We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Results of prospecting south Dalton lake 2018 prospecting

AU & base metals

South D'Alton Lake Project
Whiddon Township, Thunder Bay Mining Division
NTS# 52I/7

2018-06-30 Greg Smith

1122 ridgeway street E. Thunder Bay ON.

Contents

List of Tablesi	
List of Figuresi	
Introduction	
Location and Access	
Claims	
Geology4	
Previous Work6	
Recent work/ Fieldnotes and Pictures6	
Sample description	ļ
Sample location maps	
Daily log	
Costs of work	
Results	
QC25	
List of Tables	
Table 1: South D'Alton Project claim details	
List of Figures	
List of Figures	
Figure 1: Location South D'Alton Lake	
Figure 2 claim map	
Figure 3 Geology of area4	
Figure 4 Geology of property5	
Figure 5 quartz stringers in carbonate	
Figure 6 typical quartz in the mineralized areas8	,

Figure 7 carbonate sample	8
Figure 8 ultramafic sample L065071	
Figure 9 weathered surface in mineralizes zones	
Figure 10 sheared bedrock	g
Figure 11 Sample location overview area worked	
Figure 12 Sample location South west	12
Figure 13 Sample location Middle	13
Figure 14 Sample location North east	13
Figure 15 Daily traverse map	15

Introduction

This report is the results of the prospecting and sampling programme completed in June 2018.

The author was in the field and on each site location for the full duration of work.

Location and Access

The South D'Alton Lake Project is in Whiddon Township in the Thunder Bay Mining Division. The coordinates of the approximate centre of the claim group are 363827 East and 5590648 North (NAD 83, UTM Zone 16).

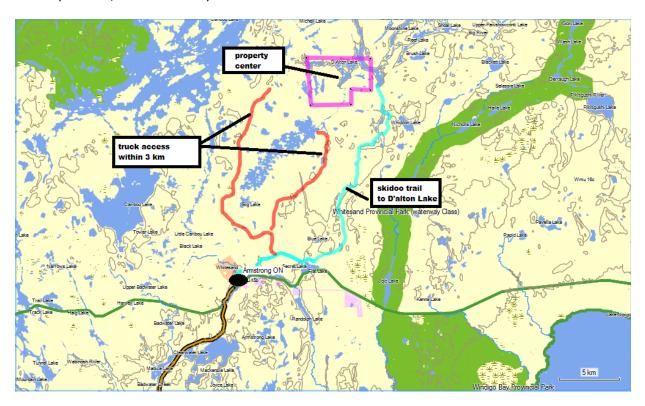


Figure 1: Location South D'Alton Lake

The South D'Alton Lake Project can be accessed by float plane approximately 18 kilometers North East from Armstrong ON. Wilderness North has a lodge within the boundaries of the claims of the South D'Alton Lake project.

There are 2 forestry roads one to the east and one to the south of the property that come within walking distance to the claim boundaries. Approx. 3 Km.

Winter access onto Dalton lake can be achieved by skidoo. There is a well traversed trail that is maintained by Armstrong locals. However, the use of several small lakes has made this a not viable trail for the 4X4 quad access.

Claims

The Property consists of 65 contiguous, un-patented mining claims (Table 1) that are 100% owned by the applicant. The programme focused on 12 claims.

Table 1: South D'Alton Project claim details.

Claim#	Anniversary Date	Area /# of Cells	Claim#	Anniversary Date	Area /# of Cells
114231	2019-03-05	1	245724	2019-03-05	1
126011	2019-03-05	1	249223	2019-03-05	1
131239	2019-03-05	1	249239	2019-03-05	1
137998	2019-03-05	1	249240	2019-03-05	1
137999	2019-03-05	1	253237	2019-03-05	1
138000	2019-03-05	1	253238	2019-03-05	1
138001	2019-03-05	1	253239	2019-03-05	1
138002	2019-03-05	1	261985	2019-03-05	1
148495	2019-03-05	1	265292	2019-03-05	1
148496	2019-03-05	1	265293	2019-03-05	1
151997	2019-03-05	1	272022	2019-03-05	1
153904	2019-03-05	1	272023	2019-03-05	1
166695	2019-03-05	1	285841	2019-03-05	1
166696	2019-03-05	1	285842	2019-03-05	1
170558	2019-03-05	1	300506	2019-03-05	1
175753	2019-03-05	1	306038	2019-03-05	1
175754	2019-03-05	1	306039	2019-03-05	1
175755	2019-03-05	1	316593	2019-03-05	1
185087	2019-03-05	1	317841	2019-03-05	1
185088	2019-03-05	1	319723	2019-03-05	1
187178	2019-03-05	1	319724	2019-03-05	1
190023	2019-03-05	1	319725	2019-03-05	1
190024	2019-03-05	1	322551	2019-03-05	1
204591	2019-03-05	1	322552	2019-03-05	1
206004	2019-03-05	1	329388	2019-03-05	1
219344	2019-03-05	1	329389	2019-03-05	1
227315	2019-03-05	1	330554	2019-03-05	1
227316	2019-03-05	1	333115	2019-03-05	1
227317	2019-03-05	1	337904	2019-03-05	1
232709	2019-03-05	1	337905	2019-03-05	1
239430	2019-03-05	1	337906	2019-03-05	1
337908	2019-03-05	1	337907	2019-03-05	1
345479	2019-03-05	1			
				-	

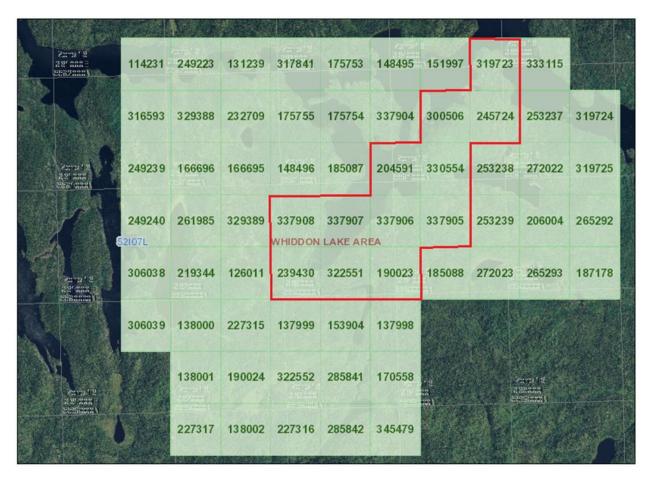


Figure 2 claim map

Geology

REGIONAL GEOLOGY

The area is underlain by intrusive and extrusive rocks of Precambrian age, located near the northern margin of the Wabigoon greenstone belt, lying within the Superior Province of the Canadian Shield. The metasedimentary English River sub province is found 10 miles to the north.

Archean Mafic metavolcanics underlie most of the claim block and surrounding terrain. Biotite - tonalite forms an early intermediate batholithic complex which is intruded by later granitoid plutons, such as the D'Alton Lake biotite-granite. Proterozoic diabase dykes and cone sheets intrude all previous lithologies and are associated with the development of the much younger Mid-Continent Rift system.

