

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

TECHNICAL REPORT

On the

Phyllis Cobalt Property

Kenora Mining District Northwestern Ontario, Canada

Prepared for:

FIRST ENERGY METALS LTD. 1206 - 588 Broughton Street Vancouver, BC V6G 3E3

Prepared by:

Kristian Whitehead, B.Sc., P.Geo. Consulting Geologist Vancouver, BC

July 19, 2018

TABLE OF CONTENTS

1.0	SUMMARY	4
2.0	INTRODUCTION	8
2.1	Purpose of Report	8
2.2	Sources of Information	8
3.0	RELIANCE ON OTHER EXPERTS	8
4.0	PROPERTY DESCRIPTION AND LOCATION	8
5.0	ACCESS, CLIMATE, PHYSIOGRAPHY, LOCAL RESOURCES, AND INFRASTRUCTURE	E18
5.1	Access	18
5.2	Climate	18
5.3	Physiography	18
5.4	Local Resources and Infrastructure	21
6.0	HISTORY	21
7.0	GEOLOGICAL SETTING AND MINERALIZATION	22
7.1	Regional Geology	22
7.2	Local Geology	24
7.3	Mineralization	26
8.0	DEPOSIT TYPES	27
8.1	Deposit Types	27
8.2	Deposit Models	28
9.0	EXPLORATION	31
9.1	Prospecting and Sampling	31
9.2	Trenching and Channel Sampling	38
10.0	DRILLING	
11.0	SAMPLE PREPARATION, ANALYSES AND SECURITY	46
12.0	DATA VERIFICATION	47
13.0	MINERAL PROCESSING AND METALLURGICAL TESTING	52
14.0	MINERAL RESOURCE ESTIMATES	52
23.0	ADJACENT PROPERTIES	52
23.1	Steep Hill Iron Mine	52
23.2	Bending Lake Iron Project	53
23.3	Raleigh Lithium Project	53
24.0	OTHER RELEVANT DATA AND INFORMATION	56
24.1	Environmental Concerns	56
25.0	INTERPRETATION AND CONCLUSIONS	56
26.0	RECOMMENDATIONS	58
26.1	Budget	59
27.0	REFERENCES	60
28.0	SIGNATURE PAGE	63
29.0	CERTIFICATE OF AUTHOR	64

LIST OF FIGURES

Figure 1: Property Location Map	15
Figure 2: Phyllis Cobalt Property Mineral Claim Map	16
Figure 3: New claim map showing Cell Claims and Legacy Claims	17
Figure 4: Physiographic map of the Property area (Source: Golder Report 2013)	20
Figure 5: Regional Geology map	23
Figure 6: Local Geological Map	25
Figure 7a: Work Location Map	37
Figure 7b: February 2018 sample locations and assay results	37
Figure 8a: Channel Sample Location Map with Assays	43
Figure 8b: Chanel Sample Map with Geology	44
Figure 8c: Stripping Location Map Overview with Claim Fabric	45
Figure 9: Adjacent properties	55

LIST OF TABLES

Table 1: Property agreement	9
Table 2: Claim Data	10
Table 3: Hydrothermal and volcanogenic deposit locations	28
Table 4: February 2018 Samples description and assay results	33
Table 5: Channel sampling details	39
Table 6: Description of samples collected by the author	49
Table 7: Phase 1 budget	59

1.0 SUMMARY

Kristian Whitehead. P.Geo. ("the author") was retained by First Energy Metals Ltd. ("First Energy" or "the Company") to prepare an independent Technical Report on the Phyllis Cobalt Property ("the Property"). The purpose of the report is to meet the Toronto Stock Exchange requirements and to support future financings.

Located in the Kenora Mining District of Ontario, the property consists of 117 mineral claim units totalling 2113 hectares in Grummet and Cathcart townships. The property boasts yearround access 192km northwest of Thunder Bay, ON via Hwy 17 and 9km south on a gravel forestry road. First Energy Metals Ltd. has the option to own 100 % of the Mineral Claims by making cash payments, issuing shares and carrying out exploration work.

The Phyllis claim block occupies the central portion of an ENE-WSW trending greenstone belt, consisting of Mesoarchean to Neoarchean age mafic to ultramafic rocks. These are bound by granite of varying composition - ranging from tonalite to biotite-granodiorite. Recent mapping undertaken by the Ontario Geological Survey includes a small portion of the Phyllis claims, suggests that there is a greater abundance of ultramafic metavolcanics than previously indicated. The regional foliation follows the general trend of the greenstone belt.

Historically, the initial cobalt discovery on the Property was made in 2010 by Don Dobransky, named the "Phyllis Central" occurrence. This discovery is characterized by a 80m x 60m outcrop and appears as a fairly structureless gabbro, with the exception of an array of narrow quartz veins and veinlets, which have sharp contacts with the country rock and trend roughly NE-SW and appear to have been intruded relatively recently. The gabbro itself is fine-to medium grained and appears highly altered. The exposed outcrop follows the northern flank of a gentle hill. Earlier excavations focussed in the uppermost parts of the topographic profile. This work confirmed the presence of cobalt mineralization.

Geologically, the Phyllis Cobalt Property and its surrounding area is situated in the Wabigoon Subprovince, which is part of the western region of the Superior Province of the Canadian Shield – 3 to 2.6 billion year old rocks that form the core of the North American continent. An irregularly shaped, granitic intrusion Adele Lake Pluton intrudes the Phyllis Lake Greenstone Belt. Also, there are other batholiths in the Ignace area. The Phyllis belt is composed of mafic metavolcanic rocks that show pillows in less deformed areas and widespread amphibolite-facies metamorphism. The metamorphism has transformed the metavolcanic rocks to amphibole gneisses at many localities in the belt. Mafic metavolcanic rocks of the Phyllis belt unconformably overlie biotite tonalite along the northwest side of the belt. The unconformity is marked by a garnetiferous quartzo-feldspathic sandstone unit that attains a thickness of up to a few tens of metres.

Cobalt- copper-nickel mineralization on the property is hosted by fine to medium grained highly altered gabbro rocks. Mineralization is generally in the form of massive interstitial or

disseminated sulphides. The main minerals are pyrrhotite, pentlandite and chalcopyrite, all of which can contain cobalt in substitution for other metals.

There are four major types of deposit models for cobalt, which are: Sediment hosted deposits; Hydrothermal and volcanogenic deposits; Magmatic sulphides deposits; and Laterite type deposits. Phyllis cobalt Property falls under magmatic sulphides category.

First Energy Metals Ltd. has carried out exploration work on the Property in two stages where the first stage was to evaluate and confirm historical data on the property by carrying locating and sampling the historically reported mineralization zones and trends. The second stage comprised of trenching and channel sampling as a follow up of February 2018 work. To date, total exploration expenditures on the property are \$33,821.90.

The Stage one program was carried out in February 2018. A total of 31 grab rock samples were collected and were submitted to Activation Laboratories (ACTLABS) in Thunder Bay, Ontario. Following are highlights of the results.

- Overall results of 31 samples indicate cobalt (Co) values in the range of 0.001% (10 parts per million "ppm") to 0.435% (4,350 ppm), copper (Cu) 0.03% to 0.602%, and nickel (Ni) 0.004% to 0.48%.
- Two samples from historical Central Blast Pit show average 0.33% cobalt, 0.254% copper and 0.0195% nickel.
- Seven samples from south historical blast pit show average 0.021% cobalt, 0.299% copper, and 0.176% nickel.
- Cobalt- copper-nickel mineralization is hosted by fine to medium grained highly altered gabbro rocks.
- The samples tested for gold, platinum and palladium returned with low values for these precious metals.

In June 2018, the Company started Stage 2 of exploration as a follow up of the trenching and sampling work of February 2018. The work comprised trenching and sampling along cobalt mineralization trend; striping, trenching and channel sampling around the original cobalt showing and other new mineralization discovered during trenching; and geological mapping of the contact zone between greenstone belt and granitic intrusions. The samples for this work were submitted to Agat laboratories in Thunder Bay, and the results were pending till the filing of this report.

The author visited the property on June 24, 2018 to verify the recently completed 2018 exploration work and historical exploration areas, mineralized outcrops and collect necessary geological data. The existing data consisted of rock chip sampling, visiting reported approachable old trenching areas and onsite discussions. The author was able to verify location of February 2018 and June 2018 sampling and trenching areas during his June 24, 2018 property visit. The samples from property visit were delivered by the author to ALS Laboratories in Thunder Bay Ontario, an accredited laboratory in Canada. The samples are to be assayed using ALS package ME-ICP61 - Four Acid Digestion with ICP-AES Finish; plus, ore

grade package OG62 for over limit cobalt or any other element. A total of eight samples were collected by the author from various rock outcrops and channel sampling areas (Table 6). Assay results indicated cobalt values in the range of 75 parts per million (ppm) to 3560 ppm (0.356%), copper 629 ppm to 8750 ppm (0.875%), and nickel 113 ppm to 2170 ppm.

The data presented in this report is based on published assessment reports available from First Energy Metals Limited, Ontario MNDMF, the Geological Survey of Canada, and the Ontario Geological Survey. All the consulted data sources are deemed reliable. The data collected during the course of present study is considered sufficient to provide an opinion about the merit of the Property as a viable exploration target.

Based on its favourable geological setting indicating cobalt- copper-nickel mineralization hosted by fine to medium grained highly altered gabbro rocks, results of exploration work by First Energy Metals Limited and findings of present study, it is concluded that the Property is a property of merit and possess a good potential for discovery of economic concentration of cobalt-copper-nickel mineralization through further exploration. Good road access, availability of exploration and mining services in the vicinity makes it a worthy mineral exploration target. The historical and current exploration data collected on the Property provides the basis for a follow-up work program.

Recommendations

In the author's opinion, the character of the Phyllis Cobalt Property is sufficient to merit the following phased work program, where the second phase is contingent upon the results of the first phase.

Phase 1 – Geophysical Surveying and Diamond Drilling Work

The Phase 1 exploration work will comprise of two main tasks which include a 15 linekilometre ground induced polarization (IP) survey and 300 metre diamond core drilling around he main Phyllis Cobalt Zone.

Task 1 – Ground Induced Polarization Geophysical Survey

A 15 line-kilometre IP survey is proposed around the main Phyllis Cobalt Zone at 100-meter line spacing to cover 1500-meter area along strike. This survey will not only help to check the presence of subsurface mineralization but also provide information regarding azimuth and dip of the contact zone between greenstone and the granitic intrusion.

Task 2 – Diamond Core Drilling

A 300-meter diamond drill program is also recommended to check the subsurface extension of the main Phyllis Cobalt Zone. This drilling will comprise of two drill holes down to a depth of 150 metre each.

Total estimated budget for Phase 1 program is \$135,250 and it will take about eight to weeks time to complete this work.

Phase 2 – Detailed Drilling and Resource Estimation

If results from the first phase are positive, then a detailed drilling program would be warranted to check the targets identified in the ground geophysical survey and to further trace any mineralization intercepted in Phase 1 drilling. The scope of work for drilling and location of drill holes would be determined based on the findings of Phase 1 investigations.

2.0 INTRODUCTION

2.1 Purpose of Report

The author was retained by First Energy Metals Ltd. to prepare an independent Technical Report on work completed at the Phyllis Cobalt Property. The purpose of the report is to file the necessary technical information to satisfy the requirements set forth by the MNDM for assessment work credit approval for the sampling and mechanical trenching on the Phyllis Cobalt Project focused on Mining Cell 283596. The total amount of work completed during Phase 1 (February Sampling) and Phase 2 (Trenching and Sampling) is calculated to be \$33,821.90.

2.2 Sources of Information

The present report is based on published assessment reports available from the Ministry of Northern Development, Mines and Forestry (MNDMF) Ontario, and published reports by the Ontario Geological Survey (OGS), the Geological Survey of Canada ("GSC"), various researchers, websites, and personal observations. All consulted sources are listed in the References section. The sources of the maps are noted on the figures.

The author carried out a visit of the Property on June 24, 2018. The scope of Property inspection was to verify current and historical exploration work on the Property. The geological work performed to verify the existing data consisted of rock chip sampling and visiting reported approachable historical exploration work areas.

The author has also reviewed the land tenure on the MNDMF Database. The author reserves the right but will not be obliged; to revise the report and conclusions if additional information becomes known after the date of this report.

3.0 RELIANCE ON OTHER EXPERTS

For the purpose of the report the author has reviewed and relied on ownership information provided by First Energy Metals Limited, which to the author's knowledge is correct. A limited search of tenure data on the MNDM Ontario website on June 23, 2018, conforms to the data supplied by First Energy Metals Limited. However, the limited research by the author does not express a legal opinion as to the ownership status of the Phyllis Cobalt Property. This disclaimer applies to ownership information relating to the Property, and the information is available in Section 1 (Summary) and Section 4 (Property Description and Location) of this report.

4.0 PROPERTY DESCRIPTION AND LOCATION

The Phyllis Cobalt Property consists of 123 mineral claims in 117 units totalling 2113 hectares in Grummet and Cathcart townships in Kenora Mining District of Northwestern Ontario, Canada (Figure 1 and 2). Originally the property was comprised of seven mining claims covering 112 units and 1792 hectares land package. As of April 10, 2018, the Ontario Ministry of Energy, Northern Development and Mines changed its claim management system to incorporate online staking by dividing mining lands into cell and boundary claim units. The old claims are now called Legacy claims (see Figure 3).

It is located about 192 kilometers to the southwest of Thunder Bay, approximately 30 kilometers to the southeast of the town of Ignace on Highway 11/17.

The Property claims were acquired under an agreement dated January 29, 2018 with Alex Pleson and Afzaal Pirzada ("the Optionor"), where First Energy has the option to acquire a 100% interest in the Claims, by making the following cash payments, common shares issuances and exploration expenditures:

	<u>Cash</u>	Securities	Exploration Expenditure Requirements
<u>On</u>	\$20,000	100,000	Nil
<u>Signing</u>		Common Shares	
<u>Year 1</u>	\$35,000	150,000	Exploration expenditures of not less than \$75,000 to be
		Common Shares	incurred on or before January 31, 2019.
<u>Year 2</u>	\$35,000	150,000	Cumulative exploration expenditures of not less than
		Common Shares	\$100,000 to be incurred on or before January 31, 2020.
<u>Year 3</u>	\$50,000	200,000	Cumulative exploration expenditures of not less than
		Common Shares	\$125,000 to be incurred on or before May 31, 2021.

Table 1: Property agreement

The Claims Agreement also provides for a royalty equal to 3% Net Smelter Return ("NSR") from the Claims payable to the Optionor. The royalty will be payable to the Optionor for as long as First Energy and/or its successors and assigns hold any interest in the Claims. First Energy will have a right to purchase a 1% NSR for \$1,000,000 at any time up to when a production decision is made.

The claims were staked on ground by erecting physical posts as required by claim staking regulations in Ontario. In Ontario all mineral claims staked are subject to \$400 per unit worth of eligible assessment work to be undertaken before year 2 anniversary, followed by \$400 per unit per year thereafter.

There are a number of Aboriginal communities and organizations in the Ignace area including Lac Seul First Nation, Seine River First Nation and Wabigoon Lake First Nation. Métis Councils in the area include Atikokan and Area Métis Council, Kenora Métis Council, Northwest Métis Council and Sunset Country Métis Council as represented by the Lake of Woods/Lac Seul, Rainy Lake/Rainy River and Treaty 3 Traditional Territory Consultation

Committee and Greenstone Métis Council, Superior North Shore Métis Council and Thunder Bay Métis Council as represented by Lakehead/Michipicoten/Nipigon Traditional Territory Consultation Committee and the Métis Nation of Ontario. Any exploration and mining work in on the property will need to be carried out in consultation with these communities.

