound											

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - A
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017
Account: COMSTOM

(ALS)	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TB17	724993	81
Sample Description	Method Analyte Units LOR	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01	ME- MS41L Cs ppm 0.005
							BL	ANKS								
BLANK BLANK BLANK BLANK BLANK BLANK	Bound	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	<0.001 0.001 0.001 <0.001 <0.001	<0.01 <0.01 <0.01 <0.01 <0.01	0.01 0.01 0.01 <0.01 0.01	<10 <10 <10 <10 <10	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.01 <0.01 <0.01 <0.01 <0.01	<0.001 0.001 0.001 <0.001 <0.001	<0.01 <0.01 <0.01 <0.01 <0.01	0.001 <0.001 <0.001 <0.001 <0.001	<0.003 <0.003 <0.003 <0.003 <0.003	<0.001 0.002 0.001 <0.001 <0.001	0.01 <0.01 <0.01 <0.01 0.01	<0.005 <0.005 <0.005 <0.005 <0.005
Target Range - Lower Upper	Bound		0.0002	0.002	0.02	0.02	20	1.0	0.02	0.002	0.02	0.002	0.006	0.002	0.02	0.010
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound		0.0050 0.0048 0.0045 0.0053	0.105 0.095 0.094 0.106	1.09 1.15 1.05 1.19	47.3 45.8 44.2 48.9	10 10 <10 20	208 210 193.0 225	0.79 0.88 0.78 0.89	0.296 0.248 0.257 0.287	0.26 0.26 0.24 0.28	0.155 0.151 0.144 0.162	46.0 44.3 42.9 47.4	5.20 4.91 4.80 5.31	8.08 7.94 7.60 8.42	3.16 3.13 2.98 3.31
L8- 008 DUP Target Range - Lower Upper	Bound Bound		0.0011 0.0009 0.0008 0.0013	0.080 0.085 0.077 0.088	0.11 0.10 0.09 0.12	4.48 4.35 4.18 4.65	<10 <10 <10 20	87.6 82.6 78.2 92.0	0.04 0.04 0.03 0.05	0.193 0.180 0.176 0.197	0.53 0.49 0.47 0.55	0.505 0.467 0.461 0.511	2.08 2.00 1.935 2.15	1.015 0.922 0.919 1.020	2.06 1.80 1.82 2.04	0.253 0.253 0.235 0.271
L13-015 DUP Target Range - Lower Upper	Bound Bound		0.0019 0.0006 0.0010 0.0015	0.062 0.028 0.042 0.048	0.09 0.08 0.07 0.10	2.52 2.41 2.33 2.60	10 10 <10 <20	37.4 34.1 32.6 38.9	0.03 0.04 0.02 0.05	0.045 0.041 0.040 0.046	2.80 2.48 2.50 2.78	0.836 0.751 0.753 0.834	1.490 1.315 1.330 1.475	1.410 1.315 1.295 1.430	2.30 2.12 2.09 2.33	0.214 0.193 0.188 0.219

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET **VANCOUVER BC V6C 1E1**

QC CERTIFICATE OF ANALYSIS TB17249931

Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017

Account: COMSTOM

Sample Description	Method Analyte Units LOR	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001	ME- MS41L Nb ppm 0.002
							BLA	ANKS								
BLANK BLANK BLANK BLANK BLANK BLANK BLANK BLANK Target Range - Lower	· Round															
Upper BLANK BLANK BLANK BLANK BLANK Target Range - Lower	Bound	0.01 <0.01 0.04 <0.01 0.01 <0.01	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002	0.004 <0.004 0.006 0.005 0.007 <0.004 0.008	0.006 <0.005 0.005 0.008 <0.005 <0.005	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.004	<0.004 <0.004 <0.004 <0.004 <0.004 <0.004 0.008	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.010	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.004	<0.1 0.1 <0.1 <0.1 0.1 0.1 0.2	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.1 0.1 0.1 <0.1 <0.1 <0.1 0.2	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.004
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	9.54 9.30 9.08 9.76	1.560 1.580 1.490 1.650	4.03 4.05 3.83 4.25	0.086 0.092 0.080 0.098	0.107 0.108 0.100 0.115	0.030 0.027 0.022 0.035	0.017 0.013 0.009 0.021	0.29 0.30 0.27 0.32	25.2 23.2 23.0 25.4	15.3 17.5 15.5 17.3	0.25 0.26 0.23 0.28	459 459 436 482	1.14 1.03 1.02 1.15	0.009 0.011 0.009 0.012	1.100 1.105 1.045 1.160
L8- 008 DUP Target Range - Lower Upper	Bound Bound	8.15 7.32 7.45 8.02	0.280 0.235 0.244 0.271	0.397 0.375 0.363 0.409	0.030 0.026 0.022 0.034	0.008 0.008 0.006 0.010	0.327 0.289 0.281 0.335	0.014 0.010 0.006 0.018	0.09 0.08 0.07 0.10	1.140 1.110 1.065 1.185	0.3 0.4 0.2 0.5	0.05 0.05 0.04 0.06	276 253 251 278	0.31 0.31 0.28 0.34	0.015 0.008 0.010 0.013	0.079 0.072 0.070 0.081
L13- 015 DUP Target Range - Lower Upper	FBound Bound	8.33 7.80 7.77 8.36	0.178 0.166 0.162 0.182	0.255 0.225 0.224 0.256	0.018 0.014 0.010 0.022	0.005 0.005 0.003 0.007	0.112 0.104 0.096 0.120	<0.005 <0.005 <0.005 0.010	0.07 0.06 0.05 0.08	0.904 0.793 0.804 0.893	0.5 0.4 0.3 0.6	0.09 0.08 0.07 0.10	1810 1605 1620 1795	0.65 0.61 0.59 0.67	0.018 0.012 0.013 0.017	0.046 0.038 0.038 0.046

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

QC CERTIFICATE OF ANALYSIS

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

TB17249931

Sample Description	Method Analyte Units LOR	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005	ME- MS41L Te ppm 0.01
							BL	ANKS								
BLANK																
BLANK																
BLANK																
BLANK BLANK																
BLANK																
BLANK																
Target Range - Lower																
Uppei BLANK	r Bound	<0.04	<0.001	0.183	<0.001	<0.002	<0.005	<0.001	0.01	<0.005	<0.005	<0.1	0.01	<0.01	<0.005	<0.01
BLANK		<0.04	<0.001	0.183	<0.001	<0.002	<0.005	<0.001	<0.01	<0.005	<0.005	<0.1	<0.01	<0.01	<0.005	<0.01
BLANK		<0.04	< 0.001	0.227	<0.001	< 0.002	< 0.005	< 0.001	<0.01	<0.005	<0.005	<0.1	<0.01	<0.01	< 0.005	<0.01
BLANK		<0.04	<0.001	<0.005	<0.001	<0.002	<0.005	<0.001	<0.01	<0.005	<0.005	<0.1	0.01	<0.01	<0.005	<0.01
BLANK	r Daund	<0.04 <0.04	<0.001 <0.001	0.009 <0.005	<0.001	<0.002	<0.005 <0.005	<0.001 <0.001	<0.01 <0.01	<0.005 <0.005	<0.005 <0.005	<0.1 <0.1	<0.01 <0.01	0.01 <0.01	<0.005 <0.005	<0.01 <0.01
Target Range - Lower	r Bound r Bound	0.04	0.001	0.010			0.005	0.001	0.02	0.010	0.010	0.1	0.02	0.02	0.010	0.02
оррс.	Journa		V.002	0.0.0					0.02	0.0.0	0.0.0	V.II	****	0.02	0.0.0	2.22
							DUPL	ICATES								
ORIGINAL		7.47	0.037	12.40	<0.001	<0.002	28.4	<0.001	0.03	2.86	2.03	0.4	0.62	40.0	<0.005	0.01
DUP		7.17	0.037	11.90	<0.001	<0.002	28.1	<0.001	0.04	2.66	2.12	0.3	0.59	39.6	<0.005	0.01
Target Range - Lower		6.91 7.73	0.034 0.040	11.55 12.75	<0.001 0.002	<0.002 0.004	26.8 29.7	<0.001 0.002	0.02 0.05	2.55 2.97	1.965 2.18	0.2 0.5	0.56 0.65	37.8 41.8	<0.005 0.010	<0.01 0.02
Upper	r Bound	1.13	0.040	12.75	0.002	0.004	29.7	0.002	0.05	2.97	2.16	0.5	0.05	41.0	0.010	0.02
L8- 008		3.31	0.094	31.0	0.001	<0.002	6.07	<0.001	0.22	0.285	0.389	0.9	0.65	17.25	<0.005	0.01
DUP		2.99	0.087	28.6	0.001	<0.002	5.52	<0.001	0.19	0.264	0.388	0.8	0.65	15.95	<0.005	0.01
Target Range - Lower	r Bound r Bound	2.95 3.35	0.085 0.096	28.3 31.3	<0.001 0.002	<0.002 0.004	5.50 6.09	<0.001 0.002	0.18 0.23	0.249 0.300	0.364 0.413	0.7 1.0	0.61 0.69	15.75 17.45	<0.005 0.010	<0.01 0.02
Оррсі	i bound	0.00	0.000	01.0	0.002	0.004	0.00	0.002	0.20	0.000	0.410	1.0	0.00	11.10	0.010	0.02
L13-015		3.90	0.079	4.75	<0.001	<0.002	4.16	0.004	0.18	0.115	0.446	0.7	0.18	33.9	<0.005	<0.01
DUP	D	4.27	0.070	4.40	<0.001	<0.002	3.94	0.003	0.16	0.114	0.286	0.6	0.15	30.7	<0.005	0.02
Target Range - Lower	r Bound r Bound	3.84 4.33	0.070	4.34 4.81	<0.001 0.002	<0.002 0.004	3.84 4.26	0.002	0.15 0.19	0.101 0.128	0.343	0.5	0.15 0.18	30.7 33.9	<0.005 0.010	<0.01
Оррег	Dound	1.00	0.010	1.01	0.002	0.001	1.20	0.000	0.10	0.120	0.000	0.0	0.10	-00.0	0.010	0.02

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12-DEC-2017

Account: COMSTOM

(ALS))									CERTIF	FICATE OF ANALYSIS	TB17249931
Sample Description	Method Analyte Units LOR	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01		
							BLA	ANKS				
BLANK BLANK BLANK BLANK BLANK BLANK												
BLANK Target Range - Lower												
BLANK BLANK BLANK BLANK BLANK Target Range - Lower	Bound Bound Bound	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.004	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 0.004	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 0.010	0.1 0.1 0.1 0.1 0.1 -<0.1	0.002 <0.001 0.001 <0.001 0.002 <0.001 0.002	<0.003 <0.003 <0.003 <0.003 <0.003 <0.003	0.1 0.1 <0.1 <0.1 <0.1 <0.1	<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02		
							DUPL	ICATES				
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	5.80 5.25 5.25 5.80	0.041 0.040 0.037 0.044	0.265 0.260 0.241 0.284	1.585 1.445 1.435 1.595	25.4 24.3 23.5 26.2	0.825 0.753 0.729 0.849	7.42 7.34 7.01 7.75	48.5 47.1 45.3 50.3	3.70 3.70 3.41 3.99		
L8- 008 DUP Target Range - Lower Upper	Bound Bound	0.102 0.096 0.092 0.106	0.003 0.002 <0.001 0.004	0.051 0.045 0.042 0.054	0.075 0.070 0.064 0.081	2.8 2.5 2.4 2.9	0.072 0.064 0.062 0.074	0.602 0.548 0.543 0.607	63.0 57.8 57.3 63.5	0.28 0.28 0.25 0.31		
L13- 015 DUP Target Range - Lower Upper	Bound Bound	0.018 0.020 0.016 0.022	0.001 0.001 <0.001 0.002	0.053 0.047 0.044 0.056	0.052 0.047 0.042 0.057	2.6 2.6 2.4 2.8	0.042 0.042 0.038 0.046	0.563 0.538 0.520 0.581	51.9 48.5 47.6 52.8	0.19 0.17 0.16 0.20		

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 4 - A
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC-2017

Account: COMSTOM

ALS	,															
									QC	CERTIF	CATE	OF AN	<u>ALYSIS</u>	TB17	724993	<u>; 1 </u>
Sample Description	Method Analyte Units LOR	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01	ME- MS41L Cs ppm 0.005
							DUPL	ICATES								
L15-009			0.0022	0.178	0.16	5.98	<10	97.7	0.02	0.085	0.54	0.481	1.985	1.360	6.34	0.287
DUP			0.0017	0.197	0.15	8.38	<10	97.3	0.04	0.095	0.50	0.448	1.865	1.205	6.02	0.294
Target Range - Lower	Bound		0.0017	0.177	0.14	6.81	<10	89.7	0.02	0.085	0.48	0.440	1.825	1.215	5.86	0.271
Upper	Bound		0.0022	0.198	0.17	7.55	20	105.5	0.04	0.096	0.56	0.489	2.02	1.350	6.50	0.310
ORIGINAL			0.0007	0.030	1.75	4.91	<10	296	1.29	0.405	0.17	0.020	42.2	13.95	51.6	1.490
DUP			0.0007	0.028	1.78	4.98	<10	295	1.23	0.395	0.17	0.025	40.4	13.25	49.7	1.540
Target Range - Lower	Bound		0.0005	0.027	1.67	4.69	<10	273	1.19	0.379	0.15	0.020	39.2	12.90	48.1	1.435
	Bound		0.0009	0.031	1.86	5.20	20	318	1.33	0.421	0.19	0.025	43.4	14.30	53.2	1.595
		1														

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

QC CERTIFICATE OF ANALYSIS TB17249931

Page: 4 - B
Total # Pages: 4 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017
Account: COMSTOM

Sample Description	Method Analyte Units LOR	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001	ME- MS41L Nb ppm 0.002
							DUPL	ICATES								
L15-009		9.52	0.260	0.412	0.021	0.007	0.154	0.005	0.09	1.005	1.0	0.12	350	0.24	0.008	0.073
DUP		10.10	0.242	0.357	0.022	0.004	0.142	0.008	0.09	0.994	0.8	0.11	340	0.24	0.009	0.083
Target Range - Lower	Bound	9.46	0.237	0.361	0.015	0.003	0.133	< 0.005	0.08	0.948	8.0	0.10	328	0.22	0.007	0.072
Upper	Bound	10.15	0.265	0.408	0.028	0.008	0.163	0.010	0.10	1.050	1.0	0.13	362	0.26	0.010	0.084
ORIGINAL		20.4	4.64	10.05	0.114	0.064	0.044	0.055	0.18	21.4	11.7	0.09	525	0.76	0.095	0.390
DUP		19.20	4.67	10.10	0.111	0.062	0.039	0.050	0.18	20.8	11.0	0.09	521	0.75	0.096	0.374
Target Range - Lower	Bound	19.10	4.42	9.57	0.102	0.058	0.034	0.045	0.16	20.0	10.7	0.08	497	0.71	0.090	0.361
Upper	Bound	20.5	4.89	10.60	0.123	0.068	0.049	0.060	0.20	22.2	12.0	0.10	549	0.80	0.101	0.403

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

QC CERTIFICATE OF ANALYSIS TB17249931

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

												<u> </u>				•
Sample Description	Method Analyte Units LOR	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005	ME- MS41L Te ppm 0.01
							DUPL	ICATES								
L15- 009		8.65 8.31	0.073 0.074	6.67 7.04	0.001 0.001	<0.002 <0.002	6.93 6.88	<0.001 <0.001	0.15 0.15	0.213 0.218	0.524 0.506	1.0 0.6	0.31 0.33	13.75 15.70	<0.005 <0.005	0.01 0.01
DUP Target Range - Lower		8.02	0.069	6.51	<0.001	<0.002	6.55	<0.001	0.13	0.194	0.484	0.7	0.29	14.00	<0.005	<0.01
Upper	Bound	8.94	0.078	7.20	0.002	0.004	7.26	0.002	0.17	0.237	0.546	0.9	0.35	15.45	0.010	0.02
ORIGINAL		14.80	0.095	13.50	<0.001	<0.002	33.1	<0.001	0.01	0.154	10.40	0.3	2.54	27.8	<0.005	0.05
DUP Target Range - Lower	Round	13.90 13.60	0.094 0.089	13.25 12.70	<0.001 <0.001	<0.002 <0.002	32.3 31.1	<0.001 <0.001	0.01 <0.01	0.150 0.136	10.55 9.95	0.3	2.54 2.40	26.4 25.7	<0.005 <0.005	0.03
Upper		15.10	0.100	14.05	0.002	0.004	34.3	0.002	0.02	0.168	11.00	0.4	2.68	28.5	0.010	0.05

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

QC CERTIFICATE OF ANALYSIS TB17249931

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017

Account: COMSTOM

Sample Description	Method Analyte Units LOR	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME-MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01
							DUPL	ICATES		
L15-009		0.118	0.003	0.084	0.051	3.3	0.142	0.426	39.6	0.22
DUP		0.093	0.003	0.088	0.055	3.3	0.081	0.623	42.2	0.22
Target Range - Lower	r Bound	0.098	0.002	0.078	0.045	3.0	0.102	0.495	38.8	0.19
Upper	Bound	0.113	0.004	0.094	0.061	3.6	0.121	0.554	43.0	0.25
ORIGINAL		9.89	0.033	0.285	2.94	108.0	0.078	15.70	12.5	3.17
DUP		9.71	0.031	0.276	2.88	102.0	0.086	15.10	11.5	2.93
Target Range - Lower	r Bound	9.31	0.029	0.257	2.76	99.7	0.075	14.65	11.3	2.81
Unner	Round	10.30	0.035	0.304	3.06	110.5	0.089	16.15	12.7	3.29

ALS Canada Ltd.

