

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

Technical Report # 1

CREELMAN, FRALECK, BERRESFORD Project

Prepared by: Michel Lavoie

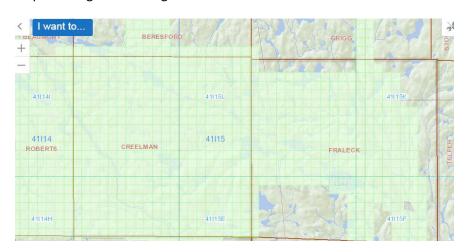
Date of completion: February 21, 2019

Person who performed the work: Guy Richard (413475)

Mining lands work was performed on: 20-07-2017 to 28-11-2017

Township: FRALECK, CREELMAN, BERRESFORD

Claim #: 117032 (\$127) , 126209 (\$73), 127106 (\$189), 128138 (\$998), 128205 (\$1,087), 128206 (\$220), 155100 (\$64), 155504 (\$73), 163496 (\$299), 163497 (\$609), 171514 (\$73), 172082 (\$73), 172241 (\$158), 174527 (\$73), 200770 (\$747), 209013 (\$118), 219362 (\$23), 220446 (\$39), 222858 (\$1,438), 222859 (\$878), 226182 (\$560), 227669 (\$300), 227670 (\$63), 228224 (\$2,970), 228225 (\$63), 228363 (\$127), 228365 (\$284), 232789 (\$421), 236399 (\$147), 256250 (\$694), 257633 (\$73), 267660 (\$23), 271410 (\$12), 275643 (\$73), 292802 (\$232), 294215 (\$73), 312221 (\$644), 318814 (\$127), 324260 (\$63), 323664 (\$36), 320727 (\$73), 323722 (\$460), 323724 (\$46), 336062 (\$99), 336108 (\$77)


Land owned by: 1) Guy Richard (413475)

2) Ryan McIlvenna (413402)

3) Michel Lavoie (302893)

4) Corrina Bonhomme (404160)

Map showing where the grass roots work was done:

Number of samples analysed: 166 samples. (All analysis certificates are included with this report.)

Total cost of samples were \$11,664

Grass Roots Prospecting and sample cutting cost were \$3,436

Total assessment work performed by Guy Richard in 2017 was \$15,100

Access to FRALECK, CREELMAN, ROBERTS, BERRESFORD

In 1967, the Ontario Department of Mines mapped ROBERTS, CREELMAN and FRALECK townships.

The three townships together comprise of about 108 square miles. These properties are located about 25 km north of Capreol and 48 km from Sudbury, Ontario.

To access to the eastern part of FRALECK township, you take the old highway 69, now highway 84 to Capreol. Highway 84 turns into Moose Mountain Mine Road. About 6 km past Capreal, turn right on Portelance Road (Gravel). Continue past Taighwenini Trail Rd. (Paved)

PARKIN township ends and FRALECK begins a few Kilometers before the North River Bridge turn off. Stay on Portelance Rd pasted the North River turn off and continue North, parallel to the Wanapitei River.

To access the Northern part of FRALECK township or the Southern part of GRIGG township continue passed the bridge that crosses the Wanapitei River.

To access the Western part of FRALECK township and the Eastern part of CREELMAN township, turn left (Before the bridge) on the service road for the 500-kilowvolt transmission line of the Hydro-Electric Power Commission of Ontario. FRALECK township ends and CREELMAN township begins about 1.4 km after the power lines.

To access the Southern part of BERRESFORD township, just continue straight on the gravel service road past Frog lake.

The Canadian National railway crosses the South-Western part of CREELMAN township and the North-Eastern part of Roberts township.

The property has the Vermillion river in the West end and the North Wahnapitae river in the east. There is a history of alluvial gold being discovered south west and south east of the CREELMAN - FRALECK Properties. People have paned for gold in these areas for over 100 years, with the source of the gold never being discovered.

Sampling in CREELMAN, FRALECK and BERRESFORD Townships has indicated good Au – Cu – Co – Ni - V values in several areas.

Technical Report # 2

CREELMAN, FRALECK, BERRESFORD Project

Prepared by: Michel Lavoie

Date of completion: February 28, 2019

Person who performed the work: Corrina Bonhomme (404160) and Michel Lavoie (302893)

This report only includes the 2017 work performed by Michel Lavoie and Corrina Bonhomme. Michel and Corrina looked for outcrops and documented them with pictures. We used a metal detector to find hot spots in the bedrock. We did some acid test for Calcite and checked for magnetic in different areas.

I am including maps, co-ordinates and pictures of 871 different locations on CD. I will deliver it to the MNDM. The CD will also include the GPS tracking for 2017.

I am also including a file that describes each of these areas. (2017 Michel Lavoie Folder description)

The file that indicates who attended and on which days is in file (2017 Michel Lavoie Just attendances)

Guy Richard (413475) 2017 assessment work / sample cutting was reported in transaction ID 35088. The resulting pending distribution was transaction ID 35100. Guy did some of the cutting of samples and did a few days of exploration with us.

Ryan Mcilvenna (304083) also did some cutting of samples and several days of exploring with Michel and Corrina but his assessment work is not included in this report.

I am also including Corrina's expense for 13 samples. (Corrina's 2017 sampling cost) The samples were taken in Claims: 128205, 128206, 163497, 222858, 276814

Corrina's cost to analyse 13 samples was \$954.85. (Rounded to \$955) All analysis certificates are included with this report.

A total of 74 days of assessment work was done in 2017 by Michel Lavoie.

A total of 58 days of assessment work was done in 2017 by Corrina Bonhomme.

Michel Lavoie's food expenses for 2017 was \$1,756. (\$25/day)

Corrina Bonhomme's food expenses for 2017 was \$1,369. (\$25 / day)

Corrina Bonhomme's 2017 expense for the use of her quad was \$350. (\$100/day)

The 2017 Travelling is claimed by Michel Lavoie. The cost for 2017 was \$7,504. (0.50/km)

Michel Lavoie's sweat equity totals \$30,825. (\$450/day) (\$225/ ½ day) (\$150/ 1/3 day) (74 days)

Corrina Bonhomme's sweat equity totals \$16,050. (\$300/day) (\$150/ ½ day) (\$100/ 1/3 day) (58 days)

The total assessment work for Michel Lavoie and Corrina Bonhomme for 2017 was \$57,854

The total assessment work + sample cost for Corrina Bonhomme in 2017 was

\$1,369 + \$350 + 16,050 + \$955 = \$18,724.

The total assessment work for Michel Lavoie in 2017 was

\$1,756 + \$7,504 + \$30,825 = \$40,085.

The total assessment work for Michel Lavoie and Corrina Bonhomme and sample cost for Corrina Bonhomme were \$57,854 + \$955 = \$58,809

Mining lands assessment work was performed on claims: 100545, 115884, 117032, 118431, 122095, 125501, 126209, 126210, 126211, 127106, 127107, 128138, 128205, 128206, 132667, 135628, 138410, 140177, 142726, 143383, 148703, 154435, 155092, 155100, 155504, 155625, 155628, 163496, 163497, 168031, 171514, 171570, 172081, 172082, 172241, 172271, 173802, 173892, 174471, 174527, 189837, 198838, 200770, 207045, 209000, 209013, 213273, 215068, 219362, 220385, 220446, 220475, 222858, 222859, 226182, 226183, 227669, 227670, 228224, 228225, 228363, 228365, 228455, 228859, 229470, 229616, 230213, 230214, 232789, 233890, 234756, 236398, 236399, 248339, 256250, 257633, 257679, 267650, 267660, 271410, 274959, 274960, 275634, 275643, 276814, 277397, 283454, 287648, 287749, 292802, 294215, 294349, 294350, 294353, 295068, 301243, 301327, 301328, 303628, 304541, 305470, 311749, 312221, 312222, 315849, 317995, 318813, 318814, 320727, 323664, 323700, 323722, 323724, 324033, 324260, 325537, 331377, 332963, 336062, 336108, 336109, 343216

Township: CREELMAN, FRALECK, BERESFORD

Land owned by: 1) Guy Richard (413475)

2) Ryan McIlvenna (413402)

3) Michel Lavoie (302893)

4) Corrina Bonhomme (404160)

5) Walter Collins (304083) (Some claims)

Map showing where the grass roots prospecting was done:

Access to FRALECK, CREELMAN, ROBERTS, BERRESFORD

In 1967, the Ontario Department of Mines mapped ROBERTS, CREELMAN and FRALECK townships.

The three townships together comprise of about 108 square miles. These properties are located about 25 km north of Capreol and 48 km from Sudbury, Ontario.

To access to the eastern part of FRALECK township, you take the old highway 69, now highway 84 to Capreol. Highway 84 turns into Moose Mountain Mine Road. About 6 km past Capreal, turn right on Portelance Road (Gravel). Continue past Taighwenini Trail Rd. (Paved)

PARKIN township ends and FRALECK begins a few Kilometers before the North River Bridge turn off. Stay on Portelance Rd pasted the North River turn off and continue North, parallel to the Wanapitei River.

To access the Northern part of FRALECK township or the Southern part of GRIGG township continue passed the bridge that crosses the Wanapitei River.

To access the Western part of FRALECK township and the Eastern part of CREELMAN township, turn left (Before the bridge) on the service road for the 500-kilowvolt transmission line of the Hydro-Electric Power Commission of Ontario. FRALECK township ends and CREELMAN township begins about 1.4 km after the power lines.

To access the Southern part of BERRESFORD township, just continue straight on the gravel service road past Frog lake.

The Canadian National railway crosses the South-Western part of CREELMAN township and the North-Eastern part of Roberts township.

The property has the Vermillion river in the West end and the North Wahnapitae river in the east. There is a history of alluvial gold being discovered south west and south east of the CREELMAN - FRALECK Properties. People have paned for gold in these areas for over 100 years, with the source of the gold never being discovered.

Sampling in CREELMAN, FRALECK and BERRESFORD Townships has indicated good Au – Cu – Co – Ni - V values in several areas.

2017 Exploration log (Michel Lavoie)

05-04-2017 attended property

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme attended.
- Used Corrina's Truck 168 km
- Road was too rought to continue with truck
- 1/3 day

08-04-2017 attended property

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme attended.
- Used Corrina's truck 113 km & quad
- 1/3 day

16-04-2017 attended property

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme attended.
- Took some samples back to view at camp
- Used Corrina's Truck 172 km
- 1/2 day

22-04-2017 attended property

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme attended.
- Used Corrina's Truck 219 km

23-04-2017 attended property

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme attended.
- Used Corrina's Truck 219 km

26-04-2017 attended property.

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme attended.
- Used Corrina's Truck. 227km
- Used Gps, tools, safety equipment, camera.
- Took GPS reading of 5 different places
- Took pictures of 5 different locations
- We took 4 small rock samples to examine (Not anylized)
- A total of 86 pictures were taken

28-04-2017 attended property.

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme attended.
- Used Corrina's Truck. 208 km
- Used Gps, tools, safety equipment, camera.

- Took GPS readings of 5 places and pictures of 1 place
- We took 6 small rock samples to examine (Not anylized)
- A total of 21 pictures were taken

29-04-2017 attended property.

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme attended.
- Used Corrina's Truck, 204 km.
- Used Gps, tools, safety equipment, camera.
- Took GPS reading of 9 different places
- Took 22 pictures of 3 different places
- Took 6 sample (Got one analysed)

02-05-2017 attended property.

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme attended.
- Used Corrina's Truck, 206 km
- Used Gps, tools, safety equipment, camera.
- Took 33 pictures and GPS location of 2 different places

03-05-2017 attended property.

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended.
- Used Corrina's Truck. 207 km
- Used Gps, tools, safety equipment, camera.
- Took GPS readings and pictures of 15 different places
- Took 152 pictures
- Took 10 sample (1 Analyzed)

06-05-2017 attended property.

- Prospected different locations.
- Michel Lavoie, Corrina Bonhomme and Ryan McIlvenna attended.
- Used Corrina's Truck. 208 km
- Used Gps, tools, safety equipment, camera.
- Took 32 pictures and GPS reading at 9 different places
- We looked at the rock type at the different location to be staked.
- We originally planned on 5 claims.
- The geology supported more claim acquisition.
- Examined the porphyritic quartz monzonite and surrounding area
- We took 5 small rock samples to examine (Not anylized)
- We finished looking at the location to be staked.
- Decided to get Walter McGregor, from the Wanapetei First Nation, to stake a 16 claim unit for us. We tried to get as much of the Porphyritic Quartz Monzonite and surrounding area as possible. Tried to include all the known sulfide areas as well.

12-05-2017 attended property

- Prospected different locations.
- Michel Lavoie, Corrina Bonhomme and Ryan McIlvenna attended.

- Used Corrina's Truck. 210 km
- Used Gps, tools, safety equipment, camera.
- Took 20 pictures and GPS reading at 3 different places
- We took 2 small rock samples to examine (Not anylized)

16-05-2017 attended property.

- Prospected different locations.
- Michel Lavoie and Ryan McIlvenna attended.
- Used Corrina's Truck 113 km and her quad and Ryan's quad.
- Used Gps, tools, safety equipment, camera.
- Took 87 pictures and GPS reading at 15 different places

17-05-2017 attended property.

- Prospected different locations.
- Michel Lavoie, Corrina Bonhomme and Ryan McIlvenna attended.
- Used Corrina's Truck. 210 km
- Used Gps, tools, safety equipment, camera.
- Was having camera troubles again
- Took 43 pictures and GPS reading at 9 different places but 2 areas had errors in location
- We took 3 small rock samples to examine (Not anylized)

20-05-2017 attended property

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended.
- Used Corrina's Truck. 211 km
- Used Gps, tools, safety equipment, camera.
- Took 132 pictures and GPS reading at 15 different places
- We took 16 samples. 7 analyzed

23-05-2017 attended property

- Prospected different locations.
- Michel Lavoie & Corrina Bonhomme and Ryan McIlvenna attended.
- Used Corrina's Truck. 210 km
- Used Gps, tools, safety equipment, camera.
- Took 106 pictures and GPS reading at 17 different places

26-05-2017 attended property

- Prospected different locations.
- Michel Lavoie and Ryan McIlvenna attended.
- Used Corrina's Truck. 208 km
- Used safety equipment

20-06-2017 attended property

- Prospected different locations.
- Michel Lavoie and Corrina Bonhomme attended.
- Used Corrina's Truck. 204 km
- Used Gps, tools, safety equipment, camera.
- Took 167 pictures and GPS reading at 10 different places

24-06-2017 attended property

- Prospected different locations and took samples.
- Michel Lavoie, Corrina Bonhomme and Ryan McIlvenna attended.
- Used Corrina's Truck. 202 km
- Used Gps, tools, safety equipment, camera.
- Took 56 pictures of 7 spots and GPS reading at 8 different places
- Took 10 samples 5 we sent away for analysis

02-07-2017 - attended property

- Prospected different locations and took samples.
- Michel Lavoie, Ryan McIlvenna and Walter Collins attended.
- Used Corrina's Truck. 206 km
- Used cut saw and equipments
- Used Walter's Gps, tools, safety equipment, camera.
- Saw was missing spacer. Only got one cut done before stopping
- Lots of rain. Did mostly exploring
- Took 1 sample
- Took 39 pictures and GPS reading at 4 different places See Pictures 171

04-07-2017 - attended property

- Prospected different locations and started looking for a path and making a trail to Framan lake
- Michel Lavoie and Corrina Bonhomme attended
- Used Corrina's Truck
- Used Gps, tools, safety equipment, camera
- Took 159 pictures and GPS reading at 20 different places

05-07-2017 - attended property

- Michel Lavoie and Corrina Bonhomme attended
- Used Corrina's Truck
- Used Corrina's quad
- Used Michel.s Trailer
- To hot to prospected in sun
- Cut a trail to Framan Lake.
- The trail starts in the pit created by Gervais Forest. We marked a trail to the lake.
- Map 2212 indicate Breccia near a small island and a quartz diabase dike that runs through the lake.
- The map also indicates the same quartz diabase by the pit. (We found a quartz monzonite there)

07-07-2017 attended property

- Prospected different locations
- Michel Lavoie and Ryan McIlvenna attended
- Used Corrina's Truck 214 km
- Cutting saw and equipment
- Used Gps, tools, safety equipment, camera
- Took 35 pictures and GPS reading at 5 different places
- Took 2 samples

08-07-2017 attended property

- Prospected different locations
- Michel Lavoie and Corrina Bonhomme & Ryan McIlvenna attended
- Used Corrina's Truck 214 km
- Cutting saw and equipment
- Used Gps, axe, brume, shovel, safety equipment, camera
- Took 69 pictures and GPS reading at 10 different places
- Excavated 2m x 3m . Very little overburden.
- Took 3 samples

14-07-2017 attended property

- Prospected different locations
- Michel Lavoie and Corrina Bonhomme & Ryan McIlvenna Stacy Homes & Guy Richards attended
- Used Corrina's Truck 219 km & Guy`s truck
- Excavated
- Used Gps, axe, brume, shovel, safety equipment, camera
- Took 94 pictures and GPS reading at 11 different places

15-07-2017 attended property

- Prospected different locations and excavated
- Michel Lavoie and Corrina Bonhomme and Ryan McIlvenna attended
- Used Corrina's Truck 196 km and Ryan 's Truck
- Used Gps, axe, brume, shovel, safety equipment, camera
- Took 188 pictures and GPS reading at 26 different places

17-07-2017 attended property

- Excavated and took 2 samples
- Michel Lavoie and Ryan McIlvenna attended
- Used Corrina's Truck 191 km and Ryan got in at camp
- Used Gps, cut saw, axe, brume, shovel, safety equipment, camera
- Had truck problems (Ryan's)
- Took 6 pictures and GPS reading at 1 area
- Took 2 samples

20-07-2017 attended property

- Prospected different locations and took samples
- Michel Lavoie and Ryan McIlvenna and Guy Richard attended
- Used Corrina's Truck 113 km and Ryan's truck to camp and Guy's truck in bush (212 km + His house to town)
- Broke first axe
- Used Gps, cut saw, axe, brume, shovel, safety equipment, camera
- Took 233 pictures and GPS reading at 34 different locations
- Took 2 samples

23-07-2017 attended property

- Lots of rain
- Prospected different locations

- Michel Lavoie & Corrina Bonhomme attended
- Used Corrina's Truck 241 km
- Used Gps, safety equipment, camera
- Took 73 pictures and GPS reading at 11 different locations

25-07-2017 attended property

- Prospected different locations
- Michel Lavoie & Corrina Bonhomme attended
- Used Corrina's Truck 149 km & trailer and Quad
- Used Gps, safety equipment, camera
- Took 126 pictures and GPS reading at 17 different locations
- Checked claim line accuracy at two different areas

26-07-2017 attended property

- Prospected different locations
- Lots of rain
- Michel Lavoie & Corrina Bonhomme attended
- Used Corrina's Truck 186 km
- Used Gps, safety equipment, camera
- Took 282 pictures and GPS reading at 46 different locations

28-07-2017 attended property

- Prospected different locations
- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Used Corrina's truck 181 km and Ryan's truck
- Broke 2nd axe
- Used Cutting saw, Gps, safety equipment, camera, brume, shovel
- Took 55 pictures and GPS reading at 9 different locations
- Took 2 Samples and pictures of 1 sample

29-07-2017 attended property

- Prospected different locations and tried to get to upper par of Beresford clams
- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Used Corrina's truck 253 km and Ryan's truck
- Used Gps, safety equipment, camera, cut saw
- Took 52 pictures and GPS reading at 15 different locations

03-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna & Guy Richard & Reg Charon & John Brady and Mark attended
- Used Corrina's truck 191 km, Guy's, Ryan's and Reg's truck
- Prospected different locations
- Reg & John confirm the presence of the porphyry, green chlorite, provided info regarding Vermilion river area and Fraleck property (What they found) etc.
- Did some washing of rocks 1m x 3m
- Used Water pump, safety equipment, phone camera, hammers, shovels and brumes
- Pump had to low of pressure (need other parts)
- Took 1 picture and GPS reading at 1 location

06-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme attended
- Used Corrina's truck 205 km
- Prospected different locations
- Used Gps, safety equipment, camera, hammers
- Took 186 pictures and GPS reading at 27 different locations

07-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Used Corrina's truck 193 km & Ryan's truck
- Prospected different locations
 - Used Gps, safety equipment, camera, hammers
- Took 114 pictures and GPS reading at 22 different locations

08-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna & Walter Collins & Shirley Peloquin & Alex from MNDM attended
- Guy Richard also attended but couldn't find us until late in the day
- Corrina's truck 194 km & Walter's blue truck & Ministry vehicle
- Prospected different locations
- Used safety equipment (Glasses), Phone camera, hammers & chisel
- Took 7 pictures of one location
 Pictures 399 Ministry exploration of property

13-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme attended
- Used Corrina's truck 193 km
- Prospected different locations
- Used Gps, safety equipment, camera, hammers
- Took 316 pictures and GPS reading at 61 different locations

15-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Prospected different locations
- We brought the trailer and tried to level it
- Used Corrina's Truck 239 km
- Used Gps, safety equipment, camera
- Took 121 pictures and GPS reading at 19 different locations

16-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Prospected different locations
- Brought new battery
- Worked on trying to level the trailer
- Used Corrina's Truck 246 km
- Used Gps, safety equipment, camera
- Took 21 pictures and GPS reading at 4 different locations

Took 1 sample

18-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Coco towing delivered the steel storage container.
- We finished leveling the trailer but could not get the side out. Guy Richard got the side to come out by going direct current to motor. Not sure what day he came after this date.
- Prospected different locations
- Used Corrina's Truck 193 km and Ryan's Jeep
- Used Gps, safety equipment, camera
- Took 10 pictures and GPS reading at 2 different locations

20-08-2017 attended property

- Michel Lavoie & Ryan McIlvenna attended
- Prospected different locations
- Used Argo
- Used Corrina's Truck 237 km & trailer
- Used Gps, safety equipment, camera
- Took 229 pictures and GPS reading at 38 different locations

23-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Prospected different locations
- Cut Sample 23 and pick up sample 24
- Used Argo
- Used Corrina's Truck 237 km
- Used Gps, safety equipment, camera, cut saw
- Took 113 pictures and GPS reading at 18 different locations
- Took 1 sample

25-08-2017 attended property

- Michel Lavoie & Ryan McIlvenna & Guy Richard attended
- Prospected different locations
- Used Argo
- Used Corrina's Truck 237 km
- Used Gps, safety equipment, camera
- Took 348 pictures and GPS reading at 53 different locations

27-08-2017 attended property

- Michel Lavoie & Ryan McIlvenna attended
- Prospected different locations
- Used Argo
- Used Corrina's Truck 237 km
- Used Gps, safety equipment, camera, saw and cleaning tools
- Took 151 pictures and GPS reading at 25 different locations
- Took 1 sample

28-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme attended
- Camera batteries were low so did mostly prospected different locations
- Used Corrina's Truck 247 km
- Used safety equipment

29-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme attended
- Used Corrina's Truck 240 km
- Used Gps, safety equipment, camera
- Took 10 pictures and GPS reading at 2 different locations

30-08-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Excavated and prospected the same location
- Used Corrina's Truck 181 km, Ryan drove to camp
- Used Gps, safety equipment, excavating equipment, camera
- Took 8 pictures and GPS reading at 1 location

02-09-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Excavated and prospected different locations
- Used Corrina's Truck 195 km Ryan drove to camp 1
- Used Gps, safety equipment, excavating equipment, camera, saw and cleaning equipment
- Pump failed (adapter was wrong kind)
- Took 123 pictures and GPS reading at 21 different locations
- Took 1 sample

03-09-2017 attended property

- Michel Lavoie & Ryan McIlvenna attended
- Prospected different locations but did most of the work on excavated site
- Forgot camera and GPS
- Used Corrina's Truck 195 km Ryan drove to camp 1
- Used safety equipment, excavating equipment, cut saw
- Took 2 samples

05-09-2017 attended property

- Michel Lavoie & Corrina Bonhomme attended
- Prospected different locations
- Used Corrina's Truck 189 km
- Used Gps, safety equipment, camera
- Took 81 pictures and GPS reading at 17 different locations

06-09-2017 attended property

- Michel Lavoie & Corrina Bonhomme attended
- Prospected different locations
- Used Corrina's Truck 205 km & trailer
- Brought wood to camp
- Used Gps, safety equipment, camera

- Took 84 pictures and GPS reading at 15 different locations

09-09-2017 attended property

- Michel Lavoie & Ryan McIlvenna attended
- Prospected different locations
- Used Corrina's Truck 246 km
- Used Argo & metal detector
- Used Gps, safety equipment, camera
- On this day we found a spot that made the metal detector sign. See pic 339 for area.
- Took 43 pictures and GPS reading at 8 different locations

12-09-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Guy Richard & Ryan McIlvenna Dr. Peter Lightfoot attended
- Prospected different locations and examined bedrock to determine rock type and potential targets.
- Dr. Lightfoot confirmed potential mineralized targets. CREELMAN & FRALECK Township
- Used Corrina's Truck 205 km and Guy's truck
- Used Gps, safety equipment, camera
- Took 8 pictures 1 location
 Pictures 683 Dr. Lightfoot

13-09-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Prospected different locations
- Used Corrina's Truck 240 km
- Used metal detector
- Took samples
- Used Gps, safety equipment, camera, cut saw
- Took 60 pictures and GPS reading at 10 different locations
- Took 7 samples

16-09-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Prospected different locations
- Used Corrina's Truck 239 km
- Used Argo
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera, cut saw
- Took 37 pictures and GPS reading at 6 different locations
- Took 4 samples

17-09-2017 attended property

- Michel Lavoie & Ryan McIlvenna attended
- Prospected different locations
- Used Corrina's Truck 240 km
- Used Argo
- Used metal detector and cleaning tools

- Used Gps, safety equipment, camera, cut saw
- Took 49 pictures and GPS reading at 7 different locations
- Took 9 samples

19-09-2017 attended property

- Michel Lavoie & Ryan McIlvenna & Guy Richard & Justin attended
- Prospected different locations
- Took samples
- Used argo (Guy destroyed 2 tires in Vermillion river)
- Used Corrina's Truck 195 km and guy's truck
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera, cut saw
- Took 80 pictures and GPS reading at 7 different locations and 3 samples
- Took 11 samples

20-09-2017 attended property

- Michel Lavoie & Ryan McIlvenna & Guy Richard & Justin attended
- Prospected different locations
- Excavated & took samples
- Used Corrina's Truck 241 km and guy's truck
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera, cut saw
- Took 37 pictures and GPS reading at 6 different locations
- Took 6 samples

23-09-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Prospected different locations
- Excavated & took samples
- Used Corrina's Truck 195 km and guy's truck
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera
- Took 44 pictures and GPS reading at 3 different locations

26-09-2017 attended property

- Michel Lavoie & Ryan McIlvenna & Walter Collins attended
- Prospected different locations
- Excavated & took samples
- Used Corrina's Truck 209 km and Walter's truck
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera, cut saw
- Took 100 pictures and GPS reading at 10 different locations
- Took 33 pictures of sample 70
- Took 5 samples

27-09-2017 attended property

- Michel Lavoie & Ryan McIlvenna attended
- Prospected different locations and excavated

- Used Corrina's Truck 184 km
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera
- Took 63 pictures and GPS reading at 11 different locations

28-09-2017 attended property

- Michel Lavoie & Ryan McIlvenna attended
- Used Corrina's Truck 206 km
- Lost exploration information.
- This day, the reserve road was closed due to flooding. We had to use Ella Lake Road to get our supplies.
- We prospected different locations.
- Used Gps, safety equipment, camera

30-09-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended
- Prospected different locations and excavated
- Used Corrina's Truck 196 km & Ryan's Jeep to Camp 1
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 168 pictures and GPS reading at 8 different locations
- Took 1 sample

01-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna & his friend attended
- Prospected different locations and excavated
- Used Corrina's Truck 208 km and Ryan's friends vehicle
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 69 pictures and GPS reading at 8 different locations
- Took 12 samples

03-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna & Guy Richard & Walter Collins & Stuart Winters attended
- Prospected different locations and excavated
- Used Corrina's Truck 205 km and Guy's truck vehicle
- Ryan and Stuart used their vehicle to Capreol
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 117 pictures and GPS reading at 13 different locations
- Took 3 samples
 - Pictures 759 Stuart and crew

11-10-2017 attended property

- Michel Lavoie & Ryan McIlvenna & Stuart Winters attended
- Prospected different location and took samples
- Used Corrina's Truck 194 km

- Ryan and Stuart used their vehicle to Capreol
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 104 pictures and GPS reading at 6 different locations
- Examines samples and took pictures at camp
- Took 3 samples

17-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna & Walter Collins & Walter Jr. Collins attended property.
- Prospected different location
- Used Corrina's Truck 190 km & Walter's van
- Used Argo
- Used metal detector and cleaning tools
- Used saw
- Used Gps (Batteries died), safety equipment, camera
- Took 25 pictures and GPS reading at 4 different locations

18-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna & Walter Collins & Walter Jr. Collins attended property.
- Prospected different location
- Used Corrina's Truck 206 km & Walter's van
- Used Argo
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera
- Took 49 pictures and GPS reading at 9 different locations

20-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna & Walter Collins & Stuart attended property.
- Prospected different location & took samples
- Used Corrina's Truck 193 km & Walter's van
- Used Argo
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 49 pictures and GPS reading at 6 different locations
- Took 11 samples

21-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended property.
- Prospected different location & took samples
- Used Corrina's Truck 198 km & Ryan's Jeep
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 39 pictures and GPS reading at 8 different locations
- Took 9 samples

22-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna & Stuart Winters attended property.
- Prospected different location & took samples
- Used Corrina's Truck 211 km & Ryan's Jeep
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 105 pictures and GPS reading at 19 different locations
- Took 3 samples

26-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended property.
- Prospected different location & took samples
- Used Corrina's Truck 205 km & Ryan's Jeep
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 71 pictures and GPS reading at 13 different locations
- Took 16 samples

29-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna attended property.
- Prospected different location & took samples
- Used Corrina's Truck 203 km & Ryan's Jeep
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 65 pictures and GPS reading at 8 different locations
- Took 13 samples

31-10-2017 attended property

- Michel Lavoie & Corrina Bonhomme & Ryan McIlvenna & Guy Richard attended property.
- Prospected different location & took samples
- Used Corrina's truck 201 km and Guy's truck
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 85 pictures and GPS reading at 16 different locations
- Took 13 samples

08-11-2017 attended property

- Michel Lavoie & Ryan McIlvenna & Stuart Winters & Walter Collins and Walter Collins Jr. attended property.
- Prospected different location & took samples
- Used Guy's truck 184 km & Walter's Van
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 69 pictures and GPS reading at 10 different locations
- Took 10 samples

24-11-2017 attended property

- Michel Lavoie & Corrina Bonhomme attended property.

- Took pictures of the container.
- Prospected different location & did acid test & took samples
- Used Guy's truck 161 km
- Used Gps, safety equipment, camera
- Took 59 pictures and GPS reading at 6 different locations

28-11-2017 attended property

- Michel Lavoie & Corrina Bonhomme & David Proulx attended
- Prospected different location and took samples
- Used Guy's Truck 159 km
- Used metal detector and cleaning tools
- Used Gps, safety equipment, camera and saw
- Took 90 pictures and GPS reading at 3 different locations.
- Took 10 samples (1 sample was from a prior time)
- Lost prospecting hammer

05/04/2017

- This started our mining exploration. We wanted to prospect the Wanapetei river and the logging roads in the Northern Capreol area. We passed the last claims after the North river bridge and started looking.
- Map 2212 does not indicates the type of bedrock in this area.
- The area was previously clear cut by loging company.
- Th replanted pines are mature and doing well.
- These claims are covered by rounded gravels and small boulders.
- Large gravel mounts could be seen on the side of the road. Glacial till.
- Gervais Forest has a gravel plant on the west side of the road.
- Gravel was also excavated on the East side of the road.
- The gravel here could be a combination of glacial till and old Wanapetei river bed.
- There is also some beach sand near the gravel deposits.
- In the area of the beach sand, the nearby river has a bend in it and looks like the river was wider in the past. This is an area were water would have slowed down and deposited gold.
- Took half a 5 gallon pail to pan for gold. (None discovered)
- The road in this area runs parallel to the Wanapetei river.
- The river is on the right side of the road on the way to property. (Visible in a few areas)
- The water level was high and riverbed was not visible.
- On the left side is a large mountains that run parallel to the road.
- There is evidence on the mountain face that large land slides occurred.
- There is also a mountain range on the other side of the river.
- Road was terrible, had some large areas of road washed out. Couldn't get safely to area of interest
- Claim 317995, 301243 and 332963 were prospected before the land was staked.

08/04/2017

- Map 2212 indicates quartz diabase (Nipissing Type), granitic rocks (ARCHEAN) and metavolcanics (ARCHEAN)
- Found some guartz/calcite veins with minerals on the side of the mountain at the bride.
- Looks like Bornite and pyrite.
- The veins run North South and are small to several cm wide.
- The veins are next to the road at the bridge.
- The bedrock is dark with pink spots (Quartz diabase) or dark metavolcanics.
- Large boulders of dark metavolcanics hang on the edge of the top of the hill. (Dangerous)
- Past the bridge, going North we looked for the Quartz diabase (Nippising type) but was unable to locate it. Except for a few spects of pyrite, no minerals were visible.
- There is a trail from the road to Beaver lake.
- The river has large dark sedimentary boulders. One area had some conglomerates in the river outcrop. (By the island)
- We continued into GRIGG township to prospect new logging roads.
- Too muddy even for quad.
- Claim 128138, 229470, 304541 and 324033 were prospected before the land was staked.

16/04/2017

- Map 2212 indicates quartz diabase (Nipissing Type), granitic rocks (ARCHEAN) and metavolcanics (ARCHEAN)
- The map also indicates at least 6 large fault lines in the area.
- On this day we prospected claim 128138, 229470 and 304541.
- Claim 128138 is very interesting because of the visible bornite in the quartz/calsite veins.
- Took a few samples from the bridge area to view at camp.
- One sample was the 31000 ppm Cu sample.
- The sample looked like magnetite. (Very magnetic)
- The sample had some chunks of minerals on it.
- There was also some light hydrothermal sediments with the sample.
- The bedrock changed as you go towards Beaver lake.
- The trail to Beaver lake has some small outcrops and some rock faces nearby.
- No substancial minerals visible.
- There is a large change in elevation and a river joining Beaver lake and the Wanapetei river.
- Looks like there was some early exploration activity at the Western end of Beaver lake.
- A few drill holes were drilled nearby looking for Uranium in the late Huronian Mississagi Formation south of Beaver lake.
- These areas were prospected prior to staking claims

22/04/2017

- We prospected in claim 155100 and found some large conglomerate boulders. The area has lots of granite.
- Claim 323722 also had lots of granite.
- There is a small lake in the middle of the claim.
- The porphyritic quartz monzonite pluton is just West of this area.
- Claim 323724 was low lying area with no outcrops visible.
- There is a small lake on the claim that is part of Frog creek.
- We drove all the roads up to claim 172271. We saw lots of granite and some pegmatites.
- The area is mountainous with small lakes on the sides.
- In claim 336108 we found some conglomerate in the bedrock.
- The boulders are rounded.
- In claim 295068 we found some more conglomerates. Under the conglomerate is a dark burgundy bedrock. The water is realy rusty in this area.
- In claim 301327 we found some banded bedrock. It is quite a large outcrop. The bedrock fractures in layers. Maybe good for slate pool tables. The fine grain bedrock erodes to a yellow color.
- These areas were prospected prior to staking claims.

23-04-2017

- We started prospecting in claim 248339. There is no visible outcrops. Lots of gravel / glacial till.
- Someone dug a pit that is full of rounded pebbles.
- There is also a small trail that runs north to south through the claim.
- The Wanapetei river runs parallel to the road (Portalance)
- This is where Fire Lake road starts.
- We stoped in claim 311749. There was some dark fractured bedrock with white precipitate.
- Could not find more outcrops in the area.
- Prospected on claim 294350. This claim is part of the electric power lines. There are large pink granite boulders in this area.
- There is an access road to the pole line and a small lake here. No outcrops in lower elevations.
- Lost a hammer yesterday and had to go down roads after pole line to get it.
- Prospected on claim 228224. There was lots of greenish bedrock in this area. The swamp area had no visible outcrops. The bedrock type changed after the swamp.

- Map 2212 indicates Archean metavolcanics contacting porphyritic quartz monzonite.
- In claim 172081, 142726 all the bedrock outcrops were the same type. Porphyritic.
- We stopped and looked at the conglomerates again in claim 336108. Looked for more outcrops. Found some rusted bedrock further up the road.
- We stopped again at the burgundy rockface in claim 295068. Some of the bedrock is highly fractured at the bottom. This could be a result of the road building.
- The conglomerates at the top of the mountain have small rounded boulders. The boulders are mostly pink granite. Needs more exploration here.
- These areas were prospected prior to staking claims.

Pictures 1 Conglomerate Boulders with Pseudotachylite 17T 0503648 Elevation = 391m 5199155

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation)
- There is an un-named fault line approximately 120m North
- There are two faults intersecting approximately 360m North West at 127°
- The map indicates Breccea approximately 190m South East at 124°
- The map indicates that there is a massive fault of #12 Olivine diabase about 246m South
- The map indicates that there is a massive fault of #11Quartz diabase (Nipissing type) about 330m South East
- Large conglomerate boulders. (Size of small car)
- One boulder has a large fragment of pink granite in a black sedimentary matrix
- Some small white angular fragments are also present
- One large boulder has pseudotachylite
- There is another boulder made of pink granite with a large white quartz vein

Pictures 2 Conglomerate Boulders 17T 0503644 Elevation = 401m 5200007

- Map 2212 also indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite in this area ARCHEAN Granitic Rocks (Algoman)
- There is a fault about 370m North West at 292°
- There is a fault about 760m East
- There is a fault about 730 m South
- There is an intrusion of #4 Diabase, metadiabase (Early Mafic Intrusive Rocks) about 665m South East at 305°
- Boulders in pictures 1 are about 858m South of these boulders
- Large conglomerate boulder.
- Small and medium fragments
- The fragments are not uniform in composition, size or colour (Polymictic)
- White Crystals protruding out of the Granite Boulder (Bottom Right)
- Lots of small rounded stones in boulder.
- The larger fragments, about 6" are different in colour and composition.
- Some fragments are White & Black granite; others are fine grain and vary in colour from green to grey. One fragment was really rusty.

Pictures 3 Glossy Conglomerate 17T 0497825 Elevation = 455m

5200162

- The closest outcrop on the map is 9c Finely bedded argillite (HURONIAN Gowganda formation)
- Conglomerate in Glassy textured Bedrock
- The fragments are inconsistent in size, colour and composition (Polymictic)
- Some of the 4-5", rounder fragment are diorite, one was grey (fine grain).
- Some fragments are small and white.

Pictures 4 Mega conglomerate – breccias

17T 0497841 Elevation 430m

5200464

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite HURONIAN Gowganda Formation in the area
- Large 12" rounded pink-white-black granite fragments.
- Black, fine grain matrix. Mud like.
- Weird rounded fragment that appears to be melted or something.
- Center of fragment has larger crystals then the surrounding matrix.
- The fragment has a thin, whiter ring that is broken on the bottom.
- There appears to be a pink intrusion that could indicate a dike.
- There is a large face nearby. The bedrock is pink and heavily fractured.
- There are small mega conglomerate in the area.

Pictures 5 Banded gneiss

17T 0498176 Elevation = 451m

5202038

- Map 2212 indicates 9c Finely bedded argillite HURONIAN Gowganda Formation in the area
- Banded gneiss. Sedimentary bedrock that has been turned over 90°.
- When broken, you find dark blue, fine grain bedrock.
- Some of the bands oxidized orange-brown, the rest oxidized white.

17T 0498060 Elevation = 422m

5202283

- Breccea boulders.
- See pictures 18 Large breccias boulder

17T 0498170 Elevation = 451m

5202040

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite
- Weird stripes. Sedimentary bedrock that has been turned over 90°.
- Same area as Pictures 5 Banded gneiss

Pictures 6 Altered bedrock and Conglomerate

17T 0497844 Elevation 414m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Same type of bedrock as in pictures 4. The bedrock is pink/burgandy and heavily fractured.
- Lots of rust in water at base of cliff. (Iron in water)

Mineralized conglomerate on top of mountain.

17T 0497852 Elevation = 444m

5200471

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Conglomerates on top of mountain.
- Mineralization in the conglomerate. Pyrite.

17T 0498714 Elevation = 455m

5199786

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Conglomerate. Glacial deposit maybe.
- On GPS as conglomerate 8.

17T 0497864 Elevation = 431m

5200406

- Map 2212 shows 9b Polymictic conglomerates (HURONIAN Gowganda formation)
- Conglomerate. Glacial deposit maybe.
- On GPS as conglomerate 10.

Pictures 7 Mineralization & greywacke & Sample 1

17T 0498414 Elevation = 451m

5199961

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Mineralization in bedrock. (Pyrite)& (Metallic)
- The Pyrite cubes are massive in some areas.
- Lots of surface rust. (Iron oxide Limonite)
- Bedrock is dark blue/grey in colour.
- Locks like greywacke
- Samples were taken. Sent in later for analysis with pieces from the samples in pictures 180

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.009	39	67	174

17T 0498375 Elevation = 443m

5199850

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Conglomerate. Glacial deposit maybe.
- On GPS as conglomerate 3.

17T 0498428 Elevation = 444m

5199777

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- On GPS as Conglomerate

17T 0498642 Elevation = 455m

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- On GPS as conglomerate 4

17T 0498661 Elevation = 450m

5199810

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- On GPS as conglomerate 5.
- Small & medium fragments of white quartz/diorite.
- Some rusted matrix.
- The bedrock matrix is light blue/grey in colour and fine grain.
- A layer of white/brown quartz is eroded, only small amount left.
- Same area as pic 15

17T 0498683 Elevation = 448m

5199820

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- On GPS as conglomerate 6.
- Small & medium fragments of white quartz.
- The bedrock matrix is light blue/grey in colour and fine grain.
- Same area as pic 14

17T 0498693 Elevation 454m

5199816

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- On GPS as conglomerate 7.
- Small & medium fragments of white quartz.
- The bedrock matrix is light blue/grey in colour and fine grain.

Pictures 8 Conglomerate

17T 0498433 Elevation = 451m

5200016

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Large, medium, small rounded fragments.
- Fragments are White-Pink-Black in colour.
- There is also a top layer of quartz that has not eroded. Partial remains.
- There are some line patterns. Fracturing.

Pictures 9 Mega conglomerate

17T 0498389 Elevation = 442m

5199783

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Small showing of small and medium rounded fragments.
- Mega conglomerate.
- The fragments are white and look like quartz.
- Rounded particles are of white quarts / diorite

Pictures 10 Mega Conglomerate

17T 0498465 Elevation = 452m

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Large, medium, small rounded fragments.
- Fragments are White-Black-Pink in colour.
- Some fracturing. Pink colour.
- Some rust.

Pictures 11 Pseudotachylite

17T 0498367 Elevation = 440m

5199323

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Mineralization in bedrock.
- Large & medium size fragments.
- Fragment are White-Black-Pink in colour
- Some large white quartz veins run in several directions
- Some red color in some quartz
- There is some pseudotachylite on the outcrop face
- This is the edge of the porphyry.
- A few porphyritic fragments are found

Pictures 12 Quartz veins

17T 0498336 Elevation = 450m

5199323

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Large white quartz veins.

Pictures 13 Quartz & Sample 5

17T 0497838 Elevation 435m

5199163

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Quartz veins. Raised quartz.
- Fracture lines. Some quartz.
- The bedrock looks like it was covered by water and is sedimentary.
- There is a small outcrop of heavily fractured bedrock.
- This outcrop oxidized very white.
- Mineralization (scattered Pyrite cubes) in dark blue bedrock. Sample 5.
- Some rust on sample 5.
- Dark blue rock is fine grain.

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	94	88	39.2

Pictures 14 Conglomerate

17T 0498683 Elevation = 448m

5199820

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- A few small & medium fragments.
- Fragments are white Quartz.
- The bedrock is grey and dark blue.
- A few fractures. One with some rust.

Pictures 15 Conglomerate & raised quartz

17T 0498661 Elevation = 450m

5199810

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)

- Small, rounded fragments.
- A few larger fragments.
- Fragments are white quartz and diorite.
- Raised orange quartz.
- The bedrock is grey in colour.
- Some rust.

Pictures 16 Porphyry

17T 0499736 Elevation = 420m

5199256

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks (Algoman)
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square.
- The outcrop is large and white in colour.
- The water nearby is rusty colour.

Pictures 17 Mega Conglomerate

17T 0498434 Elevation = 456m

5200176

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Mega Conglomerate.
- The fragments are rounded and vary in size.
- Most fragments oxidized white/light grey.
- A few fragments are dark brown/black.
- Contact zone is sheered and black.
- Several feet from the contact is sedimentary bedrock.

Pictures 18 Conglomerate

17T 0498060 Elevation = 422m

5202283

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- Map 2212 aslso indicates some Olivine diabase nearby
- Small outcrop by road has small fragments.
- Large boulders with fragments.
- Fragments are White-Black-Pink in colour.
- In a pool of water is large fragments and resembles mega conglomerate due to the amount of fragments of different sizes.
- I think the fragments exist below the road and overburden.
- North and east of this site is a deposit of gravel. Could be an old river bed.

Pictures 19 Conglomerates

17T 0498365 Elevation = 450m

5200247

- Map 2212 shows 9b Bedded arkose, feldspatic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Small, medium and large rounded fragments.
- The fragments are diorite, (fine grain / dark grey) or white-black-pink in colour.
- The bedrock (Matrix) is pale grey.

Pictures 20 Conglomerates

17T 0498330 Elevation = 449m

5200277

- Map 2212 shows 9b Bedded arkose, feldspatic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Lots of small and medium rounded fragments.
- Most fragments are white.
- The bedrock (Matrix) is pale grey.

Pictures 21 Conglomerates

17T 0498312 Elevation = 466m

5200291

- Map 2212 shows 9b Bedded arkose, feldspatic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Lots of small and medium rounded fragments.
- Most fragments are white.
- The bedrock (Matrix) is pale grey.

Pictures 22 Breccia (Pseudotachylite)

17T 0498300 Elevation = 449m

5200339

- Map 2212 shows 9b Bedded arkose, feldspatic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Lots of small and medium rounded fragments.
- Larger fragments are rounded with a tail.
- Most fragments are white.
- The bedrock (Matrix) is pale grey.
- Look like pseudotachylite
- The top of a small hill shows the bedrock that eroded above the fault line.
- The bedrock above the Breccia is fractured and white.

Pictures 23 Sedimentary with pyrite

17T 0497172 Elevation 418m

5200783

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Surface of bedrock is beige to brown in colour.
- The surface looks like sedimentary rock.
- The inside shows dark blue, fine grain quartz.
- There are some pyrite and rust visible.

Pictures 24 Greywacke

17T 0497852 Elevation = 440m

5200596

- Map 2212 shows 9b Bedded arkose, feldspatic greywacke 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- Greywacke
- Lots of rust spots on greywacke.

Pictures 25 Conglomerate

17T 0495986 Elevation = 398m

- Map 2212 shows 9a Polymictic conglomerates 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- A few small fragments

- The fragments are white
- Bedrock is light grey

Pictures 26 Conglomerate

17T 0496034 Elevation = 404m

5199463

- Map 2212 shows 9a Polymictic conglomerates 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- A few small fragments
- The fragments are white
- Bedrock is light grey

Pictures 27 Conglomerate

17T 0496141 Elevation = 404m

5199462

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- A few medium size fragments
- The fragments are diorite
- Bedrock is light grey

Pictures 28 Conglomerate

17T 0496669 Elevation = 421m

5199731

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- A few small size fragments
- The fragments are white diorite
- Bedrock is light grey

Pictures 29 Conglomerate

17T 0496765 Elevation = 421m

5199805

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- A few small size fragments
- The fragments are white
- One fragment is large and dark grey. Fine grain.
- Bedrock is light grey
- A nearby ditch has rusty water.
- Outcrop is on the road.

Pictures 30 Conglomerate boulder

17T 0497170 Elevation = 430m

- Map 2212 shows 9a Polymictic conglomerate 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Small boulder with rounded fragments.
- Fragments are white.
- Boulder is grey.

Pictures 31 Conglomerate

17T 0497114 Elevation 439m

5199439

- Map 2212 shows 9a Polymictic conglomerate 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- A lot small size and medium fragments
- One large fragment visible
- The fragments are white diorite or dark grey.
- Bedrock is light grey

Pictures 32 Rusty Undifferentiated

17T 0497167 Elevation = 430m

5199625

- Map 2212 shows 9a Polymictic conglomerate 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Greywacke
- Lots of rust spots.

Pictures 33 Mega conglomerate boulder

17T 0497170 Elevation = 430 m

5199633

- Map 2212 shows 9a Polymictic conglomerate 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Mega conglomerate boulder
- The fragments are white in colour.
- A few small fragments are black.

Pictures 34 Pseudotachylite & Quartz

17T 0498417 Elevation = 447m

5200497

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Lava flow is grey in colour.
- Fragments look partially melted.
- Fragments the size of a prospectors hammer.
- Bedrock is white and clumpy.
- Nearby is a lava flow with large fragments and layering.
- Lots of small black lines in the bedrock
- I see a few white quartz veins

Pictures 35 Pseudotachylite

17T 0498442 Elevation = 441m

5200503

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Pseudotachylite
- Country rock has oxidized white and is fractured.
- The matrix is dark grey. Fine grain.

Pictures 36 Pseudotachylite & Undifferentiated

17T 0497257 Elevation = 430m

- Map 2212 shows 9b Bedded arkose, feldspathic greywacke 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- I see pseudotachylite in Undifferentiated bedrock
- Bands of dark and light colour
- Banding 2 6 feet wide
- Lots of white fragments, Breccia/conglomerates
- Beautiful looking fault line

Pictures 37 Hematite & Pyrite

17T 0502963 Elevation = 402m

5200643

- Map 2212 indicates 1b Quartz feldspar (Hornblende) biotite schist in the area ARCHEAN Metavolcanics and Metasediments
- Rust (Limonite) on bedrock surface.
- Looks like hematite
- Magnetic
- Visible pyrite cubes
- Some fractures
- Some white lines and staining
- Dark grey bedrock (fine grain)

17T 0499556 Elevation = 433m

5197305

- Pictures 38 were lost.

Pictures 39 Conglomerate & lines

17T 0495608 Elevation = 1286 ft

5198904

- Map 2212 shows 9a Polymictic conglomerate 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Small and medium rounded fragments.
- The fragments are white or diorite
- A few pressure cracks (looks like epidote)
- One cross cut. (Rusty pink)

Pictures 40 Conglomerate boulders

17T 0495561 Elevation = 1293 ft

5198835

- Map 2212 shows 9a Polymictic conglomerate 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Small conglomerate boulder
- Fragments are Diorite, white or dark grey in colour
- Sandy beach nearby

Pictures 41 Yellow boulder

17T 0497017 Elevation = 406m

- Map 2212 shows 9a Polymictic conglomerate 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Yellow Porphyritic boulder
- The circular porphyry are white
- The matrix is a granite (White-black-beige) oxidizes (to a yellow dust)
- One boulder is of white quartz

One boulder is of a greenish – white gabbro

Pictures 42 Conglomerate

17T 0499356 Elevation = 1449 ft

5199715

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Conglomerate
- Fragments are small and rounded
- Fragments look like diorite or are white in colour

Pictures 43 Porphyry

17T 0499653 Elevation = 446m

5200072

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 15 mm)
- Lots of feldspar crystals that are close to each other
- There is one white pressure crack

Pictures 44 Large quartz veins

17T 0499931 Elevation = 427m

5198938

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Large white quartz veins

Pictures 45 Porphyry & pink dikes

17T 0499821 Elevation = 1367 ft

5198799

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Lots of feldspar crystals that are close to each other
- Two parallel pink dikes cross the porphyry

Pictures 46 Pseudotachylite

17T 0499817 Elevation = 1372 ft

5198815

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN nearby (South and East)
- Conglomerate/Breccia.
- Large angular fragments are diorite, white or grey in colour (polymictic)
- The medium fragments are diorite or white
- The small fragments are white
- The matrix is grey in colour
- I think this is pseudotachylite

Pictures 47 Pseudotachylite & swirl

17T 0498459 Elevation = 1367 ft

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Pseudotachylite with small white fragments
- Breccia with large white quartz fragments
- Contact zone. Dark line and change in bedrock.
- Weird shape in bedrock. Rounded swirl.

Pictures 48 Pseudotachylite & quartz veins

17T 0498585 Elevation = 1370 ft = 422m

5196965

- Map 2212 shows 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Large, medium and small fragments (pseudotachylite)
- The small fragments are white
- Surounding bedrock and large fragments are greywacke
- Lava is dark grey
- Could be on a fault line
- 4-5 quartz veins cross the breccias
- Some minerals and rust is visibe in the white quartz

Pictures 49 Pseudotachylite & Greywackey

17T 0498638 Elevation = 1391 ft

5196889

- Map 2212 shows 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Large grey fragment of Greywacke
- Dark grey lava with small white blobs (Looks like Sudbury Breccea, pseudotachylite)
- Looks like the continuation of the fault line.

Pictures 50 Conglomerate & Rust

17T 0498800 Elevation = 1349 ft

5196483

- Map 2212 shows 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- A few small fragments.
- Rust
- Bedrock is light grey

17T 0498593 Elevation = 1323 ft

5196338

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Large white quartz vein
- Bedrock is dark green-grey in colour

Pictures 51 Large white quartz

17T 0497498 Elevation = 397m

- Map 2212 shows 9a Polymictic conglomerate 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Conglomerate with large and medium fragments
- Fragments are white
- Lots of long pressure cracks (Stringers)

Bedrock is oxidized white (Large outcrop)
 Pictures 52 Large breccia & lots of stringers

17T 0509712 Elevation = 353m

5199334

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman) 1 Undifferentiated mafic to intermediate metavolcanics ARCHEAN Metavolcanics and Metavolcanics
- Large quartz vein. About 1m across.
- Quartz is fractured

Pictures 53 Large quartz veins

17T 0500355 Elevation = 434m

5197680

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Not porphyry
- Large white quartz vein

Pictures 54 Large quartz veins

17T 0500034 Elevation = 419m

5198134

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Dark grey bedrock
- Lots of fractures and cross fractures
- Some pink staining
- Nearby is some Epidote

Pictures 55 Epidote & stringers

17T 0500775 Elevation = 431m

5197896

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Not porphyry
- Dark grey bedrock Conglomerate
- Lots of fractures and cross fractures

Pictures 56 Conglomerate & Stringers

Pictures 57 lost

17T 0500859 Elevation = 1422 ft

5198394

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation)
- Map 2212 also indicate Breccia
- Conglomerate
- Fragments are white and beige

Pictures 58 Conglomerate

Pictures 59 was same as Pictures 61

17T 0500948 Elevation = 1383 ft

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)

- Not as many feldspar crystals
- About 80 mm vein of white quartz
 Pictures 60 Porphyry

17T 0498003 Elevation = 1396 ft

5201292

- Map 2212 indicates 12 Olivine diabase PRECAMBRIAN PROTEROZOIC Late mafic intrusive rocks
- About a 70 mm vein of white quartz
- The bedrock is light beige

Pictures 61 White quartz vein

17T 0498086 Elevation = 447m

5199392

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Banded gneiss
- Dark blue in colour. (Fine grain)
- Oxidizes to a yellow dust that covers the rock.
- Some mineralization in dark blue boulders.
- Rock fractures in slices. (Same as weird lines area)
- Pictures 62 same as Banded gneiss area

17T 0499377 Elevation = 452m

5199392

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Conglomerate
- Bedrock is light blue in colour
- Fragments are white quart or diorite
- Fragments are small or medium in size
- There is a meter wide structure of fractures.

Pictures 63 conglomerate

17T 0499479 Elevation = 444m

5199380

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Mega conglomerate
- Small & medium fragments
- Fragments are white and a few are small and dark grey
- Small amount of mineralization visible
- Nearby seems to be a contact zone between pink granite and glossy bedrock
 Pictures 64 Mega Conglomerate & contact

7T 0501324 Elevation = 422m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Not as many feldspar crystals
 Pictures 65 Porphyry

17T 0501392 Elevation = 428m

5197923

- Map 2212 shows 9b Polymictic conglomerate 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Breccea (Ministry calls this Breccea on the Creelman map)
- I see pseudotachylite (Sudbury Breccia)
- Large & medium fragments
- Egg shape fragments
- Fragments are white in colour
- The matrix is dark grey
- Looks like a fault line. Fragments seem to be traveling east west (Continues on other road)
 Pictures 66 Pseudotachylite & fault line

17T 0502071 Elevation = 421m

5198072

- Map 2212 shows 9b Polymictic conglomerate 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Conglomerate
- Fragments are white or diorite in colour
- Fragments are small and rounded
- Not lots of fragments
- Mostly small fragments
- Bedrock is light grey in colour

Pictures 67 Conglomerate

17T 0501825 Elevation = 424m

5198040

- Map 2212 shows 9b Polymictic conglomerate 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Conglomerate
- Fragments are small & medium
- Fragments are white and grey in colour
- Sudbury Breccea (Pseudotachylite)
- Fragments are large
- This could be a fault line

Pictures 68 Breccia & Pseudotachylite

17T 0501703 Elevation = 424m

5198083

- Map 2212 shows 9b Polymictic conglomerate 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Conglomerate
- Fragments are small & medium
- Fragments are white and greyn colour
- Breccea (Pseudotachylite)
- Some fragments are egg shape and dark grey in colour
- There is a cross bedding, small, white quartz vein

Pictures 69 Breccia & Pseudotachylite

17T 0501717 Elevation = 419m

5198409

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)

- Pseudotachylite
- Fragments are small medium and large
- Fragments are white quartzite
- Nearby looks like Pillow lava
- Dark basalt & Rhyolite

Pictures 70 Pseudotachylite & Pillow lava

17T 0502621 Elevation = 407m

5198547

- Map 2212 indicates 1b Quartz feldspar (Hornblende) biotite schist in the area ARCHEAN Metavolcanics and Metasediments
- 6 cm wide white quartz vein
- Bedrock looks like glossy grey quartz
- Lots of small stringers in bedrock
- One quartz vein has lots of rust in it Pictures 71 Rusty quart

17T 0501712 Elevation = 418m

5198505

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Conglomerate
- Fragments are small & medium in size
- Fragments are rounded
- Fragments are white quartz
- Bedrock is light grey
 Pictures 72 Conglomerate

17T 0503128 Elevation = 382m

5198483

- Map 2212 indicates 1b Quartz feldspar (Hornblende) biotite schist in the area ARCHEAN
 Metavolcanics and Metasediments
- Map 2212 also indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite just South of this area ARCHEAN Granitic Rocks (Algoman)
- Pseudotachylite
- Fragments are small & medium in size
- Fragments are rounded
- Fragments are white quartz
- Some are elongated
- Bedrock is light grey
- Lots of stringers
- Bedrock is dark grey

Pictures 73 Pseudotachylite & stringers

17T 0503126 Elevation = 382m

- Map 2212 indicates 1b Quartz feldspar (Hornblende) biotite schist in the area ARCHEAN Metavolcanics and Metasediments
- Map 2212 also indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite just South of this area ARCHEAN Granitic Rocks (Algoman)
- Pseudotachylite
- Some fragments are small & medium in size
- Some fragments are rounded

- Some fragments are white/pink quartz
- Bedrock is dark grey

Pictures 74 Pseudotachylite

17T 0504048 Elevation = 394m

5198703

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation)
- Map 2212 also indicate 12 Olivine diabase just South of this area
- Conglomerate
- Fragments are Large & rounded
- Fragments are white/grey quartz
- Bedrock is light grey

Pictures 75 Large conglomerate

17T 0502389 Elevation = 406m

5198768

- Map 2212 indicates 1b Quartz feldspar (Hornblende) biotite schist in the area ARCHEAN Metavolcanics and Metasediments
- Dark grey bedrock with lots of fractures (stringers) ARCHEAN Quartz feldspar (horneblend) Biotite Shist
- I see large white stringers
- Conglomerate / Breccia beside
- Could be pseudotachylite
- Large, medium and small white quartz fragments
- A few small, dark fragments with rust
- Dark grey, glossy bedrock

Pictures 76 Pseudotachylite & Conglomerate & stringers

17T 0502367 Elevation = 405m

5199102

- Map 2212 indicates 1b Quartz feldspar (Hornblende) biotite schist in the area ARCHEAN Metavolcanics and Metasediments
- Mega small & medium conglomerate
- Fragments are rounded and white in colour
- Some small, rounded dark grey fragments
- Dark grey bedrock

Pictures 77 Mega small conglomerate

17T 0502389 Elevation = 405m

5199078

- Map 2212 indicates 1b Quartz feldspar (Hornblende) biotite schist in the area ARCHEAN Metavolcanics and Metasediments
- Mega small conglomerate
- Fragments are rounded and white in colour
- Some small, rounded dark grey fragments
- Dark grey, fine grain, quartzite 3cm below the conglomerate layer
- The upper conglomerate layer is braking off Pictures 78 Flaky mega small conglomerate

17T 0502408 Elevation = 413m

5198736

Map 2212 indicates 1b Quartz – feldspar (Hornblende) biotite schist in the area ARCHEAN
 Metavolcanics and Metasediments

- Conglomerate
- Large, medium and small rounded fragments
- The fragments are white in colour
- Bedrock is light grey
 Pictures 79 Conglomerate

17T 0502239 Elevation = 422m

5198721

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Flattened and elongated mafic enclaves of the Creelman pluton defining tectonic foliation and lineation.
- Magmatic enclaves are volumes of rock surrounded by emplaced host rock of related but distinct composition and of separated genesis (incomplete magmatic mixing)
- It crosses the road (South-West to North-East)
- On claim map there is a depression that goes to frog creek (No fault line indicated on map)
- Some rust
- Similar to the sample given to Shirley at M.N.D.M.
- Excavated 1 square meter

Pictures 80 tectonic foliation and lineation

17T 0502005 Elevation = 415m

5198845

- Map 2212 indicates 1b Quartz feldspar (Hornblende) biotite schist in the area ARCHEAN Metavolcanics and Metasediments
- Dark blue igneous rock
- Quartz feldspar (Hornblende) Biotite schist
- Some reddish staining (Hematite)
- Some brown staining
- Magnetic
- Mega small white stringers

Pictures 81 Hornblende Biotite Schist

17T 0501353 Elevation = 419m

5199048

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Pressure cracks that look like veins of quartz
- Also is cross veins
- Some small rust spots
- Contact zone of porphyry
- Dark blue igneous rock
- Quartz feldspar (Hornblende) Biotite schist

Pictures 82 Edge of porphyry

17T 0500714 Elevation = 428m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Mega Conglomerate
- Fragments are small, medium and large
- Fragments are mostly rounded
- Fragments are diorite, white, light grey or dark grey in colour

This conglomerate outcrop is between two outcrops of porphyry
 Pictures 83 Mega conglomerate

17T 0500522 Elevation = 431

5199391

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyrytic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- A few pressure cracks
- Some small rusted pyrite cubes

Pictures 84 Porphyritic quartz monzonite

17T 0500373 Elevation = 434m

5199616

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- A few pressure cracks
- About ½ " of quartz is on top of porphyry
- Quartz is white & pink

Pictures 85 Porphyry & quartz on top

17T 0500413 Elevation = 434m

5199674

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- About a 30mm white quartz vein Pictures 86 Porphyry & quartz vein

17T 0499526 Elevation = 445m

5199341

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Conglomerate
- Fragments are small and mostly concentrated in a bolder shape
- Fragments are diorite or white
- The bedrock is dark grey
- The bedrock has a rough texture
- The bedrock has larger white and black grains with really fine grey grains
- Could be lake/ocean bed or volcanic ash

Pictures 87 Conglomerate

17T 0499358 Elevation = 445m

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Undifferentiated
- Some rust (Limonite)
- A few fractures
- Took a sample to review under microscope (Sample not analysed in lab)
- Sample has 3 veins in it (Yellow / white quartz)

- Veins don't follow sedimentary pattern
- I see pyrite cubs (Gold and silver colour)
- I see a few black triangles that look like magnetite
- The Undifferentiated bedrock consists of fine grain, dark grey quartz grains and larger white quartz grains

Pictures 88 Undifferentiated & yellow mineralized stringers

17T 0500003 Elevation = 443m

5199646

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Pictures 89 Porphyry

17T 0499012 Elevation = 446m

5200350

- Map 2212 indicates 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Breccea (Pseudodachylite)
- Fragments are angular but a few are rounded
- One fragment is in the shape of a pentagon
- Fragments are diorite or white
- Fragments are small and a few medium
- 17 cm vein of white (? Quartz) Dike
- A few small fractures also
- Bedrock is light grey

Pictures 90 Pseudotachylite & large quartz dike

17T 0499083 Elevation = 446m

5200392

- Map 2212 indicates 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Finely bedded argillite (9C)
- Fine grain
- dark grey almost black in colour Pictures 91 Finely bedded argillite

17T 0499054 Elevation = 446m

5200379

- Map 2212 indicates 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Finely bedded argillite (9C)
- Some rust
- Oxidized white with blotches of black
- Rough surface
- Pictures 92 Finely bedded argillite

17T 0497144 Elevation = 436m

- Map 2212 indicates Quartz diabase (Nipissing type) PRECAMBRIAN PROTEROZOIC Late intrusive rocks
- One large outcrop looks dark green
- Conglomerate

- Fragments are small and medium
- Fragments are diorite, white or black
 Pictures 93 Quartz diabase & Conglomerate

17T 0500641 Elevation = 443m

5199362

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Polymictic conglomerate
- Fragments are rounded
- Fragments are pink granite, white or dark grey in colour Pictures 94 Polymictic conglomerate

17T 0500604 Elevation = 430m

5199390

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Mega Conglomerate
- Polymictic conglomerate
- Small and medium fragments are rounded
- Large fragments are angular
- Fragments are pink granite, white or dark grey in colour
- Some rust
- Glossy bedrock (Matrix)

Pictures 95 Polymictic conglomerate

17T 0500567 Elevation = 440m

5199393

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Large outcrop

Pictures 96 Porphyry

17T 0500696 Elevation = 433m

5199353

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Polymictic conglomerate
- Only a few small and medium fragments that are white
- Bedrock is dark grev
- Has some orange spots. (Could be olivine diabase)
- Oxidizes to yellow dust
- Pictures 97 Polymictic conglomerate

17T 0500714 Elevation = 432m

5199336

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Mega Conglomerate
- Polymictic conglomerate
- Small and medium and large fragments are rounded
- The fragments are mostly diorite and pink granite

Pictures 98 Polymictic conglomerate

17T 0500764 Elevation = 436m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Some rusted cubes
- Small, white quartz vein
- Edge of porphyry, contact zone
- Some pink staining (Feldspar)
 Pictures 99 Edge of porphyry

17T 0500847 Elevation = 426m

5199266

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Small, white quartz vein
- Edge of porphyry, contact zone
- Nearby is pink feldspar intrusion
- Intrusion is fractured. Can't tell if it granite or fragments. Need further investigation
- Nearby is a rock face with light grey to black colours
- This rock face has rounded fragments on top
- Therefore it is a conglomerate
- There is a large white dike that crosses the conglomerate
 Pictures 100 Porphyry & Conglomerate

17T 0500797 Elevation = 437m

5199068

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm) Pictures 101 Porphyry

17T 0500775 Elevation = 439m

5199050

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
 Pictures 102 Porphyry

17T 0500729 Elevation = 428m

5199015

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- There is an intrusion of basalt in the porphyry

Pictures 103 Porphyry & basalt

17T 0500653 Elevation = 429m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Nearby is a large rounded outcrop of porphyry
- It has a small white quartz vein

17T 0500579 Elevation = 430m

5198936

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)

Pictures 105 Porphyry

17T 0500871 Elevation = 435m

5198910

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- A few fractures

Pictures 106 Porphyry

17T 0500901 Elevation = 425m

5198822

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Not as many large feldspar crystals
- Same as Pic 145

Pictures 107 Porphyry

17T 0500941 Elevation = 425m

5198777

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- A few small fractures cut at 45° by a 30mm white quartz vein
- Nearby the porphyry has a medium size pink dike
- There a four parallel veins along the dike

Pictures 108 Porphyry & Pink Dike

17T 0500894 Elevation = 423m

5198584

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Not as many large feldspar crystals
- Nearby is porphyry with a large and medium dike running parallel to each other
 Pictures 109 Porphyry & Pink Dike

17T 0498987 Elevation = 448m

5199120

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Same as Pic 157

Pictures 110 Porphyry

17T 0500664 Elevation = 431m 5198131

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- I see a polymictic Breccia
- Medium fragments are porphyrytic but most are diorite like.
- Some medium fragments are white or medium grey Polymictic.
- A small fracture has pink in it
- The fragments are mostly angular.
- There is a few rounded fragments
- Bedrock is light grey
- Nearby I see some dark grey bedrock with small white fragments in it. Could be some dark pseudotachylite. Large fault line.