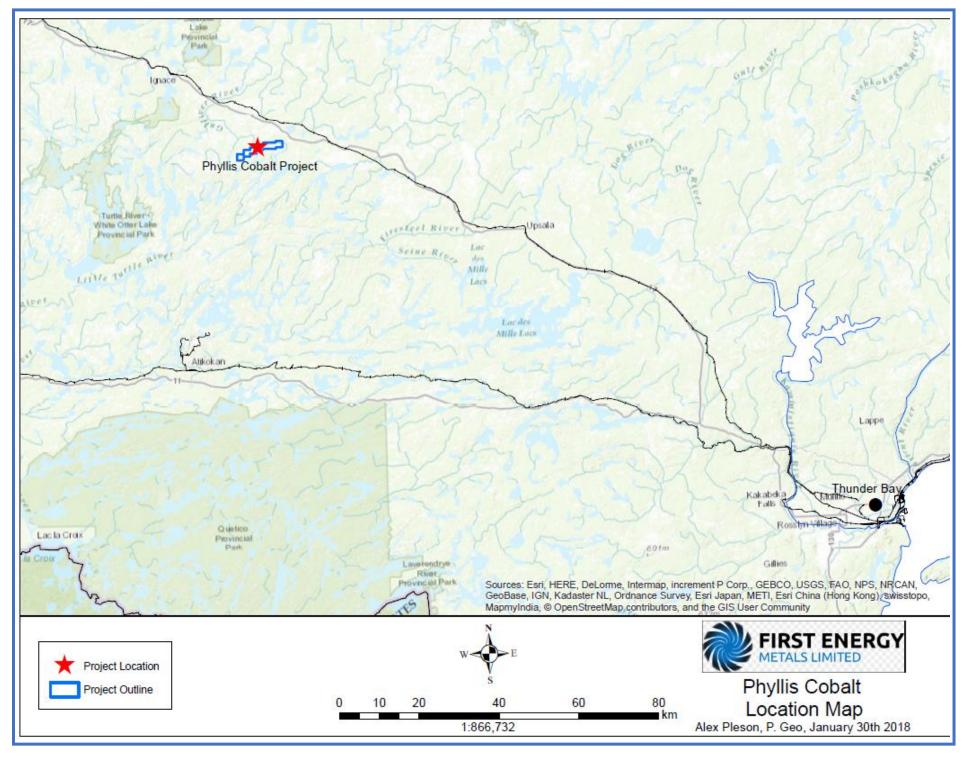
Claim data is summarized in the Table 1, while a map showing the claims is presented in Figures 2 and 3.

Claim ID	Township	Option	Due Date	Legacy Claim
238466	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
334577	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
221391	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
142634	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
324676	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
257367	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
238467	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
334580	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
311952	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
201343	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
238465	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
113401	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
334578	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
334579	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
209356	Grummett	First Energy Metals Ltd.	Jan 18, 2020	K4280713
209357	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
257368	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
171376	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
201341	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280713
152389	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
196872	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
156702	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4280713
291793	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
102513	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
305141	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4280713
124393	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
311950	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4280713
311951	Grummett	First Energy Metals Ltd.	Jan 18, 2020	K4280713
171375	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4280713
201342	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4280713

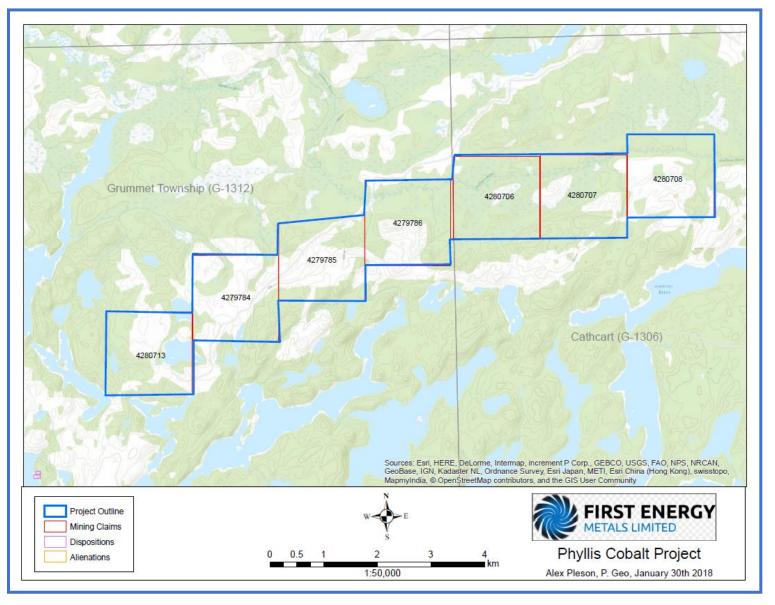
Table 2: Claim Data

Claim ID	Township	Option	Due Date	Legacy Claim
321002	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
169004	Grummett	First Energy Metals Ltd.	K4279784	
235720	Grummett		Apr 3 2019	K4279784
		First Energy Metals Ltd.	Apr 3 2019	K4279784
181808	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
321005	Grummett	First Energy Metals Ltd.	Apr 3 2019	
321001	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
284965	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
152390	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
321003	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
321004	Grummett			K4279784
110704	Grummett	First Energy Metals Ltd. First Energy Metals Ltd.	Apr 3 2019 Apr 3 2019	K9279785
110704	Granmett	Thist Energy Wetais Etd.	Api 3 2013	K4279784,
206305	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
343913	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
545515	Grannett		7.01 5 2015	K4279784
117843	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
206306	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
117844	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279784
143044	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
143045	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
182186	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
238262	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
				K4279785
136999	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
343817	Grummett	First Energy Metals Ltd.	Apr 3 2019	
209133	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
312335	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
257851	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
305024	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
238261	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
				K4279785
305025	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785
305026	Grummett	First Energy Metals Ltd.	Apr 3 2019	
161593	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279785, K4279786
101333	Signifield	This Licity Weldis Llu.		NT275700

Claim ID	Township	Option	Due Date	Legacy Claim
101821	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
101822	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
				K4279785,
197530	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
283596	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
				К4279785,
283597	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
116314	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
180433	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
234318	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
216295	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
167597	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
167598	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
161592	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
283595	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
122488	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
197531	Grummett	First Energy Metals Ltd.	Apr 3 2019	K4279786
244352	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280706
318387	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280706
270967	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4279786
270632	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280706
122487	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4279786
263510	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4279786
270633	Grummett	First Energy Metals Ltd.	Jan 19 2020	K4280706
244351	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280706
132431	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280706
111105	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280706
152048	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280706
167206	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280706
318386	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280706
204649	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280706
251886	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280706
				K4280706,
270618	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
				K4280706,
152030	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
				K4280706,
185134	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
				K4280706,
132447	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
168636	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
333346	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707


Claim ID	Township	Option	Due Date	Legacy Claim
319806	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
245803	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
272589	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
245801	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
245802	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
272590	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
198592	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
272588	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
333345	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
185730	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
112680	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
206591	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
272014	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
		07		K4280707,
153390	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
				K4280707,
265277	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
				К4280707,
333108	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
100001				K4280707,
133821	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
265852	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280707
272013	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
198532	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
333106	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
168555	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
153393	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
133819	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
245717	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
111428	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
205991	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
133820	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
301866	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
301867	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
153391	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
333107	Cathcart	First Energy Metals Ltd.	Jan 19 2020	K4280708
153392	Cathcart	First Energy Metals Ltd.	Jan 19 2020	К4280708
Total	Claims	123		
Units		117		
Area in Squ	are Meter	21133125		
Area Hectar	es	2113.31		
Area Acres		5222.00		

Claim ID	Township	Option	Due Date	Legacy Claim
Work Requi	ired	\$46,800.00		


There is no past producing mine on the Property and there were no historical mineral resource or mineral reserve estimates documented.

There are no known environmental liabilities and no permits have been applied for or acquired for the Property. An exploration work permit for trenching, channel sampling and drilling is in place for the Property.

Figure 1: Property Location Map

Figure 2: Phyllis Cobalt Property Mineral Claim Map

POnt	taric	MINIS M		NORTH		VELOPM	IENT AN	D MINES	5			Phyl	lis Col	balt Cl	aim M	ар				Notes:						
6. 287	7	288	289	290	291	292	293	294	295	295	297	298	ULLNYR RIVER	300	281	282	283	284	285	285	287	288	289	290	291	292
66 303	σ.	308	309	310	311	312	313	314	315	316	317	318	349	320	301	302	303	304	305	306	307	308	309	310	311	312
26 327	7	GUL 328 RM	IVER ER 329	330	331	332	333	334	335	336	337	338	339	340	321	322	323	324	325	326	327	328	329	330 272014	331 272013	332
46 343	17	348	349	350.	351	352	52G06D	354	355	356	357	Je.	359	360	341	306C	³⁴³ 24435		³⁴⁵ 167206	³⁴⁶ 270618	347 168636	348 272589	349 272588	350 153390	351 198532	352
366 367	t.	368	369	370	371	372	373	374	375	376	377	378	379 101822	101821	361 234318	362 161592 K42797	27096 363 31838	132431	365 318386 280706	366 152030	³⁶⁷ 333346	368 245801	369 333345	370 265277	371 333106 4280706	372
385 381	Ţ	368	389	390	391	392	393	394	³⁹⁵ 110704	³⁹⁶ 143044	³⁹⁷ 343817	³⁹⁸ 305024	399 161593	CONTRACTOR	381 216295 279786	K427971 283595 382	12248 383 27063	111105	385 204649	³⁸⁶ 185134	0.000	428070 245802 388	185730 389	³⁹⁰ 333108	³⁹¹ 168555	392
005 001	1	008	009	010	011	012 152389	013 321002	014 321001	015 206305	016 182186	017 209133	018 238261	019 197530	020 116314	001 167597		263 51 003 270 63	152048	005 251886 025	006 132447	007 245803	008 272590	009 112680	-010 133821	011 153393	012
025		GRUM		030	031	032 196872 052	033 169004	034 284965	035 343913	036 238262		85 305025 ⁰³⁸	039 283597	040 180433	021 167598	022 197531	023	024	CATHCA	RT ^{es}	26 027	028 198592	029 206591	030 265852	081	032
046 047	2	23 8466 048	257367 049	209356 050		156702 291793 13 ^{K142797}	053 235720 4	152390 054	117843 055	056 136999	057 257851	058 305026	059 143045	060	041	042	043	044	045	946	047	048	049	050	951	052
065 067	z 3	068 33 4577	069 238467	070 171375		102513 305141 13K42797	073 181808 4	074 321003	075 206306	a 076	OTT	078	079	J 080	061	2.062	-063	064	065	066	067	068	069	070	071	072
085 087	CONTRACT.	088 221391 303L	000	4280713 334579 090	334578 091 K4		(4279784 321005 093	094 321004	095 117844	096	1930	098	099	100	081	082 303K	983	2084	065	085	087	068	089	090	091	092
105 107	1	108 142634	109 311952	110 311951	111 2093 57	112 171376	113	114	115	116	117	118	119	120	101	102	165	104	105	108	107	108	109	110	111	112
126 127	3	128 3 24676	129 2013 43	130 201342		132 201341	133	134	135	136	137	Phylli 138	Lake 139	140	121	122	123	124	125	125	127	128	129	130	131	132
146 147	17 Ç	148	149	150	131	152	153	154	155	156	157	158	159	160	141	142	143	444	45	146	147	148	149	150	151	152
166 167	7	168	169	170	171	172	173	174	175	176	177	178	179	180	161	162	163	164	165	166	167	168	.169	170	171	172
186 187	7	188	189	190	191	192 P	1 y 1493 L	a 8 1994	195	196	197	198	199	200	1/181	182	183	184	185	186	187	188	189	190	191	192

Figure 3: New claim map showing Cell Claims and Legacy Claims

Legend

cial Grid Cel

vailable ending

navailablic

Claim

Lease

urface Rights Only

lining Rights Only urface and Mining Rights

g Licence of pation

urface Rights Only

ining Rights Only urface and Mining Rights

Patent

urface Rights Only

ining Rights Only

urface and Mining Rights

lary Claim

y Claim

Claim - History Land Tenure -

Division I Townships and

cial Grid Group

lining Land Tenure atent, Surface Rights Only

atent, Mining Rights Only

atent, Surface and Mining Rights

eace, Surface Rights Cnly

ease, Mining Fights Only

ease, Surface and Mining Rights Vater Power Lease Agreement

Licence of Occupation, Surface Rights Only

licence of Occupation, Surface an Airling Hights IonucO-ni-reb

tion

ithdrawal

0368

Grid Labels 10K Grid 10K

Reserve

5.0 ACCESS, CLIMATE, PHYSIOGRAPHY, LOCAL RESOURCES, AND INFRASTRUCTURE

5.1 Access

The Phyllis Cobalt Property has good year -round road access from the town of Thunder Bay, Ontario (Figure 1) via Hwy 17 and 9 km south on a gravel forestry road. Travel time by road from Thunder Bay to the Property is approximately 2 hours.

5.2 Climate

The climate of Thunder Bay region including the Phyllis Cobalt Property area is influenced by Lake Superior, resulting in cooler winter temperatures and warmer summer temperatures for an area extending inland as far as 16 km. The average daily temperatures range from a high of 17.6 °C in July and a low of -14.8 °C in January. The summer period is approximately 97 days in length extending from the beginning of June to the beginning of September; fall lasts about 60 days and extends to November. The winter season lasts approximately 6 months extending from November through to May. Although the area normally has about six months of snow-free conditions, exploration and mining work can be carried out throughout the year.

5.3 Physiography

The Canadian Shield region generally has a low-relief, gently undulating land surface with an elevation of about 150 masl (metres above sea level) in the north and about 450 masl in the south. The property lies in the Severn Uplands, which comprises broadly rolling surfaces of Canadian Shield bedrock that occupies most of northwestern Ontario and which is either exposed at surface or shallowly covered with Quaternary glacial deposits. Terrains in the Severn Uplands contain numerous lakes. The land surface within the area varies somewhat from the region in that there is considerable relief between the lakes in most areas and the ground surface elevation ranges from 368 masl to 554 masl.

Regionally, there are two major moraine ridges that represent dominant topographic features: the Hartman and Lac Seul moraines and associated glacial deposits (e.g., eskers, tills, kames and outwash). (Golder report 2013).

The Ignace area is contained within the Nelson River Drainage Area, which drains into Hudson Bay through the Nelson River. In the Ignace area there are three tertiary watersheds, the Upper English sub-basin, the Wabigoon sub-basin and the Central Rainy sub-basin. The Ignace area is abundant in lakes, which are interconnected by an intricate network of small and medium sized rivers, and by large rivers such as the Wabigoon River, Bending River and Gulliver River. The Township of Ignace and the northeastern part of the Ignace area is located within the Upper English sub-basin which generally drains to the northeast. The Wabigoon sub-basin is in the western part of the Ignace area and is drained by the Wabigoon River to the northwest. The Central Rainy sub-basin, located south and southwest of the Ignace area, is drained largely by the Turtle River which eventually flows into the Rainy River. Given the modestly rugged terrain, modest precipitation and relatively small size of catchment areas, no large areas of floodplain are expected to be present.

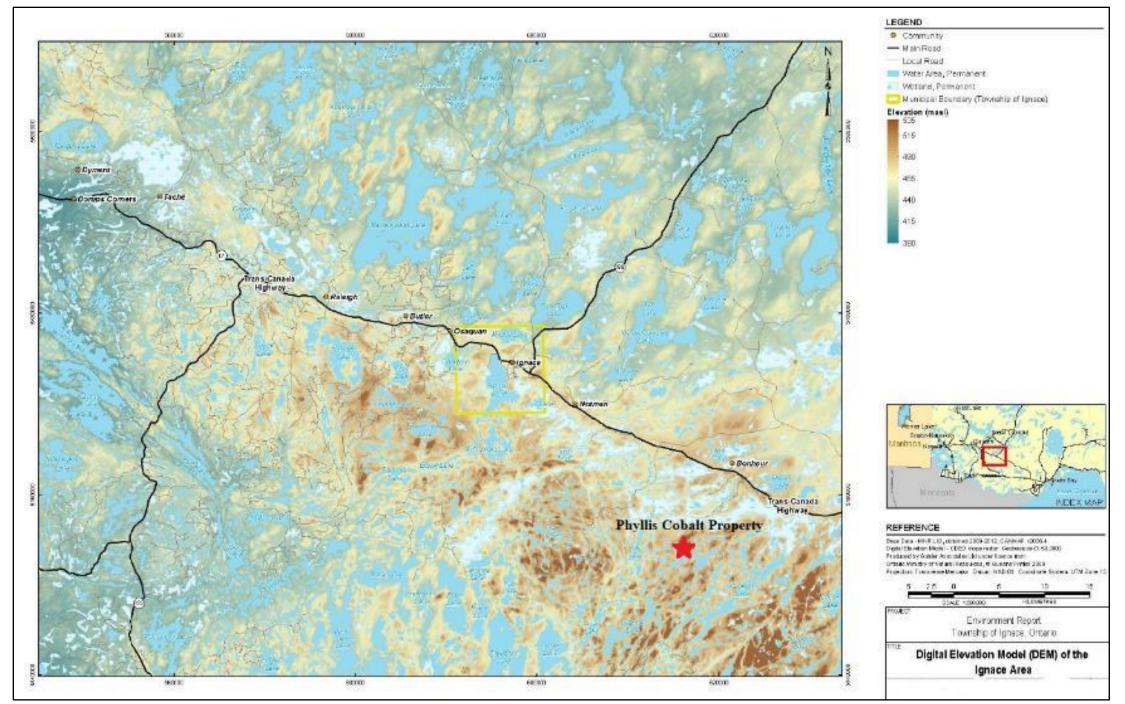


Figure 4: Physiographic map of the Property area (Source: Golder Report 2013)

5.4 Local Resources and Infrastructure

The town of Thunder Bay, located about 192 kilometres from the Property, is the largest city in Northwestern Ontario, serving as a regional commercial centre. The town is a major source of workforce, contracting services, and transportation for the forestry, pulp and paper and mining industry. Thunder Bay is a transportation hub for Canada, as the TransCanada highways 11 and 17 link eastern and western Canada. It is close to the Canada-U.S. border and highway 61 links Thunder Bay with Minnesota, United States. Thunder Bay has an international airport with daily flights to Toronto, Ontario and Winnipeg, Manitoba and the United States. There is a large port facility on the St. Lawrence Seaway System which is a principal north-south route from the Upper Midwest to the Gulf of Mexico.