To: COMSTOCK METALS LTD.
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 12- DEC- 2017 Account: COMSTOM

Project: Old Cabin Property

QC CERTIFICATE OF ANALYSIS TB17249931

	CERTIFICATE COMMENTS
	ANALYTICAL COMMENTS
Applies to Method:	NSS is non- sufficient sample. ALL METHODS
Applies to Method:	Gold determinations by this method are semi- quantitative due to the small sample weight used (0.5g). ME- MS41L
	LABORATORY ADDRESSES
Applies to Method:	Processed at ALS Thunder Bay located at 645 Norah Crescent, Thunder Bay, ON, Canada LOG- 22 SCR- 41 WEI- 21
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au- TL43 ME- MS41L

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

Page: 1 Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017

Account: COMSTOM

CERTIFICATE TB17249931

Project: Old Cabin Property

This report is for 245 Soil samples submitted to our lab in Thunder Bay, ON, Canada on 14- NOV- 2017.

The following have access to data associated with this certificate:

DAVID TERRY JOHN WALMSLEY

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
SCR- 41	Screen to - 180um and save both

	ANALYTICAL PROCEDURES	5
ALS CODE	DESCRIPTION	INSTRUMENT
Au- TL43 ME- MS41L	Trace Level Au - 25g AR Super Trace Lowest DL AR by ICP- MS	ICP- MS

To: COMSTOCK METALS LTD.
ATTN: JOHN WALMSLEY
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - A
Total # Pages: 8 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017
Account: COMSTOM

(ALS	,								Cl	ERTIFIC	CATE O	F ANAI	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01
L5- 001 L5- 002 L5- 003 L5- 004 L5- 005		0.13 0.10 0.08 0.10 0.08	0.002 NSS NSS 0.002 0.001	0.0006 0.0006	0.042 0.026	0.08 0.05	2.79 1.76	10 10	113.0 127.5	0.02 0.02	0.083 0.064	1.13 1.67	1.020 0.625	1.545 2.64	1.250 0.618	8.17 4.95
L5- 006 L5- 007 L5- 008 L5- 009 L5- 010		0.11 0.07 0.07 0.08 0.08	0.003 0.002 0.003 0.001 0.002													
L5- 011 L5- 012 L5- 013 L5- 014 L5- 015		0.07 0.13 0.11 0.09 0.09	0.003 0.002 0.001 0.001 0.002													
L5- 016 L5- 017 L5- 018 L5- 019 L6- 001		0.13 0.14 0.13 0.11 0.11	0.001 0.001 0.001 0.001 0.002													
L6- 001B L6- 002 L6- 003 L6- 004 L6- 005		0.14 0.11 0.14 0.10 0.12	0.002 0.001 <0.001 NSS 0.001	0.0002	0.026	0.04	0.64	10	62.8	0.02	0.032	0.62	0.582	0.798	0.270	2.82
L6- 006 L6- 007 L6- 008 L6- 009 L6- 010		0.10 0.10 0.13 0.07 0.09	0.002 0.002 0.001 0.002 0.002													
L6- 011 L6- 012 L6- 013 L6- 014 L6- 015		0.08 0.15 0.10 0.12 0.08	0.002 0.001 0.002 <0.001 NSS	0.0006	0.008	0.04	1.37	10	20.3	0.02	0.037	1.65	0.579	0.596	0.166	1.71
L6- 016 L6- 017 L6- 018 L6- 019 L7- 001		0.11 0.13 0.14 0.09 0.09	0.005 0.003 0.002 NSS 0.004	0.0008	0.016	0.06	2.17	10	34.4	0.02	0.055	2.43	0.390	0.814	0.521	1.24

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - B Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS)	,								CI	ERTIFIC	CATE O	F ANAI	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Cs ppm 0.005	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001
L5- 001 L5- 002 L5- 003 L5- 004 L5- 005		0.243 0.220	14.40 9.99	0.149 0.098	0.351 0.212	0.023 0.020	0.004 0.006	0.172 0.144	0.006 <0.005	0.10 0.10	0.774 2.11	0.4 0.3	0.11 0.11	2270 898	0.59 0.47	0.006 0.001
L5- 006 L5- 007 L5- 008 L5- 009 L5- 010																
L5- 011 L5- 012 L5- 013 L5- 014 L5- 015																
L5- 016 L5- 017 L5- 018 L5- 019 L6- 001																
L6- 001B L6- 002 L6- 003 L6- 004 L6- 005		0.455	10.60	0.056	0.149	0.014	0.004	0.121	<0.005	0.14	0.443	0.2	0.06	540	0.34	0.004
L6- 006 L6- 007 L6- 008 L6- 009 L6- 010																
L6- 011 L6- 012 L6- 013 L6- 014 L6- 015		0.182	5.04	0.053	0.102	0.014	0.005	0.091	<0.005	0.06	0.343	0.2	0.09	40.4	0.34	0.010
L6- 016 L6- 017 L6- 018 L6- 019 L7- 001		0.151	5.19	0.199	0.153	0.022	0.008	0.102	<0.005	0.05	0.531	0.3	0.12	587	0.43	0.009

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - C Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS)	,								CI	ERTIFIC	CATE O	F ANAL	YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME-MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
L5- 001 L5- 002 L5- 003 L5- 004 L5- 005		0.088 0.057	7.73 6.34	0.103 0.086	8.33 5.96	<0.001 <0.001	<0.002 <0.002	4.25 5.88	<0.001 <0.001	0.20 0.20	0.344 0.270	0.361 0.377	0.6 0.6	0.49 0.32	29.4 43.1	<0.005 <0.005
L5- 006 L5- 007 L5- 008 L5- 009 L5- 010																
L5- 011 L5- 012 L5- 013 L5- 014 L5- 015																
L5- 016 L5- 017 L5- 018 L5- 019 L6- 001																
L6- 001B L6- 002 L6- 003 L6- 004 L6- 005		0.040	3.01	0.094	2.42	<0.001	<0.002	8.02	<0.001	0.17	0.176	0.313	0.5	0.17	12.05	0.010
L6- 006 L6- 007 L6- 008 L6- 009 L6- 010																
L6- 011 L6- 012 L6- 013 L6- 014 L6- 015		0.031	2.64	0.048	3.18	<0.001	<0.002	4.59	<0.001	0.15	0.373	0.325	0.5	0.20	25.7	<0.005
L6- 016 L6- 017 L6- 018 L6- 019 L7- 001		0.036	2.21	0.061	5.27	<0.001	<0.002	3.86	0.001	0.17	0.193	0.357	0.6	0.22	38.0	<0.005

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - D Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS	,								CI		CATE OF	ANALYSIS	TB17249	931
Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01			
L5- 001 L5- 002 L5- 003 L5- 004 L5- 005		0.01 <0.01	0.038 0.023	0.003 0.002	0.056 0.037	0.046 0.035	2.1 1.3	0.074 0.048	0.302 0.382	183.5 218	0.16 0.19			
L5- 006 L5- 007 L5- 008 L5- 009 L5- 010														
L5- 011 L5- 012 L5- 013 L5- 014 L5- 015														
L5- 016 L5- 017 L5- 018 L5- 019 L6- 001														
L6- 001B L6- 002 L6- 003 L6- 004 L6- 005		<0.01	0.019	0.001	0.026	0.028	0.8	0.032	0.188	138.5	0.13			
L6- 006 L6- 007 L6- 008 L6- 009 L6- 010														
L6- 011 L6- 012 L6- 013 L6- 014 L6- 015		0.01	0.014	0.001	0.033	0.021	0.8	0.063	0.209	20.4	0.13			
L6- 016 L6- 017 L6- 018 L6- 019 L7- 001		0.01	0.042	0.001	0.055	0.039	1.2	0.035	0.420	37.8	0.20			

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - A
Total # Pages: 8 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017
Account: COMSTOM

(ALS)								CERTIFICATE OF ANALYSIS TB17249931								
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01
L7- 001B L7- 002 L7- 003 L7- 004 L7- 005		0.11 0.18 0.17 0.30 0.10	0.007 0.001 0.007 0.001 0.001													
L7- 006 L7- 007 L7- 008 L7- 009 L7- 010		0.08 0.09 0.14 0.10 0.11	0.009 0.001 0.001 0.002 0.003													
L7- 011 L7- 012 L7- 013 L7- 014 L7- 015		0.12 0.11 0.10 0.07 0.11	0.001 0.003 0.002 NSS NSS	0.0015 0.0010	0.026 0.022	0.07 0.13	0.93 1.99	<10 10	34.5 29.3	0.02 0.05	0.051 0.069	0.31 2.13	0.403 0.509	1.040 1.370	0.300 0.708	1.22 1.33
L7- 016 L7- 017 L7- 018 L7- 019 L8- 001		0.12 0.12 0.08 0.08 0.24	NSS 0.002 0.001 0.001 0.001	0.0007	0.035	0.09	3.70	10	40.1	0.03	0.082	2.25	0.687	1.405	1.140	1.66
L8- 001B L8- 002 L8- 003 L8- 004 L8- 005		0.14 0.07 0.09 0.10 0.10	0.003 0.002 0.002 0.001 0.006													
L8- 006 L8- 007 L8- 008 L8- 009 L8- 010		0.09 0.10 0.09 0.12 0.08	NSS 0.002 NSS 0.001 NSS	0.0012 0.0011 0.0011	0.053 0.080 0.050	0.34 0.11 0.09	10.30 4.48 4.39	10 <10 <10	123.0 87.6 70.8	0.09 0.04 0.03	0.045 0.193 0.161	3.26 0.53 0.71	1.420 0.505 0.253	20.4 2.08 1.915	14.25 1.015 0.483	3.19 2.06 2.13
L8- 010 L8- 012 L8- 013 L8- 014 L8- 015		0.08 0.12 0.11 0.08 0.06 0.12	0.001 NSS 0.002 NSS 0.001	0.0009	0.045	0.25	4.28	10	25.4 57.9	0.03	0.057	2.26	0.512	4.96	1.335	6.32
L8- 016 L8- 017 L8- 018 L8- 019 L9- 001		0.11 0.15 0.16 0.10 0.12	NSS 0.002 NSS NSS 0.003	0.0012 0.0024 0.0013	0.022 0.037 0.041	0.10 0.14 0.12	3.57 14.00 12.55	10 10 10	24.0 70.6 51.3	0.03 0.03 0.03	0.074 0.124 0.120	2.11 2.15 2.25	0.602 0.602 0.371	1.225 2.30 1.870	1.135 5.05 3.32	4.54 6.13 4.97

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

CERTIFICATE OF ANALYSIS TB17249931

Page: 3 - B Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

Company Comp																	
1.7 1.7	A	Analyte Units	Cs ppm	Cu ppm	Fe %	Ga ppm	Ge ppm	Hf ppm	Hg ppm	In ppm	K %	La ppm	Li ppm	Mg %	Mn ppm	Mo ppm	ME- MS41L Na % 0.001
L7- 007 L7- 008 L7- 009 L7- 010 L7- 011 L7- 012 L7- 013 L7- 014 L7- 015	L7- 002 L7- 003 L7- 004																
L7- 012 L7- 013 L7- 014 L7- 015	L7- 007 L7- 008 L7- 009																
T7- 016	L7- 012 L7- 013 L7- 014																0.002 0.006
L8- 002 L8- 003 L8- 004 L8- 005 L8- 006 L8- 007 L8- 008 0.253 8.15 0.280 0.397 0.030 0.008 0.327 0.014 0.09 1.140 0.3 0.05 276 0.31	L7- 017 L7- 018 L7- 019		0.203	6.35	0.235	0.240	0.021	0.007		0.006	0.04	0.900	0.2	0.10	1405	0.48	0.008
L8- 007 L8- 008 0.253 8.15 0.280 0.397 0.030 0.008 0.327 0.014 0.09 1.140 0.3 0.05 276 0.31	L8- 002 L8- 003 L8- 004																
	L8- 007																0.017
	L8- 009																0.015
L8- 011 L8- 012 0.200 29.6 0.290 0.470 0.035 0.012 0.094 0.005 0.06 4.96 0.8 0.17 97.4 0.49	L8- 011 L8- 012																0.017
L8- 013 L8- 014 0.245 9.48 0.176 0.283 0.013 0.008 0.127 <0.005 0.10 0.866 0.5 0.10 279 0.21 L8- 015	L8- 014		0.245	9.48	0.176	0.283	0.013	0.008	0.127	<0.005	0.10	0.866	0.5	0.10	279	0.21	0.013
L8- 017	L8- 017																0.012 0.012
	L8- 019																0.012

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - C Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS)	,								CI	ERTIFIC	CATE O	F ANAI	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
L7- 001B L7- 002 L7- 003 L7- 004 L7- 005																
L7- 006 L7- 007 L7- 008 L7- 009 L7- 010																
L7- 011 L7- 012 L7- 013 L7- 014 L7- 015		0.046 0.058	2.11 2.44	0.062 0.055	4.03 6.22	<0.001 <0.001	<0.002 0.488	7.34 3.57	<0.001 0.001	0.12 0.14	0.144 0.192	0.344 1.000	0.5 0.7	0.25 0.29	8.39 23.8	<0.005 0.008
L7- 016 L7- 017 L7- 018 L7- 019 L8- 001		0.050	2.81	0.061	11.65	0.001	<0.002	2.89	0.002	0.18	0.211	0.360	0.8	0.26	29.2	<0.005
L8- 001B L8- 002 L8- 003 L8- 004 L8- 005																
L8- 006 L8- 007 L8- 008		0.118 0.079	6.99 3.31	0.112 0.094	9.10 31.0	0.001 0.001	<0.002 <0.002	3.16 6.07	0.001 <0.001	0.24 0.22	0.243 0.285	0.513 0.389	0.7 0.9	0.14 0.65	63.1 17.25	<0.005 <0.005
L8- 009 L8- 010		0.089	2.40	0.059	19.15	<0.001	<0.002	3.24	0.001	0.16	0.213	0.420	0.8	0.55	15.45	<0.005
L8- 011 L8- 012 L8- 013 L8- 014 L8- 015		0.092 0.063	7.80 4.74	0.060 0.070	5.68 6.73	<0.001 0.001	<0.002 <0.002	3.96 5.65	0.002 <0.001	0.21 0.17	0.204 0.150	0.662 0.395	0.8 0.5	0.19 0.27	32.3 21.1	<0.005 <0.005
L8- 016 L8- 017 L8- 018 L8- 019 L9- 001		0.045 0.072 0.076	6.19 7.09 5.92	0.084 0.067 0.052	3.60 14.15 11.10	<0.001 0.001 0.002	<0.002 <0.002 <0.002	3.69 3.58 3.43	0.001 0.001 0.001	0.22 0.23 0.17	0.125 0.180 0.235	0.310 0.476 0.448	0.5 0.9 0.8	0.12 0.36 0.46	29.5 34.3 34.0	<0.005 <0.005 <0.005

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET **VANCOUVER BC V6C 1E1**

Page: 3 - D Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017

Account: COMSTOM

(ALS	,								Cl		CATE OF ANALYSI	S TB17249931
Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	
L7- 001B L7- 002 L7- 003 L7- 004 L7- 005												
L7- 006 L7- 007 L7- 008 L7- 009 L7- 010												
.7- 011 _7- 012 _7- 013 _7- 014 _7- 015		<0.01 0.02	0.029 0.130	0.001 0.001	0.060 0.045	0.033 0.064	1.2 2.4	0.041 0.034	0.266 0.770	27.6 22.2	0.15 0.61	
_7- 016 _7- 017 _7- 018 _7- 019 _8- 001		0.01	0.051	0.002	0.073	0.055	2.3	0.037	0.607	30.2	0.24	
.8- 001B .8- 002 .8- 003 .8- 004 .8- 005												
_8- 006 _8- 007		0.03	0.111	0.003	0.162	0.173	11.6	0.046	5.71	131.5	0.28	
8- 007 8- 008 8- 009		0.01	0.102	0.003	0.051	0.075	2.8	0.072	0.602	63.0	0.28	
.8- 010		0.01	0.138	0.003	0.084	0.064	2.8	1.065	0.463	40.3	0.31	
.8- 011 .8- 012 .8- 013 .8- 014		0.02	0.129	0.004	0.047	0.182	5.4	0.057	2.13	27.0	0.42	
L8- 015		<0.01	0.058	0.002	0.042	0.064	2.5	0.268	0.436	52.7	U.24	
L8- 016 L8- 017 L8- 018		0.02 0.04	0.031 0.056	0.002 0.003	0.035 0.080	0.042 0.072	3.0 4.1	0.047 0.111	0.590 0.684	51.5 39.7	0.28	
L8- 019 L9- 001		0.02	0.062	0.003	0.071	0.055	3.2	0.121	0.566	36.6	0.23	

