

We are committed to providing <u>accessible customer service</u>. If you need accessible formats or communications supports, please <u>contact us</u>.

Nous tenons à améliorer <u>l'accessibilité des services à la clientèle</u>. Si vous avez besoin de formats accessibles ou d'aide à la communication, veuillez <u>nous contacter</u>.

2017 Aquatic Baseline Study Inventus Mining Corporation Pardo Gold Project

FINAL REPORT May 4, 2018 DST File No.: TS-NO-030045

Prepared for:

INVENTUS

Inventus Mining Corporation 82 Richmond Street East, Suite 1 Toronto, Ontario, M5C 1P1

Prepared by:

DST Consulting Engineers Inc. 885 Regent Street, Suite 3-1B, Sudbury, Ontario, P3E 5M4 Tel: (705) 523-6680 Fax: (705) 523-6690 Email: <u>sudbury@dstgroup.com</u>

Distribution:

Inventus Mining Corporation.	one electronic copy, one hard copy
DST Consulting Engineers Inc.	one electronic copy

TABLE OF CONTENTS

Table o	of Contents.		i
List of	Figures		
List of	Tables		
List of	Appendices		
1	Introductior		1
	1.1	Environmental Setting	2
	1.2	Aquatic Baseline Study Area	2
2	Field Activit	es and Methodologies	3
	2.1	Literature Review	3
	2.2	Field Activities	3
	2.3	Surface Water Sampling Methodology	4
	2.4	Sediment Sampling Methodology	5
	2.5	Benthic Invertebrate Sampling	5
	2.6	Fish Habitat and Community Surveys	6
	2.7	Quality Assurance/Quality Control	7
3	Results		8
	3.1	Waterbody Characteristics	
		3.1.1 Unnamed Pond 3.1.2 McNish Lake and unnamed "gooseneck" la	
		3.1.2 Michish Lake and unnamed gooseneck la 3.1.3 Tee Lake	
	3.2	Surface Water Quality	
		3.2.1 Surface Water Field Measurements	
		3.2.2 Analytical Results3.2.3 Quality Assurance and Quality Control Res	
	3.3	Sediment Quality	
		3.3.1 Sediment Analytical Results	
		3.3.2 Quality Assurance and Quality Control	
	3.4	Fish Habitat and Community 3.4.1 McNish Lake	
		3.4.2 Tee Lake	
4	Discussion		20
	4.1	Surface Water Quality	
	4.2	Sediment Quality	21
	4.3	Fish Habitat and Community	21

LIST OF FIGURES

- **Figure 1** Project Location
- Figure 2 Site plan showing drainage basin
- Figure 3 Surface water and sediment sampling locations
- Figure 4 Gill net and angling locations McNish Lake
- **Figure 5** Gill net and angling locations Tee Lake

LIST OF TABLES

- Table 1 Surface Water and Sediment Field Parameters
- Table 2 Surface Water Analytical Results
- Table 3 Surface Water QA/QC
- Table 4 Sediment Analytical Results
- Table 5 Sediment QA/QC
- Table 6 Catch Per Unit Effort Summary
- Table 7 Fish Tissue Metal Analytical Results

LIST OF APPENDICES

- **Appendix A** Site Photographs
- Appendix B Scientific Collectors Permit
- Appendix B Laboratory Certificates of Analysis

1 INTRODUCTION

DST Consulting Engineers Inc. (DST) was retained by Inventus Mining Corporation (Inventus; also referred to as 'the Client') to conduct environmental baseline studies at the Pardo Gold Project, located approximately 65 km northeast of Sudbury and 25 km north-northwest of River Valley, Ontario. The Project location is shown in Figure 1.

Inventus is currently exploring the Pardo Gold Project and is proposing to proceed to advanced exploration with the extraction of a bulk sample from a paleo-placer gold deposit hosted in conglomerate rocks of the Huronian Supergroup. An area including approximately three proposed bulk sample sites has been identified as the likely project area for the advanced exploration project. The centroid of the approximate Project area is shown in Figure 2.

In anticipation of the advanced exploration project, environmental baseline studies have been completed by DST to describe the current environmental conditions at the proposed Project and surrounding area. The environmental baseline studies completed in 2017 include the following components, provided as separate reports:

- 1) Physical Environment Baseline Study
 - Geochemistry for acid rock drainage and metal leaching prediction
 - Hydrogeology
 - Hydrology
- 2) Aquatic Environment Baseline Study
 - Surface Water Quality
 - Sediment Quality
 - Benthic Invertebrate Community
 - Fish Habitat and Community
- 3) Terrestrial Environment Baseline Study
 - Vegetation and Soils
 - Species at Risk
 - Wildlife (including mammals, avifauna, bats and herpetofauna).

The following report provides the results of the 2017 aquatic baseline study with respect to surface water and sediment quality, fish habitat and community, and fish muscle metals concentrations prior to project development.

1.1 Environmental Setting

The Pardo Gold Project is situated on the Precambrian Shield at an elevation of approximately 300 to 330 metres above sea level. The topography is generally rugged with modest topographic relief. The Project is located in the Lake Temagami Ecoregion (Ecoregion 4E), within the Great Lakes-St. Lawrence Forest Region and south of the divide between the Hudson Bay and Great Lakes Watersheds (*Crins et al.* 2009). The ecoregion is described as the Humid Low Boreal Ecoclimatic Region, with its boundaries largely delineated based on characteristic climatic variables (Ecoregion Working Group 1989). Within the Ecoregion 4E the terrestrial baseline study area can be found along the southern boundary of the Temagami Forest section (i.e. 4E-4).

The area is undeveloped, with forested areas comprised of mostly white pine (*Pinus strobus*), white birch (*Betula papyrifera*) and red maple (*Acer rubrum*). The groundcover includes a variety of shrub species, dominated by bracken fern (*Pteridium aquilinum var. latiusculum*), balsam fir (*Abies balsamea*), and mountain maple (*Acer spicatum*). Vegetation in the Project area reflects a history of forestry operations, and the recent exploration activities on the property.

1.2 Aquatic Baseline Study Area

Although no permanent natural waterbodies are located within the immediate area of the proposed advanced exploration project, baseline studies of the lakes and streams located downgradient of the project area were investigated to provide documentation of their current conditions. The Pardo Gold Project is located in the vicinity of a local drainage divide, with runoff from the Project expected to flow south into a low-lying area that drains southward approximately 2.5 km into Tee Lake, or west approximately 1.5 into the south-flowing McNish Creek system. The study area was therefore defined by four natural waterbodies from the two local drainage basins, including an "Unnamed Pond" and the downgradient Tee Lake, an unnamed "gooseneck"-shaped lake north of McNish Lake, and McNish Lake. The regional drainage of all waterbodies in the current investigation flow southwards towards Lake Nipissing. The location of each of these waterbodies and corresponding local drainage basins are illustrated in Figure 2.

2 ACTIVITIES AND METHODOLOGIES

The activities and the associated methodologies to complete the 2017 aquatic baseline study are presented in the following subsections.

2.1 Literature Review

Prior to the commencement of the field aquatic studies, DST completed a literature review of various information sources for the water bodies within the Pardo Project surrounding area. The literature review was used to aid in the selection of sampling areas, to identify aquatic species, including Species at Risk (SAR), and to identify potential fish habitat. Resources consulted included the following:

- Fisheries and Oceans Canada (DFO) Aquatic Species at Risk Map (online)
- Ontario Ministry of Natural Resources and Forestry (MNRF) Natural Heritage Information Centre (NHIC) online database
- MNRF Fish ON-line
- Land Information Ontario Satellite Imagery

2.2 Field Activities

All field activities related to the aquatic baseline studies were completed by DST scientists accompanied by a representative of Inventus, Mr. Winston Whymark. The majority of the locations for the studies were accessed by boat, with the exception of the surface water and sediment sampling location at the Unnamed Pond which was accessed from the shoreline. Surface water and sediment sampling locations are illustrated in Figure 3.

Two surface water sampling events were completed, including one during mid-summer, completed on August 16, 2017, and the second during the fall, completed on October 20, 2017. Sediment sampling was completed at the same locations as surface water samples during the fall sampling event. The weather conditions at the time of the surface water and sediment sampling event were clear and sunny, with daytime temperatures of approximately 19 to 22 °C.

Fish community and habitat surveys were completed over two days from August 30 to 31, 2017. The weather conditions at the time of the survey was clear to rainy, with daytime temperatures of 14 to 22 °C.

Photographs taken at the time of the field studies are provided in Appendix A.

2.3 Surface Water Sampling Methodology

Surface water quality samples were collected in the summer and fall from two locations in the northern bays of Tee Lake (SW3 and SW4), one location in the Unnamed Pond (SW1), and one location at the northern point of the unnamed "gooseneck" lake west of the Project location (SW2). The surface water sampling locations are illustrated in Figure 3.

Prior to sampling, new, disposable nitrile gloves were donned and field measurements were collected using a Hanna HI 98194 water quality meter. Parameters measured include pH, dissolved oxygen (DO), temperature, electric conductivity (EC) and oxidation reduction potential (ORP). Prior to field measurement collection, the instrument was rinsed with lake water to avoid cross-contamination between sites.

The surface water samples were collected from within 0.5 m below the water surface using a clean polyethylene bailer. The bailer was rinsed three times with water from the waterbody being sampled prior to collection, and the sample was transferred directly into laboratory supplied bottles. The approximate depth of the water column at each sampling location was measured with the aid of a measuring tape.

All surface water samples were stored and transported in ice packed coolers to maintain a temperature of less than 10°C and were submitted under chain of custody protocols to AGAT Laboratories (AGAT) for chemical analysis of general chemistry, nutrients and metals. Samples requiring filtration (i.e. aluminum and mercury) were collected as unpreserved samples and submitted to AGAT with the instruction for lab filtration followed by sample preservation. AGAT is ISO/IEC 17025 certified, and is accredited by the Standards Council of Canada and the Canadian Association for Laboratory Accreditation Inc. All samples were analyzed within a regular turnaround time. Analytical results were compared to the Ministry of the Environment and Energy (1999) document entitled *Water Management, Policies, Guidelines, Provincial Water Quality Objectives* (PWQO, 1994, reprinted 1999).

One blind field duplicate was collected during each sampling event for quality assurance/quality control (QA/QC) purposes. In addition, a blind field blank was included during the summer sampling event.

Page 4

Sediment samples were collected during the fall sampling event from the same locations as the surface water samples. The sediment sampling locations are illustrated in Figure 3.

All sediment samples were collected as composite samples from the upper 0.10 m of the waterbody bottom substrate using a Petite Ponar sampler. To acquire a representative sample, the ponar was allowed to drop to the bottom of the waterbody in three separate areas approximately 1 m apart. The subsamples were homogenized and the composite sample was subsequently transferred directly into a clean laboratory supplied jar. Each sample was stored and transported in an ice packed cooler and submitted under chain of custody protocols to AGAT for analysis of nutrients, metals and particle size distribution. One blind field duplicate was included for QA/QC purposes and all samples were analyzed within regular turnaround times. The sediment analytical results were compared to the Provincial Sediment Quality Guidelines (PSQG) Lowest Effect Level (LEL) and Severe Effect Level (SEL) identified in the MOE (2008) document *Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario*. A blind field duplicate was included for QA/QC purposes.

2.5 Benthic Invertebrate Sampling

Benthic invertebrate sampling was completed in the fall at the same locations as the surface water and sediment samples. Fall is the preferred season to collect benthic invertebrates, as many of the invertebrates are in adult stage and easier to identify.

Samples were collected as three composite samples using a Petite Ponar Sampler from the upper sediment layer, according to the protocols outlined in the Ontario Benthos Biomonitoring Network. The samples were combined to obtain an approximate 500 mL volume of sediment matrix, and placed into 1 L laboratory supplied containers to which ethanol supplied by the laboratory was added as a preservative. The samples were stored and transported in ice-packed coolers and maintained at approximately 4°C.

At the time of sampling, the DST field scientist suspected that an insufficient number of benthic invertebrates were being collected to warrant laboratory identification of the samples. Therefore, DST transported the samples to the DST Sudbury office for further inspection. For each sample, DST placed small subsamples of the sediment matrix onto glass plates, which were viewed using a light-transmitting microscope at up to 40x magnification. Of the multiple subsamples viewed, no

benthic invertebrate specimens were identified. It was therefore determined to not proceed with laboratory identification, and the samples were discarded. It is noted that although benthic invertebrates were not obtained during the 2017 field survey, benthic invertebrates are not necessarily absent from the waterbodies.

2.6 Fish Habitat and Community Surveys

The scope of the fish habitat and community surveys was intended to characterize potential fish habitat in the waterbodies downgradient of the Pardo Gold Project, and to provide baseline data on metal concentrations in fish tissue. The study design for fish tissue sampling targeted species that are sought after for recreational fishing purposes and did not include forage species at lower trophic levels or all species that may be present within the waterbody. The waterbodies selected for fish tissue sampling, Tee Lake and McNish Lake, were chosen based on their known fisheries resources and inferred use by local cottagers and users.

Prior to sampling, DST obtained a Scientific Collector's Permit (Licence No.:1087610) from the North Bay District MNRF to allow for the lethal collection of up to five fish from each of the two lakes. DST's Scientific Collector's Permit and catch report is provided in Appendix B. Fish were collected using a combination of gill nets (2", 3" and 4" mesh) and angling. The gill nets were allowed to fish for approximately one to two hours. The gill net and angling locations are illustrated in Figure 4 and Figure 5.

Upon collection, each fish was identified to the species level, and individuals were weighed using a handheld digital scale and measured (both fork length and total length). Relative condition was estimated for the individuals captured in each lake as the residuals of the *log mass x log length* relationship (Kauffman *et al.* 2007). This methodology provides a comparison of the observed mass of an individual relative to a predicted mass based on sample-specific mass-length regression (Kauffman *et al.* 2007). The slope of the mass x length relationship was further compared to the isometric growth value of b=3 (Rickers 1975; Edwards 1976). When the value of *b* is other than 3, weight increase is allometric (positive allometric if *b*>3; negative allometric if *b*<3).

Muscle tissue was removed from beneath the dorsal fin of each fish, and placed into a clean, labelled plastic bag for metals analysis. The tissue was maintained in ice packed coolers and transported frozen under chain of custody protocols to AGAT for chemical analysis of metals. Fish

tissue mercury concentrations were compared to the Canadian Council of Ministers of the Environment (CCME, 2000) *Canadian Tissue Residue Guidelines for the Protection of Wildlife Consumers of Aquatic Biota* and the MOECC fish consumption guideline limit for children and women of child-bearing age and for the general population.

Field surveys for fish habitat characterization were completed primarily by visual observation. Each lake was surveyed by boat with a particular focus on the littoral zone (shoreline) and areas that may represent important habitat for spawning, rearing, foraging, migrating or other uses. The substrate type, shoreline composition, vegetation type and other points of interest were noted.

2.7 Quality Assurance/Quality Control

DST maintains a standard Quality Assurance/Quality Control (QA/QC) program for all field programs. All project documentation was maintained and controlled under each specific work site and sampling area by the appointed site supervisor. All sampling was completed in accordance with industry standards, and applicable provincial standards/guidance. DST operates under Certificates of Authorization issued by the Professional Engineers of Ontario (PEO) and the Association of Professional Geoscientists of Ontario (APGO) and all work was carried out with due regard to PEO and APGO standards for professional practice.

Field QA/QC samples were included in this investigation for the surface water and sediment sampling, as detailed above. Field and laboratory QA/QC results are described in Section 6.7

3 RESULTS

The results of the aquatic baseline sampling program are summarized in the following section. Laboratory Certificates of Analysis for the analytical data is provided in Appendix C.

3.1 Waterbody Characteristics

The characteristics of each studied waterbody based on field observations and the literature review is summarized in the following subsections.

3.1.1 Unnamed Pond

The Unnamed Pond is a small waterbody located approximately 1 km south of the Pardo Gold Project. The pond drains into an unnamed creek that eventually flows into Tee Lake located approximately 1 km further south. The total surface area of the waterbody is estimated to be 6 ha in size. The north portion of the Unnamed Pond has characteristics typical of a bog with the surrounding ground cover dominated by *Sphagnum* spp., cotton grass (*Eriophorum vaginatum*), pitcher plants (*Sarracenia purpurea*), and tamarck (*Larix laricina*). Exposed bedrock outcrops were observed along the western shoreline and the substrate throughout was generally organic with an abundance of riparian vegetation. The vegetation surrounding this waterbody was dominated by coniferous tree species including black spruce (*Picea mariana*), red pine (*Pinus resinosa*), and white pine (*Pinus strobus*).

3.1.2 McNish Lake and unnamed "gooseneck" lake

McNish Lake and the unnamed "gooseneck" lake are located approximately 1.2 km southwest, and downgradient, of the Project. The vegetation surrounding these waterbodies is dominated by coniferous tree species including white pine and spruce (*Picea spp*).

The unnamed "gooseneck lake" is an approximately 17 ha waterbody connected to the north (upgradient) of McNish Lake by a 500-m creek. This waterbody is relatively shallow (approximately 2 metres deep) and has characteristics of a marsh habitat with a predominately organic substrate, an abundance of water lilies (*Nymphaea* spp), and riparian vegetation. The unnamed "gooseneck lake" drains southward into the deeper water of McNish Lake, which is inferred to be utilized by local cottagers and users for it's fisheries resources.

McNish Lake to the south is approximately 18 ha in size, with a maximum depth of 26 m (MNRF Fish ON-Line, 2015). Species that are known to be present in McNish Lake include smallmouth

bass (*Micropterus dolomieu*), white sucker (*Catostomus commersonii*), yellow perch (*Perca flavescens*) and northern pike (*Esox lucius*) (MNRF Fish ON-Line, 2015). Although these species may migrate to the shallow "gooseneck lake" connected to the north, the deeper water of McNish Lake is presumed to provide a greater diversity of habitats to support reproduction and nursery. The northern bay, which receives drainage from the unnamed "gooseneck" lake, was generally shallow with low shrub marsh areas, an abundance of riparian vegetation, and an organic substrate. The northern bay opens into deeper water with a rocky shoreline. Several fallen trees were observed along the McNish Lake shoreline during the 2017 field studies and are expected to provide cover for several fish species.

3.1.3 <u>Tee Lake</u>

Tee Lake is approximately 135 ha in size, and is located 1 km south of the Unnamed Pond and approximately 2.5 km south of the Pardo Gold Project. The lake has two northern bays – the northwestern bay receives drainage from the Unnamed Pond, and the northeastern bay receives drainage from a low-lying area of wetland and ponds that flows from the southeastern Project area. Tee Lake is utilized by local cottagers and users for its fisheries resources and is known to provide habitat to species such as pumpkinseed (*Lepomis gibbosus*), rock bass (*Ambloplites rupestris*), walleye (*Sander vitreus*), white sucker, yellow perch, and northern pike (MNRF 2015). Several other vertebrate classes were observed in this waterbody during the 2017 field studies including mammals (i.e. beaver, *Castor canadensis*), reptiles (i.e. snapping turtle, *Chelydra serpentina*), and amphibians (i.e. green frog, *Lithobates clamitans*). Bird species were observed adjacent to the waterbody including great-horned owl (*Bubo virginianus*), belted kingfisher (*Megaceryle alcyon*) and bald eagle (*Haliaeetus leucocephalus*). Two species observed, the bald eagle and snapping turtle, are currently listed as special concern under the Endangered Species Act, S.O. 2007, c.6 (ESA, 2007).

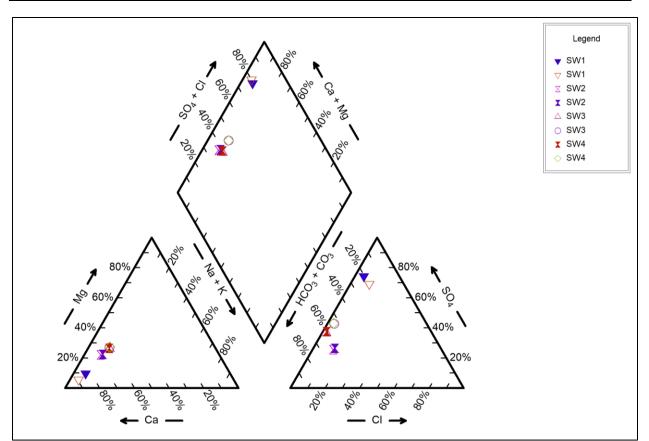
A diverse number of aquatic habitats were observed during the 2017 field investigations. This includes rocky shoals along the southern shoreline that are expected to provide spawning habitat to species such as walleye (described further in Section 3.4.2 below). The northwest bay is shallow (approximately 2 metres) and marshy with dark, organic substrate and an abundance of riparian vegetation. The northeast bay is deep (>20 metres) and predominately sandy. The vegetation surrounding this waterbody is dominated by coniferous species including white pine and spruce (*Picea spp*). Areas of exposed bedrock outcrops are evident along the shoreline, particularly surrounding the northwestern bay.

3.2 Surface Water Quality

3.2.1 Surface Water Field Measurements

Locations of all surface water samples collected are provided in Figure 3. The field parameter measurements from the 2017 surface water sampling events are summarized in Table 1.