The city of Thunder Bay has most of the required supplies for exploration work including grocery stores, hardware stores, exploration equipment supply stores, restaurants, hotels, and a hospital. The population of the city of Thunder Bay was 110,984 people in 2014 (Statistics Canada, www.statcan.gc.ca). Many junior exploration and mining companies are based in Thunder Bay, and thus the city is a source of skilled mining labour.

The town of Ignace located about 30 kilometres to the northwest of the Property is the nearest place to provide lodging for exploration program. The town is located on Highway 17 and has a population of around 1,200 people. There are a few motels and lodges to stay and restaurants for dining. Forestry is a major industry in the area and the largest single land-use. The region has more than 66% productive forest and a number of private timber companies are currently managing forestry operations. There are a number of small sand and gravels pits in the Ignace area, as well as the Butler Quarry (located approximately 8 km west of the Township of Ignace and north of the Trans-Canada Highway), which extracts ornamental stone. There have been four other past producing ornamental stone quarries in the area (Golder report 2013).

A Canadian Pacific (CP) rail corridor runs approximately parallel to Highway 17 through the area also, as does a natural gas pipeline. There are two primary transmission corridors through the area. A 230-kV line which parallels the Trans-Canada Highway in the western half of the area, moving south between Elsie and Sandford Lakes south of Ignace towards Atikokan (Golder report 2013).

There are several lakes, rivers and creeks in and around the Phyllis Cobalt Property area which can be a source of water for exploration work.

6.0 HISTORY

The area surrounding the property has seen, in the past, production of metallic resources and exploration potential for different minerals. The area is part of the Kenora Mining

District, where mining history is closely related to the exploration of gold, which was produced in the past at a number of mines.

The initial cobalt discovery on the Property was made in 2010 by Don Dobransky, named the "Phyllis Central" occurrence. This discovery is characterized by an 80m x 60m outcrop and appears as a fairly structureless gabbro, except for an array of narrow quartz veins and veinlets, which have sharp contacts with the country rock and trend roughly NE-SW and appear to have been intruded relatively recently. The gabbro itself is fine-to medium grained and appears highly altered. The exposed outcrop follows the northern flank of a gentle hill. Earlier excavations focussed in the uppermost parts of the topographic profile. This worked confirmed the presence of economic grades of cobalt mineralization up to 0.33% Co (including 1.2% Cu and 0.39% Ni).

7.0 GEOLOGICAL SETTING AND MINERALIZATION

7.1 Regional Geology

Geologically the Property and its surrounding area is situated in the Wabigoon Subprovince, which is part of the western region of the Superior Province of the Canadian Shield – 3 to 2.6-billion-year-old rocks that form the core of the North American continent. An irregularly shaped, granitic intrusion Adele Lake Pluton intrudes the Phyllis Lake Greenstone Belt. There are other batholiths in the Ignace area. These are Neoarchean intrusions that were emplaced into the older Raleigh Lake and Bending Lake greenstone belts.

Regional structural trends defined by lithologic contacts, foliations, gneissosity and faults are aligned mainly easterly to northeasterly in the central Wabigoon Subprovince area and indeed in most of the western Superior Province. The easterly trending boundary between the Quetico and Wabigoon subprovinces represents the most regionally extensive structural element in the area. Most structures dip subvertically although local areas of low-dip fabric are observed.

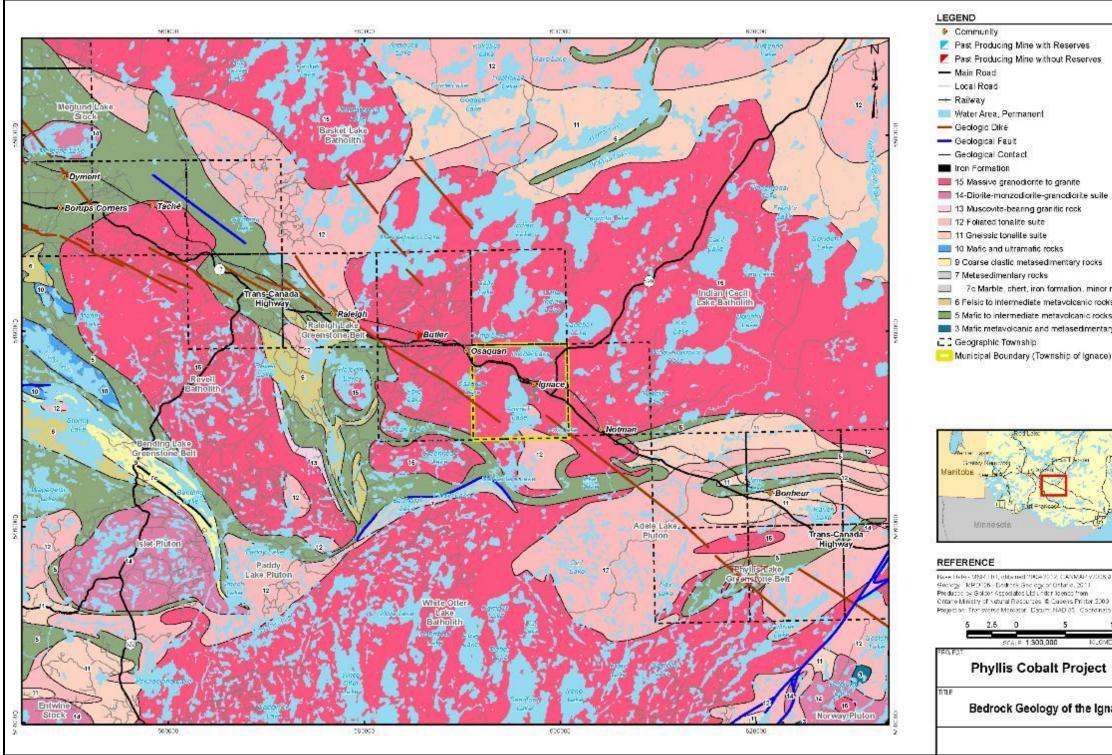


Figure 5: Regional Geology map

r metavolcanic rock Ks
es ary rocks
9)
-
a de
Har Ser Bo.
INDEX MAP
a
0 to System UTM Zone 15 10 15
10 15 ACTPES
5
nace Area

7.2 Local Geology

Locally, the Phyllis Cobalt Property area is a part of Central Wabigoon Geological subprovince. The main geological units are Phyllis Lake Greenstone Belt and Adele Lake Pluton. The Phyllis Lake greenstone belt ("Phyllis belt") attains a width of a few kilometres and extends northeasterly over a distance of about 30 km in the northern central Wabigoon Subprovince area (*see* Figure 4). The Phyllis belt is composed of mafic metavolcanic rocks that show pillows in less deformed areas and widespread amphibolite-facies metamorphism. The metamorphism has transformed the metavolcanic rocks to amphibole gneisses at many localities in the belt. Mafic metavolcanic rocks of the Phyllis belt unconformably overlie biotite tonalite along the northwest side of the belt. The unconformity is marked by a garnetiferous quartzo-feldspathic sandstone unit that attains a thickness of up to a few tens of metres (OGS Report 5422).

A thin felsic tuff within mafic metavolcanic flows in the centre of the Phyllis belt has an age of 2955 Ma. Tonalite gneisses of the Raven gneiss complex on the northwest side of the Phyllis belt is dated at 2989 Ma and probably represent a basement complex on which lavas of the Phyllis belt were deposited. In contrast, biotite tonalite on the southeast side of the Phyllis belt has a U/Pb zircon age of 2817 Ma and represents part of the Pinecone– Savoy domain. The Phyllis belt is included with the Whitton domain (OGS Report 5422).

Figure 6: Local Geological Map

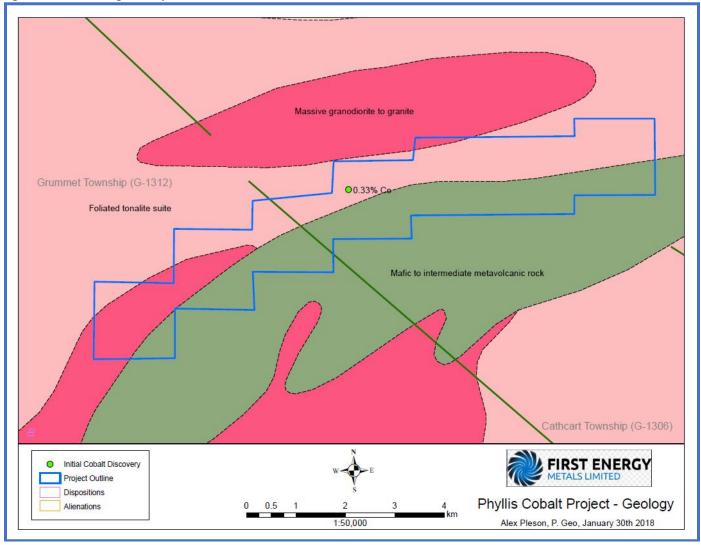


Photo of gabbro outcrop on the Property

7.3 Mineralization

Cobalt- copper-nickel mineralization is hosted by fine to medium grained highly altered gabbro rocks. Sulphides are disseminated to semi-massive and massive in the form of chalcopyrite, pyrite, and pentlandite.

8.0 DEPOSIT TYPES

8.1 Deposit Types

Although cobalt (Co) is well known for the blue dyes that bear its name, metallic cobalt is a lustrous silver-grey. Metallic cobalt is ferromagnetic (can be magnetized) and has a very high melting point of 1500 degrees Celsius. It is a critical ingredient in high temperature and wear-resistant strategic metals as well as high temperature magnets and rechargeable batteries. In particular, cobalt is a key ingredient in the production of lithium batteries (Source: https://www.geologyforinvestors.com/cobalt-commodity-overview/).

There are no pure cobalt mines, only copper and nickel mines relatively enriched in cobalt to make it viable to recover it as a by-product. The large nickel copper complexes such as Sudbury, Norilsk and the copper–cobalt deposits in Central Africa really are dependent on buoyant prices for copper and nickel to determine how much cobalt will be produced in the end. The cobalt produced is also the net result of a complexes require and refining process to produce sellable copper and nickel. These huge complexes require a large and long-life copper/nickel deposit to support its large capex and long amortization period (https://investingnews.com/daily/resource-investing/critical-metals-investing/cobalt-investing/cobalt-canada-europe/).

There are very minor deposits where cobalt is the primary commodity, but these only make up 3% of world-wide production. Hence the cobalt market is a function of the nickel and copper markets as supply is determined by how much demand there is for these markets. Artisanal mining of cobalt is a significant source of production in the Democratic Republic of Congo but does not occur elsewhere.

8.2 Deposit Models

There are four major types of deposit models for cobalt, which are: Sediment hosted deposits; Hydrothermal and volcanogenic deposits; Magmatic Sulphides deposits; and Laterite type deposits (British Geological Survey).

Sediment hosted deposits are mainly copper deposits with cobalt as a by-product. These deposits account for over 50% of world's cobalt production and are a large, diverse class of deposits that include some of the richest and largest copper deposits with associated silver and cobalt. They are also important sources of silver and from the central Africa Copperbelt of Zambia and Zaire are the world's most important source of cobalt (http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/GeoFiles/Pages/ 1996-1_sediment.aspx).

Hydrothermal and volcanogenic deposits groups together a wide range of deposit styles and mineral assemblages. The key process is precipitation from hydrothermal fluids passing through the host rock often sourced from, or powered by, volcanic activity. Ores can be found where minerals have been remobilized along fault planes, in veins, fissures and cracks, or as metasomatic replacement of host rocks. Some major examples of hydrothermal and volcanogenic deposits, most of which have been historically worked for cobalt, are listed in the following table.

Hydrothermal Deposit Type	Location					
Ophiolite-hosted massive sulphide (Outokumpu type)	Keretti, Finland; Deemi, China; Outokumpu district, Finland					
Ophiolite-related cobalt arsenide	Bou Azzer, Morocco					
Epigenetic Au-co-U bearing sulphides	Kuusamo, Finland; Great Bear Magmatic zone, Canada					
Epigenetic Cu-Au-Co	Idaho Cobalt Belt, USA; Greenmount, Australia					

Iron oxide-hosted	polymetallic	NICO and Sue-Dianne, Canada; Olympic
(Olympic Dam Type)		Dam, South Australia

(Source: https://www.cobaltinstitute.org/hydrothermal-and-volcanogenic.html)

Magmatic Sulphides deposits for cobalt are formed when a mafic to ultramafic melt becomes saturated in sulphur (generally because of contamination from crustal-derived sulphur), an immiscible liquid sulphide phase will form, into which nickel, cobalt and platinum-group elements (PGE) preferentially partition. These elements are thus scavenged from the residual magma and are deposited in discrete sulphide-rich layers.

Magmatic sulphide deposits cover a wide range of morphologies, ages and mineralization styles. The most common types are:

- **Basal deposits** (sulphur saturation of mafic magma causes dense cobalt and nickel sulphides to be concentrated in basal sections of magma chambers);
- Stratabound deposits (fractional crystallization in large gabbroic magma chambers causes deposition of discrete sulphide layers containing cobalt, nickel, copper and platinum-group minerals); and,
- Deposits in extrusive ultramafic rocks (Komatiite flows become sulphur saturated by differentiation and host rock assimilation. Dense cobalt, nickel and platinumgroup minerals are deposited in depressions in footwall rocks).

Generally, the metal-rich layers will be found as lenses at or near the base of intrusions where the dense sulphide minerals have settled out from the lighter silicate-rich host rocks. Many of these deposits are very old and occur in rocks of Proterozoic and Archean age (4000 to 2500 million years ago). Subsequent alteration by tectonic and metamorphic forces commonly remobilizes the ore minerals into elongate masses or veins of sulphide-matrix breccias (Smith, et al. 2001).

Mineralization is generally in the form of massive interstitial or disseminated sulphides. The main minerals are pyrrhotite, pentlandite and chalcopyrite, all of which can contain cobalt in substitution for other metals. Specific cobalt sulphides, such as linnaeite or carrollite, are generally restricted to remobilized vein deposits (Cobalt Institute and BGS).

The largest and most economically important magmatic sulphide deposits include:

- Norilsk, Russia (basal deposit)
- Merensky Reef, South Africa (stratabound deposits)
- Kambalda, Western Australia (extrusive ultramafic deposits)
- Sudbury, Canada

Phyllis cobalt Property also fall under magmatic sulphides category.

Laterite type deposits in tropical and subtropical climates intense weathering of ultramafic rocks may cause significant cobalt and nickel enrichment in surficial residual deposits

known as laterites. Cobalt dispersed in silicates and sulphides within the host rock is remobilized and deposited in weathered layers as hydroxides and oxides near the surface and as silicate at deeper levels. These deposits are generally about 20 metres thick and mid-Tertiary to recent in age. They are principally worked for nickel with cobalt as a by-product. The cobalt is contained within limonite and goethite as well as erythrite and asbolite. At deeper levels, weathering of ultramafic rocks is less intense and the nickeliferous mineral garnierite is formed.