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 4 - A Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS)	,								CI	ERTIFIC	CATE O	F ANAL	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01
L9- 001B L9- 002 L9- 003 L9- 004 L9- 005		0.14 0.09 0.11 0.10 0.09	0.008 0.001 0.003 0.002 0.001													
L9- 006 L9- 007 L9- 008 L9- 009 L9- 010		0.10 0.26 0.14 0.12 0.11	NSS 0.001 0.002 0.001 0.002	0.0011	0.014	0.15	2.73	<10	79.1	0.04	0.158	0.33	0.397	2.00	1.135	2.73
L9- 011 L9- 012 L9- 013 L9- 014 L9- 015		0.09 0.06 0.09 0.10 0.11	0.002 NSS 0.002 NSS 0.010	0.0016 0.0009	0.053 0.039	0.11 0.14	2.63 7.72	<10 <10	70.0 51.9	0.03	0.114 0.149	0.55 0.39	0.297 0.434	1.750 1.715	0.699 0.762	3.15 2.89
L9- 016 L9- 017 L9- 018 L9- 019 L11- 001		0.13 0.13 0.12 0.13 0.11	NSS NSS NSS NSS	0.0014 0.0011 0.0005 0.0008 0.0006	0.022 0.030 0.020 0.038 0.045	0.08 0.09 0.07 0.14 0.10	2.60 3.59 2.68 10.40 5.91	10 <10 10 10	17.7 70.0 29.8 237 47.7	0.04 0.01 0.05 0.08 0.06	0.060 0.120 0.047 0.118 0.095	1.88 0.57 2.97 3.23 1.84	0.468 0.636 0.679 2.32 0.806	1.265 1.570 1.490 4.86 2.27	0.705 0.451 0.715 7.94 4.73	2.33 1.85 1.62 2.11 1.78
L11- 001B L11- 002 L11- 003 L11- 004 L11- 005		0.15 0.07 0.09 0.09 0.07	NSS 0.011 0.001 NSS NSS	0.0014 0.0011 0.0010	0.046 0.040 0.120	0.14 0.13 0.21	9.67 6.42 3.31	10 10 <10	46.7 48.5 83.3	0.05 0.04 0.12	0.135 0.102 0.084	1.85 0.65 0.56	0.735 0.417 0.950	2.61 1.980 5.15	4.21 2.83 5.16	3.80 4.05 2.77
L11-006 L11-007 L11-008 L11-009 L11-010		0.08 0.12 0.07 0.14 0.11	0.001 0.002 NSS 0.003 0.001	0.0111	0.102	0.13	1.18	10	125.5	0.03	0.052	1.28	0.294	2.66	1.215	3.43
_11- 011 _11- 012 _11- 013 _11- 014 _11- 015		0.07 0.09 0.08 0.10 0.08	0.002 0.001 0.003 0.002 NSS	0.0016	0.079	0.27	9.00	<10	44.7	0.06	0.243	0.30	0.374	4.42	1.125	6.62
L11- 016 L11- 017 L11- 018 L11- 019 L11- 019B		0.11 0.10 0.09 0.07 0.10	NSS NSS NSS NSS	0.0008 0.0009 0.0010 0.0034 0.0008	0.023 0.059 0.027 0.046 0.028	0.10 0.09 0.10 0.18 0.13	2.63 4.19 3.75 11.35 6.73	10 10 10 10 10	22.8 27.1 34.2 92.9 78.1	0.02 0.03 0.05 0.06 0.08	0.064 0.053 0.074 0.113 0.077	1.96 2.83 2.75 3.09 2.97	0.391 0.527 0.495 1.235 1.005	1.480 1.530 1.520 4.03 2.42	0.612 1.140 0.927 3.03 1.900	3.42 3.21 2.29 4.62 1.61

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 4 - B
Total # Pages: 8 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017

Account: COMSTOM

(ALS)	,								CI	ERTIFIC	CATE O	F ANAI	YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Cs ppm 0.005	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001
L9- 001B L9- 002 L9- 003 L9- 004 L9- 005																
L9- 006 L9- 007 L9- 008 L9- 009 L9- 010		0.452	5.33	0.300	0.452	0.031	0.012	0.214	0.010	0.07	1.070	0.6	0.10	164.5	0.33	0.009
L9- 011 L9- 012 L9- 013 L9- 014		0.453 0.356	6.36 7.98	0.226 0.234	0.331 0.426	0.025 0.036	0.006	0.205 0.225	0.005 0.010	0.06 0.11	0.927 0.843	0.6 0.5	0.07 0.07	446 180.5	0.26 0.27	0.007 0.013
L9- 015 L9- 016 L9- 017 L9- 018 L9- 019		0.245 0.367 0.193 0.179	6.60 6.28 10.10 15.80	0.123 0.190 0.133 0.550	0.212 0.312 0.178 0.601	0.015 0.025 0.018 0.032	0.006 0.007 0.006 0.009	0.121 0.211 0.131 0.234	<0.005 0.008 <0.005 0.008	0.06 0.08 0.06 0.07	0.695 0.816 1.180 2.05	0.5 0.4 0.4 0.5	0.07 0.06 0.12 0.13	106.5 107.0 756 14150	0.45 0.26 0.65 1.19	0.015 0.011 0.009 0.012
L11-001 L11-001B L11-002 L11-003 L11-004		0.258 0.312 0.789	7.57 9.99 9.94	0.310 0.390 0.240	0.321 0.408 0.420	0.024 0.026 0.029	0.007 0.010 0.007	0.155 0.177 0.192	0.007 0.008 0.005	0.06 0.06 0.07	1.120 1.300 1.560	0.5	0.10 0.12 0.11	2120 1715 251	0.71 0.68 0.27	0.020 0.014 0.015
L11-005 L11-006 L11-007 L11-008		0.496	10.05	0.211	0.427	0.029	0.007	0.155	0.005	0.07	1.235	0.6	0.11	170.0	0.27 0.23 0.11	0.013
L11-009 L11-010 L11-011 L11-012																
L11-013 L11-014 L11-015		0.450 0.205	7.50 5.20	0.570	1.290	0.036	0.007	0.205	0.014	0.05	2.15 0.751	1.3	0.09	270 299	0.40	0.011
L11-017 L11-018 L11-019 L11-019B		0.170 0.161 0.199 0.117	10.30 10.90 17.50 12.85	0.176 0.167 0.450 0.340	0.267 0.261 0.477 0.318	0.021 0.020 0.031 0.031	0.011 0.012 0.009 0.008	0.117 0.142 0.180 0.151	<0.005 <0.005 0.006 0.005	0.05 0.05 0.05 0.05 0.03	1.005 1.205 2.48 1.855	0.7 0.6 1.1 0.4	0.13 0.12 0.18 0.12	672 957 4220 3310	0.75 0.54 1.13 0.85	0.010 0.013 0.021 0.008

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 4 - C Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS)	,								CI	ERTIFIC	CATE O	F ANAI	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
L9- 001B L9- 002 L9- 003 L9- 004 L9- 005																
L9- 006 L9- 007 L9- 008 L9- 009 L9- 010		0.086	3.95	0.076	17.35	<0.001	<0.002	5.12	<0.001	0.15	0.279	0.609	1.2	0.78	14.20	<0.005
L9- 011 L9- 012 L9- 013 L9- 014		0.078 0.075	4.27 3.32	0.083 0.095	11.80 22.2	0.001 <0.001	<0.002 <0.002	4.41 7.38	<0.001 <0.001	0.17 0.16	0.196 0.264	0.550 0.668	1.0 0.9	0.48 0.56	19.60 14.10	<0.005 <0.005
L9- 015 L9- 016		0.073	2.67	0.062	6.06	<0.001	<0.002	3.64	0.001	0.19	0.166	0.338	0.6	0.26	26.0	<0.005
L9- 017 L9- 018 L9- 019 L11- 001		0.066 0.049 0.068 0.054	2.19 2.86 7.03 3.13	0.068 0.071 0.099 0.068	13.35 6.83 27.3 25.7	<0.001 <0.001 <0.001 0.001	<0.002 <0.002 <0.002 <0.002	5.75 3.86 4.99 3.72	0.001 0.002 0.003 0.001	0.19 0.19 0.22 0.17	0.184 0.139 0.282 0.198	0.591 0.279 0.441 0.461	0.8 0.7 1.3 0.8	0.43 0.15 0.31 0.33	43.7 39.9 49.5 35.0	<0.005 <0.005 <0.005 <0.005
L11-001B L11-002 L11-003		0.074	4.87	0.075	23.0	0.004	0.002	3.85	<0.001	0.19	0.266	0.464	0.9	0.42	34.8	<0.005
L11-004 L11-005		0.095 0.093	8.67 7.00	0.089 0.099	15.55 13.85	<0.001 <0.001	<0.002 <0.002	8.00 6.27	<0.001 <0.001	0.21 0.21	0.224 0.172	0.565 0.523	0.7 0.7	0.40 0.37	26.7 26.5	<0.005 <0.005
L11-006 L11-007 L11-008 L11-009 L11-010		0.111	4.09	0.095	5.23	<0.001	<0.002	3.01	<0.001	0.18	0.087	0.475	0.4	0.22	23.7	<0.005
L11-011 L11-012 L11-013 L11-014																
L11- 015 L11- 016 L11- 017 L11- 018 L11- 019 L11- 019B		0.390 0.114 0.070 0.065 0.081 0.051	2.88 4.51 3.70 8.66 4.24	0.067 0.055 0.062 0.061 0.065 0.060	7.11 6.67 6.14 15.90 12.30	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	3.61 3.49 3.23 3.65 3.07 2.32	<0.001 <0.001 0.002 0.001 0.004 0.004	0.12 0.15 0.18 0.19 0.21 0.18	0.363 0.159 0.150 0.180 0.442 0.251	0.675 0.518 0.572 0.438 0.463 0.369	1.1 0.5 0.6 0.8 1.1 1.0	0.28 0.17 0.27 0.37 0.25	21.2 31.0 38.5 48.8 46.7	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 4 - D Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(, , ,									С	ERTIFIC	CATE OF ANALYSIS	TB17249931
Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	
L9- 001B L9- 002												
L9- 002 L9- 003												
L9- 003 L9- 004												
L9- 005												
L9- 006		0.01	0.134	0.003	0.071	0.064	3.0	0.066	0.424	19.8	0.35	
L9- 007												
L9- 008												
L9- 009												
L9- 010												
L9- 011 L9- 012		0.01	0.050	0.002	0.078	0.056	2.2	0.054	0.423	42.4	0.27	
L9- 012 L9- 013		0.01	0.030	0.002	0.076	0.030	2.2	0.034	0.423	42.4	0.27	
L9- 013		0.01	0.089	0.003	0.136	0.067	2.8	0.065	0.447	40.4	0.24	
L9- 015		0.01	0.000	0.000	0.100	0.007	2.0	0.000	0.447	40.4	0.24	
L9- 016		0.02	0.028	0.002	0.072	0.042	1.9	0.040	0.430	18.4	0.25	
L9- 017		0.01	0.072	0.002	0.082	0.052	1.9	0.050	0.379	36.4	0.26	
L9- 018		0.01	0.035	0.001	0.060	0.056	2.7	0.044	0.855	34.1	0.23	
L9- 019		0.07	0.122	0.002	0.396	0.126	3.8	0.124	1.285	109.0	0.26	
L11-001		0.02	0.043	0.002	0.093	0.059	3.3	0.055	0.792	38.1	0.19	
L11-001B		0.04	0.068	0.003	0.092	0.068	4.3	0.236	0.824	41.2	0.24	
L11-002 L11-003												
L11-003		0.01	0.099	0.004	0.079	0.062	3.3	0.059	0.533	24.8	0.29	
L11-004		0.01	0.099	0.004	0.079	0.002	3.0	0.059	1.545	25.3	0.22	
L11-006		0.01	0.110	0.000	0.147	0.070	0.0	0.001	1.040	20.0	0.22	
L11-000 L11-007												
L11-008		<0.01	0.181	0.005	0.209	0.045	4.0	0.035	0.390	136.0	0.21	
L11-009												
L11-010												
L11-011												
L11-012												
L11-013												
L11-014 L11-015		0.02	0.247	0.015	0.055	0.115	10.1	0.084	0.680	26.8	0.29	
L11-016		0.01	0.060	0.004	0.053	0.045	3.0	0.041	0.328	22.1	0.29	
L11-017 L11-018		0.02 0.02	0.078 0.046	0.002 0.002	0.049 0.061	0.056 0.062	3.5 3.4	0.060 0.064	0.693 0.811	28.7 33.3	0.31 0.31	
L11-018		0.02	0.046	0.002	0.061	0.062	5.4 5.0	0.080	1.460	52.4	0.29	
L11-019B		0.03	0.137	0.003	0.100	0.122	3.8	0.054	1.235	35.9	0.24	
E11-0130		1 0.02	0.044	0.001	0.123	0.004	5.0	0.004	1.200	55.5	J.27	

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 5 - A
Total # Pages: 8 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017
Account: COMSTOM

(ALS)	,								CI	ERTIFIC	CATE O	F ANAI	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01
L11- 020 L11- 021 L13- 001 L13- 001B		0.10 0.12 0.15 0.17	NSS 0.002 NSS NSS	0.0025 0.0004 0.0005	0.037 0.019 0.018	0.16 0.09 0.09	9.20 7.37 4.62	10 <10 10	45.4 32.0 25.3	0.09 0.03 0.03	0.272 0.113 0.089	2.83 1.94 1.60	0.470 0.822 0.864	2.91 1.335 1.290	1.205 1.175 0.864	3.59 1.35 3.47
L13-002 L13-003		0.10 0.07	NSS 0.002	0.0012	0.013	0.09	2.90	<10	34.4	0.02	0.093	0.48	0.510	1.230	0.602	1.58
L13- 004 L13- 005 L13- 006 L13- 007		0.11 0.11 0.11 0.10	0.002 NSS 0.001 NSS	0.0020 0.0006	0.074	0.12	3.90 1.70	<10 <10	48.2 138.0	0.03	0.123 0.108	0.29	0.474 0.460	1.750 1.235	1.100 0.726	2.63 1.23
L13-008 L13-009 L13-010 L13-011 L13-012		0.09 0.07 0.08 0.12 0.08	NSS NSS NSS 0.003 0.002	0.0012 0.0009 0.0010	0.062 0.046 0.039	0.14 0.10 0.41	4.65 2.66 1.52	<10 10 <10	81.3 93.6 30.7	0.04 0.03 0.08	0.206 0.086 0.061	0.55 0.84 0.46	0.738 0.559 0.311	2.27 1.970 11.80	0.822 0.607 2.54	3.15 2.30 11.85
L13- 013 L13- 014 L13- 015 L13- 016		0.06 0.08 0.10 0.08	NSS NSS NSS <0.001	0.0007 0.0022 0.0019	0.078 0.035 0.062	0.14 0.10 0.09	2.81 3.88 2.52	<10 10 10	62.6 36.8 37.4	0.05 0.03 0.03	0.114 0.105 0.045	0.30 0.49 2.80	0.505 0.943 0.836	2.13 1.620 1.490	0.775 0.576 1.410	2.57 2.43 2.30
L13-017 L13-018 L13-019 L13-019B L13-020 L13-021		0.09 0.12 0.11 0.08 0.09 0.11	NSS NSS NSS NSS NSS	0.0005 0.0011 0.0014 0.0034 0.0006 0.0014	0.028 0.037 0.037 0.036 0.035 0.034	0.12 0.08 0.09 0.12 0.11 0.11	4.40 13.90 5.16 9.38 3.90 3.09	10 10 10 10 10	51.8 54.2 42.7 41.3 37.2 35.6	0.06 0.02 0.04 0.03 0.05 0.04	0.088 0.078 0.072 0.057 0.257 0.157	2.54 2.35 2.63 2.56 2.44 1.98	0.834 0.749 1.445 1.245 0.549 0.268	3.68 2.12 1.755 1.805 1.840 1.900	3.22 4.54 2.40 2.68 1.150 0.555	2.80 1.91 4.31 5.72 3.26 2.39
L14-001 L14-001B L14-002 L14-003 L14-004		0.09 0.19 0.15 0.14 0.15	NSS NSS NSS NSS	0.0007 0.0006 0.227 0.0014 0.0011	0.074 0.048 0.578 0.047 0.049	0.18 0.16 0.11 0.13 0.12	64.9 34.9 12.65 16.25 10.50	10 10 10 <10 10	85.2 84.1 31.6 36.8 26.9	0.06 0.05 0.03 0.06 0.04	0.333 0.223 0.072 0.247 0.113	2.06 1.96 1.44 1.13 1.25	1.315 1.470 0.873 0.236 0.408	4.99 4.83 1.740 1.990 1.845	43.2 39.4 6.93 1.170 5.34	2.54 2.15 4.47 3.47 2.92
L14-005 L14-006 L14-007 L14-008 L14-009		0.05 0.07 0.08 0.12 0.11	NSS NSS NSS 0.001 NSS	0.0008 0.0007 0.0015 0.0008	0.017 0.189 0.056 0.033	0.08 0.09 0.11 0.16	2.91 1.74 1.46 4.37	<10 <10 10	63.9 86.6 109.0 51.7	0.02 0.04 0.03	0.058 0.064 0.070 0.105	0.39 0.56 0.64 0.52	0.722 0.923 0.507	1.050 5.03 1.770 2.59	0.771 1.350 1.380 1.315	1.63 2.42 2.73
L14-010 L14-011 L14-012 L14-013 L14-014		0.11 0.14 0.09 0.10 0.08	NSS NSS NSS NSS	0.0023 0.0017 0.0011 0.0016 0.0032	0.020 0.076 0.046 0.148 0.025	0.11 0.15 0.24 0.17 0.33	3.87 24.8 11.90 5.97 2.24	<10 <10 10 10	28.6 50.9 146.0 133.5 58.5	0.03 0.04 0.09 0.07 0.10	0.061 0.255 0.177 0.165 0.039	0.86 1.26 2.40 1.60 1.12	0.335 1.800 2.60 1.585 0.868	2.14 6.05 13.50 4.52 11.45	2.06 205 53.9 13.75 10.95	4.10 4.82 3.78 4.44 7.80

