

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

ASSESSMENT REPORT

ON THE

2019 JOYCE RIVER DIAMOND DRILL PROGRAM

FOR

METEORIC RESOURCES NL

Joyce River Project, Joyce River Area Township

51° 03' 54" N, 93° 00' 16" W NTS 52N03

Prepared by |Michael W. Kilbourne, P. Geo Submitted | July 9, 2019

TABLE OF CONTENTS

1.0 Executive Summary
2.0 Introduction
3.0 Property Description, Location and Access
4.0 Historical Work
5.0 Geological Setting
6.0 Drilling
6.1. Discussion of Results10
6.2 Core Logging, Sampling and Analysis14
7.0 Conclusions and Recommendations15
7.1 Conclusions
7.2 Recommendations
8.0 References
9.0 Statement of Qualifications

LIST OF TABLES

Table 1: List of claims for Joyce River property	6
Table 2: Summary of Drill Program	9
Table 3: Analytical Results of the 2019 Drill Program at Joyce River	14

LIST OF FIGURES

Figure 1: Joyce River Property Location Map	4
Figure 2: Joyce River Property Claims Map	5
Figure 3: Regional Geology of the East Uchi Subprovince	8
Figure 4: Diamond Drill Hole Location Map	9
Figure 5: Joyce River Project Focus of 2019 Drilling	10
Figure 6: Planned Holes for the 2019 Drill Program with Labelled Executed Drill Holes	11
Figure 7: Cross Section of Final Executed Holes JR-19-01 and JR-19-04	12
Figure 8: Cross Section of Final Executed Holes JR-19-02 and JR-19-03	13

LIST OF APPENDICES

Appendix A: Certificate of Analysis	18
Appendix B: Drill Hole Cross Sections	25
Appendix B: Drill Hole Logs	28

1.0 EXECUTIVE SUMMARY

This report presents a description and results of the January 2019 drill program completed by Meteoric Resources on the Joyce River Cu-Co-Au Project (Joyce River Project) located northeast of Ear Falls, Ontario (Figure 1). Between January 7rd and 15th, 2019, four diamond drill holes were completed for total length of 492.0m. The objective of the drill program was to:

- 1) Confirm the nature and significance of the Cu-Co-Au mineralization in previous trenching programs where previous values of 0.3% Co, 11.0% Cu and 8.07 g/t Au (separate grab samples) were recorded.
- 2) Extend the mineralization of the above trenching results along strike and at depth.
- 3) Investigate interpreted EM plate models generated from an airborne AeroTEM survey completed in 2012.

Only hole JR-19-04 produced results of significance, intersecting 1.85% Cu over 0.6m from 50.2m downhole. This hole was drilled directly beneath high grade trenching samples and extends mineralization to depth.

2.0 INTRODUCTION

In May 2018, Meteoric Resources optioned the Joyce River property, located 50km northeast of Ear Falls, ON, with the intent of exploring for polymetallic mineralization. The property is situated in the Trout Lake batholith of the Uchi Subprovince and is comprised of a suite of plutonic rocks. The Uchi Subprovince has been explored for polymetallic mineralization for decades. In 2008, two mineralized outcrops were discovered, trenched, and sampled yielding results of up to 4.0% Cu and 1.9gpt Au. In 2012 further mapping and sampling was undertaken, as well as a heliborne EM and magnetic geophysical survey. The geophysical survey highlighted several EM anomalies over a 1.6km trend.

In early 2019 Meteoric Resources planned a diamond drilling program with the intent to test the EM anomalies outlined during the 2012 heliborne geophysical survey for polymetallic mineralization. Drilling was carried out by Chibougamau Drilling and was supervised by Michael Kilbourne, P.Geo of Orix Geoscience under the guidance of Dr. Andrew Tunks, Managing Director of Meteoric Resources. The program consisted of 4 holes (JR-19-01 – JR-19-04) totalling 492.0m and was completed in 9 days between January 7th – 15th, 2019. Drill holes were located and reported using UTM Nad 83 Zone 15N coordinate system. The program was unsuccessful in discovering any mineralized polymetallic systems of economic significance.

3.0 PROPERTY DESCRIPTION, LOCATION AND ACCESS

The Joyce River Property, located approximately 50km northeast of Ear Falls, ON (Fig. 1) in Joyce River Area, consists of 23 single cell mining claims and spans 467 hectares (Fig. 2). It is situated in the Red Lake Mining Division, District of Kenora, and centered at 499650m E, 5657000N (UTM Nad 83, Zone 15N), 51° 03' 54" N, 93° 00' 16" W (Lat Long).

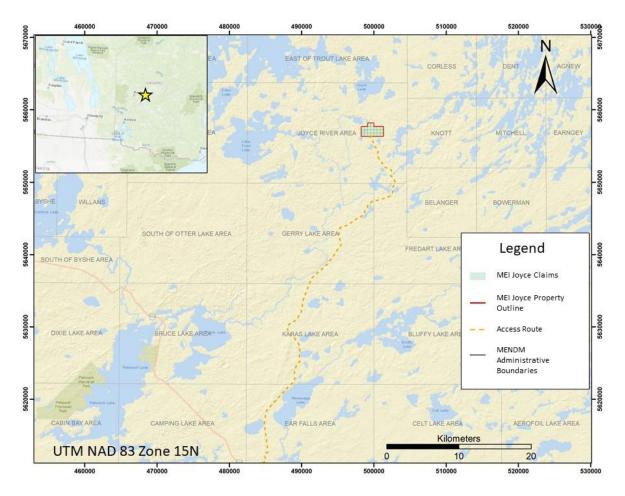


Figure 1: Joyce Property Location Map

The property can be accessed from Hwy 105 in Ear Falls, ON. Turn left onto Goldpines Rd/ON-657 E and follow for 2.5km. Turn left onto Wenesaga Rd., follow for 1.6km, turn left onto South Bay Rd. and follow for 47.2km towards Woman River Camp. Turn left on Joyce Rd. and continue for 8.3km to reach the Joyce River Property.

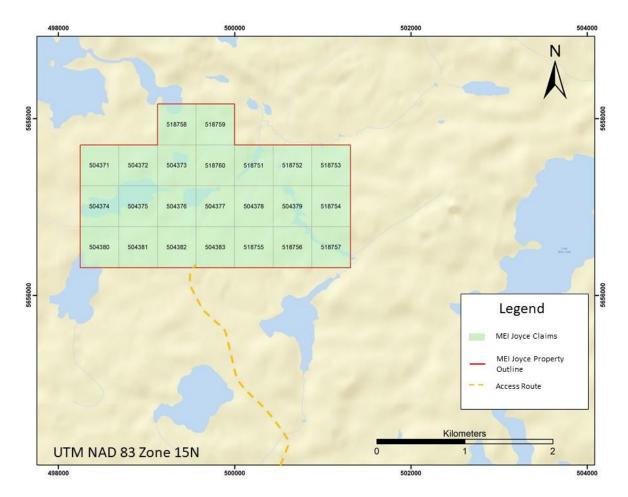


Figure 2: Joyce River Property Claims Map

Table 1: List of claims for Joyce River Property

Jurisdiction	Property	Tenure ID	Township / Area	Tenure Type	Anniversary Date	Tenure Status	Tenure Percentag
ON	Joyce	504371	JOYCE RIVER	Single Cell	2020-04-	Active	100
			AREA	Mining Claim	10		
ON	Joyce	504372	JOYCE RIVER	Single Cell	2020-04-	Active	100
			AREA	Mining Claim	10		
ON	Joyce	504373	JOYCE RIVER	Single Cell	2020-04-	Active	100
			AREA	Mining Claim	10		
ON	Joyce	504374	JOYCE RIVER	Single Cell	2020-04-	Active	100
			AREA	Mining Claim	10		
ON	Joyce	504375	JOYCE RIVER	Single Cell	2020-04-	Active	100
	,		AREA	Mining Claim	10		
ON	Joyce	504376	JOYCE RIVER	Single Cell	2020-04-	Active	100
			AREA	Mining Claim	10		
ON	Joyce	504377	JOYCE RIVER	Single Cell	2020-04-	Active	100
			AREA	Mining Claim	10		
ON	Joyce	504378	JOYCE RIVER	Single Cell	2020-04-	Active	100
			AREA	Mining Claim	10		
ON	Joyce	504379	JOYCE RIVER	Single Cell	2020-04-	Active	100
•			AREA	Mining Claim	10		
ON	Joyce	504380	JOYCE RIVER	Single Cell	2020-04-	Active	100
•			AREA	Mining Claim	10		200
ON	Joyce	504381	JOYCE RIVER	Single Cell	2020-04-	Active	100
0.1	Joyce	501501	AREA	Mining Claim	10	, lotive	100
ON	Joyce	504382	JOYCE RIVER	Single Cell	2020-04-	Active	100
	JUYEE	504502	AREA	Mining Claim	10	Active	100
ON	Joyce	504383	JOYCE RIVER	Single Cell	2020-04-	Active	100
	JUYEE	504505	AREA	Mining Claim	10	Active	100
ON	Joyce	518751	JOYCE RIVER	Single Cell	2020-04-	Active	100
	JUYCE	210/21	AREA	Mining Claim	2020-04-	Active	100
ON	Joyce	518752	JOYCE RIVER	Single Cell	2020-04-	Active	100
	JUYCE	510752	AREA	Mining Claim	2020-04-	Active	100
ON	Joyce	518753	JOYCE RIVER	Single Cell	2020-04-	Active	100
	JUYCE	210/22	AREA	Mining Claim	2020-04-	Active	100
ON	Joyce	518754	JOYCE RIVER	Single Cell	2020-04-	Active	100
	JUYCE	510/24	AREA	Mining Claim	2020-04-	Active	100
ON	Joyce	518755	JOYCE RIVER	Single Cell	2020-04-	Active	100
	JUYCE	210/22	AREA	Mining Claim	2020-04-	Active	100
ON	Joyce	518756	JOYCE RIVER	Single Cell	2020-04-	Active	100
	JUYLE	210/20	AREA	Mining Claim	2020-04-	Active	100
	lovco	E107E7		-		Activo	100
ON	Joyce	518757	JOYCE RIVER	Single Cell Mining Claim	2020-04-	Active	100
	loves	E107F0		v	26	Active	100
ON	Joyce	518758	JOYCE RIVER	Single Cell	2020-04-	Active	100
	leur-	F10750		Mining Claim	26		100
ON	Joyce	518759	JOYCE RIVER	Single Cell	2020-04-	Active	100
	1	F40700	AREA	Mining Claim	26	A -1'	400
ON	Joyce	518760	JOYCE RIVER	Single Cell	2020-04-	Active	100
			AREA	Mining Claim	26		

The original claim group consisting of claims 504371-504383 was optioned from a third party on May 11th, 2018. Subsequently Meteoric Resources staked claims 518751-518760 to extend the project limits. These claims then became encumbered within the terms of the option agreement between Meteoric Resources and the third party.