Serpentine-rich zones in saprolite at the base of laterites restrict the circulation of groundwater and thus the amount of cobalt enrichment. It also interferes with the processing of the ore as individual grains need to be crushed in order to liberate ore minerals from gangue intergrowths. Grades of cobalt in laterite deposits vary widely in the range 0.1 to 1.5% Co.

Topography plays an important role in the formation of laterite deposits. The most extensive deposits are found on gently dipping slopes where groundwater can freely circulate to encourage weathering. Therefore, deposits are often associated with areas of gentle tectonic deformation causing slow uplift. Important examples are found in New Caledonia and Cuba due to large areas of serpentinized peridotites and ideal weathering conditions (Source Cobalt Institute and BGS).

9.0 EXPLORATION

First Energy Metals Ltd. has carried out exploration work on the Property in two stages where the first stage was to evaluate and confirm historical data on the property by carrying out prospecting and sampling on historically reported mineralization zones and trends. The second stage comprised on trenching and channel sampling as a follow up of February 2018 work. To date, total exploration expenditures on the property are \$33,821.90.

9.1 Sampling

The Stage one program was carried out from February 8th to 10th 2018 comprised of prospecting to locate historical cobalt (Co) showing; trenching and sampling to confirm reported cobalt, copper and nickel mineralization; and geological mapping to further explore the cobalt mineralization along its trend. This worked took place from February 8th to 10th 2018. Another purpose of the current work was to locate ground geophysical survey areas and drill hole targets for the next phase of exploration.

A total of 31 grab rock samples collected and submitted to Activation Laboratories (ACTLABS) in Thunder Bay, Ontario, were tested either at its Thunder Bay or Ancaster labs in Ontario. Actlabs is an independent group of laboratories accredited to both <u>ISO 17025</u> with CAN-P-1579 for specific registered tests.

Exploration Results:

Following are highlights of the results, for details refer to Table 4 and Figure 7a and b.

- Overall results of 31 samples indicate cobalt (Co) values in the range of 0.001% (10 parts per million "ppm") to 0.435% (4,350 ppm), copper (Cu) 0.03% to 0.602%, and nickel (Ni) 0.004% to 0.48%.
- Two samples from historical Central Blast Pit show average 0.33% cobalt, 0.254% copper and 0.0195% nickel.
- Seven samples from south historical blast pit show average 0.021% cobalt, 0.299% copper, and 0.176% nickel.
- Cobalt- copper-nickel mineralization is hosted by fine to medium grained highly altered gabbro rocks.
- The samples tested for gold, platinum and palladium returned with low values these precious metals.

Pictures from Sampling Winter 2018

Sample	Со	Cu	Ni						Sulphide	Sulphide	
ID	(%)	(%)	(%)	UTM	Easting	Northing	Location	Lithology	Туре	(%)	Texture
									Cpy + Py		semi-massive f.g to
152851	0.013	0.133	0.032	15	617855	5456732	North Pit	Cg. Gabbro	+Po	15	m.g.
152852	0.004	0.032	0.004	15	617855	5456732	North Pit	Fg. Gabbro	tr cpy, py	2	disseminated f.g
											semi-massive f.g to
152853	0.003	0.106	0.011	15	617855	5456732	North Pit	Mg. Gabbro	сру, ру	20	m.g.
									Cpy + Py +		
152854	0.006	0.073	0.017	15	617855	5456731	North Pit	Fg. Gabbro	Tr Pent	2	disseminated, f.g.
									Cpy + Py +		massive sulphide
152855	0.008	0.553	0.047	15	617855	5456731	North Pit	Mg. Gabbro	Tr Pn	25	m.g.
									Cpy + Py +		disseminated f.g, tr
152856	0.005	0.338	0.018	15	617855	5456731	North Pit	Mg. Gabbro	Tr Pn	4	m.g blebs cpy
											massive sulphide
							Central		Py + Cpy +		lense (25cm wide) in
152857	0.435	0.210	0.015	15	617855	5456730	Pit	Mg. Gabbro	Ро	40	Gabbro
							Central				
152858	0.006	0.065	0.010	15	617855	5456730	Pit	Fg. Gabbro	tr cpy, py	2	disseminated f.g
							Central		tr cpy, py		disseminated f.g on
152859	0.003	0.030	0.014	15	617855	5456730	Pit	Aplite	on margin	2	margins of dyke
											semi massive sulph
							Central		Py + Cpy +		with m.g blebs of
152860	0.218	0.298	0.024	15	617855	5456730	Pit	Mg. Gabbro	Ро	25	сру
							Central				disseminated f.g,
152861	0.008	0.049	0.006	15	617856	5456730	Pit	Fg. Gabbro	сру, ру	4	minor cpy blebs
							Central				disseminated f.g,
152862	0.004	0.054	0.014	15	617856	5456730	Pit	Fg. Gabbro	сру, ру	4	minor cpy blebs

Table 4: February 2018 Samples description and assay results

Sample	Со	Cu	Ni						Sulphide	Sulphide	
ID	(%)	(%)	(%)	UTM	Easting	Northing	Location	Lithology	Туре	(%)	Texture
							Central				disseminated f.g,
152863	0.004	0.063	0.016	15	617857	5456730	Pit	Fg. Gabbro	сру, ру	4	minor cpy blebs
							Central				
152864	0.003	0.029	0.007	15	617857	5456730	Pit	Fg. Gabbro	сру, ру	1	disseminated f. g
							Central				
152865	0.009	0.099	0.051	15	617857	5456730	Pit	Fg. Gabbro	сру, ру	1	disseminated f. g
											disseminated f.g,
152866	0.007	0.075	0.017	15	617862	5456729	East Zone	Fg. Gabbro	сру, ру	2	minor cpy blebs
											disseminated f.g,
152867	0.003	0.026	0.011	15	617862	5456729	East Zone	Fg. Gabbro	сру, ру	2	minor cpy blebs
											semi-massive f.g to
152868	0.015	0.134	0.054	15	617862	5456729	East Zone	Mg. Gabbro	сру, ру	10	m.g.
450000	0.011	0 4 0 7	0.004	45	647060	F 4 F 6 7 2 0					disseminated f.g,
152869	0.011	0.107	0.034	15	617862	5456729	East Zone	Fg. Gabbro	сру, ру	2	minor cpy blebs
452070	0.011	0.444	0.024	45	647062	F 4 F 6 7 2 0	F			4.2	semi-massive f.g to
152870	0.011	0.111	0.021	15	617862	5456729	East Zone	Mg. Gabbro	сру, ру	12	m.g.
152871	0.007	0.077	0.025	15	617862	5456724	South Pit	Fg. Gabbro	сру, ру	1	disseminated f. g
452072	0.011	0 450	0 1 1 4	4 -	C170C2		Courth Dit	Ma Cakhua		12	semi-massive f.g to
152872	0.011	0.459	0.114	15	617862	5456724	South Pit	Mg. Gabbro	сру, ру	12	m.g.
152072	0.027	0 1 1 0	0 2 4 1	1 -	C170C2		Courth Dit	Fa Cabbra			disseminated f.g,
152873	0.037	0.119	0.341	15	617862	5456724	South Pit	Fg. Gabbro	сру, ру	8	minor cpy blebs
152074	0.027	0 1 2 0	0.257	10	617962	E4E6722	South Dit	Eg. Cabbra	6014 D14	0	disseminated f.g,
152874	0.027	0.129	0.257	15	617862	5456722	South Pit	Fg. Gabbro	сру, ру	8	minor cpy blebs
152875	0.006	0.034	0.037	15	617862	5456722	South Pit	Fg. Gabbro	сру, ру	1	disseminated f. g
152876	0.004	0.027	0.018	15	617862	5456722	South Pit	Fg. Gabbro	сру, ру	1	disseminated f. g

Sample	Со	Cu	Ni						Sulphide	Sulphide	
ID	(%)	(%)	(%)	UTM	Easting	Northing	Location	Lithology	Туре	(%)	Texture
											semi-massive f.g to
											m.g., lense of
152877	0.048	0.100	0.480	15	617862	5456721	South Pit	Mg. Gabbro	сру, ру, ро	15	sulphides
											disseminated f.g,
152878	0.024	0.324	0.032	15	617862	5456721	South Pit	Fg. Gabbro	сру, ру	4	minor cpy blebs
											disseminated f.g,
152879	0.006	0.062	0.019	15	617862	5456721	South Pit	Fg. Gabbro	сру, ру	2	minor cpy blebs
											disseminated f.g,
152880	0.001	0.361	0.005	15	617862	5456721	South Pit	Fg. Gabbro	сру, ру	4	minor cpy blebs
											disseminated f.g, c.g
152881	0.002	0.602	0.006	15	617862	5456723	South Pit	Fg. Gabbro	сру, ру	4	cpy bleb

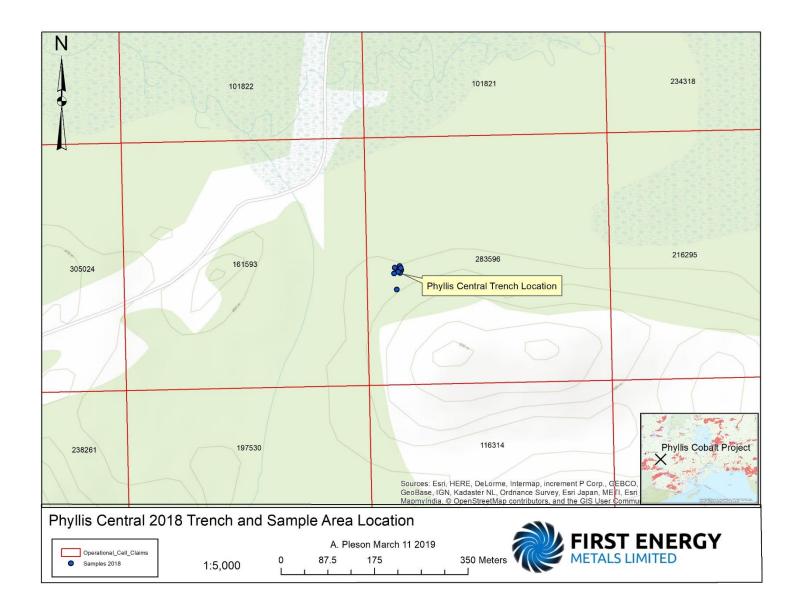
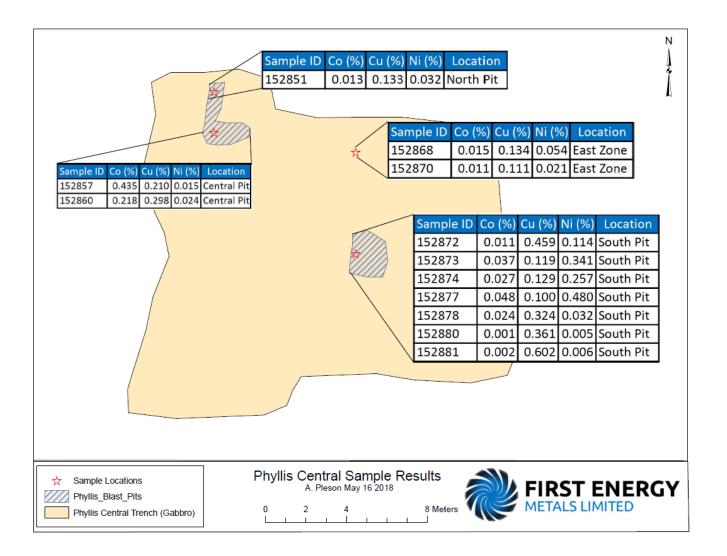



Figure 7a: February 2018 sample area location (Mining Cell 283596)

Figure 8b: February 2018 sample locations and assay results.

9.2 Trenching and Channel Sampling

From June 16th to June 24th 2018 the second phase of exploration was completed, including one week of trenching work and 41 hours of excavator time, to follow the mineralized structures, where 20 channel samples were selected from the newly exposed area and 9 grab samples were taken along the trend by experienced prospectors. The sulphide mineralization was successfully traced for 500m within the intrusion associated to the original showing. All 30 samples were submitted to AGAT Laboratories in Thunder Bay, ON for analysis of Ni, Cu, and Co. The analysis used for Co assay is 4-acid near total digestion with ICP-MS finish. A few pictures of the trenching work are presented below. The assay results showed very encouraging results, as shown in Table 5/Figures 8a to 8c. A detailed log of work completed is listed in Appendix II and costs are outlined in Appendix III. The work was completed under permit PR-18-11253.

(Photos of June 2018 Trenching and Channel sampling work)

Table 5: Channel sampling details

Sample ID	Туре	Easting	Northing	UTM Zone	Name	From (m)	To (m)	Length (m)	Azimuth	Sulphide Min. (%)	Description
88101	Channel					0	1	1		4	c.g gabbro, massive, strong disseminated py, po and minor cpy. Minor blebs of m.g cpy
88102	Channel					1	2	1		6	c.g gabbro, massive, strong disseminated py, po and minor cpy. Minor blebs of m.g cpy
88103	Channel	617855	5456732	15	CH18-1	2	3	1	51	5	fractured gabbro, m.g, with qtz/carb veinlet (4cm), rusty, weak diss py/po/cpy and minor blebs of cpy, stringers of v.f.g. py/cpy mix.
88104	Channel					0	1	1		6	c.g massive gabbro, diss po/py/cpy, minor blebs of cpy, 20cm portion has shallow fractures, rusty with euhedral py, minor cpy associated fractures, minor fracture fills with mostly cpy
88105	Channel					1	2	1		6	m.g gabbro, shallow fractures with massive cpy (locally 15%), disseminated sulphides throughout (po,py,cpy, pent), moderately dipping qtz/carb veinlet with cpy/py subhedral
88106	Channel	617855	5456727	15	CH18-2	2	3	1	54	4	c.g gabbro with minor diss sulphides and fracture fills/stringers of cpy/py f.g
88107	Channel	617861	5456729	15	CH18-3	0	1	1	60	1	m.g. gabbro, wk suplhides, diss, trace blebs of py.

Sample ID	Туре	Easting	Northing	UTM Zone	Name	From (m)	To (m)	Length (m)	Azimuth	Sulphide Min. (%)	Description
88108	Channel					1	2	1		6	rusty m.g gabbro, fractured, with relic quartz vein or lense surrounded by fractures filled with cpy/py,
88109	Channel					0	1	1		4	c.g gabbro, massive, strong disseminated py, po and minor cpy. Minor blebs of m.g cpy
88110	Channel					1	2	1		7	semi-massive patches of sulphides in c.g gabbro, related to highly fractured/rusty zone through gabbro
88111	Channel					2	3	1		5	m.g. gabbro, wk suplhides, diss, trace blebs of py, highly fractured, vuggy
88112	Channel					3	4	1		3	massive 50cm aplite/iron stained dyke or vein in m.g gabbro, minor sulphides in vein, diss sulphides in gabbro, patchy blebs of cpy/py throughout gabbro.
88113	Channel	617858	5456728	15	CH18-4	4	4.5	0.5	52	6	vertical dipping stringers, carb veinlet with massive sulphides (cpy/py) in f.g to m.g gabbro. Highly altered and fractured
88114	Select Cut	617861	5456719					0.5		10	semi-massive sulphides in vertical veinlet through m.g gabbro, cpy+po+py
88115	Select Cut	617859	5456717					0.5		12	semi-massive blebby sulphides in c.g gabbro, minor quartz influence (relic vein?), stringer-controlled f.g cpy with minor f.g euhedral py
88116	Select Cut	617853	5456723					0.7		9	highly rusty and fractured f.g gabbro, carb alt., with massive patches of cpy blebs,

Sample ID	Туре	Easting	Northing	UTM Zone	Name	From (m)	To (m)	Length (m)	Azimuth	Sulphide Min. (%)	Description
88117	Grab	617855	5456731							20	massive rusty zone, highly altered gabbro, mostly weathered out sulphides, vuggy, orange rust, easy to break apart.
88118	Grab	617855	5456688							15	semi-massive c.g cpy in m.g gabbro
88119	Channel					0	1	1		5	minor blebs of cpy in c.g gabbro, diss (2- 3% sulphides) throughout
88120	Channel					1	2	1		8	strong diss py and cpy, with increase in blebs of c.g cpy hosted in m.g gabbro
88121	Channel					2	3	1		35	massive pent, po, py, cpy, coarse grained sulphides in c.g gabbro
88122	Channel	617862	5456728		CH18-5	3	4	1	54	20	massive po or pent v.c.g. in gabbro
294351	Grab	617616	5456787	15							M.g gabbro, 5% diss sulphides, including cpy, py
294352	Grab	617642	5456745	15							m.g gabbro, 10% semi-massive to blebby sulphides, 2% cpy
294353	Grab	617214	5456513	15							f.g to m.g gabbro, minor f.g diss sulphides, 5% blebs of cpy, tr po or pent
294401	Grab	617608	5456768	15							very rusty, gossaned outcrop, pods/lenses of massive to semi-massive sulphides, (2:1 cpy:py) ~ 25%, most likely gabbro host rock although very rusty
294402	Grab	617507	5456663	15							gabbro, 6% diss f.g cpy and py, minor pods of cpy throughout, blebby.
294403	Grab	617638	5456739	15							gabbro, rusty, vuggy, euhedral py, blebs of cpy (3%), diss po +pent (2%)