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 5 - B Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS)	,								CI	RTIFIC	CATE O	F ANAL	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Cs ppm 0.005	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001
L11-020 L11-021		0.319	11.25	0.430	0.592	0.041	0.016	0.251	0.017	0.06	1.805	0.8	0.13	1260	0.56	0.011
L13-001 L13-001B L13-002		0.169 0.209 0.238	9.23 10.35 6.74	0.227 0.206 0.160	0.220 0.246 0.252	0.021 0.018 0.022	0.008 0.005 0.006	0.134 0.114 0.184	0.008 0.006 0.007	0.04 0.05 0.10	0.783 0.704 0.645	0.3 0.5 0.4	0.09 0.10 0.08	186.0 91.9 81.7	0.77 0.54 0.23	0.005 0.007 0.010
L13- 003 L13- 004 L13- 005 L13- 006		0.632	6.89	0.340	0.458	0.034	0.008	0.229	0.006	0.10	1.240	0.5	0.07	161.5	0.34	0.003
L13-007		0.534	7.01	0.150	0.291	0.018	0.006	0.169	0.005	0.08	0.741	0.3	0.06	390	0.20	0.009
L13- 008 L13- 009 L13- 010 L13- 011 L13- 012		0.379 0.196 0.291	6.41 7.44 12.25	0.340 0.188 0.610	0.498 0.322 1.350	0.042 0.024 0.028	0.008 0.007 0.019	0.271 0.223 0.102	0.013 0.005 0.006	0.10 0.07 0.05	1.165 1.050 5.76	0.6 0.5 3.2	0.08 0.08 0.14	229 352 105.5	0.41 0.20 0.24	0.016 0.006 0.006
L13- 013 L13- 014 L13- 015 L13- 016		0.558 0.261 0.214	7.47 7.05 8.33	0.250 0.207 0.178	0.449 0.348 0.255	0.025 0.020 0.018	0.007 0.007 0.005	0.191 0.176 0.112	0.009 0.006 <0.005	0.10 0.12 0.07	1.060 0.815 0.904	0.6 0.5 0.5	0.06 0.09 0.09	197.0 109.0 1810	0.27 0.29 0.65	0.010 0.013 0.018
L13-016		0.229	11.70	0.350	0.403	0.024	0.006	0.153	0.007	0.07	1.610	0.5	0.10	2930	0.49	0.018
L13-018 L13-019 L13-019B L13-020 L13-021		0.234 0.243 0.297 0.203 0.297	7.51 12.05 11.80 12.20 23.6	0.660 0.215 0.245 0.223 0.241	0.316 0.330 0.357 0.331 0.404	0.018 0.017 0.014 0.021 0.031	0.003 0.007 0.009 0.010 0.014	0.127 0.118 0.109 0.162 0.132	<0.005 <0.005 <0.005 0.008 0.012	0.10 0.08 0.09 0.06 0.06	1.045 0.886 0.977 1.150 1.075	0.4 0.7 1.0 0.8 0.6	0.13 0.14 0.17 0.12 0.10	4040 2590 1900 957 387	0.53 0.70 0.58 0.68 0.33	0.019 0.017 0.026 0.011 0.015
L14-001 L14-001B L14-002 L14-003 L14-004		0.217 0.189 0.203 0.232 0.309	8.69 8.39 9.66 6.83 10.20	1.660 1.270 0.340 0.370 0.370	0.968 0.777 0.352 0.628 0.401	0.066 0.054 0.021 0.073 0.029	0.009 0.002 0.005 0.012 0.008	0.212 0.183 0.118 0.256 0.160	0.017 0.013 0.006 0.015 0.010	0.04 0.05 0.06 0.03 0.07	1.845 1.525 0.800 1.000 1.135	0.4 0.4 0.8 0.6 0.6	0.09 0.10 0.13 0.08 0.09	9210 10050 1525 201 292	2.09 1.69 0.79 0.51 0.99	0.008 0.004 0.009 0.009 0.012
L14- 005 L14- 006 L14- 007 L14- 008		0.497 0.151 0.751	7.19 13.30 11.70	0.114 0.137 0.145	0.240 0.255 0.310	0.011 0.014 0.012	0.004 0.006 0.004	0.093 0.162 0.147	<0.005 0.005 <0.005	0.12 0.07 0.11	0.607 6.06 1.100	0.4 0.5 0.6	0.07 0.06 0.09	168.5 119.5 1285	0.20 0.24 0.19	0.008 0.005 0.007
L14-009 L14-010		0.228 0.446	11.50	0.310	0.527	0.020	0.009	0.195	0.006	0.06	1.125	0.8	0.10	174.5 617	0.24	0.007
L14-010 L14-011 L14-012 L14-013 L14-014		0.446 0.409 0.376 0.751 0.511	13.75 13.85 14.95 12.20 21.2	0.192 1.180 0.720 0.350 0.630	1.395 1.175 0.776 1.010	0.018 0.050 0.038 0.030 0.028	0.006 0.003 0.009 0.010 0.009	0.142 0.132 0.189 0.178 0.066	0.005 0.016 0.019 0.011 0.006	0.11 0.09 0.05 0.09 0.08	1.020 2.12 3.22 1.685 3.69	0.8 0.8 0.7 0.9 2.1	0.11 0.12 0.14 0.11 0.16	22600 10900 4600 3440	0.34 1.96 1.30 0.45 0.27	0.007 0.015 0.002 0.008 0.015

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 5 - C Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS)	,								Cl	ERTIFIC	CATE O	F ANAL	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
L11-020 L11-021		0.135	4.72	0.059	44.0	<0.001	<0.002	5.28	<0.001	0.19	0.394	0.553	1.2	1.05	40.7	<0.005
L13-001 L13-001B L13-002		0.045 0.050 0.060	2.78 4.36 3.23	0.062 0.060 0.067	18.10 13.70 9.06	<0.001 <0.001 0.001	<0.002 <0.002 <0.002	2.67 3.34 4.71	<0.001 <0.001 0.001	0.20 0.18 0.18	0.273 0.225 0.155	0.414 0.361 0.374	0.8 0.7 0.7	0.31 0.27 0.33	35.7 31.5 19.45	<0.005 <0.005 <0.005
L13- 003 L13- 004 L13- 005 L13- 006		0.088	4.26	0.095	9.04	0.001	<0.002	8.82	0.001	0.14	0.321	0.524	1.0	0.79	15.95	<0.005
L13-007		0.052	3.89	0.073	13.00	<0.001	<0.002	7.63	0.001	0.17	0.184	0.388	0.6	0.37	11.25	<0.005
L13- 008 L13- 009 L13- 010 L13- 011 L13- 012		0.091 0.064 0.437	4.01 3.20 7.58	0.079 0.068 0.051	26.2 9.91 4.92	<0.001 <0.001 <0.001	<0.002 <0.002 <0.002	5.82 4.06 3.09	0.001 <0.001 0.001	0.16 0.15 0.09	0.314 0.154 0.084	0.587 0.451 1.175	1.0 0.7 0.5	0.83 0.30 0.25	16.65 26.3 12.50	<0.005 <0.005 <0.005
L13-013 L13-014 L13-015		0.112 0.071 0.046	5.70 3.66 3.90	0.089 0.072 0.079	10.35 10.15 4.75	<0.001 <0.001 <0.001	<0.002 <0.002 <0.002	6.92 6.40 4.16	<0.001 <0.001 0.004	0.14 0.16 0.18	0.215 0.202 0.115	0.567 0.460 0.446	0.7 0.6 0.7	0.45 0.42 0.18	9.34 15.50 33.9	<0.005 <0.005 <0.005
L13-016 L13-017		0.057	5.27	0.077	9.78	<0.001	<0.002	4.50	0.001	0.19	0.195	0.412	0.7	0.26	37.5	<0.005
L13- 018 L13- 019 L13- 019B L13- 020 L13- 021		0.036 0.052 0.064 0.065 0.086	3.80 4.12 20.8 8.02 3.38	0.111 0.087 0.086 0.061 0.052	14.40 13.10 9.29 9.38 23.4	0.001 <0.001 0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002 <0.002	6.64 4.83 5.24 4.26 4.30	0.005 0.001 0.001 0.001 <0.001	0.22 0.18 0.19 0.18 0.16	0.143 0.152 0.157 0.200 0.231	0.421 0.443 0.437 0.482 0.517	0.8 0.6 0.5 0.7 0.8	0.16 0.19 0.18 0.26 0.54	34.2 35.9 37.4 40.1 35.7	0.005 <0.005 <0.005 <0.005 <0.005
L14-001 L14-001B L14-002 L14-003 L14-004		0.088 0.060 0.047 0.103 0.066	4.53 5.68 6.90 4.47 4.21	0.099 0.092 0.059 0.052 0.095	80.2 64.7 18.70 25.5 16.95	<0.001 <0.001 0.001 <0.001 <0.001	<0.002 <0.002 <0.002 <0.002 <0.002	2.25 3.07 3.30 1.765 3.54	0.001 0.001 <0.001 0.001 <0.001	0.21 0.20 0.16 0.15 0.24	0.451 0.354 0.267 0.528 0.303	0.449 0.323 0.401 0.573 0.379	1.6 1.1 0.5 0.9 0.6	0.76 0.42 0.22 1.09 0.27	42.1 38.6 26.5 27.0 28.8	<0.005 <0.005 <0.005 <0.005 <0.005
L14- 005 L14- 006 L14- 007 L14- 008		0.052 0.051 0.060	3.53 4.41 7.04	0.072 0.064 0.118	4.07 7.75 4.31	<0.001 <0.001 0.001	<0.002 <0.002 <0.002	8.01 3.16 8.62	<0.001 <0.001 <0.001	0.15 0.13 0.17	0.135 0.100 0.169	0.329 0.313 0.420	0.5 0.5 0.8	0.24 0.17 0.24	11.90 33.6 19.00	<0.005 <0.005 <0.005
L14- 008		0.119	5.06	0.080	10.50	0.001	<0.002	3.84	0.001	0.16	0.183	0.576	0.7	0.42	17.55	<0.005
L14- 010 L14- 011 L14- 012 L14- 013 L14- 014		0.072 0.082 0.084 0.102 0.308	6.65 6.58 8.86 6.61 10.15	0.079 0.128 0.085 0.109 0.085	5.97 160.0 70.6 29.7 5.08	<0.001 0.001 <0.001 0.009 <0.001	<0.002 <0.002 <0.002 <0.002 <0.002	6.51 4.95 3.06 6.13 5.25	<0.001 <0.001 <0.001 <0.001 <0.001	0.20 0.22 0.17 0.19 0.14	0.130 0.329 0.258 0.245 0.072	0.395 0.576 0.549 0.605 0.729	0.6 1.0 0.9 0.7 0.2	0.19 0.49 0.34 0.55 0.14	19.90 26.2 38.6 33.9 21.2	<0.005 <0.005 <0.005 <0.005 <0.005

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 5 - D Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS)									Cl	ERTIFIC	CATE OF ANALYSIS	TB17249931
Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	
L11-020 L11-021		0.02	0.179	0.003	0.086	0.120	4.4	0.085	1.155	34.6	0.62	
L13- 001 L13- 001B L13- 002		0.01 0.01 0.01	0.033 0.024 0.032	0.001 0.001 0.002	0.045 0.046 0.109	0.040 0.037 0.046	2.7 2.6 1.9	0.047 0.049 0.045	0.516 0.478 0.358	27.6 25.7 38.9	0.25 0.19 0.20	
L13- 003 L13- 004 L13- 005 L13- 006		0.01	0.104	0.004	0.025	0.064	3.1	0.066	0.412	33.8	0.23	
L13-006		0.01	0.059	0.002	0.093	0.045	1.9	0.050	0.332	28.4	0.17	
L13- 008 L13- 009 L13- 010 L13- 011		0.02 0.02 0.01	0.142 0.118 0.702	0.003 0.003 0.018	0.115 0.103 0.081	0.078 0.071 0.473	3.1 2.6 13.3	0.097 0.054 0.044	0.585 0.518 2.38	43.2 69.3 28.5	0.31 0.26 0.70	
L13-012												
L13- 013 L13- 014 L13- 015		0.01 <0.01 <0.01	0.131 0.094 0.018	0.004 0.003 0.001	0.066 0.060 0.053	0.072 0.061 0.052	3.5 2.5 2.6	0.061 0.051 0.042	0.501 0.415 0.563	31.9 29.4 51.9	0.23 0.22 0.19	
L13-016 L13-017		0.02	0.056	0.002	0.131	0.063	5.2	0.041	1.105	55.9	0.21	
L13- 018 L13- 019 L13- 019B L13- 020 L13- 021		0.04 0.03 0.03 0.16 0.01	0.028 0.037 0.059 0.069 0.154	0.001 0.002 0.003 0.002 0.003	0.111 0.121 0.106 0.107 0.053	0.052 0.063 0.064 0.070 0.065	3.1 2.7 3.5 3.9 3.2	0.048 0.047 0.168 0.056 0.050	0.582 0.594 0.615 0.893 0.640	50.6 55.0 50.2 41.9 41.5	0.08 0.21 0.34 0.32 0.41	
L14- 001 L14- 001B L14- 002 L14- 003 L14- 004		0.09 0.06 0.02 0.01 0.03	0.074 0.026 0.039 0.141 0.036	0.003 0.002 0.002 0.004 0.002	0.288 0.329 0.132 0.046 0.050	0.120 0.084 0.047 0.095 0.073	14.6 9.9 4.3 3.6 7.7	0.168 0.065 0.046 0.292 0.055	1.110 0.940 0.515 0.538 0.591	33.5 32.0 28.6 29.2 27.5	0.26 0.12 0.15 0.42 0.32	
L14- 005 L14- 006 L14- 007 L14- 008		0.01 0.01 <0.01	0.066 0.063 0.025	0.002 0.002 0.002	0.044 0.091 0.143	0.034 0.043 0.045	2.0 2.3 2.5	0.038 0.083 0.049	0.313 0.976 0.464	36.3 61.1 64.2	0.18 0.17 0.19	
L14-009 L14-010 L14-011 L14-012 L14-013 L14-014		<0.01 0.02 0.04 0.03 0.02 0.01	0.144 0.060 0.064 0.103 0.124 0.308	0.005 0.003 0.005 0.003 0.005 0.013	0.052 0.069 0.355 0.334 0.552 0.081	0.063 0.046 0.171 0.112 0.081 0.100	3.4 17.8 10.4 5.9 15.0	0.048 0.055 0.093 0.079 0.062 0.031	0.478 0.566 0.919 2.14 0.976 1.790	46.2 43.5 43.7 93.5 119.5 68.3	0.35 0.24 0.10 0.23 0.26 0.23	

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 6 - A
Total # Pages: 8 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017
Account: COMSTOM

(ALS)	,								CI	ERTIFIC	CATE O	F ANAL	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01
L14-015 L14-016 L14-017 L14-018 L14-019		0.10 0.10 0.09 0.11 0.11	0.002 NSS NSS NSS NSS	0.0005 0.0011 0.0018 0.0045	0.066 0.033 0.047 0.089	0.08 0.10 0.13 0.20	2.31 11.30 5.08 5.10	<10 10 10 <10	19.2 44.7 18.2 77.8	0.03 0.04 0.06 0.05	0.045 0.136 0.047 0.184	0.78 0.67 1.28 0.42	0.777 0.904 0.483 0.394	1.805 2.03 2.78 3.33	1.375 0.515 1.795 0.810	2.62 2.14 5.28 4.26
L14- 019B L14- 020 L14- 021 L14- 022 L14- 023		0.10 0.14 0.11 0.10 0.08	NSS 0.029 NSS NSS NSS	0.0008 0.146 0.0006 0.0008	0.157 0.211 0.021 0.026	0.15 0.80 0.08 0.14	4.29 58.2 3.33 7.03	<10 <10 10 10	95.0 87.0 23.4 35.5	0.06 0.11 0.02 0.07	0.173 0.744 0.079 0.196	0.47 2.24 1.16 2.77	0.443 0.599 0.405 0.840	2.61 12.15 1.525 3.18	0.766 12.65 0.738 1.355	3.37 66.0 3.57 2.82
L15- 001 L15- 002 L15- 003 L15- 004 L15- 005		0.09 0.07 0.09 0.12 0.12	NSS NSS NSS NSS	0.0006 0.0016 0.0009 0.0105 0.0011	0.093 0.019 0.036 0.083 0.029	0.07 0.13 0.11 0.15 0.13	1.91 3.00 14.30 10.90 14.80	<10 <10 10 10 <10	54.3 54.7 32.6 27.0 28.4	0.02 0.04 0.03 0.04 0.03	0.101 0.118 0.086 0.104 0.108	0.36 0.23 1.21 0.81 0.72	0.290 0.648 0.522 0.398 0.202	1.220 1.910 1.740 2.33 2.23	0.471 0.982 3.54 2.38 1.095	2.04 3.73 4.47 4.45 2.54
L15- 006 L15- 007 L15- 008 L15- 009 L15- 010		0.21 0.11 0.06 0.09 0.15	<0.001 NSS NSS NSS 0.005	0.0011 0.0014 0.0022	0.069 0.030 0.178	0.24 0.13 0.16	9.11 3.46 5.98	<10 <10 <10	41.2 64.0 97.7	0.05 0.01 0.02	0.213 0.109 0.085	0.34 0.36 0.54	0.542 0.636 0.481	3.59 1.775 1.985	1.510 0.873 1.360	3.87 2.66 6.34
L15-011 L15-012 L15-013 L15-014 L15-015		0.07 0.07 0.11 0.09 0.09	NSS NSS 0.003 NSS NSS	0.0006 0.0011 0.0015 0.0009	0.053 0.023 0.065 0.038	0.12 0.11 0.11 0.14	2.99 1.96 1.23 7.48	10 10 <10 <10	68.8 78.4 31.4 36.2	0.02 0.03 0.02 0.03	0.108 0.081 0.066 0.151	0.77 0.84 0.20 0.52	0.239 0.355 0.461 0.649	1.580 1.445 1.300 1.855	0.683 1.185 0.597 1.020	2.77 2.58 2.74 4.10
L15- 015B L15- 016 L15- 017 L15- 018 L15- 019		0.08 0.09 0.11 0.09 0.06	NSS 0.002 0.001 0.001 NSS	0.0006	0.035	0.11	2.87	<10 <10	38.0	0.02	0.077	0.43	0.396	1.255 2.59	0.732	2.14
L15- 020 L15- 021 L15- 022 L15- 023 L16- 001		0.08 0.09 0.11 0.09 0.14	0.003 0.002 0.003 <0.001 0.005													
L16- 001B L16- 002 L16- 003 L16- 004 L16- 005		0.15 0.13 0.12 0.15 0.11	0.002 NSS NSS <0.001 NSS	0.0007 0.0007 0.0012	0.027 0.023 0.014	0.08 0.06 0.08	3.82 1.44 3.97	<10 <10 <10	21.2 16.7 26.6	0.02 <0.01 0.01	0.058 0.032 0.040	0.37 0.35 0.61	0.372 0.263 0.626	0.819 0.659 0.874	0.562 0.537 1.775	2.01 2.74 2.48