Pictures 111 Polymictic Breccia Pseudotachylite

17T 0500662

Elevation = 431m

5198102

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- White quartz pebbles in a beige quartz boulder
- The boulder is made of white and brown quartz
- Looks like sedimentary process formed this bedrock
- Similar to the pebble beds in the Lorrain Formation, North of Fraleck Lake p.23 Report 91 Pictures 112 Quartz pebble in boulder

17T 0500708

Elevation = 431m

5198125

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN granitic rocks in this area
- Polymictic conglomerate
- Some medium fragments are granite (Pink-white-black)
- Some small fragments are white and rounded
- On the edge of the conglomerate is an outcrop of epidote with white quartz
- The quartz has (Gold colour) pyrite cubes and rust
- The guartz that covers the epidote is thin but there are other guartz veins
- The quartz also has a bit of green chlorite
- The epidote is yellow
- The bedrock beside the epidote is dark Grey/ green
- Excavated 2m x 2m of conglomerate

Pictures 113 Epidote Pyrite conglomerate & area of Sample 23

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.031	811	16	19.80

17T 0501694

Elevation = 414m

5198860

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Quartz feldspar (- hornblende) biotite schist
- Some hematite staining
- Small white veins
- Some rust in veins
- The bedrock is dark green/grey in colour Pictures 114 Hornblende biotite schist

17T 0501524

Elevation = 418m

5198942

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Quartz feldspar (- hornblende) biotite schist
- Some epidote in small veins
- Small white vein
- The bedrock is dark grey in colour
 Pictures 115 Hornblende biotite schist

17T 0501039 Elevation = 439m

5199057

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Lots of rust on surface of porphyry (rust came from soil I think)
 Pictures 116 Porphyry & Rust

17T 0501034 Elevation = 423m

5199035

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
 Pictures 117 Porphyry

17T 0501014 Elevation = 423m

5199058

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- A bit of rust in a small fracture
- A few small quartz veins

Pictures 118 Porphyry

17T 0500923 Elevation = 440m

5199094

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)

Pictures 119 Porphyry

17T 0500801 Elevation = 443m

5199024

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)

Pictures 120 Porphyry

17T 0500931 Elevation = 427m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Large pink dike

Several smaller quartz veins
 Pictures 121 Porphyry & dike

17T 0500935 Elevation = 427m

5198615

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Lots of epidote
- Large pink dike
- Several smaller quartz veins

Pictures 122 Porphyry epidote & dike

17T 0500873 Elevation = 439m

5198429

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation)
- Map 2212 also indicate Breccia
- Polymictic conglomerate
- A few small, rounded fragments of diorite like.
- Bedrock is light grey
- One area has lots of fracturing and cross fractures (stringers)
- Some white staining (Bedrock mixing)
- At the contact zone the bedrock is dark blue/black vs a white/pink bedrock
- The map says it's the contact between Porphyrytic Quartz Monzonite vs Undifferentiated
- The map also indicate Breccea in the area (slightly west of this position)
 Pictures 123 Conglomerate stringers & Contact zone

17T 0501868 Elevation = 415m

5198884

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Quartz feldspar (- hornblende) biotite schist
- Small white veins
- Some rust in veins
- The bedrock is dark grey in colour
 Pictures 124 Hornblende biotite schist

17T 0501791 Elevation = 415m

5198705

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Quartz feldspar (- hornblende) biotite schist
- Medium size white veins
- Some rust in veins
- The bedrock is dark grey in colour

Pictures 125 Hornblende biotite schist

17T 0500664 Elevation = 431m

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Polymictic conglomerate
- Fragments are small and white

- Bedrock is light grey / beige
- Inside the bedrock is dark blue/grey
 Pictures 126 Polymictic conglomerate

17T 0502101 Elevation = 411m

5198757

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Diorite
- Small quartz veins
- Lots of surface rust (From surrounding soils)
- One larger quartz vein
 Pictures 127 Diorite & rust

17T 0500067 Elevation = 423m

5198067

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Mineralized ball in a small diorite boulder (About 45mm diameter)
- The diorite becomes pegmatitic on one edge of the boulder
- I think this boulder can from this area because there is a lot of Diorite around here Pictures 128 Mineralized Diorite boulder

17T 0503305 Elevation = 403m 5198356

- Map 2212 also indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite just South of this area ARCHEAN Granitic Rocks (Algoman)
- South of Gervais camp
- North of Framan lake
- This area looks like an old river bed. Frog creek must have run through this area in the past at higher volumes
- There is potential for alluvial Gold in this area do to the porphyry in area (North-West) Pictures 129 South of Gervais camps

17T 0501395 Elevation = 411m 5197918

- Map 2212 indicates 9 Undifferentiated 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Map 2212 also indicate Breccia
- No fault line indicated on map
- I see pseudotachylite
- Similar Sudbury Breccea is found nearby going west
- Some fragments are white and rounded or elongated egg shape
- The larger fragments look like Greywacke
- The flow appears to be traveling about 30° North South
- The matrix is dark blue to dark grey
- The matrix has small white spots indicative of Sudbury Breccea
- The matrix also has small rounded pebbles of Diorite Pictures 130 Pseudotachylite

17T 0501335 Elevation = 417m 5197877

- Map 2212 indicates 9 Undifferentiated 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)

- Map 2212 also indicate Breccia
- Polymictic conglomerate
- The medium size fragments are white-grey quartz
- Nearby is feldspathic greywacke with scratches from a backhoe
 Pictures 131 Polymictic Conglomerate

17T 0501729 Elevation = 421m

5198065

- Map 2212 indicates 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Breccea
- Large fragments of dark blue feldspathic greywacke
- Some smaller angular fragments are white in colour
- Some fragments are dark grey and are shaped like elongated eggs (Pseudotachylite)
- The matrix is dark grey-brown
- Some fragments sections have been altered to a white colour
- Nearby looks like there is a large dike that needs more investigation Pictures 132 Pseudotachylite dike

17T 0501831 Elevation = 417m

5198039

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Sedimentary greywacke with elongated egg shaped fragments (Pseudotachylite)
- The fragments look like they are made of the same material as the matrix
- There are some large rounded fragments that are made of a fine grain, dark green grey colour
- A few small and medium white fragments
- The direction was hard to determine. It looked like and East West direction
 Pictures 133 Pseudotachylite Breccea

17T 0498396 Elevation = 451m

5199945

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Undifferentiated
- The picture of this actual location was lost and is now estimated
- Massive mineralization about 15mm x 10mm visible in two spots
- The mineralization looks flaky and is silver in colour. Pyrite
- The other spot is rusted
- These mineral balls are in a matrix of dark blue Undifferentiated bedrock Pictures 134 Mineralized Undifferentiated

17T 0501999 Elevation = 424m

5198847

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Dark blue igneous rock
- High alteration
- Some rust
- Quartz feldspar (Hornblende) Biotite schist
- Magnetic
- (took 6 samples)

Same as area in Pictures 81 Hornblende Biotite Schist

17T 0500054 Elevation = 420m

5198061

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Dark grey black bedrock
- Magnification shows white grains, black grains, yellow grains, some orange (rusty) grains and a few blue and green grains
- Some silver mineralization visible
- Lots of alteration in area
- Sample 7 came from here
- Sample 2 b2 was sent in as sample 20
- Sample 20 looks like an amphibolite gabbro
- See Sample 20 pictures in pictures 135

Pictures 135 Sample 7 & 20 amphibolite - gabbro

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	158	58	65.1

Sample 7

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	120	106	60.8

Sample 20

17T 0500012

Elevation = 416m

5197863

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Pegmatite
- Massive mafic metavolcanics
- Diorite is black and white or black and pink in colour
- Crystals are amphibole and orthoclase
- Some small white veins
- Some rust
- Sample 4 was pegmatite diorite (No pictures)
- Sample 12 was very dark in colour (almost black) with pink intrusions
- The pyrite was in contact with the pink intrusion
- Largest pyrite cube found on property about 10mm
 Pictures 136 Sample 4 & 12 Pegmatite metavolcanics

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ti (%)
0.003	169	100	95.5	1.37

Sample 4

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ti (%)
0	44	315	48.5	0.43

Sample 12

17T 0500006

Elevation = 415m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Grano Diorite fragments
- Massive mafic metavolcanics
- Medium size white fragments
- Beautiful pseudotachylite (Greenish intrusion with small white fragments)
- Diorite is black and white or black and pink in colour

- Crystals are amphibole and orthoclase
- There some white quartz stringers
- Some rust

Pictures 137 Pseudotachylite

17T 0500016 Elevation = 417m

5197873

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Massive mafic metavolcanics (Looks like quartz feldspar (hornblend) Biotite shist
- There is lots of green epidote
- Has white fragments in a flow/sheer patern
- Has some larger fragments
- Pictures 138 Pseudotachylite epidote

17T 0500329 Elevation = 421m 5197654

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Massive mafic metavolcanics
- Looks like quartz feldspar (hornblend) Biotite shist and some diorite
- I see a dark green intrusion with white medium fragments (Could be pseudotachylite)
- Very dark (black) intrusion (Basalt)in some white/altered bedrock
- I see some white and pink quartz
- A lot of white stringers in diorite

Pictures 139 metavolcanics & diorite & pseudotachylite

17T 0500354 Elevation = 424m 5197680

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Map does not show this outcrop
- Looks like bedded arkose
- There is a white and orange quartz vein (About 50 mm)
- The quartz veins go several directions
- There is a vein of green chlorite (About 15 mm)
- Also see pictures 171

Pictures 140 Arkose & Quartz & Green chlorite

17T 0500029 Elevation = 419m 5198140

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Massive mafic metavolcanics
- Very dark blue intrusion
- Some diorite on edge of samples
- Visible mineralization
- Samples not sent for analysis

Pictures 141 Mineralized metavolcanics

17T 0498977 448m

- Pink sedimentary boulder (maybe from a geyser)
- Nothing like it in area.
- Lots of sedimentary lines with a few small fragments in it
- The boulder is rounded and most likely foren to this area
- Forgot axe

17T 0499058 448m

5199054

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyry
- Some of the crystals are large and square. (About 10 mm)
- Crystals have cleavage at 90°
- Crystals are white in colour
- Looks more like plagioclase feldspar crystals
- No pink like potassium feldspar
- Large quartz feldspar dike
- Same area as Pictures 156

Pictures 143 Porphyry (Orthoclase) & dike

17T 0498398 Elevation = 452m

5199963

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Massive mineralization about 20mm x 10mm and smaller are visible
- The mineralization looks flaky and is silver in colour. Pyrite
- These mineral balls are in a matrix of dark blue feldspathic greywacke
- Pictures 144 Mineralized greywacke & Sample 6

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.033	12	63	91.6

17T 0500905 Elevation = 434m

5198824

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Plagioclase feldspar crystals (White)
- Some of the feldspar crystals are large (About 10 mm)
- Same location as Pictures 107

Pictures 145 Porphyry

17T 0500867 Elevation = 438m

5198387

- Map 2212 indicates 9 undifferentiated HURONIAN COBALT GROUP Gowganda Formation
- I think it is bedded arkose 9b
- Oxidized pink in colour
- Lots of rust (limonite)
- Fresh cut shows a dark blue sedimentary bedrock
- It is also fine grain

Pictures 146 bedded arkose

17T 0500885 Elevation = 439m

- Map 2212 indicates 9 undifferentiated HURONIAN COBALT GROUP Gowganda Formation
- I think there is some bedded arkose 9b with schistocity occurring
- I think this is greywacke
- The greywacke is smooth except for the numerous fractures
- The fractures look like they are quarts and feldspar

- Fragments are small
- One area is very fractured (Numerous events)
- Some rust
- The fractures look like they got filled with white or orange quartz
- There is a larger white/orange quartz
- There is a large dike that schists
- I see some breccia
- This could be pseudotachylite
- Needs to be sampled

Pictures 147 Pseudotachylite & greywacke & quartz veins

17T 0500779 Elevation = 437m

5198197

- Map 2212 indicates 9 undifferentiated HURONIAN COBALT GROUP Gowganda Formation
- Two large fractures are in the form of a cross
- There is a lot of small white stringers
- The bedrock is light grey on surface but dark blue inside
- The bedrock is fine grain
- Found 3 freshly broken samples (Not analyzed)
- The samples showed some mineralization (Small silvery cubes of pyrite)
- There was some rust (Limonite)

Pictures 148 Mineralization in undifferentiated

17T 0500662 Elevation = 440m

5198114

- Pebble boulder
- The matrix seems to be quartz monzonite
- Most likely from a pebble bed like in the Larrain Formation, north of Fraleck lake. The sediments
 in the Larrain Formation were probably derived from a granitic terrain, transported over
 appreciable distances and deposited in a moderately deep-water, coastal environment where
 planar cross-bedding and turbidity current activity was still strong.
- The pebbles are white or blue quartz. Also there is some red banded pebbles (Iron rich) Pictures 149 Pebble boulder

17T 0500668 Elevation = 438m

5198120

- Found some different boulders
- One is a different porphyry then what I find on these properties
- One is of the contact between a diorite and greywacke
- 5 small boulder/rock samples were photographed and taken to camp for examination Pictures 150 Boulders porphyry contact

17T 0499323 Elevation = 443m

5198812

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Orthoclase feldspar crystals (White), some potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- There are also some white pebbles in the quartz monzonite and in a nearby boulder
 Pictures 151 Porphyry and Pebbles

17T 0499281 Elevation = 442m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Orthoclase feldspar crystals (White), lots of potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- Rusted pyrite cubes
- A small quart vein
- Rounded & egg shape xenoliths
- Xenoliths are dark grey in colour (Magnified it is diorite)

Pictures 152 Porphyry pyrite & xenoliths

17T 0499234 Elevation = 443m

5198936

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- A few white quartz veins

Pictures 153 Porphyry & quartz veins

17T 0499187 Elevation = 444m

5198965

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)

Pictures 154 Porphyry

17T 0499082 Elevation = 450m

5199056

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- Some rust

Pictures 155 Porphyry & rust

17T 0499057 Elevation = 451m

5199055

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (some larger 10 mm)
- Some rust

Pictures 156 Porphyry & rust

17T 0498985 Elevation = 448m

5199119

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- Same as location 110

Pictures 157 Porphyry

17T 0498968 Elevation = 446m

5199018

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Orthoclase and potassium feldspar crystals
- Some of the feldspar crystals are large (some > 10 mm)

Pictures 158 Porphyry

17T 0499403 Elevation = 449m

5198735

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- A small white quartz veins

Pictures 159 Porphyry

17T 0499513 Elevation = 439m

5198659

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- I see Porphyritic quartz monzonite with Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- Look like a Thin layer of some iron on the face of the outcrop
- Some small and large white pink quartz veins
- Contact between porphyry and pink bedrock (Looks like pink intruded into porphyry)
- This pink intrusion and dikes are not shown on map 2212
- There is some Gabbro with small pink intrusions
- Really dark colour (almost black in some areas) Map shows only porphyritic quartz monzonite
 Pictures 160 Porphyry & Gabbro & Rust

17T 0499527 Elevation = 434m

5198620

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- A small white quartz veins

Pictures 161 Porphyry

17T 0499588 Elevation = 434m

5198599

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- A large white/ pink dike
- Looks like a small basalt fragment in the porphyry

Pictures 162 Porphyry & pink dike

17T 0499577 Elevation = 436m

5198590

Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN

- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- Some rust
- Some large fractures

Pictures 163 Porphyry & rust

17T 0499649 Elevation = 432m

5198626

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- A small white quartz vein
- Some large fractures

Pictures 164 Porphyry

17T 0499805 Elevation = 425m

5198815

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Mega conglomerate / Breccia
- Lots of small, medium and large fragments
- The smaller fragments are rounded but some really large ones are angular
- The large fragments are diorite, sedimentary, felsic meta volcanic and one is an elongated mafic enclave
- This could be some pseudotachylite
- Flattened and elongated mafic enclaves of the Creelman pluton defining tectonic foliation and lineation.
- Magmatic enclaves are volumes of rock surrounded by emplaced host rock of related but distinct composition and of separated genesis (incomplete magmatic mixing).
- Similar to the sample given to Shirley at M.N.D.M.
- The small fragments are numerous and white in colour
- Nearby is porphyritic quartz monzonite with a few small white quartz veins and large fractures Pictures 165 Pseudotachylite enclave fragment porphyry

17T 0497114 Elevation = 438m

5199437

- Map 2212 shows 9a Polymictic conglomerate 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Map 2212 also indicates that this area has a fault line
- Mega conglomerate
- Fragments are small medium and large in size
- The 2 large fragments are rounded, one is black and one is diorite like
- The medium fragments are rounded, some are white and others are diorite
- The small fragments are white
- Nearby are mineral balls in greywacke
- One mineral ball is rusted, has pyrite cubes all around outside the ball. The colour is golden
- The other mineral ball is rusted, has a more silvery material (Maybe pyrite) and has pyrite cubes all around outside the ball
- See pictures 31

Pictures 166 mega conglomerate & mineral balls

17T 0499298 Elevation = 434m

5198152

- Map 2212 shows 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- Contact zone between the finely bedded argillite and a conglomerate
- Could be the sediments between two finely bedded argillite mountains
- Looks like ocean bed (deep water)sediments
 Pictures 167 Finely bedded argillite & conglomerates

17T 0497778 Elevation = 449m

5199528

- Map 2212 shows 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- Fine grain light blue bedrock
- white/pink feldspar
- Lots of banding (Schistocity) in argillite
- Lots of feldspathic stringers
- Nearby is argillite with a small, very dark, basalt intrusion
 Pictures 168 Argillite & basalt fragment & Undifferentiated

17T 0497266 Elevation = 430m

5198868

- Map indicates Massive feldspathic greywacke & finely bedded argillite
- Lots of banding (Gneiss) indicating some Undifferentiated
- Lots of feldspathic enclaves

Pictures 169 greywacke & Undifferentiated

17T 0498398 Elevation = 454m

5199966

- Map says 9d massive feldspathic greywacke
- The Greywacke is light grey out surface (>2mm)
- The Greywacke is dark blue and white quartz / feldspar crystals with black grains
- The Greywacke is fine/course grain
- Several small, collections of minerals (about <15mm each)
- The mineralization is metallic or is gold in colour
- Did two cuts but had no axe to remove sample
- Took samples with sledge hammer

Pictures 170 Greywacke & Mineralization Sample 3 & 8

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.008	10	62	115

Au (ppm) Cu (ppm) Ni (ppm) Co (ppm)

Sample 3

 u (ppm)
 Cu (ppm)
 Ni (ppm)
 Co (ppm)
 Sample 8

 0.001
 10
 66
 81.6

17T 0500354 Elevation = 424m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Map 2212 does not show this outcrop
- Looks like bedded arkose
- There is a white and orange quartz vein (About 50 mm)
- The quartz veins go several directions
- There is a vein of green chlorite (About 15 mm)

- One cut was done across the vein and into arkose
- Saw was missing the spacer and was vibrating excessively (Dangerous stopped cutting)
- See Pictures 140

Pictures 171 Arkose & Quartz & Green Chlorite

17T 0498334 Elevation = 449m 5199334

- Map 2212 says 9c finely bedded argillite (Mud stone) & 9d massive feldspathic greywacke
- Large white & Pink quartz dike in arkose(About 30 cm)
- Several quartz stringers
- Large pink feldspar dike
- Nearby is solidified mud flows of argillite with extensive black basalt stringers and a few intrusions
- The argillite is also a conglomerate with large rounded fragments
- The fragments are dark grey arkose and white/dark grey quarts
- Looks like there is some pseudotachyline
- Nearby is a white quartz veins and green epidote veins and staining (Almost yellow)
- There is some rust (Limonite)

Pictures 172 Pseudotachylite & argillite & Greywacke & quartz & epidote & Basalt

17T 0498339 Elevation = 453m 5199323

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke in the area (HURONIAN Gowganda formation)
- I also see some Undifferentiated bedrock
- Large white with some pink quartz dike (about 40 cm)
- Has some green chlorite
- Took sample 11 from this green chlorite in arkose
- See sample 11 folder

Pictures 173 Undifferentiated & Quartz dike & green chlorite & sample 11

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	21	75	19

17T 0500055 Elevation = 422m 5198023

- Two different boulders
- One boulder is like green Malachite that seems to take the form of rounded peas. (about 60 mm each)
- The Malachite looking rock is in contact with feldspathic pegmatite
- The feldspathic pegmatite consists of course black and white minerals with a little pink in it
- The second boulder consist of rounded fragments of course black and white minerals with a little pink in it. This would make it a conglomerate boulder.
- We sampled the malachite like rock early in 2018. See below. Not Malachite!
 Pictures 174 Malachite like & conglomerate boulders

See samples 180 and 181

Rb (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ba (ppm)	Li (ppm)	Sr (ppm)
396	9	777	66.3	479	96	135

Rb (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ba (ppm)	Li (ppm)	Sr (ppm)
510	12	230	43.6	699	121	595

17T 0500354 Elevation = 434m

5197680

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Map does not show this outcrop
- Looks like bedded arkose
- There is a white and orange quartz vein (About 50 mm)
- The quartz veins go several directions
- There is a vein of green chlorite (About 15 mm)
- Finished the cut that was done across the vein and into the arkose
- See pictures 54 & 140 & 171
- Sample had lots of arkose in it and only a bit of quartz and chlorite
- See sample folder
- Took sample 2

Pictures 175 Arkose & Quartz & Chlorite & Sample 2

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	25	17	9.8

17T 0499571 Elevation = 437m

5198002

- Map 2212 shows 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- Map 2212 also indicates that there is a fault line and a contact with 3b Porphyritic quartz monzonite
- A white and dark grey with a bit of orange quartz vein
- I think the bedrock is arkose
- Some fracturing

Pictures 176 Quartz & fractures

17T 0499590 Elevation = 432m

5198352

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- Large pink feldspathic dike

Pictures 177 Porphyry & pink dike

17T 0499664 Elevation = 424m

5198676

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)
- Several large pink feldspathic quartz dike
- White quartz vein

Pictures 178 Porphyry & pink dike & Quartz

17T 0499803 Elevation = 440m note same area in pic 165 says 426m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Mega conglomerate
- Lots of small, medium and large fragments

- The smaller fragments are rounded but some really large ones are angular
- The large fragments are diorite, sedimentary, felsic meta volcanic and one is an elongated mafic enclave
- Fragment similar to the sample given to Shirley at M.N.D.M.
- The small fragments are numerous and white in colour
- Excavated about 3 square meters. It involved mostly sweeping and a little shovel work. Most of outcrop was already exposed by the logging company (Gervais) during their road building.
 Pictures 179 Excavation of conglomerate with enclave

17T 0498415 Elevation = 453m

5199960

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Mineralization in bedrock. (Pyrite)& (Metallic)
- The Pyrite cubes are massive in some areas.
- Lots of surface rust. (Iron oxide Limonite)
- Bedrock is dark blue/grey in colour. Locks like Quartz.
- Looks like greywacke
- Sent in for analysis with a pieces from the samples in pictures 7
- This formed part of sample one. Prior sample was to small to send away for analysis Pictures 180 Mineralized greywacke & samples 1

17T 0497900 Elevation = 448m 5199102

- Map 2212 indicates finely bedded argillite 9c & massive felspathic greywacke 9d
- I see argillite and undifferentiated
- There is some green chlorite in the argillite
- There is some white quartz veins
- Sample 13 was taken from here (argillite with green chlorite)
- Lots of green chlorite and white quartz in area (Large structure)
 Pictures 181 Argillite & undifferentiated & Quartz & green chlorite & sample 13

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	39	66	27

17T 0498336 Elevation = 450m 5199323

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- The Greywacke is light blue/ white quartz / feldspar crystals with black grains
- The Greywacke is fine/course grain
- Vein of white quartz (about 10 cm) turns into multiple stringers
- The white quartz veins runs east-west with a sight northern dip in the west (Not on map)
- There is soft, green chlorite with metallic particles in it
- A large white quartz dike (about 30 cm) runs North South (Not on map)
- Nearby is a large white quartz vein that seems to run in the same direction as a fault line on the map (East West direction with rising north about 54°)
- Multiple tectonic events in the area
- Excavated and area 3m x 3m (Not much overburden or trees)
 Pictures 182 Excavation & quartz & fault & green chlorite

17T 0498374 Elevation = 448m 5199289

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Map 2212 also indicates 9d Massive feldspathic greywacke East of this area (HURONIAN Gowganda formation)
- Porphyritic quartz monzonite
- Looks like orthoclase feldspar crystals (White in colour)
- Some of the feldspar crystals are large (about 10 mm)
- Lots of greenish epidote stringers in the porphyry
- The is the edge of the porphyry near the intersection of two fault lines
- Ryan did some panning an found one flake of gold from the top of the outcrop
 Pictures 183 Edge of porphyry with epidote stringers

17T 0503795 Elevation = 419m

5199487

- Map 2212 indicates 3a (quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)
- I see a contact between Quartz monzonite and granite
- At the bottom of the granite mountain is the contact zone with quartz monzonite
- The visible contact is on the bottom edge of a large 90° granite face
- After the contact, the quartz monzonite dips at about 45°
- There is about 6m x 2m exposed of quartz monzonite
- Nearby seems to be a large outcrop of pure white quartz monzonite (See Pictures)
 Pictures 184 Contact & quartz monzonite

17T 0503645 Elevation = 434m

5199748

- Map 2212 indicates 3a (quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)
- I see pegmatite (Large, pink potassium feldspar crystals & white quartz crystals)
- I see granite all around the pegmatite
- I see a very small outcrop or boulder of what seems to be argillite with lots of fractures and weathering to a beige colour

Pictures 185 Pegmatite & granite

17T 0503420 Elevation = 404m

5200119

- Map 2212 indicates 3a (quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)
- I see white quartz veins with beige quartz mixing with it
- I see large stringers of white quartz
- I see granite
- I see some quartz monzonite

Pictures 186 White and Brown Quartz & granite

17T 0503421 Elevation = 402m

5200111

- Pegmatite and granite boulder
- Visible biotite mica

Pictures 187 Pegmatite & mica boulder

17T 0503420 Elevation = 398m

5200109

- Map 2212 indicates 3a (quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)

I see a white quartz vein (about 10 cm) in a pink and white granite
 Pictures 188 quartz & granite

17T 0503420 Elevation = 385m

5200109

- Map 2212 indicates 3a (quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)
- I see a diorite outcrop with white quartz stringers and some rust (Limonite)(iron oxide)
- The boulder is large and angular indicating its origin is nearby
- Other angular boulders descend into the overburden directly below this boulder
- Nearby there appears to be some greywacke and it is oxidizing to a fine yellow grain
 Pictures 189 Diorite & Quartz

17T 0499956 Elevation = 428m

5198953

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Looks like plagioclase feldspar crystals (White in colour)
- Some of the feldspar crystals are large (about 10 mm)
- It is also a contact zone

Pictures 190 Porphyry & contact

17T 0499935 Elevation = 430m

5198960

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Looks like orthoclase feldspar crystals (White in colour)
- Some of the feldspar crystals are large (about 10 mm)
 Pictures 191 Porphyry

17T 0499930 Elevation = 431m

5198938

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- I see a large white quartz vein (about 10 cm) in bedrock that looks a bit like greywacke
- I see a small outcrop that is pink diorite just like the Malachite like boulder has
- I also see greenish round bacteria or actual Malachite like nobules (Did not check at the time)
- Nearby are some other large white quartz veins
- Lots of large fractures in bedrock
- Excavated 1 square meter and exposed white quartz vein
- Nearby is a contact between porphyritic quartz monzonite and greywacke
- The greywacke has lots of stringers near the contact
- A fresh break reveals the Greywacke is massive, coarse grain, dark blue and white quartz / feldspar crystals with black fine grains

Pictures 192 Contact & excavation & greywacke & Quartz & Malachite like nobules

17T 0499645 Elevation = 452m

5198126

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- I see quartz monzonite with large, light green epidote intrusions
- I also see just as large rounded and elongated dark grey xenoliths
 Pictures 193 Large epidote & quartz monzonite

17T 0499655 Elevation = 448m

5198111

Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN

- I see quartz monzonite with large, light green epidote intrusions
- I also see several large pink dikes
- There is lots of fractures in many different directions
 Pictures 194 Large epidote & pink dikes & quartz monzonite

17T 0499656 Elevation = 444m

5198070

- Map 2212 shows 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- There is stringers of green chlorite
- There is some white quartz
- Some of the stringers have rusted pyrite cubes
 Pictures 195 argillite & green chlorite & Pyrite

17T 0499674 Elevation = 440m

5198081

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- The bedrock is dark grey
- There are some epidote intrusions
- There is also some pink granite like bedrock
- There is a bit of white quartz
- Nearby is what looks like conglomerates
- When the conglomerate peels off, revealing a smooth, rounded dark grey bedrock
- Possibility it's pillow lava or old river bed
 Pictures 196 Epidote & Conglomerates

17T 0499649 Elevation = 436m

5198191

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Contact between diorite and a dark grey basaltic bedrock
- The basaltic bedrock is fractured and altered
- There is a white quartz vein in between the two different bedrocks
- Small outcrop

Pictures 197 Diorite & contact & quartz

17T 0499576 Elevation = 436m

5198114

- Map 2212 shows 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- I see Diorite (Altered)
- I see a large white quartz vein
- I see a large orange dike
- I see a contact zone between a dark grey and pink bedrock
- There is also a large pink vein crossing the darker bedrock
- The darker bedrock jumps between diorite and sedimentary
- The darker bedrock looks like it was intruded by the pink. (Pink younger)
 Pictures 198 Diorite & Quartz & orange dike & contact

17T 0499538 Elevation = 435m

5198133

- Map 2212 shows 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- There is a contact zone between gabbro and what looks like finely bedded argillite Pictures 199 contact & Gabbro & argillite

17T 0499530 Elevation = 435m

5198126

- Map 2212 shows 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- Water is contaminated with Metallic, red, blue and purple colours Pictures 200 Contaminated water

17T 0499518 Elevation = 437m

5198121

- Map 2212 shows 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- I see small white stringers in what appears to be massive feldspathic greywacke and diorite
- There is white quartz (Like like a vein/dike)
- There is some epidote and rust

Pictures 201 greywacke & diorite & Quartz & epidote

17T 0499419 Elevation = 439m

5198121

- Map 2212 shows 9c Finely bedded argillite in the area (HURONIAN Gowganda formation)
- Lots of triangle shape holes
- Lots of bacterial covering bedrock
- Looks like there is some quartz monzonite nearby
- Looks like there is some greywacke nearby
- There are a lot of fracturing (stringers) in the greywacke Pictures 202 greywacke & quartz monzonite

17T 0499372 Elevation = 437m

5198140

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation)(sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)
- Looks like the bedrock was uplifted and caused the bedrock to shift 80°
- There are a lot of stringers

Pictures 203 undifferentiated & stringers

17T 0499322 Elevation = 437m

5198157

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation) (sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)
- Some white stringers
- Some fracturing

Pictures 204 undifferentiated

17T 0499296 Elevation = 436m

5198154

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation) (sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)
- Contact zone with rounded conglomerates
- Odd elongated shape of fragments

Pictures 205 Pseudotachylite with elongated shapes & undifferentiated

17T 0499298 Elevation = 441m

5198136

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation) (sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)

Pictures 206 Undifferentiated

17T 0499270 Elevation = 435m

5198168

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation) (sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)
- More eroded, banding very visible
- Gneiss looking
- Bands are dark grey vs light grey

Pictures 207 Undifferentiated & gneiss

17T 0499019 Elevation = 443m

5198210

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation) (sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)
- More eroded, banding very visible
- Gneiss looking
- Bands are dark grey vs light grey
- Some rust
- Lots of fractures

Pictures 208 Undifferentiated & gneiss & rust & fractures

17T 0499029 Elevation = 442m

5198213

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation) (sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)
- More eroded, banding very visible
- Schistosity do to erosion
- Gneiss looking
- Bands are dark grey vs light grey

Pictures 209 Undifferentiated & gneiss & schistosity

17T 0498990 Elevation = 446m

5198202

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation) (sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)
- More eroded, banding very visible
- Schistosity do to erosion
- Gneiss looking
- Bands are dark grey vs light grey

Pictures 210 Undifferentiated & gneiss & schistosity

17T 0498995 Elevation = 443m

5198214

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation) (sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)
- More eroded, banding very visible
- Schistosity do to erosion
- Gneiss looking
- Bands are dark grey vs light grey

Pictures 211 Undifferentiated & gneiss & schistosity

17T 0498999 Elevation = 442m

- Map 2212 indicates 9 Undifferentiated (HURONIAN Gowganda formation) (sedimentary)
- Map also shows 9d in area (Massive feldspathic greywacke)
- More eroded, banding very visible
- Gneiss looking
- Bands are dark grey vs light grey
 Pictures 212 Undifferentiated & gneiss & schistosity

17T 0499622 Elevation = 431m

5198288

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Lots of Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)

Pictures 213 Porphyry & lots of crystals

17T 0499564 Elevation = 431m

5198413

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Porphyritic quartz monzonite
- Potassium feldspar crystals
- Some of the feldspar crystals are large (about 10 mm)

Pictures 214 Porphyry

17T 0499616 Elevation = 433m

5198059

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic rocks ALGOMAN
- Map 2212 also shows 9c Finely bedded argillite South of this area (HURONIAN Gowganda formation)
- Nearby on the map indicates 1a Massive mafic, metavolcanics, amphibolites, amphibolitic schist
- I see highly fractured diorite, lots of stringers
- Large epidote staining next to large white/pink dike
- Nearby are several large white dikes
- Large quartz stringers
- Numerous small stringers
- Fractured Gneiss

Pictures 215 Diorite & dikes & Quartz & stringers & gneiss & epidote

17T 0498515 Elevation = 416m

5197115

- Map 2212 shows 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- I see 9c finely bedded argillite covered by a conglomerate

Pictures 216 argillite covered by a conglomerate

17T 0498617 Elevation = 427m

- Map 2212 shows 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- I see Sudbury Breccia with extremely large fragments
- Most of the fragment are quartz monzonite, one has a quartz stringer
- The small and medium fragments are white in colour

- It looks like there was an intrusion of Sudbury breccea (Pseudotachylite)
- Some large fragments look like a greywacke
- Some fragments are elongated
 Pictures 217 Pseudotachylite & Greywache

17T 0498585 Elevation = 427m 5196966

- Map 2212 shows 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- I see grano-diorite with several white quartz stringers
- The stringers run east west
- Map 2212 indicates a fault line in this area running east west (Almost same direction)
- The stringers have some rust and mineralization visible
- Excavated about 1 meter x 5 meter (Very little overburden)
- Nearby is a white quartz vein and a green chlorite vein
- Nearby I see pseudotachylite with large rounded fragments
- Some fragments are sedimentary in origin, some are quartz
- Found a boulder of quartz monzonite with white, red and dark blue pebbles in it
- Nearby is some fragments of pink granite
 Pictures 218 Mineralized stringers & Pseudotachylite & Excavated

17T 0498338 Elevation = 457m 5199325

- Map 2212 shows 9d Massive feldspathic greywacke in the area (HURONIAN Gowganda formation)
- Map 2212 also indicates 3b Porphyritic quartz monzonite East of this area ARCHEAN Granitic rocks ALGOMAN
- See pictures 12 for description of area
- Took 2 samples (9 & 10)
- Sample 9 was the bottom left cut area (Crack in bedrock on right)
- In Sample 9 I see course grain massive feldspathic greywacke
- The inner surface was dark grey in colour
- Small white stringers in sample
- White and brown quartz on top only
- Sample was done across the quartz vein therefore only a small section of the quartz vein was sampled (See pictures)
- Sample 10 was the top right cut area (Crack in bedrock on right)
- The top surface of the sample was eroded to a brown
- Very little quartz
- The inner surface was dark grey in colour
- There are yellow stringers
- There is some mineralization in the yellow quartz
- The mineralization is cubic and in the small stringers (See pictures)
 Pictures 219 Samples 9 & 10

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	29	50	18

Sample 9

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	113	57	25.1

Sample 10

17T 0503064 Elevation = 407m

5200442

- Map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)
- I see a porphyritic outcrop I call popcorn breccias.
- It looks like a feldspar porphyry in a mafic intrusive
- Orthoclase feldspar = Potassium feldspar = KAlSi₃O₈
- Plagioclase feldspar = NaAl Si₃O₈ = CaAl₂ Si₂O₈
- The sample had a lot of Ca and K
- This outcrop is not on map 2212
- The xenoliths are rounded, numerous and white.
- They are also small and have variable size.
- The matrix is fine grain and dark grey in colour
- Excavated 1m x 3m (Not much overburden)
- Ryan and Guy did a bit of panning (Did not find anything)
- Some rust

Pictures 220 Intrusive porphyry & Excavated & sample 24

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	K (%)	Mg (%)
0	109	58	42.20	1.56	3.19

AI (%)	Ca (%)	Fe (%)	Si (%)	S (%)	P (%)
8.9	6.58	8.62	20.9	0.12	0.04

17T 0503051 Elevation = 403m 5200456

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)
- I see quartz monzonite intruded by:
- Large pink pegmatite dikes (Several)
- Several white quartz veins cut the pegmatite
 Pictures 221 Quartz monzonite intruded by pegmatite

17T 0503048 Elevation = 380m 5199345

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite)
- ARCHEAN Granitic Rocks (Algoman)
- The map indicates a fault line in this area (Runs east west)
- I see pink / orange granite
 Pictures 222 Pink / orange granite

17T 0503009 Elevation = 378m 5199360

The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)

- The map indicates a fault line in this area (Runs east west)
- I see pink / orange granite
- A few white quartz stringers
- This position is on the water's edge (Drop off on edge of lake)
- Edge of lake is a rock face

17T 0503013 Elevation = 381m

5199377

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)
- The map indicates a fault line in this area (Runs east west)
- I see pink / orange granite
- A few white quartz pegmatite intrusions

Pictures 224 Pink / orange granite & pegmatite

17T 0503022 Elevation = 383m

5199373

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)
- The map indicates a fault line in this area (Runs east west)
- I see white quartz & pink potassium feldspar pegmatite (Large pegmatites)

Pictures 225 large quartz feldspar pegmatite

17T 0503300 Elevation = 418m

5201060

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite)
 ARCHEAN Granitic Rocks (Algoman)
- The map indicates a fault line in this area (Runs east west)
- I see pink granite
- I see white quartz & pink potassium feldspar pegmatite intrusions
- White quartz vein
- It looks like there may garnets here

Pictures 226 pink granite & large pegmatite & quartz

17T 0503310 Elevation = 416m

5201055

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) ARCHEAN Granitic Rocks (Algoman)
- The map indicates a fault line east of this location (Runs North South at east end of lake)
- I see potassium feldspar and white quartz pegmatite
- I see a lot biotite mica in the quartz

Pictures 227 feldspar & quartz pegmatite & biotite mica

17T 0503060 Elevation = 395m

5198559

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist ARCHEAN Metavolcanics and Metasediments
- I see white quartz intrusions
- I see a bluish/black hornblende with rusted pyrite cubes
- Lots of white stringers
- Lots of fracturing

Pictures 228 Hornblende & stringers & pyrite

17T 0503056 Elevation = 395m

5198568

 Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist ARCHEAN Metavolcanics and Metasediments

- I see white quartz stringers
- I see what looks like a hornblende
 Pictures 229 Hornblende & stringers

17T 0502694 Elevation = 403m

5198692

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist ARCHEAN Metavolcanics and Metasediments
- I see a quartz- feldspar (Hornblende)
- I see a green epidote vein
- It looks like there might be a bit of diorite near the epidote vein
- There is some rust
- It looks like a contact zone
- 1b Quartz-feldspar (hornblende) contacts dark grey, highly fractured greywacke
- Lots of white stringers
- There are white quartz veins
- Excavated 1m x 1m

Pictures 230 hornblende & epidote & rust & stringers & greywacke & quartz

17T 0502619 Elevation = 404m

5198568

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist ARCHEAN Metavolcanics and Metasediments
- I see what looks like Quartz-feldspar (hornblende)
- I see white quartz veins crossing a large yellow dike
- I also see a yellow intrusion beside the dike
- The surrounding bedrock is sedimentary with light to medium grey in colour
- I see lots of alteration and fracturing
- Lots of stringers
- Nearby I see a breccea with dark grey fragments
- I see a smaller pink dike that is also eroding yellow
- Pink dike eroded yellow could be a Kimberlite dike maybe
 Pictures 231 hornblende & Kimberlite dike & stringer & breccias

17T 0502620 Elevation = 404m

5198581

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist ARCHEAN Metavolcanics and Metasediments
- I see lots of fractures and stringers
- Some of the stringers are pink and the others are white
- Some rust (Iron oxide)

Pictures 232 hornblende & lots of stringers & rust

17T 0502621 Elevation = 404m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist ARCHEAN Metavolcanics and Metasediments
- I see two large white quartz veins
- I see what appears to be a sheer zone (More altered section in middle of first picture)
- Lots of white stringers
- Some rust (Iron oxide) in the large white quartz veins Pictures 233 hornblende & lots of stringers & rust

17T 0502619 Elevation = 402m

5198552

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist ARCHEAN Metavolcanics and Metasediments
- I see a white quartz vein with some pink staining
- I see some white stringers
- Took sample 14 (See pictures)
- I see a bit of red quartz and rust in sample
 Pictures 234 hornblende & quartz & stringers & sample 14

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.009	148	72	40.2

17T 0502673

Elevation = 400m

5197826

- Map 2212 indicates 1a Massive mafic metavolcanics, amphibolitics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- I see quartz & pink feldspar crystals mixing
- I see a white guartz vein (About 50 mm wide)
- I see a rusted pyrite cube and some mineralization in the quartz
- The bedrock is really dark with light grey patches
- Nearby is the contact zone between 1a and 3a (Massive mafic metavolcanics contact Quartz monzonite, granite)

Pictures 235 mafic metavolcanics & granite contact & rust & quartz

17T 0502696

Elevation = 399m

5197842

- Map 2212 indicates 1a Massive mafic metavolcanics, amphibolitics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- I see very dark bedrock
- The bedrock looks rough
- I see a diorite Fine grain dark crystals with larger white crystals
- I see a lot of fracturing and white stringers

Pictures 236 Diorite & lots of stringers

17T 0498586

Elevation = 422m

5196966

- Map 2212 shows 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda formation
- Same are as pictures 48 & 218
- Sample 15 (Sampled white & orange quartz vein) See pictures
- Mineralization was in the quartz
- Had some red iron oxide

Pictures 237 Sample 15 & quartz veins by Bessie lake

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.026	109	77	44.6

17T 0499508 5195544 Elevation = 431m

- Map 2212 shows this location is on a fault line between (North) #10 Quartzite, argillite, conglomerates (Lorrain formation) vs (South) #9c Finely bedded argillite (Gowganda formation)
- I see a medium size, rounded fragment (Fault line breccias) pseudotachylite
- The fragment is a pale quartzite
- I see a pink and white vein
- I see a large dark grey dike
- I see a dark intrusion

Pictures 238 Pseudotachylite & quartz

17T 0499357 Elevation = 447m

5199416

- Map 2212 indicates 3b Porphyritic quartz monzonite (Archean) (Algoman Granitic rocks)
- There some pressure fractures 90° from each other
- Nearby is a small white quartz vein Pictures 239 Porphyry & quartz

17T 0499378 Elevation = 446m

5199394

- Map 2212 indicates 9d Massive feldspathic greywacke
- I see 9a polymictic conglomerate Huronian Cobalt group (Gowganda formation)
- The fragments are white or pink quartz
- The fragments are small or medium in size
- There is an area of heavy fracturing
- I see a pink quartz vein and stringers
- Nearby is large fragments and stringers
 Pictures 240 Conglomerate & fracturing & stringers

17T 0499399 Elevation = 447m

5199367

- Map 2212 indicates 3b Porphyritic quartz monzonite (Archean) (Algoman Granitic rocks)
- I see a black/rusted vein (Different)
- Excavated about 1m x 1m to expose more of outcrop
- Nearby I see some 9a Polymictic conglomerate (Gowganda formation)

Pictures 241 Conglomerates & black vein

17T 0499377 Elevation = 447m

5199394

- Map 2212 indicates 9d Massive feldspathic greywacke (Gowganda formation)
- I see some 9a Polymictic conglomerate (Gowganda formation)
- The fragments are small and medium in size
- The fragments are white or diorite in colour
- Most fragments are angular but some are rounded
- The bedrock is light grey in colour (Surface)
- There are some fractures

Pictures 242 Conglomerates

17T 0499415 Elevation = 446m

- Map 2212 indicates 3b Porphyritic quartz monzonite (Archean) (Algoman Granitic rocks)
- I see mostly quartz monzonite. Only a small amount of potassium feldspar crystals
- I see a quartz vein (50mm to 80mm) and a bit of rust
 Pictures 243 Porphyry & quartz

17T 0499408 Elevation = 446m

5199410

- Map 2212 indicates 3b Porphyritic quartz monzonite (Archean) (Algoman Granitic rocks)
- I also see a rusted/brown vein (about 50mm)
- Sample 16 was a cut across the vein (See pictures)
- Sample was mostly porphyry

Pictures 244 Porphyry & brown vein & Sample 16

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	19	17	38.8

17T 0499447 Elevation = 447m

5199403

- Map 2212 indicates 9d Massive feldspathic greywacke (Gowganda formation)
- I see mega conglomerates
- Most of the fragments are porphyritic quartz monzonite
- Some fragments are very dark (Basalt like)
- Some fragments are angular but most are rounded Pictures 245 Mega Conglomerate

17T 0499467 Elevation = 447m

5199390

- Map 2212 indicates 9d Massive feldspathic greywacke (Gowganda formation)
- I see mega conglomerates
- The fragments are small and medium in size
- The larger fragments are mostly angular but some are round
- Some fragments are dark grey sedimentary and others are white quartz monzonite
- The matrix is full of small angular fragments (Maybe volcanic breccias) pseudotachylite Pictures 246 Mega conglomerates & volcanic breccias pseudotachylite

17T 0499478 Elevation = 447m

5199377

- Map 2212 indicates 9d Massive feldspathic greywacke (Gowganda formation) Cobalt group -Huronian
- I see conglomerates
- The larger fragments are rounded
- The fragments are white
- The matrix is full of small angular fragments (Maybe volcanic breccias)
- Nearby is some porphyritic quartz monzonite

Pictures 247 porphyry & conglomerates & volcanic breccias

17T 0499504 Elevation = 445m

5199348

- Map 2212 indicates 9d Massive feldspathic greywacke (Gowganda formation)
- I see some 9a polymictic conglomerates

Pictures 248 conglomerate

17T 0499427 Elevation = 449m

- Map 2212 indicates 3b Porphyritic quartz monzonite (Archean) (Algoman Granitic rocks)
- I also see a white quartz vein (about 20mm)
- Sample 17 was a cut across the vein (See pictures)

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	37	23	6.2

17T 0498336 Elevation = 457m

5199325

- Map 2212 indicates 9d Massive feldspathic greywacke (Gowganda formation)
- This is the area we call bottom of the hill
- I see a large white quartz dike with a section of pink quartz
- The sample was mostly pink and white quartz
- Took sample 18 (See pictures)
 Pictures 250 large quartz sample 18

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.078	105	19	2.6

17T 0498338 Elevation = 456m

5199336

- Map 2212 indicates 9d Massive feldspathic greywacke (Gowganda formation)
- This is the area we call bottom of the hill
- I see a small vein of black chlorite with some rust in vein
- Took sample 19 (See pictures)

Pictures 251 Black chlorite & sample 19

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	9	112	36.8

17T 0498342 Elevation = 457m

5199318

- Map 2212 indicates 9d Massive feldspathic greywacke (Gowganda formation)
- This is the area we call bottom of the hill
- We excavated about 1m x 2m
- We exposed a large white quartz vein Pictures 252 Excavated & large quartz

17T 0503118 Elevation = 410m

5200524

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) Archean (Granitic rocks (Algoman))
- We found small boulders of porphyry similar to the outcrop in Pictures 220 Intrusive porphyry & Excavated & sample 24
- The sample did not show any ore. Outcrop was sampled see sample 24 Pictures 253 feldspar porphyry boulders

17T 0503049 Elevation = 407m

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) Archean (Granitic rocks (Algoman))
- I see a quartz monzonite with a pink pegmatite dike
- It looks like a piece of gold in the black hole

I see a few rusted pyrite cubes
 Pictures 254 Pegmatite dike in quartz monzonite

17T 0503027 Elevation = 403m

5200477

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) Archean (Granitic rocks (Algoman))
- I see some granite & some pegmatite
- I see a large pink dike
- I see some biotite mica (Black in colour)
- This site is at the bottom of a cliff (Mountain)

Pictures 255 Granite & pegmatite & pink dike & mica

17T 0502991 Elevation = 419m

5200473

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite)
 Archean (Granitic rocks (Algoman))
- I see some white quartz
 Pictures 256 Quartz

17T 0502998 Elevation = 420m

5200493

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite)
 Archean (Granitic rocks (Algoman))
- I see Granite
- I see a large white quartz boulder Pictures 257 Granite

17T 0502965 Elevation = 425m

5200502

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite)
 Archean (Granitic rocks (Algoman))
- I see Granite & some pegmatite
- I see some red staining in the quartz

Pictures 258 Granite & pegmatite & red staining

17T 0502938 Elevation = 421m

5200493

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) Archean (Granitic rocks (Algoman))
- I see a granite

Pictures 259 Granite

17T 0502902 Elevation = 425m

5200486

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) Archean (Granitic rocks (Algoman))
- I see Granite & some pegmatite
 Pictures 260 Granite & pegmatite

17T 0502902 Elevation = 423m

- The map 2212 indicates 3a in the area (Quartz monzonite, granite, grano-diorite, pegmatite) Archean (Granitic rocks (Algoman))
- I see Granite & some pegmatite
- I see some white quartz (Not sure if it is a dike or not)
- I see some quartz monzonite in the area
 Pictures 261 Granite & pegmatite & quartz & quartz monzonite

17T 0497389 Elevation = 426m

5200602

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke (Huronian cobalt group Gowganda formation)
- I see what looks like a porphyritic boulder
- The boulder could also be small fragments of yellow diorite in a mud matrix Pictures 262 Yellow porphyry boulder

17T 0506464 Elevation = 346m 5197320

- Map 2212 indicate 12 Olivine diabase (Late mafic intrusive rocks) Precambrian Proterozoic
- We stopped on the shore of Pine lake
- Lots of boulders on shoreline
- One very large boulder is beige in colour and sedimentary in nature. (Mud stone)
- Many boulders have small, round, yellow balls imbedded into the host rock
- The boulder matrix has fine grain and coarse grain
- The colour is Black to diorite
- Some of the yellow nodules protrude the host rock
- One boulder has red crystals
- A few small boulders look like basalt. One has both grey and yellow balls (Xenoliths) Pictures 263 Olivine diabase & yellow balls

17T 0505192 Elevation = 367m

5197650

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke (Gowganda formation) Cobalt group Huronian
- This is on the pole line
- I see bedded arkose with a beige colour with some pink staining
- The bedrock is magnetic

Pictures 264 bedded arkose

17T 0505174 Elevation = 369m

5197646

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke (Huronian cobalt group Gowganda formation)
- This is on the pole line
- I see bedded arkose
- I see a black intrusion with a large elongated fragment (Breccea) pseudotachylite
- Map 2212 indicates Breccea in this area but no fault line or dike Pictures 265 Arkose & Pseudotachylite

17T 0505163 Elevation = 374m 5197615

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke (Huronian cobalt group Gowganda formation)
- Map 2212 indicates Breccea in this area but no fault line or dike

- This is on the pole line
- I see a large black basalt intrusion (Fine grain)
 Pictures 266 Intrusive basalt

17T 0505183 Elevation = 379m

5197535

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke (Huronian cobalt group Gowganda formation)
- Map 2212 indicates Breccea in this area but no fault line or dike
- This is on the pole line
- I see grano diorite (Black and white in colour) Fine grain
 Pictures 267 Grano diorite

17T 0505185 Elevation = 381m

5197513

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke (Huronian cobalt group Gowganda formation)
- Map 2212 indicates Breccea in this area but no fault line or dike
- This is on the pole line
- I see a conglomerate with a medium size fragment
- The fragment is white quartz monzonite Pictures 268 Conglomerate

17T 0505185 Elevation = 381m

5197479

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke (Huronian cobalt group Gowganda formation)
- Map 2212 indicates Breccea in this area but no fault line or dike
- This is on the pole line
- I see a conglomerate with a few medium size fragments
- Most fragments are quartz monzonite but one is really rusty
- There is a bit of dirty quartz
 Pictures 269 Conglomerates & quartz

17T 0505187 Elevation = 382m

5197419

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke (Huronian cobalt group –
 Gowganda formation)
- Map 2212 indicates Breccea in this area but no fault line or dike
- This is on the pole line
- I see highly fractured granite
- The top of the granite and it's cracks are filled with a fine grain basalt
- Nearby I see a polymictic conglomerate with a large pink dike
- The fragments look like quartz monzonite, diorite or a sedimentary arkose
- The fragments are medium in size

Pictures 270 Conglomerates & granite & Basalt & dike

17T 0505159 Elevation = 377m

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke 9d Massive feldspathic greywacke (Huronian cobalt group Gowganda formation)
- This is on the pole line
- I see feldspar fragments in a dark matrix.

- Some feldspar fragments are small and square others are larger and rounded (Maybe melted)
- The matrix is a mixture of dark fine grain basalt and larger quartz & feldspar grains
- I see a bit of quartz
- Nearby I see feldspathic greywacke with pink staining
- Nearby I see a conglomerate with one medium size diorite fragment
- Nearby I see a rock face with a lot of white precipitate

Pictures 271 Conglomerates & breccias & White precipitate & Quartz

17T 0505204 Elevation = 381m

5196967

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke 9d Massive feldspathic greywacke (Huronian cobalt group Gowganda formation)
- This is on the pole line
- I see a white quartz vein
- The bedrock is orange in colour

Pictures 272 Quartz

17T 0505299 Elevation = 395m

5196808

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke 9d Massive feldspathic greywacke (Huronian cobalt group Gowganda formation)
- This is on the pole line
- I see a highly fractured greywacke with a few white quartz stringers
- Nearby is an outcrop of pointy boulders with lots of precipitate
 Pictures 273 greywacke & Pointy outcrop with precipitate

17T 0505301 Elevation = 390m

5196768

- Map 2212 indicate 9b Bedded arkose, feldspathic greywacke 9d Massive feldspathic greywacke (Huronian cobalt group Gowganda formation)
- I see 9b feldspathic greywacke

Pictures 274 greywacke

17T 0505021 Elevation = 392m

5198652

- Map 2212 indicates we are on the border of 9 Undifferentiated and 10 Quartz, argillite, conglomerate
- I see a white quartz vein in argillite
- Nearby I see some foliated dark bedrock

Pictures 275 Argillite & foliation

17T 0505012 Elevation = 389m

5198768

- Map 2212 indicates we are on the border of 9 Undifferentiated and 10 Quartz, argillite, conglomerate
- I see a small white quartz vein with a bit of pink and rust
- I see a sedimentary bedrock

Pictures 276 Quartz & sedimentary

17T 0504888 Elevation = 428m

5199628

- Map 2212 indicates 4 Diabase, metadiabase Archean Early mafic intrusive rocks

- Map 2212 also indicates 3a area (Quartz monzonite, granite, grano-diorite, pegmatite) Archean (Granitic rocks (Algoman))
- I see what looks like a quartz monzonite pink feldspar mixture (like a granite)
- I see a large white quartz veins Pictures 277 Quartz & Granite

17T 0504870 Elevation = 427m

5199600

- Map 2212 indicates 3a area (Quartz monzonite, granite, grano-diorite, pegmatite) Archean (Granitic rocks (Algoman))
- I see a large white quartz vein intruding feldspathic greywacke

Pictures 278 Quartz & greywacke

17T 0504678 Elevation = 404m

5200483

- Map 2212 indicates 3a area (Quartz monzonite, granite, grano-diorite, pegmatite) Archean (Granitic rocks (Algoman))
- I see a lot of boulders that are rusted.
- The boulder face is totally rusted except for circular shapes
- This could be doo to erosion process
- The bedrock is light blue in colour on surface and dark blue inside (Fine grain) (Looks like a greywacke)

Pictures 279 Rusted shapes in boulders & greywacke

17T 0501764 Elevation = 454m

5199062

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- The map also indicates vertical schistosity
- I see a dark blue Quartz feldspar (Hornblende)
- I see lots of white stringers

Pictures 280 hornblende & lots of stringers

17T 0501694 Elevation = 457m

5199162

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a darker coloured surface on the outcrop
- We are near the swamp and the terrain is rising
- I see some quartz monzonite
- I see some white precipitate

Pictures 281 quartz monzonite & precipitate

17T 0501715 Elevation = 459m

5199160

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a Quartz monzonite
- Hard to see, exposed about 1m x 0.5m

Pictures 282 Quartz Monzonite

17T 0501777 Elevation = 456m

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a Quartz feldspar (Hornblende)
- I see lots of stringers
- The bedrock is dark blue
- There is some epidote in the stringers
- I see a white quartz vein

Pictures 283 hornblende & lots of stringers & epidote & quartz

17T 0501778 Elevation = 433m

5198975

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a Quartz feldspar (Hornblende)
- I see lots of stringers and feldspar staining (Pink)
- I see a white quartz vein
- Some epidote in some stringers
- Some elongated white staining

Pictures 284 hornblende & lots of stringers & epidote & quartz

17T 0501773 Elevation = 426m

5198972

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a Quartz feldspar (Hornblende)
- I see some large stringers (Pink and white in colour)
- I see some small white stringers
- The bedrock is dark blue in colour
- Some pink feldspar staining

Pictures 285 hornblende & stringers & quartz

17T 0501645 Elevation = 417m

5198870

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a Quartz feldspar (Hornblende)
- The bedrock is dark green in colour
- There are a lot of small white stringers
- I see some rust
- I see epidote
- I see white quartz veins

Pictures 286 hornblende & stringers & rust & epidote & Quartz

17T 0501654 Elevation = 418m

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see Quartz feldspar (Hornblende)
- The bedrock is dark green in colour
- There are a lot of small white stringers
- Nearby I see a bit of white quartz

- Nearby I see a bit of pink feldspar
- Nearby I see red staining between layers
 Pictures 287 hornblende & stringers & red staining

17T 0501791 Elevation = 417m

5198899

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a mineralized spot with yellow/orange quartz surrounding it
- The mineralization is metallic, gold colour
- I see some white stringers
- I see some white bands that are biotite-chlorite schist
- I see some rust
- I see some epidote
- I see some white quartz
- I see lots of alteration
- This is the area for sample 22. Sample not taken this day.

Pictures 288 hornblende & stringers & epidote & quartz & minerals

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.254	4020	130	86.10

17T 0501846 Elevation = 418m

5198891

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see some white stringers
- I see some white bands that are biotite-chlorite schist
- I see some rust
- I see lots of alteration

Pictures 289 hornblende & stringers

17T 0501853 Elevation = 420m

5198879

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see quartz feldspar (hornblende)
- I see some white stringers

Pictures 290 hornblende & stringers

17T 0501863 Elevation = 420m

5198882

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see quartz feldspar (hornblende)
- I see biotite chlorite banding or a sheer zone
- I see some white stringers
- Bedrock looks like a metasediment
- I see a bit of rust
- I see epidote

Pictures 291 hornblende & stringers & sheer zone – biotite chlorite banding & epidote

17T 0501892 Elevation = 419m

5198875

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see quartz feldspar (hornblende)
- I see biotite chlorite banding
- I see small white stringers
- I see disseminated mineralization in a rusted matrix

Pictures 292 hornblende & banding & stringers & mineralization

17T 0501912 Elevation = 419m

5198879

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see quartz feldspar (hornblende)
- I see a few rusted pyrite cubes

Pictures 293 hornblende & rusted pyrite

17T 0501902 Elevation = 419m

5198860

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see quartz feldspar (hornblende)
- I see biotite chlorite banding or a sheer zone
- I see some white stringers
- I see some rust

Pictures 294 hornblende & sheer zone & stringers & rust

17T 0501887 Elevation = 419m

5198840

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see quartz feldspar (hornblende)
- I see biotite chlorite banding or a sheer zone
- I see some white stringers

Pictures 295 hornblende & sheer zone & stringers

17T 0501883 Elevation = 420m

5198822

- I see a mega polymictic conglomerate boulder
- The fragments are all very different in composition and colour
- Some of the fragments are rounded others are angular

Pictures 296 mega polymictic conglomerate boulder

17T 0501882 Elevation = 421m

5198836

- I see an iron rich boulder

Pictures 297 Iron rich boulder

17T 0501959 Elevation = 419m

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see I see quartz feldspar (hornblende)

- I see several quartz veins
- I see white stringers
- Some disseminated pyrite cubes

Pictures 298 hornblende & quartz veins & stringers & pyrite

17T 0501947 Elevation = 421m

5198867

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see I see quartz feldspar (hornblende)
- I see several quartz veins
- I see white stringers

Pictures 299 hornblende & quartz veins & stringers

17T 0502010 Elevation = 420m

5198863

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see I see quartz feldspar (hornblende) & a gabbro (Quartz feldspar)
- Contact zone
- Stringers in hornblende and alteration
- Epidote in the hornblende

Pictures 300 hornblende & contact zone & stringers & epidote & alteration

17T 0502251 Elevation = 425m

5198715

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see I see quartz feldspar (hornblende)
- I see tectonic lineation
- I see white stringers
- I see some white quartz on top of the hornblende.

Pictures 301 hornblende & tectonic lineation & stringers & quartz

17T 0502279 Elevation = 426m

5198696

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see I see quartz feldspar (hornblende)
- I see some very yellow quartz with white quartz
- The yellow may be epidote
- I see a quartz vein
- I see stringers
- I see tectonic lineation

Pictures 302 hornblende & tectonic lineation & stringers & quartz

17T 0502348 Elevation = 422m

5198679

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see I see quartz feldspar (hornblende)
- I see a few stringers

Pictures 303 hornblende & stringers

17T 0502366 Elevation = 420m

5198680

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see I see quartz feldspar (hornblende)
- I see pink stringers

Pictures 304 hornblende & stringers

17T 0502379 Elevation = 420m

5198681

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see I see quartz feldspar (hornblende)
- I see pink stringers
- I see epidote

Pictures 305 hornblende & stringers & epidote

17T 0502415 Elevation = 418m

5198654

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see white and grey quartz with a bit of orange staining
- Lots of white quartz veins
- I see some rust

Pictures 306 hornblende & quartz & rust

17T 0502034 Elevation = 419m

5198841

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite with a few stringers and pink staining in one area

Pictures 307 diorite

17T 0502053 Elevation = 417m

5198816

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see rusty quartz veins of quartz
- There is red and orange in the white quartz

Pictures 308 diorite & rust quartz

17T 0502059 Elevation = 417m

5198814

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see a few white stringers

Pictures 309 diorite & white stringers

17T 0502076 Elevation = 420m

5198795

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see a few pink stringers

Pictures 310 diorite & pink stringers

17T 0502064 Elevation = 420m

5198777

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see some small rust spots
- It may be the contact between the diorite and the hornblende
- I see small white stringers

Pictures 311 Contact & hornblende & diorite & stringers & rust

17T 0502058 Elevation = 421m

5198793

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite with a bit of pink staining in the fractures

Pictures 312 Diorite & pink staining

17T 0502047 Elevation = 420m

5198803

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see hornblende
- I see white stringers
- I see a vein of white quartz

Pictures 313 hornblende & stringers & quartz

17T 0502036 Elevation = 421m

5198803

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see hornblende nearby (Contact is close)
- I see white stringers

Pictures 314 diorite & hornblende contact nearby & stringers

17T 0502141 Elevation = 420m

5198757

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- Nearby I see small and large white stringers
- Nearby I see fractures
- Nearby I see a quartz vein (White / yellow in colour)

Pictures 315 diorite & stringers & Quartz

17T 0502130 Elevation = 419m

5198736

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see a rusty white quartz veins
- This is mile marker 12 on fire lake rd

Pictures 316 diorite & rusty quartz

17T 0502167 Elevation = 422m

5198727

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see a rusty white quartz veins

Pictures 317 diorite & rusty quartz

17T 0502178 Elevation = 422m

5198744

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see a rusty white quartz
- I see a few small stringers
- Nearby I see a pink vein in pegmatitic diorite

Pictures 318 diorite & quartz & pegmatitic diorite

17T 0502187 Elevation = 421m

5198738

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see two large rusty yellow & white quartz

Pictures 319 diorite & rusty yellow quartz

17T 0502198 Elevation = 422m

5198737

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see diorite
- I see a large rusty white pink quartz
- I see contact with black hornblende
- Nearby is some lighter hornblende with mafic lineation

Pictures 320 diorite & rusty white – pink quartz & hornblende & mafic lineation

17T 0502204 Elevation = 422m

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a hornblende
- I see some evidence of flattened and elongated mafic enclaves, defining tectonic foliation and lineation.

- I see some schisting
- I see white stringers, some with rust (Iron oxide)
- The bedrock surface is dark blue/green

Pictures 321 hornblende & tectonic foliation and lineation & stringers

17T 0502220 Elevation = 422m

5198731

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a hornblende
- I see some evidence of flattened and elongated mafic enclaves, defining tectonic foliation and lineation.
- Lots of small stringers
- Surface has a green glossy look
- Some rust

Pictures 322 hornblende & tectonic foliation and lineation & stringers & glossy

17T 0502229 Elevation = 422m

5198724

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a hornblende
- I see lots of small white stringers
- I see a white quartz with a bit of feldspar overlying the hornblende Pictures 323 hornblende & stringers & quartz

17T 0502238 Elevation = 422m

5198719

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see flattened and elongated mafic enclaves of the Creelman pluton defining tectonic foliation and lineation.
- Magmatic enclaves are volumes of rock surrounded by emplaced host rock of related but distinct composition and of separated genesis (incomplete magmatic mixing).
- It crosses the road (South-West to North-East)
- On claim map there is a depression that goes to frog creek (No fault line indicated on map)
- Some rust
- Similar to the sample given to Shirley at M.N.D.M.

Pictures 324 tectonic foliation and lineation

17T 0502244 Elevation = 423m

5198713

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a boulder of diorite intruding into hornblende

Pictures 325 diorite intruding into hornblende boulder

17T 0501891 Elevation = 392m

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Excavated 1m x 1m with brume and shovel
- I see hornblende

- I see mineralization in the bedrock (Gold coloured)(Possibly disseminated pyrite)
- Same area as pictures 292

Pictures 326 hornblende & mineralization & sample 21

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	382	95	77.40

17T 0501793

Elevation = 407m

5198899

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Excavated 1m x 2m with brume and shovel
- I see hornblende
- I see mineralization in the bedrock (Gold coloured)(Possibly disseminated pyrite)
- I see lots of stringers
- I see some epidote and some quartz
- See sample 22 pictures

Pictures 327 hornblende & stringers & epidote & quartz & mineralization & sample 22

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.254	4020	130	86.10

17T 0499986

Elevation = 422m

5198230

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- I see a diorite with large dikes (Zebra like)

Pictures 328 Zebra boulder

17T 0502915

Elevation = 409m

5198702

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see Quartz feldspar (hornblende)
- I see a stringer
- I see medium size quartz/feldspar mafic breccea (pseudotachylite)
- I see flattened and elongated mafic enclaves of the Creelman pluton defining tectonic foliation and lineation.
- Magmatic enclaves are volumes of rock surrounded by emplaced host rock of related but distinct composition and of separated genesis (incomplete magmatic mixing).
- I see schisting

Pictures 329 hornblende & gness & pseudotachylite

17T 0502926

Elevation = 410m

5198700

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see tectonic foliation and lineation
- I see a small quartz xenolith in the tectonic foliation and lineation Pictures 330 hornblende & tectonic lineation

17T 0505664

Elevation = 396m

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- I see pink granite and pegmatite
- I see red crystals in the pegmatite (garnite like)
- Nearby is a large pink dike in a boulder
 Pictures 331 granite & pegmatite & pink dike

17T 0508270 Elevation = 380m

5200153

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- I see a large pink pegmatitic dike
- The dike intrudes a black basalt like bedrock
- The black bedrock has white crystals in it (Gabbro like)
- There is a lot of rust on the dark bedrock
- There is some mineralization in the dark bedrock
- Took 3 hand samples to examine at camp Pictures 332 mineralization & pike dike

17T 0508270 Elevation = 380m

5200153

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- These coordinates are approximated
- I see many boulder with rusty surfaces
- The rusted surfaces have circular shapes that are not rusted (Could be caused by erosion process, fractures in the rock)
- The boulders are on the edge of a small lake
 Pictures 333 Rusty boulders with round shapes

17T 0498168 Elevation = 414m

5203023

- Map 2261 8a Quartz gabbro (hornblende only)
- I see a lot of rust
- I see mineralization in the white, yellow and pink quartz
- I see green chlorite
- I see large white quart and a few stringers overlying a dark smooth bedrock
 Pictures 334 Mineralization & chlorite & Quartz

17T 0498155 Elevation = 417m

5203039

- Map 2261 8a Quartz gabbro (hornblende only)
- I see a pebbly mudstone (Conglomerate)
- There are different types of fragments and pebbles
- Nearby are several large fragments

Pictures 335 Conglomerate

17T 0498136 Elevation = 423m

- Map 2261 8a Quartz gabbro (hornblende only)
- I see a pebbly mudstone
- A fresh break shows a fine grain dark blue quartz
- I see a few rusted pyrite cubes

17T 0498169 Elevation = 430m

5203048

- Map 2261 8a Quartz gabbro (hornblende only)
- I see a mudstone
- The mudstone is dark grey and erodes to beige
- I see a few small white fragments
- There is an area with lineation (bedded and turned 90°)

Pictures 337 Conglomerate & ripples

17T 0498175 Elevation = 434m

5203069

- Map 2261 8a Quartz gabbro (hornblende only)
- I see pseudotachylite
- The matrix is a very dark grey, fine grain mudstone and erodes to a beige colour
- The fragments are quartz gabbro (hornblende)
- The fragments are large and medium in size
- Nearby is the contact zone for the hornblende and mudstone
- The gabbro has white staining on the dark grey/green color
 Pictures 338 Pseudotachylite & mudstone & gabbro & contact zone

17T 0498175 Elevation = 434m

5203069

- Map 2261 8a Quartz gabbro (hornblende only)
- I see pseudotachylite
- I see a quartz gabbro
- The matrix of the Sudbury breccea is light grey
- The fragments are small to medium in size
- The fragments are white in colour
- I also see large quartz fragments
- I see elongated fragments
- There seems to be another intrusion that is mineral rich
- Some rust

Pictures 339 gabbro & Pseudotachylite & conglomerate & minerals

17T 0498187 Elevation = 436m

5203088

- Map 2261 8a Quartz gabbro (hornblende only)
- I see granite and pegmatite
- The colours of the bedrock are white pink light grey

Pictures 340 Granite & pegmatite

17T 0498206 Elevation = 440m

- Map 2261 2a Pink and grey albite quartz monzonite, albite syenodiorite, quartz diorite, albite granodiorite, albite trondhjemite and granite with pegmatites
- I see granite
- I see pegmatites with some rust
- I see some white quartz
- I see lots of small grouping of biotite mica inside the white quartz
- Bedrock is smooth with some fractures
- Nearby is a rusty fracture

17T 0498206 Elevation = 440m

5203160

- Map 2261 2a Pink and grey albite quartz monzonite, albite syenodiorite, quartz diorite, albite granodiorite, albite trondhjemite and granite with pegmatites
- I see Pink and grey albite quartz monzonite
- I see a small, light grey, fine grain intrusion into the Pink and grey albite quartz monzonite
- The intrusion is in a horizontal position (Comes out in a granite rock face)

Pictures 342 Pink and grey albite quartz monzonite & intrusions

17T 0498306 Elevation = 446m

5203362

- Map 2261 2a Pink and grey albite quartz monzonite, albite syenodiorite, quartz diorite, albite granodiorite, albite trondhjemite and granite with pegmatites
- I see Pink and grey albite quartz monzonite
- I see a small, light grey, fine grain intrusion into the Pink and grey albite quartz monzonite
- Nearby I see potassium feldspar mixing with a hornblende
- I see a bit of quartz
- I see some stringers in the albite quartz monzonite

Pictures 343 Pink and grey albite quartz monzonite & intrusions & quartz & stringers

17T 0498368 Elevation = 453m

5203798

- Map 2261 2a Pink and grey albite quartz monzonite, albite syenodiorite, quartz diorite, albite granodiorite, albite trondhjemite and granite with pegmatites
- I see pegmatites in granodiorite
- I see some white quartz

Pictures 344 pegmatites in granodiorite & Quartz

17T 0498357 Elevation = 454m

5203809

- Map 2261 2a Pink and grey albite quartz monzonite, albite syenodiorite, quartz diorite, albite granodiorite, albite trondhjemite and granite with pegmatites
- I see Pink and grey albite quartz monzonite
- I see small dark grey/black basaltic intrusion
- The basalt is fine grain
- The basalt has angular fragments of albite quartz monzonite
- One area has lots of small angular white fragments
- The intrusions are horizontal (On side of rock face)

Pictures 345 dark grey-black basaltic intrusion in albite quartz monzonite

17T 0498380 Elevation = 473m

5204133

- Map 2261 2a Pink and grey albite quartz monzonite, albite syenodiorite, quartz diorite, albite granodiorite, albite trondhjemite and granite with pegmatites
- I see Pink and grey albite quartz monzonite
- I see large dark grey/black basaltic intrusions
- The basalt has angular fragments of albite quartz monzonite
- The intrusions are horizontal (On side of rock face)

Pictures 346 dark grey-black basaltic intrusion in albite quartz monzonite

17T 0498356 Elevation = 475m

5204130

- Map 2261 2a Pink and grey albite quartz monzonite, albite syenodiorite, quartz diorite, albite granodiorite, albite trondhjemite and granite with pegmatites
- I see breccea with angular fragments
- I see potassium and orthoclase feldspar
- I see white red quartz as the matrix
- I see pegmatites with small intrusions
- Nearby is beautiful hydrothermal breccea

Pictures 347 Hydrothermal breccea & pegmatites & intrusions & feldspar

17T 0498346 Elevation = 471m

5204277

- Map 2261 2a Pink and grey albite quartz monzonite, albite syenodiorite, quartz diorite, albite granodiorite, albite trondhjemite and granite with pegmatites
- I see a dark green quartz diorite Pictures 348 Green quartz diorite

17T 0498367 Elevation = 454m

5199332

- Washed of bedrock. (about 6 in of overburden)
- Exposed a large white quartz vein Pictures 349 group prospecting

17T 0508421 Elevation = 354m

5200218

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- I see a grano-diorite with sedimentary fragments
- Some of the fragments are elongated
- I see a large white and pink pegmatite vein
- Nearby is a contact zone between pink granite and a sedimentary bedrock
- The sedimentary bedrock has a few small white veins Pictures 350 Grano-diorite & pegmatite vein & contact

17T 0508283 Elevation = 361m

5200200

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- I see a large white quartz vein (About 200mm to 300mm)
- The quart cuts true quartz feldspar hornblende with quartz monzonite fragments
- Nearby I see grano-diorite
- Nearby I see hornblende contacting pink granite
 Pictures 351 Large quartz & contact & hornblende & granite & grano-diorite

17T 0508290 Elevation = 360m

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- I see boulders with a lot of rust. The rust forms circular shapes that are not rusted.
- The rust also doesn't form all around the boulder
 Pictures 352 Circular shapes of rust in boulder

17T 0508288 Elevation = 358m

5200220

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- I see a large white quartz vein
- I see diorite mixing with a grey intrusive magma (Fine grain)
- The grey magma has small white grains in it
- Nearby I see a pink pegmatite mixing with the grey magma
 Pictures 353 large quartz vein & diorite & pegmatite & magma

17T 0508285 Elevation = 359m

5200218

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- I see a large pink dike contacting a dark blue, small grain quartz feldspar hornblende with disseminated pyrite cubes
- I see rust on the hornblende

Pictures 354 pink dike & pyrite in hornblende

17T 0508312 Elevation = 361m

5200218

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman))
- I see a quartz feldspar hornblende
- I see dark fragments in a grano-diorite matrix
- I see large white quartz veins
- I see lots of smaller white quartz veins
- This area beside a small lake is littered with pink and dark grey boulders Pictures 355 Quartz dike & veins & grano-diorite & hornblende

17T 0508288 Elevation = 361m

5200224

- We took some hand sample to examine at camp Pictures 356 hand sample for examination

17T 0498367 Elevation = 432m

5199327

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a large white quartz dike
- The dike runs east west
- This is the area we had washed
- The dike cuts through a polymictic conglomerate
- The fragments are rounded, some are elongated
- Some fragments are porphyritic quartz monzonite others are just grey
- It looks like there was a grey intrusion

Pictures 357 large white quartz dike & conglomerate & intrusion

17T 0498111 Elevation = 439m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see 9d Massive feldspathic greywacke

I see a pink feldspar vein
 Pictures 358 Massive feldspathic greywacke

17T 0497898 Elevation = 447m

5199100

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a dark grey bedrock contact white quartz feldspar
- I see some light grey intrusive
- Nearby I see finely bedded argillite with green chlorite in white quartz Pictures 359 argillite & Quartz & Chlorite

17T 0497884 Elevation = 449m

5199145

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see contact zone between quartz feldspar Hornblende and 9c Finely bedded argillite
- The hornblende is dark blue / green in colour
- The hornblende has a lot of white quartz or feldspar mixing (almost looks like grano-diorite in some places)
- The argillite is light grey in colour (Looks like mudstone)
- There is some fracturing in the argillite
- I see some schisting in the hornblende
- I see some rust in the hornblende
 Pictures 360 argillite & hornblende

17T 0497891 Elevation = 451m

5199147

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see contact zone between quartz feldspar Hornblende and 9c Finely bedded argillite
- The hornblende is dark blue / green in colour
- The hornblende has a lot of white quartz or feldspar mixing (almost looks like grano-diorite in some places)
- The argillite is light grey in colour (Looks like mudstone)
- There is some fracturing in the argillite
- I see some schisting in the argillite
- Nearby is an outcrop of white quartz & feldspar
 Pictures 361 argillite & hornblende & quartz & feldspar

17T 0497867 Elevation = 446m

5199154

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see finely bedded argillite with pebbles and rounded fragments
- I see some quartz feldspar hornblende underlying the argillite
- Nearby is some hornblende with some rust in it
- The hornblende is really green
- The hornblende has white stringers
 Pictures 362 green hornblende & argillite & stringers

17T 0497845 Elevation = 441m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see what looks like 2a felsic gneiss schists of metasedimentary origin
- I see disseminated pyrite

Pictures 363 felsic gneiss-schist of metasedimentary origin & pyrite

17T 0497827 Elevation = 438m

5199210

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a light grey bedrock with small black and white grains (Most likely massive feldspathic greywacke)
- I see sedimentary layers

Pictures 364 greywacke

17T 0497836 Elevation = 439m

5199221

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a diorite with a bit of rust and a rust ball

Pictures 365 diorite & rust ball

17T 0497828 Elevation = 431m

5199261

- We found a heavily mineralized boulder
- The boulder is black with orange quartz and massive sulfides (See pictures)
- This boulder was found on the side of the logging road

Pictures 366 Mineralized boulder

17T 0497828 Elevation = 431m

5199261

- I see large greywacke boulders with large rust spots
- Some of the rust spots have small massive pyrite cubes
- The mineral balls are numerous
- There is a bit of white quartz

Pictures 367 Mineralized greywacke boulder

17T 0499358 Elevation = 438m

5199641

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see 9 Undifferentiated
- The undifferentiated consist of grey and light grey lines
- A fresh fracture reveals a dark blue and yellow quartz

Pictures 368 Undifferentiated & yellow quartz

17T 0499357 Elevation = 440m

5199716

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see 9a Polymictic conglomerates
- The fragments are mostly diorite

Pictures 369 Polymictic conglomerates

17T 0499398 Elevation = 437m

5199783

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- The fragments are mostly diorite Pictures 370 Porphyry conglomerates

17T 0499426 Elevation = 433m

5199788

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see porphyritic quartz monzonite
- This is a contact zone for porphyry and conglomerate
- The fragments are mostly diorite or quartz monzonite
- Nearby I see a large white quartz dike

Pictures 371 porphyry & conglomerate & quartz

17T 0499410 Elevation = 433m

5199809

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- I see a rusted quartz vein
- Nearby is the contact zone between porphyry and conglomerates
- The fragments are mostly porphyritic quartz monzonite
- The fragments are small medium and large

Pictures 372 porphyry & conglomerate & contact & rusty vein

17T 0499427 Elevation = 435m

5199813

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- I see some fracturing

Pictures 373 Porphyry

17T 0499486 Elevation = 431m

5200009

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- I see a few fractures

Pictures 374 Porphyry

17T 0497918 Elevation = 440m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see 9 Undifferentiated
- A fresh break shows a dark blue/grey colour and fine grains
- He bedrock has been turned 90°
 Pictures 375 Undifferentiated

17T 0498233 Elevation = 453m

5199187

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Undifferentiated contacting conglomerate
- The Undifferentiated isn't as obvious here
- A fresh break shows a dark blue and white (Quartz feldspar) interior
- There is disseminated mineralization inside

Pictures 376 Undifferentiated contacting conglomerate

17T 0497868 Elevation = 436m

5199225

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a dark blue quartz/feldspar with small black grains
- The surface is light grey
- I think it is 9d Massive feldspathic greywacke
- I see a rusted circle that could be a mineral ball

Pictures 377 Massive feldspathic greywacke & mineral ball

17T 0497888 Elevation = 442m

5199206

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a dark grey fine grain quartz / feldspar greywacke
- The top layer is breaking off in some locations Pictures 378 Massive feldspathic greywacke

17T 0497887 Elevation = 445m

5199191

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a dark grey fine grain quartz / feldspar greywacke
- The top layer is breaking off in some locations Pictures 379 Massive feldspathic greywacke

17T 0497898 Elevation = 446m

5199187

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a dark grey fine grain quartz / feldspar greywacke Pictures 380 Massive feldspathic greywacke

17T 0497901 Elevation = 447m

5199180

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see quartz / feldspar greywacke

Pictures 381 Massive feldspathic greywacke

17T 0497907 Elevation = 448m 5199172

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see green chlorite
- I see white quartz
- I see a polymictic conglomerates

Pictures 382 Conglomerates & quartz & Green Chlorite

17T 0497932 Elevation = 441m

5199190

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- It looks like a 2a felsic schists of metavolcanics and metasedimentary origin
- Nearby I see green chlorite and rust

Pictures 383 felsic schists of metavolcanics & Green Chlorite

17T 0497948 Elevation = 439m

5199198

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see large white quartz
- I see lots of green chlorite around the quartz
- I see greywacke
- Nearby I see an outcrop of 1.5m x 2m of white quartz veins

Pictures 384 Green Chlorite & mega quartz

17T 0497983 Elevation = 440m

5199223

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Massive feldspathic greywacke

Pictures 385 Massive feldspathic greywacke

17T 0497904 Elevation = 434m

5199265

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Massive feldspathic greywacke
- I see red staining indicating iron rich greywacke

Pictures 386 Iron rich massive feldspathic greywacke

17T 0497901 Elevation = 447m

5199180

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Massive feldspathic greywacke
- I see a bit of rust

Pictures 387 Massive feldspathic greywacke

17T 0497825 Elevation = 437m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Massive feldspathic greywacke

I see a bit of rust
 Pictures 388 Massive feldspathic greywacke

17T 0497828 Elevation = 431m

5199261

- I see large greywacke boulders with large rust spots
- Some of the rust spots have small massive pyrite cubes
- The mineral balls are numerous
- There is a few white quartz veins in the boulder Pictures 389 Mineralized greywacke boulder

17T 0497807 Elevation = 442m

5199416

- I see large greywacke boulders with a large rust spot
- Some of the rust spots have small massive pyrite cubes Pictures 390 Mineralized greywacke boulder

17T 0497827 Elevation = 441m

5199407

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see feldspathic greywacke
- Some areas have rust staining
- Looks like there has been some 90° uplift in some areas (Sedimentary line are now vertical)
 Pictures 391 Greywacke & rust

17T 0497754 Elevation = 441m

5199466

- Map 2212 indicates 9c Finely bedded argillite (Mud stone)
- I see a bedrock that looks like a dried up lake bed
- Large rectangle shapes (cracks) are everywhere
 Pictures 392 Finely bedded argillite & fractured mud

17T 0497778 Elevation = 448m

5199479

- I see a beige quartz with rounder pure white pebbles in it (Can't see through)
- Some pebbles are egg shaped
- There also a few red and grey fragments
 Pictures 393 Quartz boulder with pebbles in it

17T 0497821 Elevation = 454m

5199507

- Map 2212 indicates 9c Finely bedded argillite (Mud stone)
- I see a very fine grain, light grey bedrock (Mud stone)
- In that light grey bedrock are some black disseminated, fine grains
- I see sedimentary lines and some schisting in the rock
- I see some rust

Pictures 394 Finely bedded argillite

17T 0497843 Elevation = 449m

- Map 2212 indicates 9c Finely bedded argillite (Mud stone)
- I see a very fine grain, light grey bedrock (Mud stone)

- In that light grey bedrock are some black disseminated, fine grains
- I see a very large white and orange quartz vein
 Pictures 395 Large quartz in finely bedded argillite

17T 0497847 Elevation = 452m

5199552

- Map 2212 indicates 9c Finely bedded argillite (Mud stone)
- I see a very fine grain, light grey bedrock (Mud stone)
- I see vertical sedimentary lines
- A pattern can be seen in the sediments
- Example: Bands are 4 inches apart then 10 inches then 4 then 8 then 4 then 9
- This could be a seasonal deposits or represent a repeating events
 Pictures 396 finely bedded argillite & sediment pattern

17T 0497798 Elevation = 440m

5199224

- This is a huge boulder with lots of white quartz veins
- The boulder looks like it might be finely bedded argillite. Pictures 397 argillite boulder with quartz

17T 0497771 Elevation = 439m

5199205

- I see an extremely large boulder
- The boulder looks like it might be finely bedded argillite
- There are some straight sedimentary patters and some no pattern
 Pictures 398 argillite boulder

17T 0502899 Elevation = 398m

5198645

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- It looks like Quartz-feldspar (hornblende) biotite schist
- I see lots of small stringers
 Pictures 400 hornblende & stringers

17T 0502913 Elevation = 398m

5198650

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a few white stringers and a few fractures
- It looks like hornblende

Pictures 401 hornblende & stingers

17T 0502925 Elevation = 399m

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see several white quartz veins
- It looks like there are some pebbles in the bedrock
- Nearby is a small boulder of beige quartz and imbedded white pebbles
- There are also a few dark grey / blue pebbles, and two light green quartz
- Nearby is several large white quartz veins that intersect at different angles
- I think there is a small black chlorite intrusion
- Nearby is some hornblende with small white stringers
 Pictures 402 hornblende & lots of quartz & stringers & chlorite

17T 0502930 Elevation = 398m

5198643

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende contact with a greywacke
- Nearby there are some alteration (Fracturing) sheer zone
- Some areas appear to have grano-diorite intruding
- Pictures 403 hornblende contact with greywacke & sheer zone

17T 0502839 Elevation = 398m

5198691

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende with small white stringers
- Nearby are some white quartz veins

