Ontario 8

We are committed to providing accessible customer service.
If you need accessible formats or communications supports, please contact us.

Nous tenons à améliorer l'accessibilité des services à la clientèle.
Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez nous contacter.

BENTON RESOURCES INC.

Report on Drilling at the Bedivere Lake Project

Location:
UTM NAD83 Zone 15 654195mE 5412586mN
$90^{\circ} 53^{\prime} 53^{\prime \prime}$ W $48^{\circ} 50^{\prime} 49^{\prime \prime} \mathrm{N}$
NTS 52B/15 SW

Exploration Permit PR-16-11000(A)

Prepared by
Nathan Sims, P.Geo
Jul 5, 2019

Contents

Summary 3
Property Description and Location 4
Exploration History 7
Geological Setting and Mineralization 7
Diamond Drilling 9
Interpretation and Conclusions 11
Traxxin Zone 11
Teardrop Lake Zone 11
Sandy Lake Zone 11
Recommendations 12
Statement of Qualifications 13
References 14
Figure 1. Bedivere Project location in relation to Thunder Bay, ON 5
Figure 2. Bedivere Project location with respect to Highway 11 (Trans-Canada) 6
Figure 3. Bedivere Overview sketch on 2005 OGS geology 8

Appendix I - Drill Logs, Plan and Sections
Appendix II - Assay Certificates
Appendix III - Claim Map and List of Claims

Summary

Late in 2016, Benton Resources entered into an Option Agreement to acquire 100\% interest in the Bedivere Property where vendor prospecting discovered spectacular visible gold in quartz grading as high as $1281 \mathrm{~g} / \mathrm{t}$ gold (41oz/ton at UTM 654279 mE 5412688 mN NAD83 Z15). Benton immediately focused their exploration efforts on this newly discovered, "Traxxin Zone", named after the company formed by the vending prospectors.

From acquisition to report date, Benton's work on the property included prospecting (grab sampling), soil geochemical surveys, two airborne geophysical surveys (magnetic and electromagnetic), trenching and channel sampling, line-cutting, a small Induced Polarization survey and three phases of diamond drilling. This report will focus on the diamond drilling completed by Benton between July 2017 and March 2018.

The focus of the drilling at Bedivere was three-fold: 1) test mineralization at the Traxxin Zone where spectacular visible gold was discovered on surface, 2) test continuity between the silicified (quartz vein) Traxxin zone and the Teardrop Lake zone plus other peripheral targets where IP located potential mineralized horizons, and 3) test a conductive anomaly (VMS or base-metal target) located beneath Sandy Lake at the southern extent of the claim group.

Drilling at the Traxxin Zone was successful in intersecting the mineralized, mafic intrusive/quartz vein target in nearly every hole. While a number of holes had fine grained visible gold, there was no sample that resembled the visible gold collected by the vendors of the project. The Teardrop Lake drilling showed that there is a good possibility that the interpreted structure running NE through both zones does in fact exist. Teardrop Lake drilling also lacked significant gold grades but did have an anomalous composite of 42.3 m of $0.21 \mathrm{~g} / \mathrm{t}$ Au in a weakly defined shear that aligns with the interpreted structure extending to Traxxin. The southernmost drill hole (BED-17-15) at Sandy Lake was designed to test a conductive anomaly. The hole intersected a number of cm-scale graphitic zones in fault gouge that may be the cause of the anomaly as no other mineralization was intersected.

Future work should include drilling the northern extension of the Traxxin zone and expanding the IP survey north onto the lake would assist in determining the location of the quartz-sulphide horizon below the water. Prior to additional drilling at any of the other zones on the project, more prospecting, Geochem (soil) sampling and stripping should take place first along the mineralized trend/structure. The area between BED-17-17 and Teardrop Lake would be an ideal zone for prospecting, as well as the shoreline of the lake. Structural interpretation of the airborne surveys would assist in determining if there are any minor structures or splays extending from the NE structure.

Property Description and Location

The Bedivere Property was composed of 34 contiguous, non-surveyed, unpatented (legacy) mining claims totalling 375 units, or 5194 hectares. 22 of the claims were owned 100% by Benton while 12 were acquired though option agreement with Traxxin Resources Inc. After MNDM implemented a new cell-based lands system, the Bedivere property is composed of 396 individual cell ID's. For the purpose of this report, the cells composing the property were reworked to ensure no cells overlapped. Legacy claims were overlaid onto the boundary cells resulting in cells which are split to show specific, legacy ownership of the land. Tenure information is included in the appendices of the report as a table and map. Legacy claims may be referenced from time to time but all work will be filed base on the new cell system.

The project is located in northwestern Ontario, Canada, 130km west of Thunder Bay and is accessible by pickup truck by travelling north from the Trans Canada Highway (Hwy11) on Brule Creek to Norma (logging) Roads. Rail, power grid, labour and supplies are all within kilometers of the project.

The project sits within the traditional territory of Lac des Mille Lac First Nation who have supported the project since acquisition. A number of small dispositions (surface rights holders) occur within the property boundary and represent cabins on the shore of Bedivere Lake which do not lie in the immediate exploration area.

Figure 1. Bedivere Project location in relation to Thunder Bay, ON

Figure 2. Bedivere Project location with respect to Highway 11 (Trans-Canada)

Exploration History

The history section was compiled using the MNDM Assessment File Research Index. Any report intersecting the Bedivere boundary was selected and summarized below. The Bedivere Property and specifically the Traxxin zone, have had very little historical exploration. Most exploration efforts have focussed on base metal (massive sulphide) exploration to the south, at the Chief Peter occurrence.

1969 - Kemis Expl Ltd flies airborne, mainly at Chief Peter - peripheral to Bedivere boundary

1979 - Rio Tinto flies additional airborne, again peripheral to Bedivere claims and mainly in the Chief Peter area to the south

1979 - Rio Tinto files airborne east of Sandy Lake. Survey may cover some of the Bedivere property but the reproduction of maps is so poor it is difficult to determine

1982 - Phantom Exporation completes VLF at Sandy lake. Weak to moderate conductive trends outlined but not explained

1983 - Phantom completes Max-Min survey in two directions over Sandy Lake, further defining conductive trends

1989 - Fern Elizabeth performs trenching/sampling at what is now the Traxxin zone. Trench 1 (furthest north on Traxxin peninsula) assays up to $0.10 z / \mathrm{t}$

2011 - Frymire and Brown complete minimal prospecting/sampling at Sandy Lake. Cu assay of 1.4% is the only highlight and gold values are low

2012 - Frymire \& Brown completed minimal prospecting/sampling on claim 4246324 (now Traxxin Zone)

2016 - Frymire et al completed minimal prospectin/sampling on Traxxin Zone. Final phase before VG discovery at Traxxin (unreported by Frymire as Benton optioned ground shortly after discovery)

2016 (Oct) - Benton options claims and stakes surrounding ground. Flies Airborne MAG and EM surveys. Completes trenching, Geochem and prospecting. No VG found in vicinity of Traxxin discovery

Geological Setting and Mineralization

The Bedivere project straddles the contact between the Marmion Batholith (north) and the Lac des Mille Lac greenstone belt (south). The Traxxin zone (the focus of Benton's exploration efforts to-date) is located in the granitic rocks and is well defined on surface as a 15-30m wide quartz vein containing up to 50% mafic volcanic or mafic intrusive rocks. The Traxxin Zone is well mineralized with sulphide (pyrite) in both the quartz and mafic lithologies and pyrite is often greater than 10\%, as fine to coarse grained disseminations with localized clusters. Previous assaying has shown that quartz with abundant pyrite is
carrying the majority of the gold discovered. The mineralized mafic intrusive component, while containing visually impressive sulphide, rarely contains more than 1000ppb gold.

Figure 3. Bedivere Overview sketch on 2005 OGS geology

Diamond Drilling

Table 1. Summary of Benton Drilling at Bedivere

Phase	Dates	$\#$ Holes	$\#$ Metres	Details			
I	July 19 - Aug 1 2017	14	1019	Tightly spaced at Traxxin zone, 2 holes at			
Teardrop					$	$	II
:---:							
Nov 11 - Dec 6 2017							
III							
Feb 8-Mar 7 2018							
7							

Each hole is described in detail in Appendix I with highlights included in Table 2.

Table 2. Significant Gold Intersections in Bedivere Drilling

Hole		From	To	Interval	Grade ($\mathrm{Aug} / \mathrm{t}$)
BED-17-001		2.7	5	2.3	1.82
		17.9	31.9	14	1.5
		17.9	21.9	4	3.63
	incl	17.9	19.9	2	6.43
	incl	25.9	28.9	3	1.41
BED-17-002		20.3	24.3	4	0.77
	incl	22.3	23.3	1	1.98
		51	52	1	4.85
BED-17-003		22.7	23.7	1	37.3
BED-17-004		39.8	40.8	1	1.1
		49.4	52.2	2.8	0.96
	incl	51.2	52.2	1	1.86
BED-17-005		34	56.2	22.2	1.07
	incl	37.8	56.2	18.4	1.26
		43.8	56.2	12.4	1.71
		50.5	56.2	5.7	3.37
		52.5	55.2	2.7	6.59
		53.3	55.2	1.9	8.9
BED-17-006		51	53	2	2.66
BED-17-007		38	51	13	0.63
	incl	50	51	1	5.46
BED-17-008		50	51	1	2.65
BED-17-009		NSA			
BED-17-010		32.3	34.3	2	0.44
BED-17-011		31.4	45	13.6	0.34
incl		31.4	35.7	4.3	0.51
BED-17-012		23.9	25	1.1	0.74
BED-17-013		12.5	35.5	23	0.80
incl		12.5	16.5	4	3.09
		14.5	15.5	1	11.2
		34.5	35.5	1	4.04
BED-17-014		13	49	36	0.63
incl		13	25	12	1.16
		13	18	5	2.06
		23	25	2	1.4
		44	49	5	1.55
		44	45	1	5.83
BED-17-015A		NSA			
BED-17-016		84.7	92.7	8	2.4
		88.9	92.7	3.8	4.76
		88.9	91	2.1	7.87
BED-17-017		NSA			
BED-17-018		42.7	62.2	19.5	0.13
BED-17-019		74.2	80	5.8	2.03
		74.2	78.2	4	2.73
BED-17-020		67.9	71.6	3.7	0.35
BED-17-021		58.1	100.4	42.3	0.21
BED-17-022		117.2	137.2	20	1.61
		117.9	130	12.1	2.35
		122.6	130	7.4	3.43
		124.6	125.6	1	7.65
		129	130	1	9.11
BED-17-023		37.4	38.4	1	5.47
BED-18-024		NSA*			
BED-18-025		NSA*			
BED-18-026		NSA*			
BED-18-027		NSA			

Interpretation and Conclusions

Traxxin Zone

22 of 29 holes drilled by Benton were drilled along a 500m strike length at the Traxxin Zone. Each hole collared and ended in a granitoid unit with the exception of BED-17-17 which at present may provide evidence that the mineralized zone is either a shallow north-plunging body or is cut-off (or thins) to the south. If the structure is bent at this location, BED-17-17 may not have been drilled long enough and ended before hitting the quartz vein, either way this hole unexpectedly did not intersect the Traxxin zone.

The prospective zone consists of massive bull white quartz with lesser amounts of grey-blue, semi translucent quartz. Abundant pyrite plus fuchsite appears to be correlated with gold in assays. Visible gold (VG) was located in 3 of the holes, 2 occurrences within white quartz and one with blue/grey quartz. The bull white quartz appears to have flooded the zone with the semi-translucent quartz cross cutting the earlier unit as thinner cm -scale veining.

Holes 23 to 25 were drilled on a flooded pad on Bedivere lake to test the northern extension of the zone. While the water depth was <3m, drill casings ran through a $15-24 \mathrm{~m}$ thick layer of overburden sitting below the water. This overburden caused many problems while attempting to run the drill casing. In the end, the drilling on the lake was considered unsuccessful as mineralization was minimal as the holes may have been collared too far east if the actual outcrop topography was deeper (more extreme) than anticipated. Until a hole is drilled at depth the Traxxin zone is still considered 'open' to the north.

Teardrop Lake Zone

The Teardrop Lake zone is located along the linear trend/structure which bisects the property and ends at the Traxxin Zone. Trenching showed some significant shearing and deformation along this trend and there was a moderate IP anomaly near the east shore of Teardrop Lake. Benton was forced to drill this sub-vertical zone down-dip to avoid having to cross a stream in the summer. There was a significant alteration of host rocks in hole BED-17-21 which contained a low-grade intercept of 42.3 m of $0.21 \mathrm{~g} / \mathrm{t} \mathrm{Au}$.

Sandy Lake Zone

Drilling at Sandy Lake was designed to target a conductive anomaly below the lake. An error while aligning the hole (possibly due to the conductor causing problems with a compass) required the hole to be shut down and spun to correct the azimuth. The hole then intercepted a number of thick graphitic zones in fault gouge which Benton assumes is the source of the anomaly.

Recommendations

Drilling the northern extension of the Traxxin zone will require a larger drill (and thicker ice pad) to be able to penetrate the difficult overburden. It may be worthwhile to drill from the west shore of Bedivere lake to avoid the work required to move a more powerful (heavier) drill onto the ice. Drilling from the western shore would result in a longer (more expensive) hole but would target the zone at depth and could be accessed using the Sapawe logging road via Hwy 17, west of Upsala, ON. Expanding the IP survey north onto the lake would assist in determining the location of the quartz-sulphide horizon below the water.

Prior to additional drilling at any of the other zones on the project, more prospecting, Geochem (soil) sampling and stripping should take place first along the mineralized trend/structure. The area between BED-17-17 and Teardrop Lake would be an ideal zone for prospecting, as well as the shoreline of the lake.

Structural interpretation of the airborne surveys would assist in determining if there are any minor structures or splays extending from the NE structure.

Respectfully submitted by

Nathan Sims, P.Geo
Sr. Exploration Manager, Benton Resources Inc July 5, 2019

Statement of Qualifications

Nathan P.A. Sims
181 Whalen St
Thunder Bay, Ontario
Canada, P7A 7H9

Telephone: 807-475-7474, Fax: 807-475-7200
Email: nsims@bentonresources.ca

CERTIFICATE OF QUALIFIED PERSON

I, Nathan Sims, P. Geo. (\#2009), do hereby certify that:

1. I am the Senior Exploration Manager for Benton Resources at 684 Squier St, Thunder Bay, Ontario.
2. I graduated with the degree of Honours Bachelor of Science (Geography/Geology) from Lakehead University, Thunder Bay, in 2005.
3. I graduated with a Geographic Information Systems - Applications Specialist post-grad certificate from Sir Sandford Fleming College, Lindsay, ON in 2006
4. I am a registered Professional Geoscientist with the Professional Geoscientists of Ontario (\#2009).
5. I am a registered Professional Geoscientist with the Professional Engineers \& Geoscientists Newfoundland \& Labrador (\#09409)
6. I have worked as a Geoscientist for 13 years since graduation from university.
7. I have read the definition of "qualified person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in $\mathrm{NI} 43-101$) and past relevant work experience, I fulfill the requirements as a Qualified Person for the purposes of $\mathrm{NI} 43-101$.
8. I am responsible for the preparation of the Technical Report.
9. As of the date of this certificate, and to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated this $5^{\text {th }}$ day of July, 2019.
SIGNED
"Nathan P.A. Sims"
N.Sims, P.Geo.

References

Frymire, M and Schneider, A. 2016. CLAIM \# 4246324; BEDIVERE LAKE FINAL REPORT: Assessment Work Performed on Mining Lands Submission. MNDM Assessment Files

Puumala, M.A., Campbell, D.A., Tuomi, R.D., Tims, A. and Brunelle, M.R. 2017. Report of Activities 2016, Resident Geologist Program, Thunder Bay South Regional Resident Geologist Report: Thunder Bay South District; Ontario Geological Survey, Open File Report 6326, 96p.

Stone, D. 2005. Precambrian geology, Bedivere Lake area; Ontario Geological Survey, Preliminary Map P.3523, scale 1:50 000

Appendix I - Drill Logs, Plan and Sections

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
0.0	2.7	Ovb Overburden Casing					
2.7	5.4	MI	2.7	4.0	351101	1.3	2250
		Mafic Intrusive Dike	4.0	5.0	351102	1.0	1270
		poorly foliated, minor crenulations, moderate carb alteration fine grained $2-3 \% \mathrm{py}$, often euhedral in clusters $2-3 \mathrm{~cm} Q$ vein $\mathrm{w} 10 \%$ pyrite at 5 m finer grained, sligtly siliceous, mod carb reaction from 5-7.1	5.0	6.0	351103	1.0	372
5.4	14.3	GDio	6.0	7.1	351104	1.1	13
		Granodiorite mainly pinkish, med grained granite to granodiorite w depth minor pyrite in Q -filled fractures poor, gradational contacts	7.1	8.0	351105	0.9	5
			8.0	9.0	351106	1.0	7
			9.0	10.0	351107	1.0	19
			10.0	11.0	351108	1.0	5
			11.0	12.0	351109	1.0	3
			12.0	12.7	351110	0.7	3
			12.7	13.5	351111	0.8	3
			13.5	14.3	351112	0.8	3
14.3	17.9	MI	14.3	15.3	351113	1.0	3
		Mafic Intrusive Dike	15.3	16.3	351114	1.0	22
		dyke-like texture (massive, vfg, diss py thoughout)	16.3	17.2	351115	0.9	3
		non-magnetic, poor contacts, grades to chlorite schist below	17.2	17.9	351116	0.7	10
17.9	39.0	MI	17.9	18.9	351117	1.0	1760
		Mafic Intrusive Dike	18.9	19.9	351118	1.0	11100
		chl schist	19.9	20.9	351119	1.0	771
		pinch and swell veining (1-5cm width) represents the beginning of the "zone"	19.9	20.9	351120 (Std)	1.0	795
		trace pyrite associated w vein bounaries, milky quartz	19.9	20.9	351121 (BIn)	1.0	3
		foliated @ 45-60 dec FCA	20.9	21.9	351122	1.0	904
		Alternating wide bands of bull white Q and chl schist schist is always well mineralized ($5-10 \%$) w py and trace aspy, predom green w wispy Fe-carb alteration as thin	21.9	22.9	351123	1.0	142
		schist is always well mineralized (5-10\%) w py and trace aspy, predom green w wispy Fe-carb alteration as thin laminations	22.9	23.9	351124	1.0	158

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
48.7	53.4	GDio	48.7	49.7	351149	1.0	10
		Granodiorite light grey to green, very hard, $\mathrm{fg}, 1-2 \mathrm{~cm}$ white and black (vfg) veinlets cross cut unit, trace to 1% sulph in veinlets	49.7	50.8	351150	1.1	9
53.4	59.8	GRT	54.6	55.4	351151	0.8	7
		Granite	55.4	56.4	351152	1.0	8
		pink granite w mixed chl rich mafic					
		some $5-10 \mathrm{~cm}$ sections of mafic w $2-3 \%$ sulph tiny veinlets (Q-carb) crosscutting granite					
		54.9 one $2-3 \mathrm{~mm}$ occurrence of a silver-blue metallic mineral					
59.8	66.2	MI	63.5	64.5	351153	1.0	67
		Mafic Intrusive Dike	64.5	65.5	351154	1.0	11
		fg dark mafic w wispy carb layers/foliations (not veins) trace to diss fg pyrite, sporadic coarse euhedral	65.5	66.5	351155	1.0	9
66.2	69.1	GDio					
		Granodiorite					
		coarse gre-green granite to pegmatitic					
	72.0	slightly altered to green, massive, no layering, gradational contacts, minor sulphide w black minerals/mafic frags only GDio					
69.1	72.0	Granodiorite grey granodiorite, med grained, spotted texture/appearance					

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
0.0	2.4	Ovb					
		Overburden casing					
2.4	7.7	MI	2.8	3.8	351156	1.0	45
		Mafic Intrusive Dike	3.8	4.8	351157	1.0	649
		$2.4-6$ is wispy, wavy thin laminations of white/green chl	4.8	5.8	351158	1.0	240
		disseminated sulph	5.8	6.8	351159	1.0	8
		altered dyke-like texture	5.8	6.8	351160 (Std)	1.0	113
			5.8	6.8	351161 (BIn)	1.0	3
			6.8	7.8	351162	1.0	19
7.7	13.7	GDio	7.8	8.8	351163	1.0	20
		Granodiorite	8.8	9.8	351164	1.0	3
		Grey-peach granitic, homogeneous yet porph textured in places some hairline cracks fille w sulphiode, random directions					
13.7	18.0	GRT					
		Granite					
		pink-red granite					
		coarse gr, very little in terms of veining very hard (lots of brass drill bit markings and some griding of core)					
18.0	24.3	Ml	18.5	19.3	351165	0.8	3
		Mafic Intrusive Dike	19.3	20.3	351166	1.0	78
		chl schist	20.3	21.3	351167	1.0	191
		scorched, bleached, altered to light green as you approach Q vein	21.3	22.3	351168	1.0	741
		massive to foliated w depth (linear foliation @ 40deg to random, pinched, folded, squished etc)	22.3	23.3	351169	1.0	1980
		23-23.5 yellow -brownish alt	23.3	24.3	351170	1.0	173
24.3	28.3	QV	24.3	25.3	351171	1.0	52
		Quartz Vein	25.3	26.3	351172	1.0	29
		massive white QV	26.3	27.3	351173	1.0	394
		very minor mafic inclusions (black-blue) plus green staining seen through semi-translucent q trace green, glassy mineral, apple to malachite-like green (bright green) (fuchsite or roscoelite?)looks glassy but is quite soft	27.3	28.3	351174	1.0	8

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
28.3	30.6	MI	28.3	29.3	351175	1.0	110
		Mafic Intrusive Dike	29.3	30.3	351176	1.0	16
		dyke-like texture, biotite, chlorite, well mineralized up to 5%	30.3	30.6	351177	0.3	422
		increasing foliation w depth, increasing pyrite cluster size as well minor carb in pyrite containin venlets at 29.85-30m					
30.6	34.7	QV	30.6	31.6	351178	1.0	40
		Quartz Vein	31.6	32.6	351179	1.0	3
		bull white, failry barren of anything else	31.6	32.6	351181 (BIn)	1.0	3
		some black inclusions of vfg mafic mineral w 1-3\% py	31.6	32.6	351180 (Std)	1.0	817
		UC 70deg LC 70deg	32.6	33.6	351182	1.0	3
			33.6	34.7	351183	1.1	7
34.7	36.0	MI	34.7	35.7	351184	1.0	196
		Mafic Intrusive Dike	35.7	36.7	351185	1.0	106
		very dark to black mafic w blue-grey Q					
		up to 5% py in pinch and swell q veining					
		tracy cpy/aspy					
		rusty stianing w some sulph (Fe-carb?)					
		45-60deg fabric FCA					
36.0	38.5	QV	36.7	37.7	351186	1.0	20
		Quartz Vein	37.7	38.7	351187	1.0	1190
		greyish Q, black accessory w pods of pyrite, trace cpy?					
		rust/malachite stainng along some sulph filled fracutres					
38.5	41.9	MI	38.7	39.5	351188	0.8	944
		Mafic Intrusive Dike	39.5	40.5	351189	1.0	85
		quartz rich mafic	40.5	40.9	351190	0.4	24
		brecciated looking q rich sections	40.9	41.9	351191	1.0	24
		minor carb (Fe) alteration in foliated zones					
		$2 \% p y$ trace cpy, aspy and rusty wisps more deformation in this section than above/below					
41.9	49.0	QV	41.9	43.0	351192	1.1	30
		Quartz Vein	43.0	44.0	351193	1.0	100