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

CERTIFICATE OF ANALYSIS TB17249931

Page: 6 - B Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

									_							
	Method Analyte	ME- MS41L Cs	ME- MS41L Cu	ME- MS41L Fe	ME- MS41L Ga	ME- MS41L Ge	ME- MS41L Hf	ME- MS41L Hg	ME- MS41L In	ME- MS41L K	ME- MS41L La	ME- MS41L Li	ME- MS41L Mg	ME- MS41L Mn	ME- MS41L Mo	ME- MS41L Na
	Units	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	%
Sample Description	LOR	0.005	0.01	0.001	0.004	0.005	0.002	0.004	0.005	0.01	0.002	0.1	0.01	0.1	0.01	0.001
L14-015																
L14-016		0.195	10.10	0.138	0.238	0.014	0.005	0.094	<0.005	0.06	0.883	0.5	0.05	258	0.15	0.013
L14-017		0.236	7.79	0.225	0.399	0.031	0.007	0.241	0.010	0.10	1.055	0.5	0.06	123.5	0.29	0.014
L14-018		0.237	15.50	0.199	0.340	0.021	0.006	0.123	<0.005	0.09	1.655	0.9	0.10	93.5	0.22	0.003
L14-019		0.385	9.68	0.360	0.967	0.034	0.009	0.161	0.013	0.07	1.710	0.9	0.06	147.0	0.30	0.002
L14-019B L14-020		0.320	11.80	0.270	0.602	0.030	0.008	0.172	0.011	80.0	1.390	0.5	0.06	161.5	0.29	0.005
L14- 021		1.450	56.2	2.45	2.64	0.079	0.024	0.089	0.017	0.22	5.77	10.5	0.94	1640	0.55	0.029
L14-022		0.314	7.61	0.186	0.301	0.019	0.010	0.136	0.005	0.07	0.794	0.5	0.08	164.0	0.25	0.009
L14-023		0.316	12.20	0.310	0.476	0.047	0.018	0.175	0.014	0.07	1.665	0.5	0.12	997	0.69	0.010
L15-001		0.283	6.77	0.145	0.220	0.016	0.004	0.075	<0.005	0.09	0.622	0.3	0.06	242	0.15	0.006
L15-002		0.462	9.16	0.300	0.402	0.023	0.004	0.185	0.006	0.11	0.979	0.5	0.09	135.0	0.33	0.010
L15-003		0.305	9.23	0.500	0.317	0.020	0.007	0.195	< 0.005	0.06	0.962	0.7	0.11	144.0	0.47	0.014
L15-004		0.274	9.71	0.560	0.456	0.038	0.011	0.128	0.008	0.07	1.275	0.7	0.10	73.7	0.58	0.024
L15-005		0.136	5.88	0.450	0.404	0.029	0.007	0.211	0.008	0.03	1.150	0.3	0.06	76.2	0.34	0.008
L15-006																
L15-007		0.308	8.12	0.390	0.705	0.042	0.009	0.335	0.012	0.06	1.860	0.6	0.07	110.0	0.50	0.007
L15-008		0.358	7.58	0.213	0.349	0.020	0.007	0.182	<0.005	0.10	0.966	0.4	0.08	183.5	0.31	0.010
L15-009		0.287	9.52	0.260	0.412	0.021	0.007	0.154	0.005	0.09	1.005	1.0	0.12	350	0.24	0.008
L15-010																
L15-011		0.414	8.31	0.188	0.434	0.018	0.006	0.144	0.005	0.11	0.820	0.4	0.07	1335	0.29	0.004
L15-012		0.363	6.82	0.174	0.339	0.015	0.005	0.179	<0.005	0.09	0.797	0.4	0.08	1105	0.24	0.005
L15-013																
L15-014		0.431	5.18	0.151	0.391	0.014	0.006	0.105	<0.005	0.09	0.693	0.3	0.06	125.5	0.20	0.005
L15-015		0.246	8.41	0.300	0.458	0.029	0.005	0.210	0.009	0.09	0.933	0.4	0.07	236	0.37	0.015
L15-015B		0.266	8.15	0.208	0.389	0.019	0.004	0.135	0.006	0.10	0.640	0.3	0.05	192.5	0.29	0.008
L15-016																
L15-017																
L15-018																
L15-019		0.300	4.36	0.222	0.485	0.027	0.009	0.176	0.006	0.09	1.290	0.5	0.07	112.5	0.28	0.006
L15- 020																
L15-021																
L15- 022																
L15-023																
L16-001																
L16-001B																
L16- 002		0.157	4.59	0.109	0.170	0.009	0.004	0.081	<0.005	0.08	0.406	0.2	0.06	56.2	0.20	0.013
L16-003		0.210	4.22	0.097	0.130	0.010	<0.002	0.057	<0.005	0.10	0.337	0.2	0.06	70.6	0.20	0.008
L16-004			4.50	0.040	0.470	0.040	0.004	0.404	.0.005	0.00	0.400	0.0	0.07	0.4.7	0.00	0.044
L16- 005		0.284	4.58	0.246	0.170	0.013	0.004	0.101	<0.005	0.09	0.462	0.2	0.07	94.7	0.22	0.011

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 6 - C Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(ALS	,								Cl	ERTIFIC	CATE O	F ANAL	YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
L14-015 L14-016 L14-017 L14-018 L14-019		0.062 0.073 0.063 0.224	3.72 2.96 6.69 4.65	0.043 0.068 0.067 0.072	4.79 21.8 4.35 30.6	0.001 <0.001 0.002 <0.001	<0.002 <0.002 <0.002 <0.002	3.76 5.26 4.97 3.84	<0.001 0.001 <0.001 <0.001	0.12 0.15 0.16 0.13	0.089 0.239 0.135 0.279	0.319 0.487 0.430 0.503	0.4 0.8 0.5 0.8	0.14 0.52 0.16 0.73	14.00 15.40 15.95 22.5	<0.005 <0.005 <0.005 <0.005
L14- 019B L14- 020		0.224	4.82	0.072	27.4	0.001	<0.002	4.26	<0.001	0.13	0.279	0.455	0.8	0.73	25.5	<0.005
L14- 021 L14- 022 L14- 023		0.419 0.080 0.110	74.7 4.02 4.58	0.058 0.056 0.068	16.10 10.00 46.2	0.016 0.001 <0.001	0.002 <0.002 <0.002	11.65 5.20 4.88	0.001 <0.001 0.001	0.37 0.14 0.20	0.423 0.175 0.325	2.50 0.493 0.539	0.6 0.7 1.2	0.56 0.29 0.78	43.7 24.6 43.9	<0.005 <0.005 <0.005
L15- 001 L15- 002 L15- 003 L15- 004 L15- 005		0.050 0.087 0.071 0.084 0.073	3.32 5.86 7.19 6.13 3.69	0.050 0.081 0.074 0.074 0.066	6.35 16.25 14.05 17.65 17.00	<0.001 <0.001 0.001 <0.001 0.001	<0.002 <0.002 <0.002 <0.002 <0.002	5.63 6.50 4.54 3.57 1.315	<0.001 <0.001 0.001 0.001 <0.001	0.09 0.14 0.17 0.19 0.16	0.117 0.244 0.260 0.248 0.274	0.359 0.345 0.479 0.592 0.510	0.4 0.9 0.6 0.8	0.24 0.45 0.26 0.51 0.44	7.32 13.55 24.1 18.45 16.35	<0.005 0.006 <0.005 <0.005 <0.005
L15-006 L15-007 L15-008 L15-009 L15-010		0.165 0.088 0.073	6.22 4.83 8.65	0.076 0.106 0.073	30.6 10.55 6.67	<0.001 <0.001 0.001	<0.002 <0.002 <0.002	4.60 6.82 6.93	0.001 <0.001 <0.001	0.16 0.14 0.15	0.369 0.242 0.213	0.709 0.416 0.524	1.2 1.0 1.0	0.92 0.47 0.31	14.95 21.8 13.75	<0.005 <0.005 <0.005
L15-011 L15-012 L15-013		0.113 0.087	3.29 4.01	0.100 0.097	9.85 7.18	0.001 0.001	<0.002 <0.002	6.85 5.62	<0.001 <0.001	0.17 0.19	0.208 0.178	0.360 0.399	0.7 0.7	0.49 0.33	19.90 20.9	<0.005 <0.005
L15-014 L15-015		0.091 0.095	3.71 5.33	0.084 0.082	4.14 20.0	<0.001 <0.001	<0.002 <0.002	6.73 5.30	<0.001 <0.001	0.13 0.17	0.169 0.265	0.375 0.421	0.8 0.9	0.27 0.56	11.85 10.05	<0.005 <0.005
L15-015B L15-016 L15-017 L15-018		0.067	3.19	0.084	9.28	<0.001	<0.002	5.64	<0.001	0.14	0.168	0.404	0.6	0.32	7.84	<0.005
L15- 019 L15- 020 L15- 021 L15- 022 L15- 023 L16- 001		0.141	4.31	0.081	9.33	0.001	<0.002	5.79	<0.001	0.13	0.258	0.495	0.9	0.42	13.55	<0.005
L16- 001B L16- 002 L16- 003		0.032 0.026	2.16 2.80	0.057 0.066	7.92 4.02	<0.001 <0.001	<0.002 <0.002	4.26 5.76	0.001 0.001	0.11 0.10	0.184 0.160	0.272 0.243	0.6 0.4	0.20 0.17	9.34 7.49	<0.005 <0.005
L16- 004 L16- 005		0.035	2.77	0.057	8.34	<0.001	<0.002	6.04	0.001	0.12	0.149	0.370	0.5	0.19	12.70	<0.005

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 6 - D Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(, , ,									C	ERTIFIC	CATE OF ANALYSIS	TB17249931
	Method Analyte	ME- MS41L Te	ME- MS41L Th	ME- MS41L Ti %	ME- MS41L TI	ME- MS41L U	ME- MS41L V	ME- MS41L W	ME- MS41L Y	ME- MS41L Zn	ME- MS41L Zr	
Sample Description	Units LOR	ppm 0.01	ppm 0.002	0.001	ppm 0.002	ppm 0.005	ppm 0.1	ppm 0.001	ppm 0.003	ppm 0.1	ppm 0.01	
_14- 015												
L14-016		<0.01	0.030	0.002	0.052	0.030	2.5	0.023	0.484	46.9	0.18	
L14-017		<0.01	0.133	0.003	0.064	0.067	2.7	0.082	0.608	53.4	0.30	
_14-018		0.01	0.063	0.003	0.036	0.057	3.6	0.572	0.871	19.1	0.26	
L14- 019		0.01	0.232	0.009	0.049	0.099	6.8	0.055	0.739	31.4	0.34	
L14-019B		0.01	0.189	0.006	0.056	0.082	4.4	0.075	0.701	40.0	0.35	
_14- 020												
L14- 021		0.04	1.030	0.030	0.113	0.400	26.4	1.155	3.19	78.7	1.05	
L14- 022		<0.01	0.105	0.003	0.061	0.045	2.6	0.051	0.403	33.6	0.31	
L14- 023		0.01	0.173	0.003	0.092	0.107	4.6	0.070	1.155	28.9	0.54	
L15-001		<0.01	0.024	0.002	0.084	0.034	1.7	0.060	0.379	23.3	0.13	
L15-002		0.01	0.012	0.003	0.057	0.066	2.8	0.062	0.549	18.0	0.18	
L15-003		0.01	0.064	0.003	0.107	0.061	3.8	0.216	0.499	30.4	0.25	
L15-004		0.01	0.100	0.003	0.098	0.115	4.6	0.075	0.654	25.0	0.35	
L15- 005		0.01	0.072	0.003	0.036	0.078	3.0	0.056	0.667	19.5	0.24	
L15- 006												
L15-007		0.01	0.243	0.006	0.033	0.119	5.1	0.071	0.730	26.7	0.38	
L15-008		<0.01	0.054	0.003	0.074	0.062	2.7	0.070	0.430	23.9	0.23	
L15-009		0.01	0.118	0.003	0.084	0.051	3.3	0.142	0.426	39.6	0.22	
L15-010												
L15-011		<0.01	0.090	0.004	0.082	0.054	3.2	0.055	0.372	52.5	0.24	
L15-012		<0.01	0.057	0.003	0.107	0.052	2.6	0.064	0.406	48.0	0.21	
L15-013												
L15-014		<0.01	0.022	0.003	0.071	0.043	2.9	0.042	0.279	35.2	0.18	
L15-015		0.01	0.075	0.004	0.061	0.077	3.6	0.065	0.559	33.2	0.23	
L15-015B		<0.01	0.050	0.003	0.062	0.057	4.3	0.042	0.386	33.4	0.17	
L15-016												
L15-017												
L15-018												
L15-019		<0.01	0.149	0.005	0.037	0.071	3.4	0.057	0.501	29.6	0.30	
_15- 020												
L15-021												
L15- 022		1										
L15- 023		1										
L16-001												
L16-001B												
L16- 002		<0.01	0.013	0.001	0.050	0.031	1.2	0.041	0.245	19.8	0.09	
L16- 003		<0.01	0.004	0.001	0.045	0.025	1.1	0.028	0.203	21.0	0.06	
L16- 004												
L16-005		<0.01	0.016	0.001	0.130	0.042	1.3	0.029	0.223	30.3	0.09	
		1										

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 7 - A
Total # Pages: 8 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017
Account: COMSTOM

(ALS	,								CI	ERTIFIC	CATE O	F ANAL	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01
L16-006 L16-007 L16-008 L16-009 L16-010		0.13 0.11 0.12 0.12 0.09	NSS 0.001 NSS 0.001 0.002	0.0013 0.0008	0.034 0.033	0.09 0.10	3.36 6.90	<10 <10	17.6 26.2	0.02	0.048 0.053	0.60 0.70	0.236 0.265	1.095 1.400	1.260 2.14	6.33 3.86
L16- 011 L16- 012 L16- 013 L16- 014 L16- 015		0.09 0.08 0.08 0.08 0.08	0.001 <0.001 0.002 0.001 0.001													
L16- 016 L16- 017 L16- 018 L16- 019 L16- 020		0.07 0.09 0.06 0.09 0.12	0.001 0.001 NSS <0.001 <0.001	0.0008	0.357	0.15	9.06	<10	101.5	0.04	0.235	0.49	0.868	2.21	0.730	3.10
L16- 020B L16- 21 L16- 22 L16- 23 L16- 24		0.11 0.08 0.10 0.14 0.07	<0.001 <0.001 0.001 <0.001 <0.001													
L16- 25 L16- 26 L16- 27 L16- 28 L16- 29		0.11 0.11 0.12 0.06 0.09	<0.001 NSS <0.001 <0.001 0.004	0.0011	0.027	0.08	2.65	10	15.3	0.02	0.052	1.94	0.296	1.070	0.635	3.91
L16- 30 L16- 31 L16- 32 L16- 33 L16- 34		0.09 0.07 0.11 0.10 0.12	0.004 <0.001 NSS NSS 0.002	0.0067 0.0011	0.016 0.036	0.06 0.06	3.23 2.07	10 10	17.5 12.2	0.01 0.01	0.042 0.051	2.23 1.78	0.343 0.404	0.767 0.737	0.612 0.532	6.05 4.05
L16- 35 L17- 001 L17- 001B L17- 002 L17- 003		0.15 0.07 0.08 0.23 0.08	<0.001 <0.001 0.003 0.001 0.001													
L17- 004 L17- 005 L17- 006 L17- 007 L17- 008		0.07 0.07 0.11 0.11 0.11	<0.001 NSS <0.001 0.001 0.012	0.105	0.207	0.17	2.93	<10	103.5	0.02	0.099	1.26	0.602	2.52	1.480	9.94

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

CERTIFICATE OF ANALYSIS TB17249931

Page: 7 - B Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

										-17 1 11 10	AILO	1 /\14/\L			73331	
Sample Description	Method Analyte Units LOR	ME- MS41L Cs ppm 0.005	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001
L16- 006 L16- 007 L16- 008 L16- 009 L16- 010		0.146 0.260	11.00 8.11	0.182 0.320	0.215 0.234	0.010 0.012	0.002 0.004	0.071 0.092	<0.005 <0.005	0.04	0.556 0.850	0.7	0.09 0.11	121.5 145.5	0.23 0.33	0.014 0.023
L16- 011 L16- 012 L16- 013 L16- 014 L16- 015																
L16- 016 L16- 017 L16- 018 L16- 019 L16- 020		0.470	7.66	0.270	0.602	0.043	0.008	0.264	0.016	0.08	1.190	0.3	0.06	408	0.41	0.004
L16- 020B L16- 21 L16- 22 L16- 23 L16- 24																
L16- 25 L16- 26 L16- 27 L16- 28 L16- 29		0.174	9.02	0.143	0.210	0.013	0.006	0.089	<0.005	0.08	0.790	0.5	0.11	306	0.49	0.006
L16- 30 L16- 31 L16- 32 L16- 33 L16- 34		0.197 0.169	6.16 5.24	0.101 0.095	0.167 0.172	0.010 0.010	0.005 0.005	0.056 0.084	<0.005 <0.005	0.06 0.05	0.414 0.393	0.7 0.5	0.12 0.11	101.0 48.0	0.52 0.38	0.013 0.008
L16- 35 L17- 001 L17- 001 B L17- 002 L17- 003																
L17- 004 L17- 005 L17- 006 L17- 007 L17- 008		0.392	9.07	0.330	0.482	0.020	0.005	0.137	0.005	0.09	1.285	0.9	0.39	1075	0.28	0.005

