We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

BOLD VENTURES INC.

NEZAADIIKAANG ECONOMIC DEVELOPMENT G.P INC.

REPORT ON THE FALL 2017 PROSPECTING PROGRAM

ON THE

TRAXXIN EXTENSION PROPERTY AND CROWN GROUND

EDWARDS LAKE AREA & BEDIVERE LAKE AREA

LAC DES MILLES LACS AREA ONTARIO, CANADA NTS 52 B/15

Bruce MacLachlan Timmins, Ontario

November 30th, 2017

TABLE OF CONTENTS

1.0	SUMMARY	1
2.0	INTRODUCTION	1
3.0	CLAIMS	1
4.0	LOCATION, ACCESS and TOPOGRAPHY	1
5.0	LOCAL GEOLOGY	5
6.0	WORK PROGRAM DESCRIPTION	5
7.0	RESULTS and CONCLUSIONS	9
7.1	TRAXXIN EXTENSION CLAIMS	9
7.2	TRAXXIN EXTENSION REGIONAL PROSPECTING	10
8.0	RECOMMENDATIONS	10
9.0	STATEMENT of EXPENDITURES	12
9.1	EXPENDITURES by CLAIM	13
10.0	PERSONNEL	13
11.0	STATEMENT of QUALIFICATIONS	14
12.0	REFERENCES	15

List of Figures

Figure	1:	Access Map	.3
Figure	2:	Claim Map	.4
_		Point of Interest Map	
_		Grab Sample Map	
_		Geology and Highlights Map	

List of Appendices

Appendix	1	Rock Sample Descriptions (Table 1)
Appendix	II	Rock Assay Certificates Act Labs
Appendix	III	Point of Interest (Table 2)
Appendix	IV	Act Labs Analytical Description
Appendix	V	Photos

1.0 SUMMARY

A prospecting program was carried out by Bruce MacLachlan and Coleman Robertson between October 16 and November 2, 2017 to look for possible extensions of the Traxxin Zone held by Benton Resources Inc., where gold values up to 41 oz/t (1281g/t) in grab samples have been reported.

Prospecting was carried out in the Bedivere Lake area where 38 rock grab samples were collected during the current program.

The prospecting program returned assays up to 0.8ppm Ag, 2620ppm Cu and 49.4 ppm Ni (sample A527807) and up to 1050ppm Mo (sample A527828).

2.0 INTRODUCTION

The objective of the program was to locate areas of shearing \pm alteration \pm mineralization northeast of the Traxxin gold showing.

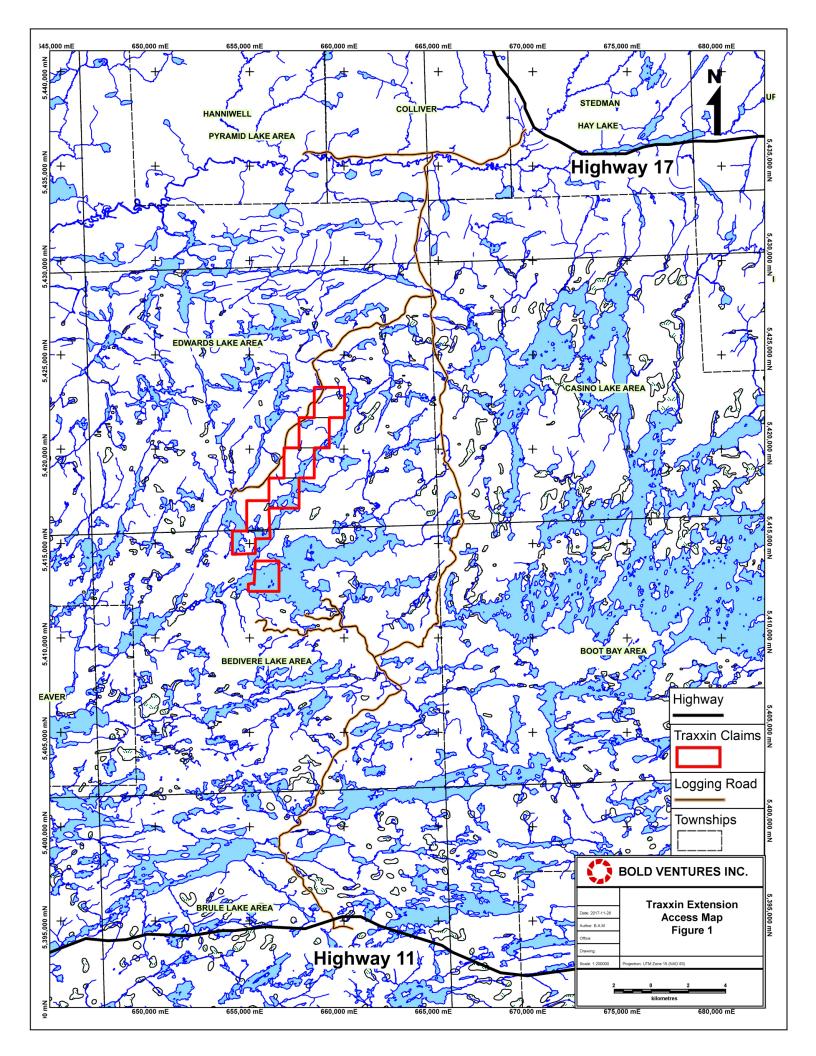
All the work and sample locations were defined using a handheld GPS. The measurements were plotted using UTM: NAD 83 in Zone 15 metric coordinates. All foot, boat and truck traverses are collected by GPS, saved as separate files and plotted on the various Figures.

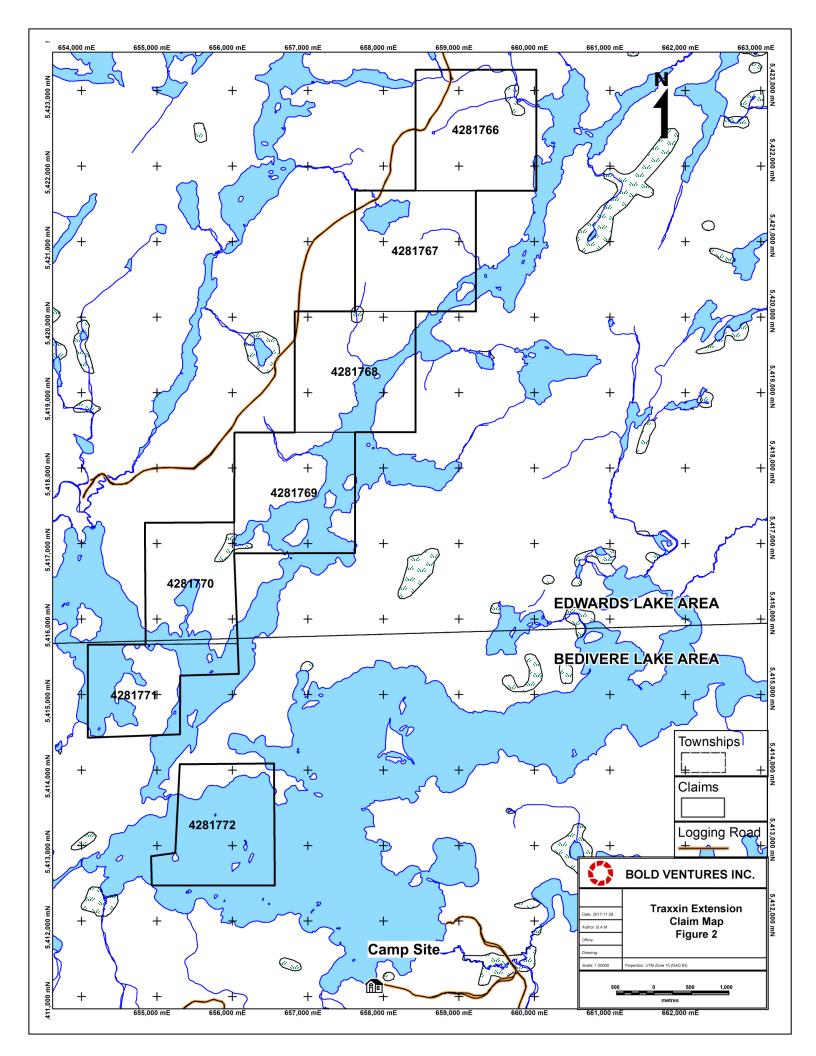
The following report details the results of the 2017 prospecting program along with the recommendations for additional exploration programs.

3.0 CLAIMS

The Traxxin Extension Property consists of 7 staked claims (TB 4281766 – TB 4281772) comprised of 100 claim units, located in the Edwards Lake and Bedivere Lake Areas, all of which are recorded in the names of Bold Ventures Inc. 50% and Nezaadiikaang General Contracting G.P. Inc 50%.

4.0 LOCATION, ACCESS, AND TOPOGRAPHY


The Traxxin Extension Property is located approximately 55 km east of the town of Atikokan, Ontario (Figure 1).


The Traxxin Extension Property is accessible by travelling east from Atikokan on Highway 11 toward Shebandowan for approximately 60 kilometres, then turning north on a logging road for approximately 23 kilometres. From that point, a boat launch on the south shore of Bedivere Lake is accessible by travelling approximately 2.5 kilometres west along a side trail. The most southern claim (4281772) can be reached by boating from the launch to the northwest for approximately 3 kilometres (Figure 1).

Access to the northern portion of the property can also be achieved via truck by turning east from kilometre 18, along the logging road which travels north from Highway 11 and travelling northerly for approximately 23 kilometres. At this point turning southwest for approximately 9.5 kilometres will bring one to the northern boundary of the Traxxin Extension Property (Figure 1).

Access can also be achieved by travelling southeast of the town of Ignace for approximately 90 kilometres along Highway 17, then turning south and travelling southwest on a logging road for approximately 23 kilometres (Figure 1) to the northern boundary of the Traxxin Extension Property.