Sample ID	Туре	Easting	Northing	UTM Zone	Name	From (m)	To (m)	Length (m)	Azimuth	Sulphide Min. (%)	Description
294404	Grab	617635	5456740	15							dark, f.g. intrusive, stringer cpy (3%), diss po/py/pent (2%), blebs of c.g cpy and py throughout, slightly green tinge to rock

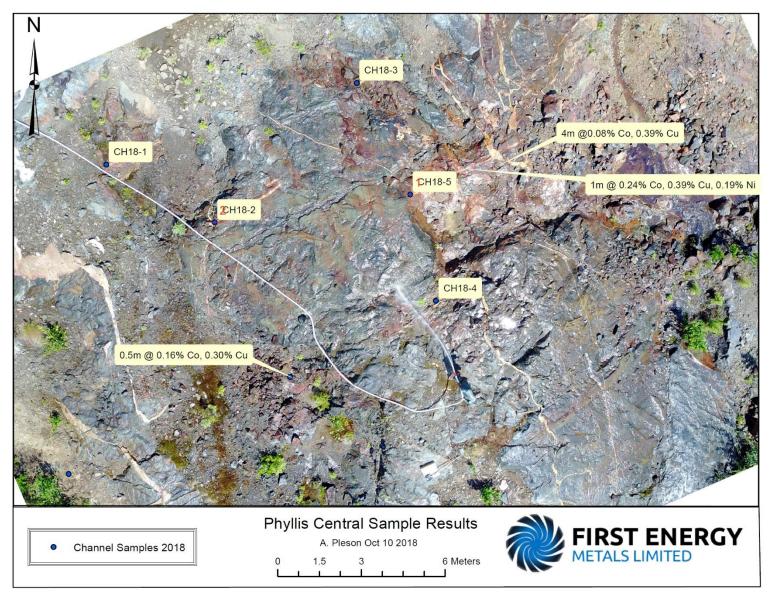


Figure 8a: Phyllis Central Trench Results

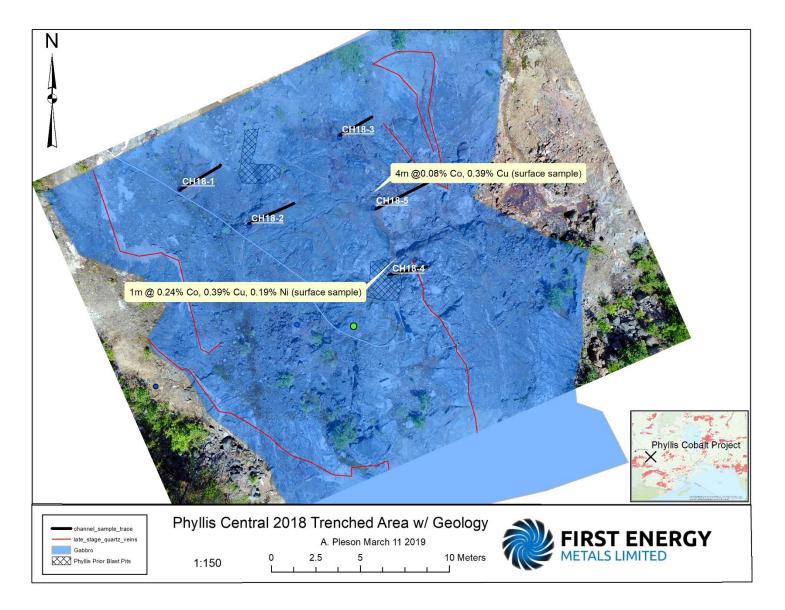


Figure 8b: Phyllis Central Trench Map and Geology

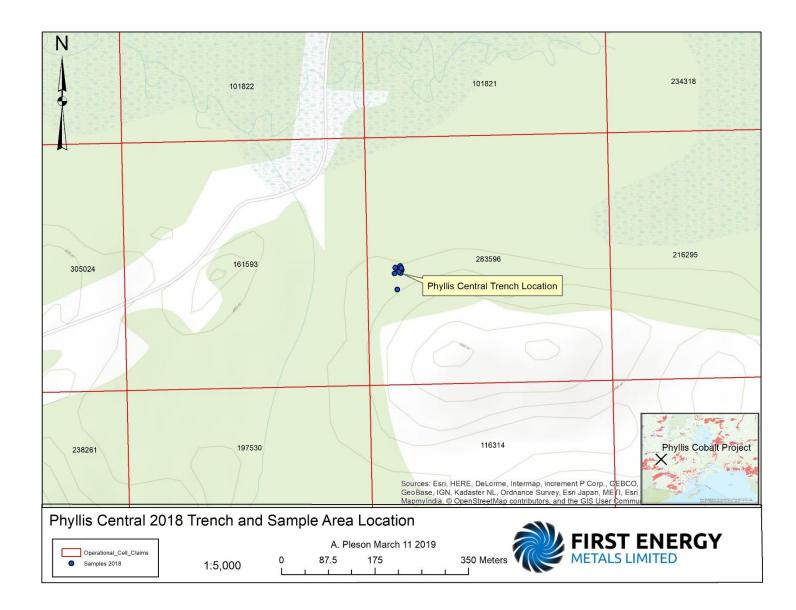


Figure 8c: Phyllis Central Trench Location with Claim Fabric

10.0 DRILLING

No drilling was done on the Phyllis Cobalt Property by First Energy Metals Limited.

11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

The samples for Stage 1 program completed in February 2018 were shipped to Activation Laboratories (ACTLABS) in Thunder Bay, Ontario and were tested either at its Thunder Bay or Ancaster labs in Ontario. Actlabs is an independent group of laboratories accredited to both <u>ISO 17025 with CAN-P-1579</u> for specific registered tests.

The samples were assayed using the following ACTLABS packages:

- Code 8 AR ICP-MS: A 0.5 g sample is digested in aqua regia and diluted volumetrically to 250 ml with 18 megaohm water. CANMET reference materials for the appropriate elements are digested the same way and are used as a verification standard(s). Samples are analyzed on a Varian Vista 735 ICP-OES or ICP-MS.

- Precious Metals package, Code 1C- ICP OES Fire Assay (FA-ICP): A 30 g sample is mixed with fire assay fluxes (borax, soda ash, silica, litharge) and with Ag added as a collector and the mixture is placed in a fire clay crucible. The mixture is then preheated at 850°C, intermediate 950°C and finish 1060°C. After cooling the sample solution is analyzed for Au, Pt, Pd by ICP/OES using a Varian 735 ICP. The instrument is recalibrated every 45 samples. On each tray of 42 samples there are two method blanks, three sample duplicates, and 2 certified reference materials (Source: Actlabs website). ACTLABS has its quality assurance and quality control (QA/QC) program.

The samples collected for Stage 2 exploration work carried out in June 2018 were assayed at Agat Laboratories in Thunder Bay, Ontario. Samples were assayed with AGAT – Code 201378 – 4-Acid Digestion (Co, Ni, Cu selection) which is described on their website as follows:

Multi-acid digestion uses a combination of HCI (hydrochloric acid), HNO3 (nitric acid), HF (hydrofluoric acid) and HCIO4 (perchloric acid). Because hydrofluoric acid dissolves silicate minerals, these digestions are often referred to as 'near-total digestions'. A 0.25 g sample is digested with four acids beginning with hydrofluoric, followed by a mixture of nitric and perchloric acids. The samples are then analyzed using an Agilent 735 ICP. QC for the digestion is 14% for each batch, 5 method reagent blanks, 10 in-house controls, 10 samples duplicates, and 8 certified reference materials. An additional 13% QC is performed as part of the instrumental analysis to ensure quality in the areas of instrumental drift.

The samples collected by the Author were shipped to ALS Laboratories Thunder Bay Ontario, using ALS package ME-ICP61 - Four Acid Digestion with ICP-AES Finish; plus, ore grade package OG62 for over limit cobalt or any other element. All these laboratories are independent Canadian certified labs.

12.0 DATA VERIFICATION

The author visited the property on June 24, 2018 to verify the recently completed 2018 exploration work and historical exploration areas, mineralized outcrops and collect necessary geological data. The existing data consisted of rock chip sampling, visiting reported approachable old trenching areas and onsite discussions. A total of eight samples were collected by the author from various rock outcrops and channel sampling areas (Table 6). Assay results indicated cobalt values in the range of 75 parts per million (ppm) to 3560 ppm (0.356%), copper 629 ppm to 8750 ppm (0.875%), and nickel 113 ppm to 2170 ppm (Table 7).

All the 2018 exploration work was carried out under the supervision of Alex Pleson who is also one of the Property vendors. Mr. Pleson is a registered professional geoscientist in Ontario. For the present study, the sample preparation, security and analytical procedures used by the laboratories are considered adequate. No officer, director, employee or associate of First Energy Metals Ltd. was involved in sample preparation. The author was able to verify location of February 2018 and June 2018 sampling and trenching areas during his June 24, 2018 property visit. A limited search of tenure data on the MNDM Ontario website on June 23, 2018, conforms to the data supplied by First Energy Metals Limited. However, the limited research by the author does not express a legal opinion as to the ownership status of the Phyllis Cobalt Property.

Historical grades and assay data are taken from MNDMF assessment reports and OGS geological reports which are deemed reliable. Historical geological descriptions taken from the above-mentioned sources were prepared and approved by the professional geologists or engineers and are deemed reliable.

Photo: Channel samples location of June 2018 work

Field description of the samples collected during the June 24, 2018 property visit is provided in the following table.

	Duplicate	Northing_	Easting_	Elev_	
Sample ID	Sample ID	NAD83	NAD83	m	Description
					gossanous py, chalco & siderite
					veining and blebs within gabrro unit.
S195351	881803	5456723	617853	454	South Pit
					disseminated py, chalco & siderite
					veining and blebs within gabbro unit.
S195352	881804	5456724	617857	455	South Pit
					disseminated py, chalco & siderite
					veining, stringers and blebs within
S195353	881806	5456721	617856	455	gabrro unit. South Pit
					gossanous ~ 5% py, chalco & siderite
S195354	881813	5456718	617862	456	veining and blebs within gabbro unit
					gossanous py, chalco & siderite
S195355	881819	5456719	617863	453	veining and blebs within gabbro unit
					semi massive, near euhedral,
					gossanous py, chalco & siderite vein
S195356	881821	5456719	617863	455	within gabbro unit
					gossanous py, chalco & siderite bleb
					within gabbro unit, top of exposed
S195357		5456710	617860	456	unit.
					gossanous, disseminated py, chalco &
					siderite bleb within gabbro unit, ~ 30
S195358		5456699	617849	457	cm2 area.

 Table 6: Description of samples collected by the author

					Me	thod: ME-I	CP61				
SAMPLE	Ag	AI	As	Ва	Ве	Bi	Са	Cd	Со	Cr	Cu
ID	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
S195351	1.3	2.1	<5	390	1.4	<2	7.25	1.2	81	572	629
S195352	1.9	1.41	<5	100	<0.5	2	11.3	1.3	192	660	2670
S195353	1.4	2.06	<5	270	<0.5	<2	11.85	1.1	235	688	3670
S195354	<0.5	2.34	<5	400	2.7	<2	9.75	1.4	176	757	358
S195355	15.8	1.97	<5	70	0.7	6	8.82	4	301	625	7090
S195356	4.1	1.09	<5	120	0.9	10	1.56	0.6	3560	126	8750
S195357	1	2.09	<5	110	<0.5	4	9.71	0.7	183	728	836
S195358	<0.5	5.47	<5	780	0.9	4	8.5	0.6	75	432	1020
					Me	thod: ME-I	CP61				
SAMPLE	Fe	Ga	К	La	Mg	Mn	Мо	Na	Ni	Ρ	Pb
ID	%	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm
S195351	14.35	10	0.64	10	7.65	1050	2	0.54	207	140	10
S195352	8.12	10	0.15	10	9.31	1080	1	0.39	859	80	20
S195353	10.1										
	10.1	10	0.28	10	8.65	1140	1	0.61	2170	200	8
S195354	9.43	10 10	0.28 0.62	10 10	8.65 8.67	1140 1440	1 <1	0.61 0.73	2170 113	200 180	8
S195354 S195355				-			_				
	9.43	10	0.62	10	8.67	1440	<1	0.73	113	180	2
S195355	9.43 12	10 10	0.62 0.25	10 10	8.67 8.37	1440 1340	<1 4	0.73 0.55	113 636	180 130	2 531
S195355 S195356	9.43 12 36.5	10 10 <10	0.62 0.25 0.58	10 10 <10	8.67 8.37 1.4	1440 1340 327	<1 4 2	0.73 0.55 0.31	113 636 1310	180 130 20	2 531 10
\$195355 \$195356 \$195357	9.43 12 36.5 10.6	10 10 <10 10	0.62 0.25 0.58 0.24	10 10 <10 10	8.67 8.37 1.4 9.01 6.39	1440 1340 327 1140	<1 4 2 1 1	0.73 0.55 0.31 0.53	113 636 1310 915	180 130 20 130	2 531 10 7
\$195355 \$195356 \$195357	9.43 12 36.5 10.6	10 10 <10 10	0.62 0.25 0.58 0.24	10 10 <10 10	8.67 8.37 1.4 9.01 6.39	1440 1340 327 1140 1120	<1 4 2 1 1	0.73 0.55 0.31 0.53	113 636 1310 915	180 130 20 130	2 531 10 7
\$195355 \$195356 \$195357 \$195358	9.43 12 36.5 10.6 7.55	10 10 <10 10 20	0.62 0.25 0.58 0.24 1.18	10 10 <10 10 10	8.67 8.37 1.4 9.01 6.39 Me	1440 1340 327 1140 1120 thod: ME-I	<1 4 2 1 1 CP61	0.73 0.55 0.31 0.53 1.2	113 636 1310 915 688	180 130 20 130 340	2 531 10 7 10

Table 7: Assay results of samples collected by the author

S195352	2.44	<5	53	74	<20	0.22	10	<10	152	<10	85
S195353	3.79	<5	58	86	<20	0.25	<10	<10	177	<10	47
S195354	0.82	<5	45	104	<20	0.27	<10	<10	160	<10	133
S195355	4.96	<5	41	66	<20	0.24	<10	<10	139	<10	927
S195356	>10.0	<5	7	29	<20	0.05	<10	<10	27	<10	49
S195357	3.13	<5	45	73	<20	0.28	<10	<10	154	<10	58
S195358	0.57	<5	34	784	<20	0.26	<10	<10	160	<10	65

The samples were delivered by the author to ALS Laboratories Thunder Bay Ontario, an accredited laboratory in Canada. The samples were assayed ALS package ME-ICP61 - Four Acid Digestion with ICP-AES Finish; plus, ore grade package OG62 for over limit cobalt or any other element. The results were pending till the filing of this report.

The data collected during the present study is considered reliable because it was collected by the author. The data quoted from other sources is also deemed reliable because it was taken from, from the Ministry of Northern Development, Mines and Forestry (MNDM) Ontario, and published reports by the Ontario Geological Survey (OGS), the Geological Survey of Canada ("GSC"), various researchers, and personal observations.

13.0 MINERAL PROCESSING AND METALLURGICAL TESTING

No metallurgical testing was done on the property by First Energy Metals Limited.

14.0 MINERAL RESOURCE ESTIMATES

No mineral resource estimates were done by First Energy Metals Limited.

Items 15 to 22 are not applicable at this time.

23.0 ADJACENT PROPERTIES

The Property is located in an active and historical mining and mineral exploration region where many operators carried out exploration and/ or development work on the Property and the surrounding area (Figure 9). The following information is taken from the publically available sources which are identified in the text and in Section 27. The writer has not been able to independently verify the information contained although he has no reason to doubt the accuracy of the descriptions. The information is not necessarily indicative of the mineralization on the Phyllis Cobalt Property, which is the subject of this technical report.