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
44.4	46.2	up to 5\% (maybe 10\%) eudedral pyrite cubes up to 4 mm light grey-green (turquise) carb that reacts vigorously to hcl 20-30\% tourm MI Mafic Intrusive Dike 70% tourmaline, vfg w green turq, altered carb and 5% py rusty stianing w carb (fe-carb?) $5-30 \mathrm{~cm}$ quartz veins/grags mixed in w mafic $45.3-46 \mathrm{~m}$: massive tourm, fractured or offset faulted throughout, q-filled fractures? non mag	$\begin{aligned} & 44.4 \\ & 45.3 \end{aligned}$	$\begin{aligned} & 45.3 \\ & 46.2 \end{aligned}$	$\begin{aligned} & 351295 \\ & 351296 \end{aligned}$	0.9	$\left\lvert\, \begin{aligned} & 574 \\ & 761 \end{aligned}\right.$
46.2	50.5	MI Mafic Intrusive Dike chl schist, mld carb/sericite alt foliation at 70deg to CA $1-2 \%$ pyrite as 1 mm subhedral pods unit is quite uniform, very little in terms of q-carb veinlets 49.2-49.4m: q-frag breccia w mafic matrix	$\begin{aligned} & 46.2 \\ & 47.2 \\ & 48.4 \\ & 49.5 \end{aligned}$	$\begin{aligned} & 47.2 \\ & 48.4 \\ & 49.5 \\ & 50.5 \end{aligned}$	$\begin{aligned} & 351297 \\ & 351298 \\ & 351299 \\ & 351300 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.2 \\ & 1.1 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 88 \\ & 11 \\ & 7 \\ & 8 \end{aligned}$
50.5	53.3	QV Quartz Vein qv w 40% light grey mafic containing 5% pyrite altered versions of the pinch and swell unit seen previouslyÉ "nice" mineralization and fe-carb in mafic very minor pink Q minor green fuchsite/malachite-like stianing	$\begin{aligned} & 50.5 \\ & 51.5 \\ & 52.5 \end{aligned}$	$\begin{aligned} & 51.5 \\ & 52.5 \\ & 53.3 \end{aligned}$	$\begin{aligned} & 351301 \\ & 351302 \\ & 351303 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 197 \\ & 524 \\ & 1090 \end{aligned}$
53.3	57.7	QV Quartz Vein bull white QV $1-4 \mathrm{~mm}$ veins of massive py often with apple gree, glassy but very soft mineral pyrite filled stylolitic fractures 55.2-56.2m: wavy, crenulated mafic, fe-carb, sericite? 5% py 56.2-57-7: qv w minor mafic component, 2-3\% py LC 70deg to CA	$\begin{aligned} & 53.3 \\ & 54.2 \\ & 55.2 \\ & 56.2 \\ & 56.9 \end{aligned}$	$\begin{aligned} & 54.2 \\ & 55.2 \\ & 56.2 \\ & 56.9 \\ & 57.7 \end{aligned}$	$\begin{aligned} & 351304 \\ & 351305 \\ & 351306 \\ & 351307 \\ & 351308 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 1.0 \\ & 1.0 \\ & 0.7 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 9510 \\ & 8350 \\ & 726 \\ & 60 \\ & 53 \end{aligned}$

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	$\mathrm{Au}(\mathrm{ppb})$
0.0	4.0	Ovb Overburden casing					
4.0	32.0	GRT Granite typical host granite (light grey to green w alternating degrees of alteration) 13.5-14.5m: mafic dyke (non-mag, homogeneous, vfg) grad uc sharp LC@ 45deg 22.8-23.8m: pyrite pods in peg/granite	22.8	23.8	351336	1.0	20
32.0	39.2	Granodiorite zone of host rock that is heavily alterred by fluids in fault at 34.5 m and the QV below fault contains lots of soapy rubble, light green throughout large Q frags up to 10 cm w black mafic mineral/frags tract to 2% pyrite locally mafic dyke @ 36m, also slightly altered	32.1	33.0	351337	0.9	9
			33.0	34.0	351338	1.0	3
			34.0	35.0	351339	1.0	3
			35.0	36.0	351340	1.0	17
			36.0	37.0	351341	1.0	12
			37.0	38.0	351342	1.0	87
			38.0	39.0	351343	1.0	201
			39.0	39.9	351344	0.9	1010
39.2	39.9	MI					
		Mafic Intrusive Dike blacker matric (still chlorite dominant) w 1-4cm q-carb vaining black stylolitic fractures in veining					
39.9	46.2	QV	39.9	41.0	351345	1.1	136
		Quartz Vein	41.0	42.0	351346	1.0	362
		mineralized zone	42.0	43.0	351347	1.0	3
		qv cross cut by very coarse, light green quartz? (between 39.9-42)	43.0	44.0	351348	1.0	174
		46.2-49m: fault gouge	43.0	44.0	351349 (Std)	1.0	1040
		as you approac 42 m these sections look like altered schist or granite rafts?	43.0	44.0	351350 (BIn)	1.0	3
		hematite (red) stained fractures in white Q	44.0	45.0	351351	1.0	126
		$43.7-44.3 \mathrm{~m}$: addition of vfg black mineral plus pyrite in fractures in white Q 44.3-45.6m: faily plain white Q	45.0	45.6	351352	0.6	5
		44.3-45.6m: faily plain white Q	45.6	46.2	351353	0.6	124
46.2	49.4	MI	46.2	48.0	351354	1.8	288
		Mafic Intrusive Dike	48.0	49.0	351355	1.0	142

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
0.0	3.0	Ovb Overburden casing					
3.0	33.3	GDio	5.0	6.1	351360	1.1	125
		Granodiorite	6.1	7.0	351361	1.0	24
		varies from altered/bleached to massive to dyke-like textured, gr size varies also	7.0	8.0	351362	1.0	11
		but always hard granitic rock	8.0	8.9	351363	1.0	6
		some very minor pyrite mineralization in fractures vfilled w q-carb, very thin cracks	11.2	12.0	351364	0.8	3
		samples represent sulphide presence	18.0	19.0	351365	1.0	3
		6.05-6.6m: black fg dyke	33.0	34.0	351366	1.0	3
33.3	36.5	GDio	34.0	35.0	351367	1.0	6
		Granodiorite	35.0	36.0	351368	1.0	17
		bleached and increase in mineralizaion, still in fractures/fills coarse pyrite occupies 5 mm vein @ 36.1 m	36.0	37.0	351369	1.0	65
36.5	45.9	MI	37.0	38.0	351370	1.0	21
		Mafic Intrusive Dike	37.0	38.0	351372 (BIn)	1.0	3
		wavy, crenulated dark green w white wavy leucosome/veinlets/layers	37.0	38.0	351371 (Std)	1.0	132
		trace silver sulph (aspy or cut py)	38.0	39.0	351373	1.0	29
		more gneissic than schistose	39.0	39.9	351374	0.9	12
		disspy throughout and up to 2% locally	39.9	40.4	351375	0.5	7
		(this looks similar to the highly weathered/faulted rock in trenches)	40.4	41.4	351376	1.0	24
		39.9-40.4: mafic dyke w sharp 90deg contacts 42.6-43.6. siliceous, quartz veining, blue-grey 5% py	41.4	42.5	351377	1.1	21
		42.6-43.6: siliceous, quartz veining, blue-grey, 5% py	42.5	43.6	351378	1.1	390
			43.6	44.6	351379	1.0	148
			44.6	45.6	351380	1.0	94
			45.6	46.6	351381	1.0	21
45.9	50.0	MI	46.6	47.6	351382	1.0	3
		Mafic Intrusive Dike	47.6	48.7	351383	1.1	3
		dyke or just vfg massive version of layered mafic above	48.7	50.0	351384	1.3	
50.0	54.1	QV	50.0	51.0	351385	1.0	2650

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
0.0	4.6	Ovb Overburden casing					
4.6	15.7	Ml	4.6	6.0	581153	1.4	33
15.7		Mafic Intrusive Dike	6.0	7.0	581154	1.0	52
		slighly deformed and altered chlorite schist, spotted looking, dark green-ish	7.0	8.0	581155	1.0	15
		trace py, slightly increasing w depth	8.0	9.0	581156	1.0	< 5
		some minor wispy sections, some foliated at 45deg yet mostly massive texture	9.0	10.0	581157	1.0	183
			10.0	11.0	581158	1.0	102
			11.0	12.4	581159	1.4	11
			12.7	13.7	351451	1.0	7
			13.7	14.7	351452	1.0	< 5
			14.7	15.7	351453	1.0	5
	31.4	MI	15.7	16.7	351454	1.0	6
		Mafic Intrusive Dike	16.7	17.7	351455	1.0	167
		increasing Q content as bent/deformed white veinlets	17.7	18.7	351456	1.0	104
		carb or sericite alt as colour of lighter layers is turning brownish	18.7	19.7	351457	1.0	57
		some reddish hematite stained layering <5\%	19.7	20.7	351458	1.0	20
		$1 \% /$ diss py, increasing to 3% below 19 m	20.7	21.7	351459	1.0	20
		some 10 cm crenlulated sections but minor to whole unit	21.7	22.7	351460	1.0	18
		foliation/layering @ ~70deg 16-16.6m: felsic, brecciated/clastic dyke w q-feldspar frags which are cut by black fractures	21.7	22.7	351461 (Std)	1.0	1080
		16-16.6m: felsic, brecciated/clastic dyke w q-feldspar frags which are cut by black fractures 20.9-23.5m: 2-3\% py w wormy q veins $<4 \mathrm{~cm}$	21.7	22.7	351462 (BIn)	1.0	< 5
		23.5-26.2: more massive than layered, py trace to dissem	22.7	23.7	351463	1.0	14
		26.2-31.4: back into higher deformation w 2-3\% (maybe 5\%)py localized in pods/fractures, grey smokey Q sections	23.7	24.7	351464	1.0	5
		$<5 \mathrm{~cm}$, trace cpy, aspy? sphalerite?	24.7	25.7	351465	1.0	< 5
			25.7	26.7	351466	1.0	24
			26.7	27.7	351467	1.0	22
			27.7	28.7	351468	1.0	156
			28.7	29.7	351469	1.0	29
			29.7	30.7	351470	1.0	25

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	$\mathrm{Au}(\mathrm{ppb})$
0.0	4.0	Ovb					
		Overburden casing					
4.0	6.4	GDio	4.0	5.0	170134	1.0	21
		Granodiorite	5.0	6.0	170135	1.0	< 5
		altered granodiorite bleached to beige	6.0	7.0	170136	1.0	25
6.4	27.2	MI	7.0	8.0	170137	1.0	< 5
		Mafic Intrusive Dike	8.0	9.0	170138	1.0	< 5
		gneissic to schistose to massive w depth	9.0	10.0	170139	1.0	95
		trace and diss py, accumulations as thin layers	10.0	11.0	170140	1.0	< 5
		UC faulted or had water in fractures causing rubble, muddly contact	11.0	12.0	170141	1.0	16
		layered sections already have pitted or rouch core from softer carb component w chlorite?	12.0	13.0	170142	1.0	12
			13.0	14.0	170143	1.0	< 5
			14.0	15.0	170144	1.0	8
			15.0	16.0	170145	1.0	76
			16.0	17.0	170146	1.0	50
			17.0	18.0	581166	1.0	< 5
			18.0	19.0	170147	1.0	< 5
			19.0	20.0	170148	1.0	< 5
			20.0	21.0	170149	1.0	6
			21.0	22.0	170150	1.0	6
			22.0	23.0	581151	1.0	5
			23.0	23.9	581152	0.9	< 5
			23.9	25.0	351489	1.1	744
			25.0	26.0	351490	1.0	8
			26.0	27.0	351491	1.0	10
			27.0	28.0	351492	1.0	8
27.2	30.1	MI	28.0	29.0	351493	1.0	9
		Mafic Intrusive Dike	29.0	30.0	351494	1.0	< 5

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	$\mathrm{Au}(\mathrm{ppb})$
30.1	36.2	tourmaline rich w 2.5\% Q veining tourm as large fragment in Q-rich sections (tourm $3-05 \mathrm{~cm}$, $>5 \mathrm{~cm}$ and 90 cm occurences) pyrite patches w green accessory, semi-massive, $2-3 \mathrm{~cm}$ pods nice looking section	30.0	31.0	351495	1.0	16
		MI	31.0	32.0	351496	1.0	10
		Mafic Intrusive Dike	32.0	33.0	351497	1.0	5
		crenulated to foliated to massive	33.0	34.0	351498	1.0	8
		$\pm \mathrm{q}$ veining, white-grey translucent Q, 5-10\% py w Quartz	34.0	35.0	351499	1.0	8
		$2-5 \%$ py in mafic as layers	35.0	36.0	351500	1.0	23
		unit is more grey than green, more gneissic than schistose	36.0	36.8	581001	0.8	39
36.2	37.4	MI	36.8	37.4	581002	0.6	391
		Mafic Intrusive Dike mafic/QV mix					
		10\% py 1\% cpy, trace aspy green staining around semi-massive sulph fills up to 5 mm LC gradual from mafic to Q					
37.4	57.5	QV	37.4	38.4	581003	1.0	14
		Quartz Vein	38.4	39.4	581004	1.0	23
		$37.4-39 \mathrm{~m}$: smokey grey, massive, euhedral pyrite up to 1.5 mm in fractures, abundant only in a few localized places	39.4	40.4	581005	1.0	24
		39-45: white solid q w flecks of black elongated minerals, trace green accessory, similar py mineralization as above	40.4	41.4	581006	1.0	19
		but abundance reduced, minor pink stains on a few fractures (w depth) 45-52.4. greyer q w major inclusions of mafic minerals and mafic rock (frags or layers of above), mafic sections	41.4	42.4	581007	1.0	65
		45-52.4: greyer q w major inclusions of mafic minerals and mafic rock (frags or layers of above), mafic sections 45.7-46.5/51-52.4 are well mineralized $>5 \%$	42.4	43.4	581008	1.0	13
		52.4-53.5: white chalky quartz w brecciated-like clasts of black vfg amorph mineral, at first glance tourmaline but not	43.4	44.4	581009	1.0	29
		as hard as previously noted trace sulph	44.4	45.4	581010	1.0	20
		53.5-54.2: layered mafic w Q eyes, thin lams, 2-3\% py	45.4	46.4	581011	1.0	50
		54.2-56.6: blocky, grey smokey Q, massive	46.4	47.4	581012	1.0	516
		56.6-57.5: green mafic w up to 5% py	47.4	48.4	581013	1.0	446
			48.4	49.4	581014	1.0	48
			49.4	50.4	581015	1.0	94
			50.4	51.0	581016	0.6	232
			51.0	52.0	581017	1.0	84

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	$\mathrm{Au}(\mathrm{ppb})$
0.0	1.8	Ovb Overburden casing					
1.8	12.0	GDio Granodiorite 6-7m pink cg granite, unaltered, some translucent q	11.0	12.0	581065	1.0	9
12.0	13.0	FZ Fault black w white spots (feldspar?) former granite altered contact mosly soapy chlorite flakes but still hard, not muddy 10\% q-carb pinched veins/eyes	12.0	13.0	581066	1.0	9
13.0	15.2	Ml	13.0	14.0	581067	1.0	2350
		Mafic Intrusive Dike	14.0	15.0	581068	1.0	19
		black/white mafic gneissic texture (cemented mix of adjacent units?) diss py iron carb as wispy smears/stains (drillers mistaking these patches as gold) 15.1 m : $3-4 \mathrm{~cm}$ occurrence of gold-coloured smear	15.0	16.0	581069	1.0	3020
15.2	18.0	QV	16.0	17.0	581070	1.0	712
		Quartz Vein w heavily altered, former granitic rock (lighter green w orage hue - sericite?? looks unique to this hole) large fragment of just further alteration of gneiss-like unit? bleached dyke? up to this point there have been numerous fractures paralle to core in each unit (this hole)	17.0	18.0	581071	1.0	4210
18.0	18.5	MI Mafic Intrusive Dike chl schist w sheared layers and up to 2% py four $\sim 1 \mathrm{~cm}$ q-carb veins, poor boundaries, dark rimming	18.0	19.0	581072	1.0	678
18.5	45.4	MI	19.0	20.0	581073	1.0	46
		Mafic Intrusive Dike	20.0	21.0	581074	1.0	6
		25.1-30: white glassy to slightly grey Q, barren besides some sporadic mafic/sulphide filled fractures w 20-50\% py	21.0	22.0	581075	1.0	16
		but are $<5 \mathrm{~mm}$	22.0	23.0	581076	1.0	54
		32.5-44: massive q, white to milky to grey-smokey 40.5-41: eye or teardrop shaped "pods" or cubic py w major green accessory w red stained fractures, blocky core	23.0	24.0	581077	1.0	1640

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
45.4	48.2	LOTS OF Q, NOT MUCH SULPHIDE (outside of the fractures/mafic frags)	24.0	25.0	581078	1.0	1160
			25.0	26.0	581079	1.0	47
			25.0	26.0	581081 (BIn)	1.0	< 5
			25.0	26.0	581080 (Std)	1.0	1060
			26.0	27.0	581082	1.0	106
			27.0	28.0	581083	1.0	13
			28.0	29.0	581084	1.0	< 5
			29.0	30.0	581085	1.0	< 5
			30.0	31.0	581086	1.0	91
			31.0	32.0	581087	1.0	121
			32.0	33.0	581088	1.0	24
			33.0	34.0	581089	1.0	86
			34.0	35.0	581090	1.0	124
			35.0	36.0	581091	1.0	17
			36.0	37.0	581092	1.0	< 5
			37.0	38.0	581093	1.0	19
			38.0	39.0	581094	1.0	< 5
			39.0	40.0	581095	1.0	13
			40.0	41.0	581096	1.0	110
			41.0	42.0	581097	1.0	174
			42.0	43.0	581098	1.0	< 5
			43.0	44.0	581099	1.0	< 5
			44.0	45.0	581100	1.0	5830
			45.0	46.0	581101	1.0	403
		MI	46.0	47.0	581102	1.0	64
			47.0	48.0	581103	1.0	266
		chl schist w extensive py mineralization 10-20\%	48.0	49.0	581104	1.0	1170
		frequent subhedral py over 1 cm	48.0	49.0		1.0	1020
		mild pinch/swell fabric w diff varieties of thin $Q w$ carb veining $46.5-48: 1-3 \mathrm{~cm}$ py cubes, most abundant and largest in drill campaign	48.0	49.0	581106 (BIn)	1.0	< 5

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
(81.3	83.8 99.5 99.7 131.5	- moderate fine chlorite in tuffaceous matrix, local sericite along thin bands or associated with larger clasts - overall minor fine $<1 \mathrm{~mm}$ cubic Py confined to narrow $<1 \mathrm{~cm}$ bands or spread sporadically throughout - leucoxene flecks (Fe-carb?) confined to clasts as opposed to matrix - narrow <1cm carbonate veins and wisps and anastomosing veinlets at various angles to CA are common MZ Mineralized Zone - unit is a pyritic cherty ash to fine tuff with local intense carbonate, sil-sulph-carb IF (?), could represent an exhalative horizon - top of unit is sharp at 30 deg to CA and marked by aphanitic finely laminated ash with moderate sericite 81.5-82.3m: 15\% Py as anhedral disseminations, fine cubes, and larger clots (clast?) up to $20 \times 5 \mathrm{~mm}$ - bottom 1.5 m is carbonate-rich, $60-80 \%$ carbonate with coarse nodular appearance as rough layers / lenses or veins at 20-30 deg to CA, mixed with alternating bands of chlorite with up to 1% fine Py - LC sharp at 45 deg to CA and dominated by intense carb-chl V_maf Mafic Volcanic - unit is fg, green, and massive to weakly fol 40-60 deg to CA - pervasive chlorite - carbonate is ubiquitous throughout the unit as stringers/veinlets, clots, irregular small masses, and fracture fill - fine Py associated within upper few meters, particularly 15% Py over 10 cm at $84.6-84.7 \mathrm{~m}$ as bands oriented 50 deg to CA, otherwise trace fine $<1 \mathrm{~mm}$ Py cubes throughout $-2-3 \%$ barren qtz as veins/veinlets mm-scale to 10 cm and as irregular masses $+/-$ carb 93.1-95.2m: mafic dyke with ophitic texture typical of diabase, fg and massive, dark gray, minor specks of bright green epidote, strongly magnetic, aphanitic chilled margins with sharp contacts, UC and LC at 50 and 60 deg to CA respectively, few spots of Fe-staining in mafic volc host proximal to dyke FZ Fault - unit consists of graphitic fault gouge and narrow lenses of Py-rich material at 70 deg to CA - carbonate-rich in mafic host at contacts V_maf Mafic Volcanic - as 83.8-99.5m	81.3 82.3 83.3 83.8 84.7	82.3 83.3 83.8 84.7 85.7		$\begin{gathered} 1.0 \\ 1.0 \\ 1.0 \\ \\ \\ \\ 0.9 \\ 0.9 \\ 1.0 \end{gathered}$	$\begin{gathered} 36 \\ 39 \\ 84 \\ \\ \\ 19 \\ 20 \end{gathered}$

Benton Resources Inc

Description			Assay - Sample				
			From	To	Sample number	Length	$\mathrm{Au}(\mathrm{ppb})$
131.5	131.9	- below 120m carb also occurs as oblong 2-4mm clots and some with Py centres reminiscent of amygdules FZ Fault - as 99.5-99.65m -15% graphite overall but carried by several <1cm stringers of solid graphite, rest is chlorite plus weak carb, badly broken core - 35 deg to CA					
131.9	141.4	V_maf Mafic Volcanic $\text { - as } 99.65-131.5 \mathrm{~m}$ - fol 45-60 deg to CA 134.3-134.7m: Mafic dyke, as at 93.1-95.2m, UC and LC chilled and sharp but bit irregular at approximately 20 25 deg to CA					
141.4	141.6	FZ Fault - graphitic fault, 60\% graphite, remainder is carb plus minor chlorite - 45 deg to CA					
141.6	143.9	V_maf Mafic Volcanic $\text { - as } 99.65-131.5 m$					
143.9	144.0	FZ Fault - graphitic fault gouge, 50\% graphite, 50% chloite - minor cubic Py - few open fractures on either side in host exhibit Fe-staining - badly broken					
144.0	173.9	V_maf Mafic Volcanic - unit is green, fine-grained with granular texture, 10% carb as fine pervasive specks throughout, spiderweb to wispy stringers and fracture fill - moderately foliated 40 deg to CA - locally appears amygdaloidal with $2-4 \mathrm{~mm}$ oval carb fill, rarely with cubic Py centres within the carb					