4.0 HISTORICAL WORK

Historical work on the Joyce River property is limited to the past decade. In 2008 Raymond Frank discovered two mineralized outcrops, subsequent trenching and sampling of the outcrops yielded favourable assay results of up to 4.0% Cu and 1.97g/t Au.

In March 2012, Aeroquest Airborne performed a helicopter-borne magnetic and electromagnetic survey on behalf of Advanced Exploration Inc. The survey covered 288.3 line kilometers, 272.6 of which fell within the property boundary. The survey was successful in identifying a cluster of anomalies above the mineralized outcrops and a trend of smaller anomalies trending at Az 075° over 1.6km.

During the summer of 2012, Clark Exploration Consulting performed a mapping, rock sampling, and soil sampling program on behalf of Advanced Exploration. The program suggested that the geophysical anomalies at the trenches corresponded to a mineralized ultramafic unit but was unsuccessful in explaining the other anomalies on the property. The size and nature of the ultramafic unit remains unknown.

5.0 GEOLOGICAL SETTING

The Joyce River Property is located in the East Uchi Subprovince of northwestern Ontario in between the Red Lake greenstone belt and the Birch-Uchi greenstone belt within the Trout Lake Batholith (Fig. 3). The Trout Lake Batholith is a plutonic suite of tonalite – granodiorite rocks that has been suggested to be the intrusive equivalent of the Woman and/or Trout Bay volcano-sedimentary packages.

The property is underlain by inclusions of a hornblendite – nepheline syenite suite composed of pyroxenite, diorite monzonite, syenite and nepheline syenite, as well as mafic metavolcanics and metasedimentary rocks which are possibly an inlier of the Woman Assemblage of the Birch-Uchi greenstone belt to the east.

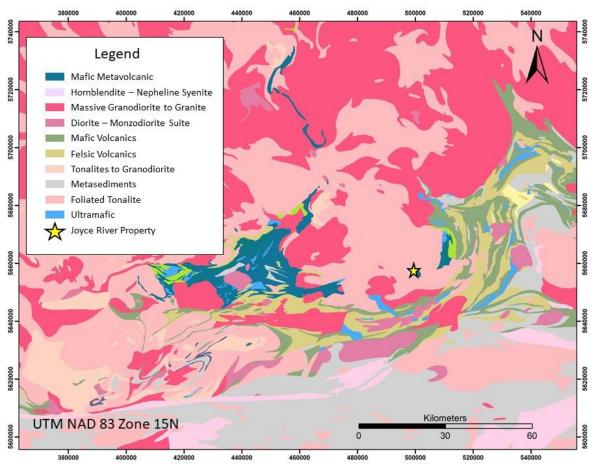


Figure 3 – Regional Geology of the East Uchi Subprovince

6.0 DRILLING

From January 7th to 15th, 2019 Meteoric Resources contracted Chibougamau Drilling, based in Chibougamau, Quebec to complete a diamond drilling program totalling 492.0m over 4 holes on the Joyce River property (Permit Number: PR-18-000222). Drill management and core logging was performed by Mike Kilbourne, P. Geo and the project was overseen by Dr Andrew Tunks. Winterized heated tents were set up on site by Jordan Kowalchuk of Fladgate Exploration for logging and cutting. Once logged and cut, the core was transported by Fladgate to ALS Geochemistry in Thunder Bay for sample preparation. Analyses was performed at ALS Geochemistry in Vancouver, BC.

The exploration program was designed to follow up on results from recent reinterpretations and plate modelling of the 2012 heliborne-EM data. Each planned hole was designed to either intersect a modelled EM plate or the interpreted lateral and/or vertical extension of the mineralization observed in the trench. Azimuth, easting, northing, and elevation data was collecting using a DeviSight True North Azimuth Alignment System in Universal Transverse Mercator (UTM) projection using the North American Datum

(NAD) 83 in Zone 15N rented from SurveyTECH Instruments based in Timmins, Ontario. Dip and downhole azimuth measurements were collected using a Reflex EZ shot magnetic tool. A summary of the diamond drilling data can be found in Table 3. Collar locations relative to the claims are plotted in Figure 4.

Table 2: Summa	ary of Drill Pr	ogram					
BHID	Azimuth	Dip	Length (m)	Easting	Northing	Elevation	# of Samples Taken/Assayed
JR-19-01	348	-45	120.0	499097	5656627	403	12
JR-19-02	158	-50	123.0	499035	5656650	403	N/A
JR-19-03	158	-48	150.0	499025	5656738	401	10
JR-19-04	168	-45	99.0	499081	5656705	403	3

Figure 4: Diamond Drill Hole Location Map

6.1. Discussion of Results

The 2019 diamond drill program completed by Meteoric Resources was the maiden drilling on the property, thus there was little guidance as to the attitude and geometry of potential mineralization and little guidance to host lithologies. Previous information was only gathered from trenching programs where mineralization appeared streaky to poddy yet contained within a sub-vertical fabric. Plate modeling performed by an independent Meteoric geophysicist suggested more flat-lying conductors. The program was designed to investigate the mineralization in the trenches both at depth and along strike to the east and west while investigating the apparent flat-lying conductors from plate modeling airborne EM. Drilling was planned in multiple directions perpendicular to strike with final hole placement decisions made in the field as drilling progressed and more learned about lithology and mineralization attitude.

The 2019 drill program only focused around the trenching on the western section of a 1.8km trend of coincident magnetic and AeroTEM anomalies (Fig. 5).

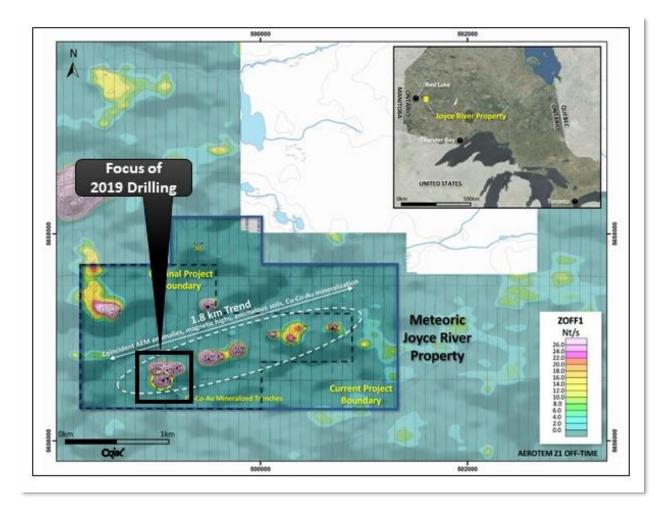


Figure 5: Joyce River Project focus of 2019 drilling

As previously mentioned, multiple holes were planned within the 2019 area of focus with final drill hole placement decided as drilling progressed in the field. Figure 6 displays the planned holes and final executed drill holes that were completed during the 2019 drill program.

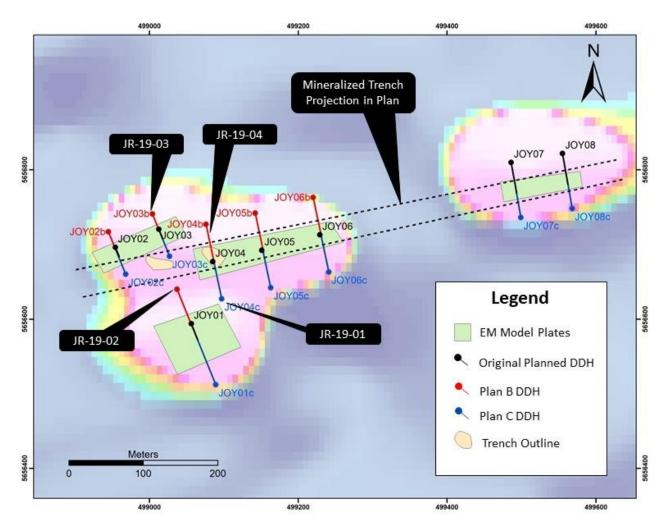


Figure 6: Planned holes for the 2019 drill program with labeled executed drill holes

Figure 7 presents the planned and executed holes JR-19-01 and JR-19-04 in cross section. Figure 8 presents the planned and executed holes JR-19-02 and JR-19-03 in cross section.