The following information is provided as background material for the reader.

23.1 Steep Hill Iron Mine

In 1932, Dr. McKenzie and Tom Rawn staked out the entire South East bay of Steep Rock. They then found a spot, sunk a shaft and found it was rich with high grade hematite. The mine shaft was quickly abandoned as they had trouble keeping water out of it. Development of this shaft was said to have been sunken to depth of 700 feet and included a massive ventilation shaft that was drilled down to the sixth mine level before extraction operations had ceased and open pit mining operations would soon commence. (Source: <u>https://www.ontarioexplorations101.com/thunder-bay-ontario-mines/steep-hill-iron-mine</u>)

Photo of Steep Hill Mine (Source: <u>https://www.ontarioexplorations101.com/thunder-bay-ontario-mines/steep-hill-iron-mine</u>)

23.2 Bending Lake Iron Project

Bending Lake Iron Group Ltd operates as a mining company in Canada. The company operations include: Administration, Government Relations and Permitting, Engineering and Strategic Directions and Financial Relations. Each of these divisions work directly on bringing the BLIG Josephine Cone Mine into production.

The company was founded in 2008 and is based in Thunder Bay, Ontario with a field office in Wabigoon, ON and field camp at the future mine site. The Bending Lake Iron mine and processing facilities are scheduled for a 2017 start-up. To get the start-up there are many tasks to be completed such as the Environmental Assessment; finalizing the engineering and arranging for the many goods and services required for building and operating the mine and related facilities (Source: <u>https://mininglifeonline.net/company 9126.html</u>).

23.3 Raleigh Lithium Project

International Lithium Corp., a Toronto Stock Exchange (TSX) listed company has acquired in total 464 hectares of mineral claims in the Kenora Mining District of Ontario through a sale and purchase Agreement and additional staking in 2016. The Raleigh Project ("Raleigh") is located about 7km south of the Trans-Canada Highway, 20 km west of Ignace, Ontario and approximately 270km west of Thunder Bay, Ontario. Access to key parts of the property from the Trans-Canada Highway is by secondary roads and forest access roads. The city of Dryden is approximately 80 km west by highway 17, making the Company's recently announced Mavis joint venture approximately 60 kilometres away.

The rare metal mineralization at Raleigh was first identified by prospecting in 1966 and further categorized between 1993 and 1999 by the Ontario Geological Survey through mapping with particular emphasis on defining the zoned rare metal pegmatite belt and associated rare metal mineralization. This lead to two periods of exploration; the first occurring from 1999 to 2001 focusing on tantalum, while the second in 2010 was expanded to encompass lithium. These exploration campaigns included mapping, lithogeochemistry, trenching (1500m) and diamond core drilling (2817.5m in 17 holes) resulting in the identification of several substantial pegmatites and numerous smaller ones.

The project is under a joint venture agreement with Pioneer Resources Limited, an Australian Company.

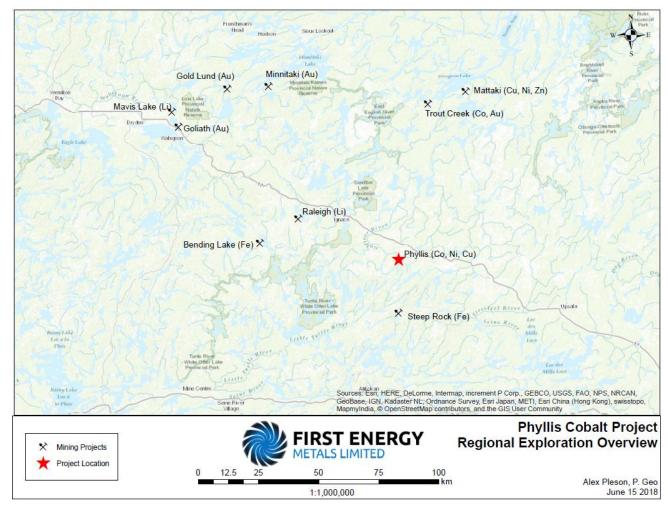


Figure 10: Adjacent properties

24.0 OTHER RELEVANT DATA AND INFORMATION

24.1 Environmental Concerns

There is no historical production from the Phyllis Cobalt Property, and the author is not aware of any environmental liabilities which have accrued from historical exploration activity. An exploration work permit Number PR-18-11253 was issue for the property on March 23, 2018 and is valid until March 22, 2021.

25.0 INTERPRETATION AND CONCLUSIONS

Geologically, the Phyllis Cobalt Property and its surrounding area is situated in the Wabigoon Subprovince, which is part of the western region of the Superior Province of the Canadian Shield – 3 to 2.6 billion year old rocks that form the core of the North American continent. An irregularly shaped, granitic intrusion Adele Lake Pluton intrudes the Phyllis Lake Greenstone Belt. Also, there are other batholiths in the Ignace area. The Phyllis belt is composed of mafic metavolcanic rocks that show pillows in less deformed areas and widespread amphibolite-facies metamorphism. The metamorphism has transformed the metavolcanic rocks to amphibole gneisses at many localities in the belt. Mafic metavolcanic rocks of the Phyllis belt unconformably overlie biotite tonalite along the northwest side of the belt. The unconformity is marked by a garnetiferous quartzo-feldspathic sandstone unit that attains a thickness of up to a few tens of metres.

Cobalt- copper-nickel mineralization on the property is hosted by fine to medium grained highly altered gabbro rocks. Mineralization is generally in the form of massive interstitial or disseminated sulphides. The main minerals are pyrrhotite, pentlandite and chalcopyrite, all of which can contain cobalt in substitution for other metals.

There are four major types of deposit models for cobalt, which are: Sediment hosted deposits; Hydrothermal and volcanogenic deposits; Magmatic sulphides deposits; and Laterite type deposits. Phyllis cobalt Property falls under magmatic sulphides category.

First Energy Metals Ltd. has carried out exploration work on the Property in two stages where the first stage was to evaluate and confirm historical data on the property by carrying out prospecting, trenching and sampling on historically reported mineralization zones and trends. The second stage comprised of trenching and channel sampling as a follow up of February 2018 work. To date, total exploration expenditures on the property are \$33,821.90.

The Stage one program was carried out in February 2018. A total of 31 grab rock samples were collected and were submitted to Activation Laboratories (ACTLABS) in Thunder Bay, Ontario. Following are highlights of the results.

- Overall results of 31 samples indicate cobalt (Co) values in the range of 0.001% (10 parts per million "ppm") to 0.435% (4,350 ppm), copper (Cu) 0.03% to 0.602%, and nickel (Ni) 0.004% to 0.48%.
- Two samples from historical Central Blast Pit show average 0.33% cobalt, 0.254% copper and 0.0195% nickel.
- Seven samples from south historical blast pit show average 0.021% cobalt, 0.299% copper, and 0.176% nickel.
- Cobalt- copper-nickel mineralization is hosted by fine to medium grained highly altered gabbro rocks.
- The samples tested for gold, platinum and palladium returned with low values for these precious metals.

In June 2018, the Company started Stage 2 of exploration as a follow up of the prospecting and sampling work of February 2018. The work comprised prospecting and sampling along cobalt mineralization trend; striping, trenching and channel sampling around the original cobalt showing and other new mineralization discovered during trenching; and geological mapping of the contact zone between greenstone belt and granitic intrusions. The samples for this work were submitted to Agat laboratories in Thunder Bay, and the results were pending till the filing of this report.

The author visited the property on June 24, 2018 to verify the recently completed 2018 exploration work and historical exploration areas, mineralized outcrops and collect necessary geological data. The existing data consisted of rock chip sampling, visiting reported approachable old trenching areas and onsite discussions. The author was able to verify location of February 2018 and June 2018 sampling and trenching areas during his June 24, 2018 property visit. The samples from property visit were delivered by the author to ALS Laboratories in Thunder Bay Ontario, an accredited laboratory in Canada. The samples are to be assayed using ALS package ME-ICP61 - Four Acid Digestion with ICP-AES Finish; plus, ore grade package OG62 for over limit cobalt or any other element. A total of eight samples were collected by the author from various rock outcrops and channel sampling areas (Table 6). Assay results indicated cobalt values in the range of 75 parts per million (ppm) to 3560 ppm (0.356%), copper 629 ppm to 8750 ppm (0.875%), and nickel 113 ppm to 2170 ppm.

The data presented in this report is based on published assessment reports available from First Energy Metals Limited, Ontario MNDMF, the Geological Survey of Canada, and the Ontario Geological Survey. All the consulted data sources are deemed reliable. The data collected during the course of present study is considered sufficient to provide an opinion about the merit of the Property as a viable exploration target.

Based on its favourable geological setting indicating cobalt- copper-nickel mineralization hosted by fine to medium grained highly altered gabbro rocks, results of exploration work by First Energy Metals Limited and findings of present study, it is concluded that the

Property is a property of merit and possess a good potential for discovery of economic concentration of cobalt-copper-nickel mineralization through further exploration. Good road access, availability of exploration and mining services in the vicinity makes it a worthy mineral exploration target. The historical and current exploration data collected on the Property provides the basis for a follow-up work program.

The author believes the present study has met it original objectives.

26.0 RECOMMENDATIONS

In the qualified person's opinion, the character of the Phyllis Cobalt Property is sufficient to merit the following phased work program, where the second phase is contingent upon the results of the first phase.

Phase 1 – Geophysical Surveying and Diamond Drilling Work

The Phase 1 exploration work will comprise of two main tasks which include a 15 linekilometre ground induced polarization (IP) survey and 300 metre diamond core drilling around he main Phyllis Cobalt Zone.

Task 1 – Ground Induced Polarization Geophysical Survey

A 15 line-kilometre IP survey is proposed around the main Phyllis Cobalt Zone at 100meter line spacing to cover 1500-meter area along strike. This survey will not only help to check the presence of subsurface mineralization but also provide information regarding azimuth and dip of the contact zone between greenstone and the granitic intrusion.

Task 2 – Diamond Core Drilling

A 300-meter diamond drill program is also recommended to check the subsurface extension of the main Phyllis Cobalt Zone. This drilling will comprise of two drill holes down to a depth of 150 metre each.

Total estimated budget for Phase 1 program is \$135,250 and it will take about eight to weeks time to complete this work.

Phase 2 – Detailed Drilling and Resource Estimation

If results from the first phase are positive, then a detailed drilling program would be warranted to check the targets identified in the ground geophysical survey and to further trace any mineralization intercepted in Phase 1 drilling. The scope of work for drilling and location of drill holes would be determined based on the findings of Phase 1 investigations.

26.1 Budget

Table 8: Phase 1 budget

ltem	Unit	Unit Rate (\$)	Number of Units	Total
Task 1: Ground Geophysics (3D		(7)	or onits	Total
IP Survey)				
Line cutting	km	\$1,000	15	\$15,000
IP Survey Cost	km	\$2,200	15	\$33,000
GPS Survey	km	\$150	15	\$2,250
	lump	+		+-/
Mobilization and demobilization	sum	\$2,000	1	\$2,000
Project Management	days	\$650	5	\$3,250
Sub Total				\$55,500
Task 2: Exploratory Drilling				
Exploratory Drilling	m	\$100	300	\$30,000
Core Logging	days	\$550	7	\$3,850
Drill supervision	days	\$500	10	\$5,000
Drill Pads	Pads	\$1,000	3	\$3,000
Core Cutting and Packing	m	\$25	300	\$7,500
Accommodations and Meals	day	\$250	30	\$7,500
Supplies	ls	\$2,000	1	\$2,000
Sample Assays	sample	\$50	150	\$7,500
Transportation Road	km	\$1	5,000	\$3,000
Data Compilation	days	\$650	5	\$3,250
Report Writing	days	\$650	5	\$3,250
Project Management	days	\$650	6	\$3,900
Sub Total				\$79 <i>,</i> 750
Total Phase 1 Budget				\$135,250

27.0 REFERENCES

- 1.0 Pier Kenneth Pufahl, 1996; Stratigraphic Architecture of a Paleoproterozoic Iron Formation Depositional System: The Gunflint, Mesabi and Cyyuna Iron Ranges; Master of Science Thesis, Lakehead University, Thunder Bay, Ontario.
- 2.0 Gordon J. Allen, 2008; Assessment Report on Geological Mapping, Rock Sampling, and Radiometric Survey on Gunflint (Mt.Edna) Property, Thunder Bay Mining Division, Ontario; for Raytec Metals Corp., Dec 31, 2008.
- 3.0 S.C. Zoltai, 1965; Glacial Features of the Quetico-Nipigon Area, Ontario. Research Branch, Ontario Department of Lands of Forests, Maple, Ontario. January 4, 1965.
- 4.0 Jason Arnold et.al., 2011; Independent Technical Report Resource Estimate Bending Lake Property. Kenora Mining Division, Ontario, Canada. September 13, 2011.
- 5.0 David H. R. Powers & Seymour M. Sears. 2012; Technical Report on the Goldstorm Project Prepared for New Klondike Exploration Ltd. Kenora Mining Division, Ontario, Canada. November 15, 2012.
- 6.0 K. Kettles, 2009; Technical Report On the Canamerica Property for Manitou Gold Inc. Kenora Mining Division, Northwestern Ontario. November 4, 2009.
- 7.0 Kim B. Shedd, Erin A. McCullough and Donald I. Bleiwas, 2017; Global trends affecting the supply security of cobalt. December 2017.
- 8.0 Minerals UK, 2009; Cobalt. British Geological Survey, Natural Environment Research Council. August, 2009.
- 9.0 F.W. Gittings, 2011; Technical Report on the McFaulds South Project, Northwestern Ontario, Canada. Platinex, The Quest for a Greener Planet. March 31, 2011.
- 10.0 Robb Gillespie, William B. Harrison III, and G. Michael Grammer, 2008; Geology of Michigan and the Great Lakes. Michigan Geological Repository for Research and Education Western Michigan University.
- 11.0 Crupi Consulting Group. 2015; Township of Ignace Strategic Plan 2015 2019. Ignace Township. June 17, 2015.
- 12.0 Nuclear Waste Management Organization, 2013; Phase 1 Desktop Assessment Environment Report. Township of Ignace, Ontario. November 2013.
- 13.0 J. Garry Clark, F.W. Breaks, & I. A. Osmani, 2010; Technical Report (NI 43-101) On The Mavis Lake Lithium Property Brownridge Township, Kenora Mining District Near Dryden, Northwestern Ontario. February 5, 2010.