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
173.9	175.6 194.2 205.1 232.4	-5% (10\% locally) feldspar phenocrysts throughout, typically whiye but yellow tint from weak saussuritization, feldspars are rounded to subhedral, and up to 1 cm across, larger round ones have daisy-like / popcorn appearance - minor black chloritic shears at 30-45 deg to CA 163.8-163.95m: mafic dyke, as at 93.1-95.2m, UC and LC chilled and sharp at 70 deg to CA 167.9-168.2m: Mafic dyke as above, 15 deg to CA 169.7-170.2m: mafic dyke as above, 40 deg to CA - below 164.2 m unit exhibits fine flecks of light gray leucoxene Vif Intermediate Volcanic Flow - unit is aphanitic to very fine-grained with bleached light green colour, possibly dacitic - essentially massive to weakly foliated with subconcoidal fracture pattern - unlike the mafic volcanics this unit does not contain fine pervasive carb but does have some carb as wispy spider-like stringers and fracture fill - dominant carb strs at 40-45 deg to CA and define weak fabric / foliation - UC sharp at 80 deg to CA V_maf Mafic Volcanic - mafic volcanic as 83.8-99.5m but with ubiquitous fg-mg gray flakes of leucoxene - well defined foliation 40-45 deg to CA Vmf Mafic Volcanic Flow - unit varies from aphanitic and green coloured to bleached light green medium-grained centre and back to aphanitic green towards lower contact - the more medium-grained granular centre of flow has spotted texture with 1 mm soft black anhedral chlorite clots (chloritoid?) floating in a light pale green background, brecciated appearance caused by moderate fracturing healed with qtz centres and black chloritic contact walls, fractures are mm-scale and predominantly between 199 and 200.5m - at 204.4 m is 10 cm bleached breccia with $1-15 \mathrm{~mm}$ clasts, bx is healed with silica and carb, UC of bx sharp at 45 deg to CA V_maf Mafic Volcanic					

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
0.0	4.7	Ovb					
		Overburden casing					
	312.0	GDio	94.8	95.8	581234	1.0	<5
		Granodiorite	100.0	100.9	581235	0.9	<5
		Marmion granite	100.9	101.9	581236	1.0	< 5
		varies randomly in grain size from med gr to very coarse, pegmatitc	101.9	102.9	581237	1.0	<5
		overall a grey/white unit but has peach-coloured feldspar sections, typcially coarser grained	137.0	138.0	581243	1.0	<5
		poor sulphide mineralization, a few sections w minor pyrite and flaky silver-coloured sulph (represented by sporadic	138.0	139.0	581238	1.0	<5
		sampling)	139.0	140.0	581239	1.0	< 5
		34-38: finer grained, grey granitic dyke within coarser granite. poor contacts	140.0	141.0	581240	1.0	10
		94.9-96: v coarse porphyritic, popcorn feldspar phenocrysts beige to peach	140.0	141.0	581242 (BIn)	1.0	< 5
		100.9-101.6: qv paralled to CA, infilled fracture? $2-4 \mathrm{~cm}$ wide, flakey silver sulph in fracture $136.5-138: \mathrm{mg}$ granite with red hue, LC w dyke(?) below is sharp 85deg	140.0	141.0	581241 (Std)	1.0	134
		138-142.5: int-mafic dyke, lappilli tuff that has been squished, foliated @ 80deg, gneissic w depth w pinkish felsic	141.0	141.8	581244	0.8	6
		component, also squished/layered, q-carb veinlets are wavy for first 1.5 m then folicated w depth (gradual change),	141.8	142.5	581245	0.7	6
		trace to diss, vfg pyrite (poor abundance)	142.5	143.5	581246	1.0	< 5
		142.5-146.2: pink, pegmatitic	162.0	162.2	581247	0.2	44
		146.2-156.3: grey granodiorite, moderately porphyritic	182.4	183.4	581248	1.0	< 5
		156.3-158.4: dark, nearly black w white flecks, granitic dyke, looks like mafic volc but too hard, LC/UC at 60-65deg	186.0	187.0	581249	1.0	<5
		162-162.2: smokey grey QV, UC/LC at 50deg, not mineralized but sampled due to similarity to traxxin zone.	187.0	188.0	581250	1.0	< 5
		171.3-176.8: mg, light grey/green, w small (1-2mm) subhedral phenos (white/beige)	188.0	189.0	581251	1.0	< 5
		176.8-188.2: gr size varies but granodiorite composition is consistent	203.8	204.8	581252	1.0	93
		186-188.2: sub-cm fractures are infilled w vfg chlorite and have a reddish staining radiating into the granite (hot	216.2	217.2	581253	1.0	16
		fluids?)	217.2	218.2	581254	1.0	10
		189.1-189.8: dark, finer grained granitic dyke, UC 70 LC 60	218.2	219.2	581255	1.0	< 5
		to 203.8: cg granitic	249.6	250.0	581256	0.4	<5
		208.5-209.5: popcorn phenos $\sim 1 \mathrm{~cm}$	278.5	279.5	581257	1.0	< 5
		216.2-217.2: dacite? fine gr intermediate?, som sub-cm q veining, no sulph					
		217.2-224: med-coarse gr granodiorite 224-226.6: multiple sections/contacts are rubble/sandy (faulting? water?)					
		224-226.6: multiple sections/contacts are rubble/sandy (faulting? water?) 226.6-229.5: blocky					

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
79.0	96.0	66.4-70.0m: still glassy white quartz with 10-15\% chlorite - tourmaline clots / aggregates +/- Fe-carb, chl is dark green, tourmaline is black to dark brown and commonly needles or blades, up to $1 \% \mathrm{Py}$ in chl-tour clots, minor in QV 70.0-71.0m: 70\% QV, 30\% chl with Fe-carb-fuchsite-minor ser-Py, highly sheared at 45-50 deg to CA locally with only 85% recovery in the chl-rich intervals, Fe-carb as fine tan-yellow wisps, smoky gray qtz at bottom mixed within the chl-rich alteration 71.0-74.2m: altered mafic intrusive, fg and commonly schistose where chl content is highest, at UC and LC there is about 20 cm of fg to aphanitic fuchsite-rich chl-Fe carb-Py, 10 cm interval at 71.5 m that contains small $0.5 \times 8 \mathrm{~mm}$ grayish laths (gedrite / anthophyllite?), weak spotted appearance locally from distinct black chl 1 mm blebs in a background or green chl, UC gradational due to high chl content, LC sharp at 45 deg to CA 74.2-76.2m: as above at 70-71m 76.2-79.0m: thin smoky gray qtz lenses (boudins) throughout intense crenulated chl schist and lesser amounts of fuchsite - Fe carb - tourmaline, 2\% coarse Py cubes up to 4-5mm, white glassy QV from 78.2-78.6m GRT Granite - unit is similar to that above at 10.3-65.8m - upper 0.5 m is intensely sheared with chl-ser, minor Py, badly broken but UC at 65 deg to CA - weak hematite staining towards LC	$\begin{aligned} & 71.0 \\ & 72.0 \\ & 73.0 \\ & 74.2 \\ & 75.2 \\ & 76.2 \\ & 77.2 \\ & 78.2 \\ & \\ & 79.0 \end{aligned}$	$\begin{gathered} \hline 72.0 \\ 73.0 \\ 74.2 \\ 75.2 \\ 76.2 \\ 77.2 \\ 78.2 \\ 79.0 \\ \\ 80.0 \end{gathered}$	581309 581310 581311 581312 581313 581314 581315 581316 581317	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & 1.2 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 0.8 \\ & \\ & 1.0 \end{aligned}$	10 24 31 7500 446 576 2390 284 623

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
0.0	10.3	Ovb					
		Overburden casing					
10.3	57.1	GRT					
		Granite					
		- unit is a mix of coarse-grained gray granite with a weak foliation at 45 deg to CA and relatively massive intermediate fdsp porphyry with $10-20 \%$ fine 1 mm white fdsp phemos in a moderately dark gray-green fg-aphanitic groundmass					
		- few cg pegmatitic intervals up to 2 m thick with sharp contacts between 5-15 deg to CA					
		$33.5-38.8 \mathrm{~m}$: blocky core with good recovery and small pegmatitic dykes at various angles to CA, hematite common on open fracture faces within lower 30 cm $48.0-49.0 \mathrm{~m}$: blocky core with hemtite staining					
57.1	62.3	MI					
		Mafic Intrusive					
		- unit is green-gray, fg, sheared 60 deg to CA, moderate chl					
		- top 10 cm at UC is broken/sheared white QV and chl with pale yellow ser in wall of above granite - minor fine $<1 \mathrm{~mm}$ cubic Py proximal to LC					
62.3	69.6	GRT	66.1	66.9	581318	0.8	< 5
		Granite	66.9	67.9	581319	1.0	< 5
		- unit is same as $10.3-57.1 \mathrm{~m}$	67.9	68.6	581320	0.7	190
		$67.8 \mathrm{~m}-69.6 \mathrm{~m}$ is fg white fdsp pheno intermediate dyke but with bleached appearance with several $0.5-2 \mathrm{~cm}$ QV and	67.9	68.6	581321 (Std)	0.7	962
		dark chl-tour-Py	67.9	68.6	581322 (BIn)	0.7	< 5
			68.6	69.6	581323	1.0	348
69.6	77.3	MZ	69.6	70.6	581324	1.0	139
		Mineralized Zone	70.6	71.6	581325	1.0	684
		very dark, black-green mafic volc/intrusive w up to 20% thin QV's and 10-20\% associated lighter green (also	71.6	72.6	581326	1.0	24
		chloritic, slightly sericitic) foliations/layers wich seem directly correlated w pyrite mineralization within layers up to 5%	72.6	73.6	581327	1.0	40
		-lacks the massive QV's seen in Traxxin zone but similar mineralization/sulphide abundance	73.6	74.6	581328	1.0	48
		-quartz associated w the darkest matrix is less mineralized w pyrite and mainly chalky white, where sulphide	74.6	75.6	581329	1.0	20
		abundance is greater (closer to 5\%) quartz is translucent or smokey	75.6	76.6	581330	1.0	30
		-localized pink stains in thin quartz (rare)	76.6	77.3	581331	0.7	29

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
39.2	46.9	MI	39.2	40.1	581352	0.9	30
		Mafic Intrusive very blocky, loose chl rich mafic w 20\% quartz recovery is $80-85 \%$ q as fragments and 'eyes/lenses often w green staining (fuchsite or chlorite?) euhedral py up to 2% but very tough to determine due to condition of the core minor sericite/fe-carb alt throughout (trace aspy? or just silver-py? very trace)	40.1	41.0	581353	0.9	79
			41.0	42.0	581354	1.0	46
			42.0	43.0	581355	1.0	169
			43.0	44.0	581356	1.0	37
			44.0	45.0	581357	1.0	< 5
			45.0	46.0	581358	1.0	85
			46.0	47.0	581359	1.0	105
46.9	48.7	QV	47.0	48.0	581360	1.0	16
		Quartz Vein	47.0	48.0	581361 (Std)	1.0	998
		blocky like above unit but in better condition than schist (mostly just fractured)	47.0	48.0	581362 (Bln)	1.0	< 5
		green staining throughout (more chloritic than fuchsite) trace py in fractures containing mafic component, otherwise the quartz itself is quite barren [probably should have just been in the description w the mafic as it is part of this whole 'package']	48.0	48.7	581363	0.7	15
48.7	69.0	MI	48.7	49.7	581364	1.0	33
		Mafic Intrusive	49.7	50.7	581365	1.0	25
		dark grey chl schist w a more massive texture than loos rubble above	50.7	51.7	581366	1.0	14
		40\% grey/smokey semi-translucent quartz containing stylolitic fractures filled w black chlorite	51.7	52.7	581367	1.0	17
		patchy euhedral pyrite 1\% (as a remobilized look to it)	52.7	53.7	581368	1.0	24
		qv/fractures at 70deg fca	53.7	54.5	581369	0.8	168
		54.5-56.1: QV, white, slightly glassy, semi-translucent, crackled white fractures throughout, other green stained	54.5	55.3	581370	0.8	5
		59.6-60 3. darker fg matrix w porphyritic texture (almost conglomerate-like), smokey blue/grey q phenos w larger	55.3	56.1	581371	0.8	12
		59.6-60.3: darker fg matrix w porphyritic texture (almost conglomerate-like), smokey blue/grey q phenos w larger white feldspar phenos, core has rough texture (matrix is worn), up to 5% sulph in concentrated patches in mafic	56.1	57.1	581372	1.0	137
		60.3-62.3: mafic int, chl schist altered to lighter green/beige (sericite), foliated at 40deg, white q as irregular frags	57.1	58.1	581373	1.0	14
		(5\%), diss pyrite UC 60, LC35	58.1	59.1	581374	1.0	254
		62.3-62.6: smokey Q (also glassy) w shallow angle fractures filled w chl, fe-carb and vfg sulphide, nice alteration	59.1	59.6	581375	0.5	58
		and mineralization in these layers/linear fractures but they dont exceed 1.5 mm	59.6	60.3	581376	0.7	542
		62.6-69m: mafic int, dark black/grey/blue grading to green w depth, wormy sub-cm qv's, $5-20 \%$ green-beige sericite	60.3	61.3	581377	1.0	180
		alteration	61.3	62.3	581378	1.0	147
		@63: 1 cm massiver pyrite seam w beige alteration	62.3	62.6	581379	0.3	770

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
69.0	100.4	62.9-63.7: 10-20\% gree-beige alteration w up to 5% sulphide 63.7-65.7:brecciated mafic w 50% quartz, trace to 1% py, moderate alteration as above, minor fe-carb w pyrite	62.6	63.7	581380	1.1	184
			63.7	64.7	581383	1.0	20
			63.7	64.8	581382 (Bln)	1.1	< 5
			63.7	64.8	581381 (Std)	1.1	970
			64.7	65.7	581384	1.0	46
			65.7	66.6	581385	0.9	208
			66.6	67.6	581386	1.0	217
			67.6	68.6	581387	1.0	713
			68.6	69.6	581388	1.0	356
		Sch_Chl Chlorite Schist slightly lighter green w well defined foliation, on average between 40-50deg minor sericite alt throughout diss pyrite, often to 1% flanking Q lenses/veinlets frequent wormy, boudin q-carb veinlets $<2 \mathrm{~cm}$ 94.4-100.4: very black, vfg chlorite, contact zone w up to 5% pyrite in stringers and nodules, q carb veining often stained pink, soapy disks, one 6 cm round patch of vfg non-mag bronzy sulphide	69.6	70.6	581389	1.0	8
			70.6	71.6	581390	1.0	60
			71.6	72.6	581391	1.0	1750
			72.6	73.6	581392	1.0	338
			73.6	74.6	581393	1.0	19
			74.6	75.6	581394	1.0	68
			75.6	76.6	581395	1.0	27
			76.6	77.6	581396	1.0	6
			77.6	78.6	581397	1.0	6
			78.6	79.6	581398	1.0	10
			79.6	80.6	581399	1.0	6
			80.6	81.6	581400	1.0	175
			80.6	81.6	581401 (Std)	1.0	129
			80.6	81.6	581402 (BIn)	1.0	< 5
			81.6	82.6	581403	1.0	198
			82.6	83.6	581404	1.0	37
			83.6	84.6	581405	1.0	18
			84.6	85.6	581406	1.0	9
			85.6	86.6	581407	1.0	12
			86.6	87.6	581408	1.0	241
			87.6	88.6	581413	1.0	576

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
0.0	3.9	Ovb Overburden casing					
3.9	90.4	GDio Granodiorite varied grain size, mainly green-grey med grained granitoid with sporadic pink feldspar pegmatitic zones <0.5m 45-58.5: finer grained, grey intermediate to felsic dyke-like texture, poor/gradational contacts w granite (most likely same chem comp just different cooling? gr size), mildly porphyritic 58.5-74.4:grey to green, mg , granodiorite, fairly uniform or homogenous over length, no sulph, no definite contacts part of the same granite 74-4-84: similar looking composition but a mix of coarser pegmatite (larger pink feldspars, mica is minimal <10\%, more/larger quartz) AND finer grained, uniform, dyke-like, slightly softer (?) siliceous sugary fractures, faint layering @60deg					
90.4	95.7	Dy_Maf Mafic Dyke intermediate dyke, diss fg py, layering at 60deg fca, a number of worm-like q-carb veins, unit begins w 10cm qv (sampled)	$\begin{aligned} & 90.4 \\ & 93.7 \\ & 94.7 \end{aligned}$	$\begin{aligned} & 91.4 \\ & 94.7 \\ & 95.7 \end{aligned}$	$\begin{aligned} & 581425 \\ & 581499 \\ & 581426 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 156 \\ & 56 \\ & 567 \end{aligned}$
95.7	111.3	GDio Granodiorite - grey, med grained, relatively massive, few minor qtz-fdsp pegmatitic intervals with indistinct contacts <0.5m thick with the exception of the lower contact 90.4-95.7m: intermediate to mafic intrusion, fg, green, $10-30 \mathrm{~cm}$ of white qtz veining at UC and LC, minor disseminated Py predominantly in intrusive adjacent to QV, chl+Fe-carb+minor fuchsite in QV and mafic unit, Py is minor as cubes and pervasive throughout 107.4-107.9m: blocky broken core, 80% recovery 108.3-111.3m: unit has a more quartz-rich siliceous look grading towards zone with weak to locally moderate sericite, overall appearance is that of an altered pegmatite - granitoid mix with local minor Py, chl, and ser	$\begin{aligned} & 95.7 \\ & 108.3 \\ & 109.3 \\ & 110.3 \end{aligned}$	96.7 109.3 110.3 111.3	581500 581427 581428 581429	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 58 \\ & 52 \\ & 298 \\ & 326 \end{aligned}\right.$
111.3	118.6	QV Quartz Vein 111.3-118.6m: unit grades from qtz vein to qtz breccia, white QV (glassy to chalky) prevails in upper portion and qtz bx in lower portion of unit but no clear boundaries, thin stylolitic structures with chl+Fe-carb+Py+/-fuchsite occur	$\begin{aligned} & 111.3 \\ & 112.3 \\ & 113.3 \\ & 114.3 \end{aligned}$	$\begin{aligned} & 112.3 \\ & 113.3 \\ & 114.3 \\ & 115.4 \end{aligned}$	$\begin{aligned} & 581430 \\ & 581431 \\ & 581432 \\ & 581433 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 48 \\ & 11 \\ & 23 \\ & 50 \end{aligned}$

Benton Resources Inc.

		Description	Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
118.6	126.1	mainly in the white QV or QV clasts, sporadic black tourmaline clots (up to 5 mm) and rare angular $3 \times 4.5 \mathrm{~cm}$ siliceous	115.4	116.4	581434	1.0	259
		tourmaline-rich clast occur predominantly in qtz bx, interval from 115.4-116.4m contains rounded clasts up to 2 cm	116.4	117.2	581435	0.8	91
		of intense yellowish Fe-carb+chl+fuchsite +/-smokey gray-blue qtz lenses, late qtz-carb stringers as fracture and	117.2	117.9	581436	0.7	390
		small void infill occurs in the qtz bx mostly between 117.2-118.6m and consist of white calcite and semi-translucent	117.9	118.6	581437	0.7	958
		ShZ	118.6	119.6	581438	1.0	117
		Shear Zone	119.6	120.6	581439	1.0	1270
		shear zone or macro breccia with milled clasts given the variety of differing intervals: local intense sericite and chl	120.6	121.6	581440	1.0	108
		with pervasive Fe-carb, few intervals of 0.5 m or less appear to be altered granitic material - usually associated with	121.6	122.6	581441	1.0	809
		chloritic fault gouge material, several intervals of up to 2 m of $\mathrm{chl}+\mathrm{Fe}$-carb fg mafic intrusive, intervals of chl +	122.6	123.6	581442	1.0	5710
		Fe-carb with thin discontinuous smokey gray-blue qtz lenses and minor fuchsite, white glassy QV up to 0.4-0.5m	123.6	124.6	581443	1.0	338
		thick as well as isolated narrow veins/veinlets <1cm thick, shearing ranges from 10 to 35 deg to CA, locally blocky /	124.6	125.6	581444	1.0	7650
		broken but overall recovery of >90\%, all intervals contain minor cubic <2mm Py and rare Cp commonly smeared	124.6	124.6	581445 (Std)	0.0	3990
		along shear planes with chlorite, $119,9-120 \mathrm{~m}$ is 10 cm slug of 50% black tourmaline and 50% whitish qtz material (clast?)	124.6	124.6	581446 (Bln)	0.0	< 5
	129.0	(clast? ${ }^{\text {c }}$	125.6	126.1	581447	0.5	830
126.1		GRT	126.1	127.1	581448	1.0	1190
		Granite	127.1	128.1	581449	1.0	117
	133.8	altered granitoid rock, m-cg, gray, local weak ser, few thin $<2 \mathrm{~cm}$ veins of white qtz at 15-20 deg to CA and as coarse qtz clots, minor disseminated Py associated with qtz vein walls and ser alteration.	128.1	129.0	581450	0.9	971
129.0		Ml	129.0	130.0	581451	1.0	9110
		Mafic Intrusive	130.0	131.0	581452	1.0	121
		altered and sheared mafic intrusive (chl schist), intense chl+Fe-carb, 30% smokey gray-blue qtz as irregular	131.0	132.0	581453	1.0	228
		discontinuous lenses, minor bright green fuchsite, Py generally as small $<1 \mathrm{~mm}$ cubes and rarely as fg masses as	132.0	133.0	581454	1.0	15
		stringers or blebs, trace Cp, white glassy QV material up to 80% over short 0.5 m intervals, qtz also occurs as narrow veins/veinlets mived with calcite margins which also occurs as very pale pink fracture-fill parallel to and crosscutting QV-rich areas, 0.3 m glassy whitish-light gray qtz veining near lower contact also contains coarse 1-3mm sparry dogtooth fe-carb	133.0	133.8	581455	0.8	160
133.8	137.2	QV	133.8	134.8	581456	1.0	599
		Quartz Vein	134.8	135.8	581457	1.0	112

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	$\mathrm{Au}(\mathrm{ppb})$
137.2	139.0	massive white glassy to weak chalky QV, minor Py + chl + Fe-carb +/- fuchsite along stylolitic structures, in lower	135.8	136.6	581458	0.8	2480
		0.40 m of subunit is 5% fine black tourmaline needles/laths $2-5 \mathrm{~mm}$ long massed along veinlets/stringers up to 2 cm wide at $30-40$ deg to CA	136.6	137.2	581459	0.6	546
		MI	137.2	138.2	581460	1.0	14
	143.7	Mafic Intrusive as above at 129.0-133.8m, shearing at 40-45 deg to CA, lower 0.5 m still chl + Fe-carb with minor fuchsite but also contains 25-30\% fine dark brown-black tourmaline as needles, laths. and fine masses, also see increase in coarse Py cubes to 1\%	138.2	139.0	581461	0.8	98
139.0		QV	139.0	140.0	581462	1.0	< 5
		Quartz Vein	140.0	140.5	581463	0.5	<5
		glassy white to gray QV, massive, accumulations of clots/blebs of dark brown to black tourmaline needles/laths and	140.5	141.5	581464	1.0	< 5
		aphanitic masses account for 5% volume	140.5	140.5	581465 (Std)	0.0	994
	150.0	140.5-143.7m: tourmaline zone, overall 60% dark brown to black tourmaline needles/laths up to 1 cm long and	140.5	140.5	581466 (Bln)	0.0	< 5
		aphanitic masses but intergrown into massive intervals (interval from 140.5-143.1m approximately 85\%	141.5	142.5	581467	1.0	< 5
		tourmaline), 40% whitish-pale gray very glassy qtz, remainder is fine green chl, minor Py occurs generally with tourmaline and chl, Py generally occurs as cubes and clots up 2 mm , LC sharp at 45 deg to CA	142.5	143.7	581468	1.2	19
143.7		GDio	143.7	144.7	581469	1.0	59
		Granodiorite					
	158.0	Unit is light gray to green-gray, mg , relatively uniform with weak salt \& pepper texture, local very weak fabric at 40 deg to CA otherwise massive throughout					
		Cut by several sporadic qtz-tourmaline veins (1% volume) ranging from 0.5 cm to 3 cm thick at $30-70$ deg to CA, more prevalent in upper portion of unit					
		LC gradational GRT					
150.0		Granite					
		Unit is gray and coarse-grained					
		Locally porphyritic with 10-15\% white subhedral feldspar phenocrysts					