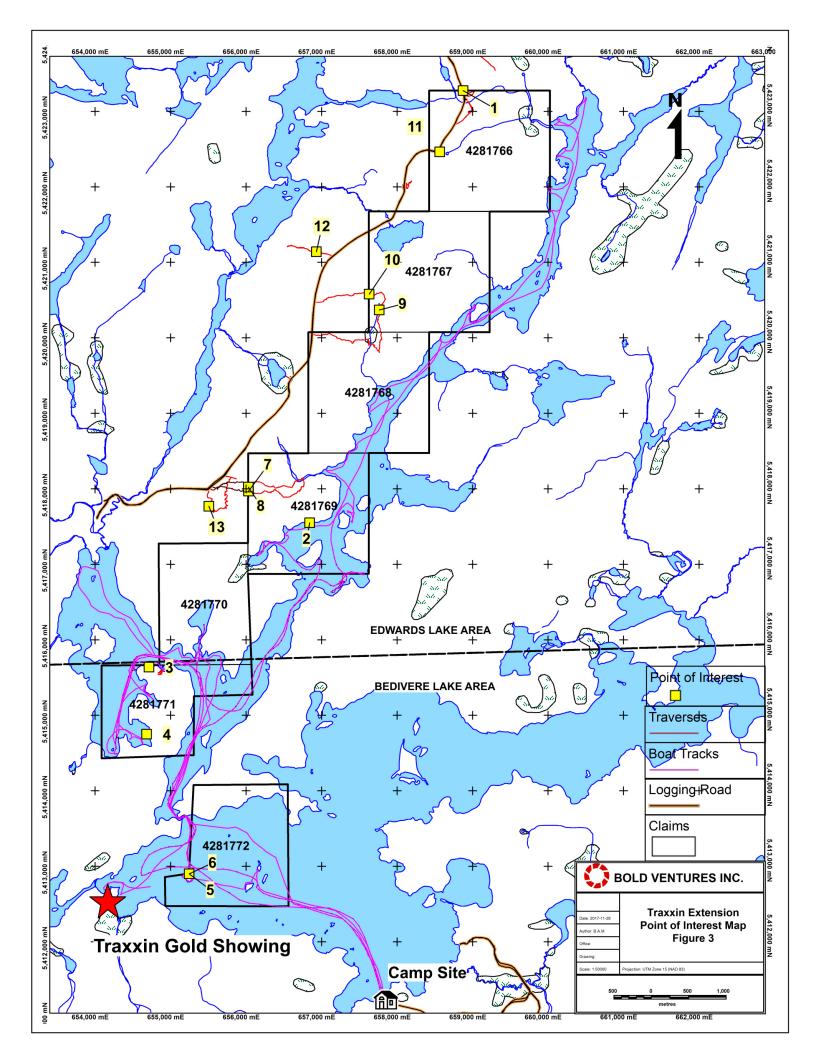
The topography in the area is comprised of moderately flat-lying ground with gentle rolling hills. The vegetation is generally comprised by a variety of virgin bush and second growth trees. Locally very large pine and birch trees were observed in the area. The result is poor - moderate outcrop exposure across the property. Water bodies include Bedivere Lake in the south and Bedivere Lake North Arm in the northern portions of the property.

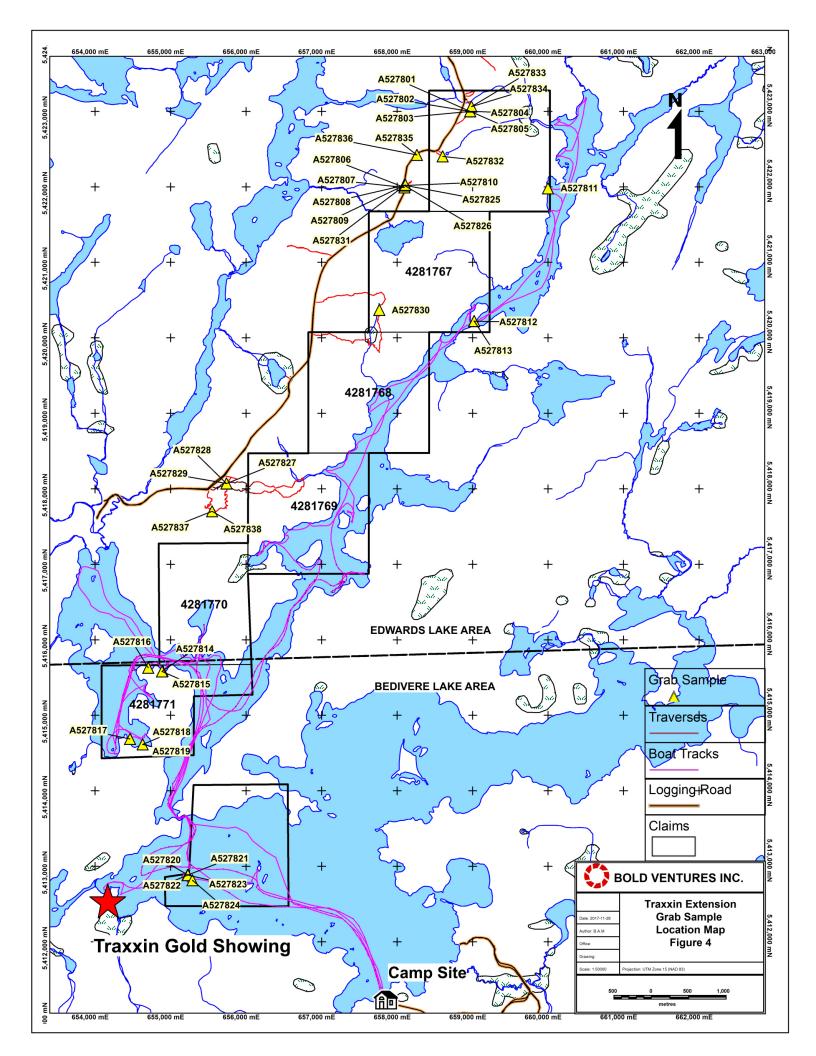
5.0 LOCAL GEOLOGY

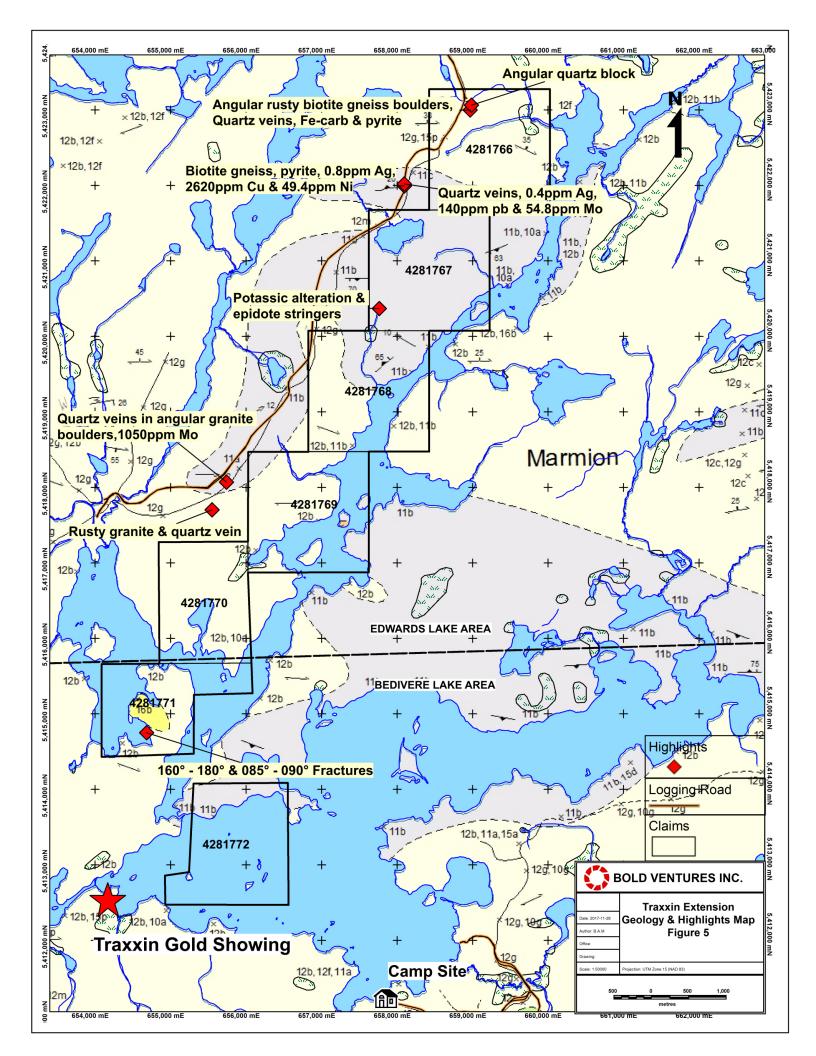
The Traxxin Extension Property is located within the Marmion Batholith which is situated in the Western Lac des Mille Lacs Area, Thunder Bay South Mining District. Outcrops and boulders observed during the 2017 prospecting program consisted of a variety of granite – gneiss – tonalite rocks and quartz veins. Local geology from Ontario Geological Survey, Map P.3523, Precambrian Geology, Bedivere Lake Area, along with highlights from the prospecting program is presented on Figure 5.

6.0 WORK PROGRAM DESCRIPTION

The prospecting program consisted of 13 field days of travel and prospecting/rock sampling in the Bedivere Lake area, including 3 days prospecting in the immediate area of the Traxxin Extension Property.


Thirty-eight rock grab samples, were collected during the current exploration program, see Table 1. In addition to the rock samples collected, several "Points of Interest" were collected at various locations, see Table 2. The "Points of Interest" table includes a variety of geological and non-geological information including outcrop photos, notes on local terrain, claim posts, glacial striae, structural observations etc. and are plotted on Figure 3.


All samples were photographed in the field and a representative sample of each rock sample was kept for future reference.


The work program was based out of a tent camp, located on the south shore of Bedivere Lake. Travel to the work areas was carried out through a combination of truck and boat.

Of the thirty-eight (38) rock samples collected, twenty-four (24) samples were sent for analysis by the Code 1A2-50-Tbay Au – Fire Assay AA and ICP/MS UT-4M Total Digestion analytical packages, the remaining 14 samples were sent for Au Fire Assay analysis only, see Actlabs assay Certificate of Analysis A17-12469, see Appendix II. Sample A527834 was also analyzed by Fire Assay Metallic Screen-1000g Code 1A4-1000 (100mesh), Actlabs Certificate of Analysis A17-13413, see Appendix II.

Table 1 (Appendix I) provides a list of the 2017 rock sample numbers (A527801-A527838) rock type, alteration, mineralization, color, grain size and UTM coordinates. The rock assay Certificate of Analysis from Actlabs are presented in Appendix II. Table 2 (Appendix III) provides a list of the 2017 Points of Interest and Appendix IV a description of the Actlabs analytical package.

7.0 RESULTS and CONCLUSIONS

The current prospecting program focused along the North Arm of Bedivere Lake and immediately west of the Traxxin Extension claims.

Of the 38 rock samples that were analyzed, 14 samples were collected on the Traxxin Extension claims and 24 samples were collected in the immediate area, see Figure 4. Assays up to 0.8ppm Ag, 2620ppm Cu and 49.4ppm Ni (sample A527807), 0.4ppm Ag, 140ppm Pb and 54.8ppm Mo (sample A527826) and 1050ppm Mo (sample A527828). Descriptions of the rock samples can be found in Table 1, Appendix I.