Pictures 404 hornblende & stringers & quartz

17T 0501698 Elevation = 415m

5198877

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende with large rust spot
- I bit off alteration

Pictures 405 hornblende & large rust spot

17T 0498316 Elevation = 447m

5199692

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- The bedrock is smooth, dark blue with some feldspar
- I think it is massive feldspathic greywacke
 Pictures 406 Massive feldspathic greywacke

17T 0498232 Elevation = 452m

5199188

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see undifferentiated
- I see some fracturing and displacement of lines
- I also see some greywacke with mineralization
- The greywacke is dark grey quartz and white feldspar Pictures 407 Undifferentiated & greywacke

17T 0497847 Elevation = 440m

5199241

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a gabbro / diorite
- There are some dark grey, some black and some white crystals
 Pictures 408 gabbro

17T 0497845 Elevation = 438m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a gabbro / diorite

 There are some dark grey and some white crystals Pictures 409 gabbro

17T 0497866 Elevation = 438m

5199243

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Massive feldspathic greywacke
- The bedrock is dark grey in colour
- I see a rusted pyrite cube Pictures 410 greywacke

17T 0497826 Elevation = 443m

5199425

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Massive feldspathic greywacke
- The bedrock is dark grey in colour
- I see a bit of rust
 Pictures 411 greywacke

17T 0497858 Elevation = 442m

5199431

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see greywacke and some fractures

Pictures 412 Greywacke

17T 0497874 Elevation = 439m

5199412

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see greywacke
- We are in a swamp area

Pictures 413 Greywacke

17T 0497857 Elevation = 439m

5199397

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see greywacke

Pictures 414 Greywacke

17T 0497860 Elevation = 449m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see the contact between argillite and greywacke
- The fine bedded argillite is also a conglomerates
- The fragments are large and rounded except for a few angular ones
- The fragments are argillite

17T 0497879 Elevation = 448m

5199098

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Greywacke with a bit of undifferentiated
- I see a white quartz vein
- I see a pink feldspar vein intersecting the quartz vein
- I see a bit of rust and minerals nearby

Pictures 416 undifferentiated & greywacke & quartz

17T 0497948 Elevation = 449m

5199134

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see greywacke and a white stringer

Pictures 417 Greywacke

17T 0497947 Elevation = 447m

5199155

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see greywacke

Pictures 418 Greywacke

17T 0497959 Elevation = 449m

5199162

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see greywacke
- I see several large fragments (Conglomerate)
- The fragments are red / pink / white quarts

Pictures 419 greywacke & pink conglomerates

17T 0498019 Elevation = 450m

5199102

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see some greywacke and some undifferentiated

Pictures 420 undifferentiated

17T 0498052 Elevation = 449m

5199073

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see some undifferentiated and some greywacke bedrock

Pictures 421 Undifferentiated

17T 0498188 Elevation = 451m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see some undifferentiated and some greywacke bedrock
 Pictures 422 Undifferentiated

17T 0498205 Elevation = 453m

5198974

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see some greywacke bedrock

Pictures 423 Greywacke

17T 0498232 Elevation = 453m

5199007

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see some greywacke bedrock

Pictures 424 Greywacke

17T 0498238 Elevation = 455m

5199024

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- The fragments are small and are diorite
- Nearby I see greywacke

Pictures 425 Conglomerate

17T 0498214 Elevation = 449m

5199142

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Undifferentiated
- I see some quartz

Pictures 426 Undifferentiated and quartz

17T 0498248 Elevation = 445m

5199227

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Undifferentiated
- I see some schisting and fracturing and displacement in the undifferentiated
- I see egg shape mineral balls
- In the mineral ball is rust and metallic minerals

Pictures 427 Undifferentiated & rust % mineral balls

17T 0498633 Elevation = 455m

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a dark bedrock
- I see a conglomerate
- I see small and large fragments
- The large and small fragments are quartz monzonite

The fragments are rounded
 Pictures 428 large conglomerate of quartz monzonite

17T 0498727 Elevation = 456m

5199745

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a feldspathic greywacke
 Pictures 429 Greywacke

17T 0498770 Elevation = 455m

5199740

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a polymictic conglomerate
- One fragments looks like a finely bedded argillite others are diorite
- I see several small fractures Pictures 430 conglomerate

17T 0498774 Elevation = 458m

5199726

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- The fragments looks like diorite
 Pictures 431 conglomerate

17T 0498818 Elevation = 456m

5199711

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- I see one rounded and elongated fragments that looks like diorite Pictures 432 conglomerate

17T 0498927 Elevation = 455m

5199699

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- There is only a few small diorite fragment in the greywacke intrusion
- I see greywacke contact a finely bedded argillite

Pictures 433 conglomerate & contact between argillite & greywacke

17T 0498943 Elevation = 454m

5199686

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a feldspathic greywacke Pictures 434 greywacke

17T 0498957 Elevation = 453m

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a polymictic conglomerate
- The fragments are small and medium in size
- Smaller fragments are rounded diorite the larger ones are pink granite Pictures 435 conglomerates

17T 0498979 Elevation = 452m

5199659

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see white and pink quartz
- I see an x fracture filled in with fine grain dark grey mud like
- Nearby I see a lot of white quartz veins
- I see a conglomerate
- The fragments are small in size
- I also see what looks like an old water funnel (Very smooth and round)
- Looks like old underground water flow

Pictures 436 conglomerate & Intrusion & large quartz & water funnel

17T 0499629 Elevation = 447m

5199332

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- The fragments are small, rounded and quartz monzonite

Pictures 437 conglomerate

17T 0499616 Elevation = 446m

5199314

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- I see a few medium size fragments of angled diorite
- The bedrock is dark grey and flaky
- I see a bit of rust

Pictures 438 conglomerate

17T 0499679 Elevation = 445m

5199299

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Lots of large feldspar crystals

Pictures 439 Porphyry

17T 0499777 Elevation = 450m

5199216

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Lots of large feldspar crystals (Some of the largest seen)

Pictures 440 Porphyry

17T 0499867 Elevation = 441m

5199166

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Lots of large feldspar crystals

Pictures 441 large Porphyry

17T 0499878 Elevation = 441m

5199162

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Less large feldspar crystals
 Pictures 442 Porphyry

17T 0499911 Elevation = 441m

5199187

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Less large feldspar crystals
 Pictures 443 Porphyry

17T 0499970 Elevation = 434m

5199130

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Less large feldspar crystals
- I see a rusted stringer

Pictures 444 Porphyry & rust

17T 0500241 Elevation = 446m

5198973

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Less large feldspar crystals
- I see a few small fractures Pictures 445 Porphyry

17T 0500249 Elevation = 449m

5198965

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Less large feldspar crystals
- I see lots of small fractures

Pictures 446 Porphyry

17T 0500304 Elevation = 446m

5198954

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Lots of large feldspar crystals
- I see a few white quartz veins

Pictures 447 Porphyry & quartz

17T 0500317 Elevation = 446m

5198916

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- I see epidote and rust stringers
- Less large feldspar crystals

Pictures 448 Porphyry & Epidote & rust

17T 0500393 Elevation = 447m

5198892

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Lots of large feldspar crystals
 Pictures 449 Porphyry

17T 0500378 Elevation = 445m

5198860

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm) (A few even larger)
- Lots of large feldspar crystals
- I see a few pressure cracks
 Pictures 450 Large Porphyry

17T 0500416 Elevation = 446m

5198836

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm) (A few even larger)
- Lots of large feldspar crystals
 Pictures 451 Large Porphyry

17T 0500424 Elevation = 446m

5198817

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm) (A few even larger)
- Lots of large feldspar crystals

Pictures 452 Porphyry

17T 0500487 Elevation = 445m

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- Lots of large feldspar crystals
- Smooth surface of porphyry
- One white stringer and a few pressure cracks
 Pictures 453 Porphyry

17T 0500490 Elevation = 447m

5198863

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm) (A few even larger)
- The amount of feldspar crystals is not consistent
- I see a few fine grain, dark grey xenoliths on the surface of the porphyry Pictures 454 Porphyry & xenoliths

17T 0500538 Elevation = 446m

5198863

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm) (A few even larger)
- There is a large outcrop exposed here
- I see a few pressure cracks
- I see a few stringers
- I see a few fine grain, dark grey xenoliths on the surface of the porphyry Pictures 455 Porphyry & xenoliths

17T 0501187 Elevation = 424m

5198998

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- The contact between Porphyritic quartz monzonite & greywacke
- I see a few large white stringers nearby Pictures 456 Porphyry & contact with greywacke & stringers

17T 0501244 Elevation = 424m

5199000

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm) Pictures 457 Porphyry

17T 0501349 Elevation = 427m

5199042

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- I see a small quartz / epidote vein
- I see a few fractures

Pictures 458 Porphyry & quartz & epidote

17T 0504018 Elevation = 401m

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a conglomerate
- The fragments are medium in size and consist of quartz monzonite
- I also see a massive feldspathic greywacke Pictures 459 Conglomerate & greywacke

17T 0503980 Elevation = 402m

5198687

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see Feldspathic greywacke with lots of white stringers
- The greywacke is intruded by a large gabbro dike
- The gabbro is dark fine grain with larger white rectangle shape crystals
- I see some quartz and alterations

Pictures 460 greywacke & gabbro dike & stringers

17T 0497948 Elevation = 442m

5201229

Camp site picked

Pictures 461 Camp number 2

17T 0499909 Elevation = 440m

5199187

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- There are less large feldspar crystals
- I see a yellow / white quartz dike

Pictures 462 porphyry & yellow dike

17T 0500121 Elevation = 434m

5199005

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (about 10 mm)
- I see a disseminated rusted pyrite in the porphyry

Pictures 463 Porphyry & rusted pyrite

17T 0502584 Elevation = 409m 5198670

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende with small white stringers
- I see some white quartz veins and pink feldspar
- Nearby looks like a contact zone

Pictures 464 hornblende & stringers & quartz & large rust spot & contact

17T 0502764 Elevation = 403m

5198691

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende with small white stringers

Pictures 465 hornblende

17T 0502809 Elevation = 405m

5198686

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende with small white and yellow stringers
- I see a small white quartz vein
- I see yellow epidote
- I see some rust

Pictures 466 hornblende & rust & epidote & quartz & stringers

17T 0502902 Elevation = 407m

5198682

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a large white and pink quartz vein
- I see lots of black lines in the white guartz
- I see a bit of yellow epidote
- I see some rust

Pictures 467 hornblende & rust & epidote & quartz & stringers

17T 0502903 Elevation = 405m

5198647

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a few small white quartz veins
- I see a white stringers

Pictures 468 hornblende & quartz & stringers

17T 0502915 Elevation = 403m

5198651

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a small white quartz veins
- I see small white stringers

Pictures 469 hornblende & quartz & stringers

17T 0502928 Elevation = 403m

5198643

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a few small white quartz veins
- I see yellow epidote

Pictures 470 hornblende & quartz & epidote

17T 0503030 Elevation = 395m

5198587

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- We found a mineralized boulder
- The boulder was rusty and the minerals where layered with hornblende
- A piece of the boulder was sent away for analysis Sample 26 Pictures 471 hornblende & Sample 26 Boulder

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.005	945	450	650

17T 0503110 Elevation = 393m

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see feldspathic hornblende
- I see alteration

- I see lots of stringers and nearby is lots of stingers together
- I see some white and smoky quartz and yellow epidote
- I see a large brown dike

Pictures 472 hornblende & epidote & quartz & stringers & brown dike

17T 0503117 Elevation = 394m

5198519

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a white / smoky quartz

Pictures 473 hornblende & quartz

17T 0503132 Elevation = 390m

5198486

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see Pseudotachylite
- The fragments are medium in size
- The fragments are rounded and pink granite

Pictures 474 Pseudotachylite

17T 0503164 Elevation = 384m

5198470

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see Pseudotachylite
- The fragments are large and medium and small in size
- The fragments are rounded and pink granite
- I see pink granite (Contact zone I think) large fragments
- I see rust in some areas

Pictures 475 Pseudotachylite & rust

17T 0503168 Elevation = 382m

5198465

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see Pseudotachylite
- The fragments are rounded and pink granite
- I see a lot of rust in some areas

Pictures 476 Pseudotachylite & rust

17T 0507843 Elevation = 393m

5199710

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN (Granitic Rocks (Algoman))
- I see a conglomerate
- The fragments are rounded and consists of quartz monzonite
- I see what looks like a quartz feldspar hornblende
- I see white stringers
- I see diorite mixing with the hornblende
- Nearby is the contact between the hornblende and the pink granite
 Pictures 477 Conglomerate & contact & granite & hornblende & stringers

17T 0507843 Elevation = 393m

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN (Granitic Rocks (Algoman))
- I see a diorite
- I see small white vein
- I see a large white and pink dike
- The map doesn't show any dikes in the area
- This may be a contact zone

Pictures 478 Diorite & pink dike & contact

17T 0507854 Elevation = 393m

5199707

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN (Granitic Rocks (Algoman))
- I see quartz feldspar hornblende
- I see some (white / orange) (quartz / feldspar)
 Pictures 479 hornblende & quartz feldspar

17T 0497858 Elevation = 445m

5201699

- Map 2212 indicates 12 Olivine diabase PRECAMBRIAN PROTEROZOIC Late mafic intrusive rocks
- I see a granite like with white, black and red colours
- Small coarse grains with large, white, rectangle orthoclase feldspar crystals
- Nearby the crystals get larger
 Pictures 480 Olivine diabase

17T 0497931 Elevation = 442m

5201220

Pictures of storage container and trailer
 Pictures 481 Storage container

17T 0498098 Elevation = 468m

5199918

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see undifferentiated only
- I see schisting of the dark and light lines
- Nearby is a different looking bedrock (mixture of undifferentiated and feldspathic greywacke)
- I see large white quartz boulders or fragments in a greywacke and undifferentiated mixture
- Could be contact area or start of sediments

Pictures 482 Undifferentiated & greywacke & alteration & quartz

17T 0498229 Elevation = 465m

5199859

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see feldspathic greywacke
- I see a bit of undifferentiated like
- I see a few small quartz veins and a bit of alteration
 Pictures 483 greywacke & Undifferentiated & quartz vein

17T 0501636 Elevation = 435m

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see guartz-feldspar hornblende
- I see epidote & quartz veins

I see small white stringers Pictures 484 hornblende & guartz & epidote

Elevation = 467m 17T 0499351

5199460

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see a Pseudotachylite
- The fragments are large and angular porphyritic quartz monzonite
- The surrounding bedrock looks like greywacke
- Nearby is a polymictic conglomerate (Small fragments)
- Nearby is a mega conglomerate with small and medium size fragments
- Contact zone between porphyry and greywacke conglomerate Pictures 485 Pseudotachylite & conglomerates & contact zone of porphyry

17T 0503129 Elevation = 358m

5198652

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist in this area and just south the map indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite
- I see orange and white granite
- The white crystals are square and large
- This is a large rock face

Pictures 486 orange and white granite

17T 0503124 Elevation = 365m

5198664

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist in this area and just south the map indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite
- I see orange and white granite
- The white crystals are square and large
- This is a large mountain top
- Nearby is some pegmatite

Pictures 487 granite & pegmatite

17T 0503076 Elevation = 379m

5198603

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist in this area and just south the map indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite
- I think this is hornblende
- The surface is really dark and has black lines just like the mineral boulder Sample 26
- This location is only 47m from sample area

Pictures 488 hornblende & metamorfic gneiss

Elevation = 375m

17T 0503101

5198600

- Map indicates 1b Quartz-feldspar (hornblende) biotite schist in this area and just south the map indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite
- I think this is hornblende
- I see lots of small white stringers
- I see small white quartz veins

Pictures 489 hornblende & stringers & quartz

17T 0498298 Elevation = 442m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see feldspathic greywacke
- Nearby I see white quartz cut by a fine grain basalt
 Pictures 490 greywacke & quartz with basalt

17T 0498235 Elevation = 444m

5199475

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see feldspathic greywacke

Pictures 491 greywacke

17T 0498229 Elevation = 443m

5199464

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see feldspathic greywacke
- I see mineralization (A silver metallic metal) cubic like pyrite

Pictures 492 greywacke & minerals

17T 0498247 Elevation = 447m

5199444

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see a white quartz vein
- I see large fragments of porphyritic quartz monzonite (Contact zone with greywacke) Pictures 493 contact & porphyry fragments & quartz

17T 0498181 Elevation = 443m

5199455

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke
- I see large white crystals in the greywacke

Pictures 494 greywacke

17T 0498093 Elevation = 441m

5199403

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke

Pictures 495 greywacke

17T 0498074 Elevation = 446m

5199373

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke
 Pictures 496 greywacke

17T 0498047 Elevation = 450m

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke
 Pictures 497 greywacke

17T 0498034 Elevation = 447m

5199283

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke Pictures 498 greywacke

17T 0498037 Elevation = 446m

5199272

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke
- I see a fragment in the greywacke
- The fragment is angular and looks like diorite

Pictures 499 greywacke & fragment

17T 0498045 Elevation = 446m

5199258

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke
- I see sedimentary layers (even distribution- yearly deposit or event)
 Pictures 500 greywacke and layers

17T 0497950 Elevation = 446m

5198847

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see a pink/orange granite
- I see some rust
- The large granite outcrop is cut by a large greywacke dike (Several feet across)
- The dike is about 85°

Pictures 501 greywacke and large dike

17T 0498009 Elevation = 447m

5198920

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke

Pictures 502 greywacke

17T 0498008 Elevation = 447m

519892/

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see a mega polymictic conglomerate
- The fragments are small, medium in size
- The fragment are rounded and polymictic

17T 0498014 Elevation = 447m

5198930

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see a mega conglomerate
- The fragments are small, medium in size
- The fragment are rounded and angular
- Most of the fragments are greywacke and angular
- Nearby I see some quartz and rust

Pictures 504 Mega conglomerate & quartz

17T 0498056 Elevation = 447m

5198864

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see greywacke
- Nearby I see greywacke turned white (Lots of white)
- Nearby I see thick layered rock
- The third layer requires further exploration Pictures 505 greywacke & altered white

17T 0498075 Elevation = 452m

5198867

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke
 Pictures 506 greywacke

17T 0498057 Elevation = 446m

5198852

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke
- A fresh break reveals a fine grain blue quartz with slightly larger white feldspar crystals and a few black grains

Pictures 507 greywacke

17T 0498123 Elevation = 450m

5198926

- Map 2212 shows 9c Finely bedded argillite 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I see feldspathic greywacke
- I see sedimentary layers (close horizontal layers)

Pictures 508 greywacke

17T 0498948 Elevation = 443m

- Map 2212 shows 9b Bedded arkose, feldspathic greywacke 9d Massive feldspathic greywacke (HURONIAN Gowganda formation
- I cannot see the bedrock but I see heavy rust in a depression in the gravel Pictures 509 Heavy rust in gravel

17T 0499153 Elevation = 429m

5200771

- Map 2212 shows breccea in this area
- Map 2212 also shows a fault line in this area
- Map 2212 also shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation in the area
- Map 2212 also shows 12 Olivine diabase (Late mafic intrusive) in the area
- I see a black basalt that oxidized orange in some spots
- The textures is really ruff only a few smooth areas
- The outcrop is next to frog lake
- The matrix is a black, fine grain basalt with small white disseminated grains
 Pictures 510 Basalt with orange spots

17T 0499141

Elevation = 428m

5200790

- Map 2212 shows breccea in this area
- Map 2212 also shows a fault line in this area
- Map 2212 also shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation in the area
- Map 2212 also shows 12 Olivine diabase (Late mafic intrusive) in the area
- I see a black basalt that oxidized orange in some spots
- The textures is ruff with more smooth areas then pictures 510
- The outcrop is next to frog lake
- The matrix is a black, fine grain basalt with small white disseminated grains (Gabbro)
- I see felsic stringers

Pictures 511 Basalt with orange spots

17T 0499129

Elevation = 427m

5200829

- Map 2212 shows breccea in this area
- Map 2212 also shows a fault line in this area
- Map 2212 also shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation in the area
- Map 2212 also shows 12 Olivine diabase (Late mafic intrusive) in the area
- I see a fine grain, black basalt with pink feldspar crystals and orange spots
- I also see a white quartz vein
- The textures is ruff with more smooth areas then pictures 510
- The outcrop is next to frog lake
- The matrix is a black, fine grain basalt with small white disseminated grains
- I see a large, square feldspar crystal
- Nearby are some rusted and magnetic boulders
 Pictures 512 Basalt & orange spots & Quartz

17T 0499795

Elevation = 428m

5200337

- Map 2212 indicates 12 Olivine diabase
- I see a small grain white quartz with larger black crystals
- I see lots of fractures
- The outer surface is white with little black spots
- I see some rust
- The texture is ruff

Pictures 513 Olivine diabase & rust

17T 0499879 Elevation = 429m

5200359

- Map 2212 indicates 12 Olivine diabase to the South
- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN granitic rocks in the area
- I see Olivine diabase
- The olivine diabase has fine grain black and white crystals with large pink/orange crystals Pictures 514 Olivine diabase

17T 0499996 Elevation = 427m

5200253

- Map 2212 indicates 12 Olivine diabase in this area
- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN granitic rocks north and south of this area
- I see Olivine diabase with rust on a lower section
- I see lots of fractures in the nearby rock face
- The fractures are also bleeding out a white precipitate
- Nearby is some orange/rusty stringers
 Pictures 515 Olivine diabase & orange stringers

17T 0499175 Elevation = 429m

5200722

- Map 2212 shows breccea in this area
- Map 2212 also shows a fault line in this area
- Map 2212 also shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation in the area
- Map 2212 also shows 12 Olivine diabase (Late mafic intrusive) in the area
- I see what looks like massive feldspathic greywacke
- The outcrop is next to frog lake
 Pictures 516 Greywacke

17T 0499138 Elevation = 424m

5200900

- Map 2212 shows breccea in this area
- Map 2212 also shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation in the area
- Map 2212 also shows 12 Olivine diabase (Late mafic intrusive) in the area
- I see a mega polymictic conglomerate
- The surface is really ruff and full of stones (Fragments)
- I see orange spots
- I see some feldspar crystals in the bedrock that looks like quartz monzonite (Hard to see) could be a large fragment

Pictures 517 Mega conglomerate & orange spots

17T 0499014 Elevation = 425m

- Map 2212 also shows 12 Olivine diabase (Late mafic intrusive) in this area
- Map 2212 also shows 9d Massive feldspathic greywacke and 9b Bedded arkose, feldspathic greywacke (HURONIAN Gowganda formation) in the area
- I see what looks like a greywacke with lots of orange erosion. (Massive orange spots)
- This bedrock is lighter colour then the basalt in pictures 510-511 Pictures 518 greywacke & massive orange spots

17T 0498906 Elevation = 425m

5200693

- Map 2212 also shows 9d Massive feldspathic greywacke and 9b bedded arkose, feldspathic greywacke (HURONIAN Gowganda formation in this area
- I see some greywacke with lots of orange spots
- Nearby I see pink/orange 9b bedded arkose

Pictures 519 greywacke & arkose & orange spots

17T 0498896 Elevation = 425m

5200715

- Map 2212 shows 9d Massive feldspathic greywacke and 9b bedded arkose, feldspathic greywacke (HURONIAN Gowganda formation in this area
- I see a large white quartz vein in bedded arkose
- I see lots of orange spots

Pictures 520 quartz & arkose & orange spots

17T 0498697 Elevation = 424m

5200826

- Map 2212 shows 9b bedded arkose, feldspathic greywacke (HURONIAN Gowganda formation in this area
- I see a lot of white quartz vein in greywacke
- I see a lot of large white stringers

Pictures 521 quartz & stringers & greywacke

17T 0498691 Elevation = 424m

5200833

- Map 2212 shows 9b bedded arkose, feldspathic greywacke (HURONIAN Gowganda formation in this area
- I see a white quartz vein in arkose
- There is a circular depression that is filled with water and has eroded to an orange colour
- I see a few orange spots
- I see a some white quartz
- I see wing like stringers (Lots of flat veins) (High water pressure caused these fractures to open) (Orogenic gold deposits are associated with high water pressure)
- This is a high fluid pressure area

Pictures 522 quartz & stringers & greywacke

17T 0503010 Elevation = 399m

5198627

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a hornblende with white stringers
- Flattened and elongated mafic enclaves of the Creelman pluton defining tectonic foliation and lineation.
- I see magmatic enclaves are volumes of rock surrounded by emplaced host rock of related but distinct composition and of separated genesis (incomplete magmatic mixing)
 Pictures 523 hornblende & stringers & magmatic enclaves

17T 0503010 Elevation = 399m

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a hornblende with white bands that I think are biotite-chlorite schist

- I see a few pieces of white quartz
- Three hand samples showed mineralization
- The minerals had a silver metallic look

Pictures 524 hornblende & biotite chlorite schist & minerals

17T 0502991 Elevation = 404m

5198677

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a hornblende

Pictures 525 hornblende

17T 0503044 Elevation = 398m

5198674

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a hornblende

Pictures 526 hornblende

17T 0503053 Elevation = 396m

5198667

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a hornblende with large quartz monzonite fragments
- I also see smaller elongated fragments that look like volcanic breccea
- I see pseudotachylite
- I see white quartz veins

Pictures 527 Pseudotachylite & hornblende & quartz

17T 0503059 Elevation = 391m

5198710

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a hornblende with a few squares that look like potassium feldspar crystals
- Lots of pink feldspar mixing in
- I see a small black intrusion with quartz monzonite fragments
- Could be a fault line
- I see small white stringers

Pictures 528 hornblende & stringers & fault line

17T 0503040 Elevation = 394m

5198736

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Quartz feldspar (Hornblende)
- I see white quartz veins

Pictures 529 hornblende & quartz

17T 0502996 Elevation = 401m

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Quartz feldspar (Hornblende)

I see a large white quartz vein
 Pictures 530 hornblende & quartz

17T 0502931 Elevation = 400m

5198718

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Quartz feldspar (Hornblende)
- I see a few white quartz veins and stringers

Pictures 531 hornblende & quartz & stringers

17T 0502916 Elevation = 400m

5198728

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Quartz feldspar (Hornblende)
- I see a large fragment of white / yellow quartz monzonite
- I see a lot of white quartz veins
- Could be a fault line
- Pictures 532 hornblende & quartz in fragment & fault line

17T 0502925 Elevation = 400m

5198742

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- I see a Quartz feldspar (Hornblende)
- I see lots of alteration, possible fault line
- I see a few pink feldspar fragments
- I see a few quartz veins

Pictures 533 hornblende & quartz & Fault line

17T 0503120 Elevation = 386m

5198487

- Map 2212 indicates 1b Quartz feldspar (Hornblende) Biotite schist (Archean Metavolcanics and Metasediments)
- Quartz feldspar (Hornblende) Biotite schist is contacting pseudotachylite
- The hornblende is darker in colour and has lots of white stringers
- The pseudotachylite is light grey in colour
- Most of the fragments are quartz monzonite but a few are of hornblende
- I think this is Sudbury Breccea
- The Breccea runs NNW SSE

Pictures 534 hornblende & Stringers & pseudotachylite & contact

17T 0500708 Elevation = 424m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN granitic rocks in this area
- Polymictic conglomerate
- Some medium fragments are granite (Pink-white-black)
- Some small fragments are white and rounded
- On the edge of the conglomerate is an outcrop of epidote with white quartz
- The quartz has (Gold colour) pyrite cubes and rust
- The quartz that covers the epidote is thin but there are other quartz veins
- The quartz also has a bit of green chlorite

- The epidote is yellow
- The bedrock beside the epidote is dark Grey/ green
- We took sample 23 today
- In the sample I see green epidote and a white / orange quartz (See pictures)
 Pictures 535 Epidote Pyrite conglomerate & Sample 23

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.031	811	16	19.80

17T 0501706

Elevation = 416m

5197996

- Map 2212 indicated 9 Undifferentiated 9d Massive feldspathic greywacke
- I see greywacke
- The surface is altered to a white colour Pictures 536 greywacke

17T 0501612

Elevation = 417m

5197910

- Map 2212 indicated 9 Undifferentiated 9d Massive feldspathic greywacke
- I see greywacke covered by a white / brown quartz

Pictures 537 greywacke

17T 0501624

Elevation = 418m

5197995

- Map 2212 indicated 9 Undifferentiated 9d Massive feldspathic greywacke
- I see conglomerates
- The fragments are small and medium in size
- The fragments are rounded and are made of quartz monzonite
- I see some white quartz

Pictures 538 Conglomerates & quartz

17T 0501622

Elevation = 416m

5198007

- Map 2212 indicated 9 Undifferentiated 9d Massive feldspathic greywacke
- I see massive feldspathic greywacke

Pictures 539 Greywacke

17T 0501639

Elevation = 421m

5198021

- Map 2212 indicated 9 Undifferentiated 9d Massive feldspathic greywacke
- I see a conglomerate with large, medium and small fragments
- The surface has a yellow appearance
- The fragments are white quartz monzonite and rounded
- Nearby are a few black fragments
- I see a bit of white quartz
- Looks like the flow is N S

Pictures 540 Conglomerate & quartz

17T 0498026

Elevation = 369m

5200849

Map 2212 indicates 12 Olivine diabase and a fault line in this area

- I see a white rock surface with lots of cracks
- A piece of the surface indicates a white quartz monzonite
- The quartz has lots of black stringers
- The quartz seems to have a beige colour deeper down
- Not Olivine diabase

Pictures 541 Fault line & mostly white quartzite

17T 0497794 Elevation = 393m

5200845

- Map 2212 indicates 12 Olivine diabase 9c finely bedded argillite and a fault line in this area
- I see a quartzite boulder
- I see fractured greywacke
- Potential fault line in this area

Pictures 542 greywacke

17T 0497817 Elevation = 398m

5200804

- Map 2212 indicates 12 Olivine diabase 9c finely bedded argillite and a fault line in this area
- I see a large white quartz dike
- The quartz is cutting what looks like feldspathic greywacke
- Nearby I see some rust

Pictures 543 White dike & greywacke & rust

17T 0497811 Elevation = 403m

5200804

- Map 2212 indicates 12 Olivine diabase in this area
- I see feldspathic greywacke
 Pictures 544 Greywacke

17T 0497901 Elevation = 413m

5200802

- Map 2212 indicates 12 Olivine diabase in this area
- I see feldspathic greywacke
- I see a small piece of whit quartz

Pictures 545 Greywacke

17T 0497897 Elevation = 420m

5200632

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite and a fault line in this area
- I see massive feldspathic greywacke
- Nearby is an altered zone

Pictures 546 Greywacke & altered zone

17T 0497908 Elevation = 420m

5200633

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see massive feldspathic greywacke
- Nearby is large angular land vertical layers

Pictures 547 Greywacke

17T 0497872 Elevation = 435m

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see massive feldspathic greywacke

Pictures 548 Greywacke

17T 0497889 Elevation = 437m

5200368

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see massive feldspathic greywacke
- I see a chlorite vein
- I see a conglomerate
- The fragments are small and angular

Pictures 549 Greywacke & Chlorite vein & Conglomerate

17T 0497951 Elevation = 441m

5200380

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see massive feldspathic greywacke

Pictures 550 Greywacke

17T 0497999 Elevation = 445m

5200375

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see a conglomerate
- The fragments are small and medium in size and round
- The conglomerate is polymictic but most fragments are quartz monzonite
- This is the contact zone between the conglomerates and the quartz monzonite
 Pictures 551 Conglomerate & contact zone

17T 0498008 Elevation = 444m

5200375

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see a conglomerate
- The fragments are small and medium in size and round
- The conglomerate is polymictic but most fragments are quartz monzonite Pictures 552 Conglomerate

17T 0497953 Elevation = 445m

5200396

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see a conglomerate
- The fragments are small and medium in size and round
- The conglomerate is polymictic but most fragments are quartz monzonite
 Pictures 553 Conglomerate

17T 0497954 Elevation = 450m

5200530

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see massive feldspathic greywacke
- I see some quartz

Pictures 554 greywacke & quartz

17T 0498010 Elevation = 462m

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see massive feldspathic greywacke
- I see a bunch of small quartz veins together
- One rock that I picked up had orange and purple quartz Pictures 555 greywacke & orange and purple quartz

17T 0498122 Elevation = 455m

5200356

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see a mega polymictic conglomerate

Pictures 556 Mega conglomerates

17T 0498032 Elevation = 451m

5200184

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see a feldspathic greywacke
- I see a sheer zone about 30 cm wide and full of quartz stringers

Pictures 557 Greywacke & sheer zone & stringers

17T 0497960 Elevation = 451m

5200200

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see a feldspathic greywacke with lots of small rust spots

Pictures 558 Greywacke & rust balls

17T 0497942 Elevation = 450m

5200203

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see a feldspathic greywacke with some small rust spots
- You can also see the sedimentary lines

Pictures 559 Greywacke & Undifferentiated & rust balls

17T 0499814 Elevation = 427m

5198078

- Map 2212 indicates 3b Porphyritic quartz monzonite in this area
- I see a large white quartz vein
- I see a few small white quartz veins
- I see extremely lots of small crisscrossing each other
- I see a large vein of yellow epidote
- (Not sure this gps reading was correct)

Pictures 560 Quartz & stringers & epidote

17T 0497973 Elevation = 452m

5200228

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area
- I see feldspathic greywacke
- I see a quartz vein
- I see some rust and red staining

Pictures 561 Greywacke & quartz

17T 0497978 Elevation = 453m

5200229

Map 2212 indicates 9b Bedded arkose, feldspathic greywacke 9c Finely bedded argillite in area

- I see feldspathic greywacke with Large pink & angular fragments
- The large fragments are odd shaped and look like a pegmatite or granite
- I see the sedimentary bedrock

Pictures 562 Greywacke & odd shaped pink fragment

17T 0499408 Elevation = 450m

5199528

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke in area
- I see massive feldspathic greywacke

Pictures 563 Greywacke

17T 0499447 Elevation = 451m

5199496

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke in area
- I see massive feldspathic greywacke
- Sounds like a bell when two pieces of rock are hit together
- Really magnetic bedrock

Pictures 564 Greywacke & sounds like a bell

17T 0500103 Elevation = 416m

5198166

- Map 2212 indicates 3b Porphyritic quartz monzonite
- I see pink quartz vein
- I see a bedrock that looks like a grano diorite but it's got orange white and black crystals
- Nearby is some rust and what looks like metallic mineralization
- Nearby I see some layered slate as a fragment

Pictures 565 grano-diorite & metallic minerals & slate

17T 0500163 Elevation = 419m

5198069

- Map 2212 indicates 3b Porphyritic quartz monzonite
- I see grano diorite with a lot of quartz veins
- The diorite was white and black-green

Pictures 566 grano-diorite & quartz

17T 0500081 Elevation = 421m

5197939

- Map 2212 indicates 3b Porphyritic quartz monzonite
- I see White-yellow-orange-red quartz
- I see some rust
- Large orange stain

Pictures 567 White-yellow-orange-red quartz

17T 0499949 Elevation = 422m

5197948

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolitics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- I see some black and white grano-diorite (Amphibole)
- I see a breccea
- Large and medium size pink feldspar fragments
- Nearby I see a large white quartz vein
- Nearby looks like mafic metavolcanics

Pictures 568 Grano-diorite & Breccea & Quartz & hornblende

17T 0499890 Elevation = 423m

5197980

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolitics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- I see some black and white diorite
- I see some rust and a bit of white quartz
- I see some stringers

Pictures 569 Diorite & stringers

17T 0499872 Elevation = 425m

5198038

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolitics, amphibolitic schist
 ARCHEAN Metavolcanics and Metasediments
- Map 2212 indicates 3b Porphyritic quartz monzonite in area
- I see a large pink quartz dike cutting mafic metavolcanics
- I see lots of white stringers

Pictures 570 Hornblende & stringers

17T 0499883 Elevation = 423m

5198049

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolitics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- Map 2212 indicates 3b Porphyritic quartz monzonite in area
- I see some grano-diorite (Amphibole) and mafic meta volcanics
- I see some yellow oxidized mineral (Maybe epidote)
- I see some quartz monzonite

Pictures 571 Grano-diorite & hornblende & quartz monzonite & epidote

17T 0499836 Elevation = 425m

5198067

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolitics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- Map 2212 indicates 3b Porphyritic quartz monzonite in area
- I see diorite and grano-diorite (Amphibole)

Pictures 572 Diorite

17T 0499830 Elevation = 426m

5197954

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- Map 2212 indicates 3b Porphyritic quartz monzonite in area
- I see grano-diorite (Amphibole)
- I see yellow epidote
- I see a large white quartz intrusion
- I see some mafic metavolcanics
- There is a bit of rust
- Nearby is a white quartz vein

Pictures 573 Diorite & quartz & epidote & mafic metavolcanics

17T 0499847 Elevation = 425m 5197942

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolites, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- Map 2212 indicates 3b Porphyritic quartz monzonite in area
- I see diorite and grano-diorite (Amphibole)
- I see some rust
- Nearby is some mafic metavolcanics
 Pictures 574 Diorite & mafic metavolcanics

17T 0499842 Elevation = 425m

5197935

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolites, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- I see grano-diorite (Amphibole)
 Pictures 575 grano-diorite

17T 0499892 Elevation = 423m

5197886

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolitics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- I see a white quartz surface
- A fresh break shows a red, rusty quartz (Some hematite in it)
- I see minerals in the quartz and hematite
- Nearby I see grano-diorite (Amphibole)

Pictures 576 grano-diorite & hematite & minerals

17T 0499929 Elevation = 425m

5197851

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- I see a small white quartz vein
- The surface rock look dark grey (Like a hornblende)
- Nearby is grano-diorite (amphibole) with epidote
- Nearby is some yellow grano-diorite
- Nearby is some pink feldspar

Pictures 577 Quartz & grano-diorite & epidote & feldspar

17T 0499933 Elevation = 424m 5197841

- Map 2212 indicates 3 & 1a Massive mafic metavolcanics, amphibolitics, amphibolitic schist ARCHEAN Metavolcanics and Metasediments
- I see diorite with some rust and spots of pink feldspar (Mafic metavolcanics)
- Nearby is some grano-diorite (amphibole)

Pictures 578 diorite & rust & feldspar & mafic metavolcanics

17T 0500104 Elevation = 419m

5197469

- Map 2212 indicates 9 Undifferentiated & 9c Finely bedded argillite in area
- I see the surface of the bedrock looks like a diorite (Black and white)(Diorite like)
- A fresh break shows a dark blue and white with small amount of black grains (feldspathic greywacke like)

Pictures 579 Greywacke

17T 0500095 Elevation = 419m

5197430

- Map 2212 indicates 9 Undifferentiated & 9c Finely bedded argillite in area

- I see what looks like feldspathic greywacke

Pictures 580 Greywacke

17T 0500093 Elevation = 420m

5197412

- Map 2212 indicates 9 Undifferentiated & 9c Finely bedded argillite in area
- I see black fine grain bedrock
- Looks like argillite
- The bedrock is smooth on one side of the fracture and the other side looks like a river bed with different elongated shapes

Pictures 581 Argillite & elongated shapes

17T 0500107 Elevation = 420m

5197378

- Map 2212 indicates 9 Undifferentiated & Breccea in the area
- This area is on the shores of a small lake
- I see a conglomerate in a dark grey bedrock
- The fragments are small and medium in size
- The fragments are polymictic with one fragment that has large white quartz crystals and others like diorite or granite or just grey
- More small fragments then medium fragments

Pictures 582 Conglomerate

17T 0500125 Elevation = 419m

5197373

- Map 2212 indicates 9 Undifferentiated & Breccea in the area
- I see a white quartz vein in a fine grain bedrock
- The white quartz vein gets large in some places
- I see a conglomerate with small and medium fragments
- The fragments are rounded and have large white orthoclase crystals and large black crystals
- Nearby I see a mega conglomerate with a bit of quartz on top (Quartz sill)

Pictures 583 Quartz & sill & mega conglomerate

17T 0500172 Elevation = 419m

5197345

- Map 2212 indicates 9 Undifferentiated & Breccea in the area
- I see a conglomerate with small and medium fragments
- The fragments are rounded and a mostly white in colour
- I see a white quartz vein
- Nearby I see some alteration (Several fractures)

Pictures 584 conglomerate & quartz

17T 0500173 Elevation = 419m 5197319

- Map 2212 indicates 9 Undifferentiated & Breccea in the area
- I see few white quartz veins
- The fragments are the same as the host bedrock
- I see some rounded fragments with elongated tails
- Nearby I see some cool shapes in the rock (Flow around boulders and stuff)
- Looks like it could be a diorite intrusion

- I see what looks like white pseudotachylite Pictures 585 White Pseudotachylite & cool conglomerate & quartz

17T 0500176 Elevation = 418m

5197329

- Map 2212 indicates 9 Undifferentiated & Breccea in the area
- I see pseudotachylite with some large, rounded and elongated fragments
- The fragments are mostly the same as the host bedrock but I also see some quartz monzonite fragments

Pictures 586 pseudotachylite

17T 0500188 Elevation = 420m

5197329

- Map 2212 indicates 9 Undifferentiated & Breccea in the area
- I see feldspathic greywacke

Pictures 587 Greywacke

17T 0500120 Elevation = 417m

5197365

- Map 2212 indicates 9 Undifferentiated & Breccea in the area
- This area is in the water
- I see a conglomerate with large and medium rounded boulders in the bedrock
- The water is clear. No visible signs of minerals leaching in water.

Pictures 588 Conglomerate & clear water

17T 0509675 Elevation = 356m

5199198

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a pink/red potassium feldspar and white quartz pegmatite like
- Nearby I see pink/red potassium feldspar with a white guartz vein in it
- Nearby looks like finely bedded argillite
- Nearby is some solid pink/red potassium feldspar

Pictures 589 Potassium feldspar & quartz & Argillite

17T 0509679 Elevation = 357m

5199209

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see pink granite
- I see a few white quartz veins
- There is also some dark, smooth sedimentary bedrock on the edge of the granite
- The dark sediments also fill the cracks in the granite

Pictures 590 Granite & Quartz & Alteration

17T 0509711 Elevation = 358m

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see what looks like white plagioclase feldspar crystals
- The fragments are angular and small
- This could part of the Fraleck porphyry

17T 0509727 Elevation = 358m

5199193

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see what looks like medium size white fragments
- The surrounding matrix seems to be porphyry
- Looks like porphyritic quartz monzonite

Pictures 592 Porphyry

17T 0509746 Elevation = 358m

5199197

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a large white quartz vein
- The host rock looks like a pink granite

Pictures 593 Quartz & granite

17T 0500841 Elevation = 430m

5198503

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- Map 2212 also indicated Breccea in the area
- I see some Undifferentiated
- I see a bit of rust
- Nearby looks like feldspathic greywacke

Pictures 594 Undifferentiated

17T 0500762 Elevation = 432m

5198512

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- Map 2212 also indicated Breccea in the area
- I see what looks like feldspathic greywacke
- Nearby are some small pillow lava like structures
- At the bottom of this structure is a small white quartz vein with what looks like two stringers of green chlorite
- A fresh break shows a Gabbro with fine grain dark blue matrix with larger white plagioclase feldspar crystals. Could be olivine diabase

Pictures 595 Greywacke & Pillow lava & Gabbro & maybe Olivine diabase

17T 0500699 Elevation = 428m

5198546

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- Map 2212 also indicated Breccea in the area
- I see Porphyritic quartz monzonite
- Some of the feldspar crystals are large and square. (About 10 mm)
- Nearby there is a large rusted rock face

Pictures 596 Porphyry & rusted rock face

17T 0500662 Elevation = 429m

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- I see what looks like feldspathic greywacke

17T 0500656 Elevation = 420m

5198492

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- This area is beside a small lake
- The area is covered by large angular boulders
- I see what looks like feldspathic greywacke
- The surface of the greywacke is really dark here (Almost black)

Pictures 598 Greywacke

17T 0500768 Elevation = 429m

5198471

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- Map 2212 also indicated Breccea in the area
- I see what looks like finely bedded argillite (You can see the individual layers)
- Here again the surface is really dark (Black)
- Nearby a fresh cut shows a light pink / white colour with some small black grains (Granite like) Pictures 599 Argillite & granite

17T 0500793 Elevation = 432m

5198424

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- Map 2212 also indicated Breccea in the area
- I see a white quartz vein
- The bedrock was hard to see without cleaning (Didn't have the excavation tools with us)
- We just pulled the organic matter by hand
- I see what looks like finely bedded argillite
- Nearby a fresh cut shows a brownish colour quartz / feldspar bedrock
 Pictures 600 Argillite & quartz

17T 0500783 Elevation = 433m

5198406

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- Map 2212 also indicated Breccea in the area
- I see what looks like a feldspathic greywacke

Pictures 601 Greywacke

17T 0500844 Elevation = 433m

5198348

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- I see what looks like a feldspathic greywacke and a few lines of Undifferentiated Pictures 602 Greywacke & Undifferentiated

17T 0500881 Elevation = 430m

5198470

- Map 2212 indicates 9 Undifferentiated HURONIAN COBALT GROUP (Gowganda Formation)
- I see a conglomerate
- The fragment is rounded and white in colour (Large grain)
 Pictures 603 Conglomerate

17T 0498203 Elevation = 435m

- Map 2212 indicates 9d Massive feldspathic greywacke
- Had to walk in because too hard to get in with Argo
- I see Massive feldspathic greywacke
 Pictures 604 Greywacke

17T 0502415 Elevation = 413m

5198721

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende contact with a conglomerate
- I see pseudotachylite
- Nearby the hornblende has large white quartz / feldspar veins and stringers
- The matrix of the conglomerate is a fine grain light grey in colour
- The fragments are small to medium in size
- The larger fragments are diorite and the smaller one just look white Pictures 605 Hornblende & stringers & Pseudotachylite & contact

17T 0502400 Elevation = 416m

5198740

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a conglomerate and maybe some pseudotachylite
- The fragments are small, medium and large in size
- The fragments look like they are quartz monzonite and diorite
- I see what looks like elongated holes in the conglomerate was filled in by a black, fine grain sediment

Pictures 606 Pseudotichylite and black sediments elongated shapes & Conglomerate

17T 0502394 Elevation = 416m

5198754

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see Pseudotachylite
- The fragments are small, medium and large in size
- The fragments look like they are guartz monzonite and diorite
- I see what looks like elongated, angular and rounded fragments
- Nearby the matrix changes to a white quartzite instead of dark quartzite Pictures 607 Pseudotachylite & Quartzite

17T 0502386 Elevation = 414m

- 5198768
- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see the end of the conglomerate
- There is only a few fragments
- The fragments look like they are quartz monzonite and diorite
- The fragments are rounded and one is really black and rusted
 Pictures 608 Conglomerates & rust

17T 0502391 Elevation = 414m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see pink and white stringers
 Pictures 609 Hornblende & stringers

17T 0502381 Elevation = 416m

5198794

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with some small stringers
- The bedrock is dark
- Nearby is the bedrock is dark with lots of stringers and large white biotite schist
- I see a bit of rust

Pictures 610 Hornblende & stringers

17T 0502383 Elevation = 413m

5198811

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with some small stringers
- The bedrock is dark grey whit a bit of white quartz

Pictures 611 Hornblende & stringers

17T 0502407 Elevation = 413m

5198842

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see what looks like quartz monzonite with a rusted mineral ball
- I see a bit of epidote
- Nearby the quartz monzonite is broken up into large fragments and has sedimentary rock between the fragments

Pictures 612 Quartz monzonite & conglomerate & mineral ball & epidote

17T 0502371 Elevation = 412m

5198869

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with large white biotite schist intrusion
- I see a rusted stringer

Pictures 613 Hornblende & rusted stringer

17T 0502323 Elevation = 405m

5198971

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with large white biotite schist
- I see an altered / sheer zone

Pictures 614 Hornblende & sheer zone

17T 0502366 Elevation = 401m

5199097

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a mega conglomerate
- The fragments are small & medium in size
- The fragments are quartz monzonite

Pictures 615 mega conglomerate

17T 0502399 Elevation = 400m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a mega conglomerate
- The fragments are mostly small in size
- The fragments are mostly quartz monzonite

Pictures 616 mega conglomerate

17T 0501996 Elevation = 417m

5198872

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see some rust

Pictures 617 Hornblende & rust

17T 0501988 Elevation = 419m

5198857

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The total outcrop was small < 1m x 1m
- We cleaned the Sample area < 1m x 1m
- This area had already been excavated by the Lumber company Gervais in order to put in a road
- Took sample 25 parallel to the small stringer
- We cut further to see if what the stringer did
- The stringer had a slight dip and varied in size
- There was visible mineralization on the surface and in the stringer
- Sample 25 included the stringer and some host rock from both side
- Sample 25 had some metallic mineralization

Pictures 618 Hornblende & Sample 25 & Excavated

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.016	885	142	729

17T 0502058 EI

Elevation = 423m

5198896

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a coarse grain bedrock
- I see some quartz and feldspar (dark blue, a white and orange coloured)
- The white grains are larger
- Looks like an intrusive granite

Pictures 619 Granite

17T 0502055 Elevation = 414m

5198900

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a quartz-feldspar (hornblende) biotite schist
- I see a large quartz feldspar vein
- I see a few white stringers

Pictures 620 Hornblende & stringers & quartz

17T 0501986 Elevation = 410m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a quartz-feldspar (hornblende) biotite schist
- I see a large quartz feldspar vein
- I see a few white stringers
- We excavated 3m x 3m
- The overburden varied from none to about 30 cm

- This area had already been excavated by the Lumber company Gervais in order to put in a road
- Can't find GPS picture

Pictures 621 Hornblende & stringers & Excavated

17T 0509804 Elevation = 326m

5199184

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a porphyry
- I see large, white feldspar crystals
- Some crystals are square, octagon or rounded
- The surface of the porphyry matrix is dark grey
- I see a few fractures
- I see one small white vein with yellow epidote on each side (Contact alteration)
- I see a contact zone right beside
- The other bedrock is oxidized white and looks sedimentary in nature
- I see lots of alteration in the contact sedimentary bedrock

Pictures 622 Porphyry & epidote & contact

17T 0509803 Elevation = 333m

5199162

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see what looks like quartz monzonite
- There is some fracturing into large rectangles
- I few fresh break shows quartz monzonite on top and what looks light a bleu massive feldspathic greywacke

Pictures 623 Quartz Monzonite & greywacke

17T 0509782 Elevation = 340m

5199147

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a light blue feldspathic greywacke
- I see a bit of rust in the greywacke
- Nearby I see the dark porphyry again
- The crystals are white, large and square

Pictures 624 Greywacke & porphyry

17T 0509775 Elevation = 342m Pictures 625

5199154

17T 0509777 Elevation = 351m Pictures 625

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- We excavated < 1m x 1m
- We excavated because we saw some light green colour in the quartz but it turned out to be bacterial growth
- We excavated the second location < 0.5m x 0.5m
- It was also bacterial growth and the same bedrock
- I think it is quartz monzonite

I see a bit of rust
 Pictures 625 Quartz monzonite & rust & Excavated x 2

17T 0509727 Elevation = 348m

5199190

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see porphyritic quartz monzonite
- Some of the feldspar crystals are large and square (about 10mm)
- Nearby I see more porphyry with really large feldspar crystals Pictures 626 Porphyry & Large crystals

17T 0509694 Elevation = 350m

5199178

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- Map 2212 also indicates 2 Undifferentiated felsic metavolcanics nearby on the other side of river
- I see metavolcanics and some metasedimentary origin
- I see several large white quartz dikes
 Pictures 627 Metavolcanics & metasedimentary & Quartz

17T 0501992 Elevation = 420m

5198861

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with quartz and stringers
- The stringer showed mineralization when the top was broken off
- The mineralization was metallic
- Broke a few samples with a hammer to examine at camp Pictures 628 hornblende & stringers & minerals in quartz

17T 0501961 Elevation = 420m

5198888

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see minerals in the quarts stringer
- The mineralization is metallic and silver and gold in colour
- I see a bit of rust
- The host rock is a diorite / amphibole
- There is diorite about 85 m South East of this location but hornblende all around
 Pictures 629 Diorite & Minerals in quartz

17T 0501856 Elevation = 420m

5198912

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with a white quartz vein and a pink dike
- The white quartz vein and the hornblende are cut by a pink felsic dike Pictures 630 Hornblende & quartz & Pink dike

17T 0501772 Elevation = 419m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see an altered hornblende with some white stringers that altered the contact bedrock to form some yellow epidote

17T 0501802 Elevation = 415m

5199074

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a conglomerate
- I see one large, rounded, fine grain, black fragment
- I see several small, rounded, white quartz

Pictures 632 Conglomerate

17T 0501801 Elevation = 416m

5199064

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a mega conglomerate
- I see medium and small, rounded fragment
- The fragments are white quartz monzonite and diorite
- The outcrop is small

Pictures 633 Mega conglomerate

17T 0501808 Elevation = 425m

5199229

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with lots of white stringers

Pictures 634 Hornblende & stringers

17T 0501830 Elevation = 432m

5199293

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with lots of white stringers
 Pictures 635 Hornblende & stringers

17T 0501856 Elevation = 434m 5199318

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with lots of white stringers
- I see a bit of rust in some of the stringers Pictures 636 Hornblende & stringers & rust

17T 0501888 Elevation = 434m

5199378

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with lots of white stringers
- I see a bit of rust in some of the stringers Pictures 637 Hornblende & stringers & rust

17T 0501914 Elevation = 435m 5199367

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende with lots of white stringers and some epidote
- I see some rust in the stringers
 Pictures 638 Hornblende & stringers & rust

17T 0502106 Elevation = 426m

5198775

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a dark grey bedrock with lots of small elongated crystals (Gabbro like)
- Must be intrusive in nature
- I see some rust on the surface of the bedrock
 Pictures 639 Gabbro & rust

17T 0502103 Elevation = 421m

5198756

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a diorite
- Lots of surface rust
- I see some soft, fine grain, black rock
- I was able to cut it with a knife
- A nearby analysis showed high in ZN Pb Sr
 Pictures 640 Dark soft cut by knife

Cu (ppm)	Zn (ppm)	Pb (ppm)	Sr (ppm)
196	1630	463	504

17T 0507685 Elevation = 399m

5199817

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a diorite
- I see a white / pink quartz feldspar dike
- I see a few stringers
- I see a few large white / pink veins
- Nearby the large dyke goes from 1.5 ft to 20 ft wide
- Too much overburden to see if this is a contact zone

Pictures 641 Diorite & dike & contact

17T 0507873 Elevation = 395m

5199646

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a pegmatite intrusions in pink granite
- The pegmatites are large
- The colours are red, orange white
- There are a few cracks that cut the pegmatites (about 60°)

Pictures 642 Granite & Pegmatite

17T 0501988 Elevation = 409m

5198857

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- The bedrock is quartz feldspar (hornblende)
- We took samples 27 28 from this site (No camera, see pictures 652)

17T 0504057 Elevation = 418m

5198693

- Map 2212 indicates 9d Massive feldspathic greywacke HURONIAN Cobalt Group (Gowganda Formation)

- I See a conglomerate
- The fragments are small and medium in size
- The fragments are pink granite Pictures 643 Conglomerate

17T 0504052 Elevation = 385m

5198696

- Map 2212 indicates 9d Massive feldspathic greywacke HURONIAN Cobalt Group (Gowganda Formation)
- I See a conglomerate
- The fragments are small and medium in size
- The fragments are pink granite Pictures 644 Conglomerate

17T 0504057 Elevation = 389m

5198649

- Map 2212 indicates 9d Massive feldspathic greywacke HURONIAN Cobalt Group (Gowganda Formation)
- We excavated about 0.3m x 0.3m (Not much overburden)
- I See some white quartz
- Thr host rock look like feldspathic greywacke Pictures 645 Greywacke & quartz

17T 0504046 Elevation = 388m

5198656

- Map 2212 indicates 9d Massive feldspathic greywacke HURONIAN Cobalt Group (Gowganda Formation)
- I see some schist
- I see a large white quartz
- There appears to be some pink granite conglomerates
- There appears to be some kind of gneiss looking bedrock. There are bands of potassium feldspar Pictures 646 Schist & gneiss & conglomerate & quartz

17T 0504019 Elevation = 387m

5198668

- Map 2212 indicates 9d Massive feldspathic greywacke HURONIAN Cobalt Group (Gowganda Formation)
- I see small white quartz
- I see what looks like a feldspathic greywacke

Pictures 647 Greywacke & quartz

17T 0504052 Elevation = 389m

5198701

- Map 2212 indicates 9d Massive feldspathic greywacke HURONIAN Cobalt Group (Gowganda Formation)
- I see a conglomerate
- The fragments are rounded and medium in size
- The fragments look like quartz monzonite

Pictures 648 Conglomerate

17T 0504029 Elevation = 387m

- Map 2212 indicates 9d Massive feldspathic greywacke HURONIAN Cobalt Group (Gowganda Formation)
- I see a dark grey vein
- The bedrock looks like feldspathic greywacke Pictures 649 Greywacke & Grey vein

17T 0502191 Elevation = 409m 5198721

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a diorite with a small, white, rusted quartz vein Pictures 650 Diorite & small rusted vein

17T 0502183 Elevation = 409m 5198722

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a diorite with a small, white, rusted quartz veins & stringers Pictures 651 Diorite & rusted vein & stringers

17T 0501988 Elevation = 408m 5198858

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende with mineralized white stringers
- The bedrock is quartz feldspar (hornblende)
- We took sample 27 from this site on 03-09-2017

17T 0501987 Elevation = 408m 5198857

- The bedrock is quartz feldspar (hornblende)
- I see hornblende with mineralized white stringers
- We took sample 28 from this site on 03-09-2017
 Pictures 652 Hornblende & Samples 27 28

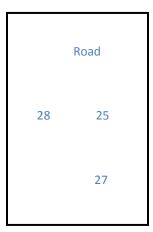
Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	328	61	215

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.004	333	03	131

Sample 28

Sample 27

17T 0501872 Elevation = 415m


5198896

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende

Pictures 653 Hornblende

17T 0498085 Elevation = 460m

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see undifferentiated
- I see schisting of the dark and light lines
- I see medium size, white feldspathic boulders or fragments in undifferentiated Pictures 654 Undifferentiated & Conglomerate

17T 0497981 Elevation = 450m

5199983

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see undifferentiated
- The undifferentiated is discrete here, more alteration

Pictures 655 Undifferentiated

17T 0497952 Elevation = 451m

5199995

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see undifferentiated

Pictures 656 Undifferentiated

17T 0497940 Elevation = 449m

5200018

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see undifferentiated
- I see lots of small, pink feldspathic or white quartz veins

Pictures 657 Undifferentiated & Quartz & feldspar

17T 0497929 Elevation = 450m

5200028

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see undifferentiated
- I see schist and shifting of the dark and light lines
- I see lots of small, pink feldspathic or white quartz veins

Pictures 658 Undifferentiated & alteration

17T 0497905 Elevation = 449m

5200001

- Map 2212 shows 9d Massive feldspathic greywacke (HURONIAN Gowganda formation)
- I see undifferentiated
- Nearby the undifferentiated turns into a greywacke

Pictures 659 Undifferentiated

17T 0502756 Elevation = 398m

5197850

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- Map 2212 also indicates a fault line South and East of this location
- I see a mega conglomerate with lots of small and some medium fragments
- Some fragments are angular but most are rounded
- There is some precipitate around some of the boulders or fractures

Pictures 660 Mega conglomerate & precipitate

17T 0502771 Elevation = 404m

5197853

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- Map 2212 also indicates a fault line South and East of this location
- I see a feldspathic greywacke

Pictures 661 Greywacke

17T 0502772 Elevation = 406m

5197866

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- Map 2212 also indicates a fault line South and East of this location
- I see a mega polymictic conglomerate with lots of small and some medium fragments
- The fragments are rounded

Pictures 662 Mega conglomerate

17T 0502788 Elevation = 409m

5197891

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- Map 2212 also indicates a fault line South and East of this location
- I see a what looks like a quartz feldspar intrusion in greywacke Pictures 663 greywacke & quartz intrusion

17T 0502777 Elevation = 406m

5197934

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- Map 2212 also indicates a fault line South and East of this location
- I see a highly fractured pink quartz feldspar granite
- Nearby is a greywacke
 Pictures 664 Pink granite

17T 0502744 Elevation = 403m

5197943

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- Map 2212 also indicates a fault line South and East of this location
- I see large square pink feldspar crystals (looks like porphyry but I think it's quartz monzonite)
- I see a little white quartz intrusion

Pictures 665 Quartz & quartz monzonite

17T 0502749 Elevation = 404m

5197955

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- Map 2212 also indicates a fault line South and East of this location
- I see a pink feldspathic granite

Pictures 666 Granite

17T 0502666 Elevation = 396m

5197935

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a pink granite contact a dark sedimentary bedrock
- The dark sedimentary bedrock is highly fractured and has some stringers. Could be hornblende. Pictures 667 Hornblende contact with pink granite & stringers

17T 0502673 Elevation = 397m

5197884

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see I see a pink granite with a white quartz vein
- The pink quartz is highly rusted in one area (Run-off from gravel) the rest of the granite is not rusted

Pictures 668 Granite & quartz & rust

17T 0502664 Elevation = 398m

5197963

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a few small quartz veins in pink granite

Pictures 669 Granite & quartz

17T 0502656 Elevation = 405m

5198117

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a few small quartz veins in quartz monzonite

Pictures 670 Quartz monzonite & quartz

17T 0502694 Elevation = 402m

5198193

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a bit of white quartz in pink granite
- I see a bit of rust in the white quartz

Pictures 671 Granite & quartz & rust

17T 0502679 Elevation = 402m

5198227

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see pink / orange granite
- The surface is flaky and fractured

Pictures 672 Granite

17T 0502654 Elevation = 403m

5198351

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see pink granite
- Nearby I see a few white quartz veins and small black stringers

Pictures 673 Granite & black stringers & quartz

17T 0502650 Elevation = 402m

5102322

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see pink granite
- The granite is flaky some places

Pictures 674 Granite

17T 0502755 Elevation = 387m

5197663

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman) North and West of this location
- Map 2212 also indicates a fault line South in this location
- Map 2212 also indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda
 Formation South and East of this area
- I see a feldspathic greywacke with some white square or rectangle feldspar crystals
- I see some quartz (Need to investigate more)

Pictures 675 Greywacke & quartz

17T 0502739 Elevation = 389m

5197667

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman) North and West of this location
- Map 2212 also indicates a fault line South in this location
- Map 2212 also indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda
 Formation South and East of this area
- I see a feldspathic greywacke with some small white feldspar crystals Pictures 676 Greywacke

17T 0501811 Elevation = 441m

5199377

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a white quartz monzonite with some rust in cracks Pictures 677 Quartz monzonite & rust

17T 0501825 Elevation = 442m

5199388

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a dark hornblende with lots of alteration
- I see some veining and stringers
- I see a bit of epidote
- A fresh break shows a dark quartz-feldspar (hornblende) with a pink quartz feldspar stringer
 Pictures 678 Hornblende & quartz & stringers & epidote

17T 0496353 Elevation = 407m

5200325

- Map 2212 indicates 9a Polymictic conglomerates and 9d Massive feldspathic greywacke HURONIAN Gowganda Formation
- I see a lot of white precipitate
- Looks like quart monzonite (Lots of bacterial growth on surface)
- This area is a large rock face

Pictures 679 Quartz monzonite

17T 0496344 Elevation = 407m

- Map 2212 indicates 9a Polymictic conglomerates and 9d Massive feldspathic greywacke
 HURONIAN Gowganda Formation
- I see what looks like finely bedded argillite (Mud stone)
- The argillite is flaky and on the bottom of the rock face

The top and nearby looks more like quartz monzonite
 Pictures 680 Flaky argillite & quartz monzonite

17T 0496334 Elevation = 404m 5200350

- Map 2212 indicates 9a Polymictic conglomerates and 9d Massive feldspathic greywacke HURONIAN Gowganda Formation
- I see a very dark surface (I think it's bacterial growth)
- I see white lines that maybe the result of a backhoe scrapping
- I see stringers

Pictures 681 quartz monzonite & stringers

17T 0495963 Elevation = 412m

5200713

- Map 2212 indicates to the East is 9a Polymictic conglomerates and 9d Massive feldspathic greywacke HURONIAN Gowganda Formation and to the West is 3a Quartz monzonite, granite, grano-diorite, pegmatite
- I see a diorite and grano-diorite with some rust on it
- I see a large rust spot

Pictures 682 Gabbro & rust

17T 0503710 Elevation = 420m

5198542

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke and 9c Finely bedded argillite HURONIAN Gowganda Formation in the area
- Map 2212 also indicates 11 Quartz diabase to the West of this location. We are almost on the contact between the two bedrocks.
- Map 2212 also indicates 12 Olivine diabase just north of this location.
- I see what looks like feldspathic greywacke with some metallic mineralization
- Took a few samples home to examine at camp
- These samples were broken off the large rock face Pictures 684 Greywacke & mineralization

17T 0503732 Elevation = 415m

5198535

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke and 9c Finely bedded argillite HURONIAN Gowganda Formation in the area
- Map 2212 also indicates 11 Quartz diabase to the West of this location. We are almost on the contact between the two bedrocks.
- Map 2212 also indicates 12 Olivine diabase just north of this location.
- This is the area between the two access roads
- I see large white quartz veins. The veins are fractured and cross cut (numerous events)
- The host bedrock appears to be finely bedded argillite
- There are lots of fractured rock
- Looks like a Breccea

Pictures 685 Breccea & Argillite & Lot of quartz

17T 0503567 Elevation = 398m 5198349

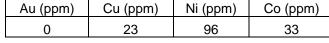
- Map 2212 indicates 11 Quartz diabase (Nipissing type) PROTEROZOIC
- Map 2212 also indicates 9b Bedded arkose, feldspathic greywacke and 9c Finely bedded argillite HURONIAN Gowganda Formation East of this area

- Map 2212 also indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman) West of this location
- I see some areas that look like white quartz with larger rectangle feldspar crystals (Pink)
- I do see lots of pink with the quartz
- It looks like a pink granite with lots of fractures
- I also see a pink fine grain quartz feldspar with pure white pebbles and smaller fragments (Diabase like)
- Did not get a favorable response on this site with the metal detector
- This area needs to be panned for gold Pictures 686 Quartz diabase (Nipissing type)

Elevation = 397m 17T 0503560 5198342

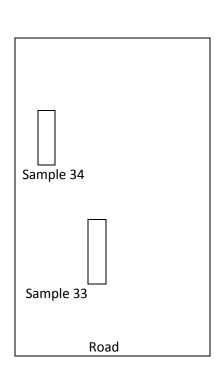
- Map 2212 indicates 11 Quartz diabase (Nipissing type) PROTEROZOIC
- Map 2212 also indicates 9b Bedded arkose, feldspathic greywacke and 9c Finely bedded argillite **HURONIAN Gowganda Formation East of this area**
- Map 2212 also indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman) West of this location
- I see It looks like a pink granite with lots of fractures
- Did not get a favorable response on this site with the metal detector
- I see a white quartz vein Pictures 687 Quartz diabase (Nipissing type) & quartz

17T 0498193 Elevation = 454m 5203082


- Sample 33
- I see a conglomerate
- The fragments are small and medium in size
- The metal detector detected high background mineralization

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	130	54	51.1

17T 0498185 Elevation = 455m 5203076


- Sample 34
- I see a conglomerate
- The fragments are small and medium in size
- The large fragment looks like pink granite
- The metal detector detected high background mineralization
- Part of the fragment was taken in the sample
- Pictures 688 Conglomerate & Samples 33 34

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	23	96	33

17T 0498118 Elevation = 454m 5202015

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area **HURONIAN Gowganda Formation**
- I see the same kind of banded gneiss as across the street
- A fresh break reveals a Dark blue, fine grain bedrock
- Oxidizes to a yellow dust that covers the rock.