PROPERTY GEOLOGY

The eastern 2/3 of the property is underlain by mafic volcanic flows, trending ENE with vertical dips. This sequence has been intruded by gneissic biotite-tonalite, interfingering from a large batholithic body to the west. Both assemblages are cut by the 3-mile diameter biotite granite D'Alton Lake Pluton which underlies the NW corner of the claim block. The claims are traversed by an EW late Precambrian (Proterozoic) dyke. This lopsided, funnel shaped structure, 1500"wide, is related to the opening of the mid-continent rift through Lake Superior and associated mafic intrusive and extrusive activity. A southwesterly trending flexure is evident in the trace of the diabase dyke, underlying the southern arm of D'Alton Lake. This coincides with an interpreted synclinal axis in the mafic volcanic sequence. This trend parallels the SE contact of the D'Alton Lake Pluton. No shear zone was noted here during Ontario Geological Survey (OGS) mapping in 1980; however, the northern contact of the pluton is shown with an obvious I mile long sinistral displacement (OGS Map 2485). The NE extension of this shear passes close to the New Jersey Zinc sulfide occurrences at the north end of D'Alton Lake.

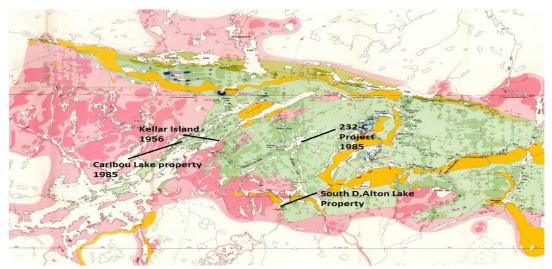


Figure 3 Geology of area

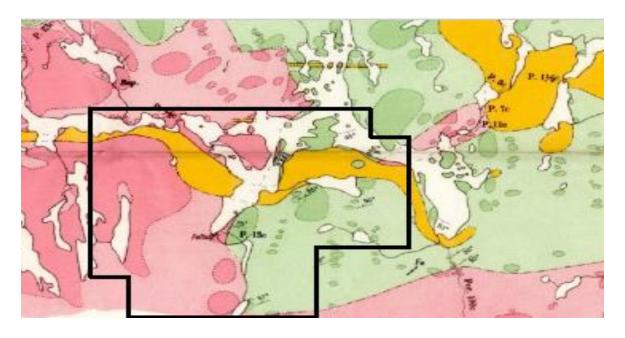


Figure 4 Geology of property

Previous Work

The project area has had limited exploration to date.

A limited prospecting was completed in 1997 by Eino Ranta (assessment file # 2.17940)

Two gossan sites are noted and sampled. The larger area to the south is confirmed to be 150 feet wide. Two pits approx. 4 feet deep were dug and hosted a sample 5.8 OPT/Au. This area has been tested twice.

The second area 80 feet by 40 feet was blasted and quartz stringers running parallel to pyrite veins were sampled. This area too, hosted several multi ounce Au samples.

Previous work property highlights included:

```
1<sup>#</sup> 5.800 opt/Au, 0.75%/cu 4<sup>#</sup> 1.484 opt/Au
2<sup>#</sup> 1.962 opt/Au 5<sup>#</sup> 0.768 opt/Au
3<sup>#</sup> 1.548 opt/Au 6<sup>#</sup> 0.521 opt/Au
```

The D'Alton Lake mineralization may be similar to the shear zone hosted gold/chalcopyrite mineralized quartz veins at Kellar Island on Caribou Lake located 10 km to the northwest.

Recent work/ Fieldnotes and Pictures.

47 samples were collected for assay. Areas of interest were Georeferenced and photographed. The mineralized zones on the south side Shores of Dalton lake appear to be a hydrothermal alteration related to a shear zone trending 70 degrees that is found about 150 meters South offshore. The width and length of the shear is not yet determined however, this trip we had tracked it for at least. 25 m wide and had found it to run straight across the entire area visited. 1700m. long.

Quartz and quartz stringer veins are found running parallel to the shear and cut the mafic and ultra mafic host rock The Quartz is often a course grained white colour or a smoky fine grain. Quartz stringers are found in many areas.

Disseminated grains, irregular shaped patches cm large and veins of Pyrite chalcopyrite are common in the white/grey quartz. There is course grained clear grey quartz found at the waterfalls and hosts large 1 inch plus veins of chalcopyrite and Pyrite. These rocks were not tested but a sample was collected. The rushing waterfalls had broken the bedrock and the exact location could not be determined.

There are two known surficial mineralized areas located on the property with moderate exposure visible. The area is cut by carbonate material 10 degrees on the west side of the falls but is running parallel with the shears east of the falls, south end of Dalton lake. There have been 10 areas of carbonated alteration located within the boundaries of the two zones. They appear to be found approx. 10 to 20 meters away from bedrock containing larger concentrates of Pyrite and chalcopyrite. The carbonated rock weathers a rust red. It is a medium grain and commonly a dull grey. Dull purple, green and red were also observed and sampled. it has disseminated granular Pyrite and often quartz stringers. Sizes vary from several inches up to 8 feet wide.

The Carbonate material has small black flakes that are magnetic. Magnetite? A lot of the material is easily broken and crumbled when struck.

The south west zone is 30 meters wide and runs for 190 meters. it is mixed forest the ground is moss covered or sand and gravel of various depths. A few inches to several feet. The zone is interrupted to the east as it enters low lands/ swamp. The extent to the west is unknown but appears to transition from mafic volcanic to granitic bedrock approx. 30 m west of the falls.

The North East zone is about 10 meters by 25m and its extent is yet to be determined. Gossanous material is found 40 meters to the north, north west but is mostly smaller rounded boulders. The overburden is sand and gravel of unknow depths.

The middle of the property is moss covered bedrock approx. 5 inches thick. Ultramafic rocks are present with small patches of spinifex texture with minor amounts of Pyrite. Quartz veins run parallel with the shear and are several inches to close to a foot wide. A mica schist is present adjacent to some quartz veins. Tourmaline is present throughout the quartz as veins within the fractures. A sheared gabbro was located and is 4 feet wide and is exposed for about 20 feet. Closer to the lake there are several large angular gossanous boulders. They have 10% sulfide mineralization and are like the bedrock in the two zones.

Figure 5 quartz stringers in carbonate

Figure 6 typical quartz in the mineralized areas.