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

CERTIFICATE OF ANALYSIS TB17249931

Page: 7 - C Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

											AILO	. , \		10172		
Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
L16- 006 L16- 007 L16- 008 L16- 009 L16- 010		0.055 0.043	6.88 4.99	0.039 0.071	4.46 7.91	<0.001 0.001	<0.002 <0.002	2.21 3.60	0.001 0.001	0.10 0.14	0.182 0.150	0.368 0.362	0.4 0.5	0.23 0.24	11.45 13.10	<0.005 <0.005
L16-011 L16-012 L16-013 L16-014 L16-015																
L16- 016 L16- 017 L16- 018 L16- 019 L16- 020		0.102	3.90	0.089	41.7	0.001	<0.002	5.92	0.001	0.14	0.500	0.527	1.2	1.26	24.1	<0.005
L16- 020B L16- 21 L16- 22 L16- 23 L16- 24																
L16- 25 L16- 26 L16- 27 L16- 28 L16- 29		0.052	4.72	0.052	4.50	0.001	<0.002	5.03	0.001	0.16	0.165	0.314	0.7	0.19	20.1	<0.005
L16- 30 L16- 31 L16- 32 L16- 33 L16- 34		0.039 0.038	6.12 4.17	0.054 0.059	2.44 3.74	<0.001 0.001	<0.002 <0.002	3.52 2.89	0.001 0.001	0.13 0.15	0.185 0.161	0.311 0.309	0.4 0.5	0.17 0.15	20.4 17.40	<0.005 <0.005
L16- 35 L17- 001 L17- 001B L17- 002 L17- 003																
L17- 004 L17- 005 L17- 006 L17- 007 L17- 008		0.090	9.71	0.086	7.09	<0.001	<0.002	4.16	<0.001	0.15	0.179	0.498	0.7	0.33	25.2	<0.005

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 7 - D Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(, , ,									C	ERTIFIC	CATE OF ANALYSIS	TB17249931
Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01	
L16-006 L16-007 L16-008 L16-009 L16-010		0.01 0.01	0.021 0.021	0.002 0.002	0.048 0.113	0.036 0.084	2.3 2.5	0.065 0.043	0.297 0.313	27.2 24.8	0.10 0.11	
L16- 011 L16- 012 L16- 013 L16- 014 L16- 015												
L16- 016 L16- 017 L16- 018 L16- 019 L16- 020		0.02	0.111	0.004	0.076	0.101	2.9	0.072	0.496	53.0	0.30	
L16- 020B L16- 21 L16- 22 L16- 23 L16- 24												
L16- 25 L16- 26 L16- 27 L16- 28 L16- 29		<0.01	0.014	0.002	0.045	0.056	2.9	0.050	0.471	28.9	0.19	
L16-30 L16-31 L16-32 L16-33 L16-34		<0.01 <0.01	0.011 0.017	0.001 0.001	0.034 0.030	0.030 0.040	1.7 1.7	0.065 0.040	0.245 0.223	22.5 26.0	0.13 0.15	
L16-35 L17-001 L17-001B L17-002 L17-003												
L17-004 L17-005 L17-006 L17-007 L17-008		0.01	0.049	0.004	0.218	0.062	4.5	0.056	0.751	82.7	0.16	

To: COMSTOCK METALS LTD.
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

Page: 8 - A
Total # Pages: 8 (A - D)
Plus Appendix Pages
Finalized Date: 12- DEC- 2017
Account: COMSTOM

(, , ,									CI	ERTIFIC	CATE O	F ANAL	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	WEI- 21 Recvd Wt. kg 0.02	Au- TL43 Au ppm 0.001	ME- MS41L Au ppm 0.0002	ME- MS41L Ag ppm 0.001	ME- MS41L AI % 0.01	ME- MS41L As ppm 0.01	ME- MS41L B ppm 10	ME- MS41L Ba ppm 0.5	ME- MS41L Be ppm 0.01	ME- MS41L Bi ppm 0.001	ME- MS41L Ca % 0.01	ME- MS41L Cd ppm 0.001	ME- MS41L Ce ppm 0.003	ME- MS41L Co ppm 0.001	ME- MS41L Cr ppm 0.01
L17-009 L17-010 L17-011 L17-012 L17-013		0.09 0.08 0.12 0.10 0.10	<0.001 <0.001 0.008 0.002 NSS	0.0005	0.019	0.07	4.69	10	15.8	0.03	0.081	2.26	1.070	1.360	0.613	2.97

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 8 - B Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017 Account: COMSTOM

(· 100)									С	ERTIFIC	CATE O	F ANAI	LYSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Cs ppm 0.005	ME- MS41L Cu ppm 0.01	ME- MS41L Fe % 0.001	ME- MS41L Ga ppm 0.004	ME- MS41L Ge ppm 0.005	ME- MS41L Hf ppm 0.002	ME- MS41L Hg ppm 0.004	ME- MS41L In ppm 0.005	ME- MS41L K % 0.01	ME- MS41L La ppm 0.002	ME- MS41L Li ppm 0.1	ME- MS41L Mg % 0.01	ME- MS41L Mn ppm 0.1	ME- MS41L Mo ppm 0.01	ME- MS41L Na % 0.001
L17- 009 L17- 010 L17- 011 L17- 012 L17- 013		0.199	6.74	0.136	0.218	0.015	0.008	0.158	0.005	0.05	0.704	0.4	0.11	147.0	0.95	0.007

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 8 - C Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017

Account: COMSTOM

(> 100)									Cl	ERTIFIC	CATE O	F ANAI	_YSIS	TB172	49931	
Sample Description	Method Analyte Units LOR	ME- MS41L Nb ppm 0.002	ME- MS41L Ni ppm 0.04	ME- MS41L P % 0.001	ME- MS41L Pb ppm 0.005	ME- MS41L Pd ppm 0.001	ME- MS41L Pt ppm 0.002	ME- MS41L Rb ppm 0.005	ME- MS41L Re ppm 0.001	ME- MS41L S % 0.01	ME- MS41L Sb ppm 0.005	ME- MS41L Sc ppm 0.005	ME- MS41L Se ppm 0.1	ME- MS41L Sn ppm 0.01	ME- MS41L Sr ppm 0.01	ME- MS41L Ta ppm 0.005
L17- 009 L17- 010 L17- 011 L17- 012 L17- 013		0.046	4.47	0.074	14.90	0.001	<0.002	2.89	0.001	0.19	0.154	0.377	0.7	0.23	24.7	<0.005

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver BC V7H 0A7

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 8 - D Total # Pages: 8 (A - D) Plus Appendix Pages Finalized Date: 12- DEC- 2017

Account: COMSTOM

(, , , , , , , , , , , , , , , , , , ,									CI	ERTIFIC	CATE OF	ANALYSIS	TB17249931
Sample Description	Method Analyte Units LOR	ME- MS41L Te ppm 0.01	ME- MS41L Th ppm 0.002	ME- MS41L Ti % 0.001	ME- MS41L TI ppm 0.002	ME- MS41L U ppm 0.005	ME- MS41L V ppm 0.1	ME- MS41L W ppm 0.001	ME- MS41L Y ppm 0.003	ME- MS41L Zn ppm 0.1	ME- MS41L Zr ppm 0.01		
L17-009 L17-010 L17-011 L17-012 L17-013		0.02	0.031	0.001	0.042	0.044	2.4	0.057	0.450	31.3	0.24		

ALS Canada Ltd.

To: COMSTOCK METALS LTD.
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 12- DEC- 2017 Account: COMSTOM

Project: Old Cabin Property

CERTIFICATE OF ANALYSIS TB17249931

CERTIFICATE COMMENTS
ANALYTICAL COMMENTS
NSS is non- sufficient sample. ALL METHODS
Gold determinations by this method are semi- quantitative due to the small sample weight used (0.5g). ME- MS41L
LABORATORY ADDRESSES
Processed at ALS Thunder Bay located at 645 Norah Crescent, Thunder Bay, ON, Canada LOG- 22 SCR- 41 WEI- 21
Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au- TL43 ME- MS41L

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

Page: 1 Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017

Account: COMSTOM

QC CERTIFICATE TB17253553

Project: Old Cabin

This report is for 66 Rock samples submitted to our lab in Thunder Bay, ON, Canada

on 14- NOV- 2017.

The following have access to data associated with this certificate:

DAVID TERRY JOHN WALMSLEY

	SAMPLE PREPARATION
ALS CODE	DESCRIPTION
WEI- 21	Received Sample Weight
LOG- 22	Sample login - Rcd w/o BarCode
LOG- 22d	Sample login - Rcd w/o BarCode dup
SPL- 21d	Split sample - duplicate
PUL- 32d	Pulverize Split - Dup 85% < 75um
DRY- 22	Drying - Maximum Temp 60C
CRU- QC	Crushing QC Test
PUL- QC	Pulverizing QC Test
CRU- 32	Fine Crushing 90% < 2mm
SPL- 21	Split sample - riffle splitter
PUL- 32	Pulverize 1000g to 85% < 75 um
BAG- 01	Bulk Master for Storage

	ANALYTICAL PROCEDU	RES
ALS CODE	DESCRIPTION	
ME- MS61	48 element four acid ICP- MS	
Au- AA24	Au 50g FA AA finish	AAS

TO: COMSTOCK METALS LTD.
ATTN: JOHN WALMSLEY
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

QC CERTIFICATE OF ANALYSIS TB17253553

Page: 2 - A
Total # Pages: 5 (A - D)
Plus Appendix Pages
Finalized Date: 28- NOV- 2017
Account: COMSTOM

STANDARDS STAN	STANDARDS	Sample Description	Method Analyte Units	Au- AA24 Au ppm	ME- MS61 Ag ppm	ME- MS61 AI %	ME- MS61 As ppm	ME- MS61 Ba ppm	ME- MS61 Be ppm	ME- MS61 Bi ppm	ME- MS61 Ca %	ME- MS61 Cd ppm	ME- MS61 Ce ppm	ME- MS61 Co ppm	ME- MS61 Cr ppm	ME- MS61 Cs ppm	ME- MS61 Cu ppm	ME- MS61 Fe %
G913-10 G913-1	G913-10 G913-10 G913-10 G913-10 Target Range - Lower Bound Upper Bound LEA-16 Target Range - Lower Bound Upper Bou		LOR	0.005	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.2	0.01
G913-10 Target Range - Lower Bound Upper Bound LEA-16 1.675 Carget Range - Lower Bound Upper Bound Upp	G913-10 Target Range - Lower Bound Upper B								STAN	DARDS								
T.52 1.875 1.875 1.875 2.12 1.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12 2.12	T.52 Target Range - Lower Bound Upper																	
IR-17	1875																	
Target Range - Lower Bound Upper Bound U	Target Range - Lower Bound Upper Bound U		r Bound															
LEA- 16	LEA-16		r Bound															
LEA-16 Target Range - Lower Bound Upper Bound OGGeo08 MRGe008 MRGe008 4.22 7.90 34.1 1130 3.45 0.67 2.62 2.14 79.5 18.9 94 11.65 638 3.95 625 3.99 Target Range - Lower Bound Upper Bound OGGeo08 Target Range - Lower Bound Upper Bound Upper Bound Upper Bound Upper Bound OREAS 905 OREAS 905 OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 OREAS 920 OREAS 9	LEA-16 Target Range - Lower Bound Upper Bound OGEAS 503c Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 OREAS 905 OREAS 905 OREAS 905 OREAS 905 OREAS 906 OREAS 907 O		r Bound															
Target Range - Lower Bound Upper Bound Upper Bound Upper Bound O.536 MRGeo08 MRGeo08 A	Target Range - Lower Bound Upper Bound O.536 MRGeo08 MRGeo08 MRGeo08 MRGeo08 A																	
MRGeo08 MRGeo08 MRGeo08 MRGeo08 MRGeo08 Target Range - Lower Bound Upper Bound OGEAS 503c OREAS 905 OREAS	MRGeo08 MRGeo08 MRGeo08 MRGeo08 MRGeo08 MRGeo08 Author 7.61 Author 8.62 Author 8.63 Author	Target Range - Lower		0.466														
Target Range - Lower Bound Upper Bound OGGeo08 Target Range - Lower Bound Upper Bound OREAS 503c OREAS 905 OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 900 OREAS 900 OREAS 900 OREAS 900 OREAS 900 Target Range - Lower Bound OREAS 900 ORE	Target Range - Lower Bound Upper Bound OGGeo08 19.15 6.85 120.0 870 2.99 9.81 2.20 19.85 70.1 96.3 88 11.05 8220 5.38 11.05 82	MRGeo08	Dound	0.000														
Upper Bound OGGeo08	Upper Bound OGGeo08		D 1															
OGGeo08 Target Range - Lower Bound Upper Bound OREAS 503c OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 906 OREAS 907 Target Range - Lower Bound OREAS 908 OREAS 909 OREAS 909 OREAS 900	OGGeo08 Target Range - Lower Bound Upper Bound OREAS 503c OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 920 OR																	
Upper Bound OREAS 503c OREAS 503c OREAS 503c OREAS 503c Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 905 OREAS 905 OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 906 OREAS 907 OREAS 905 OREAS	Upper Bound OREAS 503c OREAS 905 OR		Dound		19.15	6.85		870	2.99	9.81					88			5.38
OREAS 503c	OREAS 503c																	
OREAS 503c Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 906 OREAS 907 Target Range - Lower Bound Upper Bound OREAS 908 OREAS 909 OREAS	OREAS 503c Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 OREAS 905 OREAS 905 OREAS 906 OREAS 907 OREAS 907 OREAS 907 OREAS 908 OREAS 908 OREAS 909 O		r Bound	0.704	22.2	7.44	130.0	980	3.21	11.55	2.44	20.5	79.2	107.0	98	12.15	8980	5.91
Upper Bound 0.739 OREAS 905 Target Range - Lower Bound Upper Bound OREAS 905 OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 905 Target Range - Lower Bound OREAS 905 OREAS 905 OREAS 905 OREAS 905 OREAS 905 OREAS 905 OREAS 907 OREAS 905 OREAS 907 ORE	Upper Bound 0.739 OREAS 905 OREAS 905 OREAS 905 Target Range - Lower Bound Upper Bound 0.48 7.56 34.0 2820 280 2.87 5.75 5.62 0.60 0.60 0.34 0.33 93.0 94.8 14.0 13.4 19 18 6.51 6.91 1560 1475 1475 4.04 3.97 Target Range - Lower Bound OREAS 920 Target Range - Lower Bound 0.46 0.58 6.67 8.17 31.0 38.4 2280 3110 2280 3.39 2.69 5.14 5.14 0.52 0.30 0.66 82.8 0.42 13.2 10.0 16 16 16 16 16 16 16 16 16 16 16 16 16 1			0.679														
OREAS 905 0.48 7.56 34.0 2820 2.87 5.75 0.60 0.34 93.0 14.0 19 6.51 1560 4.04 OREAS 905 0.50 7.41 33.6 2770 2.68 5.62 0.60 0.33 94.8 13.4 18 6.91 1475 3.97 Target Range - Lower Bound 0.46 6.67 31.0 2280 2.69 5.14 0.52 0.30 82.8 13.2 16 6.05 1425 3.66 Upper Bound 0.58 8.17 38.4 3110 3.39 6.30 0.66 0.42 101.0 16.4 22 7.51 1640 4.50 OREAS 920 0.09 7.76 5.2 550 3.02 0.65 0.49 0.04 96.8 14.7 82 8.50 106.5 3.98 Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72	OREAS 905 0.48 7.56 34.0 2820 2.87 5.75 0.60 0.34 93.0 14.0 19 6.51 1560 4.04 OREAS 905 0.50 7.41 33.6 2770 2.68 5.62 0.60 0.33 94.8 13.4 18 6.91 1475 3.97 Target Range - Lower Bound 0.46 6.67 31.0 2280 2.69 5.14 0.52 0.30 82.8 13.2 16 6.05 1425 3.66 Upper Bound 0.58 8.17 38.4 3110 3.39 6.30 0.66 0.42 101.0 16.4 22 7.51 1640 4.50 OREAS 920 0.09 7.76 5.2 550 3.02 0.65 0.49 0.04 96.8 14.7 82 8.50 106.5 3.98 Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72																	
OREAS 905 0.50 7.41 33.6 2770 2.68 5.62 0.60 0.33 94.8 13.4 18 6.91 1475 3.97 Target Range - Lower Bound 0.46 6.67 31.0 2280 2.69 5.14 0.52 0.30 82.8 13.2 16 6.05 1425 3.66 Upper Bound 0.58 8.17 38.4 3110 3.39 6.30 0.66 0.42 101.0 16.4 22 7.51 1640 4.50 OREAS 920 0.09 7.76 5.2 550 3.02 0.65 0.49 0.04 96.8 14.7 82 8.50 106.5 3.98 Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72	OREAS 905 0.50 7.41 33.6 2770 2.68 5.62 0.60 0.33 94.8 13.4 18 6.91 1475 3.97 Target Range - Lower Bound 0.46 6.67 31.0 2280 2.69 5.14 0.52 0.30 82.8 13.2 16 6.05 1425 3.66 Upper Bound 0.58 8.17 38.4 3110 3.39 6.30 0.66 0.42 101.0 16.4 22 7.51 1640 4.50 OREAS 920 0.09 7.76 5.2 550 3.02 0.65 0.49 0.04 96.8 14.7 82 8.50 106.5 3.98 Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72		r Bound	0.739	0.48	7 56	34.0	2820	2 87	5.75	0.60	0.34	93.0	14 0	19	6.51	1560	4 04
Upper Bound 0.58 8.17 38.4 3110 3.39 6.30 0.66 0.42 101.0 16.4 22 7.51 1640 4.50 OREAS 920 0.09 7.76 5.2 550 3.02 0.65 0.49 0.04 96.8 14.7 82 8.50 106.5 3.98 Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72	Upper Bound 0.58 8.17 38.4 3110 3.39 6.30 0.66 0.42 101.0 16.4 22 7.51 1640 4.50 OREAS 920 0.09 7.76 5.2 550 3.02 0.65 0.49 0.04 96.8 14.7 82 8.50 106.5 3.98 Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72																	
OREAS 920 0.09 7.76 5.2 550 3.02 0.65 0.49 0.04 96.8 14.7 82 8.50 106.5 3.98 Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72	OREAS 920 0.09 7.76 5.2 550 3.02 0.65 0.49 0.04 96.8 14.7 82 8.50 106.5 3.98 Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72																	
Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72	Target Range - Lower Bound 0.08 6.91 4.4 450 2.54 0.61 0.44 0.04 84.6 13.9 70 7.72 104.0 3.72		r Bound															
			r Bound															
Opper addition		Upper	r Bound		0.13	8.47		640	3.22	0.77	0.56	0.12	103.5	17.3	88	9.54	120.0	4.56