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
52.4	58.1		48.6	49.6	581489	1.0	38
			49.6	50.6	581490	1.0	238
			50.6	51.6	581491	1.0	106
			51.6	52.4	581492	0.8	19
		GDio	52.4	53.4	581493	1.0	64
		Granodiorite	53.4	54.4	581494	1.0	89
		Unit is mg , pale green, relatively uniform and massive but with weak fabric / foliation at 35-45 deg to CA	54.4	55.4	581495	1.0	< 5
		Coarse qtz-feldspar pegmatitic interval over 30 cm centred at 53.4 m with yellow tinted saussuritized feldspars,	55.4	56.4	581496	1.0	480
		contacts a bit gradational and irregular	56.4	57.4	581497	1.0	814
		53.7-54.0m: 60\% white glassy QV as narrow vein and stringers at 70-75 deg to CA, 5% black tourmaline and 1%	57.4	58.1	581498	0.7	17
		56.5-57.0m: 70\% white QV with chl and wk ser altered granodiorite, minor fine cubic Py+chl associated with few					
		stylolites, UC sharp at 65 deg to CA and LC marked by mm chl fault gouge material at 80 deg to CA					
	69.4	58.0 m : 3.5 cm thick smoky gray QV with black tourmaline, vein contacts sharp at 30-35 deg to CA					
		LC is gradational					
58.1		GRT					
		Granite					
		Unit is cg, gray, massive to weakly foliated 30-45 deg to CA					
		Rare isolated 1-2cm white glassy QV / veinlet with black tourmaline at 70-80 deg to CA					
	74.6	Trace sporadic fine cubic to disseminated blebs of Py					
69.4		MI					
		Mafic Intrusive					
		Unit if dark green, fg, very blocky and broken into thin chloritic mm-scale disks 80-90 deg to CA, recovery 85-90\%					
		Few sporadic cm-scale pinkish qtz-carb veins / stringers, no visible sulphides					
	89.0	UC \& LC badly broken					
74.6		FP					
		Feldspar Porphyry					
		Unit is similar to cg gray granite above (58.1-69.4m) but contains white (rarely pink) subhedral to euhedral feldspar phenocrysts that appear more abundant with depth and account for $5-20 \%$ volume, phenos generally $1-3 \mathrm{~mm}$ but rarely up to 2 cm popcorn xlls					
		Overall massive texture with local weak foliation at 15 deg to CA					

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
63.0	71.4	very siliceous, dominant glassy, translucent quartz layers with fine grained grano/granite, weak sericite alteration (localized) as well as unalterd loc zones of plain granite shearing at 40-50deg fca py throughout 1% w localized $1-2 \mathrm{~mm}$ accululations along q margins (massive, thin layers of sulphide), also sporadic pyrite in cubes/patches in quartz, no vg	56.4	57.4	390215	1.0	42
			57.4	58.4	390216	1.0	93
			58.4	59.4	390217	1.0	17
			59.4	60.4	390218	1.0	12
			60.4	61.4	390219	1.0	7
			61.4	62.3	390220	0.9	9
			62.3	63.0	390221	0.7	7
		MI Mafic Intrusive fg , dark grey-green dyke, dissem cubic pyrite throughout, mod foliation at 65deg, gradational contacts 63-64.5: shearing and mild sericite alteration, local glassy quartz veinlets sub-cm, and chalky q-carb vening 64.5-68.3: as previous but hematized to bold red colour, q-carb veinlets abundance increasing	63.0	64.0	390222	1.0	101
			64.0	65.0	390223	1.0	31
			65.0	66.0	390224	1.0	19
			65.0	66.0	390225 (Std)	1.0	983
			65.0	66.0	390226 (BIn)	1.0	< 5
	96.0	GRT Granite granitic unit w varied grain size, colour 87.3-87.5: qv, semi tranlucent white q with $3-4 \mathrm{~cm}$ tourmaline clast?, $1-2 \% \mathrm{py}$	66.0	67.0	390227	1.0	<5
			67.0	68.0	390228	1.0	<5
			68.0	69.0	390229	1.0	20
			69.0	70.0	390230	1.0	14
			70.0	71.0	390231	1.0	< 5
			71.0	72.0	390232	1.0	208
71.4			87.3	87.5	390233	0.2	80

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
46.1	56.2 60.0	fg, dark choritic patches with med grained brown mica thoughout (gives core a purple look locally when wet) fg pyrite as flakes and pods, elongated in direction of foliation or perp to stress, the larger patches of pyrite ($>2-3 \mathrm{~mm}$) often include mildly magnetic po but abundance is low 37.3-38.5: felsic dyke, feldspar porph 42.5-43.2: feld porph Dy_fel Felsic Dyke feldspar porph f-mg white feldspars in grey matrix, minor pegmatitic and granitic sections of apparently same composition but diff texture, minor pyrite along fractures/veinlets Vt-lap Lapilli Tuff mafic tuff + - lapillis, foliation at 50deg suggests hole is intersecting near vertical strat? minor localized ser alteration, vfg aphanitic near top to coarser lapillis at end wormy quartz veinlets increasing w depth diss fg pyrite - squished, elongated due to stress (this unit was left unsampled but should be revisited once drill hole is complete, and results from previuos tuff are received)	35.0 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.2 44.0 45.0 46.1	36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.2 44.0 45.0 46.1 47.0	390251 390252 390253 390254 390255 390256 390257 390258 390259 390260 390261 390262	$\begin{aligned} & \hline 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.2 \\ & 0.8 \\ & 1.0 \\ & 1.1 \\ & 0.9 \end{aligned}$	

Benton Resources Inc.

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	Au (ppb)
0.0	5.3	Ovb Overburden casing					
5.3	36.8	Vt_maf Mafic Tuff dark grey mafic flow with 1-2mm cloudy flecks of fledspar AND elongated 1-2cm lenses of similar composition, these lapillis and fragments are cloudy non-translucent and are beige to pink. fabric is $45 \mathrm{deg}+-5 \mathrm{deg}$ (on average) and grain size varies from fine to med grained chlorite rich and mild sericite alteration trace py po (\&cpy?) as random flecks within mafic component, and overall not associated with any veinlets. weakly magnetic	$\begin{aligned} & 29.0 \\ & 30.0 \\ & 31.0 \\ & 32.0 \\ & 33.0 \\ & 34.0 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 31.0 \\ & 32.0 \\ & 33.0 \\ & 34.0 \\ & 35.0 \end{aligned}$	$\begin{aligned} & 390271 \\ & 390272 \\ & 390273 \\ & 390274 \\ & 390275 \\ & 390276 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	
36.8	50.3	MI Mafic Intrusive diabase moderately magnetic, speckled looking core (black w white plag dots) characteristic of diabase intrusions in the region, tiny olivine crystals UC at 75 deg					
50.3	62.7	Vt_maf Mafic Tuff fine grained mafic volcanic (flow) weakly magnetic due to diss po very minor quartz stringers minimal alteration/deformation					
62.7	63.3	MI Mafic Intrusive diabase very abrupt or well defined lower contact at 50deg					
63.3	69.4	Dy_Maf Mafic Dyke extremely fine-grained aphanitic rock, medium light grey and massive 63-67.5: very uniform texture, colour, composition 67.5-69.4: 30% wispy carb veinlets					

Benton Resources Inc.

Description			Assay - Sample				
			From	To	Sample number	Length	$\mathrm{Au}(\mathrm{ppb})$
69.4	83.0	MI					
		Mafic Intrusive diabase finer grained					
83.0	96.6	MI	83.0	84.0	390277	1.0	
		Mafic Intrusive	84.0	85.0	390278	1.0	
		bleached, altered section of mafic protolith	85.0	86.0	390279	1.0	
		q veining between $84.9-85.7 \mathrm{~m}$ source of bleaching	86.0	87.0	390280	1.0	
		fuchsite, green mica flaked mineral $<5 \%$ cubic pyrite 2-5\% in two localized patches	87.0	88.0	390281	1.0	
96.6	156.7	V_maf	145.0	146.0	390282	1.0	
		Mafic Volcanic	146.0	147.0	390283	1.0	
		chlorite schist	153.0	154.0	390284	1.0	
		fine grained, wispy fe-carb vienlets, diss fg py,	154.0	155.0	390287	1.0	
		a few localized increases in pyrite along veinlet margins	154.0	155.0	390286 (BIn)	1.0	
		a number of granitic dykes or fragments cutting chlorite	154.0	155.0	390285 (Std)	1.0	
		145.5-147: a number of reddish fragments or mineral growths surrounded by a fain light turquoise alteration +- 1-2\%	155.0	156.0	390288	1.0	
		py 153.5-156: same mafic but prescence of $1-3 \mathrm{~mm}$ flecks of feldspars or $q / f e l d$ filled lapilli? plus increase in sulphide 1-3\%, localy magnetic po	156.0	156.8	390289	0.8	
156.7	171.6	Gab					
		Gabbro diabase					
		$2-3 \%$ fg po, weakly magnetic many granitic inlcusions (felsic dykes and fragments)					
171.6	191.8	V_maf					
		Mafic Volcanic fg chlorite rich mafic					
		minimal to no deformation or alteration					
		frequently inundated w wispy veinlets and some sections show evidence of flow/lapillis					
		a number of felsic/granitic intrusions and fragments, as well as gabbro					

Benton Resources Inc.

Benton Resources Inc.

	$1: 1,500$

Appendix II - Assay Certificates

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

55 Rock samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A17-07654

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Emmanuel Eseme, Ph.D.
Quality Control

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
351101	2250	
351102	1270	
351103	372	
351104	13	
351105	5	
351106	7	
351107	19	
351108	5	
351109	< 5	
351110	< 5	
351111	< 5	
351112	< 5	
351113	< 5	
351114	22	
351115	< 5	
351116	10	
351117	1760	
351118	> 5000	11.1
351119	771	
351120	795	
351121	< 5	
351122	904	
351123	142	
351124	158	
351125	175	
351126	141	
351127	1120	
351128	1270	
351129	1830	
351130	553	
351131	178	
351132	910	
351133	199	
351134	34	
351135	28	
351136	15	
351137	41	
351138	29	
351139	59	
351140	788	
351141	9	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
351142	86	
351143	924	
351144	20	
351145	8	
351146	14	
351147	61	
351148	9	
351149	10	
351150	9	
351151	7	
351152	8	
351153	67	
351154	11	
351155	9	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	$\begin{aligned} & \text { FA- } \\ & \text { GRA } \end{aligned}$
OXN117 Meas		7.72
OXN117 Cert		7.679
OREAS 214 Meas		2.90
OREAS 214 Cert		3.03
OREAS 218 Meas	514	
OREAS 218 Cert	525	
OREAS 218 Meas	506	
OREAS 218 Cert	525	
OREAS 218 Meas	516	
OREAS 218 Cert	525	
OREAS 224 (Fire Assay) Meas	2070	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2080	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2060	
OREAS 224 (Fire Assay) Cert	2150	
351110 Orig	< 5	
351110 Dup	< 5	
351118 Orig		10.8
351118 Dup		11.4
351129 Orig	1700	
351129 Dup	1960	
351130 Orig	550	
351130 Dup	556	
351145 Orig	8	
351145 Dup	7	
351150 Orig	9	
351150 Split PREP DUP	11	
351155 Orig	9	
351155 Dup	9	
Method Blank	< 5	
Method Blank		< 0.03
Method Blank	< 5	

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

135 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A17-07966

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Footnote: Sample 351221 is INS for further analysis.

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
351156	45	
351157	649	
351158	240	
351159	8	
351160	113	
351161	< 5	
351162	19	
351163	20	
351164	< 5	
351165	< 5	
351166	78	
351167	191	
351168	741	
351169	1980	
351170	173	
351171	52	
351172	29	
351173	394	
351174	8	
351175	110	
351176	16	
351177	422	
351178	40	
351179	< 5	
351180	817	
351181	< 5	
351182	< 5	
351183	7	
351184	196	
351185	106	
351186	20	
351187	1190	
351188	944	
351189	85	
351190	24	
351191	24	
351192	30	
351193	100	
351194	< 5	
351195	90	
351196	118	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
351197	15	
351198	80	
351199	106	
351200	320	
351201	122	
351202	< 5	
351203	4850	
351204	16	
351205	10	
351206	7	
351207	< 5	
351208	48	
351209	276	
351210	78	
351211	22	
351212	14	
351213	5	
351214	7	
351215	291	
351216	23	
351217	15	
351218	83	
351219	> 5000	37.2
351220	122	
351221	> 5000	
351222	< 5	
351223	28	
351224	198	
351225	89	
351226	12	
351227	9	
351228	7	
351229	304	
351230	198	
351231	11	
351232	8	
351233	< 5	
351234	6	
351235	< 5	
351236	21	
351237	573	
351238	50	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
351239	< 5	
351240	1090	
351241	< 5	
351242	39	
351243	29	
351244	24	
351245	22	
351246	42	
351247	18	
351248	42	
351249	16	
351250	121	
351251	196	
351252	6	
351253	8	
351254	17	
351255	50	
351256	36	
351257	1100	
351258	26	
351259	42	
351260	95	
351261	< 5	
351262	82	
351263	< 5	
351264	< 5	
351265	147	
351266	45	
351267	55	
351268	49	
351269	637	
351270	318	
351271	1860	
351272	87	
351273	46	
351274	246	
351275	10	
351276	< 5	
351277	16	
351278	27	
351279	90	

Analyte Symbol	Au	Au
Unit Symbol	ppb	$\mathrm{g} /$ tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
351280	1060	
351281	<5	
351282	31	
351283	64	
351284	405	
351285	156	
351286	55	
351287	52	
351288	1430	
351289	280	
351290	<5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
OXN117 Meas		8.03
OXN117 Cert		7.679
OREAS 214 Meas		3.19
OREAS 214 Cert		3.03
OREAS 218 Meas	519	
OREAS 218 Cert	525	
OREAS 218 Meas	504	
OREAS 218 Cert	525	
OREAS 218 Meas	509	
OREAS 218 Cert	525	
OREAS 218 Meas	543	
OREAS 218 Cert	525	
OREAS 224 (Fire Assay) Meas	2050	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2060	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2110	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2060	
OREAS 224 (Fire Assay) Cert	2150	
351165 Orig	< 5	
351165 Dup	< 5	
351175 Orig	103	
351175 Dup	117	
351185 Orig	106	
351185 Dup	105	
351200 Orig	366	
351200 Dup	274	
351205 Orig	10	
351205 Split PREP DUP	12	
351210 Orig	81	
351210 Dup	74	
351219 Orig		39.5
351219 Dup		35.0

Analyte Symbol	Au	Au				
Unit Symbol	ppb	g/tonne				
Lower Limit	5	l.03				
Method Code	FA-AA	FA-				
GRA			,	351220 Orig	138	
:---	---:	---:				
351220 Dup	105					
351234 Orig	5					
351234 Dup	6					
351244 Orig	24					
351244 Dup	24					
351254 Orig	16					
351254 Dup	18					
351255 Orig	50					
351255 Split PREP DUP	52					
351268 Orig	48					
351268 Dup	50					
351278 Orig	28					
351278 Dup	26					
351288 Orig	1330					
351288 Dup	1530					
Method Blank	<5					
Method Blank		<0.03				

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

115 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)
Code 1A3-Tbay Au - Fire Assay Gravimetric (QOP Fire Assay Tbay)

REPORT A17-08281

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
351291	< 5	
351292	5	
351293	8	
351294	1190	
351295	574	
351296	761	
351297	88	
351298	11	
351299	7	
351300	8	
351301	197	
351302	524	
351303	1090	
351304	> 5000	9.51
351305	> 5000	8.35
351306	726	
351307	60	
351308	53	
351309	16	
351310	105	
351311	< 5	
351312	16	
351313	33	
351314	15	
351315	132	
351316	839	
351317	58	
351318	91	
351319	67	
351320	44	
351321	24	
351322	92	
351323	307	
351324	64	
351325	336	
351326	406	
351327	94	
351328	69	
351329	211	
351330	> 5000	8.38
351331	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
351332	997	
351333	4330	
351334	< 5	
351335	67	
351336	20	
351337	9	
351338	< 5	
351339	< 5	
351340	17	
351341	12	
351342	87	
351343	201	
351344	1010	
351345	136	
351346	362	
351347	< 5	
351348	174	
351349	1040	
351350	< 5	
351351	126	
351352	5	
351353	124	
351354	288	
351355	142	
351356	30	
351357	> 5000	5.46
351358	< 5	
351359	< 5	
351360	125	
351361	24	
351362	11	
351363	6	
351364	< 5	
351365	< 5	
351366	< 5	
351367	6	
351368	17	
351369	65	
351370	21	
351371	132	
351372	< 5	
351373	29	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
351374	12	
351375	7	
351376	24	
351377	21	
351378	390	
351379	148	
351380	94	
351381	21	
351382	<5	
351383	<5	
351384	<5	
351385	2650	
351386	15	
351387	18	
351388	15	
351389	35	
351390	30	
351391	301	
351392	104	
351393	51	
351394	62	
351395	<5	
351396	1090	
351397	<5	
351398	<5	
351399	<5	
351400	15	
351401	<5	
351402	80	
351403	12	
351404	<5	
351405	24	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	$\begin{array}{\|l\|} \hline \text { FA- } \\ \text { GRA } \end{array}$
OXN117 Meas		7.65
OXN117 Cert		7.679
OREAS 214 Meas		2.92
OREAS 214 Cert		3.03
OREAS 218 Meas	518	
OREAS 218 Cert	525	
OREAS 218 Meas	525	
OREAS 218 Cert	525	
OREAS 218 Meas	522	
OREAS 218 Cert	525	
OREAS 218 Meas	507	
OREAS 218 Cert	525	
OREAS 224 (Fire Assay) Meas	2110	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2100	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2100	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2090	
OREAS 224 (Fire Assay) Cert	2150	
351300 Orig	9	
351300 Dup	7	
351312 Orig	17	
351312 Dup	15	
351320 Orig	41	
351320 Dup	46	
351335 Orig	61	
351335 Dup	73	
351340 Orig	17	
351340 Split PREP DUP	17	
351345 Orig	129	
351345 Dup	142	
351355 Orig	143	
351355 Dup	140	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
351369 Orig	78	
351369 Dup	52	
351379 Orig	157	
351379 Dup	139	
351389 Orig	38	
351389 Dup	31	
351390 Orig	30	
351390 Split	27	
PREP DUP	12	
351403 Orig	12	
351403 Dup	<5	
Method Blank		<0.03
Method Blank		

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

33 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A17-09076

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Emmanuel Eseme, Ph.D.
Quality Control

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
170134	21
170135	< 5
170136	25
170137	< 5
170138	< 5
170139	95
170140	< 5
170141	16
170142	12
170143	< 5
170144	8
170145	76
170146	50
170147	< 5
170148	< 5
170149	6
170150	6
581151	5
581152	< 5
581153	33
581154	52
581155	15
581156	< 5
581157	183
581158	102
581159	11
581160	32
581161	54
581162	16
581163	25
581164	103
581165	< 5
581166	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 223 (Fire Assay) Meas	1780
OREAS 223 (Fire Assay) Cert	1780
OREAS 218 Meas	553
OREAS 218 Cert	531
170143 Orig	<5
170143 Dup	<5
581153 Orig	34
581153 Dup	31
581163 Orig	21
581163 Dup	28
Method Blank	<5
Method Blank	<5

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

55 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)
Code 1E3-Tbay Aqua Regia ICP(AQUAGEO)

REPORT A17-13572
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	ppm	\%	ppm							
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP																					
581201	< 5	<0.2	0.6	97	1400	<1	84	<2	145	4.50	59	<10	36	<0.5	<2	5.74	45	162	9.15	10	<1	0.15	<10
581202	36	0.5	< 0.5	43	418	1	96	5	151	2.57	258	< 10	34	< 0.5	<2	1.41	35	25	9.57	< 10	1	0.32	12
581203	39	< 0.2	0.6	38	1790	<1	70	3	94	3.33	121	<10	38	< 0.5	<2	8.47	40	61	9.65	< 10	1	0.23	<10
581204	84	< 0.2	< 0.5	76	2380	<1	70	<2	57	3.04	2230	< 10	35	< 0.5	4	> 10.0	38	56	6.59	< 10	<1	0.21	<10
581205	19	< 0.2	< 0.5	100	1600	<1	39	<2	123	4.29	49	<10	17	< 0.5	<2	5.24	41	39	12.0	20	<1	0.08	<10
581206	20	< 0.2	< 0.5	68	1750	<1	34	<2	101	4.40	14	<10	<10	< 0.5	<2	4.54	33	37	10.5	20	<1	<0.01	<10
581207	< 5																						
581208	12																						
581209	16																						
581210	50																						
581211	134																						
581212	70																						
581213	287																						
581214	174																						
581215	450																						
581216	180																						
581217	927																						
581218	> 5000																						
581219	1240																						
581220	640																						
581221	1080																						
581222	< 5																						
581223	21																						
581224	162																						
581225	22																						
581226	225																						
581227	192																						
581228	35																						
581229	24																						
581230	33																						
581231	10																						
581232	< 5																						
581233	49																						
581234	< 5																						
581235	< 5																						
581236	< 5																						
581237	< 5																						
581238	< 5																						
581239	< 5																						
581240	10																						
581241	134																						
581242	< 5																						

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	ppm	\%	ppm							
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP																					
581243	<5																						
581244	6																						
581245	6																						
581246	< 5																						
581247	44																						
581248	< 5																						
581249	<5																						
581250	<5																						
581251	< 5																						
581252	93																						
581253	16																						
581254	10																						
581255	< 5																						

Analyte Symbol	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr	Au
Unit Symbol	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm	g/tonne							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.03
Method Code	AR-ICP	FAGRA															
581201	3.16	0.044	0.035	0.13	4	20	132	< 0.01	<20	< 1	<2	< 10	158	<10	8	5	
581202	1.20	0.038	0.029	6.28	6	5	36	< 0.01	<20	<1	<2	< 10	33	<10	10	94	
581203	3.01	0.034	0.030	2.85	4	15	275	<0.01	<20	<1	<2	< 10	84	< 10	12	9	
581204	3.10	0.035	0.029	0.45	2	15	286	< 0.01	<20	<1	<2	< 10	96	<10	17	9	
581205	2.66	0.029	0.046	3.60	3	24	107	< 0.01	<20	<1	<2	< 10	222	<10	14	13	
581206	2.53	0.033	0.045	0.54	3	31	81	< 0.01	<20	2	<2	< 10	237	< 10	7	9	
581207																	
581208																	
581209																	
581210																	
581211																	
581212																	
581213																	
581214																	
581215																	
581216																	
581217																	
581218																	15.5
581219																	
581220																	
581221																	
581222																	
581223																	
581224																	
581225																	
581226																	
581227																	
581228																	
581229																	
581230																	
581231																	
581232																	
581233																	
581234																	
581235																	
581236																	
581237																	
581238																	
581239																	
581240																	
581241																	