Sample A527834 originally returned <5 ppb Au from the Fire Assay analysis, then later returned 500ppb Au from the ICP/MS UT-4M Total Digestion analysis, see Actlabs Certificate of Analysis A17-12469, Appendix II. To be safe the sample was then analyzed by Fire Assay Metallic Screen-1000g Code 1A4-1000 (100mesh) where it returned <0.03g/mt Au, see Actlabs Certificate of Analysis A17-13413, Appendix II.

7.1 Traxxin Extension Claims

Prospecting was carried out at several locations on the Traxxin Extension Claims, across 7 claims, beginning in the southern portion of the property extending to the northeast for approximately 11 kilometres and including the following:

Prospecting was carried out on a small island located in the western portion of Bedivere Lake situated on claim 4281772, where a few narrow quartz veins were observed, see Figure 3. The quartz veins did not return any anomalous gold values.

Prospecting was carried out at various locations west of the North Arm of Bedivere Lake where silicified gneiss containing minor quartz stringers and pyrite up to 1% was observed and where the interpreted northeast trending Traxxin structure was thought to transect the shores of the North Arm of Bedivere Lake on claim 4281771, see Figure 4. Three samples were collected from this area and returned assays up to 1230ppm Ba.

Prospecting was carried north along the western shore of the North Arm of Bedivere Lake, where several granitic – gneissic outcrops were observed and where trace pyrite was located in the southeast portions of claims 4281766 and 4281766, see Figure 4.

Prospecting immediately south of the northern claim boundary, located several locally rusty biotite gneiss angular boulders containing quartz veining, minor fe-carb staining and up to 3% pyrite (samples A527801 – A527805). Located approximately 65 metres to the northeast, a large angular granite boulder containing quartz veining with a locally yellow – orange tinge was observed (samples A527833 & A527834).

A potassically altered granitic outcrop containing epidote stringers and trace pyrite, was located in the southwestern portion of claim 4281767 and at the base of a north – northeast trending valley, see Figure 4.

Located in the central portion of claim 4281769 and along the shore of Bedivere Lake, shearing was observed at 120° & 160° as well as fractures at 160°, see Figure 3.

7.2 Traxxin Extension Regional Prospecting on Crown Ground

Prospecting was carried out at various locations immediately west of the Traxxin Extension claims, see Figure 4. Prospecting focused on several Magnetic Highs which transect the Traxxin Extension claims and where quartz veins were observed in outcrop along the northeast trending logging road that is adjacent and runs parallel to the claim group.

Gneissic outcrops containing quartz veining were observed on the east side of the northeast trending logging road, immediately west of claim 4281766 and north of claim 4281767, see Figure 4. Locally up to 5% pyrite was observed in gneissic outcrops and where sample A527807 returned up to 0.8ppm Ag, 2620ppm Cu and 49.4ppm Ni. Quartz veining in the same outcrops returned up to 0.4ppm Ag, 140ppm Pb and 54.8ppm Mo from sample A527826. These anomalous samples occur along an east – west trending mag high – low contact.

Located approximately 4.6 kilometres further southwest, molybdenite was observed along fracture planes of large angular granite boulders containing quartz veins. The large angular boulders were found within a boulder train/field approximately 280 metres west of the west boundary of claim 4281769 and along an east – west trending mag high – low contact. Three samples (A527827 – A527829) were collected from the angular boulders which returned values up to 1050ppm Mo, see Figure 4.

Located approximately 410 metres southwest of the molybdenite showing, quartz veining was observed in a weakly sheared granite outcrop. The outcrop contains trace pyrite and the shear strikes 130°. Approximately 85 metres further northwest, east – west shearing was observed in a gneissic outcrop, see Figure 3.

8.0 **RECOMMENDATIONS**

Based on the results from the current prospecting program, a small soil geochemical survey is recommended in the vicinity of the boulder train/field where anomalous molybdenite values were returned from samples A527827 – A527829. Additional prospecting is also recommended along strike and along the east – west trending mag feature.

Further prospecting is recommended along strike from sample A527807 where anomalous Ag, Cu & Ni values were returned and from sample A527826 which returned anomalous Ag, Pb & Mo values in outcrop which occurs along an east – west trending mag high – low feature.

Additional prospecting north (up – ice) from the northern boundary of the Traxxin Extension claims is also suggested, to follow up on samples A527801 - A527805 and A527833 - A527834 where quartz veining and pyrite was observed in angular boulders.

9.0 STATEMENT of EXPENDITURES

The following is a breakdown of expenditures related to the fall 2017 prospecting program on the Traxxin Extension Property.

Labour:

Preparation, field work, travel		
Bruce MacLachlan and Coleman Robertson	\$	12,150.00
Data Review, prepare maps etc. prior to prospecting		
Bruce MacLachlan	\$	500.00
Tom Savage (geo-reference geology maps, satellite imagery) Matthew Johnston (geo-reference mag)	\$ \$	630.00 120.00
Report Writing		
Bruce MacLachlan	\$	1,250.00
Associated Costs:		
Field Related Supplies	\$	603.56
Groceries and Meals	\$	785.07
Travel and Transportation	\$	1,623.50
Camp Rental	\$	450.00
Boat Rental	\$	1,500.00
Analytical Costs:		
Actlabs (34 rock samples)	\$	947.50
Consultation Costs:		
R. Bruce Graham & Associates Ltd.	\$	4,341.50
TOTAL EXPENDITURES	\$ 2	24,901.13

Of the \$24,901.13 in total expenditures, \$20,043.10 is related to the Traxxin Extension claims and \$4,855.94 is related to prospecting on open crown ground in the immediate area.

9.1 EXPENDITURES by CELL

Cell (Formerly Legacy Claim)	
109429	\$ 1,398.00
118679	\$ 605.00
128702	\$ 1,002.00
140644	\$ 1,002.00
156982	\$ 1,756.00
166472	\$ 605.00
181548	\$ 1,431.00
194743	\$ 2,854.00
208505	\$ 1,002.00
215225	\$ 982.00
229110	\$ 605.00
252599	\$ 982.00
256317	\$ 1,794.00
281748	\$ 605.00
309138	\$ 1,002.00
311947	\$ 605.00
329018	\$ 605.00
329019	\$ 605.00
341405	\$ 605.00
Cell (Formerly Crown Ground)	
505793	\$ 434.00
505815	\$ 377.00
505827	\$ 1,613.00
506042	\$ 1,639.00
506046	<u>\$ 793.00</u>
	\$24,901.00

10.0 PERSONNEL

The following is a list of persons that carried out the prospecting program on the Traxxin Extension Property and surrounding area:

Bruce MacLachlan (Supervisor)	17 Days
222 Emerald Street, Timmins, Ontario, P4R 1N3	
(October 1 day, review data, prepare maps etc.)	
(Travel & field work, October 12 – November 2, 13.5 days)	
(November 2.5 day's report preparation)	
Coleman Robertson	13.5 Days
815a Maitland Ave., Ottawa, Ontario, K2A 2S2	
(Travel & field work, October 12 – November 2, 13.5 days)	

Total Days 30.5

11.0 STATEMENT of QUALIFICATIONS

I, Bruce A. MacLachlan, of the City of Timmins, Province of Ontario do hereby certify that:

- 1. I am a geological technician and prospector residing at: 222 Emerald Street, Timmins, Ontario, P4R 1N3.
- 2. I have continuously practised my profession for over 34 years. I have prepared reports, conducted, supervised and managed exploration programs for a number of major and junior mining companies including Noranda Exploration Company Limited, CanAlaska Uranium Ltd and Noront Resources Ltd.
- 4. As author of this report and supervisor of the work program, I am familiar with the material covered in the report.
- 5. I have no direct or indirect interest in the Traxxin Extension Property.
- 6. Permission is granted for use of this report, in whole or in part, for assessment and qualification requirements.

DATED at Timmins, Ontario, this 30th day of November 2017.

"Bruce A. MacLachlan" P. Geo (Limited) APGO No. 1025 (Signed and Sealed)

Bruce A. MacLachlan

2099840 Ontario Inc.

"Emerald Geological Services"

Brece A. Markell

12.0 REFERENCES

Irvine, T. N., Tremblay, R. J., (1963) Ontario Department of Mines, Geological Report No.12, Western Lac des Mille Lacs Area

Stone, D., (2005) Ontario Geological Survey, Map P.3523, Precambrian Geology, Bedivere Lake Area GPS

APPENDIX I

Rock Sample Descriptions (Table 1)

