We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2017 SOIL SAMPLING

ARSENO LAKE PROJECT

January, 2018 A. Stone

TABLE OF CONTENTS

SUMMARY4
INTRODUCTION4
LOCATION AND ACCESS4
LAND TENURE & OWNERSHIP6
PROPERTY GEOLOGY6
PROGRAM DESCRIPTION6
RESULTS/RECOMMENDATIONS8
STATEMENT OF EXPENDITURES
STATEMENT OF QUALIFICATIONS
<u>List of Figures</u>
Figure 1: General location map5
Figure 2: Map showing location of sample sites8
<u>List of Tables</u>
Table 1: Sample location coordinates
Table 2: Assay results9
Table 3: Breakdown of expenditures

<u>List of Appendices</u>

Appendix 1: Assay Certificates

Appendix 2: Field Notes

Appendix 3: Invoices

SUMMARY

On June 6, 2017 a Goldcorp field crew spent the day sampling near Arseno Lake in order to establish an orientation line for a soil sampling program. A total of 11 soil samples and 1 outcrop sample were taken. The work was carried out within active mining claims held solely by Goldcorp Canada Ltd. The Arseno Lake area is located approximately 60 kilometers to the Northwest of Goldcorp's Musselwhite Mine and 18km East of North Caribou Lake First Nation Community.

INTRODUCTION

This report is written on behalf of Goldcorp Canada Ltd. by the staff of Musselwhite Mine. The report discusses work conducted within the boundaries of three claim groups; PA4281788, PA4281789 and PA4281790.

The program was designed and implemented by the exploration department at Musselwhite Mine along with Goldcorp's in-house geochemical expert. Sampling was conducted by Goldcorp employees. Access to the site was by helicopter provided by Wisk-Air Helicopters Ltd. The samples were sent to Act Labs in Thunder Bay for analysis.

LOCATION AND ACCESS

All work in this report was conducted within claim group boundaries held by Goldcorp Canada Ltd. The claims are located approximately 60km Northwest of Musselwhite Mine, which is a gold producing mine that is 100% owned and operated by Goldcorp Canada Ltd. and 18km east of the North Caribou Lake First Nation community located on the North shore of Weagamow Lake. The claims are located approximately 525 km north-north-west of Thunder Bay and 180 km north-north-west of Pickle Lake with geographic coordinates of 52.9787° N latitude and 91.0721° W longitude (**Figure 1**).

The claims were accessed by Helicopter provided by Wisk-Air Helicopters Ltd based out of Thunder Bay, ON. The program was based out of Musselwhite Mine, the field crew was made up of

Musslewhite Mine geologists and the in-house Geochemical Expert (Thomas Bissig) from the Toronto corporate office.

Sampling preformed during this program took place within the boundaries of the above stated claim groups, located in the Keeyask Lake Area within the Patricia Mining Division, District of Kenora, Northwestern Ontario. The claims are located on NTS map sheet 53 B/14, Weagamow Lake.

Figure 1: General Location Map

LAND TENURE & OWNERSHIP

The claim group PA4281788 is 256 ha (16 claim units), PA4281789 is 256 ha (16 claim units) and PA4281790 is 256 ha (16 claim units) in size. All claim blocks are owned 100% by Goldcorp Canada Ltd.

PROPERTY GEOLOGY

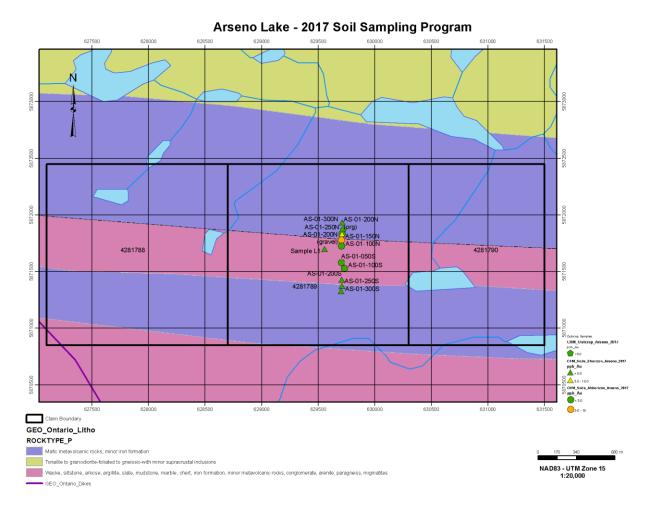
The above mentioned claims are located within the Northern extent of the North Caribou Greenstone Belt which hosts the Musselwhite Mine. The geology within the claims is based off of 1:250,000 regional map created by the Ontario Geological Survey.

The lithology mapped within the Arseno Lake area is as follows:

- **Gneissic tonalite suite:** tonalite to granodiorite foliated to gneissic with minor supracrustal inclusions (2.5-3.2 Ga)
- **Metasedimentary rocks:** wacke, siltstone, arkose, argillite, slate, mudstone, marble, chert, iron formation, minor metavolcanic rocks, conglomerate, arenite, paragneiss, migmatites (2.5-3.2 Ga)
- Mafic metavolcanic and metasedimentary rocks: mafic metavolcanic rocks, minor iron formation (2.8-32. Ga)
- Mafic intrusive rocks, mafic dikes and mafic sills: Pickle Crow mafic dike; normally magnetized northwest-trending subswarm (Molson swarm) (circa 1876 Ma)

PROGRAM DESCRIPTION

A 600m North-South Trending orientation line was designed to cross the mapped package of metasedimentary and metavolcanic rocks. Sample stations were planned to be taken 50m apart. Holes were dug using hand tools targeting the Bf horizon, if an outcrop sample was attainable no soil sample was taken. Training was conducted by the Goldcorp Geochemical Expert prior to the program commencing.


A total of 11 soils and 1 outcrop sample were attained. Three of the planned sample locations were unattainable due to lack of sample medium (ie boulder field, no outcrop). Samples were dried at Musselwhite mine before being shipped to Act Labs in Thunder Bay, ON. Sample coordinate locations can be found in **Table 1** and can be observed on the map in **Figure 2**.

Prior to the field program beginning a number of days were spent collecting data: this included compiling assessment reports, reading drill logs, analyzing geophysical surveys and comparing drill holes with surficial mapping. This work was completed by Musselwhite geologists to make sure no prior work was overlooked or needlessly duplicated. Based off of the previous drilling and geophysics, the east-west steeply dipping metasediment package appeared to host the mineralization.

Table 1: Sample Locations

Station	Easting	Northing	Туре
AS-01-300N	629712	5871932	Fluvial gravel
AS-01-250N	629722.8	5871875	Outcrop
AS-01-200N (org)	629711	5871831	Ah
AS-01-200N (gravel)	629710	5871830	Fluvial gravel
AS-01-150N	629705.3	5871779	Ah
AS-01-100N	629704.8	5871725	Ah
AS-01-050N	629707.5	5871675	No Sample
AS-01-000	629708.1	5871625	No Sample
AS-01-050S	629704.4	5871578	Ah
AS-01-100S	629731.2	5871526	Clay
AS-01-150S	629735	5871481	No Sample
AS-01-200S	629706.8	5871428	Bf
AS-01-250S	629709.3	5871374	Bf
AS-01-300S	629703	5871327	Bf
Sample L1	629557	5871698	B gravel

Figure 2: Map showing sample locations and property geology

RESULTS/RECOMMENDATIONS

Table 2: Assay Results of Soil and Outcrop samples.

Sample	Batch	Layer	ppb Au	ppm Ag	ppm Zn	ppm As	ppm Cu	ppm Pb
832001	A17-07442	Fluvial gravel	2.5	0.025	72	8.9	15.3	20.7
837249	A17-10882	Ah	2.5	0.07	20.7	0.05	17.2	1
832002	A17-07442	Fluvial gravel	6	0.07	124	10.6	30.1	23.3
837246	A17-10882	Ah	11	1.29	26.9	156	112	7.2
837248	A17-10882	Ah	2.5	0.46	19.5	1.9	208	8.3
837247	A17-10882	Ah	2.5	0.14	84.1	18.4	28.5	2.6
837245	A17-10882	Clay / Ah	2.5	0.025	75.6	1.6	22.1	19.1
832003	A17-07442	Bf	2.5	0.025	30.1	1.8	10.8	18.8
832004	A17-07442	Bf	2.5	0.025	29.5	1.8	18.2	20
832005	A17-07442	Bf	2.5	0.025	28.8	2.3	14.5	19.8
832006	A17-07442	B gravel	2.5	0.025	89.3	9.4	32.9	27.9
832451	A17-07439	Mafic Volcanic	2.5	0.05	92.1	2.3	57.2	12.6

Only two samples (837249 + 832002) revealed gold values above detection limits of 5ppb. Sample 832002 also showed elevated Arsenic, zinc and lead values and 837246 showed elevated silver, arsenic and copper values. The samples were located along the northern-most contact of the metasedimentary package, this lines up with the previous diamond drilling in 1987. The historic drill intercepts also revealed polymetallic enrichments within iron formation/metachert horizons bounded by the larger schistose meta-sediment package.

Based on the results from the limited soil samples taken it can be inferred that there are elevated base and precious metal values in the soils. These values correlate well with the previous diamond drilling results. To further our understanding and confirm an east-west treading mineralized horizon in this area, a more detailed surface sampling program and possibly surface geophysics program should be conducted.

STATEMENT OF EXPENDITURES

A total of \$18,497.13 was spent during this program on PA4281789. **Table 3** provides a complete breakdown of expenditure. Invoices can be found in **Appendix 3**.

Camp Costs	3 people	4 days	\$80/day	\$960
Corporate Specialist		4 days	\$2,000/day	\$8,000
Training	6 hours	Senior Geologist	\$70/hr	\$420
	6 hours	Exploration Geologist	\$50/hr	\$720
Historic Data Compilation	8 hours	Senior Geologist	\$70/hr	\$560
•	48 hours	Exploration Geologist	\$50/hr	\$2,400
Planning	6 hours	Senior Geologist	\$70/hr	\$420
Sampling	6 hours	Senior Geologist	\$70/hr	\$420
	6 hours	Exploration Geologist	\$50/hr	\$300
Report Writing	8 hours	Senior Geologist	\$70/hr	\$560
	16 hours	Exploration Geologist	\$50/hr	\$800
Helicopter	1.8 hours		\$1,100/hr	\$1,980
Samples	12 Samples	Prep and Analysis		\$533
Lab Equipment		pH Testing Equipment		\$423
			Total	\$18,496

Table 3: Detailed breakdown of expenditures.

STATEMENT OF QUALIFICATIONS

I, Andrew Stone, herby certify that:

- 1. I am the author of this report.
- 2. I have a Bachelor of Science in Earth Sciences from the University of Victoria, Victoria British Columbia.
- 3. I am registered Professional Geologist #169882 of the Association of Professional Engineers and Geoscientists of British Columbia.
- 4. I am employed by Goldcorp Canada Ltd. at Musselwhite Mine.
- 5. I agree with all the information contained within this report and believe that it is an accurate description of the worked performed.
- 6. I reside in the town of Duncan, British Columbia, Canada.

Anh The

Name:

Date: January 5, 2018

Goldcorp Canada Ltd.

Musselwhite Mine

979 Alloy Drive

Thunder Bay, ON

P7B 5Z8

Quality Analysis ...

Innovative Technologies

Date Submitted:20-Jul-17Invoice No.:A17-07439Invoice Date:08-Aug-17

Your Reference: Exploration

GOLDCORP Canada Ltd--Musselwhite Mine P.O. Box 7500 Thunder bay Ontario P7B 6S8 Canada

ATTN: Katie Lucas

CERTIFICATE OF ANALYSIS

15 Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-GC Musselwhite Tbay Au - Fire Assay AA

REPORT **A17-07439**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Quality Analysis ...

Innovative Technologies

Date Submitted:20-Jul-17Invoice No.:A17-07439Invoice Date:08-Aug-17Your Reference:Exploration

GOLDCORP Canada Ltd--Musselwhite Mine P.O. Box 7500 Thunder bay Ontario P7B 6S8 Canada

ATTN: Katie Lucas

CERTIFICATE OF ANALYSIS

15 Rock samples were submitted for analysis.

The following analytical package(s) were requested: Code UT-4 Total Digestion ICP/MS

REPORT **A17-07439**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5
TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613
E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

	I = 0 0 0	TD MO	TD-MS	TD MC	TD MC	TD MC	TD MO	TD MC	TD MC	TD MC	TD MC	TD MC	TD MO	TD MO	TD MO	TD MC	TD MC	TD MC	TD MC	TD-MS	TD-MS	TD MC	TD-MS
SAMPLE	FA-AA Au	TD-MS	ID-MS	TD-MS Na	TD-MS Mg	TD-MS Al	TD-MS K	TD-MS Ca	TD-MS Cd	TD-MS	TD-MS Cr	TD-MS Mn	TD-MS Fe	TD-MS Hf	TD-MS Ni	TD-MS Er	TD-MS Be	TD-MS Ho	TD-MS Hg	Aq	Cs	TD-MS Co	Eu
DESCRIPTION	g/mt	ppm	ppm	%	wig %	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm
E832451	< 0.005	10		1.20	4.31	7.49	0.25	7.34	0.2	232	395	2660	7.42	1.4	100	1.7	0.3	0.6	70	0.05	1.12	49.3	0.52
	0.007	8	46.5	2.74	0.15	7.51	2.18	1.21	< 0.1	6	14.0	120	0.75	1.7	12.6	0.6	3.0	0.2	80	0.20	5.48	2.0	0.24
	< 0.005	< 1	39.6	2.00	0.23	6.64	2.67	0.84	< 0.1	3	12.8	279	1.16	1.0	2.2	1.3	1.8	0.4	60	< 0.05	6.12	1.4	0.34
	< 0.005	< 1	6.1	2.39	3.82	7.79	0.15	6.37	0.2	223	73.4	1570	11.1	2.3	92.2	3.2	0.5	1.1	110	< 0.05	0.14	49.3	0.86
	0.014	< 1	15.8	1.93	3.76	8.03	0.28	6.55	0.1	304	89.9	1650	11.4	2.5	109	3.2	0.6	1.1	90	< 0.05	0.62	54.4	0.83
	< 0.005	< 1	16.9	0.35	10.7	4.88	0.06	7.44	< 0.1	157	1140	1640	8.54	0.9	546	1.0	0.1	0.4	100	< 0.05	0.07	58.9	0.31
	< 0.005	< 1	45.7	1.61	1.67	8.00	> 5.00	1.65	< 0.1	78	166	1330	4.10	5.1	100	1.1	1.2	0.4	80	< 0.05	6.45	22.8	0.62
	< 0.005	< 1	7.6	1.35	5.62	4.69	0.07	7.61	0.3	214	397	1800	10.5	1.3	192	1.5	0.3	0.5	70	< 0.05	0.29	63.8	0.54
	0.021	< 1	5.5		4.09	4.34	0.04	2.19	0.2	105	98.6	869	9.80	2.6	34.0	1.8	0.9	0.6	80	< 0.05	0.22	16.4	0.64
	< 0.005	< 1	20.0	2.47	0.28	7.27	4.29	1.12	< 0.1	21	16.6	239	1.73	6.1	2.8	0.7	1.1	0.3	60	< 0.05	1.76	6.7	0.64
	0.008	23 8	7.0 13.6	1.31 0.66	5.56 5.15	5.15 6.36	0.06	7.19 7.47	0.4	266 267	138 445	1780 1840	11.9	1.3	150 180	1.7	0.4 1.4	0.6	70 70	< 0.05	0.26 1.47	68.6 59.7	0.57 0.95
	0.005	5		0.66	11.4	2.43	0.46	6.11	0.5	135	2310	1570	9.51	0.5	736	0.8	0.1	0.8	120	< 0.05	1.12	89.8	0.95
	< 0.005	1	55.6	0.43	1.59	4.01	0.08	2.65	< 0.1	63	93.7	505	2.45	0.5	71.6	0.8	0.1	0.3	90	0.09	5.98	11.0	0.33
	< 0.005	< 1	163	0.73	1.72	6.36	1.53	4.09	0.2	79	229	1500	5.50	1.9	109	2.1	0.4	0.3	70	< 0.05	7.58	28.3	0.37
GXR-1 Meas	< 0.000	7	8.0	0.05	0.21	2.05	0.05	0.91	2.7	85	14.8	902	25.4	0.5	43.3	2.1	0.9	0.7	2930	31.5	3.06	8.4	0.73
GXR-1 Cert		15.0	8.20	0.0520	0.217	3.52	0.050	0.960	3.30	80.0	12.0	852	23.6	0.960	41.0		1.22		3900	31.0	3.00	8.20	0.690
GXR-1 Meas		< 1	8.4	0.05	0.22	2.44	0.05	0.93	2.5	91	18.0	970	26.4	0.5	46.3		1.0		1930	31.2	3.08	8.7	0.55
GXR-1 Cert		15.0	8.20	0.0520	0.217	3.52	0.050	0.960	3.30	80.0	12.0	852	23.6	0.960	41.0		1.22		3900	31.0	3.00	8.20	0.690
DH-1a Meas				1																			1
DH-1a Cert																							
DH-1a Meas																							
DH-1a Cert																							
SDC-1 Meas		< 1	35.4	1.53	1.02	8.48	2.58	1.05		32	42.9	798	4.73	0.7	34.4	3.4	2.9	1.2	140		4.20	18.1	1.34
SDC-1 Cert		13.00	34.0	1.52	1.02	8.34	2.72	1.00		102.00	64.00	880.00	4.82	8.30	38.0	4.10	3.00	1.50	200.00		4.00	18.0	1.70
SDC-1 Meas		2	39.0	1.60	1.07	8.77	2.63	1.13		37	59.6	869	4.89	0.7	36.3	3.5	3.3	1.3	70		4.25	18.9	1.42
SDC-1 Cert		13.00	34.0	1.52	1.02	8.34	2.72	1.00		102.00	64.00	880.00	4.82	8.30	38.0	4.10	3.00	1.50	200.00	0.00	4.00	18.0	1.70
GXR-6 Meas		9.80	34.1 32.0	0.09	0.609	> 10.0 17.7	1.74	0.17 0.180	1.00	114 186	41.3 96.0	942 1010	5.29 5.58	1.9 4.30	24.5 27.0		1.0		110 68.0	0.20	4.36 4.20	13.2	0.55 0.760
GXR-6 Cert GXR-6 Meas		9.60 < 1	36.2	0.104	0.609	> 10.0	2.00	0.180	0.1	120	55.2	1000	5.43	1.9	26.2		1.40		90	1.30 0.19	4.20	13.8 13.9	0.760
GXR-6 Cert		9.80	32.0	0.104	0.609	17.7	1.87	0.180	1.00	186	96.0	1010	5.58	4.30	27.0		1.40		68.0	1.30	4.20	13.8	0.760
DNC-1a Meas		0.00	5.0	0.104	0.000	17.7	1.07	0.100	1.50	148	172	1010	5.50	4.00	289		1.70		00.0	1.50	7.20	61.7	0.760
DNC-1a Cert			5.2							148	270				247							57	0.59
DNC-1a Meas			4.9	1						151	199				290							61.6	0.52
DNC-1a Cert			5.2							148	270				247							57	0.59
SBC-1 Meas			171						0.4	213	109			3.0	88.9	3.4	3.2	1.2			8.72	22.8	1.67
SBC-1 Cert			163						0.40	220.0	109			3.7	82.8	3.80	3.20	1.40			8.2	22.7	1.98
SBC-1 Meas			173						0.4	227	85.7			3.5	94.0	3.4	3.5	1.3			8.83	24.0	1.71
SBC-1 Cert			163						0.40	220.0	109			3.7	82.8	3.80	3.20	1.40			8.2	22.7	1.98
SdAR-M2 (U.S.G.S.) Meas			17.1						5.4	24	51.7			4.0	52.6	2.4	6.4	0.8	1230		1.92	12.9	0.97
SdAR-M2 (U.S.G.S.) Cert			17.9						5.1	25.2	49.6			7.29	48.8	3.58	6.6	1.21	1440.00		1.82	12.4	1.44
SdAR-M2			17.8						5.4	17	33.4			3.5	52.6	2.6	7.0	1.0	790		1.90	12.8	1.20

Results	Activation Laboratories Ltd.	Report: A17-07439
Iteaulta	Activation Eaboratories Etc.	Report. ATT-01433

ppm

Ca Cd V % ppm ppm

Au

g/mt

ppm

ppm

SAMPLE DESCRIPTION (U.S.G.S.) Meas Mg %

FA-AA TD-MS TD-MS

ppm

ppm

ppm ppm ppm

ppm

ppb ppm ppm

ppm ppm

SdAR-M2			17.9						5.1	25.2	49.6			7.29	48.8	3.58	6.6	1.21	4 4 4 0 0 0		1.82	12.4	1.44
(U.S.G.S.) Cert	0.50																		1440.00				
OREAS 254 Meas	2.52																						
OREAS 254 Cert	2.55																						
OREAS 218 Meas	0.554																						
OREAS 218 Cert	0.525																						
	0.008																						
	0.009		55.0	0.70	4.50	4.04	0.07	0.05	0.1		00.7	505	0.45	0.0	74.0					0.00	5.00	44.0	0.07
		1	55.6	0.73	1.59	4.01	0.37	2.65	< 0.1	63	93.7	505	2.45	0.6	71.6	0.8	0.4	0.3	90	0.09	5.98	11.0	0.37
M II I I II I	0.005	< 1	56.3	0.75	1.58	3.99	0.37	2.66	< 0.1	63	72.0	511	2.44	0.4	71.7	0.8	0.4	0.3	70	0.11	6.04	11.0	0.37
Method Blank Method Blank	< 0.005	13	< 0.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 1	2.7	< 1	< 0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	90	< 0.05	< 0.05	< 0.1	< 0.05
Method Blank		14	< 0.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 1	3.2	6	< 0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	70	< 0.05	< 0.05	< 0.1	< 0.05
Method Blank		13	< 0.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	<1	2.8	6	< 0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	70	< 0.05	< 0.05	< 0.1	< 0.05
Wethod Blank		10	< 0.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	\ 1	2.0		< 0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	70	< 0.03	< 0.05	< 0.1	< 0.03
	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
SAMPLE	Bi	Se	Zn	Ga	As	Rb	Υ	Zr	Nb	Мо	In	Sn	Sb	Te	Ва	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
E832451	0.09	0.4	92.1	15.3	2.3	5.8	17.0	55	3.6	0.63	< 0.1	1	2.6	< 0.1	66	6.2	12.7	1.5	6.6	1.7	2.4	0.4	2.7
	34.6	< 0.1	22.8	23.3	< 0.1	131	8.5	30	20.2	0.74	< 0.1	1	0.1	0.2	710	9.0	17.3	1.8	5.9	1.5	1.5	0.2	1.4
	0.66	< 0.1	18.5	16.7	< 0.1	62.0	12.9	70	6.9	1.08	< 0.1	2	< 0.1	< 0.1	1040	15.2	34.0	3.1	10.7	1.9	2.0	0.3	2.2
	0.12	< 0.1	111	19.3	< 0.1	1.8	31.9	97	0.2	0.10	< 0.1	< 1	< 0.1	< 0.1	34	3.8	10.3	1.6	7.5	2.5	3.8	0.7	5.0
	0.04	< 0.1	109	20.4	< 0.1	5.8	31.4	105	0.6	0.17	< 0.1	< 1	< 0.1	< 0.1	90	4.5	10.7	1.5	7.7	2.3	3.4	0.7	4.8
	0.06	0.6	73.4	10.5	21.8	0.8	10.5	38	1.9	0.30	< 0.1	< 1	0.4	< 0.1	4	1.7	4.0	0.6	2.7	0.8	1.3	0.2	1.6
	0.23	0.3	73.1	21.2	1.5	105	11.4	225	8.5	1.88	< 0.1	2	< 0.1	< 0.1	581	22.1	43.1	4.6	16.5	2.6	2.4	0.3	1.9
	0.07	0.2	97.8	11.9	14.1	1.1	15.1	51	1.1	1.48	< 0.1	< 1	0.3	< 0.1	90	2.8	6.5	1.0	4.9	1.5	2.2	0.4	2.6
	0.58	4.5	78.3	21.5	27.8	1.0	18.4	116	7.8	6.96	< 0.1	< 1	1.4	1.1	30	8.5	16.7	1.8	6.8	1.6	2.2	0.4	2.9
	0.06	< 0.1	41.8	17.9	< 0.1	119	8.5	262	7.5	0.96	< 0.1	2	< 0.1	< 0.1	950	74.4	145	14.3	50.6	7.5	5.4	0.4	2.0
	0.05	0.2	107	14.2	75.4	0.9	18.1	54	2.8	0.26	< 0.1	1	4.1	< 0.1	53	3.4	8.5	1.2	6.2	1.8	2.6	0.4	3.1
	0.14	0.5	178	15.8	5.5	16.0	22.4	75	0.5	0.19	0.1	< 1	0.2	< 0.1	124	5.2	12.2	1.7	8.1	2.2	3.0	0.5	3.7
	0.14	0.8	80.6	7.4	256	2.3	8.4	20	0.2	0.33	< 0.1	< 1	1.0	< 0.1	21	1.4	3.6	0.6	2.9	0.9	1.3	0.2	1.4
	0.45	0.2	25.8	8.9	0.1	32.7	8.5	37	1.6	1.81	< 0.1	1	< 0.1	< 0.1	99	5.0	12.7	1.1	4.8	1.1	1.3	0.2	1.4
	0.10	0.2	72.5	14.3	8.8	68.0	21.7	84	0.5	0.44	< 0.1	1	0.1	< 0.1	267	16.5	31.4	3.8	14.5	2.9	3.4	0.5	3.5
GXR-1 Meas	1310	15.8	711	8.5	441	2.5	34.0	27	0.9	16.5	0.9	25	15.7	6.1	700	8.0	14.5		8.8	2.7	4.2	0.7	4.6
GXR-1 Cert	1380	16.6	760	13.8	427	14.0	32.0	38.0	0.800	18.0	0.770	54.0	122	13.0	750	7.50	17.0		18.0	2.70	4.20	0.830	4.30
GXR-1 Meas	1340	17.5	765	12.8	436	2.7	36.3	28	1.0	17.3	0.9	27	25.1	7.6	719	8.0	15.0		8.9	2.9	4.3	0.7	4.9
GXR-1 Cert	1380	16.6	760	13.8	427	14.0	32.0	38.0	0.800	18.0	0.770	54.0	122	13.0	750	7.50	17.0		18.0	2.70	4.20	0.830	4.30
DH-1a Meas																							
DH-1a Cert																							
DH-1a Meas																							
DH-1a Cert																							
SDC-1 Meas			94.4	20.3	< 0.1	94.3		27	0.5			< 1	< 0.1		657	42.5	83.1		41.7	7.9	7.1	0.9	6.0
SDC-1 Cert			103.00	21.00	0.220	127.00		290.00	21.00			3.00	0.54		630	42.00	93.00		40.00	8.20	7.00	1.20	6.70

Results	Activation Laboratories Ltd.	Report: A17-07439
Iteaulta	Activation Eaboratories Etc.	Report. A11-01-33

	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
SAMPLE	Bi	Se	Zn	Ga	As	Rb	Υ	Zr	Nb	Мо	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
SDC-1 Meas			102	23.6	< 0.1	100		25	0.3			< 1	< 0.1		691	42.5	87.1		42.7	8.5	7.6	1.0	6.4
SDC-1 Cert			103.00	21.00	0.220	127.00		290.00	21.00			3.00	0.54		630	42.00	93.00		40.00	8.20	7.00	1.20	6.70
GXR-6 Meas	0.19	0.4	116	22.9	229	63.0	13.3	76	1.5	0.36	< 0.1	< 1	0.6	< 0.1	1300	13.6	33.4		13.1	2.6	2.4	0.3	2.3
GXR-6 Cert	0.290	0.940	118	35.0	330	90.0	14.0	110	7.50	2.40	0.260	1.70	3.60	0.0180	1300	13.9	36.0		13.0	2.67	2.97	0.415	2.80
GXR-6 Meas	0.19	0.8	122	30.0	232	66.9	13.7	73	0.4	0.51	< 0.1	1	0.9	< 0.1	1380	12.6	32.8		12.9	2.5	2.3	0.3	2.3
GXR-6 Cert	0.290	0.940	118	35.0	330	90.0	14.0	110	7.50	2.40	0.260	1.70	3.60	0.0180	1300	13.9	36.0		13.0	2.67	2.97	0.415	2.80
DNC-1a Meas			63.9	15.1		2.6	18.5	44	1.4				0.3		114	4.1			5.4				
DNC-1a Cert			70	15		5	18.0	38.0	3				0.96		118	3.6			5.20				
DNC-1a Meas			63.3	15.0		3.0	19.1	43	1.9				0.4		115	3.9			5.2				
DNC-1a Cert			70	15		5	18.0	38.0	3				0.96		118	3.6			5.20				
SBC-1 Meas	0.63		175	22.9	22.6	119	34.6	126	13.9	2.24		4	1.0		823	52.5	101	12.2	50.7	9.7	8.6	1.0	6.4
SBC-1 Cert	0.70		186	27.0	25.7	147	36.5	134.0	15.3	2.40		3.3	1.01		788.0	52.5	108.0	12.6	49.2	9.6	8.5	1.20	7.10
SBC-1 Meas	0.68		183	27.1	24.5	126	36.3	135	19.0	1.90		4	1.2		850	51.8	104	13.2	50.5	9.6	8.9	1.1	6.7
SBC-1 Cert	0.70		186	27.0	25.7	147	36.5	134.0	15.3	2.40		3.3	1.01		788.0	52.5	108.0	12.6	49.2	9.6	8.5	1.20	7.10
SdAR-M2	1.03		723	16.2		93.8	23.7	143	10.2	11.4					979	36.0	82.5	8.1	31.3	5.6	4.8	0.6	4.1
(U.S.G.S.) Meas																							
SdAR-M2	1.05		760	17.6		149	32.7	259	26.2	13.3					990	46.6	98.8	11.0	39.4	7.18	6.28	0.97	5.88
(U.S.G.S.) Cert																							
SdAR-M2 (U.S.G.S.) Meas	1.03		739	20.4		118	27.4	118	2.8	5.22					1050	45.4	93.5	10.8	39.0	6.7	5.8	0.8	4.8
SdAR-M2	1.05		760	17.6		149	32.7	259	26.2	13.3					990	46.6	98.8	11.0	39.4	7.18	6.28	0.97	5.88
(U.S.G.S.) Cert	1.00		700	17.0		143	32.7	200	20.2	10.0					330	40.0	30.0	11.0	33.4	7.10	0.20	0.57	3.00
OREAS 254 Meas																							
OREAS 254 Cert																							
OREAS 218 Meas																							
OREAS 218 Cert																							
	0.45	0.2	25.8	8.9	0.1	32.7	8.5	37	1.6	1.81	< 0.1	1	< 0.1	< 0.1	99	5.0	12.7	1.1	4.8	1.1	1.3	0.2	1.4
	0.51	< 0.1	25.1	8.7	< 0.1	33.1	8.5	23	1.3	1.82	< 0.1	1	< 0.1	< 0.1	102	5.1	13.1	1.2	4.9	1.1	1.4	0.2	1.4
Method Blank																							
Method Blank	0.03	< 0.1	< 0.2	0.1	< 0.1	< 0.2	< 0.1	< 1	< 0.1	0.08	< 0.1	< 1	< 0.1	< 0.1	< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	0.02	< 0.1	< 0.2	0.2	< 0.1	< 0.2	< 0.1	< 1	< 0.1	0.13	< 0.1	< 1	< 0.1	< 0.1	< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	0.02	< 0.1	< 0.2	0.1	< 0.1	< 0.2	< 0.1	< 1	< 0.1	0.07	< 0.1	< 1	< 0.1	< 0.1	< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
SAMP	LE Cu	Ge	Tm	Yb	Lu	Ta	Sr	W	Re	TI	Pb	Th	U
DESCRIPTION	ON ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
E8324	51 57.2	0.7	0.3	1.7	0.2	0.2	94.1	0.5	< 0.001	< 0.05	12.6	2.3	0.5
	9.3	0.1	< 0.1	0.7	< 0.1	9.0	86.9	0.7	< 0.001	1.14	29.2	8.4	3.1
	9.9	< 0.1	0.2	1.4	0.2	0.5	60.1	0.2	< 0.001	0.35	17.1	11.7	2.4
	51.0	0.3	0.5	3.3	0.4	< 0.1	172	< 0.1	< 0.001	< 0.05	2.9	1.1	0.3
	63.3	0.6	0.5	3.4	0.5	< 0.1	124	0.2	< 0.001	< 0.05	2.5	1.1	0.3
	4.8	0.7	0.2	1.1	0.1	0.1	7.2	0.6	< 0.001	< 0.05	< 0.5	0.7	0.2

Results Activation Laboratories Ltd.