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017 Account: COMSTOM

(ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TB1	725355	3
Sample Description	Method Analyte Units LOR	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10	ME- MS61 Pb ppm 0.5
							STAN	DARDS								
K- 17	Bound															
arget Range - Lower Upper EA- 16 EA- 16 arget Range - Lower	Bound															
	Bound	19.40	0.18	3.1	0.158	3.17	39.3	32.6	1.34	561	15.15	1.98	20.7	709	1070	1100
RGeo08		19.75	0.16	3.5	0.185	3.16	39.1	33.7	1.32	573	15.65	2.02	21.7	718	1090	1110
arget Range - Lower		17.50	<0.05	2.8	0.155	2.79	31.1	29.5	1.17	497	13.65	1.76	19.0	622	930	971
	Bound	21.5	0.27	3.6	0.201	3.43	39.1	36.5	1.45	619	16.75	2.18	23.4	760	1160	1185
GGeo08 arget Range - Lower	D	16.70 16.05	0.17 0.25	3.0 2.5	1.460 1.320	2.89 2.59	35.4 31.0	32.4 29.7	1.23 1.11	516 447	902 841	1.83 1.62	16.6 15.4	8810 8000	880 760	7440 6520
	Bound	19.75	0.25	3.3	1.620	3.19	39.0	36.7	1.11	557	1030	2.00	19.0	9770	950	7970
REAS 503c	Dourid	10.70	0.10	0.0	1.020	0.10	00.0	00.7	1.00	001	1000	2.00	10.0	0770	000	7070
REAS 503c																
arget Range - Lower Upper	Bound Bound															
REAS 905		25.2	0.17	7.2	0.652	2.92	46.0	20.0	0.26	376	3.40	2.42	17.9	8.7	280	29.4
REAS 905		24.0	0.17	7.0	0.657	2.82	47.0	18.4	0.26	378	3.20	2.35	17.6	8.6	270	30.9
arget Range - Lower		22.5	<0.05	6.1	0.571	2.58	40.9	17.8	0.24	333	2.89	2.15	16.2	8.4		26.9
Upper REAS 920	Bound	27.7 19.65	0.27 0.25	7.6 4.8	0.709 0.081	3.18 2.81	51.1 47.7	22.2 32.1	0.31 1.30	418 594	3.65 0.40	2.65 0.63	20.0 16.3	10.7 39.1	750	33.9 23.6
REAS 920 arget Range - Lower	Round	18.65	0.25	4.0	0.081	2.59	41.0	26.0	1.23	535	0.40	0.63	15.6	37.4	750	20.7
	Bound	22.9	0.28	5.2	0.098	3.19	51.2	32.2	1.53	665	0.58	0.71	19.2	46.2		26.4

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1

QC CERTIFICATE OF ANALYSIS TB17253553

Page: 2 - C
Total # Pages: 5 (A - D)
Plus Appendix Pages
Finalized Date: 28- NOV- 2017
Account: COMSTOM

Analyte Units	1E- MS61 ME- MS61 Rb Re ppm ppm 0.1 0.002	S %	ME- MS61 ME- MS6 Sb Sc	l ME- MS61 Se	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61	ME- MS61
		0.01	ppm ppm 0.05 0.1	ppm 1	Sn ppm 0.2	Sr ppm 0.2	Ta ppm 0.05	Te ppm 0.05	Th ppm 0.01	Ti % 0.005	TI ppm 0.02	U ppm 0.1	V ppm 1
				STAN	IDARDS								
G913- 10 G913- 10 Target Range - Lower Bound Upper Bound JK- 17 Target Range - Lower Bound Upper Bound Upper Bound				3171									
LEA- 16 Target Range - Lower Bound													
Upper Bound MRGeo08	210 0.011	0.31	4.55 11.5	<1	4.1	315	1.57	<0.05	20.7	0.494	1.00	5.7	112
MRGeo08	197.0 0.011	0.32	4.79 11.8	1	4.1	316	1.60	<0.05	19.85	0.507	1.14	5.5	114
3	173.5 0.005	0.27	3.89 11.1	<1	3.5	277	1.39	<0.05	17.90	0.443	0.89	4.9	97
	212 0.013 183.5 1.400	0.35 2.88	5.39 13.7 26.2 9.6	4 11	4.7 13.6	339 254	1.81 1.29	0.14 0.17	21.9 17.15	0.553 0.402	1.25 1.79	6.2 5.0	121 88
	164.5 1.285	2.51	22.8 9.2	8	12.5	224	1.19	0.17	16.90	0.402	1.73	4.5	77
	201 1.575	3.09	31.0 11.4	14	15.7	274	1.57	0.31	20.7	0.443	1.98	5.8	97
OREAS 503c OREAS 503c Target Range - Lower Bound Upper Bound													
	133.5 < 0.002	0.07	2.02 4.8	3	3.8	163.0	1.33	0.06	14.10	0.122	0.72	5.0	10
	133.5 < 0.002 124.0 < 0.002	0.07 0.04	2.02 4.6 1.61 4.3	2 <1	4.4 3.4	156.5 141.0	1.29 1.16	0.08 <0.05	13.80 13.15	0.122 0.105	0.78 0.59	4.7 4.4	10 8
	152.0 0.002	0.09	2.29 5.5	5	4.6	173.0	1.10	0.03	16.05	0.103	0.39	5.6	13
- - - - - - - - - - - - - -	170.0 0.003	0.03	1.50 13.2	<1	4.8	83.1	1.39	<0.05	19.35	0.474	0.93	3.8	96
	158.5 < 0.002	<0.01	1.22 12.8	<1	4.3	73.6	1.08	< 0.05	17.35	0.434	0.76	3.3	86
Upper Bound	193.5 0.004	0.05	1.76 15.8	2	5.7	90.4	1.43	0.10	21.2	0.542	1.08	4.2	108

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 2 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017

Account: COMSTOM

Project: Old Cabin

QC CERTIFICATE OF ANALYSIS TB17253553

	1				
Method	ME- MS61	ME- MS61	ME- MS61	ME- MS61	
Analyte	w	Υ	Zn	Zr	
Units	ppm	ppm	ppm	ppm	
Sample Description LOR	0.1	0.1	2	0.5	
					STANDARDS
6012.10					
G913- 10 G913- 10					
Target Range - Lower Bound					
Upper Bound					
JK- 17					
Target Range - Lower Bound					
Upper Bound					
LEA- 16					
LEA- 16					
Target Range - Lower Bound					
Upper Bound MRGeo08	4.9	26.6	809	109.0	
MRGeo08	5.0	27.9	814	111.5	
Target Range - Lower Bound	4.1	23.8	722	92.2	
Upper Bound	5.8	29.3	886	126.0	
OGGeo08	4.5	25.2	7150	95.7	
Target Range - Lower Bound	3.9	21.1	6500	78.6	
Upper Bound	5.4	26.0	7950	107.5	
OREAS 503c					
OREAS 503c					
Target Range - Lower Bound Upper Bound					
OREAS 905	2.8	15.5	139	262	
OREAS 905	2.7	15.1	135	252	
Target Range - Lower Bound	2.3	14.0	122	214	
Upper Bound	3.3	17.4	154	290	
OREAS 920	3.3	34.8	116	155.5	
Target Range - Lower Bound	2.5	29.8	102	128.0	
Upper Bound	3.7	36.6	130	174.0	

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - A
Total # Pages: 5 (A - D)
Plus Appendix Pages
Finalized Date: 28- NOV- 2017

Account: COMSTOM

(ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TB1	725355	3
Sample Description	Method Analyte Units LOR	Au- AA24 Au ppm 0.005	ME- MS61 Ag ppm 0.01	ME- MS61 AI % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01
							BL	ANKS								
BLANK BLANK BLANK BLANK Target Range - Lower Upper	Bound Bound	<0.005 0.005 0.007 0.005 <0.005 0.010														
BLANK BLANK BLANK Target Range - Lower	Bound		<0.01 <0.01 <0.01 <0.01	<0.01 <0.01 <0.01 <0.01	<0.2 0.3 <0.2 <0.2	<10 <10 <10 <10	<0.05 <0.05 <0.05 <0.05	0.01 0.01 0.02 <0.01	<0.01 <0.01 <0.01 <0.01	<0.02 <0.02 <0.02 <0.02	<0.01 0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1	<1 <1 <1 <1	<0.05 <0.05 <0.05 <0.05	<0.2 <0.2 <0.2 <0.2	<0.01 <0.01 <0.01 <0.01
Upper	Bound		0.02	0.02	0.4	20	0.10	0.02	0.02	0.04	0.02	0.2	2	0.10	0.4	0.02
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.885 0.897 0.841 0.941														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.005 0.029 0.011 0.023														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	3.43 3.03 3.06 3.40														
50125 DUP Target Range - Lower	Bound	<0.005 <0.005 <0.005 0.010	0.21 0.26 0.21 0.26	7.44 7.49 7.08 7.85	14.5 15.3 14.0 15.8	370 370 330 410	0.89 0.86 0.78 0.97	0.33 0.32 0.30 0.35	0.98 0.99 0.93 1.04	0.91 0.97 0.87 1.01	52.1 52.4 49.6 54.9	27.8 27.6 26.2 29.2	23 23 21 25	2.17 2.17 2.01 2.33	141.5 136.0 133.5 144.0	3.86 3.87 3.66 4.07

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28-NOV-2017

Account: COMSTOM

(ALS	,								QC	CERTII	ICATE	OF AN	ALYSIS	TB1	725355	3
Sample Description	Method Analyte Units LOR	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10	ME- MS61 Pb ppm 0.5
							BL	ANKS								
BLANK BLANK BLANK BLANK Target Range - Lower																
Upper BLANK BLANK BLANK Target Range - Lower	· Bound	<0.05 <0.05 <0.05 <0.05	<0.05 0.10 0.05 <0.05	<0.1 <0.1 <0.1 <0.1	<0.005 <0.005 <0.005 <0.005	<0.01 <0.01 <0.01 <0.01	<0.5 <0.5 <0.5 <0.5	<0.2 <0.2 0.2 <0.2	<0.01 <0.01 <0.01 <0.01	<5 <5 <5 <5	<0.05 <0.05 <0.05 <0.05	<0.01 <0.01 <0.01 <0.01	<0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2	10 <10 <10	<0.5 <0.5 <0.5
	Bound	0.10	0.10	0.2	0.010	0.02	1.0	0.4	0.02	10	0.10	0.02	0.2	0.4	20	1.0
	⁻ Bound ⁻ Bound						DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
50125 DUP Target Range - Lower	Bound	19.75 20.0 18.85 20.9	0.15 0.11 0.07 0.19	5.1 5.3 4.8 5.6	0.178 0.179 0.165 0.192	2.22 2.22 2.10 2.34	25.3 25.8 23.8 27.3	10.3 9.4 9.2 10.5	0.66 0.66 0.62 0.70	603 608 570 641	1.62 1.65 1.50 1.77	0.49 0.49 0.46 0.52	4.4 4.4 4.1 4.7	39.6 39.5 37.4 41.7	490 480 450 520	4.8 5.1 4.2 5.7

^{*****} See Appendix Page for comments regarding this certificate *****

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017 Account: COMSTOM

(ALS)	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TB17	725355	3
Sample Description	Method Analyte Units LOR	ME- MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1
							BLA	ANKS								
BLANK BLANK BLANK BLANK Target Range - Lower Upper BLANK BLANK	Bound Bound	<0.1 0.1	<0.002 0.002	<0.01 <0.01	<0.05 <0.05	<0.1 <0.1	1 <1	<0.2 <0.2	<0.2 <0.2	<0.05 <0.05	<0.05 <0.05	<0.01 <0.01	<0.005 <0.005	<0.02 <0.02	<0.1 <0.1	<1 <1
BLANK Target Range - Lower	Pound	<0.1 <0.1	<0.002 <0.002	<0.01	0.05 <0.05	<0.1 <0.1	<1 <1	<0.2 <0.2	<0.2 <0.2	<0.05 <0.05	<0.05 <0.05	<0.01	<0.005 <0.005	<0.02 <0.02	<0.1 <0.1	<1 <1
	Bound	0.2	0.002	0.02	0.10	0.2	2	0.4	0.4	0.10	0.10	0.02	0.010	0.04	0.2	2
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper																
ORIGINAL DUP Target Range - Lower Upper																
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
50115 DUP Target Range - Lower Upper 50125 DUP Target Range - Lower Upper	Bound	58.9 58.5 55.7 61.7	0.002 <0.002 <0.002 0.004	1.45 1.45 1.37 1.53	0.14 0.14 0.08 0.20	8.0 8.0 7.5 8.5	2 2 <1 3	2.0 2.1 1.7 2.4	113.5 114.0 108.0 119.5	0.38 0.39 0.32 0.45	0.68 0.64 0.58 0.74	4.24 4.27 4.03 4.48	0.180 0.182 0.167 0.195	0.45 0.43 0.39 0.49	1.1 1.1 0.9 1.3	45 45 42 48

^{*****} See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.

2103 Dollarton Hwy
North Vancouver BC V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 3 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017

Account: COMSTOM

Project: Old Cabin

QC CERTIFICATE OF ANALYSIS TB17253553

						Q0 CERTIFICATE OF AUTOENTIC TO 12 12 23 23 23
Sample Description	Method Analyte Units LOR	ME- MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	
						BLANKS
BLANK						
BLANK						
BLANK						
BLANK Target Range - Lower	Round					
Upper	Bound					
BLANK		<0.1	<0.1	<2	< 0.5	
BLANK BLANK		0.1 <0.1	<0.1 <0.1	<2 <2	<0.5 <0.5	
Target Range - Lower	Bound	<0.1	<0.1	<2	<0.5	
Upper	Bound	0.2	0.2	4	1.0	
						DUPLICATES
ORIGINAL						
DUP						
Target Range - Lower	Bound					
Upper	Bound					
ORIGINAL						
DUP Target Range - Lower	Round					
Upper	Bound					
ORIGINAL DUP						
Target Range - Lower	Bound					
Upper	Bound					
50115						
DUP	Pound					
Target Range - Lower Upper	Bound					
50125		1.1	10.5	352	190.5	
DUP Target Range - Lower	Round	1.2 1.0	10.7 10.0	359 336	190.5 180.5	
Upper	Bound	1.3	11.2	375	201	

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 4 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017

Account: COMSTOM

(ALS)	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TB1	725355	3
Sample Description	Method Analyte Units LOR	Au- AA24 Au ppm 0.005	ME- MS61 Ag ppm 0.01	ME- MS61 AI % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01
							DUPL	.ICATES								
138029 DUP Target Range - Lower Upper	Bound Bound		0.07 0.07 0.06 0.08	7.85 7.82 7.43 8.24	2.3 2.3 2.0 2.6	240 230 210 260	0.67 0.58 0.54 0.71	0.09 0.09 0.08 0.10	1.21 1.21 1.14 1.28	0.11 0.10 0.08 0.13	50.5 52.0 48.7 53.8	14.6 14.0 13.5 15.1	27 27 25 29	0.93 0.94 0.84 1.03	10.0 10.5 9.7 10.8	2.85 2.82 2.68 2.99
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.071 0.008 0.033 0.046														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.078 0.073 0.067 0.084														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.021 0.017 0.013 0.025														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	2.86 3.08 2.82 3.12														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	<0.005 <0.005 <0.005 0.010														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.005 <0.005 <0.005 0.010														
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.005 0.009 <0.005 0.010														

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 4 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017

Account: COMSTOM

(ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TB17	725355	3
Sample Description	Method Analyte Units LOR	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10	ME- MS61 Pb ppm 0.5
							DUPL	ICATES								
138029 DUP Target Range - Lower Upper	Bound Bound	20.3 19.65 18.95 21.0	0.13 0.12 0.07 0.18	2.9 2.8 2.6 3.1	0.032 0.033 0.026 0.039	0.80 0.79 0.75 0.84	24.3 24.8 22.8 26.3	9.2 7.9 7.9 9.2	0.87 0.86 0.81 0.92	499 488 464 523	0.32 0.31 0.25 0.38	3.97 3.91 3.73 4.15	3.1 3.0 2.8 3.3	25.1 24.0 23.1 26.0	810 790 750 850	2.3 2.2 1.6 2.9
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 4 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017

Account: COMSTOM

(ALS)	,								QC	CERTI	ICATE	OF AN	ALYSIS	TB1	725355	3
Sample Description	Method Analyte Units LOR	ME- MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1
							DUPL	ICATES								
138029 DUP Target Range - Lower Upper	Bound Bound	20.7 20.5 19.5 21.7	<0.002 <0.002 <0.002 0.004	0.10 0.10 0.09 0.12	0.11 0.11 <0.05 0.17	8.6 8.4 8.0 9.0	<1 <1 <1 2	0.6 0.6 0.4 0.8	113.5 112.5 107.0 119.0	0.26 0.26 0.20 0.32	<0.05 <0.05 <0.05 0.10	2.40 2.42 2.28 2.54	0.191 0.192 0.177 0.206	0.17 0.15 0.13 0.19	0.5 0.5 0.4 0.6	70 69 65 74
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															
ORIGINAL DUP Target Range - Lower Upper	Bound Bound															

To: COMSTOCK METALS LTD.
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

Page: 4 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017 Account: COMSTOM