The pH of the surface water samples was circumneutral ranging from 5.78 (SW3, August) to 8.13 (SW 3, October). Water temperature was similar across waterbodies, from 19.98 °C (SW2) to 22.12°C (SW1) in the summer and from 11.71 °C (SW2, SW4) to 12.24°C (SW3) in the fall. Conductivity was generally low, ranging from 14 μ S/cm (SW1, August) to 33 μ S/cm (SW2, October), suggesting that the waterbodies have low concentrations of dissolved solids. Dissolved oxygen ranged from 4.71 mg/L (SW1) to 6.68 mg/L (SW3) during the summer sampling event and from 2.72 mg/L (SW1) to 4.95 (SW2) during the fall sampling event.


3.2.2 Analytical Results

The analytical results from the surface water samples are provided in Table 2. The results for the unnamed 'gooseneck' lake and Tee Lake are characterized by circumneutral pH, low alkalinity, which indicates low buffering capacity, and water quality that meets the PWQO for all parameters analysed in 2017.

One sampling location at the Unnamed Pond, SW1 exhibited pH, aluminum, copper and vanadium concentrations in the surface water that do not meet the PWQO. These elevated parameter concentrations were observed during both the summer and fall sampling events. All other surface water samples exhibited parameter concentrations that met the PWQO.

The waterbodies were further characterized by plotting the major cation and anion concentrations on a Piper plot using the AqQA water quality software. The water chemistry in the Unnamed Pond (SW1) demonstrated calcium- sulphate type water. In contrast, the unnamed 'gooseneck lake' (SW2) and the northeastern bay (SW3) and northwestern bay of Tee Lake (SW4) are calciummagnesium-bicarbonate dominant. The Piper plot of the chemical data is provided below in Figure 3.1.

Figure 3.1. Piper diagram showing the general chemistry of the surface water samples collected at Unnamed Pond (SW1), the unnamed "gooseneck" lake (SW2), and the northwestern bay (SW3) and northeastern bay (SW4) of Tee Lake.

3.2.3 <u>Quality Assurance and Quality Control Results</u>

DST collected and submitted blind field duplicate samples (labelled SW-200 and SW-20) for laboratory analysis during each sampling event and one blind field blank during the summer sampling event. The surface water field duplicates during both sampling events were obtained from SW2.

Relative percent difference (RPD) calculations were completed to evaluate precisions of sampling and laboratory analyses using the following formula:

RPD= <u>(Sample Result – Duplicate Result) x 100</u> (Sample Result + Duplicate Result)/2 Relative percent differences are considered applicable when the concentration of the parent sample and its duplicate are both greater than five times the reportable detection limit (RDL) (Maxxam, 2012). Applicable RPDs between the samples and their duplicates for surface water were reviewed and compared to alert limits derived from Maxxam (2012) as summarized in Table 3 at the end of the report. All applicable RPDs were less than the alert limits derived from Maxxam (2012), indicating that there were no field QA/QC discrepancies that would materially affect the conclusions of the report.

All surface water samples were submitted using containers and preservation methods consistent with laboratory procedures and applicable regulations and guidelines. All samples were analyzed within the recommended hold times. Review of the laboratory quality data indicated that there were no laboratory quality issues that would materially affect the conclusions of the report.

3.3 Sediment Quality

Sediment samples were obtained from the same locations as the surface water samples during the fall 2017 sampling event. Sediment sampling locations are shown in Figure 3. At the Unnamed Pond, the northern portion of the unnamed "gooseneck" lake and the northwestern bay of Tee Lake, the sediment was observed to consist of dark brown, fine organics, while at the northeastern bay of Tee Lake the sediment was observed as fine to medium grained brown sand. A description of the sediment type at each sampling location, as observed in the field, is provided in Table 1.

3.3.1 Sediment Analytical Results

The collected sediment samples were submitted for laboratory analysis of metals, nutrients and particle size distribution. The sediment analytical results are provided in Table 4.

Laboratory results and visual observations support that the primary substrate in the Unnamed Pond (SW1), McNish Lake (SW2) and northwest bay of Tee Lake (SW4) is fine grained, with particles size characterized by silt, with minor clay. The particle size characterization for McNish Lake was completed for the duplicate sample as insufficient material was available from the parent sample. The substrate of the northeast bay of Tee Lake (SW3) had a different composition, made up of primarily fine to coarse sand. Lower total organic carbon values were observed in northeast bay of Tee Lake (SW3) compared to other three waterbodies. Total organic carbon (TOC) concentrations were above the PSQG LEL of 1% at SW3, and greater than the PSQG SEL of 10% at the three other sampling locations (SW1, SW2, SW4).

Several metals were found exhibit concentrations greater than the PSQG LEL and/or SEL in the samples collected at SED1, SED2 and SED4, where fine grained, organic substrates were present. These samples were found to have cadmium and copper in the sediment at concentrations greater than the PSQG LEL (with copper in the field duplicate sample SED-20 also greater than the PSQG SEL), and nickel at concentrations greater than the PSQG SEL. In addition, one or more sampling locations had sediment concentrations of arsenic, chromium, lead and manganese greater than the PSQG LEL.

At sampling location SED3 with the coarse-grained substrate, chromium is the only parameter that exhibited a concentration (34 μ g/g) greater than the LEL of 26 μ g/g.

3.3.2 Quality Assurance and Quality Control

DST collected and submitted one blind field duplicate sample (labelled SED-20) from SED2 as part of the QA/QC field program

Relative percent difference calculations were completed to evaluate precisions of sampling and laboratory analyses. Applicable RPDs between the samples and their duplicates for sediment were reviewed and compared to alert limits derived from Maxxam (2012) as summarized in Table 5 at the end of the report.

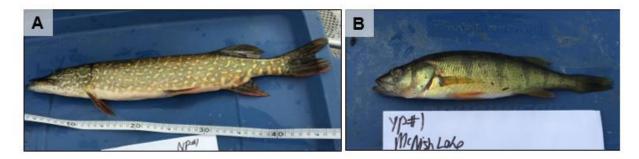
As shown in Table 5, the sulphate concentration in sediment sample SED-2 ($84 \mu g/g$) and its field duplicate SED-20 ($266 \mu g/g$), exhibited RPDs (104%) slightly greater than the alert limit of 100%. It is interpreted that the discrepancies are related to sample heterogeneity and therefore no field or laboratory quality issues are suspected. All other RPD calculations were within their respective alert criteria.

All sediment samples were submitted using containers and preservation methods consistent with laboratory procedures and applicable regulations and guidelines. All samples were analyzed within the recommended hold times.

Due to a high water-absorbing capacity of the sample the extraction for sulphate determination was prepared at 10:1 deionized water ratio (10 parts deionized water:1-part soil) instead of the routine 2:1 ratio. This would result in raised detection limits for this parameter. Elevated RDLs

indicate the degree of sample dilutions prior to the analysis to keep analytes within the calibration range, reduce matrix interferences and/or avoid contaminating the instrument. As all RDLS were less than the comparative criteria the discrepancy observed is not expected to materially affect the information presented in this study.

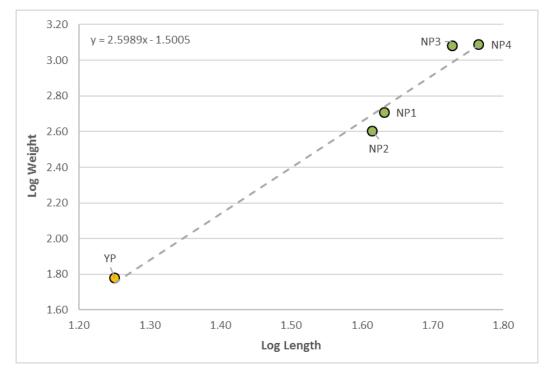
3.4 Fish Habitat and Community


Two waterbodies, McNish Lake and Tee Lake, were included in the fish habitat and community study due to their known fisheries resources and frequent use by local cottagers and users. Prior to the field surveys, DST completed a desktop review of information from various sources (listed in Section 2.1) to identify the potential presence or absence of aquatic species, SAR and/or their habitat. According to the DFO aquatic SAR map and the NHIC database, there are no known occurrences of aquatic SAR within 1km of the waterbodies. The waterbodies within the 2017 aquatic baseline study area are all located within MNRF Fisheries Management Zone 11 (MNRF Fish ON-Line, 2015).

3.4.1 <u>McNish Lake</u>

As described in Section 3.1.2, the fish species identified in McNish Lake during the desktop review are representative of a cool water species assemblage and include smallmouth bass, white sucker, yellow perch and northern pike. In addition, the MNRF has previously stocked yearling splake (*Salvelinus fontinalis* × *Salvelinus namaycush*) in this waterbody as recently as 2013 (MNRF Fish ON-Line, 2015).

Fisheries data was collected from this waterbody in shallow northern bays adjacent to local cottages. Three mesh gill nets were deployed at nearshore locations indicated in Figure 4, with a cumulative set time of 7.5 hours. No fish were produced from any of the three gill nets. Angling was completed simultaneously by use of two rods. A total of five individuals were captured by angling, including four northern pike and one yellow perch. Representative photographs of the species caught are illustrated below in Figure 3.1. The total catch per unit effort (CPUE) for both sampling methods is summarized in Table 6 at the end of this report.


Figure 3.1. Representative specimens of the fish species captured in McNish Lake, including *A*) Northern Pike (Esox lucius); and B) Yellow Perch (Perca flavescens). (August 31, 2017).

The field measured parameters for the individuals sampled are summarized in Table 3.1. The fork length of the northern pike individuals captured ranged from 41.2 cm to 58.2 cm, and the yellow perch had a fork length of 17.80cm.

	Fish ID	NP1	NP2	NP3	NP4	YP1	
	Species	Northern Pike				Yellow Perch	
	Date	31-Aug-17					
Parameter	Units						
Total Weight	grams	510	400	1,210	1,230	60	
Fork Length	cm	42.8	41.2	53.4	58.2	17.8	
Total Length	cm	44.9	42.0	59.1	61.4	18.6	

The slope of the *l*og mass and *log weight* relationship was lower (b = 2.599) than the isometric growth value (i.e. 3), suggesting that the individuals in this waterbody demonstrate allometric growth. Additional data would be required to understand species-specific growth and condition within the waterbody. The log mass and log weight relationship of the individuals captured is illustrated below in Figure 3.2.

Figure 3.2 – Log mass versus log length relationship of yellow perch (YP) and northern pike (NP) individuals captured from McNish Lake.

Dorsal epaxial muscle from each of the five individuals was submitted to AGAT for analysis of metals. Analytical results are provided in Table 7 at the end of this report. Mercury was measured at detectable concentrations from all five individuals, ranging from 0.04 μ g/g to 0.25 μ g/g in the northern pike and at 0.20 μ g/g in the yellow perch. These concentrations are greater than the CCME (2000) *Canadian Tissue Residue* guideline of 0.033 μ g/g, but lower than the MOECC *Fish Consumption Guideline* limit for children and women of child-bearing age (1.8 μ g/g) and the general population (0.5 μ g/g). Other metals of interest that are known to bioaccumulate in fish tissue included copper, manganese, and zinc (Authman *et al.* 2015). The concentrations were generally low and inferred to be indicative of baseline conditions.

3.4.2 <u>Tee Lake</u>

The fish species identified in Tee Lake during the desktop review are representative of a cool water species assemblage and include pumpkinseed, rock bass, smallmouth bass, walleye, white sucker, yellow perch, and northern pike (refer to Section 3.1.3). Potential walleye spawning habitat was identified during the 2017 field investigation along the south shore near the narrows where the lake drains into a small bay. The habitat was characterized by a rocky shoal extending

into deeper water. The locations of the angling activities and gill net locations Tee 2 and Tee 3 identified on Figure 5 are centred on this potential walleye spawning habitat.

Fisheries data from this waterbody was obtained from both nearshore and offshore locations. The eastern shoreline consists of boulders and rocky substrate, while low shrub marsh areas are concentrated to the western bay. Mesh gill nets were deployed at three nearshore locations, with a cumulative set time of 8.0 hours. Two of the locations successfully captured a total of four individuals, including two white suckers, one walleye, and one smallmouth bass. Angling was completed simultaneously by two rods, with four individuals captured including two pumpkinseeds and one smallmouth bass. The locations of the angling and gill netting efforts are shown in Figure 5. Representative specimens of the species of fish captured are illustrated below in Figure 3.3. The total CPUE for both methods is summarized in Table 1 at the end of this report.

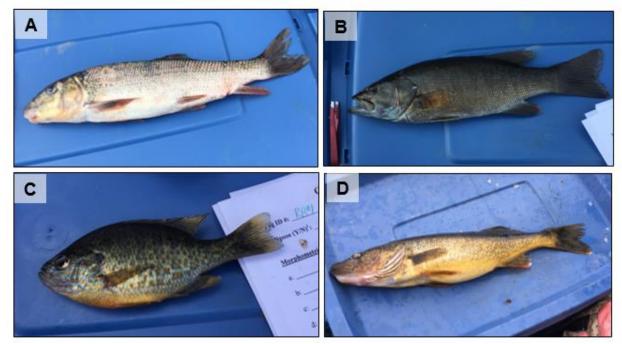
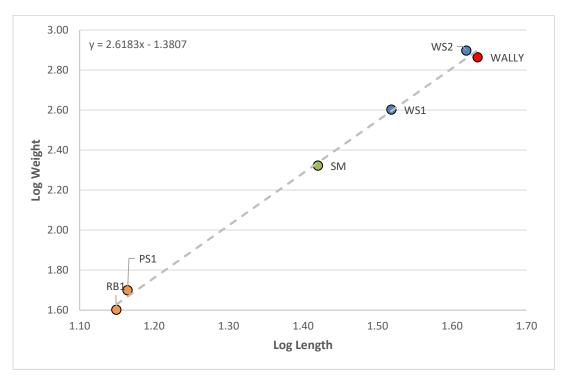


 Figure 3. 3 – Representative specimens of fish species captured in Tee Lake, including A) Common White Sucker (Catostomus commersonii); B) Smallmouth Bass (Micropterus dolomieu);
 C) Pumpkinseed (Lepomis gibbosus); and, D) Walleye (Sander vitreus) (August 30, 2017).


The field measured parameters for the individuals sampled are summarized below in Table 3.2. The largest individual captured was the walleye with a fork length of 43.10 cm and the smallest was the pumpkinseed with a fork length of 14.10 cm.

	Fish ID	WALLY	WS1	WS2	RB1	PS1	SM1
Species		Walleye	White Sucker		Pumpkinseed		Smallmouth Bass
	Date	30-Aug-17					
Parameter	Units						
Total Weight	grams	730	400	790	40	50	210
Fork Length	cm	43.1	33.0	41.6	14.1	14.6	26.3
Total Length	cm	44.7	35.0	46.0	15.0	14.9	27.3

 Table 3.2. Field measured parameters of individuals captured in Tee Lake.

The slope of the *l*og mass and *log weight* relationship was lower (b = 2.481) than the isometric growth value (i.e. 3), suggesting that the individuals in this waterbody demonstrate allometric growth. Additional data is required to understand species-specific growth and condition within the waterbody. The log mass and log weight relationship of the individuals captured is illustrated below in Figure 3.2.

Figure 3.4. Log_e mass versus log_e length relationship of pumpkinseed (RB, PS), smallmouth bass (SM), white sucker (WS), and walleye (WALLY) individuals captured from Tee Lake.

Laboratory analytical results of metals from the dorsal epaxial muscle fillets are provided in Table 7. Mercury was measured at detectable concentrations from all individuals, ranging from 0.02 mg/kg (WS1) to 0.56 mg/kg (WALLY). Three individuals had concentrations greater than

the CCME (2000) *Canadian Tissue Residue* guideline of 0.033 μ g/g, including the walleye (WALLY), smallmouth bass (SM1) and a white sucker (WS2). The walleye mercury concentration additionally exceeded the MOECC *Fish Consumption Guideline* limit for children and women of child-bearing age (1.8 μ g/g) and the general population (0.5 μ g/g). Other metals of interest that are known to bioaccumulate in fish tissue included copper, manganese, and zinc (Authman *et al.* 2015). The concentrations were generally low and inferred to be indicative of baseline conditions.

The present investigation provides preliminary data on the aquatic baseline environmental conditions with respect to surface water and sediment quality, and fish habitat and community prior to development of the Pardo Gold Project. Although no permanent natural waterbodies are located within the immediate area of the proposed advanced exploration project, DST investigated waterbodies located downgradient of the Project area to provide documentation of their current, pre-development conditions.

4.1 Surface Water Quality

The surface water sampling results from the lakes investigated during the 2017 aquatic field studies, including the unnamed "gooseneck" lake and Tee Lake, appear typical of mesotrophic lakes, as demonstrated by the narrow range of nutrient content (e.g. total phosphorus, nitrate) and supported by the cool water fish assemblages found within these lake systems. The differences observed in water chemistry between sampling locations likely reflect the natural characteristics of the waterbody and the sampling location. These lakes are also characterized by circumneutral pH, low alkalinity, which indicates low buffering capacity, and water quality that meets the PWQO for all parameters analysed in 2017.

The Unnamed Pond (SW1), was the only sampling location that exhibited analytical results that did not meet the PWQO. Concentrations of dissolved aluminum, and total copper and vanadium were found to be greater than the PWQO during both summer and fall 2017 sampling events. The Unnamed Pond is also characterized by acidic pH that is below the acceptable PWQO range.

The Unnamed Pond was identified as a predominately wetland environment with a small bog identified in the northern portion. This is further supported by our analytical results as the slightly acidic pH values observed in the Unnamed Pond are typical of wetland environments. While surface water samples from Tee Lake and McNish Lake were sampled from the limnetic zone, the Unnamed Pond was sampled near the littoral zone. The littoral zone is more susceptible to surface water and sediment runoff from the adjacent shoreline and is more likely to accumulate organic material such as vascular plants, leaf litter, and microbial colonization. All of these factors may influence the quality of the water at the sampled location.

4.2 Sediment Quality

Sediment samples were obtained from the same location as the surface water samples during the fall 2017 sampling event. The sediment samples were found to have several metals at concentrations greater than the PSQG LEL or PSQG SEL at all four waterbodies. This included one or more of cadmium, chromium, arsenic, copper, lead and manganese at concentrations greater than the PSQG LEL and nickel at concentrations greater than the PSQG SEL. One location, SW3, characterized by coarse grained (i.e. sand) sediment generally exhibited relatively good sediment quality compared to the other three sampling locations.

Higher concentrations of TOC and percentage of silt and clay were observed from three waterbodies, including the Unnamed Pond (SW1), McNish Lake (SW2) and the northwest bay of Tee Lake (SW4). The higher concentrations of TOC, and fine (i.e. silt with minor clay), organic-rich sediment suggest that these lakes are high in decaying natural organic matter (Coquery and Welbourn 1995), which is supported by field observations. It is widely recognized that sediments less than 63 μ m in size, such as silt and clay, are the most important fraction for contaminant and heavy metal adsorption (Stone & Droppo 1994; Strom *et al.* 2011). As such, it is not surprising that the locations consisting of predominately silt (<63 μ m particles) exhibited more metals in the sediment at concentrations greater than the PSQG LEL and PSQG SEL.

4.3 Fish Habitat and Community

The fish habitat and community surveys in the current investigation were focused on two waterbodies that are known to be utilized by local cottagers and users for their fishery resources, Tee Lake and McNish Lake. The scope of the present investigation was relatively small scale and was intended to provide data on baseline fish tissue metal concentrations and potential fish habitat, rather than fish distribution and abundance. The fish habitat identified included mostly foraging and/or nursery areas characterized by aquatic vegetation and heavy log/brush cover. Potential walleye spawning habitat was identified in Tee Lake, however, the use of this habitat was not confirmed in the current investigation. Additional studies would be required to better understand the use and species distribution within the potential habitats identified.

The assemblage of small and large bodied fish identified in the current investigation at McNish Lake and Tee Lake are typical cool water species that are known to inhabit mesotrophic lakes. The study design targeted species that are sought after for recreational fishing purposes and did not include forage species at lower trophic levels. The slope of the log-mass relationship in both

waterbodies was lower than the critical isometric value (*b*=3) and was also lower than previous studies of similar Ontario fishes (i.e. Northern Pike, Griffiths *et al.* 2004). The overall condition of the individuals captures appeared to be good, suggesting that the waterbodies studied have adequate resources available to facilitate growth. Condition in animals is dependent on an individual's energy or nutrient reserves (Baker 1989), which can then be used to meet the energetic demands of increased fitness (Jakob *et al.* 1996; Kauffman *et al.* 2007). As such, the individuals examined in the current investigation above the log mass-at- log length relationship are expected to have greater probabilities of survival and reproductive success. As the relationship between length and weight differs among species of fish according to their inherited body shape, and within a species according to the robustness of individual fish, more data would be required to establish trends across waterbodies.