Report: A17-07439

	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
SAMPLE	Cu	Ge	Tm	Yb	Lu	Ta	Sr	W	Re	TI	Pb	Th	U
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm 2.3
	48.2	0.4	0.2	1.2	0.2	0.3	85.7	1.3	< 0.001	0.45	13.2	6.4	
	127	0.7	0.2	1.5	0.2	< 0.1	51.4	0.2	0.003	< 0.05	5.5	0.6	0.2
	28.0	0.4	0.3	2.2	0.3	0.5	31.8	1.5	0.001	< 0.05	7.1	4.2	1.3
	11.0	< 0.1	< 0.1	0.6	< 0.1	0.3	208	11.5	< 0.001	0.82	37.6	43.4	2.8
	52.6	2.9	0.3	1.7	0.2	0.2	48.3	1.4	< 0.001	< 0.05	4.8	0.6	0.2
	105	0.6	0.3	2.2	0.3	< 0.1	85.2	0.2	< 0.001	< 0.05	3.5	1.1	0.3
	40.9	0.8	0.1	0.7	< 0.1	< 0.1	24.7	0.1	< 0.001	< 0.05	3.0	0.2	< 0.1
	68.6	0.3	0.1	0.9	0.1	< 0.1	148	1.9	< 0.001	0.07	4.4	2.0	0.5
	40.4	0.3	0.3	2.3	0.3	< 0.1	76.9	< 0.1	< 0.001	0.33	7.6	4.1	1.1
GXR-1 Meas	1190		0.3	2.3	0.3	< 0.1	291	144		0.23	710	2.4	31.9
GXR-1 Cert	1110		0.430	1.90	0.280	0.175	275	164		0.390	730	2.44	34.9
GXR-1 Meas	1220		0.4	2.3	0.3	< 0.1	315	156		0.27	737	2.5	33.2
GXR-1 Cert	1110		0.430	1.90	0.280	0.175	275	164		0.390	730	2.44	34.9
DH-1a Meas												> 500	2390
DH-1a Cert												910	2629
DH-1a Meas												> 500	2570
DH-1a Cert												910	2629
SDC-1 Meas	34.2		0.5	3.3		< 0.1	159	< 0.1		0.48	22.3	10.7	2.7
SDC-1 Cert	30.000		0.65	4.00		1.20	180.00	0.80		0.70	25.00	12.00	3.10
SDC-1 Meas	32.3		0.5	3.4		< 0.1	165	< 0.1		0.50	23.5	11.9	3.0
SDC-1 Cert	30.000		0.65	4.00		1.20	180.00	0.80		0.70	25.00	12.00	3.10
GXR-6 Meas	70.2			1.7	0.2	< 0.1	34.0	0.3		2.01	90.3	4.8	1.4
GXR-6 Cert	66.0			2.40	0.330	0.485	35.0	1.90		2.20	101	5.30	1.54
GXR-6 Meas	72.0			1.7	0.2	< 0.1	32.7	< 0.1		2.17	96.1	4.8	1.4
GXR-6 Cert	66.0			2.40	0.330	0.485	35.0	1.90		2.20	101	5.30	1.54
DNC-1a Meas	104			2.0			139				5.1		
DNC-1a Cert	100			2.0			144				6.3		
DNC-1a Meas	105			2.0			143				5.4		
DNC-1a Cert	100			2.0			144				6.3		
SBC-1 Meas	31.7		0.5	3.4	0.4	0.6	163	1.5		0.74	33.3	14.7	5.6
SBC-1 Cert	31.7		0.56	3.64	0.54	1.10	178.0	1.60		0.89	35.0	15.8	5.76
	31.0000		0.56	3.04	0.54	1.10	176.0	1.00		0.09	33.0	13.6	5.76
SBC-1 Meas	35.4		0.5	3.5	0.4	0.8	168	1.6		0.81	36.3	15.8	5.9
SBC-1 Cert			0.56	3.64	0.54	1.10	178.0	1.60		0.89	35.0	15.8	5.76
	31.0000												
SdAR-M2	251		0.4	2.6	0.3	0.2	119	0.4			761	10.4	2.1
(U.S.G.S.) Meas													
SdAR-M2 (U.S.G.S.) Cert	236.00 00		0.54	3.63	0.54	1.8	144	2.8			808	14.2	2.53
SdAR-M2 (U.S.G.S.) Meas	244		0.4	2.8	0.4	0.2	129	0.1			786	13.8	2.5
SdAR-M2 (U.S.G.S.) Cert	236.00 00		0.54	3.63	0.54	1.8	144	2.8			808	14.2	2.53
OREAS 254 Meas													
OREAS 254 Cert													

Results Activation Laboratories Ltd.

Report: A17-07439

	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS								
SAMPLE	Cu	Ge	Tm	Yb	Lu	Ta	Sr	W	Re	TI	Pb	Th	U
DESCRIPTION	ppm	ppm	ppm	ppm	ppm								
OREAS 218 Meas													
OREAS 218 Cert													
	68.6	0.3	0.1	0.9	0.1	< 0.1	148	1.9	< 0.001	0.07	4.4	2.0	0.5
	70.8	0.5	0.1	0.9	0.1	< 0.1	149	1.4	< 0.001	0.09	4.2	2.1	0.6
Method Blank													
Method Blank	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.001	< 0.05	< 0.5	< 0.1	< 0.1
Method Blank	0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.001	< 0.05	< 0.5	< 0.1	< 0.1
Method Blank	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.001	< 0.05	< 0.5	< 0.1	< 0.1

Quality Analysis ...

Innovative Technologies

Date Submitted:20-Jul-17Invoice No.:A17-07442Invoice Date:08-Aug-17Your Reference:Exploration

GOLDCORP Canada Ltd--Musselwhite Mine P.O. Box 7500 Thunder bay Ontario P7B 6S8 Canada

ATTN: Katie Lucas

CERTIFICATE OF ANALYSIS

33 Soil samples were submitted for analysis.

The following analytical package(s) were requested: Code 13-Conductivity Conductivity

Code 13-Paste pH Paste pH
Code 7-Bioleach Bioleach ICPMS
Code UT-1-0.5g Aqua Regia ICP/MS

REPORT **A17-07442**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Assays are recommended for values above the upper limit. The Au from AR-MS is only semi-quantitative. For accurate Au data, fire assay is recommended.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5
TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613
E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Results	Activation Laboratories Ltd.	Report: A17-07442

SAMPLE Conduct Paste Al Ca Fe K Mg Ag Ae Au Ba Ba Ba Ba Ba Cc Ce Cc Cc Cc Cd Cv Dy EF Eu		ISE	pH Meter	Bioleac h-MS																				
EB32001 186 6.23 123 1250 88 122 199 0.6 123 0.09 346 11.6 0.4 227 10.9 1990 10.1 51 1.88 103 30.0 14.0 10.4 E832002 99.0 5.80 278 1985 176 7 175 0.8 191 0.05 828 21.4 1.1 283 4.3 2420 90.0 11.1 51 1.88 103 30.0 14.0 10.4 E832004 28.0 5.80 278 139 12 3 0.4 13.9 < 0.05 0.8 16.8 < 0.01 134 0.74 343 9.9 8 2.02 4.0 31.7 70.0 \$2.0 25.5 E832003 26.0 5.65 279 11 39 12 3 0.4 13.9 < 0.05 0.8 16.8 < 0.01 134 0.74 343 9.9 8 2.02 4.0 31.7 70.0 \$2.0 25.5 E832004 28.0 5.88 297 11 22 7 2 0.4 22.7 0.07 383 22.7 0.1 214 0.66 240 7.4 46 1.49 6.70 11.4 5.0 4.54 E832005 170 6.36 233 15 12 13 4 0.7 224 < 0.05 329 232 < 0.1 166 0.73 346 5.9 21 4.07 5.79 14.9 6.75 6.34 6.3 23 15 12 13 4 0.7 224 < 0.05 5.00 10.1 10.6 0.73 346 5.9 21 4.07 5.79 14.9 6.75 6.34 6.3 20 1.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	SAMPLE			Al	Ca	Fe	K	Mg	Ag	As	Au	Ва	Be	Bi	Br	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	-
E832002 99.0 5.80 276 89.6 176 7 175 0.8 191 0.05 82.8 21.4 1.1 263 43.3 24.20 99.9 114 20.9 317 70.0 32.0 25.5	DESCRIPTION	μS/cm	-	ppm	ppm	ppm	ppm	ppm	ppb															
E832004 28.0 5.65 279 111 39 12 3 0.4 13.9 <0.05 502 16.8 <0.1 134 0.74 349 9.9 88 2.02 430 12.3 5.41 5.34 683204 28.0 5.68 297 111 22 7 2 0.4 22.7 0.07 363 22.7 0.1 214 0.66 240 7.4 46 1.49 67.0 11.4 5.00 4.54 683205 170 6.36 223 15 12 113 4 0.7 22.4 <0.05 329 23.2 <0.1 166 0.73 346 5.9 27 4.07 57.9 14.9 5.7 5.33 683 22.7 0.1 166 0.73 346 5.9 27 4.07 57.9 14.9 5.7 5.33 683 22.7 0.1 166 0.73 346 5.9 27 4.07 57.9 14.9 5.7 5.33 683 22.7 0.1 166 0.73 346 5.9 27 4.07 57.9 14.9 5.7 5.33 683 22.7 5.9 14.0 14.7 57.0 14.8 5.0 14.7 57.9 14.9 5.7 5.3 14.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.7 57.0 14.8 5.0 14.1 57.0 14.8 5.	E832001	184	6.23	123	1250	88	22	199	0.6	123	0.09	346	11.6	0.4	227	10.9	1080	10.1	51	1.88	103	30.0	14.0	10.4
E832006 170 6.36 233 15 12 113 24 0.7 22 0.4 227 0.07 383 22.7 0.1 214 0.66 240 7.4 66 1.40 67.0 11.4 5.00 4.54 6832005 170 6.36 233 15 12 113 4 0.7 22.4 <0.05 329 23.2 <0.1 166 0.73 3.6 5.9 27 4.07 67.9 14.9 5.57 6.33 683205 166 5.80 347 810 301 22 115 0.9 122 0.23 1080 20.7 2.9 585 7.66 1240 992 302 10.6 397 39.5 18.0 14.7 7.9 4.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	E832002	99.0	5.80	276	985	176	7	175	0.8	191	0.05	828	21.4	1.1	263	43.3	2420	90.9	114	2.09	317	70.0	32.0	25.5
E832005 170 6.56 283 15 12 113 4 0.7 22.4 < 0.05 329 23.2 < 0.1 166 0.73 346 5.9 27 4.07 57.9 14.9 6.57 6.33 68300 166 5.80 347 810 301 22 115 0.9 122 0.23 1080 20.7 2.9 865 7.56 1240 992 502 10.6 397 395 18.0 14.7 7.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1		$\overline{}$		_		-										<u> </u>		-		_		$\overline{}$	_	-
E832006 166 5.80 347 810 301 22 115 0.9 122 0.23 1080 20.7 2.9 585 7.86 1240 99.2 302 10.6 397 39.5 18.0 14.7 73.0 5.06 694 144 223 34 12 0.5 29.1 0.15 0.05 0.17 0.05 0.17 0.05 0.17 0.05 0.17 0.10 0.15						_			_					_			_		_	_				_
73.0 5.06 694 144 232 34 12 0.5 29.1 0.15 603 17.4 0.7 577 2.02 347 54.0 539 1.54 139 18.5 7.66 6.94 77.0 4.98 507 194 243 34 20 0.5 25.2 0.14 635 16.5 0.1 376 2.67 240 60.4 518 0.95 155 15.9 6.90 5.92 140 6.94 518 0.95 155 15.9 6.90 5.95 15.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14		-			_	-		-			_	_				-		-		_		-		-
77.0 4.98 507 194 243 34 20 0.5 25.2 0.14 635 14.6 1.0 376 2.67 240 60.4 518 0.95 155 15.9 6.90 5.97 140 6.39 141 472 88 39 18 0.5 443 0.62 829 16.5 0.4 531 13.6 1250 16.5 142 3.61 979 54.5 28.0 22.5 471 9.20 10.7 384 32 70 139 1.7 82.8 3.88 495 2.09 1.3 201 11.0 46.3 42.2 34 4.58 797 11.9 6.46 19.6 50.0 5.82 294 899 424 <5 127 0.8 71.8 0.30 2140 18.8 1.4 72 11.8 1800 160 433 9.07 195 46.2 19.4 15.5 54.0 5.87 512 835 392 12 68 1.4 153 0.22 380 393 3.8 142 4.94 2510 110 1200 5.33 463 83.2 36.5 31.2 46.0 5.87 550 902 264 14 78 1.4 153 0.22 380 333 3.8 142 4.94 2510 110 1200 5.33 463 83.2 36.5 31.2 46.0 5.87 550 902 264 14 78 1.4 153 0.22 380 333 3.8 142 4.94 2510 110 1200 5.33 463 83.2 36.5 31.2 46.0 5.87 550 902 264 14 78 30 5.5 1.0 10.0 20 3220 13.0 13.0 13.2 37 2.84 650 51.2 488 10.1 159 31.4 15.2 10.0 15.0 5.42 414 222 411 7 39 0.5 37.1 0.16 1690 17.7 1.9 436 19.7 571 44.0 780 23.0 28.8 26.8 12.5 88.8 55.0 4.31 440 50 200 <5 16.0 0.4 28.8 0.17 446 11.6 3.6 351 3.84 289 24.5 787 17.3 148 14.2 6.39 4.11 56.0 4.3 56.0 4.33 591 10 10 169 7 5 0.5 25.9 0.05 615 24.1 0.6 680 6.6 1170 17.8 479 1.38 267 36.0 15.5 13.1 101 6.40 155 1140 90 <5 466 1.5 128 0.05 642 24.1 0.6 680 6.6 1170 17.8 479 1.38 267 36.0 15.5 13.1 101 6.40 155 1140 90 <5 466 1.5 128 0.05 642 24.1 0.6 680 6.66 1170 17.8 479 1.38 267 36.0 15.5 13.1 101 6.40 155 1140 90 <5 466 1.5 128 0.05 642 24.1 0.6 680 6.66 1170 17.8 479 1.38 267 36.0 15.5 13.1 101 6.40 155 1140 90 <5 5 6.8 1.0 4.0 0.5 14.0 0.5 14.3 0.0 14.3 0.1 5.5 14.3 0.0 14.5 14.3 0.0 15.0 0.3 14.3 0.0 15.5 13.1 101 6.4 14.3 3.3 1.2 19.8 0.87 455 23.4 0.4 357 1.4 109 6.3 382 15.9 224 17.3 3.89 2.1 40.0 5.4 14.3 0.0 15.0 0.3 14.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14.3 0.1 15.0 0.3 14	E832006	-			_	-					_	_		_	_	-		-		_				-
140 6.39 141 472 88 39 18 0.5 443 0.62 829 16.5 0.4 531 13.6 1250 16.5 142 3.61 979 54.5 28.0 22.5		-				_				_				_		<u> </u>	_			_				-
471 9.20 10.7 384 32 70 139 1.7 82.8 3.88 495 2.09 1.3 201 11.0 46.3 42.2 34 4.58 797 11.9 6.46 1.96 50.0 5.82 294 889 424 < 5 127 0.8 71.8 0.30 2140 18.8 1.4 72 11.8 1300 160 433 9.07 195 462 19.4 15.5 54.0 5.87 512 835 392 12 68 1.4 153 0.22 380 3.9 3.8 11.2 4.94 2510 110 1230 5.33 483 832 36.5 13.5 24.0 19.6 19.6 19.6 19.6 19.8 19.8 19.8 19.8 19.8 19.8 19.8 19.8		-			_	-		-											_					_
50.0 5.82 294 899 424 < 5 127 0.8 71.8 0.30 2140 18.8 1.4 72 11.8 1360 160 433 9.07 195 46.2 19.4 15.5 540 5.87 512 835 392 12 68 1.4 153 0.22 3980 33.9 3.8 142 4.94 2510 110 1200 5.33 463 83.2 36.5 31.2 460 5.87 580 902 264 14 78 1.4 72.4 0.22 4460 33.33 2.2 190 6.65 1960 132 1050 16.9 509 76.1 31.4 127.0 39.0 5.99 298 563 354 7 35 0.6 40.1 0.20 3220 13.0 1.3 237 2.44 650 51.2 488 10.1 159 31.4 15.2 10.0 51.0 5.42 414 282 441 7 39 0.5 37.1 0.16 1690 17.7 19 436 1.97 571 44.0 780 23.0 286 26.8 12.5 84.8 55.0 4.31 440 50 200 < 5 16 0.4 28.8 0.17 446 11.6 3.6 351 3.84 269 24.5 787 17.3 148 14.2 6.39 4.11 55.0 4.33 591 10 169 7 5 5 0.5 72.5 0.07 933 21.2 0.9 602 2.44 152 20.2 385 4.96 188 13.1 5.85 3.95 4.30 5.47 552 77 145 < 5 7 0.5 26.9 0.05 615 24.1 0.6 696 0.66 1170 17.8 479 1.33 267 36.0 15.5 13.1 101 6.40 155 1140 90 < 5 466 1.5 12.8 0.05 642 21.1 0.1 456 5.88 1160 11.7 1540 52.2 2 10 36.8 34 4.2 31.2 437 9.93 29.1 299 56 329 38 1.0 42.1 0.05 17.4 1.3 0.1 166 0.82 1870 102 29 3.86 314 23.5 9.37 8.82 29.0 5.64 363 110 186 14 33 1.2 198 0.87 455 23.4 0.4 357 1.41 109 64.3 382 15.9 224 7.37 3.69 2.17 40.0 5.45 301 49 78 8 6 0.6 85.9 0.05 145 145 145 145 145 145 145 145 145 14		$\overline{}$			_				_	_	_	_	_	_		-			_					_
S4.0 5.87 512 835 392 12 68 1.4 153 0.22 3980 33.9 3.8 142 4.94 2.510 110 1230 5.33 463 83.2 36.5 31.2		-			_				_	_	_	_	_	_		-			_	-				_
46.0 5.87 580 902 264 14 78 1.4 72.4 0.22 4460 33.3 2.2 190 6.85 1960 132 1050 16.9 509 76.1 31.4 27.0		-			_				_	_	_	_	_	_	_	-			_				_	-
51.0 5.42 414 282 441 7 39 0.5 37.1 0.16 1690 17.7 1.9 436 1.97 571 44.0 780 23.0 286 26.8 12.5 8.48 55.0 4.31 440 50 200 <5 16 0.4 28.8 0.17 446 11.6 3.6 36 13.84 269 24.5 787 17.3 148 14.2 6.39 4.11 58.0 4.53 591 10 169 7 5 0.5 72.5 0.07 933 21.2 0.9 602 2.44 152 20.2 385 4.96 188 13.1 5.85 3.95 4.10 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.		46.0	5.87	580	902	264	14	_	1.4	72.4	0.22	4460	33.3	2.2	190	6.85	1960	132	1050	16.9	509	76.1	31.4	27.0
55.0 4.31 440 50 200 <5 16 0.4 28.8 0.17 446 11.6 3.6 351 3.84 269 24.5 787 17.3 148 14.2 6.39 4.11 58.0 4.53 591 10 169 7 5 0.5 72.5 0.07 933 21.2 0.9 602 2.44 152 20.2 385 4.96 188 13.1 5.85 3.95 101 6.40 155 1140 90 <5 466 1.5 128 0.05 642 21.1 0.1 456 5.88 1160 11.7 17.8 479 1.38 267 36.0 15.5 13.1 101 6.40 155 1140 90 <5 466 1.5 128 0.05 642 21.1 0.1 456 5.88 1160 11.7 1540 52.2 2110 87.8 44.2 31.2 437 9.93 29.1 299 56 329 38 1.0 42.1 <0.05 1710 4.13 <0.1 560 0.82 1870 102 29 3.68 314 23.5 9.37 8.82 29.0 5.64 363 110 186 14 33 1.2 198 0.87 455 23.4 0.4 357 1.41 109 64.3 382 15.9 224 7.37 3.69 2.17 44.0 5.40 5.40 5.31 49 78 8 6 0.6 85.9 <0.05 1450 19.5 0.3 429 1.76 210 45.1 278 2.94 116 12.3 5.71 4.03 43.0 5.00 533 14 138 <5 5 5 0.6 88.1 <0.05 485 21.6 0.8 730 0.34 352 21.7 711 4.11 424 3.32 99.9 7.83 3.59 2.39 33.0 4.78 599 13 194 <5 5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 3.03 243 13.5 5.94 4.24 23.0 4.67 5.08 422 <5 5 57 <5 5 5 0.7 516 <0.05 378 6.40 <0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 5.08 422 466 3.26 10 65 0.6 76 10.08 20.3 12.0 11.1 1890 12.0 1.1 288 3.29 10.3 69.4 310 5.39 169 35.9 18.4 12.0 488 9.40 10.4 414 2.9 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.84 2.0 5.30 55.8 27 145 <5 6 0.9 2.9 <0.05 1850 12.3 0.5 646 5.8 11.0 1.1 2.8 5.0 14.5 466 10.1 159 2.9 9.1 1.6 10.8 40.0 1.5 1.0 1.1 150 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.		39.0	5.99	298	563	354	7	35	0.6	40.1	0.20	3220	13.0	1.3	237	2.84	650	51.2	488	10.1	159	31.4	15.2	10.0
58.0 4.53 591 10 169 7 5 0.5 72.5 0.07 933 21.2 0.9 602 2.44 152 20.2 385 4.96 188 13.1 5.85 3.95 43.0 5.47 552 77 145 <5 7 0.5 26.9 <0.05 615 24.1 0.6 696 0.66 1170 17.8 479 1.38 267 36.0 15.5 13.1 101 6.40 155 1140 90 <5 466 1.5 128 <0.05 642 21.1 0.1 456 5.88 1160 11.7 1540 52.2 2110 87.8 44.2 31.2 49.9 32.9 1 299 56 329 38 10. 421 <0.05 1710 4.13 <0.1 560 0.82 1870 102 29 3.68 314 23.5 9.37 8.82 29.0 5.64 363 110 186 14 33 1.2 198 0.87 455 23.4 0.4 357 1.41 109 64.3 382 15.9 224 7.37 3.69 2.17 40.0 5.45 301 49 78 8 6 0.6 85.9 <0.05 1450 1450 1450 19.5 0.3 429 1.76 210 45.1 278 2.94 116 12.3 5.71 4.03 4.30 5.00 5.31 127 128 7 <5 2 0.3 37.2 <0.05 485 12.6 0.8 730 0.34 352 21.7 711 4.11 242 19.3 8.40 5.94 33.0 4.78 599 13 194 <5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 3.03 243 13.5 5.94 4.24 2.30 4.67 5.08 47 453 5 6 0.7 516 <0.05 378 6.40 <0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 45.0 5.75 123 701 254 7 84 0.8 26.1 5.1 6.0 0.8 29.3 13.3 396 4.19 456 20.5 937 20.5 549 21.6 10.6 6.89 45.0 5.75 213 701 254 7 84 0.8 26.1 0.11 1890 12.0 1.1 1890 12.0 1.1 288 3.29 1030 69.4 310 5.99 19.5 11.7 6.60 1.95 46.0 6.34 244 576 335 7 65 0.9 33.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 29.9 15.6 10.8 60.0 6.3 488 9.40 10.4 414 2.9 75 156 1.8 91.3 5.48 602 2.14 1.0 2.2 11.9 47.3 41.7 2.9 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 335 7 65 0.9 33.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 2.99 15.6 10.8 60.0 5.30 558 27 145 <5 6 0.5 0.5 0.5 1550 2.5 1550 2.5 6.0 3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 GXR-1 Mass		51.0	5.42	414	282	441	7	39	0.5	37.1	0.16	1690	17.7	1.9	436	1.97	571	44.0	780	23.0	286	26.8	12.5	8.48
43.0 5.47 552 77 145 <5 7 0.5 26.9 <0.05 615 24.1 0.6 696 0.66 1170 17.8 479 1.38 267 36.0 15.5 13.1 101 6.40 155 1140 90 <5 466 1.5 128 <0.05 642 21.1 0.1 456 5.88 1160 11.7 1540 52.2 2110 87.8 44.2 31.2 437 99.3 29.1 299 56 329 38 1.0 42.1 <0.05 1710 4.13 <0.1 560 0.82 1870 102 29 3.68 314 23.5 9.37 8.82 29.0 5.64 363 110 186 14 33 1.2 198 0.87 455 23.4 0.4 357 1.41 109 64.3 382 15.9 224 7.37 3.69 2.17 40.0 5.45 301 49 78 8 6 0.6 85.9 <0.05 1450 1450 19.5 0.3 429 1.76 210 45.1 278 2.94 116 12.3 5.71 4.03 43.0 5.00 533 14 138 <5 5 5 0.6 88.1 <0.05 485 21.6 0.8 730 0.34 352 21.7 711 4.11 242 19.3 8.40 5.94 2.94 2.60 5.31 277 12 87 <5 2 0.3 37.2 <0.05 227 12.9 0.2 255 0.33 133 11.7 414 3.32 99.9 7.83 3.59 2.39 33.0 4.78 599 13 194 <5 5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 3.03 243 13.5 5.94 4.24 2.30 4.80 242 <5 5 7 <5 5 0.7 516 <0.05 378 6.40 <0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 3.96 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 42 2.9 333 32.0 100 7.60 272 15.0 6.6 4.89 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 42 2.9 333 32.0 100 7.60 272 15.0 6.6 4.89 48.9 4.0 10.4 414 29 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 48.9 48.9 40 10.4 414 29 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.48 233 880 138 6 122 0.9 2.9 <0.05 1850 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 46.0 6.48 233 880 138 6 122 0.9 2.9 <0.05 1850 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 40.9 40.0 6.48 233 880 138 6 122 0.9 2.9 <0.05 1850 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 40.9 40.9 40.9 40.9 40.9 40.9 40.9 40.9		55.0	4.31	440	50	200	< 5	16	0.4	28.8	0.17	446	11.6	3.6	351	3.84	269	24.5	787	17.3	148	14.2	6.39	4.11
101 6.40 155 1140 90 < 5 466 1.5 128 < 0.05 642 21.1 0.1 456 5.88 1160 11.7 1540 52.2 2110 87.8 44.2 31.2 437 9.93 29.1 299 56 329 38 1.0 42.1 < 0.05 1710 4.13 < 0.1 560 0.82 1870 102 29 3.68 314 23.5 9.37 8.82 29.0 5.64 363 110 186 14 33 1.2 198 0.87 455 23.4 0.4 357 1.41 109 64.3 382 15.9 224 7.37 3.69 2.17 40.0 5.45 301 49 78 8 6 0.6 85.9 < 0.05 1450 19.5 0.3 429 1.76 210 45.1 278 2.94 116 12.3 5.71 4.03 43.0 5.00 533 14 138 < 5 5 0.6 88.1 < 0.05 485 21.6 0.8 730 0.34 352 21.7 711 4.11 242 19.3 8.40 5.94 26.0 5.31 277 12 87 < 5 2 0.3 37.2 < 0.05 227 12.9 0.2 255 0.33 133 11.7 414 3.32 99.9 7.83 3.59 2.39 33.0 4.78 599 13 194 < 5 5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 3.03 243 13.5 5.94 4.24 23.0 4.80 242 < 5 57 < 5 5 0.7 516 < 0.05 378 6.40 < 0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 508 47 453 5 6 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 76.0 5.56 442 466 326 10 65 0.6 761 0.08 2030 29.3 1.3 396 4.19 456 205 937 20.5 549 21.6 10.6 6.89 48.8 9.40 10.4 414 29 75 156 1.8 91.3 54.8 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 48.8 9.40 10.4 414 29 75 156 1.8 91.3 54.8 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 48.8 9.40 10.4 414 576 385 7 65 0.9 38.3 0.2 2.9 < 0.05 1850 11.0 2.3 328 2.16 850 145 466 10.1 159 2.9 9.9 11.0 6.0 6.89 48.0 10.1 159 2.9 9.9 15.5 10.0 11.0 2.3 328 2.16 850 145 466 10.1 159 2.9 9.9 11.0 6.0 1.95 48.0 12.0 1.1 150 12.3 12.0 14.2 282 7.99 2.92 37.8 18.9 12.8 12.0 14.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5		58.0	4.53	591	10	169	7	5	0.5	72.5	0.07	933	21.2	0.9	602	2.44	152	20.2	385	4.96	188	13.1	5.85	3.95
437 9.93 29.1 299 56 329 38 1.0 42.1 <0.05 1710 4.13 <0.1 560 0.82 1870 102 29 3.68 314 23.5 9.37 8.82 29.0 5.64 363 110 186 14 33 1.2 198 0.87 455 23.4 0.4 357 1.41 109 64.3 382 15.9 224 7.37 3.69 2.17 40.0 5.45 301 49 78 8 6 0.6 85.9 <0.05 1450 19.5 0.3 429 1.76 210 45.1 278 2.94 116 12.3 5.71 4.03 43.0 5.00 533 14 138 <5 5 5 0.6 88.1 <0.05 485 21.6 0.8 730 0.34 429 1.76 210 45.1 278 2.94 116 12.3 5.71 4.03 43.0 5.00 533 14 138 <5 5 5 0.6 88.1 <0.05 485 21.6 0.8 730 0.34 352 21.7 711 4.11 242 19.3 8.40 5.94 26.0 5.31 277 12 87 <5 2 0.3 37.2 <0.05 227 12.9 0.2 255 0.33 133 11.7 414 3.32 99.9 7.83 3.59 2.33 33.3 4.78 599 13 194 <5 5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 30.3 243 13.5 5.94 4.24 23.0 4.80 242 <5 5 57 <5 5 5 0.7 516 <0.05 378 6.40 <0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 4.84 4.84 4.84 4.84 4.84 4.84 4.84		-			_		< 5	7	_	_		_	_		_	-		-	_				_	_
29.0 5.64 363 110 186 14 33 1.2 198 0.87 455 23.4 0.4 357 1.41 109 64.3 382 15.9 224 7.37 3.69 2.17 40.0 5.45 301 49 78 8 6 0.6 85.9 < 0.05 1450 19.5 0.3 429 1.76 210 45.1 278 2.94 116 12.3 5.71 4.03 43.0 5.00 533 14 138 < 5 5 0.6 88.1 <0.05 485 21.6 0.8 730 0.34 352 21.7 711 4.11 242 19.3 8.40 5.94 26.0 5.31 277 12 87 < 5 2 0.3 37.2 < 0.05 227 12.9 0.2 255 0.33 133 11.7 414 3.32 99.9 7.83 3.59 2.39 33.0 4.78 599 13 194 < 5 5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 3.03 243 13.5 5.94 4.24 23.0 4.80 242 < 5 5 77 < 5 5 5 0.7 516 <0.05 378 6.40 < 0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 76.0 5.56 442 466 326 10 65 0.6 761 0.08 2030 29.3 1.3 396 4.19 456 205 937 20.5 549 21.6 10.6 6.89 45.0 5.75 213 701 254 7 84 0.8 28.1 0.11 1890 12.0 1.1 288 3.29 1030 69.4 310 5.39 169 35.9 18.4 12.0 488 9.40 10.4 414 29 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 29.9 15.6 10.8 61.0 6.48 233 880 138 6 122 0.9 22.9 0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 43.4 40.4 40.4 576 385 27 145 < 5 6 0.5 20.3 0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 40.4 40.4 40.4 576 385 27 145 < 5 6 0.5 20.3 0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 40.4 40.4 40.4 576 385 27 145 < 5 6 0.5 20.3 0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15		-			_							_	_		_	-			_				_	-
40.0 5.45 301 49 78 8 6 0 0.6 85.9 < 0.05 1450 19.5 0.3 429 1.76 210 45.1 278 2.94 116 12.3 5.71 4.03 43.0 5.00 533 14 138 < 5 5 0.6 88.1 < 0.05 485 21.6 0.8 730 0.34 352 21.7 711 4.11 242 19.3 8.40 5.94 26.0 5.31 277 12 87 < 5 2 0.3 37.2 < 0.05 227 12.9 0.2 255 0.33 133 11.7 414 3.32 99.9 7.83 3.59 2.39 33.0 4.78 599 13 194 < 5 5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 3.03 243 13.5 5.94 4.24 23.0 4.80 242 < 5 57 < 5 5 5 0.7 516 < 0.05 378 6.40 < 0.1 437 0.66 118 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 76.0 5.56 442 466 326 10 65 0.6 761 0.08 2030 29.3 1.3 396 4.19 456 205 937 20.5 549 21.6 10.6 6.89 450 5.75 213 701 254 7 84 0.8 28.1 0.11 1890 12.0 1.1 288 3.29 1030 69.4 310 5.39 169 35.9 18.4 12.0 488 9.40 10.4 414 29 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 14.5 466 10.1 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 14.5 466 10.1 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 14.5 466 10.1 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 385 11.7 1100 16.2 385 8.00 211 44.2 19.1 15.0 GXR-1 Meas									_				_						_		_			
43.0 5.00 533 14 138 <5 5 0.6 88.1 <0.05 485 21.6 0.8 730 0.34 352 21.7 711 4.11 242 19.3 8.40 5.94 26.0 5.31 277 12 87 <5 2 0.3 37.2 <0.05 227 12.9 0.2 255 0.33 133 11.7 414 3.32 99.9 7.83 3.59 2.39 33.0 4.78 599 13 194 <5 5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 3.03 243 13.5 5.94 4.24 23.0 4.80 242 <5 5 7 <5 5 5 0.7 516 <0.05 378 6.40 <0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 76.0 5.56 442 466 326 10 65 0.6 761 0.08 2030 29.3 1.3 396 4.19 456 205 937 20.5 549 21.6 10.6 6.89 45.0 5.75 213 701 254 7 84 0.8 28.1 0.11 1890 12.0 1.1 288 3.29 1030 69.4 310 5.39 169 35.9 18.4 12.0 488 9.40 10.4 414 29 75 156 1.8 91.3 548 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 29.9 15.6 10.8 61.0 6.48 233 880 138 6 122 0.9 22.9 <0.05 1890 12.3 0.5 644 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.3 GXR-1 Meas		-				_										_								
26.0 5.31 277 12 87 <5 2 0.3 37.2 <0.05 227 12.9 0.2 255 0.33 133 11.7 414 3.32 99.9 7.83 3.59 2.39 33.0 4.78 599 13 194 <5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 3.03 243 13.5 5.94 4.24 23.0 4.80 242 <5 57 <5 5 0.7 516 <0.05 378 6.40 <0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 76.0 5.56 442 466 326 10 65 0.6 761 0.08 2030 29.3 1.3 396 4.19 456 205 937 20.5 549 21.6 10.6 6.89 45.0 5.75 213 701 254 7 84 0.8 28.1 0.11 1890 12.0 1.1 288 3.29 1030 69.4 310 5.39 169 35.9 18.4 12.0 488 9.40 10.4 414 29 75 156 1.8 91.3 54.8 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 2.9 15.6 10.8 61.0 6.48 233 880 138 6 122 0.9 22.9 <0.05 1890 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 GXR-1 Meas																					_			-
33.0 4.78 599 13 194 < 5 5 0.3 59.5 0.09 577 15.1 1.1 516 2.16 261 18.6 646 3.03 243 13.5 5.94 4.24 23.0 4.80 242 < 5 57 < 5 5 5 0.7 516 < 0.05 378 6.40 < 0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 76.0 5.56 442 466 326 10 65 0.6 761 0.08 2030 29.3 1.3 396 4.19 456 205 937 20.5 549 21.6 10.6 6.89 45.0 5.75 213 701 254 7 84 0.8 28.1 0.11 1890 12.0 1.1 288 3.29 1030 69.4 310 5.39 169 35.9 18.4 12.0 488 9.40 10.4 414 29 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.98 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 29.9 15.6 10.8 61.0 6.48 233 880 138 6 122 0.9 22.9 < 0.05 1890 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 19.9 12.8 20.0 5.30 558 27 145 < 5 6 0.5 20.3 <0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0												_				_								-
23.0 4.80 242 <5 5 7 <5 5 0.7 516 <0.05 378 6.40 <0.1 437 0.66 108 23.3 403 4.07 243 14.1 7.29 3.96 37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 76.0 5.56 442 466 326 10 65 0.6 761 0.08 2030 29.3 1.3 396 4.19 456 205 937 20.5 549 21.6 10.6 6.89 45.0 5.75 213 701 254 7 84 0.8 28.1 0.11 1890 12.0 1.1 288 3.29 1030 69.4 310 5.39 169 35.9 18.4 12.0 488 9.40 10.4 414 29 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 29.9 15.6 10.8 61.0 6.48 233 880 138 6 122 0.9 22.9 <0.05 1890 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 20.0 5.30 558 27 145 <5 6 0.5 20.3 <0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 GXR-1 Meas												_				_								-
37.0 4.67 508 47 453 5 6 0.7 137 0.30 1520 18.2 2.0 462 2.69 333 32.0 1040 7.60 272 15.0 6.66 4.82 76.0 5.56 442 466 326 10 65 0.6 761 0.08 2030 29.3 1.3 396 4.19 456 205 937 20.5 549 21.6 10.6 6.89 45.0 5.75 213 701 254 7 84 0.8 28.1 0.11 1890 12.0 1.1 288 3.29 1030 69.4 310 5.39 169 35.9 18.4 12.0 488 9.40 10.4 414 29 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 29.9 15.6 10.8 61.0 6.48 233 880 138 6 122 0.9 22.9 <0.05 1890 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 20.0 5.30 558 27 145 <5 6 0.5 20.3 <0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 GXR-1 Meas								$\overline{}$				_	_			_					_			-
45.0 5.75 213 701 254 7 84 0.8 28.1 0.11 1890 12.0 1.1 288 3.29 1030 69.4 310 5.39 169 35.9 18.4 12.0 488 9.40 10.4 414 29 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 29.9 15.6 10.8 61.0 6.48 233 880 138 6 122 0.9 22.9 <0.05 1890 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 20.0 5.30 558 27 145 <5 6 0.5 20.3 <0.05 150 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 GXR-1 Meas		-				_		$\overline{}$								_								
488 9.40 10.4 414 29 75 156 1.8 91.3 5.48 602 2.14 1.0 226 11.9 47.3 41.7 29 4.61 859 11.7 6.60 1.95 46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 29.9 15.6 10.8 61.0 6.48 233 880 138 6 122 0.9 22.9 <0.05 1890 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 20.0 5.30 558 27 145 <5 6 0.5 20.3 <0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 GXR-1 Meas		76.0	5.56	442	466	326	10	65	0.6	761	0.08	2030	29.3	1.3	396	4.19	456	205	937	20.5	549	21.6	10.6	6.89
46.0 6.34 244 576 385 7 65 0.9 38.3 0.27 2330 11.0 2.3 328 2.16 850 145 466 10.1 159 29.9 15.6 10.8 61.0 6.48 233 880 138 6 122 0.9 22.9 <0.05 1890 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 20.0 5.30 558 27 145 <5 6 0.5 20.3 <0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 GXR-1 Meas		45.0	5.75	213	701	254	7	84	0.8	28.1	0.11	1890	12.0	1.1	288	3.29	1030	69.4	310	5.39	169	35.9	18.4	12.0
61.0 6.48 233 880 138 6 122 0.9 22.9 < 0.05 1890 12.3 0.5 646 5.81 1360 14.2 282 7.99 292 37.8 18.9 12.8 20.0 5.30 558 27 145 < 5 6 0.5 20.3 < 0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 GXR-1 Meas		488	9.40	10.4	414	29	75	156	1.8	91.3	5.48	602	2.14	1.0	226	11.9	47.3	41.7	29	4.61	859	11.7	6.60	1.95
20.0 5.30 558 27 145 < 5 6 0.5 20.3 < 0.05 1550 25.6 0.3 880 1.71 1100 16.2 385 8.00 211 44.2 19.1 15.0 GXR-1 Meas		46.0	6.34	244	576	385	7	65	0.9	38.3	0.27	2330	11.0	2.3	328	2.16	850	145	466	10.1	159	29.9	15.6	10.8
GXR-1 Meas							6			_														
		20.0	5.30	558	27	145	< 5	6	0.5	20.3	< 0.05	1550	25.6	0.3	880	1.71	1100	16.2	385	8.00	211	44.2	19.1	15.0
GXH-1 Cert																								\longmapsto
																								$\vdash \vdash \vdash$
GXR-1 Meas CVD 1 Cont				-	<u> </u>	<u> </u>						_			<u> </u>									$\vdash \vdash$
GXR-1 Cert SXR-1 Meas	$\overline{}$																							$\vdash \vdash \vdash$
GXR-1 Meas GXR-1 Cert		\vdash		-		_																		$\vdash \vdash \vdash$
GXR-1 Meas				\vdash																				$\vdash \vdash \vdash$
GXR-1 Cert	$\overline{}$																							$\vdash \vdash$
DH-1a Meas	$\overline{}$																							\vdash