Analyte Symbol	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr	Au
Unit Symbol	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm	g/tonne							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.03
Method Code	AR-ICP	FAGRA															
581242																	
581243																	
581244																	
581245																	
581246																	
581247																	
581248																	
581249																	
581250																	
581251																	
581252																	
581253																	
581254																	
581255																	

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	ppm	\%	ppm							
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP																					
GXR-1 Meas		27.1	2.7	1190	773	14	31	603	681	0.34	357	11	479	0.8	1420	0.76	4	7	22.1	< 10	4	0.03	< 10
GXR-1 Cert		31.0	3.30	1110	852	18.0	41.0	730	760	3.52	427	15.0	750	1.22	1380	0.960	8.20	12.0	23.6	13.8	3.90	0.050	7.50
GXR-4 Meas		3.5	< 0.5	6510	140	310	36	42	68	2.72	99	< 10	46	1.4	5	0.90	13	55	3.06	10	<1	1.81	51
GXR-4 Cert		4.0	0.860	6520	155	310	42.0	52.0	73.0	7.20	98.0	4.50	1640	1.90	19.0	1.01	14.6	64.0	3.09	20.0	0.110	4.01	64.5
GXR-6 Meas		0.3	< 0.5	70	1080	2	22	91	124	7.18	226	< 10	953	0.9	<2	0.15	14	86	5.65	20	1	1.23	11
GXR-6 Cert		1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9
OREAS 214 Meas																							
OREAS 214 Cert																							
OREAS 216 (Fire Assay) Meas																							
OREAS 216 (Fire Assay) Cert																							
OREAS 220 (Fire Assay) Meas	848																						
OREAS 220 (Fire Assay) Cert	828																						
OREAS 220 (Fire Assay) Meas	842																						
OREAS 220 (Fire Assay) Cert	828																						
OREAS 224 (Fire Assay) Meas	2210																						
OREAS 224 (Fire Assay) Cert	2150																						
OREAS 224 (Fire Assay) Meas	2170																						
OREAS 224 (Fire Assay) Cert	2150																						
581210 Orig	58																						
581210 Dup	42																						
581218 Orig																							
581218 Dup																							
581220 Orig	664																						
581220 Dup	615																						
581230 Orig	29																						
581230 Dup	37																						
581245 Orig	6																						
581245 Dup	6																						
581250 Orig	< 5																						
581250 Split PREP DUP	< 5																						
581255 Orig	< 5																						
581255 Dup	5																						
Method Blank	< 5																						
Method Blank	< 5																						

Report: A17-13572

Analyte Symbol	Au	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La
Unit Symbol	ppb	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	ppm	\%	ppm							
Lower Limit	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10
Method Code	FA-AA	AR-ICP																					
Method Blank	< 5																						
Method Blank	<5																						
Method Blank		<0.2	<0.5	< 1	< 5	< 1	<1	<2	<2	< 0.01	<2	< 10	< 10	< 0.5	<2	< 0.01	< 1	< 1	< 0.01	<10	<1	< 0.01	<10
Method Blank		<0.2	< 0.5	<1	<5	<1	<1	<2	<2	< 0.01	<2	< 10	< 10	<0.5	<2	< 0.01	<1	<1	< 0.01	<10	<1	< 0.01	<10
Method Blank																							

Analyte Symbol	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr	Au
Unit Symbol	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm	g/tonne							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.03
Method Code	AR-ICP	FAGRA															
GXR-1 Meas	0.14	0.060	0.044	0.20	84	1	181	<0.01	< 20	14	<2	31	72	145	24	13	
GXR-1 Cert	0.217	0.0520	0.0650	0.257	122	1.58	275	0.036	2.44	13.0	0.390	34.9	80.0	164	32.0	38.0	
GXR-4 Meas	1.63	0.148	0.122	1.73	3	7	72	0.14	< 20	< 1	<2	< 10	72	12	12	10	
GXR-4 Cert	1.66	0.564	0.120	1.77	4.80	7.70	221	0.29	22.5	0.970	3.20	6.20	87.0	30.8	14.0	186	
GXR-6 Meas	0.42	0.091	0.034	0.01	4	22	31		< 20	< 1	<2	< 10	168	< 10	6	10	
GXR-6 Cert	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110	
OREAS 214 Meas																	2.96
OREAS 214 Cert																	3.03
OREAS 216 (Fire Assay) Meas																	6.54
OREAS 216 (Fire Assay) Cert																	6.66
OREAS 220 (Fire Assay) Meas																	
OREAS 220 (Fire Assay) Cert																	
OREAS 220 (Fire Assay) Meas																	
OREAS 220 (Fire Assay) Cert																	
OREAS 224 (Fire Assay) Meas																	
OREAS 224 (Fire Assay) Cert																	
OREAS 224 (Fire Assay) Meas																	
OREAS 224 (Fire Assay) Cert																	
581210 Orig																	
581210 Dup																	
581218 Orig																	14.7
581218 Dup																	16.3
581220 Orig																	
581220 Dup																	
581230 Orig																	
581230 Dup																	
581245 Orig																	
581245 Dup																	
581250 Orig																	
$\begin{aligned} & 581250 \text { Split } \\ & \text { PREP DUP } \end{aligned}$																	
581255 Orig																	
581255 Dup																	
Method Blank																	

Analyte Symbol	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	w	Y	Zr	Au
Unit Symbol	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm	g/tonne							
Lower Limit	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1	0.03
Method Code	AR-ICP	$\begin{array}{\|l} \hline \text { FA- } \\ \text { GRA } \end{array}$															
Method Blank																	
Method Blank																	
Method Blank																	
Method Blank	< 0.01	0.012	< 0.001	< 0.01	<2	<1	< 1	< 0.01	<20	<1	<2	< 10	< 1	<10	<1	<1	
Method Blank	< 0.01	0.014	<0.001	< 0.01	<2	<1	<1	< 0.01	<20	<1	<2	<10	<1	<10	<1	<1	
Method Blank																	<0.03

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

127 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A17-14323

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Elitsa Hrischeva, Ph.D. Quality Control

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
581299	27	
581300	54	
581301	986	
581302	< 5	
581303	809	
581304	53	
581305	242	
581306	20	
581307	166	
581308	330	
581309	10	
581310	24	
581311	31	
581312	> 5000	7.50
581313	446	
581314	576	
581315	2390	
581316	284	
581317	623	
581318	< 5	
581319	< 5	
581320	190	
581321	962	
581322	< 5	
581323	348	
581324	139	
581325	684	
581326	24	
581327	40	
581328	48	
581329	20	
581330	30	
581331	29	
581332	5	
581333	10	
581334	6	
581335	< 5	
581336	< 5	
581337	< 5	
581338	< 5	
581339	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
581340	< 5	
581341	994	
581342	< 5	
581343	19	
581344	< 5	
581345	82	
581346	46	
581347	51	
581348	35	
581349	63	
581350	55	
581351	170	
581352	30	
581353	79	
581354	46	
581355	169	
581356	37	
581357	< 5	
581358	85	
581359	105	
581360	16	
581361	998	
581362	< 5	
581363	15	
581364	33	
581365	25	
581366	14	
581367	17	
581368	24	
581369	168	
581370	5	
581371	12	
581372	137	
581373	14	
581374	254	
581375	58	
581376	542	
581377	180	
581378	147	
581379	770	
581380	184	
581381	970	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
581382	< 5	
581383	20	
581384	46	
581385	208	
581386	217	
581387	713	
581388	356	
581389	8	
581390	60	
581391	1750	
581392	338	
581393	19	
581394	68	
581395	27	
581396	6	
581397	6	
581398	10	
581399	6	
581400	175	
581401	129	
581402	< 5	
581403	198	
581404	37	
581405	18	
581406	9	
581407	12	
581408	241	
581409	24	
581410	94	
581411	431	
581412	< 5	
581114	19	
581413	576	
581414	862	
581415	326	
581416	27	
581417	5	
581418	90	
581419	32	
581420	23	
581421	1020	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
581422	<5	
581423	233	
581424	7	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
OREAS 216 (Fire Assay) Meas		6.48
OREAS 216 (Fire Assay) Cert		6.66
OREAS 220 (Fire Assay) Meas	874	
OREAS 220 (Fire Assay) Cert	828	
OREAS 220 (Fire Assay) Meas	878	
OREAS 220 (Fire Assay) Cert	828	
OREAS 220 (Fire Assay) Meas	872	
OREAS 220 (Fire Assay) Cert	828	
OREAS 220 (Fire Assay) Meas	855	
OREAS 220 (Fire Assay) Cert	828	
Klen 1.76 Meas	1750	
Klen 1.76 Cert	1760	
Klen 1.76 Meas	1760	
Klen 1.76 Cert	1760	
Klen 1.76 Meas	1770	
Klen 1.76 Cert	1760	
Klen 1.76 Meas	1820	
Klen 1.76 Cert	1760	
Klen 3.65 Meas		3.61
Klen 3.65 Cert		3.65
581308 Orig	332	
581308 Dup	327	
581312 Dup		7.50
581318 Orig	< 5	
581318 Dup	< 5	
581328 Orig	50	
581328 Dup	45	
581343 Orig	20	
581343 Dup	17	
581348 Orig	35	
581348 Split PREP DUP	38	
581353 Orig	72	
581353 Dup	86	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
581363 Orig	14	
581363 Dup	15	
581377 Orig	182	
581377 Dup	177	
581387 Orig	697	
581387 Dup	728	
581397 Dup	6	
581398 Orig	10	
581398 Split	12	
PREP DUP	377	
581411 Orig	385	
581411 Dup	48	
581420 Orig	22	
581420 Dup	23	
Method Blank	<5	
Method Blank	8	
Method Blank	<5	
Method Blank		<0.03

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

43 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A17-13868
This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Emmanuel Eseme, Ph.D.
Quality Control

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
581298	5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OxK119 Meas	3640
OxK119 Cert	3604.0 00
OxK119 Meas	3530
OxK119 Cert	3604.0 00
OREAS 220 (Fire Assay) Meas	882
OREAS 220 (Fire Assay) Cert	828
OREAS 220 (Fire Assay) Meas	877
OREAS 220 (Fire Assay) Cert	828
581265 Orig	26
581265 Dup	20
581275 Orig	147
581275 Dup	148
581285 Orig	91
581285 Dup	82
Method Blank	<5
Method Blank	<5
Method Blank	<5

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

9 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Geraldton Au - Fire Assay AA

REPORT A18-02082

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
581425	156
581426	567
581427	52
581428	298
581429	326
581430	48
581431	11
581432	23
581433	50

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 218 Meas	542
OREAS 218 Cert	531
OREAS 220 (Fire Assay) Meas	882
OREAS 220 (Fire Assay) Cert	828
Method Blank	<5

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

40 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A18-02461

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Emmanuel Eseme, Ph.D.
Quality Control

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	$\begin{aligned} & \text { FA- } \\ & \text { GRA } \end{aligned}$
581461	98	
581462	< 5	
581463	< 5	
581464	< 5	
581465	994	
581466	< 5	
581467	< 5	
581468	19	
581469	59	
581470	< 5	
581471	8	
581472	< 5	
581473	6	
581474	5	
581475	111	
581476	> 5000	5.47
581477	26	
581478	113	
581479	192	
581480	36	
581481	34	
581482	680	
581483	104	
581484	< 5	
581485	124	
581486	< 5	
581487	307	
581488	490	
581489	38	
581490	238	
581491	106	
581492	19	
581493	64	
581494	89	
581495	< 5	
581496	480	
581497	814	
581498	17	
581499	56	
581500	58	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
OREAS 214 Meas		3.04
OREAS 214 Cert		3.03
OREAS 216 (Fire		6.68
Assay) Meas		6.66
OREAS 216 (Fire		
Assay) Cert		

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

60 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A18-02210

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3

Emmanuel Eseme, Ph.D.
Quality Control

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
581434	259	
581435	91	
581436	390	
581437	958	
581438	117	
581439	1270	
581440	108	
581441	809	
581442	> 5000	5.71
581443	338	
581444	> 5000	7.65
581445	3990	
581446	< 5	
581447	830	
581448	1190	
581449	117	
581450	971	
581451	> 5000	9.11
581452	121	
581453	228	
581454	15	
581455	160	
581456	599	
581457	112	
581458	2480	
581459	546	
581460	14	
390201	7	
390202	< 5	
390203	19	
390204	292	
390205	983	
390206	< 5	
390207	80	
390208	< 5	
390209	6	
390210	< 5	
390211	< 5	
390212	< 5	
390213	< 5	
390214	88	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
390215	42	
390216	93	
390217	17	
390218	12	
390219	7	
390220	9	
390221	7	
390222	101	
390223	31	
390224	19	
390225	983	
390226	<5	
390227	<5	
390228	<5	
390229	20	
390230	14	
390231	<5	
390232	208	
390233	80	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
OREAS 214 Meas		3.12
OREAS 214 Cert		3.03
OREAS 216 (Fire Assay) Meas		6.83
OREAS 216 (Fire Assay) Cert		6.66
OREAS 254 Meas	2450	
OREAS 254 Cert	2550	
OREAS 218 Meas	516	
OREAS 218 Cert	531	
OREAS 218 Meas	546	
OREAS 218 Cert	531	
OREAS 218 Meas	547	
OREAS 218 Cert	531	
581449 Orig	122	
581449 Dup	112	
581451 Orig		9.32
581451 Dup		8.90
581457 Orig	118	
581457 Dup	106	
390207 Orig	88	
390207 Dup	72	
390223 Split	36	
PREP DUP	26	
390224 Orig	<5	
390224 Dup	12	
390232 Orig	211	
390232 Dup	204	
Method Blank	<5	
Method Blank		<0.03
Method Blank	<5	
Method Blank	<5	

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

58 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)
Code 1C-OES-Tbay Fire Assay ICPOES (QOP Fire Assay Tbay)
Code 1E3-Tbay Aqua Regia ICP(AQUAGEO)

REPORT A18-02983

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:

If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Values which exceed the upper limit should be assayed for accurate numbers.
Footnote: There is an insufficient sample 390245 for the 1COES.

Results

Analyte Symbol	Au	Au	Pd	Pt	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga
Unit Symbol	ppb	ppb	ppb	ppb	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm							
Lower Limit	5	2	5	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10
Method Code	FA-AA	FA-ICP	FA-ICP	FA-ICP	AR-ICP																		
390234	< 5	<2	< 5	< 5	<0.2	<0.5	30	1030	<1	38	<2	349	3.72	3	<10	48	<0.5	<2	0.33	19	22	5.51	10
390235	< 5	<2	< 5	< 5	< 0.2	0.8	93	837	<1	39	<2	258	3.14	3	< 10	73	< 0.5	<2	0.20	19	19	4.85	10
390236	< 5	<2	< 5	< 5	<0.2	<0.5	<1	931	<1	48	<2	264	3.99	2	< 10	29	<0.5	<2	0.22	22	28	5.45	10
390237	< 5	<2	< 5	< 5	<0.2	<0.5	24	794	<1	35	<2	223	3.55	<2	< 10	45	<0.5	<2	0.36	20	20	5.12	10
390238	< 5	<2	< 5	< 5	<0.2	<0.5	70	849	<1	37	<2	251	3.57	<2	<10	40	<0.5	<2	0.41	23	21	5.75	10
390239	< 5	<2	< 5	< 5	<0.2	<0.5	6	396	<1	6	6	89	1.38	<2	< 10	21	<0.5	<2	0.90	6	3	1.88	<10
390240	< 5	<2	< 5	< 5	<0.2	< 0.5	14	683	<1	14	<2	176	2.41	<2	< 10	57	< 0.5	<2	0.37	14	10	3.70	10
390241	< 5	<2	< 5	< 5	< 0.2	<0.5	15	607	<1	2	<2	135	1.83	<2	< 10	122	< 0.5	<2	0.26	9	<1	3.52	10
390242	< 5	<2	< 5	< 5	0.6	< 0.5	322	694	<1	29	5	265	2.41	4	< 10	91	<0.5	<2	0.50	20	8	4.60	10
390243	< 5	<2	< 5	< 5	<0.2	<0.5	1	684	<1	30	6	310	3.08	<2	< 10	76	<0.5	<2	0.44	16	22	4.38	10
390244	< 5	<2	< 5	<5	<0.2	0.6	23	317	<1	9	12	251	1.38	2	<10	32	<0.5	<2	1.18	8	3	1.87	<10
390245	116				1.9	< 0.5	3680	644	< 1	297	5	59	3.54	4	< 10	61	< 0.5	<2	2.97	51	112	7.11	<10
390246	< 5	<2	< 5	< 5	<0.2	<0.5	<1	< 5	<1	9	<2	<2	0.01	<2	< 10	< 10	<0.5	<2	0.03	< 1	16	0.05	<10
390247	< 5	<2	< 5	< 5	<0.2	< 0.5	21	231	<1	7	7	144	1.22	<2	<10	25	< 0.5	<2	0.82	8	5	1.63	<10
390248	< 5	<2	< 5	< 5	0.3	2.4	174	741	<1	29	2	1020	2.32	<2	< 10	45	< 0.5	<2	0.63	20	10	4.39	10
390249	< 5	<2	< 5	< 5	<0.2	<0.5	16	1080	<1	47	<2	520	4.04	<2	< 10	44	<0.5	<2	0.22	21	41	5.90	10
390250	< 5	<2	< 5	< 5	<0.2	0.6	153	1050	<1	58	4	793	4.49	<2	< 10	60	< 0.5	<2	0.35	27	68	7.16	10
390251	< 5	<2	< 5	< 5	0.2	0.9	178	921	<1	62	5	672	3.51	<2	< 10	66	<0.5	<2	0.28	28	53	5.68	10
390252	< 5	<2	< 5	< 5	<0.2	<0.5	46	810	<1	54	<2	390	3.10	<2	<10	30	< 0.5	<2	0.30	24	61	5.02	10
390253	< 5	<2	< 5	< 5	0.3	<0.5	192	313	<1	13	3	115	1.19	<2	< 10	12	< 0.5	<2	0.62	12	15	2.09	<10
390254	< 5	<2	< 5	< 5	0.3	<0.5	154	495	< 1	23	6	180	2.41	<2	< 10	29	<0.5	<2	0.83	17	22	3.70	<10
390255	< 5	<2	< 5	< 5	<0.2	<0.5	73	773	<1	44	2	323	3.13	<2	<10	46	<0.5	<2	0.46	23	39	5.32	10
390256	< 5	<2	< 5	< 5	0.3	0.6	210	897	<1	78	6	540	4.51	<2	< 10	35	<0.5	<2	0.47	31	74	7.10	20
390257	< 5	<2	< 5	< 5	<0.2	< 0.5	14	563	<1	37	3	104	2.03	<2	< 10	43	< 0.5	<2	0.99	12	48	3.45	<10
390258	< 5	<2	< 5	< 5	0.2	<0.5	21	327	<1	19	5	63	2.09	<2	< 10	28	<0.5	<2	1.58	10	26	2.50	<10
390259	< 5	<2	< 5	< 5	<0.2	< 0.5	1	890	< 1	46	<2	192	4.40	<2	< 10	92	<0.5	<2	0.41	23	32	5.41	10
390260	< 5	<2	< 5	< 5	< 0.2	< 0.5	72	933	<1	46	<2	225	4.58	<2	< 10	117	<0.5	<2	0.38	22	34	5.47	10
390261	< 5	<2	< 5	< 5	<0.2	<0.5	14	1010	< 1	37	<2	250	3.75	<2	< 10	37	<0.5	<2	0.96	20	31	5.47	10
390262	< 5	<2	< 5	< 5	0.2	<0.5	84	800	<1	18	<2	177	3.01	<2	< 10	64	<0.5	<2	1.48	14	17	4.19	10
390263	< 5	<2	< 5	< 5	<0.2	< 0.5	135	401	4	14	2	90	2.25	5	< 10	123	< 0.5	<2	1.83	12	18	2.53	<10
390264	< 5	<2	< 5	< 5	<0.2	< 0.5	6	713	2	38	<2	103	2.99	14	< 10	116	< 0.5	<2	2.72	12	28	3.72	10
390265	100	98	1410	290	1.5	0.6	3610	640	<1	290	5	56	3.49	<2	< 10	78	<0.5	<2	2.90	51	112	7.00	<10
390266	< 5	<2	< 5	< 5	<0.2	<0.5	2	5	<1	10	<2	<2	0.02	<2	< 10	< 10	<0.5	<2	0.04	<1	16	0.05	<10
390267	< 5	<2	< 5	< 5	<0.2	<0.5	<1	633	< 1	57	<2	78	2.09	15	< 10	19	<0.5	<2	3.11	14	117	3.95	<10
390268	< 5	<2	< 5	< 5	0.3	<0.5	245	1150	2	90	<2	108	4.00	9	< 10	36	<0.5	<2	4.74	30	159	6.46	10
390269	58	57	< 5	< 5	1.4	< 0.5	879	1120	4	88	3	109	3.80	<2	< 10	26	< 0.5	73	3.43	62	139	9.37	10
390270	< 5	<2	< 5	< 5	0.2	0.5	40	1290	1	99	<2	94	4.93	<2	< 10	51	<0.5	<2	4.33	31	206	7.90	10
390271	< 5	4	< 5	< 5	0.6	<0.5	241	616	< 1	36	4	136	2.14	<2	< 10	26	< 0.5	<2	1.74	13	32	3.18	< 10
390272	< 5	2	< 5	< 5	0.6	< 0.5	273	567	<1	40	4	171	2.73	<2	< 10	46	< 0.5	<2	1.44	16	35	3.71	10
390273	5	<2	< 5	< 5	0.3	< 0.5	26	444	<1	32	<2	130	2.05	<2	< 10	31	< 0.5	<2	0.99	13	31	2.95	<10
390274	14	13	< 5	< 5	1.4	<0.5	753	358	<1	32	2	133	1.68	<2	<10	23	<0.5	<2	0.71	13	33	2.62	<10
390275	< 5	<2	< 5	< 5	0.3	<0.5	137	401	<1	31	2	154	1.67	<2	< 10	24	<0.5	<2	0.89	12	35	2.72	<10