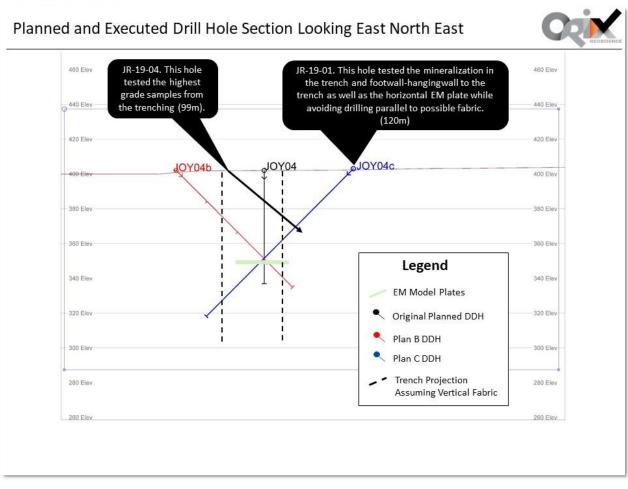


Figure 7: Cross section of final executed holes JR-19-01 and JR-19-04

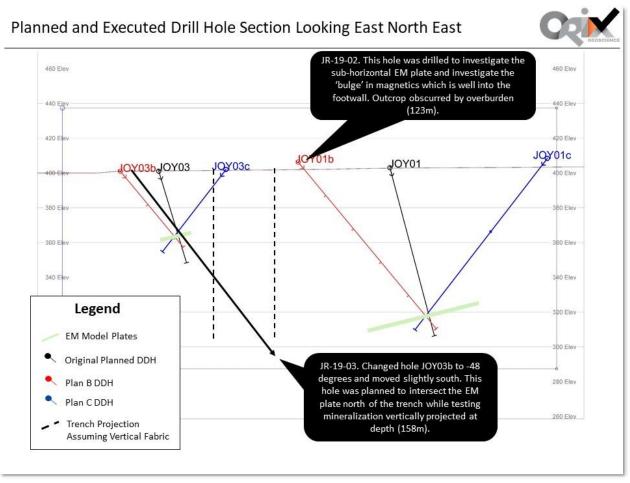


Figure 8: Cross section of final executed holes JR-19-02 and JR-19-03

Analytical results of the completed 2019 drill program are presented in Table 3.

Table 3: Analytical results of the 2019 drill program at Joyce River

Hole Number	Sample Number	From	То	Interval	Cu ppm	Ni ppm	Co ppm	Au ppm	Pt ppm	Pd ppm	Cu %	Ni %
JR-19-01	X947801	72.00	72.75	0.75	13	46	23	< 0.001	<0.005	<0.001		
JR-19-01	X947802	72.75	73.05	0.30	792	149	258	0.001	<0.005	0.001		
JR-19-01	X947803	73.05	73.95	0.90	19	39	17	< 0.001	< 0.005	< 0.001		
JR-19-01	X947804	78.00	78.85	0.85	24	92	38	< 0.001	0.009	0.006		
JR-19-01	X947805	78.85	79.43	0.58	204	137	48	< 0.001	0.011	0.013		
JR-19-01	X947806	79.43	80.10	0.67	16	71	35	< 0.001	0.009	0.005		
JR-19-01	X947807	80.10	81.00	0.90	114	65	32	< 0.001	0.008	0.008		
JR-19-01	X947808	81.00	81.87	0.87	92	29	22	< 0.001	< 0.005	0.003		
JR-19-01	X947809	81.87	82.95	1.08	48	62	29	< 0.001	< 0.005	0.002		
JR-19-01	X947810	blank			1	2	1	< 0.001	<0.005	< 0.001		
JR-19-01	X947811	82.95	83.55	0.60	1470	157	120	0.001	< 0.005	0.001		
JR-19-01	X947812	83.55	84.00	0.45	74	40	17	< 0.001	< 0.005	< 0.001		
JR-19-02	not sampled											
JR-19-03	X947813	79.00	80.15	1.15	44	113	39	< 0.001	0.005	0.001		
JR-19-03	X947814	80.15	81.00	0.85	135	104	33	< 0.001	< 0.005	0.002		
JR-19-03	X947815	81.00	81.60	0.60	119	169	35	<0.001	<0.005	0.002		
JR-19-03	X947816	138.60	139.40	0.80	99	55	31	< 0.001	< 0.005	< 0.001		
JR-19-03	X947817	139.40	139.72	0.32	35	9	7	< 0.001	< 0.005	< 0.001		
JR-19-03	X947818	139.72	140.25	0.53	122	177	117	0.001	< 0.005	0.003		
JR-19-03	X947819	140.25	141.00	0.75	420	35	47	0.001	< 0.005	< 0.001		
JR-19-03	X947820	OREAS 74a			1210	>10000	557	0.021	0.233	0.175		3.01
JR-19-03	X947821	141.00	141.39	0.39	1370	155	184	0.002	< 0.005	0.001		
JR-19-03	X947822	141.39	142.23	0.84	15	34	16	< 0.001	<0.005	<0.001		
JR-19-04	X947823	49.25	50.19	0.94	75	50	21	< 0.001	<0.005	0.001		
JR-19-04	X947824	50.19	50.80	0.61	>10000	133	171	0.009	0.005	0.002	1.845	
JR-19-04	X947825	50.80	51.60	0.80	81	17	12	<0.001	<0.005	0.001		

6.2 Core Logging, Sampling and Analysis

NQ sized core was placed into clean wooden trays, sealed, and transported from the drill rig to the core tent by track vehicle. Upon delivery the drill core was cleaned, oriented, and measured. The logging procedure involved visually collecting lithology, mineralization, alteration, and structure data and recording the observations in an excel work book.

Sampling intervals were determined based on visually assessing the economic potential of the core, then sample intervals and sample numbers were marked on the core. A total of 23 were cut by the technician from Fladgate Exploration. Sample lengths ranged from 0.30 - 1.15m and, once cut, samples were placed into plastic sample bags, sealed with zip ties, and transported to ALS Geochemistry in Thunder Bay, Ontario for preparation then shipped to Vancouver, British Columbia for analysis. Samples were prepared by ALS using the PREP-31 method, where samples were crushed up to 70% passing 2mm, a 250 g split was taken and pulverised to 85% passing 75 microns. The samples were analysed using ME-MS61, which combines a four-acid digestion with ICP-MS for a 48-element analysis. Ore grade samples (>10,000 ppm) were repeated using ICP-AES. A 30g sub sample was taken for analyses for Pd, Pt & Au by fire assay and ICP-AES finish.

Certified reference material standard OREAS 74a and a silica blank sourced from Analytical Solutions Ltd were used for QA/QC verification. Due to the limited number of samples taken, only one standard and one blank were inserted for assaying along with the core samples. Cu, Ni, Co, Au, Pd, and Pt values tested below the recommended upper limits for the coarse silica blank and within 3 standard deviations for the OREAS 74a standard.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

Meteoric Resources drilled four diamond drill holes totaling 492m at the Joyce River Project in January 2019. This was the projects maiden drill program covering only a portion of the 1.8km long trend of coincident magnetic and EM anomalies. Drilling focused on a portion of the aforementioned trend where historical trenching results produced significant grab samples assaying as high as 0.3% Co, 11.0% Cu and 8.07 g/t Au.

Only hole JR-19-04 produced results of significance intersecting 1.85% Cu over 0.61m from 50.19m downhole. This hole was drilled directly beneath high grade trenching samples and extends mineralization to depth.

7.2 Recommendations

Since overburden cover is prominent throughout the area, additional exploration programs on the Joyce River Project should include ground geophysical EM surveys over those areas showing coincident magnetic and airborne EM anomalies not drilled in the January 2019 drill program. The resultant geophysical signature of these surveys would determine if drilling is warranted.

Sanborn-Barrie, M., Rogers, N., Skulski, T., Parker, J., and Devaney, J., 2000, *Geology and Tectonostratigraphic Assemblages, East Uchi Subprovince, Red Lake and Birch-Uchi Belts, Ontario,* Western Superior NATMAP Compilation Series, OGS

9.0 STATEMENT OF QUALIFICATIONS

CERTIFICATE OF QUALIFIED PERSON

MICHAEL W. KILBOURNE, P.GEO.

I, Michael W. Kilbourne, P.Geo., residing at 405-25 Oxley Street, Toronto, Ontario, M5V 2J5 do hereby certify that:

- 1. I am a geologist employed by Orix Geoscience Inc. during the execution of the 2019 Joyce River Drill Program;
- This certificate applies to the Report titled "Assessment Report based on the 2019 Diamond Drill Program for Meteoric Resources NL, Joyce River Project, Joyce River Area Township, 51° 03' 54" N, 93° 00' 16" W, NTS 52N/03 authored by Michael Kilbourne, P.Geo, and dated March 15, 2019.
- 3. I am a graduate of the University of Western Ontario with a B.Sc (HONS) in Geological Sciences (1985). I have worked as a geologist for a total of 33 years since obtaining my Honours B.Sc. degree. I am currently a geologist employed by Orix GeoScience Inc., 25 Adelaide St. East, Suite 1400, Toronto, Ontario, M5C 3A1. I am currently licensed by l'Ordre des Géologues du Québec (OGQ, Temporary License No. 1971), and the Association of Professional Geoscientists of Ontario (APGO, License No. 1591);
- 4. I was involved in the planning and supervision of the 2019 drill program executed at the Joyce River Project.
- 5. As of the date of this certificate, to the best of my knowledge, information and belief, the Report contains all scientific and technical information that is required to be disclosed to make the Report not misleading;
- 6. As at the date of this certificate, I do not hold any shares, options or warrants of Meteoric Resources NL.

Signed: March 15, 2019

[Michael Kilbourne, #1591, APGO]

Michael Kilbourne, P.Geo.

Appendix A: Certificate of Analysis

CERTIFICATE TB19011707

Project: Joyce River

This report is for 25 Drill Core samples submitted to our lab in Thunder Bay, ON, Canada on 16- JAN- 2019.