Results	Activation Laboratories Ltd.	Report: A17-07442
---------	------------------------------	-------------------

	ISE	pH Meter	Bioleac h-MS																				
SAMPLE	Conduc tivity	Paste pH	Al	Ca	Fe	K	Mg	Ag	As	Au	Ва	Ве	Bi	Br	Cd	Ce	Со	Cr	Cs	Cu	Dy	Er	Eu
DESCRIPTION	μS/cm	-	ppm	ppm	ppm	ppm	ppm	ppb															
DH-1a Cert	F		1-1-	1.1	1-1-		1-1-	177	11111	10,000	11111	11,11		100	1717	11111	11111	1-1	- 17	1-1	1-1	111111	1717
DH-1a Meas																							
DH-1a Cert																							
DH-1a Meas																							
DH-1a Cert																							
DH-1a Meas																							
DH-1a Cert																							
GXR-4 Meas																							
GXR-4 Cert																							
GXR-4 Meas																							
GXR-4 Cert																							
GXR-4 Meas																							
GXR-4 Cert																							
GXR-6 Meas																							
GXR-6 Cert																							
GXR-6 Meas																							
GXR-6 Cert																							
GXR-6 Meas																							
GXR-6 Cert																							
GXR-6 Meas												ļ											
GXR-6 Cert												ļ											
TILL-1 Meas					122				245	0.18	1630	42.5		945		969	56.1	162	0.71	2350		85.2	59.5
TILL-1 Cert					48100. 00				18000	13	702000	2400.0		6400.0		71000	18000	65000	1000.0	47000		3600.0	1300.0
TILL-1 Meas					119				239	0.17	1580	40.3		911		937	52.7	162	0.65	2340		83.3	59.3
TILL-1 Cert					48100. 00				18000	13	702000	2400.0		6400.0		71000	18000	65000	1000.0	47000		3600.0	1300.0
TILL-2 Meas					407				824	0.18	2720	169		4220		1450	89.1	637	11.9	5220		77.8	41.5
TILL-2 Cert					38400. 00				26000	2	540000	4000.0		12200.0		98000	15000	74000	12000	150000		3700.0	1000.0
TILL-2 Meas					387				823	0.21	2670	178		4340		1440	89.4	644	11.9	5310		79.6	41.5
TILL-2 Cert					38400. 00				26000	2	540000	4000.0		12200.0		98000	15000	74000	12000	150000		3700.0	1000.0
BL-4a Meas																							
BL-4a Cert																							
BL-4a Meas									İ			İ											
BL-4a Cert												İ											
BL-4a Meas																							
BL-4a Cert																							
BL-4a Meas																							
BL-4a Cert																							
DL-1a Meas																							
DL-1a Cert																							

Results	Activation Laboratories Ltd.	Report: A17-07442

	ISE	pH Meter	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS
SAMPLE	Conduc tivity	Paste pH	Al	Ca	Fe	K	Mg	Ag	As	Au	Ва	Ве	Bi	Br	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
DESCRIPTION	μS/cm	-	ppm	ppm	ppm	ppm	ppm	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
DL-1a Meas																							
DL-1a Cert																							
DL-1a Meas																							
DL-1a Cert																							
DL-1a Meas																							
DL-1a Cert																							
OREAS 45d																							
(Aqua Regia)																							
Meas OREAS 45d									-														
(Aqua Regia) Cert																							
OREAS 45d																							
(Aqua Regia)																							
Meas																							
OREAS 45d (Aqua Regia) Cert																							
SdAR-M2																							
(U.S.G.S.) Meas																							
SdAR-M2 (U.S.G.S.) Cert																							
SdAR-M2																							
(U.S.G.S.) Meas																							
SdAR-M2																							
(U.S.G.S.) Cert																							
SdAR-M2																							
(U.S.G.S.) Meas																							
SdAR-M2 (U.S.G.S.) Cert																							
SdAR-M2																							
(U.S.G.S.) Meas																							
SdAR-M2																							
(U.S.G.S.) Cert			070			40			40.0	0.05	500	40.0		101	0.74	0.40	0.0		0.00	40.0	40.0	5.44	5.04
E832003 Orig			279 268	11	39 36	12	3	_	13.9		502 471	16.8 15.6	< 0.1	134 140	0.74	343 321	9.9 9.0	89	2.02 1.68	43.0	12.3	5.41	5.34 4.86
E832003 Dup			268	10	36	12	3	0.4	12.2	< 0.05	4/1	15.6	< 0.1	140	0.69	321	9.0	83	1.68	43.0	11.3	5.11	4.86
_					_				-		_												
								_	-		<u> </u>	-	<u> </u>	-					-				
								_	-		<u> </u>	-	<u> </u>	-					-				
			540	205		40		4.	450	0.00	2000	00.0	0.0	110	4.04	0540	440	1000	F 00	400	00.0	00.5	04.0
			512	835	392	12	68	1.4	153	0.22	3980	33.9	3.8	142	4.94	2510	110	1230	5.33	463	83.2	36.5	31.2
			503	806	386	12	67	1.2	152	0.15	3880	33.6	3.9	130	5.04	2410	112	1210	5.15	457	81.1	34.8	30.2
			363	110	186	14	33	1.2	198	0.87	455	23.4	0.4	357	1.41	109	64.3	382	15.9	224	7.37	3.69	2.17
Method Disas			360	113	188	15	33	1.3	198	< 0.05	445	22.0	0.3	348	1.80	108	63.2	388	15.2	227	7.26	3.55	2.13
Method Blank									-		_	-		_									
Method Blank					<u> </u>			<u> </u>	 		 	├──	 	—	<u> </u>				 	\vdash			
Method Blank																							

Results	Activation Laboratories Ltd.	Report: A17-07442
---------	------------------------------	-------------------