Table 1					Sam	ple Des	cription	Table									
Sample	Easting	Northing	Claim No.	Description	Rock_Type	Min1	Min1 pct	Min2	Min2 pct	Alt1	Vein1	Vein1 Size_cm	Vein2	Vein2 Size cm	Structure1	Structure1 orientation	Boulder
				Rusty biotite gneiss adjacent to pegmatitic granite in sample. Local			P		F			22_2					
				recrystallized texture, and quartz is sugary grey. Minor Fe-carb staining.													
A 507901	659066	£422000	4281766	0.8m by 0.4m by 0.3m angular boulder above logging road, likely	Gneiss					fo comb							
A527801	658966	5423000	4281700	uprooted by logging Same boulder as previous. White-pink pegmatitic granite, local	Glieiss					fe-carb							yes
A527802	658966.1	5423000	4281766	recrystallized texture, trace-1% pyrite, minor Fe-carb staining	Granite	py	0.5			fe-carb							yes
				1-2cm sugary white-grey quartz vein in biotite gneiss, up to 2-3% pyrite		.,,											
				in wall rock, trace-1% overall. 0.6m by 0.5m by 0.3m angular boulder,													
A527803	658966	5423001	4281766	near previous	Quartz vein	ру	0.5			fe-carb	QTZ	1.5					yes
				Same boulder as previous. Biotite gneiss with moderate sugary grey- white quartz veining, local rust, trace-1% pyrite, minor Fe-carb staining													
A527804	658966	5423001	4281766	and local recrystallized texture. Possible minor green carb	Gneiss	py	0.5			fe-carb	Qtz						yes
				Med-coarse-grained granite, locally rusty, recrystallized, has minor Fe-		- 17											
				carb staining and trace pyrite. 0.7m by 0.4m by 0.4m angular boulder,													
A527805	658966	5423002	4281766	near previous	Granite	py				fe-carb							yes
A 527906	659005	5421992	open ground	Rusty, locally recrystallized gneiss, trace pyrite. Large loose boulder on E side of road cut	Gneiss												
A527806	658095	3421992	open	Med-coarse-grained biotite gneiss, up to 20% pyrite locally but 3-5%	Glieiss	ру											yes
A527807	658094.7	5421992	ground	overall. Large loose boulder on E side of road cut	Gneiss	Py	4										yes
			open	Med-grained biotite gneiss, local rust, up to 10% pyrite locally, 1-2%													
A527808	658093	5422020	ground	overall	Gneiss	Py	1.5										no
			open	Med-coarse-grained granite with local recrystallized texture, quartz in													
A527809 A527810	658093 658093	5422020 5422019	ground ground	sample is sugary white-grey Sugary grey-white quartz with minor feldspar, trace pyrite	Granite Quartz												no
A527810 A527811	659996	5421981	4281766	Biotite gneiss, locally rusty, trace pyrite. Talus on shoreline	Gneiss	py py											no yes
71327011	037770	3421701	1201700	District guess, rocary rusty, ruce pyriter rules on sustemic	Gheiss	PJ											yes
A527812	659018	5420222	4281767	Med-coarse-grained gneiss, locally rusty, trace pyrite. Talus on shoreline	Gneiss	py											yes
				Med-coarse-grained recrystallized gneiss, contains sugary grey-white													
A527813	659020	5420224	4281767	quartz and trace pyrite. Talus on shoreline	Gneiss	py											yes
A527814	654901	5415588	4281771	Med-grained, locally rusty recrystallized gneiss with moderate sugary grey-white quartz and trace pyrite. Talus	Gneiss												
A32/814	654891	3413388	4201//1	Sugary grey-white quartz vein in gneiss, has local rust and numerous	Quartz vein in	ру											yes
A527815	654885	5415582	4281771	parallel fractures. Talus	gneiss						QTZ				FRAC		ves
				Sugary white, recrystallized quartz vein with minor rust and minor-	Ü												
				moderate hematite staining. Small gash vein, other veins nearby in													
A527816	654703	5415631	4281771	outcrop	Quartz vein					hem	QTZ				_		no
A527817	654460	5414687	4281771	Med-grained recrystallized tonalite with rusty fracture	Tonalite										frac		no
A527818	654628	5414616	4281771	Med-grained, silicified gneiss with pyrite on rusty margin of sugary grey quartz stringer, ~1% overall	Gneiss	Py	1			Sil	qtz						no
1227010		2.2.1010		Same location as previous sample. Med-grained, silicified gneiss with		- ,	-				-1						
A527819	654628	5414616	4281771	pyrite mostly inside sugary grey quartz stringer, ~1-2% overall	Gneiss	Py	1.5			SII	qtz						no
A527820	655229	5412885	4281772	Gneiss with sugary grey quartz, trace pyrite and rusty fractures	Gneiss	ру									frac		no
A 507001	(5500)	5412005	4201772	Silicified, locally rusty, recrystallized gneiss with sugary grey quartz	Carion					6.1							
A527821	655226	5412885	4281772	stringer. Talus on shoreline of small island Coarse-grained, locally rusty, silicified granite. Quartz in sample is	Gneiss					Sil	qtz						yes
A527822	655224	5412883	4281772	sugary and grey. Talus on shoreline of small island	Granite					Sil							yes
		2.12000		Med-grained, silicified, recrystallized, locally rusty granite with trace	1												, 55
A527823	655228	5412884	4281772	pyrite. Quartz in sample is sugary and grey	Granite	ру				Sil							no
A527824	655287	5412817	4281772	Med-grained, weakly silicified, recrystallized granite with minor rust	Granite					sil							no
4.505005	650000	£ 100005	open	Sugary grey quartz vein in med-coarse-grained, rusty, recrystallized		-	_				0777						
A527825	658093	5422022	ground	granite, 1% pyrite	Quartz vein	Py	1			-	QTZ						no
				Med-coarse-grained, rusty, recrystallized granite with moderate sugary quartz veining. Several specks of what appears to be galena, as well as an	1												
			open	unidentified, large, elongated yellow-brown mineral. Trace-1% pyrite	1												
A527826	659002	5422021	ground	overall	Granite	mo		ру	0.5		Qtz						no

				T						1		1	1	T		
A527827	655739	5418070	open ground	~5cm sugary, grey, recrystallized quartz vein in granite with trace-1% galena. Large (1.5m by 1m by 0.4m) angular boulder in boulder train	Quartz vein	mo				QTZ	5					yes
A527828	655739	5418071	open ground	Sugary white-grey quartz vein in granite with rusty fracture planes displaying up to 15% galena, trace-1% galena overall. Recrystallized texture. 0.5m by 0.4m by 0.2m angular boulder near previous sample	Quartz vein	mo	0.5			QTZ				frac		yes
A527829	655740	5418071	open ground	Sugary white-grey quartz vein in granite, has minor rusty fractures, trace galena and recrystallized texture. 0.5m by 0.4m by 0.3m angular boulder near previous sample	Quartz vein					QTZ				frac		yes
A527830	657763	5420369	4281767	Granite on W side of NE trending gully. Has moderate potassic alteration and epidote stringers associated with trace pyrite	Granite	ру			Pota	epi						no
A527831	658108	5422027	open ground	Rusty tonalite with 1% pyrite. 0.1m by 0.1m angular boulder near road cut	Tonalite	Ру	1									yes
A527832 A527833	658602	5422404	4281766 4281766	1-3cm, glassy white quartz vein in granite, has minor rusty fractures Glassy white quartz vein from quartz/granite block, with local yellow- orange tinge. Block is angular, at least 0.5m by 0.4m, and is off to the side of a built up logging road	Quartz vein					QTZ OTZ	2			frac		ves
A527834	658984	5423064		Same boulder as previous. Glassy white quartz vein with moderate yellow-orange tinge and moderate hematite staining	Quartz vein				Hem	QTZ						yes
A527835	658261	5422424	open ground	Sugary grey-white quartz vein in locally rusty gneiss. Blasted outcrop	Quartz vein					QTZ						no
A527836	658261	5422423	open ground	2-3cm Quartz and k-spar veining in gneiss. Veins are recrystallized and med-coarse-grained, adjacent to each other. Same area as previous	Quartz-kspar vein					QTZ	2.5	KSP	2.5			no
A527837	655548	5417704	open ground	3-4cm sugary to glassy white, subvertical quartz vein in weak ~130 degree shear in granite. Trace pyrite in wall rock and trace hematite. Also 020 degree fabric in this outcrop	Quartz vein	ру			hem	QTZ	3.5			shr	130	no
A527838	655548	5417704	ground	Wall rock of previous sample. Locally rusty granite with trace pyrite	Granite	ру										no

APPENDIX II

Rock Assay Certificates (Act Labs)

Quality Analysis ...

Innovative Technologies

Date Submitted: 31-Oct-17 Invoice No.: A17-12469 Invoice Date: 21-Nov-17

Your Reference: Traxxin Extension

Bold Ventures Inc 15 Toronto St, Suite 1000 Toronto Ontario M5C 2E3 Canada

ATTN: Bruce Mackie

CERTIFICATE OF ANALYSIS

38 Core samples were submitted for analysis.

The following analytical package(s) were requested: Code 1A2-50-Tbay Au - Fire Assay AA(QOP Fire Assay Tbay)

REPORT **A17-12469**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Any values for Au are for informational purposes and should be checked by fire assay code 1A2

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3 $\,$

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Quality Analysis ...

Innovative Technologies

Date Submitted: 31-Oct-17 Invoice No.: A17-12469 Invoice Date: 21-Nov-17

Your Reference: Traxxin Extension

Bold Ventures Inc 15 Toronto St, Suite 1000 Toronto Ontario M5C 2E3 Canada

ATTN: Bruce Mackie

CERTIFICATE OF ANALYSIS

38 Core samples were submitted for analysis.

The following analytical package(s) were requested: Code UT-4M Total Digestion ICP/MS

REPORT **A17-12469**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Any values for Au are for informational purposes and should be checked by fire assay code 1A2

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

41 Bittern Street, Ancaster, Ontario, Canada, L9G 4V5
TELEPHONE +905 648-9611 or +1.888.228.5227 FAX +1.905.648.9613
E-MAIL Ancaster@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Analyte Symbol	Au	Al	٨٥	As	Au	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cu	Cs	Fe	Hf	k	lı o	Li	Na	Nb	Ni
Unit Symbol	+								%							%		%			%		_
Lower Limit	ppb		ppm 0.1	ppm 1	ppb 100	ppm 1		ppm 0.1	0.01	ppm 0.1	ppm 1	ppm 0.2	ppm 1	ppm 0.1	· ·	0.01	ppm 0.1	0.01	ppm 0.1	ppm 0.1	0.001	ppm 0.1	ppm 0.1
<u> </u>	5	TD-MS	TD-MS	TD-MS		TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS		TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
Method Code	FA-AA	I D-IVIS	ID-M9	I D-IVIS	TD-MS	I D-IVIS	I D-IVIS	ID-M9	I D-IVIS	I D-IVIS	I D-IVIS	I D-IVIS	I D-IVIS	I D-IVIS	I D-IVIS	I D-IVIS	ID-M9	I D-IVIS	I D-IVIS	ID-M9	I D-IVIS	I D-IVIS	I D-IVIS
A527805	< 5																						
A527806	< 5	0.00	0.0		400	440		0.4	0.40	0.4		00.1		0000		40.0	0.0	0.07	00.0	04.0	0.74	4.7	10.4
A527807	< 5	6.80	0.8	< 1	< 100	113	1	0.1	2.43	< 0.1	60	62.1	58	2620	1.1	10.2	0.9	0.87	23.8	34.6	2.71	4.7	49.4
A527801	< 5																						<u> </u>
A527802	< 5																						
A527803	< 5	3.00	< 0.1	< 1	< 100	27	< 1	< 0.1	0.50	< 0.1	19	4.1	39	13.8	0.1	1.90	1.6	0.14	7.1	6.0	1.84	3.7	
A527804	< 5	4.63	< 0.1	< 1	< 100	146	< 1	< 0.1	0.76	< 0.1	21	3.7	39	10.3	0.3	1.77	3.0	0.83	6.7	12.9	3.94	4.6	4.5
A527808	< 5																						
A527809	< 5																						
A527810	< 5																						<u> </u>
A527811	< 5																						
A527812	< 5																						
A527813	< 5																						
A527814	< 5																						
A527815	< 5																						
A527816	< 5																						
A527817	< 5																						
A527818	< 5	7.55	< 0.1	< 1	< 100	1230	< 1	0.8	1.15	< 0.1	11	7.2	22	0.8	0.5	1.76	2.3	1.52	5.1	16.8	3.15	2.3	4.5
A527819	< 5	8.63	< 0.1	< 1	< 100	870	< 1	0.4	1.85	< 0.1	26	6.0	25	0.7	0.6	2.20	2.7	1.55	11.6	20.3	3.89	3.3	5.7
A527820	< 5																						
A527821	< 5																						
A527822	< 5																						
A527823	10																						
A527824	< 5																						
A527825	< 5	5.10	< 0.1	< 1	< 100	521	< 1	< 0.1	0.33	< 0.1	15	3.1	20	17.9	0.5	1.61	1.8	1.73	6.1	6.5	2.29	8.6	3.8
A527826	< 5	6.54	0.4	1	< 100	569	< 1	< 0.1	1.82	0.1	25	5.3	25	13.5	0.8	2.27	2.9	2.07	11.5	6.2	2.60	15.2	3.9
A527827	< 5	0.47	< 0.1	< 1	< 100	431	< 1	< 0.1	0.06	< 0.1	1	1.4	44	8.4	< 0.1	1.10	0.1	0.24	0.5	1.0	0.127	0.3	5.0
A527828	< 5	0.27	0.1	< 1	< 100	123	< 1	< 0.1	0.03	< 0.1	< 1	1.2	67	15.3	< 0.1	1.04	< 0.1	0.08	0.3	0.5	0.107	0.1	4.5
A527829	< 5	0.81	< 0.1	< 1	< 100	186	< 1	< 0.1	0.14	< 0.1	1	1.0	45	2.5	< 0.1	0.94	0.1	0.14	0.8	1.3	0.328	0.4	4.0
A527830	< 5	6.86	< 0.1	< 1	< 100	346	< 1	< 0.1	3.25	< 0.1	55	7.5	24	10.7	0.3	3.49	2.4	1.02	23.1	15.1	2.71	0.7	5.7
A527831	< 5																						
A527832	< 5																						
A527833	< 5	0.05	< 0.1	< 1	< 100	3	< 1	< 0.1	< 0.01	< 0.1	< 1	1.2	60	2.7	< 0.1	1.19	< 0.1	< 0.01	0.2	0.3	0.007	0.1	5.1
A527834	< 5	1.25	< 0.1	< 1	500	82	< 1	< 0.1	0.11	< 0.1	3	2.7	66	2.4	0.3	1.30	0.2	0.15	1.1	2.5	0.724	0.6	+
A527835	< 5																		<u> </u>				<u> </u>
A527836	< 5																						<u> </u>
A527837	< 5																						
A527838	< 5	6.37	< 0.1	< 1	< 100	867	< 1	< 0.1	1.10	< 0.1	16	2.5	20	3.6	0.6	1.43	2.7	1.19	5.6	11.1	2.68	3.6	3.0
1021000	(3	0.07	₹ 0.1	<u> </u>	\ 100	007	< 1	\ 0.1	1.10	₹ 0.1	10	2.3		3.0	0.0	1.43	۷.1	1.19	3.0	11.1	2.00	5.0	3.0