The following have access to data associated with this certificate: SAM GRASIS JULIA SINGH
MIKE KILBOURNE ANDREW TUNKS
MICHAELA KUUSKMAN

To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 25 ADELAIDE ST E, SUITE 1400 TORONTO ON M5C 3A1 Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 31- JAN- 2019 Account: MRDLVHMY

	SAMPLE PREPARATION	
ALS CODE	DESCRIPTION	
WEI- 21	Received Sample Weight	
LOG- 21	Sample logging - ClientBarCode	
LOG- 23	Pulp Login - Rcvd with Barcode	
CRU- 31	Fine crushing - 70% < 2mm	
CRU- QC	Crushing QC Test	
PUL- QC	Pulverizing QC Test	
SPL- 21	Split sample - riffle splitter	
PUL- 31	Pulverize split to 85% < 75 um	

	ANALYTICAL PROCEDUR	ES
ALS CODE	DESCRIPTION	INSTRUMENT
ME- OG62	Ore Grade Elements - Four Acid	ICP- AES
Cu- OG62	Ore Grade Cu - Four Acid	
Ni- OG62	Ore Grade Ni - Four Acid	
PGM- ICP23	Pt, Pd, Au 30g FA ICP	ICP- AES
ME- MS61	48 element four acid ICP- MS	

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release. ***** See Appendix Page for comments regarding this certificate *****

al you Signature:

Colin Ramshaw, Vancouver Laboratory Manager

To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 25 ADELAIDE ST E, SUITE 1400 TORONTO ON M5C 3A1

Project: Joyce River

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 31- JAN- 2019 Account: MRDLVHMY

(ALS									C	ERTIFIC	CATE O	F ANAL	YSIS	TB190	11707)7
ample Description	Method	WEI- 21	ME-MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME- MS61	ME- MS61	ME-MS61	ME- MS61	ME-MS61	ME-MS61	ME- MS61	ME- MS61	ME-MS
	Analyte	Recvd Wt.	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Fe	Ga
	Units	kg	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm
	LOD	0.02	0.01	0.01	0.2	10	0.05	0.01	0.01	0.02	0.01	0.1	1	0.05	0.01	0.05
(947801		1.73	0.04	6.72	0.2	150	0.90	0.17	6.61	0.03	98.1	23.2	103	0.73	5.96	18.60
(947802		0.76	1.54	2.69	<0.2	30	0.37	1.27	4.78	0.10	34.3	258	22	0.07	23.0	20.6
(947803		1.81	0.04	7.17	0.4	110	0.80	0.06	5.56	0.02	26.5	17.1	57	0.33	4.73	17.60
(947804		1.88	0.04	8.28	<0.2	120	0.43	0.06	7.64	0.04	11.30	38.2	140	0.71	6.57	18.55
(947805		1.27	0.19	7.75	<0.2	130	0.43	0.07	6.29	0.03	11.40	48.1	161	0.71	6.41	16.65
K947806 K947807 K947808 K947809 K947810		1.68 2.00 1.91 2.19 0.29	0.03 0.07 0.18 0.04 0.01	8.78 8.74 8.10 8.10 0.23	<0.2 <0.2 <0.2 <0.2 0.2 0.7	130 110 190 230 20	0.52 0.57 0.63 0.53 0.07	0.05 0.05 0.04 0.04 0.02	7.55 6.21 4.47 4.50 0.03	0.04 0.07 0.10 0.04 <0.02	13.70 15.20 19.70 24.3 4.67	35.2 32.2 22.1 28.5 0.5	143 86 55 80 8	0.58 0.40 0.65 2.28 0.17	6.84 6.35 5.63 6.01 0.35	20.7 22.1 22.4 21.2 0.68
X947811 X947812 X947813 X947814 X947814 X947815		1.19 0.96 1.27 1.98 1.32	0.45 0.05 0.04 0.17 0.13	5.58 7.63 8.41 8.65 7.77	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	40 90 120 180 190	0.46 0.52 0.55 0.86 0.95	0.25 0.04 0.07 0.09 0.07	6.86 4.07 6.53 5.42 4.44	0.07 0.03 0.05 0.15 0.05	30.6 31.8 14.10 16.20 18.15	120.0 17.3 39.2 33.2 34.9	41 109 146 165 127	0.12 0.17 0.34 1.45 1.19	11.75 3.54 7.10 6.24 6.22	15.55 16.60 23.0 24.5 21.9
X947816		1.77	0.03	7.11	0.5	50	0.70	0.07	7.20	0.03	34.1	31.0	54	0.43	6.25	16.85
X947817		0.63	0.02	7.19	0.5	200	0.84	0.07	2.67	0.02	29.6	7.4	7	2.54	2.25	19.50
X947818		1.53	0.14	3.80	0.5	30	0.48	1.18	8.08	0.24	20.1	117.0	15	0.25	18.65	11.70
X947819		1.93	0.13	2.06	0.7	10	0.68	1.21	11.35	0.18	22.7	47.1	11	<0.05	9.71	7.57
X947820		0.03	0.65	1.18	51.0	20	0.32	0.66	1.35	0.27	6.13	557	1080	1.96	13.90	3.36
X947821		1.01	0.50	2.50	0.6	10	0.96	1.51	9.84	0.11	43.0	183.5	19	0.07	15.90	8.34
X947822		1.68	0.02	8.09	0.4	200	0.96	0.11	4.77	0.06	15.05	16.3	41	1.25	3.87	20.7
X947823		2.09	0.06	7.45	0.4	120	0.65	0.07	4.78	0.03	35.2	20.5	71	0.58	4.58	17.60
X947824		1.48	3.65	4.72	<0.2	40	0.74	0.85	5.51	0.19	40.8	170.5	95	0.10	15.45	14.50
X947825		1.63	0.03	7.82	1.0	170	1.40	0.09	2.85	0.02	16.50	11.8	33	1.73	2.95	20.5

		Phone: +1	(604) 984 0 lobal.com/		+ 1 (604) 98 try	84 0218			ONTO O		1		1
ALS								Proj	ect: Joyce	River			
	/								С	ERTIFIC	CATE O	F ANAI	LYSIS
Sample Description	Method Analyte Units LOD	ME-MS61 Ge ppm 0.05	ME-MS61 Hf ppm 0.1	ME- MS61 In ppm 0.005	ME- MS61 K % 0.01	ME-MS61 La ppm 0.5	ME-MS61 Li ppm 0.2	ME- MS61 Mg % 0.01	ME- MS61 Mn ppm 5	ME- MS61 Mo ppm 0.05	ME- MS61 Na % 0.01	ME-MS61 Nb ppm 0.1	ME-MS61 Ni ppm 0.2
X947801 X947802 X947803 X947804 X947805	2	0.09 <0.05 <0.05 <0.05 <0.05 <0.05	3.7 1.0 1.9 0.7 0.9	0.102 0.168 0.046 0.056 0.049	0.51 0.16 0.40 0.45 0.44	48.9 20.7 12.0 4.3 4.7	26.9 12.8 29.9 30.6 28.9	3.36 3.89 2.75 3.79 3.20	1120 1420 982 1240 1140	0.32 0.75 1.07 0.58 0.80	2.15 0.43 1.95 1.96 2.23	7.6 2.9 6.0 2.8 3.1	45.9 149.0 38.6 91.7 136.5
X947806 X947807 X947808 X947809 X947810		<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	1.0 3.3 4.2 2.2 0.8	0.059 0.064 0.038 0.042 0.007	0.41 0.36 0.48 0.81 0.05	5.2 6.3 8.8 10.5 2.4	29.5 27.3 28.5 43.3 6.8	3.48 2.48 1.42 2.40 0.02	1260 1060 717 1080 40	0.70 0.32 1.04 0.46 0.16	2.60 2.98 3.21 2.94 0.07	2.9 3.2 3.0 5.7 0.7	70.7 64.6 29.4 61.6 1.5
X947811 X947812 X947813 X947814 X947814 X947815		<0.05 <0.05 <0.05 <0.05 <0.05 <0.05	1.7 1.4 1.1 1.6 2.1	0.135 0.033 0.106 0.078 0.096	0.18 0.37 0.35 0.58 0.55	10.9 13.9 5.5 7.1 7.7	15.8 18.1 28.2 33.6 34.8	4.23 1.13 2.35 2.02 1.74	2150 782 1320 1100 1120	0.76 0.53 0.45 0.60 0.82	1.34 3.24 2.69 2.75 2.67	4.3 7.5 4.0 5.4 4.3	157.0 40.2 112.5 103.5 169.0
X947816 X947817 X947818 X947819 X947819 X947820		0.08 0.15 0.08 0.05 0.13	2.0 2.5 0.7 0.7 0.4	0.076 0.020 0.140 0.198 0.054	0.34 1.09 0.20 0.08 0.10	16.4 14.0 7.2 9.5 3.2	14.4 27.4 8.5 8.4 10.3	3.64 0.78 4.32 6.17 16.60	1480 328 1580 2250 863	0.63 0.55 1.46 0.60 1.53	1.41 2.95 0.48 0.23 0.10	6.3 4.5 2.5 1.0 0.9	54.5 8.8 177.0 34.6 >10000
X947821 X947822 X947823 X947824 X947824 X947825		0.10 0.07 0.10 0.09 0.09	0.8 2.2 1.7 1.7 1.9	0.138 0.041 0.056 0.185 0.028	0.09 0.61 0.38 0.20 0.77	22.0 5.6 15.9 21.1 6.9	6.7 25.2 21.6 9.9 28.6	4.63 1.39 1.76 2.30 0.93	1800 691 818 1260 599	2.59 0.78 0.37 1.23 1.99	0.31 3.49 2.82 1.10 3.88	3.2 6.5 7.0 4.5 8.6	155.0 34.1 50.1 132.5 16.7

ALS Canada Ltd. 2103 Dollarton Hwy North Vancouver BC V7H 0A7

To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 25 ADELAIDE ST E, SUITE 1400

Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 31-JAN-2019 Account: MRDLVHMY