Description Description		ISE	pH Meter	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS
Method Blank	SAMPLE			Al	Ca	Fe	K	Mg	Ag	As	Au	Ва	Ве	Bi	Br	Cd	Ce	Co	Cr	Cs	Cu	Dy	Er	Eu
Method Blank 6.67	DESCRIPTION	μS/cm	-	ppm	ppm	ppm	ppm	ppm	ppb															
Method Blank	Method Blank																							
Method Blank																								ldot
Beleace Blockee Bloc			6.87																					igsquare
Boleac Bloleac									_			_	_			_								< 0.01
MANS MANS	Method Blank			< 0.5	< 5	< 1	< 5	< 2	< 0.2	< 0.5	< 0.05	< 1	0.62	< 0.1	< 5	< 0.05	< 0.02	0.8	< 2	< 0.01	1.4	0.07	0.04	0.03
MASS MASS		Rioleac	Rioleac	Rioleac	Rioleac	Rioleac	Rioleac	Rioleac	Bioleac	Rioleac	Rioleac	Rioleac	Rioleac	Rioleac	Rioleac	Bioleac	Rioleac	Rioleac	Rioleac	Rioleac	Rioleac	Rioleac	Bioleac	Rioleac
DESCRIPTION Ppb Pp																								h-MS
E832001 23.2 58.3 1.11 3.05 < 0.05 5.00 98 0.2 756 358 1.71 4660 11 8.4 < 0.03 26.8 < 1 53.0 < 0.5 141 < 0.5 37.2 0.5 6.05 < 0.05 1.44 0.5 1.25 25.5 3.50 66700 15 18.0 < 0.03 2.2 < 1 99.1 0.7 53.9 0.5 54.4 0.5 57.2 0.5 6.05 0.05 1.14 4.05 1.25 25.5 3.50 66700 15 18.0 < 0.03 < 0.2 < 1 24.6 < 0.5 39.8 < 0.5 59.1 9.0 0.5 6.05 1.9 4.0 0.05 1.9 4.0 0.05 1.9 4.0 0.05 1.9 4.0 0.05 1.9 4.0 0.05 1.9 4.0 0.05 1.9 4.0 0.05 1.9 4.0 0.05 1.9 4.0 0.05 1.9 4.0 0.05 1.9 4.0 0.05 1.0 0.05 1.9 4.0 0.05 1.0 0.05 1.0 0.05 1.0 0.05 1.0 0.05 1.0 0.05 1.0 0.05 1.0 0.05 1.0 0.05 1.0 0.05 1.0 0.0	SAMPLE	Ga	Gd	Ge	Hf	Hg	Но	I	In	La	Li	Lu	Mn	Мо	Nb	Nd	Ni	Os	Pb	Pd	Pr	Pt	Rb	Re
E832002 S9.1 132 2.70 6.05 < 0.05 11.4 144 0.5 1250 29.5 3.60 66700 15 18.0 < 0.03 212 < 1 99.1 0.7 329 < 0.5 46.4 0.5 6832003 37.5 18.6 0.22 1.20 < 0.05 1.96 1.55 < 0.1 18.3 < 0.2 0.61 199 9 2.4 < 0.03 < 0.2 < 1 24.6 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9 9 < 0.5 5.9	DESCRIPTION	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
E832003 37.5 18.6 0.38 1.05 0.05 1.99 1.55 0.1 183 0.2 0.61 1.55 9 2.4 0.03 0.2 0.1 24.6 0.5 38.8 0.5 91.9 0.5 E832004 33.0 15.6 0.22 1.20 0.05 1.85 2.42 210 0.01 121 0.02 0.59 23.3 27 2.6 0.03 0.2 0.1 20.4 0.5 26.9 0.5 26.9 0.5 50.9 0.0 E832005 26.9 22.3 0.41 0.81 0.05 2.42 210 0.01 180 0.02 0.72 2.5 2.9 50 2.1 0.03 0.02 0.1 10.2 0.5 40.2 0.5 33.3 0.0 E832006 104 70.9 1.92 5.43 0.08 6.32 178 0.5 725 45.0 2.18 2460 13 30.1 0.03 480 0.1 120 1.5 179 0.05 76.8 0.0 115 22.3 0.48 2.40 0.07 3.01 188 0.3 202 11.5 0.7 2.18 2460 13 30.1 0.03 480 0.1 120 1.5 179 0.05 76.8 0.0 115 22.3 0.48 2.40 0.07 3.01 188 0.3 202 11.5 0.7 2.18 2460 13 30.1 0.03 480 0.1 157 0.6 40.4 0.5 118 0.0 113 141 0.0 1.15 17.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	E832001	23.2	58.3	1.11	3.05	< 0.05	5.00	98	0.2	756	35.8	1.71	4660	11	8.4	< 0.03	26.8	< 1	53.0	< 0.5	141	< 0.5	37.2	0.02
E832004 33.0 15.6 0.22 1.20 <0.05 1.85 281 <0.1 121 <0.2 0.59 233 27 2.6 <0.03 <0.2 <1 20.4 <0.5 26.9 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	E832002	59.1	132	2.70	6.05	< 0.05	11.4	144	0.5	1250	29.5	3.60	66700	15	18.0	< 0.03	212	< 1	99.1	0.7	329	< 0.5	46.4	0.04
E832005 26.9 22.3 0.41 0.81 <0.05 2.42 210 <0.1 180 <0.2 0.72 52.9 50 2.1 <0.03 <0.2 <1 10.2 <0.5 40.2 <0.5 40.2 <0.5 333 <0.0 E832006 104 70.9 1.92 5.43 0.06 6.32 178 0.5 725 45.0 2.18 2460 13 30.1 <0.03 480 <1 120 1.5 179 <0.5 76.6 0.0 115 22.3 0.48 2.34 0.07 3.01 198 0.3 202 14.5 0.73 1190 6 15.8 <0.03 180 <1 137 0.6 40.4 <0.5 118 0.0 133 18.4 0.30 2.48 0.10 2.67 156 0.4 146 11.1 0.69 2430 6 16.2 <0.03 169 <1 157 0.8 29.6 <0.5 68.8 0.1 17.5 13.8 1 0.06 9.45 157 0.1 762 2.6 4.46 1390 10 2.6 25.2 256 <1 11.5 1.1 186 <0.5 181 0.0 14.5 91.3 157 3.81 0.06 9.45 157 0.1 762 2.6 4.46 1390 10 2.6 25.2 256 <1 11.5 1.1 186 <0.5 181 0.0 138 75.3 2.67 5.55 <0.05 7.42 59 0.4 901 39.8 19.9 23200 19 28.9 <0.03 414 <1 162 1.2 167 <0.5 91.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9 <0.5 19.9	E832003	37.5	18.6	0.38	1.05	< 0.05	1.99	155	< 0.1	183	< 0.2	0.61	159	9	2.4	< 0.03	< 0.2	< 1	24.6	< 0.5	39.8	< 0.5	91.9	< 0.01
E832006 104 70.9 1.92 5.43 0.06 6.32 178 0.5 725 45.0 2.18 2460 13 30.1 <0.03 480 <1 120 1.5 179 <0.5 76.6 0.0 115 22.3 0.48 2.34 0.07 3.01 198 0.3 202 14.5 0.73 1190 6 15.8 0.03 180 <1 137 0.6 40.4 <0.5 118 0.0 115 22.3 0.48 2.34 0.07 2.48 0.10 2.67 156 0.4 146 11.1 0.69 2430 6 16.2 <0.03 180 <1 157 0.6 2.0 40.4 <0.5 118 0.0 141.5 91.3 1.57 3.81 0.06 9.45 157 0.1 762 2.6 4.46 1930 10 2.6 25.2 236 <1 11.5 1.1 186 <0.5 181 0.1 17.3 10.1 0.47 3.78 <0.05 2.33 4 <0.1 21.4 19.8 0.91 536 3200 1.7 16.6 58.5 <1 15.5 1.1 186 <0.5 181 0.1	E832004	33.0	15.6	0.22	1.20	< 0.05	1.85	281	< 0.1	121	< 0.2	0.59	233	27	2.6	< 0.03	< 0.2	< 1	20.4	< 0.5	26.9	< 0.5	50.9	0.02
115 22.3 0.48 2.34 0.07 3.01 198 0.3 202 14.5 0.73 1190 6 15.8 < 0.03 180 < 1 137 0.6 40.4 < 0.5 118 0.133 18.4 0.30 2.48 0.10 2.67 156 0.4 146 11.1 0.69 2430 6 16.2 < 0.03 169 < 1 157 0.8 29.6 < 0.5 68.8 0.10 17.3 18.1 0.06 9.45 157 0.1 762 2.6 4.4 16.1930 10 2.6 25.2 236 < 1 11.5 11.1 186 < 0.5 181 0.0 17.3 10.1 0.47 3.78 < 0.05 2.33 4 < 0.1 21.4 19.8 0.91 536 3230 1.7 16.6 58.5 < 1 59.4 4.4 7.12 < 0.5 334 0.0 138 75.3 2.67 5.55 < 0.05 7.42 59 0.4 901 39.6 1.90 2300 19 2.90 < 0.03 414 < 1 162 1.2 167 < 0.5 91.9 < 0.0 138 75.3 2.67 5.55 < 0.05 7.42 59 0.4 901 39.6 1.90 2300 19 2.90 < 0.03 414 < 1 162 1.2 167 < 0.5 91.9 < 0.0 19.9 19.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0								_			_	_						< 1	_		_			< 0.01
133 18.4 0.30 2.48 0.10 2.67 156 0.4 146 11.1 0.69 2430 6 16.2 0.03 169 0.1 157 0.0 29.6 0.5 68.8 0.1 14.5 91.3 1.57 3.81 0.06 9.45 157 0.1 762 2.6 4.46 1930 10 2.6 25.2 236 0.1 11.5 1.1 186 0.05 181 0.0 17.3 10.1 0.47 3.78 0.05 2.33 4 0.0 2.14 19.8 0.91 536 3230 1.7 16.6 58.5 0.1 59.4 4.4 7.12 0.05 334 0.0 138 75.3 2.67 5.55 0.05 7.42 59 0.4 901 39.6 1.90 23200 19 28.9 0.03 414 0.1 162 1.2 167 0.5 334 0.0 228 139 4.76 11.0 0.05 13.5 106 0.7 1220 36.1 3.73 10500 11 30.6 0.03 528 0.1 225 3.3 312 0.05 104 0.0 293 122 2.63 11.1 0.05 12.1 128 0.7 1100 78.9 3.25 10700 11 27.6 0.03 399 0.1 261 3.5 236 0.05 5.72 0.0 177 35.3 1.30 3.25 0.05 4.51 177 0.5 317 29.5 1.52 691 22 24.6 0.03 143 0.1 88.2 1.1 68.8 0.5 57.2 0.0 99.7 15.9 0.41 1.99 0.06 2.45 122 0.3 166 16.3 0.70 753 10 10.0 0.03 333 0.1 128 0.6 0.22 0.05 0.34 0.0 65.0 12.4 0.47 3.11 0.09 2.20 2.55 0.3 84.2 2.0 0.69 674 10 8.5 0.03 32.4 1 38.2 0.7 122 0.5 3.78 0.0 91.4 135 2.31 7.64 0.05 15.4 285 0.3 1180 9.9 6.23 9.9 6.2 2.76 6.2980 0.1 3.6 2.2 2.8 2.7 0.0	E832006			_				_		_								< 1	_		_			0.02
41.5 91.3 1.57 3.81 0.06 9.45 157 0.1 762 2.6 4.46 1990 10 2.6 25.2 236 <1 11.5 1.1 186 <0.5 181 0.1 17.3 10.1 0.47 3.78 <0.05 2.33 4 <0.1 21.4 19.8 0.91 536 3230 1.7 16.6 58.5 <1 59.4 4.4 7.12 <0.5 334 0.1 181 0.1 188 75.3 2.67 5.55 <0.05 7.42 59 0.4 901 39.6 19.0 23200 19 2.89 <0.03 414 <1 162 11.2 11.6 17.0 <0.5 31.3 17.0 <0.5 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.05 11.1 <0.0		_	_								_								_		_		_	0.01
17.3 10.1 0.47 3.78 0.05 2.33 4 0.1 21.4 19.8 0.91 536 3230 1.7 16.6 58.5 0.1 59.4 4.4 7.12 0.5 334 0.1 138 75.3 2.67 5.55 0.05 7.42 59 0.4 901 39.6 1.90 23200 19 28.9 0.03 414 0.1 162 1.2 167 0.5 91.9 0.0 2.9 0.0 2.9 0.1 1.0 0.05 13.5 106 0.7 1220 36.1 3.73 10500 11 30.6 0.03 52.8 0.1 225 3.3 312 0.05 51.5 0.0 0.7 1220 36.1 3.73 10500 11 27.6 0.03 39.9 0.1 261 3.5 236 0.5 57.2 0.0 19.9 43.1 1.66 3.98 0.06 5.32 147 0.4 362 29.1 1.89 2.40 6 24.6 0.03 19.8 0.1 140 1.3 89.6 0.5 57.2 0.0 17.7 35.3 1.30 3.25 0.05 4.51 177 0.5 317 29.5 1.52 691 22 24.6 0.03 143 0.1 40.1 1.3 89.6 0.5 57.2 0.0 1.5			<u> </u>		_				_	_									_					0.02
138 75.3 2.67 5.55 < 0.05 7.42 59 0.4 901 39.6 1.90 23200 19 28.9 < 0.03 414 < 1 162 1.2 167 < 0.5 91.9 < 0.05 12.1 10.0 < 0.05 13.5 106 0.7 1220 36.1 3.73 10500 11 30.6 < 0.03 528 < 1 225 3.3 312 < 0.5 104 0.0 < 0.05 12.1 12.8 0.7 1100 78.9 3.25 10700 11 27.6 < 0.03 399 < 1 261 3.5 236 < 0.5 17.2 < 0.0 < 0.05 17.2 < 0.05 17.2 < 0.05 17.2 < 0.05 17.2 < 0.05 17.3 1.3 1.66 3.98 0.06 5.32 147 0.4 362 29.1 1.89 2640 6 24.6 < 0.03 198 < 1 140 1.3 89.6 < 0.5 57.2 < 0.05 17.7 < 0.05 17.7 35.3 1.30 3.25 0.05 4.51 177 0.5 317 29.5 1.52 691 22 24.6 < 0.03 143 < 1 89.2 1.1 68.8 < 0.5 57.2 < 0.05 17.2 < 0.05 12.4 0.47 3.11 0.09 2.20 295 0.3 84.2 2.0 0.69 674 10 8.5 < 0.03 133 < 1 128 0.6 29.2 < 0.5 37.8 0.0 < 0.05 35.8 2.0		_						_								-								0.02
228 139 4.76 11.0 < 0.05 13.5 106 0.7 1220 36.1 3.73 10500 111 30.6 < 0.03 528 < 1 225 3.3 312 < 0.5 104 0.1		_	-			_										_								0.02
293 122 2.63 11.1 < 0.05 12.1 128 0.7 1100 78.9 3.25 10700 11 27.6 < 0.03 399 < 1 261 3.5 236 < 0.5 172 < 0.05 199 43.1 1.66 3.98 0.06 5.32 147 0.4 362 29.1 18.9 2640 6 24.6 < 0.03 198 < 1 140 1.3 89.6 < 0.5 81.0 < 0.0			-			_										_								-
199 43.1 1.66 3.98 0.06 5.32 147 0.4 362 29.1 1.89 2640 6 24.6 < 0.03 198 < 1 140 1.3 89.6 < 0.5 81.0 < 0.0 177 35.3 1.30 3.25 0.05 4.51 177 0.5 317 29.5 1.52 691 22 24.6 < 0.03 143 < 1 89.2 1.1 68.8 < 0.5 57.2 0.0 99.7 15.9 0.41 1.99 0.06 2.45 122 0.3 166 16.3 0.70 753 10 16.0 < 0.03 133 < 1 128 0.6 29.2 < 0.5 37.8 0.0 65.0 12.4 0.47 3.11 0.09 2.20 295 0.3 84.2 2.0 0.69 674 10 8.5 < 0.03 19.2 < 1 79.9 1.1 17.1 < 0.5 87.5 < 0.0 36.5 53.4 1.07 2.67 < 0.05 5.82 290 0.2 646 0.4 1.58 185 7 4.7 < 0.03 32.4 < 1 38.2 0.7 122 < 0.5 21.7 0.0 21.6 135 2.31 7.64 < 0.05 15.4 285 0.3 1180 9.9 6.23 986 5 2.2 786 2980 < 1 3.6 2.3 275 < 0.5 53.3 0.0 79.1 73.4 2.67 5.67 0.06 3.33 2 0.1 1160 276 0.91 4850 13 12.2 < 0.03 10.2 < 1 63.2 2.8 274 < 0.5 92.6 0.0 46.0 7.62 0.55 3.11 0.07 1.31 280 0.2 52.9 15.5 0.51 15400 12 5.9 < 0.03 48.9 < 1 51.1 1.0 12.0 < 0.5 147 < 0.0 59.9 14.4 0.30 2.18 0.06 2.08 211 0.2 109 3.5 0.67 2030 9 3.7 < 0.03 19.6 < 1 41.3 0.7 23.9 < 0.5 63.8 0.0 14.5 9.12 0.14 2.00 0.05 1.32 188 0.1 72.1 1.6 0.48 210 8 3.2 < 0.03 4.0 < 1 17.1 1.7 1.7 1.7 1.7 1.5 1.3 3.0 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5						_							$\overline{}$			_			_					0.03
177 35.3 1.30 3.25 0.05 4.51 177 0.5 317 29.5 1.52 691 22 24.6 < 0.03 143 < 1 89.2 1.1 66.8 < 0.5 57.2 0.0 99.7 15.9 0.41 1.99 0.06 2.45 122 0.3 166 16.3 0.70 753 10 16.0 < 0.03 133 < 1 128 0.6 29.2 < 0.5 37.8 0.0 65.0 12.4 0.47 3.11 0.09 2.20 295 0.3 84.2 2.0 0.69 674 10 8.5 < 0.03 19.2 < 1 79.9 1.1 17.1 < 0.5 87.5 < 0.0 85.5 < 0.0 85.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			-						_							_			_					
99.7 15.9 0.41 1.99 0.06 2.45 122 0.3 166 16.3 0.70 753 10 16.0 < 0.03 133 < 1 128 0.6 29.2 < 0.5 37.8 0.0 65.0 12.4 0.47 3.11 0.09 2.20 295 0.3 84.2 2.0 0.69 674 10 8.5 < 0.03 19.2 < 1 79.9 1.1 17.1 < 0.5 87.5 < 0.0 36.5 53.4 1.07 2.67 < 0.05 5.82 290 0.2 646 0.4 1.58 185 7 4.7 < 0.03 32.4 < 1 38.2 0.7 122 < 0.5 21.7 0.0 21.6 135 2.31 7.64 < 0.05 15.4 285 0.3 1180 9.9 6.23 986 5 2.2 786 2980 < 1 3.6 2.3 275 < 0.5 53.3 0.0 79.1 73.4 2.67 5.67 0.06 3.33 2 0.1 1160 276 0.91 4850 13 12.2 < 0.03 10.2 < 1 63.2 2.8 274 < 0.5 926 0.1 46.0 7.62 0.55 3.11 0.07 1.31 280 0.2 52.9 15.5 0.51 15400 12 5.9 < 0.03 48.9 < 1 51.1 1.0 12.0 < 0.5 147 < 0.0 59.9 14.4 0.30 2.18 0.06 2.08 211 0.2 109 3.5 0.67 2030 9 3.7 < 0.03 19.6 < 1 41.3 0.7 23.9 < 0.5 63.8 0.0 30.5 22.5 0.32 3.78 0.07 3.18 425 0.3 182 5.1 1.05 190 11 4.6 < 0.03 29.5 < 1 38.0 1.3 39.1 < 0.5 48.4 0.1 14.5 9.12 0.14 2.00 0.05 1.32 188 0.1 72.1 1.6 0.48 210 8 3.2 < 0.03 4.0 < 1 17.1 0.7 15.6 < 0.5 52.0 0.1 13.1 13.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 < 0.03 39.8 < 1 3.6 0.6 13.3 < 0.5 28.4 < 0.5 52.0 0.1 13.1 0.5 190 115 4 0.6 < 0.03 39.8 < 1 3.6 0.6 13.3 < 0.5 38.7 < 0.0 113 18.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 < 0.03 74.4 < 1 139 0.9 34.8 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 48.5 < 0.5 131 < 0.0 9 4			-			_							$\overline{}$			_			_					0.02
65.0 12.4 0.47 3.11 0.09 2.20 295 0.3 84.2 2.0 0.69 674 10 8.5 < 0.03 19.2 < 1 79.9 1.1 17.1 < 0.5 87.5 < 0.0 36.5 53.4 1.07 2.67 < 0.05 5.82 290 0.2 646 0.4 1.58 185 7 4.7 < 0.03 32.4 < 1 38.2 0.7 122 < 0.5 21.7 0.0 21.6 135 2.31 7.64 < 0.05 15.4 285 0.3 1180 9.9 6.23 986 5 2.2 786 2980 < 1 3.6 2.3 275 < 0.5 53.3 0.0 79.1 73.4 2.67 5.67 0.06 3.33 2 0.1 1160 276 0.91 4850 13 12.2 < 0.03 10.2 < 1 63.2 2.8 274 < 0.5 926 0.0 46.0 7.62 0.55 3.11 0.07 1.31 280 0.2 52.9 15.5 0.51 15400 12 5.9 < 0.03 48.9 < 1 51.1 1.0 12.0 < 0.5 147 < 0.0 59.9 14.4 0.30 2.18 0.06 2.08 211 0.2 109 3.5 0.67 2030 9 3.7 < 0.03 19.6 < 1 41.3 0.7 23.9 < 0.5 63.8 0.0 30.5 22.5 0.32 3.78 0.07 3.18 425 0.3 182 5.1 1.05 190 11 4.6 < 0.03 29.5 < 1 38.0 1.3 39.1 < 0.5 48.4 0.0 14.5 9.12 0.14 2.00 0.05 1.32 188 0.1 72.1 1.6 0.48 210 8 3.2 < 0.03 4.0 < 1 17.1 0.7 15.6 < 0.5 26.7 < 0.5 115.8 13.2 0.27 1.67 < 0.05 2.58 292 < 0.1 53.0 54.0 0.99 105 4 0.6 < 0.03 39.8 < 1 3.6 0.6 13.3 < 0.5 38.7 < 0.0 113 18.1 0.66 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 < 0.03 74.4 < 1 139 0.9 34.8 < 0.5 131 < 0.0 114 13 0.0 0.9 34.8 < 0.5 131 < 0.0 114 < 0.0 0.5 1.48 4.07 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 150 < 1 150 5.2 < 1 58.2 4.5 7.07 < 0.5 344 0.0 12.8 56.5 1.48 4.07 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 151 113 1.5 113 < 0.5 121 < 0.05 121 < 0.05 121 10.0 10.0 115 113 1.5 113 < 0.5 121 < 0.05 121 10.0 12.0 < 0.05 1.21 10.0 12.0 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 151 151 15.5 113 < 0.5 121 < 0.05 121 < 0.05 121 < 0.05 121 10.0 12.0 < 0.05 1.21 10.0 12.0 < 0.05 1.22 12.0 < 0.05 1.22 12.0 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 113 1.5 113 < 0.5 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121 < 0.05 121			-			_							$\overline{}$			_								0.02
36.5 53.4 1.07 2.67 < 0.05 5.82 290 0.2 646 0.4 1.58 185 7 4.7 < 0.03 32.4 < 1 38.2 0.7 122 < 0.5 21.7 0.0 21.6 135 2.31 7.64 < 0.05 15.4 285 0.3 1180 9.9 6.23 986 5 2.2 786 2980 < 1 3.6 2.3 275 < 0.5 53.3 0.0 79.1 73.4 2.67 5.67 0.06 3.33 2 0.1 1160 276 0.91 4850 13 12.2 < 0.03 10.2 < 1 63.2 2.8 274 < 0.5 926 0.0 46.0 7.62 0.55 3.11 0.07 1.31 280 0.2 52.9 15.5 0.51 1540 12 5.9 < 0.03 48.9 < 1 51.1 1.0 12.0 < 0.5 147 < 0.0 59.9 14.4 0.30 2.18 0.06 2.08 211 0.2 109 3.5 0.67 2030 9 3.7 < 0.03 19.6 < 1 41.3 0.7 23.9 < 0.5 63.8 0.3 30.5 22.5 0.32 3.78 0.07 3.18 425 0.3 182 5.1 1.05 190 11 4.6 < 0.03 29.5 < 1 38.0 1.3 39.1 < 0.5 13.1 4.5 9.12 0.14 2.00 0.05 1.32 188 0.1 72.1 1.6 0.48 210 8 3.2 < 0.03 4.0 < 1 17.1 0.7 15.6 < 0.5 26.7 < 0.0 129 15.7 0.44 2.42 < 0.05 2.29 289 0.3 159 6.7 0.79 228 10 15.2 < 0.03 29.4 < 1 128 0.7 28.4 < 0.5 52.0 0.1 13 18.1 0.66 2.5 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 < 0.03 74.4 < 1 139 0.9 34.8 < 0.5 13.1 <0.5 131 < 0.0 113 18.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 < 0.03 74.4 < 1 139 0.9 34.8 < 0.5 131 < 0.5 131 < 0.5 131 < 0.5 132 14.0 < 0.0 125 56.5 1.48 4.07 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 150 < 1 151 11.3 1.5 113 < 0.5 121 < 0.0 176 46.6 1.99 4.40 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 151 11.3 1.5 113 < 0.5 121 < 0.05			-			_			_							-					_			< 0.01
21.6 135 2.31 7.64 < 0.05 15.4 285 0.3 1180 9.9 6.23 986 5 2.2 786 2980 < 1 3.6 2.3 275 < 0.5 53.3 0.0 79.1 73.4 2.67 5.67 0.06 3.33 2 0.1 1160 276 0.91 4850 13 12.2 < 0.03 10.2 < 1 63.2 2.8 274 < 0.5 926 0.0 46.0 7.62 0.55 3.11 0.07 1.31 280 0.2 52.9 15.5 0.51 15400 12 5.9 < 0.03 48.9 < 1 51.1 1.0 12.0 < 0.5 147 < 0.0 59.9 14.4 0.30 2.18 0.06 2.08 211 0.2 109 3.5 0.67 2030 9 3.7 < 0.03 19.6 < 1 41.3 0.7 23.9 < 0.5 63.8 0.0 14.5 9.1		_		_	_					_			_			_								0.01
46.0 7.62 0.55 3.11 0.07 1.31 280 0.2 52.9 15.5 0.51 15400 12 5.9 <0.03 48.9 <1 51.1 1.0 12.0 <0.5 147 <0.05 59.9 14.4 0.30 2.18 0.06 2.08 211 0.2 109 3.5 0.67 2030 9 3.7 <0.03 19.6 <1 41.3 0.7 23.9 <0.5 63.8 0.1 30.5 22.5 0.32 3.78 0.07 3.18 425 0.3 182 5.1 1.05 190 11 4.6 <0.03 29.5 <1 38.0 1.3 39.1 <0.5 48.4 0.1 14.5 9.12 0.14 2.00 0.05 1.32 188 0.1 72.1 1.6 0.48 210 8 3.2 <0.03 4.0 <1 17.1 0.7 15.6 <0.5 26.7 <0.0 129 15.7 0.44 2.42 <0.05 2.29 289 0.3 159 6.7 0.79 228 10 15.2 <0.03 29.4 <1 128 0.7 28.4 <0.5 52.0 0.1 13.3 <0.5 52.5 13.3 0.5 13.3 0.5 52.5 0.5 13.3 0.5 52.5 0.5 13.2 0.5 13.0 5.4 0.99 105 4 0.6 <0.03 39.8 <1 3.6 0.6 13.3 <0.5 38.7 <0.0 113 18.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 <0.03 74.4 <1 139 0.9 34.8 <0.5 131 <0.9 4.6 27.7 1.85 2.93 0.07 3.80 220 0.5 210 66.8 1.62 6080 18 11.7 <0.03 508 <1 130 0.9 48.5 <0.5 131 <0.9 4.6 2.7 1.8 5 2.9 3 0.07 3.50 5.2 114 0.3 579 53.0 2.47 3150 7 22.5 0.03 145 <1 85.3 1.3 130 <0.5 92.3 <0.5 142 0.0 112 0.			-		7.64				_	1180	9.9		$\overline{}$								275			0.01
59.9 14.4 0.30 2.18 0.06 2.08 211 0.2 109 3.5 0.67 2030 9 3.7 < 0.03 19.6 <1 41.3 0.7 23.9 < 0.5 63.8 0.0 30.5 22.5 0.32 3.78 0.07 3.18 425 0.3 182 5.1 1.05 190 11 4.6 < 0.03 29.5 <1 38.0 1.3 39.1 < 0.5 48.4 0.1 14.5 9.12 0.14 2.00 0.05 1.32 188 0.1 72.1 1.6 0.48 210 8 3.2 < 0.03 4.0 <1 17.1 0.7 15.6 < 0.5 26.7 < 0.0 129 15.7 0.44 2.42 < 0.05 2.29 289 0.3 159 6.7 0.79 228 10 15.2 < 0.03 29.4 <1 128 0.7 28.4 < 0.5 52.0 0.1 15.8 13.2 0.27 1.67 < 0.05 2.58 292 < 0.1 53.0 5.4 0.99 105 4 0.6 < 0.03 39.8 <1 3.6 0.6 13.3 <0.5 38.7 < 0.0 113 18.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 <0.03 74.4 <1 139 0.9 34.8 <0.5 131 < 0.5 131 < 0.5 131 146 27.7 1.85 2.93 0.07 3.80 220 0.5 210 66.8 1.62 6080 18 11.7 < 0.03 508 <1 130 0.9 48.5 < 0.5 130 < 0.5 179 0.1 19.2 10.2 0.22 3.55 <0.05 2.31 4 < 0.1 21.6 20.5 0.86 554 3560 1.7 16.5 56.2 <1 58.2 4.5 7.07 < 0.5 344 0.1 176 46.6 1.99 4.40 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 111 <0.5 1			-		_		_	2	0.1		276	0.91	4850		12.2	-	10.2				274	_	_	0.02
30.5 22.5 0.32 3.78 0.07 3.18 425 0.3 182 5.1 1.05 190 11 4.6 0.03 29.5 0.1 38.0 1.3 39.1 0.5 48.4 0.0 14.5 9.12 0.14 2.00 0.05 1.32 188 0.1 72.1 1.6 0.48 210 8 3.2 0.03 4.0 0.1 17.1 0.7 15.6 0.5 26.7 0.0 129 15.7 0.44 2.42 0.05 2.29 289 0.3 159 6.7 0.79 228 10 15.2 0.03 29.4 0.1 128 0.7 28.4 0.5 52.0 0.0 15.8 13.2 0.27 1.67 0.05 2.58 292 0.1 53.0 5.4 0.99 105 4 0.6 0.03 39.8 0.1 3.6 0.6 13.3 0.5 38.7 0.0 113 18.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 0.03 74.4 0.1 139 0.9 34.8 0.5 131 0.0 14.6 27.7 1.85 2.93 0.07 3.80 220 0.5 210 66.8 1.62 6080 18 11.7 0.03 508 0.1 130 0.9 48.5 0.5 179 0.1 125 56.5 1.48 4.07 0.05 6.27 114 0.3 579 53.0 2.47 3150 7 22.5 0.03 145 0.1 85.3 13. 130 0.9 48.5 0.5 179 0.1 19.2 10.2 0.22 3.55 0.05 2.31 4 0.1 21.6 20.5 0.86 554 3500 1.7 16.5 56.2 0.1 113 1.5 113 0.5 12 0.5 121 0.0 176 46.6 1.99 4.40 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 0.03 150 0.1 113 1.5 113 0.5 121 0.0 176 0.0 176 46.6 1.99 4.40 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 0.03 150 0.1 113 1.5 113 0.5 121 0.0 176 0.0 176 46.6 1.99 4.40 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 0.03 150 0.1 113 1.5 113 0.5 121 0.0 176 0.0 176 46.6 1.99 4.40 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 0.03 150 0.1 113 1.5 113 0.5 121 0.0 176 0.0 1		46.0	7.62	0.55	3.11	0.07	1.31	280	0.2	52.9	15.5	0.51	15400	12	5.9	< 0.03	48.9	< 1	51.1	1.0	12.0	< 0.5	147	< 0.01
14.5 9.12 0.14 2.00 0.05 1.32 188 0.1 72.1 1.6 0.48 210 8 3.2 < 0.03 4.0 < 1 17.1 0.7 15.6 < 0.5 26.7 < 0.0 129 15.7 0.44 2.42 < 0.05 2.29 289 0.3 159 6.7 0.79 228 10 15.2 < 0.03 29.4 < 1 128 0.7 28.4 < 0.5 52.0 0.1 15.8 13.2 0.27 1.67 < 0.05 2.58 292 < 0.1 53.0 5.4 0.99 105 4 0.6 < 0.03 39.8 < 1 3.6 0.6 13.3 < 0.5 38.7 < 0.0 113 18.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 < 0.03 74.4 < 1 139 0.9 34.8 < 0.5 131 < 0.0 146 27.7 1.85 2.93 0.07 3.80 220 0.5 210 66.8 1.62 6080 18 11.7 < 0.03 508 < 1 130 0.9 48.5 < 0.5 179 0.0 19.2 10.2 0.22 3.55 < 0.05 2.31 4 < 0.1 21.6 20.5 0.86 554 3560 1.7 16.5 56.2 < 1 58.2 4.5 7.07 < 0.5 344 0.0 176 46.6 1.99 4.40 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 113 1.5 113 < 0.5 111 < 0.5		59.9	14.4	0.30	2.18	0.06	2.08	211	0.2	109	3.5	0.67	2030	9	3.7	< 0.03	19.6	< 1	41.3	0.7	23.9	< 0.5	63.8	0.01
129 15.7 0.44 2.42 0.05 2.29 289 0.3 159 6.7 0.79 228 10 15.2 0.03 29.4 <1 128 0.7 28.4 <0.5 52.0 0.0 15.8 13.2 0.27 1.67 <0.05 2.58 292 <0.1 53.0 5.4 0.99 105 4 0.6 <0.03 39.8 <1 3.6 0.6 13.3 <0.5 38.7 <0.0 113 18.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 <0.03 74.4 <1 139 0.9 34.8 <0.5 131 <0.0 146 27.7 1.85 2.93 0.07 3.80 220 0.5 210 66.8 1.62 6080 18 11.7 <0.03 508 <1 130 0.9 48.5 <0.5 179 0.0 125 56.5 1.48 4.07 <0.05 6.27 114 0.3 579 53.0 2.47 3150 7 22.5 <0.03 145 <1 85.3 1.3 130 <0.5 92.3 <0.0 19.2 10.2 0.22 3.55 <0.05 2.31 4 <0.1 21.6 20.5 0.86 554 3560 1.7 16.5 56.2 <1 58.2 4.5 7.07 <0.5 344 0.0 176 46.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 46.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 46.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 <1 113 1.5 113 <0.5 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 <0.03 150 41 113 1.5 113 <0.0 15 121 <0.0 176 40.6 1.99 4.40 <0.05 5.28 129 129 0.3 473 61.5 2.23 4570 16 3		30.5	22.5	0.32	3.78	0.07	3.18	425	0.3	182	5.1	1.05	190	11	4.6	< 0.03	29.5	< 1	38.0	1.3	39.1	< 0.5	48.4	0.01
15.8 13.2 0.27 1.67 < 0.05 2.58 292 < 0.1 53.0 5.4 0.99 105 4 0.6 < 0.03 39.8 < 1 3.6 0.6 13.3 < 0.5 38.7 < 0.05 113 18.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 < 0.03 74.4 < 1 139 0.9 34.8 < 0.5 131 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 < 0.05 14 <		14.5	9.12	0.14	2.00	0.05	1.32	188	0.1	72.1	1.6	0.48	210	8	3.2	< 0.03	4.0	< 1	17.1	0.7	15.6	< 0.5	26.7	< 0.01
113 18.1 0.65 2.52 0.11 2.50 177 0.4 196 20.3 0.88 468 11 21.8 < 0.03 74.4 < 1 139 0.9 34.8 < 0.5 131 < 0.0 146 27.7 1.85 2.93 0.07 3.80 220 0.5 210 66.8 1.62 6080 18 11.7 < 0.03 508 < 1 130 0.9 48.5 < 0.5 179 0.0 125 56.5 1.48 4.07 < 0.05 6.27 114 0.3 579 53.0 2.47 3150 7 22.5 < 0.03 145 < 1 85.3 1.3 130 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5 92.3 < 0.5		129	15.7	0.44	2.42	< 0.05	2.29	289	0.3	159	6.7	0.79	228	10	15.2	< 0.03	29.4	< 1	128	0.7	28.4	< 0.5	52.0	0.02
146 27.7 1.85 2.93 0.07 3.80 220 0.5 210 66.8 1.62 6080 18 11.7 < 0.03		15.8	13.2	0.27	1.67	< 0.05	2.58	292	< 0.1	53.0	5.4	0.99	105	4	0.6	< 0.03	39.8	< 1	3.6	0.6	13.3	< 0.5	38.7	< 0.01
125 56.5 1.48 4.07 < 0.05 6.27 114 0.3 579 53.0 2.47 3150 7 22.5 < 0.03 145 < 1 85.3 1.3 130 < 0.5 92.3 < 0.0 19.2 10.2 0.22 3.55 < 0.05 2.31 4 < 0.1 21.6 20.5 0.86 554 3560 1.7 16.5 56.2 < 1 58.2 4.5 7.07 < 0.5 344 0.0 176 46.6 1.99 4.40 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 113 1.5 113 < 0.5 121 < 0.0 19.2 0.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0			_	0.65		0.11	2.50					0.88			21.8	< 0.03		< 1	_					< 0.01
19.2 10.2 0.22 3.55 < 0.05 2.31 4 < 0.1 21.6 20.5 0.86 554 3560 1.7 16.5 56.2 < 1 58.2 4.5 7.07 < 0.5 344 0.1 176 46.6 1.99 4.40 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 113 1.5 113 < 0.5 121 < 0.5 121 < 0.5 122 < 0.5 123 < 0.5 123 < 0.5 123 < 0.5 123 < 0.5 124 < 0.5 124 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0.5 125 < 0								_		_				18		_							_	0.01
176 46.6 1.99 4.40 < 0.05 5.28 129 0.3 473 61.5 2.23 4570 16 34.0 < 0.03 150 < 1 113 1.5 113 < 0.5 121 < 0.0							_							7										< 0.01
			<u> </u>				_		<u> </u>	_						<u> </u>				_	_		_	0.03
			-		_				_	_		_	-			-							_	< 0.01
70.0 33.0 1.10 4.00 < 0.05 0.07 274 0.3 610 40.9 2.30 1030 9 7.0 < 0.03 119 < 1 17.4 1.3 134 < 0.5 52.8 0.0		78.8	59.0	1.16	4.80	< 0.05	6.67	274	0.3	615	40.9	2.90	1090	9	7.6	< 0.03	119	< 1	17.4	1.3	134	< 0.5	52.8	0.01

Results	Activation Laboratories Ltd.	Report: A17-07442
---------	------------------------------	-------------------

SAMPLE		h-MS	h-MS	h-MS	h-MS	h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	h-MS	h-MS	h-MS	h-MS	h-MS	h-MS	Bioleac h-MS	h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS
DECODIDATION	Ga	Gd	Ge	Hf	Hg	Но	I	ln	La	Li	Lu	Mn	Мо	Nb	Nd	Ni	Os	Pb	Pd	Pr	Pt	Rb	Re
DESCRIPTION	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
E832033	60.9	59.8	1.08	2.97	0.07	7.22	420	0.3	595	4.1	1.94	232	8	4.6	< 0.03	23.1	< 1	58.9	0.9	120	< 0.5	63.6	0.02
GXR-1 Meas																							<u> </u>
GXR-1 Cert																							<u> </u>
GXR-1 Meas																							<u> </u>
GXR-1 Cert																							
GXR-1 Meas																							.
GXR-1 Cert	-																						-
GXR-1 Meas GXR-1 Cert	-																						-
DH-1a Meas	-																						-
DH-1a Meas DH-1a Cert	-			\vdash													\vdash						\vdash
DH-1a Gent	-			\vdash													\vdash			-			
DH-1a Weas																	\vdash						
DH-1a Meas	\dashv																						\vdash
DH-1a Cert	\neg																						
DH-1a Meas																				-			
DH-1a Cert	\neg																						
GXR-4 Meas																							
GXR-4 Cert																							
GXR-4 Meas																							
GXR-4 Cert																							
GXR-4 Meas																							
GXR-4 Cert																							
GXR-6 Meas																							
GXR-6 Cert																							
GXR-6 Meas																							
GXR-6 Cert																							
GXR-6 Meas																							
GXR-6 Cert																							
GXR-6 Meas																							ļ
GXR-6 Cert																							<u> </u>
TILL-1 Meas				4.06	0.13				1010	< 0.2	9.43	53000	15	5.8	1760	53.5		183				43.3	<u> </u>
TILL-1 Cert				13000	90.0				28000	15000	600.0	14200 00	2000	10000	26000	24000		22000				44000	
TILL-1 Meas				4.14	0.09				989	1.0	9.38	51100	15	5.5	1730	52.8		174				42.8	
TILL-1 Cert	7			13000	90.0				28000	15000	600.0	14200 00	2000	10000	26000	24000		22000				44000	
TILL-2 Meas				13.6	0.17				853	24.3	8.70	16900	124	23.8	161	81.0		373				224	
TILL-2 Cert				11000	70.0				44000	47000	600.0	780000	14000	20000	36000	32000		31000				143000	
TILL-2 Meas	1			14.4	0.16				857	21.2	8.79	16200	136	23.7	164	84.9		364				224	
TILL-2 Cert				11000	70.0				44000	47000	600.0	780000	14000	20000	36000	32000		31000				143000	

Results	Activation Laboratories Ltd.	Report: A17-07442
---------	------------------------------	-------------------

	i-MS h-MS Ga Gd ppb ppb	_	h-MS Hf ppb	h-MS Hg ppb	h-MS Ho ppb	I ppb	h-MS In ppb	La	Li	Lu	Mn ppb	h-MS Mo ppb	h-MS Nb ppb	h-MS Nd ppb	h-MS Ni ppb	h-MS Os ppb	Pb	h-MS Pd ppb	h-MS Pr ppb	Pt ppb	Rb ppb	h-MS Re ppb
BL-4a Meas BL-4a Cert BL-4a Meas BL-4a Cert BL-4a Meas BL-4a Cert BL-4a Meas BL-4a Cert BL-4a Meas BL-4a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert	ppb ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
BL-4a Cert BL-4a Meas BL-4a Cert BL-4a Meas BL-4a Cert BL-4a Meas BL-4a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert																						
BL-4a Meas BL-4a Cert BL-4a Meas BL-4a Cert BL-4a Meas BL-4a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert DL-1a Meas																						
BL-4a Cert BL-4a Meas BL-4a Meas BL-4a Meas BL-4a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Meas DL-1a Meas DL-1a Meas																						
BL-4a Meas BL-4a Cert BL-4a Meas BL-4a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Meas DL-1a Meas DL-1a Cert																						
BL-4a Cert BL-4a Meas BL-4a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Meas DL-1a Meas DL-1a Cert																						
BL-4a Meas BL-4a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert																						
BL-4a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert																				1		
DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert																						
DL-1a Cert DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert																						1
DL-1a Meas DL-1a Cert DL-1a Meas DL-1a Cert																						
DL-1a Cert DL-1a Meas DL-1a Cert																						
DL-1a Meas DL-1a Cert																						
DL-1a Cert																						
DL-1a Meas																						
DL-1a Cert																						
OREAS 45d																						ı
(Aqua Regia) Meas																						I
OREAS 45d	_															_						
(Aqua Regia) Cert																						l '
OREAS 45d												-							-			
(Aqua Regia)																						I
Meas																						
OREAS 45d																						I
(Aqua Regia) Cert	_	\vdash																				
SdAR-M2 (U.S.G.S.) Meas																						I
SdAR-M2	_																					
(U.S.G.S.) Cert																						I
SdAR-M2																						ī
(U.S.G.S.) Meas																						
SdAR-M2																						1
(U.S.G.S.) Cert SdAR-M2	_	\vdash																				
(U.S.G.S.) Meas																						l '
SdAR-M2	_	\vdash										-							-			
(U.S.G.S.) Cert																						ı
SdAR-M2 (U.S.G.S.) Meas																						
SdAR-M2		\Box																				
(U.S.G.S.) Cert E832003 Orig 37	37.5 18.6	0.38	1.05	< 0.05	1.00	455	< 0.1	183	< 0.2	0.64	150	9	2.4	< 0.03	< 0.2	. 4	24.6	< 0.5	39.8	, n E	91.9	< 0.01
	37.5 18.6 34.5 17.2	0.38	1.05	< 0.05	1.99	155 146	< 0.1	183	< 0.2	0.61	159 150	9	2.4	< 0.03	< 0.2	< 1 < 1	27.1	< 0.5	39.8	< 0.5 < 0.5	91.9	< 0.01
E032003 Dup 34	34.3 17.2	0.36	1.04	< 0.05	1.93	146	< 0.1	1/3	< 0.2	0.57	150	9	۷.۱	< 0.03	< 0.2	< 1	21.1	< 0.5	36.0	< 0.5	90.2	0.02
	_	\vdash	\vdash				_												\vdash			