- Some mineralization in dark blue boulders.
- Rock fractures in slices. (Same as banded gneiss area)
- I see disseminated, rusty pyrite

Pictures 689 Banded gneiss & Pyrite & Sample 35

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	178	74	21.2

17T 0499925

Elevation = 426m

5198290

- Map 2212 does not show this outcrop (Map 2212 indicates Porphyritic quartz monzonite)
- I see a rusty boulder of Massive mafic metavolcanics
- The boulder has rust on it
- I see a fragment of diorite
- I see epidote stringers
- I see green diorite at the end of the boulder
- The metal detector had a strong signal on some areas of the boulder Pictures 690 metavolcanic boulder & rust & Stringers & Epidote & Sample 32

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Sr (ppm)
0	98	78	54.1	1273

17T 0500033

Elevation = 423m

5198135

- Map 2212 does not show this outcrop (Map 2212 indicates Porphyritic quartz monzonite)
- I see a conglomerate
- The fragments are small and white
- I see few small stringers
- I see a bit of mineralization (Rusted pyrite cubes)
- The metal detector had a strong signal here
 Pictures 691 Conglomerate & stringers & sample 31

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ti (%)
0	78	78	47.9	1.25

17T 0500033

Elevation = 421m

5198136

- Map 2212 does not show this outcrop (Map 2212 indicates Porphyritic quartz monzonite)
- I see a conglomerate
- The fragments are small and white
- I see some rust on the stringers
- I see lots of mineralization. More than sample 31 right beside.
- The mineralization is in the stringer (See sample 29 pictures)
- The minerals are metallic silver and gold in colour
- The mineral are fine grain
- The metal detector had a strong signal here
- Sample 29 intersects sample 31

Pictures 692 Conglomerate & stringers & Sample 29

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ti (%)
----------	----------	----------	----------	--------

0 128 60 69.7	1.25
---------------	------

17T 0500043 Elevation = 423m

5198132

- Map 2212 does not show this outcrop (Map 2212 indicates Porphyritic quartz monzonite)
- I see a red and white quartz stringer
- I see some disseminated mineralization
- The metal detector had a strong signal here
 Pictures 693 Red and white quart stringers & Sample 30

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	74	50	48.5

17T 0502115 Elevation = 383m

5198762

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- The pictures don't show it but I know the area is either a gabbro or a diorite
- I see a few small stringers

Pictures 694 stringers & gabbro & sample 48

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	W (ppm)
0	234	61	27.9	49

17T 0501960 Elevation = 421m

5198884

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- Same area as Pictures 298
- I see I see quartz feldspar (hornblende)
- I see several quartz veins
- I see white stringers
- Nearby is some diorite
- We took sample 47 from here

Pictures 695 Hornblende & stringers & quartz & sample 47

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	109	29	27.7

17T 0502257 Elevation = 423m

5198716

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- This area is right beside pictures 301
- I see I see quartz feldspar (hornblende)
- Nearby I see tectonic lineation
- I see white stringers
- Sample 46 was taken from here

Pictures 696 Hornblende & tectonic lineation & sample 46

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
----------	----------	----------	----------

0 72	96	38
------	----	----

17T 0502417

Elevation = 412m

5198732

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a conglomerate
- I see small, medium and large fragments of quartz monzonite
- The fragments are rounded and angular
- Nearby is porphyritic quartz monzonite (Could be a buried boulder)
- Sample 45 was taken from here
- We sampled the conglomerate matrix

Pictures 697 Porphyry & Conglomerate & Sample 45

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	70	77	28.1

17T 0500740

Elevation = 427m

5197930

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see a Quartz-feldspar (hornblende)
- I see some rust
- I see some white quartz
- I see a large quartz vein

Pictures 698 hornblende & quartz

17T 0500770

Elevation = 427m

5197953

- Map 2212 shows 3b Porphyritic quartz monzonite ARCHEAN granitic rocks (Algoman)
- I see gabbro with small white fragments or crystals
- Can't tell is it a breccea or a porphyry
- The gabbro is a mafic intrusive rock, the white fragments?
- Some of the fragments are round, some are square and others are irregular
- The fragment size varies from very small to pebble size
- I see a few small rusted stringers

Pictures 699 Gabbro & rust & Breccea or porphyry

17T 0505220

Elevation = 370m

5199329

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a conglomerate
- The fragments are medium and large in size
- I see what looks like a feldspathic greywacke

Pictures 700 Conglomerate

17T 0505200

Elevation = 366m

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see what looks like a feldspathic greywacke
 Pictures 701 Greywacke

17T 0504053 Elevation = 397m

5198674

- Map 2212 indicates 9d Massive feldspathic greywacke HURONIAN Cobalt Group (Gowganda Formation)
- I see what looks like a feldspathic greywacke
- The metal detector signal was strong here
- We took sample 44 from here

Pictures 702 Greywacke & sample 44

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	10	51	13.2

17T 0504043

Elevation = 399m

5198656

- Map 2212 indicates 9d Massive feldspathic greywacke HURONIAN Cobalt Group (Gowganda Formation)
- I see some schist
- I see a large white quartz
- There appears to be some pink granite conglomerates
- There appears to be some kind of gneiss looking bedrock. There are bands of potassium feldspar
- See pictures 646
- The metal detector signal was strong here
- We took sample 42 from here

Pictures 703 Conglomerate & gneiss & sample 42

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.008	113	60	11.1

17T 0503056

Elevation = 396m

5198563

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see quartz-feldspar hornblende
- I see a few stringers
- The metal detector signal was strong here
- These 4 samples can from this area
- These samples came from between pictures 228 and 229 Pictures 704 Hornblende & Samples 39-40-41-43

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	10	34	35

Sample 39

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	30	34	28.8

Sample 40

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	93	33	25.9

Sample 41

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	38	32	30.8

Sample 43

17T 0501995

Elevation = 422m

5198871

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see some rust
- The metal detector signal was strong here
- This is beside pictures 617
- We took sample 36 from here

Pictures 705 Hornblende & rust & Sample 36

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Pb (ppm)
0.010	1241	102	138	283

17T 0501966

Elevation = 421m

- 5198891
- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see some stringers
- We took sample 37-38 from here
 Pictures 706 Hornblende & rust & Sample 37-38

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	28	12	29.7

Sample 37

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	79	24	23

Sample 38

17T 0501768

Elevation = 418m

5198914

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see rust and a few stringers
- A sample was broken off with a hammer
- The metal detector signal was strong here
- I see some metallic minerals in the sample Pictures 707 Hornblende & rust & Sample 49

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	174	72	36.8

17T 0501765

Elevation = 419m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see a few stringers
- The metal detector signal was strong here
- I see some metallic minerals in the sample Pictures 708 Hornblende & Sample 50

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	375	134	65

17T 0501779

Elevation = 413m

5199071

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a conglomerate
- The fragments are porphyritic quartz monzonite
- The fragments are small and medium in size
- Some fragments are round but most are angular
- Nearby I see porphyritic quartz monzonite
 Pictures 709 Porphyry & Conglomerate

17T 0501781

Elevation = 418m

5198981

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I can't find pictures for this site or sample
- Guy Richards and Justin cut this sample when I was not there
- Sample 51 was taken from here

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	166	34	22.5

17T 0501872

Elevation = 416m

5198824

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a few stringers
- The metal detector signal was strong here
- Sample 52 was taken from here

Pictures 710 Hornblende & stringers & Sample 52

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	111	98	41.8

17T 0501877

Elevation = 425m

5198793

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a few stringers
- The metal detector signal was strong here
- Sample 53 was taken from here
- I see mineralization in the stringer we sampled Pictures 711 Hornblende & stringers & Sample 53

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.010	1770	135	59.3

17T 0501847

Elevation = 426m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a large rust spot with purple in it

- We had to sweep some overburden off but the outcrop is large due to past logging activity (Road building)
- The rust spot had very dark discharge when cutting
- I see some white and pink quartz
- I see a large piece of sulfide that looks like ore (Wow)
- I see a few stringers
- The metal detector signal was strong here
- Samples 64-65-66 were taken from here (See Pictures of samples) Pictures 712 Hornblende & stringers & Sample 64-65-66

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	As (ppm)	Sample 64
0.056	1198	169	588	22	
Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	As (ppm)	Sample 65
0.069	1385	158	513	17	
Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	As (ppm)	Sample 66

602

21

17T 0501845 5198760

0.076

Elevation = 425m

1921

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist

176

- I can't find pictures for this site or samples
- Guy Richards and Justin cut these samples when I was not there
- They cut sample 54 and 56

Au (ppm)	Cu (ppm)	Nı (ppm)	223	
0.036	667	131		
Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	
0.023	464	105	98.5	

Sample 54

Sample 56

17T 0501837

Elevation = 422m

5198753

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a few stringers
- The metal detector signal was strong here
- Sample 55 was taken from here
- I see a bit of epidote in the sample
 Pictures 713 Hornblende & stringers & Epidote & Sample 55

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	18	92	28.3

17T 0500058 5198110 Elevation = 405m

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)

- I see hornblende

- I see a few stringers

- The metal detector signal was strong here

- Sample 57-58 was taken from here Pictures 714 Hornblende & stringers & Sample 57-58

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	184	58	57.5

58 ------57 ------Road

Sample 57

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	206	43	45.8

Sample 58

17T 0500064

Elevation = 409m

5198028

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see diorite
- We excavated about 1m x 1m
- The metal detector signal was strong here on the entire outcrop Pictures 715 Diorite

17T 0500062

Elevation = 413m

5198029

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- This is the same area as Pictures 715
- I see diorite
- We excavated about 1m x 1m extra
- The metal detector signal was strong here on the entire outcrop Pictures 716 Diorite & Sample 59 60

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	11 (%)
0.006	200	50	54.6	1.26
				Ti (%)
Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	11 (70)

Sample 59

Sample 60

17T 0500066

Elevation = 422m

5198029

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see diorite
- This is the same area as Pictures 715 and 716
- The metal detector signal was strong here on the entire outcrop Pictures 717 Diorite & Sample 61

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ti (%)
0.008	194	52	63.5	1.25

61 ----- 59
Road

17T 0500059 Elevation = 422m

5198001

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a feldspathic greywacke
- I see a few white stringers
- The entire outcrop had high signal on the metal detector Pictures 718 Greywacke & Stringers

17T 0500060 Elevation = 419m

5198008

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a feldspathic greywacke
- We took sample 62 from this location
 Pictures 719 Greywacke & Sample 62

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	
0	93	15	17.4	

17T 0501839

Elevation = 415m

5198759

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- Map 2212 also indicates that there is a fault line in the area
- We excavated 2m x 2m
- The sulfides were deposited in a dark, fine grain hornblende biotite schist
- There is high mineralization (about 12 inches x 12 inches of massive pyrite)
- There is a lot of rust
- There is a white quartz vein exiting below the sulfides
- There is also a pink quartz vein
- This could be a sheer zone
- The metal detector did not sign but showed 4 bars
- For more pictures see pictures 748 and 749

Pictures 720 Biotite schist & high sulfide & Quartz & Excavation

17T 0504686 Elevation = 395m

5199256

- Map 2212 indicates 9 Undifferentiated HURONIAN Gowganda Formation
- Map 2212 also indicates that a fault line runs just east of this location
- I see an old river bed with lots of rounded boulders
- I see some orange spots on some of the river boulders
- I see some rust on the boulders

Pictures 721 River bed boulders

17T 0510094 Elevation = 308m

- Map 2212 is blank in this area
- I see a dark fractured bedrock with white precipitate in the cracks
- The white precipitate did not fizz when I applied diluted sulfuric acid on it
- The outcrop looks like footwall breccea
- The original bedrock looked like a greywacke before it was altered
- The precipitate is a white / light green colour
- It looks like it was forced through the rock by a heat source (Porphyry)

17T 0497664 Elevation = 421m

5200461

- Map 2212 indicates 9c Finely bedded argillite 9b Bedded arkose, feldspathic greywacke (HURONIAN Gowganda formation)
- I see a white / pink bedrock with lots of fracturing
- Some areas look like granite others like quartz monzonite
- Looks just like the quartz diabase (Nipissing type) found in the Gervais pit Pictures Pictures 723 Quartz diabase

17T 0497638 Elevation = 422m

5200432

- Map 2212 indicates 9c Finely bedded argillite 9b Bedded arkose, feldspathic greywacke (HURONIAN Gowganda formation)
- Map 2212 also indicates a fault line in this area
- I see a white / pink bedrock with lots of fracturing
- Some areas look like granite others like quartz monzonite
- Looks just like the quartz diabase (Nipissing type) found in the Gervais pit Pictures
- The quartz diabase seems to contact a sedimentary greenish / grey finely bedded argillite
- The argillite has rust on a broken piece
- Nearby seem to be the largest fault system seem (Large rectangle quartz faults)
- Looks like steps (Different faulting events)
 Pictures 724 Quartz Diabase & contact & argillite & Large faults

17T 0497693 Elevation = 423m

5200430

- Map 2212 indicates 9c Finely bedded argillite 9b Bedded arkose, feldspathic greywacke (HURONIAN Gowganda formation)
- Map 2212 also indicates a fault line in this area
- I see what looks like a greywacke with rust and orange/brown/purple staining Pictures 725 Greywacke

17T 0496811 Elevation = 409m

5201067

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- Map 2212 also indicate 11 Quartz diabase (Nipissing type) in the area
- I looks like we are on the contact zone between the two bedrock types
- I see a small white quartz vein
- I did not break open a fresh cut but it looks like a quartz diabase Pictures 726 Quartz & quartz diabase

17T 0496808 Elevation = 410m

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- Map 2212 also indicate 11 Quartz diabase (Nipissing type) in the area
- I see a contact between a greywacke and an orange quartz diabase
- I see a white quartz vein
- Pictures 727 Quartz & contact & greywacke & quartz diabase

17T 0496814 Elevation = 411m 5201060

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- Map 2212 also indicate 11 Quartz diabase (Nipissing type) in the area
- Here we excavated 2m x 2m & washed
- The bedrock is an orange rusty quartz
- I see a lot of metallic mineralization cubes
- The hand samples looked more mineralized then the cut samples
- The are some small massive sulfides balls
- The bedrock is fractured
- I see the first two inches are orange then the bedrock turns into a greywacke Pictures 728 Excavated & mineralization & greywacke & orange quartz

17T 0496814

Elevation = 411m

5201060

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- Map 2212 also indicate 11 Quartz diabase (Nipissing type) in the area
- I see an orange diabase with metallic Mineralization
- The mineralization is cubic

Au (ppm)

0.057

- I also see a white quartz vein
- We took two cut samples and a few hand samples for review
- The two cut samples were sent right away 67 68

Cu (ppm)

2080

- Sample 179 was sent at the end of year

Pictures 729 Orange diabase & Mineralization & Quartz & Samples 67-68-179

Ni (ppm)

17

/ (a (ppiii)	Ой (РРПТ)	rai (ppiii)	OO (ppiii)	,	'
0.013	22	24	155	23	
Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Mo (ppm)	Sample 68
0.006	16	20	128	29	
				T	1
Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Mo (ppm)	Sample 179

Co (ppm)

25.1

Mo (ppm)

2

Sample 67

17T 0496841 Elevation = 418m 5200992

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a feldspathic greywacke
 Pictures 730 Greywacke

17T 0497168

Elevation = 426m

5199621

- Map 2212 indicates 9a Polymictic Conglomerates and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a lot of rust spots in Undifferentiated bedrock
- We took sample 69 from here

Pictures 731 Undifferentiated & mineral balls & Sample 69

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	43	59	27.5

17T 0497156 Elevation = 429m

5199034

- Map 2212 indicates 9c Finely bedded argillite in the area HURONIAN Gowganda Formation
- I see an undifferentiated bedrock with white quartz veins
- The quartz vein we sampled was rusty
- Quartz veins crossed each other indicating separate events
- A picture of the sample shows how the sulfides were distributed in the greywacke Pictures 732 Greywacke & Quartz & Sample 70

	Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
I	0.073	2223	96	98.5

17T 0501889 Elevation = 433m

5198720

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- Map 2212 also indicates 9a Polymictic conglomerate 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a white quartz vein
- I see orange looking bedrock (Need to strip and wash)
 Pictures 733 quartz

17T 0501871 Elevation = 441m

5198720

- Map 2212 indicates 9a Polymictic conglomerate 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a greywacke

Pictures 734 Greywacke

17T 0501837 Elevation = 411m

5198776

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see white stringers
- The metal detector did not have a strong signal here Pictures 735 Hornblende & stringers

17T 0501842 Elevation = 414m

5198787

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a dark hornblende
- I see a large rock face here
- I see some rust and white precipitate
- The metal detector did not have a strong signal here Pictures 736 Hornblende & precipitate

17T 0501856 Elevation = 414m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a large rock face with large white quartz dike

- I see some greywacke on a fresh break
- I see some precipitate
- I see a large rusted spot
- I see what looks like hornblende
- The metal detector did not have a strong signal here Pictures 737 Hornblende & precipitate & greywacke & Quartz dike

17T 0501854 Elevation = 413m

5198835

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see some greywacke
- The metal detector did not have a strong signal here Pictures 738 Greywacke

17T 0501863 Elevation = 414m

5198848

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see some greywacke
- The metal detector did not have a strong signal here Pictures 739 Greywacke

17T 0509418 Elevation = 343m

5200193

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman)) and 1 Undifferentiated mafic to intermediate metavolcanics (ARCEAN Metavolcanics and Metasediments)
- I see a light grey sedimentary bedrock with small pink veins and white quartz veins
- Nearby the grey bedrock is full of pink quartz veins
- Nearby I see pink angular fragments, breccea
- Beyond that the bedrock is pink with lots of smoky white quartz veins Pictures 740 Breccea & quartz

17T 0509431 Elevation = 352m

5200190

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman)) and 1 Undifferentiated mafic to intermediate metavolcanics (ARCEAN Metavolcanics and Metasediments)
- I see a rusty feldspathic greywacke Pictures 741 Greywacke

17T 0509425 Elevation = 354m

5200188

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman)) and 1 Undifferentiated mafic to intermediate metavolcanics (ARCEAN Metavolcanics and Metasediments)
- I see a rusty feldspathic greywacke
- I see some white precipitate
- I see a large rock face
 Pictures 742 Greywacke & precipitate

17T 0509416 Elevation = 353m 5200177

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman)) and 1 Undifferentiated mafic to intermediate metavolcanics (ARCEAN Metavolcanics and Metasediments)
- I see a pink granite
- I see a large rock face
 Pictures 743 Granite

17T 0509970 Elevation = 299m

5199032

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman)) west of this location and the map is blank on this area and to the East of this area
- I see a dark blue bedrock (Greywacke) that oxidized orange
- Nearby, the bedrock is oxidized white
- Nearby the bedrock looks like a mud tone Argillite
- Bedrock is not smooth
- I see some rust and red staining (Hematite)
 Pictures 744 Argillite & Greywacke & rust & orange staining

17T 0509968 Elevation = 348m

5199063

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman)) west of this location and the map is blank on this area and to the East of this area
- I see a fractured greywacke like bedrock
- I see some orange stained sheer zone
- The sheer is at about 70°
- There is some fractures with precipitate, could be footwall
- Nearby the bedrock looks sheered
 Pictures 745 footwall & Greywacke & rust & orange staining & precipitate

17T 0507683 Elevation = 404m

5199809

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a diorite
- I see a white / pink granite dike
- I see a few stringers
- I see a few large white / pink veins
- Nearby the large dyke goes from 1.5 ft to 20 ft wide
- Too much overburden to see if this is a contact zone

Pictures 746 Diorite & dike & contact

17T 0507678 Elevation = 403m

5199799

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a diorite
- I see a few white veins
- Nearby the bedrock is oxidized white

Pictures 747 Diorite

17T 0501839 Elevation = 415m

5198759

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a large rust spot with purple in it
- We had to sweep and shovel some more overburden off and wash it (with buckets)
- We took 3 samples for demonstration and size estimation
- The rust spot had very dark discharge when cutting
- I see some white and pink quartz
- I see a large piece of sulfide that looks like ore (Wow)
- I see a few stringers
- The metal detector signal was strong here
- Many samples & pictures were taken from here (Pictures 712 & 720)

Pictures 748 Hornblende & stringers & Excavated & samples

17T 0501839

Elevation = 415m

5198760

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- We took 1 sample with disseminated mineralization (Sample 71)
- I see some white quartz
- The metal detector signal was strong here
 Pictures 749 Hornblende & Sample 71

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	55	103	40.2

17T 0509578

Elevation = 368m

5199990

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a small white quartz vein in a pink granite
 Pictures 750 Pink granite & quartz

17T 0509595

Elevation = 369m

5199983

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a large white quartz veins and lots of smaller veins in a pink granite
 Pictures 751 Pink granite & quartz

17T 0498230

Elevation = 436m

5199183

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see Undifferentiated bedrock with lots of small black fractures and disseminated mineralization
- Dark blue in colour with black lines

Pictures 752 Undifferentiated & Sample 72

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	
0	20	97	43.2	

17T 0497828 Elevation = 404m

5199275

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a hornblende with lots of small black fractures and disseminated mineralization
- Dark blue in colour with lots of black dots
- The bedrock looks like a greywacke

Pictures 753 Greywacke & Sample 73

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	0 0		22.8

17T 0497837

Elevation = 411m

5199218

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a diorite with a mineralized stringer and rust
- We sampled the stringer and surrounding diorite
- The metal detector had a high signal here

Pictures 754 Mineralized stringer & diorite & Sample 74 - 75

Au (ppm)	Au (ppm) Cu (ppm)		Co (ppm)
0.026 302		63	106
Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.066	524	67	402

Sample 74

Sample 75

17T 0500055

Elevation = 424m

5198066

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a gabbro (Black grey white crystals)
- I see a yellow wavy stringer
- Stringers are vertical, horizontal and at different degrees
- The metal detector had a high signal here
 Pictures 755 Gabbro & stringers & Sample 76

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	92	56	30.6

17T 0500031

Elevation = 421m

5197923

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a gabbro (Black light green crystals)
- I see some pink/red mineral
- The metal detector had a high signal here Pictures 756 Gabbro & Sample 77

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	
0	177	9	11.7	

17T 0500035

Elevation = 421m

5197926

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a gabbro like bedrock (Black light green crystals)
- The metal detector had a high signal here Pictures 757 Gabbro like & Sample 78

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0	107	10	8.7

17T 0500011

Elevation = 420m

5197888

- Map 2212 indicates 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman)
- I see a mixture of black and light green bedrock (Gabbro like)
- The metal detector had a high signal here

Pictures 758 Gabbro like mixture & Sample 79

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	W (ppm)
0	157	44	62.3	61

17T 0497850

Elevation = 379m

5199258

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a gabbro like bedrock
- The crystals are black white grey in colour
- I see disseminated mineralization
- The metal detector had a high signal here
- Sample 80 was taken from here

Pictures 760 Gabbro & Mineralization & Sample 80

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.005	172	52	47.9

17T 0497177

Elevation = 423m

5200782

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a greywacke
- The surface is oxidized brown and the inside is dark blue
- The metal detector had a high signal here
- Sample 81 was taken from here

Pictures 761 Greywacke & Sample 81

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.005	42	96	40.6

17T 0497121

Elevation = 442m

5199376

 Map 2212 indicates 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation

- I see an Undifferentiated bedrock
- I see mineralized balls (Up to 14 mm in size)
- The metal detector sang all over the bedrock
- Sample 82 was taken from here

Pictures 762 Undifferentiated & mineral balls & Sample 82

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	39	46	89.8

17T 0496966

Elevation = 431m

5199799

- Map 2212 indicates 9a Polymictic conglomerates & 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a conglomerate
- The fragments are small, rounded and white/pink with a few black spots Pictures 763 Conglomerate

17T 0496869

Elevation = 434m

5199754

- Map 2212 indicates 9a Polymictic conglomerates & 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a conglomerate with lots of pink stringers
- The fragments are small, rounded and white with a few black spots
 Pictures 764 Conglomerate & stringers

17T 0496856

Elevation = 436m

5199737

- Map 2212 indicates 9a Polymictic conglomerates & 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a conglomerate in argillite
- The fragments are small, rounded and white with a few black spots
- There is however one rusted dark grey, rounded fragment Pictures 765 Conglomerate

17T 0496827

Elevation = 434m

5199756

- Map 2212 indicates 9a Polymictic conglomerates & 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a polymictic conglomerate
- The fragments are small and medium, rounded and white with a few black spots or just white Pictures 766 Conglomerate

17T 0496805

Elevation = 428m

5199800

- Map 2212 indicates 9a Polymictic conglomerates & 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a conglomerate
- The fragments are small and medium
- The fragments are angular and pink (Granite) or white and rounded
- I see a lot of fractures and stringers that cross each other at 90°
- I see a large pink stringer

Pictures 767 Conglomerate & stringers

17T 0496856 Elevation = 417m

5199941

- Map 2212 indicates 9a Polymictic conglomerates & 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a white bedrock with some rust
- Nearby the quartz is light green
- I see a white quartz vein (Looks like quartz diabase)
- This area was marked for a strong magnetic signal in an aireal survey
 Pictures 768 Quartz diabase, high magnetic

17T 0496978 Elevation = 417m

5200053

- Map 2212 indicates 9a Polymictic conglomerates & 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a light green quartz (Looks like quartz diabase)
- The bedrock has light green and white crystals
- This area was marked for a strong magnetic signal in an aireal survey Pictures 769 Quartz diabase

17T 0496996 Elevation = 416m

5200067

- Map 2212 indicates 9a Polymictic conglomerates & 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a lots of white quartz veins in a pink quartz (Looks like quartz diabase)
- Nearby I see some pink quartz diabase
- I also see the bedrock varies in colour from light pink to light grey (Greywacke)
 Pictures 770 Quartz diabase & greywacke & quartz

17T 0497110 Elevation = 434m 5200229

- Map 2212 indicates 9a Polymictic conglomerates & 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a greywacke
- The colour is dark blue and white
- The crystals are massive and fine grain Pictures 771 Greywacke

17T 0510279 Elevation = 292m

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- Map 2212 also indicates that 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN
 Granitic Rocks (Algoman) and 1 Undifferentiated mafic to intermediate metavolcanics ARCHEAN
 Metavolcanics and Metasediments in the area
- I see a dark (Black) bedrock with lots of calcite veins
- I see metasediments
- Sample 83 was broken off here
- The chlorite has some bornite in it (Bornite is Yellow-dark blue-green-orange-pink in colour)
- I see some chalcopyrite in the calcite (Metallic gold colour)
- I see a bit of pink-brown staining in the stringer
- Lots of calcite stringer and veins
 Pictures 772 Metasediments & Calcite & Sample 83

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.005	4373	52	25.2

17T 0510260 Elevation = 292m 5199142

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- Map 2212 also indicates that 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN Granitic Rocks (Algoman) and 1 Undifferentiated mafic to intermediate metavolcanics ARCHEAN Metavolcanics and Metasediments in the area
- I see a dark grey bedrock with a few large calcite veins
- I see metasediments
- Sample 84 was broken off a large calcite vein
- I see some chalcopyrite in the calcite (Metallic gold colour)
- Larger calcite veins

Pictures 773 Metasediments & Calcite & Sample 84

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ca (%)
0.008	11000	12	8.4	>25

17T 0510283 Elevation = 331m 5199150

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- Map 2212 also indicates that 3a Quartz monzonite, granite, grano-diorite, pegmatite ARCHEAN
 Granitic Rocks (Algoman) and 1 Undifferentiated mafic to intermediate metavolcanics ARCHEAN
 Metavolcanics and Metasediments in the area
- I see a dark sample that was taken from a fracture containing calcite and metasediments
- The calcite & contact zone have mineralization in it
- I see some rust
- The sample was highly magnetic (Magnetite maybe the cause)
- I could also see disseminated mineralization in the heavy part of the sample and none in the light parts of the sample
- The heavy part of the sample had some chunks of chalcopyrite on the outer edges of the sample (Largest piece and really heavy) just like the contact wall had
- The rest of the sample was very light, porous rock
- This sample was taken and stored until the land was claimed (Sometime in early April 2017)
 Pictures 774 Metasediments & Calcite & Sample 85

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	W (ppm)	Mo (ppm)	As (ppm)
0.179	31700	43	153	401	13	7

17T 0497884 Elevation = 447m 5199147

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a sedimentary bedrock with a large intrusion of green chlorite
- Nearby are some more small intrusions of green chlorite
- I see some white stringers

Pictures 775 Green chlorite & stringers & sedimentary

17T 0497891 Elevation = 446m 5199151

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see some white quartz and some green chlorite
- I see some rust

Pictures 776 Green chlorite & Quartz

17T 0497909 Elevation = 445m

5199175

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see some white quartz and some green chlorite
- I see some rust
- I see a conglomerate
- The fragments are round and white quartz monzonite Pictures 777 Green chlorite & Quartz & Conglomerate

17T 0499747 Elevation = 446m

5198373

- Map 2212 indicates 3b Porphyritic quartz monzonite
- I see green chlorite and sedimentary bedrock
- I see some rust
- I see a large white quartz vein
- I see a conglomerate
- The fragments are white and rounded
 Pictures 778 Green chlorite & conglomerate & quartz

17T 0499943 Elevation = 434m

5198278

- Map 2212 indicates 3b Porphyritic quartz monzonite
- I see a pink granite with extremely lots of pink stringers
- Looks like this could be a contact zone
- Nearby I see a grano-diorite
- I see some rust

Pictures 779 Granite & granodiorite & contact zone

17T 0499941 Elevation = 432m

5198289

- Map 2212 indicates 3b Porphyritic quartz monzonite
- I see a pink granite dike in a diorite
- I see a small white vein

Pictures 780 Granite dike & diorite

17T 0499935 Elevation = 429m 5198278

- Map 2212 indicates 3b Porphyritic quartz monzonite
- I see some pink granite with epidote staining
- I also see some red staining (Hematite)
- Might be a contact zone

Pictures 781 Epidote & granite

17T 0497834 Elevation = 441m 5199258

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see tree kinds of bedrock
- One looks like grey/black sedimentary bedrock (Argillite I think)
- The other is light grey and smooth (Greywacke)
- I see a small outcrop of a gabbro like bedrock (Black and white in colour)
- There is also some white/red/yellow quartz
- The third outcrop looks like a quartz-feldspar hornblende
- This area is really close to the mineralized boulder found Pictures 782 Argillite & Greywacke & hornblende & Quartz & Sample 86

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	37	70	25.2

17T 0497493

Elevation = 412m

5199340

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a small lake nearby
- I see what looks like a green gabbro
- A fresh break indicated some epidote / quartz mixture
- I see a yellow / green crystals and dark grey / black crystals (Gabbro like)
- The bedrock was magnetic and had a strong signal on the metal detector Pictures 783 Green gabbro & Sample 87

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ti (%)	Sr (ppm)
0.007	86	45	28.1	1.28	1000

17T 0497493

Elevation = 413m

5199348

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a gabbro (Black and white crystals)
- I see some rusted quartz
- I see some red staining
- I see some mineralization in the quartz
- Metal detector had a high signal here

Pictures 784 Gabbro & Rusted quartz & mineralization & Sample 88

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ti (%)	Sr (ppm)
0.001	66	27	20	0.76	647

17T 0497503

Elevation = 413m

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a lots of large boulders
- A fresh break showed mineralization in it
- The sample is really dark with a bit of rust
- I think the bedrock is a feldspathic greywacke Pictures 785 Mineralization & greywacke & Sample 89

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	141	26	24.6

17T 0497449

Elevation = 407m

5198965

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a boulder with lot of stones imbedded in it (Conglomerate boulder)
- The stones are mostly white quartz but red and blue stone are also visible (Polymictic) Pictures 786 Conglomerate boulder

17T 0497316

Elevation = 413m

5198188

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see a very dark, fine grain, greywacke
- The metal had a high signal here
- The bedrock was magnetic

Pictures 787 Greywacke & Magnetic

17T 0497317

Elevation = 416m

5198152

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see what looks like some undifferentiated bedrock
- I see a schist
- I see a fragment with some rust around it Pictures 788 Undifferentiated & schist

17T 0497306

Elevation = 415m

5198181

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see what looks like a greywacke
- We excavated about 1.5m x 1m (Pull back roots)
- The metal had a high signal here
- We took sample 90 from here

Pictures 789 Greywacke & Sample 90

Au (pp	om) Cu	(ppm) Ni ((ppm) Co (ppm)
0.00	1	17	84 33	3.5

17T 0497299

Elevation = 438m

5198920

- Map 2212 indicates 9c Finely bedded argillite and 9d Massive feldspathic greywacke in the area HURONIAN Gowganda Formation
- I see what looks like some undifferentiated bedrock
- I see a white

Pictures 790 Undifferentiated

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.044	1100	207	375

Sample 91

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.039	1090	269	342

Sample 92

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.028	871	152	177

Sample 93

17T 0501789

Elevation

400m

5198897

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see a small epidote vein in the sample
- We took two samples from this location
- This was an area close to our 2nd highest gold value yet the Au values are low
- Also had 4020 ppm Cu near here (Sample 22) Pictures 791 Hornblende & Samples 94 - 95

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.008	490	56	52.00

Sample 94

 Au (ppm)
 Cu (ppm)
 Ni (ppm)
 Co (ppm)

 0.008
 546
 58
 49.30

Sample 95

17T 0501791 Elevation = 417m 5198901

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- We took two samples from this location
- This was an area close to our 2nd highest gold value yet the Au values are low
- Also had 4020 ppm Cu near here (Sample 22)
 Pictures 792 Hornblende & Samples 96 97

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	90	87	31.00

Sample 96

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.007	279	107	38.40

Sample 97

17T 0501701 Elevation = 420m 5198875

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The metal detector had a strong signal here
- We took a sample from here #98
 Pictures 793 Hornblende & Sample 98

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	745	107	149.00

17T 0501725 E

Elevation = 418m

5198862

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The metal detector had a strong signal here
- We took a sample from here #99 Pictures 794 Hornblende & Sample 99

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	640	58	72.00

17T 0501727

Elevation = 414m

5198881

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The metal detector had a strong signal here. We are 1.4 km away from sample 26 high Co.
- We took three samples from here #100–101-102
 Pictures 795 Hornblende & Sample 100–101-102

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.004	1560	277	277.00
Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.007	1690	689	776.00

Sample 100

Sample 101

 Au (ppm)
 Cu (ppm)
 Ni (ppm)
 Co (ppm)

 0.001
 1170
 183
 235.00

Sample 102

17T 0501726

Elevation = 418m

5198879

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The metal detector had a strong signal here
- We took a sample from here #103 104 (Sampled two different stringers)
 Pictures 796 Hornblende & Sample 103 104

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	403	150	79.60

Sample 103

 Au (ppm)
 Cu (ppm)
 Ni (ppm)
 Co (ppm)

 0.002
 230
 71
 46.20

Sample 104

17T 0501667

Elevation = 404m

5198871

Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist

- I see a hornblende
- The metal detector had a strong signal here
- We took a sample from here #105 (Edge of small outcrop)
- Highest gold value on property (Bottom of arrow)
 Pictures 797 Hornblende & high gold & Sample 105

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.830	69	153	42.80

17T 0501665

Elevation = 411m

5198870

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The metal detector had a strong signal here
- We took a sample from here #105 (Edge of small outcrop)
- Highest gold value on property (Bottom of arrow)
 Pictures 798 Hornblende & Sample 106

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.028	146	148	47.00

17T 0501848

Elevation = 414m

5198896

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The metal detector had a strong signal here
- We took a sample from here #107 108
 Pictures 799 Hornblende & Sample 107 108

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.015	758	124	173.00

Sample 107

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.005	365	85	70.90

Sample 108

17T 0501830

Elevation = 415m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The metal detector had a strong signal here
- We took a sample from here #109
- I see small white stringers in the sample Pictures 800 Hornblende & Sample 109

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.004	659	138	111.00

17T 0502102 Elevation = 416m

5198758

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The metal detector had a strong signal here
- We took a sample from here #109
- I see small white stringers in the sample Pictures 801 Hornblende & Sample 110

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Zn (ppm)	Pb (ppm)
0.003	196	62	24.40	1630	463

17T 0502695

Elevation = 406m

5198689

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- The metal detector had a strong signal here
- We took two samples from here #111 112
 Pictures 802 Hornblende & Sample 111 112

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	147	44	63.40

Sample 111

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	142	19	50.10

Sample 112

17T 0500702

Elevation = 438m

5199358

- Map 2212 indicates 3b Porphyritic quartz monzonite
- I see a conglomerate
- We took a sample from here

Pictures 803 Conglomerate & Sample 113

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.001	18	71	27.20

17T 0499410

Elevation = 432m

5198124

- Map 2212 indicates 9c Finely bedded argillite in the area HURONIAN Gowganda Formation
- Map 2212 indicated a fault line in the area
- I see finely bedded argillite
- I see a small white quartz sill (Small outcrop need to expose more)
 Pictures 804 quartz sill & argillite

17T 0499498

Elevation = 434m

- Map 2212 indicates 9c Finely bedded argillite in the area HURONIAN Gowganda Formation
- Map 2212 indicated a fault line in the area
- I see diorite and some grano-diorite
- I see a few stringers

17T 0499542 Elevation = 431m

5198132

- Map 2212 indicates 9c Finely bedded argillite & 9d Massive feldspathic greywacke HURONIAN
 Map 2212 also indicated a fault line in the area
- Map 2212 also indicates 3b Porphyritic guartz monzonite in the area
- I see a quartz monzonite contacting a finely bedded argillite
- I see a bit of epidote in the argillite

Pictures 806 Epidote & argillite & contact & quartz monzonite

17T 0499523 Elevation = 433m

5198125

- Map 2212 indicates 9c Finely bedded argillite HURONIAN Gowganda Formation in the area
- Map 2212 also indicated a fault line in the area
- Map 2212 also indicates 3b Porphyritic quartz monzonite in the area
- I see a conglomerate
- The fragments are white, angular (quartz monzonite)
- I see some stringers. A few with white precipitate

Pictures 807 Conglomerate & stringers

17T 0499570 Elevation = 436m

5198118

- Map 2212 indicates 9c Finely bedded argillite & 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- Map 2212 also indicated a fault line in the area
- Map 2212 also indicates 3b Porphyritic quartz monzonite in the area
- I see a contact zone with quartz monzonite and a greywacke Pictures 808 Contact zone & quartz monzonite & greywacke

17T 0499628 Elevation = 438m

5198120

- Map 2212 also indicated a fault line in the area
- Map 2212 also indicates 3b Porphyritic quartz monzonite in the area
- Map 2212 indicates 9c Finely bedded argillite & 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a large white quartz dike in greywacke

Pictures 809 Quartz dike & greywacke

17T 0499553 Elevation = 441m

5197889

- Map 2212 indicates 9c Finely bedded argillite & 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see Undifferentiated bedrock
- I see a lot of fractures / stringers

Pictures 810 Undifferentiated & Stringers

17T 0498603 Elevation = 417m

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke & 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- The fragments look like white quartz monzonite

- I see a few large white quartz veins with green chlorite in them
- The white quartz vein cuts through the fragment, therefore, the quartz can in at a different time then the conglomerates.
- Nearby is some more white quartz veins
- Sample 123 was taken here (Pictures 827)

Pictures 811 Conglomerate & quartz & Green chlorite

17T 0498604 Elevation = 417m

5196963

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke & 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- I see a large green chlorite intrusion

Pictures 812 Green chlorite & conglomerate

17T 0498612 Elevation = 416m

5196954

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke & 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a pseudotachylite
- The fragments are angular and rounded
- The fragments are small medium and large in size
- The smaller fragments are white and the larger fragments are grey and from the host bedrock
 Pictures 813 pseudotachylite

17T 0498406 Elevation = 426m

5193992

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke & 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a Pseudotachylite
- The fragments are angular and rounded
- The fragments are small medium and large in size
- The small white fragments look like Sudbury Breccea
- The larger fragments are grey and from the host bedrock
- The location is incorrect(GPS was malfunctioning)

Pictures 814 Pseudotachylite (Bad location, looks like Bessie lake area)

17T 0498538 Elevation = 421m

5197137

- Map 2212 indicates 9a Polymictic Conglomerates 9b Bedded Arkose 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see white quartz veins in a pink granite

Pictures 815 Quartz & pink granite

17T 0498465 Elevation = 417m

5193054

- Map 2212 indicates 9a Polymictic Conglomerates 9b Bedded Arkose 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see white quartz veins in white quartz monzonite
- The location is incorrect(GPS was malfunctioning)

Pictures 816 Quartz & quartz monzonite (Bad location)

17T 0498438 Elevation = 423m

5194259

- Map 2212 indicates 9a Polymictic Conglomerates 9b Bedded Arkose 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a polymictic conglomerate
- The fragments are rounded
- The fragments are small medium and large in size
- The location is incorrect(GPS was malfunctioning)

Pictures 817 Conglomerate (Bad location)

17T 0498642 Elevation = 428m

5196741

- Map 2212 indicates 9b Bedded Arkose 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- The fragments are angular
- The fragments are small medium and large in size
- I see some green chlorite and some rusty white quartz
 Pictures 818 Conglomerate & Green Chlorite & Rust & Quartz

17T 0498592 Elevation = 424m

5196732

- Map 2212 indicates 9b Bedded Arkose 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- We took a sample from here (Sample 114)
 Pictures 819 Conglomerate & Sample 114

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	56	60	21.60

17T 0498390 Elevation = 453m 5199973

- Map 2212 indicates 9b Bedded Arkose 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see an undifferentiated bedrock
- I see some mineralization. In a stringer.
- We took a sample from here (Sample 115)

Pictures 820 mineralized stringer & undifferentiated & Sample 115

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.004	12	58	49.10

17T 0498424 Elevation = 457m

- Map 2212 indicates 9a Polymictic Conglomerate 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see some white quartz and some green/black chlorite
- I see a conglomerate
- The fragments are small and medium and white in colour Pictures 821 Conglomerates & quartz & green black chlorite

17T 0498418 Elevation = 458m 5200207

- Map 2212 indicates 9a Polymictic Conglomerate 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see some white quartz veins
- I see a conglomerate
- The fragments are small and medium and white in colour
- We took sample 116 from here
 Pictures 822 Conglomerates & quartz & Sample 116

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	15	47	12.40

17T 0502410

Elevation = 416m

5198657

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see a few stringers
- I see a bit of rust
- The metal detector had a strong signal here
- We took two cuts here. One sample was to large so it was cut in half and sent as two samples Pictures 823 Hornblende & Samples 117-118-119

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.011	1030	72	127

Sample 117

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.010	579	47	51.8

Sample 118

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.011	728	53	69.5

Sample 119

17T 0502410

Elevation = 417m

5198659

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see a few stringers
- I see some quartz
- The metal detector had a strong signal here
- We took three samples next to here. Samples 117 to 119
 Pictures 824 Hornblende & Samples 120

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.005	698	53	70.8

17T 0502416

Elevation = 418m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende

- I see a few stringers
- I see some white quartz
- I see a bit of rust
- I see some pyrite
- The metal detector had a strong signal here
- We took four samples next to here. Samples 117 to 120 Pictures 825 Hornblende & Samples 121

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.001	67	204	52.6

17T 0502417

Elevation = 414m

5198655

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see a hornblende
- I see a few stringers
- I see some quartz pink and white
- I see minerals in the quartz
- We took five samples next to here. Samples 117 to 121
- The metal detector had a strong signal here
 Pictures 826 Hornblende & Samples 122

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.040	1160	101	52.9

17T 0498602

Elevation = 413m

5196955

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- I see a green chlorite vein (about 1.5 inch)
- We sampled that vein (Sample 123)
- It scratched green
- The conglomerate is fine grain, dark grey in colour
- I see some mineralization
- The metal detector had a strong signal here
- I see some schisting nearby (Undifferentiated bedrock)
- I see some small pink intrusions. Under magnification the intrusions look like early feldspar crystals

Pictures 827 Conglomerate & Undifferentiated & Minerals & Samples 123

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.001	23	247	45.1

17T 0498600

Elevation = 415m

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- I see some rust
- I see a small white and pink quartz vein (Sample 124)

- Under magnification I see feldspathic greywacke with small pink inclusions
- The colours are pink beige black in the bedrock
 Pictures 828 Conglomerate & greywacke & Sample 124

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.008	33	47	32.4

17T 0498610

Elevation = 429m

5196940

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- Under magnification, sample 125 has white and pink quartz intruding sedimentary like lines.
- Under magnification, sample 126 has white and pink quartz in fine grain, black
- Pictures 829 Conglomerate & Sample 125 126

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.001	15	57	21.1

Sample 125

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.001	8	48	17.0

Sample 126

17T 0498620

Elevation = 413m

5196947

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- I see a white pink quartz vein
- I see some rust
- The metal detector had a strong signal here
- Under magnification, sample 127 has dark, fine grain with white pink quartz
- It also has a bit of mineralization
- Under magnification, sample 128 has fine grain, white, black and pink quartz
- Pictures 830 Conglomerate & quartz & Sample 127 128

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.022	122	57	18.2

Sample 127

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	33	58	22.2

Sample 128

17T 0498641 Elevation = 423m 5196889

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see large fractures in the bedrock with large, medium and small fragments in a darker intrusion matrix, pseutachylite
- The large and medium fragments are the same as the host bedrock (Grey surface greywacke)
- The smaller fragments are angular and white (Like Sudbury Breccea)

Pictures 831 Breccea & Pseutachylite & Greywacke & Sample 129

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
< 0.001	8	75	24.9

17T 0498590

Elevation = 421m

5196969

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- I see lots of close white pink quartz vein
- I see some rust
- The metal detector had a strong signal here
- Under magnification, sample 130 has dark grey, fine grain matrix with white red quartz
- It also has a bit of mineralization
- Under magnification, sample 131 is gabbro like with quartz and some rust Pictures 832 Conglomerates & Quartz & Sample 130 131

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.007	227	55	25.6

Sample 130

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.004	80	44	21.2

Sample 131

17T 0498557

Elevation = 416m

5196978

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- I see a bit of quartz
- I see some minerals
- The sample was taken from the edge of a large pink fragment
 Pictures 833 Conglomerate & quartz & minerals & Sample 132

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.001	56	19	6.8

17T 0498136

Elevation = 424m

5196906

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- Some fragment are white quartz monzonite and one is elongated on one end
- I see darker fragments that are rounded and angular
- Nearby are lots of white fragments

Pictures 834 Conglomerate

17T 0498124

Elevation = 423m

5196920

- Map 2212 indicates 9b Bedded arkose, feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a conglomerate
- The fragment are Undifferentiated and rounded Pictures 835 Conglomerate & Undifferentiated

17T 0497914 Elevation = 451m 5199135

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a gabbro like bedrock with some white pink quartz
- I see a mineralized stringer (Metallic silver colour)
- There is also some green chlorite
- The metal detector had a strong signal here Pictures 836 Gabbro & mineralized stringer & green chlorite & Samples 133 -134

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.020	1340	54	34.3

Sample 133

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.191	5340	74	47.6

Sample 134

17T 0497908 Elevation = 453m 5199138

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a gabbro like bedrock with some white black green quartz
- I see some white pink quartz
- I see mineralization in the gabbro
- There is also some green chlorite
- The metal detector had a strong signal here

Pictures 837 Gabbro & green chlorite & mineralization & Samples 135

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	57	49	20.7

17T 0497892 Elevation = 451m

5199148

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a gabbro
- I see green chlorite
- I see white and orange quartz
- I see good mineralization in the samples
- The metal detector had a strong signal here

Pictures 838 Gabbro & Green chlorite & quarts & Samples 136 – 137 - 138

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
----------	----------	----------	----------

	0.004	148	86	45.6	Sample 136
--	-------	-----	----	------	------------

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	108	112	45.7

Sample 137

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	138	127	65.0

Sample 138

17T 0497885 Elevation = 452m 5199149

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a hornblende
- I see some green chlorite
- I see a few white stringers
- The metal detector had a strong signal here Pictures 839 Hornblende & green chlorite & stringers & Sample 139

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.027	1400	76	53.7

17T 0497890 Elevation = 448m 5199158

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a gabbro like bedrock
- I see some green chlorite
- I see a bit of white and red quartz
- I see some mineralization

Pictures 840 Gabbro - green chlorite & quartz & mineralization & Sample 140

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	69	52	88.7

17T 0497869 Elevation = 444m

5199159

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- We did some excavating here. 1m x 1m
- I see a Pseudotachylite
- Nearby the bedrock is wet and look really green
- The sample was very dark, black when wet
- I see disseminated Nickel
- We took three samples here

Pictures 841 Pseudotachylite & Mineralization & Samples 141 – 142 – 143

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
< 0.001	236	358	144.0

Sample 141	

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.001	76	711	68.2

Sample 142

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.001	166	281	83.1

Sample 143

17T 0497856 Elevation = 446m 5199156

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see some epidote
- I see some mineralization in some black lines
- I see pink and white and blue quartz (Like a granite)
 Pictures 842 Epidote & minerals & Granite & Sample 144

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.004	142	68	14.6

17T 0497842 Elevation = 439m 5199148

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see black grey white grains
- I see a section that is all black with small and large mixed grains
- I see mineralized pyrite cubes
- Nearby I see some oxidized white bedrock with lots of white fractures (Looks like heated hornblende)

Pictures 843 Hornblende & Pyrite & Sample 145

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
< 0.001	121	43	56.7

17T 0501847 Elevation = 426m

5198758

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see a large rust spot with purple in it
- The rust spot had very dark discharge when cutting
- I see some white and pink quartz
- I see a large piece of sulfide that looks like ore
- I see a few stringers
- The metal detector signal was strong here
- Samples 64-65-66 were taken from here

Pictures 844 Hornblende & stringers & Sample for polishing

17T 0501847 Elevation = 418m 5198767

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see some white quartz
- I see good mineralization (Pyrite)
- The metal detector had a strong signal here
- We took sample 146 from here

Pictures 845 Hornblende & Pyrite & Sample 146

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.012	466	91	67.9

17T 0501850

Elevation = 417m

5198766

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see white and black quartz mixed together
- I see some mineralization (Pyrite)
- We took sample 147 from here

Pictures 846 Hornblende & Pyrite & Sample 147

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.004	46	88	51.7

17T 0499659

Elevation = 431m

5198115

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN
- I see green epidote mixed with grey quartz
- I see a few stringers
- The matrix looks sedimentary in origin
- We took a sample of a green epidote outcrop Pictures 847 Epidote & Sample 148

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Sr (ppm)
< 0.001	21	10	3.7	1480

17T 0499660

Elevation = 431m

5198111

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN
- I see black & white crystals like diorite
- I see good mineralization
- I see some yellow/pink quartz (Small amount)
- We took sample 149 from here

Pictures 848 Diorite & mineralization & Sample 149

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	382	16	41.8

17T 0499674

Elevation = 431m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN
- I see black & green crystals like diorite (Wet)
- I see good mineralization
- We took sample 150 from here

Pictures 849 Diorite & mineralization & Sample 150

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Sr (ppm)
0.002	16	12	30.0	1660

17T 0499659

Elevation = 432m

5198110

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN
- I see a large pink dike and some sedimentary bedrock
- I see lots of fracturing
- I see some pyrite cubes
- The bedrock is black white green mixture
- We sampled the large pink dike and some of the host bedrock Pictures 850 Pink dike & fractures & Sample 151

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Sr (ppm)
<0.001	14	8	4.0	623

17T 0499742

Elevation = 433m

5198130

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN
- I see some dirty pink granite
- I see a bit of white quartz
- I see a few pyrite cubes

Pictures 851 Granite & Sample 152

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Sr (ppm)
< 0.001	5	7	7.7	335

17T 0499741

Elevation = 432m

5198129

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN
- I see a pink & white & black granite
- I see some rust on the surface

Pictures 852 Granite & Sample 153

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Sr (ppm)
<0.001	7	8	7.6	325

17T 0499763

Elevation = 430m

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN
- I see a diorite
- (Black and white crystals)
- I see a large white/pink quartz dike and veins
 Pictures 853 diorite & large white pink quartz dike and veins

17T 0499753 Elevation = 431m

5198142

Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN

- I see a diorite
- (Black and white crystals)
- This is only a small outcrop

Pictures 854 diorite

17T 0499763 Elevation = 431m

5198142

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN
- I see a diorite
- (Black and white crystals)
- We took sample 154 from here
 Pictures 855 Diorite & Sample 154

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.001	43	77	46.6

17T 0499542 Elevation = 430m

5198130

- Map 2212 indicates 3b Porphyritic quartz monzonite ARCHEAN Granitic Rocks ALGOMAN
- Map 2212 also indicates 9c Finely bedded argillite (Mud stone) in the area
- I see a pink granite contacting a greywacke (Green & black crystals)
- I see some epidote
- We took sample 155 from here

Pictures 856 Granite & greywacke & Contact & Sample 155

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Sr (ppm)	V (ppm)
0.003	262	43	71.0	1230	724

17T 0499411 Elevation = 434m

5198123

- Map 2212 indicates 9c Finely bedded argillite (Mud stone) in the area
- We had to excavate about 1m x 1m in this area
- I see pink granite and a large white quartz vein
- We took sample 156 from here
- The quartz was only 2 inches deep then it was a form of gabbro (black and green) Pictures 857 Quartz sill & Granite & Gabbro & Sample 156

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	35	24	16.9

17T 0499499 Elevation = 433m

- Map 2212 indicates 9c Finely bedded argillite (Mud stone) in the area
- I see a pegmatitic diorite (Black and white-pink)
- The metal detector had a strong signal here
- We took sample 157 from here

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Ti (%)	V (ppm)
< 0.001	75	31	73.7	1.15	851

17T 0499490

Elevation = 432m

5198127

- Map 2212 indicates 9c Finely bedded argillite (Mud stone) in the area
- I see what looks like a diorite
- I see some mineralization
- We took sample 158 from here

Pictures 859 Diorite & mineralization & Sample 158

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Sr (ppm)	V (ppm)
0.012	270	133	90.7	1560	806

17T 0503127

Elevation = 371m

5198505

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see small pink quartz veins
- The bedrock is slightly magnetic
- I see epidote
- The main mass is black fibrous crystals and some grey crystals
- I see mineralization in the black spotted rock
- Each spot has fine grain, golden coloured pyrite
- There is also mineralization in the white quartz Pictures 860 Quartz & epidote & mineralization & Sample 159

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	Sr (ppm)
0.023	1680	24	41.4	627

17T 0503121

Elevation = 385m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- The sample was taken from here, in hornblende
- I see a bit of rust
- The bedrock is slightly magnetic
- The metal detector had a strong signal here
- I see epidote
- The main mass is black fibrous crystals and some grey crystals
- I see mineralization in the black spotted rock
- Each spot has fine grain, golden coloured pyrite
- There is also mineralization in the pink quartz stringers
 Pictures 861 Quartz & Hornblende & mineralization & Sample 160

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	288	92	48.3

17T 0503119 Elevation = 387m

5198486

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- Not magnetic to slightly magnetic
- Bluish and brownish limonite in fractures
- Gabbro like
- Small 1 mm white and pink quartz stringers
- Fine grain black bedrock and fiber like bedrock
 Pictures 862 Hornblende & Stringers & Sample 161

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	145	75	47.4

17T 0503113

Elevation = 391m

5198492

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- Not magnetic but some spots are slightly magnetic
- Metal detector had a strong signal here
- Dark gabbro like
- Medium to low mineralization
 Pictures 863 Hornblende & Sample 162

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	1380	208	140.0

17T 0501917

Elevation = 436m

5199367

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- Not magnetic except for a few spots
- Metal detector had a strong signal here
- I see a rusted surface with extensive cracking and epidote stringers
- I see a fine grain blue quartz

Pictures 864 Hornblende & Sample 163

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.003	272	48	98.3

17T 0501889

Elevation = 435m

- Map 2212 indicates 1b Quartz-feldspar (hornblende) biotite schist
- I see hornblende
- I see some white quartz stringers
- I see fie grain blue quartz
- I see some epidote with disseminated minerals
- The bedrock is slightly magnetic Pictures 865 Hornblende & Sample 164

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
<0.001	140	111	45.3

17T 0497157 Elevation = 430m

5199021

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a greywacke
- I see cross cutting of stringers
- I see rusted quartz veins
- I see good mineralization in the white and orange quartz
- Slightly magnetic all over
- Metal detector had a strong signal here
 Pictures 866 Greywacke & Sample 165

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.008	195	75	44.3

17T 0497152

Elevation = 428m

5199025

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a greywacke
- I see a lot of fractures
- I see limonite (Rust)
- I see rusted quartz veins
- I see mineralization in the epidote
- I see good mineralization in the white and orange quartz
- Slightly magnetic all over
- Metal detector had a strong signal here
 Pictures 867 Greywacke & Epidote & Quartz & Sample 166

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.041	922	83	71.3

17T 0497155 Elevation = 429m

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a greywacke
- I see pink mineralized veins criss crossing
- I see a mineralized epidote vein
- Under magnification, the sample looks like Gabbro
- I see limonite
- I see white quartz with some minerals
- Slightly magnetic all over
- Metal detector had a strong signal here
 Pictures 868 Greywacke & Epidote & Quartz & Sample 167

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
----------	----------	----------	----------

0.011 109	51	47.0
-----------	----	------

17T 0497231 Elevation = 427m

5199044

- Map 2212 indicates 9c Finely bedded argillite 9d Massive feldspathic greywacke HURONIAN Gowganda Formation in the area
- I see a greywacke
- I see a mineralized epidote vein
- The epidote vein has a bit of pink quartz
- Under magnification, the sample looks like gabbro
- I see limonite
- Slightly magnetic all over
- Metal detector had a strong signal here

Pictures 869 Greywacke & Epidote & Quartz & Sample 168

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.006	228	57	20.5

7T 0497931 Elevation =

442m

5201220

- Took out generator #2 from container (Winter storage)
- Cleaned up location
- Took a few pictures
- Snow everywhere

Pictures 870 remove generator

17T 0510088 Elevation = 460m 5198775

- Map 2212 is blank on this area
- Map 2212 does indicate 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman)) and 1 Undifferentiated mafic to intermediate metavolcanics (ARCEAN Metavolcanics and Metasediments) in the area
- Map 2212 also indicates 10 Quartzite, argillite, conglomerate PRECAMBRIAN HURONIAN Lorrain formation in the area
- I see what looks like footwall breccea
- The white precipitate did not fizz with the diluted sulfuric acid test (Temperature was low)
- The fragments are angular and medium in size
- The footwall is dark blue and fine grain
- The precipitate is white

Pictures 871 Footwall Breccea & acid test

17T 0510183 Elevation = 301m 5198628

- Map 2212 is blank on this area
- Map 2212 does indicate 3a Quartz monzonite, granite, grano-diorite, pegmatite (ARCEAN Granitic Rocks (Algoman)) and 1 Undifferentiated mafic to intermediate metavolcanics (ARCEAN Metavolcanics and Metasediments) in the area
- Map 2212 also indicates 10 Quartzite, argillite, conglomerate PRECAMBRIAN HURONIAN Lorrain formation in the area
- I see a large rock face
- The bedrock is really dark and in some places heavily fractured, could be metavolcanics

- Lots of stringers
- I see some red staining
- I see lots of fractures some are pink in colour
- I see some precipitate nearby

Pictures 872 Rock face & stringers & Metavolcanics

17T 0510261 Elevation = 285m

5199146

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- I see a positive acid test here
- Calcite CaCO₃ Calcium carbonate or Dolomite CaMg(CO₃)₂ Calcium / magnesium carbonate
- Assay Ca % Mg% 83 11.5 1.68 84 >25 0.25 85 9.5 3.11

Pictures 873 Positive test Calcite

17T 0510278 Elevation = 283m

5199138

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- I see a positive acid test on small white rock in crack
- Calcite CaCO₃ Calcium carbonate or Dolomite CaMg(CO₃)₂ Calcium / magnesium carbonate
- I see chalcopyrite CuFeS₂
- I see Calcite / Dolomite
- The direction in North 1 degree east South 1 degree west Pictures 874 Positive test Calcite

17T 0510278 Elevation = 288m

5199149

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- I see a positive acid test on small white rock in crack
- Calcite CaCO₃ Calcium carbonate or Dolomite CaMg(CO₃)₂ Calcium / magnesium carbonate
- Took sample to view under microscope
- Magnified, I found a blue squares that looked like small azurite crystals Cu₃(CO₃)₂(OH)₂
- The blue squares could also be bornite
- I see chalcopyrite CuFeS₂
- I see Calcite / Dolomite
- I see a brown mineral composed of different fine grains
- The direction in North 1 degree east South 1 degree west

Pictures 875 Positive test Calcite

17T 0510283 Elevation = 331m

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- Brownish rock (Rusted)
- Chunks of minerals on contact between dark rock and calcite / dolomite
- Some of the sample was light & spongy looking
- Under magnification I see spongy material is made of different small grains
- Lots of empty squares from eroded sulfides
- No calcite é dolomite in this sample
- Just a bit of dark blue / green bedrock in sample
- This was to sample the contact between the calcite and host rock Pictures 876 Sample 169 Contact zone

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.030	19900	84	37.3

17T 0510283 Elevation = 286m 5199137

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- Samples 170 and 171 was taken from here (One foot off road, one foot elevation)
- Sample 170 and 171 was taken from a small calcite / dolomite sill (about 1.5 inches thick)
- The large sample was cut into two samples to determine mineral content in calcite vs content in host rock
- Under magnification I see lots of calcite / dolomite in sample 170
- I see some bornite (Blue green orange purple)
- I see what looks like native copper with spots of a metallic mineral in it
- I see some pink mineral
- I see some chalcopyrite in the calcite / dolomite
- The sample had about 60% host bedrock and 40% calcite / dolomite veins
- The mineralization is mostly in the contact zone and in the calcite / dolomite but some can be found in the host rock
- Sample 171 did not have lots of calcite / dolomite
- There was one small mineralized calcite stringer in it
- It also had a bit of calcite on the side of the sample
- Most of the sample, about 90% was host bedrock
- The host bedrock is dark grey / black and fine grain
- There is more mineralization in the calcite / dolomite but there is a smaller amount scattered in the darker host rock
- On the side of the sample is larger pinkish flaky quartz
- I see some small white crystals with pink intrusions Pictures 877 Sample 170 60% - 40% C - 171 90% - 10% C

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.001	21000	32	14.4

Sample 170

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)			
0.022	10100	77	30.9			

Sample 171

17T 0510283 Elevation = 286m 5199137

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- Samples 172 and 173 was taken from here. One foot away from samples 170-171.
- This sample was along a 1 inch calcite / dolomite vein
- The large sample was cut into two samples
- In sample 172 I see a large piece of calcite / dolomite and a smaller vein
- There is about 50% calcite / dolomite and 50 % host bedrock
- I see minerals with gold, blue, orange colours
- I see fine grain spotted mineralization in the calcite / dolomite
- I see some small formation of biotite mica (Black sheets)
- The host bedrock has black white pink crystals
- In sample 173 I see a calcite / dolomite vein with host bedrock on both sides
- The host bedrock has black white pink crystals

- I see more minerals in the calcite / dolomite
- Mineralization is spotted in the host bedrock
 Pictures 878 Sample 172 50% 50% C 173 50% 50% C

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.002	5130	50	23.6

Sample 172

Au (ppm)	Au (ppm) Cu (ppm)		Co (ppm)
0.011	5420	48	17

Sample 173

17T 0510275 Elevation = 297m 5199141

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- In order to get sample 174 we had to cut back the upper layer. The section separated and slid off like a separate layer. This was the upper section, near the 31700 ppm sample
- Sample 174 has a bit of contact with mostly host bedrock
- Contact has rusty mineralization
- Only contains a small amount of calcite / dolomite
- The dark host bedrock is fine grain quartz in some areas
- The quartz is blue and oxidized brown on the surface
- The sample is slightly magnetic but more on the contact zone
- In sample 175 there is a bit of the contact zone but most of the sample is host bedrock.
- I see some rust
- There is mineralization on two of the ten sample pieces
- Sample 176 is mostly calcite / dolomite with mineralization
- There is also some fine grain, dark blue grey bedrock with very fine mineralization inside
- Good mineralization in the calcite / dolomite (Fine grain, massive for 1 inch and smaller)
- Gold pink orange colours
- In sample 177 there is about 50% calcite / dolomite and 50% host bedrock
- There is spotted mineralization in the calcite / dolomite < 1 inch
- I see a bit of pink feldspar
- It looks like a small grain diabase when magnified Pictures 879 Samples 174 175 176 177

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.010	3610	109	36.8

Sample 174

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.014	5430	67	39.4

Sample 175

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.012	1690	98	27

Sample 176

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.009	4520	28	12.8

Sample 177

17T 0510283 Elevation = 286m 5199137

- Map 2212 indicates 11 Quartz diabase (Nipissing type) PRECAMBRIAN Late mafic intrusive rocks
- Sample 178 has pink and black crystals with a bit of white crystals under magnification
- The mineralization was fine grain and scattered throughout
- There was a bit of calcite / dolomite on the largest piece
- The mineralization in the calcite / dolomite was fine grain and scattered Pictures 880 Sample 178

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.008	2040	82	33.2

17T 0496815 Elevation = 416m 5201061

- Sample 179 was taken earlier in the season on 26-09-2017
- I see a pink granite
- I see dark orange staining
- I see large black staining
- I see some black quartz
- Some of the light orange quartz is clear like a crystal
- Minerals are a golden colour in dark quartz
- I see some orange minerals
- I see some muscovite mica
- I see some light green quartz
- Surface is white quartz with small amount of rusty minerals
- I see one eroded mineral ball (about 1.5 to 1.25 inch)
- Mineral balls have silver metallic minerals
 Pictures 881 Sample 179

Au (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)
0.057	2080	17	25.1

SUMMARY OF QUALIFICATIONS: Michel Lavoie

- Worked in the Diamond Drilling industry from 1987 to 1992.
- Had a prospecting licence since 1998
- Diverse background in the field of Diamond Drilling and Exploration
- Researched and prepared notes, sketches and maps relating to mining activity for Premier Exploration
- Graduated with Honors from Business Administration Program at Cambrian College
- Attended Laurentian University's Chemistry program specializing in Environmental Chemistry
- Related courses taken:
 - Building a Planet, Minerals: the building blocks of life, Introduction to the major rock groups, Igneous rocks: solid from melts, Volcanism, Weathering and erosion, Sediments and sedimentary rocks, Metamorphic rocks, Mineral Resources, Folds, Faults and other records of rock deformation, Earthquakes, The Earth's interior, plate tectonics: The unifying theory, Deformation and structures of the continental crust Labs: Geologic perspective, Mineral Properties/Identification, Igneous rocks I, Igneous rocks II, Sudbury Geology, Optical Microscapy, Sedimentary rocks I, Sedimentary rocks II, Metamorphic rocks, Dating of rocks, fossils and Geological events
 - GEOL 1026 Intro to Physical Geography
 A geographical investigation of the natural environment and its links
 with humankind. An introduction to environmental concepts and spatial
 systems. Development of skills to describe and interpret environmental
 data.
 - GEOL 3397 Introductory Soil Science
 An introduction to the formation and classification of soils, including their physical, chemical and biological properties. Also considers environmental issues involving soil.
 - CHMI 1006 General Chemistry I, CHMI 1007 General Chemistry II
 - CHMI 1041 Chemical Concepts
 - CHMI 1202 Organic Chemistry & Biochemistry
 - CHMI 2041 Introductory Environmental Chemistry
 - CHMI 2117 Introductory Quantitative Analysis (Analytical Chemistry)
 - CHMI 2316 Inorganic Chemistry I
 - CHMI 2426 Organic Chemistry I, CHMI 2427 Organic Chemistry II
 - CHMI 2516 Introductory Physical Chemistry I
 - ENGR 3126 Occupational Health Engineering
 - ENGR 1007 Engineering Graphics and Design
 - BIOL 1506 Biology I, BIOL 1507 Biology II

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michael Lavoie

PROJECT:

AGAT WORK ORDER: 17T242319

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Aug 04, 2017

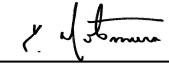
PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

*NOTES

AGAT WORK ORDER: 17T242319


PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

CLIENT NAME. MIS	DC AGAT CLIL	_141 O14							7111211	ITION TO.	WIIOTIACI E	avoic			
			(20	1-378) Sc	odium Pe	eroxide l	Fusion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Jul	[DATE RECE	EIVED: Jul 2	27, 2017	DATE REPORTED: Aug 04, 2017					SAMPLE TYPE: Other					
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cı
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppn
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	
Sample 1 (8592300)		<1	7.96	<30	31	258	<5	3.6	2.19	<0.2	59.9	174	0.014	5.0	39
Sample 2 (8592301)		<1	5.38	<30	<20	118	<5	0.2	1.73	<0.2	62.6	9.8	< 0.005	0.7	25
Sample 3 (8592302)		<1	8.59	<30	31	514	<5	1.7	1.49	<0.2	72.8	115	0.014	6.3	10
Sample 4 (8592303)		<1	6.89	<30	64	339	<5	0.9	7.16	0.3	10.3	95.5	< 0.005	0.4	169
Sample 5 (8592304)		<1	6.44	<30	25	438	<5	0.2	3.87	0.2	32.3	39.2	0.014	2.1	94
Sample 6 (8592305)		<1	8.11	<30	30	484	<5	1.3	1.60	<0.2	63.1	91.6	0.014	6.5	12
Sample 7 (8592306)		<1	7.56	<30	42	575	5	0.4	5.50	<0.2	13.3	65.1	< 0.005	14.0	158
Sample 8 (8592307)		<1	8.41	<30	30	485	<5	0.9	1.42	<0.2	65.7	81.6	0.014	6.4	10
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppn
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
Sample 1 (8592300)		2.88	1.80	0.97	6.43	18.9	3.60	2	5	0.69	<0.2	1.55	29.1	30	0.32
Sample 2 (8592301)		2.81	1.76	1.03	4.14	16.5	3.36	2	5	0.63	<0.2	0.30	39.6	11	0.35
Sample 3 (8592302)		3.48	1.99	1.13	5.58	22.6	4.35	2	6	0.76	<0.2	2.61	35.1	36	0.34
Sample 4 (8592303)		1.65	1.08	0.60	13.1	22.7	1.60	2	<1	0.41	<0.2	0.71	5.0	43	0.17
Sample 5 (8592304)		2.30	1.29	0.79	5.23	18.9	2.74	1	3	0.48	<0.2	0.86	16.7	22	0.23
Sample 6 (8592305)		3.05	1.78	1.07	5.44	21.6	3.84	2	5	0.71	<0.2	2.31	31.2	34	0.30
Sample 7 (8592306)		2.57	1.68	0.72	10.6	20.7	2.29	2	2	0.62	<0.2	1.77	6.1	80	0.26
Sample 8 (8592307)		3.18	1.81	1.12	5.72	20.8	4.20	2	5	0.70	<0.2	2.62	32.6	37	0.29
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	S
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.0
Sample 1 (8592300)		1.34	1080	<2	8	22.8	67	0.09	15	7.03	131	1.10	<0.1	14	27.4
Sample 2 (8592301)		0.74	393	<2	6	25.6	17	0.06	6	7.61	16.7	0.11	<0.1	10	33.4
Sample 3 (8592302)		1.36	829	<2	9	27.7	62	0.08	12	8.71	176	0.43	<0.1	15	28.3
Sample 4 (8592303)		5.16	1360	<2	<1	5.2	100	0.03	17	1.43	37.6	1.50	0.1	45	18.6
Sample 5 (8592304)		3.06	1200	3	4	15.0	88	0.06	21	4.30	36.6	0.49	<0.1	9	27.5
Sample 6 (8592305)		1.37	904	<2	9	24.3	63	0.07	13	7.86	178	0.40	0.1	15	27.2
Sample 7 (8592306)		3.15	1520	<2	3	7.4	58	0.03	13	1.98	184	0.53	<0.1	33	21.3
Sample 8 (8592307)		1.45	867	<2	8	26.0	66	0.07	12	8.01	178	0.28	<0.1	15	28.0

Certified By:

AGAT WORK ORDER: 17T242319

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

DATE SAMPLED: Jul 26, 2017			[DATE RECE	EIVED: Jul 2	27, 2017		DATE REPORTED: Aug 04, 2017				SAM			
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
Sample 1 (8592300)		4.0	<1	293	<0.5	0.60	14.4	0.40	1.1	0.27	5.55	113	1	16.6	1.9
Sample 2 (8592301)		4.5	<1	320	<0.5	0.56	3.4	0.25	<0.5	0.30	1.03	40	<1	15.1	2.0
Sample 3 (8592302)		5.0	1	273	<0.5	0.74	15.7	0.42	1.3	0.29	6.41	120	2	18.4	2.0
Sample 4 (8592303)		1.3	<1	605	<0.5	0.31	0.3	1.37	<0.5	0.17	0.36	868	<1	9.6	0.9
Sample 5 (8592304)		2.9	<1	356	<0.5	0.46	5.5	0.36	<0.5	0.20	1.58	116	<1	12.9	1.3
Sample 6 (8592305)		4.6	1	285	<0.5	0.65	14.7	0.41	1.3	0.29	5.40	124	1	17.5	1.8
Sample 7 (8592306)		2.0	<1	360	<0.5	0.45	2.6	1.16	1.4	0.27	1.00	616	<1	15.4	1.7
Sample 8 (8592307)		4.6	<1	267	<0.5	0.64	14.1	0.41	1.3	0.29	5.50	121	1	17.9	1.9
	Analyte:	Zn	Zr												
	Unit:	ppm	ppm												
Sample ID (AGAT ID)	RDL:	5	0.5												
Sample 1 (8592300)		70	189												
Sample 2 (8592301)		40	195												
Sample 3 (8592302)		73	195												
Sample 4 (8592303)		130	19.2												
Sample 5 (8592304)		102	127												
Sample 6 (8592305)		72	196												
Sample 7 (8592306)		135	53.6												
Sample 8 (8592307)		79	179												

Comments: RDL - Reported Detection Limit

Certified By:

y Latomura

AGAT WORK ORDER: 17T242319

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

			(202	2-055) Fire	Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Jul	26, 2017			DATE RECEI	VED: Jul 27, 2017	DATE REPORTED: Aug 04, 2017	SAMPLE TYPE: Other
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
Sample 1 (8592300)		0.009	0.002	<0.005			
Sample 2 (8592301)		0.003	< 0.001	< 0.005			
Sample 3 (8592302)		0.008	0.002	<0.005			
Sample 4 (8592303)		0.003	< 0.001	< 0.005			
Sample 5 (8592304)		0.002	<0.001	<0.005			
Sample 6 (8592305)		0.033	0.002	< 0.005			
Sample 7 (8592306)		0.003	<0.001	< 0.005			
Sample 8 (8592307)		0.001	0.002	< 0.005			
,							

Comments: RDL - Reported Detection Limit

Certified By:

y of stomure

Quality Assurance - Replicate AGAT WORK ORDER: 17T242319 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

				(201-3	378) Sod	lium Pe	roxide	Fusion	- ICP-O	ES/ICP-	MS Fin	ish		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	8592300	< 1	< 1	0.0%										
Al	8592300	7.96	7.61	4.5%										
As	8592300	< 30	< 30	0.0%										
В	8592300	31	30	3.3%										
Ва	8592300	258	258	0.0%										
Be	8592300	< 5	< 5	0.0%										
Bi	8592300	3.60	3.66	1.7%										
Ca	8592300	2.19	2.11	3.7%										
Cd	8592300	< 0.2	< 0.2	0.0%										
Ce	8592300	59.9	59.2	1.2%										
Co	8592300	174	171	1.7%										
Cr	8592300	0.014	0.014	0.0%										
Cs	8592300	5.0	5.1	2.0%										
Cu	8592300	39	38	2.6%										
Dy	8592300	2.88	2.90	0.7%										
Er	8592300	1.80	1.61	11.1%										
Eu	8592300	0.97	1.00	3.0%										
Fe	8592300	6.43	6.22	3.3%										
Ga	8592300	18.9	19.6	3.6%										
Gd	8592300	3.60	3.79	5.1%										
Ge	8592300	2	2	0.0%										
Hf	8592300	5	5	0.0%										
Но	8592300	0.69	0.67	2.9%										
In	8592300	< 0.2	< 0.2	0.0%										
K	8592300	1.55	1.47	5.3%										
La	8592300	29.1	28.7	1.4%										
Li	8592300	30	29	3.4%										
Lu	8592300	0.32	0.32	0.0%										
Mg	8592300	1.34	1.34	0.0%										
Mn	8592300	1080	1080	0.0%										
Мо	8592300	< 2	< 2	0.0%										

Quality Assurance - Replicate AGAT WORK ORDER: 17T242319 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

ATTENTION TO: Michael Lavoie CLIENT NAME: MISC AGAT CLIENT ON 8592300 0.0% Nd 8592300 22.8 22.5 1.3% 67 Ni 8592300 67 0.0% Ρ 8592300 0.087 0.083 4.7% Pb 8592300 15 15 0.0% Pr 8592300 7.03 7.02 0.1% Rb 8592300 131 127 3.1% 2.7% S 8592300 1.10 1.13 Sb 8592300 0.0% < 0.1 < 0.1 Sc 8592300 14 14 0.0% Si 8592300 27.4 26.3 4.1% Sm 8592300 3.97 4.15 4.4% 8592300 1 Sn < 1 8592300 Sr 293 291 0.7% Та 8592300 0.0% < 0.5 < 0.5 Tb 8592300 0.597 0.589 1.3% Th 8592300 14.4 14.2 1.4% Τi 8592300 0.398 0.379 4.9% ΤI 8592300 1.1 0.0% 1.1 Tm 8592300 0.27 0.28 3.6% U 8592300 5.55 5.48 1.3% ٧ 8592300 113 113 0.0% W 8592300 1 < 1 Υ 8592300 16.6 16.4 1.2% Yb 8592300 1.85 1.62 13.3% Zn 8592300 70 69 1.4% Zr 8592300 185 189 (202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 Parameter Sample ID Original Replicate RPD 8592300 0.0087 0.0082 5.9% Au Pd 8592300 0.002 0.002 0.0% Pt 8592300 < 0.005 < 0.005 0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T242319 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

				(201-3	378) So	dium P	eroxid	e Fusion	- ICP-O	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.SY-4)		,									
Parameter	Expect	Actual	Recovery	Limits										
Al	10.95	10.87	99%	90% - 110%										
Ва	340	313	92%	90% - 110%										
Be	2.6	3	115%	90% - 110%										
Ca	5.72	5.79	101%	90% - 110%										
Ce	122	122	100%	90% - 110%										
Со	2.8	2.4	85%	90% - 110%										
Cs	1.5	1.5	99%	90% - 110%										
Cu	7	7	93%	90% - 110%										
Dy	18.2	18.2	100%	90% - 110%										
Er	14.2	14.8	104%	90% - 110%										
Eu	2.0	2	100%	90% - 110%										
Fe	4.34	4.36	100%	90% - 110%										
Ga	35	37	105%	90% - 110%										
Gd	14	15	109%	90% - 110%										
Hf	10.6	10.3	98%	90% - 110%										
Но	4.3	4.7	110%	90% - 110%										
K	1.37	1.37	100%	90% - 110%										
La	58	61	106%	90% - 110%										
Li	37	37	100%	90% - 110%										
Lu	2.1	2.3	108%	90% - 110%										
Mg	0.325	0.293	90%	90% - 110%										
Mn	836	792	95%	90% - 110%										
Nb	13	13	102%	90% - 110%										
Nd	57	56	97%	90% - 110%										
Pb	10	10	102%	90% - 110%										
Pr	15.0	16.5	110%	90% - 110%										
Rb	55	52	95%	90% - 110%										
Si	23.3	22.3	96%	90% - 110%										
Sm	12.7	12.3	97%	90% - 110%										
Sn	7.1	6.6	93%	90% - 110%										
Sr	1191	1170	98%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T242319 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: MISC A	GAT CLI	ENT ON							ATTE	ENTION .	TO: Michae	el Lavoie		
Та	0.9	1	111%	90% - 110%											
Tb	2.6	2.9	110%	90% - 110%											
Th	1.4	1.4	102%	90% - 110%											
Ti	0.172	0.176	102%	90% - 110%											
Tm	2.3	2.5	109%	90% - 110%											
U	0.8	0.8	98%	90% - 110%											
V	8	10	119%	90% - 110%											
Yb	14.8	15	102%	90% - 110%											
Zn	93	98	106%	90% - 110%											
Zr	517	536	104%	90% - 110%											
				(202-0	55) Fire	Assay	- Au,	Pt, Pd Tra	ace Lev	els, ICF	P-OES	finish			
		CRM #1	(ref.PG124)												
Parameter	Expect	Actual	Recovery	Limits											
Au	0.321	0.343	107%	90% - 110%											
Pd	0.037	0.037	99%	90% - 110%											
Pt	0.09	0.09	99%	90% - 110%											

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T242319
PROJECT: ATTENTION TO: Michael Lavoie

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
Al	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Ве	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Co	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
In	MIN-200-12001		ICP-MS
K	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Мо	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P			ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc	MIN-200-12001		ICP/OES
Si	MIN-200-12001		ICP/OES
Sm	MIN-200-12001		ICP-MS
Sn	MIN-200-12001		ICP/MS
Sr	MIN-200-12001		ICP-OES
Та	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th	MIN-200-12001		ICP-MS
Ti	MIN-200-12001		ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T242319
PROJECT: ATTENTION TO: Michael Lavoie

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Υ	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michael Lavoie

PROJECT:

AGAT WORK ORDER: 17T242303

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Aug 04, 2017

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

*NOTES

AGAT WORK ORDER: 17T242303

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

			(20	1-378) S	odium Pe	eroxide l	-usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Jul	26, 2017		Ι	DATE RECE	EIVED: Jul 2	27, 2017		DATE I	REPORTED	: Aug 04, 2	017	SAN	IPLE TYPE:	Other	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
Sample 9A (8592231)		<1	7.26	<30	<20	390	<5	0.6	1.48	<0.2	47.6	18.0	0.011	3.1	29
Sample 10 (8592232)		<1	7.07	<30	<20	443	<5	8.0	1.58	<0.2	53.5	25.1	0.012	3.4	113
Sample 11 (8592233)		<1	9.10	<30	<20	648	<5	0.1	2.20	<0.2	80.0	19.0	0.018	3.6	21
Sample 12 (8592234)		<1	6.71	<30	34	608	<5	0.1	5.21	<0.2	39.9	48.5	0.073	2.0	44
Sample 9B (8592235)		<1	7.84	<30	<20	709	<5	8.0	1.67	<0.2	72.6	27.0	0.013	5.1	39
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
Sample 9A (8592231)		2.04	1.32	0.87	3.61	17.1	2.83	1	5	0.40	<0.2	1.14	22.6	31	0.18
Sample 10 (8592232)		2.42	1.36	1.04	4.43	17.6	3.28	1	5	0.49	<0.2	1.28	25.1	30	0.22
Sample 11 (8592233)		3.14	1.93	1.18	4.13	23.1	4.59	1	5	0.61	<0.2	1.69	39.1	49	0.25
Sample 12 (8592234)		2.43	1.36	0.81	7.08	19.6	3.00	1	3	0.47	<0.2	1.25	18.7	63	0.22
Sample 9B (8592235)		3.17	1.70	1.36	4.75	18.6	4.77	1	5	0.62	<0.2	1.73	34.1	44	0.25
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
Sample 9A (8592231)		1.37	826	<2	7	19.0	50	0.06	43	5.58	58.3	0.28	<0.1	11	31.6
Sample 10 (8592232)		1.40	787	<2	10	21.6	57	0.08	32	6.24	69.8	0.41	<0.1	12	30.7
Sample 11 (8592233)		1.58	726	<2	10	30.8	75	0.08	63	9.23	82.5	0.05	<0.1	16	28.1
Sample 12 (8592234)		6.09	1340	<2	4	18.1	315	0.13	10	4.91	70.6	0.14	<0.1	27	23.5
Sample 9B (8592235)		1.81	1270	<2	13	30.7	66	0.11	48	8.51	97.9	0.30	<0.1	15	29.0
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
Sample 9A (8592231)		3.3	1	356	1.0	0.40	7.4	0.28	0.5	0.21	2.78	79	<1	12.0	1.3
Sample 10 (8592232)		3.8	<1	377	1.0	0.48	7.6	0.42	0.7	0.22	2.70	97	<1	14.3	1.5
Sample 11 (8592233)		5.3	2	591	1.0	0.57	13.1	0.42	0.6	0.25	5.19	115	<1	17.7	1.8
Sample 12 (8592234)		3.4	<1	350	<0.5	0.44	3.2	0.43	0.7	0.22	1.12	226	<1	13.9	1.4
Sample 9B (8592235)		5.5	1	386	2.5	0.60	8.2	0.62	0.9	0.25	3.00	111	<1	16.2	1.6

Certified By:

y Latomura

AGAT WORK ORDER: 17T242303

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

2017				(201-378) Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish													
		DA	TE RECEIVED: Jul 27, 2017	DATE REPORTED: Aug 04, 2017	SAMPLE TYPE: Other												
nalyte:	Zn	Zr															
Unit:	ppm	ppm															
RDL:	5	0.5															
	89	176															
	95	175															
	71	191															
	145	90.7															
	123	171															
	Unit:	Unit: ppm RDL: 5 89 95 71 145	Unit: ppm ppm RDL: 5 0.5 89 176 95 175 71 191 145 90.7	Unit: ppm ppm RDL: 5 0.5 89 176 95 175 71 191 145 90.7	Unit: ppm ppm ppm RDL: 5 0.5												

Comments: RDL - Reported Detection Limit

Certified By:

y of stomure

AGAT WORK ORDER: 17T242303

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

	(202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish														
DATE SAMPLED: Jul	26, 2017			DATE RECE	IVED: Jul 27, 2017	DATE REPORTED: Aug 04, 2017	SAMPLE TYPE: Other								
	Analyte:	Au	Pd	Pt											
	Unit:	ppm	ppm	ppm											
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005											
Sample 9A (8592231)		0.002	< 0.001	< 0.005											
Sample 10 (8592232)		0.006	< 0.001	< 0.005											
Sample 11 (8592233)		0.003	< 0.001	< 0.005											
Sample 12 (8592234)		<0.001	< 0.001	< 0.005											
Sample 9B (8592235)		0.002	< 0.001	< 0.005											

Comments: RDL - Reported Detection Limit

Certified By:

y Latimura

Quality Assurance - Replicate AGAT WORK ORDER: 17T242303 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

				(201-3	378) Sod	lium Pe	roxide	Fusion	- ICP-O	ES/ICP-	MS Fin	ish	 	
		REPLIC	ATE #1	•										
Parameter	Sample ID	Original	Replicate	RPD										
Ag	8592231	< 1	< 1	0.0%										
Al	8592231	7.26	7.30	0.5%										
As	8592231	< 30	< 30	0.0%										
В	8592231	< 20	< 20	0.0%										
Ва	8592231	390	394	1.0%										
Be	8592231	< 5	< 5	0.0%										
Bi	8592231	0.6	0.6	0.0%										
Ca	8592231	1.48	1.50	1.3%										
Cd	8592231	< 0.2	< 0.2	0.0%										
Се	8592231	47.6	47.9	0.6%										
Со	8592231	18.0	18.0	0.0%										
Cr	8592231	0.011	0.011	0.0%										
Cs	8592231	3.14	3.16	0.6%										
Cu	8592231	29	28	3.5%										
Dy	8592231	2.04	2.04	0.0%										
Er	8592231	1.32	1.26	4.7%										
Eu	8592231	0.873	0.843	3.5%										
Fe	8592231	3.61	3.64	0.8%										
Ga	8592231	17.1	17.1	0.0%										
Gd	8592231	2.83	2.88	1.8%										
Ge	8592231	1	1	0.0%										
Hf	8592231	5	5	0.0%										
Но	8592231	0.40	0.41	2.5%										
In	8592231	< 0.2	< 0.2	0.0%										
K	8592231	1.14	1.14	0.0%										
La	8592231	22.6	22.5	0.4%										
Li	8592231	31	30	3.3%										
Lu	8592231	0.18	0.18	0.0%										
Mg	8592231	1.37	1.39	1.4%										
Mn	8592231	826	762	8.1%										
Мо	8592231	< 2	< 2	0.0%										

Quality Assurance - Replicate AGAT WORK ORDER: 17T242303 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie 8592231 7 0.0% Nd 8592231 19.0 18.4 3.2% Ni 8592231 50 52 3.9% Р 8592231 0.065 0.068 4.5% Pb 8592231 43 42 2.4% Pr 8592231 5.58 5.38 3.6% Rb 8592231 58.3 60.7 4.0% S 8592231 0.277 0.261 5.9% Sb 8592231 0.0% < 0.1 < 0.1 Sc 8592231 11 11 0.0% Si 8592231 31.6 31.7 0.3% Sm 8592231 3.3 3.3 0.0% 8592231 1 Sn < 1 8592231 Sr 356 366 2.8% Та 8592231 2.1% 0.96 0.94 Tb 8592231 0.40 0.39 2.5% Th 8592231 7.41 7.48 0.9% Τi 8592231 0.284 0.288 1.4% ΤI 8592231 0.5 0.5 0.0% Tm 8592231 0.206 0.201 2.5% U 2.72 2.2% 8592231 2.78 ٧ 8592231 79 81 2.5% W 8592231 0.0% < 1 < 1 Υ 8592231 12.0 11.7 2.5% Yb 8592231 1.26 1.20 4.9% Zn 8592231 89 90 1.1% Zr 8592231 169 176 (202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 RPD Parameter Sample ID Original Replicate 8592231 0.002 0.003 Au Pd 8592231 < 0.001 < 0.001 0.0% Pt 8592231 < 0.005 < 0.005 0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T242303 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie

				(201-3	78) Soc	dium P	eroxid	e Fusion	- ICP-O	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.SY-4)											
Parameter	Expect	Actual	Recovery	Limits										
Al	10.95	10.66	97%	90% - 110%										
Ва	340	332	98%	90% - 110%										
Ве	2.6	3.1	120%	90% - 110%										
Ca	5.72	5.75	100%	90% - 110%										
Ce	122	132	108%	90% - 110%										
Со	2.8	2.3	83%	90% - 110%										
Cs	1.5	1.7	113%	90% - 110%										
Cu	7	5	78%	90% - 110%										
Dy	18.2	18.4	101%	90% - 110%										
Er	14.2	14.4	101%	90% - 110%										
Eu	2.0	1.9	93%	90% - 110%										
Fe	4.34	4.29	99%	90% - 110%										
Ga	35	36	102%	90% - 110%										
Gd	14	15	105%	90% - 110%										
Hf	10.6	10.7	101%	90% - 110%										
Но	4.3	4.5	104%	90% - 110%										
K	1.37	1.36	99%	90% - 110%										
La	58	62	107%	90% - 110%										
Li	37	35	96%	90% - 110%										
Lu	2.1	2.2	102%	90% - 110%										
Mg	0.325	0.303	93%	90% - 110%										
Mn	836	828	99%	90% - 110%										
Nb	13	15	118%	90% - 110%										
Nd	57	58	101%	90% - 110%										
Pb	10	10	101%	90% - 110%										
Pr	15.0	16.1	107%	90% - 110%										
Rb	55	54	99%	90% - 110%										
Si	23.3	22.4	96%	90% - 110%										
Sm	12.7	12.3	97%	90% - 110%										
Sn	7.1	7.5	105%	90% - 110%										
Sr	1191	1236	104%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T242303 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	LIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michael Lavoie														
Tb	2.6	2.7	104%	90% - 110%											
Th	1.4	1.5	107%	90% - 110%											
Ti	0.172	0.172	100%	90% - 110%											
Tm	2.3	2.3	101%	90% - 110%											
V	8	10	120%	90% - 110%											
Yb	14.8	15.6	105%	90% - 110%											
Zn	93	92	99%	90% - 110%											
Zr	517	550	106%	90% - 110%											
				(202-0	55) Fire	Assay	- Au,	Pt, Pd Tr	ace Lev	els, ICF	P-OES	finish			
		CRM #1	(ref.PG129)												
Parameter	Expect	Actual	Recovery	Limits											
Au	1.1	1.1	98%	90% - 110%											
Pd	0.115	0.114	99%	90% - 110%											
Pt	0.239	0.234	98%	90% - 110%											

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T242303
PROJECT: ATTENTION TO: Michael Lavoie

SAMPLING SITE.	1017000	SAMPLED BY.	411117TION TEOLINIOUE
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
Al	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Be	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Co	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
ln .	MIN-200-12001		ICP-MS
κ	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Mo	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P	WIII 200 12001		ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc Sc	MIN-200-12001		ICP-WS
Sc Si	MIN-200-12001 MIN-200-12001		ICP/OES
	MIN-200-12001		
Sm			ICP-MS
Sn Sr	MIN-200-12001		ICP/MS
Sr T-	MIN-200-12001		ICP-OES
Ta T-	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th 	MIN-200-12001		ICP-MS
Ti	MIN-200-12001		ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T242303
PROJECT: ATTENTION TO: Michael Lavoie

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Υ	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michel Lavoie

PROJECT: Michel Lavoie

AGAT WORK ORDER: 17T241916

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Aug 04, 2017

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

110120	

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

*NOTES

CLIENT NAME: MISC AGAT CLIENT ON

Certificate of Analysis

AGAT WORK ORDER: 17T241916

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

DATE SAMPLED: Jul	25, 2017			ATE RECE	EIVED: Jul 2	26, 2017		DATE I	ES/ICP-MS Finish E REPORTED: Aug 04, 2017 Ca						
	Analyte:	Ag	Al	As	В	Ba	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cı
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2		0.5	0.005	0.1	5
Sample14 (8589089)		<1	5.02	<30	32	91.4	<5	1.9	6.05	<0.2	9.8	40.2	0.007	1.2	148
Sample15 (8589090)		<1	6.39	<30	36	246	<5	0.4	1.60	<0.2	36.7	44.6	0.009	6.0	109
Sample16 (8589091)		<1	8.45	<30	<20	2120	12	2.4	1.53	<0.2	90.5	38.8	0.006	3.9	19
Sample17 (8589092)		<1	5.49	<30	<20	1580	10	0.3	1.52	<0.2	62.8	6.2	< 0.005	6.3	37
Sample18 (8589093)		<1	0.61	<30	<20	79.9	<5	1.2	0.19	<0.2	2.1	2.6	< 0.005	0.7	105
Sample19 (8589094)		<1	10.5	<30	41	1370	7	1.1	2.87	<0.2	61.3	36.8	0.015	12.8	ξ
Sample20 (8589095)		<1	8.24	<30	42	612	6	1.2	7.37	0.3	8.2	60.8	<0.005	8.9	120
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1			0.05			0.05
Sample14 (8589089)		3.58	2.21	0.77	8.16	15.5	3.23	2	2	0.86	<0.2	0.45	3.9	19	0.42
Sample15 (8589090)		2.97	1.97	0.86	7.11	16.3	3.28	1	3	0.72	<0.2	1.74	18.8	59	0.28
Sample16 (8589091)		3.11	1.59	1.88	2.28	23.8	5.51	1	5	0.63	<0.2	2.73	43.7	45	0.22
Sample17 (8589092)		2.09	0.92	1.30	2.12	17.2	3.84	1	3	0.41	<0.2	2.04	30.8	51	0.16
Sample18 (8589093)		0.09	0.05	0.09	0.74	1.26	0.10	<1	<1	< 0.05	<0.2	0.20	1.1	<10	< 0.05
Sample19 (8589094)		2.53	1.68	1.12	7.28	27.4	3.81	2	4	0.57	<0.2	3.80	31.6	87	0.28
Sample20 (8589095)		1.58	0.88	0.72	9.69	22.2	1.60	2	<1	0.37	<0.2	1.52	4.0	65	0.14
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	S
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
Sample14 (8589089)		2.61	1270	<2	2	7.4	72	0.05	6	1.65	25.6	0.35	0.1	26	26.7
Sample15 (8589090)		2.47	527	<2	8	16.4	77	0.06	9	4.83	139	0.44	0.1	20	29.4
Sample16 (8589091)		0.73	413	6	9	40.2	17	0.11	23	11.7	123	0.21	<0.1	7	30.0
Sample17 (8589092)		0.93	621	<2	7	28.1	23	0.07	14	8.23	137	<0.01	<0.1	<5	32.2
Sample18 (8589093)		0.20	63	<2	<1	1.0	19	<0.01	6	0.28	12.2	<0.01	0.1	<5	41.7
Sample19 (8589094)		3.23	1460	6	5	26.3	112	0.09	39	7.68	278	0.02	<0.1	17	20.9
Sample20 (8589095)		3.32	1410	<2	<1	4.8	106	0.02	18	1.16	156	0.64	0.1	30	20.0

Certified By:

y Latomura

CLIENT NAME: MISC AGAT CLIENT ON

Certificate of Analysis

AGAT WORK ORDER: 17T241916

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(201	1-378) S	odium P	eroxide I	Fusion -	ICP-OES	S/ICP-MS	S Finish					
DATE SAMPLED: Jul	25, 2017		Г	DATE RECE	EIVED: Jul	26, 2017		DATE F	REPORTED	D: Aug 04, 2	017	SAM	PLE TYPE:	Other	
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
Sample14 (8589089)		2.2	1	139	<0.5	0.59	0.3	0.59	<0.5	0.38	0.11	246	<1	20.8	2.3
Sample15 (8589090)		3.2	<1	218	<0.5	0.58	5.4	0.51	1.0	0.32	2.35	129	<1	17.0	1.8
Sample16 (8589091)		6.8	1	243	<0.5	0.76	10.3	0.25	0.7	0.24	3.06	76	2	16.9	1.3
Sample17 (8589092)		5.0	<1	220	<0.5	0.54	5.8	0.16	0.9	0.14	1.58	54	1	11.0	0.8
Sample18 (8589093)		0.2	<1	25.8	<0.5	< 0.05	0.5	0.04	< 0.5	< 0.05	0.14	10	<1	< 0.5	<0.1
Sample19 (8589094)		4.4	1	584	<0.5	0.52	11.8	0.56	2.7	0.24	3.25	171	<1	13.6	1.6
Sample20 (8589095)		1.3	<1	463	<0.5	0.28	0.3	0.93	1.2	0.14	0.16	575	<1	8.2	0.9
	Analyte:	Zn	Zr												
	Unit:	ppm	ppm												
Sample ID (AGAT ID)	RDL:	5	0.5												
Sample14 (8589089)		88	64.4												
Sample15 (8589090)		82	106												
Sample16 (8589091)		44	192												
Sample17 (8589092)		72	132												
Sample18 (8589093)		12	10.1												
Sample19 (8589094)		175	137												
Sample20 (8589095)		119	25.3												

Comments: RDL - Reported Detection Limit

Certified By:

y of stomure

Certificate of Analysis

AGAT WORK ORDER: 17T241916

PROJECT: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

(202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish												
DATE SAMPLED: Jul	25, 2017			DATE RECEIV	'ED: Jul 26, 2017	DATE REPORTED: Aug 04, 2017	SAMPLE TYPE: Other					
	Analyte:	Au	Pd	Pt								
	Unit:	ppm	ppm	ppm								
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005								
Sample14 (8589089)		0.009	0.001	<0.005								
Sample15 (8589090)		0.026	0.002	<0.005								
Sample16 (8589091)		0.006	0.001	<0.005								
Sample17 (8589092)		0.003	< 0.001	< 0.005								
Sample18 (8589093)		0.078	0.001	<0.005								
Sample19 (8589094)		0.002	0.002	< 0.005								
Sample20 (8589095)		0.003	< 0.001	< 0.005								

Comments: RDL - Reported Detection Limit

Certified By:

y of stomure

Quality Assurance - Replicate AGAT WORK ORDER: 17T241916 PROJECT: Michel Lavoie 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	378) Sod	lium Pe	roxide	Fusion	- ICP-O	S/ICP-	MS Fin	ish		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	8589089	< 1	< 1	0.0%										
Al	8589089	5.02	5.03	0.2%										
As	8589089	< 30	< 30	0.0%										
В	8589089	32	33	3.1%										
Ва	8589089	91.4	90.2	1.3%										
Be	8589089	< 5	< 5	0.0%										
Bi	8589089	1.9	1.9	0.0%										
Ca	8589089	6.05	6.04	0.2%										
Cd	8589089	< 0.2	< 0.2	0.0%										
Се	8589089	9.78	9.61	1.8%										
Со	8589089	40.2	38.3	4.8%										
Cr	8589089	0.007	0.007	0.0%										
Cs	8589089	1.2	1.1	8.7%										
Cu	8589089	148	147	0.7%										
Dy	8589089	3.58	3.39	5.5%										
Er	8589089	2.21	2.26	2.2%										
Eu	8589089	0.77	0.82	6.3%										
Fe	8589089	8.16	8.10	0.7%										
Ga	8589089	15.5	14.5	6.7%										
Gd	8589089	3.23	2.99	7.7%										
Ge	8589089	2	2	0.0%										
Hf	8589089	2	2	0.0%										
Но	8589089	0.86	0.86	0.0%										
In	8589089	< 0.2	< 0.2	0.0%										
K	8589089	0.45	0.45	0.0%										
La	8589089	3.9	3.9	0.0%										
Li	8589089	19	17	11.1%										
Lu	8589089	0.42	0.42	0.0%										
Mg	8589089	2.61	2.58	1.2%										
Mn	8589089	1270	1260	0.8%										
Мо	8589089	< 2	< 2	0.0%										

Quality Assurance - Replicate
AGAT WORK ORDER: 17T241916
PROJECT: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.acatlabs.com

http://www.agatlabs.com ATTENTION TO: Michel Lavoie CLIENT NAME: MISC AGAT CLIENT ON 8589089 0.0% Nd 8589089 7.4 7.4 0.0% Ni 8589089 72 68 5.7% Р 8589089 0.047 0.040 16.1% Pb 8589089 6 6 0.0% Pr 8589089 1.65 1.63 1.2% Rb 8589089 25.6 24.8 3.2% S 8589089 0.349 0.331 5.3% Sb 8589089 0.1 < 0.1 Sc 8589089 26 26 0.0% Si 8589089 26.7 26.6 0.4% Sm 8589089 2.2 2.4 8.7% 8589089 1 Sn < 1 139 137 Sr 8589089 1.4% Та < 0.5 0.0% 8589089 < 0.5 Tb 8589089 0.594 0.619 4.1% Th 8589089 0.3 0.3 0.0% Ti 8589089 0.593 0.599 1.0% ΤI 8589089 0.0% < 0.5 < 0.5 Tm 8589089 0.38 0.36 5.4% U 8589089 0.11 0.11 0.0% ٧ 8589089 246 243 1.2% W 8589089 < 1 0.0% < 1 Υ 8589089 20.1 3.4% 20.8 Yb 8589089 2.3 2.5 8.3% Zn 8589089 88 87 1.1% Zr 8589089 60.3 64.4 (202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 RPD Parameter Sample ID Original Replicate 8589089 0.009 0.006 Au Pd 8589089 0.001 < 0.001

8589089

< 0.005

< 0.005

0.0%

Pt

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T241916

PROJECT: Michel Lavoie

MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-378	Sodi	um P	eroxid	e Fusion	- ICP-C	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.SY-4)											
Parameter	Expect	Actual	Recovery	Limits										
Al	10.95	10.87	99%	90% - 110%										
Ва	340	313	92%	90% - 110%										
Be	2.6	3	115%	90% - 110%										
Ca	5.72	5.79	101%	90% - 110%										
Ce	122	122	100%	90% - 110%										
Co	2.8	2.4	85%	90% - 110%										
Cs	1.5	1.5	99%	90% - 110%										
Cu	7	7	93%	90% - 110%										
Dy	18.2	18.2	100%	90% - 110%										
Er	14.2	14.8	104%	90% - 110%										
Eu	2.0	2	100%	90% - 110%										
Fe	4.34	4.36	100%	90% - 110%										
Ga	35	37	105%	90% - 110%										
Gd	14	15	109%	90% - 110%										
Hf	10.6	10.3	98%	90% - 110%										
Но	4.3	4.7	110%	90% - 110%										
K	1.37	1.37	100%	90% - 110%										
La	58	61	106%	90% - 110%										
Li	37	37	100%	90% - 110%										
Lu	2.1	2.3	108%	90% - 110%										
Mg	0.325	0.293	90%	90% - 110%										
Mn	836	792	95%	90% - 110%										
Nb	13	13	102%	90% - 110%										
Nd	57	56	97%	90% - 110%										
Pb	10	10	102%	90% - 110%										
Pr	15.0	16.5	110%	90% - 110%										
Rb	55	52	95%	90% - 110%										
Si	23.3	22.3	96%	90% - 110%										
Sm	12.7	12.3	97%	90% - 110%										
Sn	7.1	6.6	93%	90% - 110%										
Sr	1191	1170	98%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T241916

PROJECT: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: MISC A	GAT CLI	ENT ON							ATTE	ENTION	ΓO: Michel L	₋avoie		w.agallabs.com
Та	0.9	1	111%	90% - 110%											
Tb	2.6	2.9	110%	90% - 110%											
Th	1.4	1.4	102%	90% - 110%											
Ti	0.172	0.176	102%	90% - 110%											
Tm	2.3	2.5	109%	90% - 110%											
U	0.8	0.8	98%	90% - 110%											
V	8	10	119%	90% - 110%											
Yb	14.8	15	102%	90% - 110%											
Zn	93	98	106%	90% - 110%											
Zr	517	536	104%	90% - 110%											
				(202-0	55) Fire	Assay	- Au, I	Pt, Pd Tra	ace Lev	els, ICF	P-OES	finish			
		CRM #1	(ref.PG124))											
Parameter	Expect	Actual	Recovery	Limits											
Au	0.321	0.343	107%	90% - 110%											
Pd	0.037	0.037	99%	90% - 110%											
Pt	0.09	0.09	99%	90% - 110%											

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: Michel Lavoie

AGAT WORK ORDER: 17T241916 ATTENTION TO: Michel Lavoie

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
AI	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Ве	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Со	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
In	MIN-200-12001		ICP-MS
K	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Мо	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P			ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc	MIN-200-12001		ICP/OES
Si	MIN-200-12001		ICP/OES
Sm	MIN-200-12001		ICP-MS
Sn	MIN-200-12001		ICP/MS
Sr	MIN-200-12001		ICP-OES
Та	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th	MIN-200-12001		ICP-MS
Ti	MIN-200-12001		ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T241916
PROJECT: Michel Lavoie ATTENTION TO: Michel Lavoie

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Υ	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michel Lavoie

PROJECT: Michel Lavoie

AGAT WORK ORDER: 17T244103

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Aug 04, 2017

PAGES (INCLUDING COVER): 9

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

CLIENT NAME: MISC AGAT CLIENT ON

Certificate of Analysis

AGAT WORK ORDER: 17T244103

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(20	1-378) So	odium Pe	eroxide l	Fusion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Jul	31, 2017	DATE RECEIVED: Aug 01, 2017						DATE I	REPORTED): Aug 04, 2	017	SAMPLE TYPE: Other			
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cı
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppn
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
Sample 21 (8603504)		<1	7.34	<30	40	297	<5	2.4	6.78	0.7	18.8	77.4	0.009	4.1	382
Sample 22 (8603505)		7	7.14	<30	32	50.1	<5	2.3	8.44	1.1	5.1	66.1	0.017	0.2	4020
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
Sample 21 (8603504)		7.13	5.02	1.55	10.2	22.5	5.92	2	3	1.80	<0.2	0.93	7.6	39	0.82
Sample 22 (8603505)		2.31	1.57	0.55	7.35	19.0	1.78	2	1	0.60	<0.2	0.18	2.0	<10	0.29
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	S
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
Sample 21 (8603504)		2.36	2140	3	5	13.9	95	0.07	15	3.25	55.3	1.43	0.1	40	21.4
Sample 22 (8603505)		2.11	1210	<2	<1	3.9	130	0.04	25	0.91	5.6	0.97	0.2	26	24.0
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
Sample 21 (8603504)		4.4	<1	295	<0.5	1.22	1.0	1.06	0.6	0.76	0.57	393	<1	43.7	4.7
Sample 22 (8603505)		1.3	<1	339	<0.5	0.38	<0.1	0.36	<0.5	0.24	0.11	249	<1	13.5	1.5
	Analyte:	Zn	Zr												
	Unit:	ppm	ppm												
Sample ID (AGAT ID)	RDL:	5	0.5												
Sample 21 (8603504)		176	114												
Sample 22 (8603505)		105	35.2												

Comments: RDL - Reported Detection Limit

Certified By:

y Latimura

Certificate of Analysis

AGAT WORK ORDER: 17T244103

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

		_					
			(20:	2-055) Fire	e Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Ju	l 31, 2017			DATE RECE	IVED: Aug 01, 2017	DATE REPORTED: Aug 04, 2017	SAMPLE TYPE: Other
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
Sample 21 (8603504)		0.006	<0.001	<0.005			
Sample 22 (8603505)		0.254	0.004	< 0.005			

Comments: RDL - Reported Detection Limit

CLIENT NAME: MISC AGAT CLIENT ON

Certified By:

y of stomure

Quality Assurance - Replicate AGAT WORK ORDER: 17T244103 PROJECT: Michel Lavoie 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	378) Sod	lium Pe	roxide	Fusion	- ICP-O	S/ICP-	MS Fin	ish		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	8603504	< 1	< 1	0.0%										
Al	8603504	7.34	7.34	0.0%										
As	8603504	< 30	< 30	0.0%										
В	8603504	40	43	7.2%										
Ва	8603504	297	296	0.3%										
Be	8603504	< 5	< 5	0.0%										
Bi	8603504	2.36	2.29	3.0%										
Ca	8603504	6.78	6.80	0.3%										
Cd	8603504	0.7	0.6	15.4%										
Ce	8603504	18.8	18.9	0.5%										
Co	8603504	77.4	78.6	1.5%										
Cr	8603504	0.009	0.009	0.0%										
Cs	8603504	4.14	4.42	6.5%										
Cu	8603504	382	399	4.4%										
Dy	8603504	7.13	6.98	2.1%										
Er	8603504	5.02	4.78	4.9%										
Eu	8603504	1.55	1.58	1.9%										
Fe	8603504	10.2	10.3	1.0%										
Ga	8603504	22.5	22.5	0.0%										
Gd	8603504	5.92	6.32	6.5%										
Ge	8603504	2	2	0.0%										
Hf	8603504	3	3	0.0%										
Но	8603504	1.80	1.76	2.2%										
In	8603504	< 0.2	< 0.2	0.0%										
K	8603504	0.93	0.94	1.1%										
La	8603504	7.6	7.5	1.3%										
Li	8603504	39	39	0.0%										
Lu	8603504	0.818	0.792	3.2%										
Mg	8603504	2.36	2.35	0.4%										
Mn	8603504	2140	2120	0.9%										
Мо	8603504	3	3	0.0%										

Quality Assurance - Replicate AGAT WORK ORDER: 17T244103 PROJECT: Michel Lavoie 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie 8603504 0.0% Nd 8603504 13.9 14.0 0.7% 8603504 92 Ni 95 3.2% Р 8603504 0.07 0.07 0.0% Pb 8603504 15 16 6.5% Pr 8603504 3.25 3.25 0.0% Rb 8603504 55.3 56.1 1.4% S 1.42 0.7% 8603504 1.43 Sb 8603504 0.1 0.0% 0.1 Sc 8603504 40 41 2.5% Si 8603504 21.4 21.5 0.5% Sm 8603504 4.4 4.5 2.2% Sn 8603504 1 < 1 8603504 295 301 Sr 2.0% Та 8603504 < 0.5 < 0.5 0.0% Tb 8603504 1.22 1.20 1.7% Th 8603504 1.0 1.0 0.0% Ti 8603504 1.06 1.06 0.0% ΤI 8603504 0.6 0.6 0.0% Tm 8603504 0.761 0.797 4.6% U 8603504 0.57 0.57 0.0% ٧ 8603504 393 400 1.8% W 8603504 0.0% < 1 < 1 Υ 8603504 43.7 42.7 2.3%

(202-055) Fire As	ssay - Au, Pt, Pd Trac	e Levels, ICP-OES finish
-------------------	------------------------	--------------------------

		REPLICATE #1								
Parameter	Sample ID	Original	Replicate	RPD						
Au	8603504	0.006	0.006	0.0%						
Pd	8603504	< 0.001	< 0.001	0.0%						
Pt	8603504	< 0.005	< 0.005	0.0%						

8603504

8603504

8603504

4.7

176

114

4.7

172

116

0.0%

2.3%

1.7%

Yb

Zn

Zr

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T244103

PROJECT: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	78) So	dium P	eroxid	e Fusion	- ICP-C	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.Till-2)											
Parameter	Expect	Actual	Recovery	Limits										
Al	8.47	8.01	95%	90% - 110%										
As	26	25	94%	90% - 110%										
Ва	540	496	92%	90% - 110%										
Ве	4.0	4	100%	90% - 110%										
Ca	0.907	0.981	108%	90% - 110%										
Ce	98	103	105%	90% - 110%										
Со	15	15	100%	90% - 110%										
Cu	150	157	105%	90% - 110%										
Er	3.7	4	107%	90% - 110%										
Fe	3.77	3.77	100%	90% - 110%										
Hf	11	10	95%	90% - 110%										
K	2.55	2.35	92%	90% - 110%										
La	44	47	106%	90% - 110%										
Li	47	44	94%	90% - 110%										
Lu	0.6	0.6	100%	90% - 110%										
Mg	1.1	1.1	97%	90% - 110%										
Mn	780	722	93%	90% - 110%										
Мо	14	14	98%	90% - 110%										
Nb	20	18	92%	90% - 110%										
Pb	31	34	109%	90% - 110%										
Rb	144	150	104%	90% - 110%										
Sb	0.8	0.7	92%	90% - 110%										
Sc	12	12	96%	90% - 110%										
Si	28.4	26.3	93%	90% - 110%										
Sm	7.4	7.8	105%	90% - 110%										
Sr	144	155	107%	90% - 110%										
Tb	1.2	1.3	109%	90% - 110%										
Th	18.4	20.4	111%	90% - 110%										
Ti	0.527	0.514	98%	90% - 110%										
U	5.7	6	106%	90% - 110%										
V	77	83	108%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T244103

PROJECT: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: MISC A	GAT CLII	ENT ON			ATTENTION TO: Michel Lavoie										
W	5	5	91%	90% - 110%												
Y	40	38	94%	90% - 110%												
Zn	130	131	101%	90% - 110%												
Zr	390	395	101%	90% - 110%												
	(202-055) Fi							Pt, Pd Tra	ace Lev	els, ICF	P-OES	finish				
		CRM #1	(ref.PG129)													
Parameter	Expect	Actual	Recovery	Limits												
Au	1.1	1.1	102%	90% - 110%												
Pd	0.115	0.115	100%	90% - 110%												
Pt	0.239	0.243	102%	90% - 110%												

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: Michel Lavoie

AGAT WORK ORDER: 17T244103 ATTENTION TO: Michel Lavoie

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
AI	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Ве	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Со	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
In	MIN-200-12001		ICP-MS
K	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Мо	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P			ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc	MIN-200-12001		ICP/OES
Si	MIN-200-12001		ICP/OES
Sm	MIN-200-12001		ICP-MS
Sn	MIN-200-12001		ICP/MS
Sr	MIN-200-12001		ICP-OES
Та	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th	MIN-200-12001		ICP-MS
Ti	MIN-200-12001		ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T244103
PROJECT: Michel Lavoie ATTENTION TO: Michel Lavoie

		_	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001	•	ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
w	MIN-200-12001		ICP-MS
Υ	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michel Lavoie

PROJECT:

AGAT WORK ORDER: 17T254660

DATE REPORTED: Sep 14, 2017

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

*NOTES		

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 17T254660

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(20	1-378) Sc	odium Pe	eroxide l	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Aug	g 29, 2017		Г	DATE RECE	EIVED: Aug	30, 2017		DATE I	REPORTED): Sep 14, 20	017	SAN	IPLE TYPE:	Other	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
23 (8676884)		<1	3.71	<30	<20	47.1	<5	0.6	4.00	<0.2	20.1	19.8	0.017	0.4	811
24 (8676885)		<1	8.90	<30	30	424	<5	<0.1	6.58	0.4	17.5	42.2	0.014	3.1	109
25 (8676886)		8	5.59	<30	65	619	<5	18.4	5.22	2.1	13.7	729	0.017	5.6	885
26 (8676887)		1	1.67	<30	155	98.3	<5	4.9	2.74	<0.2	6.8	650	0.006	8.0	945
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
23 (8676884)		1.32	0.55	0.43	3.11	12.1	1.34	2	1	0.20	<0.2	0.21	9.8	<10	0.11
24 (8676885)		4.55	2.77	1.02	8.62	20.5	3.66	1	2	0.94	<0.2	1.56	7.9	28	0.38
25 (8676886)		4.91	2.92	1.33	17.9	22.6	3.99	2	2	0.94	<0.2	0.96	6.2	46	0.43
26 (8676887)		1.68	1.09	0.24	38.7	7.91	1.39	1	<1	0.37	<0.2	0.07	3.1	11	0.20
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
23 (8676884)		0.26	532	4	2	8.8	16	0.03	33	2.26	6.9	0.17	0.7	<5	34.3
24 (8676885)		3.19	2050	<2	5	10.4	58	0.04	64	2.34	211	0.12	<0.1	33	20.9
25 (8676886)		1.59	1320	12	5	10.3	142	0.05	149	2.05	79.3	10.3	0.2	22	16.7
26 (8676887)		2.88	913	3	<1	3.9	450	0.02	13	0.84	6.3	14.7	<0.1	20	8.32
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
23 (8676884)		1.5	3	785	<0.5	0.18	3.1	0.12	<0.5	0.08	1.68	55	19	5.8	0.6
24 (8676885)		2.9	<1	230	<0.5	0.63	1.5	0.66	1.4	0.39	0.34	254	<1	24.4	2.7
25 (8676886)		3.2	2	310	<0.5	0.65	0.4	0.68	1.4	0.38	1.42	287	7	24.6	2.9
26 (8676887)		1.0	<1	3.4	<0.5	0.23	0.6	0.08	<0.5	0.17	6.81	179	<1	11.0	1.2

\sim					
Ce	rtı	t١	אם	H٧	/ -
\mathcal{C}	וווו	11	ᆫ	\mathbf{D}	<i>'</i> .

Unless the report is signed by AGAT Laboratories, users are expressly warned that analytical results are preliminary and for information purposes only. If the results have not been finalized, they may be updated at any time without notice. Users acknowledge and accept that they must not rely on preliminary data in any way, and AGAT Laboratories accepts no liability whatsoever for any consequences arising from misuse of the information.

Certificate of Analysis

AGAT WORK ORDER: 17T254660

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

	(201-378) Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish													
DATE SAMPLED: Aug 29, 2017 DATE RECEIVED: Aug 30, 2017 DATE REPORTED: Sep 14, 2017 SAMPLE TYPE: Other														
	Analyte:	Zn	Zr											
	Unit:	ppm	ppm											
Sample ID (AGAT ID)	RDL:	5	0.5											
23 (8676884)		17	57.5											
24 (8676885)		224	85.2											
25 (8676886)		174	61.5											
26 (8676887)		63	51.1											

Comments: RDL - Reported Detection Limit

Certified By:

Unless the report is signed by AGAT Laboratories, users are expressly warned that analytical results are preliminary and for information purposes only. If the results have not been finalized, they may be updated at any time without notice. Users acknowledge and accept that they must not rely on preliminary data in any way, and AGAT Laboratories accepts no liability whatsoever for any consequences arising from misuse of the information.

Certificate of Analysis

AGAT WORK ORDER: 17T254660

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(202	2-055) Fir	e Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish								
DATE SAMPLED: Au	DATE SAMPLED: Aug 29, 2017 DATE RECEIVED: Aug 30, 2017 DATE REPORTED: Sep 14, 2017 SAMPLE TYPE: Other													
	Analyte:	Au	Pd	Pt										
	Unit:	ppm	ppm	ppm										
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005										
23 (8676884)		0.031	0.001	< 0.005										
24 (8676885)		<0.001	0.002	< 0.005										
25 (8676886)		0.016	0.002	< 0.005										
26 (8676887)		0.005	0.002	< 0.005										

Comments: RDL - Reported Detection Limit

Certified By:

Quality Assurance - Replicate AGAT WORK ORDER: 17T254660 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	378) Sod	ium Pe	roxide	Fusion	- ICP-O	S/ICP-	MS Fin	ish		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	8676884	< 1	< 1	0.0%										
Al	8676884	3.71	3.72	0.3%										
As	8676884	< 30	< 30	0.0%										
В	8676884	< 20	< 20	0.0%										
Ва	8676884	47.1	46.6	1.1%										
Be	8676884	< 5	< 5	0.0%										
Bi	8676884	0.55	0.51	7.5%										
Ca	8676884	4.00	3.94	1.5%										
Cd	8676884	< 0.2	< 0.2	0.0%										
Се	8676884	20.1	19.8	1.5%										
Со	8676884	19.8	19.6	1.0%										
Cr	8676884	0.017	0.017	0.0%										
Cs	8676884	0.4	0.4	0.0%										
Cu	8676884	811	808	0.4%										
Dy	8676884	1.32	1.12	16.4%										
Er	8676884	0.55	0.59	7.0%										
Eu	8676884	0.431	0.440	2.1%										
Fe	8676884	3.11	3.11	0.0%										
Ga	8676884	12.1	11.7	3.4%										
Gd	8676884	1.34	1.43	6.5%										
Ge	8676884	2	1											
Hf	8676884	1	1	0.0%										
Но	8676884	0.20	0.20	0.0%										
In	8676884	< 0.2	< 0.2	0.0%										
K	8676884	0.21	0.20	4.9%										
La	8676884	9.78	9.52	2.7%										
Li	8676884	< 10	< 10	0.0%										
Lu	8676884	0.105	0.092	13.2%										
Mg	8676884	0.26	0.26	0.0%										
Mn	8676884	532	516	3.1%										
Мо	8676884	4	3	28.6%										

Quality Assurance - Replicate AGAT WORK ORDER: 17T254660 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: MISC AC	SAT CLIE	NT ON							ATTE	ENTION TO	D: Michel	Lavoie	nttp://www	.agatlabs.com
Nb	8676884	2	2	0.0%											
Nd	8676884	8.8	8.4	4.7%											
Ni	8676884	16	17	6.1%											
Р	8676884	0.027	0.022	20.4%											
Pb	8676884	33	31	6.3%											
Pr	8676884	2.26	2.33	3.1%											
Rb	8676884	6.9	6.8	1.5%											
S	8676884	0.17	0.17	0.0%											
Sb	8676884	0.7	0.7	0.0%											
Sc	8676884	< 5	< 5	0.0%											
Si	8676884	34.3	34.2	0.3%											
Sm	8676884	1.52	1.72	12.3%											
Sn	8676884	3	3	0.0%											
Sr	8676884	785	789	0.5%											
Та	8676884	< 0.5	< 0.5	0.0%											
Tb	8676884	0.18	0.20	10.5%											
Th	8676884	3.1	3.1	0.0%											
Ti	8676884	0.12	0.12	0.0%											
TI	8676884	< 0.5	< 0.5	0.0%											
Tm	8676884	0.085	0.093	9.0%											
U	8676884	1.68	1.64	2.4%											
V	8676884	55	55	0.0%											
W	8676884	19	18	5.4%											
Υ	8676884	5.8	5.5	5.3%											
Yb	8676884	0.6	0.6	0.0%											
Zn	8676884	17	17	0.0%											
Zr	8676884	57.5	58.4	1.6%											
				(202-0	55) Fire	Assay	- Au, P	t, Pd Tr	ace Lev	els, ICF	-OES fi	nish			
		REPLIC	ATE #1												
Parameter	Sample ID	Original	Replicate	RPD											
Au	8676884	0.031	0.058												
Pd	8676884	0.001	< 0.001												
Pt	8676884	< 0.005	< 0.005	0.0%											

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T254660 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-37	78) Soc	dium P	eroxid	e Fusion	- ICP-C	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.SY-4)											
Parameter	Expect	Actual	Recovery	Limits										
Al	10.95	10.64	97%	90% - 110%										
Ва	340	343	101%	90% - 110%										
Be	2.6	2.8	108%	90% - 110%										
Ca	5.72	5.89	103%	90% - 110%										
Ce	122	126	103%	90% - 110%										
Со	2.8	2.5	90%	90% - 110%										
Cs	1.5	1.6	107%	90% - 110%										
Cu	7	7	98%	90% - 110%										
Dy	18.2	19.4	107%	90% - 110%										
Er	14.2	14.6	103%	90% - 110%										
Eu	2.0	1.8	92%	90% - 110%										
Fe	4.34	4.36	100%	90% - 110%										
Ga	35	39	110%	90% - 110%										
Gd	14	15	105%	90% - 110%										
Hf	10.6	9.8	93%	90% - 110%										
Но	4.3	4.3	100%	90% - 110%										
K	1.37	1.35	98%	90% - 110%										
La	58	61	104%	90% - 110%										
Li	37	36	98%	90% - 110%										
Lu	2.1	2	97%	90% - 110%										
Mg	0.325	0.312	96%	90% - 110%										
Mn	836	805	96%	90% - 110%										
Nb	13	14	105%	90% - 110%										
Nd	57	61	107%	90% - 110%										
Ni	9	7	75%	90% - 110%										
Pb	10	10	100%	90% - 110%										
Pr	15.0	15.3	102%	90% - 110%										
Rb	55	53	97%	90% - 110%										
Si	23.3	21.5	92%	90% - 110%										
Sm	12.7	13.6	107%	90% - 110%										
Sn	7.1	7.1	99%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T254660 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: MISC A	GAT CLI	ENT ON							ATTE	ENTION T	ΓO: Michel I	₋avoie	·	J
Sr	1191	1157	97%	90% - 110%											
Та	0.9	1.1	123%	90% - 110%											
Tb	2.6	2.8	106%	90% - 110%											
Th	1.4	1.5	108%	90% - 110%											
Ti	0.172	0.175	102%	90% - 110%											
Tm	2.3	2.2	95%	90% - 110%											
U	0.8	0.9	115%	90% - 110%											
V	8	10	122%	90% - 110%											
Y	119	113	95%	90% - 110%											
Yb	14.8	15.8	107%	90% - 110%											
Zn	93	96	103%	90% - 110%											
Zr	517	523	101%	90% - 110%											
				(202-0	55) Fire	Assay	- Au, I	Pt, Pd Tra	ace Lev	els, ICF	P-OES	finish			
		CRM #1	(ref.PG129)												
Parameter	Expect	Actual	Recovery	Limits											
Au	1.1	1.1	98%	90% - 110%											
Pd	0.115	0.121	106%	90% - 110%											
Pt	0.239	0.25	105%	90% - 110%											

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T254660
PROJECT: ATTENTION TO: Michel Lavoie

SAMPLING SITE.	1017000	SAMPLED BY.	411117TION TEOLINIOUE
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
Al	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Be	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Co	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
ln .	MIN-200-12001		ICP-MS
κ	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Mo	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P	WIII 200 12001		ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc Sc	MIN-200-12001		ICP-WS
Sc Si	MIN-200-12001 MIN-200-12001		ICP/OES
	MIN-200-12001		
Sm			ICP-MS
Sn Sr	MIN-200-12001		ICP/MS
Sr T-	MIN-200-12001		ICP-OES
Ta T-	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th 	MIN-200-12001		ICP-MS
Ti	MIN-200-12001		ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T254660
PROJECT: ATTENTION TO: Michel Lavoie

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Y	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michel Lavoie

PROJECT: Michel Lavoie

AGAT WORK ORDER: 17T257046

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Sep 19, 2017

PAGES (INCLUDING COVER): 9

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

CLIENT NAME: MISC AGAT CLIENT ON

Certificate of Analysis

AGAT WORK ORDER: 17T257046

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(20)	1-378) Sc	odium Pe	eroxide l	-usion	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Se	р 06, 2017]	DATE RECE	EIVED: Sep	06, 2017		DATE F	REPORTED	: Sep 19, 20)17	SAM	MPLE TYPE:	Other	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cı
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppn
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	į
27 (8694142)		2	4.78	<30	27	514	5	3.1	2.22	1.2	5.4	215	<0.005	3.8	328
28 (8694143)		2	7.48	<30	44	942	<5	3.9	6.94	1.2	20.6	131	0.013	6.6	333
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	К	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppn
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
27 (8694142)		2.16	1.46	0.72	7.01	9.72	1.93	1	1	0.48	<0.2	0.90	2.2	45	0.20
28 (8694143)		7.67	4.63	1.74	11.6	25.0	6.28	3	3	1.57	<0.2	1.46	8.4	73	0.69
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	S
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.0
27 (8694142)		1.10	693	4	2	4.2	61	0.04	49	0.82	58.6	2.94	<0.1	11	31.0
28 (8694143)		2.00	1860	<2	4	16.3	93	0.07	84	3.02	112	3.01	0.3	41	21.1
	Analyte:	Sm	Sn	Sr	Ta	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yt
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppn
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
27 (8694142)		1.2	4	204	<0.5	0.38	0.5	0.35	0.8	0.24	0.74	108	<1	12.9	1.3
28 (8694143)		5.0	<1	383	<0.5	1.09	0.7	1.03	1.5	0.70	0.35	432	2	38.7	4.7
	Analyte:	Zn	Zr												
	Unit:	ppm	ppm												
Sample ID (AGAT ID)	RDL:	5	0.5												
27 (8694142)		119	39.2												
28 (8694143)		196	105												

Comments: RDL - Reported Detection Limit

Certified By:

y of stomus

Certificate of Analysis

AGAT WORK ORDER: 17T257046

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(202	2-055) Fir	e Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish									
DATE SAMPLED: Se	ATE SAMPLED: Sep 06, 2017 DATE RECEIVED: Sep 06, 2017 DATE REPORTED: Sep 19, 2017 SAMPLE TYPE: Other														
	Analyte:	Au	Pd	Pt											
	Unit:	ppm	ppm	ppm											
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005											
27 (8694142)		0.006	<0.001	< 0.005											
28 (8694143)		0.004	<0.001	< 0.005											

Comments: RDL - Reported Detection Limit

CLIENT NAME: MISC AGAT CLIENT ON

Certified By:

y Later

Quality Assurance - Replicate AGAT WORK ORDER: 17T257046 PROJECT: Michel Lavoie 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-	378) Sod	ium Pe	roxide	Fusion	- ICP-O	ES/ICP-	MS Fin	ish		
		REPLIC	ATE #1			REPLIC	ATE #2							
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD						
Ag	8694142	2	2	0.0%	8694143	2	2	0.0%						
Al	8694142	4.78	4.79	0.2%	8694143	7.48	7.45	0.4%						
As	8694142	< 30	< 30	0.0%	8694143	< 30	< 30	0.0%						
В	8694142	27	26	3.8%	8694143	44	47	6.6%						
Ва	8694142	514	530	3.1%	8694143	942	918	2.6%						
Be	8694142	5	5	0.0%	8694143	< 5	< 5	0.0%						
Bi	8694142	3.1	3.3	6.3%	8694143	3.94	3.65	7.6%						
Ca	8694142	2.22	2.21	0.5%	8694143	6.94	6.90	0.6%						
Cd	8694142	1.2	1.1	8.7%	8694143	1.2	1.7							
Ce	8694142	5.44	5.76	5.7%	8694143	20.6	20.1	2.5%						
Со	8694142	215	218	1.4%	8694143	131	125	4.7%						
Cr	8694142	< 0.005	< 0.005	0.0%	8694143	0.013	0.013	0.0%						
Cs	8694142	3.8	3.9	2.6%	8694143	6.6	6.6	0.0%						
Cu	8694142	328	331	0.9%	8694143	333	328	1.5%						
Dy	8694142	2.16	2.39	10.1%	8694143	7.67	6.93	10.1%						
Er	8694142	1.46	1.38	5.6%	8694143	4.63	4.41	4.9%						
Eu	8694142	0.722	0.684	5.4%	8694143	1.74	1.87	7.2%						
Fe	8694142	7.01	6.96	0.7%	8694143	11.6	11.5	0.9%						
Ga	8694142	9.72	9.92	2.0%	8694143	25.0	24.1	3.7%						
Gd	8694142	1.93	2.06	6.5%	8694143	6.28	6.26	0.3%						
Ge	8694142	1	1	0.0%	8694143	3	3	0.0%						
Hf	8694142	1	1	0.0%	8694143	3	3	0.0%						
Но	8694142	0.48	0.53	9.9%	8694143	1.57	1.44	8.6%						
In	8694142	< 0.2	< 0.2	0.0%	8694143	< 0.2	< 0.2	0.0%						
K	8694142	0.90	0.89	1.1%	8694143	1.46	1.45	0.7%						
La	8694142	2.23	2.31	3.5%	8694143	8.36	7.94	5.2%						
Li	8694142	45	43	4.5%	8694143	73	74	1.4%						
Lu	8694142	0.202	0.212	4.8%	8694143	0.693	0.698	0.7%						
Mg	8694142	1.10	1.12	1.8%	8694143	2.00	2.00	0.0%						
Mn	8694142	693	667	3.8%	8694143	1860	1870	0.5%						
Мо	8694142	4	4	0.0%	8694143	< 2	< 2	0.0%						

Quality Assurance - Replicate AGAT WORK ORDER: 17T257046 PROJECT: Michel Lavoie 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Michel Lavoie

Nb	8694142	2	2	0.0%	8694143	4	3	28.6%							
Nd	8694142	4.2	4.2	0.0%	8694143	16.3	15.6	4.4%							
Ni	8694142	61	62	1.6%	8694143	93	94	1.1%							
Р	8694142	0.04	0.04	0.0%	8694143	0.068	0.063	7.6%							
Pb	8694142	49	50	2.0%	8694143	84	82	2.4%							
Pr	8694142	0.822	0.892	8.2%	8694143	3.02	2.95	2.3%							
Rb	8694142	58.6	61.4	4.7%	8694143	112	111	0.9%							
S	8694142	2.94	2.97	1.0%	8694143	3.01	2.95	2.0%							
Sb	8694142	< 0.1	< 0.1	0.0%	8694143	0.29	0.24	18.9%							
Sc	8694142	11	12	8.7%	8694143	41	40	2.5%							
Si	8694142	31.0	30.2	2.6%	8694143	21.1	20.7	1.9%							
Sm	8694142	1.25	1.44	14.1%	8694143	5.0	4.5	10.5%							
Sn	8694142	4	1		8694143	< 1	< 1	0.0%							
Sr	8694142	204	209	2.4%	8694143	383	376	1.8%							
Та	8694142	< 0.5	< 0.5	0.0%	8694143	< 0.5	< 0.5	0.0%							
Tb	8694142	0.38	0.38	0.0%	8694143	1.09	1.19	8.8%							
Th	8694142	0.48	0.43	11.0%	8694143	0.7	0.7	0.0%							
Ti	8694142	0.347	0.343	1.2%	8694143	1.03	1.02	1.0%							
TI	8694142	0.8	0.8	0.0%	8694143	1.53	1.45	5.4%							
Tm	8694142	0.24	0.23	4.3%	8694143	0.703	0.655	7.1%							
U	8694142	0.740	0.777	4.9%	8694143	0.35	0.36	2.8%							
V	8694142	108	110	1.8%	8694143	432	427	1.2%							
W	8694142	< 1	< 1	0.0%	8694143	2	2	0.0%							
Y	8694142	12.9	13.5	4.5%	8694143	38.7	38.3	1.0%							
Yb	8694142	1.31	1.46	10.8%	8694143	4.67	4.19	10.8%							
Zn	8694142	119	121	1.7%	8694143	196	195	0.5%							
Zr	8694142	39.2	35.4	10.2%	8694143	105	103	1.9%							
				(202-0	55) Fire	Assay -	- Au, Pt	, Pd Tra	ce Lev	els, ICF	-OES fi	nish	•		
		REPLIC	ATE #1			REPLIC	ATE #2								
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD							
Au	8694142	0.006	0.004		8694143	0.004	0.004	0.0%							
Pd	8694142	< 0.001	< 0.001	0.0%	8694143	< 0.001	0.002								
Pt	8694142	< 0.005	< 0.005	0.0%	8694143	< 0.005	< 0.005	0.0%							
	•				•		•			•	•	•	•	•	

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T257046

PROJECT: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-37	78) So	dium P	eroxid	e Fusion	- ICP-C	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.SY-4)											
Parameter	Expect	Actual	Recovery	Limits										
Al	10.95	10.7	98%	90% - 110%										
Ва	340	336	99%	90% - 110%										
Ве	2.6	2.8	109%	90% - 110%										
Ca	5.72	5.71	100%	90% - 110%										
Се	122	131	107%	90% - 110%										
Со	2.8	2.4	85%	90% - 110%										
Cs	1.5	1.5	100%	90% - 110%										
Cu	7	6	80%	90% - 110%										
Dy	18.2	19.5	107%	90% - 110%										
Er	14.2	15.1	106%	90% - 110%										
Eu	2.0	2	100%	90% - 110%										
Fe	4.34	4.34	100%	90% - 110%										
Ga	35	36	102%	90% - 110%										
Gd	14	15	107%	90% - 110%										
Hf	10.6	11.3	107%	90% - 110%										
Но	4.3	4.7	109%	90% - 110%										
K	1.37	1.34	98%	90% - 110%										
La	58	62	106%	90% - 110%										
Li	37	39	105%	90% - 110%										
Lu	2.1	2.3	107%	90% - 110%										
Mg	0.325	0.307	94%	90% - 110%										
Mn	836	836	100%	90% - 110%										
Nb	13	13	100%	90% - 110%										
Nd	57	62	109%	90% - 110%										
Ni	9	9	96%	90% - 110%										
Pb	10	10	98%	90% - 110%	<u> </u>									
Pr	15.0	15.5	103%	90% - 110%										
Rb	55	55	100%	90% - 110%										
Si	23.3	22.3	96%	90% - 110%										
Sm	12.7	13.8	109%	90% - 110%										
Sn	7.1	6.7	94%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T257046

PROJECT: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	ENT NAME: MISC AGAT CLIENT ON									ATTENTION TO: Michel Lavoie						
Sr	1191	1210	101%	90% - 110%												
Tb	2.6	2.8	107%	90% - 110%												
Th	1.4	1.5	107%	90% - 110%												
Ti	0.172	0.174	101%	90% - 110%												
Tm	2.3	2.5	108%	90% - 110%												
U	0.8	0.7	92%	90% - 110%												
V	8	9	114%	90% - 110%												
Υ	119	120	101%	90% - 110%												
Yb	14.8	15.9	107%	90% - 110%												
Zn	93	98	105%	90% - 110%												
Zr	517	563	109%	90% - 110%												
				(202-0	55) Fire	Assay	- Au,	Pt, Pd Tra	ace Lev	els, ICF	P-OES	finish				
		CRM #1	(ref.PG129))												
Parameter	Expect	Actual	Recovery	Limits												
Au	1.1	1.1	97%	90% - 110%												
Pd	0.115	0.106	93%	90% - 110%												
Pt	0.239	0.218	91%	90% - 110%												

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: Michel Lavoie

SAMPLING SITE:

AGAT WORK ORDER: 17T257046 ATTENTION TO: Michel Lavoie

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
Al	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Be	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Се	MIN-200-12001		ICP-MS
Со	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
In	MIN-200-12001		ICP-MS
Κ	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Mo	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P	MINI 200 42004		ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr Ph	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc Si	MIN-200-12001 MIN-200-12001		ICP/OES ICP/OES
Sm	MIN-200-12001 MIN-200-12001		ICP/OES ICP-MS
Sn Sn	MIN-200-12001 MIN-200-12001		ICP-MS
Sr Sr	MIN-200-12001 MIN-200-12001		ICP-OES
Ta	MIN-200-12001 MIN-200-12001		ICP-MS
Tb	MIN-200-12001 MIN-200-12001		ICP-MS
Th	MIN-200-12001 MIN-200-12001		ICP-MS
Ti	MIN-200-12001 MIN-200-12001		ICP-INIS
Ш	WIIIN-200-12001		IOI /OLO

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T257046
PROJECT: Michel Lavoie ATTENTION TO: Michel Lavoie

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Υ	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

Certificate of Analysis Work Order: SU1700878

[Report File No.: 0000012110]

Date: October 12, 2017

To: Guy_Richard P.O. No.: 2017-21110 for Characterization of 7 Sam

COD SGS MINERALS - GEOCHEM LAKEFIELD Project No.: -

c/o Mr. Michel Lavoie Samples: 7

ON Received: Sep 20, 2017
Pages: Page 1 to 9

(Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	<u>Description</u>
7	SHIP	Shipping
7	G_WGH79	Weighing of samples and reporting of weights
7	G_PRP89	Weigh, Dry, to 3kg, Crush 75% -2mm, Split to 250g, Pulverise to 85% -75µm
7	GE_FAA313	@Au, FAS, AAS, 30g-5ml
7	ZMS_ICM90A	Package Price - GE_ICM90A (GE_IC90A+GE_IC90M)
7	GE_IC90A	@Package, ICPAES after Sodium Peroxide Fusion-Graphite Crucibles
7	GE_IC90M	@Package, ICPMS after Sodium Peroxide Fusion-Graphite Crucibles

Storage: Pulp & Reject

PULP STORAGE : REJECT STORAGE :

Comments:

Ag may be considered partial, depending upon the sample matrix and its` retention in HNO3 acid Assays not suitable for commercial exchange.

Certified By

Debbie Waldon Project Coordinator

SGS Minerals Services (Lakefield) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

Report Footer: L.N.R. = Listed not received

5. = Insufficient Sample

n.a. = Not applicable

-- = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Waldon

Page 2 of 9

Report File No.: 0000012110

	Element	WtKg	@Au	@AI	@Ba	@Be	@Ca	@Cr	@Cu
	Method	G_WGH79	GE_FAA313	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
	Det.Lim.	0.001	5	0.01	10	5	0.1	10	10
	Units	kg	ppb	%	ppm	ppm	%	ppm	ppm
Sample 29		2.052	<5	7.88	523	7	5.0	39	128
Sample 30		2.262	<5	7.07	464	<5	4.6	43	74
Sample 31		2.146	<5	7.96	499	8	5.8	43	78
Sample 32		1.550	<5	7.79	906	7	8.2	76	98
Sample 33		2.545	<5	7.36	232	<5	4.8	33	130
Sample 34		2.006	<5	7.88	177	<5	4.5	170	23
Sample 35		2.707	6	8.93	544	<5	1.4	150	178
*Rep Sample 29			<5						
*Std OREAS-224			2266						
*BIk BLANK			5						
*Rep Sample 35				8.91	549	<5	1.4	153	168
*Std SY-4				11.4	344	<5	5.8	11	<10
*BIk BLANK				<0.01	<10	<5	<0.1	<10	<10

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 3 of 9

Report File No.: 0000012110

	Element	@Fe	@K	@Li	@Mg	@Mn	@Ni	@P	@Sc
	Method	GE_ICM90A							
	Det.Lim.	0.01	0.1	10	0.01	10	5	0.01	5
	Units	%	%	ppm	%	ppm	ppm	%	ppm
Sample 29		10.7	1.3	54	2.67	1088	60	0.15	29
Sample 30		8.13	0.9	40	1.63	895	50	0.11	21
Sample 31		10.9	1.2	48	2.70	1159	78	0.15	31
Sample 32		9.65	1.2	65	3.54	1439	78	0.04	33
Sample 33		9.20	2.2	28	2.07	931	54	0.06	35
Sample 34		7.05	2.1	28	2.80	935	96	0.03	25
Sample 35		4.75	1.7	34	1.53	548	74	0.07	14
*Rep Sample 35		4.79	1.7	34	1.53	552	69	0.07	14
*Std SY-4		4.49	1.4	39	0.28	807	14	0.05	<5
*BIk BLANK		<0.01	<0.1	<10	<0.01	<10	<5	<0.01	<5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 4 of 9

Report File No.: 0000012110

Eler	nent Si	@Sr	@Ti	@V	@Zn	@Ag	@As	@Bi
Met	hod GE_ICM90A	GE_ICM90A	GE_ICM90A		GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
Det.	L im. 0.1	10	0.01	5	5	1	5	0.1
l	nits %	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample 29	22.9	438	1.25	226	103	<1	<5	0.4
Sample 30	27.4	311	0.87	216	71	<1	<5	0.2
Sample 31	23.6	448	1.25	258	104	<1	<5	0.4
Sample 32	22.7	1273	0.87	424	114	<1	<5	1.2
Sample 33	27.8	192	0.73	319	76	<1	<5	0.4
Sample 34	28.8	137	0.33	155	82	<1	<5	0.3
Sample 35	>30.0	324	0.33	101	52	<1	<5	0.2
*Rep Sample 35	29.2	326	0.33	100	54	<1	<5	0.2
*Std SY-4	23.4	1248	0.17	10	97	<1	<5	<0.1
*BIk BLANK	<0.1	<10	<0.01	<5	<5	<1	<5	<0.1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 5 of 9

Report File No.: 0000012110

Elemen	t @Cd	@Ce	@Co	@Cs	@Dy	@Er	@Eu	@Ga
Metho	- 1	- 1	_	-		GE_ICM90A	GE_ICM90A	GE_ICM90A
Det.Lim	0.2	0.1	0.5	0.1	0.05	0.05	0.05	1
Unit	s ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample 29	<0.2	33.7	69.7	5.5	6.26	3.85	1.77	21
Sample 30	<0.2	28.0	48.5	2.6	4.87	2.75	1.43	18
Sample 31	<0.2	36.7	47.9	4.0	6.63	3.90	1.96	21
Sample 32	0.3	12.3	54.1	11.6	2.11	1.22	0.75	24
Sample 33	<0.2	44.9	51.1	7.9	5.90	3.51	1.36	22
Sample 34	<0.2	38.3	33.0	7.0	3.08	1.89	0.71	21
Sample 35	<0.2	59.1	21.2	2.6	2.48	1.31	1.00	20
*Rep Sample 35	<0.2	59.6	21.8	2.7	2.45	1.34	1.05	20
*Std SY-4	<0.2	125	2.7	1.7	19.4	14.9	2.12	36
*BIk BLANK	<0.2	<0.1	<0.5	0.1	<0.05	<0.05	<0.05	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 6 of 9

Report File No.: 0000012110

	Element	@Gd	@Ge	@Hf	@Ho	@In	@La	@Lu	@Mo
	Method	GE_ICM90A							
	Det.Lim.	0.05	1	1	0.05	0.2	0.1	0.05	2
	Units	ppm							
Sample 29		6.26	2	5	1.35	<0.2	15.0	0.63	<2
Sample 30		4.99	2	3	0.98	<0.2	12.6	0.45	<2
Sample 31		7.08	2	5	1.40	<0.2	16.2	0.62	<2
Sample 32		2.23	3	1	0.43	<0.2	6.3	0.21	<2
Sample 33		5.96	2	4	1.20	<0.2	21.1	0.58	<2
Sample 34		3.32	2	3	0.64	<0.2	19.6	0.33	<2
Sample 35		3.31	1	4	0.50	<0.2	29.9	0.21	<2
*Rep Sample 35		3.25	1	4	0.49	<0.2	30.4	0.23	<2
*Std SY-4		15.3	1	11	4.43	<0.2	61.0	2.22	<2
*BIk BLANK		<0.05	<1	<1	<0.05	<0.2	<0.1	<0.05	<2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 7 of 9

Report File No.: 0000012110

Eleme	nt @Nb	@Nd	@Pb	@Pr	@Rb	@Sb	@Sm	@Sn
Metho	d GE_ICM90A	GE_ICM90A						
Det.Liı	n. 1	0.1	5	0.05	0.2	0.1	0.1	1
Uni	ts ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample 29	9	20.3	8	4.59	80.4	0.2	5.2	2
Sample 30	6	16.5	8	3.82	56.2	0.2	4.3	2
Sample 31	8	22.5	9	5.07	63.0	0.2	6.0	2
Sample 32	2	7.3	14	1.66	108	0.2	1.8	1
Sample 33	9	22.2	23	5.50	289	0.4	5.1	3
Sample 34	9	16.0	24	4.33	303	0.2	3.5	6
Sample 35	7	24.4	7	6.59	83.5	<0.1	4.1	2
*Rep Sample 35	6	24.5	7	6.65	81.4	<0.1	4.2	2
*Std SY-4	13	58.7	10	15.3	53.1	<0.1	13.0	8
*BIk BLANK	<1	<0.1	<5	<0.05	0.4	<0.1	<0.1	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 8 of 9

Report File No.: 0000012110

Elemo	ent @Ta	@Tb	@Th	@TI	@Tm	@U	@W	@Y
Meth			GE_ICM90A		GE_ICM90A	GE_ICM90A	GE_ICM90A	
Det.L	m. 0.5	0.05	0.1	0.5	0.05	0.05	1	0.5
Un	its ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample 29	0.5	1.04	2.3	0.7	0.58	1.28	<1	33.7
Sample 30	<0.5	0.79	2.6	<0.5	0.45	0.80	1	25.9
Sample 31	0.5	1.11	2.3	0.6	0.62	1.02	<1	35.6
Sample 32	<0.5	0.36	0.7	0.9	0.19	0.52	1	11.2
Sample 33	0.8	0.96	7.3	2.3	0.53	3.65	<1	31.9
Sample 34	1.0	0.53	8.5	2.4	0.30	3.69	<1	18.3
Sample 35	0.7	0.46	10.9	0.6	0.23	3.80	2	13.0
*Rep Sample 35	0.7	0.47	11.1	0.5	0.19	3.82	2	12.5
*Std SY-4	0.8	2.85	1.3	<0.5	2.43	0.75	<1	118
*BIk BLANK	<0.5	<0.05	<0.1	<0.5	<0.05	<0.05	<1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000012110

	Element	@Yb	@Zr
	Method	GE_ICM90A	GE_ICM90A
	Det.Lim.	0.1	0.5
	Units	ppm	ppm
Sample 29		3.8	166
Sample 30		2.8	125
Sample 31		3.8	170
Sample 32		1.2	39.0
Sample 33		3.6	118
Sample 34		2.1	83.7
Sample 35		1.4	128
*Rep Sample 35		1.3	131
*Std SY-4		15.4	553
*BIk BLANK		<0.1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 9 of 9

Certificate of Analysis Work Order: SU1700879

[Report File No.: 0000012151]

Date: October 13, 2017

To: Guy_Richard P.O. No.: 2017-21110 for Characterization of 31sam

COD SGS MINERALS - GEOCHEM LAKEFIELD Project No.: -

c/o Mr. Michel Lavoie Samples: 31

Received: Sep 21, 2017 Pages: Page 1 to 12

(Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	<u>Description</u>
31	SHIP	Shipping
31	G_WGH79	Weighing of samples and reporting of weights
31	G_PRP89	Weigh, Dry, to 3kg, Crush 75% -2mm, Split to 250g, Pulverise to 85% -75µm
31	GE_FAA313	@Au, FAS, AAS, 30g-5ml
31	ZMS_ICM90A	Package Price - GE_ICM90A (GE_IC90A+GE_IC90M)
31	GE_IC90A	@Package, ICPAES after Sodium Peroxide Fusion-Graphite Crucibles
31	GE_IC90M	@Package, ICPMS after Sodium Peroxide Fusion-Graphite Crucibles

Storage: Pulp & Reject

PULP STORAGE : REJECT STORAGE :

Comments:

Ag may be considered partial, depending upon the sample matrix and its` retention in HNO3 acid Assays not suitable for commercial exchange.

Certified By

Debbie Waldon Project Coordinator

SGS Minerals Services (Lakefield) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

Report Footer: L.N.R. = Listed not received

I.S. = Insufficient Sample

n.a. = Not applicable

-- = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Waldon

Report File No.: 0000012151

Page 2 of 12

Element	WtKg	@Au	@Al	@Ba	@Be	@Ca	@Cr	@Cu
Method	G_WGH79	GE_FAA313	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
Det.Lim.	0.001	5	0.01	10	5	0.1	10	10
Units	kg	ppb	%	ppm	ppm	%	ppm	ppm
Sample 36	1.723	10	7.56	648	<5	3.5	172	1241
Sample 37	1.886	<5	9.49	2106	8	3.9	173	28
Sample 38	2.003	<5	8.30	1382	7	5.8	147	79
Sample 39	3.239	<5	9.03	372	<5	2.4	68	10
Sample 40	2.002	<5	7.77	308	<5	2.5	73	30
Sample 41	1.356	<5	7.24	326	<5	2.6	75	93
Sample 42	2.258	8	8.44	1040	<5	1.0	148	113
Sample 43	2.817	<5	8.92	376	<5	2.7	70	38
Sample 44	2.228	<5	7.28	642	<5	1.1	118	10
Sample 45	2.725	<5	7.75	901	<5	2.9	187	70
Sample 46	3.620	<5	8.66	579	<5	4.4	184	72
Sample 47	3.382	<5	8.56	1373	8	5.7	135	109
Sample 48	3.253	<5	9.56	1166	36	4.1	196	234
Sample 49	3.294	<5	7.81	565	140	7.0	209	174
Sample 50	1.664	<5	8.20	339	<5	7.9	258	375
Sample 51	3.143	<5	10.5	260	<5	5.8	52	166
Sample 52	2.676	<5	7.66	183	6	8.1	151	111
Sample 53	1.753	10	7.21	415	<5	6.7	136	1770
Sample 54	1.143	36	2.00	146	<5	2.4	64	667
Sample 55	1.563	<5	7.33	129	9	10.1	167	18
Sample 56	1.342	23	2.41	188	<5	2.3	83	464
Sample 57	2.914	6	7.82	1834	7	2.4	65	184
Sample 58	2.603	6	6.98	934	6	5.0	46	206
Sample 59	2.665	8	7.82	501	12	6.3	17	200
Sample 60	3.581	12	7.32	314	9	6.3	19	372
Sample 61	2.538	8	7.53	470	12	5.4	22	194
Sample 62	2.136	<5	7.68	533	5	3.5	24	93
Sample 63	2.961	<5	9.10	863	<5	0.9	170	109
Sample 64	1.035	56	1.41	161	<5	1.1	51	1198
Sample 65	1.859	69	1.44	106	<5	1.1	52	1385
Sample 66	0.802	76	1.08	87	<5	0.7	41	1921
*Rep Sample 47		<5						
*Std OREAS-217		346						
*Std OXL118		5925						
*BIk BLANK		5						
*Rep Sample 66			1.08	86	<5	0.7	40	1869
*Std SY-4			11.2	341	<5	6.0	19	<10
*Std RTS-3A			N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*BIk BLANK			N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*BIk BLANK			<0.01	<10	<5	<0.1	<10	<10

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000012151

Element	@Al	@Ba	@Be	@Ca	@Cr	@Cu
Method	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
Det.Lim.	0.01	10	5	0.1	10	10
Units	%	ppm	ppm	%	ppm	ppm
*Std RTS-3A	5.28	122	<5	2.3	195	2444

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 3 of 12

Page 4 of 12

Report File No.: 0000012151

1									
	Element	@Fe	@K	@Li	@Mg	@Mn	@Ni	@P	@Sc
	Method	GE_ICM90A							
	Det.Lim.	0.01	0.1	10	0.01	10	5	0.01	5
	Units	%	%	ppm	%	ppm	ppm	%	ppm
Sample 36		8.31	1.2	46	1.92	949	102	0.02	17
Sample 37		8.24	3.9	152	4.06	1488	12	0.17	29
Sample 38		6.65	2.6	82	2.68	1323	24	0.14	25
Sample 39		9.84	1.4	83	3.32	1733	34	0.04	29
Sample 40		8.20	1.1	66	2.81	1525	34	0.04	27
Sample 41		7.33	1.1	61	2.30	1344	33	0.04	24
Sample 42		4.51	3.4	27	1.19	417	60	0.06	14
Sample 43		8.66	1.4	78	3.00	1586	32	0.05	29
Sample 44		3.50	2.5	19	1.27	398	51	0.04	9
Sample 45		5.60	1.8	86	2.65	1401	77	0.04	22
Sample 46		12.0	2.2	95	2.30	1307	96	0.06	38
Sample 47		6.10	1.8	57	2.77	1283	29	0.13	24
Sample 48		5.33	2.7	180	2.84	969	61	0.11	18
Sample 49		9.04	1.3	54	3.46	1464	72	0.04	37
Sample 50		9.47	0.6	34	3.76	1705	134	0.03	38
Sample 51		6.90	0.7	34	1.49	813	34	0.04	22
Sample 52		9.83	0.5	29	3.38	1722	98	0.05	39
Sample 53		12.9	1.0	36	3.35	1525	135	0.04	35
Sample 54		21.8	0.6	16	0.84	482	131	<0.01	<5
Sample 55		8.74	0.5	18	3.66	1747	92	0.02	35
Sample 56		12.6	0.7	23	1.04	551	105	<0.01	7
Sample 57		14.3	3.6	124	3.66	1403	58	0.06	48
Sample 58		11.9	1.8	72	3.41	1807	43	0.07	40
Sample 59		11.8	1.2	47	3.61	1358	50	0.02	40
Sample 60		12.6	0.8	30	3.03	1337	57	0.03	38
Sample 61		12.7	1.1	48	3.35	1356	52	0.02	38
Sample 62		6.97	1.5	70	0.90	802	15	0.17	15
Sample 63		6.53	3.9	54	1.40	788	80	0.07	19
Sample 64		>25.0	0.7	20	0.74	323	169	<0.01	<5
Sample 65		>25.0	0.4	13	0.40	240	158	0.01	<5
Sample 66		>25.0	0.4	<10	0.34	179	176	<0.01	<5
*Rep Sample 66		>25.0	0.3	10	0.33	174	167	<0.01	<5
*Std SY-4		4.36	1.5	39	0.31	782	16	0.05	<5
*Std RTS-3A		N.A.							
*BIk BLANK		N.A.							
*BIk BLANK		<0.01	<0.1	<10	<0.01	<10	5	<0.01	<5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 5 of 12

Report File No.: 0000012151

Element	@Fe	@K	@Li	@Mg	@Mn	@Ni	@P	@Sc
Method	GE_ICM90A							
Det.Lim.	0.01	0.1	10	0.01	10	5	0.01	5
Units	%	%	ppm	%	ppm	ppm	%	ppm
*Std RTS-3A	20.6	0.5	15	2.39	1584	55	0.04	15

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 6 of 12

Report File No.: 0000012151

	Element	Si	@Sr	@Ti	@V	@Zn	@Ag	@As	@Bi
	Method	GE_ICM90A							
	Det.Lim.	0.1	10	0.01	5	5	1	5	0.1
	Units	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample 36		26.1	191	0.30	129	173	6	9	7.4
Sample 37		21.8	422	0.58	245	233	<1	<5	0.6
Sample 38		24.5	551	0.48	240	150	<1	<5	1.3
Sample 39		24.8	177	0.47	228	137	<1	<5	0.2
Sample 40		26.7	170	0.42	205	118	<1	<5	0.2
Sample 41		28.3	175	0.40	188	103	<1	<5	0.6
Sample 42		29.5	273	0.34	104	38	<1	<5	0.2
Sample 43		25.2	201	0.47	221	133	<1	<5	0.2
Sample 44		>30.0	298	0.23	70	34	<1	<5	0.4
Sample 45		28.0	242	0.41	149	152	<1	<5	0.6
Sample 46		22.9	206	0.45	247	74	1	<5	0.4
Sample 47		24.8	599	0.44	206	121	<1	<5	0.9
Sample 48		24.6	618	0.35	138	334	1	7	4.4
Sample 49		21.9	224	0.69	298	115	<1	<5	2.5
Sample 50		22.0	258	0.54	282	137	<1	<5	0.6
Sample 51		23.7	675	0.55	182	92	<1	<5	3.1
Sample 52		22.5	232	0.81	350	138	<1	<5	0.5
Sample 53		21.3	240	0.76	318	138	2	<5	0.9
Sample 54		18.6	128	0.10	70	44	<1	17	10.2
Sample 55		21.8	630	0.40	265	114	<1	<5	1.8
Sample 56		24.4	136	0.12	71	46	<1	16	6.1
Sample 57		19.8	212	0.93	457	201	<1	<5	0.3
Sample 58		22.2	276	0.88	399	168	<1	<5	0.3
Sample 59		20.7	581	1.26	537	127	<1	<5	1.3
Sample 60		21.3	597	1.39	536	104	<1	<5	1.6
Sample 61		20.4	540	1.25	506	132	<1	<5	1.4
Sample 62		27.6	392	0.62	42	104	<1	<5	0.7
Sample 63		26.6	100	0.43	143	99	<1	<5	2.2
Sample 64		10.2	66	0.06	68	49	<1	22	14.1
Sample 65		10.5	87	0.07	61	32	<1	17	14.3
Sample 66		8.2	56	0.05	60	32	1	19	13.7
*Rep Sample 66		8.1	56	0.05	57	30	<1	21	13.6
*Std SY-4		22.1	1184	0.17	10	95	<1	<5	<0.1
*Std RTS-3A		N.A.	N.A.	N.A.	N.A.	N.A.	10	18	30.2
*BIK BLANK		N.A.	N.A.	N.A.	N.A.	N.A.	<1	<5	<0.1
*BIk BLANK		<0.1	<10	<0.01	<5	<5			

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000012151

	Element Method Det.Lim. Units	Si GE_ICM90A 0.1 %	10	GE_ICM90A 0.01	GE_ICM90A 5	5
*	Std RTS-3A	19.1	49	0.39	107	2914

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 7 of 12

Page 8 of 12

Report File No.: 0000012151

'									
	Element	@Cd	@Ce	@Co	@Cs	@Dy	@Er	@Eu	@Ga
	Method	GE_ICM90A							
	Det.Lim.	0.2	0.1	0.5	0.1	0.05	0.05	0.05	1
	Units	ppm							
Sample 36		3.1	19.6	138	4.7	3.66	2.24	0.96	18
Sample 37		<0.2	62.7	29.7	19.3	5.01	2.65	1.88	24
Sample 38		0.3	54.5	23.0	13.5	4.58	2.40	1.78	25
Sample 39		<0.2	22.9	35.0	9.0	3.33	2.00	0.97	20
Sample 40		<0.2	21.2	28.8	6.0	3.15	1.87	0.85	18
Sample 41		0.9	20.6	25.9	7.2	2.75	1.67	0.90	16
Sample 42		<0.2	58.3	11.1	4.3	3.32	1.75	1.16	23
Sample 43		<0.2	23.2	30.8	7.1	3.33	1.94	0.96	20
Sample 44		<0.2	44.3	13.2	4.6	2.14	1.07	0.82	17
Sample 45		<0.2	38.3	28.1	5.6	3.48	1.99	1.15	19
Sample 46		<0.2	26.4	38.0	14.9	4.35	2.74	1.04	20
Sample 47		0.3	45.1	27.7	6.5	4.22	2.18	1.46	20
Sample 48		3.2	40.6	27.9	207	3.10	1.74	1.16	19
Sample 49		0.2	13.9	36.8	6.8	4.63	2.77	1.13	21
Sample 50		0.3	7.5	65.0	2.4	3.55	2.16	0.86	18
Sample 51		<0.2	39.8	22.5	2.5	7.43	4.59	1.66	23
Sample 52		0.3	11.8	41.8	1.0	5.06	3.07	1.22	19
Sample 53		0.3	12.6	59.3	1.8	4.58	2.79	1.09	18
Sample 54		<0.2	2.6	223	4.2	0.34	0.32	0.09	18 7
Sample 55		<0.2	11.0	28.3	1.2	2.90	1.97	0.71	24
Sample 56		<0.2	3.0	98.5	5.8	0.52	0.43	0.13	8
Sample 57		0.2	32.6	57.5	23.5	6.49	3.67	1.04	28
Sample 58		0.3	35.5	45.8	10.3	6.31	3.75	1.44	20
Sample 59		0.5	8.4	54.6	6.9	2.02	1.08	0.71	20
Sample 60		0.8	13.2	81.0	3.5	2.24	1.39	0.84	19
Sample 61		0.4	8.8	63.5	5.2	2.22	1.28	0.73	19
Sample 62		0.2	50.0	17.4	6.8	8.90	5.14	2.14	21
Sample 63		<0.2	68.6	72.5	14.5	4.34	2.37	1.32	24
Sample 64		0.3	1.4	588	4.8	0.21	0.16	0.05	4
Sample 65		<0.2	3.0	513	3.2	0.35	0.25	0.10	5
Sample 66		0.3	2.2	602	2.5	0.26	0.15	0.09	3
*Rep Sample 66		0.3	2.2	607	2.6	0.28	0.16	0.09	3
*Std SY-4		<0.2	121	2.9	1.8	20.3	14.8	2.10	37
*Std RTS-3A		8.8	25.8	153	0.6	3.62	1.86	1.14	42
*BIk BLANK		<0.2	<0.1	0.6	<0.1	<0.05	<0.05	<0.05	<1
-		-							

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 9 of 12

Report File No.: 0000012151

								014
Element	@Gd	@Ge	@Hf	@Ho	@In	@La	@Lu	@Mo
Method	GE_ICM90A							
Det.Lim.	0.05	1	1	0.05	0.2	0.1	0.05	2
Units	ppm							
Sample 36	2.99	2	3	0.78	<0.2	9.4	0.42	4
Sample 37	6.26	2	4	0.95	<0.2	29.7	0.41	<2
Sample 38	5.41	2	3	0.85	<0.2	26.3	0.39	<2 <2
Sample 39	3.00	1	2	0.70	<0.2	11.1	0.33	<2
Sample 40	2.76	1	2	0.62	<0.2	10.4	0.33	<2
Sample 41	2.74	1	2	0.58	<0.2	10.1	0.28	<2
Sample 42	3.95	2	4	0.63	<0.2	28.8	0.28	<2
Sample 43	3.16	1	2	0.67	<0.2	11.4	0.40	<2
Sample 44	2.56	2	4	0.40	<0.2	22.3	0.22	<2
Sample 45	3.85	2	4	0.69	<0.2	19.1	0.33	<2 3
Sample 46	4.02	1	3	0.94	<0.2	13.3	0.51	3 <2
Sample 47	4.56	2	3	0.79	<0.2	21.3	0.35	<2
Sample 48	3.68	2	2	0.62	<0.2	19.8	0.30	<2
Sample 49	3.95	2	2	0.98	<0.2	5.7	0.45	<2
Sample 50	2.88	2	2	0.76	<0.2	2.8	0.38	3
Sample 51	6.20	1	6	1.57	<0.2	18.7	0.83	<2
Sample 52	4.31	2	2	1.09	<0.2	4.5	0.53	<2
Sample 53	3.79	2	2	0.94	<0.2	5.3	0.46	<2
Sample 54	0.29	1	<1	0.09	<0.2	1.4	0.08	10
Sample 55	2.37	4	1	0.63	<0.2	5.2	0.33	<2
Sample 56	0.43	1	<1	0.13	<0.2	1.4	0.11	6
Sample 57	5.54	1	4	1.32	<0.2	14.5	0.60	<2
Sample 58	5.43	2	4	1.31	<0.2	16.8	0.64	<2
Sample 59	1.81	2	<1	0.40	<0.2	3.6	0.21	<2
Sample 60	2.11	2	1	0.51	<0.2	5.2	0.23	
Sample 61	1.93	2	1	0.44	<0.2	3.5	0.27	<2 <2 <2
Sample 62	8.28	2	7	1.75	<0.2	22.5	0.86	<2
Sample 63	5.25	1	4	0.84	<0.2	36.4	0.37	<2
Sample 64	0.18	<1	<1	<0.05	<0.2	0.7	0.06	<2 2 <2
Sample 65	0.33	<1	<1	0.07	<0.2	1.4	0.06	
Sample 66	0.29	<1	<1	0.06	<0.2	1.1	0.10	<2
*Rep Sample 66	0.24	<1	<1	0.05	<0.2	1.1	<0.05	<2
*Std SY-4	14.8	1	11	4.57	<0.2	57.8	2.27	
*Std RTS-3A	3.79	15	2	0.66	1.6	10.8	0.30	<2 3 <2
*BIk BLANK	<0.05	<1	<1	<0.05	<0.2	<0.1	<0.05	<2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 10 of 12

Report File No.: 0000012151

	Element	@Nb	@Nd	@Pb	@Pr	@Rb	@Sb	@Sm	@Sn
	Method	GE_ICM90A							
	Det.Lim.	1	0.1	5	0.05	0.2	0.1	0.1	1
	Units	ppm							
Sample 36		4	10.5	283	2.61	70.3	<0.1	2.6	2
Sample 37		6	33.6	29	8.22	239	<0.1	7.0	1
Sample 38		6	28.8	46	7.05	153	0.2	5.9	2
Sample 39		4	12.0	6	2.93	95.5	<0.1	2.8	1
Sample 40		3	11.6	7	2.73	79.7	<0.1	2.8	1
Sample 41		3	10.8	7	2.60	82.9	<0.1	2.5	2
Sample 42		8	25.4	21	6.97	199	<0.1	4.7	3
Sample 43		4	12.8	7	3.02	99.2	<0.1	3.0	<1
Sample 44		6	19.7	9	5.21	135	<0.1	3.4	1
Sample 45		5	19.5	12	4.95	84.3	<0.1	3.9	1
Sample 46		4	14.5	12	3.38	150	<0.1	3.3	2
Sample 47		5	24.1	41	5.90	93.1	0.2	5.3	2 2
Sample 48		5	20.2	163	5.27	286	<0.1	4.0	4
Sample 49		4	9.9	14	2.09	90.6	0.3	2.9	2
Sample 50		2	6.3	8	1.24	29.1	<0.1	2.2	3
Sample 51		9	21.4	13	5.19	33.1	<0.1	5.3	2 3 2
Sample 52		4	9.6	15	1.92	13.2	0.2	3.2	<1
Sample 53		4	9.4	26	1.97	40.4	0.2	3.0	1
Sample 54		<1	1.2	9	0.32	44.2	<0.1	0.3	<1
Sample 55		2	6.4	15	1.43	18.8	0.2	1.7	1
Sample 56		<1	1.5	8	0.36	60.7	<0.1	0.4	2
Sample 57		7	18.5	12	4.35	300	<0.1	4.9	<1
Sample 58		7	19.3	15	4.66	139	0.1	4.6	1
Sample 59		3	6.0	30	1.24	86.7	0.2	1.5	4
Sample 60		4	7.7	33	1.63	55.4	0.6	2.0	
Sample 61		4	5.8	21	1.30	73.7	0.2	1.6	3 2 3 3 2
Sample 62		11	29.6	21	6.90	109	<0.1	7.4	3
Sample 63		10	30.8	6	8.44	331	<0.1	5.6	3
Sample 64		<1	0.6	7	0.17	51.7	<0.1	0.2	2
Sample 65		<1	1.4	7	0.38	32.6	<0.1	0.4	<1
Sample 66		<1	1.1	7	0.30	26.3	<0.1	0.3	2
*Rep Sample 66		<1	1.2	11	0.28	26.4	<0.1	0.3	1
*Std SY-4		14	59.7	10	15.6	56.2	<0.1	13.1	8
*Std RTS-3A		4	16.5	226	3.74	12.4	2.6	4.0	250
*BIk BLANK		<1	<0.1	<5	<0.05	<0.2	<0.1	<0.1	<1
-									<u></u>

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 11 of 12

Report File No.: 0000012151

	Element	@Ta	@Tb	@Th	@TI	@Tm	@U	@W	@Y
	Method	GE_ICM90A							
	Det.Lim.	0.5	0.05	0.1	0.5	0.05	0.05	1	0.5
	Units	ppm							
Sample 36		<0.5	0.59	4.9	0.8	0.36	1.71	5	20.8
Sample 37		<0.5	0.86	4.1	2.3	0.40	1.16	<1	25.5
Sample 38		<0.5	0.78	3.6	1.5	0.38	1.12	<1	24.0
Sample 39		<0.5	0.55	3.5	0.8	0.32	1.26	<1	18.6
Sample 40		<0.5	0.48	3.0	0.7	0.28	0.91	<1	17.3
Sample 41		<0.5	0.44	2.8	0.7	0.27	0.86	3	15.4
Sample 42		1.0	0.58	11.8	1.3	0.29	4.14	<1	16.9
Sample 43		<0.5	0.51	3.4	0.9	0.31	1.05	<1	18.3
Sample 44		0.5	0.39	7.6	0.9	0.18	2.70	<1	10.9
Sample 45		<0.5	0.60	4.0	0.7	0.31	1.28	<1	19.0
Sample 46		<0.5	0.71	3.4	1.8	0.42	1.09	<1	27.1
Sample 47		<0.5	0.71	3.4	0.9	0.34	1.05	<1	21.4
Sample 48		<0.5	0.54	3.6	2.4	0.27	1.01	49	16.3
Sample 49		<0.5	0.71	0.6	1.0	0.43	0.27	2	25.1
Sample 50		<0.5	0.55	0.2	<0.5	0.33	0.11	<1	19.5
Sample 51		0.8	1.13	7.2	<0.5	0.77	2.87	2	42.1
Sample 52		<0.5	0.78	0.4	<0.5	0.49	0.15	<1	28.3
Sample 53		<0.5	0.71	0.4	0.6	0.42	0.23	1	24.8
Sample 54		<0.5	<0.05	0.1	0.5	0.06	0.11	2	2.3
Sample 55		<0.5	0.42	0.4	<0.5	0.30	0.98	<1	17.4
Sample 56		<0.5	0.07	0.4	0.7	0.09	0.17	2	3.5
Sample 57		<0.5	1.07	3.7	2.9	0.57	1.01	1	35.6
Sample 58		<0.5	0.98	4.1	1.3	0.59	1.00	<1	34.7
Sample 59		<0.5	0.31	0.4	0.7	0.17	0.67	<1	10.4
Sample 60		<0.5	0.40	1.9	<0.5	0.22	0.90	1	12.9
Sample 61		<0.5	0.33	1.2	0.6	0.22	0.87	1	12.5
Sample 62		1.1	1.41	6.4	0.8	0.78	1.73	<1	47.4
Sample 63		1.0	0.78	15.7	2.7	0.39	5.84	3	23.3
Sample 64		<0.5	<0.05	0.2	0.6	<0.05	0.10	6	1.3
Sample 65		<0.5	0.06	0.6	<0.5	<0.05	0.19	3	2.0
Sample 66		<0.5	<0.05	0.6	<0.5	<0.05	0.18	2	1.5
*Rep Sample 66		<0.5	<0.05	0.7	<0.5	<0.05	0.17	3	1.5
*Std SY-4		0.8	2.90	1.4	<0.5	2.53	0.81	<1	120
*Std RTS-3A		<0.5	0.60	1.0	4.2	0.29	0.32	7	17.4
*BIk BLANK		<0.5	<0.05	<0.1	<0.5	<0.05	<0.05	<1	<0.5
-									

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000012151

	Element	@Yb	@Zr
	Method	GE_ICM90A	GE_ICM90A
	Det.Lim.	0.1	0.5
	Units	ppm	ppm
Sample 36		2.4	100
Sample 37		2.5	139
Sample 38		2.4	127
Sample 39		2.0	90.6
Sample 40		1.8	82.3
Sample 41		1.6	77.1
Sample 42		1.8	149
Sample 43		2.0	91.5
Sample 44		1.2	138
Sample 45		2.0	136
Sample 46		2.7	104
Sample 47		2.2	115
Sample 48		1.6	87.8
Sample 49		2.7	82.1
Sample 50		2.2	54.1
Sample 51		5.0	210
Sample 52		3.1	86.5
Sample 53		2.8	80.7
Sample 54		0.4	10.5
Sample 55		1.9	38.6
Sample 56		0.6	15.2
Sample 57		3.5	139
Sample 58		3.7	143
Sample 59		1.1	28.4
Sample 60		1.2	39.6
Sample 61		1.3	35.2
Sample 62		5.1	243
Sample 63		2.3	150
Sample 64		0.2	8.0
Sample 65		0.2	15.8
Sample 66		0.2	18.1
*Rep Sample 66		0.2	16.2
*Std SY-4		15.7	582
*Std RTS-3A		1.8	80.0
*BIK BLANK		<0.1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Certificate of Analysis Work Order: SU1700910

[Report File No.: 0000012260]

Date: October 20, 2017

To: Guy_Richard P.O. No.: 2017-21110 for Characterization of 4 Sam

COD SGS MINERALS - GEOCHEM LAKEFIELD Project No.: -

c/o Mr. Michel Lavoie Samples: 4
ON Received: S

Received: Sep 28, 2017
Pages: Page 1 to 9

(Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	<u>Description</u>
4	SHIP	Shipping
4	G_WGH79	Weighing of samples and reporting of weights
4	G_PRP89	Weigh, Dry, to 3kg, Crush 75% -2mm, Split to 250g, Pulverise to 85% -75µm
4	GE_FAA313	@Au, FAS, AAS, 30g-5ml
4	ZMS_ICM90A	Package Price - GE_ICM90A (GE_IC90A+GE_IC90M)
4	GE_IC90A	@Package, ICPAES after Sodium Peroxide Fusion-Graphite Crucibles
4	GE_IC90M	@Package, ICPMS after Sodium Peroxide Fusion-Graphite Crucibles

Storage: Pulp & Reject

PULP STORAGE : REJECT STORAGE :

Comments:

Ag may be considered partial, depending upon the sample matrix and its` retention in HNO3 acid Assays not suitable for commercial exchange.