ME-MS61

Ρ

ppm

10

910

320

710

480

340

510

520

530

750

20

530

1570

510

470

350

740

470

520

750

70

1630

680

960

1200

270

ME- MS61

Pb ppm

0.5

3.0

22.8

1.9

1.5

1.7

2.2

3.0

5.3

2.0

1.3

1.3

1.9

2.3

3.1

3.1

1.9

4.8

2.0

2.1

6.1

1.8

4.0

2.6

15.2

4.6

TB19011707

ME- MS61

Cu

ppm

0.2

12.5

792

19.4

24.0

204

16.1

114.0

92.0

47.5

1.3

1470

73.8

44.1

134.5

119.0

99.2

35.0

122.0

420

1210

1370

15.0

74.9

>10000

80.6

To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 25 ADELAIDE ST E, SUITE 1400 TORONTO ON M5C 3A1

Project: Joyce River

Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 31- JAN- 2019 Account: MRDLVHMY

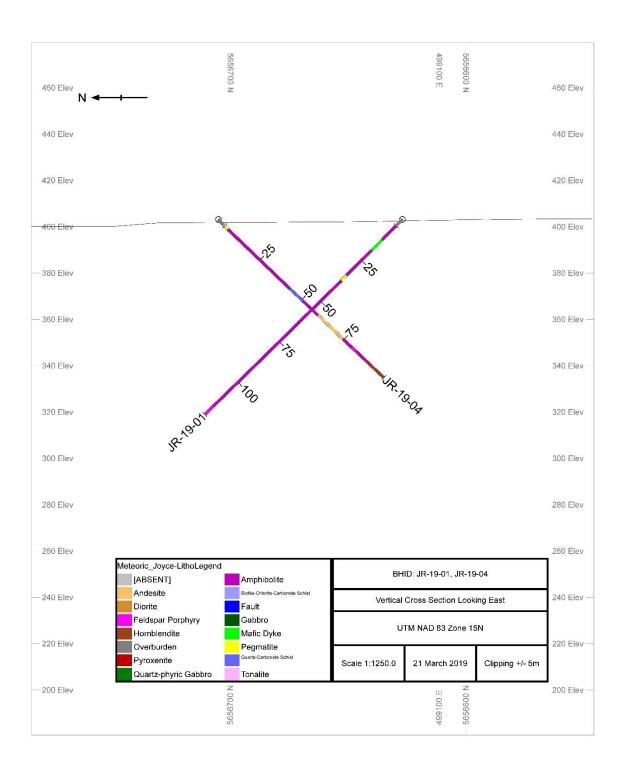
Mail No Re S Sb Sc Sc	(ALS									CERTIFICATE OF ANALYSIS TB19011707							
X947802 1.0 0.008 7.99 0.09 17.8 6 2.9 46.4 0.16 0.79 1.08 0.106 0.63 0.4 69 X947803 4.5 <0.002 0.04 0.06 13.2 <1 0.7 119.5 0.40 <0.05 1.37 0.337 0.07 0.7 95 X947804 6.0 0.006 0.37 0.08 38.4 2 0.5 150.0 0.20 0.09 1.78 0.414 0.10 0.4 259 X947806 3.7 <0.002 0.00 2.5 <1 0.7 213 0.14 <0.05 0.44 0.429 0.07 0.1 248 X947806 9.2 0.002 0.05 17.4 1 0.5 248 0.17 0.06 0.83 0.442 0.09 0.4 94 X947807 2.6 <0.002 0.01 <0.02 0.41 0.3 4.0 0.6 <0.05 1.03 1.42 X947810 1.9 <0.002 0.14 <0.05 1	Sample Description	Analyte Units	Rb ppm	Re ppm	S %	Sb ppm	Sc ppm	Se ppm	Sn ppm	Sr ppm	Ta ppm	Te ppm	Th ppm	Ті %	TI ppm	U ppm	ppm
X947807 2.6 <0.002 0.20 0.06 23.5 <1 0.7 251 0.14 0.05 0.42 0.40 0.06 0.3 145 X947808 9.2 0.002 0.25 0.05 17.4 1 0.5 248 0.17 0.06 0.83 0.442 0.09 0.44 94 X947809 15.6 0.002 <.05	X947802 X947803 X947804		1.0 4.5 6.1	0.008 <0.002 <0.002	7.99 0.04 0.03	0.09 0.06 0.06	17.8 13.2 40.0	6 <1 <1	2.9 0.7 0.5	46.4 119.5 201	0.16 0.40 0.16	0.79 <0.05 <0.05	1.08 1.37 0.31	0.106 0.337 0.424	0.63 0.07 0.10	0.4 0.7 0.2	69 95 250
X947812 2.6 0.002 0.18 0.05 17.3 1 0.3 203 0.42 <0.05 0.39 0.510 0.03 0.2 136 X947813 1.8 <0.002	X947807 X947808 X947809		2.6 9.2 15.6	<0.002 0.002 0.002	0.20 0.25 0.11	0.06 0.05 <0.05	23.5 17.4 22.9	<1 1 1	0.7 0.5 0.4	251 248 207	0.14 0.17 0.29	0.05 0.06 <0.05	0.42 0.83 0.37	0.440 0.442 0.461	0.06 0.09 0.15	0.3 0.4 0.3	145 94 142
X947817 58.1 <0.002 0.11 <0.05 4.3 1 0.5 151.5 0.39 <0.05 6.54 0.197 0.30 2.0 25 X947818 5.5 0.002 5.48 0.06 11.4 2 1.1 122.5 0.15 0.85 0.47 0.213 0.05 0.2 56 X947819 0.7 0.002 7.48 0.85 7.2 3 0.7 15.9 0.09 0.08 0.81 0.055 0.02 0.3 326 X947820 9.0 0.010 7.48 0.85 7.2 3 0.7 15.9 0.10 0.35 1.15 0.087 0.02 0.3 326 X947821 1.2 0.009 4.41 0.05 10.8 6 1.3 63.9 0.34 0.57 1.57 0.087 0.02 0.8 422 X947823 7.1 <0.002	X947812 X947813 X947814		2.6 1.8 15.8	0.002 <0.002 <0.002	0.18 0.07 0.35	0.05 0.05 0.06	17.3 32.1 28.3	1 <1 1	0.3 0.6 0.9	203 257 230	0.42 0.20 0.22	<0.05 <0.05 0.06	0.39 0.33 0.32	0.510 0.569 0.513	0.03 0.05 0.24	0.2 0.2 0.3	136 276 203
X947822 7.1 <0.002 0.03 0.05 8.9 <1 0.6 368 0.59 <0.05 0.61 0.312 0.13 0.5 76 X947823 9.8 0.003 0.21 <0.05	X947817 X947818 X947819		58.1 5.5 0.7	<0.002 0.002 0.002	0.11 5.48 1.27	<0.05 0.06 0.06	4.3 11.4 11.7	1 2 2	0.5 1.1 1.2	151.5 122.5 43.7	0.39 0.15 0.09	<0.05 0.85 0.08	6.54 0.47 0.81	0.197 0.213 0.055	0.30 0.05 0.02	2.0 0.2 0.3	25 56 32
	X947821 X947822 X947823 X947824 X947824 X947825		7.1 9.8 2.0	<0.002 0.003 0.009	0.03 0.21 7.56	0.05 <0.05 <0.05	8.9 16.1 9.0	<1 1 2	0.6 0.9 2.4	368 192.0 104.0	0.59 0.42 0.41	<0.05 <0.05 0.52	0.61 1.62 2.90	0.312 0.396 0.198	0.13 0.08 0.19	0.5 0.5 1.4	76 103 51

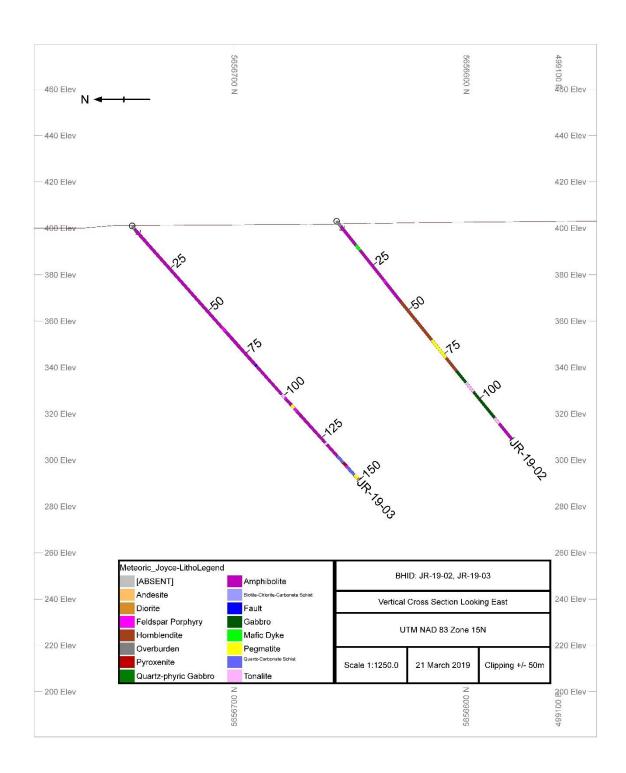
To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 25 ADELAIDE ST E, SUITE 1400 TORONTO ON M5C 3A1

Project: Joyce River

Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 31- JAN- 2019 Account: MRDLVHMY