Figure 7 carbonate sample

Figure 8 ultramafic sample L065071

Sample description

SAMPLE NAME	LOCATION UTM	DESCRIPTION	MINERALIZATION
LO65051	16 U 363828 5590633	ultra mafic	Ру, СоРу
LO65052	16 U 363860 5590535	sheared gabbro	no visible mineralization
LO65053	16 U 363852 5590534	qtz tourmaline	minor amounts of Py
LO65054	16 U 363877 5590513	qtz in sheared gabbro	no visible mineralization
LO65055	16 U 364327 5591061	mafic qtz	no visible mineralization
LO65056	16 U 364347 5591007	qtz, qtz stringers, carbonate	Py, CoPy disseminated
LO65057	16 U 364347 5591007	qtz, qtz stringers, carbonate	Py, CoPy disseminated
LO65058	16 U 364347 5591007	qtz, qtz stringers, carbonate	Py, CoPy disseminated
LO65059	16 U 364348 5591012	qtz, qtz stringers, carbonate	Py, CoPy disseminated
LO65060	16 U 364349 5591016	qtz, qtz stringers, carbonate	Py, CoPy disseminated
LO65061	16 U 364349 5591016	qtz, qtz stringers, carbonate	Py, CoPy disseminated
LO65062	16 U 364349 5591016	qtz, qtz stringers, carbonate	Py, CoPy disseminated
LO65063	16 U 363411 5590241	white and grey qtz, carbonate	Ру
LO65064	16 U 363411 5590241	white and grey qtz, carbonate	Ру
LO65065	16 U 363411 5590241	white and grey qtz, carbonate	Ру
LO65066	16 U 363411 5590241	white and grey qtz, carbonate	Ру
LO65067	16 U 363421 5590236	white and grey qtz	grey qtz has Py, CoPy
LO65068	16 U 363412 5590244	white and grey qtz	grey qtz has Py
LO65069	16 U 363416 5590239	white and grey qtz	grey qtz has Py
LO65070	16 U 363383 5590240	qtz boulder	no visible mineralization
LO65071	16 U 363377 5590234	qtz, qtz carbonate	Py bornite
LO65072	16 U 363375	mafic qtz	Ру

	5590232		
LO65073	16 U 363365 5590227	80% PY Vein some qtz	Ру
LO65074	16 U 363350 5590224	qtz	biotite
LO65075	16 U 363347 5590221	dull green carbonate	PY disseminated
LO65076	16 U 363341 5590208	qtz vein	CoPY, PY
LO65077	16 U 363338 5590226	mafic	Py, CoPY, magnetic
LO65078	16 U 363330 5590235	qtz carbonate	tourmaline, CoPy,Py
LO65079	16 U 363313 5590223	mafic qtz	veins Py CoPy
LO65080	16 U 363308 5590218	qtz carbonate	globby py, veins, disseminated
LO65081	16 U 363308 5590218	qtz carbonate	ру
LO65082	16 U 363300 5590209	carbonate red, green hue, vuggy	py, magnetic black flakes
LO65083	16 U 363300 5590209	carbonate red, green hue, vuggy	py, magnetic black flakes
LO65084	16 U 363300 5590209	grey, clear qtz	ру СоРу
LO65085	16 U 363300 5590209	vuggy carbonate vein	magnetite
LO65086	16 U 363300 5590209	carbonate red, green hue, vuggy	py, magnetic black flakes
LO65087	16 U 363293 5590213	clear course grained qtz, heavy	py, tourmaline vein
LO65088	16 U 363293 5590213	vuggy course grained grey qtz	no visible mineralization
LO65089	16 U 363299 5590209	grey white carbonate, sugary Qtz, vuggy	Granular Dull Grey Py
LO65090	16 U 363325 5590195	mafic, qtz	Py/CoPy disseminated/ veins
LO65091	16 U 363324 5590193	brown vuggy rust heavy	no visible mineralization
LO65092	16 U 363321 5590198	mafic/ veins of sulfide sheared	Py/CoPy disseminated/ veins
LO65093	16 U 363317 5590206	qtz / qtz carbonate	Py/CoPy disseminated minor amounts
LO65094	16 U 363321 5590195	QTZ CLEAR WHITE COARSE GRAINED QTZ	Green staining Malachite?
LO65095	16 U 363293 5590193	GREY & WHITE COURSE GRAINED QTZ	Py/CoPy disseminated

LO65096	16 U 363298	GREY QTZ MED GRAIN MAFIC PY	Py/CoPy disseminated
	5590192	VEIN 1/4 INCH	