Analyte Symbol	Au	Au	Pd	Pt	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga
Unit Symbol	ppb	ppb	ppb	ppb	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm							
Lower Limit	5	2	5	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10
Method Code	FA-AA	FA-ICP	FA-ICP	FA-ICP	AR-ICP																		
390276	19	14	< 5	< 5	2.4	<0.5	373	733	<1	294	<2	76	2.15	6	<10	15	<0.5	<2	1.83	42	378	4.29	<10
390277	< 5	4	< 5	< 5	< 0.2	< 0.5	33	846	< 1	64	<2	82	2.93	3	< 10	21	< 0.5	<2	2.99	27	84	5.65	10
390278	< 5	2	< 5	< 5	0.2	< 0.5	137	876	< 1	46	5	90	2.73	2	< 10	19	< 0.5	<2	4.17	32	52	5.57	< 10
390279	< 5	4	< 5	< 5	0.3	< 0.5	188	617	< 1	23	17	48	2.80	3	< 10	10	<0.5	<2	5.38	17	33	3.83	10
390280	< 5	<2	< 5	< 5	< 0.2	0.8	78	1260	<1	69	6	124	3.98	<2	< 10	24	< 0.5	<2	4.99	42	119	9.17	10
390281	< 5	<2	< 5	< 5	0.2	< 0.5	91	1230	<1	73	4	108	3.79	<2	< 10	15	< 0.5	<2	5.45	41	135	9.26	20
390282	< 5	<2	< 5	< 5	0.3	< 0.5	54	1900	2	36	23	164	2.36	<2	< 10	62	<0.5	<2	1.78	14	35	3.12	< 10
390283	< 5	<2	< 5	< 5	0.2	< 0.5	45	1810	1	35	18	119	2.21	<2	< 10	70	<0.5	<2	1.38	14	33	3.40	< 10
390284	5	<2	< 5	< 5	0.3	0.9	146	707	<1	48	<2	158	2.69	<2	< 10	29	< 0.5	<2	2.22	19	53	4.45	10
390285	125	170	1320	406	1.7	< 0.5	3760	657	<1	294	8	59	3.66	<2	< 10	60	< 0.5	<2	3.02	53	116	7.14	< 10
390286	< 5	<2	< 5	< 5	< 0.2	< 0.5	1	< 5	<1	9	<2	<2	0.02	<2	< 10	< 10	< 0.5	<2	0.04	<1	16	0.05	< 10
390287	< 5	<2	< 5	< 5	0.2	1.2	102	525	1	33	3	183	2.04	7	< 10	13	< 0.5	<2	1.38	15	102	3.71	< 10
390288	< 5	<2	< 5	5	< 0.2	< 0.5	45	911	< 1	134	<2	151	3.17	58	< 10	20	< 0.5	<2	4.38	29	352	5.73	10
390289	< 5	<2	< 5	< 5	<0.2	< 0.5	50	697	<1	44	<2	89	2.58	29	< 10	41	<0.5	<2	3.45	20	73	4.67	10
390290	< 5	<2	< 5	< 5	< 0.2	< 0.5	7	417	< 1	6	<2	69	2.51	3	< 10	37	< 0.5	<2	2.01	10	15	2.79	10
390291	< 5	<2	< 5	< 5	< 0.2	<0.5	52	783	<1	23	<2	102	3.08	<2	<10	45	< 0.5	<2	3.78	19	22	5.19	10

Analyte Symbol	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																		
390234	2	0.34	13	4.06	0.057	0.057	0.08	<2	16	3	0.15	<20	2	<2	<10	121	<10	6	6
390235	<1	0.52	14	3.54	0.071	0.042	0.09	<2	13	3	0.19	< 20	<1	<2	< 10	110	< 10	6	7
390236	4	0.29	13	4.66	0.071	0.049	< 0.01	<2	14	5	0.17	<20	<1	<2	< 10	126	<10	7	5
390237	<1	0.33	13	3.92	0.080	0.059	0.03	<2	12	7	0.16	<20	<1	<2	< 10	111	< 10	7	6
390238	5	0.26	12	4.02	0.062	0.064	0.09	<2	13	5	0.16	< 20	<1	<2	< 10	122	< 10	9	7
390239	<1	0.11	16	0.93	0.120	0.067	0.01	<2	5	13	0.14	<20	2	<2	< 10	35	<10	8	6
390240	<1	0.31	20	2.36	0.081	0.049	0.03	<2	10	4	0.16	< 20	1	<2	< 10	56	<10	10	13
390241	<1	0.46	27	1.65	0.106	0.032	0.03	<2	7	5	0.22	<20	2	<2	< 10	33	<10	11	19
390242	<1	0.48	12	2.31	0.100	0.068	0.35	<2	9	6	0.22	<20	2	<2	< 10	109	<10	12	9
390243	<1	0.41	11	3.24	0.075	0.060	< 0.01	<2	10	7	0.17	<20	<1	<2	< 10	88	< 10	10	8
390244	<1	0.12	<10	0.93	0.117	0.112	0.03	<2	4	18	0.16	<20	1	<2	<10	40	<10	12	5
390245	<1	0.16	17	1.91	0.671	0.164	0.80	4	4	257	0.17	<20	<1	<2	< 10	227	< 10	6	7
390246	<1	<0.01	<10	< 0.01	0.016	<0.001	< 0.01	<2	<1	<1	<0.01	<20	<1	<2	<10	<1	<10	< 1	< 1
390247	<1	0.11	28	0.76	0.133	0.083	0.03	<2	3	21	0.18	<20	3	<2	< 10	42	<10	10	3
390248	<1	0.24	15	2.37	0.103	0.086	0.36	<2	8	7	0.21	<20	< 1	<2	< 10	117	<10	13	8
390249	2	0.28	13	4.56	0.041	0.053	0.03	<2	13	2	0.18	<20	<1	<2	< 10	112	<10	11	8
390250	1	0.37	< 10	5.25	0.042	0.091	0.19	4	16	3	0.18	<20	< 1	<2	< 10	150	< 10	12	4
390251	2	0.62	<10	4.19	0.064	0.072	0.22	<2	7	3	0.19	<20	5	<2	< 10	141	<10	9	5
390252	<1	0.31	11	3.77	0.066	0.066	0.06	<2	6	3	0.19	<20	< 1	<2	< 10	133	< 10	11	5
390253	<1	0.06	<10	0.88	0.110	0.070	0.21	<2	2	18	0.16	<20	<1	<2	< 10	45	<10	6	6
390254	<1	0.21	<10	2.03	0.269	0.060	0.12	<2	5	26	0.21	<20	2	<2	<10	72	<10	7	5
390255	<1	0.37	16	3.52	0.154	0.055	0.03	<2	6	8	0.22	<20	< 1	<2	< 10	117	<10	10	6
390256	2	0.32	12	5.19	0.091	0.081	0.17	<2	12	5	0.19	<20	4	<2	< 10	147	<10	12	6
390257	<1	0.22	14	1.54	0.266	0.069	0.02	<2	7	18	0.22	< 20	3	<2	< 10	80	< 10	14	15
390258	<1	0.18	< 10	0.90	0.215	0.066	0.04	<2	4	61	0.19	<20	3	<2	< 10	52	<10	7	7
390259	3	0.83	11	4.45	0.077	0.069	< 0.01	<2	11	6	0.21	<20	8	<2	< 10	121	<10	12	7
390260	2	0.94	11	4.38	0.082	0.061	0.05	<2	11	5	0.21	<20	<1	<2	< 10	116	< 10	13	8
390261	<1	0.22	13	3.81	0.097	0.056	0.01	<2	11	26	0.23	<20	1	<2	< 10	112	<10	11	10
390262	<1	0.35	< 10	1.99	0.238	0.034	0.07	<2	9	58	0.25	<20	<1	<2	< 10	85	< 10	6	11
390263	<1	0.59	14	0.94	0.138	0.042	0.51	<2	6	34	0.16	<20	<1	<2	< 10	36	<10	12	29
390264	<1	0.63	< 10	1.80	0.077	0.039	< 0.01	<2	7	22	0.16	<20	<1	<2	< 10	60	<10	10	13
390265	<1	0.16	17	1.87	0.664	0.161	0.80	8	4	255	0.19	<20	<1	<2	< 10	221	< 10	6	7
390266	<1	<0.01	<10	< 0.01	0.016	< 0.001	< 0.01	<2	<1	1	<0.01	<20	<1	<2	< 10	<1	<10	< 1	< 1
390267	<1	0.12	11	1.49	0.110	0.033	< 0.01	<2	6	23	0.11	<20	<1	<2	< 10	37	<10	11	14
390268	<1	0.22	< 10	2.69	0.292	0.025	0.29	<2	19	54	0.27	<20	6	<2	< 10	150	52	8	7
390269	<1	0.20	<10	3.08	0.349	0.032	1.29	4	21	31	0.20	<20	28	<2	<10	138	642	10	9
390270	2	0.39	<10	3.43	0.483	0.026	0.03	3	24	51	0.27	<20	<1	<2	<10	183	11	10	5
390271	<1	0.20	14	1.41	0.221	0.046	0.04	<2	8	42	0.21	<20	2	<2	< 10	66	<10	12	21
390272	<1	0.36	15	1.73	0.210	0.048	0.04	<2	9	48	0.21	<20	<1	<2	<10	73	<10	13	22
390273	<1	0.23	15	1.49	0.198	0.045	< 0.01	<2	8	33	0.19	<20	<1	<2	< 10	71	< 10	13	20
390274	<1	0.19	15	1.30	0.200	0.046	0.09	<2	7	17	0.22	<20	<1	<2	< 10	76	<10	12	25
390275	<1	0.18	15	1.34	0.204	0.045	0.02	<2	7	17	0.23	<20	3	<2	< 10	74	< 10	14	24

Analyte Symbol	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																		
390276	<1	0.12	12	2.48	0.153	0.040	0.17	2	6	14	0.35	<20	4	<2	<10	82	<10	12	29
390277	<1	0.13	<10	2.17	0.278	0.030	0.02	2	16	32	0.33	<20	<1	<2	< 10	149	< 10	10	5
390278	<1	0.10	<10	1.90	0.196	0.033	0.11	<2	15	40	0.55	<20	6	<2	<10	165	< 10	16	8
390279	< 1	0.05	<10	1.18	0.083	0.126	0.22	<2	9	62	0.38	<20	3	<2	<10	127	< 10	11	9
390280	2	0.50	<10	3.34	0.117	0.037	0.11	<2	31	60	0.39	<20	<1	<2	< 10	251	< 10	15	5
390281	<1	0.23	<10	3.44	0.053	0.034	0.09	4	34	87	0.24	<20	1	<2	<10	268	< 10	10	4
390282	<1	0.24	11	1.48	0.168	0.047	0.12	<2	8	23	0.30	<20	4	<2	<10	68	< 10	11	19
390283	<1	0.21	14	1.60	0.137	0.048	0.15	<2	8	19	0.31	<20	2	<2	<10	75	< 10	13	20
390284	<1	0.22	15	1.83	0.244	0.092	0.12	<2	11	46	0.26	<20	2	<2	<10	91	< 10	14	12
390285	1	0.17	18	1.93	0.698	0.166	0.82	2	4	264	0.18	<20	<1	<2	< 10	228	< 10	6	7
390286	<1	< 0.01	<10	<0.01	0.017	< 0.001	<0.01	<2	<1	< 1	<0.01	<20	<1	<2	< 10	<1	< 10	< 1	< 1
390287	<1	0.07	28	1.54	0.179	0.033	0.33	<2	9	10	0.25	<20	8	<2	< 10	51	< 10	22	26
390288	3	0.12	<10	2.91	0.064	0.025	0.07	3	16	30	0.15	<20	<1	<2	<10	102	< 10	11	6
390289	< 1	0.24	<10	1.72	0.120	0.030	0.10	<2	14	25	0.19	<20	2	<2	< 10	110	< 10	9	9
390290	<1	0.23	<10	0.86	0.099	0.070	< 0.01	<2	3	106	0.19	<20	6	<2	<10	37	< 10	5	6
390291	<1	0.30	<10	1.52	0.135	0.057	0.05	<2	9	52	0.29	<20	3	<2	<10	99	<10	10	11

Analyte Symbol	Au	Au	Pd	Pt	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga
Unit Symbol	ppb	ppb	ppb	ppb	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm							
Lower Limit	5	2	5	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10
Method Code	FA-AA	FA-ICP	FA-ICP	FA-ICP	AR-ICP																		
GXR-1 Meas					27.4	2.8	1110	743	14	43	644	710	0.34	364	10	299	0.8	1430	0.76	5	6	22.0	<10
GXR-1 Cert					31.0	3.30	1110	852	18.0	41.0	730	760	3.52	427	15.0	750	1.22	1380	0.960	8.20	12.0	23.6	13.8
GXR-6 Meas					0.3	< 0.5	71	1040	1	26	99	132	7.41	229	< 10	638	0.9	<2	0.13	13	88	5.96	20
GXR-6 Cert					1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0
PK2 Meas		4880	6150	4980																			
PK2 Cert		4790	$\begin{array}{r} 5918.0 \\ 00 \end{array}$	$\begin{array}{r} 4749.0 \\ 00 \end{array}$																			
PK2 Meas		4680	6000	4810																			
PK2 Cert		4790	$\begin{array}{r} \hline 5918.0 \\ 00 \end{array}$	$\begin{array}{r} 4749.0 \\ 00 \end{array}$																			
PK2 Meas		4880	6090	4820																			
PK2 Cert		4790	$\begin{array}{r} 5918.0 \\ 00 \end{array}$	$\begin{array}{r} 4749.0 \\ 00 \end{array}$																			
PK2 Meas		4850	6060	4810																			
PK2 Cert		4790	$\begin{array}{r} \hline 5918.0 \\ 00 \end{array}$	$\begin{array}{r} 4749.0 \\ 00 \end{array}$																			
PK2 Meas		4870	6070	4870																			
PK2 Cert		4790	$\begin{array}{r} \hline 5918.0 \\ 00 \end{array}$	$\begin{array}{r} 4749.0 \\ 00 \\ \hline \end{array}$																			
PK2 Meas		4920	6190	4930																			
PK2 Cert		4790	$\begin{array}{r} 5918.0 \\ 00 \end{array}$	$\begin{array}{r} 4749.0 \\ 00 \end{array}$																			
OREAS 922 (AQUA REGIA) Meas					0.8	< 0.5	2150	734	<1	38	69	263	3.02	5		82	0.8	5	0.44	19	49	5.31	< 10
OREAS 922 (AQUA REGIA) Cert					0.851	0.28	2176	730	0.69	34.3	60	256	2.72	6.12		70	0.65	10.3	0.324	19.4	40.7	5.05	7.62
OREAS 923 (AQUA REGIA) Meas					1.6	< 0.5	4400	844	< 1	36	80	346	3.00	7		65	0.7	21	0.44	22	45	6.00	< 10
OREAS 923 (AQUA REGIA) Cert					1.62	0.40	4248	850	0.84	32.7	81	335	2.80	7.07		54	0.61	21.8	0.326	22.2	39.4	5.91	8.01
OREAS 254 Meas	2460																						
OREAS 254 Cert	2550																						
OREAS 254 Meas	2450																						
OREAS 254 Cert	2550																						
OREAS 218 Meas	514																						
OREAS 218 Cert	531																						
OREAS 218 Meas	522																						
OREAS 218 Cert	531																						
390243 Orig	< 5																						
390243 Dup	< 5																						
390244 Orig		<2	< 5	< 5																			

Analyte Symbol	Au	Au	Pd	Pt	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga
Unit Symbol	ppb	ppb	ppb	ppb	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm							
Lower Limit	5	2	5	5	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10
Method Code	FA-AA	FA-ICP	FA-ICP	FA-ICP	AR-ICP																		
390244 Dup		<2	<5	<5																			
390246 Orig					< 0.2	< 0.5	2	5	< 1	9	<2	<2	0.01	<2	< 10	<10	<0.5	<2	0.03	<1	16	0.05	<10
390246 Dup					<0.2	<0.5	<1	<5	<1	9	<2	<2	0.01	<2	<10	< 10	<0.5	<2	0.03	<1	16	0.05	<10
390253 Orig	<																						
390253 Dup	<5																						
390254 Orig		<2	<5	<																			
390254 Dup		<2	<5	< 5																			
390260 Orig					<0.2	< 0.5	71	922	< 1	45	<2	221	4.54	<2	< 10	116	<0.5	<2	0.37	22	34	5.39	10
390260 Dup					<0.2	<0.5	73	943	<1	47	<2	229	4.62	<2	<10	117	<0.5	<2	0.39	22	35	5.55	10
390263 Orig	< 5																						
390263 Dup	<5																						
390264 Orig		<2	<	<																			
390264 Dup		<2	<5	<5																			
390273 Orig					0.3	< 0.5	26	445	<1	32	<2	131	2.09	<2	< 10	32	< 0.5	<2	0.99	13	32	3.01	<10
390273 Dup					0.3	<0.5	25	443	<1	32	<2	128	2.01	<2	<10	31	<0.5	<2	0.98	13	31	2.89	<10
390278 Orig	<																						
390278 Dup	< 5																						
390279 Orig		3	< 5	< 5																			
390279 Dup		4	< 5	< 5																			
390283 Orig	<5	<2	<5	<5	0.2	<0.5	45	1810	1	35	18	119	2.21	<2	< 10	70	<0.5	<2	1.38	14	33	3.40	<10
390283 Split PREP DUP	<5	<2	<5	<5	0.2	<0.5	47	1820	1	34	17	119	2.28	<2	< 10	71	<0.5	<2	1.38	14	31	3.42	<10
390286 Orig					< 0.2	< 0.5	2	6	<1	9	<2	<2	0.02	<2	< 10	< 10	< 0.5	<2	0.04	<1	16	0.05	<10
390286 Dup					<0.2	< 0.5	1	<5	<1	9	<2	<2	0.01	<2	< 10	<10	< 0.5	<2	0.03	<1	16	0.05	<10
390288 Orig	<																						
390288 Dup	<5																						
390289 Orig		<2	< 5	< 5																			
390289 Dup		<2	<5	<5																			
Method Blank	<																						
Method Blank	< 5																						
Method Blank	<5																						
Method Blank	<5																						
Method Blank		<2	<5	<5																			
Method Blank		<2	<5	<5																			
Method Blank		<2	<5	<5																			
Method Blank					<0.2	< 0.5	<1	<	<1	<1	<2	<2	< 0.01	<2	< 10	<10	< 0.5	<2	< 0.01	<1	<1	< 0.01	<10
Method Blank		<2	<5	< 5																			

Analyte Symbol	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																		
GXR-1 Meas	4	0.03	< 10	0.13	0.054	0.045	0.20	83	1	176	<0.01	< 20	13	<2	30	77	140	24	14
GXR-1 Cert	3.90	0.050	7.50	0.217	0.0520	0.0650	0.257	122	1.58	275	0.036	2.44	13.0	0.390	34.9	80.0	164	32.0	38.0
GXR-6 Meas	1	1.12	10	0.44	0.085	0.036	0.01	3	21	28		< 20	< 1	3	< 10	177	<10	5	10
GXR-6 Cert	0.0680	1.87	13.9	0.609	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
PK2 Meas																			
PK2 Cert																			
PK2 Meas																			
PK2 Cert																			
PK2 Meas																			
PK2 Cert																			
PK2 Meas																			
PK2 Cert																			
PK2 Meas																			
PK2 Cert																			
PK2 Meas																			
PK2 Cert																			
OREAS 922 (AQUA REGIA) Meas		0.51	40	1.38	0.035	0.063	0.38	<2	4	16		< 20		<2	< 10	39	<10	23	22
OREAS 922 (AQUA REGIA) Cert		0.376	32.5	1.33	0.021	0.063	0.386	0.57	3.15	15.0		14.5		0.14	1.98	29.4	1.12	16.0	22.3
OREAS 923 (AQUA REGIA) Meas		0.43	37	1.49		0.061	0.68	2	4	15		<20		<2	< 10	38	< 10	21	34
OREAS 923 (AQUA REGIA) Cert		0.322	30.0	1.43		0.061	0.684	0.58	3.09	13.6		14.3		0.12	1.80	30.6	1.96	14.3	22.5
OREAS 254 Meas																			
OREAS 254 Cert																			
OREAS 254 Meas																			
OREAS 254 Cert																			
OREAS 218 Meas																			
OREAS 218 Cert																			
OREAS 218 Meas																			
OREAS 218 Cert																			
390243 Orig																			
390243 Dup																			
390244 Orig																			
390244 Dup																			
390246 Orig	<1	< 0.01	< 10	<0.01	0.017	< 0.001	<0.01	<2	< 1	<1	<0.01	<20	<1	<2	< 10	< 1	<10	< 1	< 1
390246 Dup	<1	<0.01	<10	<0.01	0.015	< 0.001	<0.01	<2	<1	<1	<0.01	<20	<1	<2	<10	<1	< 10	< 1	<1
390253 Orig																			
390253 Dup																			

Analyte Symbol	Hg	K	La	Mg	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	ppm	\%	ppm	\%	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	1	0.01	10	0.01	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP																		
390254 Orig																			
390254 Dup																			
390260 Orig	3	0.92	11	4.33	0.081	0.061	0.05	<2	11	5	0.20	<20	4	<2	<10	115	<10	12	8
390260 Dup	1	0.96	11	4.43	0.083	0.062	0.05	4	11	6	0.21	<20	< 1	<2	<10	117	<10	13	8
390263 Orig																			
390263 Dup																			
390264 Orig																			
390264 Dup																			
390273 Orig	< 1	0.24	15	1.51	0.203	0.045	< 0.01	<2	7	33	0.19	<20	< 1	<2	< 10	71	<10	13	18
390273 Dup	<1	0.23	15	1.47	0.194	0.044	< 0.01	<2	8	32	0.19	<20	2	<2	<10	71	<10	13	22
390278 Orig																			
390278 Dup																			
390279 Orig																			
390279 Dup																			
390283 Orig	< 1	0.21	14	1.60	0.137	0.048	0.15	<2	8	19	0.31	<20	2	<2	<10	75	<10	13	20
390283 Split	<1	0.22	14	1.61	0.143	0.048	0.14	<2	8	20	0.32	<20	<1	<2	<10	77	< 10	13	21
390286 Orig	< 1	< 0.01	<10	< 0.01	0.016	< 0.001	< 0.01	<2	< 1	1	< 0.01	<20	< 1	<2	< 10	< 1	< 10	< 1	< 1
390286 Dup	<1	< 0.01	<10	< 0.01	0.018	< 0.001	< 0.01	<2	<1	<1	< 0.01	<20	< 1	<2	<10	<1	<10	<1	<1
390288 Orig																			
390288 Dup																			
390289 Orig																			
390289 Dup																			
Method Blank																			
Method Blank																			
Method Blank																			
Method Blank																			
Method Blank																			
Method Blank																			
Method Blank																			
Method Blank	<1	< 0.01	< 10	< 0.01	0.014	< 0.001	< 0.01	<2	<1	< 1	< 0.01	<20	<1	<2	< 10	< 1	< 10	<1	<1
Method Blank																			

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

113 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A17-08578

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Sample 581020 INS for further analysis.