(ALS)	/								C	ERTIFIC	ATE OF ANAL	YSIS	TB19011707	
ample Description	Method Analyte Units LOD	ME-MS61 W ppm 0.1	ME-MS61 Y ppm 0.1	ME- MS61 Zn ppm 2	ME-MS61 Zr ppm 0.5	Cu- OG62 Cu % 0.001	Ni- OG62 Ni % 0.001	PGM- ICP23 Au ppm 0.001	PGM- ICP23 Pt ppm 0.005	PGM- ICP23 Pd ppm 0.001				
(947801 (947802 (947803 (947804 (947805	ũ.	0.2 0.4 0.4 0.2 0.1	24.3 16.0 17.2 15.4 15.9	64 79 43 63 60	142.5 46.2 70.2 18.4 27.1			<0.001 0.001 <0.001 <0.001 <0.001	<0.005 <0.005 <0.005 0.009 0.011	<0.001 0.001 <0.001 0.006 0.013				
(947806 (947807 (947808 (947809 (947810		0.1 0.1 0.1 0.1 0.1	15.9 12.9 9.1 16.4 1.7	74 72 63 67 2	32.4 170.0 220 104.0 22.5			<0.001 <0.001 <0.001 <0.001 <0.001	0.009 0.008 <0.005 <0.005 <0.005	0.005 0.008 0.003 0.002 <0.001				
(947811 (947812 (947813 (947814 (947815		0.1 0.2 0.2 0.2 0.1	30.6 15.5 21.6 18.6 17.0	111 37 87 130 75	66.2 53.0 38.7 68.7 97.6			0.001 <0.001 <0.001 <0.001 <0.001	<0.005 <0.005 0.005 <0.005 <0.005	0.001 <0.001 0.001 0.002 0.002				
<947816 <947817 <947818 <947819 <947820		0.1 0.2 0.2 1.7 3.8	21.9 7.1 14.8 20.0 3.1	69 33 104 111 65	86.2 88.1 31.3 31.1 15.8		3.01	<0.001 <0.001 0.001 0.001 0.021	<0.005 <0.005 <0.005 <0.005 0.233	<0.001 <0.001 0.003 <0.001 0.175				
K947821 K947822 K947823 K947824 K947825		7.8 0.1 0.1 0.3 0.2	21.7 10.3 20.6 20.1 15.9	80 64 47 75 35	28.6 81.9 66.1 65.9 36.7	1.845		0.002 <0.001 <0.001 0.009 <0.001	<0.005 <0.005 <0.005 0.005 <0.005	0.001 <0.001 0.001 0.002 0.001				


To: ORIX GEOSCIENCE INC. FOR: METEORIC RESOURCES 25 ADELAIDE ST E, SUITE 1400 TORONTO ON M5C 3A1 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 31- JAN- 2019 Account: MRDLVHMY


_	· · · · · · · · · · · · · · · · · · ·		
Pro	ect.	OVCA	River

CERTIFICATE OF ANALYSIS TB19011707

		CERTIFICATE COMMENTS		
Applies to Method:	REE's may not be totally soluble in thi ME- MS61	ANALYTICAL CO	OMMENTS	
Applies to Method:	Processed at ALS Thunder Bay located CRU- 31 PUL- 31	LABORATORY AI d at 645 Norah Crescent, Thunder Bay CRU- QC PUL- QC		LOG- 23 WEI- 21
Applies to Method:	Processed at ALS Vancouver located a Cu- OG62 PGM- ICP23	at 2103 Dollarton Hwy, North Vancou ME- MS61	ver, BC, Canada. ME- OG62	Ni- OG62
	a			

Appendix B: Drill Hole Cross Sections

Appendix C: Drill Hole Logs

									AMOND D										
DRILLING C	COMPANY		COLLAR ELEVATION	@	DIP	BEARING	@ DIP	BEARIN	NG CLAIM NO			LOCAT	ION (ZONE 1	5 UTM N,E)			HOLE NO.		Page
Chibougama	au Diamono	d Drilling	403	COLLAR	-45.00	348.00	м	•	0	504381			5656627 N				JR-19-01		1 of 2
START DAT	ΓE	COMPLETION DATE	DATE LOGGED	24.00	-44.90	348.70	м	0	 MAP NO. 				499097 E				COMMEN	ITS	
	10-Jan-19	9 11-Jan-19) 12-Jan-19	78.00	-44.30	351.80	м	0	0								zation relativ		
EXPLORAT	ION CO.; C	OWNER; OPTIONEE	LOGGED BY	120.00	-44.20	349.60	м	0	 TOTAL ME 	TERAGE			TARGET NA	ME			on of trenchi		
Meteoric Re	neourcoe l	nc	Mike Kilbourne, P.Geo.		0	0	м	0	0	120.00 m		Vertical tra	nch mineraliz	ation, EM plate		explains	horizontal m	odeled EN	i plate.
METE		ROCK TYPE	Wike Kilbourne, F.Geo.	<u>.</u>			DESCRIPTI	ON		120.00 11	SAM	PLE METERA				VICLIAL	% ESTIMAT		AVC.
FROM	TO										Sample No.	FROM	то	SAMPLE LENGTH	Dv Do	Cpy			Co ppm
0.00	4.00	Overburden/Casing									oumpie ne.	FROM	10	LENGTH	гу-го	Сру	Cu %	NI 70	C0 ppm
0.00	4.00	Overburden/Casing																	
4.00	12.48	Amphibolite	Dark grey, massive to inte core. Foliation appears fla		iated, felds	spathized loca	ally, weak porphy	ritic appear	ance, foliation 4	5 to core axis (TCA) but from oriented									
12.48	18.80	Mafic Dyke	Dark green, aphanitic, ma	ssive, non-m	agnetic, co	ontains some	faint rafts of abo	ve unit, 17.	16m, weak po r	nineralization as disseminations									
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ļ		and wisps over 10cm in a	rounded fold	looking st	ructure, lowe	r contact 25 TCA	, sharp and	pointing down	box.								~~~~~~	
18.80	34.32	Amphibolite	Massive, weak gabbroic lo	ooking texture	e, non-mag	gnetic, local b	iotization of chlor	rite.										~~~~~	
			29-29.45m: Disrupted slig	htly sheared	zone with	1x10cm pegn	natite finger 45 T	CA down b	ox and 1x 5cm	quartz-carbonate vein 35 TCA down box									
	ļ		30-34.32m: Coarse graine	ed, massive,	strong biot	ization of chlo	orite.											~~~~~~	L
34.32	37.38	Pegmatite	Siliceous, pinkish, fine gra	ined to medi	um graine	d, rare musco	vite crystal, cont	ains 1.3m o	f quartz-phyric	gabbro, upper contact 45 TCA,								~~~~~~	Ļ
			lower contact 45 TCA both	n up box.															
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										~~~~~~	
37.38	114.78	Amphibolite	Fine to medium grained, o					·····×···×	×										
	ļ		where original feldspars re		~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	~~~~~~~~~~~~										~~~~~~	
				·····						-5cm across hosting ferro-mags laths									
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			and crystals, some appea	~~~~~~~~~~~	~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~								~~~~~~~		~~~~~~	
				······	eenish loo	king feldspar	dykes and rafts u	up to 7 cm a	cross, possible	late quartz-carbonate-albite veining.									
~~~~~~			45-60 TCA dow	~~~~~		I. I		0/		· · · · · · · · · · · · · · · · · · ·								~~~~~~	
										sts and local feldspathic alteration of	X947801	72.00	70.75	0.75			13	46	01
****					~~~~~		te veinlets up to	~~~~~		•	X947801 X947802	72.00	72.75 73.05	0.75			792	40 149	+
			72.75-73.05m, 5-10% pyri	moute in diss	ernination	s, pieps and c	ilscontinuous wis	sps in a cha	ouc pattern.		X947802 X947803	73.05	73.05	0.30			192	39	
*****			From 72m on, general fab	ria now 45 6		opposito diro	ation on hoforo (oriontation (of aara parbana	urong in first 72m2) rook	A947 003	73.05	13.95	0.90	/	·····	19	39	
										these bands or feldspathized-									
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~	~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~		c host rock is non-magnetic						~~~~~		~~~~~	
			couple of thin pyrite-rich b	······		·····×····×		a, magnetic		e neet rest to non-magnetio	X947804	78.00	78.85	0.85	5		24	92	38
			78.85-79.43m: Moderately					e weakly m	nagnetic		X947805	78.85	79.43	0.58			204	137	
			79.43-82.95m: Trace sulp					, <b>.</b>	J		X947806	79.43	80.10	0.67			16	71	
	1										X947807	80.10	81.00	0.90			114	65	
				*****			****	~~~~~			X947808	81.00	81.87	0.87	· · · · · · · · · · · · · · · · · · ·		92	29	22
											X947809	81.87	82.95	1.08	B tr		48	62	
~~~~~	1			*****				~~~~~			X947810	blank					1	2	
			Strongly chloritic, weakly f	feldspathized	with bleb	oy/disseminat	ed pyrite and ran	e chalcopyr	ite.		X947811	82.95	83.55	0.60) 2	tr	1470	157	120
											X947812	83.55	84.00	0.45	5		74	40	17
			91.3-92m: Fault, very bloc	ky, minor go	uge.														
			From 92m on, fine grained	d massive, to	weakly fo	liated thinly b	anded in sections	s with a gne	issic feldspathi	c look, foliation/banding generally									
			60 TCA, suggesting more	vertical orier	ntation.														