Sample location maps

Figure 11 Sample location overview area worked

Figure 12 Sample location South west

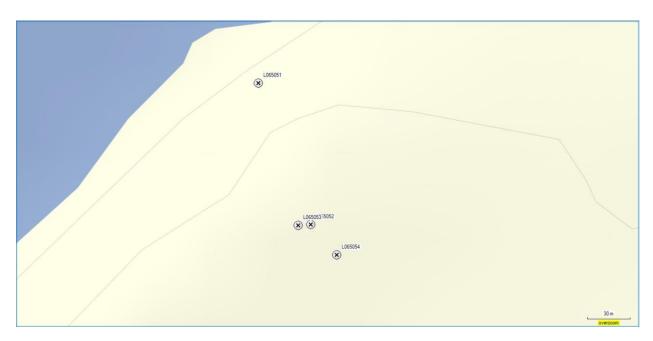


Figure 13 Sample location Middle

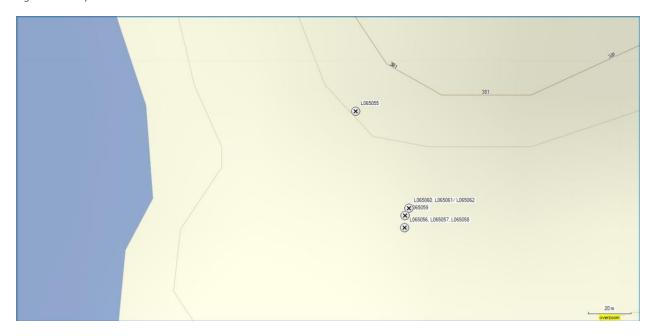


Figure 14 Sample location North east

Daily log

DATE	EVENT	NOTES
JUNE 7	GATHERED SUPPLIES PACKED	
2018	GATTIENES SOLVEILES PAGNES	
JUNE 8	DROVE TO TEMPORARY SITE 1	
2018		
JUNE 9	2 GUYS WALKED INTO SOUTH END	SEVERAL IRON FORMATIONS IN THE AREA LOTS OF
2018	AND STARTED TO EXPLORE	MINERALIZATION
	1 GUY MOVED CAMP SUPPLIES UP	
	THE OLD TRAIL	
JUNE	2 GUYS WALKED INTO SOUTH END	STARTED TO COLLECT SAMPLES IN THE SOUTH END.
10	AND STARTED TO EXPLORE	CARBONATE AREAS WERE LOCATED, WE FOUND OUR
2018	1 GUY MOVED CAMP SUPPLIES UP	ACCESS ROUTE FOR CROSSING THE RIVER.
	THE OLD TRAIL	CAMP WAS SET UP CLOSE TO WORK SITE ABOUT 1 MILE
		AWAY TO THE WEST.
JUNE	3 GUYS PROSPECTED AND	NOTHING WAS LOCATED. THERE WAS A LOT OF HARD
11	EXPLORED THE AREA OUTSIDE THE	WALKING. OUTCROPS ARE SCARCE. NOTHING OF
2018	KNOWN MINERALIZED AREA	INTEREST LOCATED.
JUNE	3 GUYS PROSPECTED AND	MOSTLY BROKE ROCKS AND UNCOVERED AREAS OF
12	COLLECTED SAMPLES SOUTH WEST	MINERALIZATION
2018	END	
JUNE	3 GUYS PROSPECTED AND	A NEW IRON FORMATION WAS FOUND.
13	COLLECTED SAMPLES SOUTH WEST	CARBONATE ROCKS ARE RUNNING PARALLEL WITH THE
2018	MIDDLE AREA	ZONE OF MINERALIZATION.
JUNE	DEMOBILIZED TO THUNDER BAY	THE ROUTES WERE UN REALISTIC TO ACCESS THE
14		DEEPER AREA. WE DECIDED TO RETURN WITH A BOAT
2018		AND FLY IN.
JUNE	OFF WORK	SOME SUPPLIES WERE BOUGHT
15		
2018	OFF WORK	COME CURRUES WERE ROUGHT
JUNE	OFF WORK	SOME SUPPLIES WERE BOUGHT
16		
2018	1400UJ750	LUNARUE TO SIVIN
JUNE	MOBILIZED	UNABLE TO FLY IN
17	ARMSTRONG	1 GUY WENT BACK TO ORIGINAL CAMP
2018	5,5,4,10	
JUNE	FLEW IN	GOT THE BOAT READY EXPLORED THE CENTER OF THE
18		PROPERTY
2018		

JUNE	3 GUYS PROSPECTED	COLLECTED SAMPLES. OUTCROPS ARE SCARCE.
19	CENTER	MANY QTZ VEINS. MOSTLY ULTRA MAFIC ROCKS WERE
2018		FOUND. LITTLE MINERALIZATION.
JUNE	3 GUYS PROSPECTED	EXPLORED AREA. HARD WALKING. LOTS OF BLOWN
20	NORTH EAST AREA	DOWN POPLAR. FEW OUTCROPS.
2018		
JUNE	3 GUYS PROSPECTED AND	PAST SAMPLED AREA WAS REVISITED. SAMPLES WERE
21	COLLECTED SAMPLES	COLLECTED.
2018	NORTH EAST AREA	
JUNE	REMAINING IN FIELD SAMPLES	GEAR WAS PACKED SAMPLES WERE BAGGED AND
22	WERE COLLECTED	PLANE WAS RIGHT ON TIME.
2018	DEMOBILIZED	

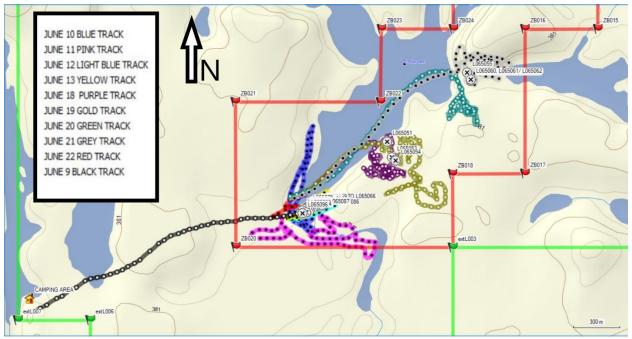


Figure 15 Daily traverse map

Costs of work

PROSPECTING & SAMPLING					TOTAL
			\$		
GREG SMITH	10	DAYS	275.00 \$	A DAY	\$ 2,750.00
COTY MANNILA	10	DAYS	۶ 275.00	A DAY	\$ 2,750.00
GHESLAIN GERVAIS	10	DAYS	\$ 275.00	A DAY	\$ 2,750.00

TRAVEL WAGES

			\$			
GREG SMITH	4	half/day	100.00	A DAY	\$	400.00
COTVANANINIIA	4	l 10/-1 -	\$	A D AV	_	400.00
COTY MANNILA	4	half/day	100.00 \$	A DAY	\$	400.00
GHESLAIN GERVAIS	4	half/day	100.00	A DAY	\$	400.00
ASSAYS					\$	1,478.80
MATERIALS						
BAGS, FLAG TAPE ETC.					\$	159.38
CAMP SUPPLIES						
S S 2.25						
FUEL OIL ETC.					\$	228.80
RENTAL EQUIPMENT						
PROSPECTOR TENT, GENERATOR,	CHAINS	AW			\$	1,900.00
TRAVEL						
110.00						
			\$			
TRUCK KM	1100	KM	0.50	PER KM	\$	550.00
FLOAT PLANE					\$	1,446.40
						·
			\$	PER		
FOOD	30	DAYS	25.00	DAY	\$	750.00
GRAND TOTAL					\$	15,963.38

Results

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7 Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218 www.alsglobal.com/geochemistry To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1

Page: 1 Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 This copy reported on 11-JUL- 2018 Account: HTGEYA

CERTIFICATE TB18155431

Project: DALTON 2018

This report is for 41 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 29- JUN- 2018.

The following have access to data associated with this certificate:

SAMPLE PREPARATION		
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
CRU- 31	Fine crushing - 70% < 2mm	
SPL- 21	Split sample - riffle splitter	
PUL- 31	Pulverize split to 85% < 75 um	
LOG- 21	Sample logging - ClientBarCode	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	

ANALYTICAL PROCEDURES			
ALS CODE	DESCRIPTION	INSTRUMENT	
PGM-1CP23	Pt. Pd. Au 30g FA ICP	ICP- AES	
Au- AAZ4	Au 50g FA AA finish	AAS	
Au- AA23	Au 30g FA- AA finish	AAS	
ME-ICP61	33 element four acid ICP- AES	ICP- AES	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

***** See Appendix Page for comments regarding this certificate *****

Signature: Colin Ramshaw, Vancouver Laboratory Manager

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 2 · A Total # Pages: 3 (A · C) Plus Appendix Pages Finalized Date: 10 · JUL - 2018 Account: HTGEYA