QC CERTIFICATE OF ANALYSIS	TB17253553
	1011233333

Sample Description	Method Analyte Units LOR	ME- MS61 W ppm 0.1	ME- MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME- MS61 Zr ppm 0.5	
138029 DUP Target Range - Lower Upper	Bound Round	0.2 0.2 <0.1 0.3	6.5 6.5 6.1 6.9	53 52 48 57	102.5 100.5 95.9 107.0	DUPLICATES
ORIGINAL DUP Target Range - Lower Upper	Bound	0.0	0.0	<u> </u>		
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					
ORIGINAL DUP Target Range - Lower Upper	Bound Bound					

To: COMSTOCK METALS LTD.
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

Page: 5 - A Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017

Account: COMSTOM

(, , , _ ,									QC CERTIFICATE OF ANALYSIS TB17253553							3
Sample Description	Method Analyte Units LOR	Au- AA24 Au ppm 0.005	ME- MS61 Ag ppm 0.01	ME- MS61 Al % 0.01	ME- MS61 As ppm 0.2	ME- MS61 Ba ppm 10	ME- MS61 Be ppm 0.05	ME- MS61 Bi ppm 0.01	ME- MS61 Ca % 0.01	ME- MS61 Cd ppm 0.02	ME- MS61 Ce ppm 0.01	ME- MS61 Co ppm 0.1	ME- MS61 Cr ppm 1	ME- MS61 Cs ppm 0.05	ME- MS61 Cu ppm 0.2	ME- MS61 Fe % 0.01
							DUPL	.ICATES								
ORIGINAL DUP Target Range - Lower Upper	Bound Bound		0.02 0.02 <0.01 0.03	6.67 6.35 6.17 6.85	0.4 0.4 <0.2 0.6	540 520 480 580	1.47 1.12 1.18 1.41	0.08 0.07 0.06 0.09	1.14 1.07 1.04 1.17	0.02 0.02 <0.02 0.04	35.6 33.4 32.8 36.2	2.8 2.5 2.4 2.9	17 17 15 19	2.37 2.23 2.14 2.47	7.9 7.5 7.2 8.2	1.27 1.22 1.17 1.32
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	0.070 0.069 0.061 0.078														

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 5 - B Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28-NOV-2017

Account: COMSTOM

(ALS	,								QC	CERTII	ICATE	OF AN	ALYSIS	TB1	725355	3
Sample Description	Method Analyte Units LOR	ME- MS61 Ga ppm 0.05	ME- MS61 Ge ppm 0.05	ME- MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME- MS61 La ppm 0.5	ME- MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME- MS61 Nb ppm 0.1	ME- MS61 Ni ppm 0.2	ME- MS61 P ppm 10	ME- MS61 Pb ppm 0.5
							DUPL	.ICATES						_		
ORIGINAL DUP Target Range - Lower Upper	Bound Bound	9.98 9.39 9.15 10.20	0.14 0.17 0.10 0.21	2.0 1.9 1.8 2.1	0.014 0.009 0.006 0.017	2.21 2.10 2.04 2.27	19.0 18.6 17.4 20.2	10.3 9.6 9.3 10.6	0.28 0.26 0.25 0.29	393 371 358 406	0.92 0.75 0.74 0.93	3.40 3.23 3.14 3.49	6.0 5.6 5.4 6.2	6.9 6.5 6.2 7.2	350 330 310 370	6.3 6.4 5.5 7.2
ORIGINAL DUP Farget Range - Lower Upper	Bound Bound															

To: COMSTOCK METALS LTD. 310 - 850 WEST HASTINGS STREET VANCOUVER BC V6C 1E1 Page: 5 - C Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017 Account: COMSTOM

(ALS)								QC		ICATE	OF AN	ALYSIS	TB1	725355	3
Sample Description	Method Analyte Units LOR	ME- MS61 Rb ppm 0.1	ME- MS61 Re ppm 0.002	ME- MS61 S % 0.01	ME- MS61 Sb ppm 0.05	ME- MS61 Sc ppm 0.1	ME- MS61 Se ppm 1	ME- MS61 Sn ppm 0.2	ME- MS61 Sr ppm 0.2	ME- MS61 Ta ppm 0.05	ME- MS61 Te ppm 0.05	ME- MS61 Th ppm 0.01	ME- MS61 Ti % 0.005	ME- MS61 TI ppm 0.02	ME- MS61 U ppm 0.1	ME- MS61 V ppm 1
							DUPL	ICATES								
ORIGINAL DUP Target Range - Lower Upper	· Bound · Bound	60.0 53.6 53.9 59.7	<0.002 <0.002 <0.002 0.004	0.02 0.02 <0.01 0.03	0.53 0.48 0.42 0.59	2.4 2.3 2.1 2.6	<1 <1 <1 2	0.5 0.6 0.3 0.8	196.0 186.0 181.5 201	0.37 0.34 0.29 0.42	<0.05 <0.05 <0.05 0.10	7.25 6.66 6.60 7.31	0.122 0.116 0.108 0.130	0.29 0.26 0.23 0.32	1.7 1.5 1.4 1.8	18 17 16 19
ORIGINAL DUP Farget Range - Lower Upper	· Bound · Bound															

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry

To: COMSTOCK METALS LTD.
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1

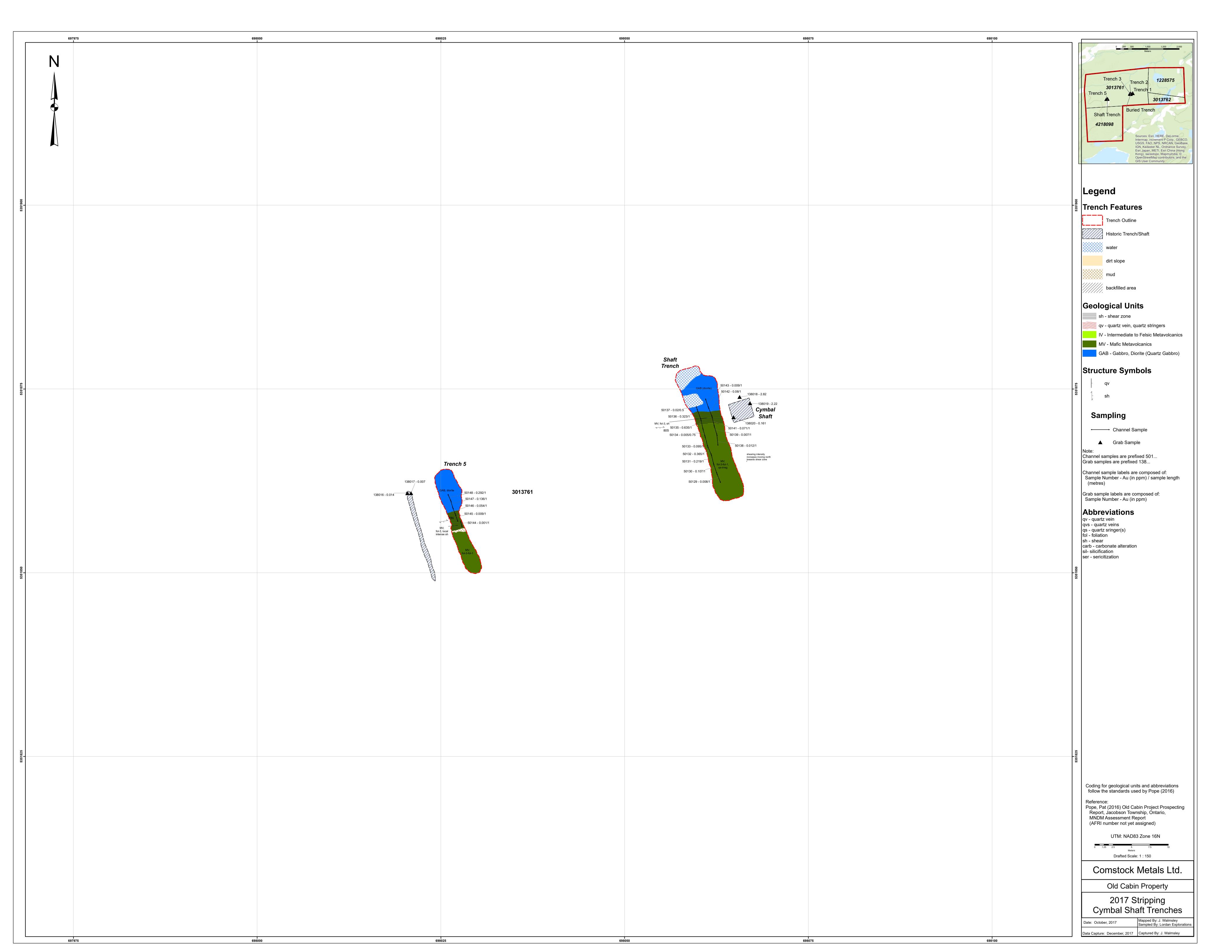
Page: 5 - D Total # Pages: 5 (A - D) Plus Appendix Pages Finalized Date: 28- NOV- 2017

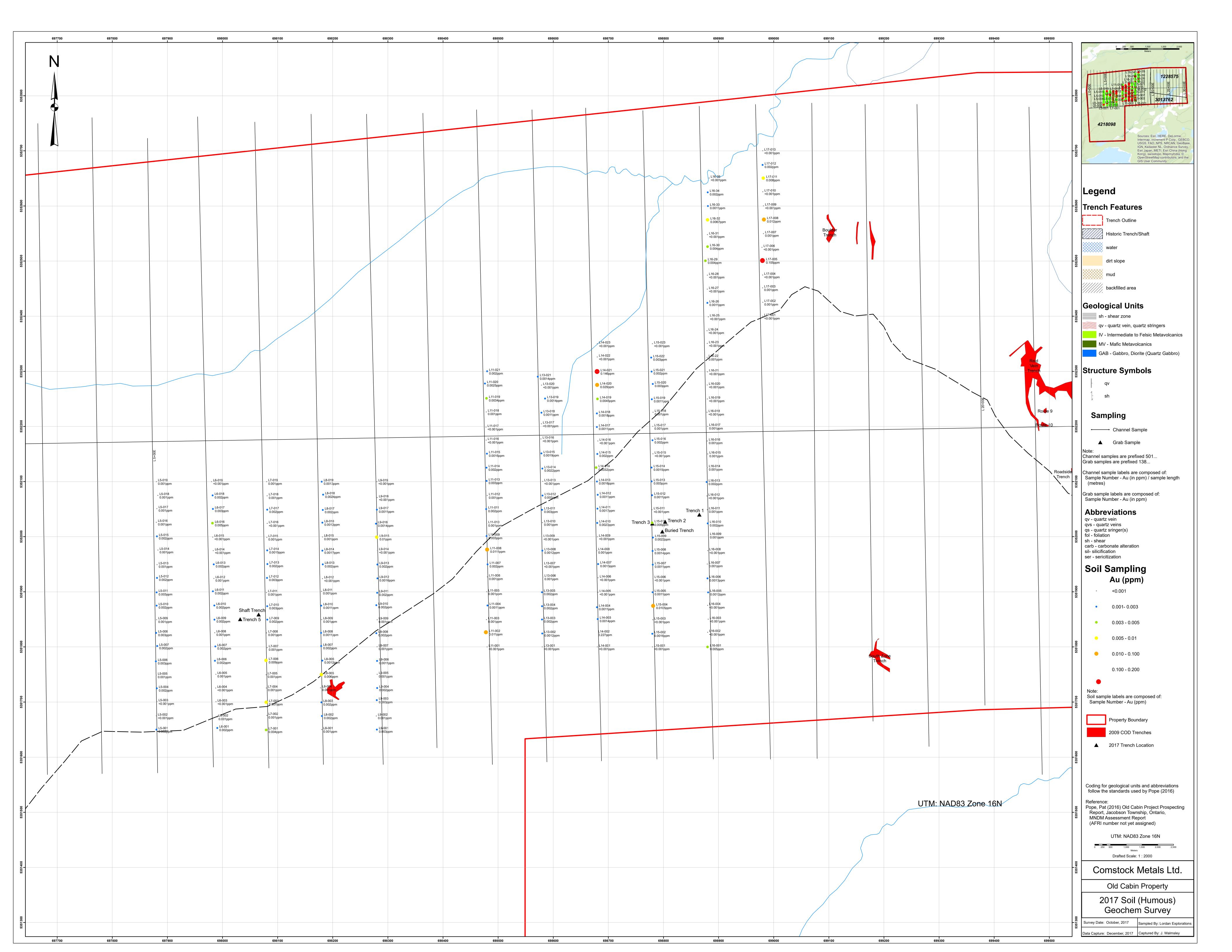
Account: COMSTOM

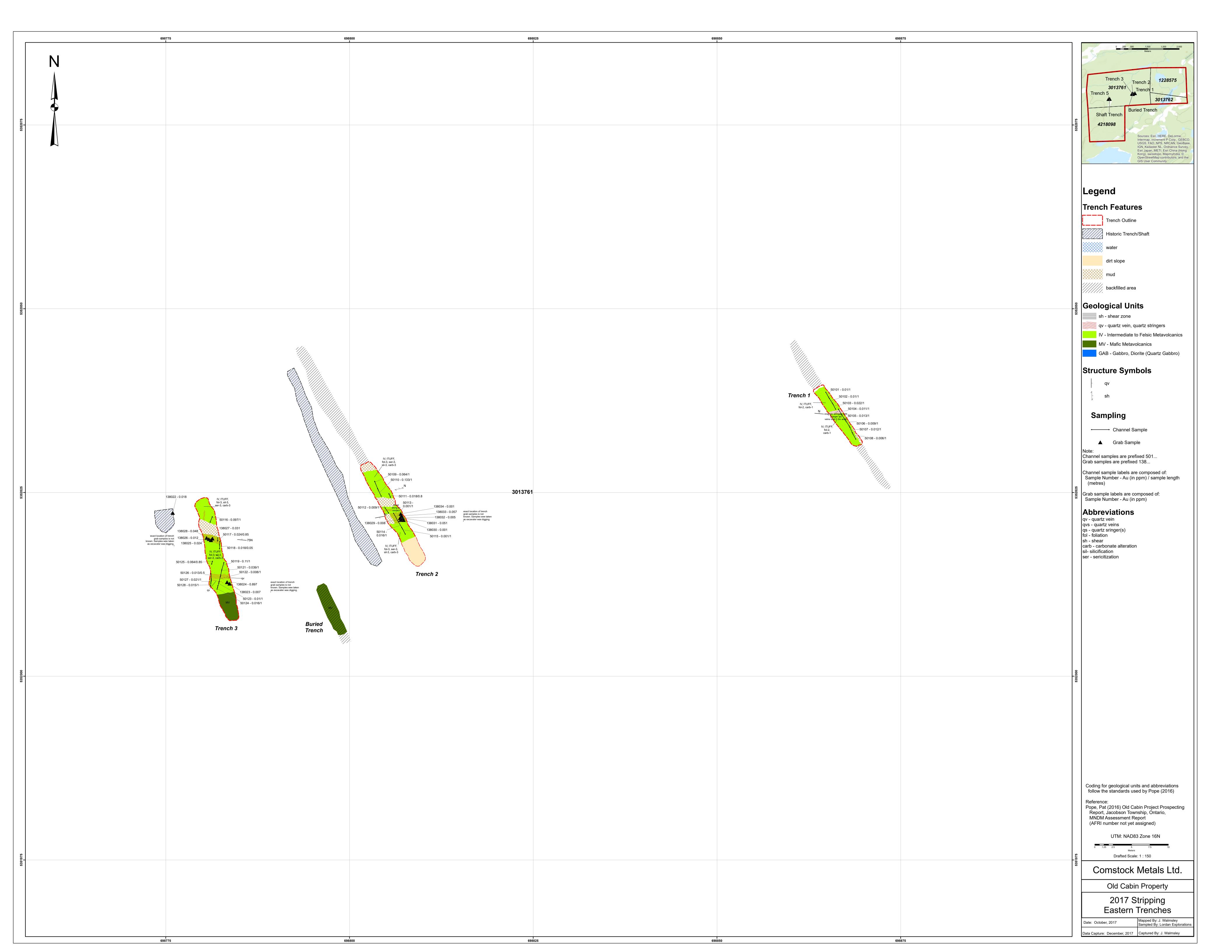
QC CERTIFICATE OF ANALYSIS	TB17253553	

Method Analyte Units LOR	ME- MS61 ME- MS61 ME- MS61 W Y Zn Zr ppm ppm ppm ppm 0.1 0.1 2 0.5	
		DUPLICATES
ORIGINAL DUP	0.7 7.8 23 78.0 0.6 7.3 22 70.9	
Target Range - Lower Bound Upper Bound	0.5 7.1 19 70.2 0.8 8.0 26 78.7	
ORIGINAL DUP Target Range - Lower Bound Upper Bound		

To: COMSTOCK METALS LTD.
310 - 850 WEST HASTINGS STREET
VANCOUVER BC V6C 1E1


Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 28- NOV- 2017 Account: COMSTOM


Project: Old Cabin


QC CERTIFICATE OF ANALYSIS TB17253553

		CERTIFICATE COM	MMENTS	
			YTICAL COMMENTS	
Applies to Method:	REE's may not be totally so ME- MS61	luble in this method.		
			ATORY ADDRESSES	
Applies to Method:	Processed at ALS Thunder BAG- 01 LOG- 22 PUL- QC	Bay located at 645 Norah Crescent, [°] CRU- 32 LOG- 22d SPL- 21	Thunder Bay, ON, Canada CRU- QC PUL- 32 SPL- 21d	DRY- 22 PUL- 32d WEI- 21
Applies to Method:	Processed at ALS Vancouve Au- AA24	er located at 2103 Dollarton Hwy, No ME- MS61	orth Vancouver, BC, Canada.	

Appendix D - Maps of the 2017 Stripped Areas and Soil Gechem Survey Results