									HOLE N		Page
		ROCK TYPE	DESCRIPTION	CAM	PLE METER				<mark>JR-19-0</mark>	1	2 of 2
	RAGE	RUCK TYPE	DESCRIPTION	SAMI			SAMPLE		VISUAL % ESTIN	IATES / AS	SAYS
FROM	то			Sample No.	FROM	то	LENGTH	Py-Po	Cpy Cu%	Ni %	Co ppm
			92-105m: Strong schistose sections 25 TCA with strong biotite replacement of chlorite.								
			105-114.78m: Mostly fine-grained, massive, non-magnetic.								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~											
114.78	120.00	Feldspar Porphyry	Massive, coarse grained, weakly foliated, sharp contacts, 50% ferro-mags and 50% quartz with 5% feldspar phenocrysts, intercalated with								
			above unit over sub-meter sections plus contains some rounded rafts of host rock.								
	EOH										
		***									
	1										
						******					~~~~~~~~~
	1							1		-	
		****									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	1				-		-	1		-	
****		***									~~~~~~~~~~
							-				
	+	***				******					~~~~~~~~~~~
	1							-			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	-				-		-	-		-	
~~~~~~~											
					-					-	
	1										
	-										

							I	DIAMOND	DRILL	LOG									
RILLING C	OMPANY		COLLAR ELEVATION	@	DIP I	BEARING	@ DIP	BEARING CLA	AIM NO.			LOCATI	ON (ZONE	15 UTM N,E)			HOLE N	0.	Page
hibougama	u Diamond	Drilling	403	COLLAR	-50.00	158.00	M °	0		504381			5656650	N			JR-19-02	2	1 of 2
TART DAT		COMPLETION DATE	DATE LOGGED	18.00	-50.10	156.30	M °	• MAI	P NO.				499035 E	=			COMM	IENTS	
	11-Jan-19	12-Jan-19	9 13-Jan-19	60.00	-50.00	157.40	M °	0										cks genera	
			LOGGED BY	120.00		158.00	M °	• TO1	TAL METE	RAGE			TARGET NA	AME	magneti	c. No mir	eralization	n encounte	red.
leteoric Re	sources Ir	ic.	Mike Kilbourne, P.Geo.	М	0	0	M °	0		123.00 m		EM plate	e and bulge i	in magnetics					
METER	RAGE	ROCK TYPE					DESCRIPTION				SAMF	LE METER	AGE	SAMPLE		VISUAL	% ESTIN	ATES / AS	SAYS
FROM	TO										Sample No.	FROM	то	LENGTH	Py-Po	Сру	Cu%	Ni %	Co ppm
0.00	3.00	Overburden																	
3.00	13.42	Amphibolite	Fine to medium grained, d	dark grey, we	ak fabric pr	onounced by	y feldspar-qtz rich ba	ands and aggreg	ates 55 T	CA (up box), strongly biotitic									
			groundmass and locally w	eakly porphy	ritic looking	, non-magne	etic with exception to	some of the mo	ore feldspa	thic bands/aggregates,									
			lower contact 45 TCA.																
13.42	16.36	Mafic Dyke	Fine grained, massive, sha	arp contacts,	non-magn	etic, strongly	biotitic.												
16.36	33.11	Amphibolite	As above, feldspathic ban	ds up to 10c	m across in	places, still	strongly biotitic, lowe	er contact sharp	at 45 TCA	(down box).									
33.11	34.64	Feldspar Porphyry	Generally massive to very	weakly foliat	ted 45 TCA	, 5-10% eacl	h ferro-mag crystals	and feldspar ph	enocrysts	in siliceous mafic groundmass,									
			odd speck of pyrite, lower	contact shar	p 45 TCA.														
34.64	45.08	Amphibolite	As above, grey, fine to me	edium graineo	d, massive	generally, an	ny fabric pronounced	by feldspathic-c	quartz ban	ds and aggregates, very									
			biotitic, non-magnetic, low	er contact ha	ard to discer	rn.													
																ļ			
45.08	66.88	Hornblendite	Massive coarse rock com				pite(?), 15% hornble	nde in lath-like o	crystals, a	nd 50% quartz-feldspar									
			rare late quartz-carbonate	vein up to 3	-4cm wide 4	45 TCA.										1			
66.88	77.00	Pegmatite	Light pinkish grey, coarse	grained but	diffuond on a	atala unnor	nortion strongly show	arad and bandar	d minor b	at rock rafts and digested									
00.00	11.00	reginaule	host rock, foliation/banding				portion strongly snea		J, MINOT II	St TOCK Tails and digested									
			69.9-71.1m: Hornblendite	•	1001 30 10	<i>.</i>											-		
			71.1-73.67m: Pegmatite													1			
			73.67-75.1m: Hornblendite	۵										-					
			75.1-77m: Pegmatite	2												1			
			ro.rrmin ognadio																
77.00	84.40	Hornblendite	As above.													1			
84.40	90.87	Gabbro	Fine grained, massive, da	rk green, nor	n-magnetic,	minor hema	atite and serpentine a	along joints, mine	or late peo	matite veinlets/veins up to				1		1			
		-	2-3cm at random orientati																
			but oddly these are magne	etic and ferro	-mags look	like been th	ey have broken dow	n to leave a bit o	of magneti	te, much of these bands/				1		1			
			aggregates appear like the	e next unit.															
90.87	96.14	Tonalite								oole(?)) in a quartz-white feldspar						<u> </u>			
							·			pyrite or pyrrhotite speck, unit stror	1(								
					itense blead	ched section	s where ferro-mags	are <5%, upper	contact sh	arp and 60 TCA (down box) and						<u> </u>			
			lower contact 60 TCA (up	box).													-		
96.14	110.90	Gabbro (?)	From 96.14-105m, as abo	ve, strong ch	Ioritic altera	ation, massiv	/e, non-magnetic, rai	re hematite-serp	entine alc	ng partings/fractures, sometimes				1		1			

										HOLE N		Page
		ROCK TYPE	DESCRIPTION	CAME	LE METER	ACE	·					2 of 2
METER		RUCK ITPE	DESCRIPTION				SAMPLE				ATES / AS	
ROM	TO			Sample No.	FROM	то	LENGTH	Py-Po	Сру	Cu%	Ni %	Co ppm
			105-110.9m: Feldspathic tonalitic fingers which are variably weakly to strongly magnetic and up to 15cm across.				-					
10.90	114.12	Tonalite	Generally a mafic tonalite that has been later intruded by pegmatite and k-spar feldspathized and bleached that also hosts rafts of gabbroic									
10.50	117.12	Torialite	host rock, sort of a very jumbled unit, variably magnetic to non-magnetic to strongly magnetic in less disturbed and altered tonalite,				-					
			upper contact sharp at 60 TCA (down box) where lower is in fault contact with next unit.				+				-	
			upper contact sharp at our FCA (down box) where lower is in radii contact with next unit.									
14.12	123.00	Amphibolite	Massive dark grey with 5% minute white feldspar crystals that progresses downhole to strongly foliated pseudo banded by K-feldspar rich									
			feldspathic bands/aggregates 45 TCA (down box), bands and sections of K-feldspar feldspathic sections up to 20cm across.									
	EOH											
											-	
							-					
							-					
							1					
							1					

								DIAMOND		_OG									
RILLING CO	OMPANY		COLLAR ELEVATION	@	DIP	BEARING	@ DIP E	BEARING CLA	IM NO.			LOCAT	ON (ZONE 1	15 UTM N,E)			HOLE N	0.	Page
nibougamau	Diamond [	Drilling	401	COLLAR	-48.00	158.00	M°	0		504381			5656738 I	N			JR-19-0	3	1 of 2
FART DATE		COMPLETION DATE	DATE LOGGED	21.00	-47.30	158.80	M °	• MAF	P NO.				499025 E				COMM	IENTS	
	12-Jan-19	13-Jan-1	9 13-Jan-19	81.00	-47.00	157.50	M°	0											per contact
<b>KPLORATIC</b>	ON CO.; OV	VNER; OPTIONEE	LOGGED BY	150.00	-46.30	156.80	M °	• TOT	TAL METER	AGE			TARGET NA	ME					able pyrrhotif
eteoric Res	ources Inc		Mike Kilbourne, P.Geo.	М	٥	0	M°	0		150.00 m		Trench foo	twall, EM pla	te, trench min	pyrite a	1d minor	r chalcopyri	te.	
METER	AGE	ROCK TYPE					DESCRIPTION				SAM	PLE METER	RAGE	SAMPLE		VISUA	L % ESTI	ATES / AS	SAYS
FROM	TO										Sample No.	FROM	TO	LENGTH	Py-Po	о Сру	Cu%	Ni %	Co ppm
0.00	2.00	Overburden																	
2.00	59.22	Amphibolite	Dark grey, generally mass	sive to interm	ittently wea	kly foliated, le	ocal biotization of chl	lorite, weakly m	agnetic wer	e very fine pyrrhotite occurs									
			as disseminations and ver	y minute mm	scale clots	s, rarely exce	eds 1-2% of groundr	mass, minor qua	artz-albite ve	ins and aggregates.									
			11.36m: 1x2mm grey qua	rtz vein 30 T	CA (down b	ox) with fine	aggregates of pyrrho	otite and chalco	pyrite, anoth	er generation of									
			quartz veinlet cros	s-cutting this	one at 60	TCA (up box)	with fine aggregates	s of pyrrhotite, o	only 1mm ac	OSS.									
			23m: Fine pyrrhotite over	8cm in swirle	d aggregat	es, 3-5% ove	er 8cm.												
			34.45m: 1x 7cm white qua	artz vein with	rare fine p	/rite along ed	ges and one 1cm clo	ot inside vein ar	ound small o	uartz-albite clot, vein 45 TCA (up									
			34.7m: 2mm serpentine v	einlet 45 TCA	(down bo	() with cross-	cutting 2mm quartz v	veinlet with clot	of chalcopyr	ite.									
			36-50.75m: Minor quartz-0	carbonate ve	ining up to	6cm wide ger	nerally 45 TCA (up b	ox), 44.2-45.2m	and 48.8-5	0.45m, lighter grey bleached section	4								