- 14.0 A. O. Sergiades, 1968; Silver Cobalt Calcite Vein Deposits of Ontario. Ontario Department of Mines.
- 15.0 M.A. Roed, 1980; Wabigoon Lake Area (NTS52F/NE) District of Kenora. Northern Ontario Engineering Geology Terrain Study 22. Ontario Geological Survey.
- 16.0 D. Stone, 2010; Precambrian Geology of the Central Wabigoon Subprovince Area, Northwestern Ontario. Ontario Geological Survey Open File Report 5422.
- 17.0 J. R. Parker, 1989. Geology, Gold Mineralization and Property Visits in the Area Investigated by the Dryden-Ignace Economic Geologist, 1984-1987. Ontario Geological Survey Open File Report 5723.
- 18.0 Murray W. Hitzman, Arthur A. Bookstrom, John F. Slack, and Michael L. Zientek, 2017; Cobalt—Styles of Deposits and the Search for Primary Deposits. U.S. Department of the Interior, U.S. Geological Survey.
- 19.0 D. Stone, 1984; Summary of Geoscience Work at the AECL Research Site Near Atikokan, Ontario. Atomic Energy of Canada Limited.
- 20.0 Brian H. Newton, Fortunato Milanes, & Mark Wellstead, 2012; NI 43-101 Technical Report on the Santa Maria Property Kenora Mining Division Ontario, Canada For Black Widow Resources. October 11, 2012.
- 21.0 Erin Marsh, Eric Anderson, and Floyd Gray, 2010; Nickel-Cobalt Laterites—A Deposit Model. Chapter H of Mineral Deposit Models for Resource Assessment.
- 22.0 John F. Slack, 2013; Descriptive and Geo-environmental Model for Cobalt-Copper-Gold Deposits in Metasedimentary Rocks. Chapter G of Mineral Deposit Models for Resource Assessment.
- 23.0 R.F. Legget, 1958; Soil engineering at Steep Rock Iron Mines, Ontario, Canada. NRC Publications Archive. November 18, 1958.
- 24.0 Sage, R.P., Breaks, F.W., Stott, G.M., McWilliams, G.M. and Atkinson, S. 1974. Operation Ignace- Armstrong, Ignace-Graham Sheet, Districts of Thunder Bay, Kenora and Rainy River; Ontario Division of Mines, Preliminary Map P.964, scale 1:126 720.
- 25.0 Thurston, P.C. 1985. Geology of the Earngey–Costello Area, District of Kenora, Patricia Portion; Ontario Geological Survey, Report 234, 125p.
- 26.0 Stone, D., Hallé, J., Lange, M., Hellebrandt, B. and Chaloux, E. 2007. Precambrian Geology, Ignace Area; Ontario Geological Survey, Preliminary Map P.3360— Revised, scale 1:50 000.
- 27.0 Websites:

http://www.canadaironinc.com/66901/67301.html

http://gsabulletin.gsapubs.org/content/80/9/1725.short#

http://www.thunderbaydirect.info/about_thunder_bay

http://www.thunderbay.ca/Doing Business/About Thunder Bay.htm

http://www.mnsu.edu/urc/journal/URC2007journal/Drommerhausen.pdf

https://www.geologyforinvestors.com/cobalt-commodity-overview/

https://investingnews.com/daily/resource-investing/critical-metals-investing/cobalt-

investing/cobalt-canada-europe/

http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCatalogue/GeoFiles/Pages/1

<u>996-1 sediment.aspx</u>

https://www.cobaltinstitute.org/hydrothermal-and-volcanogenic.html

: <u>https://www.ontarioexplorations101.com/thunder-bay-ontario-mines/steep-hill-iron-</u> <u>mine</u>

28.0 SIGNATURE PAGE

Dated: July 19, 2018

29.0 CERTIFICATE OF AUTHOR

I, Kristian Whitehead, B.Sc., P.Geo. as an author of this report entitled "Technical Report on the Phyllis Cobalt Property, Kenora Mining District, Northwestern Ontario, Canada", dated July 19, 2018, do hereby certify that:

- I am a consulting geologist of: Infiniti Drilling Corporation. 2763 Panorama Drive, North Vancouver British Columbia, Canada, V7G 1V7.
- 2. This certificate applies to the report entitled "Technical Report on the Phyllis Cobalt Property, Kenora Mining District, Northwestern Ontario, Canada", dated July 19, 2018.
- 3. I have B.Sc. degree in Earth and Ocean Science from the University of Victoria in 2004.
- 4. I am registered as a Professional Geologist in British Columbia (License #: 34243), Canada.
- 5. I have been practicing my profession continuously since 2004 and have over twelve years of experience in mineral exploration for base metals, gold, silver, uranium, niobium, iron, lithium and rare earths.
- 6. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI43-101") and certify that by reason of my education, affiliation with professional associations and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purpose of NI43-101.
- 7. I visited the property on June 24, 2018, and I am the author of the report.
- 8. I am responsible for all items of this report.
- 9. I have no interest, direct or indirect in the Phyllis Cobalt Property, nor do I have any interest in any other properties of First Energy Metals Limited.
- 10. I am independent of First Energy Metals Limited, as that term is defined in Section 1.5 of NI 43-101. I do not own any securities of First Energy Metals Limited.
- 11. I have no prior involvement with the Phyllis Cobalt Property other than as disclosed in item 7 of this certificate.

- 12. I have read National Instrument 43-101 ("NI43-101"), and the Technical Report has been prepared in compliance with NI43-101, and Form 43-101F1.
- 13. I am not aware of any material fact or material change with respect to First Energy Metals Limited's Property the omission of which would make this report misleading.
- 14. As at the date of this certificate, to the best of my knowledge, information and belief the technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.

Dated: July 19, 2018

Appendix I: Assay Certificates

Quality Analysis ...

Innovative Technologies

 Date Submitted:
 14-Mar-18

 Invoice No.:
 A18-03289Final

 Invoice Date:
 14-May-18

 Your Reference:
 14-May-18

Pleson Geoscience 118 Greenmantle Dr. Nipigon Ontario P0T 2J0 Canada

ATTN: Alex Pleson

CERTIFICATE OF ANALYSIS

31 Rock samples were submitted for analysis.

The following analytical package(s) were requested: Code 1C-OES-Tbay Fire Assay ICPOES (QOP Fire Assay Tbay)

REPORT A18-03289Final

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY:

Emmanuel Eseme , Ph.D. Quality Control

ACTIVATION LABORATORIES LTD. 1201 Walsh Street West, Thunder Bay, Ontario, Canada, P7E 4X6 TELEPHOR: 4807 622-6707 or +1 888 25227 FAX +1 905.648.9613 E-MAIL Tbay@actlabs.com ACTLABS GROUP WEBSITE www.actlabs.com

Page 1/4

Results

Activation Laboratories Ltd.

Report: A18-03289

Analyte Symbol	Au	Pd	Pt	Co	Cu	Ni
Unit Symbol	ppb	ppb	ppb	%	%	%
Lower Limit	2	5	5	0.0001	0.0001	0.0001
Method Code	FA-ICP	FA-ICP	FA-ICP	ICP-MS	ICP-MS	ICP-MS
152851	6	15	28	0.0129	0.133	0.0323
152852	4	20	22	0.0035	0.0315	0.0039
152853	< 2	13	11	0.0031	0.106	0.0106
152854	2	9	15	0.0063	0.0725	0.0168
152855	13	28	24	0.0082	0.553	0.0473
152856	8	15	18	0.0045	0.338	0.0181
152857	14	26	151	0.435	0.210	0.0153
152858	3	45	26	0.0059	0.0652	0.0099
152859	< 2	17	15	0.0030	0.0302	0.0143
152860	12	14	88	0.218	0.298	0.0237
152861	< 2	10	15	0.0084	0.0490	0.0056
152862	< 2	17	16	0.0036	0.0537	0.0136
152863	2	28	19	0.0042	0.0628	0.0161
152864	< 2	17	15	0.0033	0.0294	0.0068
152865	3	69	33	0.0086	0.0987	0.0507
152866	< 2	18	18	0.0069	0.0746	0.0174
152867	< 2	17	18	0.0028	0.0257	0.0107
152868	< 2	21	21	0.0153	0.134	0.0542
152869	< 2	23	20	0.0110	0.107	0.0342
152870	< 2	53	26	0.0109	0.111	0.0212
152871	< 2	17	13	0.0065	0.0770	0.0254
152872	< 2	42	9	0.0107	0.459	0.114
152873	2	105	9	0.0367	0.119	0.341
152874	< 2	104	9	0.0268	0.129	0.257
152875	< 2	17	9	0.0055	0.0339	0.0370
152876	< 2	16	15	0.0040	0.0271	0.0177
152877	< 2	103	< 5	0.0483	0.100	0.480
152878	4	20	24	0.0240	0.324	0.0323
152879	< 2	30	20	0.0056	0.0622	0.0185
152880	< 2	5	6	0.0013	0.361	0.0048
152881	< 2	8	8	0.0017	0.602	0.0056

Page 3/4

	AGAT	Laboratories
CLIENT NAM	ALE: MISC AGAT CLIENT ON	

	Certificate of Analysis
	AGAT WORK ORDER: 18B357761
_	PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MIS	SC AGAT CLI	ENT ON							ATTEN	TION TO:	Alex Ples	on		http://www.aga	auabs.coi
			(20	1-378) So	odium P	eroxide l	Fusion -	ICP-OES	S/ICP-MS	5 Finish					
DATE SAMPLED: Ju	I 03, 2018		C	ATE RECE	EIVED: Jul (03, 2018		DATE I	REPORTED	: Sep 21, 2	018	SAM	MPLE TYPE: Rock		
	Analyte:	Ag	AI	As	В	Ba	Be	Bi	Са	Cd	Ce	Co	Cr	Cs	С
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppr
Sample ID (AGAT ID)	RDL:	1	0.01	5	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	
881801 (9374632)		<1	2.53	<5	<20	621	<5	<0.1	11.2	<0.2	16.7	55.3	0.145	2.6	3
881802 (9374633)		<1	2.36	<5	<20	438	<5	0.5	10.7	0.2	16.6	67.1	0.135	2.7	24
881803 (9374634)		2	1.77	<5	23	275	<5	2.3	9.24	0.3	8.1	284	0.075	1.3	404
881804 (9374635)		<1	1.79	<5	<20	137	<5	0.8	11.9	0.5	13.6	146	0.086	0.8	171
881805 (9374636)		1	1.83	<5	<20	94.8	<5	0.8	12.4	0.6	15.1	236	0.097	0.4	252
881806 (9374637)		<1	2.23	<5	<20	307	<5	0.8	11.9	<0.2	17.2	243	0.102	0.5	267
881819 (9374638)		8	1.75	<5	<20	78.1	<5	3.2	9.76	5.5	16.2	188	0.064	0.5	697
881820 (9374639)		3	1.68	<5	<20	118	<5	3.0	10.9	1.3	18.6	277	0.057	0.4	434
881821 (9374640)		2	1.18	<5	28	252	<5	8.3	1.98	0.3	7.1	2400	0.021	1.2	391
881822 (9374641)		1	1.59	<5	36	156	<5	2.6	3.73	<0.2	7.7	294	0.044	3.2	50
881813 (9374642)		<1	2.43	<5	<20	432	<5	1.9	9.48	0.3	17.5	481	0.089	1.5	51
881814 (9374643)		1	1.71	<5	<20	277	<5	4.6	8.29	0.4	12.8	1600	0.056	1.0	297
881815 (9374644)		4	2.09	<5	20	231	<5	1.0	11.1	1.1	15.4	59.4	0.097	0.4	776
881816 (9374645)		1	1.69	<5	<20	214	<5	1.3	10.6	0.3	11.8	161	0.080	0.6	221
881817 (9374646)		2	2.00	<5	<20	299	<5	17.6	7.86	0.2	11.5	87.6	0.073	3.4	280
881818 (9374647)		1	2.28	<5	<20	48.4	<5	2.2	7.76	<0.2	12.9	102	0.113	1.0	186
294401 (9374648)		<1	1.98	<5	<20	233	<5	0.2	10.4	<0.2	16.8	66.0	0.123	3.4	6
294402 (9374649)		<1	4.48	<5	<20	47.1	<5	0.3	7.14	0.2	16.2	75.5	0.117	5.0	6
294403 (9374650)		1	4.05	<5	<20	309	<5	1.9	7.65	0.3	27.3	76.9	< 0.005	9.9	16
294404 (9374651)		<1	4.06	<5	<20	134	6	1.9	8.32	0.5	26.0	90.7	0.022	4.9	50
294405 (9374652)		<1	2.40	<5	25	210	<5	<0.1	7.57	<0.2	16.7	73.5	0.176	0.6	6
294351 (9374653)		<1	5.36	<5	<20	372	<5	0.2	6.77	<0.2	14.3	55.7	0.087	1.3	4
294352 (9374654)		<1	4.31	<5	<20	399	<5	0.9	7.69	<0.2	22.2	72.6	0.010	4.5	35
294353 (9374655)		<1	2.56	<5	<20	198	<5	0.4	9.89	<0.2	20.9	59.2	0.146	0.4	3
881807 (9374656)		<1	2.03	<5	<20	209	<5	0.8	9.86	<0.2	20.8	159	0.074	1.4	115
881808 (9374657)		<1	2.13	<5	<20	167	<5	0.7	9.97	<0.2	17.6	111	0.113	1.1	64
881809 (9374658)		<1	2.41	<5	<20	446	<5	0.4	11.5	<0.2	18.7	66.0	0.097	1.1	22
881810 (9374659)		<1	2.16	<5	23	249	<5	0.4	11.1	<0.2	17.1	106	0.116	1.4	22
881811 (9374660)		13	1.84	<5	<20	132	<5	0.8	11.8	1.8	13.2	160	0.095	0.9	161
881812 (9374661)		5	4.55	<5	<20	585	<5	0.2	6.61	1.2	10.0	65.9	0.066	1.5	50

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

A. Maria

Page 4 of 16

Results relate only to the items tested and to all the items tested

GGAT Laboratories				Certificate of Analysis MISSISAUGA, ONT AGAT WORK ORDER: 18B357761 CANADAL PROJECT: Http://www.agatabi											
CLIENT NAME: MIS	C AGAT CLI	ENT ON								TION TO:	Alex Plese	on			
				,		Peroxide I	-usion								
DATE SAMPLED: Jul	,		DATE RECEIVED: J						REPORTED: Sep 21, 2018			SAMPLE TYPE: Rock			
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Ho	In	к	La	Li	L
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppn
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.0
881801 (9374632)		2.65	1.07	0.96	5.89 6.89	8.91 9.06	3.86 4.11	2	<1	0.42	<0.2 <0.2	1.00 0.89	6.3 6.0	53 33	0.0
881802 (9374633) 881803 (9374634)		1.88	0.75	0.50	12.2	9.06	4.11	2	1	0.46	<0.2	0.89	3.0	33	0.0
881803 (9374634) 881804 (9374635)		2.56	1.01	0.50	7.57	6.53	2.59	2	<1	0.31	<0.2	0.53	4.7	22	0.0
881805 (9374636)		2.30	1.01	0.99	8.85	6.80	4.25	2	<1	0.42	<0.2	0.30	4.7 5.1	33	0.1
881806 (9374637)		2.80	1.05	0.99	9.19	6.86	4.25	2	<1	0.47	<0.2	0.41	6.5	35	0.1
881819 (9374638)		2.60	0.97	0.99	11.6	7.29	3.69	2	<1	0.47	<0.2	0.41	5.8	18	0.1
881820 (9374639)		2.60	1.01	0.92	13.8	6.25	3.95	2	<1	0.43	<0.2	0.20	7.2	23	0.1
881821 (9374640)		0.78	0.40	0.22	35.3	4.48	1.06	<1	<1	0.15	<0.2	0.54	3.1	<10	0.0
881822 (9374641)		1.28	0.50	0.32	32.0	5.05	1.63	1	<1	0.20	<0.2	0.51	3.1	21	0.0
881813 (9374642)		2.38	1.00	0.87	10.5	9.15	3.61	2	1	0.40	<0.2	0.70	5.8	23	0.10
881814 (9374643)		2.15	0.84	0.67	16.5	5.70	3.01	1	<1	0.34	<0.2	0.49	4.8	25	0.10
881815 (9374644)		2.54	0.94	0.83	9.32	7.05	3.55	2	1	0.43	<0.2	0.37	5.5	20	0.1
881816 (9374645)		2.15	0.84	0.69	9.83	6.21	3.11	2	<1	0.34	<0.2	0.36	4.6	27	0.0
881817 (9374646)		2.24	0.93	0.60	15.4	9.69	3.00	2	1	0.37	<0.2	0.32	4.3	15	0.10
881818 (9374647)		2.28	0.84	0.71	9.99	7.15	3.09	2	<1	0.38	<0.2	0.25	4.4	19	0.0
294401 (9374648)		2.97	1.05	0.98	5.99	7.75	4.56	2	<1	0.47	<0.2	0.72	5.7	44	0.1
294402 (9374649)		4.04	2.14	1.33	10.9	15.4	4.55	2	3	0.88	< 0.2	0.85	4.5	54	0.3
294403 (9374650)		3.96	1.69	1.18	15.9	20.5	5.41	2	2	0.71	<0.2	1.08	11.3	52	0.2
294404 (9374651)		4.60	1.94	1.34	14.6	20.9	6.45	3	2	0.77	0.2	0.84	9.3	34	0.2
294405 (9374652)		2.33	0.96	0.76	7.10	6.78	3.44	1	<1	0.39	<0.2	0.31	6.2	37	0.10
294351 (9374653)		2.74	1.43	0.85	6.65	14.0	3.22	1	2	0.48	<0.2	0.98	4.8	36	0.19
294352 (9374654)		3.23	1.26	1.18	15.2	21.7	4.51	2	2	0.52	<0.2	1.00	7.5	35	0.14
294353 (9374655)		3.62	1.34	1.29	6.13	8.54	5.37	2	1	0.59	<0.2	0.40	6.7	28	0.10
881807 (9374656)		2.90	1.10	0.98	8.72	6.69	4.22	2	1	0.46	<0.2	0.48	6.3	19	0.1
881808 (9374657)		2.59	0.99	0.96	7.84	6.71	3.89	2	<1	0.44	<0.2	0.41	6.7	27	0.1
881809 (9374658)		2.97	1.16	1.00	6.26	7.68	4.26	2	1	0.47	<0.2	0.50	7.2	37	0.1
881810 (9374659)		2.86	1.12	0.98	6.91	7.37	4.09	2	<1	0.49	<0.2	0.52	6.3	40	0.12
881811 (9374660)		2.78	1.23	0.89	8.28	7.47	4.06	2	<1	0.47	<0.2	0.34	4.1	33	0.13
881812 (9374661)		3.17	1.57	0.63	5.21	15.7	3.25	2	2	0.59	<0.2	1.65	3.6	21	0.2