Results	Activation Laboratories Ltd.	Report: A17-07442
IVESUIIS	Activation Laboratories Ltd.	Nepolt. All-01442

SAMPLE

Ga

Gd

Ge

Hf

Hg

Но

In

La

Li

Bioleac Biolea

Mn

Мо

Nb

Nd

Ni Os

Pb

Pd

Pr

Pt

Rb

Re

SAMPLE	Ga	Gd	Ge	Hf	Hg	Ho	- 1	In	La	Li	Lu	Mn	Мо	Nb	Nd	Ni	Os	Pb	Pd	Pr	Pt	Rb	Re
DESCRIPTION	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb
	228	139	4.76	11.0	< 0.05	13.5	106	0.7	1220	36.1	3.73	10500	11	30.6	< 0.03	528	< 1	225	3.3	312	< 0.5	104	0.03
	227	135	4.31	11.0	< 0.05	12.9	110	0.7	1180	34.9	3.56	10200	10	30.8	< 0.03	527	< 1	217	3.1	294	< 0.5	102	0.01
	46.0	7.62	0.55	3.11	0.07	1.31	280	0.2	52.9	15.5	0.51	15400	12	5.9	< 0.03	48.9	< 1	51.1	1.0	12.0	< 0.5	147	< 0.01
	45.8	7.49	0.63	3.09	0.05	1.29	289	0.2	51.5	14.6	0.48	15800	12	6.0	< 0.03	47.0	< 1	48.6	0.9	11.6	< 0.5	148	< 0.01
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank																							
Method Blank	0.2	< 0.03	< 0.05	< 0.04	< 0.05	< 0.01	< 1	< 0.1	< 0.01	< 0.2	0.01	< 0.1	< 2	< 0.2	< 0.03	< 0.2	< 1	< 0.1	< 0.5	0.01	< 0.5	< 0.1	< 0.01
Method Blank	0.1	0.10	< 0.05	< 0.04	< 0.05	< 0.01	< 1	< 0.1	< 0.01	< 0.2	0.09	< 0.1	< 2	< 0.2	< 0.03	< 0.2	< 1	< 0.1	< 0.5	0.04	< 0.5	< 0.1	0.02
					I																		
	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Ru	Sb	Sc	Se	Sm	II-IVIS Sr	Ta	Tb	Te	Th	TI	Tm	II-IVIS	II-IVIS V	W W	II-IVIS Y	Yb	Zn	II-IVIS Zr	Ti	S	Р	Li
DESCRIPTION	ppb	ppb	ppb	ppb	ppb	dqq	ppb	dqq	ppb	ppb	%	%	%	ppm									
E832001	< 0.05	1.2	53.0	9	73.1	488	1.08	6.74	< 1	137	0.5	1.70	200	133	6.87	205	11.5	814	59.6	0.114	< 1	0.048	30.4
E832001	< 0.05	1.9	89.6	24	176	595	1.99	15.9	< 1	447	0.5	4.07	303	242	4.28	360	25.6	2680	109	0.114	< 1	0.048	46.7
E832002	< 0.05	1.5	38.6	7	24.0	80.3	0.24	2.55	< 1	31.9	0.7	0.65	27.9	69	4.18	57.2	3.99	< 2	25.3	0.137	< 1	0.072	17.5
E832003	< 0.05	1.6	45.3	18	19.0	61.8	0.19	2.29	< 1	24.1	1.0	0.60	25.0	125	8.51	53.3	3.88	< 2	29.6	0.092	< 1	0.061	18.8
E832005	< 0.05	1.8	59.0	24	28.8	73.7	0.13	3.14	< 1	15.2	1.0	0.77	35.2	161	22.1	73.8	5.01	< 2	22.0	0.035	<1	0.059	16.7
E832006	< 0.05	1.5	51.0	9	98.8	523	2.84	8.88	<1	221	1.4	2.33	144	350	7.17	179	15.0	324	117	0.215	<1	0.035	53.6
2002000	< 0.05	0.8	36.6	13	26.7	276	1.77	3.58	< 1	24.6	0.4	0.90	23.7	153	17.5	77.8	5.31	177	55.7	0.101	< 1	0.021	7.8
	< 0.05	1.1	47.7	14	21.4	367	1.60	3.01	< 1	33.6	0.3	0.81	16.5	221	10.2	66.2	4.82	260	67.7	0.085	< 1	0.017	6.6
	< 0.05	4.8	85.9	43	114	233	0.29	11.5	< 1	112	2.2	3.81	93.0	348	10.3	348	27.1	124	99.0	0.185	< 1	0.027	56.8
	< 0.05	23.3	19.8	< 1	9.39	1480	0.10	1.90	< 1	3.22	6.5	0.88	2.20	233	5.45	70.6	5.48	78	139	0.257	< 1	0.043	1.6
	< 0.05	1.6	94.9	< 1	91.8	689	3.05	10.0	< 1	253	1.3	2.29	120	649	2.68	229	13.9	625	117	0.145	< 1	0.035	21.8
	< 0.05	0.6	142	17	176	898	2.24	18.1	< 1	463	1.2	4.37	82.6	1330	3.32	393	27.3	267	301	0.122	< 1	0.040	23.5
	< 0.05	1.0	137	8	150	976	2.20	16.4	< 1	472	1.1	3.86	84.5	855	2.83	339	23.4	600	308	0.192	< 1	0.044	36.5
	< 0.05	0.2	56.8	< 1	56.2	636	2.16	6.28	< 1	194	0.6	2.07	38.3	363	1.84	148	13.4	503	102	0.123	< 1	0.020	21.5
	< 0.05	3.6	64.9	6	43.1	512	2.32	5.24	< 1	108	1.3	1.65	70.2	659	2.16	128	10.3	21	87.7	0.171	< 1	0.027	78.6
	< 0.05	1.7	37.1	3	18.2	167	1.83	2.55	< 1	45.7	0.9	0.81	30.1	252	2.86	62.5	4.48	100	49.5	0.196	< 1	0.011	72.4
	< 0.05	3.4	51.4	10	13.9	68.4	0.76	2.36	< 1	56.2	0.7	0.76	26.6	176	0.60	58.1	4.81	13	94.3	0.117	< 1	0.018	17.5
	< 0.05	1.2	83.2	21	65.5	62.0	0.51	7.43	< 1	88.6	1.3	1.93	57.7	130	1.87	170	11.9	< 2	68.8	0.140	< 1	0.049	31.8
	< 0.05	6.5	202	27	174	808	0.26	18.2	< 1	152	2.8	5.80	181	92	5.31	641	40.8	< 2	200	0.071	< 1	0.041	30.1
	< 0.05	15.0	35.3	5	110	1250	0.47	6.68	< 1	380	9.3	0.95	62.5	148	197	92.6	6.05	548	246	0.135	< 1	0.073	17.6
	< 0.05	2.6	42.4	27	9.31	153	0.38	1.34	< 1	47.5	1.6	0.48	39.7	206	5.24	34.6	3.32	< 2	87.7	0.125	< 1	0.045	30.3
	< 0.05	1.7	53.8	11	17.0	108	0.32	2.30	< 1	32.9	1.1	0.72	28.0	110	3.36	57.3	4.61	< 2	58.4	0.100	< 1	0.046	18.7
	< 0.05	1.7	72.6	19	27.3	48.0	0.46	3.68	< 1	71.4	0.9	1.09	49.1	134	4.62	81.5	7.02	< 2	95.9	0.145	< 1	0.025	33.5
	< 0.05	1.7	37.3	3	11.2	26.4	0.31	1.47	< 1	53.5	0.6	0.48	17.7	46	5.79	33.5	2.99	< 2	51.9	0.070	< 1	0.038	12.0
										1													

Results	Activation Laboratories Ltd.	Report: A17-07442
rtocuito	/ tott/ attott Eaboratorioo Etai	Mopola / Mil of Til

														I			I						
	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Ru	Sb	Sc	Se	Sm	Sr	Ta	Tb	Te	Th	TI	Tm	U	V	W	Y	Yb	Zn	Zr	Ti	S	Р	Li
DESCRIPTION	ppb	dqq	%	%	%	ppm																	
	< 0.05	4.4	42.1	12	18.1	61.6	1.86	2.55	< 1	54.1	0.7	0.75	40.5	296	2.57	60.2	4.66	115	68.5	0.128	< 1	0.025	16.5
	< 0.05	0.5	117	15	13.2	7.4	0.03	2.41	< 1	9.44	2.0	0.99	12.3	227	25.9	77.7	6.50	< 2	52.6	0.264	< 1	0.016	22.7
	< 0.05	1.4	45.2	15	21.1	158	1.81	2.84	< 1	74.0	1.0	0.82	33.2	629	7.75	67.7	5.08	< 2	76.8	0.111	< 1	0.015	10.9
	< 0.05	6.8	50.0	5	33.1	438	0.65	4.05	< 1	69.1	1.4	1.46	67.7	581	3.76	109	9.48	103	83.2	0.222	< 1	0.021	82.2
	< 0.05	1.3	77.1	2	74.5	976	2.23	7.48	< 1	176	1.0	2.45	49.0	404	3.37	180	16.3	140	105	0.153	< 1	0.023	27.9
	< 0.05	27.7 < 0.2	20.0 74.6	< 1	9.47 62.3	1580 973	0.09 3.14	1.88 6.24	< 1 < 1	3.36 163	6.7 1.1	0.91 2.17	2.34 38.4	256 624	5.76 4.49	73.1 146	5.38 14.7	130 181	139 122	0.223	< 1	0.035 0.028	1.3 27.0
	< 0.05	1.3	81.1	< 1 9	74.2	657	0.61	7.75	< 1	161	2.0	2.17	112	159	2.89	205	16.2	21	130	0.181	< 1	0.028	43.2
	< 0.05	1.2	91.8	20	75.5	234	0.46	8.92	< 1	71.0	1.8	2.35	63.3	85	3.09	203	14.2	< 2	72.6	0.132	< 1	0.024	27.1
GXR-1 Meas	₹ 0.00		31.0	20	70.0	204	0.40	0.02		71.0	1.0	2.00	00.0	- 00	0.00	202	14.2		72.0	0.005	< 1	0.041	3.7
GXR-1 Cert																				0.036	0.257	0.0650	8.20
GXR-1 Meas																				0.005	< 1	0.049	4.4
GXR-1 Cert																				0.036	0.257	0.0650	8.20
GXR-1 Meas																				0.005	< 1	0.039	3.8
GXR-1 Cert																				0.036	0.257	0.0650	8.20
GXR-1 Meas																				0.005	< 1	0.048	4.2
GXR-1 Cert																				0.036	0.257	0.0650	8.20
DH-1a Meas	_																						
DH-1a Cert DH-1a Meas																							
DH-1a Meas		_																					
DH-1a Meas																							
DH-1a Cert																							
DH-1a Meas																							
DH-1a Cert																							
GXR-4 Meas																				0.126	2	0.153	8.4
GXR-4 Cert																				0.29	1.77	0.120	11.1
GXR-4 Meas																				0.108	2	0.121	6.8
GXR-4 Cert																				0.29	1.77	0.120	11.1
GXR-4 Meas GXR-4 Cert		_													_					0.134	1.77	0.149	8.4 11.1
GXR-4 Cert GXR-6 Meas																				0.29	< 1	0.120	23.0
GXR-6 Weas																					0.0160	0.0350	32.0
GXR-6 Meas																					< 1	0.045	24.6
GXR-6 Cert																					0.0160	0.0350	32.0
GXR-6 Meas																					< 1	0.042	23.0
GXR-6 Cert																					0.0160	0.0350	32.0
GXR-6 Meas																					< 1	0.039	23.1
GXR-6 Cert																					0.0160	0.0350	32.0
TILL-1 Meas		113	329		294	519	0.50	36.8		106			86.5	303		914	69.6	698	61.3				
TILL-1 Cert		7800.0	13000		5900.0	291000	700.0	1100.0		5600.0			2200.0	99000		38000	3900.0	98000	502000				
TILL-1 Meas		112	329		294	515	0.53	36.5		104			84.3	295		899	68.6	779	61.4				

Results	Activation Laboratories Ltd.	Report: A17-07442
IVESUIIS	Activation Laboratories Ltd.	Nepolt. A11-01442

				I																			
	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Ru	Sb	Sc	Se	Sm	Sr	Ta	Tb	Te	Th	TI	Tm	U	V	W	Y	Yb	Zn	Zr	Ti	S	Р	Li
DESCRIPTION	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	%	%	%	ppm											
TILL-1 Cert	ррь	7800.0	13000	ррь	5900.0	ppo	700.0		ppo	5600.0	ррь	ррь	2200.0	99000	ррь	38000	3900.0	98000	ppo	70	70	70	ppini
						291000													502000				1
TILL-2 Meas		8.1	208		193	681	1.59	31.1		286			264	372	74.7	808	64.1	657	336				
TILL-2 Cert		800.0	12000		7400.0		1900.0	1200.0					5700.0	77000	5000	40000	3700.0						1
						144000				18400.0									390000				
TILL-2 Meas		8.4	211		194	674	1.64	31.6		291			282	373	78.7	829	65.6	689	349				
TILL-2 Cert		800.0	12000		7400.0		1900.0	1200.0					5700.0	77000	5000	40000	3700.0						1
DI 4 M						144000				18400.0								130000	390000				
BL-4a Meas																							Ь——
BL-4a Cert									-														Ь——
BL-4a Meas																							Ь——
BL-4a Cert									-														Ь——
BL-4a Meas																							├
BL-4a Cert																							├
BL-4a Meas																							<u> </u>
BL-4a Cert																							<u> </u>
DL-1a Meas																							<u> </u>
DL-1a Cert																							<u> </u>
DL-1a Meas																							<u> </u>
DL-1a Cert																							<u> </u>
DL-1a Meas																							<u> </u>
DL-1a Cert																							<u> </u>
DL-1a Meas																							<u> </u>
DL-1a Cert																							<u> </u>
OREAS 45d																					< 1	0.026	10.5
(Aqua Regia) Meas																							1
OREAS 45d		\vdash		_	_							 			_						0.045	0.035	11.9
(Aqua Regia) Cert																					0.043	0.033	11.9
OREAS 45d																					< 1	0.039	15.4
(Aqua Regia)																							1
Meas																							
OREAS 45d																					0.045	0.035	11.9
(Aqua Regia) Cert																							<u> </u>
SdAR-M2 (U.S.G.S.) Meas		l		1					1			1							1				9.2
SdAR-M2		_	-	-				_	-	-								-					18
(U.S.G.S.) Cert																							18
SdAR-M2		\vdash																					9.9
(U.S.G.S.) Meas		l		1					1			1							1				1
SdAR-M2																							18
(U.S.G.S.) Cert																							<u> </u>
SdAR-M2																							11.4
(U.S.G.S.) Meas		<u> </u>	ļ	<u> </u>					<u> </u>	ļ		<u> </u>							<u> </u>	\vdash			—
SdAR-M2																							17.9
(U.S.G.S.) Cert												<u> </u>											

Results	Activation Laboratories Ltd.	Report: A17-07442
Results	Activation Laboratories Ltd.	Report: A17-07442

	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	Bioleac h-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Ru	Sb	Sc	Se	Sm	Sr	Ta	Tb	Te	Th	TI	Tm	U			Y	Yb	Zn	Zr	Ti	S	Р	Li
DESCRIPTION	ppb	_	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	%	%	%	ppm								
SdAR-M2 (U.S.G.S.) Meas		I I				Piles	Pira			PP	-	1111			1,1-1		, pp						11.6
SdAR-M2 (U.S.G.S.) Cert																							17.9
E832003 Orig	< 0.05	1.5	38.6	7	24.0	80.3	0.24	2.55	< 1	31.9	0.9	0.65	27.9	69	4.18	57.2	3.99	< 2	25.3				
E832003 Dup	< 0.05	0.5	37.0	7	22.3	74.1	0.23	2.42	< 1	30.3	0.9	0.62	26.7	69	3.99	53.5	3.73	23	24.8				
																				0.101	< 1	0.021	7.8
																				0.094	< 1	0.021	7.4
																				0.185	< 1	0.027	56.8
																				0.169	< 1	0.025	56.5
	< 0.05	0.6	142	17	176	898	2.24	18.1	< 1	463	1.2	4.37	82.6	1330	3.32	393	27.3	267	301				
	< 0.05	0.7	139	15	169	879	2.24	17.4	< 1	441	1.1	4.25	78.5	1290	3.06	386	26.9	319	300				
	< 0.05	2.6	42.4	27	9.31	153	0.38	1.34	< 1	47.5	1.6	0.48	39.7	206	5.24	34.6	3.32	< 2	87.7				
	< 0.05	1.7	43.0	26	9.14	153	0.38	1.30	< 1	45.5	1.6	0.50	37.6	203	4.71	35.7	3.17	91	89.5				
Method Blank																				< 0.001	< 1	0.001	< 0.1
Method Blank																				< 0.001	< 1	0.001	< 0.1
Method Blank																				< 0.001	< 1	0.001	0.1
Method Blank																				< 0.001	< 1	0.001	< 0.1
Method Blank																							
Method Blank																							
Method Blank	< 0.05	< 0.2	< 0.5	< 1	< 0.03	0.5	< 0.01	< 0.01	< 1	0.04	< 0.2	< 0.01	0.02	< 1	< 0.01	< 0.02	< 0.02	< 2	< 0.5				
Method Blank	< 0.05	< 0.2	< 0.5	< 1	< 0.03	0.5	< 0.01	< 0.01	2	0.18	< 0.2	0.01	0.03	2	< 0.01	< 0.02	0.03	< 2	< 0.5				
	AR-MS	AR-MS	AR-MS		_	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS										
SAMPLE	Be	В	Na	Mg	Al	K	Bi	Ca	Sc	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Rb	Sr	Y
DESCRIPTION	ppm	ppm	%	%	%	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
E832001	0.1	4	0.028	0.45	0.89	0.15	0.23	1.15	1.6	50	29	301	2.74	7.1	13.2	13.8	49.1	5.38	< 0.1	6.1	31.5	18.2	6.56
E832002	0.2	5	0.031	0.61	1.34	0.19	0.29	1.00	3.0	59	42	593	3.35	11.2	27.3	28.6	98.6	7.30	< 0.1	9.3	43.2	19.1	8.84
E832003	0.3	5	0.024	0.19	1.74	0.06	0.12	0.15	1.5	36	26	90	1.81	4.7	12.8	9.59	19.3	5.36	< 0.1	0.5	9.3	8.8	3.35
E832004	0.4	4	0.031	0.22	1.95 2.11	0.05	0.19	0.20 0.15	2.1	30	28 29	110 90	1.67	4.7 4.5	13.1 11.7	17.4 13.1	20.3	4.04	< 0.1	0.4 1.0	6.3 5.9	9.5 8.7	3.85 3.27
E832005 E832006	0.4	<u> </u>	0.036	0.19	1.69	0.06	0.18	0.15	1.9 2.8	28 60	47	237	1.65 3.02	18.1	108	28.9	69.2	3.89 9.80	< 0.1	7.6	15.6	15.3	5.36
E832006	0.2	6	0.029	0.43	1.09	0.13	0.57	0.56	1.4	42	31	76	1.34	2.8	11.0	3.05	12.4	6.44	< 0.1	0.5	10.0	9.2	2.63
	0.2	3	0.023	0.17	0.94	0.05	0.09	0.19	1.3	31	23	65	0.99	2.0	7.0	3.03	10.9	5.74	< 0.1	0.5	8.8	10.0	2.14
	0.1	3	0.023	0.12	1.93	0.05	0.09	0.20	4.3	121	113	397	6.13	18.9	281	259	49.5	7.61	< 0.1	82.6	26.2	12.3	8.83
	0.3	4	0.039	0.03	1.02	0.09	1.36	1.00	1.6	44	21	188	1.58	6.9	20.7	36.9	30.0	3.54	< 0.1	7.8	9.2	34.0	9.47
	0.1	5	0.029	0.40	0.90	0.09	0.11	0.49	2.3	45	38	260	2.19	7.5	22.7	8.40	39.7	5.64	< 0.1	0.2	20.3	12.6	4.00
	0.1	5	0.029	0.40	1.16	0.11	0.11	0.49	2.8	46	70	219	2.19	8.7	46.4	12.7	34.7	5.53	< 0.1	0.2	18.1	10.8	4.32
	0.2	5	0.029	0.61	1.41	0.10	0.19	0.56	4.7	56	45	275	2.40	11.7	37.2	21.0	47.6	8.37	< 0.1	0.3	21.7	14.3	6.17
	< 0.1	4	0.026	0.26	0.84	0.06	0.13	0.30	1.3	33	31	135	1.32	5.3	22.3	6.83	19.9	4.66	< 0.1	< 0.1	9.3	10.8	3.20
	0.2	4	0.029	0.20	1.74	0.06	0.11	0.26	3.9	66	57	223	2.87	13.4	49.6	24.1	33.8	8.02	< 0.1	0.2	8.6	8.3	3.53
	0.2	5	0.023	1.17	1.64	0.16	0.10	0.08	3.2	78	85	143	2.09	10.4	62.1	10.1	27.5	9.73	< 0.1	0.2	8.5	5.2	1.44
	0.1	3	0.018	0.19	1.37	0.05	0.21	0.09	1.5	45	30	93	1.76	3.6	10.9	9.13	19.4	8.09	< 0.1	1.7	10.4	6.0	2.07
	 	ا				2.20		1			 	 	0		1		1,577	1			1071		

Results	Activation Laboratories Ltd.	Report: A17-07442
Results	Activation Laboratories Ltd.	Report: A17-07442

	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS		AR-MS	AR-MS	AR-MS		AR-MS	AR-MS		AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Be	В	Na	Mg	Al	K	Bi	Ca	Sc	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Rb	Sr	Y
DESCRIPTION	ppm 0.4	ppm 6	0.037	% 0.41	% 2.48	% 0.07	ppm 0.20	% 0.26	ppm 3.6	ppm 52	ppm 55	ppm 160	2.60	ppm 11.2	ppm 37.1	ppm 23.6	ppm 23.5	ppm 6.76	ppm < 0.1	ppm 3.1	ppm 10.1	ppm 9.0	ppm 5.18
	0.4	4	0.031	2.82	2.39	0.07	0.04	0.80	2.8	84	1540	237	5.72	49.0	599	149	28.5	6.25	< 0.1	9.8	4.8	16.8	8.11
	< 0.1	2	0.162	0.27	0.87	0.69	< 0.02	0.30	3.5	27	25	347	2.80	9.3	6.9	15.9	54.5	4.85	< 0.1	< 0.1	52.4	17.4	8.78
	0.3	4	0.022	0.63	1.72	0.06	0.24	0.16	1.6	52	58	2310	4.72	17.9	23.2	13.4	40.7	7.53	< 0.1	25.3	18.4	7.5	1.94
	0.3	4	0.036	0.31	1.38	0.07	0.16	0.24	2.1	33	43	153	1.80	9.7	37.4	20.5	17.1	3.60	< 0.1	12.7	10.5	9.7	3.89
	0.3	4	0.031	0.40	2.02	0.08	0.30	0.16	3.0	61	68	158	2.72	8.2	30.4	21.5	23.3	7.52	< 0.1	15.1	16.1	8.4	3.43
	0.3	3	0.032	0.23	1.07	0.03	0.13	0.23	1.7	22	40	92	1.47	5.9	26.7	17.7	9.1	2.21	< 0.1	8.2	3.5	7.9	3.95
	0.2	3	0.024	0.27	1.56	0.05	0.16	0.16	1.9	45	38	105	1.65	4.4	17.8	14.2	15.7	6.51	< 0.1	3.3	6.4	6.3	3.02
	0.2	2	0.032	1.18	2.61	0.13	0.05	0.17	7.9	174	171	315	5.44	35.0	137	147	57.9	8.96	< 0.1	124	17.3	1.0	3.32
	0.1	3	0.027	0.24	0.69	0.05	0.12	0.16	1.2	41	37	109	1.70	4.4	17.6	10.9	11.9	4.62	< 0.1	4.6	8.5	7.3	2.31
	0.5	5	0.029	1.40	3.06	0.08	0.21	0.43	8.2	103	296	729	4.24	34.2	214	95.7	156	11.6	< 0.1	41.4	15.7	10.3	3.30
	0.1	3	0.029	0.42	0.90	0.07	0.12	0.33	2.0	43	29	184	1.89	7.0	20.1	9.44	27.0	5.12	< 0.1	< 0.1	19.4	11.9	3.77
	0.1	3	0.230	0.18	0.87	0.07	0.88	0.86	1.5	37	17	158	1.34	5.8	18.3	32.3	25.0	2.93	< 0.1	7.4	8.1	30.0	8.37
	0.1	4	0.031	0.39	0.89	0.08	0.13	0.31	1.9	52	39	206	2.34	7.7	22.7	9.51	25.0	5.56	< 0.1	0.9	18.7	12.0	4.41
	0.2	5	0.028	0.36	1.09	0.09	0.13	0.40	1.8	44	36	184	2.21	8.1	39.9	14.9	29.8	4.75	< 0.1	0.9	17.1	11.6	4.63
	0.4	4	0.025	0.33	2.13	0.07	0.16	0.16	2.9	49	46	140	2.71	10.1	41.8	20.8	25.3	6.19	< 0.1	1.1	13.7	10.0	4.28
GXR-1 Meas	0.6	11	0.043	0.12	0.27	0.03	1410	0.77	0.6	74	11	871	22.4	7.9	42.3	1090	742	3.92		398	2.0	171	26.6
GXR-1 Cert	1.22	15.0	0.0520	0.217	3.52	0.050	1380	0.960	1.58	80.0	12.0	852	23.6	8.20	41.0	1110	760	13.8		427	14.0	275	32.0
GXR-1 Meas	0.6	13	0.050	0.12	0.33	0.03	1490	0.82	0.9	79	9	945	23.5	8.2	44.8	1110	796	4.28		420	2.2	192	28.8
GXR-1 Cert	1.22	15.0	0.0520	0.217	3.52	0.050	1380	0.960	1.58	80.0	12.0	852	23.6	8.20	41.0	1110	760	13.8		427	14.0	275	32.0
GXR-1 Meas	0.6	12	0.044	0.11	0.28	0.03	1330	0.72	0.5	68	8	740	20.1	7.2	37.9	975	649	3.32		365	1.9	151	23.8
GXR-1 Cert	1.22	15.0	0.0520	0.217	3.52	0.050	1380	0.960	1.58	80.0	12.0	852	23.6	8.20	41.0	1110	760	13.8		427	14.0	275	32.0
GXR-1 Meas	0.7	14	0.051	0.13	0.33	0.03	1480	0.82	0.6	75	8	886	22.5	7.8	40.0	1070	709	3.18		405	2.1	179	28.3
GXR-1 Cert	1.22	15.0	0.0520	0.217	3.52	0.050	1380	0.960	1.58	80.0	12.0	852	23.6	8.20	41.0	1110	760	13.8		427	14.0	275	32.0
DH-1a Meas									-										-				
DH-1a Cert									-										-				
DH-1a Meas																							
DH-1a Cert																							
DH-1a Meas																							
DH-1a Cert DH-1a Meas			-																				
DH-1a Meas									<u> </u>														
GXR-4 Meas	1.4	5	0.163	1.61	2.78	1.79	19.3	0.86	7.8	89	62	148	3.05	15.0	45.5	6390	70.2	11.3		104	88.3	66.3	12.3
GXR-4 Cert	1.90	4.50	0.564	1.66	7.20	4.01	19.0	1.01	7.70	87.0	64.0	155	3.09	14.6	42.0	6520	73.0	20.0		98.0	160	221	14.0
GXR-4 Meas	1.2	4	0.129	1.27	2.25	1.40	16.6	0.71	6.2	70	50	120	2.51	12.9	38.4	5380	60.0	9.90		87.9	77.0	56.7	10.3
GXR-4 Cert	1.90	4.50	0.564	1.66	7.20	4.01	19.0	1.01	7.70	87.0	64.0	155	3.09	14.6	42.0	6520	73.0	20.0		98.0	160	221	14.0
GXR-4 Meas	1.4	5	0.155	1.55	2.76	1.77	19.2	0.86	7.8	86	62	154	2.95	14.8	43.6	6240	68.1	11.8		104	92.7	68.3	12.6
GXR-4 Cert	1.90	4.50	0.564	1.66	7.20	4.01	19.0	1.01	7.70	87.0	64.0	155	3.09	14.6	42.0	6520	73.0	20.0		98.0	160	221	14.0
GXR-6 Meas	0.9	6	0.094	0.36	7.25	1.14	0.16	0.14	28.9	183	88	1140	5.63	14.8	28.0	71.5	127	11.3		250	64.3	30.4	7.12
GXR-6 Cert	1.40	9.80	0.104	0.609	17.7	1.87	0.290	0.180	27.6	186	96.0	1010	5.58	13.8	27.0	66.0	118	35.0		330	90.0	35.0	14.0
GXR-6 Meas	0.8	9	0.091	0.40	7.69	1.27	0.17	0.14	29.2	182	85	1170	5.58	14.8	28.9	68.7	131	13.7		251	65.9	30.8	7.15
GXR-6 Cert	1.40	9.80	0.104	0.609	17.7	1.87	0.290	0.180	27.6	186	96.0	1010	5.58	13.8	27.0	66.0	118	35.0		330	90.0	35.0	14.0
GXR-6 Meas	0.8	6	0.086	0.39	7.31	1.22	0.16	0.14	28.8	174	83	1060	5.41	14.1	26.6	67.1	122	13.4		242	59.5	28.9	6.41
									l														