The concentrations of metals in the fish from the two waterbodies are interpreted to represent baseline conditions and be indicative of the natural variability of metal concentrations within the sampled species. The majority of fish collected in the current investigation exhibited tissue mercury concentrations greater than the CCME (2000) tissue residue guidelines of 0.033 μ g/g. The highest mercury concentration was obtained from the walleye (0.56 μ g/g) captured in Tee Lake, which exhibited a concentration in excess of the MOECC *Fish Consumption Guideline* for children and women of child-bearing age (1.8 μ g/g) and the general population (0.5 μ g/g). Fish can accumulate mercury in their muscles through adsorption from the surrounding water and the prey that they eat. Thus, predatory fish at higher trophic levels, such as walleye, that consume other fish for prey tend to contain high levels of mercury. The concentrations of mercury observed in the current investigation correlates with the trophic ecology of the species and expected bioaccumulation in muscle tissue.

The information, conclusions and recommendations given herein are specifically for this project and this Client only, and for the scope of work described herein. It may not be sufficient for other uses. DST does not accept responsibility for use by third parties.

The data, conclusions and recommendations which are presented in this report, and the quality thereof, are based on a scope of work authorized by the Client. Note, however, that no scope of work, no matter how exhaustive, can identify all ecological and/or environmental conditions. This report therefore cannot warranty that all conditions on or off the site are represented by those identified at specific locations.

Any recommendations and conclusions provided that are based on conditions or assumptions reported herein will inherently include any uncertainty associated with those conditions or assumptions. In fact many aspects involving professional judgment contain a degree of uncertainty which cannot be eliminated. This uncertainty should be managed by periodic review and refinement as additional information becomes available.

Note also that standards, guidelines, methodologies and practices related to environmental investigations may change with time. Those which were applied at the time of this investigation may be obsolete or unacceptable at a later date.

Any topographic benchmarks and elevations documented in this report are primarily to establish relative elevation differences between study locations and should not be used for other purposes such as grading, excavation, planning, development, etc.

Any comments given in this report on potential environmental conditions/site ecology are intended only for the guidance of the Client. The scope of work may not be sufficient to determine all of the environmental factors at each site. Contractors bidding on this project should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the conditions may affect their work.

Any results from an analytical laboratory, federal or provincial government agencies, other subcontractor, or any other third party, reported herein have been carried out by others, and DST Consulting Engineers Inc. cannot warranty their accuracy. Similarly, DST cannot warranty the accuracy of information supplied by the Client.

10 CLOSURE

We trust this report meets your present requirements and appreciate this opportunity to provide environmental consulting services to you. If you have any questions or comments, please contact the undersigned.

Written by:

Reviewed by:

Michaela Haring, M.Sc Environmental Scientist

- R.H

Laura Ritchie, P.Geo. Project Manager

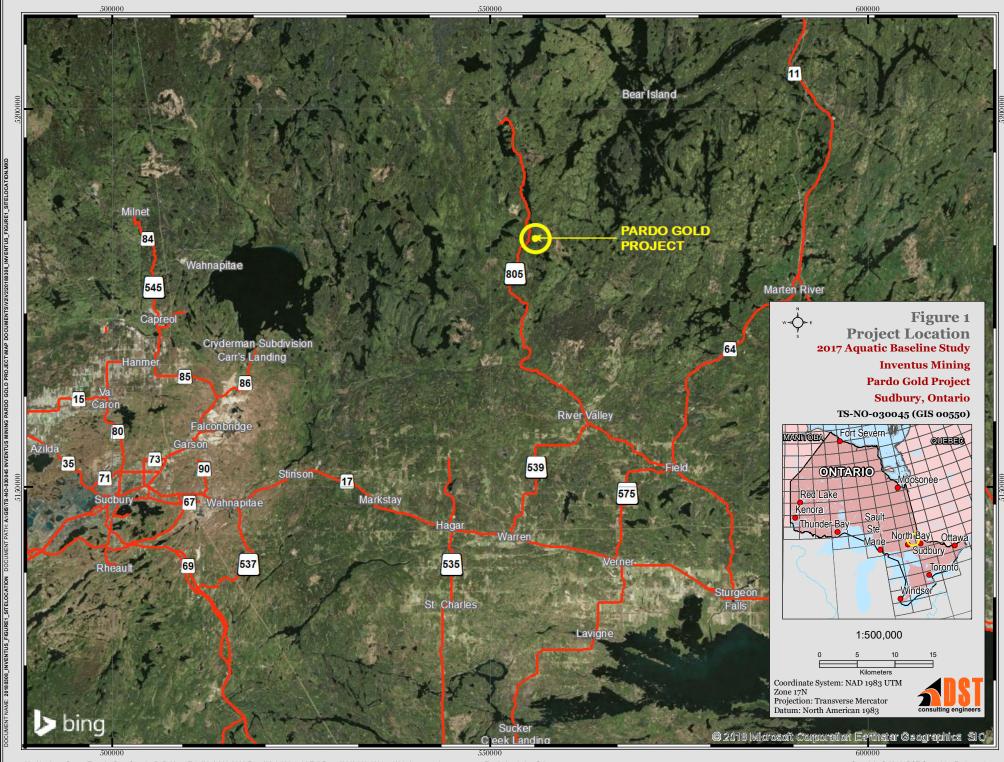
Ki Tuckle

Kris Tuuttila, A.Sc.T., P.Geo. (Limited) Regional Manager, Technical Services Group

11 REFERENCES

- Authman MN., Zaki MS., Khallaf EA., and Abbas H.H. (2015). Use of Fish as Bio-indicator of the Effects of Heavy Metals Pollution. *Aquac.Res.Dev.***6**: 328
- Canadian Council of Ministers of the Environment (2000). *Canadian Tissue Residue Guidelines* for the Protection of Wildlife Consumers of Aquatic Biota.
- Crins W.J., Gray P.A., Uhlig PP. and Wester M.C. (2009). *The Ecosystems of Ontario, Part 1: Ecozones and Ecoregions*. Ontario Ministry of Natural Resources and Forestry, Science and Information Branch, Technical Report SIB TER IMA TR-01.
- Coquery, M., and Welbourn, P.M. (1995). The relationship between metal concentration and organic matter in sediments and metals concentrations in the aquatic macrophyte Eriocavlon septangulare. *Water Res.* **29**(9): 2094-2102.
- Department of Fisheries and Oceans (2017). *Aquatic Species and Risk Map*. Accessed from: <u>http://www.dfo-mpo.gc.ca/species-especes/fpp-ppp/index-eng.htm</u>
- Ecoregions Working Group (1989). Ecoclimatic regions of Canada, first approximation. Ecological Land Classification Series, No.23. Sustainable Development Branch, Conservation and Protection, Environment Canada, Ottawa, Ont. 199 pp.
- Edwards A.L. (1976). An Introduction to Linear Regression and Correlation. W.H. Freeman and Company, USA, 213 pp.
- Griffiths RW., Newlands NK., Nokes DLG., & Beamish FWL. (2004). Northern pike growth and mortality in a northern Ontario river compared with that in lakes: influence of flow. *Ecol. FreshW. Fish.* **13**: 136 144
- Jakob, E. M., S. D. Marshall, and G. W. Uetz (1996). Estimating fitness: a comparison of body condition indices. *Oikos* **77**:61–67.
- Kauffman S.D., Johnston T.A., Leggett W.C., M.D. Moles., J.M. Casselman, and A.I. Schulte-Hostedde (2007). Relationship Between Body Condition Indices and Proximate Composition in Adult Walleye. *Trans. Am. Fish. Soc.* **136**(6): 1566-1576

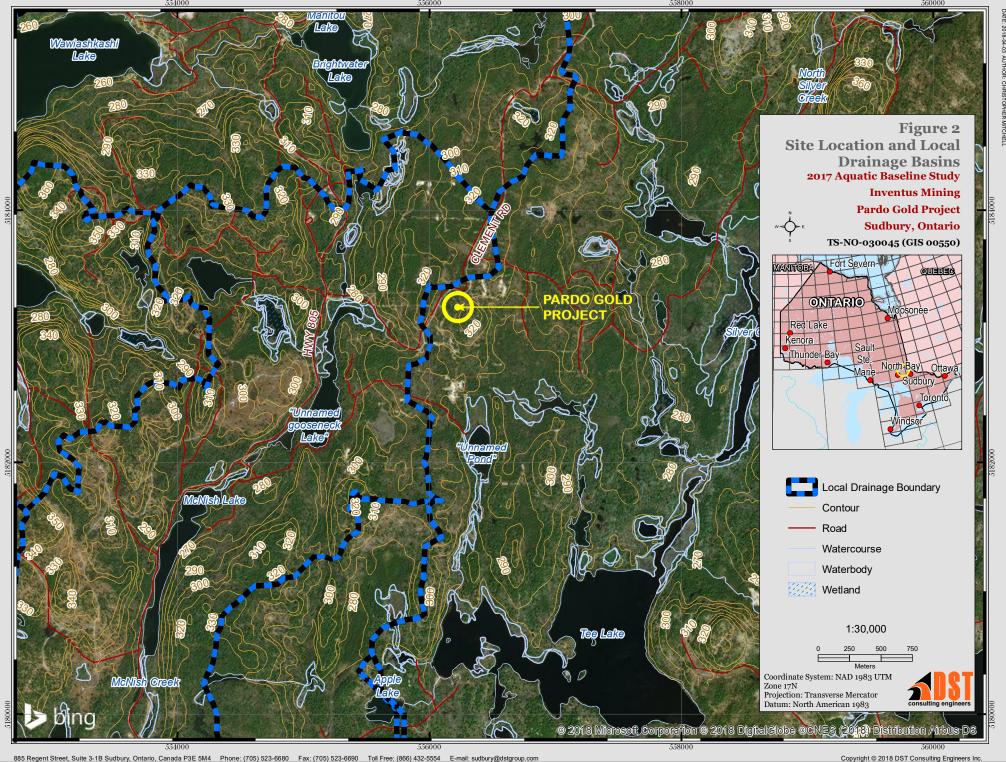
Ontario Ministry of Natural Resources and Forestry (2017). Natural Heritage Information Centre, Make A Map: Natural Heritage Areas. Accessed from:

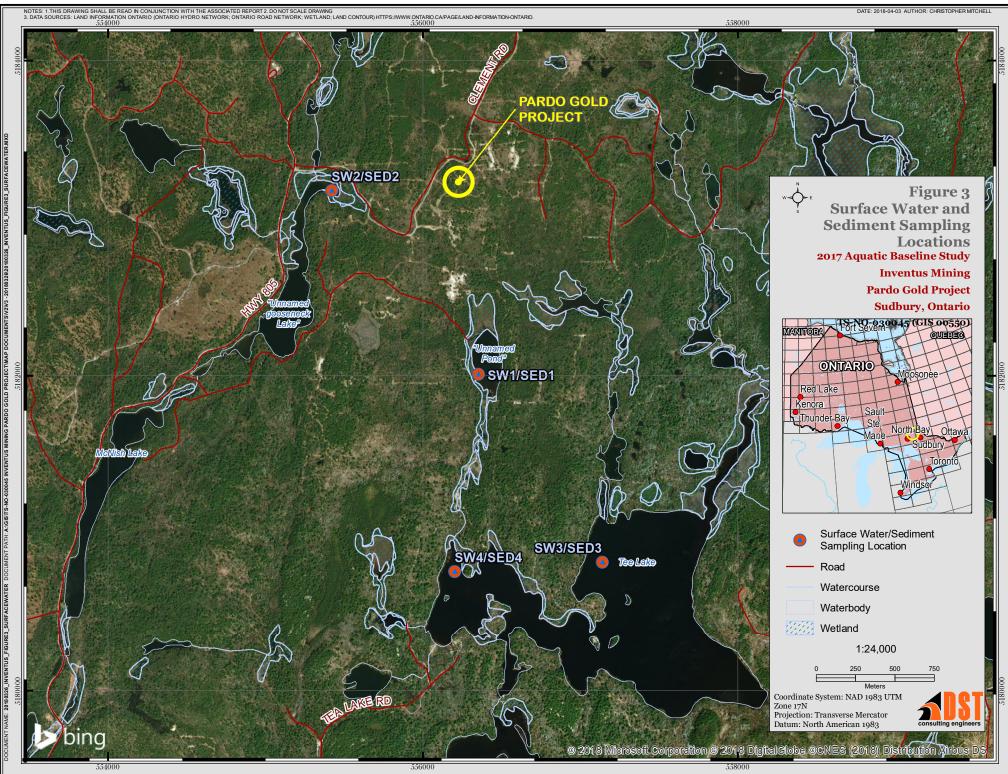

http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR_NHLUPS_Natural Heritage&viewer=NaturalHeritage&locale=en-US

- Ontario Ministry of Natural Resources and Forestry (2016). *Fish ON-Line Tool*. Accessed from: <u>https://www.gisapplication.lrc.gov.on.ca/FishONLine/Index.html?site=FishONLine&viewe</u> <u>r=FishONLine&locale=en-US</u>
- Ontario Ministry of Environment and Climate Change (2015). *Map: Guide to eating Ontario Fish, Consumption Advisory Tables*. Accessed from: <u>https://www.ontario.ca/environment-and-energy/eating-ontario-fish</u>
- Ontario Ministry of Environment and Climate Change (2008). *Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario*. PIBS 6658e, May 2008.
- Ontario Ministry of the Environment and Energy (1999). *Water Management, Policies, Guidelines, Provincial Water Quality Objectives* (PWQO). PIBS 3303e, July 1994, reprinted February 1999.
- Ricker W.E. (1975). Computation and interpretation of biological statistics of fish populations. *Bull. Fish. Res. Board Can.*, **191**: 1-382.
- Stone M. and Droppo I.G. (1994). In- channel surficial fine-grained sediment laminate. Part II: Chemical characteristics and implications for contaminant transport in fluvial systems. *Hydrol Process.* **8**(2): 113-124
- Strom D, Simpson SL, Batley GE, Jolley DF (2011) The influence of sediment particle size and organic carbon on toxicity of copper to benthic invertebrates in oxic/sub-oxic surface sediments. *Environ Toxicol Chem.* **30**:1599–1610

Figures

605 Hewitson Street, Thunder Bay, Ontario, P7B5V5 Tel: (807) 623-2929 Fax: (807) 623-1792 Toll Free: (800) 668-4201 Website: www.dstgroup.com Email: thunderbay@dstgroup.com

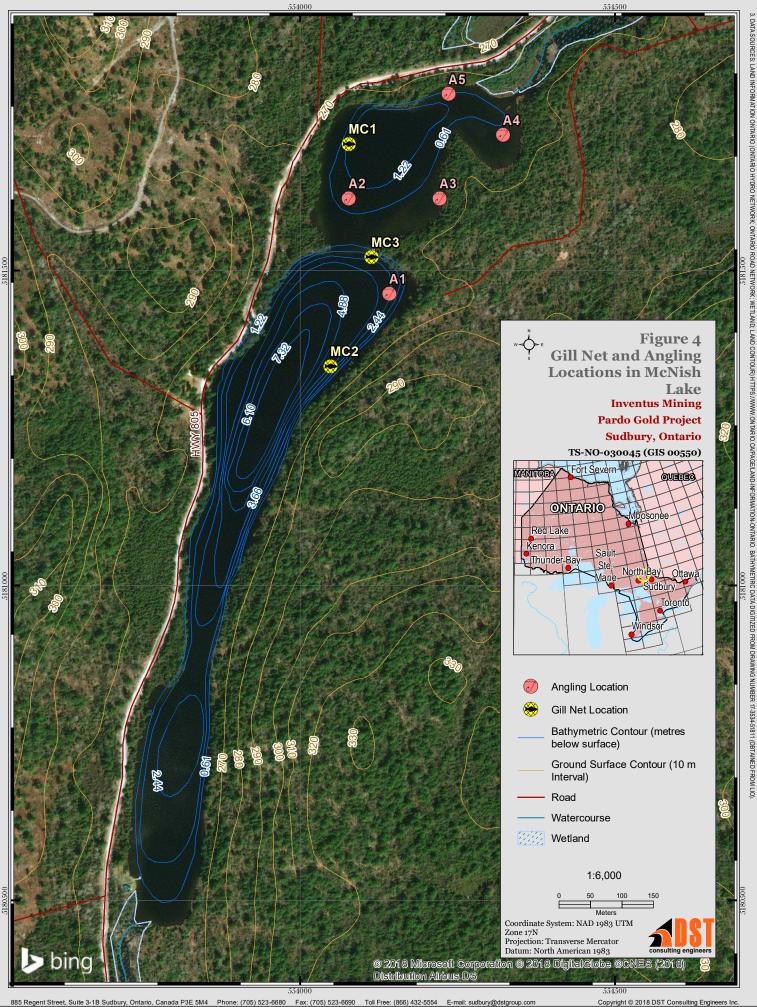

NOTES: 1.THIS DRAWING SHALL BE READ IN CONJUNCTION WITH THE ASSOCIATED REPORT 2. DO NOT SCALE DRAWING

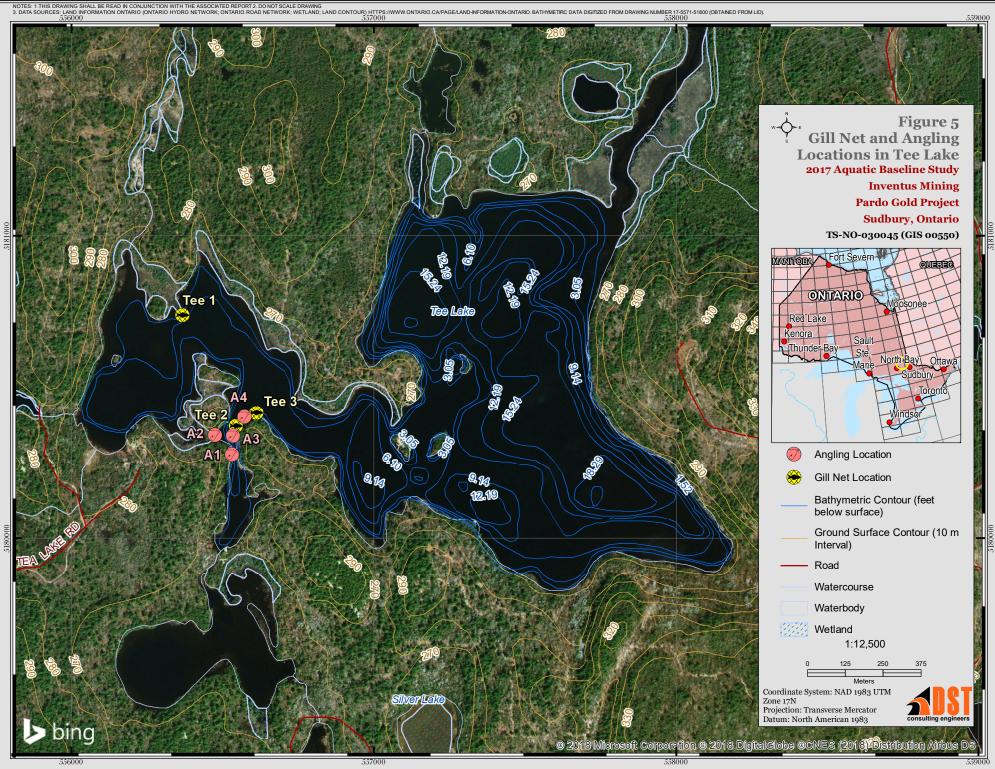

Copyright © 2018 DST Consulting Engineers Inc

DATE: 2018-03-08 AUTHOR: CHRISTOPHER MITCHELL

PARDO GOLD

INVENTUS_FIGURE2_DF




885 Regent Street, Suite 3-1B Sudbury, Ontario, Canada P3E 5M4 Phone: (705) 523-6680 Fax: (705) 523-6690 Toll Free: (866) 432-5554 E-mail: sudbury@dstgroup.com

Copyright © 2017 DST Consulting Engineers Inc.

: A'GISITS-NO-030045 INVENTUS MINING PARDO GOLD PROJECTIMAP DOCUMENTSIVZV3 - 20180328/20180328_NVENTUS_FIGURE4_MCNISHLAKE.MXC

2018 0326_INVENTUS_FIGURE4_MCNISHLAKE

885 Regent Street, Suite 3-1B Sudbury, Ontario, Canada P3E 5M4 Phone: (705) 523-6680 Fax: (705) 523-6690 Toll Free: (866) 432-5554 E-mail: sudbury@dstgroup.com

ARDO GOLD PROJ

030045 INVENTUS MINING

326_INVENTUS

Copyright © 2017 DST Consulting Engineers Inc

Tables

Table 1 Surface Water and Sediment Field Parameters

	UTM ⁽²⁾ Easting	UTM Northing				Surfa	ace Water		
Sample ID	NAD83 ⁽³⁾ Zone 17 North +/- <1.0 m X- Coord (m)	NAD83 Zone 17 North +/- <1.0 m Y - Coord (m)	Date (dd-mmm-yy)	Sediment Type	рН	Temperature (°C)	Dissolved Oxygen (mg/L)	Electric Conductivity (μS/cm)	Observations
SW1	556300	5183182	16-Aug-17	-	6.25	22.12	4.71	14	Sample obtained from shoreline.
3001	330300	5105102	20-Oct-17	А	7.18	12.08	2.72	28	Sample obtained norn shoreline.
SW2	555423	5183182	16-Aug-17	-	7.45	19.98	5.60	47	Water column approximately 1.525m
3002	555425	5105102	20-Oct-17	А	7.20	11.71	4.95	33	deep at sampling location.
SW3	557183	5180688	16-Aug-17	-	8.13	21.85	6.68	28	Water column approximately >20 m
3003	557 165	5100000	20-Oct-17	В	5.78	12.24	2.77	24	deep at sampling location.
SW4	556216	556216 5180686	16-Aug-17	-	8.12	21.15	6.59	23	Water column approximately 1.921 m
3774	550210	5100000	20-Oct-17	А	6.58	11.71	3.33		deep at sampling location.