(ALS))								С	ERTIFIC	ATE O	F ANAL	YSIS	TB181	55431	
ample Description	Method Analyte Units LOD	WEI- 21 Recvd Wt. kg 0.02	Au- AA24 Au ppm 0.005	ME-ICP61 Ag ppm D.S	ME- ICP61 Al % 0.01	ME-ICPG1 As ppm 5	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01 7.29	ME-ICP61 Ga ppm 10
065058 065059 065061 065066	-	1.09 0,43 0.89 0.86	0.006 0.005 <0.005 0.005	<0.5 <0.5 <0.5 <0.5 <0.5	0.02 0.02 0.06 1.82 0.09	<5 <5 <5 <5 <5	<10 <10 <10 100 <10	<0.5 <0.5 <0.5 0.6 <0.5	<2 <2 <2 2 2	0.57 0.26 1.42 0.74 1.24	<0.5 <0.5 <0.5 <0.5 <0.5	29 15 19 1	17 25 15 16 24	32 49 49 18 234	7.58 4.51 2.45 5.64	<10 <10 10 <10
065069 065071 065083 065056 065057 065060		1.05 1.14 0.79 0.64 1.27 0.96	0.006 0.007 <0.005 0.005 <0.005 <0.005	<0.5 <0.5 <0.5	3.99 D.02	<5 <5	140	1,2 <0.5	<2 2	9.91 0.30	0.5 <0.5	50 <1	496 7	49 6	7.81 2.52	10 <10
.065062 .065063 .065064 .065065 .065067		0.97 0.41 0.31 0.47 0.83	<0.005 <0.005 <0.005 <0.005 <0.005							J. 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 -						
.065068 .065078 .065080 .065081 .065082		0.70 0.43 0.77 1.45 0.52	0.005 <0.005 <0.005 <0.005 <0.005									to the second				
L065084 L065086 L065089 L065072 L065077		0.38 1.40 0.78 1.01 1.50	<0.005 <0.005 <0.005	<0.5 <0.5	0.55 0.43	<5 <5	<10 <10	<0.5 0.6	<2 3	1.02 2.38	<0.5 0.7	4 5 <1	13 14	148 55	4,25 19.95	<10 <10
L065091 L065094 L065053 L065054 L065055		0.54 0.76 0.90 0.25 0.46		<0.5 <0.5	0.10 0.04	<5 <5	<10 <10	<0.5 <0.5	2	0.10 0.36	<0.5 <0.5	<1	13	14	3.74	<10
L065074 L065076 L065087 L065088 L065092		0.75 1.05 1.95 1.86 1.68							14512							
L065093 L065095 L065051 L065085 L065052		0.60 1.90 1.06 0.58 0.96		<0.5 <0.5	7.16 0.06	7 <5	240 10	0.9 <0.5	<2 2	4.27 0.64	<0.5 <0.5	33 1	136 6	113 6	4.42 4.47	20 <10

^{*****} See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1

Page: 2 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

(ALS))							1	С	ERTIFIC	ATE O	F ANA	LYSIS	TB181	55431	
Sample Description	Method Analyte Units LOD	ME-ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICPGI Mg % 0.01	ME- ICP61 Mn ppm S	Me-ICP61 Mo ppm 1	ме- ICP61 Na 94 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME-ICP61 S % 0.01	ME-ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME-ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME- ICP61 TI % 0.01
L065058 L065059 L065061 L065066 L065069		<0.01 <0.01 <0.01 0.94 <0.01	<10 <10 <10 <10 <10	0.12 0.19 0.08 0.23 0.32	303 485 642 284 596	1 1 1 1 2	0.02 0.01 0.01 0.54 0.01	6 14 8 3 31	250 180 80 80 130	<2 <2 <2 5 5	2.98 3.54 1.81 0.43 3.48	<5	<1 <1 <1 <1 <1	1 1 1 22 2	<20 <20 <20 <20 <20 <20 <20	<0.01 <0.01 <0.01 0.01 <0.01
L065071 L065083 L065056 L065057 L065060		0.72 0,01	10 <10	9.60 0.31	1625 567	<1 3	0.80 0.01	379 1	280 80	<2 <2	0.79 0.47	<5 <5	38 <1	215 2	<20	<0.01
L065062 L065063 L065064 L065065 L065067				allera e						40-7-			6			
L065068 L065078 L065080 L065081 L065082																
L065084 L065086 L065089 L065072 L065077		0.04 0.01	<10 <10	0.39 2.32	781 14850	1 <1	0.11 0.04	6 12	70 70 50	<2 <2 40	1.39 8.16	<5 <5 <5	<1 1	18 4	<20 <20 <20	0.01 0.01
L065091 L065094 L065053 L065054 L065055		0.03 0.01	<10 <10	0.05 0.25	411 578	1	0.02 0.01	1	30	<2	0.10	<5	<1	2	<20	<0.01
L065074 L065076 L065087 L065088 L065092	2												- Lucia	- tears		
L065093 L065095 L065051 L065085 L065052		0.91 0.05	<10 <10	2.48 0.58	892 1115	1 2	2.40 0.02	95 2	50 150	18 3	0.51 0.20	7 <5	18 <1	172 2	<20 <20	0.26 <0.01

^{*****} See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1

Page: 2 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10-JUL-2018 Account: HTGEYA

ALS)								CERTIFICATE OF ANALYSIS TB181554				
~L3	,								CI	KITFIC	ATE OF ANALTSIS	1010101	
nple Description	Method Analyte Units LOD	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	PGM-ICP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0,005	PGM-ICP23 Pd ppm 0.001	Au-AA23 Au ppm 0.005			
55058		<10	<10	1	<10	5							
5059		<10	<10	1	<10	10							
55061		<10	<10	2	<10	9							
		<10	<10	3	<10	9							
55066		<10	<10	3	<10	11							
55069		<10	<10	192	<10	72		W-12					
55071		<10	<10	2	<10	17							
55083		1 -10	-10	-									
55056		1											
65057		1											
55060													
65062													
65063													
65064													
55065		4											
5067													
65068													
65078													
65080		į.											
65081		1											
65082													
65084													
65086													
65089			<10	4	<10	20				<0.005			
65072		<10	<10	13	<10	323				0.005			
65077		<10			<10	23				0.020			
65091		<10	<10	3	<10	26				0.005			
65094		<10	<10	4	<10	20				< 0.005			
55053		1								<0.005			
55054		1								<0.005			
55055										0.005			
5074	100									<0.005			
5076		1								< 0.005			
65087		1								< 0.005			
		1								0.010			
065088		1								<0,005			
065088 065092										<0.005			
065092									0.006	-5.000			
65092 65093		100				F-0							
065092 065093 065095		10	<10	122	<10	50	< 0.001						
		10 <10	<10 <10	122 4	<10 <10	50 42	<0.001 <0.001 <0.001	<0.005	0.001				

^{*****} See Appendix Page for comments regarding this certificate *****

TO: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1

Page: 3 - A Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10 - JUL - 2018 Account: HTGEYA

Project:	DALTON	2018

ALS)							Proje	ect: DALT	ON 2018 ERTIFIC	ATE O	F ANAL	YSIS	TB181	55431	
ample Description	Method Analyte Units LOD	WEI- 21 Recyd Wt. kg 0.02	Au- AA24 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME- ICP61 Al % 0.01	ME-ICP61 As ppm S	ME-ICP61 Ba ppm 10	ME-ICP61 Be ppm 0.5	ME-ICP61 Bi ppm 2	ME-ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME-ICP61 Co ppm 1	ME- ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME-ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10
065075		0.60														
		1														