Analyte Symbol	Р	Rb	Pb	s	Mg	Mn	Мо	Sb	Sc	Sn	Sr	Та	Th	I Ti	lτι	lu	lv	lw	ΙΥ	Zn	Zr
Unit Symbol	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.001	0.1	0.1	1	0.01	1	0.1	0.1	1	0.1	1	0.1	0.1	0.001	0.05	0.1	И	0.1	0.1	1	0.1
Method Code	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
A527805	I D-IVIS	10-1013	TD-WG	TD-IVIS	TD-IVIS	TD-WIS	I D-IVIS	TD-WIS	TD-W3	10-1013	TD-W3	I D-IVIS	TD-W3	10-1013	TD-W3	TD-W3	TD-W3	I D-IVIS	I D-IVIS	I D-IVIS	I D-IVIS
A527806	<u> </u>																				\vdash
A527807	0.025	26.5	5.2	3	0.51	493	1.6	< 0.1	5	1.1	220	0.9	6.0	0.214	0.17	1.0	105	0.1	5.5	79	23.2
A527801	0.023	20.5	5.2	3	0.51	433	1.0	< 0.1	3	1.1	220	0.9	0.0	0.214	0.17	1.0	103	0.1	3.3	79	23.2
A527801													-								\vdash
A527802 A527803	0.006	F 1	4.1	. 4	0.14	267	0.4	0.2	2	0.0	F0	0.3	0.0	0.057	0.06	0.0	10	0.1	3.6	30	62.1
	+	5.1	4.1	< 1	0.14		2.4			0.9	59		2.6	0.057		0.6	13	0.1			_
A527804	0.013	15.5	5.7	< 1	0.13	302	1.8	0.2	2	1.3	62	0.5	2.3	0.077	0.18	0.4	17	0.2	2.2	32	117
A527808	<u> </u>												-						-		₩
A527809	-																				
A527810																					
A527811																					<u> </u>
A527812																					ļ
A527813	1																				
A527814																					
A527815																					<u> </u>
A527816																					
A527817																					
A527818	0.011	32.6	10.6	< 1	0.22	260	1.3	< 0.1	2	0.5	348	0.2	1.2	0.098	0.27	0.2	18	0.4	1.6		
A527819	0.024	38.9	8.1	< 1	0.39	425	1.2	< 0.1	4	0.6	381	0.2	2.6	0.164	0.30	0.3	29	0.4	2.6	61	86.8
A527820																					
A527821																					
A527822																					
A527823																					
A527824																					
A527825	0.015	33.4	42.1	< 1	0.12	172	11.6	0.2	1	2.7	76	0.3	2.6	0.101	0.32	1.1	12	0.1	4.6	36	70.0
A527826	0.016	42.6	140	< 1	0.07	325	54.8	0.5	2	5.4	292	0.9	4.9	0.137	0.75	1.5	54	0.2	7.9	137	108
A527827	< 0.001	3.3	2.0	< 1	0.02	100	486	0.2	< 1	0.3	16	< 0.1	0.2	0.005	< 0.05	0.2	< 4	0.1	0.2	< 1	2.4
A527828	< 0.001	1.3	5.0	< 1	0.01	86	1050	0.2	< 1	0.3	9	< 0.1	< 0.1	0.001	< 0.05	< 0.1	< 4	0.1	< 0.1	2	0.6
A527829	0.002	2.5	0.7	< 1	0.02	86	72.1	0.1	< 1	0.4	29	< 0.1	0.4	0.009	< 0.05	0.1	< 4	0.1	0.3	3	4.9
A527830	0.063	16.1	3.8	< 1	0.52	438	3.7	< 0.1	8	0.3	407	< 0.1	3.3	0.156	0.14	0.2	31	< 0.1	14.6	48	111
A527831																					
A527832																					
A527833	< 0.001	0.2	< 0.1	< 1	< 0.01	111	4.6	0.2	< 1	0.2	2	< 0.1	< 0.1	< 0.001	< 0.05	< 0.1	< 4	0.1	< 0.1	< 1	1.5
A527834	0.010	7.6	0.6	< 1	0.03	129	4.3	0.1	< 1	0.3	38	< 0.1	0.2	0.032	< 0.05	0.2	< 4	0.4	0.6	4	20.3
A527835																					
A527836																					
A527837																					
A527838	0.023	24.3	11.6	< 1	0.13	277	1.3	< 0.1	2	0.8	170	0.2	3.4	0.080	0.22	0.4	12	0.1	3.2	33	90.1

Analyte Symbol	Au	Al	lλα	As	Au	Ва	Ве	Bi	Ca	Cd	Се	Со	Cr	Cu	Cs	Fe	Hf	K	lı o	Li	Na	Nb	Ni
		%	Ag											_		%		%			%		
Unit Symbol	ppb 5	+	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm 0.2	ppm	ppm 0.1	ppm 0.1		ppm			ppm		ppm 0.1	ppm 0.1
Lower Limit	_	0.01	0.1	TD MC	100	TD MC	TD MC		0.01	0.1 TD-MS	TD MC		TD MC		_		0.1	0.01			0.001	0.1	
Method Code	FA-AA	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	I D-IVIS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
DH-1a Meas		<u> </u>																					
DH-1a Cert																							
SDC-1 Meas		6.20		< 1		516	2		0.68		67	17.2	59	26.9	3.1	4.35	1.3	0.89	22.2	31.1	1.39	1.0	30.2
SDC-1 Cert		8.34		0.220		630	3.00		1.00		93.00	18.0	64.00	30.000	4.00	4.82	8.30	2.72	42.00	34.0	1.52	21.00	38.0
GXR-6 Meas		12.9	0.2	230	< 100	1410	1	0.2	0.16	< 0.1	34	14.2	56	70.6	4.0	5.50	2.1	1.16	11.3	34.9	0.093	0.2	23.7
GXR-6 Cert		17.7	1.30	330	95.0	1300	1.40	0.290	0.180	1.00	36.0	13.8	96.0	66.0	4.20	5.58	4.30	1.87	13.9	32.0	0.104	7.50	27.0
DNC-1a Meas						95						53.7	181	88.6					3.3	4.2		1.1	226
DNC-1a Cert						118						57	270	100					3.6	5.2		3	247
SBC-1 Meas				18		495	3	0.6		0.2	105	21.7	73	26.5	7.5		2.7		46.1	151		9.9	77.9
SBC-1 Cert				25.7		788.0	3.20	0.70		0.40	108.0	22.7	109		8.2		3.7		52.5	163		15.3	82.8
														31.0000									
OREAS 45d		8.41		4		195	< 1	0.5	0.18		40	34.0	490	409	4.1	15.9	1.5	0.45	17.2	21.7	0.093	0.1	245
(4-Acid) Meas																							
OREAS 45d		8.150		13.8		183.0	0.79	0.31	0.185		37.20	29.50	549	371	3.910	14.5	3.830	0.412	16.9	21.5	0.101	14.50	231.0
(4-Acid) Cert																							
OREAS 220 (Fire	857																						
Assay) Meas																							
OREAS 220 (Fire	828																						
Assay) Cert																							
OREAS 220 (Fire	847																						
Assay) Meas		<u> </u>																					
OREAS 220 (Fire	828																						
Assay) Cert	0100																						
OREAS 224 (Fire Assay) Meas	2120																						
OREAS 224 (Fire	2150																						
Assay) Cert	2130																						
OREAS 224 (Fire	2110																						
Assay) Meas																							
OREAS 224 (Fire	2150																						
Assay) Cert																							
A527810 Orig	< 5																						
A527810 Dup	< 5																						
A527820 Orig	< 5																						
A527820 Dup	< 5	+	<u> </u>				<u> </u>						1						1				
A527830 Orig	< 5																						
A527830 Dup	< 5	+	 	1	 		 		 	 		 	-						-				
A527833 Orig	- ` `	0.04	< 0.1	< 1	< 100	2	< 1	< 0.1	< 0.01	< 0.1	< 1	1.2	61	2.1	< 0.1	1.18	< 0.1	< 0.01	0.1	0.3	0.006	0.1	5.3
	 	+										1.2											-
A527833 Dup	_	0.06	< 0.1	< 1	< 100	3	< 1	< 0.1	< 0.01	< 0.1	< 1	1.2	60	3.3	< 0.1	1.21	< 0.1	< 0.01	0.2	0.3	0.008	0.1	5.0
A527836 Orig	< 5	+	<u> </u>	-	ļ				<u> </u>			<u> </u>			-								
A527836 Dup	< 5												_	_									
A527838 Orig		6.27	< 0.1	< 1	< 100	841	< 1	< 0.1	1.09	< 0.1	15		22			1.44	2.7	1.11	5.3	11.1	2.68	3.6	2.9
A527838 Dup		6.47	< 0.1	< 1	< 100	892	< 1	< 0.1	1.11	< 0.1	16	2.5	18	_	0.6	1.42	2.7	1.27	5.8	11.2	2.69	3.6	3.0
Method Blank		< 0.01	< 0.1	< 1	< 100	< 1	< 1	< 0.1	< 0.01	< 0.1	< 1	< 0.2	8	< 0.1	< 0.1	0.01	< 0.1	< 0.01	< 0.1	< 0.1	< 0.001	< 0.1	< 0.1
Method Blank		0.01	< 0.1	< 1	< 100	< 1	< 1	< 0.1	< 0.01	< 0.1	< 1	< 0.2	4	< 0.1	< 0.1	0.01	< 0.1	< 0.01	< 0.1	0.1	< 0.001	< 0.1	< 0.1