			From 50.75m, possible co	ntact to more	e chloritic w	ith subordina	te biotite alteration o	of groundmass.											
			Lower possible fault conta	ict, blocky.															
59.22	62.15 I	Feldspar Porphyry	Dark grey, massive to low	er sheared c	ontact, wea	kly to moder	ately porphyritic with	faint feldspar p	henocrysts i	n a grey siliceous groundmass									
		*****	with 5-10% fine ferro-mag	s, sheared a	nd foliated	near lower co	ontact 75 TCA.												
62.15	81.60	Amphibolite	Fine grained, massive to s	strongly foliat	ed to a qua	rtz-carbonate	e-chlorite schist in pla	aces. minor qua	rtzo-feldspa	thic fingers/bands generally									
			45-60 TCA (up box), wea								X947813	79.00	80.15	1.1	5		l	4 1 [.]	13
			80.15-81.6m: Fine pyrite v	vith rare chal	copyrite as	disseminatio	ns and blebs in a str	ongly quartzo-fe	eldspathized	disrupted section,	X947814	80.15	81.00	0.8	5 2	2	tr 13	5 10	04
			pyrite 1-2% a	and chalcopy	rite only tra	ce.					X947815	81.00	81.60	0.6	2		11	9 10	69
81.60	82.45 I	Fault	Very blocky, fault gouge p	resent.															
82.45	99.13	Amphibolite	Fine grained, massive, loo	al strong bio	tization of o	roundmass,	very dark green, min	or tonalitic finge	ers/aggregat	es which are variably					-				
			magnetic to non-magnetic	, up to 10 cm	across ge	nerally 45 TC	CA (up box).												
99.13	101.13	Fonalite?	Very possible tonalite intru	usion finger v	ith rafts of	host rock, ma	afic affinity probably o	due to ingestion	of host rocl	<u>.</u>									
101.13	102.17	Feldspar Porphyry	Grey, massive, sharp con	tacts 90 TCA	, 5-10% fin	e feldspar ph	enocrysts on mafic s	iliceous ground	mass.										
102.17	105.45	Amphibolite	As above, contains 2 pegi	motito fing	with ob	contacto 60										+			
102.17	105.457		As above, contains 2 pegi	natile inigers	with shallp	CONIACIS OU										-			-
105.45	107.35	Pegmatite	Pink, coarse grained, sha	rp contacts, u	ipper 20 TC	CA (down box	() and lower 55 TCA	(down box).											
107.35	109.50 I	Feldspar Porphyry	Dark grey, massive, weak	ly finely porp	hyritic as a	bove, lower c	ontact very wavy alo	ong core axis, co	ontains rafts	of gabbro host rock.									
109.50	127 80	Amphibolite	Fine grained massive int	ermittent ble	achina ove	sub-meter s	ections rare hematit	e coated parting	n intermitter	t tonalitic fingers/bands up						+			
	.2		to 45cm wide generally 50						,							-			
																-			

										DLE NO. -19-03		Page 2 of 2
METER	RAGE	ROCK TYPE	DESCRIPTION	SAM	IPLE METERA	AGE	SAMPLE		VISUAL %	ESTIMAT	ES / ASS	AYS
ROM	TO			Sample No.	FROM	то	LENGTH		Сру Сц			Co ppm
127.80	129.00	Tonalite	Strongly sheared/banded 50 TCA with subordinate sections of gabbro host rock and gabbro rafts stretched along foliation plane.									
129.00	135 75	Amphibolite	Locally strongly chloritic, massive to strongly foliated, intermittent feldspathic-guartz aggregates and this bands, fold at 132.1m where foliation									
120.00	100.70	/ Inphibolite	changes abruptly from up hole to down hole, by 133m fabric back to general 45 TCA up hole, minor fine pyrrhotite associated with									
			quartzo-feldspathic aggregates/bands.									
			quai zoneiuspaulite aggregatesi partus.									
135.75	139.72		Strongly sheared/foliated 45 TCA, strongly chloritic, minor fine pyrrhotite aggregates 1mm across but discontinuous along cleavage planes, trace only.									
				X947816	138.60	139.40	0.80	tr		99	55	
				X947817	139.40	139.72	0.32	tr		35	9	
139.72	141.39	Pyroxenite	Coarse grained, good crystal texture of lath like pyroxenes, groundmass weakly serpentinitic and chloritized, upper contact contains 12cm									
				X947818	139.72	140.25	0.53	25	3	122	177	
			From 139.84-140.25m, a mixture of gabbro and pyroxenite with no sulphides	X947819	140.25	141.00	0.75	5	1	420	35	
				X947820	OREAS 74a					1210 >	10000	
			141-141.3m: Pyrrhotite dominant sulphides 10-12% in total.	X947821	141.00	141.39	0.39	10	1	1370	155	
			Lower contact sharp at 45 TCA up hole.									
141.39	142.52	Feldspar Porphyry	Dark grey, massive to weakly foliated, could be a diorite, <5% diffused feldspar phenocrysts, some remnant gabbro sections but <10cm,	X947822	141.39	142.23	0.84			15	34	
			lower contact with pegmatoidal influence from lower unit.									
142.52	146.85	Quartz-Chlorite-Carbonate Schist	Weakly to moderately schistose, relic gabbro(?), strongly chloritic with local moderate biotite alteration.									
146.85	149.00	Pegmatite	Coarse grained, pink, massive, lower contact sub-parallel to TCA for about 50 cm.					d				
149.00	150.00	Diorite	Massive, weak porphyritic appearance, dark grey, fine grained.									
		2										
6	EOH											
	enenenenenenenenenene										enenenenenenenenene	
				1								
		1			4 1							

	COMPANY		COLLAR ELEVATION	@	DIP BEA	RING	@. D	DIP BE		AMOND DRILL LOG CLAIM NO.	Ş	LOCATI	ON (ZONE 15		-		HOLE NO	)	Page
			403				M	, DI		504381		LUCATIO		. ,			JR-19-04		
TART DA	au Diamond TE		403 DATE LOGGED	COLLAR 18.00		168.00 169.10	M	0		504381 MAP NO.			5656705 N 499081 E				COMME		1 of 1
	13-Jan-19			18.00		169.10	M						499081 E		Pyrite-ch	alcopyrite			43cm, total
XPLORAT			LOGGED BY	99.00		168.90	M	•	•	TOTAL METERAGE		TARGET N	AME				% chalcopy		
	esources Ir		Mike Kilbourne, P.Geo.	99.00 M	-43.20	03.40	M	0	•	99.00 m			grade trench	results					
	ERAGE	ROCK TYPE	Mike Kilbourne, F.Geo.	IVI				CRIPTIC	ON	33.00 m	SAM	PLE METERA		SAMPLE		VISUAI	% ESTIM	ATES / AS	SAVS
FROM	то										Sample No.		то	LENGTH	Pv-Po	Сру		Ni %	Co ppm
0.00	****************	Overburden										TROM	10	LENGIN	19-10	Opy	Gun		00 ppm
3.20	4.08	Biotite Schist	Still blocky at upper part of	f holo, foliatio	n 45 TCA un h	ala													
3.20	4.00	Biolite Scriist	Still blocky at upper part of	noie, iolialio	1145 TCA up 1	ole.													
4.08	5.91	•		arser grained	d sections, wea	akly locally	sheared 50	TCA, 3-	-5% musc	ovite flakes, lower contact 50 TCA, upper									
			lost.													~~~~~~~			
5.91	43.10	~~~~~	ferene en			******				c with subordinate chlorite probable						~~~~~~			
	-		)			•	er paler gree	en, mino	or quartz-c	arbonate-albite veinlets/aggregates as well as									
			probable tonalitic fingers/s																
			10.3-10.7m: Pegmatite, ve	ry coarse gra	ained, diffuse c	rystals, 3%	muscovite	flakes, c	contacts 3	0-45 TCA up hole.									
43.10	50.80	Quartz-Chlorite-Biotite-	Green grey in colour, stror	gly sheared	and foliated 50	TCA up h	ole, very inte	ense chlo	loritic sect	ions and these are more massive, minor	121 121								
		Carbonate Schist	pegmatite sections up to 1	0cm along fo	liation planes,	minor pale	lime green	silicificat	tion as ch	lorite-infused quartz in aggregates and as pseudo									
			bands.								X947823	49.25	50.19	0.94			75	5	50
			Lower contact contains py	rite-chalcopy	rite dominant s	ulphide mii	neralization	over 43c	cm, pyrite	as semi-massive aggregates up to 10cm	X947824	50.19	50.80	0.61	10	3	1.85%	13	13 1
					., ,		m streak ale	ong lowe	er contact	which has an altered pegmatite finger associated	X947825	50.80	51.60	0.80			81	1	7
			with it, overall sulphide cor	ntent 10% py	rite, 3% chalco	pyrite.													
50.80	59.68	Amphibolite	Medium to coarse grained	, greyish to d	ark grey, mass	ive to weal	kly foliated,	groundm	nass of bi	otite-chlorite-feldspar-quartz, minor late									
			quartz-carbonate veins, h	osts relic raft	s of host rock,	intrusive at	one time.												
59.68	75.54	Andesite(?)	Green, fine grained, fairly i	massive, non	-magnetic, mir	or stretch	marks filled	with chlo	orite, grou	ndmass moderately chloritic, minor tonalitic									
										t rock associated with tonalite finger.									
75.54	79.95	Amphibolite	As above																
															-				
79.95	82.09	Feldspar Porphyry	Grey, massive, 5% feldspa	ar phenocryst	s in grey silice	ous ground	lmass, 3% 1	1-2mm so	cale ferro	-mags, upper contact 40 TCA, lower lost.									
82.09	89.32	Amphibolite	As above, 87.6-88.15m, w	hite pegmatit	e dyke, coarse	grained, u	pper contac	ct 45 TCA	A, lower 9	0 TCA.						~~~~~			
89.32	99.00	Hornblendite	Coarse grained, massive,	rock seen in	other holes 35	% chlorite	25% homb	lende 4	0% quart:	r-feldspar			~~~~~~	<u> </u>					
			grainea, madolive, 1						quaru	·····F									
	EOH																		
												1					1	1	