A. A.

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

Page 5 of 16

Results relate only to the items tested and to all the items tested

69 | P a g e

					S	Certificate of Analysis AGAT WORK ORDER: 18B357761 PROJECT: ATTENTION TO: Alex Pleson								MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com			
			(20	1-378) Se	odium P	eroxide	Fusion -	ICP-OES	S/ICP-MS	Finish							
DATE SAMPLED: Jul	03, 2018			DATE RECE	EIVED: Jul										E TYPE: Rock		
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si		
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%		
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01		
881801 (9374632)		9.72	1030	2	2	13.4	154	0.02	<5	2.60	44.4	0.09	<0.1	45	23.7		
881802 (9374633)		9.50	1120	3	2	13.6	166	0.01	<5	2.63	43.5	0.26	<0.1	47	22.4		
881803 (9374634)		7.90	1060	3	3	7.7	407	0.01	13	1.35	18.7	3.41	<0.1	47	21.0		
881804 (9374635)		9.28	1100	4	1	12.2	880	0.01	9	2.25	8.8	1.57	<0.1	55	22.0		
881805 (9374636)		8.52	1100	2	1	13.5	1050	0.02	14	2.46	4.1	2.46	<0.1	61	21.6		
881806 (9374637)		8.36	1090	<2	<1	14.1	1390	0.02	7	2.67	9.6	2.81	<0.1	55	21.3		
881819 (9374638)		7.78	1460	3	2	13.1	433	0.02	632	2.51	6.0	3.73	<0.1	43	20.2		
881820 (9374639)		7.13	1470	<2	1	13.8	526	0.02	10	2.84	8.4	4.97	<0.1	44	20.3		
881821 (9374640)		1.63	369	7	5	4.3	1910	<0.01	12	0.96	22.7	29.1	<0.1	6	6.39		
881822 (9374641)		3.74	547	4	3	5.8	2500	<0.01	<5	1.12	28.2	18.3	<0.1	17	9.61		
881813 (9374642)		8.22	1250	<2	2	13.6	168	0.03	<5	2.72	27.9	2.65	<0.1	41	21.4		
881814 (9374643)		5.88	1060	2	2	10.1	508	0.02	9	2.00	16.1	11.6	<0.1	35	17.6		
881815 (9374644)		9.18	1330	<2	1	12.2	152	0.02	<5	2.36	7.7	1.08	<0.1	48	22.9		
881816 (9374645)		8.20	1020	<2	<1	9.9	343	0.02	<5	1.84	10.1	1.68	<0.1	50	20.9		
881817 (9374646)		7.47	1130	<2	3	9.8	324	0.01	36	1.85	12.8	1.77	<0.1	41	18.9		
881818 (9374647)		9.60	1300	<2	1	10.9	530	0.02	<5	2.11	5.4	1.29	<0.1	34	20.9		
294401 (9374648)		9.99	1210	<2	3	14.5	236	0.01	<5	2.71	40.5	0.05	<0.1	42	21.9		
294402 (9374649)		8.28	1670	2	9	15.2	531	0.05	<5	2.88	34.9	0.05	<0.1	27	20.2		
294403 (9374650)		5.44	1470	3	9	19.5	51	0.05	6	3.86	60.8	1.61	<0.1	63	18.2		
294404 (9374651)		6.30	2150	2	11	21.3	58	0.02	6	4.12	39.7	1.42	0.1	65	19.5		
294405 (9374652)		11.9	1280	3	1	12.8	377	0.03	<5	2.52	6.5	0.09	<0.1	32	21.3		
294351 (9374653)		7.22	1240	3	3	11.8	176	0.03	6	2.30	40.2	0.19	<0.1	30	22.3		
294352 (9374654)		5.53	1410	2	6	17.5	48	0.05	5	3.48	39.7	1.15	<0.1	50	18.5		
294353 (9374655)		10.1	1140	<2	2	18.6	219	0.03	7	3.49	10.5	0.07	<0.1	41	22.9		
881807 (9374656)		9.75	1090	<2	<1	14.6	471	0.02	<5	2.81	12.7	1.83	<0.1	49	20.9		
881808 (9374657)		10.4	1160	<2	1	13.3	275	0.02	<5	2.72	10.0	1.00	<0.1	45	22.3		
881809 (9374658)		8.46	1100	2	2	14.5	208	0.02	<5	2.88	17.9	0.12	<0.1	51	22.6		
881810 (9374659)		9.42	1160	<2	1	14.0	214	0.02	<5	2.66	19.8	0.45	<0.1	49	22.1		
881811 (9374660)		8.20	1200	3	1	12.6	317	< 0.01	447	2.30	10.9	1.44	<0.1	63	21.3		
881812 (9374661)		5.36	1390	4	3	8.8	221	< 0.01	305	1.61	50.5	0.66	<0.1	31	26.7		

			Labor	atorie	S		icate DRK ORD		57761		Alex Pieso			TEL (905)	ONTARIO A L4Z 1N9)501-9998)501-0589
CLIENT NAME: MIS	CAGAT CLI	ENTON	(00)	4 270) 6	a aliuma D	a navida	Fueles				Alex Pleso	n			
							Fusion -								
DATE SAMPLED: Ju				DATE RECE					REPORTED				PLE TYPE:		
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti %	TI	Tm	U	V	W	Y	Yb
Sample ID (AGAT ID)	Unit: RDL:	ppm 0.1	ppm 1	ppm 0.1	ppm 0.5	ppm 0.05	ppm 0.1	0.01	ppm 0.5	ppm 0.05	ppm 0.05	ppm 5	ppm 1	ppm 0.5	ppm 0.1
881801 (9374632)	RDL:	3.8	1	135	<0.5	0.05	1.1	0.01	<0.5	0.05	0.05	159	<1	11.1	0.1
881802 (9374633)		4.2	<1	74.7	<0.5	0.56	1.1	0.30	<0.5	0.12	0.51	166	<1	11.2	0.9
881803 (9374634)		2.5	1	68.9	<0.5	0.35	0.7	0.22	0.8	0.09	0.43	159	<1	8.0	0.6
881804 (9374635)		3.9	<1	75.4	<0.5	0.52	0.6	0.23	0.5	0.12	0.17	161	<1	11.3	0.7
881805 (9374636)		4.1	<1	88.0	<0.5	0.57	0.9	0.22	0.6	0.14	0.29	175	<1	11.9	0.9
881806 (9374637)		4.1	<1	90.6	<0.5	0.56	1.2	0.25	<0.5	0.15	0.34	177	<1	11.5	0.8
881819 (9374638)		3.8	3	67.8	<0.5	0.51	1.2	0.18	<0.5	0.12	0.51	133	<1	10.7	0.7
881820 (9374639)		4.0	2	78.1	<0.5	0.54	14	0.15	<0.5	0.13	0.45	133	<1	10.8	0.8
881821 (9374640)		1.1	2	47.0	<0.5	0.15	0.7	0.07	0.6	0.05	2.06	34	<1	4.1	0.4
881822 (9374641)		1.6	1	54.1	< 0.5	0.23	0.6	0.14	0.6	0.06	1.18	66	<1	5.3	0.4
881813 (9374642)		3.7	1	112	<0.5	0.48	1.0	0.26	<0.5	0.12	0.67	147	<1	10.1	0.8
881814 (9374643)		3.0	1	87.0	<0.5	0.39	1.2	0.17	<0.5	0.12	0.84	116	<1	8.7	0.7
881815 (9374644)		3.5	<1	94.4	<0.5	0.49	1.0	0.24	<0.5	0.12	0.36	155	<1	9.7	0.7
881816 (9374645)		3.1	<1	84.0	<0.5	0.42	1.1	0.22	0.8	0.10	0.25	153	<1	8.2	0.6
881817 (9374646)		3.0	2	77.0	<0.5	0.42	0.9	0.22	<0.5	0.11	0.33	152	<1	9.8	0.8
881818 (9374647)		3.3	<1	69.2	<0.5	0.44	1.3	0.24	<0.5	0.10	0.83	131	<1	8.9	0.7
294401 (9374648)		4.4	<1	81.2	<0.5	0.62	0.8	0.27	<0.5	0.13	0.49	132	<1	11.9	0.8
294402 (9374649)		4.4	1	36.3	0.6	0.74	1.0	0.96	<0.5	0.37	0.35	262	<1	18.3	1.9
294403 (9374650)		5.4	6	142	1.1	0.76	2.1	0.99	0.6	0.23	1.86	648	<1	18.2	1.6
294404 (9374651)		6.1	11	65.2	0.9	0.87	2.3	0.97	0.5	0.27	1.84	571	<1	20.6	1.8
294405 (9374652)		3.5	1	80.7	<0.5	0.44	1.0	0.33	<0.5	0.11	0.23	136	<1	9.1	0.7
294351 (9374653)		3.2	2	209	<0.5	0.48	2.5	0.32	<0.5	0.21	0.65	154	<1	13.1	1.3
294352 (9374654)		4.7	5	179	<0.5	0.63	1.8	1.05	<0.5	0.16	1.57	669	<1	12.9	1.0
294353 (9374655)		5.6	<1	89.3	<0.5	0.74	1.1	0.31	<0.5	0.16	0.36	152	<1	14.5	1.0
881807 (9374656)		4.1	1	97.8	<0.5	0.56	1.1	0.26	<0.5	0.13	0.23	164	<1	11.2	0.8
881808 (9374657)		3.7	1	83.9	<0.5	0.49	1.1	0.27	<0.5	0.12	0.32	147	<1	10.8	0.7
881809 (9374658)		4.5	1	168	<0.5	0.60	2.1	0.26	<0.5	0.14	0.73	161	<1	11.9	0.9
881810 (9374659)		4.2	1	97.3	<0.5	0.57	1.2	0.28	<0.5	0.14	0.36	168	<1	11.2	0.8
881811 (9374660)		3.8	<1	59.1	<0.5	0.55	0.6	0.25	<0.5	0.15	0.43	191	<1	11.4	0.9
881812 (9374661)		3.0	2	121	<0.5	0.54	0.8	0.17	<0.5	0.22	0.72	99	<1	16.8	1.4

Certified By:

A. Marco

Page 7 of 16

AGAT CERTIFICATE OF ANALYSIS (V1)

Results relate only to the items tested and to all the items tested

71 | Page

	G		Laborato	rice		te of Analysis	MISSISSAUGA, ONTARIO CANADA L4Z 1N3 TEL (905)501-9996
			Lauoraic	mes	- PROJECT:		FAX (905)501-0589
CLIENT NAME: MIS	C AGAT CLIE	ENT ON			- 11002011	ATTENTION TO: Alex Ple	http://www.agatlabs.com
			(201-37	8) Sodiu	n Peroxide Fusi	on - ICP-OES/ICP-MS Finish	
DATE SAMPLED: Jul	03, 2018		DATE	RECEIVED	Jul 03, 2018	DATE REPORTED: Sep 21, 2018	SAMPLE TYPE: Rock
	Analyte:	Zn	Zr				
	Unit:	ppm	ppm				
Sample ID (AGAT ID)	RDL:	5	0.5				
881801 (9374632)		54	27.6				
881802 (9374633)		62	30.7				
881803 (9374634)		66	22.8				
881804 (9374635)		65	19.9				
881805 (9374636)		62	24.7				
881806 (9374637)		42	28.4				
881819 (9374638)		1380	28.2				
881820 (9374639)		138	29.2				
881821 (9374640)		33	12.1				
881822 (9374641)		43	15.7				
881813 (9374642)		96	32.5				
881814 (9374643)		73	25.6				
881815 (9374644)		145	29.6				
881816 (9374645)		41	25.5				
881817 (9374646)		67	26.7				
881818 (9374647)		77	30.2				
294401 (9374648)		72	22.9				
294402 (9374649)		116	97.6				
294403 (9374650)		143	57.3				
294404 (9374651)		213	42.4				
294405 (9374652)		82	26.2				
294351 (9374653)		79	58.9				
294352 (9374654)		133	42.0				
294353 (9374655)		78	35.8				
881807 (9374656)		49	28.7				
881808 (9374657)		63	25.7				
881809 (9374658)		47	31.9				
881810 (9374659)		55	30.4				
881811 (9374660)		438	21.0				
881812 (9374661)		356	35.4				

Comments: RDL - Reported Detection Limit

AGAT CERTIFICATE OF ANALYSIS (V1)

Certified By:

A . Pare 8 of 16

Results relate only to the items tested and to all the items tested

72 | Page

Appendix II: Daily Work Log

Personnel	Role	Residence
Alex Pleson	Geologist	Nipigon, ON
Phil Houghton	Prospector/Sampler	Beardmore, ON
Luke Goodman	Prospector/Sampler	Beardmore, ON
Kyle Cote	Prospector/Excavator Operator	Beardmore, ON
Kristian Whitehead	Independent Geologist/Report Writer	Vancouver, BC

Date	Personnel	Task			
		Travel to Ignace, offload skidoos at highway north of site, break trail into			
		showing, cut trees to gain access to old Phyllis Central Blast Pits, shovel			
February 8 2018	Alex Pleson, Kyle Cote	area down to locate old blast pits. Find old rusty zones, very difficult to			
		identify lithologies in rusty area but surrounding rock is mafic/ultramafic			
		olivine gabbro (medium grained, rich in sulphides)			
February 0 2019	Alay Discan, Kula Cata	Chip samples from blast pits, dig out third blast pit (2-3ft of snow ontop of			
February 9 2018	Alex Pleson, Kyle Cote	outcrop)			
Lohnuony 10 2019	Alox Discon Kulo Coto	Continue chipping samples from gossaned area, demob back to highway,			
February 10 2018	Alex Pleson, Kyle Cote	travel back to Beardmore/Nipigon			

Date	Personnel	Task
		Mobilize to site, flag trail into showing off of road at km9 Kay Lake Road, south of bridge across Gulliver River. John Deere 120 excavator from Blackwater was dropped off at the turn around north of bridge, we cut
June 16 2018	Alex Pleson, Kyle Cote (operator), Luke Goodman, Phil Houghton	some tress ahead of excavator and a seperate trail for a waterline to creek. Excavator made it approximately 1/2 way from road to Phyllis Central showing.
June 17 2018	Alex Pleson, Kyle Cote (operator), Luke Goodman, Phil Houghton	Continued with trail, made it to the showing. Started trenching around older blast pits, removing overburden and loose debris created from prior blasting and machine work
June 18 2018	Alex Pleson, Kyle Cote (operator), Luke Goodman, Phil Houghton	Continued with stripping of overburden to expose the zone originally blasted by prospecters
June 19 2018	Alex Pleson, Kyle Cote (operator), Luke Goodman, Phil Houghton	Started channel sampling while prospectors work with excavator to expand the trench and follow mineralization/gossaned zone to the northeast. Large boulder encountered which cannot be removed by excavator.
June 20 2018	Alex Pleson, Kyle Cote (operator), Luke Goodman, Phil Houghton	Finished trenching Phyllis Central, walked machine out to pick up location ~km8 on Kay Lake Road and arranged float truck for the morning. Luke, Alex and Phil washed off outcrop with Wajax pump/hose, channel sampling continued. Alex Started Descriptions
June 21 2018	Alex Pleson, Kyle Cote (operator), Luke Goodman, Phil Houghton	Excavator/Float demobed back to Beardmore, Kyle also left. Luke, Alex, Phill conitnued sampling and describing samples
June 22 2018	Alex Pleson, Luke Goodman, Phil Houghton	Sampling/Descriptions
June 23 2018	Alex Pleson, Luke Goodman, Phil Houghton	Finalized the sampling and carried samples back to road. Demobilized all equipment/tools/etc. back to trailer at km8 turnaround
June 24 2018	Alex Pleson, Luke Goodman, Phil Houghton, Kristian Whitehead	Alex met Kristian to do property visit, Phil/Luke drove home, Alex and Kristian visited site and then drove back to Thunder Bay and Nipigon