^{*****} See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1

Page: 3 - B Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

Project:	DALTON	2018

ALS	S							Proje	ct: DALT	ON 2018	ATEO	E ANAI	VCIC	TB181	55431	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							. A.C. 1.C.D.C.1	ME-ICP61	ME-ICP6T	ME-ICP61	ME-ICP61	ME-ICP61	ME- ICP61	ME- ICP61	ME-ICP61	ME- ICP61
Sample Description	Method Analyte Units LOD	ME- ICP61 K % 0.01	ME-ICP61 La ppm 10	ME-ICP61 Mg % 0.01	ME-ICP61 Mn ppm 5	ME-ICP61 Mo ppm 1	ME-1CP61 Na % 0.01	NI ppm 1	P ppm 10	Pb ppm 2	S % 0.01	Sb ppm 5	Sc ppm 1	Sr ppm 1	Th ppm 20	Ti % 0.01
065075																
		-														
		1														

***** See Appendix Page for comments regarding this certificate *****

ALS Canada Ltd.
2103 Dollarton Hwy
North Vancouver 8C V7H 0A7
Phone: +1 (604) 984 0221 Fax: +1 (604) 984 0218
www.alsglobal.com/geochemistry

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1

Page: 3 - C Total # Pages: 3 (A - C) Plus Appendix Pages Finalized Date: 10-JUL-2018 Account: HTGEYA

Decinet	DALTON 2018	

A. E								Proje	ct: DALTO	ON 2018			21
ALS	,								CI	RTIFICATE	OF ANALYSIS	TB181554	31
Sample Description	Method Analyte Units LOD	ME-ICP61 TI ppm 10	ME-ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME-ICP61 Zn ppm 2	PGM-1CP23 Au ppm 0.001	PGM-ICP23 Pt ppm 0.005	Pd ppm 0.001	Au- AA23 Au ppm 0.005			
.065075							0.003	<0.005	<0.001				
		}											
-													
		ļ											
		ĺ											
		1											
1							10000					10 0000	

***** See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 10- J UL- 2018 Account: HTGEYA

Project: DALTON 2018

CERTIFICATE OF ANALYSIS TB18155431

		CERTIFICATE COM	MENTS									
	LABORATORY ADDRESSES											
Applies to Method:	Processed at ALS Thunder Ba CRU- 31 PUL- QC	ay located at 645 Norah Crescent, CRU- QC SPL- 21	Thunder Bay, ON, Canada LOG- 21 WEI- 21	PUL- 31								
Applies to Method:	Processed at ALS Vancouver Au- AA23	located at 2103 Dollarton Hwy, No Au- AA24	orth Vancouver, BC, Canada. ME- ICP61	PGM- ICP23								

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 1 Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10-JUL- 2018 This copy reported on 11-JUL- 2018 Account: HTGEYA

QC CERTIFICATE TB18155431

Project: DALTON 2018 This report is for 41 Rock samples submitted to our lab in Thunder Bay, ON, Canada on 29- JUN- 2018. The following have access to data associated with this certificate: $\ensuremath{\mathsf{GREG\,SMITH}}$

	SAMPLE PREPARATION							
ALS CODE	DESCRIPTION							
WEI- 21	Received Sample Weight							
CRU- 31	Fine crushing - 70% < 2mm							
SPL- 21	Split sample - riffle splitter							
PUL- 31	Pulverize split to 85% < 75 um							
LOG- 21	Sample logging - ClientBarCode							
CRU- QC	Crushing QC Test							
PUL- QC	Pulverizing QC Test							

ANALYTICAL PROCEDURES								
ALS CODE	DESCRIPTION	INSTRUMENT						
PGM- ICP23	Pt. Pd. Au 30g FA ICP	ICP- AES						
Au- AA24	Au 50g FA AA finish	AAS						
Au- AA23	Au 30g FA- AA finish	AAS						
ME- ICP61	33 element four acid ICP- AES	ICP- AES						

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

**** See Appendix Page for comments regarding this certificate *****

Signature:
Colin Ramshaw, Vancouver Laboratory Manager

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 2 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

ALS									QC	CERTIF	ICATE	OF AN	ALYSIS	TBI	315543	1
ample Description	Method Analyte Units LOD	Au- AA24 Au ppm 0.005	ME- ICP61 Ag ppm 0.5	ME- ICP61 AI % 0.01	ME- ICP61 As ppm 5	ME- ICP61 Ba ppm 10	ME- ICP61 Be ppm 0.5	ME- ICP61 Bi ppm 2	ME- ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME- ICP61 Co ppm 1	ME- ICP61 Cr ppm 1	ME- ICP61 Cu ppm 1	ME- ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME- ICP6 K % 0.01
ample bescription	LOD	0.003					STAN	IDARDS								
						500	1.0	3	2.19	1.4	44	261	5940	4.87	20	2.97
DN- CM- 34			3.6	6.70	104 90	500 430	<0.5	<2	1.83	<0.5	37	217	5370	4.26	<10	2.51 3.09
arget Range - Lower B	ound		2.5 4.9	5.88 7.21	122	610	2.1	8	2.25	2.0	47	267	6190	5.23	40	3.09
Upper B	ound	7.24	4.0		S - NOOR STATE OF ST											
G913-10		7.12														
3913-10 Farget Range - Lower B	lound	6.66														
Upper B	lound	7.52														
CPP- 14																
Target Range - Lower E Upper E	Bound Bound															
JK- 17																
Target Range - Lower I	Bound															
Upper I	Bouna	0.512														
LEA- 16		0.495														
LEA- 16 Target Range - Lower	Round	0.466														
Upper Upper	Bound	0.536			COLUMN 1	070	2.7	9	2.21	18.7	97	86	8240	5.32	20	2.99
OCCeo08			19.7	6.45	116	670 700	1.8	6	1.98	16.2	86	78	7800	4.81	<10	2.59
Target Range - Lower	Bound	1	17.7	6.07	102 136	980	4.1	15	2.44	21.0	108	98	8980	5.91	40	3.19
Upper	Bound		22.7	7.44	130	900	7.1	NE VANDON TOUR								
OREAS 503c		1														
Target Range - Lower	Bound															
	Bound	0.694														
OREAS 503c	Round	0.651														
Target Range - Lower	Bound	0.745														
OPEAS 503c		TENNA OF PERSONS														
Target Range - Lower	Bound															
Upper	Bound															
PK2		1														
Target Range - Lower	Bound															
Upper	Bound															
1																
		I.														