QC Activation Laboratories Ltd. Report: A17-12469

			_										_			_		_					
Analyte Symbol	Au	Al	Ag	As	Au	Ва	Ве	Bi	Ca	Cd	Ce	Со	Cr	Cu	Cs	Fe	Hf	K	La	Li	Na	Nb	Ni
Unit Symbol	ppb	%	ppm	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm
Lower Limit	5	0.01	0.1	1	100	1	1	0.1	0.01	0.1	1	0.2	1	0.1	0.1	0.01	0.1	0.01	0.1	0.1	0.001	0.1	0.1
Method Code	FA-AA	TD-MS																					
Method Blank	< 5																						
Method Blank	< 5																						
Method Blank	< 5																						

Analyte Symbol	Р	Rb	Pb	S	Mg	Mn	Мо	Sb	Sc	Sn	Sr	Та	Th	Ti	TI	U	lv	w	Υ	Zn	Zr
Unit Symbol	%	ppm		%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Lower Limit	0.001	0.1	0.1	1	0.01	1	0.1	0.1	1	0.1	1	0.1	0.1	0.001	0.05	0.1	4	0.1	0.1	1	0.1
Method Code		TD-MS		TD-MS		TD-MS	TD-MS	TD-MS	TD-MS		TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS	TD-MS
DH-1a Meas													796			2030					
DH-1a Cert													910			2629					
SDC-1 Meas	0.055	43.4	20.5		0.72	818		< 0.1	10	1.5	133	< 0.1	7.5	0.398	0.54	1.9	76	< 0.1		101	47.2
SDC-1 Cert	0.0690	127.00	25.00		1.02	880.00		0.54	17.00	3.00	180.00	1.20	12.00	0.606	0.70	3.10	102.00	0.80		103.00	290.00
GXR-6 Meas	0.034	42.2	98.9	< 1	0.59	1020	0.3	0.2	25	0.3	40	< 0.1	4.7	0.000	2.00	1.3	117	0.1	10.6	136	74.2
GXR-6 Cert	0.0350	90.0	101	0.0160	0.609	1010	2.40	3.60	27.6	1.70	35.0	0.485	5.30		2.20	1.54	186	1.90	14.0	118	110
DNC-1a Meas		2.9	5.2					0.3	26		134			0.256			133		13.4	63	30.8
DNC-1a Cert		5	6.3					0.96	31		144			0.29			148		18.0	70	38.0
SBC-1 Meas		87.7	33.0				1.9	0.9	19	2.9	158	0.6	14.9	0.435	0.82	5.2	202	1.2	27.4	190	99.1
SBC-1 Cert		147	35.0				2.4	1.01	20.0	3.3	178.0	1.10	15.8	0.403	0.89	5.76	220.0	1.60	36.5	186	134.0
OREAS 45d	0.038	39.9	22.6	< 1	0.26	521	0.3	< 0.1	52	0.3	32	< 0.1	15.9	0.136	0.26	2.9	94	0.1	10.6	49	57.2
(4-Acid) Meas	0.000	05.5	22.0	` '	0.20	321	0.0	\ 0.1	52	0.0	02	\ 0.1	10.0	0.100	0.20	2.5	54	0.1	10.0		07.2
OREAS 45d	0.042	42.1	21.8	0.049	0.245		2.500	0.82	49.30	2.78	31.30	1.02	14.5	0.773	0.27	2.63	235.0	1.62	9.53	45.7	141
(4-Acid) Cert						490.000															
OREAS 220 (Fire																					
Assay) Meas																					
OREAS 220 (Fire																					
Assay) Cert																					
OREAS 220 (Fire Assay) Meas																					
OREAS 220 (Fire																					
Assay) Cert																					
OREAS 224 (Fire																					
Assay) Meas																					
OREAS 224 (Fire																					
Assay) Cert																					
OREAS 224 (Fire Assay) Meas																					
OREAS 224 (Fire																					\vdash
Assay) Cert																					
A527810 Orig																					
A527810 Dup																					
A527820 Orig																					\vdash
A527820 Dup																					
A527830 Orig																					
A527830 Dup																					
A527833 Orig	< 0.001	0.2	< 0.1	< 1	< 0.01	121	4.8	0.2	< 1	0.2	2	< 0.1	< 0.1	< 0.001	< 0.05	< 0.1	< 4	0.1	< 0.1	< 1	1.2
A527833 Dup	< 0.001	0.2		< 1	< 0.01	101	4.5			0.2	2		0.1	0.001		< 0.1	< 4	0.1	< 0.1	2	
A527836 Orig	1 2.001	1	5.7		. 5.51	.01		1	<u> </u>	Ŭ. <u>-</u>	-	1 3.1	<u> </u>	1.001	1 3.00	1 0.1	<u> </u>	<u> </u>	1 5.1	-	
A527836 Dup																					\vdash
A527838 Orig	0.022	23.8	11.5	< 1	0.13	270	1.3	< 0.1	2	0.8	167	0.2	3.4	0.082	0.21	0.4	11	0.1	3.2	35	90.1
A527838 Dup	0.023	24.8	11.7	< 1	0.14	284	1.3		2	0.8	173	0.2	3.4	0.077	0.23	0.4	12		3.2	32	
Method Blank	< 0.023	< 0.1	< 0.1	< 1	< 0.01	23	0.2	< 0.1	< 1	< 0.1	< 1	< 0.1	< 0.1	< 0.001	< 0.05	< 0.1	< 4	< 0.1	< 0.1	< 1	0.2
Method Blank	< 0.001	< 0.1	< 0.1	< 1	< 0.01	9	0.2		< 1	< 0.1	< 1	< 0.1	< 0.1	< 0.001	< 0.05	0.1	< 4	< 0.1	< 0.1	1	
- Strice Signic	1 0.001	1 0.1	1 0.1		3.01	<u> </u>	0.0	1 0.1		1 0.1		1 0.1	1 0.1	1 0.001	1 5.55	0.1	<u> </u>	1 0.1	1 0.1	 	0.2

QC Activation Laboratories Ltd. Report: A17-12469

	_																				
Analyte Symbol	Р	Rb	Pb	S	Mg	Mn	Мо	Sb	Sc	Sn	Sr	Ta	Th	Ti	TI	U	V	W	Υ	Zn	Zr
Unit Symbol	%	ppm	ppm	%	%	ppm	%	ppm													
Lower Limit	0.001	0.1	0.1	1	0.01	1	0.1	0.1	1	0.1	1	0.1	0.1	0.001	0.05	0.1	4	0.1	0.1	1	0.1
Method Code	TD-MS																				
Method Blank																					
Method Blank																					
Method Blank																					

Quality Analysis ...

Innovative Technologies

Date Submitted: 24-Nov-17
Invoice No.: A17-13413
Invoice Date: 29-Nov-17

Your Reference: Traxxin Extension

Bold Ventures Inc 15 Toronto Stret, Suite 1000 Toronto Ontario M5C 2E3 Canada

ATTN: David Graham

CERTIFICATE OF ANALYSIS

1 Crushed Rock samples were submitted for analysis.

The following analytical package(s) were requested:

Code 1A4-1000 (100mesh)-Tbay Au-Fire Assay-Metallic Screen-1000g

REPORT **A17-13413**

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

A representative 1000 gram split is seived at 100 mesh (149 micron) with assays performed on the entire +100 mesh and 2 splits of the -100 mesh fraction. A final assay is calculated based on the weight of each fraction.

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD.

1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHONE +807 622-6707 or +1.888.228.5227 FAX +1.905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com Results Activation Laboratories Ltd.

				_			_
Analyte Symbol	Au + 100 mesh	Au - 100 mesh (A)	Au - 100 mesh (B)	Total Au	+ 100 mesh	- 100 mesh	Total Weight
Unit Symbol	g/mt	g/mt	g/mt	g/mt	g	g	g
Lower Limit	0.03	0.03	0.03	0.03			
Method Code	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT	FA-MeT
A527834	< 0.03	< 0.03	< 0.03	< 0.03	18.32	446.96	465.28

Analyte Symbol	Total Au	Total Weight		
Unit Symbol	g/mt	g		
Lower Limit	0.03			
Method Code	FA-MeT	FA-MeT		
OREAS 214 Meas	3.01			
OREAS 214 Cert	3.03			
OREAS 216 (Fire Assay) Meas	6.63			
OREAS 216 (Fire Assay) Cert	6.66			
Method Blank	< 0.03	0.00000		

APPENDIX III

Point of Interest (Table 2)

Ta	Table 2 Point of Interest Table								
POI#	Date	Easting	Northing	Photo	Description				
1	16-Oct-17	658873	5423276		E-W claim line across road, potential campsite to NE in clearing on E side				
2	19-Oct-17	656841	5417550		shearing at 120 and 160, fractures at 160				
3	20-Oct-17	654714	5415639		glacial striae at 032 degrees				
4	20-Oct-17	654682	5414752		160 to 180 degree fractures, as well as 085 to 090 degree fractures in outcrop				
				POI_005_SW and	Witness distance post 325m W, claim # 4281772 (photo SW), and witness distance post 75m E, claim # 4281772 (photo NE). Writing on post reads 'M. Haveman, lic #				
5	20-Oct-17	655245	5412901	POI_005_NE	1013308, Nov 2, 2016, 11:05 am'				
				POI_006_SW and					
6	20-Oct-17	655245	5412901	POI_006_NE	#2 tag of claim #4281077 (photo SW), witness post 325m W post 2 75m E, claim #4281077 (photo NE). Writing on post is indecipherable except for the date: July 24, 2016				
7	21-Oct-17	656032	5417971		N/S flagged claimline				
8	21-Oct-17	656030	5418023		N/S flagged claimline				
9	22-Oct-17	657763	5420369	POI_009_E	Granite with potassic alteration				
10	22-Oct-17	657630	5420579		N/S flagged claimline				
11	22-Oct-17	658564	5422464	POI_011_NE	Glacial striae at 026 degrees				
12	23-Oct-17	656931	5421140	POI_012_N	Quartz vein striking 340 degrees, fabric/shearing at 080 degrees				
13	24-Oct-17	655505	5417770		~E-W shearing in gneissic outcrop				