Certified By

Debbie Waldon Project Coordinator

SGS Minerals Services (Lakefield) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

Report Footer: L.N.R. = Listed not received

S. = Insufficient Sample

n.a. = Not applicable

-- = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Waldon

Page 2 of 9

Report File No.: 0000012260

	Element	WtKg	@Au	@Al	@Ba	@Be	@Ca	@Cr	@Cu
	Method	G_WGH79	GE_FAA313	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
	Det.Lim.	0.001	5	0.01	10	5	0.1	10	10
	Units	kg	ppb	%	ppm	ppm	%	ppm	ppm
Sample 67		2.081	13	9.24	155	<5	0.2	13	22
Sample 68		1.876	6	9.77	223	<5	0.3	15	16
Sample 69		2.277	<5	8.66	292	<5	2.2	142	43
Sample 70		2.000	73	6.77	323	<5	2.6	127	2223
*BIk BLANK			8						
*Rep Sample 70				6.84	317	<5	2.6	124	2159
*Std SY-4				10.8	334	<5	5.6	10	<10
*BIk BLANK				0.01	<10	<5	<0.1	<10	<10
*Std OXL118			5590						

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 3 of 9

Report File No.: 0000012260

	Element	@Fe	@K	@Li	@Mg	@Mn	@Ni	@P	@Sc
	Method	GE ICM90A	-			-	-	GE ICM90A	
	Det.Lim.	0.01	0.1	10	_	10	5	0.01	5
	Units	%	%	ppm	%	ppm	ppm	%	ppm
Sample 67		3.87	0.8	<10	0.07	58	24	<0.01	<5
Sample 68		2.93	1.1	10	0.10	83	20	<0.01	<5
Sample 69		5.62	1.6	33	1.37	1189	59	0.09	16
Sample 70		8.05	1.3	32	1.24	715	96	0.09	11
*Rep Sample 70		8.16	1.3	31	1.26	720	97	0.09	11
*Std SY-4		4.42	1.4	42	0.30	811	15	0.06	<5
*BIk BLANK		<0.01	<0.1	<10	<0.01	<10	<5	<0.01	<5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 4 of 9

Report File No.: 0000012260

	Element	Si	@Sr	@Ti	@V	@Zn	@Ag	@As	@Bi
	Method	GE_ICM90A							
	Det.Lim.	0.1	10	0.01	5	5	1	5	0.1
	Units	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample 67		28.9	77	0.06	<5	6	<1	7	3.9
Sample 68		26.2	88	0.06	<5	8	<1	6	1.5
Sample 69		28.4	342	0.40	109	73	<1	<5	0.8
Sample 70		27.2	334	0.24	92	65	2	19	15.7
*Rep Sample 70		27.7	346	0.24	91	65	1	16	14.9
*Std SY-4		22.8	1153	0.17	<5	94	<1	<5	0.1
*BIk BLANK		<0.1	<10	<0.01	<5	<5	<1	<5	<0.1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 5 of 9

Report File No.: 0000012260

	Element	@Cd	@Ce	@Co	@Cs	@Dy	@Er	@Eu	@Ga
	Method	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A		GE_ICM90A	GE_ICM90A	- 1
	Det.Lim.	0.2	0.1	0.5	0.1	0.05	0.05	0.05	1
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample 67		<0.2	2.4	155	1.2	0.47	0.34	<0.05	19
Sample 68		<0.2	8.1	128	1.9	0.78	0.50	0.07	24
Sample 69		<0.2	68.2	27.5	5.6	3.34	1.84	1.10	20
Sample 70		0.3	39.9	98.5	2.8	1.98	1.14	0.73	18
*Rep Sample 70		0.2	39.5	104	2.6	1.91	1.13	0.77	18
*Std SY-4		<0.2	125	2.0	1.7	19.8	14.5	1.92	36
*BIk BLANK		<0.2	<0.1	<0.5	0.1	<0.05	<0.05	<0.05	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 6 of 9

Report File No.: 0000012260

	Element	@Gd	@Ge	@Hf	@Ho	@In	@La	@Lu	@Mo
	Method	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A		GE_ICM90A	GE_ICM90A	GE_ICM90A
	Det.Lim.	0.05	1	1	0.05	0.2	0.1	0.05	2
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample 67		0.25	1	4	0.11	<0.2	2.3	0.10	23
Sample 68		0.60	1	3	0.15	<0.2	5.0	0.12	29
Sample 69		3.92	2	5	0.65	<0.2	32.8	0.26	<2
Sample 70		2.20	2	2	0.40	<0.2	19.9	0.18	<2
*Rep Sample 70		2.21	2	2	0.40	<0.2	19.3	0.23	<2
*Std SY-4		14.9	1	12	4.61	<0.2	58.9	2.09	<2
*BIk BLANK		<0.05	<1	<1	<0.05	<0.2	<0.1	<0.05	<2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 7 of 9

Report File No.: 0000012260

	Element	@Nb	@Nd	@Pb	@Pr	@Rb	@Sb	@Sm	@Sn
	Method	GE_ICM90A							
	Det.Lim.	1	0.1	5	0.05	0.2	0.1	0.1	1
	Units	ppm							
Sample 67		29	0.5	70	0.17	53.4	0.2	0.2	4
Sample 68		21	2.5	51	0.77	85.3	0.2	0.5	2
Sample 69		9	27.4	16	7.41	119	0.2	5.0	2
Sample 70		4	16.4	56	4.48	52.6	0.5	2.9	3
*Rep Sample 70		4	16.7	54	4.36	52.0	0.4	3.0	2
*Std SY-4		13	59.3	11	15.2	54.9	<0.1	13.4	8
*Blk BLANK		<1	<0.1	<5	<0.05	0.2	<0.1	<0.1	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 8 of 9

Report File No.: 0000012260

	Element	@Ta	@Tb	@Th	@TI	@Tm	@U	@W	@Y
	Method	GE_ICM90A							
	Det.Lim.	0.5	0.05	0.1	0.5	0.05	0.05	1	0.5
	Units	ppm							
Sample 67		7.8	0.07	7.8	<0.5	0.07	1.54	<1	2.4
Sample 68		4.8	0.11	11.8	<0.5	0.09	1.90	<1	4.5
Sample 69		0.9	0.55	13.3	1.0	0.28	4.99	<1	16.7
Sample 70		<0.5	0.33	6.5	<0.5	0.18	3.11	1	10.7
*Rep Sample 70		<0.5	0.32	6.3	<0.5	0.17	2.95	<1	10.5
*Std SY-4		0.9	2.68	1.3	<0.5	2.33	0.83	<1	118
*BIk BLANK		<0.5	<0.05	<0.1	<0.5	<0.05	<0.05	<1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000012260

	Element	@Yb	@Zr
	Method	GE_ICM90A	GE_ICM90A
	Det.Lim.	0.1	0.5
	Units	ppm	ppm
Sample 67		0.5	93.4
Sample 68		0.7	80.9
Sample 69		1.8	184
Sample 70		1.3	74.2
*Rep Sample 70		1.3	74.0
*Std SY-4		15.4	576
*BIk BLANK		<0.1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 9 of 9

Certificate of Analysis Work Order: SU1700931

[Report File No.: 0000012394]

Date: October 30, 2017

To: Guy_Richard P.O. No.: 2017-21110 for Characterization of 9 Sam

COD SGS MINERALS - GEOCHEM LAKEFIELD Project No.: -

c/o Mr. Michel Lavoie Samples: 9

ON Received: Oct 2, 2017
Pages: Page 1 to 9

(Inclusive of Cover Sheet)

Methods Summary

No. Of Samples Method Code Description	
9 SHIP Shipping	
9 G_WGH79 Weighing of samples and reporting of weights	
9 G_PRP89 Weigh, Dry, to 3kg, Crush 75% -2mm, Split to 250g, Pulverise to 8	5% -75µm
9 GE_FAA313 @Au, FAS, AAS, 30g-5ml	
9 ZMS_ICM90A Package Price - GE_ICM90A (GE_IC90A+GE_IC90M)	
9 GE_IC90A @Package, ICPAES after Sodium Peroxide Fusion-Graphite Cruci	bles
9 GE_IC90M @Package, ICPMS after Sodium Peroxide Fusion-Graphite Crucib	les

Storage: Pulp & Reject

PULP STORAGE : REJECT STORAGE :

Comments:

Ag may be considered partial, depending upon the sample matrix and its` retention in HNO3 acid Assays not suitable for commercial exchange.

Certified By

Debbie Waldon Project Coordinator

SGS Minerals Services (Lakefield) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

Report Footer: L.N.R. = Listed not received

I.S. = Insufficient Sample

n.a. = Not applicable

-- = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Waldon

Page 2 of 9

Report File No.: 0000012394

	Element	WtKg	@Au	@AI	@Ba	@Be	@Ca	@Cr	@Cu
	Method	G_WGH79	GE_FAA313	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
	Det.Lim.	0.001	5	0.01	10	5	0.1	10	10
	Units	kg	ppb	%	ppm	ppm	%	ppm	ppm
Sample 71		2.920	<5	7.42	591	6	4.4	176	55
Sample 72		1.550	<5	9.19	854	<5	1.5	175	20
Sample 73		3.427	<5	9.82	870	<5	0.8	170	<10
Sample 74		2.428	28	8.33	388	<5	5.3	212	302
Sample 75		3.165	66	7.10	297	<5	4.5	150	524
Sample 76		1.926	<5	7.83	546	7	4.1	91	92
Sample 77		2.263	<5	7.40	487	<5	2.4	24	177
Sample 78		2.111	<5	7.64	817	<5	2.9	27	107
Sample 79		3.495	<5	7.80	542	8	8.5	13	157
*Rep Sample 71			<5						
*Std OREAS-217			323						
*Rep Sample 79				7.89	538	8	8.6	14	156
*Std SY-4				11.0	329	<5	5.7	10	<10

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 3 of 9

Report File No.: 0000012394

Element	@Fe	@K	@Li	@Mg	@Mn	@Ni	@P	@Sc
Method	GE_ICM90A							
Det.Lim.	0.01	0.1	10	0.01	10	5	0.01	5
Units	%	%	ppm	%	ppm	ppm	%	ppm
Sample 71	8.75	2.5	100	3.94	1656	103	0.03	35
Sample 72	5.75	2.1	60	2.00	650	97	0.06	17
Sample 73	7.17	3.2	44	1.54	1453	73	0.08	20
Sample 74	8.13	0.9	28	3.24	1323	63	0.02	36
Sample 75	13.5	0.7	20	2.59	1093	87	0.02	26
Sample 76	8.63	1.6	69	2.04	1305	56	0.10	23
Sample 77	4.90	0.9	41	0.60	400	9	0.08	12
Sample 78	4.96	1.2	38	0.48	475	10	0.08	13
Sample 79	13.1	1.4	63	3.24	1650	44	0.10	39
*Rep Sample 79	13.2	1.4	64	3.28	1667	44	0.10	39
*Std SY-4	4.51	1.4	38	0.30	817	17	0.06	<5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 4 of 9

Report File No.: 0000012394

Element	Si	@Sr	@Ti	@V	@Zn	@Ag	@As	@Bi
Method	GE_ICM90A							
Det.Lim.	0.1	10	0.01	5	5	1	5	0.1
Units	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample 71	24.4	282	0.44	196	184	<1	<5	0.7
Sample 72	27.1	408	0.36	102	93	<1	<5	3.1
Sample 73	27.4	101	0.46	137	86	<1	<5	0.2
Sample 74	24.1	517	0.43	194	97	<1	<5	1.5
Sample 75	20.9	465	0.35	151	81	2	11	5.9
Sample 76	26.5	455	0.87	209	114	<1	<5	0.6
Sample 77	29.1	377	0.34	21	33	<1	<5	1.4
Sample 78	>30.0	370	0.32	11	26	<1	<5	0.6
Sample 79	19.8	757	1.27	622	132	<1	<5	1.0
*Rep Sample 79	20.2	760	1.29	613	131	<1	<5	0.9
*Std SY-4	23.2	1179	0.17	<5	96	<1	<5	<0.1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 5 of 9

Report File No.: 0000012394

Element	@Cd	@Ce	@Co	@Cs	@Dy	@Er	@Eu	@Ga
Method	GE_ICM90A							
Det.Lim.	0.2	0.1	0.5	0.1	0.05	0.05	0.05	1
Units	ppm							
Sample 71	<0.2	11.1	40.2	24.2	2.79	1.70	0.67	19
Sample 72	<0.2	36.5	43.2	3.2	2.42	1.42	0.70	23
Sample 73	<0.2	75.6	22.8	8.5	4.44	2.53	1.31	24
Sample 74	0.4	5.6	106	1.8	2.67	1.83	0.51	16
Sample 75	0.5	4.5	402	1.3	1.89	1.37	0.40	14
Sample 76	<0.2	31.0	30.6	11.4	3.95	2.42	1.33	21
Sample 77	<0.2	39.2	11.7	4.0	6.88	4.54	1.35	18
Sample 78	<0.2	44.7	8.7	3.1	6.56	4.25	1.45	21
Sample 79	<0.2	11.6	62.3	7.3	2.61	1.45	1.03	22
*Rep Sample 79	0.2	11.5	61.8	7.2	2.67	1.45	1.03	22
*Std SY-4	<0.2	125	2.1	1.6	19.1	14.9	1.93	35

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 6 of 9

Report File No.: 0000012394

Elemen	t @Gd	@Ge	@Hf	@Ho	@In	@La	@Lu	@Mo
Metho	GE_ICM90A							
Det.Lim	0.05	1	1	0.05	0.2	0.1	0.05	2
Unit	s ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample 71	2.46	2	1	0.59	<0.2	4.9	0.31	<2
Sample 72	2.61	1	3	0.53	<0.2	18.3	0.24	<2
Sample 73	5.10	2	4	0.85	<0.2	39.7	0.37	<2
Sample 74	2.06	2	1	0.59	<0.2	2.3	0.33	<2
Sample 75	1.54	1	1	0.41	<0.2	2.0	0.21	<2
Sample 76	3.88	2	3	0.84	<0.2	14.4	0.37	<2
Sample 77	5.68	1	7	1.44	<0.2	16.6	0.67	<2
Sample 78	5.77	1	7	1.38	<0.2	19.9	0.69	2
Sample 79	2.84	2	<1	0.53	<0.2	4.7	0.19	<2
*Rep Sample 79	2.68	2	<1	0.51	<0.2	4.7	0.20	<2
*Std SY-4	14.6	1	10	4.41	<0.2	58.9	2.14	<2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 7 of 9

Report File No.: 0000012394

Elemen	e @Nb	@Nd	@Pb	@Pr	@Rb	@Sb	@Sm	@Sn
Method	GE_ICM90A							
Det.Lim	. 1	0.1	5	0.05	0.2	0.1	0.1	1
Units	ppm							
Sample 71	2	7.1	12	1.51	226	0.2	2.0	2
Sample 72	7	15.9	18	4.19	89.7	0.2	2.8	2
Sample 73	10	32.0	8	8.63	184	0.2	5.9	4
Sample 74	3	4.2	27	0.85	29.9	0.2	1.3	1
Sample 75	2	3.0	27	0.60	21.9	0.2	1.0	2
Sample 76	5	15.9	11	3.81	151	0.1	3.7	3
Sample 77	11	20.8	13	4.94	71.3	0.1	5.1	3
Sample 78	10	23.0	11	5.49	74.4	0.1	5.2	4
Sample 79	2	8.8	15	1.76	106	0.3	2.4	2
*Rep Sample 79	2	8.6	15	1.71	107	0.6	2.2	2
*Std SY-4	14	59.1	11	15.0	53.9	<0.1	12.7	8

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 8 of 9

Report File No.: 0000012394

Elemer	t @Ta	@Tb	@Th	@TI	@Tm	@U	@W	@Y
Metho	d GE_ICM90A	GE_ICM90A						
Det.Lin	ı. 0.5	0.05	0.1	0.5	0.05	0.05	1	0.5
Unit	s ppm	ppm						
Sample 71	<0.5	0.41	1.0	2.5	0.25	0.52	<1	15.0
Sample 72	0.7	0.37	10.9	0.7	0.23	3.06	1	13.4
Sample 73	1.0	0.74	16.0	1.4	0.37	5.82	3	23.4
Sample 74	<0.5	0.38	0.5	<0.5	0.28	0.37	<1	15.4
Sample 75	<0.5	0.28	0.4	<0.5	0.20	0.26	<1	11.5
Sample 76	<0.5	0.61	4.3	1.1	0.33	1.04	<1	20.8
Sample 77	0.8	1.01	5.8	0.5	0.68	1.83	<1	38.5
Sample 78	1.1	0.96	5.3	0.5	0.64	1.73	<1	36.4
Sample 79	<0.5	0.40	0.1	1.1	0.19	0.10	61	12.8
*Rep Sample 79	<0.5	0.41	0.1	1.0	0.20	0.12	62	12.7
*Std SY-4	0.8	2.64	1.3	<0.5	2.27	1.03	<1	115

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000012394

Element Method Det.Lim. Units	@Yb GE_ICM90A 0.1 ppm	@Zr GE_ICM90A 0.5 ppm
Sample 71	1.6	52.4
Sample 72	1.4	114
Sample 73	2.4	147
Sample 74	1.9	47.2
Sample 75	1.3	35.5
Sample 76	2.4	106
Sample 77	4.5	277
Sample 78	4.2	278
Sample 79	1.3	15.9
*Rep Sample 79	1.3	15.4
*Std SY-4	15.1	537

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 9 of 9

Certificate of Analysis Work Order: SU1700969

[Report File No.: 0000012616]

Date: November 13, 2017

To: Guy_Richard P.O. No.: 2017-21110 for Characterization of 3 Sam

COD SGS MINERALS - GEOCHEM LAKEFIELD Project No.: -

c/o Mr. Michel Lavoie Samples: 3

ON Received: Oct 10, 2017
Pages: Page 1 to 9

(Inclusive of Cover Sheet)

Methods Summary

No. Of Samples Method Code Description	
3 SHIP Shipping	
3 G_WGH79 Weighing of samples	and reporting of weights
3 G_PRP89 Weigh, Dry, to 3kg, 0	rush 75% -2mm, Split to 250g, Pulverise to 85% -75µm
3 GE_FAA313 @Au, FAS, AAS, 300	-5ml
3 ZMS_ICM90A Package Price - GE_	ICM90A (GE_IC90A+GE_IC90M)
3 GE_IC90A @Package, ICPAES	after Sodium Peroxide Fusion-Graphite Crucibles
3 GE_IC90M @Package, ICPMS a	fter Sodium Peroxide Fusion-Graphite Crucibles

Storage: Pulp & Reject

PULP STORAGE : REJECT STORAGE :

Comments:

Ag may be considered partial, depending upon the sample matrix and its` retention in HNO3 acid Assays not suitable for commercial exchange.

Certified By

Debbie Waldon Project Coordinator

SGS Minerals Services (Lakefield) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

Report Footer: L.N.R. = Listed not received

I.S. = Insufficient Sample

n.a. = Not applicable

-- = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Waldon

Page 2 of 9

Report File No.: 0000012616

Element	WtKg	@Au	@Al	@Ba	@Be	@Ca	@Cr	@Cu
Method	G_WGH79	GE_FAA313	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
Det.Lim.	0.001	5	0.01	10	5	0.1	10	10
Units	kg	ppb	%	ppm	ppm	%	ppm	ppm
Sample 80	3.150	<5	8.26	158	<5	6.5	137	172
Sample 81	2.593	<5	8.62	380	<5	2.2	274	42
Sample 82	1.972	6	8.31	559	<5	1.1	129	39
*Std OREAS-224		2048						
*BIk BLANK		<5						
*Rep Sample 82			8.46	557	<5	1.1	128	39
*Std SY-4			N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*BIk BLANK			N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*Rep Sample 82		<5						
*BIk BLANK			<0.01	<10	<5	<0.1	<10	<10
*Std SY-4			10.3	334	<5	5.9	<10	<10

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 3 of 9

Report File No.: 0000012616

1	Element	@Fe	@K	@Li	@Mg	@Mn	@Ni	@P	@Sc
	Method	GE_ICM90A	GE_ICM90A	GE_ICM90A			GE_ICM90A	GE_ICM90A	
!	Det.Lim.	0.01	0.1	10	0.01	10	5	0.01	5
	Units	%	%	ppm	%	ppm	ppm	%	ppm
Sample 80		9.49	0.5	30	3.38	1447	52	0.03	42
Sample 81		7.01	2.4	66	2.94	1027	96	0.05	24
Sample 82		5.79	2.8	44	1.23	734	46	0.06	13
*Rep Sample 82		5.67	2.8	45	1.27	731	54	0.06	14
*Std SY-4		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*BIk BLANK		N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
*BIk BLANK		<0.01	<0.1	<10	<0.01	<10	5	<0.01	<5
*Std SY-4		4.36	1.5	39	0.32	840	6	0.06	<5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 4 of 9

Report File No.: 0000012616

Elem		0-			@Zn	@Ag	@As	@Bi
Met	od GE_ICM90A	GE_ICM90A	_		GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
Det.L	im. 0.1	10	0.01	5	5	1	5	0.1
U	nits %	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample 80	22.9	716	0.65	310	116	<1	13	0.6
Sample 81	24.7	191	0.33	158	81	<1	<5	0.2
Sample 82	29.3	222	0.34	103	61	<1	13	2.1
*Rep Sample 82	28.6	221	0.34	103	64	<1	12	2.1
*Std SY-4	N.A.	N.A.	N.A.	N.A.	N.A.	<1	<5	<0.1
*BIk BLANK	N.A.	N.A.	N.A.	N.A.	N.A.	<1	<5	<0.1
*BIK BLANK	<0.1	<10	<0.01	<5	<5			
*Std SY-4	23.7	1204	0.18	<5	106			

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 5 of 9

Report File No.: 0000012616

	Element	@Cd	@Ce	@Co	@Cs	@Dy	@Er	@Eu	@Ga
	Method	GE_ICM90A	GE_ICM90A	GE_ICM90A	- 1		GE_ICM90A	GE_ICM90A	- 1
	Det.Lim.	0.2	0.1	0.5	0.1	0.05	0.05	0.05	1
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample 80		0.3	11.0	47.9	1.6	4.15	2.84	0.93	21
Sample 81		<0.2	44.0	40.6	15.6	2.65	1.69	0.96	23
Sample 82		<0.2	55.8	89.8	9.4	3.01	1.79	1.02	22
*Rep Sample 82		<0.2	55.6	88.1	9.5	2.97	1.81	1.06	21
*Std SY-4		<0.2	121	2.6	1.7	18.5	14.7	2.07	39
*BIk BLANK		<0.2	<0.1	<0.5	<0.1	<0.05	<0.05	<0.05	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 6 of 9

Report File No.: 0000012616

	Element	@Gd	@Ge	@Hf	@Ho	@In	@La	@Lu	@Mo
	Method	GE_ICM90A							
	Det.Lim.	0.05	1	1	0.05	0.2	0.1	0.05	2
	Units	ppm							
Sample 80		3.60	2	2	0.91	<0.2	4.5	0.46	<2
Sample 81		3.17	1	3	0.57	<0.2	23.9	0.28	<2
Sample 82		3.62	1	5	0.59	<0.2	29.3	0.27	<2
*Rep Sample 82		3.72	1	5	0.59	<0.2	29.2	0.28	<2
*Std SY-4		14.8	1	12	4.37	<0.2	60.1	2.26	<2
*BIk BLANK		<0.05	<1	<1	<0.05	<0.2	<0.1	<0.05	<2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 7 of 9

Report File No.: 0000012616

	Element	@Nb	@Nd	@Pb	@Pr	@Rb	@Sb	@Sm	@Sn
	Method	GE_ICM90A	GE_ICM90A	-	-	_	-		
	Det.Lim.	1	0.1	5	0.05	0.2	0.1	0.1	1
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample 80		3	8.4	30	1.74	23.3	0.3	2.8	2
Sample 81		7	19.8	10	5.37	179	0.2	3.7	3
Sample 82		8	23.9	16	6.61	179	0.2	4.5	3
*Rep Sample 82		8	23.8	16	6.67	177	0.2	4.4	3
*Std SY-4		14	59.7	13	15.4	56.5	0.1	13.1	9
*BIk BLANK		<1	<0.1	<5	<0.05	<0.2	0.1	<0.1	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 8 of 9

Report File No.: 0000012616

	Element	@Ta	@Tb	@Th	@TI	@Tm	@U	@W	@Y
	Method	GE_ICM90A							
	Det.Lim.	0.5	0.05	0.1	0.5	0.05	0.05	1	0.5
	Units	ppm							
Sample 80		<0.5	0.68	0.9	<0.5	0.43	0.27	<1	25.2
Sample 81		0.6	0.49	10.0	1.9	0.28	3.52	<1	16.1
Sample 82		0.8	0.55	12.3	1.5	0.27	4.49	2	17.5
*Rep Sample 82		0.9	0.52	12.2	1.5	0.28	4.68	2	17.5
*Std SY-4		0.8	2.83	1.3	<0.5	2.47	0.82	1	124
*BIk BLANK		<0.5	<0.05	<0.1	<0.5	<0.05	<0.05	<1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000012616

	Element	@Yb	@Zr
	Method	GE_ICM90A	GE_ICM90A
	Det.Lim.	0.1	0.5
	Units	ppm	ppm
Sample 80		2.7	66.8
Sample 81		1.6	85.3
Sample 82		1.6	162
*Rep Sample 82		1.7	160
*Std SY-4		15.2	542
*BIK BLANK		<0.1	1.2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 9 of 9

Certificate of Analysis Work Order: SU1700975

[Report File No.: 0000012565]

Date: November 09, 2017

To: Guy_Richard P.O. No.: 2017-21110 for Characterization of 3 Sam

COD SGS MINERALS - GEOCHEM LAKEFIELD Project No.: -

c/o Mr. Michel Lavoie Samples: 3

ON Received: Oct 12, 2017
Pages: Page 1 to 9

(Inclusive of Cover Sheet)

Methods Summary

No. Of Samples	Method Code	<u>Description</u>
3	SHIP	Shipping
3	G_WGH79	Weighing of samples and reporting of weights
3	G_PRP89	Weigh, Dry, to 3kg, Crush 75% -2mm, Split to 250g, Pulverise to 85% -75µm
3	GE_FAA313	@Au, FAS, AAS, 30g-5ml
3	ZMS_ICM90A	Package Price - GE_ICM90A (GE_IC90A+GE_IC90M)
3	GE_IC90A	@Package, ICPAES after Sodium Peroxide Fusion-Graphite Crucibles
3	GE_IC90M	@Package, ICPMS after Sodium Peroxide Fusion-Graphite Crucibles
2	GO_XRF77B	Ore Quality Pyrosulfate fusion, XRF (0.4 g if Mo)

Storage: Pulp & Reject

PULP STORAGE : REJECT STORAGE :

Comments:

Ag may be considered partial, depending upon the sample matrix and its` retention in HNO3 acid Assays not suitable for commercial exchange.

Certified By

Debbie Waldon Project Coordinator

ie Waldon

SGS Minerals Services (Lakefield) is accredited by Standards Council of Canada (SCC) and conforms to the requirements of ISO/IEC 17025 for specific tests as indicated on the scope of accreditation to be found at http://www.scc.ca/en/programs/lab/mineral.shtml

Report Footer: L.N.R. = Listed not received

I.S. = Insufficient Sample

n.a. = Not applicable

-- = No result

*INF = Composition of this sample makes detection impossible by this method M after a result denotes ppb to ppm conversion, % denotes ppm to % conversion

Methods marked with an asterisk (e.g. *NAA08V) were subcontracted

Elements marked with the @ symbol (e.g. @Cu) denote assays performed using accredited test methods

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 2 of 9

Report File No.: 0000012565

	Element	WtKg	@Au	@Al	@Ba	@Be	@Ca	@Cr	@Cu
	Method	G_WGH79	GE_FAA313	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A	GE_ICM90A
	Det.Lim.	0.001	5	0.01	10	5	0.1	10	10
	Units	kg	ppb	%	ppm	ppm	%	ppm	ppm
Sample 83		1.135	<5	5.00	260	<5	11.5	16	4373
Sample 84		1.189	8	0.57	54	<5	>25.0	42	>10000
Sample 85		0.260	179	3.74	59	<5	9.5	<10	>10000
*Std OXD144			393						
*BIk BLANK			<5						
*Rep Sample 85				3.48	58	<5	9.3	<10	>10000
*Std SY-4				11.4	329	<5	5.8	<10	13
*BIk BLANK				<0.01	<10	<5	<0.1	<10	<10

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 3 of 9

Report File No.: 0000012565

	Element	@Fe	@K	@Li	@Mg	@Mn	@Ni	@P	@Sc
	Method	GE_ICM90A							
	Det.Lim.	0.01	0.1	10	0.01	10	5	0.01	5
	Units	%	%	ppm	%	ppm	ppm	%	ppm
Sample 83		5.97	2.1	16	1.68	1363	52	0.02	23
Sample 84		2.14	0.4	11	0.25	1450	12	<0.01	7
Sample 85		17.3	0.3	16	3.11	1425	43	<0.01	11
*Rep Sample 85		17.2	0.3	17	3.07	1413	41	<0.01	11
*Std SY-4		4.55	1.5	39	0.31	815	9	0.06	<5
*BIk BLANK		<0.01	<0.1	<10	<0.01	<10	<5	<0.01	<5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 4 of 9

Report File No.: 0000012565

	Element	Si	@Sr	@Ti	@V	@Zn	@Ag	@As	@Bi
	Method	GE_ICM90A	GE_ICM90A		- 1	_		GE_ICM90A	-
	Det.Lim.	0.1	10	0.01	5	5	1	5	0.1
	Units	%	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample 83		21.4	75	0.29	138	64	<1	<5	0.7
Sample 84		13.9	148	0.03	19	12	<1	<5	2.1
Sample 85		15.2	81	0.11	58	52	1	7	2.4
*Rep Sample 85		15.0	80	0.11	58	50	1	7	2.4
*Std SY-4		23.0	1204	0.17	<5	99	<1	<5	<0.1
*BIk BLANK		<0.1	<10	<0.01	<5	<5	<1	<5	<0.1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 5 of 9

Report File No.: 0000012565

	Element	@Cd	@Ce	@Co	@Cs	@Dy	@Er	@Eu	@Ga
	Method	GE_ICM90A							
	Det.Lim.	0.2	0.1	0.5	0.1	0.05	0.05	0.05	1
	Units	ppm							
Sample 83		<0.2	24.4	25.2	0.3	3.42	1.92	1.29	14
Sample 84		<0.2	10.0	8.4	0.1	3.59	2.28	0.79	2
Sample 85		<0.2	60.3	153	0.4	12.4	6.33	2.48	21
*Rep Sample 85		<0.2	58.6	153	0.3	12.7	6.43	2.45	21
*Std SY-4		<0.2	122	2.7	1.8	19.8	14.7	2.16	38
*BIk BLANK		<0.2	<0.1	<0.5	0.1	<0.05	<0.05	<0.05	<1

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 6 of 9

Report File No.: 0000012565

	Element	@Gd	@Ge	@Hf	@Ho	@In	@La	@Lu	@Mo
	Method	GE_ICM90A							
	Det.Lim.	0.05	1	1	0.05	0.2	0.1	0.05	2
	Units	ppm							
Sample 83		3.67	<1	1	0.70	<0.2	11.7	0.27	<2
Sample 84		3.54	<1	<1	0.79	<0.2	4.1	0.35	<2
Sample 85		13.9	1	1	2.34	0.7	29.4	0.99	13
*Rep Sample 85		13.5	1	1	2.36	0.7	28.3	1.01	12
*Std SY-4		15.2	1	11	4.49	<0.2	57.7	2.21	<2
*BIk BLANK		<0.05	<1	<1	<0.05	<0.2	<0.1	<0.05	<2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 7 of 9

Report File No.: 0000012565

	Element	@Nb	@Nd	@Pb	@Pr	@Rb	@Sb	@Sm	@Sn
	Method	GE_ICM90A							
	Det.Lim.	1	0.1	5	0.05	0.2	0.1	0.1	1
	Units	ppm							
Sample 83		2	12.6	<5	3.06	75.0	0.3	3.2	4
Sample 84		<1	7.7	<5	1.49	13.9	0.2	2.4	3
Sample 85		2	34.1	5	8.09	11.7	0.3	11.4	24
*Rep Sample 85		2	32.9	<5	7.80	11.3	0.4	11.4	22
*Std SY-4		14	57.3	11	15.1	57.8	<0.1	13.4	10
*BIk BLANK		<1	0.1	<5	<0.05	0.2	0.1	<0.1	2

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Page 8 of 9

Report File No.: 0000012565

	Element	@Ta	@Tb	@Th	@TI	@Tm	@U	@W	@Y
	Method	GE_ICM90A	GE_ICM90A	GE_ICM90A	- 1	-	GE_ICM90A	GE_ICM90A	
	Det.Lim.	0.5	0.05	0.1	0.5	0.05	0.05	1	0.5
	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample 83		<0.5	0.57	1.3	<0.5	0.26	0.64	<1	21.2
Sample 84		<0.5	0.55	0.2	<0.5	0.32	0.10	1	27.0
Sample 85		<0.5	2.23	1.8	<0.5	0.97	4.31	401	62.5
*Rep Sample 85		<0.5	2.23	1.8	<0.5	1.01	4.27	411	63.2
*Std SY-4		0.8	2.83	1.3	<0.5	2.41	0.82	<1	124
*BIk BLANK		<0.5	<0.05	<0.1	<0.5	<0.05	<0.05	<1	<0.5

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Report File No.: 0000012565

	Element	@Yb	@Zr	Cu
	Method	GE_ICM90A	GE_ICM90A	GO_XRF77B
	Det.Lim.	0.1	0.5	0.01
	Units	ppm	ppm	%
Sample 83		1.5	38.6	N.A.
Sample 84		2.1	4.6	1.10
Sample 85		6.0	46.6	3.17
*Rep Sample 85		6.1	45.8	
*Std SY-4		15.2	568	
*BIk BLANK		<0.1	0.8	

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativity of the goods and strictly relate to the sample (s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Page 9 of 9

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michel Lavoie

PROJECT:

AGAT WORK ORDER: 17T274302

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Nov 14, 2017

PAGES (INCLUDING COVER): 10

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

*NOTES

Certificate of Analysis

AGAT WORK ORDER: 17T274302

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(20	1-378) Sc	odium Pe	eroxide I	Fusion -	ICP-OES	S/ICP-MS	S Finish					
DATE SAMPLED: Oc	t 19, 2017			DATE RECE	EIVED: Oct	20, 2017		DATE	REPORTED	D: Nov 14, 2	017	SAM	MPLE TYPE:	Other	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
86 (8836392)		<1	7.58	<30	<20	88.6	<5	0.4	3.61	<0.2	9.0	25.2	0.022	1.2	37
87 (8836393)		<1	6.72	<30	51	380	<5	0.8	6.93	<0.2	30.3	28.1	< 0.005	4.5	86
88 (8836394)		<1	7.82	<30	27	146	<5	1.3	5.66	<0.2	22.1	20.0	0.009	1.2	66
89 (8836395)		<1	7.53	<30	32	343	<5	0.8	6.37	<0.2	15.7	24.6	0.005	2.1	141
90 (8836396)		<1	9.46	<30	53	617	<5	0.2	1.27	<0.2	67.0	33.5	0.019	6.5	17
91 (8836397)		1	0.52	<30	119	60.8	<5	11.9	1.36	0.3	0.5	375	0.016	2.1	1100
92 (8836398)		2	1.83	43	95	183	<5	13.7	2.66	0.3	2.6	342	0.017	6.8	1090
93 (8836399)		1	1.55	<30	74	168	<5	11.0	2.06	<0.2	2.0	177	0.022	5.6	871
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
86 (8836392)		2.11	1.63	0.59	5.24	16.6	1.59	1	3	0.46	<0.2	0.44	5.0	23	0.23
87 (8836393)		8.92	6.44	2.35	12.7	24.7	7.31	2	5	1.89	<0.2	1.30	13.2	35	0.89
88 (8836394)		5.49	4.07	1.39	6.60	19.6	4.57	2	3	1.13	<0.2	0.59	10.2	15	0.52
89 (8836395)		5.19	3.78	1.40	8.83	22.5	4.37	2	3	1.05	<0.2	0.80	6.6	26	0.50
90 (8836396)		3.97	2.38	1.46	6.79	25.0	4.96	2	4	0.71	<0.2	2.31	36.6	63	0.30
91 (8836397)		0.10	0.08	< 0.05	31.5	2.00	0.10	<1	<1	< 0.05	<0.2	0.26	0.3	<10	< 0.05
92 (8836398)		0.33	0.25	0.13	26.0	6.42	0.38	<1	<1	0.07	<0.2	0.81	1.3	30	<0.05
93 (8836399)		0.23	0.23	0.09	18.7	5.13	0.26	<1	<1	0.06	<0.2	0.69	1.1	25	<0.05
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
86 (8836392)		3.23	1970	<2	3	4.4	70	0.04	27	1.04	21.0	0.28	0.2	19	28.7
87 (8836393)		3.33	1430	<2	9	20.2	45	0.11	19	4.16	66.3	0.38	0.3	45	23.4
88 (8836394)		2.45	1270	<2	6	13.3	27	0.07	29	2.86	20.3	1.16	0.3	28	26.9
89 (8836395)		2.81	1250	3	6	11.2	26	0.07	9	2.24	31.7	0.48	0.5	42	25.4
90 (8836396)		1.82	1560	<2	10	31.3	84	0.09	8	7.98	131	0.02	0.1	20	28.9
91 (8836397)		0.19	77	10	<1	0.3	207	<0.01	8	0.07	20.3	34.8	<0.1	<5	10.9
92 (8836398)		0.85	466	10	<1	1.4	269	0.01	11	0.31	76.3	27.1	0.1	<5	13.8
93 (8836399)		0.82	410	8	<1	1.1	152	<0.01	10	0.24	64.1	17.7	<0.1	<5	23.2

Certified By:

y Latomura

Certificate of Analysis

AGAT WORK ORDER: 17T274302

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(20	1-378) Sc	odium P	eroxide I	Fusion -	ICP-OES	S/ICP-MS	S Finish					
ATE SAMPLED: Oct	19, 2017		Γ	DATE RECE	EIVED: Oct	20, 2017		DATE I	REPORTE	D: Nov 14, 2	017	SAM	IPLE TYPE	Other	
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
ample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
6 (8836392)		1.1	1	181	<0.5	0.29	3.5	0.34	<0.5	0.22	1.03	150	<1	12.6	1.6
(8836393)		5.8	2	1000	<0.5	1.26	2.0	1.28	0.5	0.91	1.04	251	1	49.0	6.3
3 (8836394)		3.5	2	647	<0.5	0.81	1.8	0.76	<0.5	0.54	1.05	187	1	29.5	3.8
(8836395)		3.4	2	404	<0.5	0.79	2.9	0.86	<0.5	0.53	1.26	388	<1	29.3	3.7
(8836396)		5.6	3	155	0.9	0.67	14.4	0.45	0.8	0.33	5.07	152	2	18.7	2.3
(8836397)		0.1	1	36.9	<0.5	< 0.05	0.1	0.03	<0.5	< 0.05	0.07	15	1	0.6	<0.1
? (8836398)		0.4	2	114	<0.5	< 0.05	0.4	0.08	0.6	< 0.05	0.14	45	1	2.0	0.3
3 (8836399)		0.3	2	75.0	<0.5	<0.05	0.2	0.09	0.5	<0.05	0.11	44	1	1.6	0.3
	Analyte:	Zn	Zr												
	Unit:	ppm	ppm												
ample ID (AGAT ID)	RDL:	5	0.5												
(8836392)		115	102												
(8836393)		101	192												
(8836394)		74	111												
(8836395)		75	115												
(8836396)		104	134												
(8836397)		21	5.2												
(8836398)		56	13.9												
(8836399)		49	10.3												
(8836396) (8836397) (8836398) (8836399)	and a Data of	104 21 56 49	134 5.2 13.9												

Comments: RDL - Reported Detection Limit

Certified By:

y of stomure

Certificate of Analysis

AGAT WORK ORDER: 17T274302

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

(202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish													
DATE SAMPLED: Oct	t 19, 2017			DATE RECEIV	/ED: Oct 20, 2017	DATE REPORTED: Nov 14, 2017	SAMPLE TYPE: Other						
	Analyte:	Au	Pd	Pt									
	Unit:	ppm	ppm	ppm									
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005									
86 (8836392)		0.002	0.002	<0.005									
87 (8836393)		0.007	< 0.001	< 0.005									
88 (8836394)		0.001	0.002	<0.005									
89 (8836395)		0.002	< 0.001	< 0.005									
90 (8836396)		0.001	0.003	< 0.005									
91 (8836397)		0.044	0.029	0.011									
92 (8836398)		0.039	0.035	< 0.005									
93 (8836399)		0.028	0.024	< 0.005									

Comments: RDL - Reported Detection Limit

Certified By:

y of stomure

Quality Assurance - Replicate AGAT WORK ORDER: 17T274302 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	378) Sod	lium Pe	roxide	Fusion	- ICP-O	S/ICP-	MS Fin	ish		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag		< 1	< 1	0.0%										
Al		5.48	5.49	0.2%										
As		< 30	< 30	0.0%										
В		< 20	< 20	0.0%										
Ва		356	361	1.4%										
Ве		< 5	< 5	0.0%										
Bi		< 0.1	< 0.1	0.0%										
Ca		2.13	2.13	0.0%										
Cd		< 0.2	< 0.2	0.0%										
Ce		0.6	0.6	0.0%										
Со		1.3	1.4	7.4%										
Cr		0.0157	0.0148	5.9%										
Cs		< 0.1	< 0.1	0.0%										
Cu		20	19	5.1%										
Dy		0.217	0.214	1.4%										
Er		0.16	0.14	13.3%										
Eu		0.07	0.07	0.0%										
Fe		2.56	2.64	3.1%										
Ga		0.322	0.302	6.4%										
Gd		0.243	0.224	8.1%										
Ge		< 1	< 1	0.0%										
Hf		< 1	< 1	0.0%										
Но		< 0.05	< 0.05	0.0%										
In		< 0.2	< 0.2	0.0%										
K		1.43	1.43	0.0%										
La		0.9	1.0	10.5%										
Li		13	12	8.0%										
Lu		< 0.05	< 0.05	0.0%										
Mg		1.20	1.19	0.8%										
Mn		456	449	1.5%										
Мо		< 2	< 2	0.0%										

Quality Assurance - Replicate AGAT WORK ORDER: 17T274302 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

LIENT NAM	E: MISC AC	SAT CLIE	NT ON							ATTE	NTION TO	D: Michel	Lavoie		
Nb		< 1	< 1	0.0%											
Nd		0.6	0.7	15.4%											
Ni		38	45	16.9%											
Р		0.06	0.06	0.0%											
Pb		< 5	< 5	0.0%											
Pr		0.13	0.16	20.7%											
Rb		0.80	0.96	18.2%											
S		0.16	0.16	0.0%											
Sb		0.1	0.1	0.0%											
Sc		9	9	0.0%											
Si		35.5	35.7	0.6%											
Sm		0.13	0.16	20.7%											
Sn		< 1	< 1	0.0%											
Sr		254	258	1.6%											
Та		< 0.5	0.8												
Tb		< 0.05	< 0.05	0.0%											
Th		< 0.1	< 0.1	0.0%											
Ti		0.37	0.37	0.0%											
TI		< 0.5	< 0.5	0.0%											
Tm		< 0.05	< 0.05	0.0%											
U		0.14	0.09												
V		< 5	< 5	0.0%											
W		< 1	< 1	0.0%											
Υ		1.97	2.06	4.5%											
Yb		0.1	0.1	0.0%											
Zn		50	48	4.1%											
Zr		2.72	2.63	3.4%											
				(202-0	55) Fire	Assay	- Au, P	t, Pd Tr	ace Lev	els, ICP	-OES fi	nish			
		REPLIC	ATE #1												
Parameter	Sample ID	Original	Replicate	RPD											
Au	8836392	0.002	0.001												
Pd	8836392	0.002	0.002	0.0%											
Pt	8836392	< 0.005	< 0.005	0.0%											

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T274302 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-378	3) Soc	dium P	eroxid	e Fusion	- ICP-C	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.SY-4)											
Parameter	Expect	Actual	Recovery	Limits										
Al	10.95	11.14	102%	90% - 110%										
Ва	340	340	100%	90% - 110%										
Ве	2.6	3.1	119%	90% - 110%										
Ca	5.72	5.94	104%	90% - 110%										
Се	122	117	96%	90% - 110%										
Со	2.8	2.5	88%	90% - 110%										
Cs	1.5	1.4	97%	90% - 110%										
Dy	18.2	18.2	100%	90% - 110%										
Er	14.2	15.3	108%	90% - 110%										
Eu	2.0	2	100%	90% - 110%										
Fe	4.34	4.26	98%	90% - 110%										
Ga	35	38	109%	90% - 110%										
Gd	14	14	99%	90% - 110%										
Hf	10.6	11.6	109%	90% - 110%										
Но	4.3	4.2	97%	90% - 110%										
К	1.37	1.41	103%	90% - 110%										
La	58	57	98%	90% - 110%										
Li	37	43	115%	90% - 110%										
Lu	2.1	2	94%	90% - 110%										
Mg	0.325	0.317	98%	90% - 110%										
Mn	836	852	102%	90% - 110%										
Nb	13	14	111%	90% - 110%										
Nd	57	57	101%	90% - 110%										
Ni	9	10	108%	90% - 110%										
Pb	10	12	124%	90% - 110%										
Pr	15.0	14.4	96%	90% - 110%										
Rb	55	58	105%	90% - 110%										
Si	23.3	23.8	102%	90% - 110%										
Sm	12.7	12.7	100%	90% - 110%										
Sn	7.1	7.8	109%	90% - 110%										
Sr	1191	1291	108%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T274302 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: MISC A	GAT CLI	ENT ON							ATTI	ENTION	TO: Miche	Lavoie		
Tb	2.6	2.6	99%	90% - 110%											
Th	1.4	1.2	85%	90% - 110%											
Ti	0.172	0.169	98%	90% - 110%											
Tm	2.3	2.3	101%	90% - 110%											
U	0.8	0.7	94%	90% - 110%											
Υ	119	107	90%	90% - 110%											
Yb	14.8	15.8	107%	90% - 110%											
Zn	93	98	105%	90% - 110%											
Zr	517	572	110%	90% - 110%											
				(202-0	55) Fire	Assay	- Au,	Pt, Pd Tr	ace Lev	els, ICF	P-OES	finish			
		CRM #1	(ref.PG129)												
Parameter	Expect	Actual	Recovery	Limits											
Au	1.1	1.1	99%	90% - 110%											
Pd	0.115	0.113	98%	90% - 110%											
Pt	0.239	0.232	97%	90% - 110%											

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T274302
PROJECT: ATTENTION TO: Michel Lavoie

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
Al	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Ве	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Co	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
In	MIN-200-12001		ICP-MS
K	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Мо	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P			ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc	MIN-200-12001		ICP/OES
Si	MIN-200-12001		ICP/OES
Sm	MIN-200-12001		ICP-MS
Sn	MIN-200-12001		ICP/MS
Sr	MIN-200-12001		ICP-OES
Та	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th	MIN-200-12001		ICP-MS
Ti	MIN-200-12001		ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T274302
PROJECT: ATTENTION TO: Michel Lavoie

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Y	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michel Lavoie

PROJECT: Michel Lavoie

AGAT WORK ORDER: 17T276625

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Dec 19, 2017

PAGES (INCLUDING COVER): 13

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

NOTES

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

Certificate of Analysis

AGAT WORK ORDER: 17T276625

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(20	1-378) Sc	odium P	eroxide I	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 29, 2017			DATE RECE	EIVED: Oct	26, 2017		DATE I	REPORTED): Dec 19, 20	017	SAN	IPLE TYPE:	Other	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
94 (8861386)		<1	8.23	<30	45	383	<5	3.5	8.88	<0.2	24.0	52.0	0.007	2.8	490
95 (8861387)		<1	8.33	<30	43	342	<5	3.9	9.65	0.3	27.1	49.3	0.007	2.6	546
96 (8861388)		<1	7.59	<30	33	56.8	<5	0.6	9.83	<0.2	6.9	31.0	0.021	0.3	90
97 (8861389)		<1	7.54	<30	47	93.3	<5	0.4	8.12	0.3	8.6	38.4	0.026	0.4	279
98 (8861390)		<1	7.21	<30	42	138	<5	0.8	7.18	0.5	21.4	149	0.011	0.6	745
99 (8861391)		<1	7.45	<30	33	59.3	<5	1.0	9.06	0.6	10.7	72.0	0.009	0.3	640
100 (8861392)		1	7.70	<30	66	836	<5	3.2	7.63	0.6	10.9	277	0.021	1.7	1560
101 (8861393)		1	4.88	<30	130	515	<5	7.5	4.12	0.3	6.5	776	0.012	1.7	1690
102 (8861394)		3	7.51	<30	56	2240	<5	1.8	4.26	0.4	23.7	235	0.019	2.6	1170
103 (8861395)		<1	8.10	<30	47	75.8	<5	1.5	9.28	0.5	22.0	79.6	0.012	0.2	403
104 (8861396)		<1	6.79	<30	26	91.0	<5	0.9	7.19	0.4	20.1	46.2	0.013	0.2	230
105 (8861397)		<1	7.87	<30	42	870	<5	0.1	5.30	0.2	16.7	42.8	0.029	2.3	69
106 (8861398)		<1	8.34	<30	48	860	<5	0.2	6.72	<0.2	10.1	47.0	0.032	3.1	146
107 (8861399)		1	7.73	<30	53	374	<5	2.3	6.63	<0.2	16.4	173	0.015	2.3	758
108 (8861400)		<1	7.63	<30	32	443	<5	1.4	6.25	<0.2	16.9	70.9	0.015	3.5	365
109 (8861401)		<1	7.74	<30	35	205	9	3.4	6.61	<0.2	17.9	111	0.011	2.5	659
110 (8861402)		2	8.64	<30	23	1420	22	7.0	3.30	23.2	55.0	24.4	0.023	35.0	196
111 (8861403)		<1	7.86	<30	49	534	9	1.0	4.17	0.2	12.8	63.4	0.007	13.5	147
112 (8861404)		<1	7.28	<30	40	554	7	2.5	3.85	0.3	32.1	50.1	< 0.005	14.1	142
113 (8861405)		<1	9.29	<30	33	1050	<5	0.7	1.17	<0.2	67.5	27.2	0.017	8.3	18
114 (8861406)		<1	4.72	<30	<20	151	<5	1.0	1.13	<0.2	24.7	21.6	0.018	4.6	56
115 (8861407)		<1	8.64	<30	29	367	<5	1.0	2.08	<0.2	42.4	49.1	0.016	7.2	12
116 (8861408)		<1	5.85	<30	<20	24.6	<5	0.2	0.22	<0.2	29.4	12.4	0.015	0.3	15

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 17T276625

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(20	1-378) Sc	odium Pe	eroxide l	Fusion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 29, 2017		Г	DATE RECE	EIVED: Oct	26, 2017		DATE F	REPORTED	: Dec 19, 2	017	SAM	PLE TYPE:	Other	
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
94 (8861386)		4.86	3.09	1.47	10.3	24.5	4.73	3	2	1.03	<0.2	1.05	12.3	45	0.45
95 (8861387)		4.48	2.96	1.35	10.2	24.5	4.35	3	2	0.96	<0.2	0.94	14.8	41	0.43
96 (8861388)		3.12	1.99	0.74	7.58	16.5	2.61	2	1	0.65	<0.2	0.25	2.7	22	0.30
97 (8861389)		3.75	2.28	0.91	8.52	16.0	3.20	2	2	0.79	<0.2	0.34	3.4	32	0.34
98 (8861390)		6.13	3.88	1.68	11.0	20.4	5.89	2	3	1.29	<0.2	0.40	9.3	26	0.55
99 (8861391)		3.45	2.28	1.08	9.12	20.9	3.18	2	1	0.76	<0.2	0.22	4.6	19	0.35
100 (8861392)		2.85	1.81	0.99	15.6	20.4	2.67	2	1	0.60	<0.2	0.79	6.0	37	0.26
101 (8861393)		1.50	0.93	0.58	28.7	12.2	1.46	1	<1	0.31	<0.2	0.41	3.8	28	0.13
102 (8861394)		2.42	1.42	1.15	12.1	13.8	2.72	1	2	0.48	<0.2	1.49	12.7	53	0.20
103 (8861395)		6.25	4.11	1.69	10.4	24.1	6.05	2	3	1.27	<0.2	0.22	9.9	17	0.56
104 (8861396)		6.19	3.99	1.63	7.61	19.0	5.82	2	3	1.32	<0.2	0.21	9.0	13	0.56
105 (8861397)		3.05	1.91	0.95	8.87	13.4	3.03	1	2	0.63	<0.2	1.74	7.7	79	0.28
106 (8861398)		4.01	2.56	1.06	9.59	16.6	3.47	2	2	0.82	<0.2	1.50	4.3	57	0.37
107 (8861399)		5.45	3.46	1.22	11.4	18.5	4.83	2	3	1.16	<0.2	0.74	6.5	50	0.51
108 (8861400)		5.97	3.78	1.37	8.41	15.7	5.31	2	3	1.21	<0.2	0.95	6.7	50	0.53
109 (8861401)		5.47	3.44	1.54	9.43	24.0	5.08	2	3	1.11	<0.2	0.63	7.2	31	0.47
110 (8861402)		4.01	2.30	1.64	6.62	16.7	5.57	2	4	0.78	<0.2	3.54	26.9	199	0.33
111 (8861403)		5.39	3.54	1.18	12.0	19.2	4.74	2	2	1.15	<0.2	2.81	4.9	161	0.53
112 (8861404)		10.2	6.54	2.24	10.6	20.0	9.49	2	5	2.14	<0.2	2.73	13.0	152	0.92
113 (8861405)		4.28	2.48	1.42	6.43	21.1	5.71	2	4	0.85	<0.2	2.94	37.0	60	0.34
114 (8861406)		1.88	1.08	0.52	4.21	14.1	2.23	1	2	0.37	<0.2	1.06	12.6	37	0.18
115 (8861407)		2.76	1.76	1.05	6.11	19.3	3.16	1	6	0.54	<0.2	2.06	19.9	40	0.28
116 (8861408)		1.78	1.21	0.39	3.44	16.0	1.69	1	3	0.38	<0.2	0.13	10.0	19	0.18

Certified By:

Sherin Houssey

Certificate of Analysis

AGAT WORK ORDER: 17T276625

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(20	1-378) Sc	odium Po	eroxide l	Fusion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 29, 2017		[DATE RECE	EIVED: Oct	26, 2017		DATE I	REPORTED): Dec 19, 20	017	SAM	PLE TYPE:	Other	
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
94 (8861386)		2.92	1880	<2	2	13.3	56	0.04	15	3.34	60.6	0.99	0.4	42	22.7
95 (8861387)		2.92	1900	<2	2	14.3	58	0.04	16	3.58	51.5	0.93	0.5	43	22.7
96 (8861388)		3.07	1460	2	1	5.4	87	0.03	16	1.14	8.3	0.25	0.4	32	28.0
97 (8861389)		3.93	1720	<2	2	6.7	107	0.03	13	1.43	11.3	0.30	0.3	37	24.6
98 (8861390)		2.83	1580	<2	4	14.2	107	0.07	26	3.25	14.4	3.16	0.4	37	24.1
99 (8861391)		2.67	1600	4	2	7.7	58	0.03	27	1.69	6.2	0.97	0.6	34	24.8
100 (8861392)		2.67	1320	13	1	6.8	277	0.03	44	1.56	39.2	6.89	0.4	29	18.8
101 (8861393)		1.74	725	28	<1	3.9	689	0.02	33	0.89	22.8	19.6	0.4	15	11.4
102 (8861394)		2.66	1020	10	2	11.0	183	0.04	31	2.93	66.2	4.78	0.4	21	25.4
103 (8861395)		2.89	1680	<2	3	15.1	150	0.07	54	3.28	4.2	1.83	0.4	42	25.6
104 (8861396)		2.52	1480	<2	3	13.8	71	0.07	41	3.07	4.3	0.84	0.9	38	28.3
105 (8861397)		5.16	2010	<2	3	9.2	153	0.06	30	2.28	60.2	0.31	0.3	35	25.3
106 (8861398)		4.11	1820	<2	2	7.3	148	0.04	29	1.60	57.0	0.42	0.3	44	26.1
107 (8861399)		3.23	1390	<2	3	11.2	124	0.06	20	2.53	39.3	3.88	0.4	39	25.2
108 (8861400)		3.31	1400	<2	3	12.1	85	0.07	17	2.69	55.4	2.06	0.3	42	27.0
109 (8861401)		2.45	1770	<2	3	12.3	138	0.06	11	2.76	31.5	1.81	0.4	36	29.0
110 (8861402)		3.86	1440	<2	4	26.7	62	0.15	463	7.17	310	0.59	0.6	25	27.3
111 (8861403)		4.19	1830	4	3	9.8	44	0.06	12	2.08	262	1.06	0.3	51	24.6
112 (8861404)		3.37	1490	3	8	23.3	19	0.18	16	5.23	255	1.33	0.4	39	26.9
113 (8861405)		1.68	1210	<2	7	29.8	71	0.08	8	8.59	217	0.09	0.3	18	31.4
114 (8861406)		1.59	580	<2	4	10.2	60	0.06	6	3.01	63.7	0.11	0.5	8	37.1
115 (8861407)		1.51	1040	<2	8	16.8	58	0.09	14	4.91	148	0.44	0.2	16	30.7
116 (8861408)		2.34	228	<2	3	9.0	47	0.05	6	2.58	4.1	0.10	0.3	11	35.9

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 17T276625

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(20)	1-378) S	odium Po	eroxide i	-usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 29, 2017		[DATE RECE	EIVED: Oct	26, 2017		DATE I	REPORTED	: Dec 19, 20	017	SAM	PLE TYPE:	Other	
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Y	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
94 (8861386)		3.4	3	343	<0.5	0.77	0.4	0.57	0.7	0.47	0.26	346	4	28.2	3.0
95 (8861387)		3.5	3	387	<0.5	0.72	0.3	0.57	0.6	0.43	0.25	353	6	27.8	2.9
96 (8861388)		1.7	1	247	<0.5	0.45	0.2	0.45	<0.5	0.31	0.07	278	<1	19.1	2.0
97 (8861389)		2.2	<1	194	<0.5	0.57	0.2	0.52	<0.5	0.35	0.08	279	<1	22.5	2.4
98 (8861390)		4.1	2	234	<0.5	0.94	1.4	0.90	<0.5	0.54	0.51	361	1	37.3	3.7
99 (8861391)		2.4	1	287	<0.5	0.53	0.3	0.44	<0.5	0.34	0.56	287	2	22.4	2.3
100 (8861392)		1.9	1	370	<0.5	0.42	0.3	0.40	0.6	0.26	0.12	323	<1	18.6	1.8
101 (8861393)		1.0	<1	209	<0.5	0.23	0.1	0.20	<0.5	0.13	0.08	191	<1	9.7	0.9
102 (8861394)		2.4	<1	230	<0.5	0.41	2.6	0.39	0.9	0.22	0.77	313	<1	15.1	1.4
103 (8861395)		4.3	2	352	<0.5	0.99	0.6	0.98	<0.5	0.56	0.38	415	1	39.9	3.8
104 (8861396)		4.2	2	257	<0.5	0.98	0.6	0.92	<0.5	0.57	0.31	349	<1	38.6	3.9
105 (8861397)		2.3	1	195	<0.5	0.48	1.6	0.54	0.6	0.26	0.46	221	<1	19.2	1.9
106 (8861398)		2.3	1	263	<0.5	0.59	0.3	0.60	0.5	0.37	0.19	287	<1	24.9	2.5
107 (8861399)		3.4	2	247	<0.5	0.81	1.6	0.83	2.1	0.51	0.55	346	<1	33.6	3.5
108 (8861400)		3.7	2	232	<0.5	0.89	1.0	0.93	1.0	0.53	0.32	353	<1	36.6	3.7
109 (8861401)		3.6	2	294	<0.5	0.83	1.4	0.86	<0.5	0.50	0.42	366	<1	34.3	3.5
110 (8861402)		5.2	5	504	<0.5	0.74	4.4	0.44	3.0	0.33	1.32	164	3	23.6	2.3
111 (8861403)		3.3	11	122	<0.5	0.81	0.7	0.83	2.3	0.51	0.26	318	<1	36.2	3.6
112 (8861404)		6.7	11	138	0.6	1.56	1.5	1.18	2.2	0.95	0.67	167	<1	64.4	6.6
113 (8861405)		5.5	3	195	0.9	0.80	13.3	0.44	1.9	0.34	4.53	134	2	26.2	2.4
114 (8861406)		2.0	2	84.7	<0.5	0.33	4.9	0.19	<0.5	0.18	1.73	67	<1	11.6	1.2
115 (8861407)		3.2	2	371	1.0	0.47	12.5	0.42	1.3	0.26	3.11	113	<1	17.7	1.9
116 (8861408)		1.7	2	70.5	<0.5	0.28	5.4	0.21	<0.5	0.18	1.52	82	<1	12.3	1.3

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 17T276625

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

DATE CAMPLED: O-4			/0			
DATE CAMPIED, O-4			(2	01-378) Sodium Peroxide Fusi	on - ICP-OES/ICP-MS Finish	
DATE SAMPLED: Oct	29, 2017			DATE RECEIVED: Oct 26, 2017	DATE REPORTED: Dec 19, 2017	SAMPLE TYPE: Other
	Analyte:	Zn	Zr			
ı	Unit:	ppm	ppm			
Sample ID (AGAT ID)	RDL:	5	0.5			
94 (8861386)		105	48.0			
95 (8861387)		103	47.2			
96 (8861388)		91	38.8			
97 (8861389)		125	47.1			
98 (8861390)		129	100			
99 (8861391)		93	38.4			
100 (8861392)		109	37.5			
101 (8861393)		66	18.5			
102 (8861394)		130	66.1			
103 (8861395)		139	91.2			
104 (8861396)		115	91.4			
105 (8861397)		167	69.5			
106 (8861398)		153	50.5			
107 (8861399)		129	83.8			
108 (8861400)		133	92.5			
109 (8861401)		142	97.4			
110 (8861402)		1630	117			
111 (8861403)		223	76.0			
112 (8861404)		168	155			
113 (8861405)		87	141			
114 (8861406)		50	63.7			
115 (8861407)		70	192			
116 (8861408)		21	107			

Comments: RDL - Reported Detection Limit

Certified By:

Certificate of Analysis

AGAT WORK ORDER: 17T276625

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

			(202	2-055) Fire Assay - Au, Pt, Po	d Trace Levels, ICP-OES finish	
DATE SAMPLED: Oc	t 29, 2017			DATE RECEIVED: Oct 26, 2017	DATE REPORTED: Dec 19, 2017	SAMPLE TYPE: Other
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
94 (8861386)		0.008	0.003	<0.005		
95 (8861387)		0.008	0.001	<0.005		
96 (8861388)		0.002	0.004	<0.005		
97 (8861389)		0.007	0.004	<0.005		
98 (8861390)		0.006	0.002	<0.005		
99 (8861391)		0.006	0.006	<0.005		
100 (8861392)		0.004	0.023	<0.005		
101 (8861393)		0.007	0.017	<0.005		
102 (8861394)		0.001	0.002	<0.005		
103 (8861395)		0.003	0.004	<0.005		
104 (8861396)		0.002	0.004	<0.005		
105 (8861397)		0.830	0.004	<0.005		
106 (8861398)		0.028	0.007	<0.005		
107 (8861399)		0.015	0.003	<0.005		
108 (8861400)		0.005	0.002	<0.005		
109 (8861401)		0.004	0.001	<0.005		
110 (8861402)		0.003	0.002	<0.005		
111 (8861403)		0.002	< 0.001	<0.005		
112 (8861404)		0.002	< 0.001	<0.005		
113 (8861405)		<0.001	0.003	<0.005		
114 (8861406)		0.003	0.002	<0.005		
115 (8861407)		0.004	0.003	<0.005		
116 (8861408)		0.003	0.001	<0.005		

Comments: RDL - Reported Detection Limit

Certified By:

Sherin Houssey

Quality Assurance - Replicate
AGAT WORK ORDER: 17T276625

PROJECT: Michel Lavoie

ATTENTION TO: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

				(201-3	378) Sod	ium Pe	roxide	Fusion	- ICP-O	ES/ICP	MS Fin	ish		
		REPLIC	ATE #1			REPLIC	ATE #2							
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD						
Ag	8861386	< 1	< 1	0.0%	8861402	2	2	0.0%						
Al	8861386	8.23	8.35	1.4%	8861402	8.64	8.85	2.4%						
As	8861386	< 30	< 30	0.0%	8861402	< 30	< 30	0.0%						
В	8861386	45	44	2.2%	8861402	23	32							
Ва	8861386	383	391	2.1%	8861402	1420	1420	0.0%						
Be	8861386	< 5	< 5	0.0%	8861402	22	22	0.0%						
Bi	8861386	3.5	3.5	0.0%	8861402	7.03	6.83	2.9%						
Ca	8861386	8.88	8.96	0.9%	8861402	3.30	3.40	3.0%						
Cd	8861386	0.2	0.2	0.0%	8861402	23.2	23.2	0.0%						
Се	8861386	24.0	23.2	3.4%	8861402	55.0	55.6	1.1%						
Со	8861386	52.0	51.3	1.4%	8861402	24.4	24.6	0.8%						
Cr	8861386	0.0073	0.0075	2.7%	8861402	0.0235	0.0237	0.8%						
Cs	8861386	2.79	2.87	2.8%	8861402	35.0	35.1	0.3%						
Cu	8861386	490	497	1.4%	8861402	196	194	1.0%						
Dy	8861386	4.86	4.71	3.1%	8861402	4.01	3.99	0.5%						
Er	8861386	3.09	3.03	2.0%	8861402	2.30	2.31	0.4%						
Eu	8861386	1.02	0.99	3.0%	8861404	0.92	0.92	0.0%						
Fe	8861386	10.3	10.4	1.0%	8861402	6.62	7.03	6.0%						
Ga	8861386	24.5	23.8	2.9%	8861402	16.7	16.7	0.0%						
Gd	8861386	4.73	4.55	3.9%	8861402	5.57	5.53	0.7%						
Ge	8861386	3	3	0.0%	8861402	2	2	0.0%						
Hf	8861386	2	2	0.0%	8861402	4	4	0.0%						
Но	8861386	1.03	0.98	5.0%	8861402	0.78	0.78	0.0%						
In	8861386	< 0.2	< 0.2	0.0%	8861402	< 0.2	< 0.2	0.0%						
К	8861386	1.05	1.06	0.9%	8861402	3.54	3.62	2.2%						
La	8861386	12.3	11.8	4.1%	8861402	26.9	27.4	1.8%						
Li	8861386	45	47	4.3%	8861402	199	203	2.0%						
Lu	8861386	0.45	0.45	0.0%	8861402	0.33	0.33	0.0%						
Mg	8861386	2.92	3.01	3.0%	8861402	3.86	3.96	2.6%						
Mn	8861386	1880	1910	1.6%	8861402	1440	1420	1.4%						
Мо	8861386	< 2	< 2	0.0%	8861402	< 2	< 2	0.0%						

Quality Assurance - Replicate AGAT WORK ORDER: 17T276625 PROJECT: Michel Lavoie 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON

ATTENTION TO: Michel Lavoie

Nb	8861386	2	2	0.0%	8861402	4	4	0.0%						
Nd	8861386	13.3	12.7	4.6%	8861402	26.7	26.4	1.1%						
Ni	8861386	56	58	3.5%	8861402	62	64	3.2%						
Р	8861386	0.04	0.04	0.0%	8861402	0.15	0.15	0.0%						
Pb	8861386	15	15	0.0%	8861402	463	458	1.1%						
Pr	8861386	3.34	3.16	5.5%	8861402	7.17	7.19	0.3%						
Rb	8861386	60.6	59.4	2.0%	8861402	310	307	1.0%						
S	8861386	0.99	1.01	2.0%	8861402	0.589	0.597	1.3%						
Sb	8861386	0.35	0.28	22.2%	8861402	0.6	0.3							
Sc	8861386	42	43	2.4%	8861402	25	25	0.0%						
Si	8861386	22.7	23.4	3.0%	8861402	27.3	28.0	2.5%						
Sm	8861386	3.44	3.34	2.9%	8861402	5.2	5.2	0.0%						
Sn	8861386	3	2		8861402	5	5	0.0%						
Sr	8861386	343	351	2.3%	8861402	504	497	1.4%						
Та	8861386	< 0.5	< 0.5	0.0%	8861402	< 0.5	< 0.5	0.0%						
Tb	8861386	0.768	0.742	3.4%	8861402	0.74	0.76	2.7%						
Th	8861386	0.4	0.4	0.0%	8861402	4.40	4.46	1.4%						
Ti	8861386	0.571	0.580	1.6%	8861402	0.439	0.447	1.8%						
TI	8861386	0.68	0.63	7.6%	8861402	3.0	3.0	0.0%						
Tm	8861386	0.472	0.434	8.4%	8861402	0.329	0.320	2.8%						
U	8861386	0.26	0.25	3.9%	8861402	1.32	1.33	0.8%						
V	8861386	346	343	0.9%	8861402	164	165	0.6%						
W	8861386	4	4	0.0%	8861402	3	3	0.0%						
Y	8861386	28.2	27.8	1.4%	8861402	23.6	23.2	1.7%						
Yb	8861386	3.0	2.9	3.4%	8861402	2.29	2.20	4.0%						
Zn	8861386	105	109	3.7%	8861402	1630	1700	4.2%						
Zr	8861386	48.0	48.2	0.4%	8861402	117	122	4.2%						
				(202-0	55) Fire	Assay	- Au, Pt	, Pd Tra	ice Leve	els, ICP	-OES fi	nish		
		REPLIC	ATE #1			REPLIC	ATE #2							
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD						
Au	8861386	0.0077	0.0063	20.0%	8861404	0.002	0.001							
Pd	8861394	0.002	0.003		8861404	< 0.001	< 0.001	0.0%						
Pt	8861386	< 0.005	< 0.005	0.0%	8861404	< 0.005	< 0.005	0.0%						

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T276625

PROJECT: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	378) So	dium P	eroxide	e Fusion	- ICP-O	ES/ICF	P-MS Fir	nish				
		CRM #1	(ref.SY-4)			CRM #2	(ref.TILL-2)			CRM #3	(ref.GSP4C)			CRM #4	(ref.PG124)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Al	10.95	11.0	101%	90% - 110%	8.47	8.56	101%	90% - 110%								
As					26	25	95%	90% - 110%								
Ва	340	370	109%	90% - 110%	540	563	104%	90% - 110%								
Ве	2.6	2.9	113%	90% - 110%	4.0	3.6	90%	90% - 110%								
Ca	5.72	6.05	106%	90% - 110%	0.907	0.954	105%	90% - 110%								
Се	122	131	107%	90% - 110%	98	110	113%	90% - 110%								
Со	2.8	2.4	85%	90% - 110%	15	13	87%	90% - 110%								
Cs	1.5	1.7	112%	90% - 110%												
Cu	7	7.50	107%	90% - 110%	150	161	107%	90% - 110%								
Dy	18.2	20.6	113%	90% - 110%												
Er	14.2	16	113%	90% - 110%	3.7	4.3	116%	90% - 110%								
Eu	2.0	2.1	105%	90% - 110%												
Fe	4.34	4.40	101%	90% - 110%	3.77	4.05	107%	90% - 110%								
Ga	35	34	98%	90% - 110%												
Gd	14	16	114%	90% - 110%												
Hf	10.6	11	104%	90% - 110%	11	11	96%	90% - 110%								
Но	4.3	4.8	112%	90% - 110%												
K	1.37	1.43	104%	90% - 110%	2.55	2.61	102%	90% - 110%								
La	58	64	111%	90% - 110%	44	49	112%	90% - 110%								
Li	37	38.9	105%	90% - 110%	47	53.9	115%	90% - 110%								
Lu	2.1	2.3	108%	90% - 110%	0.6	0.6	101%	90% - 110%								
Mg	0.325	0.328	101%	90% - 110%	1.1	1.13	103%	90% - 110%								
Mn	836	856	102%	90% - 110%	780	795	102%	90% - 110%								
Мо					14	13	95%	90% - 110%								
Nb	13	11	84%	90% - 110%	20	18	90%	90% - 110%								
Nd	57	61	107%	90% - 110%												
Ni	9	10.4	115%	90% - 110%	32	36.7	115%	90% - 110%								
Pb	10	10	98%	90% - 110%	31	32	103%	90% - 110%								
Pr	15.0	17	113%	90% - 110%												
Rb	55	51	93%	90% - 110%	144	141	98%	90% - 110%								
Sb					0.8	0.9	118%	90% - 110%								

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T276625

PROJECT: Michel Lavoie

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: MISC A	GAT CLII	ENT ON							ATTI	ENTION 1	ΓΟ: Michel L	avoie		nup://ww	w.agaliabs.cc
Sc					12	12.2	101%	90% - 110%								
Si	23.3	23.8	102%	90% - 110%	28.4	29.9	105%	90% - 110%								
Sm	12.7	13.5	106%	90% - 110%	7.4	8	108%	90% - 110%								
Sn	7.1	8.6	121%	90% - 110%												i
Sr	1191	1290	108%	90% - 110%	144	160	111%	90% - 110%								
Та	0.9	0.8	89%	90% - 110%	1.9	1.8	93%	90% - 110%								
Tb	2.6	3.1	118%	90% - 110%	1.2	1.3	109%	90% - 110%								
Th	1.4	1.3	92%	90% - 110%	18.4	18.9	103%	90% - 110%								
Ti	0.172	0.172	100%	90% - 110%	0.527	0.532	101%	90% - 110%								
Tm	2.3	2.5	109%	90% - 110%												
U	0.8	0.8	102%	90% - 110%	5.7	5.4	95%	90% - 110%								
V					77	81	105%	90% - 110%								
W					5	5	108%	90% - 110%								
Υ	119	142	119%	90% - 110%	40	46	114%	90% - 110%								
Yb	14.8	16.8	113%	90% - 110%												
Zn	93	94.1	101%	90% - 110%	130	126	97%	90% - 110%								
Zr	517	503	97%	90% - 110%	390	360	92%	90% - 110%								
	•			(202-0	55) Fire	Assay	/ - Au, I	Pt, Pd Tra	ace Lev	els, ICF	P-OES	finish				
		CRM #1	(ref.GS6D)			CRM #2	(ref.PG129)			CRM #3 (ref.GSP4C))		CRM #4	(ref.PG124)	
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits
Au	6.09	6.27	103%	90% - 110%					0.362	0.391	108%	90% - 110%				
Pd					0.115	0.127	110%	90% - 110%					0.037	0.0393	106%	90% - 110
Pt					0.239	0.262	109%	90% - 110%					0.09	0.0934	104%	90% - 1109
		CRM #5	ref.GSP4C)		1	1	1		1		ı		1		
Parameter	Expect	Actual	Recovery	Limits												
Au	0.362	0.391	108%	90% - 110%												

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: Michel Lavoie

SAMPLING SITE:

AGAT WORK ORDER: 17T276625 ATTENTION TO: Michel Lavoie

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
AI	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Ве	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Co	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Ho	MIN-200-12001		ICP-MS
In	MIN-200-12001		ICP-MS
ĸ	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Mo	MIN-200-12001 MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P	WIIN-200-12001		ICP/OES
Pb	MIN-200-12001		ICP/MS
			ICP-MS
Pr	MIN-200-12001		
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc s:	MIN-200-12001		ICP/OES
Si S	MIN-200-12001		ICP/OES
Sm	MIN-200-12001		ICP-MS
Sn Sn	MIN-200-12001		ICP/MS
Sr -	MIN-200-12001		ICP-OES
Ta	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th	MIN-200-12001		ICP-MS
Ti	MIN-200-12001		ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T276625
PROJECT: Michel Lavoie ATTENTION TO: Michel Lavoie

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Υ	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michel Lavoie

PROJECT:

AGAT WORK ORDER: 17T278477

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Dec 21, 2017

PAGES (INCLUDING COVER): 14

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

*NOTES

AGAT WORK ORDER: 17T278477

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(200-) Sample Lo	ogin Weight	
DATE SAMPLED: Oc	t 31, 2017		DATE RECEIVED: Oct 31, 2017	DATE REPORTED: Dec 21, 2017	SAMPLE TYPE: Other
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.01			
117 (8868086)		3.521			
118 (8868087)		1.482			
119 (8868088)		2.5			
120 (8868089)		2.381			
121 (8868090)		1.389			
122 (8868091)		1.698			
123 (8868092)		1.641			
124 (8868093)		1.62			
125 (8868094)		3.022			
126 (8868095)		3.372			
127 (8868096)		3.328			
128 (8868097)		2.271			
129 (8868098)		2.364			
130 (8868099)		2.519			
131 (8868100)		2.197			
132 (8868101)		3.582			
133 (8868102)		1.7			
134 (8868103)		2.933			
135 (8868104)		2.422			
136 (8868105)		2.497			
137 (8868106)		2.048			
138 (8868107)		2.896			
139 (8868108)		2.388			
140 (8868109)		3.068			
141 (8868110)		2.344			
142 (8868111)		1.546			
143 (8868112)		2.464			
144 (8868113)		2.606			
145 (8868690)		2.544			

Comments: RDL - Reported Detection Limit

Certified By:

y of stomma

AGAT WORK ORDER: 17T278477

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(20	1-378) Sc	odium P	eroxide f	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oc	t 31, 2017		Г	DATE RECE	EIVED: Oct	31, 2017		DATE F	REPORTED	: Dec 21, 2	017	SAI	MPLE TYPE:	Other	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	5	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
117 (8868086)		<1	8.45	<5	46	932	8	1.9	6.99	<0.2	19.1	127	0.006	5.8	1030
118 (8868087)		<1	10.2	<5	34	1080	18	1.2	5.09	<0.2	8.7	51.8	< 0.005	6.3	579
119 (8868088)		<1	10.1	<5	35	1140	22	1.4	5.50	0.2	10.2	69.5	< 0.005	7.2	728
120 (8868089)		<1	8.09	<5	40	571	5	2.0	7.51	0.2	26.1	70.8	0.008	2.7	698
121 (8868090)		<1	8.30	<5	43	530	<5	0.3	6.14	<0.2	4.6	52.6	0.022	3.0	67
122 (8868091)		1	4.99	<5	28	51.0	<5	1.0	5.97	<0.2	7.7	52.9	0.014	0.5	1160
123 (8868092)		<1	9.84	<5	79	68.3	<5	0.1	0.52	<0.2	9.5	45.1	< 0.005	0.9	23
124 (8868093)		<1	2.89	<5	<20	69.6	<5	0.5	1.89	<0.2	16.9	32.4	0.007	0.6	33
125 (8868094)		<1	6.00	<5	<20	305	<5	0.4	0.91	<0.2	46.6	21.1	0.016	2.1	15
126 (8868095)		<1	6.65	<5	<20	325	<5	0.4	1.13	<0.2	48.9	17.0	0.015	2.7	8
127 (8868096)		<1	6.38	<5	21	337	<5	0.7	1.13	<0.2	42.8	18.2	0.015	2.5	122
128 (8868097)		<1	4.87	<5	21	241	<5	0.3	0.73	<0.2	26.8	22.2	0.011	1.6	33
129 (8868098)		<1	9.09	<5	39	592	<5	0.3	0.66	<0.2	61.0	24.9	0.020	7.9	8
130 (8868099)		<1	6.72	<5	21	135	<5	0.5	2.12	<0.2	42.8	25.6	0.018	1.7	227
131 (8868100)		2	4.51	<5	<20	92.8	<5	0.4	1.64	<0.2	33.2	21.2	0.019	1.3	80
132 (8868101)		<1	3.85	<5	<20	47.0	<5	0.3	0.95	<0.2	13.0	6.8	0.010	0.3	56
133 (8868102)		<1	7.04	<5	28	439	<5	4.7	1.14	<0.2	32.0	34.3	0.016	1.9	1340
134 (8868103)		1	7.56	<5	27	358	<5	2.3	1.46	<0.2	35.1	47.6	0.013	3.2	5340
135 (8868104)		<1	6.61	<5	<20	44.2	<5	0.6	3.21	<0.2	34.2	20.7	0.017	0.4	57
136 (8868105)		<1	7.18	<5	23	371	<5	0.8	3.85	<0.2	35.8	45.6	0.017	1.7	148
137 (8868106)		<1	7.31	<5	30	540	<5	0.8	4.13	<0.2	40.9	45.7	0.019	2.5	108
138 (8868107)		<1	6.54	<5	29	441	<5	0.8	4.09	0.2	28.9	65.0	0.015	2.1	138
139 (8868108)		<1	7.73	<5	<20	303	<5	0.5	4.24	0.4	46.2	53.7	0.015	1.4	1400
140 (8868109)		<1	5.60	<5	<20	112	<5	0.6	2.98	0.3	35.6	88.7	0.014	1.3	69
141 (8868110)		<1	7.94	<5	66	976	<5	0.5	1.78	<0.2	22.9	144	0.070	10.8	236
142 (8868111)		<1	9.28	<5	32	1080	<5	0.2	1.64	<0.2	25.5	68.2	0.157	12.6	76
143 (8868112)		<1	9.39	<5	34	990	<5	0.3	1.98	<0.2	31.8	83.1	0.071	10.7	166
144 (8868113)		<1	9.37	<5	39	110	<5	3.7	11.2	0.5	38.1	14.6	0.036	0.4	142
145 (8868690)		<1	7.05	<5	45	971	<5	0.7	4.63	<0.2	17.9	56.7	< 0.005	8.0	121

Certified By:

y of stomure

AGAT WORK ORDER: 17T278477

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(20	1-378) S	odium Po	eroxide I	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oct	: 31, 2017		[DATE RECE	EIVED: Oct	31, 2017		DATE F	REPORTED	: Dec 21, 2	017	SAM	PLE TYPE:	Other	
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Li
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppn
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.0
117 (8868086)		7.31	5.00	1.79	11.1	22.7	6.55	3	3	1.53	<0.2	1.67	7.4	67	0.7
118 (8868087)		3.18	2.20	0.91	5.95	16.1	2.79	1	2	0.66	<0.2	1.96	3.7	67	0.30
119 (8868088)		4.14	2.81	1.10	7.24	17.9	3.45	2	2	0.90	<0.2	2.02	4.2	70	0.39
120 (8868089)		6.09	4.10	1.84	9.85	18.3	6.03	3	3	1.28	<0.2	1.04	11.3	47	0.58
121 (8868090)		1.78	1.24	0.47	8.66	14.9	1.58	2	<1	0.40	<0.2	1.46	2.2	83	0.18
122 (8868091)		1.81	1.18	0.43	5.24	11.8	1.62	2	<1	0.37	<0.2	0.26	3.9	16	0.1
123 (8868092)		0.90	0.52	0.21	15.4	39.3	1.24	2	<1	0.18	<0.2	0.47	6.6	139	0.0
124 (8868093)		2.06	1.40	0.46	3.02	8.29	2.34	1	<1	0.43	<0.2	0.45	12.0	29	0.3
125 (8868094)		2.48	1.48	0.94	3.80	17.1	3.38	1	3	0.48	<0.2	1.14	23.4	43	0.20
126 (8868095)		2.54	1.55	0.98	3.65	17.2	3.55	1	3	0.48	<0.2	1.41	24.3	44	0.23
127 (8868096)		1.96	1.24	0.77	4.35	19.2	2.88	1	3	0.38	<0.2	1.26	21.5	51	0.18
128 (8868097)		1.45	0.91	0.54	4.51	16.4	1.96	1	2	0.29	<0.2	0.93	13.4	51	0.14
129 (8868098)		3.18	1.84	0.89	6.10	22.5	4.18	2	5	0.60	<0.2	3.91	29.8	55	0.30
130 (8868099)		2.41	1.46	0.75	4.43	15.0	3.15	1	4	0.47	<0.2	0.73	21.1	45	0.2
131 (8868100)		2.06	1.21	0.58	3.30	11.0	2.60	1	3	0.40	<0.2	0.54	16.3	33	0.19
132 (8868101)		0.91	0.65	0.23	1.04	6.86	1.03	<1	1	0.20	<0.2	0.26	6.5	13	0.0
133 (8868102)		1.62	1.01	0.62	3.95	17.3	1.99	1	4	0.32	<0.2	1.55	13.9	37	0.10
134 (8868103)		1.70	1.12	0.68	5.06	17.3	2.23	1	4	0.34	<0.2	1.50	16.2	40	0.1
135 (8868104)		2.96	1.83	0.97	3.86	17.1	3.41	2	3	0.61	<0.2	0.23	16.2	25	0.20
136 (8868105)		2.47	1.42	1.09	5.70	22.4	3.01	1	3	0.47	<0.2	0.90	17.8	32	0.18
137 (8868106)		2.54	1.48	1.17	7.19	26.2	3.34	2	4	0.49	<0.2	1.25	20.3	50	0.2
138 (8868107)		2.20	1.32	0.86	7.59	21.7	2.63	1	3	0.42	<0.2	1.09	14.3	42	0.20
139 (8868108)		2.29	1.18	1.10	4.50	18.5	3.81	1	4	0.40	<0.2	0.90	22.9	33	0.1
140 (8868109)		2.25	1.42	1.03	3.86	15.7	3.07	1	3	0.44	<0.2	0.54	18.9	19	0.1
141 (8868110)		2.95	2.01	1.03	15.5	23.6	3.18	2	2	0.61	<0.2	2.50	11.7	98	0.3
142 (8868111)		3.98	2.40	1.32	8.17	21.3	4.39	1	3	0.77	<0.2	3.18	12.6	98	0.3
143 (8868112)		3.60	2.30	1.28	7.80	20.3	4.02	1	3	0.74	<0.2	2.65	15.7	81	0.3
144 (8868113)		6.70	4.16	1.77	7.60	34.6	6.50	4	2	1.36	0.2	0.28	20.2	21	0.5
145 (8868690)		6.18	4.20	1.58	11.0	24.2	5.78	2	3	1.31	<0.2	2.58	7.0	91	0.60

Certified By:

y Latimura

AGAT WORK ORDER: 17T278477

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

DATE SAMPLED: Oc	t 31 2017		Г	DATE RECE	IVED: Oct	31 2017		DATE	REPORTED	. Dec 21 2	117	SAM	PLE TYPE:	Other	
DATE SAMI EED. OC															
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
117 (8868086)		3.78	1600	<2	8	15.4	72	0.06	11	2.97	125	2.00	<0.1	52	20.5
118 (8868087)		2.39	734	9	5	6.7	47	0.04	16	1.37	137	0.69	<0.1	22	23.9
119 (8868088)		2.82	944	4	5	8.1	53	0.05	15	1.59	147	1.11	<0.1	29	23.2
120 (8868089)		3.96	1730	<2	6	17.3	53	0.07	17	3.57	64.6	1.21	<0.1	49	21.7
121 (8868090)		5.97	1760	<2	1	3.6	204	0.02	34	0.72	79.8	0.18	<0.1	28	22.7
122 (8868091)		2.60	890	<2	1	4.6	101	0.02	7	1.03	11.4	0.46	<0.1	24	32.6
123 (8868092)		7.88	1820	<2	1	5.6	247	0.02	<5	1.43	11.8	0.02	<0.1	5	16.6
124 (8868093)		1.66	606	<2	2	10.1	47	0.04	<5	2.49	11.5	0.07	<0.1	5	37.5
125 (8868094)		1.59	400	<2	5	20.3	57	0.04	6	5.32	50.1	0.06	<0.1	12	33.9
126 (8868095)		1.47	382	<2	5	21.3	48	0.05	8	5.59	59.7	0.15	<0.1	12	34.1
127 (8868096)		1.95	520	2	5	18.5	57	0.05	11	4.81	53.2	0.03	<0.1	10	34.5
128 (8868097)		2.05	530	<2	3	11.6	58	0.03	7	2.97	34.5	0.03	<0.1	7	35.4
129 (8868098)		1.60	315	<2	9	25.3	75	0.06	6	6.65	190	0.02	<0.1	19	28.3
130 (8868099)		1.63	418	<2	6	18.0	55	0.06	10	4.64	40.8	0.31	<0.1	14	33.7
131 (8868100)		1.21	338	<2	4	14.2	44	0.04	7	3.70	31.7	0.22	5.1	12	36.5
132 (8868101)		0.33	133	<2	2	5.7	19	0.02	<5	1.55	8.5	0.05	<0.1	<5	40.2
133 (8868102)		1.25	594	<2	5	13.5	54	0.05	9	3.64	59.0	0.35	<0.1	10	33.7
134 (8868103)		1.36	623	<2	5	15.6	74	0.05	11	4.14	74.6	0.99	<0.1	10	30.5
135 (8868104)		1.59	1040	<2	4	16.5	49	0.05	18	4.10	5.9	0.24	<0.1	20	33.0
136 (8868105)		2.60	1160	7	5	16.7	86	0.07	22	4.19	31.0	1.48	<0.1	10	29.1
137 (8868106)		3.57	1400	13	5	19.2	112	0.07	21	4.84	46.8	1.80	<0.1	12	26.0
138 (8868107)		3.72	1510	18	4	14.1	127	0.07	18	3.50	37.0	2.51	<0.1	11	26.4
139 (8868108)		3.01	1260	<2	5	22.1	76	0.08	30	5.47	26.4	0.60	<0.1	10	28.7
140 (8868109)		1.65	734	78	6	16.6	52	0.05	23	4.16	18.0	1.24	<0.1	9	31.4
141 (8868110)		5.54	1190	<2	2	12.7	358	0.07	13	2.93	124	1.82	<0.1	49	17.4
142 (8868111)		4.47	1020	7	3	15.1	711	0.05	19	3.32	148	0.33	<0.1	33	22.1
143 (8868112)		3.58	714	7	3	16.5	281	0.05	18	3.87	124	0.77	<0.1	36	24.0
144 (8868113)		2.22	1830	6	10	19.6	68	0.02	36	4.60	7.7	0.22	<0.1	53	21.1
145 (8868690)		3.74	1260	<2	5	14.2	43	0.07	11	2.77	121	1.77	<0.1	42	22.4

Certified By:

y Latimura

AGAT WORK ORDER: 17T278477

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(20	1-378) S	odium Pe	eroxide I	-usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Oct	31, 2017		ı	DATE RECE	EIVED: Oct	31, 2017		DATE I	REPORTED	: Dec 21, 20	017	SAM	PLE TYPE:	Other	
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Y	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
117 (8868086)		5.0	5	265	<0.5	1.10	0.9	1.01	1.3	0.69	0.78	348	<1	39.1	4.6
118 (8868087)		2.1	5	380	<0.5	0.47	8.0	0.52	1.4	0.29	0.64	160	<1	18.7	2.0
119 (8868088)		2.6	4	377	<0.5	0.61	8.0	0.63	1.5	0.39	0.72	206	<1	23.9	2.6
120 (8868089)		4.8	2	257	<0.5	0.97	1.1	0.87	0.8	0.56	0.58	327	<1	33.7	3.8
121 (8868090)		1.2	1	165	<0.5	0.27	0.3	0.28	0.7	0.18	0.14	192	<1	10.7	1.2
122 (8868091)		1.2	1	142	<0.5	0.26	0.9	0.23	<0.5	0.16	0.34	157	<1	9.7	1.1
123 (8868092)		1.1	<1	76.3	<0.5	0.17	1.5	0.07	<0.5	0.07	1.19	126	<1	4.6	0.4
124 (8868093)		2.0	2	75.9	<0.5	0.34	1.8	0.08	<0.5	0.20	1.10	29	<1	13.1	1.5
125 (8868094)		3.7	1130	175	<0.5	0.46	7.2	0.25	<0.5	0.20	3.92	78	<1	12.9	1.3
126 (8868095)		3.7	34	220	<0.5	0.48	8.1	0.27	<0.5	0.21	3.69	79	<1	12.9	1.4
127 (8868096)		3.2	64	196	<0.5	0.38	7.2	0.25	<0.5	0.18	2.90	84	<1	10.7	1.2
128 (8868097)		2.1	2	124	<0.5	0.27	4.8	0.16	< 0.5	0.12	2.39	67	<1	8.1	0.9
129 (8868098)		4.6	3	71.5	0.6	0.60	13.9	0.43	1.1	0.27	4.36	129	1	15.1	1.9
130 (8868099)		3.4	1	310	<0.5	0.43	9.5	0.34	<0.5	0.21	2.67	103	<1	11.8	1.4
131 (8868100)		2.6	2	209	<0.5	0.36	7.1	0.26	<0.5	0.17	2.37	74	<1	10.4	1.1
132 (8868101)		1.1	1	150	<0.5	0.16	2.9	0.08	<0.5	0.09	1.93	17	<1	5.6	0.7
133 (8868102)		2.4	2	268	<0.5	0.29	7.0	0.25	<0.5	0.16	2.76	75	<1	8.3	1.0
134 (8868103)		2.6	3	329	<0.5	0.32	7.3	0.25	0.7	0.15	2.97	81	<1	8.6	1.1
135 (8868104)		3.2	3	484	<0.5	0.51	3.4	0.39	<0.5	0.25	1.37	128	<1	15.8	1.7
136 (8868105)		3.2	1650	496	<0.5	0.45	5.3	0.37	<0.5	0.19	2.70	107	<1	13.1	1.3
137 (8868106)		3.8	91	506	<0.5	0.46	6.4	0.44	0.5	0.21	2.46	130	<1	13.6	1.4
138 (8868107)		2.8	4	405	<0.5	0.38	5.2	0.37	<0.5	0.19	1.55	120	<1	11.6	1.3
139 (8868108)		4.2	2	366	<0.5	0.47	5.7	0.40	<0.5	0.14	1.59	71	<1	10.7	1.0
140 (8868109)		3.1	6	360	<0.5	0.42	4.2	0.29	<0.5	0.17	1.37	79	<1	12.7	1.2
141 (8868110)		3.1	2	362	<0.5	0.48	3.6	0.37	1.5	0.29	0.94	337	<1	13.8	2.0
142 (8868111)		4.0	2	420	<0.5	0.67	3.4	0.87	1.8	0.33	0.98	234	<1	18.7	2.2
143 (8868112)		3.9	2	521	<0.5	0.61	4.2	0.51	1.5	0.32	1.25	218	<1	18.2	2.2
144 (8868113)		5.0	3	1470	<0.5	1.04	3.0	0.54	<0.5	0.56	3.54	308	<1	38.4	3.6
145 (8868690)		4.3	3	703	<0.5	0.94	0.9	1.20	1.3	0.57	0.30	319	<1	33.4	3.7

Certified By:

y Latimura

AGAT WORK ORDER: 17T278477

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(201	-378) Sodium Peroxide Fusi	on - ICP-OES/ICP-MS Finish	
DATE SAMPLED: Oct	31, 2017			ATE RECEIVED: Oct 31, 2017	DATE REPORTED: Dec 21, 2017	SAMPLE TYPE: Other
	Analyte:	Zn	Zr			
	Unit:	ppm	ppm			
Sample ID (AGAT ID)	RDL:	5	0.5			
117 (8868086)		101	115			
118 (8868087)		70	55.3			
119 (8868088)		77	66.8			
120 (8868089)		103	105			
121 (8868090)		117	23.8			
122 (8868091)		50	28.7			
123 (8868092)		302	24.5			
124 (8868093)		45	28.6			
125 (8868094)		48	116			
126 (8868095)		41	127			
127 (8868096)		56	93.7			
128 (8868097)		55	56.8			
129 (8868098)		57	188			
130 (8868099)		47	134			
131 (8868100)		43	101			
132 (8868101)		9	49.9			
133 (8868102)		63	145			
134 (8868103)		75	127			
135 (8868104)		71	129			
136 (8868105)		90	122			
137 (8868106)		129	149			
138 (8868107)		122	119			
139 (8868108)		111	138			
140 (8868109)		46	99.3			
141 (8868110)		217	71.7			
142 (8868111)		183	111			
143 (8868112)		136	100			
144 (8868113)		77	57.2			
145 (8868690)		153	103			

Comments: RDL - Reported Detection Limit

Certified By:

y of stomma

AGAT WORK ORDER: 17T278477

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

DATE SAMPLED: Oct	t 31, 2017			DATE RECEIVED: Oct 31, 2017	DATE REPORTED: Dec 21, 2017	SAMPLE TYPE: Other
	Analyte:	Au	Pd	Pt		
	Unit:	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005		
117 (8868086)		0.011	0.006	<0.005		
118 (8868087)		0.010	0.003	<0.005		
119 (8868088)		0.011	0.002	<0.005		
120 (8868089)		0.005	< 0.001	<0.005		
121 (8868090)		< 0.001	0.007	<0.005		
122 (8868091)		0.040	0.013	0.006		
123 (8868092)		<0.001	0.002	<0.005		
124 (8868093)		0.008	0.001	<0.005		
125 (8868094)		<0.001	0.002	<0.005		
126 (8868095)		0.001	0.002	<0.005		
127 (8868096)		0.022	0.002	<0.005		
128 (8868097)		0.002	< 0.001	<0.005		
129 (8868098)		< 0.001	0.003	<0.005		
130 (8868099)		0.007	0.002	<0.005		
131 (8868100)		0.004	0.002	<0.005		
132 (8868101)		0.001	0.001	<0.005		
133 (8868102)		0.020	0.002	<0.005		
134 (8868103)		0.191	0.003	<0.005		
135 (8868104)		0.002	0.002	<0.005		
136 (8868105)		0.004	<0.001	<0.005		
137 (8868106)		0.003	0.002	<0.005		
138 (8868107)		0.002	0.002	<0.005		
139 (8868108)		0.027	0.001	<0.005		
140 (8868109)		0.002	<0.001	<0.005		
141 (8868110)		<0.001	0.010	<0.005		
142 (8868111)		<0.001	0.004	<0.005		
143 (8868112)		< 0.001	0.006	<0.005		
144 (8868113)		0.004	0.004	0.014		
145 (8868690)		<0.001	0.002	<0.005		

Comments: RDL - Reported Detection Limit

Certified By:

y of stomme

Quality Assurance - Replicate AGAT WORK ORDER: 17T278477 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	378) Sod	ium Pe	roxide	Fusion	- ICP-OE	S/ICP-	MS Fini	sh		
		REPLIC	ATE #1			REPLIC	ATE #2			REPLIC	ATE #3			
Parameter	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD	Sample ID	Original	Replicate	RPD		
Ag	8868086	< 1	< 1	0.0%	8868102	< 1	< 1	0.0%	8868111	< 1	< 1	0.0%		
Al	8868086	8.45	8.36	1.1%	8868102	7.04	6.99	0.7%	8868111	9.28	9.35	0.8%		
As	8868086	< 5	< 5	0.0%	8868102	< 5	< 5	0.0%	8868111	< 5	< 5	0.0%		
В	8868086	46	46	0.0%	8868102	28	30	6.9%	8868111	32	33	3.1%		
Ва	8868086	932	914	2.0%	8868102	439	441	0.5%	8868111	1080	1070	0.9%		
Be	8868086	8	8	0.0%	8868102	< 5	< 5	0.0%	8868111	< 5	< 5	0.0%		
Bi	8868086	1.9	1.9	0.0%	8868102	4.7	4.8	2.1%	8868111	0.2	0.2	0.0%		
Ca	8868086	6.99	7.16	2.4%	8868102	1.14	1.13	0.9%	8868111	1.64	1.62	1.2%		
Cd	8868086	< 0.2	< 0.2	0.0%	8868102	< 0.2	< 0.2	0.0%	8868111	< 0.2	< 0.2	0.0%		
Ce	8868086	19.1	17.5	8.7%	8868102	32.0	31.1	2.9%	8868111	25.5	26.2	2.7%		
Со	8868086	127	119	6.5%	8868102	34.3	34.8	1.4%	8868111	68.2	73.8	7.9%		
Cr	8868086	0.006	0.006	0.0%	8868102	0.016	0.016	0.0%	8868111	0.157	0.155	1.3%		
Cs	8868086	5.8	5.7	1.7%	8868102	1.9	2.0	5.1%	8868111	12.6	13.0	3.1%		
Cu	8868086	1030	1000	3.0%	8868102	1340	1330	0.7%	8868111	76	84	10.0%		
Dy	8868086	7.31	6.89	5.9%	8868102	1.62	1.65	1.8%	8868111	3.98	4.03	1.2%		
Er	8868086	5.00	4.74	5.3%	8868102	1.01	1.11	9.4%	8868111	2.40	2.37	1.3%		
Eu	8868086	0.99	1.00	1.0%	8868104	0.988	0.980	0.8%	8868111	0.961	0.986	2.6%		
Fe	8868086	11.1	11.3	1.8%	8868102	3.95	3.95	0.0%	8868111	8.17	8.42	3.0%		
Ga	8868086	22.7	21.3	6.4%	8868102	17.3	17.3	0.0%	8868111	21.3	21.2	0.5%		
Gd	8868086	6.55	6.06	7.8%	8868102	1.99	2.02	1.5%	8868111	4.39	4.43	0.9%		
Ge	8868086	3	3	0.0%	8868102	1	1	0.0%	8868111	1	1	0.0%		
Hf	8868086	3	3	0.0%	8868102	4	4	0.0%	8868111	3	3	0.0%		
Но	8868086	1.53	1.46	4.7%	8868102	0.321	0.326	1.5%	8868111	0.773	0.792	2.4%		
In	8868086	< 0.2	< 0.2	0.0%	8868102	< 0.2	< 0.2	0.0%	8868111	< 0.2	< 0.2	0.0%		
К	8868086	1.67	1.66	0.6%	8868102	1.55	1.54	0.6%	8868111	3.18	3.29	3.4%		
La	8868086	7.36	6.83	7.5%	8868102	13.9	13.6	2.2%	8868111	12.6	12.9	2.4%		
Li	8868086	67	65	3.0%	8868102	37	37	0.0%	8868111	98	102	4.0%		
Lu	8868086	0.725	0.689	5.1%	8868102	0.16	0.16	0.0%	8868111	0.342	0.347	1.5%		
Mg	8868086	3.78	3.73	1.3%	8868102	1.25	1.25	0.0%	8868111	4.47	4.73	5.7%		
Mn	8868086	1600	1570	1.9%	8868102	594	599	0.8%	8868111	1020	1030	1.0%		
Мо	8868086	< 2	< 2	0.0%	8868102	< 2	< 2	0.0%	8868111	7	6	15.4%		

Quality Assurance - Replicate AGAT WORK ORDER: 17T278477 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

http://www.agatlabs.com CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie 8868086 8868102 0.0% 8868111 3 0.0% 7 13.3% 5 5 Nd 8868086 15.4 14.2 8.1% 8868102 13.5 13.2 2.2% 8868111 15.1 15.6 3.3% Ni 8868086 72 73 1.4% 54 56 3.6% 711 746 4.8% 8868102 8868111 Р 8868086 0.06 0.06 0.0% 8868102 0.05 0.05 0.0% 8868111 0.05 0.05 0.0% Pb 9.5% 9 9 0.0% 19 19 0.0% 8868086 11 10 8868102 8868111 Pr 8868086 2.97 2.72 8.8% 8868102 3.64 3.54 2.8% 8868111 3.32 3.37 1.5% Rb 8868086 125 119 4.9% 8868102 59.0 59.8 1.3% 8868111 148 151 2.0% S 8868086 2.00 1.97 1.5% 8868102 0.346 0.341 1.5% 8868111 0.33 0.35 5.9% 0.0% Sb 8868086 < 0.1 < 0.1 0.0% 8868102 < 0.1 < 0.1 8868111 < 0.1 < 0.1 0.0% Sc 8868086 52 51 1.9% 8868102 10 10 0.0% 8868111 33 34 3.0% Si 8868086 20.5 20.4 0.5% 33.7 33.2 1.5% 22.1 22.2 0.5% 8868102 8868111 Sm 8868086 5.0 4.5 10.5% 8868102 2.4 2.4 0.0% 8868111 4.0 4.2 4.9% 5 6 18.2% 2 2 0.0% 8868111 2 2 Sn 8868086 8868102 0.0% Sr 8868086 265 256 3.5% 8868102 268 260 3.0% 8868111 420 406 3.4% Та 8868086 < 0.5 < 0.5 0.0% 8868102 < 0.5 < 0.5 0.0% 8868111 < 0.5 < 0.5 0.0% Tb 1.10 1.05 4.7% 8868102 0.29 0.29 0.0% 8868111 0.67 0.67 8868086 0.0% Th 8868086 0.86 0.85 1.2% 8868102 7.0 6.9 1.4% 8868111 3.43 3.56 3.7% Τi 8868086 1.01 1.01 0.0% 8868102 0.25 0.25 0.0% 8868111 0.872 0.890 2.0% ΤI 8868086 0.0% 0.0% 8868111 1.8 1.3 1.3 8868102 < 0.5 < 0.5 1.8 0.0% Tm 8868086 0.691 0.664 4.0% 8868102 0.155 0.148 4.6% 8868111 0.328 0.322 1.8% U 0.730 6.4% 2.76 2.73 1.1% 0.96 2.1% 8868086 0.778 8868102 8868111 0.98 V 8868086 348 333 4.4% 8868102 75 75 0.0% 8868111 234 236 0.9% W 8868086 0.0% 8868102 0.0% 8868111 0.0% < 1 < 1 < 1 < 1 < 1 < 1 Υ 37.4 4.4% 8.3 8868086 39.1 8868102 8.3 0.0% 8868111 18.7 18.7 0.0% Yb 8868086 4.6 4.3 6.7% 8868102 1.00 1.06 5.8% 8868111 2.2 2.2 0.0% Zn 8868086 101 103 2.0% 8868102 63 59 6.6% 8868111 183 190 3.8% Zr 4 4% 8868102 145 155 6.7% 8868111 111 109 1.8% 8868086 115 110 (202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 REPLICATE #2 REPLICATE #3 Parameter Sample ID Original Replicate RPD Sample ID Original Replicate RPD Sample ID Original Replicate **RPD** 8868086 0.011 0.042 8868104 0.002 0.046 8868111 < 0.001 < 0.001 0.0% Au Pd 8868086 0.006 0.002 8868104 0.002 0.001 8868111 0.004 0.004 0.0%

8868086

< 0.005

< 0.005

0.0%

8868104

< 0.005

< 0.005

Pt

0.0%

8868111

< 0.005

< 0.005

0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T278477 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	378) So	dium P	eroxid	e Fusion	- ICP-C	ES/ICF	P-MS Fi	nish		
		CRM #1	(ref.SY-4)			CRM #2	(ref.TILL-2)			CRM #3	(ref.PG129)			
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits		
Al	10.95	11	100%	90% - 110%	8.47	8.39	99%	90% - 110%						
As					26	23	88%	90% - 110%						
Ва	340	337	99%	90% - 110%	540	527	98%	90% - 110%						
Ве	2.6	2.7	102%	90% - 110%	4.0	3.5	88%	90% - 110%						
Ca	5.72	5.76	101%	90% - 110%	0.907	0.943	104%	90% - 110%						
Се	122	130	107%	90% - 110%	98	98	99%	90% - 110%						
Со	2.8	2.5	88%	90% - 110%	15	14	94%	90% - 110%						
Cs	1.5	1.4	92%	90% - 110%										
Cu	7	6	81%	90% - 110%	150	150	100%	90% - 110%						
Dy	18.2	19.4	107%	90% - 110%										
Er	14.2	15.6	110%	90% - 110%	3.7	4	108%	90% - 110%						
Eu	2.0	2.1	105%	90% - 110%										
Fe	4.34	4.3	99%	90% - 110%	3.77	3.76	100%	90% - 110%						
Ga	35	36	103%	90% - 110%										
Gd	14	16	114%	90% - 110%										
Hf	10.6	10.7	101%	90% - 110%	11	9	83%	90% - 110%						
Но	4.3	4.6	106%	90% - 110%										
К	1.37	1.39	102%	90% - 110%	2.55	2.5	98%	90% - 110%						
La	58	60	103%	90% - 110%	44	43	98%	90% - 110%						
Li	37	40	107%	90% - 110%	47	52	112%	90% - 110%						
Lu	2.1	2.2	105%	90% - 110%	0.6	0.6	95%	90% - 110%						
Mg	0.325	0.295	91%	90% - 110%	1.1	1.1	99%	90% - 110%						
Mn	836	814	97%	90% - 110%	780	733	94%	90% - 110%						
Мо					14	13	95%	90% - 110%						
Nb	13	11	88%	90% - 110%	20	18	90%	90% - 110%						
Nd	57	62	108%	90% - 110%										
Ni	9	12	129%	90% - 110%	32	35	109%	90% - 110%						
Pb	10	9	91%	90% - 110%	31	29	95%	90% - 110%						
Pr	15.0	15.5	103%	90% - 110%										
Rb	55	49	90%	90% - 110%	144	131	91%	90% - 110%						
Sc	1.1	0.8	72%	90% - 110%	12	12	102%	90% - 110%						

90% - 110%

0.362

97%

5.93

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T278477 PROJECT:

1.2

0.127

0.262

105%

110%

109%

1.1

0.115

0.239

90% - 110%

90% - 110%

90% - 110%

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME	Si 23.3 23.8 102% 90% - 110% 28.4 28.8 101% 90% - 110%														
Si	23.3	23.8	102%	90% - 110%	28.4	28.8	101%	90% - 110%							
Sm	12.7	13.9	110%	90% - 110%	7.4	7.6	103%	90% - 110%							
Sr	1191	1247	105%	90% - 110%	144	151	105%	90% - 110%							
Та	0.9	0.7	73%	90% - 110%	1.9	1.3	70%	90% - 110%							
Tb	2.6	2.8	109%	90% - 110%	1.2	1.2	96%	90% - 110%							
Th	1.4	1.2	83%	90% - 110%	18.4	17.9	98%	90% - 110%							
Ti	0.172	0.172	100%	90% - 110%	0.527	0.528	100%	90% - 110%							
Tm	2.3	2.3	100%	90% - 110%											
U	0.8	1	120%	90% - 110%	5.7	5.2	90%	90% - 110%							
V					77	74	96%	90% - 110%							
W					5	5	96%	90% - 110%							
Υ	119	110	92%	90% - 110%	40	38	95%	90% - 110%							
Yb	14.8	15.4	104%	90% - 110%											
Zn	93	92	99%	90% - 110%	130	125	96%	90% - 110%							
Zr	517	548	106%	90% - 110%	390	352	90%	90% - 110%							
				(202-0	55) Fire	Assay	- Au, I	Pt, Pd Tra	ice Lev	els, ICF	P-OES	inish			
	CRM #1 (ref.GS6D) CRM #2 (ref.						ref.GSP4C		·	CRM #3	(ref.PG129)				
Parameter	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits	Expect	Actual	Recovery	Limits			

90% - 110%

100%

0.361

6.09

Au

Pd

Pt

AGAT WORK ORDER: 17T278477

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: ATTENTION TO: Michel Lavoie

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Sample Login Weight	MIN-12009		BALANCE
Ag			ICP/MS
Al	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Be	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Co	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
In	MIN-200-12001		ICP-MS
K	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Мо	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P			ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
s	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc	MIN-200-12001		ICP/OES
Si	MIN-200-12001		ICP/OES
Sm	MIN-200-12001		ICP-MS
Sn	MIN-200-12001		ICP/MS
Sr	MIN-200-12001		ICP-OES
Та	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th	MIN-200-12001		ICP-MS
·			

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T278477
PROJECT: ATTENTION TO: Michel Lavoie

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ti	MIN-200-12001		ICP/OES
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Υ	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: Michel Lavoie

PROJECT:

AGAT WORK ORDER: 17T281631

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Dec 06, 2017

PAGES (INCLUDING COVER): 11

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

*NOTES

AGAT WORK ORDER: 17T281631

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(20	1-378) Sc	odium Pe	eroxide l	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: Nov	v 07, 2017		Γ	DATE RECE	EIVED: Nov	08, 2017		DATE F	REPORTED	: Dec 06, 20	017	SAI	MPLE TYPE:	Other	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Co	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
146 (8888348)		<1	5.15	<30	31	291	<5	2.5	4.28	<0.2	18.8	67.9	0.025	5.0	466
147 (8888349)		<1	7.23	<30	37	319	<5	1.9	6.63	<0.2	14.8	51.7	0.015	3.4	46
148 (8888350)		<1	6.84	<30	<20	20.1	<5	0.2	8.87	<0.2	47.9	3.7	< 0.005	0.2	21
149 (8888351)		<1	7.27	<30	23	347	<5	0.2	3.56	0.5	44.6	41.8	0.006	3.3	382
150 (8888352)		<1	6.07	<30	23	57.3	<5	0.6	8.24	<0.2	34.7	30.0	0.007	0.4	16
151 (8888353)		1	6.22	<30	<20	97.4	<5	0.1	4.21	<0.2	23.2	4.0	0.007	0.6	14
152 (8888354)		<1	7.46	<30	<20	302	74	0.6	1.84	<0.2	16.6	7.7	< 0.005	3.3	5
153 (8888355)		1	7.75	<30	<20	502	13	1.2	1.92	<0.2	7.6	7.6	0.007	0.7	7
154 (8888356)		<1	7.70	<30	30	999	6	0.3	5.85	<0.2	10.0	46.6	0.011	7.7	43
155 (8888357)		<1	8.85	<30	39	114	<5	0.4	12.2	<0.2	13.6	71.0	0.009	0.9	262
156 (8888358)		<1	2.33	<30	<20	130	<5	0.1	2.26	<0.2	32.9	16.9	0.007	2.8	35
157 (8888359)		<1	7.33	<30	51	441	<5	0.3	6.70	<0.2	3.8	73.7	< 0.005	6.1	75
158 (8888360)		<1	7.23	<30	43	64.5	<5	0.8	12.0	<0.2	7.9	90.7	<0.005	0.4	270
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	К	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
146 (8888348)		2.62	1.65	1.12	7.59	13.8	2.59	2	2	0.57	<0.2	1.06	9.1	47	0.25
147 (8888349)		4.71	3.05	1.09	8.37	17.9	4.25	2	2	1.05	<0.2	0.95	6.5	40	0.45
148 (8888350)		4.77	2.87	1.11	5.33	26.1	5.66	3	4	1.01	<0.2	0.09	22.2	<10	0.46
149 (8888351)		5.23	2.94	1.16	5.88	18.7	5.72	1	4	1.08	<0.2	0.94	19.7	35	0.48
150 (8888352)		3.50	2.06	1.11	6.25	20.8	3.83	2	3	0.71	<0.2	0.10	16.7	<10	0.32
151 (8888353)		2.35	1.41	1.13	2.57	21.6	2.59	2	3	0.49	<0.2	0.39	10.3	<10	0.25
152 (8888354)		2.15	0.63	1.11	1.37	46.5	3.48	4	7	0.26	<0.2	0.19	9.2	<10	0.11
153 (8888355)		1.83	0.37	1.11	1.67	48.7	2.89	5	7	0.17	<0.2	0.21	3.4	<10	0.07
154 (8888356)		0.97	0.58	1.08	7.26	16.7	1.11	2	<1	0.21	<0.2	1.60	5.2	102	0.10
155 (8888357)		1.95	1.11	1.10	9.00	26.3	2.01	3	<1	0.40	<0.2	0.31	7.7	17	0.16
156 (8888358)		1.89	0.86	1.12	3.34	7.16	3.09	1	2	0.34	<0.2	0.42	14.7	16	0.09
157 (8888359)		1.06	0.61	1.16	11.8	19.8	1.00	2	<1	0.23	<0.2	1.13	1.7	49	0.08
158 (8888360)		1.08	0.65	1.14	9.40	22.6	1.14	3	<1	0.25	<0.2	0.11	3.7	<10	0.10

Certified By:

AGAT WORK ORDER: 17T281631

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(20	1-378) S	odium Po	eroxide F	-usion	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: No	v 07, 2017		I	DATE RECE	EIVED: Nov	08, 2017		DATE I	REPORTED): Dec 06, 2	017	SAM	PLE TYPE:	Other	
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	S
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
146 (8888348)		2.31	1190	<2	2	9.3	91	0.04	9	2.25	71.1	2.91	0.2	18	29.8
147 (8888349)		3.15	1610	<2	3	9.7	88	0.05	10	2.03	48.5	1.11	0.4	38	23.1
148 (8888350)		0.24	710	<2	7	22.6	10	0.12	12	5.76	3.5	0.22	0.3	15	27.4
149 (8888351)		1.33	942	<2	7	22.4	16	0.14	54	5.47	62.6	1.28	0.3	17	27.9
150 (8888352)		0.50	838	<2	5	16.0	12	0.09	20	4.08	4.4	1.11	0.3	12	30.1
151 (8888353)		0.20	433	<2	5	11.2	8	0.05	15	2.78	20.4	0.12	0.3	7	30.5
152 (8888354)		0.05	180	<2	32	6.9	7	0.01	6	1.96	64.7	0.23	0.2	<5	31.0
153 (8888355)		0.04	226	3	26	3.5	8	0.01	9	0.98	19.8	0.51	0.4	<5	30.5
154 (8888356)		3.69	1190	<2	1	4.3	77	<0.01	9	1.11	178	0.22	0.2	26	22.4
155 (8888357)		2.15	1070	<2	3	6.6	43	<0.01	13	1.61	14.5	0.93	0.4	45	19.5
156 (8888358)		1.25	756	<2	10	16.9	24	0.11	18	4.14	32.1	0.06	0.5	8	37.2
157 (8888359)		4.01	1320	<2	<1	2.6	31	<0.01	15	0.54	97.2	0.37	0.2	43	20.0
158 (8888360)		2.92	1410	<2	1	3.9	133	<0.01	18	0.96	3.9	1.05	1.4	32	18.5
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
146 (8888348)		2.2	1	239	<0.5	0.42	2.5	0.37	0.7	0.26	0.93	143	<1	16.6	1.6
147 (8888349)		3.1	2	291	<0.5	0.74	0.6	0.78	<0.5	0.46	0.40	312	1	32.8	3.0
148 (8888350)		4.9	1	1480	0.5	0.87	4.2	0.49	< 0.5	0.44	1.59	101	<1	33.4	2.8
149 (8888351)		4.9	<1	316	0.5	0.88	2.8	0.59	<0.5	0.44	1.01	108	<1	35.1	2.9
150 (8888352)		3.5	<1	1660	<0.5	0.61	1.8	0.44	<0.5	0.31	0.65	114	<1	24.2	2.0
151 (8888353)		2.4	<1	623	0.5	0.41	11.9	0.22	< 0.5	0.22	5.13	60	<1	17.1	1.5
152 (8888354)		3.0	8	335	36.6	0.61	5.3	0.03	2.1	0.08	3.93	20	<1	15.5	0.6
153 (8888355)		2.6	8	325	71.2	0.54	3.1	0.03	2.6	0.06	6.13	23	<1	15.0	0.4
154 (8888356)		0.9	<1	311	<0.5	0.17	1.8	0.97	1.4	0.09	0.35	399	<1	7.1	0.6
155 (8888357)		1.6	<1	1230	0.7	0.33	8.0	0.77	<0.5	0.17	0.90	724	<1	12.7	1.1
156 (8888358)		3.3	<1	193	0.7	0.41	1.1	0.61	<0.5	0.10	0.43	107	<1	10.4	0.7
157 (8888359)		0.8	<1	302	<0.5	0.18	0.1	1.15	0.7	0.09	0.08	851	<1	7.2	0.6
158 (8888360)		1.0	<1	1560	<0.5	0.19	1.7	0.72	<0.5	0.10	0.52	806	<1	8.0	0.6

Certified By:

AGAT WORK ORDER: 17T281631

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(201	-378) Sodium Peroxide Fusio	on - ICP-OES/ICP-MS Finish	
DATE SAMPLED: No	v 07, 2017		D	ATE RECEIVED: Nov 08, 2017	DATE REPORTED: Dec 06, 2017	SAMPLE TYPE: Other
	Analyte:	Zn	Zr			
	Unit:	ppm	ppm			
Sample ID (AGAT ID)	RDL:	5	0.5			
146 (8888348)		112	55.7			
147 (8888349)		118	76.3			
148 (8888350)		9	161			
149 (8888351)		138	178			
150 (8888352)		37	106			
151 (8888353)		14	94.7			
152 (8888354)		<5	62.8			
153 (8888355)		<5	41.0			
154 (8888356)		99	25.3			
155 (8888357)		66	17.2			
156 (8888358)		68	62.0			
157 (8888359)		119	11.5			
158 (8888360)		75	31.1			

Comments: RDL - Reported Detection Limit

Certified By:

AGAT WORK ORDER: 17T281631

PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

			(202	2-055) Fire	Assay - Au, Pt, Pd	Trace Levels, ICP-OES finish	
DATE SAMPLED: Nov	v 07, 2017			DATE RECEIV	/ED: Nov 08, 2017	DATE REPORTED: Dec 06, 2017	SAMPLE TYPE: Other
	Analyte:	Au	Pd	Pt			
	Unit:	ppm	ppm	ppm			
Sample ID (AGAT ID)	RDL:	0.001	0.001	0.005			
146 (8888348)		0.012	0.002	<0.005			
147 (8888349)		0.004	< 0.001	<0.005			
148 (8888350)		< 0.001	< 0.001	<0.005			
149 (8888351)		0.003	< 0.001	< 0.005			
150 (8888352)		0.002	< 0.001	< 0.005			
151 (8888353)		< 0.001	< 0.001	<0.005			
152 (8888354)		< 0.001	< 0.001	<0.005			
153 (8888355)		< 0.001	< 0.001	<0.005			
154 (8888356)		0.001	0.002	<0.005			
155 (8888357)		0.003	0.002	< 0.005			
156 (8888358)		0.002	0.005	<0.005			
157 (8888359)		< 0.001	0.001	<0.005			
158 (8888360)		0.012	0.002	<0.005			
			0.002	VO.003			

Comments: RDL - Reported Detection Limit

Certified By:

Quality Assurance - Replicate AGAT WORK ORDER: 17T281631 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	378) Sod	lium Pe	eroxide	Fusion	- ICP-O	S/ICP-	MS Fin	ish		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	8888348	< 1	< 1	0.0%										
Al	8888348	5.15	4.87	5.6%										
As	8888348	< 30	< 30	0.0%										
В	8888348	31	26	17.5%										
Ва	8888348	291	288	1.0%										
Be	8888348	5	5	0.0%										
Bi	8888348	2.55	2.62	2.7%										
Ca	8888348	4.28	4.06	5.3%										
Cd	8888348	< 0.2	< 0.2	0.0%										
Ce	8888348	18.8	17.1	9.5%										
Со	8888348	67.9	71.4	5.0%										
Cr	8888348	0.0245	0.0240	2.1%										
Cs	8888348	4.99	5.07	1.6%										
Cu	8888348	466	462	0.9%										
Dy	8888348	2.62	2.51	4.3%										
Er	8888348	1.65	1.59	3.7%										
Eu	8888348	1.12	1.14	1.8%										
Fe	8888348	7.59	7.03	7.7%										
Ga	8888348	13.8	14.7	6.3%										
Gd	8888348	2.59	2.43	6.4%										
Ge	8888348	2	2	0.0%										
Hf	8888348	2	2	0.0%										
Но	8888348	0.569	0.576	1.2%										
In	8888348	< 0.2	< 0.2	0.0%										
K	8888348	1.06	1.00	5.8%										
La	8888348	9.06	8.61	5.1%										
Li	8888348	47	44	6.6%										
Lu	8888348	0.251	0.256	2.0%										
Mg	8888348	2.31	2.21	4.4%										
Mn	8888348	1190	1120	6.1%										
Мо	8888348	< 2	< 2	0.0%										

Quality Assurance - Replicate AGAT WORK ORDER: 17T281631 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.aqatlabs.com

ATTENTION TO: Michel Lavoie CLIENT NAME: MISC AGAT CLIENT ON 8888348 2 0.0% Nd 8888348 9.28 8.54 8.3% 3.4% Ni 8888348 91 88 Р 8888348 0.04 0.04 0.0% Pb 9 9 8888348 0.0% Pr 8888348 2.25 2.09 7.4% Rb 8888348 71.1 72.9 2.5% 2.92 S 8888348 2.91 0.3% Sb 8888348 0.2 0.0% 0.2 Sc 8888348 18 17 5.7% Si 8888348 29.8 28.1 5.9% Sm 8888348 2.2 2.1 4.7% 8888348 1 Sn < 1 8888348 239 237 Sr 0.8% Та < 0.5 0.0% 8888348 < 0.5 Tb 8888348 0.419 0.402 4.1% Th 8888348 2.5 2.5 0.0% Ti 8888348 0.374 0.354 5.5% ΤI 8888348 0.7 0.7 0.0% Tm 8888348 0.26 0.25 3.9% U 8888348 0.935 0.947 1.3% ٧ 8888348 143 152 6.1% W 8888348 0.0% < 1 < 1 Υ 8888348 17.4 4.7% 16.6 Yb 8888348 1.6 1.6 0.0% Zn 8888348 112 107 4.6% Zr 8888348 55.7 57.3 (202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 Parameter Sample ID Original Replicate RPD 8888348 0.012 0.012 0.0% Au Pd 8888348 < 0.001 0.008 Pt 8888348 < 0.005 < 0.005 0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T281631 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: Michel Lavoie

				(201-3	78) So	dium P	eroxid	e Fusion	- ICP-C	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.SY-4)											
Parameter	Expect	Actual	Recovery	Limits										
Al	10.95	10.41	95%	90% - 110%										
Ва	340	331	97%	90% - 110%										
Be	2.6	2.8	108%	90% - 110%										
Ca	5.72	5.54	97%	90% - 110%										
Ce	122	131	108%	90% - 110%										
Co	2.8	2.5	91%	90% - 110%										
Cs	1.5	1.6	105%	90% - 110%										
Dy	18.2	19.3	106%	90% - 110%										
Er	14.2	14.3	100%	90% - 110%										
Eu	2.0	2	102%	90% - 110%										
Fe	4.34	3.97	91%	90% - 110%										
Ga	35	36	103%	90% - 110%										
Gd	14	16	114%	90% - 110%										
Hf	10.6	10.9	102%	90% - 110%										
Но	4.3	4.6	108%	90% - 110%										
K	1.37	1.33	97%	90% - 110%										
La	58	63	108%	90% - 110%										
Li	37	40	107%	90% - 110%										
Lu	2.1	2.1	99%	90% - 110%										
Mg	0.325	0.309	95%	90% - 110%										
Mn	836	796	95%	90% - 110%										
Nb	13	11.2	86%	90% - 110%										
Nd	57	58	102%	90% - 110%										
Pb	10	9	91%	90% - 110%										
Pr	15.0	15.7	105%	90% - 110%										
Rb	55	52	94%	90% - 110%										
Si	23.3	22.6	97%	90% - 110%										
Sm	12.7	12.9	102%	90% - 110%										
Sn	7.1	8	113%	90% - 110%										
Sr	1191	1208	101%	90% - 110%										
Та	0.9	0.7	82%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T281631 PROJECT:

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAMI	E: MISC A	GAT CLIE	ENT ON							ATTE	ENTION	ΓO: Michel	Lavoie		
Tb	2.6	2.9	110%	90% - 110%											
Th	1.4	1.2	84%	90% - 110%											
Ti	0.172	0.163	95%	90% - 110%											
Tm	2.3	2.3	99%	90% - 110%											
U	0.8	0.7	86%	90% - 110%											
V	8	8	99%	90% - 110%											
Υ	119	137	115%	90% - 110%											
Yb	14.8	14.6	99%	90% - 110%											
Zn	93	100	108%	90% - 110%											
Zr	517	553	107%	90% - 110%											
				(202-0	55) Fire	Assay	- Au, I	Pt, Pd Tra	ace Lev	els, ICF	P-OES	finish			
		CRM #1	(ref.PG129)												
Parameter	Expect	Actual	Recovery	Limits											
Au	1.1	1.15	105%	90% - 110%											
Pd	0.115	0.126	110%	90% - 110%											
Pt	0.239	0.239	100%	90% - 110%											

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T281631
PROJECT: ATTENTION TO: Michel Lavoie

SAMPLING SITE: SAMPLED BY:

SAMPLING SITE.	1017000	SAMPLED BY.	434437TIQAL TEQUINIQUE
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
Al	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Be	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Co	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
ln .	MIN-200-12001		ICP-MS
κ	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Mo	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P	WIII 200 12001		ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc Sc	MIN-200-12001		ICP-WS
Sc Si	MIN-200-12001 MIN-200-12001		ICP/OES
	MIN-200-12001		
Sm			ICP-MS
Sn Sr	MIN-200-12001		ICP/MS
Sr T-	MIN-200-12001		ICP-OES
Ta T-	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th 	MIN-200-12001		ICP-MS
Ti	MIN-200-12001		ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T281631
PROJECT: ATTENTION TO: Michel Lavoie

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Y	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: MICHEL LAVOIE

PROJECT: MICHEL LAVOIE

AGAT WORK ORDER: 17T282407

SOLID ANALYSIS REVIEWED BY: Sherin Moussa, Senior Technician

DATE REPORTED: Dec 06, 2017

PAGES (INCLUDING COVER): 12

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

<u>*NOTES</u>	

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 17T282407

PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

			(200-) Sample Lo	gin Weight	
DATE SAMPLED: No	v 08, 2017		DATE RECEIVED: Nov 09, 2017	DATE REPORTED: Dec 06, 2017	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight			
	Unit:	kg			
Sample ID (AGAT ID)	RDL:	0.01			
159 (8892528)					
160 (8892529)					
161 (8892530)					
162 (8892531)					
163 (8892532)					
164 (8892533)					
165 (8892534)					
166 (8892535)					
167 (8892536)					
168 (8892537)					
Comments: RDL -	Reported Detect	ion Limit			

Comments: RDL - Reported Detection Limit

Certified By:

AGAT WORK ORDER: 17T282407

PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

			(20	1-378) Sc	odium Pe	eroxide I	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: No	v 08, 2017		Ι	DATE RECE	EIVED: Nov	09, 2017		DATE I	REPORTED): Dec 06, 20	017	SAN	IPLE TYPE:	Rock	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Ce	Со	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	30	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
159 (8892528)		2	7.71	<30	28	84.1	6	2.8	6.70	0.5	34.9	41.4	0.012	0.8	1680
160 (8892529)		<1	6.94	<30	33	153	<5	0.9	6.88	<0.2	9.2	48.3	0.026	2.0	288
161 (8892530)		1	7.43	<30	38	301	<5	0.6	5.47	<0.2	14.0	47.4	0.023	2.8	145
162 (8892531)		1	5.44	<30	51	222	<5	3.0	4.30	<0.2	24.5	140	0.005	3.3	1380
163 (8892532)		<1	7.62	<30	28	158	<5	0.7	5.73	0.7	37.2	98.3	0.006	2.5	272
164 (8892533)		<1	7.38	<30	30	355	<5	0.6	7.99	<0.2	12.3	45.3	0.027	1.1	140
165 (8892534)		1	7.15	<30	21	382	<5	9.4	2.25	<0.2	47.2	44.3	0.019	3.4	195
166 (8892535)		1	6.55	<30	31	357	<5	7.4	2.09	<0.2	31.8	71.3	0.017	2.8	922
167 (8892536)		1	4.59	<30	<20	270	<5	9.2	1.06	<0.2	29.9	47.0	0.020	3.2	109
168 (8892537)		<1	7.37	<30	25	373	<5	5.0	5.20	<0.2	45.9	20.5	0.015	3.1	228
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	K	La	Li	Lu
1	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
159 (8892528)		4.06	2.42	1.15	7.58	21.0	4.22	2	2	0.85	<0.2	0.38	17.8	19	0.34
160 (8892529)		3.08	2.03	1.14	8.52	17.1	2.78	2	1	0.69	<0.2	0.83	3.7	35	0.31
161 (8892530)		3.69	2.28	1.16	8.81	17.8	3.36	2	2	0.81	<0.2	1.27	6.2	72	0.34
162 (8892531)		3.26	2.18	1.12	11.6	17.2	3.44	2	2	0.74	<0.2	0.86	13.3	37	0.30
163 (8892532)		4.02	2.49	1.17	7.30	16.2	4.38	1	3	0.86	<0.2	0.61	16.7	32	0.37
164 (8892533)		3.01	1.93	1.16	7.14	19.9	2.78	2	1	0.68	<0.2	0.64	4.7	43	0.30
165 (8892534)		2.33	1.42	1.16	4.63	20.4	3.07	2	3	0.46	<0.2	1.28	23.0	37	0.23
166 (8892535)		1.30	0.88	1.14	6.58	18.0	1.57	2	3	0.28	<0.2	1.24	17.6	29	0.16
167 (8892536)		1.31	0.82	1.14	3.85	11.2	1.82	1	2	0.28	<0.2	1.06	15.7	29	0.12
168 (8892537)		2.08	1.16	1.15	4.39	25.8	2.91	3	3	0.43	<0.2	1.25	21.8	41	0.21

Certified By:

AGAT WORK ORDER: 17T282407

PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

			(20	1-378) Sc	odium Pe	eroxide l	usion -	ICP-OES	S/ICP-MS	Finish					
DATE SAMPLED: No	v 08, 2017		[DATE RECE	EIVED: Nov	09, 2017		DATE I	REPORTED	: Dec 06, 20	017	SAM	PLE TYPE:	Rock	
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
159 (8892528)		2.09	1290	<2	3	16.3	24	0.05	11	4.09	16.8	0.57	0.3	32	24.9
160 (8892529)		4.16	1670	<2	2	6.5	92	0.04	10	1.34	50.5	0.41	0.3	40	22.4
161 (8892530)		4.03	1770	2	3	8.5	75	0.04	10	1.89	77.4	0.29	0.2	39	23.9
162 (8892531)		3.23	1500	4	3	11.4	208	0.03	18	2.84	56.1	3.63	0.3	13	24.7
163 (8892532)		2.65	1090	<2	5	18.1	48	0.11	28	4.47	40.8	1.30	0.3	32	25.0
164 (8892533)		4.08	1240	<2	2	7.2	111	0.03	9	1.67	27.0	0.36	0.5	34	23.1
165 (8892534)		1.62	673	<2	5	19.0	75	0.10	38	5.33	59.2	1.40	0.5	15	27.6
166 (8892535)		1.44	652	<2	5	10.4	83	0.07	33	3.15	53.7	2.23	0.5	12	28.8
167 (8892536)		1.04	383	2	3	11.4	51	0.08	24	3.26	41.0	1.52	0.5	8	32.4
168 (8892537)		1.37	992	<2	5	18.0	57	0.14	34	5.09	55.9	0.23	0.8	11	28.8
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
159 (8892528)		3.8	4	627	<0.5	0.67	2.8	0.45	<0.5	0.34	0.97	212	1	25.9	2.3
160 (8892529)		2.1	1	184	<0.5	0.49	0.4	0.54	<0.5	0.30	0.11	280	7	20.6	2.0
161 (8892530)		2.5	2	171	<0.5	0.57	1.4	0.59	0.6	0.35	0.45	283	<1	24.9	2.2
162 (8892531)		2.6	2	120	<0.5	0.53	4.2	0.21	1.5	0.30	1.57	83	1	32.6	1.9
163 (8892532)		4.1	1	213	<0.5	0.70	3.0	0.71	<0.5	0.37	0.79	235	<1	27.2	2.4
164 (8892533)		2.1	4	205	<0.5	0.49	0.3	0.45	<0.5	0.29	0.12	252	<1	20.8	1.9
165 (8892534)		3.5	3	472	<0.5	0.44	8.3	0.29	< 0.5	0.21	3.86	107	1	14.6	1.4
166 (8892535)		1.8	3	417	<0.5	0.25	7.0	0.27	<0.5	0.14	2.36	112	<1	9.2	1.1
167 (8892536)		1.9	2	239	<0.5	0.27	4.7	0.17	<0.5	0.12	1.72	50	<1	8.6	0.8
168 (8892537)		3.2	4	447	<0.5	0.42	6.7	0.25	<0.5	0.19	3.74	135	<1	13.2	1.3

Certified By:

AGAT WORK ORDER: 17T282407

PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

			(201	I-378) Sodium Peroxide Fusio	on - ICP-OES/ICP-MS Finish	
DATE SAMPLED: Nov	08, 2017		С	DATE RECEIVED: Nov 09, 2017	DATE REPORTED: Dec 06, 2017	SAMPLE TYPE: Rock
	Analyte:	Zn	Zr			
	Unit:	ppm	ppm			
Sample ID (AGAT ID)	RDL:	5	0.5			
159 (8892528)		97	73.1			
160 (8892529)		133	49.1			
161 (8892530)		154	65.8			
162 (8892531)		118	90.6			
163 (8892532)		222	125			
164 (8892533)		78	42.6			
165 (8892534)		76	106			
166 (8892535)		71	95.0			
167 (8892536)		50	64.4			
168 (8892537)		65	85.8			

Comments: RDL - Reported Detection Limit

Certified By:

AGAT WORK ORDER: 17T282407

PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

			(202	2-055) Fi	re Assay - Au, P	t, Pd Trace Levels, ICP-OES finish	
DATE SAMPLED: No	v 08, 2017			DATE REC	EIVED: Nov 09, 2017	DATE REPORTED: Dec 06, 2017	SAMPLE TYPE: Rock
	Analyte:	Sample Login Weight	Au	Pd	Pt		
	Unit:	kg	ppm	ppm	ppm		
Sample ID (AGAT ID)	RDL:	0.01	0.001	0.001	0.005		
159 (8892528)			0.023	0.002	<0.005		
160 (8892529)			0.003	0.006	<0.005		
161 (8892530)			0.003	0.007	<0.005		
162 (8892531)			0.002	0.001	<0.005		
163 (8892532)			0.003	0.001	<0.005		
164 (8892533)			<0.001	0.004	<0.005		
165 (8892534)			0.008	0.004	<0.005		
166 (8892535)			0.041	0.004	<0.005		
167 (8892536)			0.011	0.008	<0.005		
168 (8892537)			0.006	0.002	<0.005		

Comments: RDL - Reported Detection Limit

Certified By:

Quality Assurance - Replicate AGAT WORK ORDER: 17T282407 PROJECT: MICHEL LAVOIE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

				(201-	378) Soc	iium Pe	roxide	rusion	- ICP-OI	=S/ICP-	IVIS FIN	ısn		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	8892528	2	1											
Al	8892528	7.71	7.82	1.4%										
As	8892528	< 30	< 30	0.0%										
В	8892528	28	28	0.0%										
Ва	8892528	84.1	84.7	0.7%										
Be	8892528	6	5	18.2%										
Bi	8892528	2.8	2.8	0.0%										
Ca	8892528	6.70	6.68	0.3%										
Cd	8892528	0.54	0.60	10.5%										
Ce	8892528	34.9	32.3	7.7%										
Со	8892528	41.4	41.3	0.2%										
Cr	8892528	0.0118	0.0105	11.7%										
Cs	8892528	0.83	0.96	14.5%										
Cu	8892528	1680	1740	3.5%										
Dy	8892528	4.06	3.83	5.8%										
Er	8892528	2.42	2.30	5.1%										
Fe	8892528	7.58	7.49	1.2%										
Ga	8892528	21.0	21.2	0.9%										
Gd	8892528	4.22	3.97	6.1%										
Ge	8892528	2	2	0.0%										
Hf	8892528	2	2	0.0%										
Но	8892528	0.853	0.844	1.1%										
In	8892528	< 0.2	< 0.2	0.0%										
K	8892528	0.38	0.38	0.0%										
La	8892528	17.8	16.8	5.8%										
Li	8892528	19	20	5.1%										
Lu	8892528	0.342	0.345	0.9%										
Mg	8892528	2.09	2.18	4.2%										
Mn	8892528	1290	1300	0.8%										
Мо	8892528	< 2	< 2	0.0%										
Nb	8892528	3	3	0.0%										

Quality Assurance - Replicate
AGAT WORK ORDER: 17T282407
PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

http://www.agatlabs.com CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE 8892528 16.3 15.0 8.3% Ni 8892528 24 23 4.3% Р 8892528 0.05 0.05 0.0% Pb 8892528 11 11 0.0% Pr 8892528 4.09 3.87 5.5% Rb 8892528 16.8 16.5 1.8% S 8892528 0.57 0.57 0.0% Sb 8892528 0.32 0.24 28.6% 8892528 33 Sc 32 3.1% Si 8892528 24.9 25.0 0.4% Sm 8892528 3.78 3.59 5.2% Sn 8892528 4 3 28.6% 8892528 627 645 2.8% Sr Ta 8892528 < 0.5 < 0.5 0.0% Tb 8892528 0.67 0.67 0.0% Th 8892528 2.77 2.73 1.5% Ti 8892528 0.452 0.455 0.7% ΤI 8892528 < 0.5 < 0.5 0.0% Tm 8892528 0.34 0.34 0.0% U 8892528 0.969 0.942 2.8% V 8892528 212 213 0.5% W 8892528 1 1 0.0% Υ 8892528 25.9 26.5 2.3% Yb 2.2 8892528 2.3 4.4% Zn 8892528 97 102 5.0% Zr 8892528 73.1 74.5 (202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 Sample ID Original Replicate RPD Parameter 8892528 0.0232 0.0276 17.3% Pd 8892528 0.002 0.002 0.0% Pt 8892528 < 0.005 < 0.005 0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T282407 PROJECT: MICHEL LAVOIE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

				(201-3	78) So	dium P	eroxid	e Fusion	- ICP-C	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.TILL-2)											
Parameter	Expect	Actual	Recovery	Limits										
Al	8.47	7.97	94%	90% - 110%										
As	26	25	95%	90% - 110%										
Ва	540	509	94%	90% - 110%										
Ве	4.0	3.6	90%	90% - 110%										
Ca	0.907	0.909	100%	90% - 110%										
Ce	98	96	98%	90% - 110%										
Со	15	14	93%	90% - 110%										
Cu	150	152	102%	90% - 110%										
Er	3.7	3.6	96%	90% - 110%										
Fe	3.77	3.48	92%	90% - 110%										
Hf	11	10	90%	90% - 110%										
K	2.55	2.36	93%	90% - 110%										
La	44	44	99%	90% - 110%										
Li	47	48	103%	90% - 110%										
Lu	0.6	0.5	86%	90% - 110%										
Mg	1.1	1	92%	90% - 110%										
Mn	780	738	95%	90% - 110%										
Мо	14	13	92%	90% - 110%										
Nb	20	17	85%	90% - 110%										
Ni	32	35	111%	90% - 110%										
Pb	31	33	105%	90% - 110%										
Rb	144	139	97%	90% - 110%										
Sb	0.8	0.8	104%	90% - 110%										
Sc	12	11	94%	90% - 110%										
Si	28.4	27.1	95%	90% - 110%										
Sm	7.4	7.1	96%	90% - 110%										
Sr	144	152	105%	90% - 110%										
Та	1.9	1.7	89%	90% - 110%										
Tb	1.2	1.2	99%	90% - 110%										
Th	18.4	17.8	97%	90% - 110%										
Ti	0.527	0.491	93%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T282407 PROJECT: MICHEL LAVOIE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: MISC A	GAT CLII	ENT ON							ATTE	ENTION T	ГО: МІСНЕІ	LAVOIE	nttp://ww	w.agallabs.com
U	5.7	5.5	96%	90% - 110%											
V	77	80	104%	90% - 110%											
W	5	5	93%	90% - 110%											
Υ	40	44	110%	90% - 110%											
Zn	130	124	95%	90% - 110%											
Zr	390	366	94%	90% - 110%											
	•			(202-0	55) Fire	Assay	- Au, I	Pt, Pd Tra	ace Lev	els, ICF	P-OES	finish			
		CRM #1	(ref.PG129))											
Parameter	Expect	Actual	Recovery	Limits											
Au	1.1	1	90%	90% - 110%											
Pd	0.115	0.12	104%	90% - 110%											
Pt	0.239	0.24	100%	90% - 110%											

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: MICHEL LAVOIE

SAMPLING SITE:

AGAT WORK ORDER: 17T282407 ATTENTION TO: MICHEL LAVOIE

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Sample Login Weight	MIN-12009		BALANCE
Ag			ICP/MS
AI	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Be	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Со	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
In	MIN-200-12001		ICP-MS
κ	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Мо	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
Р			ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc	MIN-200-12001		ICP/OES
Si	MIN-200-12001		ICP/OES
Sm	MIN-200-12001		ICP-MS
Sn	MIN-200-12001		ICP/MS
Sr	MIN-200-12001		ICP-OES
Ta	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th	MIN-200-12001		ICP-MS

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: MICHEL LAVOIE

AGAT WORK ORDER: 17T282407 ATTENTION TO: MICHEL LAVOIE

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Ti	MIN-200-12001		ICP/OES
TI	MIN-200-12001		ICP-MS
Tm	MIN-200-12001		ICP-MS
U	MIN-200-12001		ICP-MS
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Υ	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001		ICP/OES
Zr	MIN-200-12001		ICP-MS
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

CLIENT NAME: MISC AGAT CLIENT ON, ON

ATTENTION TO: MICHEL LAVOIE

PROJECT: MICHEL LAVOIE

AGAT WORK ORDER: 17T291172

SOLID ANALYSIS REVIEWED BY: Kevin Motomura, Data Review Supervisor

DATE REPORTED: Jan 16, 2018

PAGES (INCLUDING COVER): 11

Should you require any information regarding this analysis please contact your client services representative at (905) 501-9998

NOTES
l

All samples are stored at no charge for 90 days. Please contact the lab if you require additional sample storage time.