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
581001	39	
581002	391	
581003	14	
581004	23	
581005	24	
581006	19	
581007	65	
581008	13	
581009	29	
581010	20	
581011	50	
581012	516	
581013	446	
581014	48	
581015	94	
581016	232	
581017	84	
581018	278	
581019	9	
581020	> 5000	
581021	< 5	
581022	51	
581023	66	
581024	6	
581025	108	
581026	24	
581027	16	
581028	21	
581029	15	
581030	28	
581031	23	
581032	8	
581033	146	
581034	257	
581035	> 5000	11.2
581036	743	
581037	39	
581038	102	
581039	34	
581040	1070	
581041	< 5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	$\begin{aligned} & \hline \text { FA- } \\ & \text { GRA } \\ & \hline \end{aligned}$
581042	8	
581043	6	
581044	112	
581045	8	
581046	114	
581047	133	
581048	< 5	
581049	7	
581050	34	
581051	256	
581052	222	
581053	759	
581054	95	
581055	46	
581056	7	
581057	4040	
581058	117	
581059	10	
581060	129	
581061	6	
581062	9	
581063	7	
581064	65	
581065	9	
581066	9	
581067	2350	
581068	19	
581069	3020	
581070	712	
581071	4210	
581072	678	
581073	46	
581074	6	
581075	16	
581076	54	
581077	1640	
581078	1160	
581079	47	
581080	1060	
581081	< 5	
581082	106	
581083	13	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FA- GRA
581084	<5	
581085	<5	
581086	91	
581087	121	
581088	24	
581089	86	
581090	124	
581091	17	
581092	<5	
581093	19	
581094	<5	
581095	13	
581096	110	
581097	174	
581098	<5	
581099	<5	
581100	>5000	5.83
581101	403	
581102	64	
581103	266	
581104	1170	
581105	1020	
581106	<5	
581107	188	
581108	36	
581109	57	
581110	38	
581111	40	
581112	<5	
581113	<5	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
OXN117 Meas		7.63
OXN117 Cert		7.679
OREAS 214 Meas		2.88
OREAS 214 Cert		3.03
OREAS 218 Meas	527	
OREAS 218 Cert	525	
OREAS 218 Meas	513	
OREAS 218 Cert	525	
OREAS 218 Meas	515	
OREAS 218 Cert	525	
OREAS 218 Meas	517	
OREAS 218 Cert	525	
OREAS 224 (Fire Assay) Meas	2100	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2060	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2080	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2110	
OREAS 224 (Fire Assay) Cert	2150	
OREAS 224 (Fire Assay) Meas	2080	
OREAS 224 (Fire Assay) Cert	2150	
581010 Orig	20	
581010 Dup	20	
581023 Orig	75	
581023 Dup	56	
581030 Orig	28	
581030 Dup	27	
581035 Orig		11.3
581035 Dup		11.1
581045 Orig	8	
581045 Dup	8	
581050 Orig	34	
581050 Split	22	

Analyte Symbol	Au	Au
Unit Symbol	ppb	g/tonne
Lower Limit	5	0.03
Method Code	FA-AA	FAGRA
PREP DUP		
581055 Orig	48	
581055 Dup	44	
581065 Orig	9	
581065 Dup	8	
581079 Orig	42	
581079 Dup	52	
581089 Orig	83	
581089 Dup	89	
581099 Orig	< 5	
581099 Dup	< 5	
581100 Orig	>5000	5.83
581100 Split PREP DUP	> 5000	5.26
581104 Orig	1170	
581104 Dup	1160	
581113 Orig	< 5	
581113 Dup	< 5	
Method Blank		< 0.03
Method Blank	< 5	

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

95 Core samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1A2-Tbay Au - Fire Assay AA (QOP Fire Assay Tbay)

REPORT A17-08504

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:
If value exceeds upper limit we recommend reassay by fire assay gravimetric-Code 1A3
Footnote: Sample 351431 INS for further analysis.

CERTIFIED BY:

Emmanuel Eseme, Ph.D.
Quality Control

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
351406	492
351407	23
351408	71
351409	40
351410	44
351411	114
351412	< 5
351413	37
351414	25
351415	11
351416	7
351417	14
351418	5
351419	11
351420	261
351421	611
351422	19
351423	< 5
351424	< 5
351425	< 5
351426	< 5
351427	< 5
351428	< 5
351429	< 5
351430	< 5
351431	>5000
351432	< 5
351433	16
351434	404
351435	11
351436	41
351437	< 5
351438	12
351439	69
351440	< 5
351441	118
351442	28
351443	106
351444	72
351445	30
351446	8
351447	72

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
351448	281
351449	31
351450	35
351451	7
351452	< 5
351453	5
351454	6
351455	167
351456	104
351457	57
351458	20
351459	20
351460	18
351461	1080
351462	< 5
351463	14
351464	5
351465	< 5
351466	24
351467	22
351468	156
351469	29
351470	25
351471	50
351472	428
351473	637
351474	224
351475	708
351476	96
351477	< 5
351478	304
351479	388
351480	121
351481	152
351482	< 5
351483	244
351484	216
351485	383
351486	549
351487	7
351488	6
351489	744

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
351490	8
351491	10
351492	8
351493	9
351494	<5
351495	16
351496	10
351497	5
351498	8
351499	8
351500	23

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
OREAS 218 Meas	537
OREAS 218 Cert	525
OREAS 218 Meas	519
OREAS 218 Cert	525
OREAS 218 Meas	530
OREAS 218 Cert	525
OREAS 218 Meas	518
OREAS 218 Cert	525
OREAS 224 (Fire Assay) Meas	2110
OREAS 224 (Fire Assay) Cert	2150
OREAS 224 (Fire Assay) Meas	2080
OREAS 224 (Fire Assay) Cert	2150
OREAS 224 (Fire Assay) Meas	2080
OREAS 224 (Fire Assay) Cert	2150
OREAS 224 (Fire Assay) Meas	2080
OREAS 224 (Fire Assay) Cert	2150
351415 Orig	12
351415 Dup	10
351425 Orig	6
351425 Dup	< 5
351435 Orig	13
351435 Dup	8
351450 Orig	36
351450 Dup	33
351455 Orig	167
351455 Split PREP DUP	169
351460 Orig	18
351460 Dup	17
351470 Orig	30
351470 Dup	19
351477 Orig	5
351477 Dup	< 5
351495 Orig	15
351495 Dup	16
Method Blank	< 5

Analyte Symbol	Au
Unit Symbol	ppb
Lower Limit	5
Method Code	FA-AA
Method Blank	<5

Invoice No.:	A17-07654-1E3
Invoice Date:	17-Aug-17
Your Reference:	1989

Benton Resources Inc.
 684 Squier Street
 Thunder Bay ON P7B 4A8
 Canada

ATTN: Clint Barr

CERTIFICATE OF ANALYSIS

55 Rock samples were submitted for analysis.
The following analytical package(s) were requested:
Code 1E3-Tbay Aqua Regia ICP(AQUAGEO)

REPORT A17-07654-1E3

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis

Notes:
Values which exceed the upper limit should be assayed for accurate numbers.

Emmanuel Eseme, Ph.D. Quality Control

Results

Analyte Symbol	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La	Mg
Unit Symbol	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	ppm	\%	ppm	\%							
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP																						
351101	1.2	< 0.5	270	1160	<1	438	2	53	2.86	272	<10	32	0.5	<2	4.09	47	631	8.14	< 10	<1	0.22	< 10	4.45
351102	0.8	< 0.5	42	587	< 1	213	3	28	1.40	343	< 10	54	< 0.5	3	3.17	29	223	4.18	< 10	<1	0.40	< 10	1.93
351103	0.4	< 0.5	10	293	< 1	60	<2	63	2.72	73	< 10	58	< 0.5	2	2.50	19	100	4.56	< 10	<1	0.34	14	1.76
351104	<0.2	<0.5	7	279	< 1	10	<2	35	1.56	3	< 10	63	<0.5	<2	1.61	6	15	2.54	< 10	<1	0.30	17	0.70
351105	<0.2	< 0.5	11	292	<1	6	<2	37	1.58	<2	< 10	73	< 0.5	<2	1.38	7	15	2.44	< 10	<1	0.28	12	0.74
351106	<0.2	< 0.5	6	324	1	6	<2	36	1.48	2	< 10	76	< 0.5	<2	1.39	6	16	2.35	< 10	<1	0.29	< 10	0.72
351107	<0.2	< 0.5	9	268	<1	6	<2	41	1.62	<2	< 10	76	<0.5	<2	1.33	6	18	2.20	<10	<1	0.27	25	0.56
351108	<0.2	< 0.5	7	227	1	3	<2	25	1.06	<2	< 10	73	< 0.5	<2	1.18	3	19	1.47	< 10	<1	0.29	10	0.36
351109	<0.2	< 0.5	2	297	<1	6	<2	30	1.23	<2	< 10	64	< 0.5	<2	1.51	4	17	1.89	< 10	<1	0.29	< 10	0.52
351110	<0.2	<0.5	8	416	< 1	10	<2	45	1.69	4	< 10	60	<0.5	<2	3.63	9	15	2.30	< 10	<1	0.33	< 10	1.00
351111	< 0.2	<0.5	9	313	<1	11	<2	42	1.67	<2	< 10	137	< 0.5	<2	1.96	8	16	2.26	<10	<1	0.32	< 10	0.83
351112	< 0.2	<0.5	10	385	< 1	11	<2	47	1.84	6	< 10	75	< 0.5	<2	2.25	10	18	2.70	< 10	<1	0.34	< 10	0.91
351113	< 0.2	< 0.5	23	516	< 1	15	<2	62	2.25	<2	< 10	70	< 0.5	<2	1.75	13	22	3.50	< 10	<1	0.27	17	1.18
351114	< 0.2	< 0.5	63	510	< 1	16	<2	62	2.36	2	< 10	74	< 0.5	<2	2.57	13	20	3.77	< 10	<1	0.32	17	1.19
351115	<0.2	< 0.5	25	549	< 1	19	<2	65	2.31	4	<10	64	<0.5	<2	2.19	13	23	3.86	< 10	<1	0.24	17	1.33
351116	<0.2	<0.5	25	366	< 1	14	<2	53	2.01	11	<10	61	< 0.5	<2	1.73	11	16	3.63	<10	<1	0.34	16	1.58
351117	0.9	<0.5	14	336	< 1	16	6	8	1.11	63	< 10	101	<0.5	<2	1.96	7	11	2.26	< 10	< 1	0.51	12	0.76
351118	4.5	< 0.5	22	513	1	162	14	15	0.71	352	< 10	66	< 0.5	5	3.37	23	73	4.23	< 10	<1	0.35	< 10	1.70
351119	0.6	< 0.5	142	1330	<1	582	4	29	0.83	1110	< 10	37	< 0.5	<2	5.75	61	259	7.19	< 10	<1	0.21	< 10	3.85
351120	2.5	0.9	2010	349	1	48	11	195	1.79	11	< 10	271	< 0.5	<2	0.70	23	109	4.67	< 10	<1	1.31	13	1.20
351121	< 0.2	< 0.5	11	8	<1	8	<2	<2	0.02	<2	<10	< 10	< 0.5	<2	0.04	< 1	15	0.07	< 10	<1	< 0.01	< 10	< 0.01
351122	1.0	<0.5	134	1250	< 1	543	6	33	0.99	902	< 10	43	< 0.5	<2	5.75	56	255	7.69	< 10	1	0.28	< 10	5.09
351123	0.3	< 0.5	7	219	1	31	<2	3	0.05	56	< 10	<10	< 0.5	<2	1.09	4	34	1.11	<10	<1	0.02	< 10	0.52
351124	1.0	<0.5	40	956	5	289	2	25	1.01	488	< 10	30	< 0.5	4	4.97	31	191	4.62	< 10	<1	0.20	< 10	2.89
351125	1.5	< 0.5	58	874	1	396	<2	46	1.54	503	<10	<10	< 0.5	4	4.50	39	551	5.51	<10	<1	0.03	< 10	3.54
351126	0.9	< 0.5	101	1020	<1	463	7	70	2.29	515	<10	<10	< 0.5	3	5.00	52	707	7.36	<10	<1	0.02	< 10	4.58
351127	0.9	<0.5	82	889	2	347	9	59	1.48	425	<10	11	<0.5	5	3.34	50	440	6.19	<10	<1	0.04	< 10	2.87
351128	1.3	< 0.5	128	647	2	333	4	70	1.86	6890	< 10	16	<0.5	4	2.71	32	476	5.44	<10	<1	0.09	< 10	3.01
351129	1.9	< 0.5	10	167	3	41	4	7	0.25	5680	<10	<10	< 0.5	<2	0.34	5	85	1.94	<10	<1	0.01	< 10	0.38
351130	0.5	< 0.5	21	443	2	90	2	12	0.37	1150	<10	19	< 0.5	<2	2.76	9	87	2.60	< 10	2	0.11	< 10	1.42
351131	1.5	<0.5	109	1330	1	579	6	131	1.27	712	< 10	17	< 0.5	9	6.18	45	644	6.53	< 10	<1	0.08	< 10	4.22
351132	1.0	<0.5	25	1080	2	207	3	8	0.53	550	<10	12	<0.5	<2	5.34	32	168	3.38	<10	<1	0.05	< 10	2.57
351133	0.8	<0.5	115	1250	1	509	9	26	0.95	802	< 10	14	<0.5	3	6.40	49	365	6.89	< 10	<1	0.12	< 10	3.87
351134	<0.2	< 0.5	10	330	2	30	<2	2	0.10	49	< 10	< 10	< 0.5	<2	0.96	3	59	1.60	< 10	<1	0.01	< 10	0.46
351135	< 0.2	< 0.5	16	318	3	68	<2	6	0.17	73	< 10	<10	< 0.5	<2	1.10	8	85	1.22	<10	<1	< 0.01	< 10	0.58
351136	0.4	< 0.5	104	1050	1	390	4	53	1.55	158	< 10	< 10	< 0.5	<2	4.12	29	562	5.24	< 10	<1	0.02	< 10	3.39
351137	< 0.2	< 0.5	39	829	1	205	<2	18	0.49	289	< 10	10	< 0.5	2	3.29	19	200	3.40	< 10	<1	0.05	< 10	1.82
351138	<0.2	< 0.5	11	146	2	10	<2	3	0.82	24	< 10	90	< 0.5	<2	0.71	2	27	1.50	<10	<1	0.30	< 10	0.25
351139	0.2	< 0.5	10	178	2	6	<2	3	0.87	29	< 10	100	<0.5	<2	1.18	3	19	1.49	< 10	<1	0.39	< 10	0.18
351140	2.4	1.0	2040	351	2	47	16	205	1.91	7	< 10	268	<0.5	<2	0.72	23	110	4.84	<10	<1	1.34	14	1.24
351141	< 0.2	< 0.5	12	8	<1	10	<2	<2	0.02	<2	<10	<10	< 0.5	<2	0.04	<1	17	0.08	<10	<1	< 0.01	< 10	< 0.01
351142	< 0.2	<0.5	14	109	2	15	<2	3	1.14	16	<10	137	< 0.5	<2	0.50	4	16	1.49	< 10	<1	0.43	12	0.26

Analyte Symbol	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La	Mg
Unit Symbol	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	ppm	\%	ppm	\%							
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP																						
351143	0.6	<0.5	54	253	<1	49	<2	7	1.72	79	<10	72	<0.5	<2	2.23	17	60	3.55	< 10	<1	0.43	<10	0.77
351144	< 0.2	< 0.5	51	621	<1	236	<2	51	2.47	91	< 10	51	< 0.5	<2	3.92	30	354	4.27	< 10	<1	0.37	< 10	2.74
351145	<0.2	<0.5	173	1240	<1	697	<2	42	2.32	27	< 10	< 10	<0.5	<2	6.17	57	943	6.21	< 10	2	0.03	< 10	5.93
351146	<0.2	< 0.5	33	691	<1	151	<2	75	3.69	6	<10	48	0.8	<2	4.26	26	260	5.87	10	<1	0.20	< 10	3.61
351147	<0.2	< 0.5	19	416	<1	12	5	26	1.63	14	< 10	86	< 0.5	<2	3.13	9	13	2.53	< 10	<1	0.43	10	0.73
351148	<0.2	< 0.5	18	398	<1	13	<2	33	1.74	8	< 10	62	< 0.5	<2	1.72	8	15	2.59	< 10	<1	0.35	16	0.96
351149	<0.2	< 0.5	13	294	1	4	2	14	0.86	18	< 10	56	< 0.5	<2	1.28	3	11	1.47	< 10	<1	0.24	< 10	0.48
351150	<0.2	< 0.5	33	267	<1	3	3	16	1.02	34	< 10	90	< 0.5	<2	1.10	3	14	1.44	< 10	<1	0.30	< 10	0.41
351151	< 0.2	< 0.5	11	480	2	39	<2	44	2.44	3	< 10	59	< 0.5	<2	1.77	16	92	3.19	< 10	<1	0.26	< 10	2.34
351152	<0.2	<0.5	181	505	4	21	<2	79	2.12	<2	< 10	75	<0.5	<2	1.24	11	30	2.99	< 10	<1	0.29	< 10	1.37
351153	<0.2	< 0.5	33	675	<1	77	<2	72	2.96	10	< 10	128	< 0.5	<2	4.10	22	85	4.43	< 10	<1	0.34	34	2.75
351154	<0.2	< 0.5	8	187	2	3	10	8	0.52	7	< 10	85	< 0.5	<2	0.83	<1	21	1.28	< 10	<1	0.20	< 10	0.17
351155	<0.2	< 0.5	18	190	2	1	6	3	0.50	4	< 10	193	< 0.5	<2	1.41	1	13	0.88	< 10	<1	0.27	< 10	0.16

Analyte Symbol	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP														
351101	0.020	0.025	1.50	5	19	97	< 0.01	<20	1	<2	<10	137	<10	7	12
351102	0.021	0.026	1.36	<2	7	200	< 0.01	<20	<1	<2	< 10	42	<10	4	16
351103	0.035	0.041	0.39	<2	4	26	< 0.01	<20	<1	<2	< 10	39	<10	5	10
351104	0.087	0.040	0.04	<2	1	21	< 0.01	<20	< 1	<2	< 10	17	<10	4	5
351105	0.103	0.049	0.08	<2	1	35	0.04	<20	< 1	<2	< 10	28	<10	4	6
351106	0.117	0.041	0.02	<2	1	29	0.02	<20	< 1	<2	< 10	23	<10	3	6
351107	0.125	0.045	0.02	<2	2	93	0.14	<20	<1	<2	< 10	24	<10	5	4
351108	0.112	0.018	0.01	<2	< 1	44	0.01	<20	3	<2	< 10	8	<10	4	4
351109	0.113	0.024	0.01	<2	1	42	0.01	<20	<1	<2	< 10	13	<10	4	4
351110	0.091	0.053	0.04	<2	2	79	0.01	<20	4	<2	< 10	25	<10	4	3
351111	0.110	0.051	0.02	<2	2	64	0.08	<20	<1	<2	< 10	26	<10	4	3
351112	0.114	0.044	0.09	2	3	57	0.03	<20	<1	<2	< 10	29	<10	5	6
351113	0.078	0.041	0.06	<2	4	64	0.13	<20	<1	<2	< 10	51	< 10	7	8
351114	0.076	0.041	0.05	<2	4	53	0.07	<20	2	<2	< 10	46	< 10	7	8
351115	0.085	0.041	0.03	<2	5	64	0.12	<20	4	<2	< 10	56	<10	7	9
351116	0.057	0.035	0.07	<2	2	8	< 0.01	<20	4	<2	< 10	26	<10	5	11
351117	0.033	0.059	0.99	<2	1	66	< 0.01	<20	3	<2	< 10	11	< 10	4	16
351118	0.022	0.021	2.56	<2	4	268	<0.01	<20	< 1	<2	< 10	15	< 10	4	13
351119	0.017	0.034	1.88	5	10	311	< 0.01	<20	<1	<2	< 10	41	< 10	5	9
351120	0.092	0.058	0.62	3	8	15	0.23	<20	2	<2	< 10	78	<10	6	27
351121	0.014	< 0.001	< 0.01	<2	< 1	1	< 0.01	<20	<1	<2	<10	<1	<10	<1	<1
351122	0.019	0.030	1.17	6	11	367	<0.01	<20	1	<2	< 10	41	<10	6	10
351123	0.013	< 0.001	0.16	<2	1	75	< 0.01	<20	< 1	<2	< 10	3	<10	<1	1
351124	0.021	0.006	0.80	3	7	171	< 0.01	<20	<1	<2	< 10	30	<10	5	10
351125	0.014	0.010	0.91	4	11	149	< 0.01	<20	3	<2	<10	76	<10	4	9
351126	0.014	0.025	1.91	6	17	162	< 0.01	<20	< 1	<2	< 10	121	<10	5	14
351127	0.013	0.018	2.66	4	10	127	<0.01	<20	<1	<2	< 10	58	<10	4	14
351128	0.016	0.015	0.99	22	10	103	<0.01	<20	<1	<2	< 10	76	<10	2	11
351129	0.015	< 0.001	0.42	29	1	14	< 0.01	<20	< 1	<2	< 10	8	<10	<1	2
351130	0.019	0.021	0.50	4	3	190	<0.01	<20	<1	<2	< 10	11	< 10	2	5
351131	0.018	0.008	1.88	8	10	211	< 0.01	<20	2	<2	< 10	59	< 10	5	13
351132	0.020	< 0.001	1.00	3	5	89	<0.01	<20	<1	<2	< 10	21	< 10	6	5
351133	0.017	0.015	2.48	8	11	203	< 0.01	<20	<1	<2	< 10	51	<10	4	11
351134	0.018	0.001	0.14	<2	1	21	<0.01	<20	< 1	<2	< 10	4	<10	<1	1
351135	0.015	0.003	0.33	<2	2	38	< 0.01	<20	<1	<2	< 10	6	<10	<1	2
351136	0.015	0.019	1.56	4	11	136	<0.01	<20	<1	<2	< 10	71	<10	3	13
351137	0.016	0.007	0.96	4	5	121	<0.01	<20	1	<2	< 10	21	< 10	3	7
351138	0.050	0.024	0.18	<2	<1	8	< 0.01	<20	<1	<2	<10	4	<10	2	6
351139	0.054	0.034	0.27	<2	< 1	10	<0.01	<20	<1	<2	< 10	4	<10	3	5
351140	0.099	0.061	0.65	3	9	12	0.24	<20	<1	<2	< 10	81	<10	7	29
351141	0.013	< 0.001	< 0.01	<2	<1	1	< 0.01	<20	1	<2	< 10	<1	<10	< 1	< 1
351142	0.067	0.037	0.31	<2	<1	8	< 0.01	<20	<1	<2	< 10	6	<10	2	8

Analyte Symbol	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP														
351143	0.042	0.040	1.24	<2	1	18	<0.01	<20	2	<2	<10	10	<10	4	10
351144	0.047	0.048	0.16	3	9	151	< 0.01	<20	1	<2	<10	66	<10	6	5
351145	0.014	0.024	0.30	7	15	444	0.01	<20	<1	<2	<10	104	<10	5	3
351146	0.058	0.043	0.30	4	10	133	< 0.01	<20	3	<2	<10	71	<10	5	7
351147	0.093	0.042	0.31	<2	2	53	< 0.01	<20	<1	<2	<10	16	<10	7	6
351148	0.097	0.038	0.08	<2	2	16	0.02	<20	<1	<2	<10	19	<10	6	10
351149	0.089	0.030	0.04	<2	<1	13	<0.01	<20	<1	<2	<10	6	<10	5	6
351150	0.133	0.027	0.06	<2	< 1	23	0.02	<20	< 1	<2	<10	7	<10	4	7
351151	0.087	0.028	0.06	<2	8	60	0.04	<20	<1	<2	< 10	59	< 10	5	6
351152	0.085	0.035	0.15	<2	5	93	0.11	<20	3	<2	<10	39	<10	5	8
351153	0.048	0.138	0.26	5	5	116	0.01	<20	<1	<2	<10	46	<10	7	3
351154	0.114	0.004	0.13	<2	< 1	15	<0.01	<20	< 1	<2	13	5	<10	4	12
351155	0.086	0.005	0.04	<2	<1	16	<0.01	<20	<1	<2	<10	<1	<10	4	3