Results	Activation Laboratories Ltd.	Report: A17-07442
---------	------------------------------	-------------------

	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Be	В	Na	Mg	Al	K	Bi	Ca	Sc	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	Art-Mo	Rb	Sr	Y
DESCRIPTION	ppm	ppm	%	%	%	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
GXR-6 Cert	1.40	9.80	0.104	0.609	17.7	1.87	0.290	0.180	27.6	186	96.0	1010	5.58	13.8	27.0	66.0	118	35.0		330	90.0	35.0	14.0
GXR-6 Meas	0.8	6	0.084	0.37	6.82	1.13	0.16	0.14	27.2	168	78	1080	5.56	14.5	26.8	69.1	116	13.4		237	59.1	28.1	6.54
GXR-6 Cert	1.40	9.80	0.104	0.609	17.7	1.87	0.290	0.180	27.6	186	96.0	1010	5.58	13.8	27.0	66.0	118	35.0		330	90.0	35.0	14.0
TILL-1 Meas																							
TILL-1 Cert																							
TILL-1 Meas																							
TILL-1 Cert																							
TILL-2 Meas																							
TILL-2 Cert																							
TILL-2 Meas																							
TILL-2 Cert																							
BL-4a Meas																							
BL-4a Cert												<u> </u>					\vdash						
BL-4a Meas												<u> </u>					\vdash						
BL-4a Cert																							
BL-4a Meas																							
BL-4a Cert																							
BL-4a Meas												<u> </u>											
BL-4a Cert												<u> </u>											
DL-1a Meas																							
DL-1a Cert DL-1a Meas																							
DL-1a Meas DL-1a Cert																							
DL-1a Cert												 											
DL-1a Meas		_																					
DL-1a Meas																							
DL-1a Weas										 		-				 							
OREAS 45d			0.034	0.12	4.14	0.08	0.19	0.07	38.5	151	373	330	10.1	21.4	173	268	26.3	13.8		3.1	18.2	9.6	3.69
(Aqua Regia)			0.004	0.12	4.14	0.00	0.15	0.07	00.0	101	0,0	000	10.1	21.4	''	200	20.0	10.0		0.1	10.2	0.0	0.00
Meas																							
OREAS 45d			0.031	0.144	4.860	0.097	0.30	0.09	41.50	201.0	467	l	13.650	26.2	176.0	345.0	30.6	17.9		6.50	20.9	11.0	5.08
(Aqua Regia) Cert											_	400.000											
OREAS 45d (Aqua Regia)			0.046	0.17	5.64	0.13	0.27	0.09	50.1	214	511	452	13.9	30.1	240	346	34.9	18.2		3.4	24.0	11.7	5.03
Meas																							
OREAS 45d			0.031	0.144	4.860	0.097	0.30	0.09	41.50	201.0	467		13.650	26.2	176.0	345.0	30.6	17.9		6.50	20.9	11.0	5.08
(Aqua Regia) Cert												400.000											
SdAR-M2	3.7						0.86		1.5	16	9			11.5	44.7	216	681	2.87			15.7	16.5	15.3
(U.S.G.S.) Meas	0.7		—	\vdash			4.0-			05.7	40.7	 		40.	40.7	000.55	705	47.5		\vdash	4.4-	441	
SdAR-M2 (U.S.G.S.) Cert	6.6						1.05		4.1	25.2	49.6			12.4	48.8	236.00 00	760	17.6			149	144	32.7
SdAR-M2	3.4	_		\vdash			0.84		1.5	15	8	-		11.3	45.3	194	664	2.83			15.5	15.8	14.5
(U.S.G.S.) Meas	0.4						0.04		1.5	'3				11.5	1 -0.0	134	004	2.00			10.0	10.0	14.5
SdAR-M2	6.6						1.05		4.1	25.2	49.6			12.4	48.8	236.00	760	17.6			149	144	32.7
(U.S.G.S.) Cert																00							
	l	l										l			l								

Results	Activation Laboratories Ltd.	Report: A17-07442

SAMPLE Be B Ne Mg Al K B Ca Sc V Cc Me Fe Co Ne Cu Z7 G8 Ge Ac R6 S7 V Cc Me Fe Co Ne Cu Z7 G8 G8 Ac R6 S7 V Cc Me Fe Co Ne Cu Z7 G8 G8 Ac R6 S7 V Cc Me Fe Co Ne Cu Z7 G8 G8 Ac R6 S7 V Cc Me Fe Co Ne Cu Z7 G8 G8 Ac R6 S7 V Cc Me Fe Co Ne Cu Z7 G8 G8 Ac R6 S7 V Cc Me Cc Cc Cc Cc Cc Cc Cc C		AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
DESCRIPTION Spen	SAMPLE	_	-									_												
SARFANZ Color	DESCRIPTION	mag	mag			%	%	mag	$\overline{}$	mag	mag	mag	mag		mag	mag	mag	mag	mag	mag	mag	mag	mag	mag
SAR-NAZ C. 6.6 C. 1.0																								
U.S. G.S.) Cert SARAPA 2																								
SAR-ME		6.6						1.05		4.1	25.2	49.6			12.4	48.8		760	17.6			149	144	32.7
U.S.G.S.) Mode SGARMW 6.6 SGARW 6								1.07		0.0	10	11			140	E4.0		707	0.70			10.4	20.0	10.1
SAR-ME Column SAR-ME Column SAR-ME S		4.4						1.07		2.2	19	l ''			14.0	54.6	240	797	3.70			19.4	20.2	10.1
U.S. a.S. Oraf E832000 Grig E		6.6						1.05		4.1	25.2	49.6			12.4	48.8	236.00	760	17.6			149	144	32.7
E832003 Dup 0.2 3 0.025 0.17 1.08 0.05 0.11 0.19 1.4 42 31 76 1.34 2.8 11.0 3.05 12.4 8.44 < 0.1 0.5 10.0 0.2 2.63	(U.S.G.S.) Cert																00							
AR-MS AR-M	E832003 Orig																							
Method Blank 0.1 1 0.013 0.01 0.01 0.01 0.02 0.01 0.	E832003 Dup																							
Method Blank 0.1 1 0.012 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.		0.2	3	0.025	0.17	1.06	0.05	0.11	0.19	1.4	42	31	76	1.34	2.8	11.0	3.05	12.4	6.44	< 0.1	0.5	10.0	9.2	2.63
Method Blank 0.1 1 0.012 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.1 1 1 1 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01		_	3				0.05		0.19				$\overline{}$	1.27						< 0.1			_	
Method Blank Col. 1 0.013 Col. C			_ ·			_	_		_			_				_								$\overline{}$
Method Blank < 0.1		0.5	3	0.052	0.60	1.78	0.11	0.52	0.42	4.2	108	99	368	5.35	17.6	264	244	47.4	7.00	< 0.1	79.0	25.7	12.0	7.98
Method Blank < 0.1																								
Method Blank < 0.1	_																							
Method Blank < 0.1																								
Method Blank < 0.1																								
Method Blank			1								1		$\overline{}$			_				_				
Method Blank		_	1			_					1	_	$\overline{}$			-								
Method Blank Meth		_	1								1	1				_		_	_	_	_			
Method Blank Meth		< 0.1	<u>'</u>	0.010	< 0.01	< 0.01	< 0.01	< 0.02	< 0.01	< 0.1	'	'	< 1	< 0.01	< 0.1	< 0.1	0.52	< 0.1	0.14	< 0.1	< 0.1	< 0.1	< 0.5	< 0.01
Method Blank Meth		_				_																		
Method Blank		\vdash				_																		
AR-MS AR-MS		_				_																		
SAMPLE Zr Nb Mo Ag In Sn Sb Te Cs Ba La Ce Cd Pr Nd Sm Se Eu Gd Tb Dy Ho Er DESCRIPTION ppm ppm ppm ppm ppm ppm ppm ppm ppm pp	Wethod Blank				ļ		<u> </u>					ļ												
DESCRIPTION ppm ppm <th< td=""><td></td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td><td>AR-MS</td></th<>		AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
E832001 2.8 3.6 0.34 0.072 < 0.02 0.07 < 0.02 2.31 49.5 20.1 42.9 0.07 3.6 14.0 2.0 < 0.1 0.4 1.8 0.2 1.1 0.2 0.6 E832002 3.1 4.1 0.52 0.152 < 0.02	SAMPLE	Zr	Nb	Мо	Ag	In	Sn	Sb	Te	Cs	Ba	La	Ce	Cd	Pr	Nd	Sm	Se	Eu	Gd	Tb	Dy	Ho	Er
E832002 3.1 4.1 0.52 0.152 < 0.02 1.03 < 0.02 3.19 66.5 26.8 56.6 0.35 5.2 19.9 2.8 0.1 0.5 2.5 0.3 1.6 0.3 0.8 E832003 4.7 2.8 0.26 0.038 < 0.02	DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
E832003 4.7 2.8 0.26 0.038 < 0.02 0.04 < 0.02 < 0.02 1.15 33.5 7.9 17.4 0.01 1.7 7.07 1.1 < 0.1 0.3 1.0 0.1 0.7 0.1 0.3 E832004 7.2 2.7 0.21 0.053 < 0.02	E832001	2.8	3.6	0.34	0.072	< 0.02	0.87	< 0.02	< 0.02	2.31	49.5	20.1	42.9	0.07	3.6	14.0	2.0	< 0.1	0.4	1.8	0.2	1.1	0.2	0.6
E832004 7.2 2.7 0.21 0.053 < 0.02 0.09 < 0.02 0.96 37.0 10.9 22.1 0.04 2.0 7.89 1.2 < 0.1 0.3 1.0 0.2 0.8 0.2 0.4 E832005 8.0 2.3 0.29 0.108 < 0.02	E832002	_				< 0.02	1.03	< 0.02		3.19		26.8	$\overline{}$		_		2.8	0.1		2.5	0.3		0.3	$\overline{}$
E832005 8.0 2.3 0.29 0.108 < 0.02 0.02 0.90 29.4 8.8 18.9 0.04 1.6 6.88 1.1 < 0.1 0.3 1.0 0.1 0.7 0.1 0.3 E832006 4.3 5.6 0.38 0.195 < 0.02 1.49 0.03 0.03 4.52 62.2 16.6 41.5 0.05 3.6 14.2 2.1 < 0.1 0.4 1.7 0.2 1.1 0.2 0.6 E832007 3.2 3.1 0.26 0.089 < 0.02 0.62 < 0.02 0.93 22.9 9.0 17.4 0.03 1.9 7.44 1.2 < 0.1 0.2 0.9 0.1 0.5 0.1 0.3 E832008 2.8 2.5 0.31 0.037 < 0.02 0.70 < 0.02 0.09 22.6 5.5 11.1 < 0.01 1.2 4.70 0.8 < 0.1 0.2 0.1 0.3									$\overline{}$	1.15		7.9	-							1.0	_		_	$\overline{}$
E832006 4.3 5.6 0.38 0.195 < 0.02 1.49 0.03 0.03 4.52 62.2 16.6 41.5 0.05 3.6 14.2 2.1 < 0.1 0.4 1.7 0.2 1.1 0.2 0.6 E832007 3.2 3.1 0.26 0.089 < 0.02			-			_		_	$\overline{}$			_	-			-			-	-	_		_	-
E832007 3.2 3.1 0.26 0.089 < 0.02 0.62 < 0.02 0.93 22.9 9.0 17.4 0.03 1.9 7.44 1.2 < 0.1 0.2 0.9 0.1 0.5 0.1 0.3 E832008 2.8 2.5 0.31 0.037 < 0.02 0.70 < 0.02 0.97 22.6 5.5 11.1 < 0.01 1.2 4.70 0.8 < 0.1 0.2 0.7 < 0.1 0.4 < 0.1 0.2 E832019 12.6 1.9 0.49 0.033 < 0.02 0.76 0.28 0.04 4.19 86.0 36.9 73.7 0.42 7.8 30.1 4.2 0.7 0.7 3.1 0.3 1.7 0.3 0.8 E832010 23.0 0.1 5.03 1.28 < 0.02 0.83 2.35 < 0.02 0.58 42.0 3.5 8.88 0.04 1.1 5.72 1.5 < 0.1 0.3 2.0 <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>_</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td>_</td> <td>_</td> <td>_</td> <td>-</td>			_			_		_			_				_	-				-	_	_	_	-
E832008 2.8 2.5 0.31 0.037 < 0.02 0.70 < 0.02 0.97 22.6 5.5 11.1 < 0.01 1.2 4.70 0.8 < 0.1 0.2 0.7 < 0.1 0.4 < 0.1 0.2 E832009 12.6 1.9 0.49 0.033 < 0.02		_	-		_	_	_	_	-			_	-		_	-		-	-	-	-	_		$\overline{}$
E832009 12.6 1.9 0.49 0.033 < 0.02 0.76 0.28 0.04 4.19 86.0 36.9 73.7 0.42 7.8 30.1 4.2 0.7 0.7 3.1 0.3 1.7 0.3 0.8 E832010 23.0 0.1 5.03 1.28 < 0.02 0.83 2.35 < 0.02 0.58 42.0 3.5 8.88 0.04 1.1 5.72 1.5 < 0.1 0.3 2.0 0.3 1.7 0.4 0.9 E832011 3.7 3.0 0.52 0.049 < 0.02 0.89 < 0.02 < 0.02 2.18 53.1 14.9 29.9 0.05 2.8 11.0 1.6 < 0.1 0.3 1.3 0.2 0.8 0.2 0.4 E832012 2.9 2.3 0.32 0.03 < 0.02 0.07 < 0.02 < 0.02 1.59 54.5 13.3 28.4 0.01 2.6 10.4 1.6 < 0.1 0.3 1.4 0.2 0.8 0.2 0.4 E832013 2		_											-		_	-		_	_		_			
E832010 23.0 0.1 5.03 1.28 < 0.02 0.83 2.35 < 0.02 0.58 42.0 3.5 8.88 0.04 1.1 5.72 1.5 < 0.1 0.3 2.0 0.3 1.7 0.4 0.9 E832011 3.7 3.0 0.52 0.049 < 0.02 0.89 < 0.02 < 0.02 2.18 53.1 14.9 29.9 0.05 2.8 11.0 1.6 < 0.1 0.3 1.3 0.2 0.8 0.2 0.4 E832012 2.9 2.3 0.32 0.039 < 0.02 0.77 < 0.02 < 0.02 1.59 54.5 13.3 28.4 0.01 2.6 10.4 1.6 < 0.1 0.3 1.3 0.2 0.8 0.2 0.4 E832013 2.7 3.2 0.61 0.056 0.02 1.31 < 0.02 0.02 2.43 69.4 13.0 28.9 0.05 2.9 12.8 2.2 < 0.1 0.4 2.0 0.2 1.2 0.2 0.6	-	_			_	_		_					$\overline{}$			-			_					-
E832011 3.7 3.0 0.52 0.049 <0.02		-	-		_	_			-			_	-	_	_	-			-	-	_		_	$\overline{}$
E832012 2.9 2.3 0.32 0.039 <0.02			_			_										<u> </u>		_					_	
E832013 2.7 3.2 0.61 0.056 0.02 1.31 < 0.02 0.02 2.43 69.4 13.0 28.9 0.05 2.9 12.8 2.2 < 0.1 0.4 2.0 0.2 1.2 0.2 0.6			-		_							_			_	_			-		-			
												_	_		_	-							_	
COSCU14 S.1 2.2 U.22 U.031 < U.02 U.03 < U.02 U.03 < U.02 U.03 < U.02 U.03 < U.02 U.03 U.02 U.03 U.	-											_			_	-				-			_	
	E832014	3.1	2.2	0.22	0.031	< 0.02	0.75	< 0.02	< 0.02	1.52	3/./	10.5	21.2	< 0.01	2.1	8.46	1.3	< 0.1	0.2	1.0	0.1	0.6	0.1	0.3

Results	Activation Laboratories Ltd.	Report: A17-07442
IVESUIIS	Activation Laboratories Ltd.	Nepolt. All-01442

																•							
	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Zr	Nb	Мо	Ag	In	Sn	Sb	Te	Cs	Ba	La	Ce	Cd	Pr	Nd	Sm	Se	Eu	Gd	Tb	Dy	Но	Er
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	7.8	2.9	0.47	0.031	< 0.02	1.04	< 0.02	< 0.02	3.07	34.6	11.0	22.1	< 0.01	2.2	8.47	1.3	< 0.1	0.3	1.2	0.1	0.7	0.1	0.3
	12.4	2.0	0.43	0.009	< 0.02	0.72	< 0.02	< 0.02	4.88	39.1	4.3	8.00	< 0.01	0.8	3.14	0.5	< 0.1	0.1	0.5	< 0.1	0.3	< 0.1	0.1
	4.5	2.4	0.54	0.041	< 0.02	0.94	0.04	< 0.02	1.51	32.1	7.6	15.7	0.02	1.5	5.95	1.1	< 0.1	0.2	0.9	< 0.1	0.4	< 0.1	0.2
	7.6	3.5	0.35	0.043	< 0.02	3.20	< 0.02	< 0.02	1.55	43.8	15.4	30.6	< 0.01	2.9	11.4	1.9	< 0.1	0.4	1.5	0.2	1.0	0.2	0.5
	1.0	0.5	0.10	0.131	< 0.02	0.25	0.79	< 0.02	6.98	62.8	20.2	25.9	0.09	4.0	15.9	2.2	0.5	0.4	1.9	0.2	1.2	0.3	0.7
	35.9	0.9	1.49	< 0.002	< 0.02	1.92	0.02	< 0.02	1.04	129	69.3	147	0.02	14.2	56.5	7.8	< 0.1	0.4	5.1	0.5	2.1	0.3	0.7
	4.8	2.0	0.69	0.049	< 0.02	0.84	0.23	< 0.02	3.34	44.3	8.5	18.3	0.03	1.6	6.08	0.9	0.1	0.1	0.7	< 0.1	0.4	< 0.1	0.2
	7.5	2.0	0.26	0.024	< 0.02	0.65	0.03	< 0.02	1.52	48.8	8.8	18.5	< 0.01	1.9	7.57	1.2	< 0.1	0.3	1.1	0.1	0.7	0.1	0.4
	9.1	2.7	0.41	0.033	< 0.02	1.00	0.07	< 0.02	2.42	39.7	10.3	20.8	0.02	2.0	8.04	1.4	< 0.1	0.2	1.1	0.1	0.7	0.1	0.3
	8.1	1.8	0.17	0.009	< 0.02	0.47	0.02	< 0.02	0.79	19.8	9.3	18.1	< 0.01	1.9	7.55	1.2	< 0.1	0.2	1.0	0.1	0.7	0.1	0.4
	6.8	2.7	0.31	0.030	< 0.02	0.85	0.02	< 0.02	1.07	26.0	9.3	17.6	< 0.01	1.8	6.88	1.0	< 0.1	0.2	0.8	0.1	0.6	0.1	0.3
	9.1	0.2	0.37	0.016	< 0.02	0.44	0.22	0.16	2.42	47.7	3.4	6.45	0.02	0.6	2.85	0.5	0.2	0.1	0.6	< 0.1	0.5	0.1	0.3
	5.7	2.4	0.28	0.037	< 0.02	0.60	< 0.02	< 0.02	1.07	25.4	6.1	13.0	0.03	1.2	4.91	0.7	< 0.1	0.2	0.6	< 0.1	0.4	< 0.1	0.2
	4.8	1.8	0.60	0.063	0.03	0.90	0.22	< 0.02	3.55	66.7	10.0	22.0	0.21	2.0	7.85	1.3	< 0.1	0.2	0.9	0.1	0.6	0.1	0.3
	4.6	2.5	0.32	0.032	< 0.02	0.72	< 0.02	< 0.02	1.94	34.6	11.2	23.8	< 0.01	2.3	9.28	1.4	< 0.1	0.3	1.0	0.1	0.7	0.1	0.3
	21.1	0.1	4.42	1.20	< 0.02	0.67	2.06	< 0.02	0.51	33.6	3.1	7.67	< 0.01	1.0	5.07	1.4	< 0.1	0.3	1.5	0.3	1.4	0.3	3.0
	5.1	2.1	0.59	0.027	< 0.02	0.84	< 0.02	< 0.02	1.95	33.9	14.8	31.5	0.01	3.1	12.5	2.0	< 0.1	0.3	1.5	0.2	0.8	0.2	0.4
	2.2	2.6	0.21	0.057	< 0.02	0.76	< 0.02	< 0.02	2.41	65.4	14.5	38.8	0.07	3.0	11.9	1.7	< 0.1	0.4	1.4	0.2	0.8	0.2	0.4
	3.7	3.2	0.46	0.041	0.02	0.85	< 0.02	< 0.02	2.58	47.5	15.1	31.0	0.03	3.0	11.7	1.7	< 0.1	0.3	1.4	0.2	0.9	0.2	0.4
GXR-1 Meas	9.8	0.1	15.6	28.3	0.72	23.4	81.4	13.0	2.67	174	4.9	10.1	2.61		6.26	2.0	14.7	0.5	3.1	0.6	3.7		
GXR-1 Cert	38.0	0.800	18.0	31.0	0.770	54.0	122	13.0	3.00	750	7.50	17.0	3.30		18.0	2.70	16.6	0.690	4.20	0.830	4.30		
GXR-1 Meas	9.4	0.1	17.4	30.2	0.76	25.7	88.9	14.4	2.97	210	5.2	11.1	2.68		6.75	2.2	16.0	0.5	3.3	0.6	4.0		
GXR-1 Cert	38.0	0.800	18.0	31.0	0.770	54.0	122	13.0	3.00	750	7.50	17.0	3.30		18.0	2.70	16.6	0.690	4.20	0.830	4.30		
GXR-1 Meas	8.1	0.1	14.7	26.4	0.68	21.8	75.8	12.0	2.55	177	4.6	9.76	2.53		5.90	2.0	13.2	0.4	2.8	0.6	3.5		
GXR-1 Cert	38.0	0.800	18.0	31.0	0.770	54.0	122	13.0	3.00	750	7.50	17.0	3.30		18.0	2.70	16.6	0.690	4.20	0.830	4.30		
GXR-1 Meas	9.4	0.1	17.2	30.9	0.79	25.4	89.0	14.0	3.00	220	5.3	11.0	2.63		6.67	2.4	14.6	0.5	3.2	0.7	4.0		
GXR-1 Cert	38.0	0.800	18.0	31.0	0.770	54.0	122	13.0	3.00	750	7.50	17.0	3.30		18.0	2.70	16.6	0.690	4.20	0.830	4.30		
DH-1a Meas																							
DH-1a Cert																							
DH-1a Meas																							
DH-1a Cert																							
DH-1a Meas																							
DH-1a Cert																							
DH-1a Meas																							
DH-1a Cert																							
GXR-4 Meas	9.4	0.2	288	3.46	0.21	6.22	3.70	0.94	2.51	36.0	49.1	98.7	0.34		39.1	5.9	5.3	1.3	4.4	0.5	2.4		
GXR-4 Cert	186	10.0	310	4.00	0.270	5.60	4.80	0.970	2.80	1640	64.5	102	0.860		45.0	6.60	5.60	1.63	5.25	0.360	2.60		
GXR-4 Meas	7.7	0.2	251	2.95	0.17	5.10	3.14	0.76	2.10	33.2	40.9	83.4	0.22		33.8	4.8	4.4	1.1	3.4	0.4	2.0		
GXR-4 Cert	186	10.0	310	4.00	0.270	5.60	4.80	0.970	2.80	1640	64.5	102	0.860		45.0	6.60	5.60	1.63	5.25	0.360	2.60		
GXR-4 Meas	8.3	0.2	301	3.59	0.23	6.32	3.79	0.97	2.62	41.7	49.5	98.9	0.28		40.3	5.7	5.4	1.3	4.4	0.5	2.3		
GXR-4 Cert	186	10.0	310	4.00	0.270	5.60	4.80	0.970	2.80	1640	64.5	102	0.860		45.0	6.60	5.60	1.63	5.25	0.360	2.60		
GXR-6 Meas	13.8	< 0.1	1.69	0.278	0.07	1.31	2.17	0.06	3.82	1010	11.1	33.5	0.08		12.2	2.4	< 0.1	0.6	1.9	0.3	1.4		
GXR-6 Cert	110	7.50	2.40	1.30	0.260	1.70	3.60	0.0180	4.20	1300	13.9	36.0	1.00		13.0	2.67	0.940	0.760	2.97	0.415	2.80		

Results	Activation Laboratories Ltd.	Report: A17-07442
Results	Activation Laboratories Ltd.	Report: A17-07442

		AR-MS			AR-MS		AR-MS		AR-MS	AR-MS			-		AR-MS		AR-MS					AR-MS	AR-MS
SAMPLE	Zr	Nb	Мо	Ag	In	Sn	Sb	Te	Cs	Ba	La	Ce	Cd	Pr	Nd	Sm	Se	Eu	Gd	Tb	Dy	Но	Er
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
GXR-6 Meas	13.4	< 0.1	1.76	0.279	0.06	1.26	2.20	0.04	4.07	1010	11.0	33.7	0.09		12.4	2.4	0.1	0.6	2.0	0.3	1.4		
GXR-6 Cert	110	7.50	2.40	1.30	0.260	1.70	3.60	0.0180	4.20	1300	13.9	36.0	1.00		13.0	2.67	0.940	0.760	2.97	0.415	2.80		
GXR-6 Meas	13.4	< 0.1	1.59	0.256	0.06	1.03	1.91	0.03	3.49	958	10.2	31.9	0.07		11.4	2.2	0.3	0.6	1.7	0.2	1.3		
GXR-6 Cert	110	7.50	2.40	1.30	0.260	1.70	3.60	0.0180	4.20	1300	13.9	36.0	1.00		13.0	2.67	0.940	0.760	2.97	0.415	2.80		
GXR-6 Meas	14.0	< 0.1	1.64	0.255	0.06	1.18	1.98	0.03	3.51	952	10.6	31.6	0.08		11.5	2.2	0.2	0.6	1.9	0.2	1.4		
GXR-6 Cert	110	7.50	2.40	1.30	0.260	1.70	3.60	0.0180	4.20	1300	13.9	36.0	1.00		13.0	2.67	0.940	0.760	2.97	0.415	2.80		
TILL-1 Meas																							
TILL-1 Cert																							
TILL-1 Meas																							
TILL-1 Cert																							
TILL-2 Meas																							
TILL-2 Cert																							
TILL-2 Meas																							
TILL-2 Cert																							
BL-4a Meas																							
BL-4a Cert																							
BL-4a Meas																							
BL-4a Cert																							
BL-4a Meas																							
BL-4a Cert																							
BL-4a Meas																							
BL-4a Cert																							
DL-1a Meas																							
DL-1a Cert																							
DL-1a Meas																							
DL-1a Cert																							
DL-1a Meas																							
DL-1a Cert																							
DL-1a Meas																							
DL-1a Cert																							
OREAS 45d					0.06	1.50				70.3	8.6	20.6											
(Aqua Regia)																							
Meas					0.005	4.050					0.000	04.0											
OREAS 45d (Aqua Regia) Cert					0.085	1.950				80	9.960	24.8											
OREAS 45d					0.08	2.23				95.1	11.4	28.1											
(Aqua Regia)					0.00	2.20				33.1	4												
Meas																							
OREAS 45d					0.085	1.950				80	9.960	24.8											
(Aqua Regia) Cert													\vdash							\vdash			
SdAR-M2	6.0	3.1	10.2						0.76	103	34.0	77.2	4.45	7.6	31.9	5.2		0.5	3.9	0.5	2.8	0.6	1.6
(U.S.G.S.) Meas SdAR-M2	259	26.2	13.3						1.82	990	46.0	00.0	5.1	11.0	39.4	7.18	\vdash	1 11	6.00	0.97	F 00	1.21	3.58
(U.S.G.S.) Cert	259	26.2	13.3						1.82	990	46.6	98.8	5.1	11.0	39.4	7.18		1.44	6.28	0.97	5.88	1.21	3.58
SdAR-M2	5.6	3.0	9.94						0.74	100	32.0	74.2	4.19	7.2	30.5	4.9		0.5	3.8	0.5	2.7	0.6	1.5
Sa WIE	0.0	0.0	0.54						0	.50	02.0	'			55.5			0.0	0.0	0.0		0.0	

Results	Activation Laboratories Ltd.	Report: A17-07442
---------	------------------------------	-------------------

	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Zr	Nb	Мо	Ag	In	Sn	Sb	Te	Cs	Ва	La	Ce	Cd	Pr	Nd	Sm	Se	Eu	Gd	Tb	Dy	Но	Er
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
(U.S.G.S.) Meas																							
SdAR-M2 (U.S.G.S.) Cert	259	26.2	13.3						1.82	990	46.6	98.8	5.1	11.0	39.4	7.18		1.44	6.28	0.97	5.88	1.21	3.58
SdAR-M2 (U.S.G.S.) Meas	6.7	3.7	11.7						0.88	121	39.8	91.0	4.90	8.7	36.8	6.0		0.6	4.5	0.6	3.2	0.7	1.8
SdAR-M2 (U.S.G.S.) Cert	259	26.2	13.3						1.82	990	46.6	98.8	5.1	11.0	39.4	7.18		1.44	6.28	0.97	5.88	1.21	3.58
SdAR-M2 (U.S.G.S.) Meas	6.6	4.3	12.6						0.95	129	41.4	92.9	5.27	9.1	37.6	6.3		0.6	4.7	0.6	3.3	0.7	1.8
SdAR-M2 (U.S.G.S.) Cert	259	26.2	13.3						1.82	990	46.6	98.8	5.1	11.0	39.4	7.18		1.44	6.28	0.97	5.88	1.21	3.58
E832003 Orig																							
E832003 Dup																							
	3.2	3.1	0.26	0.089	< 0.02	0.62	< 0.02	< 0.02	0.93	22.9	9.0	17.4	0.03	1.9	7.44	1.2	< 0.1	0.2	0.9	0.1	0.5	0.1	0.3
	3.2	2.8	0.24	0.038	< 0.02	0.63	< 0.02	< 0.02	0.85	22.8	9.3	18.4	0.02	1.8	6.78	1.0	< 0.1	0.2	0.8	< 0.1	0.5	< 0.1	0.2
	12.6	1.9	0.49	0.033	< 0.02	0.76	0.28	0.04	4.19	86.0	36.9	73.7	0.42	7.8	30.1	4.2	0.7	0.7	3.1	0.3	1.7	0.3	0.8
	12.7	1.6	0.45	0.036	< 0.02	0.70	0.26	0.04	4.11	83.8	36.4	75.9	0.38	8.0	32.6	3.8	0.6	0.7	2.9	0.3	1.5	0.3	0.7
Method Blank	0.1	< 0.1	< 0.01	< 0.002	< 0.02	0.10	< 0.02	< 0.02	< 0.02	6.9	< 0.5	0.08	< 0.01	< 0.1	< 0.02	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	0.2	< 0.1	0.06	0.002	< 0.02	0.08	< 0.02	< 0.02	< 0.02	7.9	< 0.5	0.03	< 0.01	< 0.1	< 0.02	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	0.1	< 0.1	< 0.01	< 0.002	< 0.02	0.07	< 0.02	< 0.02	< 0.02	5.8	< 0.5	0.02	< 0.01	< 0.1	< 0.02	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	0.1	< 0.1	0.02	< 0.002	< 0.02	0.08	< 0.02	< 0.02	< 0.02	5.7	< 0.5	0.02	< 0.01	< 0.1	< 0.02	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank																							
Method Blank																							
Method Blank		L										L											
Method Blank	I	l	l	I	l	l			l	1	I	l	1	I	l	1				l			