^{*****} See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 2 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

ALS	,								QC	CERTIF	ICATE	OF AN	ALYSIS	TRIS	315543	1
ample Description	Method Analyte Units LOD	ME-ICP61 La ppm 10	ME- ICP61 Mg % 0.01	ME- ICP61 Mn ppm 5	ME- ICP61 Mo ppm 1	ME- ICP61 Na % 0.01	ME- ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME- ICP61 Pb ppm 2	ME- ICP61 S % 0.01	ME- ICP61 Sb ppm 5	ME-ICP61 Sc ppm 1	ME- ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME- ICP61 Ti % 0.01	ME- ICP61 TI ppm 10
umpie Donnip	LOD						STAN	IDARDS								
CDN- CM- 34 Target Range - Lower Upper	Bound Bound	20 <10 40	3.73 3.29 4.05	466 399 499	305 269 331	0.76 0.66 0.83	251 220 271	1260 1110 1370	19 19 29	3.14 2.70 3.32	7 <5 17	16 14 19	231 204 251	<20 <20 40	0.51 0.43 0.55	<10 <10 20
G913-10 G913-10 Target Range - Lower GPP-14 Target Range - Lower Upper	Bound Bound Bound Bound															
LEA- 16 LEA- 16 Target Range - Lowe Uppe OGGeo08 Target Range - Lowe Uppe OREAS 503c	r Bound r Bound r Bound r Bound	20 <10 60	1.20 1.11 1.38	501 447 557	899 841 1030	1.83 1.62 2.00	8790 8000 9770	850 760 950	7380 6510 7970	2.81 2.51 3.09	26 14 40	9 8 13	247 223 275	<20 <20 60	0.40 0.35 0.45	<10 <10 20
OREAS 503c Target Range - Lowe Uppe OREAS 503c Target Range - Low	er Bound er Bound er Bound er Bound er Bound															
Upp	er Bound															

^{*****} See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 2 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

Method Analyte Units ample Description LOD	ME- ICP61 U ppm 10	ME-ICP61 V ppm 1	ME-ICP61 W ppm 10	ME- ICP61 Zn ppm 2	PGM-ICP23 Au ppm 0.001	PGM- ICP23 Pt ppm 0.005	PGM- ICP23 Pd ppm 0.001	Au- AA23 Au ppm 0.005	20		
LOD						STAN	IDARDS				
CDN- CM- 34 Farget Range - Lower Bound Upper Bound	<10 <10 20	168 149 184	30 <10 50	203 176 219							
G913-10 G913-10 Target Range - Lower Bound											
Upper Bound GPP- 14					0.910 0.853	0.513 0.468	0.479 0.451				
Target Range - Lower Bound Upper Bound					0.965	0.538	0.511	2.01			
JK- 17 Target Range - Lower Bound Upper Bound								1.875 2.12		*	
LEA- 16 LEA- 16											
Target Range - Lower Bound Upper Bound	<10	86	<10	7020							
OGGeo08 Target Range - Lower Bound Upper Bound	<10 30	77 97	<10 30	6500 7950				0.698			
OREAS 503c Target Range - Lower Bound Upper Bound								0.651 0.745			
OREAS 503c Target Range - Lower Bound											
Upper Bound	5				0.692	<0.005	800.0				
Target Range - Lower Bound Upper Bound PK2	B				5.14	5.00	6.07 5.56				
Target Range - Lower Bound Upper Bound					4.50 5.07	4.46 5.04	6.27				

^{*****} See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 3 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

ALS							QC CERTIFICATE OF ANALYSIS TB181554						TB1	815543	<u> </u>	
Me An	ethod nalyte Inits	Au- AA24 Au ppm 0.005	ME-ICP61 Ag ppm 0.5	ME- ICP61 Al % 0.01	ME- ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME- ICP61 Be ppm 0.5	ME- ICP61 Bi ppm 2	ME- ICP61 Ca % 0.01	ME-ICP61 Cd ppm 0.5	ME- ICP61 Co ppm 1	ME-ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME- ICP61 Fe % 0.01	ME-ICP61 Ga ppm 10	ME- ICP61 K % 0.01
	-						BL	ANKS								
LANK arget Range - Lower Bou Upper Bou LANK LANK LANK Target Range - Lower Bot Upper Bot	und und und und und	<0.005 <0.005 <0.005 <0.005 0.010	<0.5 <0.5 1.0	<0.01 <0.01 0.02	<5 <5 10	<10 <10 20	<0.5 <0.5 1.0	<2 <2 <4	<0.01 <0.01 0.02	<0.5 <0.5 1.0	<1 <1 2	<1 <1 2	<1 <1 2	<0.01 <0.01 0.02	<10 <10 20	<0.01 <0.01 0.02
Оррег во	unu						DUP	LICATES								
ORIGINAL DUP Target Range - Lower Bo Upper Bo	ound ound	1.430 1.540 1.405 1.565														1
ORIGINAL DUP Target Range - Lower Bo Upper Bo	ound ound		0													
ORIGINAL DUP Target Range - Lower B Upper B	ound ound															
ORIGINAL DUP Target Range - Lower B Upper B	Sound Sound	0.008 0.016 0.006 0.018														

^{*****} See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 3 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

ALS)						Project: DALTON 2018 QC CERTIFICATE OF ANALYSIS TB181							815543	31	
ample Description	Method Analyte Units LOD	ME- ICP61 La ppm 10	ME- ICP61 Mg % 0.01	ME- ICP61 Mn ppm 5	ME- ICP61 Mo ppm 1	ME- ICP61 Na % 0.01	ME- ICP61 Ni ppm 1	ME- ICP61 P ppm 10	ME-ICP61 Pb ppm 2	ME- ICP61 S % 0.01	ME- ICP61 Sb ppm 5	ME- ICP61 Sc ppm 1	ME- ICP61 Sr ppm 1	ME- ICP61 Th ppm 20	ME- ICP61 Ti % 0.01	ME- ICP61 TI ppm 10
							BL	ANKS								
LANK Farget Range - Lower Upper	r Bound r Bound															
BLANK BLANK BLANK Target Range - Lowe Uppe BLANK Target Range - Lowe	r Bound	<10 <10	<0.01 <0.01	<5 <5	<1 <1	<0.01 <0.01	<1 <1 2	10 <10 20	<2 <2 4	<0.01 <0.01 0.02	<5 <5 10	<1 <1 2	<1 <1 2	<20 <20 40	<0.01 <0.01 0.02	<10 <10 20
Uppe BLANK Target Range - Lowe	r Bound	20	0.02	10	2	0.02		LICATES								
ORIGINAL DUP Target Range - Low Upp	er Bound er Bound						DUP	LICATES							75	
ORIGINAL DUP Target Range - Low Upp	er Bound er Bound															
ORIGINAL DUP Target Range - Low Upp	ver Bound per Bound															
ORIGINAL DUP Target Range - Lov Upp	wer Bound per Bound															

^{*****} See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1

Page: 3 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

	Method Analyte Units	ME- ICP61 U ppm	ME-ICP61 V ppm	ME- ICP61 W ppm	ME- ICP61 Zn ppm	PGM-ICP23 Au ppm 0.001	PGM- ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	Au- AA23 Au ppm 0.005	CERTIFICATE OF ANALYSIS	
imple Description	LOD	10	1	10	2	0.001		ANKS			
LANK arget Range - Lower Upper l LANK	Bound Bound						BL	MINI	<0.005 <0.005 0.010		
ILANK ILANK Farget Range - Lower Upper SLANK Farget Range - Lower Upper BLANK Target Range - Lower Upper	Bound Bound Bound	<10 <10 20	<1 <1 2	<10 <10 20	<2 <2 4	<0.001 <0.001 0.002	<0.005 <0.005 0.010	<0.001 <0.001 0.002 LICATES			
ORIGINAL DUP Target Range - Lowel Uppel	r Bound - Bound								3.82		
ORIGINAL DUP Target Range - Lowe Uppe	r Bound r Bound						To.		3.72 3.58 3.96		
ORIGINAL DUP Target Range - Lowe									0.102 0.112 0.097 0.117		
ORIGINAL DUP Target Range - Low Uppe	er Bound er Bound										