Analyte Symbol	Ag	Cd	Cu	Mn	Mo	Ni	Pb	Zn	AI	As	B	Ba	Be	Bi	Ca	Co	Cr	Fe	Ga	Hg	K	La	Mg
Unit Symbol	ppm	\%	ppm	ppm	ppm	ppm	ppm	\%	ppm	ppm	\%	ppm	ppm	\%	ppm	\%							
Lower Limit	0.2	0.5	1	5	1	1	2	2	0.01	2	10	10	0.5	2	0.01	1	1	0.01	10	1	0.01	10	0.01
Method Code	AR-ICP																						
GXR-1 Meas	29.9	2.0	1190	823	14	30	620	714	0.35	403	11	486	0.9	1470	0.74	6	6	22.5	<10	4	0.03	< 10	0.14
GXR-1 Cert	31.0	3.30	1110	852	18.0	41.0	730	760	3.52	427	15.0	750	1.22	1380	0.960	8.20	12.0	23.6	13.8	3.90	0.050	7.50	0.217
GXR-4 Meas	3.8	< 0.5	6890	145	318	39	43	70	2.85	105	< 10	62	1.5	15	0.87	14	58	3.11	10	2	1.73	51	1.66
GXR-4 Cert	4.0	0.860	6520	155	310	42.0	52.0	73.0	7.20	98.0	4.50	1640	1.90	19.0	1.01	14.6	64.0	3.09	20.0	0.110	4.01	64.5	1.66
GXR-6 Meas	0.4	< 0.5	72	1040	2	22	86	125	7.04	242	< 10	900	1.0	<2	0.15	13	82	5.46	10	< 1	1.11	< 10	0.41
GXR-6 Cert	1.30	1.00	66.0	1010	2.40	27.0	101	118	17.7	330	9.80	1300	1.40	0.290	0.180	13.8	96.0	5.58	35.0	0.0680	1.87	13.9	0.609
351113 Orig	<0.2	< 0.5	23	515	<1	14	<2	63	2.24	<2	< 10	70	< 0.5	<2	1.75	13	22	3.48	<10	< 1	0.27	17	1.18
351113 Dup	<0.2	<0.5	24	517	<1	16	<2	62	2.26	3	< 10	70	<0.5	<2	1.75	13	22	3.51	<10	<1	0.27	17	1.18
351127 Orig	0.8	<0.5	81	898	2	348	9	59	1.50	427	< 10	11	<0.5	4	3.37	50	449	6.18	<10	2	0.04	< 10	2.87
351127 Dup	1.0	< 0.5	84	880	2	346	10	59	1.47	424	< 10	11	< 0.5	6	3.32	49	432	6.19	<10	< 1	0.04	<10	2.86
351140 Orig	2.4	1.0	2040	352	2	47	19	210	1.93	8	<10	271	< 0.5	<2	0.72	23	111	4.82	<10	<1	1.34	14	1.24
351140 Dup	2.4	1.1	2030	349	2	47	14	199	1.89	6	< 10	266	< 0.5	<2	0.72	23	109	4.85	<10	< 1	1.35	14	1.24
351150 Orig	< 0.2	< 0.5	33	267	<1	3	3	16	1.02	34	< 10	90	< 0.5	<2	1.10	3	14	1.44	<10	<1	0.30	<10	0.41
351150 Split PREP DUP	0.2	< 0.5	36	263	<1	3	3	15	0.97	29	< 10	86	< 0.5	<2	1.07	3	13	1.40	<10	<1	0.28	< 10	0.39
351153 Orig	<0.2	< 0.5	33	672	<1	76	2	72	2.93	10	< 10	125	<0.5	<2	4.08	22	84	4.38	<10	<1	0.33	34	2.72
351153 Dup	< 0.2	< 0.5	34	679	<1	77	<2	73	2.98	10	< 10	130	< 0.5	<2	4.12	22	86	4.48	<10	< 1	0.34	35	2.78
Method Blank	<0.2	< 0.5	<1	< 5	<1	<1	<2	<2	< 0.01	<2	< 10	< 10	< 0.5	<2	< 0.01	<1	< 1	<0.01	<10	<1	< 0.01	<10	< 0.01
Method Blank	<0.2	< 0.5	< 1	< 5	<1	<1	<2	<2	< 0.01	<2	< 10	<10	< 0.5	<2	<0.01	<1	<1	<0.01	<10	<1	<0.01	<10	< 0.01

Analyte Symbol	Na	P	S	Sb	Sc	Sr	Ti	Th	Te	TI	U	V	W	Y	Zr
Unit Symbol	\%	\%	\%	ppm	ppm	ppm	\%	ppm							
Lower Limit	0.001	0.001	0.01	2	1	1	0.01	20	1	2	10	1	10	1	1
Method Code	AR-ICP														
GXR-1 Meas	0.056	0.044	0.21	90	1	192	< 0.01	<20	7	<2	30	74	178	23	13
GXR-1 Cert	0.0520	0.0650	0.257	122	1.58	275	0.036	2.44	13.0	0.390	34.9	80.0	164	32.0	38.0
GXR-4 Meas	0.143	0.125	1.83	5	7	77	0.14	< 20	6	<2	<10	80	13	12	10
GXR-4 Cert	0.564	0.120	1.77	4.80	7.70	221	0.29	22.5	0.970	3.20	6.20	87.0	30.8	14.0	186
GXR-6 Meas	0.085	0.032	0.01	4	22	32		<20	< 1	<2	< 10	170	< 10	6	11
GXR-6 Cert	0.104	0.0350	0.0160	3.60	27.6	35.0		5.30	0.0180	2.20	1.54	186	1.90	14.0	110
351113 Orig	0.078	0.041	0.06	<2	4	63	0.13	<20	< 1	<2	< 10	51	<10	7	8
351113 Dup	0.078	0.041	0.06	<2	4	65	0.13	<20	<1	<2	<10	51	< 10	7	8
351127 Orig	0.013	0.018	2.69	5	10	129	< 0.01	<20	2	<2	<10	59	< 10	4	14
351127 Dup	0.014	0.018	2.64	4	10	125	<0.01	<20	< 1	<2	< 10	57	<10	4	14
351140 Orig	0.100	0.060	0.65	3	9	13	0.24	<20	< 1	<2	<10	82	<10	7	29
351140 Dup	0.098	0.061	0.65	3	9	12	0.23	<20	1	<2	< 10	79	<10	7	28
351150 Orig	0.133	0.027	0.06	<2	< 1	23	0.02	<20	< 1	<2	<10	7	<10	4	7
$\begin{aligned} & 351150 \text { Split } \\ & \text { PREP DUP } \end{aligned}$	0.124	0.026	0.07	<2	<1	24	0.02	<20	< 1	<2	<10	7	< 10	4	7
351153 Orig	0.047	0.135	0.26	4	5	115	0.01	<20	< 1	<2	<10	45	< 10	7	3
351153 Dup	0.048	0.142	0.26	6	5	116	0.01	<20	< 1	<2	<10	47	<10	7	3
Method Blank	0.010	< 0.001	< 0.01	<2	<1	<1	< 0.01	<20	<1	<2	<10	<1	< 10	< 1	< 1
Method Blank	0.013	< 0.001	< 0.01	<2	<1	<1	<0.01	<20	< 1	<2	<10	< 1	<10	<1	<1

Appendix III - Claim Map \& List of Claims

Claim Number	Township	TenureType
103990	BEDIVERE LAKE	Boundary Cell Mining Claim
103991	BEDIVERE LAKE	Boundary Cell Mining Claim
103992	BEDIVERE LAKE	Boundary Cell Mining Claim
105024	EDWARDS LAKE	Boundary Cell Mining Claim
105025	EDWARDS LAKE	Single Cell Mining Claim
106735	BEDIVERE LAKE	Single Cell Mining Claim
107052	BEDIVERE LAKE	Single Cell Mining Claim
107646	BEDIVERE LAKE	Single Cell Mining Claim
107647	BEDIVERE LAKE	Boundary Cell Mining Claim
107855	BEDIVERE LAKE	Single Cell Mining Claim
107856	BEDIVERE LAKE	Boundary Cell Mining Claim
110178	BEDIVERE LAKE	Single Cell Mining Claim
110228	BEDIVERE LAKE	Boundary Cell Mining Claim
110229	BEDIVERE LAKE	Single Cell Mining Claim
110300	BEDIVE LAKE	BEDIVERE LAKE

Claim Number	Township	TenureType
128483	BEDIVERE LAKE	Boundary Cell Mining Claim
128484	BEDIVERE LAKE	Single Cell Mining Claim
129340	BEDIVERE LAKE	Single Cell Mining Claim
130480	BEDIVERE LAKE	Single Cell Mining Claim
130716	BEDIVERE LAKE	Boundary Cell Mining Claim
130776	BEDIVERE LAKE ,WEAVER	Single Cell Mining Claim
130957	BEDIVERE LAKE	Boundary Cell Mining Claim
131181	BEDIVERE LAKE	Boundary Cell Mining Claim
135577	BEDIVERE LAKE	Boundary Cell Mining Claim
137012	BEDIVERE LAKE	Single Cell Mining Claim
137067	BEDIVERE LAKE	Boundary Cell Mining Claim
137593	BEDIVERE LAKE	Single Cell Mining Claim
137594	BEDIVERE LAKE	Boundary Cell Mining Claim
138631	BEDIVERE LAKE	Single Cell Mining Claim
139853	BEDIVERE LAKE	BEDIVERE LAKE

Claim Number	Township	TenureType
161153	BEDIVERE LAKE	Boundary Cell Mining Claim
161851	BEDIVERE LAKE	Single Cell Mining Claim
163004	BEDIVERE LAKE	Boundary Cell Mining Claim
163293	BEDIVERE LAKE	Single Cell Mining Claim
163847	BEDIVERE LAKE	Single Cell Mining Claim
164661	WEAVER	Single Cell Mining Claim
164675	BEDIVERE LAKE	Boundary Cell Mining Claim
164676	BEDIVERE LAKE	Single Cell Mining Claim
165400	BEDIVERE LAKE	Single Cell Mining Claim
165708	BEDIVERE LAKE	Boundary Cell Mining Claim
168429	EDWARDS LAKE	Boundary Cell Mining Claim
169967	BEDIVERE LAKE	Single Cell Mining Claim
171200	BEDIVERE LAKE	Single Cell Mining Claim
171201	BEDIVERE LAKE	Single Cell Mining Claim
171231	BEDIVERE LAKE	Single Cell Mining Claim
172489	BEDIVERE LAKE	Single Cell Mining Claim
174620	BEDIVERE LAKE ,WEAVER	Single Cell Mining Claim
174641	BEDIVERE LAKE	Single Cell Mining Claim
174642	BEDIVERE LAKE	Single Cell Mining Claim
174949	BEDIVERE LAKE	Boundary Cell Mining Claim
175872	BEDIVERE LAKE	Boundary Cell Mining Claim
175977	BEDIVERE LAKE	Single Cell Mining Claim
177028	BEDIVERE LAKE	Single Cell Mining Claim
178666	BEDIVERE LAKE	Single Cell Mining Claim
179129	BEDIVERE LAKE	Boundary Cell Mining Claim
179130	BEDIVERE LAKE	Boundary Cell Mining Claim
180143	BEDIVERE LAKE	Single Cell Mining Claim
180187	BEDIVERE LAKE	Single Cell Mining Claim
180188	BEDIVERE LAKE	Single Cell Mining Claim
180908	BEDIVERE LAKE	Single Cell Mining Claim
180909	BEDIVERE LAKE	Single Cell Mining Claim
180910	BEDIVERE LAKE	Single Cell Mining Claim
181506	BEDIVERE LAKE	Boundary Cell Mining Claim
181863	BEDIVERE LAKE	Single Cell Mining Claim
182010	BEDIVERE LAKE ,EDWARDS LAKE	Single Cell Mining Claim
182011	BEDIVERE LAKE	Single Cell Mining Claim
182793	BEDIVERE LAKE	Single Cell Mining Claim
183630	BEDIVERE LAKE	Boundary Cell Mining Claim
184644	BEDIVERE LAKE	Boundary Cell Mining Claim
185453	BEDIVERE LAKE	Single Cell Mining Claim
187603	BEDIVERE LAKE	Single Cell Mining Claim
187643	BEDIVERE LAKE	Single Cell Mining Claim
187644	BEDIVERE LAKE	Boundary Cell Mining Claim
187918	EDWARDS LAKE	Boundary Cell Mining Claim
187919	BEDIVERE LAKE ,EDWARDS LAKE	Boundary Cell Mining Claim
187920	BEDIVERE LAKE	Boundary Cell Mining Claim

Claim Number	Township	TenureType
188796	BEDIVERE LAKE	Boundary Cell Mining Claim
188797	BEDIVERE LAKE	Boundary Cell Mining Claim
188798	BEDIVERE LAKE	Boundary Cell Mining Claim
189635	BEDIVERE LAKE	Boundary Cell Mining Claim
189636	BEDIVERE LAKE	Boundary Cell Mining Claim
190096	BEDIVERE LAKE	Boundary Cell Mining Claim
190663	BEDIVERE LAKE	Single Cell Mining Claim
191887	BEDIVERE LAKE	Single Cell Mining Claim
191888	BEDIVERE LAKE ,EDWARDS LAKE	Single Cell Mining Claim
191889	BEDIVERE LAKE	Single Cell Mining Claim
191979	BEDIVERE LAKE	Single Cell Mining Claim
193334	BEDIVERE LAKE	Single Cell Mining Claim
193335	BEDIVERE LAKE	Single Cell Mining Claim
193414	BEDIVERE LAKE	Boundary Cell Mining Claim
193713	BEDIVERE LAKE	Boundary Cell Mining Claim
193714	BEDIVERE LAKE	Single Cell Mining Claim
194672	BEDIVERE LAKE ,WEAVER	Single Cell Mining Claim
195180	BEDIVERE LAKE	Boundary Cell Mining Claim
195776	BEDIVERE LAKE	Boundary Cell Mining Claim
195881	BEDIVERE LAKE	Single Cell Mining Claim
195882	BEDIVERE LAKE	Boundary Cell Mining Claim
195883	BEDIVERE LAKE	Single Cell Mining Claim
196397	BEDIVERE LAKE	Boundary Cell Mining Claim
196398	BEDIVERE LAKE	Boundary Cell Mining Claim
199806	BEDIVERE LAKE	Single Cell Mining Claim
199807	BEDIVERE LAKE	Single Cell Mining Claim
199852	BEDIVERE LAKE	Single Cell Mining Claim
199931	BEDIVERE LAKE	Single Cell Mining Claim
199932	BEDIVERE LAKE	Boundary Cell Mining Claim
200250	BEDIVERE LAKE	Single Cell Mining Claim
200251	BEDIVERE LAKE	Single Cell Mining Claim
201117	BEDIVERE LAKE	Boundary Cell Mining Claim
202238	BEDIVERE LAKE ,EDWARDS LAKE	Boundary Cell Mining Claim
202382	BEDIVERE LAKE	Single Cell Mining Claim
202412	BEDIVERE LAKE	Single Cell Mining Claim
204003	BEDIVERE LAKE	Single Cell Mining Claim
204004	BEDIVERE LAKE	Boundary Cell Mining Claim
207061	BEDIVERE LAKE	Single Cell Mining Claim
207938	BEDIVERE LAKE	Single Cell Mining Claim
207939	BEDIVERE LAKE	Single Cell Mining Claim
208454	BEDIVERE LAKE	Boundary Cell Mining Claim
208730	BEDIVERE LAKE	Boundary Cell Mining Claim
209147	BEDIVERE LAKE	Single Cell Mining Claim
209169	BEDIVERE LAKE	Single Cell Mining Claim
209202	BEDIVERE LAKE	Single Cell Mining Claim
212487	BEDIVERE LAKE	Boundary Cell Mining Claim

Claim Number	Township	TenureType
212488	BEDIVERE LAKE	Boundary Cell Mining Claim
212722	BEDIVERE LAKE	Single Cell Mining Claim
212996	BEDIVERE LAKE	Boundary Cell Mining Claim
213166	BEDIVERE LAKE	Single Cell Mining Claim
218681	BEDIVERE LAKE	Boundary Cell Mining Claim
219486	BEDIVERE LAKE	Boundary Cell Mining Claim
219981	BEDIVERE LAKE	Single Cell Mining Claim
220030	BEDIVERE LAKE	Single Cell Mining Claim
221800	BEDIVERE LAKE	Boundary Cell Mining Claim
221801	BEDIVERE LAKE	Boundary Cell Mining Claim
221802	BEDIVERE LAKE	Single Cell Mining Claim
222617	BEDIVERE LAKE	Boundary Cell Mining Claim
224067	BEDIVERE LAKE	Boundary Cell Mining Claim
224481	BEDIVERE LAKE	Boundary Cell Mining Claim
224482	BEDERE LAKE	BEDIVERE LAKE

Claim Number	Township	TenureType
241819	BEDIVERE LAKE	Boundary Cell Mining Claim
241820	BEDIVERE LAKE	Boundary Cell Mining Claim
242703	BEDIVERE LAKE	Single Cell Mining Claim
242765	BEDIVERE LAKE	Single Cell Mining Claim
242766	BEDIVERE LAKE	Single Cell Mining Claim
242767	BEDIVERE LAKE	Single Cell Mining Claim
244663	BEDIVERE LAKE	Single Cell Mining Claim
244664	BEDIVERE LAKE	Boundary Cell Mining Claim
245407	BEDIVERE LAKE	Single Cell Mining Claim
245408	BEDIVERE LAKE	Single Cell Mining Claim
248189	BEDIVERE LAKE ,WEAVER	Single Cell Mining Claim
248190	BEDIVERE LAKE	Single Cell Mining Claim
248558	BEDIVERE LAKE	Single Cell Mining Claim
250386	BEDIVERE LAKE	Boundary Cell Mining Claim
250398	BEDIVERE LAKE	BEDIVERE LAKE

Claim Number	Township	TenureType
266445	BEDIVERE LAKE	Single Cell Mining Claim
266446	BEDIVERE LAKE	Boundary Cell Mining Claim
267183	BEDIVERE LAKE	Single Cell Mining Claim
267742	BEDIVERE LAKE	Boundary Cell Mining Claim
267743	BEDIVERE LAKE	Single Cell Mining Claim
267959	BEDIVERE LAKE	Boundary Cell Mining Claim
267960	BEDIVERE LAKE	Single Cell Mining Claim
269168	BEDIVERE LAKE	Single Cell Mining Claim
272428	EDWARDS LAKE	Boundary Cell Mining Claim
272429	BEDIVERE LAKE ,EDWARDS LAKE	Boundary Cell Mining Claim
272430	BEDIVERE LAKE	Boundary Cell Mining Claim
273783	BEDIVERE LAKE	Single Cell Mining Claim
273854	BEDIVERE LAKE	Single Cell Mining Claim
274547	BEDIVERE LAKE	Single Cell Mining Claim
274707	BEDIVERE LAKE	BEDIVERE LAKE
274708	BEDIVERE LAKE	Boundary Cell Mining Claim
276996	BEDIVERE LAKE	Boundary Cell Mining Claim
294600	BEDIVE	BEDIVERE LAKE

Claim Number	Township	TenureType
297244	BEDIVERE LAKE	Single Cell Mining Claim
297334	BEDIVERE LAKE	Single Cell Mining Claim
297335	BEDIVERE LAKE	Boundary Cell Mining Claim
297878	BEDIVERE LAKE	Single Cell Mining Claim
299754	BEDIVERE LAKE	Single Cell Mining Claim
301494	BEDIVERE LAKE	Single Cell Mining Claim
302987	BEDIVERE LAKE ,WEAVER	Single Cell Mining Claim
303027	BEDIVERE LAKE	Single Cell Mining Claim
303527	BEDIVERE LAKE	Single Cell Mining Claim
303802	BEDIVERE LAKE	Single Cell Mining Claim
305037	BEDIVERE LAKE	Single Cell Mining Claim
305616	BEDIVERE LAKE	Single Cell Mining Claim
305617	BEDIVERE LAKE	Single Cell Mining Claim
306090	BEDIVERE LAKE ,EDWARDS LAKE	Boundary Cell Mining Claim
306091	BEDIVERE LAKE	Single Cell Mining Claim
306704	BEDIVERE LAKE	Single Cell Mining Claim
307838	BEDIVERE LAKE	Boundary Cell Mining Claim
308005	BEDIVERE LAKE	Single Cell Mining Claim
308021	BEDIVERE LAKE	Single Cell Mining Claim
308569	BEDIVERE LAKE	Single Cell Mining Claim
309666	BEDIVERE LAKE	Single Cell Mining Claim
310008	BEDIVERE LAKE	Boundary Cell Mining Claim
310251	BEDIVERE LAKE	Single Cell Mining Claim
310252	BEDIVERE LAKE	Boundary Cell Mining Claim
310323	BEDIVERE LAKE	Single Cell Mining Claim
310324	BEDIVERE LAKE	Single Cell Mining Claim
310824	BEDIVERE LAKE	Single Cell Mining Claim
310825	BEDIVERE LAKE	Single Cell Mining Claim
311549	BEDIVERE LAKE,WEAVER	Single Cell Mining Claim
311550	BEDIVERE LAKE	Single Cell Mining Claim
311814	BEDIVERE LAKE	Boundary Cell Mining Claim
311815	BEDIVERE LAKE	Single Cell Mining Claim
312350	BEDIVERE LAKE	Single Cell Mining Claim
312367	BEDIVERE LAKE	Single Cell Mining Claim
312421	BEDIVERE LAKE	Single Cell Mining Claim
312834	BEDIVERE LAKE	Boundary Cell Mining Claim
312835	BEDIVERE LAKE	Single Cell Mining Claim
314582	BEDIVERE LAKE	Single Cell Mining Claim
315666	BEDIVERE LAKE	Single Cell Mining Claim
316042	BEDIVERE LAKE	Single Cell Mining Claim
316075	BEDIVERE LAKE	Single Cell Mining Claim
316968	WEAVER	Single Cell Mining Claim
318154	BEDIVERE LAKE	Single Cell Mining Claim
318846	BEDIVERE LAKE	Boundary Cell Mining Claim
318847	BEDIVERE LAKE	Boundary Cell Mining Claim
323240	BEDIVERE LAKE	Single Cell Mining Claim

Claim Number	Township	TenureType
323295	BEDIVERE LAKE	Single Cell Mining Claim
323296	BEDIVERE LAKE	Boundary Cell Mining Claim
323297	BEDIVERE LAKE	Boundary Cell Mining Claim
325067	BEDIVERE LAKE	Boundary Cell Mining Claim
325068	BEDIVERE LAKE	Boundary Cell Mining Claim
327352	BEDIVERE LAKE	Boundary Cell Mining Claim
328074	BEDIVERE LAKE	Single Cell Mining Claim
328075	BEDIVERE LAKE	Single Cell Mining Claim
328573	BEDIVERE LAKE	Single Cell Mining Claim
330988	BEDIVERE LAKE	Boundary Cell Mining Claim
331878	BEDIVERE LAKE	Single Cell Mining Claim
332071	BEDIVERE LAKE	Single Cell Mining Claim
334033	BEDIVERE LAKE	Single Cell Mining Claim
334034	BEDIVERE LAKE	Single Cell Mining Claim
334442	BEDIVERE LAKE	Boundary Cell Mining Claim
337284	BEDIVERE LAKE	Boundary Cell Mining Claim
337305	BEDIVERE LAKE	Boundary Cell Mining Claim
337427	BEDIVERE LAKE	Single Cell Mining Claim
337517	BEDIVERE LAKE	Single Cell Mining Claim
337518	BEDIVERE LAKE ,WEAVER	Single Cell Mining Claim
341730	BEDIVERE LAKE	Single Cell Mining Claim
342306	BEDIVERE LAKE	Boundary Cell Mining Claim
343828	BEDIVERE LAKE	Single Cell Mining Claim
343845	BEDIVERE LAKE	Single Cell Mining Claim
343894	BEDIVERE LAKE	Boundary Cell Mining Claim
343895	BEDIVERE LAKE	Boundary Cell Mining Claim
343896	BEDIVERE LAKE	Single Cell Mining Claim
343897	BEDIVERE LAKE	Single Cell Mining Claim