	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Tm	Yb	Lu	Hf	Ta	W	Re	Au	TI	Pb	Th	U	Hg
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppb
E832001	< 0.1	0.5	< 0.1	< 0.1	< 0.05	5.3	< 0.001	< 0.5	0.14	10.4	5.9	2.0	90
E832002	0.1	0.6	< 0.1	< 0.1	< 0.05	0.1	< 0.001	< 0.5	0.22	14.1	7.8	2.9	80
E832003	< 0.1	0.3	< 0.1	0.1	< 0.05	0.7	< 0.001	< 0.5	0.03	8.11	5.0	0.8	40
E832004	< 0.1	0.3	< 0.1	0.2	< 0.05	0.3	< 0.001	< 0.5	0.02	8.99	7.1	0.8	70
E832005	< 0.1	0.3	< 0.1	0.2	< 0.05	0.4	< 0.001	< 0.5	< 0.02	8.19	6.5	0.8	40
E832006	< 0.1	0.5	< 0.1	< 0.1	< 0.05	0.1	< 0.001	< 0.5	0.29	17.8	7.9	1.7	150
E832007	< 0.1	0.2	< 0.1	< 0.1	< 0.05	0.2	< 0.001	415	0.04	5.09	3.7	0.5	90
E832008	< 0.1	0.2	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	< 0.5	0.02	5.78	2.0	0.3	50
E832009	0.1	0.8	0.1	0.3	< 0.05	0.5	< 0.001	9.1	0.23	12.9	19.5	1.9	40
E832010	0.1	0.7	< 0.1	0.5	< 0.05	0.2	< 0.001	3120	0.04	6.48	0.5	0.1	30
E832011	< 0.1	0.3	< 0.1	< 0.1	< 0.05	0.1	< 0.001	< 0.5	0.08	5.48	4.8	1.0	40
E832012	< 0.1	0.3	< 0.1	< 0.1	< 0.05	0.1	< 0.001	< 0.5	0.07	5.87	4.3	0.6	20

	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Tm	Yb	Lu	Hf	Та	W	Re	Au	TI	Pb	Th	U	Hg
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppb
	< 0.1	0.5	< 0.1	< 0.1	< 0.05	0.1	< 0.001	< 0.5	0.18	7.83	5.0	0.7	120
_	< 0.1	0.3	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	< 0.5	0.07	6.19	4.3	0.5	70
	< 0.1	0.3	< 0.1	0.1	< 0.05	0.1	< 0.001	< 0.5	0.07	7.61	4.3	0.7	70
_	< 0.1	0.1	< 0.1	0.3	< 0.05	0.1	< 0.001	< 0.5	0.05	6.48	2.7	0.5	40
	< 0.1	0.2	< 0.1	0.1	< 0.05	< 0.1	< 0.001	< 0.5	0.06	5.76	4.4	0.4	70
	< 0.1	0.4	< 0.1	0.2	< 0.05	0.3	< 0.001	< 0.5	0.08	8.68 3.30	5.7 2.2	0.9	50
	< 0.1	0.6	< 0.1	< 0.1	< 0.05	0.1 13.1	< 0.001	< 0.5 < 0.5	0.14	13.3	46.7	2.0	20
	< 0.1	0.5	< 0.1	< 0.1	< 0.05	0.5	< 0.001	< 0.5	0.08	9.53	5.2	0.5	30
	< 0.1	0.2	< 0.1	0.1	< 0.05	0.3	< 0.001	< 0.5	0.08	5.88	4.5	0.5	140
	< 0.1	0.3	< 0.1	0.2	< 0.05	0.4	< 0.001	< 0.5	0.12	8.21	7.0	0.8	90
	< 0.1	0.3	< 0.1	0.2	< 0.05	0.9	< 0.001	< 0.5	< 0.02	3.76	6.1	0.6	60
	< 0.1	0.3	< 0.1	0.2	< 0.05	0.7	< 0.001	< 0.5	0.05	7.14	4.2	0.8	50
	< 0.1	0.2	< 0.1	0.2	< 0.05	7.8	< 0.001	1.1	0.25	3.38	0.8	0.1	20
	< 0.1	0.2	< 0.1	0.2	< 0.05	3.2	< 0.001	< 0.5	< 0.02	4.34	2.5	0.4	20
	< 0.1	0.3	< 0.1	0.1	< 0.05	0.3	< 0.001	< 0.5	0.11	13.3	4.7	0.6	20
	< 0.1	0.3	< 0.1	< 0.1	< 0.05	0.3	< 0.001	< 0.5	0.06	5.39	4.3	0.5	20
	0.1	0.6	< 0.1	0.5	< 0.05	0.2	< 0.001	2770	< 0.02	5.75	0.5	0.1	< 10
	< 0.1	0.3	< 0.1	0.1	< 0.05	0.6	< 0.001	< 0.5	0.15	6.09	8.1	0.7	120
	< 0.1	0.4	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	< 0.5	0.14	6.64	4.3	1.0	100
	< 0.1	0.3	< 0.1	< 0.1	< 0.05	0.3	< 0.001	< 0.5	0.11	8.01	6.9	0.9	80
GXR-1 Meas	0.3	1.9	0.2	0.2	< 0.05	149		3080	0.33	738	1.5	30.9	3390
GXR-1 Cert	0.430	1.90	0.280	0.960	0.175	164		3300	0.390	730	2.44	34.9	3900
GXR-1 Meas	0.3	2.0	0.3	0.2	< 0.05	157		3510	0.36	787	1.6	33.1	3700
GXR-1 Cert	0.430	1.90	0.280	0.960	0.175	164		3300	0.390	730	2.44	34.9	3900
GXR-1 Meas	0.3	1.6	0.2	0.2	< 0.05	127		2900	0.32	679	1.4	29.5	3310
GXR-1 Cert	0.430	1.90	0.280	0.960	0.175	164		3300	0.390	730	2.44	34.9	3900
GXR-1 Meas	0.3	1.9	0.3	0.2	< 0.05	149		3370	0.39	762	1.6	32.8	3900
GXR-1 Cert	0.430	1.90	0.280	0.960	0.175	164		3300	0.390	730	2.44	34.9	3900
DH-1a Meas											> 200	2420	
DH-1a Cert											910	2629	
DH-1a Meas											> 200	2270	
DH-1a Cert											910	2629	
DH-1a Meas											> 200	2360	
DH-1a Cert											910	2629	
DH-1a Meas											> 200	2490	
DH-1a Cert											910	2629	
GXR-4 Meas	0.1	0.8	0.1	0.3	< 0.05	10.8		408	3.06	49.5	18.1	5.0	160
GXR-4 Cert	0.210	1.60	0.170	6.30	0.790	30.8		470	3.20	52.0	22.5	6.20	110
GXR-4 Meas	0.1	0.6	0.1	0.2	< 0.05	8.7		345	2.54	41.9	14.7	4.2	160
GXR-4 Cert	0.210	1.60	0.170	6.30	0.790	30.8		470	3.20	52.0	22.5	6.20	110
GXR-4 Meas	0.1	0.8	0.1	0.3	< 0.05	10.6		524	3.17	48.8	17.8	4.9	170
GXR-4 Cert	0.210	1.60	0.170	6.30	0.790	30.8		470	3.20	52.0	22.5	6.20	110

	1.0.140	45.46	40.440	40.440	10.110	40.440	40.40	10.110	40.440	40.440	10.140	40.40	40.40
SAMPLE	AR-MS Tm	AR-MS Yb	AR-MS Lu	AR-MS Hf	AR-MS Ta	AR-MS W	AR-MS Re	AR-MS Au	AR-MS	AR-MS Pb	AR-MS	AR-MS U	AR-MS Hg
DESCRIPTION		_			_			_			_	_	_ ŭ
GXR-6 Meas	ppm	ppm 0.7	ppm 0.1	ppm 0.4	ppm < 0.05	ppm < 0.1	ppm	ppb 67.5	ppm 2.07	ppm 107	ppm 4.0	ppm 0.8	ppb 180
GXR-6 Cert		2.40	0.330	4.30	0.485	1.90		95.0	2.20	101	5.30	1.54	68.0
GXR-6 Meas		0.7	0.000	0.4	< 0.05	< 0.1		66.4	2.05	107	4.1	0.8	120
GXR-6 Cert		2.40	0.330	4.30	0.485	1.90		95.0	2.20	101	5.30	1.54	68.0
GXR-6 Meas		0.7	0.000	0.4	< 0.05	< 0.1		66.2	1.92	99.5	3.8	0.8	180
GXR-6 Cert		2.40	0.330	4.30	0.485	1.90		95.0	2.20	101	5.30	1.54	68.0
GXR-6 Meas		0.7	0.1	0.4	< 0.05	< 0.1		98.5	1.94	103	3.9	0.8	90
GXR-6 Cert		2.40	0.330	4.30	0.485	1.90		95.0	2.20	101	5.30	1.54	68.0
TILL-1 Meas			0.000	1.00	0.100	1.00		00.0			0.00	1.01	00.0
TILL-1 Cert													-
TILL-1 Meas													
TILL-1 Cert													
TILL-2 Meas													
TILL-2 Cert													
TILL-2 Meas													
TILL-2 Cert													
BL-4a Meas												1210	
BL-4a Cert												1250	
BL-4a Meas												998	
BL-4a Cert												1250	
BL-4a Meas												1210	
BL-4a Cert												1250	
BL-4a Meas												1180	
BL-4a Cert												1250	
DL-1a Meas											73.0	109	
DL-1a Cert											76.0	116	
DL-1a Meas											73.1	104	
DL-1a Cert											76.0	116	
DL-1a Meas											74.2	111	
DL-1a Cert											76.0	116	
DL-1a Meas											73.1	113	
DL-1a Cert											76.0	116	
OREAS 45d								25.4		14.1	8.1	1.2	
(Aqua Regia)													
Meas										.=			
OREAS 45d (Aqua Regia) Cert								21		17.00	11.3	1.64	
OREAS 45d						 	 	16.6		19.1	10.8	1.7	\vdash
(Aqua Regia)								'0.0		10.1		'''	
Meas													
OREAS 45d								21		17.00	11.3	1.64	
(Aqua Regia) Cert	<u> </u>	L			L		-						100
SdAR-M2 (U.S.G.S.) Meas	0.2	1.3	0.2	0.2	< 0.05	0.9				688	10.2	1.4	1020
SdAR-M2	0.54	3.63	0.54	7.29	1.8	2.8	 			808	14.2	2.53	\vdash
SUAR-IVIZ	0.54	3.03	0.54	1.29	I '.º	2.0	l	I	1	000	14.2	2.00	1

	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS	AR-MS
SAMPLE	Tm	Yb	Lu	Hf	Ta	W	Re	Au	TI	Pb	Th	U	Hg
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppb
(U.S.G.S.) Cert													1440.00
SdAR-M2 (U.S.G.S.) Meas	0.2	1.3	0.2	0.2	< 0.05	0.9				652	9.7	1.3	930
SdAR-M2 (U.S.G.S.) Cert	0.54	3.63	0.54	7.29	1.8	2.8				808	14.2	2.53	1440.00
SdAR-M2 (U.S.G.S.) Meas	0.2	1.5	0.2	0.2	< 0.05	0.9				781	11.5	1.6	1140
SdAR-M2 (U.S.G.S.) Cert	0.54	3.63	0.54	7.29	1.8	2.8				808	14.2	2.53	1440.00
SdAR-M2 (U.S.G.S.) Meas	0.3	1.5	0.2	0.2	< 0.05	1.0				813	12.3	1.6	1270
SdAR-M2 (U.S.G.S.) Cert	0.54	3.63	0.54	7.29	1.8	2.8				808	14.2	2.53	1440.00
E832003 Orig													
E832003 Dup													
	< 0.1	0.2	< 0.1	< 0.1	< 0.05	0.2	< 0.001	415	0.04	5.09	3.7	0.5	90
	< 0.1	0.2	< 0.1	< 0.1	< 0.05	0.1	< 0.001	< 0.5	< 0.02	4.62	3.1	0.4	70
	0.1	0.8	0.1	0.3	< 0.05	0.5	< 0.001	9.1	0.23	12.9	19.5	1.9	40
	0.1	0.7	0.1	0.2	< 0.05	0.5	< 0.001	9.4	0.22	11.8	13.8	1.7	40
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05		< 0.001	< 0.5	< 0.02	< 0.01	< 0.1	< 0.1	70
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05		< 0.001	< 0.5	< 0.02	0.15	< 0.1	< 0.1	90
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	< 0.5	< 0.02	< 0.01	< 0.1	< 0.1	30
Method Blank	< 0.1	< 0.1	< 0.1	< 0.1	< 0.05	< 0.1	< 0.001	< 0.5	< 0.02	< 0.01	< 0.1	< 0.1	50
Method Blank													
Method Blank													
Method Blank													
Method Blank	I				I			_			I	I	I

Quality Analysis ...

Innovative Technologies

Date Submitted:03-Oct-17Invoice No.:A17-10882Invoice Date:10-Nov-17

Your Reference: Exploration

GOLDCORP Canada Ltd--Musselwhite Mine P.O. Box 7500 Thunder bay Ontario P7B 6S8 Canada

ATTN: Katie Lucas

CERTIFICATE OF ANALYSIS

36 Soil samples were submitted for analysis.

The following analytical package(s) were requested: Code UT-4 Total Digestion ICP/MS

REPORT **A17-10882**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5
TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613
E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Quality Analysis ...

Innovative Technologies

Date Submitted:03-Oct-17Invoice No.:A17-10882Invoice Date:10-Nov-17Your Reference:Exploration

GOLDCORP Canada Ltd--Musselwhite Mine P.O. Box 7500 Thunder bay Ontario P7B 6S8 Canada

ATTN: Katie Lucas

CERTIFICATE OF ANALYSIS

36 Soil samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A2-GC Musselwhite Tbay Au - Fire Assay AA

REPORT **A17-10882**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Values which exceed the upper limit should be assayed for accurate numbers.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

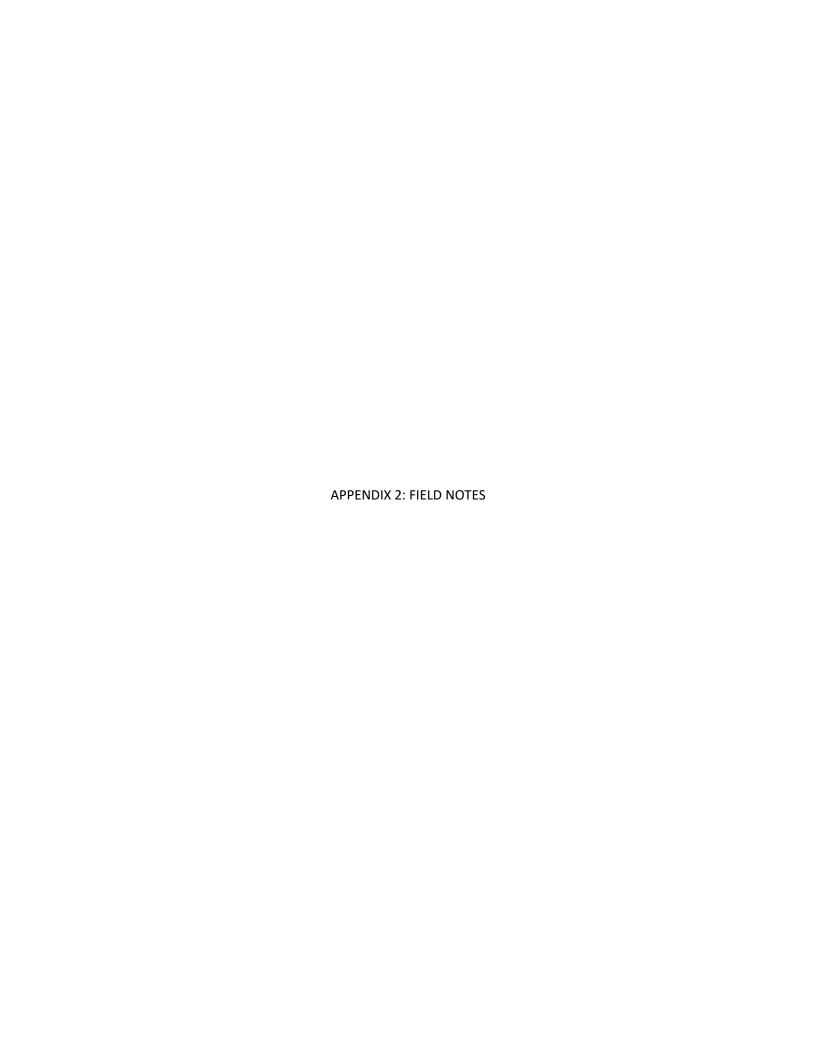
Results	Activation Laboratories Ltd.	Report: A17-10882

	I = 0 0 0	TD MO	TD MC	TD MC	TD MC	TD MO	TD MC	TD MC	TD MC	TD MC	TD MC	TD MO	TD MC	TD MO	TD MO	TD MC	TD MO	TD MC	TD MC	TD MC	TD MC	TD MC	TD MC
SAMPLE	FA-AA Au	TD-MS	TD-MS Li	TD-MS Na	TD-MS Mg	TD-MS Al	TD-MS K	TD-MS Ca	TD-MS Cd	TD-MS	TD-MS Cr	TD-MS Mn	TD-MS Fe	TD-MS Hf	TD-MS Ni	TD-MS Er	TD-MS Be	TD-MS Ho	TD-MS Hg	TD-MS Ag	TD-MS Cs	TD-MS Co	TD-MS Eu
DESCRIPTION	g/mt	ppm	ppm	%	wig %	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm
	< 0.005	< 1	37.0	1.98	0.97	6.37	1.30	1.98	< 0.1	36	55.2	449	3.27	5.8	21.5	1.2	1.2	0.4	20	< 0.05	1.60	9.4	0.93
	< 0.005	< 1	28.2	1.75	1.03	5.90	1.20	1.96	0.1	94	103	622	6.15	7.4	30.0	2.0	1.1	0.6	20	< 0.05	2.03	11.7	0.71
	0.005	< 1	23.4	2.15	0.94	6.89	1.34	2.03	< 0.1	109	88.4	471	5.48	3.9	29.7	1.2	1.3	0.4	10	< 0.05	2.33	9.5	0.64
	< 0.005	16	20.8	2.20	0.88	6.26	1.31	2.22	0.1	93	146	526	4.91	6.4	31.3	1.4	1.1	0.4	60	< 0.05	1.21	10.0	0.64
	0.006	< 1	20.2	2.51	0.65	7.58	1.53	1.96	< 0.1	43	34.3	365	2.29	1.6	26.0	1.3	1.5	0.3	60	< 0.05	1.05	9.5	0.72
	< 0.005	< 1	15.3	2.42	0.81	7.10	1.33	2.19	0.1	70	53.0	399	3.22	0.3	26.0	1.2	1.4	0.3	40	< 0.05	1.00	8.3	0.67
	0.226	< 1	25.9	2.10	0.74	7.18	1.29	1.69	< 0.1	70	71.1	351	3.61	1.6	28.3	1.0	1.3	0.3	50	0.11	2.05	9.1	0.58
	< 0.005	< 1	40.7	2.07	0.97	7.66	1.10	1.60	0.1	60	69.0	505	5.65	3.6	35.6	1.1	1.4	0.4	30	< 0.05	2.35	13.6	0.65
	< 0.005 < 0.005	< 1	45.0	1.85 2.36	0.84	6.88	1.16	1.45	< 0.1	108 24	89.4 12.5	545 233	7.25	7.1	29.9	1.0	0.9	0.3	20	< 0.05	2.86 1.12	13.2	0.45
	< 0.005	< 1 < 1	13.2 9.3	2.36	0.20	6.38	4.07 1.44	1.11	< 0.1	62	73.8	358	1.64 2.77	6.2 4.6	4.0 20.1	0.9	1.0	0.5	< 10 < 10	< 0.05 < 0.05	0.73	44.7 6.0	0.74 0.54
	< 0.005	< 1	15.6	2.22	0.58	6.41	1.66	1.59	< 0.1	44	49.2	247	2.23	4.4	22.5	0.9	1.1	0.3	< 10	< 0.05	1.00	7.1	0.54
	< 0.005	<1	12.5	2.52	0.55	6.39	1.54	1.76	< 0.1	49	50.6	327	2.12	5.2	17.2	0.9	1.1	0.3	< 10	< 0.05	0.84	7.4	0.54
	< 0.005	17	10.6	2.40	0.57	6.02	1.76	1.71	< 0.1	39	47.7	293	1.64	4.8	18.5	1.1	1.2	0.4	60	< 0.05	0.81	6.0	0.70
E837245	< 0.005	24	45.5	1.69	1.17	8.00	2.03	1.61	< 0.1	70	56.8	644	3.50	3.7	42.3	1.8	1.9	0.5	60	< 0.05	4.21	13.9	0.93
E837246	0.011	< 1	4.0	0.15	0.15	3.23	0.20	2.28	1.6	18	24.1	3320	1.16	< 0.1	45.6	6.4	1.0	2.0	160	1.29	1.31	3.1	4.10
E837247	< 0.005	11	2.2	0.14	0.14	1.34	0.14	1.63	1.0	14	28.2	523	1.02	0.3	27.1	0.9	0.3	0.3	70	0.14	1.05	5.6	0.51
E837248	< 0.005	< 1	13.9	0.82	0.22	4.02	0.75	2.15	0.4	24	26.6	137	0.79	0.1	32.3	1.5	0.7	0.6	70	0.46	2.39	3.7	1.33
E837249	< 0.005	5		0.04	0.19	0.63	0.06	4.21	0.3	9	11.9	47	0.27	< 0.1	11.3	0.4	0.1	0.1	30	0.07	0.26	0.6	0.22
E837250	3.13	< 1	6.2	1.50	1.33	5.54	2.40	2.99	0.1	48	59.5	523	3.48	1.0	29.3	1.5	1.2	0.5	20	1.29	19.2	15.9	0.64
	< 0.005	< 1	33.8	1.86	0.83	6.95	2.16	1.17	< 0.1	49	51.7	350	3.37	3.6	28.7	1.0	1.3	0.3	< 10	< 0.05	2.39	10.4	0.52
	< 0.005	< 1	19.6	2.03	0.76	6.55	1.12	2.00	0.1	78	93.8	501	3.86	4.6	38.6	1.3	1.6	0.4	< 10	< 0.05	1.55	14.8	0.84
	< 0.005 < 0.005	< 1 < 1	19.5 25.8	2.07 1.75	1.06	6.22 5.38	1.34	2.25	0.1 < 0.1	108 115	149 180	935 742	5.85 7.55	6.8 7.3	38.2 34.8	1.5	1.1	0.4	10 20	< 0.05 < 0.05	1.21	15.4 14.4	0.77 0.79
	< 0.005	2	19.9	> 3.00	0.72	8.41	1.15	2.12	< 0.1	52	38.4	276	2.55	2.3	23.0	0.7	1.6	0.5	60	< 0.05	1.19	7.4	0.79
	< 0.005	< 1	13.1	2.50	0.72	6.58	1.36	2.22	< 0.1	35	103	537	3.25	4.5	26.2	1.3	1.4	0.2	40	< 0.05	0.71	8.8	0.74
	< 0.005	< 1	18.0	2.32	0.89	6.90	1.26	2.11	< 0.1	85	79.6	487	4.45	1.4	31.6	1.3	1.3	0.4	40	< 0.05	0.95	10.2	0.69
	0.006	< 1	27.9	2.58	0.71	7.63	2.22	1.57	< 0.1	52	43.2	292	3.33	2.0	23.9	0.8	1.2	0.3	50	< 0.05	1.78	8.3	0.51
	< 0.005	< 1	19.4	> 3.00	0.91	7.97	1.80	2.44	< 0.1	50	48.5	556	2.94	2.2	27.9	1.0	1.4	0.3	30	< 0.05	1.07	11.2	0.62
	3.12	< 1	6.6	1.61	1.38	5.79	2.34	3.09	< 0.1	43	57.4	532	3.59	0.6	29.4	1.4	1.1	0.5	30	1.28	19.3	16.5	0.63
	< 0.005	< 1	22.2	2.75	0.88	7.25	1.72	2.20	< 0.1	38	71.2	457	3.28	3.8	35.8	1.1	1.4	0.4	20	< 0.05	1.24	9.7	0.66
	< 0.005	2	20.8	2.68	1.11	7.25	1.41	2.49	< 0.1	84	98.9	690	5.41	5.2	34.2	1.4	1.2	0.4	30	< 0.05	1.34	12.0	0.69
	< 0.005	19	15.0	> 3.00	0.64	7.67	1.78	1.99	< 0.1	61	48.7	292	2.24	1.7	18.7	0.7	1.2	0.2	50	< 0.05	1.28	6.5	0.39
	< 0.005	14	23.6	2.59	0.81	7.19	1.48	2.03	< 0.1	71	139	402	3.89	3.5	24.5	1.1	1.3	0.3	60	< 0.05	1.42	8.7	0.58
	< 0.005	< 1	31.7	2.42	0.81	8.21	1.63	1.79	< 0.1	80	52.5	364	4.02	0.4	35.7	0.9	1.5	0.3	50	< 0.05	1.53	12.4	0.54
CVD 1 M	< 0.005	16	1.1	0.04	0.39	0.49	0.07	6.12	0.4	5 77	4.2	56	0.29	< 0.1	5.0	0.3	0.1	< 0.1	80	0.05	0.24	1.2	0.16
GXR-1 Meas GXR-1 Cert	\vdash	< 1 15.0	7.0 8.20	0.04	0.19 0.217	1.73 3.52	0.04	0.80	2.6 3.30	80.0	9.9	851 852	23.7	0.5	40.0 41.0		1.22		820 3900	33.5 31.0	2.99 3.00	7.6 8.20	0.59
DH-1a Meas	\vdash	15.0	0.20	0.0520	0.217	3.52	0.050	0.960	3.30	00.0	12.0	002	23.0	0.900	41.0		1.22	_	3900	31.0	3.00	0.20	0.090
DH-1a Meas	\vdash			\vdash					\vdash														
GXR-4 Meas		< 1	10.7	0.51	1.71	6.40	4.12	0.96	0.2	86	42.8	155	3.07	1.4	41.7		2.0		< 10	3.72	2.65	13.9	1.28
GXR-4 Cert		4.50	11.1	0.564	1.66	7.20	4.01	1.01	0.860	87.0	64.0	155	3.09	6.30	42.0		1.90		110	4.00	2.80	14.6	1.63
SDC-1 Meas		< 1	32.0	1.44	0.96	7.81	2.59	0.94		35	34.8	806	4.57	0.9	34.8	3.5	2.6	1.1	50		3.76	17.0	1.35
			İ																	İ		\Box	

Results Activation Laboratories Ltd. Report: A17-10882

																•							
	FA-AA	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
SAMPLE	Au	В	Li	Na	Mg	Al	K	Ca	Cd	V	Cr	Mn	Fe	Hf	Ni	Er	Be	Ho	Hg	Ag	Cs	Co	Eu
DESCRIPTION	g/mt	ppm	ppm	%	%	%	%	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm
SDC-1 Cert		13.00	34.0	1.52	1.02	8.34	2.72	1.00		102.00	64.00	880.00	4.82	8.30	38.0	4.10	3.00	1.50	200.00		4.00	18.0	1.70
GXR-6 Meas		< 1	33.9	0.09	0.61	> 10.0	2.01	0.16	< 0.1	156	57.7	1060	5.93	2.4	25.8		1.1		10	0.25	4.31	14.0	0.65
GXR-6 Cert		9.80	32.0	0.104	0.609	17.7	1.87	0.180	1.00	186	96.0	1010	5.58	4.30	27.0		1.40		68.0	1.30	4.20	13.8	0.760
DNC-1a Meas			4.0							143	126				271							55.4	0.53
DNC-1a Cert			5.2							148	270				247							57	0.59
SBC-1 Meas			155						0.3	215	87.9			3.5	90.6	3.6	2.9	1.2			8.32	22.3	1.78
SBC-1 Cert			163						0.40	220.0	109			3.7	82.8	3.80	3.20	1.40			8.2	22.7	1.98
OREAS 45d (4-Acid) Meas			19.8	0.09	0.23	7.30	0.40	0.18		115	448	472	14.1	2.3	237	1.3	0.7	0.4			3.71	29.6	0.55
OREAS 45d (4-Acid) Cert			21.5	0.101	0.245	8.150	0.412	0.185		235.0	549	490.000	14.5	3.830	231.0	1.38	0.79	0.46			3.910	29.50	0.57
SdAR-M2			19.1						5.3	24	33.2	+30.000		1.7	55.0	3.0	7.2	0.9	1180		1.73	13.4	1.25
(U.S.G.S.) Meas			47.0							05.0	40.0			7.00	40.0	0.50	0.0	4.04			4.00	40.4	
SdAR-M2 (U.S.G.S.) Cert			17.9						5.1	25.2	49.6			7.29	48.8	3.58	6.6	1.21	1440.00		1.82	12.4	1.44
SdAR-M2			19.1						4.9	23	35.6			3.8	52.3	3.1	7.3	0.9	200		1.76	13.6	1.20
(U.S.G.S.) Meas SdAR-M2			17.9						5.1	25.2	49.6			7.29	48.8	3.58	6.6	1.21			1.82	12.4	1.44
(U.S.G.S.) Cert			17.9						5.1	25.2	49.6			7.29	48.8	3.58	6.6	1.21	1440.00		1.82	12.4	1.44
OREAS 220 (Fire Assay) Meas	0.867																						
OREAS 220 (Fire Assay) Cert	0.828																						
OREAS 222(FIRE ASSAY) Meas	1.24																						
OREAS 222(FIRE	1.22																						
ASSAY) Cert																							
		< 1	28.2	1.75	1.03	5.90	1.20	1.96	0.1	94	103	622	6.15	7.4	30.0	2.0	1.1	0.6	20	< 0.05	2.03	11.7	0.71
		< 1	27.4	1.87	1.04	6.02	1.23	1.98	< 0.1	113	127	658	6.54	7.9	31.9	2.0	1.1	0.6	10	< 0.05	2.00	12.0	0.78
		16	20.8	2.20	0.88	6.26	1.31	2.22	0.1	93	146	526	4.91	6.4	31.3	1.4	1.1	0.4	60	< 0.05	1.21	10.0	0.64
	0.005	9	21.7	2.31	0.89	6.49	1.35	2.21	< 0.1	87	100	499	4.70	2.8	30.7	1.4	1.3	0.4	60	< 0.05	1.29	10.0	0.69
	< 0.005						\vdash			\vdash					\vdash			-					
	< 0.005																						
	< 0.005						\vdash			\vdash					\vdash								
	< 0.005		00.0	0.75	0.00	7.05	4.70	0.00	0.1	- 00	74.0	457	0.00	0.0	05.0	4.4	4.1			0.05	4.04	0.7	0.00
		< 1	22.2	2.75	0.88	7.25	1.72	2.20	< 0.1	38	71.2	457	3.28	3.8	35.8	1.1	1.4	0.4	20	< 0.05	1.24	9.7	0.66
Method Direct		< 1	21.6	2.88 < 0.01	0.87	7.79	1.74	2.25	< 0.1	38	64.8	412	3.18 0.01	3.0	30.8	1.0 < 0.1	1.3	0.3 < 0.1	30 50	< 0.05	1.20	9.3	0.69
Method Blank Method Blank			< 0.5		< 0.01	0.01	< 0.01	< 0.01	< 0.1	< 1	8.0	26		< 0.1	< 0.5	_	< 0.1	_	60	< 0.05	< 0.05	< 0.1	< 0.05
			< 0.5	< 0.01	< 0.01	0.12	< 0.01	0.01	< 0.1	< 1	5.1	16	0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1		< 0.05	< 0.05	< 0.1	< 0.05
Method Blank Method Blank			< 0.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 1	8.3 16.4	15 30	< 0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	70	< 0.05	< 0.05	< 0.1	< 0.05
	. 0.005		< 0.5	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.1	< 1	16.4	30	< 0.01	< 0.1	< 0.5	< 0.1	< 0.1	< 0.1	60	< 0.05	< 0.05	< 0.1	< 0.05
Method Blank	< 0.005																						
Method Blank	< 0.005																						