APPENDIX IV

Act Labs Analytical Description

Gold and Silver Analyses

Gold and Silver Analyses - Geochem

Code	Method	Sample Weight (g)	Metric Range	Price
1A1	Au Fire Assay - INAA	30	1 - 20,000 ppb	\$19.50
1A2 *	Au Fire Assay - AA	30	5 - 5,000 ppb	\$16.25
1A2-50 *	Au Fire Assay - AA	50	5 - 5,000 ppb	\$18.50
1A2-ICP	Au Fire Assay - ICP-OES	30	2 - 30,000 ppb	\$17.25
1A2-ICP-50	Au Fire Assay - ICP-OES	50	2 - 30,000 ppb	\$19.25
1A2-ICPMS	Au Fire Assay - ICP-MS	30	0.5 - 30,000 ppb	\$25.00
1A6	Au BLEG - ICP-MS	1,000	0.1 - 10,000 ppb	\$43.25
1A8	Au Aqua Regia - ICP-MS	30	0.2 - 2,000 ppb	\$17.25
1E-Ag	Ag Aqua Regia - ICP-OES	0.5	0.2 - 100 ppm	\$6.50

Gold and Silver Analyses - Assay

Code	Method	Sample Weight (g)	Metric Range	Price
1A3-30	Au Fire Assay - Gravimetric	30	0.03 - 10,000 g/mT	\$21.75
1A3-50	Au Fire Assay - Gravimetric	50	0.02 - 10,000 g/mT	\$22.75
1A3-Ag (Au,Ag)	Au, Ag Fire Assay - Gravimetric	30	0.03 - 10,000 g/mT (Au) 3 - 10,000 g/mT (Ag)	\$25.00
1A4 **	Au Fire Assay - Metallic Screen	500	0.03 g/mT	\$75.75
1A4-1000 **	Au Fire Assay - Metallic Screen	1,000	0.03 g/mT	\$86.50
8-Ag	Ag Fire Assay - Gravimetric	30	3 - 10,000 g/mT	\$23.00

When submitting samples for Au and Ag analysis, or Au, Pt Pd and Rh analysis, please try to ensure you send two-times the listed weight.

Gold, Platinum, Palladium and Rhodium

0.1	Method	Sample	Range (ppb)					
Code		Weight (g)	Au	Pt	Pd	Rh	Price	
1C-Exploration	Fire Assay - ICP-MS	30	2 - 30,000	1 - 30,000	1 - 30,000		\$21.75	
1C-EXP 2	Fire Assay - ICP-MS	30	1 - 30,000	0.5 - 30,000	0.5 - 30,000		\$23.75	
1C-research	Fire Assay - ICP-MS	30	1 - 30,000	0.1 - 30,000	0.1 - 30,000		\$34.50	
1C-Rhodium	Fire Assay - ICP-MS	30	-	-	-	5 - 10,000	\$32.50	
1C-OES	Fire Assay - ICP-OES	30	2 - 30,000	5 - 30,000	5 - 30,000		\$18.50	
8 Au Pt Pd	Fire Assay - ICP-OES	30	0.001 - 1000 g/mT	0.001 - 1000 g/mT	0.001 - 1000 g/mT		\$48.75	

Platinum Group Elements

Code Method		Sample	Range (ppb)						Dele e		
	Weight (g)	Os	lr	Ru	Rh	Pt	Pd	Au	Re	Price	
1B1	NiS Fire Assay - INAA	25	2	0.1	5	0.2	5 [†]	2	0.5	5	1-2 samples \$346.00 3+ samples \$173.00
1B2	NiS Fire Assay - ICP-MS	50	-	1	1	1	1	1	1	1	1-2 samples \$346.00 3+ samples \$173.00

Organic Sample Surcharge - \$1.10/sample for Fire Assay packages

Notes:

Use of 50 gram sample for fire assay may not provide optimum recovery.

For proper fire assay fusion, Actlabs may reduce the sample weights to 15 g or smaller at its discretion.

Samples with high Au can be reanalyzed by Code 1C exploration or research. Zn concentrates are not amenable to the nickel sulphide fire assay. Au results by Code 1B1 or 1B2 can be low by nickel sulphide fire assay. For accurate Au values, please request Code 1C-exploration.

^{*} Detection limit can be extended to 10,000 ppb if required. Please specify when required.

^{**} A representative 500 gram or 1000 gram (or customized) sample split is sieved at 100 mesh (150 micron), with assays performed on the entire +100 mesh fraction and two splits of the -100 mesh fraction. It is important not to overpulverize the sample too finely, as tests have shown gold will plate out on the mill and be lost. When assays have been completed on the coarse and fine portions of the bulk sample, a final assay is calculated based on the weight of each fraction.

Detection limits for Pt are increased with high Au/Pt ratios and limits for other elements will be affected by abnormally high Au, Sb and Cu content.

Trace Element Geochemistry & Digestion Specific Assays

"Near Total" Digestions

This acid attack is the most vigorous digestion used in geochemistry. It will employ hydrochloric, nitric, perchloric and hydrofluoric acids. Even with this digestion, certain minerals (barite, gahnite, chromite, cassiterite, etc.) may not go into solution. Other minerals including zircon, sphene and magnetite may not be totally dissolved. Most other silicates will be dissolved, however some elements will be erratically volatilized, including As, Sb, Cr, U and Au.

Near-Total digestion **cannot** be used to get accurate determinations of REE, Ta, Nb, As, Sb, Sn, Hg, Cr, Au and U.

NOTE: Results from aqua regia or total digestions may be lab dependent or lab operator dependent. Actlabs has automated this aspect of digestion using a microprocessor designed hotbox to accurately reproduce digestion conditions every time.

Hg add-on by cold vapour FIMS

Code 1G (5 ppb) add \$9.75

Assays

Package	Code 8 - 4 Acid ICP-OES	Code 8 - 4 Acid ICP-MS
Ag	3 ppm	1 - 10,000 ppm
Bi	-	0.0001 - 1 %
Cd	0.003 %	0.0001 - 1 %
Co	0.003 %	0.0001 - 1 %
Cu	0.001 %	0.0001 - 1 %
Li	0.01 %	-
Мо	0.003 %	0.0001 - 1 %
Ni	0.003 %	0.0001 - 1 %
Pb	0.003 %	0.0001 - 1 %
Se	-	0.0001 - 1 %
Sn	-	0.0001 - 1 %
TI	-	0.0001 - 1 %
U	-	0.0001 - 1 %
Zn	0.001 %	0.0001 - 1 %
One Element	\$14.00	\$16.25
Each Additional Element	\$2.20	\$2.20
All Elements	\$19.50	\$21.75