Notes:

1) "UTM" means Universal Transverse Mercator

2) "NAD83" means CGRS North American Datum 1983.

3) 'Sediment Type 'A' - dark brown to black, fine grained sand with organics

4) Sediment Type 'B' - brown, fine to medium grained sand

		Sample Location	Unnamed	Pond (SW1)		McNish L	ake (SW2)		NE Tee L	ake (SW3)	NW Tee L	.ake (SW4)
		Sample ID	SW1	SW1	SW2	SW-200	SW2	SW-20	SW3	SW3	SW4	SW4
		Date		20-Oct-17	16-Aug-17	16-Aug-17	20-Oct-17	SW-20	16-Aug-17	20-Oct-17	16-Aug-17	20-Oct-17
			J		Ŭ	Field		Field			<u></u>	
Parameter	Units	PWQO ⁽¹⁾				Duplicate		Duplicate				
Concret Chemistry and Increanies						of SW2		of SW2				
General Chemistry and Inorganics	n	NV ⁽²⁾	21	22	57	57	54	54	34	31	33	32
Electrical Conductivity pH	us/cm	NV (-) 6.5 - 8.5				7.50			7.29			
1	pH units	0.5 - 8.5 NV	<u>6.00</u> 7.60	<u>6.03</u> 7.60	7.42	24.1	6.94	7.01 23.1	14.30	6.78	7.32 13.7	6.77
Total Hardness (as CaCO3) Total Suspended Solids	mg/L	NV NV	<10	<10	23.6 <10	<10	23.1 <10	<10 <23.1	<10	14.1 <10	<10	14 <10
	mg/L	NV NV	<5	<5	18	17	18	18	9	<u> </u>	9	9
Alkalinity (as CaCO3) Bicarbonate (as CaCO3)	mg/L	NV NV	<5	<5	18	17	18	18	9	9	9	9
Carbonate (as CaCO3)	mg/L	NV NV	<5	<5	<5	<5	<5	<5	9 <5	9 <5	9 <5	9 <5
Chloride	mg/L	NV NV	0.23	0.51	1.87	1.74	1.73	1.73	0.18	0.29	0.19	0.26
Nitrate as N	mg/L mg/L	NV	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.29	<0.05	< 0.20
Nitrite as N	mg/L	NV	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Sulphate	mg/L	NV	4.27	4.32	5.33	5.33	4.82	4.84	3.82	4.08	3.97	4.07
Ammonia as N	mg/L	NV	0.03	0.07	<0.02	<0.02	0.02	0.02	<0.02	<0.02	<0.02	<0.02
Ammonia-Un-ionized ⁽³⁾	mg/L	NV	0.00018	0.00028	~0.0Z	-0.02	0.02	0.02	<u>∼0.0∠</u>	~U.UZ	<u>∼0.0∠</u>	NU.UZ
		0.02 (4)			-				-		-	
Total Phosphorus	mg/L		0.02	<0.01	0.01	0.01	< 0.01	< 0.01	0.01	< 0.01	0.02	< 0.01
Dissolved Phosphorus	mg/L	NV NV	<0.02 2.04	<0.02 2.06	<0.02 6.1	<0.02 6	<0.02 7.5	<0.02 9.4	<0.02 7.3	<0.02 7.3	<0.02 6.9	<0.02 7.7
Dissolved Organic Carbon Calcium	mg/L	NV NV	2.04 8.9	15.5	7.16	7.31	6.93	9.4 6.96	7.3 4	3.93	3.83	3.87
	mg/L	NV NV	0.9	0.59	1.4	1.42	1.4	1.39	4	3.93 1.05	3.03 1	1.06
Magnesium Sodium	mg/L mg/L	NV NV	0.65	0.39	0.93	0.94	1.4	1.01	0.75	0.75	0.72	0.75
Potassium		NV	0.39	0.39	0.93	0.94	0.44	0.44	0.73	0.73	0.72	0.75
Metals	mg/L		0.39	0.39	0.4	0.42	0.44	0.44	0.34	0.27	0.29	0.20
Aluminum (dissolved)	mg/L	0.075 ⁽⁵⁾	0.091	0.103	0.016	0.014	0.03	0.015	0.015	0.025	0.013	0.016
Antimony	mg/L	0.02	< 0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003	< 0.003	<0.003	< 0.003	< 0.003
Arsenic	mg/L	0.005	< 0.003	<0.003	<0.003	<0.003	<0.003	<0.003	< 0.003	<0.003	< 0.003	<0.003
Barium	mg/L	NV	0.006	0.009	0.003	0.003	0.003	0.005	0.003	0.005	0.003	0.000
Beryllium	mg/L	0.011/1.1 ⁽⁶⁾	< 0.000	<0.000	<0.004	<0.001	<0.0012	<0.000	<0.004	<0.000	<0.004	<0.001
Bismuth	mg/L	NV	< 0.002	<0.002	<0.001	<0.001	<0.001	<0.001	< 0.002	< 0.002	< 0.002	<0.001
Boron	mg/L	0.2	<0.002	<0.010	<0.010	<0.002	<0.002	<0.002	<0.002	< 0.010	<0.002	<0.002
Cadmium	mg/L	0.0001/0.0005 (7)	< 0.003	< 0.003	< 0.0001	< 0.0001	<0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
Chromium	mg/L	0.089	< 0.0001	< 0.0001	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Cobalt	mg/L	0.0009	0.0008	0.0006	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.0005
Copper	mg/L	0.001/0.005 ⁽⁸⁾	0.002	0.002	0.001	0.001	0.001	< 0.001	0.001	0.001	0.001	0.001
Iron	mg/L	0.3	0.05	0.09	0.03	0.03	0.06	0.04	0.02	< 0.01	0.02	0.02
Lead	mg/L	0.001-0.005 ⁽⁹⁾	< 0.001	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001
Manganese	mg/L	NV	0.017	0.013	0.007	0.007	0.007	0.007	0.004	0.012	0.006	0.009
Mercury (dissolved)	mg/L	0.0002	< 0.0001	<0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001
Molybdenum	mg/L	0.04	< 0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002
Nickel	mg/L	0.025	0.006	0.006	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003	< 0.003
Selenium	mg/L	0.1	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
Silicon	mg/L	NV	0.45	0.79	1.45	1.47	1.98	1.9	1.04	1.53	0.91	1.25
Silver	mg/L	0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001	< 0.0001	<0.0001
Stontium	mg/L	NV	0.008	0.009	0.016	0.017	0.017	0.016	0.013	0.014	0.013	0.014
Thallium	mg/L	0.0003	< 0.0003	<0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003	< 0.0003
Tin	mg/L	NV	< 0.002	<0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	<0.002
Titanium	mg/L	NV	<0.002	<0.002	<0.002	< 0.002	< 0.002	< 0.002	<0.002	< 0.002	<0.002	<0.002
Uranium	mg/L	0.005	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L	0.006	0.007	0.011	<0.002	<0.002	< 0.002	<0.002	< 0.002	< 0.002	<0.002	<0.002
	5				-					-		
Zinc	mg/L	0.02	<0.002	<0.002	< 0.005	<0.005	0.008	<0.005	<0.005	<0.005	<0.005	0.006

<u>Notes</u>

1) Values obtained from Ministry of the Environment and Climate Change (MOECC, 1994) Water Management, Policies, Guidelines, Provincial Water Quality Objectives (PWQO) of the MOEE. Where interim values exist, the interim value is used.

2) "NV" means no value.

3) Calculation based on lab measured pH and temperature. The value was not calculated when ammonia-nitrogen was less than the measured detection limit, indicated by '-'.

4) Interim PWQO should not exceed 0.02mg/L for the ice-free period in lakes.

5) The PWQO of 0.075 mg/L is based on pH of >6.5 to 9.0, in a clay-free sample.

6) PWQO is 0.011 mg/L when sample hardness is <75 mg/L and 1.1 mg/L when sample hardness is >75 mg/L.

7) Interim PWQO is 0.0001 mg/L when sample hardness is 0-100 mg/L and 0.0005 mg/L when sample hardness is >100 mg/L.

8) Interim PWQO is 0.001 mg/L when sample hardness is 0-20 mg/L and 0.005 mg/L when sample hardness is >20 mg/L.

9) Interim PWQO is 0.001 mg/L when sample hardness is <30mg/L; 0.003 mg/L when sample hardness is between 30-80 mg/L; and 0.005 mg/L when sample hardness is >80mg/L. 10) Concentrations that exceed the PWQO are illustrated by **bold**, **underlined and red typeface**.

11) If applicable, where the laboratory detection limit is greater than the applicable guideline, it is indicated by *italic and underlined typeface*.

Table 2 Surface Water Analytical Results

Table 3 Surface Water QA/QC

	San	nple Location	SV	V2	RPD	SV	V2	RPD	Field Blank ⁽³⁾
		Sample ID	SW2	SW-200	RPD	SW2	SW-20	RPD	SWB1
		Date Sampled	16-Aug-17	16-Aug-17		20-Oct-17	SW-20		16-Aug-17
Parameter	Units	Alert Limit							
General Chemistry and Inorganics		(%) ⁽¹⁾							
	II III	50	57	57	NA ⁽²⁾	54	54	NA	<2
Electrical Conductivity pH	us/cm pH units	50	7.42	7.50	NA (=/	6.94	7.01	NA NA	5.98
рп Total Hardness (as CaCO3)		50	23.6	24.1	NA	23.1	23.1	NA NA	<0.5
Total Suspended Solids	mg/L	50	23.6 <10	<10	NA	<10	<10	NA NA	<0.5
	mg/L	50	18	17	NA	18	18	NA NA	<10
Alkalinity (as CaCO3)	mg/L						_		
Bicarbonate (as CaCO3)	mg/L	50	18	17	NA	18	18	NA	<5 <5
Carbonate (as CaCO3)	mg/L	50	<5	<5	NA	<5	<5	NA	
Chloride	mg/L	50	1.87	1.74	NA	1.73	1.73	NA	<0.10
Nitrate as N	mg/L	50	< 0.05	< 0.05	NA	<0.05	<0.05	NA	<0.05
Nitrite as N	mg/L	50	< 0.05	< 0.05	NA	< 0.05	< 0.05	NA	< 0.05
Sulphate	mg/L	50	5.33	5.33	NA	4.82	4.84	NA	<0.10
Ammonia as N	mg/L	50	<0.02	<0.02	NA	0.02	0.02	NA	<0.02
Ammonia-Un-ionized	mg/L	50	-	-	NA	0.000078	0.000078	NA	-
Total Phosphorus	mg/L	50	0.01	0.01	NA	< 0.01	< 0.01	NA	<0.01
Total Phosphorus (dissolved)	mg/L	50	<0.02	<0.02	NA	<0.02	<0.02	NA	<0.02
Dissolved Organic Carbon	mg/L	50	6.1	6	NA	7.5	9.4	NA	<0.5
Calcium	mg/L	50	7.16	7.31	NA	6.93	6.96	NA	<0.05
Magnesium	mg/L	50	1.4	1.42	NA	1.4	1.39	NA	<0.05
Sodium	mg/L	50	0.93	0.94	NA	1.01	1.01	NA	<0.05
Potassium	mg/L	50	0.4	0.42	NA	0.44	0.44	NA	<0.05
Metals	–				-	n			0
Aluminum (dissolved)	mg/L	80	0.016	0.014	NA	0.03	0.015	NA	<0.004
Antimony	mg/L	80	<0.003	<0.003	NA	<0.003	<0.003	NA	<0.003
Arsenic	mg/L	80	<0.003	<0.003	NA	<0.003	<0.003	NA	<0.003
Barium	mg/L	80	0.004	0.004	NA	0.012	0.008	NA	<0.002
Beryllium	mg/L	80	<0.001	<0.001	NA	<0.001	<0.001	NA	<0.001
Bismuth	mg/L	80	<0.002	<0.002	NA	<0.002	<0.002	NA	<0.002
Boron	mg/L	80	<0.010	<0.010	NA	<0.010	<0.010	NA	<0.010
Cadmium	mg/L	80	<0.0001	<0.0001	NA	<0.0001	<0.0001	NA	<0.0001
Chromium	mg/L	80	<0.003	<0.003	NA	<0.003	<0.003	NA	<0.003
Cobalt	mg/L	80	<0.0005	<0.0005	NA	<0.0005	<0.0005	NA	<0.0005
Copper	mg/L	80	0.001	0.001	NA	0.001	<0.001	NA	<0.001
Iron	mg/L	80	0.03	0.03	NA	0.06	0.04	NA	<0.01
Lead	mg/L	80	<0.001	<0.001	NA	<0.001	<0.001	NA	<0.001
Manganese	mg/L	80	0.007	0.007	NA	0.007	0.007	NA	<0.002
Mercury (dissolved)	mg/L	80	<0.0001	<0.0001	NA	<0.0001	<0.0001	NA	<0.0001
Molybdenum	mg/L	80	<0.002	<0.002	NA	<0.002	<0.002	NA	<0.002
Nickel	mg/L	80	<0.003	<0.003	NA	<0.003	<0.003	NA	<0.003
Selenium	mg/L	80	<0.004	<0.004	NA	<0.004	<0.004	NA	<0.004
Silicon	mg/L	80	1.45	1.47	NA	1.98	1.9	NA	<0.05
Silver	mg/L	80	<0.0001	<0.0001	NA	<0.0001	<0.0001	NA	<0.0001
Stontium	mg/L	80	0.016	0.017	NA	0.017	0.016	NA	<0.005
Thallium	mg/L	80	<0.0003	<0.0003	NA	<0.0003	<0.0003	NA	<0.0003
Tin	mg/L	80	<0.002	<0.002	NA	<0.002	<0.002	NA	<0.002
Titanium	mg/L	80	<0.002	<0.002	NA	<0.002	<0.002	NA	<0.002
Uranium	mg/L	80	<0.002	<0.002	NA	<0.002	<0.002	NA	<0.002
Vanadium	 mg/L	80	<0.002	<0.002	NA	<0.002	<0.002	NA	<0.002
Zinc	 mg/L	80	<0.005	<0.005	NA	0.008	<0.005	NA	<0.005
Zirconium	mg/L	80	<0.004	<0.004	NA	<0.004	< 0.004	NA	<0.004

Notes:

1) Alert Limits only applicable if both sample values are 5 times greater than the laboratory reportable detection limit (RPD)

2) "NA" indicates that the RPD could not be calculated as both analyte concentrations were less than 5 times the reportable detection limit.

3) Field Blank alert limit considered applicable when value is greater than 2 times the RDL

4) An exceedance of the alert limit, if applicable, is shown as <u>blue, bold and underlined</u> text.

3) "<" Less than the laboratory Reportable Detection Limit.

Table 4Sediment Analytical Results

Sample Location				SED1	6	D2	SED3	SED5
		Sampl			SED-2	SED-20	SED3	SED5 SED-4
			Sample ID	SED-1 20-Oct-17	SED-2 20-Oct-17	SED-20 20-Oct-17	20-Oct-17	SED-4 20-Oct-17
				20-001-17	20-001-17	Field	20-001-17	20-001-17
Parameter	Units	PSQG	PSQG			Duplicate		
		LEL ⁽¹⁾	SEL ⁽²⁾			of SED-2		
Particle Size Distribution								
Gravel	%	NV	NV	0.07	-	0.21	2.61	0.00
Coarse Sand	%	NV	NV	0.78	-	0.31	33.63	0.18
Fine Sand	%	NV	NV	2.40	-	0.31	59.98	2.26
Silt	%	NV	NV	82.89	-	84.87	3.17	75.46
Clay	%	NV	NV	13.46	-	13.22	0.61	22.15
Inorganic Chemistry								
Sulphate (10:1)	µg/g	NV	NV	160	84	266	11	64
Ammonia as N (KCl Extr)	µg/g	NV	NV	75	113	60	6	80
Phosphorus, Total	µg/g	600	2000	576	419	450	59	513
Total Organic Carbon	%	1	10	<u>24.1</u>	<u>20.98</u>	<u>21.45</u>	<u>1.53</u>	<u>16.83</u>
Metals								
Aluminum	µg/g	NV	NV	4280	5060	4460	8600	10600
Antimony	µg/g	NV	NV	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	6	33	3	3	4	3	<u>11</u>
Barium	µg/g	NV	NV	69	48	51	29	70
Beryllium	µg/g	NV	NV	<0.5	<0.5	<0.5	<0.5	<0.5
Bismuth	µg/g	NV	NV	0.6	0.9	0.9	<0.1	0.8
Boron	µg/g	NV	NV	<5	<5	<5	<5	<5
Cadmium	µg/g	0.6	10	<u>1.4</u>	<u>2.7</u>	<u>2.3</u>	<0.5	<u>2.3</u>
Calcium	µg/g	NV	NV	6310	5920	6020	2160	4570
Chromium	µg/g	26	110	11	14	14	<u>34</u>	<u>34</u>
Cobalt	µg/g	NV	NV	3.5	23	22.3	7.9	24.9
Copper	µg/g	16	110	86	108	119	8	79
Iron	µg/g	20,000	40,000	2200	3130	4920	17100	14300
Lead	µg/g	31	250	31	<u>52</u>	<u>51</u>	4	<u>50</u>
Lithium	µg/g	NV	NV	1.2	1.3	1.4	12.7	6
Magnesium	µg/g	NV	NV	37	911	840	5430	2310
Manganese	µg/g	469	1100	<u>898</u>	48	43	344	468
Mercury	µg/g	0.2	2	0.19	0.14	0.14	<0.10	0.16
Molybdenum	µg/g	NV	NV	0.9	1.9	1.6	<0.5	1.1
Nickel	µg/g	16	75	89	97	107	30	97
Phosphorus	µg/g	NV	NV	625	451	489	66	546
Potassium	µg/g	NV	NV	200	413	306	209	363
Selenium	µg/g	NV	NV	2.5	3.5	3.1	<0.8	2.1
Silicon	µg/g	NV	NV	631	<u>795</u>	881	842	860
Silver	µg/g	NV	NV	<0.4	<0.4	<0.4	<0.4	<0.4
Sodium	µg/g	NV	NV	84	250	94	166	112
Strontium	µg/g	NV	NV	28	17	19	9	19
Thallium	µg/g	NV	NV	1	<0.4	<0.4	<0.4	<0.4
Tin	µg/g	NV	NV	<0.4	1	1	<1	1
Titanium	µg/g	NV	NV	40	46	51	490	148
Uranium	µg/g	NV	NV	0.55	1.37	1.12	< 0.50	1.4
Vanadium	μg/g	NV	NV	3	11	8	24	22
Zinc	μg/g	NV	NV	46	153	141	47	169
Zirconium	µg/g	NV	NV	0.7	0.9	1.3	4.2	1.4
Notes	r"3' 3			0	0.0			

Notes

1) Valules obtained from Ministry of the Environment and Climate Change (MOECC, 2008) Provincial Sediment Quality Guidelines (PSQG) Lower Effect Level (LEL)

2) Valules obtained from Ministry of the Environment and Climate Change (MOECC, 2008) Provincial Sediment Quality Guidelines (PSQG) Severe Effect Level (SEL)

3) NV means no value

4) Concentrations that exceed the PSQG LEL are illustrated by **bold**, **underlined and red typeface**, and concentrations that exceed the PSQG SEL are illustrated by **bold**, **blue**, **underlined typeface**.