Results	Activation Laboratories Ltd.	Report: A17-10882
IVESUIIS	Activation Laboratories Ltu.	11epoit. A11-10002


	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
SAMPLE	Bi	Se	Zn	Ga	As	Rb	Υ	Zr	Nb	Mo	In	Sn	Sb	Te	Ba	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	0.11	< 0.1	53.9	14.7	< 0.1	54.2	11.3	250	0.4	0.10	< 0.1	< 1	< 0.1	< 0.1	422	25.4	60.5	6.9	26.2	4.2	3.2	0.4	2.1
	0.19	< 0.1	65.5	22.5	< 0.1	66.9	17.1	290	0.8	0.28	< 0.1	< 1	< 0.1	< 0.1	400	23.4	48.7	5.7	22.1	4.3	3.7	0.6	3.3
	0.22	< 0.1	48.9	22.0	2.5	65.9	10.8	150	1.0	0.53	< 0.1	1	< 0.1	< 0.1	419	20.8	42.4	4.4	15.8	2.7	2.3	0.4	2.1
	0.16	< 0.1	43.1	17.9	0.2	46.9	13.0	258	1.7	0.44	< 0.1	< 1	< 0.1	< 0.1	450	17.3	40.7	4.5	17.6	2.7	3.1	0.5	2.4
	0.10	< 0.1	29.7	14.1	0.4	49.9	11.0	70	4.1	0.39	< 0.1	< 1	< 0.1	< 0.1	538	16.4	40.8	4.0	15.6	2.8	2.5	0.4	2.1
	0.13	< 0.1	40.2	15.0	0.2	44.2	10.6	29	2.6	0.31	< 0.1	< 1	< 0.1	< 0.1	442	11.1	25.8	3.0	12.5	2.6	2.2	0.4	2.0
	0.16	< 0.1	59.9	17.1	1.5	48.8	9.2	81	3.9	0.52	< 0.1	1	0.1	< 0.1	447	11.9	26.5	2.7	10.6	2.1	2.0	0.3	1.7
	0.20	< 0.1	81.1	20.3	0.5	43.3	11.2	142	0.2	0.21	< 0.1	1	< 0.1	< 0.1	389	22.7	46.6	4.7	17.7	3.1	2.7	0.4	2.0
	0.20	< 0.1	77.8	21.5	0.8	53.6	8.8	282	1.4	0.43	< 0.1	< 1	< 0.1	< 0.1	417	12.6	26.3	2.7	10.3	1.7	1.6	0.3	1.6
	0.05	< 0.1	47.3	11.2	< 0.1	114	14.0	319	8.4	0.59	< 0.1	9	0.3	< 0.1	986	92.6	189	19.6	67.9	10.5	6.8	0.8	3.4
	0.09	< 0.1	24.3	14.0	0.8	40.2	8.7	191	5.3	0.29	< 0.1	< 1	0.1	< 0.1	459	12.3	27.7	3.0	11.7	2.1	1.9	0.3	1.5
	0.09	< 0.1	23.2	10.4	0.6	46.6	7.8	187	3.5	0.23	< 0.1	< 1	< 0.1	< 0.1	544	13.2	28.2	3.0	11.2	2.2	1.8	0.3	1.5
	0.08	< 0.1	30.7	12.6	< 0.1	48.9	8.5	209	5.3	0.30	< 0.1	< 1	0.2	< 0.1	503	11.6	26.1	2.9	11.6	1.9	2.0	0.3	1.5
	0.08	< 0.1	24.0	11.0	0.5	46.0	10.3	204	6.0	0.18	< 0.1	< 1	0.1	< 0.1	566	21.8	52.1	5.0	18.0	3.1	2.7	0.4	2.1
E837245	0.24	< 0.1	75.6	17.5	1.6	103	16.1	144	1.3	0.14	< 0.1	< 1	< 0.1	< 0.1	653	34.4	80.2	7.8	28.5	5.1	3.9	0.6	3.1
E837246	0.12	0.8	26.9	2.5	156	9.6	68.1	4	1.2	1.47	< 0.1	< 1	0.2	< 0.1	183	363	486	64.2	226	32.2	22.0	2.6	12.3
E837247	0.09	1.6	84.1	1.4	18.4	6.2	8.8	12	1.4	1.37	< 0.1	< 1	0.2	< 0.1	158	33.5	67.8	6.8	23.9	3.5	2.7	0.4	1.6
E837248	0.08	1.3	19.5	6.4	1.9	29.8	17.6	9	2.2	1.15	< 0.1	< 1	0.2	< 0.1	318	94.6	146	18.1	61.7	8.5	6.8	0.8	3.8
E837249	0.03	0.7	20.7	0.4	< 0.1	2.7	4.2	4	0.5	1.15	< 0.1	< 1	0.1	< 0.1	93	22.9	31.4	4.2	13.6	1.7	1.2	0.1	0.7 2.7
E837250	0.68	< 0.1	51.0	16.8	4.3	567	13.2	39	< 0.1	0.58	< 0.1	< 1	0.2	< 0.1	58	3.9	10.1	1.4	6.4	2.0	2.4	0.5	
	0.13	< 0.1	44.2 47.0	14.6	0.7	81.1	8.4 12.5	149 210	1.0 7.3	0.24	< 0.1	< 1	< 0.1	< 0.1	627 377	14.8 34.1	35.1 71.7	3.3 7.0	12.4 25.5	2.6	1.8	0.3	1.6 2.6
	0.15	< 0.1	47.0	15.6 17.3	40.2 0.7	35.5 55.3	13.3	295	2.3	0.78	< 0.1	< 1	< 0.1	< 0.1	422	26.7	55.0	5.1	18.4	3.5	3.3 2.8	0.5	2.4
	0.17	< 0.1	58.4	16.9	< 0.1	55.6	14.5	295	0.6	0.39	< 0.1	< 1	< 0.1	< 0.1	391	26.7	59.1	6.0	22.5	3.8	3.2	0.5	2.4
	0.10	< 0.1	28.0	17.2	< 0.1	62.6	6.1	101	1.0	0.16	< 0.1	< 1	< 0.1	< 0.1	592	7.7	16.3	1.7	6.2	1.2	1.1	0.5	1.0
	0.10	< 0.1	34.2	14.3	< 0.1	38.9	13.7	181	0.2	< 0.05	< 0.1	< 1	< 0.1	< 0.1	407	32.4	68.1	7.0	26.0	3.6	3.4	0.2	2.6
	0.10	< 0.1	41.3	15.1	0.3	38.9	12.0	94	4.2	0.35	< 0.1	< 1	< 0.1	< 0.1	408	20.0	44.2	4.7	18.1	3.2	2.7	0.4	2.2
	0.11	< 0.1	42.3	15.8	1.6	69.4	7.9	91	0.9	0.52	< 0.1	< 1	< 0.1	< 0.1	602	15.0	32.0	3.2	11.9	1.9	1.7	0.4	1.5
	0.12	< 0.1	32.2	16.6	< 0.1	53.3	8.9	88	0.5	0.15	< 0.1	< 1	< 0.1	< 0.1	550	10.1	24.8	2.6	10.4	1.8	1.8	0.3	1.6
	0.91	< 0.1	52.9	16.9	2.6	520	13.4	26	< 0.1	0.37	< 0.1	< 1	0.1	< 0.1	59	3.7	9.8	1.3	6.1	2.0	2.3	0.5	2.6
	0.12	< 0.1	41.3	16.3	< 0.1	57.9	10.8	161	0.6	0.12	< 0.1	< 1	< 0.1	< 0.1	525	19.7	42.7	4.5	16.7	2.8	2.6	0.4	2.1
	0.18	< 0.1	51.9	20.0	< 0.1	61.1	12.9	211	1.0	0.21	< 0.1	< 1	< 0.1	< 0.1	432	19.9	42.9	4.5	17.4	3.2	2.7	0.4	2.2
	0.14	< 0.1	26.7	18.9	0.9	61.6	6.3	71	4.8	0.58	< 0.1	1	0.1	< 0.1	535	6.9	14.3	1.5	5.9	1.2	0.9	0.2	1.0
	0.14	< 0.1	51.7	20.1	0.7	67.6	10.4	157	0.7	0.29	< 0.1	< 1	< 0.1	< 0.1	435	17.7	35.6	3.6	13.5	2.3	2.3	0.4	1.9
	0.14	< 0.1	53.9	17.3	2.4	56.7	9.2	43	3.4	0.77	< 0.1	< 1	< 0.1	< 0.1	474	12.2	28.0	2.9	10.9	1.9	1.8	0.3	1.6
	0.05	0.9	25.1	0.9	< 0.1	3.1	3.1	4	0.5	0.39	< 0.1	< 1	0.1	< 0.1	73	8.8	13.2	1.8	6.7	0.7	0.8	0.1	0.6
GXR-1 Meas	1420	14.0	756	7.5	440	2.4	27.0	20	0.7	17.5	0.8	25	39.4	11.6	716	7.5	15.9	1.0	8.4	3.0	4.0	0.9	4.8
GXR-1 Cert	1380	16.6	760	13.8	427	14.0	32.0	38.0	0.800	18.0	0.770	54.0	122	13.0	750	7.50	17.0		18.0	2.70	4.20	0.830	4.30
DH-1a Meas																							
DH-1a Cert																							
GXR-4 Meas	17.4	5.5	65.6	10.8	107	134	13.8	51	9.5	311	0.2	7	5.0	1.0	1330	57.9	111		41.3	5.6	4.5	0.6	2.8
GXR-4 Cert	19.0	5.60	73.0	20.0	98.0	160	14.0	186	10.0	310	0.270	5.60	4.80	0.970	1640	64.5	102		45.0	6.60	5.25	0.360	2.60
SDC-1 Meas			98.7	19.3	< 0.1	104		33	0.3			< 1	< 0.1		628	37.1	86.1		37.9	6.7	6.3	1.1	5.9

Results	Activation Laboratories Ltd.	Report: A17-10882
INGGUILG	Activation Eaboratories Eta.	1(cpoit. A17-10002

	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
SAMPLE	Bi	Se	Zn	Ga	As	Rb	Υ	Zr	Nb	Mo	In	Sn	Sb	Te	Ва	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
SDC-1 Cert			103.00	21.00	0.220	127.00		290.00	21.00			3.00	0.54		630	42.00	93.00		40.00	8.20	7.00	1.20	6.70
GXR-6 Meas	0.19	0.3	133	23.9	312	77.4	12.7	92	0.8	1.04	< 0.1	< 1	0.5	< 0.1	1310	12.5	37.5		12.7	2.2	2.3	0.4	2.3
GXR-6 Cert	0.290	0.940	118	35.0	330	90.0	14.0	110	7.50	2.40	0.260	1.70	3.60	0.0180	1300	13.9	36.0		13.0	2.67	2.97	0.415	2.80
DNC-1a Meas			62.2	14.2		3.2	15.9	39	1.4				0.6		107	3.4			4.9				
DNC-1a Cert			70	15		5	18.0	38.0	3				0.96		118	3.6			5.20				
SBC-1 Meas	0.68		196	25.1	25.8	131	31.8	131	14.5	2.26		3	1.1		840	49.1	111	12.5	48.8	10.0	7.8	1.3	6.7
SBC-1 Cert	0.70		186	27.0	25.7	147	36.5	134.0	15.3	2.40		3.3	1.01		788.0	52.5	108.0	12.6	49.2	9.6	8.5	1.20	7.10
OREAS 45d	0.32		41.3	22.4	6.6	35.8	10.3	91	0.4	0.60	< 0.1	< 1	< 0.1		188	16.0	37.3	3.6	14.1	2.6	2.3	0.4	2.4
(4-Acid) Meas																							
OREAS 45d (4-Acid) Cert	0.31		45.7	21.20	13.8	42.1	9.53	141	14.50	2.500	0.096	2.78	0.82		183.0	16.9	37.20	3.70	13.4	2.80	2.42	0.400	2.26
SdAR-M2	0.98		835	16.5	_	114	25.8	77	5.6	11.3					1040	44.9	101	10.3	38.1	6.5	5.7	1.0	5.1
(U.S.G.S.) Meas	0.30		000	10.5		114	25.0	,,,	3.0	11.5					1040	44.5	101	10.5	30.1	0.5	5.7	1.0	3.1
SdAR-M2	1.05		760	17.6		149	32.7	259	26.2	13.3					990	46.6	98.8	11.0	39.4	7.18	6.28	0.97	5.88
(U.S.G.S.) Cert																							
SdAR-M2	0.99		771	12.9		111	25.3	124	9.6	11.5					1020	43.4	99.7	10.0	36.7	6.8	5.4	0.9	4.8
(U.S.G.S.) Meas																							
SdAR-M2	1.05		760	17.6		149	32.7	259	26.2	13.3					990	46.6	98.8	11.0	39.4	7.18	6.28	0.97	5.88
(U.S.G.S.) Cert OREAS 220 (Fire																							
Assay) Meas																							
OREAS 220 (Fire																							
Assay) Cert																							
OREAS 222(FIRE																							
ASSAY) Meas																							
OREAS 222(FIRE																							
ASSAY) Cert	0.40		25.5	22.5		20.0	47.4			0.00	0.4	<u> </u>	0.4	0.4	400	00.4	40.7		22.1	4.0	0.7		0.0
_	0.19	< 0.1	65.5		< 0.1	66.9	17.1	290	0.8	0.28	< 0.1	< 1	< 0.1	< 0.1	400	23.4	48.7	5.7		4.3	3.7	0.6	3.3
_	0.18	< 0.1	62.9 43.1	22.7 17.9	< 0.1	65.1	17.1	334	0.6	0.33	< 0.1	< 1	< 0.1	< 0.1	398 450	24.4 17.3	53.5	5.9	23.5 17.6	3.7	3.7	0.6 0.5	3.1 2.4
_	0.16	< 0.1	43.1	17.9	0.2	46.9 51.7	13.0 11.8	258 162	1.7 0.7	0.44	< 0.1	< 1	< 0.1	< 0.1	450 459	17.3	40.7 42.2	4.5 4.5	17.6	2.7	3.1 2.5	0.5	2.4
_	0.17	< 0.1	43.4	17.7	< 0.1	51.7	11.8	162	0.7	0.42	< 0.1	< 1	< 0.1	< 0.1	459	17.7	42.2	4.5	17.2	2.7	2.5	0.4	2.2
_																							
_																							
							\vdash																
	0.10	.04	41.0	16.0	.01	E7.0	10.0	101	0.0	0.12	.0.1	. 4	.01	.0.1	F05	10.7	40.7	4.5	10.7	0.0	0.0	0.4	0.1
	0.12	< 0.1	41.3	16.3	< 0.1	57.9	10.8	161	0.6	-	< 0.1	< 1	< 0.1	< 0.1	525 521	19.7	42.7 40.7	4.5	16.7	2.8	2.6	0.4	2.1
Method Disast		< 0.1	39.0	16.4	< 0.1	57.7	9.9	130	0.5	0.11	< 0.1	< 1	< 0.1	< 0.1	_	18.3		_	16.9	2.4	2.3	0.4	1.9
Method Blank	< 0.02	< 0.1	2.7	0.1	< 0.1	< 0.2	< 0.1	< 1	< 0.1	0.18	< 0.1	< 1	< 0.1	< 0.1	< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	< 0.02	< 0.1	0.3	0.2	< 0.1	0.3	< 0.1	< 1	< 0.1	0.05	< 0.1	< 1	< 0.1	< 0.1	_	0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	0.02	< 0.1	0.6	0.1	< 0.1	< 0.2	< 0.1	< 1	< 0.1	0.16	< 0.1	< 1	< 0.1	< 0.1	< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank	< 0.02	< 0.1	2.7	0.1	< 0.1	< 0.2	< 0.1	< 1	< 0.1	0.08	< 0.1	< 1	< 0.1	< 0.1	< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Method Blank																							\vdash
Method Blank																							

	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
SAMPLE	Cu	Ge	Tm	Yb	Lu	Ta	Sr	W W	Re	TI	Pb	Th	U
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	10.2	< 0.1	0.2	1.1	0.2	< 0.1	257	< 0.1	< 0.001	0.27	13.9	7.8	1.6
	13.6	< 0.1	0.3	1.9	0.3	< 0.1	222	< 0.1	< 0.001	0.27	17.2	10.9	1.6
	6.8	< 0.1	0.2	1.3	0.2	< 0.1	255	< 0.1	< 0.001	0.30	18.2	10.5	1.6
	4.7	< 0.1	0.2	1.5	0.2	< 0.1	278	< 0.1	< 0.001	0.25	15.4	10.9	1.6
	6.2	< 0.1	0.2	1.1	0.1	0.2	297	0.2	< 0.001	0.27	15.0	8.1	5.3
	3.7	< 0.1	0.2	1.1	0.2	< 0.1	277	0.1	< 0.001	0.22	13.3	9.5	3.2
	12.8	0.2	0.2	1.0	0.1	0.3	238	0.3	< 0.001	0.33	14.3	5.8	1.2
	20.8	< 0.1	0.2	1.2	0.2	< 0.1	227	< 0.1	< 0.001	0.31	15.8	9.2	1.4
	15.0	0.2	0.2	1.1	0.2	< 0.1	199	< 0.1	< 0.001	0.42	16.5	7.0	1.5
	127	< 0.1	0.2	1.0	0.2	1.7	195	158	< 0.001	0.82	38.0	67.3	3.4
	3.3	< 0.1	0.1	0.9	0.1	0.2	283	0.5	< 0.001	0.21	12.5	5.7	0.8
	4.4	0.3	0.1	0.8	0.1	< 0.1	251	0.2	< 0.001	0.27	12.2	4.6	0.9
	3.5	< 0.1	0.1	0.9	0.1	0.3	269	0.3	< 0.001	0.25	12.9	4.6	1.0
	6.2	< 0.1	0.2	1.0	0.2	0.3	272	0.4	< 0.001	0.29	12.3	6.2	0.9
E837245	22.1	< 0.1	0.3	1.6	0.2	< 0.1	207	0.2	< 0.001	0.63	19.1	15.3	2.2
E837246	112	< 0.1	8.0	4.8	0.7	< 0.1	52.6	0.5	0.004	0.21	7.2	26.7	16.7
E837247	28.5	< 0.1	0.1	0.8	0.1	< 0.1	34.2	0.3	0.003	0.14	2.6	6.1	2.5
E837248	208	< 0.1	0.2	1.3	0.2	< 0.1	117	0.5	0.002	0.28	8.3	13.1	8.5
E837249	17.2	< 0.1	< 0.1	0.3	< 0.1	< 0.1	50.7	0.1	< 0.001	< 0.05	1.0	1.7	0.8
E837250	35.4	0.2	0.2	1.3	0.2	< 0.1	87.9	< 0.1	< 0.001	5.68	8.3	0.7	0.2
	10.5	0.2	0.1	0.9	0.1	< 0.1	228	< 0.1	< 0.001	0.45	14.7	5.7	1.1
	6.8	< 0.1	0.2			0.4	213		< 0.001		17.6	11.0	1.3
	8.5 10.6	< 0.1	0.2	1.5	0.2	< 0.1	248 227	< 0.1	< 0.001	0.24	16.4 16.1	11.3 9.7	1.6
	4.3	< 0.1	0.3	0.7	0.3	< 0.1	341	< 0.1	< 0.001	0.24	14.6	3.6	0.8
-	3.7	< 0.1	0.1	1.3	0.1	< 0.1	277	0.1	< 0.001	0.30	14.3	15.0	1.4
	22.8	< 0.1	0.2	1.2	0.2	0.3	267	0.1	< 0.001	0.22	13.7	9.9	1.2
	8.0	< 0.1	0.1	0.8	0.1	< 0.1	253	< 0.1	< 0.001	0.42	16.7	13.2	1.3
	2.9	0.1	0.2	1.0	0.1	< 0.1	320	< 0.1	< 0.001	0.42	14.6	4.7	0.9
	36.5	0.2	0.2	1.2	0.2	< 0.1	90.8	< 0.1	< 0.001	5.48	8.0	0.8	0.2
	12.8	< 0.1	0.2	1.1	0.2	< 0.1	302	< 0.1	< 0.001	0.30	14.7	9.2	2.7
	19.2	< 0.1	0.2	1.4	0.2	< 0.1	287	< 0.1	< 0.001	0.24	17.1	10.0	1.6
	3.3	< 0.1	0.1	0.9	0.1	0.3	321	0.3	< 0.001	0.30	14.7	2.7	0.6
	6.5	< 0.1	0.2	1.1	0.2	< 0.1	266	< 0.1	< 0.001	0.29	16.0	9.0	1.1
	8.6	< 0.1	0.2	1.0	0.1	0.1	252	0.2	< 0.001	0.30	15.5	8.2	1.2
	17.9	< 0.1	< 0.1	0.3	< 0.1	< 0.1	64.8	0.1	< 0.001	0.06	0.9	2.3	7.5
GXR-1 Meas	1150		0.4	2.3	0.3	< 0.1	265	165		0.41	752	2.9	36.4
GXR-1 Cert	1110		0.430	1.90	0.280	0.175	275	164		0.390	730	2.44	34.9
DH-1a Meas												> 500	2470
DH-1a Cert												910	2629
GXR-4 Meas	6400		0.2	1.1	0.1	0.6	215	38.2		3.15	47.7	23.7	5.9
GXR-4 Cert	6520		0.210	1.60	0.170	0.790	221	30.8		3.20	52.0	22.5	6.20
SDC-1 Meas	29.9		0.6	3.1		< 0.1	162	< 0.1		0.59	22.4	12.3	2.8

	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
SAMPLE	Cu	Ge	Tm	Yh	Lu	Ta	Sr.	W	Re	TI	Ph	Th	I D-IVIO
DESCRIPTION	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
SDC-1 Cert	30.000	pp	0.65	4.00	ррш	1.20	180.00	0.80	pp	0.70	25.00	12.00	3.10
GXR-6 Meas	73.7			1.7	0.3	< 0.1	36.3	0.1		2.22	101	5.8	1.5
GXR-6 Cert	66.0			2.40	0.330	0.485	35.0	1.90		2.20	101	5.30	1.54
DNC-1a Meas	95.1			1.9			135				5.4		
DNC-1a Cert	100			2.0			144				6.3		
SBC-1 Meas	33.2		0.6	3.4	0.5	1.1	172	1.7		0.93	35.8	17.6	6.0
SBC-1 Cert	31.0000		0.56	3.64	0.54	1.10	178.0	1.60		0.89	35.0	15.8	5.76
OREAS 45d (4-Acid) Meas	365			1.4	0.2	< 0.1	28.2	0.1		0.25	20.8	15.6	2.9
OREAS 45d (4-Acid) Cert	371			1.33	0.18	1.02	31.30	1.62		0.27	21.8	14.5	2.63
SdAR-M2 (U.S.G.S.) Meas	265		0.5	2.9	0.4	0.3	142	0.6			754	14.9	2.4
SdAR-M2 (U.S.G.S.) Cert	236.00		0.54	3.63	0.54	1.8	144	2.8			808	14.2	2.53
SdAR-M2 (U.S.G.S.) Meas	249		0.5	2.8	0.4	0.3	138	0.5			730	15.3	2.5
SdAR-M2 (U.S.G.S.) Cert	236.00		0.54	3.63	0.54	1.8	144	2.8			808	14.2	2.53
OREAS 220 (Fire Assay) Meas													
OREAS 220 (Fire													
Assay) Cert													
OREAS 222(FIRE ASSAY) Meas													
OREAS 222(FIRE ASSAY) Cert													
	13.6	< 0.1	0.3	1.9	0.3	< 0.1	222	< 0.1		0.27	17.2	10.9	1.6
	13.4	< 0.1	0.3	1.8	0.3	< 0.1	227	< 0.1	< 0.001	0.25	16.8	14.2	1.5
	4.7	< 0.1	0.2	1.5	0.2	< 0.1	278	< 0.1	< 0.001	0.25	15.4	10.9	1.6
_	4.5	< 0.1	0.2	1.3	0.2	< 0.1	279	< 0.1	< 0.001	0.24	15.7	7.6	1.2
							<u> </u>	-	<u> </u>		<u> </u>		
	12.8	< 0.1	0.2	1.1	0.2	< 0.1	302	-01	< 0.001	0.30	14.7	9.2	2.7
	4.8	< 0.1	0.2	1.1	0.2	< 0.1	302	< 0.1	< 0.001	0.30	14.7	8.4	1.2
Method Blank	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.5	< 0.1	< 0.001	< 0.05	< 0.5	< 0.1	< 0.1
Method Blank	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	2.6	< 0.1	< 0.001	< 0.05	< 0.5	0.1	< 0.1
Method Blank	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.001	< 0.05	< 0.5	< 0.1	< 0.1
Method Blank	< 0.2	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.2	< 0.1	< 0.001	< 0.05	< 0.5	< 0.1	< 0.1
Method Blank	<u> </u>							T					
Method Blank													

							Sample Description																	1			
Station	Sample	QA/QC	Easting	Northing	Elevation			oil	ı			%				Bedrock			1	Unit Above	Unit Below	Wet/Dry	Terrain	Trees	Comments	Sampler	Date
						Layer	Depth (cm)	Colour	PH	Gravel	Sand	Clay	Organic	Rock Type	Litho	Structure	Alteration	Mineralization	Mag Sus								
AS-01-300N	832001		629712	5871932		Fluvial gravel	70	pale brown		50	50		minor							Humus	?	Wet	flat, boggy	Jackpine, alder, lab tea	Looks like lake bottom sediment	MZ/DM/TB	06.11.2017
AS-01-250N	832451		629722.8	5871875	314.96									Mafic Volcanic	Green, fine grained, moderately foliated	FOL ~100° and is subvertical	Weak light green chlorite.	N/A	0.753				OC on edge of slightly higher ground	Jackpine, alder, lab tea		MZ/DM/TB	06.11.2017
AS-01-200N (org)	837249	837250 G900 3.19 3.20	629711	5871831		Ah	50	black				15	85							Humus	gravel	Wet	flat, boggy	Balsam, tamarack,alder,l ab tea	Water table is ~70cm below surface	MZ/DM/TB	06.11.2017
AS-01-200N (gravel)	832002		629710	5871830		Fluvial gravel	95	pale brown		50	50									Ah	?	Wet	flat, boggy	Balsam, tamarack,alder,l ab tea	Used auger	MZ/DM/TB	06.11.2017
AS-01-150N	837246		629705.3	5871779	317.60	Ah	40	black				35	65							Humus	boulders with minor gravel	Wet	flat, boggy	Small pine, lab tea, moss		MZ/DM/TB	06.11.2017
AS-01-100N	837248		629704.8	5871725	315.44	Ah	50	black				35	65							Humus	boulders	Wet	flat, boggy	Pine, lab tea, moss		MZ/DM/TB	06.11.2017
AS-01-050N			629707.5	5871675	313.27																				No Sample - Moss on boulders	MZ/DM/TB	06.11.2017
AS-01-000			629708.1	5871625	311.83																				No Sample - Moss on boulders	MZ/DM/TB	06.11.2017
AS-01-050S	837247		629704.4	5871578	314.71	Ah	60	black-dark brown				20	85							Humus	boulders	Wet		Large black spruce, alder, lab tea, moss	Increased dark brown coloured material compared to previous Ah samples.	MZ/DM/TB	06.11.2017
AS-01-100S	837245		629731.2	5871526	315.68	Clay / Ah	90	brown grey				100								Humus	?	Wet		Alder lab tea, pine	Moved 25m east to avoid large swamp. Used auger.	MZ/DM/TB	06.11.2017
AS-01-150S			629735	5871481	N/A																				No Sample - Moss on boulders	MZ/DM/TB	06.11.2017
AS-01-200S	832003		629706.8	5871428	314.71	Bf	40	golden brown			85	15								Ae	Bm	Damp	Slight hill on edge of boulder field	Pine, bircg, lab tea	Great soil profile: OR Ah-Ae-Bf-Bm	MZ/DM/TB	06.11.2017
AS-01-250S	832004		629709.3	5871374	316.40	Bf	40	golden brown			85	15								Ae	Bm	Damp	Well drained high ground	Pine, spruce, moss	Good sample	MZ/DM/TB	06.11.2017
AS-01-300S	832005		629703	5871327	315.44	Bf	15	golden brown			85	15								Ae	Bm	Damp	Well drained high ground	Pine, spruce, moss	Good sample	MZ/DM/TB	06.11.2017
Sample L1	832006		629557	5871698	312.55	B gravel	35	dark brown		25	75									Ae/boulde rs	Water	Wet	higher boulder field	pPine, alder	Or-Ae-Bf-Water. Lots of sub rounded boulderes and gravel within the Bf layer (poorly sorted - likely water transport)	MZ/DM/TB	06.11.2017