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 4 - B Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

ALS)							110,0	QC		ICATE	OF AN	ALYSIS	TB1	815543	31
ample Description	Method Analyte Units LOD	ME- ICP61 La ppm 10	ME- ICP61 Mg % 0.01	ME- ICP61 Mn ppm 5	ME- ICP61 Mo ppm 1	ME- ICP61 Na % 0.01	ME-ICP61 Ni ppm 1	ME-ICP61 P ppm 10	ME- ICP61 Pb ppm 2	ME- ICP61 S % 0.01	ME- ICP61 Sb ppm 5	ME- ICP61 Sc ppm 1	ME- ICP61 Sr ppm 1	ME-ICP61 Th ppm 20	ME- ICP61 Ti % 0.01	ME- ICP61 TI ppm 10
	LOD						DUPL	ICATES								
065058 DUP Farget Range - Lower Upper	Bound Bound	<10 <10 <10 20	0.12 0.12 0.10 0.14	303 305 284 324	1 2 <1 2	0.02 0.01 <0.01 0.02	6 12 8 10	250 260 230 280	<2 5 <2 4	2.98 2.99 2.83 3.14	<5 <5 <5 10	<1 <1 <1 2	1 1 <1 2	<20 <20 <20 40	<0.01 <0.01 <0.01 0.02	<10 <10 <10 20
065053 DUP Farget Range - Lowe Upper	r Bound r Bound															
ORIGINAL DUP Target Range - Lowe Uppe	r Bound r Bound												ALUE MONTHE			···
ORIGINAL DUP Target Range - Lowe Uppe	er Bound er Bound															
ORIGINAL DUP Target Range - Lowe Uppe	er Bound er Bound															
ORIGINAL DUP Target Range - Low Upp	er Bound er Bound															
ORIGINAL DUP Target Range - Low Upp	ver Bound per Bound	9)														
ORIGINAL DUP Target Range - Lov Upp	wer Bound per Bound											FE-2000				

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 4 - A Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

ALS								QC	CERTII	ICATE	OF AN	ALYSIS	TB18	815543	31
Method Analyte Units LOD	Au- AA24 Au ppm 0.005	ME- ICP61 Ag ppm 0.5	ME- ICP61 Al % 0.01	ME- ICP61 As ppm 5	ME-ICP61 Ba ppm 10	ME- ICP61 Be ppm 0.5	ME- ICP61 Bi ppm 2	ME- ICP61 Ca % 0.01	ME- ICP61 Cd ppm 0.5	ME- ICP61 Co ppm 1	ME- ICP61 Cr ppm 1	ME-ICP61 Cu ppm 1	ME- ICP61 Fe % 0.01	ME- ICP61 Ga ppm 10	ME- ICP61 K % 0.01
imple bessity LOD	0.003					DUPI	ICATES								
065058 JUP arget Range - Lower Bound Upper Bound		<0.5 <0.5 <0.5 1.0	0.02 0.03 <0.01 0.04	<5 6 <5 10	<10 <10 <10 20	<0.5 <0.5 <0.5 1.0	<2 2 <2 4	0.57 0.60 0.55 0.62	<0.5 <0.5 <0.5 1.0	29 28 26 31	17 18 16 19	32 38 33 37	7.29 7.26 6.90 7.65	<10 <10 <10 20	<0.01 0.01 <0.01 0.02
.065053 DUP Farget Range - Lower Bound Upper Bound															
ORIGINAL DUP Target Range - Lower Bound Upper Bound	0.023 0.024 0.017 0.030					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
ORIGINAL DUP Target Range - Lower Bound Upper Bound	0.043 0.042 0.035 0.050														
ORIGINAL DUP Target Range - Lower Bound Upper Bound	0.008 0.007 <0.005 0.010														
ORIGINAL DUP Target Range - Lower Bound Upper Bound															
ORIGINAL DUP Target Range - Lower Bound Upper Bound															
ORIGINAL DUP Target Range - Lower Bound Upper Bound															ā

^{*****} See Appendix Page for comments regarding this certificate *****

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: 4 - C Total # Pages: 4 (A - C) Plus Appendix Pages Finalized Date: 10- JUL- 2018 Account: HTGEYA

								Proje	Ct: DALT	ON 2018
ALS)									QC	CERTIFICATE OF ANALYSIS TB18155431
Met Ana Un mple Description	lyte its	ICP61 U opm	ME- ICP61 V ppm 1	ME- ICP61 W ppm 10	ME- ICP61 Zn ppm 2	PGM-ICP23 Au ppm 0.001	PGM- ICP23 Pt ppm 0.005	PGM-ICP23 Pd ppm 0.001	Au- AA23 Au ppm 0.005	
							DUPL	ICATES		
065058 UP arget Range - Lower Boun Upper Boun	d	<10 <10 <10 20	1 1 <1 2	<10 <10 <10 20	5 11 6 10					
065053 DUP 'arget Range - Lower Bour Upper Bour	nd nd								<0.005 <0.005 <0.005 0.010	
DRIGINAL DUP Farget Range - Lower Bour Upper Bour	nd nd									
ORIGINAL DUP Target Range - Lower Bou Upper Bou	nd nd									
ORIGINAL DUP Target Range - Lower Bou Upper Bou	ind ind									
ORIGINAL DUP Target Range - Lower Bot Upper Bot	and and					3.39 3.44 3.24 3.59	<0.005 <0.005 <0.005 0.010	0.001 0.001 <0.001 0.002	P. Carlotte	
ORIGINAL DUP Target Range - Lower Bo Upper Bo	und					0.010 0.010 0.009 0.012	<0.005 <0.005 <0.005 0.010	< 0.001		
ORIGINAL DUP Target Range - Lower Bo Upper Bo	und und					0.003 0.001 <0.001 0.003	<0.005 <0.005 <0.005 0.010	<0.001 <0.001		

To: GREG SMITH 1122 RIDGEWAY STREET EAST THUNDER BAY ON P7E 5J1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 10- JUL- 2018 Account: HTGEYA

Project: DALTON 2018

QC CERTIFICATE OF ANALYSIS	TB18155431

	CERTIFICATE COMMENTS	
Applies to Method:	Processed at ALS Thunder Bay located at 645 Norah Crescent, Thunder Bay, ON, Canada CRU- 31 CRU- QC LOG- 21 PUL- QC SPL- 21 WEI- 21	PUL- 31
Applies to Method:	Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada. Au- AA24 ME- ICP61	PGM- ICP23

35