	ICP-OES	ICP-	-MS	ICP-OES	+ ICP-MS
Package	1F2	UT-4M	Ultratrace 4	Ultratrace 6	ME-MS61
Ag	0.3 - 100 ppm	0.1 - 100 ppm	0.05 - 100 ppm	0.05 - 100 ppm	0.01 - 100 ppm
Al *	0.01 - 50 %	0.01 - 20 %	0.01 - 10 %	0.01 - 10 %	0.01 - 50 %
As *	3 - 5,000 ppm	1 - 10,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm	0.2 - 10,000 ppm
Au * B *	-	100 - 2,000 ppb	1 - 6,000 ppm	-	-
Ba*	7 - 1,000 ppm	1 - 10,000 ppm	1 - 5,000 ppm	1 - 5,000 ppm	10 - 10,000 ppm
Be	1 - 10,000 ppm	1 - 1,000 ppm	0.1 - 1,000 ppm	0.1 - 1,000 ppm	0.05 - 1,000 ppm
Bi	2 - 10,000 ppm	0.1 - 4,000 ppm	0.02 - 2,000 ppm	0.02 - 2,000 ppm	0.01 - 10,000 ppm
Ca	0.01 - 70 %	0.01 - 40 %	0.01 - 50 %	0.01 - 50 %	0.01 - 50 %
Cd	0.3 - 2,000 ppm	0.1 - 4,000 ppm	0.1 - 1,000 ppm	0.1 - 1,000 ppm	0.02 - 1,000 ppm
Ce *	1 10 000 nnm	1 - 2,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm	0.01 - 500 ppm
Co Cr *	1 - 10,000 ppm 1 - 10,000 ppm	0.2 - 4,000 ppm 1 - 10,000 ppm	0.1 - 500 ppm 0.5 - 5,000 ppm	0.1 - 500 ppm 0.5 - 5,000 ppm	0.1 - 10,000 ppm 1 - 10,000 ppm
Cs	1 - 10,000 ppiii	0.1 - 10,000 ppm	0.05 - 100 ppm	0.05 - 100 ppm	0.05 - 500 ppm
Cu	1 - 10,000 ppm	0.1 - 10,000 ppm	0.2 - 10,000 ppm	0.2 - 10,000 ppm	0.2 - 10,000 ppm
Dy *	- ' ''	-	0.1 - 5000 ppm	0.1 - 5,000 ppm	- ' ''
Er*	-	-	0.1 - 1,000 ppm	0.1 - 1,000 ppm	-
Eu *	-	- 0.04 00.04	0.05 - 100 ppm	0.05 - 100 ppm	
Fe *	0.01 - 50 %	0.01 - 60 %	0.01 - 50 %	0.01 - 50 %	0.01 - 50 %
Ga Gd *	1 - 10,000 ppm	-	0.1 - 500 ppm 0.1 - 5,000 ppm	0.1 - 500 ppm 0.1 - 5,000 ppm	0.05 - 10,000 ppm
Ge	-	-	0.1 - 500 ppm	0.1 - 500 ppm	0.05 - 500 ppm
Hf*	-	0.1 - 1,000 ppm	0.1 - 500 ppm	0.1 - 500 ppm	0.1 - 500 ppm
Hg *	1	-	10 - 10,000 ppb	10 - 10,000 ppb	-
Ho *	-	-	0.1 - 1,000 ppm	0.1 - 1,000 ppm	-
In V *	0.01 10.0/	0.01 10.0/	0.1 - 100 ppm	0.1 - 100 ppm	0.005 - 500 ppm
K* La*	0.01 - 10 %	0.01 - 10 % 0.1 - 2,000 ppm	0.01 - 5 % 0.1 - 10,000 ppm	0.01 - 5 % 0.1 - 10,000 ppm	0.01 - 10 % 0.5 - 10,000 ppm
Li	1 - 10,000 ppm	0.1 - 2,000 ppm	0.5 - 400 ppm	0.5 - 400 ppm	0.2 - 10,000 ppm
Lu *	-	-	0.1 - 100 ppm	0.1 - 100 ppm	-
Mg	0.01 - 50 %	0.01 - 30 %	0.01 - 50 %	0.01 - 50 %	0.01 - 50 %
Mn *	1 - 100,000 ppm	1 - 10,000 ppm	1 - 10,000 ppm	1 - 10,000 ppm	5 - 100,000 ppm
Mo Na	1 - 10,000 ppm 0.01 - 10 %	0.1 - 4,000 ppm	0.05 - 10,000 ppm	0.1 - 10,000 ppm	0.05 - 10,000 ppm
Nb *	0.01 - 10 %	0.001 - 10 % 0.1 - 2,000 ppm	0.01 - 3 % 0.1 - 500 ppm	0.01 - 3 % 0.1 - 500 ppm	0.01 - 10 % 0.1 - 500 ppm
Nd *	-	- 2,000 pp	0.1 - 10,000 ppm	0.1 - 10,000 ppm	-
Ni	1 - 10,000 ppm	0.1 - 10,000 ppm	0.5 - 5,000 ppm	0.5 - 5,000 ppm	0.2 - 10,000 ppm
P	0.001 - 10 %	0.001 - 5 %	-	0.001 - 10 %	10 - 10,000 ppm
Pb Pr *	3 - 5,000 ppm	0.1 - 5,000 ppm	0.5 - 5,000 ppm	0.5 - 5,000 ppm	0.5 - 10,000 ppm
Rb	_	0.1 - 2,000 ppm	0.1 - 5,000 ppm 0.2 - 500 ppm	0.1 - 1,000 ppm 0.2 - 5,000 ppm	- 0.1 - 10,000 pm
Re	-	- 2,000 ppiii	0.001 - 100 ppm	0.001 - 100 ppm	0.002 - 50 ppm
S +	0.01 - 20 %	1 - 10 %	-	0.01 - 20 %	0.01 - 10 %
Sb *	5 - 10,000 ppm	0.1 - 4,000 ppm	0.1 - 500 ppm	0.1 - 500 ppm	0.05 - 10,000 ppm
Sc	4 - 10,000 ppm	1 - 200 ppm	-	1 - 5,000 ppm	0.1 - 10,000 ppm
Se Sm *	-	-	0.1 - 1,000 ppm 0.1 - 100 ppm	0.1 - 1,000 ppm	1 - 1,000 ppm
Sm *	-	- 0.1 - 2,000 ppm	1 - 200 ppm	0.1 - 100 ppm 1- 200 ppm	- 0.2 - 500 ppm
Sr	1 - 10,000 ppm	1 - 10,000 ppm	0.2 - 10,000 ppm	0.2 - 1,000 ppm	0.2 - 10,000 ppm
Ta *	-	0.1 - 2,000 ppm	0.1 - 1,000 ppm	0.1 - 1,000 ppm	0.05 - 100 ppm
Tb *	-	-	0.1 - 100 ppm	0.1 - 100 ppm	-
Te *	2 -10,000 ppm	- 0.4 4.000	0.1 - 500 ppm	0.1 - 500 ppm	0.05 - 500 ppm
Th * Ti *	- 0.01 - 10 %	0.1 - 4,000 ppm 0.001 - 10 %	0.1 - 500 ppm	0.1 - 500 ppm 0.0005 - 10 %	0.2 - 10,000 pm 0.005 - 10 %
TI	5 - 10,000 ppm	0.05 - 10,000 ppm	0.05 - 500 ppm	0.05 - 500 ppm	0.003 - 10 % 0.02 - 10,000 ppm
Tm *	-	-	0.1 -1,000 ppm	0.1 - 1,000 ppm	-
U *	10 - 10,000 ppm	0.1 - 4,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm	0.1 - 10,000 ppm
V	2 - 10,000 ppm	4 - 10,000 ppm	1 - 10,000 ppm	1 - 1,000 ppm	1 - 10,000 ppm
W * Y *	5 - 10,000 ppm	0.1 - 200 ppm	0.1 - 200 ppm	0.1 - 200 ppm	0.1 - 10,000 ppm
Yb*	1 - 1,000 ppm	0.1 - 2,000 ppm -	0.1 - 10,000 ppm 0.1 - 5,000 ppm	0.1 - 10,000 ppm 0.1 - 5,000 ppm	0.1 - 500 ppm -
Zn *	1 - 10,000 ppm	1 - 10,000 ppm	0.2 - 10,000 ppm	0.2 - 10,000 ppm	2 - 10,000 ppm
Zr *	5 - 10,000 ppm	0.1 - 2,000 ppm	1 - 5,000 ppm	1 - 5,000 ppm	0.5 - 500 ppm
Price:	\$19.50	\$20.25	\$25.00	\$34.50	\$29.25

* Partial extraction only

⁺ Sulphide sulphur and soluble sulphates are extracted

APPENDIX V

Photos

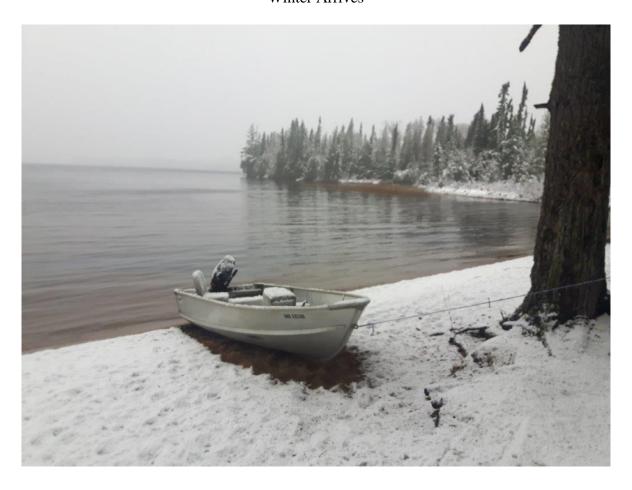
Biotite Gneiss Boulders with Quartz Veins and Pyrite (Samples A527801 – A527805)

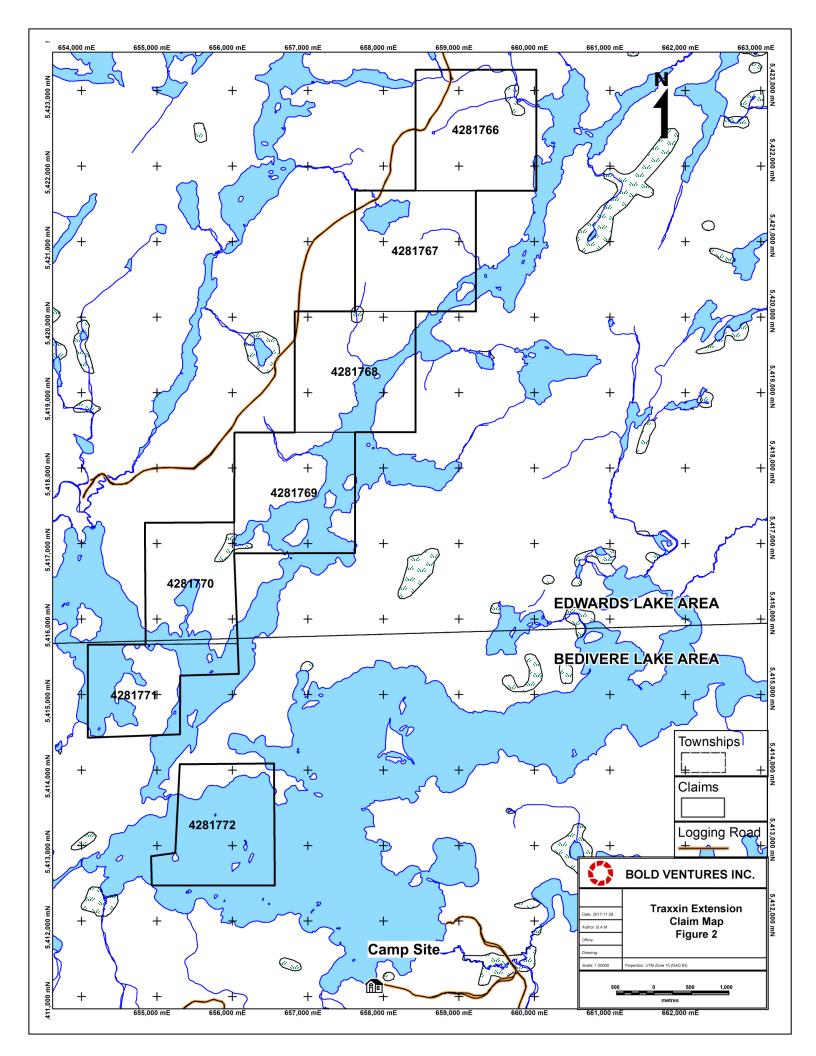
Quartz Veins in Road Cut (Samples A527808 – A527810)

Boulder Train (Samples A527827 – A527829)

Point of Interest # 9 (Sample A527830)

Quartz Boulder (Samples A527833 – A527834)


Rusty Outcrop with Quartz Vein (Samples A527837 – A527838)



Coleman Taking Notes

Winter Arrives

Date	Record of Work	Samples on Claims	Samples on Open Ground
16-Oct-17	Drove Thunder Bay to Traxxin Property, checked access, returned to Shebandowan.		2
17-Oct-17	Set up camp on south shore of Bedivere Lake.		
18-Oct-17	Drove around E side of Bedivere Lake, prospected NW portion of property, picked up boat in Shebandowan.	5	5
19-Oct-17	Prospected shoreline of North Arm of Bedivere Lake.	3	
20-Oct-17	Prospected shoreline of North Arm of Bedivere Lake.	11	
21-Oct-17	Prospected NW of Bedivere Lake.		3
22-Oct-17	Prospected NW of Bedivere Lake.	4	1
23-Oct-17	Strong winds, prospected NW of Bedivere Lake.		
24-Oct-17	Prospected NW of Bedivere Lake.		4
25-Oct-17	N/A		
26-Oct-17	Snowed in.		
27-Oct-17	N/A		
28-Oct-17	Cut trail out of camp due to fallen trees, took out trailer, stayed in Sapawe.		
29-Oct-17	N/A		
30-Oct-17	N/A		
31-Oct-17	Retrieved equipment in Shebandowan.		
01-Nov-17	Drove from Thunder Bay to Kapuskasing.		
02-Nov-17	Drove from Kapuskasing to Timmins.		
	Total samples	23	15
			38