Table 5 Sediment QA/QC

	S	ample Location	SI	N2	
		Sample ID	SED-2	SED-20	RPD
		Date	20-Oct-17	20-Oct-17	
Parameter	Units	Alert Limit %			
Inorganic Chemistry					
Sulphate (10:1)	µg/g	100	84	266	<u>104%</u>
Ammonia as N (KCl Extr)	µg/g	100	113	60	61%
Phosphorus, Total	µg/g	100	419	450	7%
Total Organic Carbon	%	100	20.98	21.45	2%
Metals					
Aluminum	µg/g	100	5060	4460	13%
Antimony	µg/g	100	<0.8	<0.8	NA
Arsenic	µg/g	100	3	4	NA
Barium	µg/g	100	48	51	6%
Beryllium	µg/g	100	<0.5	<0.5	NA
Bismuth	µg/g	100	0.9	0.9	0%
Boron	µg/g	100	<5	<5	NA
Cadmium	µg/g	100	2.7	2.3	16%
Calcium	µg/g	100	5920	6020	2%
Chromium	µg/g	100	14	14	0%
Cobalt	µg/g	100	23	22.3	3%
Copper	µg/g	100	108	119	10%
Iron	µg/g	100	3130	4920	44%
Lead	µg/g	100	52	51	2%
Lithium	µg/g	100	1.3	1.4	NA
Magnesium	µg/g	100	911	840	8%
Manganese	µg/g	100	48	43	11%
Mercury	µg/g	100	0.14	0.14	NA
Molybdenum	µg/g	100	1.9	1.6	NA
Nickel	µg/g	100	97	107	10%
Phosphorus	hð/ð	100	451	489	8%
Potassium	hð/ð	100	413	306	30%
Selenium	µg/g	100	3.5	3.1	12%
Silicon	hð/ð	100	795	881	10%
Silver	µg/g	100	<0.4	<0.4	NA
Sodium	µg/g	100	250	94	91%
Strontium	µg/g	100	17	19	NA
Thallium	µg/g	100	<0.4	<0.4	NA
Tin	µg/g	100	1	1	NA
Titanium	µg/g	100	46	51	NA
Uranium	µg/g	100	1.37	1.12	NA
Vanadium	hð/ð	100	11	8	32%
Zinc	µg/g	100	153	141	8%
Zirconium	µg/g	100	0.9	1.3	NA

Notes:

1) Alert Limits only applicable if both sample values are 5 times greater than the laboratory reportable detection limit (RPD) 2) "NA" indicates that the RPD could not be calculated as both analyte concentrations were less than 5 times the reportable detection limit.

4) An exceedance of the alert limit, if applicable, is shown as <u>blue, bold and underlined</u> text.

3) "<" Less than the laboratory Reportable Detection Limit.

Table 6Catch per Unit Effort Summary

	Gill Net Summary										
Waterbody	Sampling	Location ID	Mesh Size	Number of	Total Effort	Spe	cies-Specific Ca	atch	Total Catch	CPUE ⁽¹⁾	
Waterboury	Date	Location ID	(mm)	Sets	(hours)	Walleye	White Sucker	Smallmouth Bass	Number	CFUE	
	TEE1	76	2	4.5	0	2	1	3	0.67		
Tee Lake	30-Aug-17	TEE2	100	1	1	0	0	0	0	0	
		TEE3	100	1	2.5	1	0	0	1	0.4	
		MC1	76	2	3.5	0	0	0	0	0	
McNish Lake	31-Aug-17	MC2	100	1	1	0	0	0	0	0	
		MC3	50	2	3	0	0	0	0	0	
	Angling Summary										

Angling Summary

	Sampling	Effort (# of	Duration	Sampling		Species-Sp	ecific Catch		Total Catch		
Waterbody	Date	rods)	(hour)	Effort (rod x hours)	Pumpkinseed	Smallmouth Bass	Northern Pike Yellow Perch		Number	CPUE	
Tee Lake	30-Aug-17	2	6	12	2	1	0	0	3	0.25	
McNish Lake	31-Aug-17	2	4	8	0	0	4	1	5	0.63	

Notes:

1) "CPUE" means catch per unit effort

Table 7 Fish Tissue Metal Analytical Results

			Location			Tee Lake					McNish La	ake	
			Sample ID	WALLY1	WS1	WS2	RB1	SM1	NP1	NP2	NP3	NP4	YP1
			Species	Walleye	White	Sucker	Pumpkinseed	Smallmouth Bass		Northern Pike			Yellow Perch
			Date	30-Aug-17	30-Aug-17	30-Aug-17	30-Aug-17	30-Aug-17	31-Aug-17	31-Aug-17	31-Aug-17	31-Aug-17	31-Aug-17
Parameter	Units	CCME ⁽¹⁾	MOECC (2)										
Metals													
Aluminum	µg/g	NV	NV	<5.0	<5.0	25.3	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Antimony	µg/g	NV	NV	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	µg/g	NV	NV	<0.1	<0.1	<0.1	<0.1	1.5	<0.1	<0.1	<0.1	<0.1	<0.1
Cadmium	µg/g	NV	NV	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	<0.02	<0.02
Calcium	µg/g	NV	NV	7490	172	242	6790	2930	2250	2580	3790	1320	6390
Chromium	μg/g	NV	NV	0.7	<0.6	<0.6	<0.6	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Cobalt	µg/g	NV	NV	<0.3	<0.3	<0.3	<0.3	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Copper	µg/g	NV	NV	9.9	1.1	1.8	0.8	2.1	0.5	0.4	0.6	0.5	0.7
Iron	μg/g	NV	NV	<50	<50	55	<50	<50	<50	<50	<50	<50	<50
Lead	μg/g	NV	NV	0.2	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1
Lithium	µg/g	NV	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Magnesium	μg/g	NV	NV	424	363	321	412	380	386	430	428	361	438
Manganese	µg/g	NV	NV	2.1	<1.0	1.7	1.2	1.1	1	1.8	2.5	1.5	2.5
Mercury	µg/g	0.033	0.5 /1.8 (3)	<u>0.56</u>	0.02	<u>0.07</u>	0.03	<u>0.15</u>	<u>0.04</u>	<u>0.16</u>	<u>0.17</u>	<u>0.25</u>	<u>0.2</u>
Molybdenum	μg/g	NV	NV	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel	μg/g	NV	NV	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Phosphorus	µg/g	NV	NV	6290	2440	2390	5760	4140	4110	4480	4400	2790	6090
Potassium	hð/ð	NV	NV	3990	4450	4550	3730	4410	4560	4600	4190	4460	4360
Selenium	µg/g	NV	NV	0.5	0.6	0.6	0.7	2.1	0.5	0.7	0.7	0.6	0.6
Silver	μg/g	NV	NV	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Sodium	µg/g	NV	NV	520	333	373	692	517	490	440	548	448	696
Strontium	µg/g	NV	NV	<5	<5	<5	7	<5	<5	<5	<5	<5	<5
Tin	µg/g	NV	NV	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Uranium	µg/g	NV	NV	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Vanadium	µg/g	NV	NV	<0.4	<0.4	<0.4	<0.4	0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Zinc	µg/g	NV	NV	13.3	41.3	10.1	12.5	9.6	12.8	10.8	16.2	17.0	14.0

<u>Notes</u>

1) Value obtained from Canadian Council of Ministers of the Environment (2000) Canadian Tissue Residue

2) Values obtained from Ministry of Environment and Climate Change (MOECC) Fish Consumption Guideline Limit.

3) Value is 0.5mg/kg for children and women of child-bearing age; value is 1.8 mg/kg for the general population.

4) Exceedances to the CCME guidelines are inidicated in red, bold, underlined typeface

5) Exceedances to both the MOECC and CCME guidelines are indicated in <u>blue, bold and underlined typeface.</u>

Appendix A

Site Photographs

Photograph 1 – Vegetation surrounding the Unnamed Pond (SW1) looking north (August 16, 2017)

Photograph 2 – Vegetation adjacent to surface water and sediment sampling location in Unnamed Pond (SW1) (August 16, 2017)

Photograph 3 – View of wetland habitat observed in the northern bay of the Unnamed Pond. (September 7, 2017)

Photograph 4 – Vegetation surrounding surface water and sediment sampling location in the northern bay of unnamed 'gooseneck' lake (SW2) north of McNish Lake (August 16, 2017)

Photograph 5 – View of the unnamed gooseneck lake (SW2) looking south towards the creek drainage into McNish Lake (August 31, 2017)

Photograph 6 – Vegetation surrounding the southern bays of McNish Lake (August 31, 2017)

Photograph 8 – Location of gill net (MC3) deployed at a nearshore location in McNish Lake. (August 31, 2018)

Photograph 9 – Bedrock outcrops observed along the southern shoreline of Tee Lake (August 16, 2017)

Photograph 10 - Aquatic vegetation observed adjacent to surface water sampling location along the northwest bay of Tee Lake (SW4) (August 16, 2017)

Photograph 11 – Vegetation and rock substrate observed near angling locations in Tee Lake. (August 31, 2018)

Photograph 12 – Snapping Turtle observed backing on a bedrock outcrop near gill net location Tee1 on Tee Lake (August 16, 2017)

Photograph 10 – Northern Pike captured from McNish Lake by angling (August 31, 2017).

Appendix B

Scientific Collectors Permit

🗑 Ontario	Ministry of Natural Resources Ministère des	Licence to Collect Fish for Scientific Purposes	Licence No. Nº de permis 1087610
	Richesses naturelles	Permis pour faire la collecte de poissons à des fins scientifiques	Local Reference No. Nº de référence local
This licence is issued under Pa Act, 1997 to:	rt I of the Fish Licensir	ng Regulation made under the Fish and Wildlife Conservation	Issuer Account No. Nº de compte du dolivreur de permis. 10003092
Ce permis est délivré en vertu d aune de 1997 à:	le la Partie I du règlem	ent sur la délivrance de permis de pêche formulé conformément à la Loi sur la protec	ction du poisson et de la

Name of Licencee	Last Name / Nom de famille					First Name / Prénom	Middl	e Name / Second Prénom	
Nom du titulaire	Ms. Haring				N	lichaela	W		
du permis	Name of Business/Organization/	Affiliation (if a	applicable) /	Nom de l'e	ntreprise/de l'or	panisme/de l'affiliation (le cas	échéant)		
	DST Consulting End	ineers							
Mailing address of	Street Name & No /PO Box/RR#/Gen. [Del / Nº ruo/C P	/R R /poste res	lanto		an gala gala da mante ante ante ante da cana da mana d Mana da mana da			
Licencee Adresse postale du	Unit 3-1B, 885 Rege	ent Stree	et						
titulaire du permis	City/Town/Municipality / Ville/villa	ge/municipal	itė	3			Province/State Postal Code/Zip Code Province/État Code Postal/Zip		
	Sudbury	ON	P3B 5M4						
	ecies, size and quantites lecte des espèces suivant								
Species Espèces		Eggs Oeuf X	Juvenile Fretin X	Adults Adulte X	Numbers Nombre	Name of Waterbody Nom de l'étendue d'eau			
Rock Bass			x	x	5	Tee Lake			
Walleye			x	x	5	Tee Lake			
White Sucker			x	x	5	McNish Lake and	Tee Lake		
Yellow Perch			x	x	5	McNish Lake and	Tee Lake	1	
Northern Pike			x	x	5	McNish Lake and	Tee Lake		
Yes/Oui X Additio	nal species/Waterbody list attached	/ Liste d'espé	ces/d'étendu	ie d'eau ad	ditionnelles ci-j	pinte			
Purpose of collection But de la collecte	Evaluating current aqua	tic condi	tions with	ı respe	ct to surfac	e water and sedime	nt quality, fish		
	habitat and fisheries res	ources p	rior to pr	oject de	evelopmen	t.			
Licence Dates Dates du permis	Effective Date / Date d'entrée en v (YYYY-MM-DD		Expiry		d'expiration				
	2017-08-17			and the second second	17-10-27				
Licence conditions	This licence is subject to the cond		ed in Schedu			mis doit respecter les condition	ns de l'annexe A si celle-ci	est jointe.	
Conditions du permis	Yes/Oui No/Non Sche	dule A inclu	uded. / Ann	exe A ci-j	ointe				
Issued by (please print) Délivré par (vouillez écrire e	n caractèros d'imprimorie)		Sign	ature of is	suer / Signature	du délivreur	Date	of Issue/Date de délivrance	
Julia Hancock				AK	pmc	at		(YYYY-MM-DD) 2017-08-17	
Signature of Licences / Sign	ature du litulaire du permis	1D		U	- 6		Date		
Michaela	Haring UH	buing	+					(YYYY-MM-DD) 2017-08-17	

Michaela Haring

Personal information contained on this form is collected under the authority of the Fish and Wildlife Conservation Act, 1997 and will be used for the purpose of licencing, identification, enforcement, resource management and customer service surveys. Please direct further induiries to the District Manager of the MNR issuing district.

Les renseignements personnels dans ce formulaire sont recueillis conformément à la Loi sur la protoction du poisson de la faune, 1997, et ils seront, utilisés aux fins de délivrance de permis, d'identification, d'application des règlements, de gestion des respources et de sendage sur les services à la clientéle. Vouillez communiquer avec le chef du district du MRN qui délivré le permis si vous avez des questions. 1

2017-08-17

Licence No. 1087610

Additional Species/Waterbody List DST Consulting Engineers

Species	Eggs	Juvenile	Adults	Numbers	Name of Waterbody
Small Mouth Bass		X	X	5	McNish Lake and Tee Lake
All other species encountered		X	X	5	McNish Lake and Tee Lake

Licence to Collect Fish for Scientific Purposes Pour faire la collecte de poisons a des fins scientifiques Schedule A – Licence Conditions Annexe A – Conditions du permis

Licence No./No de permis # 1087610

This licence is subject to the conditions listed below.

1. The licence is valid only for the persons, species, numbers, areas and calendar year indicated. A written report covering the operation of the preceding year must be submitted to the licence issuer within 30 days of the termination date, but in no case later than January 31 next following the year of issue. The report shall contain a statement outlining the objectives of the operations, the methods used, the number and species of fish caught, and their fate, as well as a map indicating where the collections took place. An analysis is not required. The submission of a satisfactory report is a prerequisite to any subsequent renewals.

- 2. Before carrying out any operation under the licence in any area, the licenced person shall inform **Kim Tremblay at 705-475-5502** of his or her intentions at least a week before commencing work, and include information as to the type of operation, location, duration, and the name or names of personnel involved.
- 3. A copy of the original licence must be carried by the licenced person when working at the designated sites. An assistant of the licenced person who is carrying out activities under this licence during the absence of the licenced person shall carry a copy of the licence on his or her person.

istry or permit) and/or Federal Sogeles at Risk Act (SARA) permit sampling must

- 4. All collection gear shall be clearly marked with the licenced person's and the organization's name.
- 5. This licence is not valid in Provincial Parks or Conservation Reserves without a written
- This licence is not valid in Provincial Parks of Conservation Reserves Research Authorization issued under the Provincial Parks and Conservation Reserves Act (http://www.ontarioparks.ca/science-research).
- 6. Capture gear shall be inspected regularly and live holding traps must be inspected at least once daily. Capture gear and live holding gear must be disinfected when moving from one waterbody to the next waterbody.
- 7. This licence does not allow access to any property without permission of the landowner.

Signature of Licencee/Signature du titulaire du permis

Date

2017-08-18

- 8. All live fish other than an individual of any species that are required for further identification **must be released at their location of capture upon completion of sampling.**
- 9. Provide a record of number or each species caught, released, and that died.
- 10. The following capture equipment may be used: Seine net, dip net, trap net, minnow traps and gill nets. Name of assistant covered under this licence is Winston Whymark. Any changes to assistants must be confirmed in writing.
- 11. Licence to collect Fish for Scientific Purposes Report Part 1 & Part 2 (Site Collection Report) must be submitted to this office at the completion of this project. Please submit a **copy to Kim Tremblay,** Management Biologist, by mail to the Ministry of Natural Resources and Forestry, 3301 Trout Lake Road North Bay, ON P1A 4L7, or by e-mail at <u>kim.tremblay@ontario.ca.</u>
- 12. Unless specifically authorized by a separate Endangered Species Act (ESA) authorization (i.e. registry or permit) and/or Federal Species at Risk Act (SARA) permit, no person shall attempt to catch a Species at Risk.
- 13. Unless specifically authorized by a separate Endangered Species Act (ESA) authorization (i.e. registry or permit) and/or Federal Species at Risk Act (SARA) permit, any Species at Risk that are incidentally captured must be photographed and immediately released alive at the point of capture (including, but not limited to: redside, dace, black redhorse, river redhorse, eastern sand darter, northern or American brook lamprey). The photographs, including capture coordinates and date caught, must be forwarded to the local Ministry of Natural Resources and Forestry District office for identification and confirmation.
- 14. Unless specifically authorized by a separate Endangered Species Act (ESA) authorization (i.e. registry or permit) and/or Federal Species at Risk Act (SARA) permit, sampling must cease immediately in an area when a Species at Risk is caught.
- 15. All aquatic Species at Risk must also be reported to the Ministry of Natural Resources and Forestry Natural Heritage Information Centre on the appropriate form at: hhtps://www.ontario.ca/environment-and-energy/natural-heritage-information-centre.

Capiture greated to translad regularly and two holding traps must be inspected at least a row daily. Canture guar and live holding gear must be disinfected when moving from one wate pody to the rest waterbody.

Signature of Licencee/Signature du titulaire du permis

Mang

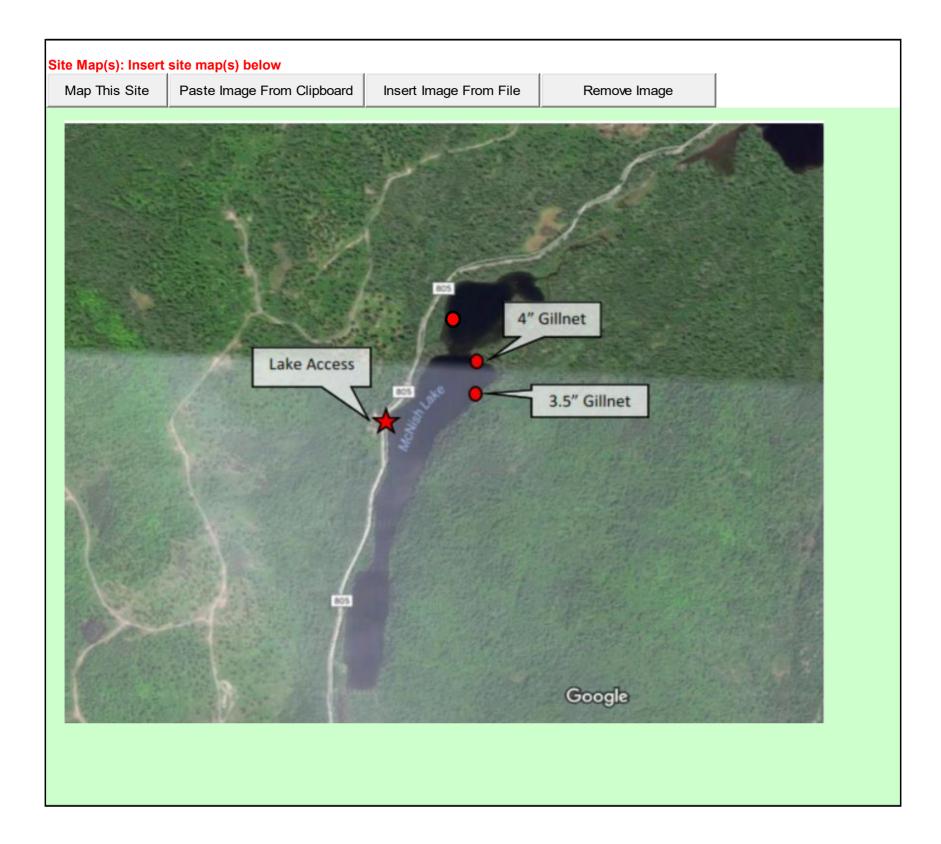
Date

2017-08-17-

Ministry of Natural Resource	N Complete I	Collect Fish for Scien Jandatory Collection F Part 1 - Administrative In rt 2 - Site Collection Rep Collection Site	Report Information Once	Field Definitions	<u>Français</u>
Add Blank Site Report	Copy Site Report	Delete Site Report	Printable Version		Clear

Part 2: Site Collection Reports - Complete Part 2 for each site surveyed and for each day sampling occurred at a site even if no species were caught at a particular site. Use the buttons above to either add a new site report, copy the current report to a new report, or delete the site report. Attach a digital map of the site directly to the bottom of this form by either pasting a map from the clipboard or inserting a map image from a file.