AGAT WORK ORDER: 17T291172

PROJECT: MICHEL LAVOIE

TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

5623 McADAM ROAD

MISSISSAUGA, ONTARIO CANADA L4Z 1N9

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

			(20	1-378) Sc	odium Po	eroxide l	-usion -	ICP-OES	S/ICP-MS	S Finish					
DATE SAMPLED: De	c 03, 2017		[DATE RECE	EIVED: Dec	04, 2017		DATE	REPORTED): Jan 16, 20	018	SAM	/IPLE TYPE:	Other	
	Analyte:	Ag	Al	As	В	Ва	Be	Bi	Ca	Cd	Се	Со	Cr	Cs	Cu
	Unit:	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm
Sample ID (AGAT ID)	RDL:	1	0.01	5	20	0.5	5	0.1	0.05	0.2	0.1	0.5	0.005	0.1	5
169 (8951525)		<1	5.99	<5	35	293	<5	1.7	1.34	<0.2	19.2	37.3	< 0.005	<0.1	19900
170 (8951526)		<1	2.80	6	<20	168	<5	2.1	14.4	<0.2	12.5	14.4	< 0.005	<0.1	21000
171 (8951527)		<1	6.16	<5	43	301	<5	0.8	5.86	<0.2	28.0	30.9	< 0.005	0.2	10100
172 (8951528)		<1	4.14	<5	<20	204	<5	0.5	16.1	<0.2	20.2	23.6	< 0.005	<0.1	5130
173 (8951529)		<1	3.96	<5	25	234	<5	0.4	15.4	<0.2	20.9	17.0	< 0.005	<0.1	5420
174 (8951530)		<1	7.56	<5	48	212	<5	0.3	2.24	<0.2	25.8	36.8	< 0.005	0.2	3610
175 (8951531)		<1	4.99	<5	33	151	<5	0.2	15.7	<0.2	30.0	39.4	< 0.005	0.2	5430
176 (8951532)		<1	7.76	<5	50	252	<5	0.5	2.77	<0.2	18.9	27.0	< 0.005	<0.1	1690
177 (8951533)		<1	1.91	<5	<20	73.0	<5	0.3	28.4	<0.2	31.5	12.8	< 0.005	<0.1	4520
178 (8951534)		<1	7.02	<5	33	284	<5	0.5	6.71	<0.2	28.1	33.2	< 0.005	<0.1	2040
179 (8951535)		<1	9.41	<5	<20	252	<5	0.7	2.71	<0.2	47.4	25.1	<0.005	1.4	2080
	Analyte:	Dy	Er	Eu	Fe	Ga	Gd	Ge	Hf	Но	In	К	La	Li	Lu
	Unit:	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.05	0.05	0.05	0.01	0.01	0.05	1	1	0.05	0.2	0.05	0.1	10	0.05
169 (8951525)		3.48	1.66	1.14	9.72	18.0	3.70	1	1	0.63	0.3	1.94	10.2	21	0.19
170 (8951526)		1.84	1.11	0.58	4.79	7.44	1.94	<1	<1	0.39	0.2	1.56	6.3	16	0.15
171 (8951527)		2.72	1.53	1.15	7.42	16.3	3.24	1	1	0.53	<0.2	2.45	14.5	16	0.19
172 (8951528)		3.46	1.94	1.18	5.08	10.8	3.96	<1	<1	0.70	<0.2	1.61	10.3	<10	0.25
173 (8951529)		2.84	1.61	1.04	4.63	10.3	3.39	<1	<1	0.58	< 0.2	1.76	10.5	11	0.21
174 (8951530)		3.54	1.71	1.32	11.0	24.0	3.88	2	2	0.65	<0.2	1.51	14.0	25	0.20
175 (8951531)		3.30	1.62	1.53	7.50	22.1	4.02	2	2	0.62	<0.2	0.91	16.3	15	0.19
176 (8951532)		4.58	2.45	1.73	10.5	14.8	5.49	1	1	0.94	<0.2	1.76	9.2	23	0.30
177 (8951533)		8.21	3.84	3.59	3.24	5.88	11.8	<1	<1	1.52	0.2	0.47	14.0	<10	0.37
178 (8951534)		3.08	1.71	1.40	7.77	17.5	3.96	1	2	0.60	<0.2	2.23	14.4	16	0.21
179 (8951535)		3.37	1.58	0.66	1.41	21.3	3.66	1	4	0.61	<0.2	1.09	25.2	<10	0.25

Certified By:

y of stomura

CLIENT NAME: MISC AGAT CLIENT ON

Certificate of Analysis

AGAT WORK ORDER: 17T291172

PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

ATTENTION TO: MICHEL LAVOIE

			(20	1-378) Sc	odium Pe	eroxide I	Fusion -	ICP-OES	S/ICP-MS	Finish					
(201-378) Sodium Peroxide Fusion - ICP-OES/ICP-MS Fin DATE SAMPLED: Dec 03, 2017 DATE RECEIVED: Dec 04, 2017 DATE REPORTED: Jan										: Jan 16, 20)18	SAM	PLE TYPE:	Other	
	Analyte:	Mg	Mn	Мо	Nb	Nd	Ni	Р	Pb	Pr	Rb	S	Sb	Sc	Si
	Unit:	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	%	ppm	ppm	%
Sample ID (AGAT ID)	RDL:	0.01	10	2	1	0.1	5	0.01	5	0.05	0.2	0.01	0.1	5	0.01
169 (8951525)		2.68	1680	<2	2	13.0	84	0.03	<5	2.89	65.3	1.87	0.3	31	26.6
170 (8951526)		0.88	1070	<2	<1	7.3	32	0.01	<5	1.63	49.8	2.58	0.3	13	20.9
171 (8951527)		2.09	1320	<2	2	14.8	77	0.03	6	3.44	79.0	1.30	0.2	28	24.6
172 (8951528)		1.44	1640	<2	<1	13.1	50	0.02	<5	2.75	53.8	1.00	0.2	26	18.4
173 (8951529)		1.36	1410	<2	<1	12.0	48	0.02	<5	2.68	58.4	0.93	0.2	22	19.8
174 (8951530)		3.44	1930	<2	2	14.5	109	0.03	<5	3.45	46.3	0.39	0.4	33	24.3
175 (8951531)		2.40	2060	<2	2	16.7	67	0.02	<5	3.79	53.3	0.93	0.3	35	16.5
176 (8951532)		3.51	1810	<2	1	14.0	98	0.04	<5	2.73	30.8	0.24	0.2	36	24.6
177 (8951533)		0.96	3010	<2	<1	26.7	28	0.01	<5	4.74	15.5	1.10	0.1	34	7.62
178 (8951534)		2.51	1610	<2	2	16.0	82	0.04	<5	3.56	72.6	0.51	0.2	36	23.9
179 (8951535)		0.24	403	2	20	19.3	17	0.02	27	5.16	73.3	0.52	0.1	5	31.5
	Analyte:	Sm	Sn	Sr	Та	Tb	Th	Ti	TI	Tm	U	V	W	Υ	Yb
	Unit:	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Sample ID (AGAT ID)	RDL:	0.1	1	0.1	0.5	0.05	0.1	0.01	0.5	0.05	0.05	5	1	0.5	0.1
169 (8951525)		3.3	<1	31.1	<0.5	0.57	1.4	0.45	<0.5	0.22	0.53	197	8	16.4	1.4
170 (8951526)		1.6	<1	72.8	<0.5	0.28	0.6	0.17	<0.5	0.15	0.29	81	1	12.5	1.0
171 (8951527)		3.1	<1	44.0	<0.5	0.45	1.5	0.40	<0.5	0.20	0.78	187	<1	14.5	1.3
172 (8951528)		3.3	<1	85.9	<0.5	0.58	1.0	0.26	<0.5	0.25	0.50	132	4	21.2	1.7
173 (8951529)		2.8	<1	88.1	<0.5	0.48	1.0	0.27	<0.5	0.21	0.55	120	<1	17.7	1.4
174 (8951530)		3.4	<1	38.2	<0.5	0.55	1.8	0.48	<0.5	0.22	0.79	264	<1	16.2	1.5
175 (8951531)		3.9	<1	110	<0.5	0.58	1.8	0.31	<0.5	0.24	0.68	174	<1	15.8	1.5
176 (8951532)		4.1	<1	59.4	<0.5	0.79	1.1	0.48	< 0.5	0.30	0.40	250	<1	26.2	2.0
177 (8951533)		8.2	<1	107	<0.5	1.52	0.4	0.11	<0.5	0.46	0.14	66	<1	46.8	2.7
178 (8951534)		3.6	<1	54.7	<0.5	0.54	1.7	0.46	<0.5	0.23	0.76	211	1	15.6	1.5
179 (8951535)		3.7	2	88.6	4.7	0.58	27.4	0.08	<0.5	0.24	6.43	14	<1	16.6	1.7

Certified By:

y Latomura

AGAT WORK ORDER: 17T291172

PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

(201-378) Sodium Peroxide Fusion - ICP-OES/ICP-MS Finish													
DATE SAMPLED: Dec 03, 2017 DATE RECEIVED: Dec 04, 2017 DATE REPORTED: Jan 16, 2018 SAMPLE TYPE: Other													
	Analyte:	Zn	Zr										
	Unit:	ppm	ppm										
Sample ID (AGAT ID)	RDL:	5	0.5										
169 (8951525)		89	48.9										
170 (8951526)		31	19.6										
171 (8951527)		86	50.7										
172 (8951528)		48	32.2										
173 (8951529)		48	32.5										
174 (8951530)		120	54.0										
175 (8951531)		86	55.9										
176 (8951532)		127	35.5										
177 (8951533)		30	13.3										
178 (8951534)		94	52.8										
179 (8951535)		12	102										

Comments: RDL - Reported Detection Limit

Certified By:

y Latimura

AGAT WORK ORDER: 17T291172

PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

(202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish											
DATE SAMPLED: De	c 03, 2017			DATE REC	EIVED: Dec 04, 2017	7 DATE REPORTED: Jan 16, 2018	SAMPLE TYPE: Other				
	Analyte:	Sample Login Weight	Au	Pd	Pt						
	Unit:	kg	ppm	ppm	ppm						
Sample ID (AGAT ID)	RDL:	0.01	0.001	0.001	0.005						
169 (8951525)		0.818	0.030	<0.001	<0.005						
170 (8951526)		0.748	0.001	< 0.001	< 0.005						
171 (8951527)		0.857	0.022	<0.001	<0.005						
172 (8951528)		2.445	0.002	<0.001	<0.005						
173 (8951529)		1.236	0.011	<0.001	<0.005						
174 (8951530)		1.630	0.010	<0.001	<0.005						
175 (8951531)		1.296	0.014	<0.001	<0.005						
176 (8951532)		2.061	0.012	<0.001	<0.005						
177 (8951533)		1.689	0.009	< 0.001	<0.005						
178 (8951534)		1.746	0.008	<0.001	<0.005						
179 (8951535)		2.394	0.057	<0.001	<0.005						

Comments: RDL - Reported Detection Limit

Certified By:

y Latimura

Quality Assurance - Replicate AGAT WORK ORDER: 17T291172 PROJECT: MICHEL LAVOIE 5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

				(201-3	378) Sod	lium Pe	roxide	Fusion	- ICP-O	ES/ICP-	MS Fin	ish		
		REPLIC	ATE #1											
Parameter	Sample ID	Original	Replicate	RPD										
Ag	8951525	< 1	< 1	0.0%										
Al	8951525	5.99	6.04	0.8%										
As	8951525	< 5	< 5	0.0%										
В	8951525	35	40	13.3%										
Ва	8951525	293	293	0.0%										
Ве	8951525	< 5	< 5	0.0%										
Bi	8951525	1.7	2.4											
Ca	8951525	1.34	1.36	1.5%										
Cd	8951525	< 0.2	0.5											
Ce	8951525	19.2	19.9	3.6%										
Со	8951525	37.3	37.7	1.1%										
Cr	8951525	< 0.005	< 0.005	0.0%										
Cs	8951525	< 0.1	< 0.1	0.0%										
Cu	8951525	19900	19900	0.0%										
Dy	8951525	3.48	3.57	2.6%										
Er	8951525	1.66	1.70	2.4%										
Eu	8951525	1.14	1.19	4.3%										
Fe	8951525	9.72	9.89	1.7%										
Ga	8951525	18.0	17.6	2.2%										
Gd	8951525	3.70	3.99	7.5%										
Ge	8951525	1	1	0.0%										
Hf	8951525	1	1	0.0%										
Но	8951525	0.63	0.66	4.7%										
In	8951525	0.3	0.5											
К	8951525	1.94	1.98	2.0%										
La	8951525	10.2	10.7	4.8%										
Li	8951525	21	22	4.7%										
Lu	8951525	0.19	0.19	0.0%										
Mg	8951525	2.68	2.63	1.9%										
Mn	8951525	1680	1680	0.0%										
Мо	8951525	< 2	< 2	0.0%										

Quality Assurance - Replicate
AGAT WORK ORDER: 17T291172
PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE 8951525 2 0.0% Nd 8951525 13.0 13.5 3.8% Ni 8951525 84 86 2.4% Ρ 8951525 0.03 0.03 0.0% Pb 8951525 0.0% < 5 < 5 Pr 8951525 2.89 2.95 2.1% Rb 8951525 65.3 65.6 0.5% S 8951525 1.87 1.88 0.5% Sb 8951525 0.34 18.7% 0.41 Sc 8951525 31 31 0.0% Si 8951525 26.6 26.7 0.4% Sm 8951525 3.3 3.5 5.9% 8951525 Sn < 1 < 1 0.0% 8951525 Sr 31.1 30.9 0.6% Ta 8951525 < 0.5 < 0.5 0.0% Tb 8951525 0.57 0.60 5.1% Th 8951525 1.45 1.56 7.3% Τi 8951525 0.45 0.45 0.0% ΤI 8951525 < 0.5 < 0.5 0.0% Tm 8951525 0.22 0.22 0.0% U 8951525 0.531 0.575 8.0% ٧ 8951525 197 197 0.0% W 8951525 8 9 11.8% Υ 8951525 16.4 16.8 2.4% Yb 8951525 1.39 1.46 4.9% Zn 8951525 89 90 1.1% Zr 8951525 47.6 48.9 (202-055) Fire Assay - Au, Pt, Pd Trace Levels, ICP-OES finish REPLICATE #1 Parameter Sample ID Original Replicate RPD 8951525 0.030 0.037 20.9% Au Pd 8951525 < 0.001 < 0.001 0.0% Pt 8951525 < 0.005 < 0.005 0.0%

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T291172 PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAME: MISC AGAT CLIENT ON ATTENTION TO: MICHEL LAVOIE

				(201-3	78) So	dium P	eroxid	e Fusion	- ICP-C	ES/ICP	-MS Fi	nish		
		CRM #1	(ref.SY-4)											
Parameter	Expect	Actual	Recovery	Limits										
Al	10.95	11.15	102%	90% - 110%										
Ва	340	343	101%	90% - 110%										
Ве	2.6	2.7	102%	90% - 110%										
Ca	5.72	5.9	103%	90% - 110%										
Ce	122	116	95%	90% - 110%										
Co	2.8	2.3	82%	90% - 110%										
Cs	1.5	1.4	91%	90% - 110%										
Cu	7	8	121%	90% - 110%										
Dy	18.2	19	105%	90% - 110%										
Er	14.2	14	98%	90% - 110%										
Eu	2.0	1.8	92%	90% - 110%										
Fe	4.34	4.28	99%	90% - 110%										
Ga	35	36	104%	90% - 110%										
Gd	14	14	103%	90% - 110%										
Hf	10.6	11	104%	90% - 110%										
Но	4.3	4.5	104%	90% - 110%										
K	1.37	1.4	102%	90% - 110%										
La	58	57	99%	90% - 110%										
Li	37	37	99%	90% - 110%										
Lu	2.1	2	96%	90% - 110%										
Mg	0.325	0.323	99%	90% - 110%										
Mn	836	858	103%	90% - 110%										
Nb	13	12	93%	90% - 110%										
Nd	57	60	105%	90% - 110%										
Pb	10	11	106%	90% - 110%										
Pr	15.0	15.2	102%	90% - 110%										
Rb	55	51	94%	90% - 110%										
Si	23.3	24.4	105%	90% - 110%										
Sm	12.7	12.9	102%	90% - 110%										
Sn	7.1	7.8	109%	90% - 110%										
Sr	1191	1200	101%	90% - 110%										

Quality Assurance - Certified Reference materials AGAT WORK ORDER: 17T291172 PROJECT: MICHEL LAVOIE

5623 McADAM ROAD MISSISSAUGA, ONTARIO CANADA L4Z 1N9 TEL (905)501-9998 FAX (905)501-0589 http://www.agatlabs.com

CLIENT NAM	E: MISC A	GAT CLII	ENT ON							ATTE	ENTION	TO: MICHE	L LAVOIE		_
Та	0.9	0.7	75%	90% - 110%											
Tb	2.6	2.6	101%	90% - 110%											
Th	1.4	1.2	87%	90% - 110%											
Ti	0.172	0.174	101%	90% - 110%											
Tm	2.3	2.3	100%	90% - 110%											
U	0.8	0.8	99%	90% - 110%											
V	8	9	119%	90% - 110%											
Υ	119	114	96%	90% - 110%											
Yb	14.8	15	101%	90% - 110%											
Zn	93	98	105%	90% - 110%											
Zr	517	573	110%	90% - 110%											
				(202-0	55) Fire	e Assay	/ - Au,	Pt, Pd Tr	ace Lev	els, ICI	P-OES	finish			
		CRM #1	(ref.PG129)												
Parameter	Expect	Actual	Recovery	Limits											
Au	1.1	1.1	100%	90% - 110%											
Pd	0.115	0.124	108%	90% - 110%											
ı-u	0.113	0.124	10076	3070 - 11076											

Pt

0.239

0.250

105%

90% - 110%

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON

PROJECT: MICHEL LAVOIE

AGAT WORK ORDER: 17T291172 ATTENTION TO: MICHEL LAVOIE

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Solid Analysis			
Ag			ICP/MS
Al	MIN-200-12001		ICP/OES
As	MIN-200-12001		ICP/MS
В	MIN-200-12001		ICP/OES
Ва	MIN-200-12001		ICP/OES
Be	MIN-200-12001		ICP/OES
Bi	MIN-200-12001		ICP-MS
Ca	MIN-200-12001		ICP/OES
Cd	MIN-200-12001		ICP-MS
Ce	MIN-200-12001		ICP-MS
Со	MIN-200-12001		ICP/MS
Cr	MIN-200-12001		ICP/OES
Cs	MIN-200-12001		ICP-MS
Cu	MIN-200-12001		ICP/OES
Dy	MIN-200-12001		ICP-MS
Er	MIN-200-12001		ICP-MS
Eu	MIN-200-12001		ICP-MS
Fe	MIN-200-12001		ICP/OES
Ga	MIN-200-12001		ICP-MS
Gd	MIN-200-12001		ICP-MS
Ge	MIN-200-12001		ICP-MS
Hf	MIN-200-12001		ICP-MS
Но	MIN-200-12001		ICP-MS
In	MIN-200-12001		ICP-MS
κ	MIN-200-12001		ICP/OES
La	MIN-200-12001		ICP-MS
Li	MIN-200-12001		ICP/OES
Lu	MIN-200-12001		ICP-MS
Mg	MIN-200-12001		ICP/OES
Mn	MIN-200-12001		ICP/OES
Мо	MIN-200-12001		ICP/MS
Nb	MIN-200-12001		ICP-MS
Nd	MIN-200-12001		ICP-MS
Ni	MIN-200-12001		ICP/OES
P			ICP/OES
Pb	MIN-200-12001		ICP/MS
Pr	MIN-200-12001		ICP-MS
Rb	MIN-200-12001		ICP/MS
S	MIN-200-12001		ICP/OES
Sb	MIN-200-12001		ICP-MS
Sc	MIN-200-12001		ICP/OES
Si	MIN-200-12001		ICP/OES
Sm	MIN-200-12001		ICP-MS
Sn	MIN-200-12001		ICP/MS
Sr	MIN-200-12001		ICP-OES
Та	MIN-200-12001		ICP-MS
Tb	MIN-200-12001		ICP-MS
Th	MIN-200-12001		ICP-MS
Ti	MIN-200-12001		ICP/OES

Method Summary

CLIENT NAME: MISC AGAT CLIENT ON AGAT WORK ORDER: 17T291172
PROJECT: MICHEL LAVOIE ATTENTION TO: MICHEL LAVOIE

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
TI	MIN-200-12001	•	ICP-MS
Tm	MIN-200-12001	MIN-200-12001	
U	MIN-200-12001	MIN-200-12001	
V	MIN-200-12001		ICP/OES
W	MIN-200-12001		ICP-MS
Y	MIN-200-12001		ICP-MS
Yb	MIN-200-12001		ICP-MS
Zn	MIN-200-12001	MIN-200-12001	
Zr	MIN-200-12001		ICP-MS
Sample Login Weight	MIN-12009		BALANCE
Au	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pd	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES
Pt	MIN-200-12006	BUGBEE, E: A Textbook of Fire Assaying	ICP/OES

103126 411151.202	287689 Zone 41115L203	127148	41115L205 117413 336053	257632 411151,206
189837 41115L222	267651 41I15L223	103278 41115L224	103277 323723 41115L225	127161 41115L226
126209 41115L242	41115L 275400 41115L243	155504 41115L244	100590 257633 41115L245	103298 41115L246
142726 41115L262	20ne 17 50000001 172081 41115L263	228224 41115L264	Zone 17 502000 E 5150000 H 208879 256250 41115L265	292802 41115L266
41115L282 126210	41/15L283 200823	228225	294257 41115L285 312222	41115L286 226192 Provincial Recording Off

PDF File Name	Content
20000017086_02	Pictures 1 Conglomerate Boulders with pseudotachylite
20000017086_02	Pictures 2 Conglomerate Boulders
20000017086_02	Pictures 3 Glossy conglomerate
20000017086_02	Pictures 4 Mega conglomerate - breccia
20000017086_02	Pictures 5 Banded gneiss
20000017086_02	Pictures 6 Iron and Conglomerate
20000017086_02	Pictures 7 Mineralization & greywacke & Sample 1
20000017086_02	Pictures 8 Conglomerate
20000017086_02	Pictures 9 Mega Conglomerate
20000017086_02	Pictures 10 Mega conglomerate
20000017086_02	Pictures 11 Pseudotachylite
20000017086_02	Pictures 12 Large Quartz veins
20000017086_02	Pictures 13 Quartz & Sample 5
20000017086_02	Pictures 14 Conglomerate
20000017086_02	Pictures 15 Conglomerate & raised quartz

PDF File Name	Content
20000017086_03	Pictures 16 Porphyry
20000017086_03	Pictures 17 Mega Conglomerate
20000017086_03	Pictures 18 Conglomerates
20000017086_03	Pictures 19 Conglomerates
20000017086_03	Pictures 20 Conglomerates
20000017086_03	Pictures 21 Conglomerates
20000017086_03	Pictures 22 Breccia in Bedrock
20000017086_03	Pictures 23 Sedimentary with pyrite
20000017086_03	Pictures 24 Greywackey
20000017086_03	Pictures 25 Conglomerate
20000017086_03	Pictures 26 Conglomerate
20000017086_03	Pictures 27 Conglomerate
20000017086_03	Pictures 28 Conglomerate
20000017086_03	Pictures 29 Conglomerate
20000017086_03	Pictures 30 Conglomerate boulder
20000017086_03	Pictures 31 Conglomerate
20000017086_03	Pictures 32 Rusty Undifferentiated
20000017086_03	Pictures 33 Mega conglomerate boulder
20000017086_03	Pictures 34 Conglomerate & Quartz
20000017086_03	Pictures 35 Conglomerates
20000017086_03	Pictures 36 Conglomerate & Undifferentiated
20000017086_03	Pictures 37 Hematite & Pyrite
Pictures 38 not provided	Pictures 38 not provided
20000017086_03	Pictures 39 Conglomerate & lines
20000017086_03	Pictures 40 Conglomerate Boulders
20000017086_03	Pictures 41 Yellow Boulders
20000017086_03	Pictures 42 Conglomerate
20000017086_03	Pictures 43 Porphyry
20000017086_03	Pictures 44 Large quartz veins

Pictures 45 Porphyry & pink dikes

20000017086_03

PDF File Name	Content
20000017086_04	Pictures 46 Mega conglomerate
20000017086_04	Pictures 47 Mega conglomerate & swirl
20000017086_04	Pictures 48 Breccia & quartz veins
20000017086_04	Pictures 49 Breccia & Greywackey
20000017086_04	Pictures 50 Conglomerate & rust
20000017086_04	Pictures 51 Large white quartz
20000017086_04	Pictures 52 Conglomerate & lots of lines
20000017086_04	Pictures 53 Large quartz veins
20000017086_04	Pictures 54 Large quartz veins
20000017086_04	Pictures 55 Epidote & stringers
20000017086_04	Pictures 56 Conglomerate & Stringers
Pictures 57 not provided	Pictures 57 not provided
20000017086_04	Pictures 58 Conglomerate
Pictures 59 not provided	Pictures 59 not provided
20000017086_04	Pictures 60 Porphyry
20000017086_04	Pictures 61 White quartz vein
20000017086_04	Pictures 62 like banded gneiss area
20000017086_04	Pictures 63 Conglomerate
20000017086_04	Pictures 64 Mega Conglomerate & contact
20000017086_04	Pictures 65 Porphyry
20000017086_04	Pictures 66 Breccia & fault line
20000017086_04	Pictures 67 Conglomerate
20000017086_04	Pictures 68 Breccia & conglomerate
20000017086_04	Pictures 69 Breccia & Conglomerate
20000017086_04	Pictures 70 Conglomerate & Pillow lava
20000017086_04	Pictures 71 Rusty quart
20000017086_04	Pictures 72 Conglomerate
20000017086_04	Pictures 73 Conglomerate & stringers
20000017086_04	Pictures 74 Conglomerate
20000017086_04	Pictures 75 Large conglomerate
20000017086_04	Pictures 76 Conglomerate & stringers
20000017086_04	Pictures 77 Mega small conglomerate

PDF File Name	Content
	
20000017086_05	Pictures 78 Flaky mega small conglomerate
20000017086_05	Pictures 79 Conglomerate
20000017086_05	Pictures 80 tectonic foliation and lineation
20000017086_05	Pictures 81 Horneblend Biotite Schist
20000017086_05	Pictures 82 Edge of porphyry
20000017086_05	Pictures 83 Mega conglomerate
20000017086_05	Pictures 84 Porphyritic quartz monzonite
20000017086_05	Pictures 85 Porphyry & quartz on top
20000017086_05	Pictures 86 Porphyry & quartz vein
20000017086_05	Pictures 87 Conglomerate
20000017086_05	Pictures 88 Undifferentiated & yellow mineralized stringers
20000017086_05	Pictures 89 Porphyry
20000017086_05	Pictures 90 Breccea & large quartz
20000017086_05	Pictures 91 Finely bedded argillite
20000017086_05	Pictures 92 Finely bedded argillite
20000017086_05	Pictures 93 Quartz diabase & Conglomerate
20000017086_05	Pictures 94 Polymictic conglomerate
20000017086_05	Pictures 95 Polymictic conglomerate
20000017086_05	Pictures 96 Porphyry
20000017086_05	Pictures 97 Polymictic conglomerate
20000017086_05	Pictures 98 Polymictic conglomerate
20000017086_05	Pictures 99 Porphyry

PDF File Name	Content
20000017086_06	Pictures 100 Porphyry & Conglomerate
20000017086_06	Pictures 101 Porphyry
20000017086_06	Pictures 102 Porphyry
20000017086_06	Pictures 103 Porphyry & basalt
20000017086_06	Pictures 104 Porphyry
20000017086_06	Pictures 105 Porphyry
20000017086_06	Pictures 106 Porphyry
20000017086_06	Pictures 107 Porphyry
20000017086_06	Pictures 108 Porphyry & Pink Dike
20000017086_06	Pictures 109 Porphyry & Pink Dike
20000017086_06	Pictures 110 Porphyry
20000017086_06	Pictures 111 Polymictic conglomerate
20000017086_06	Pictures 112 Quartz pebble in boulder
20000017086_06	Pictures 113 Epidote Pyrite conglomerate & area of Sample 23
20000017086_06	Pictures 114 Hornblende biotite schist
20000017086_06	Pictures 115 Hornblende biotite schist
20000017086_06	Pictures 116 Porphyry & Rust
20000017086_06	Pictures 117 Porphyry
20000017086_06	Pictures 118 Porphyry
20000017086_06	Pictures 119 Porphyry
20000017086_06	Pictures 120 Porphyry
20000017086_06	Pictures 121 Porphyry & dike
20000017086_06	Pictures 122 Porphyry epidote & dike
20000017086_06	Pictures 123 Conglomerate lines & Contact zone
20000017086_06	Pictures 124 Hornblende biotite schist
20000017086_06	Pictures 125 Hornblende biotite schist
20000017086_06	Pictures 126 Polymictic conglomerate
20000017086_06	Pictures 127 Diorite & rust
20000017086_06	Pictures 128 Mineralized Diorite boulder
Pictures 129 not provided	Pictures 129 not provided
20000017086_06	Pictures 130 Real Sudbury Breccia
20000017086_06	Pictures 131 Polymictic Conglomerate
20000017086_06	Pictures 132 Breccia - greywacke - dike
20000017086_06	Pictures 133 Conglomerates - Breccia
20000017086_06	Pictures 134 Mineralized Undifferentiated
20000017086_06	Pictures 135 Sample 7 & 20 amphibolite - gabbro

PDF File Name	Content
20000017086_07	Pictures 136 Sample 4 & 12 Pegmatite - metavolcanics
20000017086_07	Pictures 137 Sudbury Breccia - Pegmatite
20000017086_07	Pictures 138 metavolcanics - epidote
20000017086_07	Pictures 139 metavolcanics & diorite
20000017086_07	Pictures 140 Arkose & Quartz & Green chlorite
20000017086_07	Pictures 141 Mineralized metavolcanics
20000017086_07	Pictures 142 Pink sedimentary Hydrothermal boulder
20000017086_07	Pictures 143 Porphyry (Orthoclase) & dike
20000017086_07	Pictures 144 Mineralized greywacke & Sample 6
20000017086_07	Pictures 145 Porphyry
20000017086_07	Pictures 146 bedded arkose
20000017086_07	Pictures 147 bedded arkose greywacke quartz veins
20000017086_07	Pictures 148 Mineralization in undifferentiated
20000017086_07	Pictures 149 Pebble boulder
20000017086_07	Pictures 150 Boulders - porphyry - contact
20000017086_07	Pictures 151 Porphyry and Pebbles
20000017086_07	Pictures 152 Porphyry pyrite & xenoliths
20000017086_08	Pictures 153 Porphyry & quartz veins
20000017086_08	Pictures 154 Porphyry
20000017086_08	Pictures 155 Porphyry & rust
20000017086_08	Pictures 156 Porphyry & rust
20000017086_08	Pictures 157 Porphyry
20000017086_08	Pictures 158 Porphyry
20000017086_08	Pictures 159 Porphyry
20000017086_08	Pictures 160 Porphyry & contact & dike
20000017086_08	Pictures 161 Porphyry
20000017086_08	Pictures 162 Porphyry & pink dike & basalt
20000017086_08	Pictures 163 Porphyry
20000017086_08	Pictures 164 Porphyry
20000017086_08	Pictures 165 Mega conglomerate - enclave fragment - porphyry

PDF File Name	Content
20000017086 09	Pictures 166 mega conglomerate & mineral balls
20000017086 09	Pictures 167 Finely bedded argillite & conglomerates
20000017086 09	Pictures 168 Argillite & basalt intrusion
20000017086_09	Pictures 169 greywacke & Undifferentiated
20000017086 09	Pictures 170 Greywacke & Mineralization Sample 3 & 8
20000017086 09	Pictures 171 Arkose & Quartz & Green Chlorite
20000017086_09	Pictures 172 argillite & conglomerate & greywacke & quartz & epi
20000017086_09	Pictures 173 Undifferentiated & Quartz dike & green chlorite & s
20000017086_09	Pictures 174 Malachite like & conglomerate boulders
20000017086_09	Pictures 175 Arkose & Quartz & Chlorite & Sample 2
20000017086_09	Pictures 176 Quartz & fractures
20000017086_09	Pictures 177 Porphyry & pink dike
20000017086_09	Pictures 178 Porphyry & pink dike & Quartz
20000017086_09	Pictures 179 Excavation of conglomerate with enclave
20000017086_09	Pictures 180 Mineralized greywacke & samples 1
20000017086_09	Pictures 181 Argillite & undifferentiated & Quartz & green chlor
20000017086_09	Pictures 182 Excavation & quartz & fault & green chlorite
20000017086_09	Pictures 183 Edge of porphyry with greenish looking stringers
20000017086_09	Pictures 184 Contact & quartz monzonite
20000017086_09	Pictures 185 Pegmatite & granite
20000017086_09	Pictures 186 White and Brown Quartz & granite
20000017086_09	Pictures 187 Pegmatite & mica boulder
20000017086_09	Pictures 188 quartz & granite
20000017086_09	Pictures 189 Diorite & Quartz
20000017086_09	Pictures 190 Porphyry & contact
20000017086_09	Pictures 191 Porphyry
20000017086_09	Pictures 192 Contact & excavation & greywacke & Quartz & maybe M
20000017086_09	Pictures 193 Large epidote & quartz monzonite
20000017086_09	Pictures 194 Large epidote & pike dikes & quartz monzonite
20000017086_09	Pictures 195 argillite & green chlorite & Pyrite
20000017086_09	Pictures 196 Epidote & Conglomerates
20000017086_09	Pictures 197 Diorite & contact & quartz
20000017086_09	Pictures 198 Diorite & Quartz & orange dike & contact
20000017086_09	Pictures 199 contact & Gabbro & argillite
20000017086_09	Pictures 200 Contaminated water
20000017086_09	Pictures 201 greywacke & diorite & Quartz & epidote
20000017086_09	Pictures 202 greywacke & quartz monzonite
20000017086_09	Pictures 203 undifferentiated & stringers
20000017086_09	Pictures 204 undifferentiated
20000017086_09	Pictures 205 Conglomerates with elongated shapes & undifferentia

PDF File Name	Content
20000017086_10	Pictures 206 Undifferentiated
20000017086_10	Pictures 207 Undifferentiated & gneiss
20000017086_10	Pictures 208 Undifferentiated & gneiss & rust & fractures
20000017086 10	Pictures 209 Undifferentiated & gneiss & schistosity
20000017086 10	Pictures 210 Undifferentiated & gneiss & schistosity
20000017086 10	Pictures 211 Undifferentiated & gneiss & schistosity
20000017086_10	Pictures 212 Undifferentiated & gneiss & schistosity
20000017086_10	Pictures 213 Porphyry & lots of crystals
20000017086_10	Pictures 214 Porphyry
20000017086_10	Pictures 215 Diorite & dikes & stringers & gneiss
20000017086_10	Pictures 216 argillite covered by a conglomerate
20000017086_10	Pictures 217 conglomerate & sudbury breccias & intrusion
20000017086_10	Pictures 218 Mineralized stringers & conglomerate & Excavated
20000017086_10	Pictures 219 Samples 9 & 10
20000017086_10	Pictures 220 Intrusive porphyry & Excavated & sample 24
20000017086_10	Pictures 221 Quartz monzonite intruded by pegmatite
20000017086_10	Pictures 222 Pink orange granite
20000017086_10	Pictures 223 Pink orange granite
20000017086_10	Pictures 224 Pink orange granite & pegmatite
20000017086_10	Pictures 225 large quartz feldspar pegmatite
20000017086_10	Pictures 226 pink granite & large pegmatite & quartz
20000017086_10	Pictures 227 feldspar & quartz pegmatite & biotite mica
20000017086_10	Pictures 228 Hornblende & stringers & pyrite
20000017086_10	Pictures 229 Hornblende & stringers
20000017086_10	Pictures 230 hornblende & epidote & rust & stringers & greywacke
20000017086_10	Pictures 231 hornblende & Kimberlite dike & stringer & breccia
20000017086_10	Pictures 232 hornblende & lots of stringers & rust
20000017086_10	Pictures 233 hornblende & lots of stringers & rust
20000017086_10	Pictures 234 hornblende & quartz & stringers & sample 14
20000017086_10	Pictures 235 mafic metavolcanics & granite contact & rust & quar
20000017086_10	Pictures 236 Diorite & lots of stringers
20000017086_10	Pictures 237 Sample 15 & quartz veins by Bessie lake
20000017086_10	Pictures 238 fault line breccias & quartz
20000017086_10	Pictures 239 Porphyry & quartz Pictures 240 Conglomerate & fracturing & stringers
20000017086_10	
20000017086_10 20000017086 10	Pictures 241 Conglomerates & black vein Pictures 242 Conglomerates
2000017086_10	Pictures 243 Porphyry & quartz
20000017086_10	Pictures 244 Porphyry & dualtz Pictures 244 Porphyry & brown vein & Sample 16
20000017086_10	Pictures 245 Mega Conglomerate
	Hotal Co 2-10 Micha complementic

PDF File Name	Content
20000017086_10	Pictures 246 Mega conglomerates & volcanic breccias
20000017086_10	Pictures 247 porphyry & conglomerates & volcanic breccias
20000017086_10	Pictures 248 conglomerate
20000017086_10	Pictures 249 quartz vein & Sample 17
20000017086_10	Pictures 250 large quartz sample 18
20000017086_10	Pictures 251 green chlorite & Sample 19
20000017086_10	Pictures 252 Excavated & large quartz
20000017086_10	Pictures 253 feldspar porphyry boulders
20000017086_10	Pictures 254 Pegmatite dike in quartz monzonite
20000017086_10	Pictures 255 Granite & pegmatite & pink dike & mica
20000017086_10	Pictures 256 Quartz
20000017086_10	Pictures 257 Granite
20000017086_10	Pictures 258 Granite & pegmatite & red staining
20000017086_10	Pictures 259 Granite
20000017086_10	Pictures 260 Granite & pegmatite
20000017086_10	Pictures 261 Granite & pegmatite & quartz & quartz monzonite
20000017086_10	Pictures 262 Yellow porphyry boulder
20000017086_10	Pictures 263 Olivine diabase & yellow balls
20000017086_10	Pictures 264 bedded arkose
20000017086_10	Pictures 265 Arkose & Breccia
20000017086_10	Pictures 266 Intrusive basalt
20000017086_10	Pictures 267 Grano diorite
20000017086_10	Pictures 268 Conglomerate
20000017086_10	Pictures 269 Conglomerates & quartz

PDF File Name	Content
20000017086_11	Pictures 270 Conglomerates & granite & Basalt & dike
20000017086_11	Pictures 271 Conglomerates & breccias & White precipitate & Quar
20000017086_11	Pictures 272 Quartz
20000017086 11	Pictures 273 greywacke & Pointy outcrop with precipitate
20000017086 11	Pictures 274 greywacke
20000017086 11	Pictures 275 Argillite & foliation
20000017086_11	Pictures 276 Quartz & sedimentary
20000017086_11	Pictures 277 Quartz & Granite
20000017086_11	Pictures 278 Quartz & greywacke
20000017086_11	Pictures 279 Rusted shapes in boulders & greywacke
20000017086_11	Pictures 280 hornblende & lots of stringers
20000017086_11	Pictures 281 quartz monzonite & precipitate
20000017086_11	Pictures 282 Quartz Monzonite
20000017086_11	Pictures 283 hornblende & lots of stringers & epidote & quartz
20000017086_11	Pictures 284 hornblende & lots of stringers & epidote & quartz
20000017086_11	Pictures 285 hornblende & stringers & quartz
20000017086_11	Pictures 286 hornblende & stringers & rust & epidote & Quartz
20000017086_11	Pictures 287 hornblende & stringers & red staining
20000017086_11	Pictures 288 hornblende & stringers & epidote & quartz & mineral
20000017086_11	Pictures 289 hornblende & stringers
20000017086_11	Pictures 290 Hornblende & stringers
20000017086_11	Pictures 291 hornblende & stringers & sheer zone - biotite chlor
20000017086_11	Pictures 292 hornblende & banding & stringers & mineralization
20000017086_11	Pictures 293 hornblende & rusted pyrite
20000017086_11	Pictures 294 hornblende & sheer zone & stringers & rust
20000017086_11	Pictures 295 hornblende & sheer zone & stringers
20000017086_11	Pictures 296 mega polymictic conglomerate boulder
20000017086_11	Pictures 297 Iron rich boulder
20000017086_11	Pictures 298 hornblende & quartz veins & stringers & pyrite
20000017086_11	Pictures 299 hornblende & quartz veins & stringers
20000017086_11	Pictures 300 hornblende & contact zone & stringers & epidote & a
20000017086_11	Pictures 301 hornblende & tectonic lineation & stringers & quart
20000017086_11	Pictures 302 hornblende & tectonic lineation & stringers & quart
20000017086_11	Pictures 304 hornblande & stringers
20000017086_11	Pictures 304 hornblende & stringers
20000017086_11 20000017086 11	Pictures 305 hornblende & stringers & epidote Pictures 306 hornblende & quartz & rust
20000017086_11	Pictures 307 diorite
20000017086_11	Pictures 308 diorite & rust quartz
20000017086 11	Pictures 309 diorite & white stringers
2000001,000_11	ristares ses alorite a writte stringers

PDF File Name	Content
20000017086 11	Pictures 310 diorite & pink stringers
20000017086 11	Pictures 311 Contact & hornblende & diorite & stringers & rust
20000017086 11	Pictures 312 Diorite & pink staining
20000017086 11	Pictures 313 hornblende & stringers & quartz
20000017086_11	Pictures 314 Diorite & hornblende contact nearby & stringers
20000017086 11	Pictures 315 Diorite & stringers & Quartz
20000017086 11	Pictures 316 diorite & rusty quartz
20000017086 11	Pictures 317 diorite & rusty quartz
	Pictures 318 diorite & quartz & pegmatitic diorite
20000017086_11	Pictures 319 diorite & rusty yellow quartz
20000017086_11	Pictures 320 diorite & rusty white - pink quartz & hornblende &
20000017086_11	Pictures 321 hornblende & tectonic foliation and lineation & str
20000017086_11	Pictures 322 hornblende & tectonic foliation and lineation & str
20000017086_11	Pictures 323 hornblende & stringers & quartz
20000017086_11	Pictures 324 tectonic foliation and lineation
20000017086_11	Pictures 325 diorite intruding into hornblende boulder
20000017086_11	Pictures 326 hornblende & mineralization & sample 21
20000017086_11	Pictures 327 hornblende & stringers & epidote & quartz & mineral
20000017086_11	Pictures 328 Zebra Boulder
20000017086_11	Pictures 329 hornblende & tectonic lineation & breccia
20000017086_11	Pictures 330 hornblende & tectonic lineation
20000017086_11	Pictures 331 granite & pegmatite & pink dike
20000017086_11	Pictures 332 mineralization & pike dike
20000017086_11	Pictures 333 Rusty boulders with round shapes
20000017086_11	Pictures 334 Mineralization & chlorite & Quartz
20000017086_11	Pictures 335 Conglomerate
20000017086_11	Pictures 336 Conglomerate & a few pyrite cubes
20000017086_11	Pictures 337 Conglomerate & ripples
20000017086_11	Pictures 338 conglomerate & mudstone & gabbro & contact zone
20000017086_11	Pictures 339 gabbro & Sudbury breccia & conglomerate & minerals

PDF File Name	Content
20000017086 12	Pictures 340 Granite & pegmatite
20000017086_12	Pictures 341 Granite & pegmatite & rust & mica
20000017086_12	Pictures 342 Pink and grey albite quartz monzonite & Intrusion
20000017086_12	Pictures 343 Pink and grey albite quartz monzonite & intrusions
20000017086_12	Pictures 344 pegmatites in granodiorite & Quartz
20000017086_12	Pictures 345 dark greyblack basaltic intrusion in albite quartz
20000017086_12	Pictures 346 dark grey-black basaltic intrusion in albite quartz
20000017086_12	Pictures 347 Hydrothermal breccia & pegmatites & intrusions & fe
20000017086_12	Pictures 348 Green quartz diorite
Pictures 349 not provided	Pictures 349 not provided
20000017086_12	Pictures 350 Grano-diorite & pegmatite vein & contact
20000017086_12	Pictures 351 Large quartz & contact & hornblende & granite & gra
20000017086_12	Pictures 352 Circular shapes of rust in boulder
20000017086_12	Pictures 353 large quartz vein & diorite & pegmatite & magma
20000017086_12	Pictures 354 pink dike & pyrite in hornblende
20000017086_12	Pictures 355 Quartz dike & veins & grano-diorite & hornblende
20000017086_12	Pictures 356 hand sample for examination
20000017086_12	Pictures 357 large white quartz dike & conglomerate & intrusion
20000017086_12	Pictures 358 Massive feldspathic greywacke
20000017086_12	Pictures 359 argillite & Quartz & Chlorite
20000017086_12	Pictures 360 argillite & hornblende
20000017086_12	Pictures 361 argillite & hornblende & quartz & feldspar
20000017086_12	Pictures 362 green hornblende & argillite & stringers
20000017086_12	Pictures 363 felsic gneiss-schist of metasedimentary origine & p
20000017086_12	Pictures 364 greywacke
20000017086_12	Pictures 365 diorite & rust ball
20000017086_12	Pictures 366 Mineralized boulder
20000017086_12	Pictures 367 Mineralized greywacke boulder
20000017086_12	Pictures 368 Undifferentiated & yellow quartz
20000017086_12	Pictures 369 Polymictic conglomerates
20000017086_12	Pictures 370 conglomerates
20000017086_12	Pictures 371 porphyry & conglomerate & quartz
20000017086_12	Pictures 372 porphyry & conglomerate & contact & rusty vein
20000017086_12	Pictures 373 Porphyry
20000017086_12	Pictures 374 Porphyry
20000017086_12	Pictures 375 Undifferentiated
20000017086_12	Pictures 376 Undifferentiated contacting conglomerate
20000017086_12	Pictures 377 Massive feldspathic greywacke & mineral ball Pictures 278 Massive feldspathic greywacke
20000017086_12	Pictures 378 Massive feldspathic greywacke
20000017086_12	Pictures 379 Massive feldspathic greywacke

PDF File Name	Content
20000017086_12	Pictures 380 Massive feldspathic greywacke
20000017086_12	Pictures 381 Massive feldspathic greywacke
20000017086_12	Pictures 382 Conglomerates & quartz & Green Chlorite
20000017086_12	Pictures 383 felsic schists of metavolcanics & Green Chlorite
20000017086_12	Pictures 384 Green Chlorite & mega quartz
20000017086_12	Pictures 385 Massive feldspathic greywacke
20000017086_12	Pictures 386 Iron rich massive feldspathic greywacke
20000017086_12	Pictures 387 Massive feldspathic greywacke
20000017086_12	Pictures 388 Massive feldspathic greywacke
20000017086_12	Pictures 389 Mineralized greywacke boulder
20000017086_12	Pictures 390 Mineralized greywacke boulder
20000017086_12	Pictures 391 Greywacke & rust
20000017086_12	Pictures 392 Finely bedded argillite & fractured mud
20000017086_12	Pictures 393 Quartz boulder with pebbles in it
20000017086_12	Pictures 394 Finely bedded argillite
20000017086_12	Pictures 395 Large quartz in finely bedded argillite
20000017086_12	Pictures 396 finely bedded argillite & sediment pattern
20000017086_12	Pictures 397 argillite boulder with quartz
20000017086_12	Pictures 398 argillite boulder
Pictures 399 not provided	Pictures 399 not provided
20000017086_12	Pictures 400 hornblende & stringers
20000017086_12	Pictures 401 hornblende & stingers
20000017086_12	Pictures 402 hornblende & lots of quartz & stringers & chlorite
20000017086_12	Pictures 403 hornblende contact with greywacke & sheer zone
20000017086_12	Pictures 404 hornblende & stringers & quartz
20000017086_12	Pictures 405 hornblende & large rust spot
20000017086_12	Pictures 406 Massive feldspathic greywacke
20000017086_12	Pictures 407 Undifferentiated & greywacke
20000017086_12	Pictures 408 gabbro
20000017086_12	Pictures 409 gabbro

PDF File Name	Content
20000017086_13	Pictures 410 greywacke
20000017086_13	Pictures 411 greywacke
20000017086_13	Pictures 412 Greywacke
20000017086_13	Pictures 413 Greywacke
20000017086 13	Pictures 414 Greywacke
20000017086 13	Pictures 415 argillite & greywacke contact & conglomerates
20000017086_13	Pictures 416 undifferentiated & greywacke & quartz
20000017086_13	Pictures 417 Greywacke
20000017086_13	Pictures 418 Greywacke
20000017086_13	Pictures 419 greywacke & pink conglomerates
20000017086_13	Pictures 420 undifferentiated
20000017086_13	Pictures 421 Undifferentiated
20000017086_13	Pictures 422 Undifferentiated
20000017086_13	Pictures 423 Greywacke
20000017086_13	Pictures 424 Greywacke
20000017086_13	Pictures 425 Conglomerate
20000017086_13	Pictures 426 Undifferentiated and quartz
20000017086_13	Pictures 427 Undifferentiated & rust % mineral balls
20000017086_13	Pictures 428 large conglomerate of quartz monzonite
20000017086_13	Pictures 429 Greywacke
20000017086_13	Pictures 430 conglomerate
20000017086_13	Pictures 431 conglomerate
20000017086_13	Pictures 432 conglomerate
20000017086_13	Pictures 433 conglomerate & contact between argillite & greywack
20000017086_13	Pictures 434 greywacke
20000017086_13	Pictures 435 conglomerates
20000017086_13	Pictures 436 conglomerate & Intrusion & large quartz & water fun
20000017086_13	Pictures 437 conglomerate
20000017086_13	Pictures 438 conglomerate
20000017086_13	Pictures 439 Porphyry
20000017086_13	Pictures 440 Porphyry
20000017086_13	Pictures 441 Large Porphyry
20000017086_13	Pictures 442 Porphyry
20000017086_13	Pictures 443 Porphyry
20000017086_13	Pictures 444 Porphyry & rust
20000017086_13	Pictures 445 Porphyry
20000017086_13	Pictures 446 Porphyry
20000017086_13	Pictures 447 Porphyry & quartz
20000017086_13 20000017086_13	Pictures 448 Porphyry & Epidote & rust Pictures 449 Porphyry
2000001/080_13	rictures 443 ruipiiyiy

DDE Eila Nama	Contont
PDF File Name	Content Pictures 450 Large Porphyry
20000017086_13 20000017086 13	Pictures 451 Large Porphyry
20000017086_13	Pictures 452 Porphyry
20000017086_13	Pictures 453 Porphyry
20000017086_13	Pictures 454 Porphyry & xenoliths
20000017086_13	Pictures 455 Porphyry & xenoliths
20000017086_13	Pictures 456 Porphyry & xenolitis Pictures 456 Porphyry & contact with greywacke & stringers
20000017086_13	Pictures 457 Porphyry
20000017086_13	Pictures 458 Porphyry & quartz & epidote
20000017086 13	Pictures 459 Conglomerate & greywacke
20000017086_13	Pictures 460 greywacke & gabbro dike & stringers
20000017086_13	Pictures 461 Camp number 2
20000017086_13	Pictures 462 porphyry & yellow dike
20000017086 13	Pictures 463 Porphyry & rusted pyrite
20000017086 13	Pictures 464 hornblende & stringers & quartz & large rust spot &
20000017086 13	Pictures 465 hornblende
20000017086_13	Pictures 466 hornblende & rust & epidote & quartz & stringers
20000017086_13	Pictures 467 hornblende & rust & epidote & quartz & stringers
20000017086_13	Pictures 468 hornblende & quartz & stringers
20000017086_13	Pictures 469 hornblende & quartz & stringers
20000017086_13	Pictures 470 hornblende & quartz & epidote
20000017086_13	Pictures 471 hornblende & Sample 26 Boulder
20000017086_13	Pictures 472 hornblende & epidote & quartz & stringers & brown d
20000017086_13	Pictures 473 hornblende & quartz
20000017086_13	Pictures 474 conglomerates
20000017086_13	Pictures 475 conglomerates & granite contact & rust
20000017086_13	Pictures 476 conglomerates & rust
20000017086_13	Pictures 477 Conglomerate & contact & granite & hornblende & str
20000017086_13	Pictures 478 Diorite & pink dike & contact
20000017086_13	Pictures 479 hornblende & quartz - feldspar
20000017086_13	Pictures 480 Olivine diabase
Pictures 481 not provided	Pictures 481 not provided
20000017086_13	Pictures 482 Undifferentiated & greywacke & alteration & quartz
20000017086_13	Pictures 483 greywacke & Undifferentiated & quartz vein
20000017086_13	Pictures 484 hornblende & quartz & epidote
20000017086_13	Pictures 485 conglomerates & contact zone of porphyry
20000017086_13	Pictures 486 orange and white granite
20000017086_13	Pictures 487 granite & pegmatite
20000017086_13	Pictures 488 hornblende & black lines
20000017086_13	Pictures 489 hornblende & stringers & quartz

DDE Eila Nama	Contant
PDF File Name	Content Disturce 400 grouped & guartz with baselt
20000017086_14 20000017086_14	Pictures 490 greywacke & quartz with basalt Pictures 491 greywacke
20000017086_14	Pictures 491 greywacke & minerals
20000017086_14	Pictures 493 contact & porphyry fragments & quartz
20000017086_14	Pictures 494 greywacke
20000017086_14	Pictures 495 greywacke
20000017086_14	Pictures 496 greywacke
20000017086_14	Pictures 497 greywacke
20000017086 14	Pictures 498 greywacke
20000017086_14	Pictures 499 greywacke & conglomerate
20000017086 14	Pictures 500 greywacke and layers
20000017086 14	Pictures 501 greywacke and large dike
20000017086_14	Pictures 502 greywacke
20000017086 14	Pictures 503 Mega conglomerate
20000017086 14	Pictures 504 Mega conglomerate & quartz
20000017086_14	Pictures 505 greywacke & altered white
20000017086_14	Pictures 506 greywacke
20000017086_14	Pictures 507 greywacke
20000017086_14	Pictures 508 greywacke
20000017086_14	Pictures 509 Heavy rust in gravel
20000017086_14	Pictures 510 Basalt with orange spots
20000017086_14	Pictures 511 Basalt with orange spots
20000017086_14	Pictures 512 Basalt & orange spots & Quartz
20000017086_14	Pictures 513 Olivine diabase & rust
20000017086_14	Pictures 514 Olivine diabase
20000017086_14	Pictures 515 Olivine diabase & orange stringers
20000017086_14	Pictures 516 Greywacke
20000017086_14	Pictures 517 Mega conglomerate & orange spots
20000017086_14	Pictures 518 greywacke & massive orange spots
20000017086_14	Pictures 519 greywacke & arkose & orange spots
20000017086_14	Pictures 520 quartz & arkose & orange spots
20000017086_14	Pictures 521 quartz & stringers & greywacke
20000017086_14	Pictures 522 quartz & stringers & greywacke
20000017086_14	Pictures 523 hornblende & stringers & magmatic enclaves
20000017086_14	Pictures 524 hornblende & biotite chlorite schist & minerals
20000017086_14	Pictures 525 hornblende
20000017086_14	Pictures 526 hornblende
20000017086_14	Pictures 527 hornblende & quartz & volcanic breccia
20000017086_14	Pictures 528 hornblende & stringers & volcanic breccia
20000017086_14	Pictures 529 hornblende & quartz

PDF File Name	Content
20000017086 14	Pictures 530 hornblende & quartz
20000017086 14	Pictures 531 hornblende & quartz & stringers
20000017086 14	Pictures 532 hornblende & quartz in fragment & Breccia
20000017086 14	Pictures 533 hornblende & quartz & Breccia
20000017086 14	Pictures 534 hornblende & Stringers in hornblende & Breccia & co
20000017086_14	Pictures 535 Epidote Pyrite conglomerate & Sample 23
20000017086 14	Pictures 536 Greywacke
20000017086 14	Pictures 537 Greywacke
	Pictures 538 Conglomerates & quartz
20000017086_14	Pictures 539 Greywacke
20000017086_14	Pictures 540 Conglomerate & quartz
20000017086_14	Pictures 541 Fault line & mostly white quartz
20000017086_14	Pictures 542 Fault line & greywacke
20000017086_14	Pictures 543 White dike & greywacke & rust
20000017086_14	Pictures 544 Greywacke
20000017086_14	Pictures 545 Greywacke
20000017086_14	Pictures 546 Greywacke & altered zone
20000017086_14	Pictures 547 Greywacke
20000017086_14	Pictures 548 Greywacke
20000017086_14	Pictures 549 Greywacke & Chlorite vein & Conglomerate
20000017086_14	Pictures 550 Greywacke
20000017086_14	Pictures 551 Conglomerate & contact zone
20000017086_14	Pictures 552 Conglomerate
20000017086_14	Pictures 553 Conglomerate
20000017086_14	Pictures 554 greywacke & quartz
20000017086_14	Pictures 555 greywacke & orange and purple quartz
20000017086_14	Pictures 556 Mega conglomerates
20000017086_14	Pictures 557 Greywacke & sheer zone & stringers
20000017086_14	Pictures 558 Greywacke & rust balls
20000017086_14	Pictures 559 Greywacke & rust balls

PDF File Name	Content
20000017086_15	Pictures 560 Quartz & stringers & epidote
20000017086_15	Pictures 561 Greywacke & quartz
20000017086_15	Pictures 562 Greywacke & pink feldspar - quartz veins
20000017086_15	Pictures 563 Greywacke
20000017086_15	Pictures 564 Greywacke & sounds like a bell
20000017086 15	Pictures 565 grano-diorite & metallic minerals & slate
20000017086_15	Pictures 566 greenish grano-diorite & quartz
20000017086_15	Pictures 567 White-yellow-orange-red quartz
20000017086 15	Pictures 568 Grano-diorite & Breccia & Quartz & hornblende
20000017086_15	Pictures 569 Diorite & stringers
20000017086 15	Pictures 570 Hornblende & stringers
20000017086 15	Pictures 571 Grano-diorite & hornblende & quartz monzonite & epi
20000017086 15	Pictures 572 Diorite
20000017086 15	Pictures 573 Diorite & quartz & epidote & mafic metavolcanics
20000017086_15	Pictures 574 Diorite & mafic metavolcanics
20000017086 15	Pictures 575 Diorite
20000017086_15	Pictures 576 grano-diorite & hematite & minerals
20000017086 15	Pictures 577 Quartz & grano-diorite & epidote & feldspar
20000017086_15	Pictures 578 diorite & rust & feldspar & mafic metavolcanics
20000017086 15	Pictures 579 Greywacke
20000017086_15	Pictures 580 Greywacke
20000017086 15	Pictures 581 Argillite & elongated shapes
20000017086 15	Pictures 582 Conglomerate
20000017086_15	Pictures 583 Quartz & sill & mega conglomerate
20000017086_15	Pictures 584 conglomerate & quartz
20000017086_15	Pictures 585 conglomerate & quartz & stringers & Breccia
20000017086_15	Pictures 586 Breccia
20000017086_15	Pictures 587 Greywacke
20000017086_15	Pictures 588 Conglomerate & clear water
20000017086_15	Pictures 589 Potassium feldspar & quartz & Argillite
20000017086_15	Pictures 590 Granite & Quartz
20000017086_15	Pictures 591 Porphyry
20000017086_15	Pictures 592 Porphyry
20000017086_15	Pictures 593 Quartz & Granite
20000017086_15	Pictures 594 Undifferentiated
20000017086_15	Pictures 595 Greywacke & Conglomerate & maybe green chorite
20000017086_15	Pictures 596 Porphyry & rusted rockface
20000017086_15	Pictures 597 Greywacke
20000017086_15	Pictures 598 Greywacke
20000017086_15	Pictures 599 Argillite & granite

PDF File Name	Content
20000017086 15	Pictures 600 Argillite & quartz
20000017086_15	Pictures 601 Greywacke
20000017086_15	Pictures 602 Greywacke & Undifferentiated
20000017086_15	Pictures 603 Conglomerate
20000017086_15	Pictures 604 Greywacke
20000017086_15	Pictures 605 Hornblende & stringers & conglomerates & contact
20000017086_15	Pictures 606 Conglomerates and black sediments shapes
20000017086_15	Pictures 607 Conglomerates & Quartz
20000017086_15	Pictures 608 Conglomerates & rust
20000017086_15	Pictures 609 Hornblende & stringers
20000017086_15	Pictures 610 Hornblende & stringers
20000017086_15	Pictures 611 Hornblende & stringers
20000017086_15	Pictures 612 Quartz monzonite & conglomerate & mineral ball & ep
20000017086_15	Pictures 613 Hornblende & rusted stringer
20000017086_15	Pictures 614 Hornblende & sheer zone
20000017086_15	Pictures 615 mega conglomerate
20000017086_15	Pictures 616 mega conglomerate
20000017086_15	Pictures 617 Hornblende & rust
20000017086_15	Pictures 618 Hornblende & Sample 25 & Excavated
20000017086_15	Pictures 619 Granite
20000017086_15	Pictures 620 Hornblende & stringers & quartz
20000017086_15	Pictures 621 Hornblende & stringers & Excavated
20000017086_15	Pictures 622 Porphyry & epidote & contact
20000017086_15	Pictures 623 Quartz Monzonite & greywacke
20000017086_15	Pictures 624 Greywacke & porphyry
20000017086_15	Pictures 625 Quartz monzonite & rust & Excavated x 2
20000017086_15	Pictures 626 Porphyry & Large crystals
20000017086_15	Pictures 627 Metavolcanics & metasedimentary & Quartz
20000017086_15	Pictures 628 hornblende & stringers & minerals in quartz
20000017086_15	Pictures 629 Diorite & Minerals in quartz

PDF File Name	Content
20000017086 16	Pictures 630 Hornblende & quartz & pink dike
20000017086_16	Pictures 631 Hornblende & stringers & epidote
20000017086_16	Pictures 632 Conglomerate
20000017086_16	Pictures 633 Mega conglomerate
20000017086_16	Pictures 634 Hornblende & stringers
20000017086 16	Pictures 635 Hornblende & stringers
20000017086_16	Pictures 636 Hornblende & stringers & rust
20000017086_16	Pictures 637 Hornblende & stringers & rust
20000017086_16	Pictures 638 Hornblende & stringers & rust
20000017086_16	Pictures 639 Gabbro & rust
20000017086_16	Pictures 640 Dark soft cut by knife
20000017086_16	Pictures 641 Diorite & dike & contact
20000017086_16	Pictures 642 Granite & Pegmatite
20000017086_16	Pictures 643 Conglomerate
20000017086_16	Pictures 644 Conglomerate
20000017086_16	Pictures 645 Greywacke & quartz
20000017086_16	Pictures 646 Schist & gneiss & conglomerate & quartz
20000017086_16	Pictures 647 Greywacke & quartz
20000017086_16	Pictures 648 Conglomerate
20000017086_16	Pictures 649 Greywacke & Grey vein
20000017086_16	Pictures 650 Diorite & small rusted vein
20000017086_16	Pictures 651 Diorite & rusted vein & stringers
20000017086_16	Pictures 652 Hornblende & Samples 27 - 28
20000017086_16	Pictures 653 Hornblende
20000017086_16	Pictures 654 Undifferentiated & Conglomerate
20000017086_16	Pictures 655 Undifferentiated
20000017086_16	Pictures 656 Undifferentiated
20000017086_16	Pictures 657 Undifferentiated & Quartz & feldspar
20000017086_16	Pictures 658 Undifferentiated & alteration Pictures 659 Undifferentiated
20000017086_16	
20000017086_16 20000017086_16	Pictures 660 Mega conglomerate & precipitate
20000017086_16	Pictures 661 Greywacke Pictures 662 Mega conglomerate
20000017086_16	Pictures 663 greywacke & quartz intrusion
20000017086_16	Pictures 664 Pink granite
20000017086_16	Pictures 665 Quartz & quartz monzonite
20000017086_16	Pictures 666 Granite
20000017086_16	Pictures 667 Hornblende contact with pink granite & stringers
20000017086_16	Pictures 668 Granite & quartz & rust
20000017086_16	Pictures 669 Granite & quartz
======================================	

DDE Eila Nama	Contont
PDF File Name	Content Dictures 670 Quartz manzanita & quartz
20000017086_16 20000017086 16	Pictures 670 Quartz monzonite & quartz Pictures 671 Granite & quartz & rust
_	Pictures 671 Granite & quartz & rust
20000017086_16	Pictures 672 Granite & black stringers & quartz
20000017086_16	
20000017086_16	Pictures 674 Granite
20000017086_16	Pictures 675 Greywacke & quartz
20000017086_16	Pictures 676 Greywacke
20000017086_16	Pictures 677 Quartz monzonite & rust
20000017086_16	Pictures 678 Hornblende & quartz & stringers & epidote Pictures 679 Quartz monzonite
20000017086_16	•
20000017086_16	Pictures 680 Flaky agilllite & quartz monzonite
20000017086_16	Pictures 681 quartz monzonite & stringers Pictures 682 Diorite
20000017086_16 20000017086 16	Pictures 683 not provided
_	,
20000017086_16 20000017086_16	Pictures 684 Greywacke & mineralization Pictures 685 Breccia & argillite & Lot of quartz
20000017086_16	Pictures 686 Quartz diabase (Nippissing type)
_	
20000017086_16 20000017086_16	Pictures 687 Quartz diabase (Nippissing type) & quartz Pictures 688 Conglomerate & Samples 33 - 34
20000017086_16	
20000017086_16	Pictures 689 Banded gneiss & Pyrite & Sample 35 Pictures 690 metavolcanic boulder & rust & Stringers & Epidote &
20000017086_16	Pictures 691 Conglomerate & stringers & sample 31
20000017086_16	Pictures 692 Conglomerate & stringers & Sample 51
20000017086_16	Pictures 693 Red and white quart stringers & Sample 30
20000017086_16	Pictures 694 stringers & gabbro & sample 48
20000017086_16	Pictures 695 Hornblende & stringers & quartz & sample 47
20000017086 16	Pictures 696 Hornblende & tectonic lineation & sample 46
20000017086_16	Pictures 697 Porphyry & Conglomerate & Sample 45
20000017086 16	Pictures 698 hornblende & guartz
20000017086 16	Pictures 699 Gabbro & rust & Breccia or porphyry
20000017086_16	Pictures 700 Conglomerate
20000017086 16	Pictures 701 Greywacke
20000017086 16	Pictures 702 Greywacke & sample 44
20000017086_16	Pictures 703 Conglomerate & gneiss & sample 42
20000017086 16	Pictures 704 Hornblende & Samples 39-41-43
20000017086 16	Pictures 705 Hornblende & rust & Sample 36
20000017086_16	Pictures 706 Hornblende & rust & Sample 37-38
20000017086_16	Pictures 707 Hornblende & rust & Sample 49
20000017086_16	Pictures 708 Hornblende & Sample 50
20000017086_16	Pictures 709 Porphyry & Conglomerate
_	• • • •

DDF Ella Nama	Contract
PDF File Name	<u>Content</u>
20000017086_17	Pictures 710 Hornblende & stringers & Sample 52
20000017086_17	Pictures 711 Hornblende & stringers & Sample 53
20000017086_17	Pictures 712 Hornblende & stringers & Sample 64-65-66
20000017086_17	Pictures 713 Hornblende & stringers & Epidote & Sample 55
20000017086_17	Pictures 714 Hornblende & stringers & Sample 57-58
20000017086_17	Pictures 715 Diorite
20000017086_17	Pictures 716 Diorite & Sample 59 - 60
20000017086_17	Pictures 717 Diorite & Sample 61
20000017086_17	Pictures 718 Greywacke & Stringers
20000017086_17	Pictures 719 Greywacke & Sample 62
20000017086_17	Pictures 720 Biotite schist & high sulfide & Quartz & Excavation
20000017086_17	Pictures 721 River bed boulders
20000017086_17	Pictures 722 Footwall Breccea
20000017086_17	Pictures 723 Quartz diabase
20000017086_17	Pictures 724 Quartz Diabase & contact & argillite & Large faults
20000017086_17	Pictures 725 Greywacke
20000017086_17	Pictures 726 Quartz & quartz diabase
20000017086_17	Pictures 727 Quartz & contact & greywacke & quartz diabase
20000017086_17	Pictures 728 Excavated & mineralization & greywacke & orange qua
20000017086_17	Pictures 729 Orange diabase & Mineralization & Quartz & Samples
20000017086_17	Pictures 730 Greywacke
20000017086_17	Pictures 731 Undifferentiated & mineral balls & Sample 69
20000017086_17	Pictures 732 Greywacke & Quartz & Sample 70
20000017086_17	Pictures 733 quartz
20000017086_17	Pictures 734 Greywacke
20000017086_17	Pictures 735 Hornblende & stringers
20000017086_17	Pictures 736 Hornblende & precipitate
20000017086_17	Pictures 737 Hornblende & precipitate & greywacke & Quartz dike
20000017086_17	Pictures 738 Greywacke
20000017086_17	Pictures 739 Greywacke
20000017086_17	Pictures 740 Breccia & quartz
20000017086_17	Pictures 741 Greywacke
20000017086_17	Pictures 742 Greywacke & precipitate
20000017086_17	Pictures 743 Granite
20000017086_17	Pictures 744 Argillite & Greywacke & rust & orange staining
20000017086_17	Pictures 745 footwall & Greywacke & rust & orange staining & pre
20000017086_17	Pictures 746 Diorite & dike & contact
20000017086_17	Pictures 747 Diorite
20000017086_17	Pictures 748 Hornblende & stringers & Excavated & samples
20000017086_17	Pictures 749 Hornblende & Sample 71

PDF File Name	Content
20000017086 17	Pictures 750 Pink granite & quartz
20000017086_17	Pictures 751 Pink granite & quartz
20000017086 17	Pictures 752 Undifferentiated & Sample 72
20000017086_17	Pictures 753 Greywacke & Sample 73
20000017086 17	Pictures 754 Mineralized stringer & diorite & Sample 74 - 75
20000017086 17	Pictures 755 Gabbro & stringers & Sample 76
20000017086_17	Pictures 756 Gabbro & Sample 77
20000017086 17	Pictures 757 Gabbro like & Sample 78
20000017086_17	Pictures 758 Gabbro like & Sample 79
20000017086 17	Pictures 759 not provided
	Pictures 760 Gabbro & Mineralization & Sample 80
20000017086_17	Pictures 761 Greywacke & Sample 81
20000017086_17	Pictures 762 Undifferentiated & mineral balls & Sample 82
20000017086_17	Pictures 763 Conglomerate
20000017086_17	Pictures 764 Conglomerate & stringers
20000017086_17	Pictures 765 Conglomerate
20000017086_17	Pictures 766 Conglomerate
20000017086_17	Pictures 767 Conglomerate & stringers
20000017086_17	Pictures 768 Quartz diabase, high magnetic
20000017086_17	Pictures 769 Quartz diabase
20000017086_17	Pictures 770 Quartz diabase & greywacke & quartz
20000017086_17	Pictures 771 Greywacke
20000017086_17	Pictures 772 Metasediments & Calcite & Sample 83
20000017086_17	Pictures 773 Metasediments & Calcite & Sample 84
20000017086_17	Pictures 774 Metasediments & Calcite & Sample 85
20000017086_17	Pictures 775 Green chlorite & stringers & sedimentary
20000017086_17	Pictures 776 Green chlorite & Quartz
20000017086_17	Pictures 777 Green chlorite & Quartz & Conglomerate
20000017086_17	Pictures 778 Green chlorite & conglomerate & quartz
20000017086_17	Pictures 779 Granite & granodiorite & contact zone
20000017086_17	Pictures 780 Granite dike & diorite
20000017086_17	Pictures 781 Epidote & granite
20000017086_17	Pictures 782 Argillite & Greywacke & hornblende & Quartz & Sampl
20000017086_17	Pictures 783 Green gabbro & Sample 87
20000017086_17	Pictures 784 Gabbro & Rusted quartz & mineralization & Sample 88
20000017086_17	Pictures 785 Mineralization & greywacke & Sample 89
20000017086_17	Pictures 786 Conglomerate boulder
20000017086_17	Pictures 787 Greywacke & Magnetic
20000017086_17	Pictures 788 Undifferentiated & schist
20000017086_17	Pictures 789 Greywacke & Sample 90

PDF File Name	Content
20000017086 17	Pictures 790 Undifferentiated
20000017086_17	Pictures 790 Onumerentiated Pictures 791 Hornblende & Samples 94 - 95
20000017086_17	Pictures 792 Hornblende & Samples 96 - 97
20000017086_17	Pictures 793 Hornblende & Sample 98
20000017086_17	Pictures 794 Hornblende & Sample 99
20000017086_17	Pictures 795 Hornblende & Sample 100-101-102
20000017086 17	Pictures 796 Hornblende & Sample 103 - 104
20000017086_17	Pictures 797 Hornblende & high gold & Sample 105
20000017086 17	Pictures 798 Hornblende & Sample 106
20000017086 17	Pictures 799 Hornblende & Sample 107 - 108
20000017086 17	Pictures 800 Hornblende & Sample 109
20000017086 17	Pictures 801 Hornblende & Sample 110
20000017086_17	Pictures 802 Hornblende & Sample 111 - 112
20000017086 17	Pictures 803 Conglomerate & Sample 113
	Pictures 804 quartz sill & argillite
20000017086_17	Pictures 805 Diorite & grano diorite
20000017086_17	Pictures 806 Epidote & argillite & contact & quartz monzonite
20000017086_17	Pictures 807 Conglomerate & stringers
20000017086_17	Pictures 808 Contact zone & quartz monzonite & greywacke
20000017086_17	Pictures 809 Quartz dike & greywacke
20000017086_17	Pictures 810 Undifferentiated & Stringers
20000017086_17	Pictures 811 Conglomerate & quartz & Green chlorite
20000017086_17	Pictures 812 Green chlorite & conglomerate
20000017086_17	Pictures 813 Breccia
20000017086_17	Pictures 814 Breccia (Bad location)
20000017086_17	Pictures 815 Quartz & pink granite
20000017086_17	Pictures 816 Quartz & quartz monzonite (Bad location)
20000017086_17	Pictures 817 Conglomerate (Bad location)
20000017086_17	Pictures 818 Conglomerate & Green Chlorite & Rust & Quartz
20000017086_17	Pictures 819 Conglomerate & Sample 114
20000017086_17	Pictures 820 Mineralized stringer & undifferentiated & Sample 11
20000017086_17	Pictures 821 Conglomerates & quartz & green black chlorite
20000017086_17	Pictures 822 Conglomerates & quartz & Sample 116
20000017086_17	Pictures 823 Hornblende & Samples 117-118-119
20000017086_17	Pictures 824 Hornblende & Samples 120
20000017086_17	Pictures 825 Hornblende & Samples 121
20000017086_17	Pictures 826 Hornblende & Samples 122
20000017086_17	Pictures 827 Conglomerate & Undifferentiated & Minerals & Sample
20000017086_17	Pictures 828 Conglomerate & greywacke & Sample 124
20000017086_17	Pictures 829 Conglomerate & Sample 125 - 126

PDF File Name	Content
20000017086 17	Content Pictures 830 Conglomerate & quartz & Sample 127 - 128
20000017086_17	Pictures 831 Breccea & Sudbury Breccea & Greywacke & Sample 129
20000017086_17	Pictures 832 Conglomerates & Quartz & Sample 130 - 131
20000017086_17	Pictures 833 Conglomerate & quartz & minerals & Sample 132
20000017086 17	Pictures 834 Conglomerate
20000017086_17	Pictures 835 Conglomerate & Undifferentiated
20000017086_17	Pictures 836 Gabbro & minerilized stringer & green chlorite & Sa
20000017086 17	Pictures 837 Gabbro & green chlorite & mineralization & Samples
20000017086 17	Pictures 838 Gabbro & Green chlorite & quarts & Samples 136 - 13
20000017086_17	Pictures 839 Hornblende & green chlorite & stringers & Sample 13
20000017086_17	Pictures 840 Gabbro - green chlorite & quartz & mineralization &
20000017086 17	Pictures 841 Conglomerate & Mineralization & Samples 141 - 142 -
20000017086_17	Pictures 842 Epidote & minerals & Granite & Sample 144
20000017086 17	Pictures 843 Hornblende & Pyrite & Sample 145
20000017086 17	Pictures 844 Hornblende & stringers & Sample for polishing
20000017086 17	Pictures 845 Hornblende & Pyrite & Sample 146
20000017086 17	Pictures 846 Hornblende & Pyrite & Sample 147
20000017086 17	Pictures 847 Epidote & Sample 148
20000017086_17	Pictures 848 Diorite & mineralization & Sample 149
20000017086_17	Pictures 849 Diorite & mineralization & Sample 150
20000017086_17	Pictures 850 Pink dike & fractures & Sample 151
20000017086_17	Pictures 851 Granite & Sample 152
20000017086_17	Pictures 852 Granite & Sample 153
20000017086_17	Pictures 853 diorite & large white - pink quartz dike and veins
20000017086_17	Pictures 854 Diorite
20000017086_17	Pictures 855 Diorite & Sample 154
20000017086_17	Pictures 856 Granite & greywacke & Contact & Sample 155
20000017086_17	Pictures 857 Quartz sill & Granite & Gabbro & Sample 156
20000017086_17	Pictures 858 Pegmatitic diorite & Sample 157
20000017086_17	Pictures 859 Diorite & mineralization & Sample 158
20000017086_17	Pictures 860 Quartz & epidote & mineralization & Sample 159
20000017086_17	Pictures 861 Quartz & Hornblende & mineralization & Sample 160
20000017086_17	Pictures 862 Hornblende & Stringers & Sample 161
20000017086_17	Pictures 863 Hornblende & Sample 162
20000017086_17	Pictures 864 Hornblende & Sample 163
20000017086_17	Pictures 865 Hornblende & Sample 164
20000017086_17	Pictures 866 Greywacke & Sample 165
20000017086_17	Pictures 867 Greywacke & Epidote & Quartz & Sample 166
20000017086_17	Pictures 868 Greywacke & Epidote & Quartz & Sample 167
20000017086_17	Pictures 869 Greywacke & Epidote & Quartz & Sample 168

PDF File Name	Content
20000017086_17	Pictures 870 not provided
20000017086_17	Pictures 871 Footwall Breccia & acid test
20000017086_17	Pictures 872 Rock face & stringers & Metavolcanics
20000017086_17	Pictures 873 Positive test Calcite
20000017086_17	Pictures 874 Positive test Calcite
20000017086_17	Pictures 875 Positive test Calcite
20000017086_17	Pictures 876 Sample 169 Contact zone
20000017086_17	Pictures 877 Sample 170 60% - 40% C - 171 90% - 10 % C
20000017086_17	Pictures 878 Sample 172 50% - 50% C - 173 50% - 50% C
20000017086_17	Pictures 879 Samples 174 - 175 - 176 - 177
20000017086_17	Pictures 880 sample 178
20000017086_17	Pictures 881 Sample 179