SECTION A: SITE L	OCATION INFORM	ATION				SECTION A: SITE LOCATION INFORMATION							
Licence No.:		Survey Site # / Code:			Site Code Type:								
1087610		17-5534-51811			MNRF Fish	Online							
		-							_				
Waterbody Name:			Waterbody Type:		Stream Pe		:y:	Watercres	ss Preser	nt:			
McNish Lake			Lake		Intermittent			No					
Township / Municipality / Territorial District Name:													
MCNISH, GEOGRA													
		/1											
Site Location: (fill i	in coordinates for e	either UTM,	decimal degrees,	or degrees	s minutes se	econds)							
UTM (NAD 83):	Decimal [.	-	Minutes Sec		itude/longi	tude):					
Zone: 17	Lat:			Lat:	0			ŕ		"N			
Easting: 554077	Long:			Long:	0					"W			
Northing 5181401	-			Ū									
Site Location/Acce	ss Description:												
	sed to the west direc	tly off of Hic	hway 805 from a p	reexistina b	oat launch n	ear local	cottages.	The North	portion of				
the local was the prin			, may eve nom a p	ooxioting b	outlaunonn	iour locur	oonagoo.						
Site Location Com	ments:												
Two gillnets (4" and	3.5") were deployed	as depicted	l below in the site lo	cation map									


SECTION B: SAMPLING INFORMATION									
Sampling Date:Sampling Start Time: (24 hour31/08/20170945				ur clock)	Sampling End Tim	ne: (24 hour clock)			
				Air Temperature: (18.0	° C) Time Tal 0945	ken: (24 hour clock)			
Survey Type:				Secchi Depth: (m)					
Non-Standard Sampling Pre	esence/Abse	nce Survey							
				Survey Type/Gear Type Other Description:					
Gear Types: (select all that	at apply)			- All fish caught by angling; 4" and 3.5" gillnet deployed					
Angling Equipme	nt: Yes	Dipnets:							
Broadcast Ne	ts:	Eel Pots:							
Electrofishing Ge	ar:	Gillnets:	Yes						
Figh Lodd	ori	Dissisidar							

risti Lauder.	1 13010100.
Fyke Nets:	Trapnets:
Minnow Traps:	Trawls:
Seine Net:	Other:

SECTION C: ELECTROFISHING (if there was no electrofishing at this site, continue to Section D).								
Number of Electofisher Seconds Fished: (seconds)	Voltage: (V)	Amperage: (A)	Frequency: (Hz)					
Length of Site Electrofished: (m)	Mean Wie	dth of Site Surveyed: (m)						
Sampling/Electrofishing Comments:								

Were fish, mussels, snails captured at				*If yes, the	en record o	details belo	DW.		
	MNR						Length	: Fork	Bulk
Species Common Name	Species	No.		No. Live	Adult	YOY	Smallest Size	Largest Size (mm)	
Show: All Fish Species	Code	Caught	No. Kept	Release	(y / n)	(y / n)	(mm)		(g)
northern pike	131	4	4	0	У	n	412	582	335
yellow perch	331	1	1	0	у	n	178	178	(
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							

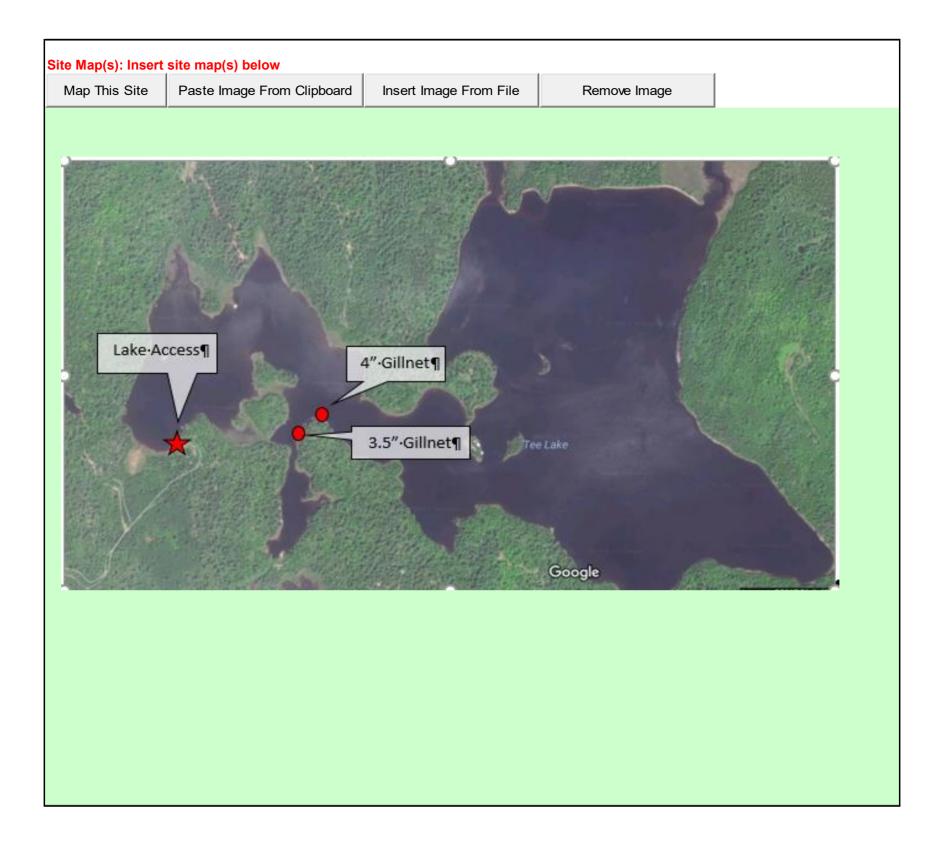
Fish Captured Comments: Each gillnet was deployed perpendicular from the shoreline and was allowed to fish for no longer than 1.5 hours. While gillnets were deployed, the sorrounding area was angled. No fish were caught by the gill nets deployed, but rather all were obtained by angling. No bait was used during angling and all equipment was thoroughly disinfected following sampling.

Ministry of Natural Resource	N Complete I	Collect Fish for Scier Jandatory Collection R Part 1 - Administrative Ir rt 2 - Site Collection Rep Collection Site	Report Information Once	Field Definitions	<u>Français</u>
Add Blank Site Report	Copy Site Report	Delete Site Report	Printable Version		Clear

Part 2: Site Collection Reports - Complete Part 2 for each site surveyed and for each day sampling occurred at a site even if no species were caught at a particular site. Use the buttons above to either add a new site report, copy the current report to a new report, or delete the site report. Attach a digital map of the site directly to the bottom of this form by either pasting a map from the clipboard or inserting a map image from a file.

SECTION A: SITE LOCATION INFORMATION								
Licence No.:	Survey Site	# / Code:	Site Code	Site Code Type:				
1087610	17-5571-518		MNRF Fis					
Waterbody Name:		aterbody Type:	Stream P	ermanency:	Watercress Presen	τ:		
Tee Lake	Lá	ake						
Township / Municipality / Territorial District Name: PARDO, GEOGRAPHIC TOWNSHIP OF								
Site Location: (fill in coordina	ates for either UTM. de	ecimal degrees, or d	dearees minutes :	seconds)				
•	Decimal Degrees:			conds (latitude/longit	tude):			
Zone: 17	Lat:		Lat:	°	,	"N		
Easting: 556588	Long:		Long:	•		"W		
Northing 5180412	U		0					
Site Location/Access Descrip	tion:							
The Lake was accessed from the	ne south-southwest by a	an unmarked former l	ogging road. Two	gill nets were deploy	ed in the south-			
southwest lake boundary, as de	picted below in the site	location map. Four fi	sh were caught by	gillnets and one fish	was caught by			
angling.								
Site Location Comments:								
SECTION B: SAMPLING INFO	RMATION							
Complian Date:	Commission Of	ant Times (04 hours o			a. (OA have alaak)			
Sampling Date:		art Time: (24 hour c	,	Sampling End Time	e: (24 nour clock)			
30/08/2017	0830			0300				
Water Temperature: (°C)	Time Taken: (24 hour	clock) Ai	r Temperature: (°	C) Time Tak	en: (24 hour clock)			

Water Temperature: (°C)	ur clock)	Air Temperature: (°C) Time Taken: (24 hour clock)						
20.9	1300		-		18.0		0900	
				Secchi Depth: (m)				
Survey Type:								
					Survey Type/Gear Type Other Description:			
Gear Types: (select all that a	apply)				- A 3.5" and 4" gillnet was deployed.			
Angling Equipment:	Yes	Dipnets:						
Broadcast Nets:		Eel Pots:						
Electrofishing Gear:		Gillnets:	Yes					
Fish Ladder		Piscicide [.]						


risti Lauder.	1 13010100.
Fyke Nets:	Trapnets:
Minnow Traps:	Trawls:
Seine Net:	Other:

SECTION C: ELECTROFISHING (if there was no electrofishing at this site, continue to Section D).								
Number of Electofisher Seconds Fished: (seconds)	Voltage: (V)	Amperage: (A)	Frequency: (Hz)					
Length of Site Electrofished: (m)	Mean Wie	dth of Site Surveyed: (m)						
Sampling/Electrofishing Comments:								

Were fish, mussels, o snails captured at				*If yes, the	en record	details belo	ow.		
	MNR						Length	: Fork	Bulk
Species Common Name	Species	No.		No. Live	Adult	YOY	Smallest Size	Largest Size (mm)	Weigh
Show: All Fish Species	Code	Caught	No. Kept	Release	(y / n)	(y / n)	(mm)		(g)
oumpkinseed	311	3	1	2	y	n	141	146	ç
white sucker	163	2	2	0	y	n	330	416	119
walleye	334	1	1	0	ý	n	431	431	7:
smallmouth bass	316	2	1	1	y	у	263	263	2
		0				Í			
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
	_	0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							
		0							

Fish Captured Comments:

Each gillnet was deployed perpendicular to the shoreline and was checked every 1.5 hours for fish. No net was allowed to fish for longer than 1.5 hours. There area sorrounding the nets were additionally angled. The 3.5" gillnet successfully caught the following fish: (1) white sucker; (1) small mouth bass. The 4" gillnet successfull caught (1) walleye; and (1) white sucker. The remaining fish (4) rock bass and (2) small mouth bass were caught by angling using worm as bait. Only five fish were kept as part of this study, the remaining were released back into the waterbody.

Appendix C

Laboratory Certificates of Analysis

CLIENT NAME: DST CONSULTING ENGINEERS 885 REGENT SREET, UNIT 3-1B SUDBURY, ON P3E5M4 (705) 523-6680

ATTENTION TO: Michaela Haring

PROJECT: TS-NO-030045

AGAT WORK ORDER: 17T250722

WATER ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

DATE REPORTED: Sep 01, 2017

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 8

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 17T250722 PROJECT: TS-NO-030045

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DST CONSULTING ENGINEERS

SAMPLING SITE:

ATTENTION TO: Michaela Haring

SAMPLED BY:

	Surface Water Parameters										
DATE RECEIVED: 2017-08-18 DATE REPORTED: 2017-08-24								ED: 2017-08-24			
Parameter	S Unit		CRIPTION: PLE TYPE: SAMPLED: RDL	SW1 Water 2017-08-16 8653850	RDL	SW2 Water 2017-08-16 8653889	SW200 Water 2017-08-16 8653933	SW3 Water 2017-08-16 8653957	SWB1 Water 2017-08-16 8653971	SW4 Water 2017-08-16 8653984	
Electrical Conductivity	uS/cm		2	21	2	57	57	34	<2	33	
pH	pH Units	6.5-8.5	NA	6.00	NA	7.42	7.50	7.29	5.98	7.32	
Total Hardness (as CaCO3)	mg/L		0.5	7.6	0.5	23.6	24.1	14.3	<0.5	13.7	
Total Suspended Solids	mg/L		10	<10	10	<10	<10	<10	<10	<10	
Alkalinity (as CaCO3)	mg/L		5	<5	5	18	17	9	<5	9	
Bicarbonate (as CaCO3)	mg/L		5	<5	5	18	17	9	<5	9	
Carbonate (as CaCO3)	mg/L		5	<5	5	<5	<5	<5	<5	<5	
Chloride	mg/L		0.10	0.23	0.10	1.87	1.74	0.18	<0.10	0.19	
Nitrate as N	mg/L		0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Nitrite as N	mg/L		0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	
Sulphate	mg/L		0.10	4.27	0.10	5.33	5.33	3.82	<0.10	3.97	
Ammonia as N	mg/L		0.02	0.03	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Ammonia-Un-ionized	mg/L	0.02	NA	0.000018	NA	NR	NR	NR	NR	NR	
Total Phosphorus	mg/L	0.03	0.01	0.02	0.01	0.01	0.01	0.01	<0.01	0.02	
Total Phosphorus, Dissolved	mg/L	0.03	0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	
Dissolved Organic Carbon	mg/L		1.0	8.9	0.5	6.1	6.0	7.3	<0.5	6.9	
Calcium	mg/L		0.05	2.04	0.05	7.16	7.31	4.00	<0.05	3.83	
Magnesium	mg/L		0.05	0.62	0.05	1.40	1.42	1.04	<0.05	1.00	
Sodium	mg/L		0.05	0.65	0.05	0.93	0.94	0.75	<0.05	0.72	
Potassium	mg/L		0.05	0.39	0.05	0.40	0.42	0.34	<0.05	0.29	
Aluminum (dissolved)	mg/L	0.075	0.004	0.091	0.004	0.016	0.014	0.015	< 0.004	0.013	
Antimony	mg/L	0.020	0.003	<0.003	0.003	< 0.003	<0.003	< 0.003	<0.003	<0.003	
Arsenic	mg/L	0.1	0.003	<0.003	0.003	< 0.003	< 0.003	<0.003	< 0.003	<0.003	
Barium	mg/L		0.002	0.006	0.002	0.004	0.004	0.004	<0.002	0.004	
Beryllium	mg/L	0.011	0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
Bismuth	mg/L		0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002	
Boron	mg/L	0.20	0.010	<0.010	0.010	<0.010	<0.010	<0.010	<0.010	<0.010	
Cadmium	mg/L	0.0002	0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	mg/L		0.003	<0.003	0.003	<0.003	<0.003	<0.003	<0.003	<0.003	
Cobalt	mg/L	0.0009	0.0005	0.0008	0.0005	< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	

Certified By:

Mile Muneman

Certificate of Analysis

AGAT WORK ORDER: 17T250722 PROJECT: TS-NO-030045 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DST CONSULTING ENGINEERS

SAMPLING SITE:

ATTENTION TO: Michaela Haring

SAMPLED BY:

Surface Water Parameters										
DATE RECEIVED: 2017-08-18								I		ED: 2017-08-24
Parameter	Unit		CRIPTION: PLE TYPE: SAMPLED: RDL	SW1 Water 2017-08-16 8653850	RDL	SW2 Water 2017-08-16 8653889	SW200 Water 2017-08-16 8653933	SW3 Water 2017-08-16 8653957	SWB1 Water 2017-08-16 8653971	SW4 Water 2017-08-16 8653984
Copper	mg/L	0.005	0.001	0.002	0.001	0.001	0.001	0.001	<0.001	0.001
Iron	mg/L	0.3	0.01	0.05	0.01	0.03	0.03	0.02	<0.01	0.02
Lead	mg/L	0.005	0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Manganese	mg/L		0.002	0.017	0.002	0.007	0.007	0.004	<0.002	0.006
Dissolved Mercury	mg/L	0.0002	0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Molybdenum	mg/L	0.04	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nickel	mg/L	0.025	0.003	0.006	0.003	<0.003	< 0.003	< 0.003	< 0.003	<0.003
Selenium	mg/L	0.1	0.004	<0.004	0.004	< 0.004	<0.004	<0.004	< 0.004	<0.004
Silicon	mg/L		0.05	0.45	0.05	1.45	1.47	1.04	<0.05	0.91
Silver	mg/L	0.0001	0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Strontium	mg/L		0.005	0.008	0.005	0.016	0.017	0.013	<0.005	0.013
Thallium	mg/L	0.0003	0.0003	<0.0003	0.0003	< 0.0003	<0.0003	<0.0003	< 0.0003	<0.0003
Tin	mg/L		0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Titanium	mg/L		0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Uranium	mg/L	0.005	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Vanadium	mg/L	0.006	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Zinc	mg/L	0.02	0.005	0.007	0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Zirconium	mg/L	0.004	0.004	<0.004	0.004	<0.004	<0.004	<0.004	<0.004	<0.004

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO (mg/L)

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8653850 The calculation of Un-ionized Ammonia was based on lab measured parameters (pH and temperature) rather than the field parameters, these were not provided to the lab. The temperature is recorded at the time of pH measurement. Values are reported as calculated.

For samples where the concentration of NH3-N is less than the MDL, Un-ionised Ammonia is reported as NR (Not Reportable). Sample was prior to analysis for DOC; the RDL was adjusted to reflect the dilution.

8653889-8653984 The calculation of Un-ionized Ammonia was based on lab measured parameters (pH and temperature) rather than the field parameters, these were not provided to the lab. The temperature is recorded at the time of pH measurement. Values are reported as calculated.

For samples where the concentration of NH3-N is less than the MDL, Un-ionised Ammonia is reported as NR (Not Reportable).

Male Mumenion

Guideline Violation

AGAT WORK ORDER: 17T250722 PROJECT: TS-NO-030045 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DST CONSULTING ENGINEERS

ATTENTION TO: Michaela Haring

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
8653850	SW1	PWQO (mg/L)	Surface Water Parameters	Aluminum (dissolved)	mg/L	0.075	0.091
8653850	SW1	PWQO (mg/L)	Surface Water Parameters	рН	pH Units	6.5-8.5	6.00
8653971	SWB1	PWQO (mg/L)	Surface Water Parameters	рН	pH Units	6.5-8.5	5.98

Quality Assurance

Water Analysia

CLIENT NAME: DST CONSULTING ENGINEERS

PROJECT: TS-NO-030045

SAMPLING SITE:

AGAT WORK ORDER: 17T250722

ATTENTION TO: Michaela Haring

SAMPLED BY:

Water Analysis														
RPT Date:			UPLICATE			REFEREN		TERIAL	METHOD BLANK SPIKE		(SPIKE	MATRIX SPIK		KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable nits	Recovery	1 1 1	ptable nits	Recovery		ptable nits
						value	Lower	Upper		Lower	Upper		Lower	Upper
Surface Water Parameters														
Electrical Conductivity	8651310	1130	1130	0.0%	< 2	104%	80%	120%	NA			NA		
рН	8651310	8.24	8.16	1.0%	NA	100%	90%	110%	NA			NA		
Total Suspended Solids	8653971 8653971	< 10	<10	NA	< 10	100%	80%	120%	NA			NA		
Alkalinity (as CaCO3)	8651310	494	497	0.6%	< 5	98%	80%	120%	NA			NA		
Bicarbonate (as CaCO3)	8651310	494	497	0.6%	< 5	NA			NA			NA		
Carbonate (as CaCO3)	8651310	<5	<5	NA	< 5	NA			NA			NA		
Chloride	8651394	24.3	24.0	1.2%	< 0.10	94%	90%	110%	108%	90%	110%	108%	80%	120%
Nitrate as N	8651394	0.33	0.33	0.0%	< 0.05	95%	90%	110%	101%	90%	110%	105%	80%	120%
Nitrite as N	8651394	<0.25	<0.25	NA	< 0.05	NA	90%	110%	106%	90%	110%	105%	80%	120%
Sulphate	8651394	3.79	3.71	2.1%	< 0.10	92%	90%	110%	99%	90%	110%	100%	80%	120%
Ammonia as N	8653889 8653889	< 0.02	<0.02	NA	< 0.02	100%	90%	110%	99%	90%	110%	95%	80%	120%
Total Phosphorus	8653850 8653850	0.02	0.02	NA	< 0.01	98%	90%	110%	101%	90%	110%	100%	70%	130%
Total Phosphorus, Dissolved	8653850 8653850	< 0.02	< 0.02	NA	< 0.02	96%	90%	110%	106%	90%	110%	100%	80%	120%
Dissolved Organic Carbon	8653850 8653850	8.9	9.0	1.1%	< 0.5	110%	90%	110%	106%	90%	110%	95%	80%	120%
Calcium	8644884	88.4	86.2	2.5%	< 0.05	103%	90%	110%	104%	90%	110%	108%	70%	130%
Magnesium	8644884	52.3	51.1	2.3%	< 0.05	98%	90%	110%	98%	90%	110%	103%	70%	130%
Sodium	8644884	190	184	3.2%	< 0.05	101%	90%	110%	100%	90%	110%	102%	70%	130%
Potassium	8644884	13.2	12.7	3.9%	< 0.05	98%	90%	110%	97%	90%	110%	100%	70%	130%
Aluminum (dissolved)	8653850 8653850	0.091	0.101	10.4%	< 0.004	100%	90%	110%	101%	90%	110%	89%	70%	130%
Antimony	8653850 8653850	< 0.003	< 0.003	NA	< 0.003	94%	90%	110%	91%	90%	110%	87%	70%	130%
Arsenic	8653850 8653850	< 0.003	< 0.003	NA	< 0.003	94%	90%	110%	96%	90%	110%	95%	70%	130%
Barium	8653850 8653850	0.006	0.006	NA	< 0.002	101%	90%	110%	102%	90%	110%	96%	70%	130%
Beryllium	8653850 8653850	< 0.001	< 0.001	NA	< 0.001	93%	90%	110%	97%	90%	110%	94%	70%	130%
Bismuth	8653850 8653850	< 0.002	< 0.002	NA	< 0.002	103%	90%	110%	105%	90%	110%	101%	70%	130%
Boron	8653850 8653850	< 0.010	< 0.010	NA	< 0.010	100%	90%	110%	101%	90%	110%	98%	70%	130%
Cadmium	8653850 8653850	< 0.0001	< 0.0001	NA	< 0.0001	98%	90%	110%	103%	90%	110%	105%	70%	130%
Chromium	8653850 8653850	< 0.003	< 0.003	NA	< 0.003	97%	90%	110%	98%	90%	110%	96%	70%	130%
Cobalt	8653850 8653850	0.0008	0.0008	NA	< 0.0005		90%	110%	99%	90%	110%	99%	70%	130%
Copper	8653850 8653850	0.000	0.002	NA	< 0.0003	101%	90%	110%	106%	90%	110%	102%	70%	130%
Iron	8653850 8653850	0.05	0.002	0.0%	< 0.001	96%	90%	110%	95%	90%	110%	93%	70%	130%
Lead	8653850 8653850	< 0.001	< 0.001	NA	< 0.001	100%	00%	110%	103%	00%	110%	100%	70%	130%
Manganese	8653850 8653850	0.001	< 0.001 0.0164	3.6%	< 0.001	98%		110%	103%		110%	98%	70%	130%
Dissolved Mercury	8654827	<0.0001	<0.0001		< 0.0002			110%	99%		110%	96%	70%	130%
Molybdenum	8653850 8653850	< 0.0001	< 0.0001	NA NA	< 0.0001	99% 95%		110%	99% 98%		110%	90% 101%	70% 70%	130%
Nickel	8653850 8653850	< 0.002 0.006	< 0.002 0.006	NA	< 0.002	95% 95%		110%	100%		110%	96%	70%	
Selenium	8653850 8653850	< 0.004	< 0.004	NA	< 0.004	97%	0.0%	110%	100%	00%	110%	102%	70%	130%
Silicon	8653850 8653850	< 0.004 0.45				97% 97%						94%	70%	130%
Silver			0.44	2.2%	< 0.05			110%	99% 110%		110%			
	8653850 8653850		< 0.0001	NA	< 0.0001			110%	110%		110%	114%	70%	130%
Strontium	8653850 8653850	0.008	0.008	NA	< 0.005	99%	90%	110%	102%	90%	110%	97%	10%	130%

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 5 of 8

Quality Assurance

CLIENT NAME: DST CONSULTING ENGINEERS

PROJECT: TS-NO-030045

SAMPLING SITE:

AGAT WORK ORDER: 17T250722 ATTENTION TO: Michaela Haring SAMPLED BY:

Water Analysis (Continued)

RPT Date:			D	DUPLICATE			REFEREN	REFERENCE MATERIAL		METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch	Batch Sample		Dup #2	RPD	Method Blank	ank Measured	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
		ld	Dup #1	- ap			Value	Lower	Upper			Upper		Lower	Upper
Thallium	8653850	8653850	< 0.0003	< 0.0003	NA	< 0.0003	103%	90%	110%	108%	90%	110%	102%	70%	130%
Tin	8653850	8653850	< 0.002	< 0.002	NA	< 0.002	97%	90%	110%	98%	90%	110%	98%	70%	130%
Titanium	8653850	8653850	< 0.002	< 0.002	NA	< 0.002	95%	90%	110%	99%	90%	110%	96%	70%	130%
Uranium	8653850	8653850	< 0.002	< 0.002	NA	< 0.002	100%	90%	110%	100%	90%	110%	97%	70%	130%
Vanadium	8653850	8653850	< 0.002	< 0.002	NA	< 0.002	94%	90%	110%	96%	90%	110%	95%	70%	130%
Zinc	8653850	8653850	0.007	0.007	NA	< 0.005	97%	90%	110%	104%	90%	110%	101%	70%	130%
Zirconium	8653850	8653850	< 0.004	< 0.004	NA	< 0.004	94%	90%	110%	94%	90%	110%	88%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Male Munemon

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 8

Method Summary

CLIENT NAME: DST CONSULTING ENGINEERS

PROJECT: TS-NO-030045

SAMPLING SITE:

AGAT WORK ORDER: 17T250722

ATTENTION TO: Michaela Haring SAMPLED BY:

SAMPLING SITE:	1	SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE
Total Hardness (as CaCO3)	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Total Suspended Solids	INOR-93-6028	SM 2540 D	BALANCE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Bicarbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Carbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	QuikChem 10-107-06-1-J & SM 4500 NH3-F	LACHAT FIA
Ammonia-Un-ionized		MOE REFERENCE, PWQOs Tab 2	CALCULATION
Total Phosphorus	INOR-93-6022	SM 4500-P B&E	SPECTROPHOTOMETER
Total Phosphorus, Dissolved	INOR-93-6022	SM 4500-P B&E	SPECTROPHOTOMETER
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Aluminum (dissolved)	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Bismuth	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Iron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Manganese	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Dissolved Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silicon	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Strontium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Tin	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Titanium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zirconium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS

CHAIN OF CUSTODY RECORD	es 5835 Coopers Avenue Mississauga, Ontario; L4Z 1Y2 Phone: 905-712-5100; Fax: 905-712-5122	Arrival Condit Arrival Tempe AGAT Job Nu Notes:	1	d Poor (complete "Notes") 912818583
Client Information Company: DST Consulting Engineers Inc. Contact: Michaela Haring Address: 885 Regent St. Sudbury Ontario P3E 5M4 Sudbury Ontario P3E 5M4 Phone: 705-523-6680 Fax: PO#:	Report Information 1. Name: Michaela Haring Email: mharing@dstgroup 2. Name: Locyco. Ritchice Email: Iritchic @dstgroup 3. Name: Email: Email: Email: 4. Name: Email:		ReportFormat(Please "x"those thatapply)Singlesample perpageXMultiplesamplesper pageResults byFax	Turnaround Time (TAT)* (Please "x" the applicable box below) Regular TAT: x 5 to 7 working days Rush TAT (Rush Surcharges Apply): 3 to 5 days 48 to 72 hours 24 to 48 hours Date Required (Rush surcharges may apply)
Regulatory Guideline Required: (Please "x" those that Reg 153 Table Sewer Use PWQO (indicate one) Region Reg 558 Ind/Com (indicate one) CCME Res/Park Sanitary Other (indicate one) Ag Storm	ate) (potable water intended for human consumption)? Yes No If "Yes" please use the Drinking Water Chain of Custody Record	Bicarb, Carbonate Ammonis, unionized NH3 T Phos. discolved TP	1 TSS, DO 5 103,S04 a,K	Metals full scan Dissolved AL and HG
Sample Identification Date Sampled Time Sampled Sample Matrix SW1 Aug16-17 II300.m SW1 SW2 II300.m SW1 SW3 II300.m SW2 SW3 II300.m SW2 SW4 II300.m SW2 SW4 Aug16-17 II300.m SW4 Aug16-17 II300.m	e of Comments - Site/Sample Containers Info, Sample Containment 8 Samples were u M NOE - fallal fallend 1 1 2 2 3 3 3 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4			
TOTAL # OF CONTAINERS Sample Relinquished By (print name & sign) Date/Ti Manual Manu	me Samples Received By (print na	me and sign)	n for the next business day. Date/Time 17-AUG17- Date/Time 18-951	TAT is exclusive of weekends and statutory holidays Special Instructions I (200) Page of

D	~	- 6	~
Page	ø	σ	σ

CLIENT NAME: DST CONSULTING ENGINEERS 82 RICHMOND ST. EAST TORONTO, ON M5C 1P1 416-214-5952

ATTENTION TO: Michaela Haring

PROJECT: TS-NO-030045

AGAT WORK ORDER: 17T250722

WATER ANALYSIS REVIEWED BY: Mike Muneswar, BSc (Chem), Senior Inorganic Analyst

DATE REPORTED: Sep 01, 2017

PAGES (INCLUDING COVER): 8

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 8

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17T250722 PROJECT: TS-NO-030045 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DST CONSULTING ENGINEERS

SAMPLING SITE:

ATTENTION TO: Michaela Haring

SAMPLED BY:

				Surfa	ace Water F	Parameters				
DATE RECEIVED: 2017-08-18								[DATE REPORTED:	2017-09-01
Parameter	S Unit		CRIPTION: PLE TYPE: SAMPLED: RDL	SW1 Water 2017-08-16 8653850	RDL	SW2 Water 2017-08-16 8653889	SW200 Water 2017-08-16 8653933	SW3 Water 2017-08-16 8653957	SW4 Water 2017-08-16 8653984	
Electrical Conductivity	uS/cm		2	21	2	57	57	34	33	
pH	pH Units	6.5-8.5	NA	6.00	NA	7.42	7.50	7.29	7.32	
Total Hardness (as CaCO3)	mg/L		0.5	7.6	0.5	23.6	24.1	14.3	13.7	
Total Suspended Solids	mg/L		10	<10	10	<10	<10	<10	<10	
Alkalinity (as CaCO3)	mg/L		5	<5	5	18	17	9	9	
Bicarbonate (as CaCO3)	mg/L		5	<5	5	18	17	9	9	
Carbonate (as CaCO3)	mg/L		5	<5	5	<5	<5	<5	<5	
Chloride	mg/L		0.10	0.23	0.10	1.87	1.74	0.18	0.19	
Nitrate as N	mg/L		0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	
Nitrite as N	mg/L		0.05	<0.05	0.05	<0.05	<0.05	<0.05	<0.05	
Sulphate	mg/L		0.10	4.27	0.10	5.33	5.33	3.82	3.97	
Ammonia as N	mg/L		0.02	0.03	0.02	<0.02	<0.02	<0.02	<0.02	
Ammonia-Un-ionized	mg/L	0.02	NA	0.000018	NA	NR	NR	NR	NR	
Total Phosphorus	mg/L	0.030	0.01	0.02	0.01	0.01	0.01	0.01	0.02	
Total Phosphorus, Dissolved	mg/L	0.030	0.02	<0.02	0.02	<0.02	<0.02	<0.02	<0.02	
Dissolved Organic Carbon	mg/L		1.0	8.9	0.5	6.1	6.0	7.3	6.9	
Calcium	mg/L		0.05	2.04	0.05	7.16	7.31	4.00	3.83	
Magnesium	mg/L		0.05	0.62	0.05	1.40	1.42	1.04	1.00	
Sodium	mg/L		0.05	0.65	0.05	0.93	0.94	0.75	0.72	
Potassium	mg/L		0.05	0.39	0.05	0.40	0.42	0.34	0.29	
Aluminum (dissolved)	mg/L	0.075	0.004	0.091	0.004	0.016	0.014	0.015	0.013	
Antimony	mg/L	0.020	0.003	<0.003	0.003	<0.003	<0.003	< 0.003	< 0.003	
Arsenic	mg/L	0.1	0.003	<0.003	0.003	< 0.003	<0.003	< 0.003	<0.003	
Barium	mg/L		0.002	0.006	0.002	0.004	0.004	0.004	0.004	
Beryllium	mg/L	0.011	0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001	
Bismuth	mg/L		0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002	
Boron	mg/L	0.20	0.010	<0.010	0.010	<0.010	<0.010	<0.010	<0.010	
Cadmium	mg/L	0.0002	0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001	
Chromium	mg/L		0.003	<0.003	0.003	<0.003	< 0.003	< 0.003	<0.003	
Cobalt	mg/L	0.0009	0.0005	0.0008	0.0005	<0.0005	<0.0005	<0.0005	<0.0005	

Certified By:

Mile Mumenon

AGAT WORK ORDER: 17T250722 PROJECT: TS-NO-030045

...

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: DST CONSULTING ENGINEERS

SAMPLING SITE:

ATTENTION TO: Michaela Haring

SAMPLED BY:

Surface Water Parameters												
DATE RECEIVED: 2017-08-18								[DATE REPORTED	: 2017-09-01		
		SAMPLE DESC	CRIPTION:	SW1		SW2	SW200	SW3	SW4			
		SAMF	PLE TYPE:	Water		Water	Water	Water	Water			
		DATE S	SAMPLED:	2017-08-16		2017-08-16	2017-08-16	2017-08-16	2017-08-16			
Parameter	Unit	G/S	RDL	8653850	RDL	8653889	8653933	8653957	8653984			
Copper	mg/L	0.005	0.001	0.002	0.001	0.001	0.001	0.001	0.001			
Iron	mg/L	0.3	0.01	0.05	0.01	0.03	0.03	0.02	0.02			
Lead	mg/L	0.005	0.001	<0.001	0.001	<0.001	<0.001	<0.001	<0.001			
Manganese	mg/L		0.002	0.017	0.002	0.007	0.007	0.004	0.006			
Dissolved Mercury	mg/L	0.0002	0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001			
Molybdenum	mg/L	0.04	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002			
Nickel	mg/L	0.025	0.003	0.006	0.003	<0.003	<0.003	<0.003	<0.003			
Selenium	mg/L	0.1	0.004	<0.004	0.004	<0.004	<0.004	<0.004	<0.004			
Silicon	mg/L		0.05	0.45	0.05	1.45	1.47	1.04	0.91			
Silver	mg/L	0.0001	0.0001	<0.0001	0.0001	<0.0001	<0.0001	<0.0001	<0.0001			
Strontium	mg/L		0.005	0.008	0.005	0.016	0.017	0.013	0.013			
Thallium	mg/L	0.0003	0.0003	<0.0003	0.0003	<0.0003	<0.0003	<0.0003	<0.0003			
Tin	mg/L		0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002			
Titanium	mg/L		0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002			
Uranium	mg/L	0.005	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002			
Vanadium	mg/L	0.006	0.002	<0.002	0.002	<0.002	<0.002	<0.002	<0.002			
Zinc	mg/L	0.02	0.005	0.007	0.005	<0.005	<0.005	<0.005	<0.005			
Zirconium	mg/L	0.004	0.004	<0.004	0.004	<0.004	<0.004	<0.004	<0.004			

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO (mg/L)

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

8653850 The calculation of Un-ionized Ammonia was based on lab measured parameters (pH and temperature) rather than the field parameters, these were not provided to the lab. The temperature is recorded at the time of pH measurement. Values are reported as calculated.

For samples where the concentration of NH3-N is less than the MDL, Un-ionised Ammonia is reported as NR (Not Reportable). Sample was prior to analysis for DOC; the RDL was adjusted to reflect the dilution.

8653889-8653984 The calculation of Un-ionized Ammonia was based on lab measured parameters (pH and temperature) rather than the field parameters, these were not provided to the lab. The temperature is recorded at the time of pH measurement. Values are reported as calculated.

For samples where the concentration of NH3-N is less than the MDL, Un-ionised Ammonia is reported as NR (Not Reportable).

Male Mumenion

Guideline Violation

AGAT WORK ORDER: 17T250722 PROJECT: TS-NO-030045 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DST CONSULTING ENGINEERS

ATTENTION TO: Michaela Haring

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT (GUIDEVALUE	RESULT
8653850	SW1	ON PWQO (mg/L)	Surface Water Parameters	Aluminum (dissolved)	mg/L	0.075	0.091
8653850	SW1	ON PWQO (mg/L)	Surface Water Parameters	рН	pH Units	6.5-8.5	6.00

Quality Assurance

CLIENT NAME: DST CONSULTING ENGINEERS

PROJECT: TS-NO-030045

SAMPLING SITE:

AGAT WORK ORDER: 17T250722

ATTENTION TO: Michaela Haring

SAMPLED BY:

				Wate	r An	alysis	5								
RPT Date: Sep 01, 2017			C	UPLICATE			REFEREN	ICE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Accer Lin	ptable nits	Recovery		ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Surface Water Parameters															
Electrical Conductivity	8651310		1130	1130	0.0%	< 2	104%	80%	120%	NA			NA		
рН	8651310		8.24	8.16	1.0%	NA	100%	90%	110%	NA			NA		
Total Suspended Solids	8653971 86	653971	< 10	<10	NA	< 10	100%	80%	120%	NA			NA		
Alkalinity (as CaCO3)	8651310		494	497	0.6%	< 5	98%	80%	120%	NA			NA		
Bicarbonate (as CaCO3)	8651310		494	497	0.6%	< 5	NA			NA			NA		
Carbonate (as CaCO3)	8651310		<5	<5	NA	< 5	NA			NA			NA		
Chloride	8651394		24.3	24.0	1.2%	< 0.10	94%	90%	110%	108%	90%	110%	108%	80%	120%
Nitrate as N	8651394		0.33	0.33	0.0%	< 0.05	95%	90%	110%	101%	90%	110%	105%	80%	120%
Nitrite as N	8651394		<0.25	<0.25	NA	< 0.05	NA	90%	110%	106%	90%	110%	105%	80%	120%
Sulphate	8651394		3.79	3.71	2.1%	< 0.10	92%	90%	110%	99%	90%	110%	100%	80%	120%
Ammonia as N	8653889 86	653889	< 0.02	<0.02	NA	< 0.02	100%	90%	110%	99%	90%	110%	95%	80%	120%
Total Phosphorus	8653850 86		0.02	0.02	NA	< 0.01	98%	90%	110%	101%	90%	110%	100%	70%	130%
Total Phosphorus, Dissolved	8653850 86		< 0.02	< 0.02	NA	< 0.02	96%	90%	110%	106%	90%	110%	100%	80%	120%
Dissolved Organic Carbon	8653850 86		8.9	9.0	1.1%	< 0.5	110%	90%	110%	106%	90%	110%	95%	80%	120%
Calcium	8644884		88.4	86.2	2.5%	< 0.05	103%	90%	110%	104%	90%	110%	108%	70%	130%
Magnesium	8644884		52.3	51.1	2.3%	< 0.05	98%	90%	110%	98%	90%	110%	103%	70%	130%
Sodium	8644884		190	184	3.2%	< 0.05	101%	90%	110%	100%	90%	110%	102%	70%	130%
Potassium	8644884		13.2	12.7	3.9%	< 0.05	98%	90%	110%	97%	90%	110%	102%	70%	130%
Aluminum (dissolved)	8653850 86	353850	0.091	0.101	10.4%	< 0.004	100%	90%	110%	101%	90%	110%	89%	70%	130%
Antimony	8653850 86		< 0.003	< 0.003	NA	< 0.003	94%	90%	110%	91%	90%	110%	87%	70%	130%
Arsenic	8653850 86	353850	< 0.003	< 0.003	NA	< 0.003	94%	90%	110%	96%	90%	110%	95%	70%	130%
Barium	8653850 86		0.006	0.006	NA	< 0.002	101%	90%	110%	102%	90%	110%	96%	70%	130%
Beryllium	8653850 86		< 0.001	< 0.001	NA	< 0.001	93%	90%	110%	97%	90%	110%	94%	70%	130%
Bismuth	8653850 86		< 0.002	< 0.002	NA	< 0.002	103%	90%	110%	105%	90%	110%	101%	70%	130%
Boron	8653850 86		< 0.010	< 0.010	NA	< 0.010	100%	90%	110%	101%	90%	110%	98%	70%	130%
Cadmium	8653850 86	353850	< 0.0001	< 0.0001	NA	< 0.0001	98%	90%	110%	103%	90%	110%	105%	70%	130%
Chromium	8653850 86		< 0.003	< 0.003	NA	< 0.003	97%	90%	110%	98%	90%	110%	96%	70%	130%
Cobalt	8653850 86		0.0008	0.0008	NA	< 0.0005		90%	110%	99%	90%	110%	99%	70%	130%
Copper	8653850 86		0.002	0.002	NA	< 0.001	101%	90%	110%	106%	90%	110%	102%	70%	130%
Iron	8653850 86		0.05	0.05	0.0%	< 0.01	96%		110%	95%		110%	93%	70%	130%
Lead	8653850 86	353850	< 0.001	< 0.001	NA	< 0.001	100%	90%	110%	103%	90%	110%	100%	70%	130%
Manganese	8653850 86		0.017	0.0164	3.6%	< 0.001	98%		110%	103%		110%	98%	70%	130%
Dissolved Mercury	8654827		<0.0001	<0.0001	NA	< 0.0002			110%	99%		110%	96%		130%
Molybdenum	8653850 86	353850	< 0.0001	< 0.0001	NA	< 0.0001	95%		110%	98%		110%	101%	70%	130%
Nickel	8653850 86		0.002	0.002	NA	< 0.002	95%		110%	100%		110%	96%		130%
Selenium	8653850 86	353850	< 0.004	< 0.004	NA	< 0.004	97%	Q0%	110%	100%	Q0%	110%	102%	70%	130%
Silicon	8653850 86		< 0.004 0.45	0.44	2.2%	< 0.004	97 % 97%		110%	99%		110%	94%	70%	130%
Silver	8653850 86		< 0.0001	< 0.0001	2.270 NA	< 0.0001			110%	110%		110%	114%	70%	130%
Strontium	8653850 86		0.008	0.008	NA	< 0.0001	94 % 99%		110%	102%		110%	97%		130%
			0.000	0.000		- 0.000	0070	5070	11070	102 /0	5570	11070	0170	1070	10070

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 5 of 8

Quality Assurance

CLIENT NAME: DST CONSULTING ENGINEERS

PROJECT: TS-NO-030045

SAMPLING SITE:

AGAT WORK ORDER: 17T250722

ATTENTION TO: Michaela Haring SAMPLED BY:

Water Analysis (Continued)

					,	`		'							
RPT Date: Sep 01, 2017			C	UPLICATE	Ξ		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
Thallium	8653850	8653850	< 0.0003	< 0.0003	NA	< 0.0003	103%	90%	110%	108%	90%	110%	102%	70%	130%
Tin	8653850	8653850	< 0.002	< 0.002	NA	< 0.002	97%	90%	110%	98%	90%	110%	98%	70%	130%
Titanium	8653850	8653850	< 0.002	< 0.002	NA	< 0.002	95%	90%	110%	99%	90%	110%	96%	70%	130%
Uranium	8653850	8653850	< 0.002	< 0.002	NA	< 0.002	100%	90%	110%	100%	90%	110%	97%	70%	130%
Vanadium	8653850	8653850	< 0.002	< 0.002	NA	< 0.002	94%	90%	110%	96%	90%	110%	95%	70%	130%
Zinc	8653850	8653850	0.007	0.007	NA	< 0.005	97%	90%	110%	104%	90%	110%	101%	70%	130%
Zirconium	8653850	8653850	< 0.004	< 0.004	NA	< 0.004	94%	90%	110%	94%	90%	110%	88%	70%	130%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Mile Muneman

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 6 of 8

Method Summary

CLIENT NAME: DST CONSULTING ENGINEERS

PROJECT: TS-NO-030045

SAMPLING SITE:

AGAT WORK ORDER: 17T250722

ATTENTION TO: Michaela Haring SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	·		
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	SM 4500-H+ B	PC TITRATE
Total Hardness (as CaCO3)	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Total Suspended Solids	INOR-93-6028	SM 2540 D	BALANCE
Alkalinity (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Bicarbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Carbonate (as CaCO3)	INOR-93-6000	SM 2320 B	PC TITRATE
Chloride	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrate as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Nitrite as N	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Sulphate	INOR-93-6004	SM 4110 B	ION CHROMATOGRAPH
Ammonia as N	INOR-93-6059	QuikChem 10-107-06-1-J & SM 4500 NH3-F	LACHAT FIA
Ammonia-Un-ionized		MOE REFERENCE, PWQOs Tab 2	CALCULATION
Total Phosphorus	INOR-93-6022	SM 4500-P B&E	SPECTROPHOTOMETER
Total Phosphorus, Dissolved	INOR-93-6022	SM 4500-P B&E	SPECTROPHOTOMETER
Dissolved Organic Carbon	INOR-93-6049	EPA 415.1 & SM 5310 B	SHIMADZU CARBON ANALYZER
Calcium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Magnesium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Sodium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Potassium	MET-93-6105	EPA SW-846 6010C & 200.7	ICP/OES
Aluminum (dissolved)	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Antimony	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Arsenic	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Barium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Beryllium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Bismuth	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Boron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cadmium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Chromium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Cobalt	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Copper	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Iron	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Lead	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Manganese	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Dissolved Mercury	MET-93-6100	EPA SW 846 7470 & 245.1	CVAAS
Molybdenum	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Nickel	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Selenium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silicon	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Silver	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Strontium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Thallium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Tin	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Titanium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Uranium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Vanadium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zinc	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS
Zirconium	MET-93-6103	EPA SW-846 6020A & 200.8	ICP-MS

CHAIN OF CUSTODY RECORD	es 5835 Coopers Avenue Mississauga, Ontario; L4Z 1Y2 Phone: 905-712-5100; Fax: 905-712-5122	Arrival Condit Arrival Tempe AGAT Job Nu Notes:	1	Poor (complete "Notes")
Client Information Company: DST Consulting Engineers Inc. Contact; Michaela Haring Address: 885 Regent St. Sudbury Ontario P3E 5M4 Phone: 705-523-6680 PO#: Client Project #: TS-NO-030045 AGAT Quotation #; 177549	Report Information 1. Name: Michaela Haring Email: mharing@dstgroup 2. Name: Locyco. Ritchice Email: Iritchic @dstgroup 3. Name: Email: Email: Email: 4. Name: Email:		ReportFormat(Please "x"those thatapply)Singlesample perpageXMultiplesamplesper pageResults byFax	Turnaround Time (TAT)* (Please "x" the applicable box below) Regular TAT: x 5 to 7 working days Rush TAT (Rush Surcharges Apply): 3 to 5 days 48 to 72 hours 24 to 48 hours Date Required (Rush surcharges may apply):
Regulatory Guideline Required: (Please "x" those that Reg 153 Table Sewer Use (indicate one) Region Ind/Com (indicate one) Res/Park Sanitary Ag Storm	ate) (potable water intended for human consumption)? Yes No If "Yes" please use the Drinking Water Chain of Custody Record	Bicarb, Carbonate Ammonis, unionized NH3 T Phos. discolved TP	11755, DO 11755, DO 55 103, SO4 103, SO4	Metals full scan Dissolved AL and HG
Sample IdentificationDate SampledTime SampledSample MatrixSW1Aug16-17II300.mSIN1SW2IZ15.pemISW200IZ30.pmISW3IZ30.pmISW81IZ30.pmISW14Aug16-17430.pmSW4IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	# of Containers Comments - Site/Sample Info, Sample Containment B Samples were M NOE - full(1 fullered M NOE - fullered N NOE - fullered			
TOTAL # OF CONTAINERS Sample Relinquished By (print name & sign) Date/Ti Manual And	me Samples Received By (print na	me and sign)	n for the next business day. Date/Time 17-AUG17- Date/Time 18-951	TAT is exclusive of weekends and statutory holidays Special Instructions TAT is exclusive of weekends and statutory holidays Page of of

D	~	- 6	~
Page	ŏ	OT	ŏ

CLIENT NAME: DST CONSULTING ENGINEERS 885 REGENT SREET, UNIT 3-1B SUDBURY, ON P3E5M4 (705) 523-6680

ATTENTION TO: LAURA RITCHIE

PROJECT: TS-NO-030045

AGAT WORK ORDER: 17U258529

MISCELLANEOUS ANALYSIS REVIEWED BY: Milithza Silva, Analytical Supervisor (M.Sc. in Analytical Chemistry)

DATE REPORTED: Oct 03, 2017

PAGES (INCLUDING COVER): 6

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 6

Results relate only to the items tested and to all the items tested

All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

AGAT WORK ORDER: 17U258529 PROJECT: TS-NO-030045

Metale Scan + Cations (Tissue)

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: DST CONSULTING ENGINEERS

SAMPLING SITE:

ATTENTION TO: LAURA RITCHIE

SAMPLED BY:

			wetais	Scan + Cat	ions (Tissue)					
DATE RECEIVED: 2017-09-07 DATE REPORTED: 2017-09-18											
Parameter	Unit	SAMPLE DESCRIPTION: SAMPLE TYPE: DATE SAMPLED: G / S RDL	WALLY#1 Tissue 2017-08-30 8704887	WS#1 Tissue 2017-08-30 8704889	WS#2 Tissue 2017-08-30 8704890	RB#1 Tissue 2017-08-30 8704891	SM#1 Tissue 2017-08-30 8704892	NP#1 Tissue 2017-08-31 8704893	NP#2 Tissue 2017-08-31 8704894	NP#3 Tissue 2017-08-31 8704895	
Aluminum	µg/g	5.0	<5.0	<5.0	25.3	<5.0	<5.0	<5.0	<5.0	<5.0	
Antimony	µg/g	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	µg/g	0.1	<0.1	<0.1	<0.1	<0.1	1.5	<0.1	<0.1	<0.1	
Cadmium	µg/g	0.02	<0.02	<0.02	<0.02	<0.02	0.04	<0.02	<0.02	<0.02	
Calcium	µg/g	100	7490	172	242	6790	2930	2250	2580	3790	
Chromium	µg/g	0.6	0.7	<0.6	<0.6	<0.6	0.6	<0.6	<0.6	<0.6	
Cobalt	µg/g	0.3	<0.3	<0.3	<0.3	<0.3	0.3	<0.3	<0.3	<0.3	
Copper	µg/g	0.3	9.9	1.1	1.8	0.8	2.1	0.5	0.4	0.6	
Iron	µg/g	50	<50	<50	55	<50	<50	<50	<50	<50	
Lead	µg/g	0.1	0.2	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	
Lithium	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Magnesium	µg/g	100	424	363	321	412	380	386	430	428	
Manganese	µg/g	1.0	2.1	<1.0	1.7	1.2	1.1	1.0	1.8	2.5	
Mercury	µg/g	0.01	0.56	0.02	0.07	0.03	0.15	0.04	0.16	0.17	
Molybdenum	µg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Nickel	µg/g	1	<1	<1	<1	<1	<1	<1	<1	<1	
Phosphorus	µg/g	50	6290	2440	2390	5760	4140	4110	4480	4400	
Potassium	µg/g	100	3990	4450	4550	3730	4410	4560	4600	4190	
Selenium	µg/g	0.4	0.5	0.6	0.6	0.7	2.1	0.5	0.7	0.7	
Silver	µg/g	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Sodium	µg/g	100	520	333	373	692	517	490	440	548	
Strontium	µg/g	5	<5	<5	<5	7	<5	<5	<5	<5	
Tin	µg/g	1	<1	<1	<1	<1	<1	<1	<1	<1	
Uranium	µg/g	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Vanadium	µg/g	0.4	<0.4	<0.4	<0.4	<0.4	0.4	<0.4	<0.4	<0.4	
Zinc	µg/g	0.1	13.3	41.3	10.1	12.5	9.6	12.8	10.8	16.2	

Certified By:

Milithya O. Silva

AGAT WORK ORDER: 17U258529 PROJECT: TS-NO-030045

CLIENT NAME: DST CONSULTING ENGINEERS

SAMPLING SITE:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

ATTENTION TO: LAURA RITCHIE

SAMPLED BY:

Metals Scan + Cations (Tissue)											
DATE RECEIVED: 2017-09-07					DATE REPORT	ED: 2017-09-18					
	S	AMPLE DESCRIPTION:	NP#4	YP#1							
		SAMPLE TYPE:	Tissue	Tissue							
		DATE SAMPLED:	2017-08-31	2017-08-31							
Parameter	Unit	G/S RDL	8704896	8704900							
Aluminum	hð\ð	5.0	<5.0	<5.0							
Antimony	hð\ð	0.8	<0.8	<0.8							
Arsenic	hð\ð	0.1	<0.1	<0.1							
Cadmium	µg/g	0.02	<0.02	<0.02							
Calcium	µg/g	100	1320	6390							
Chromium	µg/g	0.6	<0.6	<0.6							
Cobalt	µg/g	0.3	<0.3	<0.3							
Copper	µg/g	0.3	0.5	0.7							
ron	µg/g	50	<50	<50							
Lead	µg/g	0.1	<0.1	<0.1							
_ithium	µg/g	0.5	<0.5	<0.5							
Magnesium	µg/g	100	361	438							
Vanganese	µg/g	1.0	1.5	2.5							
Mercury	hð\ð	0.01	0.25	0.20							
Molybdenum	µg/g	0.5	<0.5	<0.5							
Nickel	µg/g	1	<1	<1							
Phosphorus	µg/g	50	2790	6090							
Potassium	µg/g	100	4460	4360							
Selenium	hð/ð	0.4	0.6	0.6							
Silver	µg/g	0.2	<0.2	<0.2							
Sodium	hð/ð	100	448	696							
Strontium	hð/ð	5	<5	<5							
- Tin	hð/ð	1	<1	<1							
Jranium	hð/ð	0.50	<0.50	<0.50							
/anadium	hâ/à	0.4	<0.4	<0.4							
Zinc	hð/ð	0.1	17.0	14.0							

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Milithya O. Silva

Quality Assurance

CLIENT NAME: DST CONSULTING ENGINEERS

PROJECT: TS-NO-030045

SAMPLING SITE:

AGAT WORK ORDER: 17U258529 ATTENTION TO: LAURA RITCHIE SAMPLED BY:

Miscellaneous Analysis

RPT Date:	C	UPLICATE	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MATRIX SPIKE					
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits		
							value	Lower	Upper	-	Lower	Upper		Lower	Uppe	
Metals Scan + Cations (Tissue)																
Aluminum	8704887 8	8704887	<5.0	<5.0	NA	< 5.0	107%	70%	130%	112%	80%	120%	105%	70%	130%	
Antimony	8704887 8	8704887	<0.8	<0.8	NA	< 0.8	101%	70%	130%	100%	80%	120%	101%	70%	130%	
Arsenic	8704887 8	8704887	<0.1	<0.1	NA	< 0.1	100%	70%	130%	104%	80%	120%	106%	70%	130%	
Cadmium	8704887 8	8704887	<0.02	<0.02	NA	< 0.02	100%	70%	130%	101%	80%	120%	121%	70%	130%	
Calcium	8704887 8	8704887	7490	3310	77.3%	< 10	97%	70%	130%	103%	80%	120%	103%	70%	130%	
Chromium	8704887 8	8704887	0.7	0.7	NA	< 0.6	99%	70%	130%	105%	80%	120%	104%	70%	130%	
Cobalt	8704887 8	8704887	<0.3	<0.3	NA	< 0.3	97%	70%	130%	105%	80%	120%	101%	70%	130%	
Copper	8704887 8	8704887	9.8	10.3	5.0%	< 0.3	100%	70%	130%	110%	80%	120%	112%	70%	130%	
Iron	8704887 8	8704887	<50	<50	NA	< 50	100%	70%	130%	108%	80%	120%	95%	70%	130%	
Lead	8704887 8	8704887	0.2	0.2	NA	< 0.1	101%	70%	130%	108%	80%	120%	107%	70%	130%	
Lithium	8704887 8	8704887	<0.5	<0.5	NA	< 0.5	100%	70%	130%	90%	80%	120%	106%	70%	130%	
Magnesium	8704887 8	8704887	424	377	11.7%	< 10	98%	70%	130%	101%	80%	120%	100%	70%	130%	
Manganese	8704887 8	8704887	2.1	1.7	NA	< 1.0	98%	70%	130%	107%	80%	120%	104%	70%	130%	
Mercury	8704887 8	8704887	0.56	0.60	6.1%	< 0.01	100%	90%	110%	104%	90%	110%	102%	80%	120%	
Molybdenum	8704887 8	8704887	< 0.5	< 0.5	0.0%	< 0.5	99%	70%	130%	98%	80%	120%	105%	70%	130%	
Nickel	8704887 8	8704887	<1	<1	NA	< 1	92%	70%	130%	108%	80%	120%	103%	70%	130%	
Phosphorus	8704896 8	8704896	2790	2460	12.6%	< 5	100%	70%	130%	103%	80%	120%	105%	70%	130%	
Potassium	8704887 8	8704887	3990	4070	2.0%	< 10	96%	70%	130%	102%	80%	120%	103%	70%	130%	
Selenium	8704887 8	8704887	0.5	0.5	NA	< 0.4	100%	70%	130%	98%	80%	120%	106%	70%	130%	
Silver	8704887 8	8704887	<0.2	<0.2	NA	< 0.2	85%	70%	130%	101%	80%	120%	108%	70%	130%	
Sodium	8704896 8	8704896	448	438	2.3%	< 10	91%	70%	130%	102%	80%	120%	103%	70%	130%	
Strontium	8704887 8	8704887	<5	<5	NA	< 5	101%	70%	130%	104%	80%	120%	104%	70%	130%	
Tin	8704887 8	8704887	<1	<1	NA	< 1	110%	70%	130%	111%	80%	120%	102%	70%	130%	
Uranium	8704887 8	8704887	<0.50	<0.50	NA	< 0.50	91%	70%	130%	104%	80%	120%	95%	70%	130%	
Vanadium	8704887 8	8704887	<0.4	<0.4	NA	< 0.4	90%	70%	130%	104%	80%	120%	100%	70%	130%	
Zinc	8704887 8	8704887	13.3	12.3	7.3%	< 0.1	100%	70%	130%	108%	80%	120%	122%	70%	130%	

Comments: Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

High RPD for sample and duplicate is due to the matrix and heterogeneity of the sample.

Certified By:

Milithza Q. Silva

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific tests tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 4 of 6

Method Summary

CLIENT NAME: DST CONSULTING ENGINEERS

PROJECT: TS-NO-030045

AGAT WORK ORDER: 17U258529 ATTENTION TO: LAURA RITCHIE SAMPLED BY:

SAMPLING SITE:		SAMPLED BY:						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Miscellaneous Analysis	L	1						
Aluminum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Antimony	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Arsenic	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Cadmium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Calcium	MET-93-6105	EPA SW-846 3050B & 6010C	ICP/OES					
Chromium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Cobalt	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Copper	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Iron	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Lead	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Lithium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Magnesium	MET-93-6105	EPA SW-846 3050B & 6010C	ICP/OES					
Manganese	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Mercury	MET-93-6101	EPA SW-846 7471A 245.5	CVAAS					
Molybdenum	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Nickel	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Phosphorus	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Potassium	MET-93-6105	EPA SW-846 3050B & 6010C	ICP/OES					
Selenium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Silver	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Sodium	MET-93-6105	EPA SW-846 3050B & 6010C	ICP/OES					
Strontium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Tin	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Uranium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Vanadium	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					
Zinc	MET-93-6103	EPA SW-846 3050B & 6020A	ICP-MS					

195	AG(a 1	Γı.	ahora	1 ator	mediu				ssissau	335 Coop ga, Ontar Fax: 905	io L4Z	1Y2				-		Only					
Chain of Cu		use Drinking Water Chain of Custody Form (potable water consumed by humans)							Cooler Quantity: 17-0258329 Arrival Temperatures: 01 01 0.2															
Report Information: Company: DST Consel Find Engrinpers					R	Regulatory Requirements: No Regulatory Requirement (Please check all applicable boxes)						Custody Seal Intact: Yes No N/A												
Contact: Michaela Honing Address: 885 Pigent St. J. Unit 3-18						Regulation 153/04 Sewer									Notes: Turnaround Time (TAT) Required:									
Sudbury ON, P3E 5M9 703 523 6680 ext 227 Fax:						Table Indicate One Sanit			Prov. Water Quality					Regular TAT 5 to 7 Business Days Rush TAT (Rush Surcharges Apply)										
	Reports to be sent to:					Soil Texture (check One) Region			© Objectives (PWQO)					☐ 3 Business ☐ 2 Business ☐ Next Business Days ☐ Days ☐ Day										
\		scyroup	* (017)		=	Fine MISA Indicate One							OR Date Required (Rush Surcharges May Apply):											
Project Information: Project: TS-NO-0.30045					Ŕ	Is this submission for a Record of Site Condition ?			Report Guideline on Certificate of Analysis						Please provide prior notification for rush TAT *TAT is exclusive of weekends and statutory holidays									
Site Location:	nventus - Parla	to projek	20-			Yes INO Yes N					1 140	2	For 'Same Day' analysis, please contact your AGAT CPM											
AGAT Quote #: Please note: If quotation number is not provided, client will be billed full price for analysis.						Sample Matrix Legend B Biota				s) irides) 0	1								P DPCBs					
Invoice Information: Bill To Same: Yes No Ventus Maning					GV GV	GW Ground Water O Oil				ccl . Hydride: Is (Incl. Hyd	₩ ₩		sle		DTHM			ø	SS DI B(a)P		Tissue			
Contact:	Winston Whyr	nonk	No COL	MSC IDI	P S				lics	etals (e) 3 Meta			n Meta	DN+FON		t 2		Aroclors	stićides DABNs		F			
Address: <u>82 Richmond St. E. Tulonto ON, MSC IPI</u> Email: <u>Winston whymaik Equals com</u>						SedimentSurface Water	e .	Field Filtered Metals, Hg,	and Inorganics	□ All Metals □ 153 Metals (excl. Hydrides) □ Hydride Metals □ 153 Metals (incl. Hydrides)	DB-HWS DC DC DEC DFOC DHg DCAP	als Scan	Regulation/Custom Metals] ġĩ				Total 🗆 A	Organochlorine Pestićides TCLP: □ M&I □ VOCs □ ABN	Use	IS in	-		
					Sample Matrix				Metals a	All Meta		Full Metals Scan	Regulati		Volatiles:	ABNs	PAHs	PCBs: D Total	Organoc Trc. P: D	Sewer U	Metol			
WALLY#1		Aug 30-17	pom.	1	B	Fish miscle t															V	_		
WS#1		1	ann	1	1		<u>e Lako</u>		-					_			_		_	-	V			
WS#2 RB#1			pom				e Lorko		-					_		_	-	-	_	-	V			
Sm #1		Auxi30-17	a.m	1	B		0 1010				1 <u> </u>			-	-	-	-			-	V			
		nugariti	Usiri		0	1.00	o Laiko		1		-		-			Ť	-		-	1				
NP#1		Aug31-17	Q.m	3	В	1 Mc	Nish														V			
NP#2		M.	Olm	1	1	Ma	Nish														L			
NP#3			am	1			Nish		1						-						V			
NP#9		V	p.m	1	V	L m	Wish	1.5	17-44	1 ⁶ .											V			
YP #1		Aug31-17	pm	1	B	V ma	UISK .														V			
Samples Relinguished By (Print Name and Same 2:32 Samples Relinguished By (Print Name and Same 2:32 Samples Relinguished By (Print Name and Same)				2:30pm	Samples Received By (Pr	mt Name and Signt	0				-11	Se	nt,7	17	Time	4.	45							
Samples Relinquished By (Print Name and Sign): Date Time					Samplins Reserved By (Print Nurve and Sign): Date					9	٩٧/٩ ٩٬٠٠٠ Page of Time №: Т 0/19031													
December 42 469 78 453 1.014											Pink	Сору -	Client	I Yel	ow Co	py - AC	GAT I	White	e Copy-	AGAT	Date	Page 6	of 6	